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Preface
Decision science is a set of quantitative tools for informing individual- and population-level deci-
sion-making. It includes decision analysis, cost-effectiveness analysis, constrained optimization, 
risk analysis, and behavioral decision theory. Decision science provides a unique framework for 
understanding and designing strategies to address such problems by focusing on decisions as the 
unit of study. Machine learning generates usable models by evaluating a large number of solutions 
against the given data and selecting the one that best fits the situation. As a result, machine learning 
can be useful for solving problems that require a lot of human effort. It can efficiently and accurately 
inform judgments and generate predictions about challenging topics. Insurers may predict likely 
results of crucial decisions using the Data Science Life Cycle and Decision Science platform, which 
is powered by machine learning, to achieve optimal decision outcomes. After decisions have been 
made, the results can be used to inform future decisions. As a result, high-value decision-making is 
streamlined and repeatable, which benefits both shareholders and policyholders.
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Introduction
Chapter 1 describes the basic concepts of data science, and structural patterns involved in decision 
sciences. The relation between machine learning and statistics is highlighted with an introduction 
to data science life cycle. The key role of a data scientist is briefed, and the real-world applications 
in these areas are emphasized.

In Chapter 2, the need for Python programming in machine learning, basics of Python program-
ming, and data structures and their implementation using Python are presented. In addition, we 
introduce the readers to NumPy basics, Matplotlib basics, Pandas basics, and the computational 
complexity involved in programming using Python. The chapter also provides programming exam-
ples for beginners using Python. A few real-world examples are also programmed so that the reader 
will understand implementation in Python with NumPy, Pandas, and Matplotlib libraries.

Chapter 3 focuses on the phases involved in the data analytics life cycle for machine learning. 
The aspects involved in data discovery, data preparation and exploratory data analysis, model plan-
ning, and model building are delineated. The reader is also exposed to the process of communicat-
ing results and optimizing and operationalizing the models. The roles and responsibilities of the 
members involved throughout the phases of data analytics life cycle are explained in detail.

Chapter 4 gives an insight into the basics of unsupervised learning, distance measures, the con-
cept of clustering, the most commonly used clustering algorithms, their applications to solve prob-
lems in real time, and their limitations.

In Chapter 5, the essential ideas behind all supervised algorithms in machine learning are dis-
cussed. The mathematical concept behind supervised algorithm with worked examples and imple-
mentation using Python is given in detail. Supervised algorithm for regression problem is well 
explained in this chapter with Python implementation.

The supervised learning method learns from the labeled data. Logistic regression, decision tree, 
and support vector machine are the various supervised learning classification algorithms widely 
used. In Chapter 6, a detailed description of these algorithms, their mathematical modeling, merits 
and demerits, solved examples, and real-world applications are provided with step-by-step imple-
mentation in Python.

Chapter 7 enlightens an analysis on feature engineering and reviews the basic requirements for 
features selection, wrapper models, and factor analysis with relevant Python examples.

In Chapter 8, we discuss the goal-oriented learning based on reinforcement learning, and how 
reinforcement learning (RL) varies when compared with other machine learning algorithms. The 
elements of RL such as agent, policy function, and value function are explained in detail, followed 
by the RL algorithms the Markov decision process (MDP) and dynamic programming (DP). The 
value functions, policy evaluation, and improvements are covered along with implementation of 
MDP and DP in Python.

Chapter 9 highlights a few applications of machine learning in various industries to solve prob-
lems where traditional programming cannot accommodate the reasoning for many combinations. 
The first use case, Retail Price Optimization Using the Price Elasticity of Demand Method, identi-
fies the exact price at which the most profit may be made. We present the application based on a 
customer dataset in a supermarket in use case 2 – Market Basket Analysis – highlighting association 
rule mining. Use case 3 – Sales Prediction of a Retailer – shows how to create a machine learning 
model and determine the sales of each product at a certain store. In use case 4, the cost of insurance 
claims is predicted for a property and casualty (P&C) insurance company. This case study shows 
how to clean data, preprocess data, and deal with outliers.
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1 Introduction

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the need for data science and machine learning (ML) in a real-world scenario.
• Appreciate the fundamentals of ML and deep learning.
• Describe structural patterns and understand their variants.
• Know the key roles of a data scientist for solving practical problems.
• Identify the real-world application areas of ML models.

1.1  INTRODUCTION TO DATA SCIENCE

The process of considering the algorithm and coding it with the help of a programming language 
can be executed by the computer. IT world has made people’s life easier by providing helpful soft-
ware. A design pattern provides a general refusal solution to the common problems that usually 
occur in software design. The patterns identify the connections between classes and objects. The 
primary purpose of patterns is to boost the performance of the development process. This chap-
ter will understand the need for data science and machine learning (ML) in real-world scenarios, 
highlight the basics of ML and deep learning (DL), know how to describe structural patterns, and 
understand their variants. In addition, a detailed description of the key role of a data scientist in 
solving real-world applications is highlighted. Several areas in which ML algorithms are applied 
are also illustrated.

Data science is a part of software engineering in which we study where the information comes 
from and its organization. It represents how we can turn the valuable resources in the initializa-
tion of any business and the information technology strategies. Data science allows mining a large 
amount of data that helps to identify the patterns for any organization’s efficiencies. There are some 
fields of data science: statistics, disciplines of computer science, data visualization, and data min-
ing. Data scientists possess a combination of ML and analytic and statistical skills and experience 
in coding and algorithms. Data science is everywhere in today’s world. Let’s imagine that you are 
traveling to a new city. The user can search for some tourist places, restaurants, parks, hotels, etc., 
with just one click. How is this possible? It’s the data science that saves and displays the results on 
your phone screen in a few seconds.

1.1.1  MatheMatics

Mathematics is everywhere around us, from counting money, temperature calculation, shapes, etc. 
Data science and mathematics have a strong relation in all the decision-making processes like pre-
dicting the routes and searching for the best possible answer. All these tasks are incomplete without 
mathematics. Data science uses ML algorithms for decision-making processes.

1.1.2  statistics

Data science is nothing without statistics, and data scientists require a graphical representation of 
the data with less theory. Business providers prefer data visualization like a bar chart as it becomes 
easier to evaluate the data and gain more information.

DOI: 10.1201/9781003258803-1
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1.2  DESCRIBING STRUCTURAL PATTERNS

Creating an application or software is a complex task. It becomes more difficult if not created with 
proper flow or patterns – software engineers use some patterns to symbolize their application pat-
terns to solve many problems. The selection of patterns depends upon the application requirements. 
Design patterns boost the development process; structural patterns are all about the classes and their 
instances creation. For example, to create a website that stores student records, the class will be 
Student and will have attributes like student name, age, father’s name, and address.

1.2.1  Uses of strUctUral Patterns

Structural patterns play an essential role in effectively solving the problems, as it covers the central 
concept of object-oriented programming, i.e., classes and their inheritance. These patterns allow 
classes to work together as a group. With the help of structural patterns, software engineers write 
less source code as most of the functions are extracted from inherited classes. Some of the com-
monly used design patterns are listed below:

• Adapter design pattern
Adapter patterns create a connection between interfaces of different classes; let’s take 

the real-life example; we have two applications created with two different programming 
languages. Now, you want to compile both applications on a single platform. The adapter 
works here as it changes the interface of one instance so that other instances can easily 
understand it. The adapter hides all the complex conversions.

• Bridge design pattern
The bridge design pattern splits the abstraction from its implementation. Let’s take the 

example of the main socket, which controls the lights, fan, TV, and AC of the house. This 
main socket acts as a bridge between the house’s sub-switches that control turning ON/
OFF of the utilities.

• Composite design pattern
Composite design patterns are used where a group of identical instances is considered 

as one instance. This pattern creates a hierarchal structure of similar objects. For example, 
the composite pattern creates a class that includes the faction of its objects.

Let’s understand the pattern with an example of grouping the teachers into different 
departments, classes will contain all the details of a teacher like a name, salary, address, 
and department, and composite teacher class will use teacher class to add teachers in a 
different department and print the teachers.

• Decorator design pattern
Decorator design patterns are used whenever new functions are needed to be added 

to existing objects without changing the entire structure of the class. Decorator design 
pattern creates a new class that abstracts the original class and provides the newly added 
functionalities. Let’s discuss an example of a decorator design pattern for a clearer under-
standing. Suppose we need to develop an online ordering system of a well-known burger 
restaurant that takes all requirements from a customer like what kind of bun, patty, and 
cheese they need in the burger and according to the requirement estimate the burger price.

Since customer customization may vary from customer to customer, creating classes 
for each type of customization will be a difficult task. Here we can create a decorator 
pattern class, which will contain all the information to customize the burger, like adding 
extra cheese, extra patty etc. The main class will be the burger with the regular base price. 
By using a decorator class, the burger class can be extended and the price can be added 
according to the customization.
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• Façade design pattern
Façade design patterns act like abstraction, which conceals all the inner complex details 

of the application and provides a simple interface to the client to access the applications. 
Let us consider an example of a grocery shop, which is equipped with loads of items. When 
a customer visits the shop for the first time, he is unable to search and find the items he 
wishes to purchase. So he gives a list to the shopkeeper and the shopkeeper gives the cus-
tomer all the required items. This is an example of Facade design pattern.

• Flyweight design pattern
Flyweight design patterns, as the name implies, are patterns that fly away from the 

weight, i.e., a memory from the application. It reduces the objects from the source code 
to release the memory and boosts the performance. Flyweight design can be called code 
optimization. Flyweight searches the objects that are similar and use them. In case no 
match is found, it creates a new object. Improving system performance is a non-func-
tional and essential requirement of software as it affects its appearance. Suppose we 
have an application running too slow due to lines and lines of code written and wast-
age of cache; now, flyweight design patterns work here. It will eliminate all the similar 
objects that are created and waste memory.

• Private class
This type of pattern is used for security purposes where data are crucial. Create a pri-

vate class and store the data, which will be in the same state throughout the code. All vari-
ables defined in the private class are only accessible within its class. To access the private 
class attributes, you need to create their getters and setters. The private class is used where 
information needs to be hidden from the outside world and only displayed to you.

• Proxy
Proxy is all about providing access. In proxy design patterns, a class is created, which 

represents the functionality of other classes. Let’s take the example of a credit card that 
acts as a proxy and contains all your bank account amounts.

1.3  MACHINE LEARNING AND STATISTICS

ML can forecast better and more accurate output. It builds the algorithms that use the input data 
statistics to predict the output. All social media websites use ML to display the data on the feed. The 
procedure of ML involves searching through data to look for patterns and program them accord-
ingly. Some ML examples include ads displayed as a suggestion and fraud detection. Some of the 
ML methods are as follows:

Supervised machine learning algorithm
Supervised learning deals with the known and categorizes data. It can classify uncategorized 

data also. In supervised learning, a sample set contains input data with desired output data. 
Based on this new test, data can easily be categorized. For example, an application identifies 
the animal that is either an herbivore, a carnivore, or an omnivore animal. Using supervised 
learning, it already knew the classification of the animal. Now, whenever a new animal is 
entered into the system as an input, the system will automatically predict its category.

Unsupervised machine learning algorithm
In the unsupervised learning sample set, data are unknown and unlabeled. The data cannot 

be implemented directly as we are unaware of the outputs. It simply works on finding the 
similarities between the data and categorizes them as one. For example, categorize the 
customer based on which product they purchase, and based on a similar product, we can 
categorize customers.
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Semi-supervised machine learning algorithm
Semi-supervised learning is the mixture of supervised and unsupervised learning as its data-

set contains categorized and uncategorized data. The aim is to predict the new data that are 
more effective and accurate than the output data given by the user. For example, you wish 
to buy a product and watch ads related to the product, and suddenly, you want to review the 
same product. Though the product is from a different company, the categorized data would 
be the basic ad released by the company.

Reinforcement machine learning algorithm
In reinforcement learning, the machine does not learn from classified data; instead it learns 

from its experience and prediction, an agent takes all the actions (robotic avatar), finds all 
possible scenarios and fits in the best solution. Games such as hangman is the best example 
of reinforcement learning algorithm. Statistics is a representation of data, hypothesis, etc. 
It’s the correlation between the points, invariable and multivariable.

Statistics types are as follows:

Forecasting continuous variable: If a variable can adapt value between minimum and 
maximum, then it is called continuous variable, for example, weight and age. It may be 
deterministic or probabilistic. A deterministic result can be compared and evaluated with 
respective observations. Probabilistic results are in the form of distribution.

Regression: It deals with the relationship between predictor and outcome variables. It ana-
lyzes the results based on predictive analysis and modeling. Let’s take the example of diet-
ing apps that predict the diet schedule based on your daily food routine, weight, and height.

Classification: It’s the process of grouping the data on the basis of similar categories. For 
example, classify animals based on their habitats.

ML and statistics are two different methodologies, but how are they similar? The similarity between 
both of them is the prediction from the data. The primary difference between ML and statistics is 
manipulating the data; ML is simply working out the data using algorithms, whereas statistics is just 
mathematics in finding the patterns from the data.

1.4  RELATION BETWEEN ARTIFICIAL INTELLIGENCE, MACHINE 
LEARNING, NEURAL NETWORKS, AND DEEP LEARNING

There is always a debate among researchers and beginners about artificial intelligence (AI), ML, 
neural networks (NNs), and DL. Some of the popular Google search questions are “Are AI and ML 
different?”, “Are ML and DL the same?”, “How is NN related to ML and DL?”, etc. Data scientists 
have come up with a clear definition for these terms:

Artificial intelligence (AI), like mathematics and biology, is a science. It researches how to 
create intelligent programs and machines that can solve issues creatively, which has his-
torically been considered a human right.

Machine learning (ML) is a subcategory of AI that allows systems to learn and improve 
independently without being explicitly programmed. Different learning algorithms based 
on different architectures (e.g., NNs) are used in ML to address problems.

Deep learning (DL), also known as deep neural learning, is a type of ML that employs NNs 
to assess various elements with a structure similar to that of the human nervous system.

IBM data scientists illustrate the relation between AI, ML, NN, and DL through simple nesting 
dolls. An illustration is given in the figure to represent how each paradigm is a subset of the previ-
ous paradigm. In other words, ML is a subset of AI. For example, the foundation of DL techniques 
is NN, which is a subset of ML. In practice, the number of hidden layers in a NN determines the 
architecture of a DL algorithm (Figure 1.1).
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AI is a discipline of computer science that teaches machines to think and function in the same 
way that people do. DL is a branch of AI that processes and manipulates data by mimicking the 
human brain’s working pattern. For example, the NN is used in DL to predict output patterns. 
Let’s look at the shortest route computation application as an illustration of how DL works. 
When we hurry and want to get to our end destination as soon as possible, we look for a shorter 
path.

The user will be asked to provide the following system input:

• Place to begin
• Destination

As previously said, DL is based on NNs, which have nodes similar to interconnected neurons. The 
input, hidden, and output layers are the three layers that make up a neuron. The input layer con-
tains the records entered by the user, such as the beginning place and destination. The hidden layer 
contains all the calculations and implementation, such as calculating the shortest path that covers 
the least amount of time and kilometers based on the user’s starting location and destination. There 
can be one or several hidden layers. Here are some DL implementations that feature more than one 
hidden layer. The final user output is contained in the output layer. In other words, it will show the 
user the optimized shortest route.

AI, DL, and ML all have one thing in common: They all use massive data and modern computer 
languages to anticipate outcomes. DL is the interrelationship between the three. ML is a subset of 
AI, and AI is a subset of ML.

So, as the figure suggests, AI is a broad concept that first exploded in the late 1950s, causing a 
significant shift in the data science industry. Later, in the late 1980s, ML was introduced, which 
improved AI features. Finally, in the late 1990s, DL was introduced, which combines AI and ML 
(Figure 1.2).

FIGURE 1.1 AI vs. ML vs. NN vs. DL analogous to a nesting doll.
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1.5  DATA SCIENCE LIFE CYCLE

Collection of data manipulates and analyzes the data and shows a meaningful result. All these pro-
cesses are complex and lengthy. The Data scientists require a proper flow or cycle to perform the 
data science life cycle tasks. On the other hand, working with big data is an easy task; data scientist 
uses a proper workflow for the result. The data science life cycle consists of six phases (Figure 1.3):

• Discovery
• Data preparation
• Model planning
• Model building
• Communicate results
• Operationalize

FIGURE 1.2 AI vs ML vs NN vs DL.
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• Discovery
Before starting the project, having a strong command of the background of the project 

is essential. It’s essential to have all the questions clear at the start. Gather all the require-
ments needed during the project. A data scientist must have a question/answer session 
with clients for a better understanding of requirements. Quick review on the history of 
company and project whether the similar project has been done in the past for reference.

• Data preparation
This step plays a critical and time-consuming role in the life cycle; this phase acts as a 

filtration process of data. In this step, all the cleaning and elimination of missing attributes 
are done. Why is the phase time-consuming? When we talk about big data, it can be in 
terabytes or more than that. Cleaning a large amount of data requires hundreds of sce-
narios. Let’s take the example of variable “area,” which has the data type integer. All the 
records are in integer except one record, which is in decimal. The integer data type cannot 
contain a decimal value; here, you need to eliminate that particular record.

• Model planning
In this phase, you need to select the ML model for your project, which algorithm needs 

to be applied,  and select the mathematical approach which will give the best possible 
outcome.

• Model building
Once the model is finalized and created just codes, the most commonly used language is 

Python. As soon as the project is ready, we deploy the system and share it with a customer. 
In this way, QA is done by the client itself. Any changes at the client end are urgently taken 
up and resolved.

• Communicate results
The client should have a clearer understanding of the model and result, which is very 

difficult as the client has no understanding of data science. Therefore, model interfaces 
should be transparent and interpretable as it will become easier for the client to absorb 
them.

• Operationalize
The final step is where documentation and maintenance of the project are done. 

Documentation will help the client to understand the project and run it efficiently.

FIGURE 1.3 Phases of data science life cycle.
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1.6  KEY ROLE OF DATA SCIENTIST

The activities the data scientists do are arranging the appropriate data and selecting models to meet 
the application needs. Data scientists are responsible for managing and presenting accurate data. 
Data scientist plays a vital role as all the business is depending on data analysis and data modeling.

The primary role of a data scientist is to investigate and manipulate the data in meaningful 
aspects and solve diverse problems. They have core knowledge of computer science, ML, big data, 
statistics, and mathematics. In addition, data scientists have core expertise in different program-
ming languages like Java and Python. A data scientist’s work starts with collecting, analyzing, and 
concluding a final result based on the decision-making process. Scientists also work on big data.

There are two types of big data:

• Saturated data: The data are mainly in an organized, sorted manner, for example, data 
gathered from devices like biometric devices, face detection devices, and longitudes and 
latitudes of different locations.

• Unsaturated data: The data are scattered and unorganized, which need to be organized 
before further processing. E.g., social media adds data, client feedback data, emails, let-
ters, posts all are unsaturated data.

Data scientists manage these types of data. Below are some application examples on which data 
scientists work:

• Fraud detection applications
• Predictable applications
• Cost estimation applications
• Search engines

1.6.1  Difference between Data scientist anD Machine learning engineer

A data scientist is responsible for the evaluation and classification of the data according to the busi-
ness requirements. Whenever a problem needs to be solved based on data, at this point, data scien-
tist plays their role. Data scientists analyze the data using statistical methods and create charts and 
graphs to understand the result better. On the other hand, ML engineers use algorithms to solve their 
problems. They develop programs that control robots and computer machines. They implement or 
create new models for better predictive results.

1.7  REAL-WORLD EXAMPLES

There is a wide range of application areas where AI, ML, and DL are gaining popularity. Some of 
the common areas that find the vast application of these domains are illustrated below:

Check deposit apps
Whether the business is small or large, AI is present in every field. AI helps in all cash 

management processes. People feel odium going to the bank and standing in the enormous 
queue for check deposits. AI had solved this problem. Check deposit applications allow the 
customer to automate the entire transaction process. AI observed the transaction patterns 
and saved them in the database now if any unusual step is identified in a transaction. It is 
considered fraud.

Google translator
Google translator uses an artificial neural network. It converts a sentence of one language 

into another language in just a few seconds. It works on the same pattern identification. 
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Patterns are saved in the database whenever a new word system matches the patterns from 
the history and concludes the translation.

Google Maps
Google Maps use AI tools for the navigation and calculation of the shortest route. So 

whenever you are lost or at some new place, you google the location, and it displays the 
navigation in just a few seconds. How this is possible? It’s just because of AI.

Online shopping recommendation
Whenever you search for an item on a search engine, it is saved as a history. As per 

your search, next time, you will be displayed recommended ads. How is this possible? It’s 
because of AI. Same with online shopping, whenever you purchase an item from an online 
store, you start getting suggestions related to the same product and your interests.

Rideshare applications
The rideshare application uses a ML technique to predict the ride fare. So whenever 

you book a ride, all the rides close to your current location are displayed on the screen and 
associated estimated costs for your destination. How is this possible? It’s because of ML.

1.8  USE CASES

Following are the use cases of industries that use ML:

1.8.1  financial anD insUrance inDUstries

1.8.1.1  Fraud Mitigation
Many organizations give less importance to fraud detection; as a result, they experience significant 
losses.

1.8.1.1.1  How Can We Identify Fraud?
There are various frauds and threats taking place in almost every industry. The primary and most 
challenging step is to identify how fraud took place. Fraud can occur inside or outside the company. 
Fraud inside the company can occur like a company employee changing bank information without 
the permission of an authorized person. In the same manner, outside fraud can be like hacking web-
sites or credit card fraud. In either case, to get rid of such kinds of fraud, data science helps here. 
Using predictive data science methodology, this issue can be overcome.

1.8.1.1.2  Machine Learning for Fraud Detection
Nowadays, ML is used in every field. ML algorithms identify the patterns with the help of data. 
It combines the data, relate them together, and concludes the fraud before something big happens. 
ML algorithms find the connection relation between locations and products and map them to people 
connected to that particular field. This approach of ML is convenient as it connects the data with all 
the individuals related to the fields.

1.8.1.1.3  Fraud Detection in Insurance Industries
Insurance industries are all about making a relationship with clients. However, it is next to impossible 
to keep the authenticity and verify each customer’s information, which leads to data privacy issues.

These problems can be overcome by implementing a data analysis and ingestion platform, which 
makes data collaboration possible, checks transactions, and claims inappropriate information across 
insurance products. This solution identifies the unusual information about the insurer.

1.8.1.1.4  Fraud Detection in Financial Industries
The banking industry relies on data that need to be captured and preserved.. 14ike customer service 
calls, transactions etc. This is nearly impossible to keep the record, keep track, and analyze the data.
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Fraud detections may occur in many forms including  credit / debit card fraud, application fraud, 
and account take overs. To overcome this  banking frauds, business providers use pattern analysis, 
which helps to analyze the data and build fraud prevention systems that identify unusual transac-
tions taking place.

1.8.1.2  Personalized Pricing
1.8.1.2.1  What Is Personalized Pricing?
Personalized pricing is where retailers already know about customers, and prices vary from cus-
tomer to customer, which depends on characteristics and behavior. Let’s take the example of a shop 
market where retailers sell the same item at different prices to different customers. The customers 
who stay long-term, keep purchasing the items that retailers offer a special discount..

1.8.1.2.2  How Personalized Pricing Works?
As defined earlier, the pricing varies from customer to customer. This is because customers are 
categorized into different groups, and each group has a different price. Whenever a new or old cus-
tomer arrives, the purchase system matches the customer with the most suitable group depending on 
their specifications and past visits. Accordingly, the prices are offered.

Let’s take a hotel management system, for example, and their prices depend on the weather con-
ditions and vacations. Whenever there are winters with snowfall, hotels’ pricing is high due to the 
season. In the same off-season, hotels offer a special discount to their customers.

1.8.1.2.3  Client Response on Customized Pricing
No one agrees on paying more when someone is paying less. When a customer came to knew about 
customized pricing, majority of customers were loud and not satisfied. Even people who paid less for 
the product raised the objection. As per their understanding, companies are offering fewer prices to 
customers who don’t want the product to attract them. The customer did not know it’s legal to charge 
different prices to different customers.

1.8.1.3  AML – Anti-Money Laundering
Anti-money laundering refers to the laws and procedures that identify the criminals who show ille-
gally obtained money as legal income.

1.8.1.3.1  How AML Works?
AML targets unlawful activities, including business activities, bank details, trading goods, drug 
smuggling, and taking money in large amounts to other countries.

All these activities are inspected by police officers who are hired for these works. They need to 
keep records of all the suspicious activities going around.

1.8.1.3.2  Machine Learning in Anti-money Laundering
To detect the criminal, it’s essential to keep a record of every step taken. Manually, it’s next to 
impossible. ML helps here; many models can be implemented to catch the criminal.

Anti-laundering software is built using ML and AI, and this software can learn and gain infor-
mation from historical data. For example, discover hidden patterns, and identify the connection and 
relationship between the data. On the other hand, detect and predict the auspicious event taking 
place. The software decreases the risk of false alarms and predictions.

AI-based analytical engine helps to discover money laundering activities. It monitors all the 
banking activities like transferring money, payments, purchases, and investments; social media 
activities are also monitored to keep track of the extracurricular activities performed by the 
suspect.

The engine uses supervised and unsupervised learning techniques to discover irregularity taken 
place.
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1.8.2  Utility inDUstries

1.8.2.1  Smart Meter and Smart Grid
Smart grid is the digital technology that allows communication between the utility and its custom-
ers; it controls energy consumption. Some of the smart grids are smart meters, smart appliances, etc.

Smart meters are advanced meters that give statistical information about the electricity that has 
been used; it tells the cost monthly/daily/hourly as per the usage. All the information is displayed 
on the digital screen.

1.8.2.1.1  Machine Learning in Smart Meters and Grid
The ML technique cuts the cost, decreases wastage, and improves convenience. Energy optimiza-
tion is done based on preferences like the necessary appliances that need to be ON (AC, TV, wash-
ing machine, etc.). Based on historical data and preferences, smart meters work using analytical 
models.

It analyzes the house’s resident profile and energy profile; then, as per the collected data, resident 
profile and energy consumptions are predicted. Now, based on the forecasted energy consumption, 
solar energy is fitted on an additional electricity power grid to reduce the main electricity power 
grid demand.

1.8.2.2  Manage disaster and Outages
Electricity utility companies find it a difficult job to manage and plan natural disasters. In addition, 
restoration of power in a disaster is a hazardous job. Let’s take the example of the thunderstorm that 
destroys the trees and power lines that affect the electricity supply in the affected areas.

Due to significant storms/hurricanes in a city, people face 10–15 days of an electricity outage, 
and it becomes challenging to survive. AI cuts the duration to approx 4 days by using a prediction 
tool that detects the areas that will be affected after the disaster.

A predictive and data-driven approach will allow operational power to communicate with emer-
gency service for instant recovery quickly. It can also control and analyze the historical data to 
improve its effectiveness.

AI had taken control over the disaster like earthquakes. It stores the information about the build-
ing constructions like soil and bricks used to identify which building will be effective in case of an 
earthquake.

1.8.2.3  Compliance
Utility companies’ business flow differs from normal ones, as they do not buy the product and sell 
it to customers at a higher price. In utilities, prices are fixed by the government (or related public 
utility commissions – PUCs), which everyone has followed.

The utility industry is under extraordinary pressure from aging infrastructure and rapidly shift-
ing customers and fulfilling their demands.

A utility can meet changing dynamics by applying AI; the first step is to improve utility programs 
and increase customer engagement and then enhance the customer experience using an AI-enabled 
digital experience that delivers real-time and secure information on mobile.

1.8.3  oil anD gas inDUstries

1.8.3.1  Manage Exponential Growth
Oil has been one of the most demanding resources for decades. Oil providers cover half of the 
world’s energy. Oil has been used everywhere, from vehicles to industries.

Since the business is vast, it needs to be controlled and managed correctly. The oil and gas indus-
try is divided into different sectors, and AI technology can be applied differently. AI can help in 
lowering the cost and making the appropriate decision.
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Using AI, the industry is applying new technology to gain more profit with a low margin. With 
the help of AI sensors, companies can keep a record of failures.

The companies that locate and extract oil and natural gas require a large amount of machinery 
and workers, increasing cost. We can reduce the cost by using AI sensors to control a real-time 
system and monitor data collection.

The companies that store, process, and deliver the oil and gas to providers also use AI for forecast-
ing and measuring the optimization for better decision-making, which enhances the performance.

AI is growing day by day and increasing the efficiency and cost-effectiveness in the oil and gas 
industries.

1.8.3.2  3D Seismic Imaging and Kirchhoff
3D seismic is a tool that identifies crude oil and natural gas with the help of sound waves of rock 
underground. Seismologist uses ultrasensitive devices to record the sound of rock.

1.8.3.2.1  How Are the Seismic Data Collected?
There are two types of data recordings:

Passive source: They are generated by the movement of the earth. Humans are unable to feel 
as they produce significantly less vibration.

Active source: The data are gained by sending vibrations to the earth.

1.8.3.2.2  How Do AI and Machine Learning Work Here?
Using ML algorithms, the company can group oil and gas fields, which are implemented to predict 
and implement the preservation of pumps, trackers, turbines, etc. In addition, DL and ML tech-
niques like image processing, forecasting methods, and analytical tools are implemented.

1.8.3.3  Rapidly Process and Display Seismic Data
ML systems automatically collect the data and identify the relation between them. Firstly, ML iden-
tifies all the data patterns, which may include some missing traces. It analyzes the data and identi-
fies the hidden relationship between them. Now, using the known data, it will identify the missing 
traces for another set of input data.

This method only relies on its experience, i.e., learned and concluded from the identified dataset. 
It reduces the cost and time wasted in identifying the missing traces.

1.8.4  e-coMMerce anD hi-tech inDUstries

1.8.4.1  Association and Complementary Products
Nowadays, everything is associated with the Internet, whether the purchase of items, selling, or 
studying. Most of the e-commerce business providers are looking for doing business and selling 
goods online. These companies try selling their products by promotion, displaying ads, and market-
ing. AI plays its role by creating a recommendation system that uses complementarity and similarity 
among goods and offers the best deal per customer needs and wants.

Recommendation systems are designed based on association. Therefore, they give importance to 
user interests and recommend only the products users are interested in.

Another critical factor is complementary association; it is applied in almost every field of e-com-
merce, where complementary products are offered to the customer. To increase the system’s accu-
racy, users are offered suggestions.

1.8.4.2  Cross-Channel Analytics
Cross-channel analytics is a marketing intelligence technique that allows data from different plat-
forms, including ads, promotion, and presenting it on a single platform.
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It understands users’ behavior to narrow downwhat sort of ads, products are popular among 
them. In an e-commerce website, data analysts investigate and find the paths and links created. 
These paths will help in making it possible for future marketing.

1.8.4.3  Event analytics
AI and ML are everywhere and have become popular due to their approach to solving problems, 
algorithms, and predictive models.

Analytics plays a vital role in a powerful AI system. The organization that uses a large amount of 
data collection and integrations and has mature model analytics plays its part here.

It has been identified that the business providers who are willing to opt for AI techniques inte-
grate the data and functionality into their core system. An enterprise-wide strategy on data stan-
dards can help in analytics and ML practice.

SUMMARY

Design patterns: In computer science, it’s a generalized solution to the most commonly faced 
problems. It’s like a dummy template that develops. Then, based on the template code, the 
whole source code is written. There are three types of design patterns, creational, struc-
tural, and behavioral design patterns.

Data science: It’s the study of data and its manipulation, analyzing the data, sorting the raw 
data into a meaningful manner. Data science includes mathematics, computer study, eco-
nomics, and statistics.

Computer science: It is the branch of science that deals with computers and their study, how 
a computer works, and how to operate it. The person who studies computers is called a 
computer scientist.

Economics: It deals with the study of construction, expenditure, and distribution.
Machine learning: It’s all about the representation of data, algorithms, and patterns. 

Nowadays, data scientist uses ML techniques and patterns to build an application.
Artificial intelligence: It is the process where a machine acts like a human. For example, 

human-like robots are created. This is possible because of AI.
Statistics: The branch of mathematics deals with gathering, arranging, organizing, and repre-

senting the data in graphical forms. It works excellent in concluding the results in the form 
of sets, charts, and graphs.

Data scientist: Data scientists are responsible for managing and presenting accurate data. Data 
scientist plays a vital role as all the business is depending on data analysis and data modeling.

Object-oriented programming: Explain its types, and object-oriented programming is all 
about creating classes and their instances. Data are converted into objects, and all the 
behavior of the data is performed in classes. It’s an excellent aspect of writing code.

Object: The instance of a class is called an object; if we need to access the attributes and 
functions of class, it’s compulsory to create its object.

Supervised machine learning algorithm: In this type of learning, data are in a meaningful 
format, and machines have some knowledge about the data and can predict the output.

Unsupervised machine learning algorithm: This type of data machine is unaware of the 
data and its output. It models the structure and classifies it to know much about the data.

Semi-supervised machine learning algorithm: In this type of data, both classified and 
unclassified data are present; machines learn from unclassified data without using the 
labeled data; in this manner, machines can learn some new information that was not pres-
ent in human entered label data.

Reinforcement machine learning algorithm: In this type, no classified data machine learns 
from its experience and prediction. There is an agent who takes all the actions (robotic 
avatar), finds all the possible scenarios, and fits in the best.
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REVIEW QUESTIONS

 1. Is it necessary to use design patterns?
 2. How many design patterns are there?
 3. How are the proxy design patterns helpful?
 4. Give an example of a private class.
 5. Are mathematics and statistics the same?
 6. How important is it to follow the data science life cycle?
 7. What is the final step of the data science life cycle?
 8. Give real-life examples where ML is used.
 9. What is DL?
 10. What are the advantages of a NN?
 11. Which is the best suitable programming language to implement ML?
 12. Give a real-life example of data science.
 13. Explain the data science life cycle with an example.
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2 Overview of Python for 
Machine Learning

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to:

• Understand the need for Python in machine learning (ML),
• Rejuvenate the basic Python programming concepts with simple examples,
• Refresh the basics of Numpy, MatplotLib, and Pandas libraries relevant to ML,
• Understand the computational complexity, and
• Implement Python-based simple examples using Pandas, Numpy, and MatplotLib.

2.1  INTRODUCTION

Python is a high-level, object-oriented programming language that is easy to learn; its syntax is easy 
to be remembered. Its effectiveness makes it the best language for applications. The language had 
made success in data sciences and ML. Python is an interpreted language; it uses compatible modules 
instead of a single long list of instructions standard for functional programming. Python does not con-
vert its code into machine code. Instead, it converts the code into byte code which is not understand-
able by the CPU. So, we need an interpreter which executes the byte code, as shown in Figure 2.1. 
This interpreter is called a virtual machine. This chapter presents the need for Python programming 
in ML, the basics of Python programming, and data structures and their implementation using Python. 
In addition, we introduce the readers to Numpy basics, MatplotLib basics, Pandas basics, and the com-
putational complexity involved in programming using Python. The chapter also provides program-
ming examples for beginners using Python. A few real-world examples are also programmed so that 
the reader will understand implementation in Python with Numpy, Pandas, and MatplotLib libraries. 

2.1.1  the flow of PrograM execUtion in Python

Steps were taken by the interpreter to execute a program:

 1. The interpreter reads each line of the code and checks if any syntax error is found. In case 
of error, it halts the translation and displays an error message.

 2. If no error is found, the interpreter translates the code into the equivalent language called 
byte code.

 3. Byte code is sent to Python virtual machine, the byte code is again executed on the virtual 
machine, and if any error is found in this execution, an error message is displayed.

2.2  PYTHON FOR MACHINE LEARNING

Python is the fastest growing and multi-purpose programming language, because it is easily pro-
grammable and is less complex. Programmers can easily understand it. Python is open source, 
which has many advantages like maintainability, compatibility, and ease to learn and understand. 
Programmers can quickly code and update it without any complexity. Apart from this, it is an 
object-oriented, interpreted, and interactive programming language. It contains classes, objects, 
functions, and error-handling features. ML concepts are difficult to adapt to quick implementation. 

DOI: 10.1201/9781003258803-2

https://doi.org/10.1201/9781003258803-2
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Most ML models and concepts are built using Python because it is easy to understand, and the 
syntax is less complex.

2.2.1  why is Python gooD for Ml?

There has been a growing popularity of the Python language in ML, deep learning, and artificial 
intelligence in the last decade because of the following:

• Python is a platform-independent language.
• Python has concise and readable code, promotes rapid testing of complex algorithms, and 

makes the language accessible to non-programmers.
• While complex algorithms and versatile workflows stand behind ML, Python’s simplicity 

allows developers to write reliable code.
• Developers get to focus on solving an ML problem instead of focusing on the technical 

nuances of the language.
• It can do a set of complex ML tasks and enable you to build prototypes quickly that allow 

you to test your product for ML purposes.
• Python comes with multiple frameworks and libraries to reduce developers’ development 

time, and these libraries can be easily configurable. A software library is a pre-written 
code that developers use to solve everyday programming tasks.

• Python, with its rich technology stack, has an extensive set of libraries for ML.
• Python contains statistical libraries for statistical operation. It makes data visualizations easier.
• A larger user community works toward updating and sharing the libraries continuously.
• If the organization uses Python for other development activities, such as desktop develop-

ment, those skills can be easily transferred to ML projects.

This chapter discusses how to set up Python Integrated Development Environment (IDE), Python 
frameworks, and libraries useful for ML and deep learning.

2.3  SETTING UP PYTHON

To enjoy the fast-growing programming language, the user will need to install a Python interpreter 
as per the operating system like Windows, macOS, and Linux.

2.3.1  Python on winDows

• Download the latest Python installation package from https://www.python.org/downloads/
and run the executable file

• Choose the optional installation options; the user can add additional features or adjust the 
location as per the need.

• To access Python from any command prompt, kindly check on the second option, “Add 
Python 3.7 to PATH,” as shown in Figure 2.2.

• The user can now verify the installation from the command prompt.

FIGURE 2.1 Python code with its interpreter.

https://www.python.org
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2.3.2  Python on linUx

Linux distribution already has Python installed in the system; to verify, use the below-mentioned 
command:

Shell Response−
−

→
−

Python version

Python2 version $Python3 version

If Python installed is not the latest version and the user wants the latest version, then the steps 
depend on Linux distribution.

2.3.2.1  Ubuntu
If the users are using Ubuntu 16.10 or latest, then write the following command :

$ sudoapt-get update
$ sudoapt-get install python3.6

If the users are using Ubuntu 14.0, then they need to get personal package active, then write the 
following:

$ sudo add-apt-repository ppa: deadsnakes/ppa
$ sudoapt-get update
$ sudoapt-get install python3.6

2.4  PYTHON BASICS

Python is a high-level programming language with straightforward syntax. As a prerequisite, the 
user can learn Python faster if he appreciates the concepts of classes, objects, interface, etc. This 
section would directly deal with the Python operators, flow control, data structures, functions, 
exception handling, and debugging issues related to Python programming.

FIGURE 2.2 Screenshot of the installable window.
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2.4.1  Python oPerators

Operators manipulate the value of operands, and it performs operations on variables and values. In 
addition, it carries out all the arithmetic and logic operations.

Example: Consider the expression, 3+ 4 = 7, where 3 and 4 are operands and + is the operator.
A variety of operations are supported by Python, namely arithmetic, comparison, assignment, 

and logical operations. A detailed discussion of these operations is presented in this section with 
relevant Python examples. 

2.4.1.1  Arithmetic Operators
Arithmetic operators perform all the arithmetic operations like addition, subtraction, multiplication, 
and division. Table 2.1 shows a list of all arithmetic operations supported by Python.

2.4.1.2  Comparison Operators
Comparison operators compare the variables and identify the relationship between them; it returns 
either True or False. Table 2.2 presents the comparison operators supported by Python.

2.4.1.3  Assignment Operators
Similar to other programming languages, a group of Python operators assign values to the variable, 
as shown in Table 2.3.

2.4.1.4  Logical Operators
Logical operators are used in Python to combine conditional statements. The list of Python logical 
operators is shown in Table 2.4.

TABLE 2.1
Arithmetic Operators in Python

Operator Details Example Syntax

+ Add two operands X + Y X = 3; Y = 2; print(X + Y)

− Sub two operands X − Y X = 3; Y = 2; print(X − Y)

* Multiply two operands X * Y X = 3; Y = 2; print(X * Y)

/ Divide two operands X/Y X = 2; Y = 2; print(X/Y)

% Divides left hand operand with right hand operand  
and returns remainder

X %Y X = 2; Y = 2; print(X%Y)

** Exponent calculates power X ** Y X = 2; Y = 2; print(X**Y)

// Floor division X//Y X = 2; Y = 2; print(X//Y)

TABLE 2.2
Comparison Operators in Python

Operator Details Example

= = Values of two operands are equal; it returns True X = = Y

!= The values of two operands are not equal; it returns True X != Y

<> The values of two operands are not equal; it returns True same like (! =) X <> Y

> Greater than X > Y

< Less than X < Y

>= Greater than or equal to X > = Y

< = Less than or equal to X < = Y



19Overview of Python for Machine Learning

2.4.1.5  Membership Operators
These operators test for membership in a sequence such as lists, strings, or tuples. Two membership 
operators are used in Python (in, not in). It gives the result based on the variable present in a speci-
fied sequence or string.

2.4.2  Python coDe saMPles on basic oPerators

Operators are special symbols in Python that carry out arithmetic or logical computation. The value 
that the operator operates on is called the operand. This section provides the user with Python code 
snippets using the operators discussed in the above sections.

2.4.2.1  Arithmetic Operators

In [33]: 5+7 #adding integers
Out[33]:12
 
In [34]: 2+3+4+87
Out[34]:96

In [35]: 2*4+4+87 #Operators precedence(/,*,+,-)
Out[35]:99
 
In [36]: 2+10/2*5+20
       #order of operator precedence
       # 10/2 = 5
       # 5*5 = 25
       # 2+25+20=47
Out[36]:47.0

TABLE 2.3
Assignment Operators in Python

Operator Details Example

= Assign a value to the variable X = 5

+ = Add right operand to left operand and assign value to left operand X + = Y

-= Subtract right operand to left operand and assign value to left operand X − = Y

*= Multiply right operand to left operand and assign value to left operand X *= Y

/= Divide left operand to right operand and assign value to the right operand X /= Y

%= Find the modulus of two variables and assign the value to the left operand X % = Y

**= Calculate the power and assign value to left operand X ** = Y

//= It calculates floor division and assigns value to the left operand X //= Y

TABLE 2.4
Logical Operators in Python

Operator Details Syntax

AND True when both conditions are True X < 5 and X < 6

OR True when any one of the condition is True X < 5 or X < 6

NOT Reverse the result if the condition is True; it will return False not (x < 5 and x < 10)
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In [37]: 2+3*15%2+3*2
# 3*15 = 45
# 45%2 = 1
# 3*2=6
# 2+1+6=9

Out[37]:9
 
In [38]: x = 5 #variable declaration and initialization
 
In [39]: x#prints value of variable x
Out[39]:5
 
In [40]: type(x) #type is single argument built-in function and it returns 
Data-type of the variable
Out[40]:int
 
In [41]: a = 2 #declaring a variable
 
In [42]: a
Out[42]:2
 
In [43]: type(a)
Out[43]:int
 
In [44]: a = 4
 
In [45]: atype(a)
Out[45]:int
 
In [46]: y = 5.67
         ytype(y)
Out[46]:float
 
In [47]: x = 2.5/2 #Dividing float value by integer
                   #result will float since integer is upcasted.
 
In [48]: X #prints value of variable x
Out[48]:1.25
 
In [49]: type(x) #data-type of variable x
Out[49]:float
 
In [50]: #String varible declaration and initialization
          string_one= 'first string' 
          string_two= "second string" 
          string_three= "'third string'"
 
In [51]: string_one
Out[51]: 'firststring'
 
In [52]: print(string_two) #prints value stored in the variable stirng_two
         second string
 
In [53]: type(string_one) #type is single argument built-in function and it 
returns type of the variable
Out[53]:str
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In [54]: type(string_three)
Out[54]:str
 
In [55]: #everything after # will be considered as a comment
 
In [56]: x = 4
 
In [57]: x
Out[57]:4
 
In [58]: type(x)
Out[58]:int
 
In [59]: #this is comment
         #this is second comment
 
In [60]: x = 15
         y = 4
 
In [61]: print('x + y =',x+y)
         x + y = 19
 
In [62]: print('x - y =',x-y) # Subtraction operation
         x - y = 11
 
In [63]: print(10-20) # NOTE:-lower is subtracted by higher value then result 
is negative. """
         -10
 
In [64]: print('x * y =',x*y) # Multiplication operation
         x * y = 60
 
In [65]: print('x / y =',x/y) #Division- Result is accurate division value
         x / y = 3.75
 
In [66]: print('x // y =',x//y) # Floor division - division that results 
into whole number adjusted to the left in the number line
         x // y = 3
 
In [67]: print('x **y=',x**y) # Exponent - left operand raised to the 
power of right
         x ** y = 50625
 
In [68]: 25*25
Out[68]:625

2.4.2.2  Comparison Operators
These operators compare the values on either side of the operand and determine the relation between 
them. It is also referred to as a relational operator. Various comparison operators are (==,!=, >,<=, etc.)

In [69]: x = 20
         y = 35
 
In [70]: print('x>y is',x>y) # Operator Greater than - Left hand operand is 
greaterthenre turns TRUE
         x > y is False
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In [71]: print('x<y is',x<y) # Operator Less than - Left hand operand is 
Lesserthenreturn s TRUE
         x < y is True
 
In [72]: print('x == y is',x==y) # Operator Equal - Left hand operand is 
equal to the right ha nd operand then returns TRUE
         x == y is False
 
In [73]: print('x!= y is',x!=y) # Operator Not Equal - Left hand operand 
is not equal then re turns TRUE
         x!= y is True
 
In [74]: print('x >= y is',x>=y) # Operator Greaterthan or Equal to - If left 
hand operator is greater than or equal to then returns true
         x >= y is False
 
In [75]: print('x <= y is',x<=y) # Operator Less than or Equal to -If left 
hand operand is les s than or equal to then returns true
         x <= y is True
 
In [80]: x = 4
         y = 5
 
In [81]: print(('x>y is',x>y))# Operator Greater than - left-hand operand is 
greater than then returns true
         ('x > y is', False)
 
In [82]: print(x==y) # Operator Equals - BOth the operands are equal by 
values then returns true
         False
 
In [83]: print(x!=y) # Operator Not equal to - Both operands are not 
equal by values then returns true
         True

2.4.2.3  Logical Operators
Logical operators are the and, or, not operators.

In [76]: x = True
         y = False
 
In [77]: print('x and y is',xandy) # Operator Logical AND - True if both are 
true or same
         x and y is False
 
In [78]: print('x or y is',xory) # Operator Logical OR - True if Either one 
is true
         x or y is True
 
In [79]: print('not x is',notx) # Operator Logical NOT -If true then returns 
false
         not x is False
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2.4.2.4  Membership Operators
The examples of in and not in operators used in Python are discussed in this section. For instance, 
we check whether the value of x = 4 and y = 8 is available in the list or not by using in and not in 
operators.

In [84]: x = 4
         y = 8
   list= [1, 2, 3, 4, 5 ] #List is a collection which is ordered and 
changeable and als o allows Duplication
         if(x in list):
            print("Line 1 - x is available in the given list")
         else: 
            print("Line 1 - x is not available in the given list")
         if(y not in list):
           print("Line 2 - y is not available in the given list")
         else:
           print("Line 2 - y is available in the given list")
 
         Line 1 - x is available in the given list 
         Line 2 - y is not available in the given list
 
In [85]: s = "sakshi"
 
In [86]: 'a' in s # IN operator is to validate or evaluate the s of value
Out[86]:True
 
In [87]: 'b' in s
Out[87]:False
 
In [88]: "a" not in s # NOT IN operator is
Out[88]:False
 
In [89]: "b" not in s
Out[89]:True
 
In [90]: import keyword
 
In [91]: print(keyword.kwlist)
         ['False', 'None', 'True', 'and', 'as', 'assert', 'async', 
'await', 'break', 'class',
         'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 
'for', 'from', 'globa
         l', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 
'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']
 
In [92]: print(keyword.kwlist)
         ['False', 'None', 'True', 'and', 'as', 'assert', 'async', 
'await', 'break', 'class',
         'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 
'for', 'from', 'globa
         l', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 
'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']
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2.4.3  flow control

The flow of the program is sequential. One by one, each statement is executed. There is a condition 
when the user needs to repeat the statement again and again. In this case, the control flow statement 
works. Control flow statement includes if condition, for condition, else, if-else, and while loop. The 
computer program understands True and False’s language; let’s explain this with a flow diagram as 
shown in Figure 2.3.

2.4.3.1  If & elif Statement
Sometimes the user needs to execute statements depending on some conditions; for multiple condi-
tions, we use elif.

If expression :
        Statement
Elifexpression :
       Statement
Elifexpression :
       Statement
Else expression :
      Statement

Let’s explain this with an example, suppose create a program that identifies if the number is nega-
tive, else if the number is positive and even number else consider the number as a positive odd 
number

If y<0 :
 print “y is negative”
elif
 y/2 = 0: 
 print “y is even number”
else :
 print “y is a negative number.”

FIGURE 2.3 Control flow statement.
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2.4.3.2  Loop Statement
A loop statement allows us to execute a statement multiple times. For example, if the user wants to 
print his/her name ten times, this care loop will help; instead of writing the name ten times, use the 
loop function and define its range. The flow diagram shown in Figure 2.4 explains the loop statement.

As discussed in the following sections, there are different types of loop statements, namely for, 
while, nested loops, etc.

For loop: The loop executes the statement repeatedly using the iterator variable that incre-
ments each execution. Let’s take the same example of printing fruits name. Let “fruits” be 
the list that contains the names of three fruits. When the program executes, each fruit is 
saved in variable “I” and then printed one by one.

Fruits = [“apple”, “mango”, “banana”];
For I in fruits :
Print (i);

While loop: Repeats the group of a statement if the given condition is True. For example, add 
the first five natural numbers.

I = 0;
While y<6:
y = y+y
I++;

Nested loop: To use the loop inside another loop is called a nested loop. Let’s take an example 
of distributing four chocolates to each student of the class. The nested loop will work here, 
as we have to use two loops, that is, for chocolate and students.

chocolate = [“Cadbury”, “kitkat” “ mars”, “ galaxy”];
students = [“Alice”, “ Jhon”, “ Nick” ];

FIGURE 2.4 Flow diagram of the loop statement.
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For students in students :
For chocolate in chocolate :
Print (students + “got” + chocolate);

2.4.3.3  Loop Control Statements
To change the sequence of executing a code, Python provides multiple control statements. Following 
are the loop control statements:

Break statement: To exit from a loop, break statements are used. Let’s take the example of 20 
enrollment numbers, and the user wants to print only ten enrollment numbers.

x=1;
While x< = 20: 
Ifx ==10:
break
Print (x)
x++;

Continue statement: It is similar to the break statement, it exits the loop, but the loop itself is 
not exited. Let’s consider the same previous example and replace the break with continue.

x=1;
While x < = 20:
if x ==10:
continue
Print (x)
x++;

Pass statement: It is also called a null operator. Nothing happens when it is executed. 
Consider a project that two programmers complete; one falls sick and cannot come on a 
specific day. The problem is that another programmer cannot hold the work. In this case, 
all the functions that the sick programmer wrote will be left empty using the pass state-
ment. Let’s consider the same previous example with a pass statement.

x=1;
While x < = 20:
if x ==10:
pass
print “10 not included”
Print (x)
x++;

2.4.4  Python coDe saMPles on flow control stateMents

2.4.4.1  Conditional Statements
Decision-making is required when we want to execute code only if a specific condition is satisfied. 
The if…elif…else statement is used in Python for decision-making.

syntax:if test expression: statement(s)
The program evaluates the test expression and will execute statement(s) only if the text expres-

sion is True. If the text expression is False, the statement(s) is not executed. In Python, the body of 
the if statement is indicated by the indentation. The body starts with an indentation, and the first 
unindented line marks the end.

As soon as loop reaches the 10thenrollement the beak 
statement will exit the loop and will display 10
enrollements only

As soon as loop reaches the 10thenrollement the
con�nue statement will exit the loop and will display
all the enrollement from 1 �ll 20 except the 
enrollement 10

As soon as loop reaches the 10thenrollement the pass 
statement will work and display all the enrollement from 1
	ll 20 except the enrollement 10 as we had passed it and
will print 10 not included with it



27Overview of Python for Machine Learning

In [1]:
a = 5 #Declaration and assignment.
If a== 7: #Condition is false.
 print("True")
 print("True123") #Both these statements are not executed.
print("false") #Executed whenever it is encountered.
false
 
In [2]: 
num= 3
ifnum>0:  #Condition is true then body of the statement is executed
 print(num, "is a positive number.")
print("This is always printed.")#Executed whenever it is encountered.
num= -1
ifnum> 0:
 print(num, "is a positive number.")
 #print("abc")
 print("This is also always printed.")
 #print("xyz")
print("xyz") #Executed whenever it is encountered.
3 is a positive number. 
This is always printed.
xyz

2.4.4.2  Python if...else Statement
Syntax of if...else

if test expression: Body of if-else: Body of else
The if..else statement evaluates test expression and will execute the body of if only when the 

test condition is True. If the condition is False, the body of else is executed. Indentation is used to 
separate the blocks.

In [3]:
a = 5
if  a== 4: #condition is true body of the conditional statement is executed.
    print("True")
else:
    print("False") #Whenever condition fails this statement will be executed.
 
#print ("in else")#first unindentend line
False

In [4]:
# Program checks if the number is positive or negative
# And displays an appropriate message
 
num= -8
 
# Try these two variations as well.
# num = -5
# num = 0
 
if num>= -5:
 print("Positive or Zero")
 print("this no positive")
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else: #Condition fails, Else part is executed.
 print("Negative number")
Negative number

2.4.4.3  Python if…elif…else Statement

Syntax of if...elif...else

if test expression: Body of if elif test expression: Body of elif else: Body of else. The elif is short for 
else if. It allows us to check for multiple expressions.

If the condition for if is False, it checks the condition of the next elif block and so on. If all the 
conditions are False, the body of else is executed. Only one block among the several if…elif…else 
blocks is executed according to the condition. The if block can have only one else block. But it can 
have multiple elif blocks.

In [5]:
  var= 150
  if(var< 200 and var> 50): #Condition with logical "and", means both 
must be true onl y then its body gets executed.
     print("Expression value is less than 200")
     ifvar== 150: #Nested if condition
       print("Which is 150")
     elifvar== 100: #inner else if part
       print("Which is 100")
     elifvar==50: #inner else if part
       print("Which is 50")
  elifvar<50: #outer else if part
     print("Expression value is less than 50")
  else: #outer else part
     print("Could not find true expression")
  print ("Good bye!")
Expression value is less than 200
Which is 150
Good bye!
 
In [6]:
  # In this program,
  # we check if the number is positive or
  # negative or zero and
  # display an appropriate message
 
num= -8
 
  # Try these two variations as well:
  # num = 0
  # num = -4.5
 
ifnum> 0:
    print("Positive number")
elifnum==0: #else if conditional statement.
    print("Zero")
else:
    print("Negative number")
Negative number
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2.4.4.4  The For Loop
The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable objects. 
Iterating over a sequence is called traversal.

Syntax of for Loop
For Val in sequence: Body of for
Here, Val is the variable that takes the item’s value inside the sequence on each iteration.
Loop continues until we reach the last item in the sequence. The body of for loop is separated 

from the rest of the code using indentation.

In [7]:
  # Program to find the sum of all numbers stored in a list
 
  # List of numbers
  numbers= [6, 5, 3, 8, 4, 2, 5, 4, 11] #list
 
  # variable to store the sum
  sum= 0
 
  # iterate over the list
  # val takes values in the list and increments till the list range.
  forvalinnumbers:
      sum = sum+val
 
  # Output: The sum is 48
  print("The sum is", sum)
The sum is 48
 
 
n = 6
# iterates from 0 to range of n
# range() returns sequence of numbers from 0(by default) to N, Increment by 
1(default)
foriinrange(n): 
    print(i)
print('DDD')
0
1
2
3
4
5
DDD
 
In [9]:
a
Out[9]:
5

2.4.4.5  The range() Function
We can generate a sequence of numbers using the range() function. range(10) will generate numbers 
from 0 to 9 (10 numbers). We can also define the start, stop, and step size as range(start, stop, step 
size). Step size defaults to 1 if not provided. This function does not store all the values in memory; 
it would be inefficient. So it remembers the start, stop, step size, and generates the next number on 
the go. To force this function to output all the items, we can use the function list(). The following 
example will illustrate this.
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In [10]:
  # creating a list by start from 2 end by 20 increment by 2 using 
range() function.
  print(list(range(2, 20, 2)))
[2, 4, 6, 8, 10, 12, 14, 16, 18]
 
In [11]:
  a = range(10) # assigning range for variable.
 
In [8]:
a# prints starting and ending range.
Out[12]:
 
range(0, 10)
In [13]:
  # prints starting and ending range.
  print(range(10))
range(0, 10)
 
In [14]:
  # create list and assign it to variable.
  a = (list(range(10)))
 
In [15]:
  a# By default range starts from 0 and increments by 1.
Out[15]:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 
In [16]:
  type(a) # returns the type of the argument
Out[16]:
List
 
In [17]:
  len(a) # returns the length of the argument
Out[17]:
10
In [18]:
  # Defining range,with start and end position
  print(list(range(2, 8))) #creates list.
[2, 3, 4, 5, 6, 7]
 
In [19]:
  # Defining range, with starting, ending position and increment value.
  print(list(range(2,20,2)))  # stepsize=2
[2, 4, 6, 8, 10, 12, 14, 16, 18]

We can use the range() function for loops to iterate through a sequence of numbers. It can be com-
bined with the len() function to iterate through a sequence using indexing. Here is an example to 
illustrate the usage of the range function.

In [20]:
  # Program to iterate through a list using indexing
  
  genre= ['pop', 'rock', 'jazz'] # List
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  # iterate over the list using index
  foriinrange(len(genre)): # defining the range as list length
    print("I like", genre[i]) # Iterates through the list using 
indexing
  print("z")
I like pop 
I like rock 
I like jazz z

2.4.4.6  For Loop with else
A for loop can have an optional else block as well. The else part is executed if the items in the 
sequence are used in for loop exhausts. The break statement can be used to stop a for loop. In such 
a case, the else part is ignored. Hence, a for loop’s else part runs if no break occurs. Here is an 
example to illustrate this.

In [21]:
  digits= [1,2,3]
 
  foriindigits:
      print(i)
  #else:
  print("No items left.")
1
2
3
No items left.

2.4.4.7  While Loop
A while loop statement in Python programming language repeatedly executes a target statement as 
long as a given condition is True. The syntax of a while loop in the Python programming language is –

while expression: statement(s)
Here, statement(s) may be a single statement or a block of statements. The condition may be any 

expression, and True is any non-zero value. The loop iterates while the condition is True. When the 
condition becomes False, program control passes to the line immediately following the loop. The 
following example illustrates an application of the while loop:

In [22]:
  # Program to add natural
  # numbersupto
  # sum = 1+2+3+...+n
  
  # To take input from the user,
  # n = int(input("Enter n: "))
  
  n = 10
  
  # initialize sum and counter
  sum= 0
  i = 1
  
  whilei<= n:
    sum = sum + i
    i=i+1 # update counter
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  # print the sum
  print("The sum is", sum)
The sum is 55
 
In [23]:
  n = 5
  i = 1
  while(i <= n):
    if(i==3):
      print(i)
  i = i + 1 # Each iteration i get incremented
3

In the above program, the test expression will be True as long as our counter variable i is less than 
or equal to n (10 in our program). Therefore, we need to increase the value of the counter variable 
in the body of the loop. This is very important (and mostly forgotten). Failing to do so will result in 
an infinite loop (never-ending loop).

2.4.4.8  While Loop with else
Same as for loop, we can have an optional block with while loop as well. The else part is executed 
if the condition in the while loop evaluates to False. The while loop can be terminated with a break 
statement. In such a case, the else part is ignored. Hence, a while loop’s else part runs if no break 
occurs and the condition is False. Here is an example to illustrate the while loop with else.

In [24]:
  # Example to illustrate
  # the use of else statement
  # with the while loop
 
  counter= 0
 
  whilecounter< 0: #condtion fails and its body doesn't gets executed
    print("Inside loop") 
    counter = counter + 1
  else:
    print("Inside else")
Inside else

2.4.4.9  Python Break and Continue
In Python, break and continue statements can alter the flow of a normal loop. For example, loops 
iterate over a code block until the test expression is False. Still, sometimes we wish to terminate 
the current iteration or even the whole loop without checking the test expression. The break and 
continue statements are used in these cases.

2.4.4.10  Python Break Statement
The break statement terminates the loop containing it. Control of the program flows to the statement 
immediately after the body of the loop. If the break statement is inside a nested loop (loop inside 
another loop), the break will terminate the innermost loop.

Syntax
break
The working of break statement in Python with for loop and while loop is shown in the following 

example:
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forvalin"string":
    ifval== "i": # if condition true break the loop and exit.
        break
    print(val)
print("The end")
s t r
The end
 
In [26]:
  forletterin'Python': # First Example
    ifletter== 'h':
          break
    print('Current Letter :', letter)
  print('Out of For')
 
Current Letter : P
Current Letter : y
Current Letter : t Out of For

2.4.4.11  Python Continue Statement
The continue statement is used to skip the rest of the code inside a loop for the current iteration. 
Loop does not terminate but continues on with the next iteration.

Syntax of Continue
continue

In [27]:
  forletterin'Django':  # First Example
      ifletter== 'D': # condition true then continue by going back to the 
for loop statement.
      continue
   print('Current Letter:', letter)
 
Current Letter: j
Current Letter: a
Current Letter: n
Current Letter: g
Current Letter: o
 
# Program to show the use of continue statement inside loops
 
forvalin"string":
  ifval== "i": # condition true then continue by going back to the for 
loop statement.
    continue
print(val)
 
#print("The end")
s t r 
n g

This program is the same as the above example, except the break statement has been replaced with 
continue. We continue with the loop if the string is "i," not executing the rest of the block. Hence, 
we see in our output that all the letters except "i" get printed.
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In [36]:
            sequence=[1,2,3,4,5]
            forvarinsequence:
              #codes inside the loop
              ifvar==3:
              continue
              print(var)
                #codes inside for loop
            #codes outside for loop
1
2
4
5

2.4.5  review of basic Data strUctUres anD iMPleMentation in Python

When we handle a huge amount of data, it is challenging to organize the data and use it effi-
ciently. In recent years, applications are getting more complex with a large amount of data, 
which has led to issues in terms of data search, processor speed, and handling multiple requests. 
Thus, data structures have proved their efficiency to solve such complicated situations in the 
information technology world. Data structures are a systematic way to organize such data, thus 
enabling efficient use of data. A data structure has an interface, which corresponds to a set of 
operations and parameter types supported by the data structure. The internal representation and 
definition of the algorithms used in data structure operations are provided by the implementa-
tion. The three basic characteristics of a data structure are appropriateness, time efficiency, and 
space efficiency.

• Appropriateness: The data structure implementation should be able to employ its inter-
face in the right way.

• Time efficiency: The operations executed by a data structure should consume as little time 
as possible.

• Space efficiency: The operations about data structures should be capable of occupying as 
little memory as possible.

In this section, we will review the following data structures with relevant Python examples:

• Array Data Structure
• Linked List
• Stacks and Queue
• Searching
• Sorting
• Recursion

2.4.5.1  Array Data Structure
Data structures use arrays to perform operations. Arrays, as we know, are an entity to hold a 
collection of similar items which belong to the same data type. The items stored in an array are 
called elements, and the location of each element is assigned with an index to access or operate 
on it.

In general, arrays are declared as data_typearray_name [array_size]. For instance,
Int matrixA [5] = {1, 2, 3, 4, 5};
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In the above example, the following points are to be considered:

• Array index starts from 0 and not 1.
• Array length is 5 – it can store five elements.
• Its index value accesses each element; for example, element three can be accessed as 

martixA[2].

#Commonly Used Codes
# Code    C Type           Python Type    Min bytes
# 'b'     signed char      int `          1
# 'B'     unsigned char    int            1
# 'u'     Py_UNICODE       Unicode        2
# 'h'     signed short     int            2  
# 'H'     unsigned short   int            2
# 'i'     signed int       int            2
# 'I'     unsigned int     int            2
# 'l'     signed long      int            4
# 'L'     unsigned long    int            4
# 'f'     float            float          4
# 'd'     double           float          8

2.4.5.2  Implementation of Arrays in Python

import array as arr
myArray = arr.array('d', [3.14, 3.5, 4.99])
print(myArray)  # Output is shown as -->  array('d', [3.14, 3.5, 4.99])
 

import array as arr
myArray2 = arr.array('i', [1, 2, 3, 5, 7, 11, 13, 17, 19])
print("First element:", myArray2[0]) # output is shown as --> First element: 
1
print("Second element:", myArray2[1]) # output is shown as --> Second 
element: 2
print("Last element:", myArray2[-1])  # output is shown as -->  Last element: 
19
 
# Slicing the Array
print(myArray2[2:5]) # 3rd to 5th; The output is shown as --> array('i', [3, 
5, 7])
print(myArray2[:-5]) # beginning to 4th ; The output is shown as  --> 
array('i', [1, 2, 3, 5])
print(myArray2[5:])  # 6th to end; The output is shown as --> array('i', [11, 
13, 17, 19])
print(myArray2[:])   # beginning to end; The output is shown as  --> 
array('i', [1, 2, 3, 5, 7, 11, 13, 17, 19])
 
# Changing the values in the array
# changing first element
myArray2[0] = 99
print(myArray2) # the first value of the array is changed to 99; The 
output is shown as --> array('i', [99, 2, 3, 5, 7, 11, 13, 17, 19])
 
# changing 3rd and 4th element
myArray2[2:3]= arr.array('i', [88,77])
print(myArray2) # the third and forth value of the array is changed to 88 
and 77 respectively; The output is shown as --> array('i', [99, 2, 88, 77, 5, 7, 
11, 13, 17, 19])



36 Machine Learning for Decision Sciences with Case Studies in Python

2.4.5.3  Linked List
While storing data as arrays, the size cannot be extended or reduced to fit a certain set of data, since 
they are static structures. It becomes expensive to update arrays with new insertions and deletions. 
These limitations are overcome to an extent using Linked lists.

A sequence of data structures connected through links is called a linked list or simply a singly 
linked list, as shown in Figure 2.5. This sequence of links contains items that include the data and 
link element. The link element provides a link to the next link. Each link of a linked list stores a 
set of data called the data elements. Every link in a linked list has a link to the next link through 
the element called next. Every linked list has an element called first. Overall, each element has a 
list consisting of the data and a reference to the next list. The last list consists of a reference with a 
null. Due to its dynamic property, the number of lists can expand or shrink based on the demand.

The disadvantage of a linked list is that we cannot access individual elements in a list. To access 
a single item, we need to start from the first list and travel down until access to the item is required. 
Another disadvantage of a linked list is the memory usage. In addition to storing elements in the 
memory, each reference element will also occupy nearly 4 bytes of memory on a 32-bit processor.

The variants of a linked list are doubly linked lists and circular linked lists. The lists can be navi-
gated bidirectionally in a doubly linked list, that is, forward and backward, as shown in Figure 2.6. 
In contrast, the last list contains a link to the first link in the circular linked list, and the traversing 
happens circularly. The operations supported by a linked list are insertion, deletion, display, and 
search.

2.4.5.4  Implementation of Linked List in Python

class Node:  #Creating the Node Class
def __init__(mySelf, data):
mySelf.item = data
mySelf.ref = None
 
classmyLinkedList:  #Creating the Single Linked List Class
def __init__(mySelf):
mySelf.start_node = None  # First Node of the List
 
deftraverse_list(mySelf): # to go through the List
ifmySelf.start_node is None: # if the list is empty
print("List has no element")
return
else:  # If the List is not empty
        n = mySelf.start_node
while n is not None:

FIGURE 2.5 Singly linked list.

FIGURE 2.6 Doubly linked list.
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print(n.item , " ")
            n = n.ref

# MANUPULATING THE LIST
 
definsert_start(mySelf, data): # Inserting the value at the begining of the 
list
new_node = Node(data)
new_node.ref = mySelf.start_node
mySelf.start_node= new_node
 
definsert_end(mySelf, data):  # Inserting the value at the end of the list
new_node = Node(data)
ifmySelf.start_node is None:
mySelf.start_node = new_node
return
    n = mySelf.start_node
whilen.ref is not None:
        n= n.ref
n.ref = new_node;
 
 
definsert_specific(mySelf, x, data): # Inserting after another specific item
    n = mySelf.start_node
print(n.ref)
while n is not None:
ifn.item == x:
break
        n = n.ref
if n is None:
print("item not in the list")
else:
new_node = Node(data)
new_node.ref = n.ref
n.ref = new_node
 
definsert_index (mySelf, index, data): # Inserting after Specific Index
if index == 1:
new_node = Node(data)
new_node.ref = mySelf.start_node
mySelf.start_node = new_node
        i = 1
        n = mySelf.start_node
while i < index-1 and n is not None:
            n = n.ref
            i = i+1
if n is None:
print("Index out of bound")
else: 
new_node = Node(data)
new_node.ref = n.ref
n.ref = new_node
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Testing the Results
 
myLIST = myLinkedList()# Creating "myLIST" as an object of the class 
"myLinkedList”
myLIST = [1, 2, 3]
myLIST.insert_end(1) # Inserting at the end
myLIST.insert_end(3)
myLIST.insert_end(5)
myLIST.traverse_list()
myLIST.get_count()
 
myLIST.insert_start(7) # Inserting at the begining
myLIST.insert_start(9)
myLIST.insert_start(11) 

2.4.5.5  Stacks and Queues
Consider a real-world example of a stack – a pile of books or a stack of plates. We will be able to 
place or remove a book from the top of the stack only. This implies that the stack operations can be 
performed from one end only, the top of the stack. Such a data structure is commonly referred to 
as a Last-In First-Out data structure. The element placed first will be accessed last, and the element 
placed last will be accessed first. The process of inserting an element into the stack is called PUSH 
operation, and removing an element from the stack is called POP operation.

In data structures, stacks can be implemented using arrays and linked lists. The size of the stack 
can either be static or dynamic (stack grows).

The primary operations of the stack involve push and pop, as illustrated in Figure 2.7. To check 
the efficiency of the stack, the user has to keep track of the data on the stack. To track the stack, 
functions such as peek(), isFull(), and isEmpty() are available. Peek() is used to access the element 
on top of the stack without getting it removed, while isFull() is used to check whether the stack is 
full and isEmpty() is used to check whether the stack is empty.

The series of steps involved in the PUSH operation is illustrated through a flowchart in Figure 2.8. 
The first step to initialize the PUSH operation is to check whether the stack is full. If the stack is 
empty, the PUSH operation will progress; otherwise, exit the PUSH operation with an error. The 
stack pointer (top of stack) increments and points to the next available space in memory to insert 
data. The data element is added to the location, and a success message is returned. 

The steps involved in the POP operation are illustrated with a flowchart, as shown in Figure 2.9. 
In the POP operation, data are accessed from the top of the stack, and the top of the stack is decre-
mented to the next lower address. Finally, the memory location is deallocated.

Implementing Stack in Python Using list and collections. deque

FIGURE 2.7 Stack operation.
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myLIST = []
myLIST.append('I')
myLIST.append('Love')
myLIST.append('Python')
myLIST.append('Coding')
 
myLIST # Returns the valuses -->['I', 'Love', 'Python', 'Coding']
 
myLIST.pop#  myLIST Returns the valuses -->['I', 'Love', 'Python']
'Coding'
myLIST.pop() #  myLIST Returns the valuses -->['I', 'Love']
'Python'
myLIST.pop() #  myLIST Returns the valuses -->['I']
'Love'

FIGURE 2.8 Flowchart for PUSH operation.

FIGURE 2.9 Flowchart for POP operation.
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myLIST.pop()
'I'
# when the lis is empty
myLIST.pop() # We get the Error -->IndexError: "pop from empty list"
 
# USING collections.deque AS STACK
from collections import deque
myQUEUE = deque()
myQUEUE.append('I')
myQUEUE.append('Love')
myQUEUE.append('Python')
myQUEUE.append('Coding')

myQUEUE # Returns the valuses -->deque(['I', 'Love', 'Python', 'Coding'])

myQUEUE.pop#  myQUEUE Returns the valuses -->['I', 'Love', 'Python']
'Coding'
myQUEUE.pop() #  myQUEUE Returns the valuses -->['I', 'Love']
'Python'
myQUEUE.pop() #  myQUEUE Returns the valuses -->['I']
'Love'
myQUEUE.pop()
'I'

# when the lis is empty
myQUEUE.pop() # We get the Error -->IndexError: "pop from empty list"

2.4.5.6  Queues
Though similar in appearance to stacks, queues are accessed from both ends. Data are usually inserted 
from one end and removed from the other end. The process of inserting elements into the queue is called 
enqueue, and removing elements from the queue is called dequeue. Therefore, the queue is based on 
the concept of First-In First-Out, as shown in Figure 2.10. Unfortunately, queues use two separate data 
pointers – front and rear – making it difficult for the programmer to implement the algorithm.

The primary operations of the queue are enqueue and dequeue. To track the queue, functions 
such as peek(), isFull(), and isEmpty() are available. Peek() is used to access the element from the 
front of the queue without getting it removed, while isFull() is used to check whether the queue is 
full and isEmpty() is used to check whether the queue is empty.

The series of steps involved in the enqueue operation is illustrated in the flowchart as shown in 
Figure 2.11. The first step to initialize the enqueue operation is to check whether the queue is full. If 
the queue is empty, the insert operation will progress; otherwise, exit the process with an overflow 
error – next, the rear pointer increments and points to the next available space in memory to insert 
data. Finally, the data element is added to the location, and a success message is returned.

The series of steps involved in the dequeue operation is illustrated with a flowchart in Figure 2.12. 
In the remove operation, data are accessed from the front pointer. The front pointer is incremented 
to the point to the next available data element. 

FIGURE 2.10 Queue operation.
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2.4.5.7  Implementation of Queue in Python

class Queue:
 
    #Constructor
def __init__(mySelf):
mySelf.queue = list()
mySelf.maxSize = 5
mySelf.head = 0
mySelf.tail = 0
 
    #Adding elements
defenqueue(MySelf,data):

FIGURE 2.11 Enqueue operation.

FIGURE 2.12 Dequeue operation.
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        #Checking if the queue is full
ifMySelf.size() >= MySelf.maxSize:
return ("Queue Full")
MySelf.queue.append(data)
MySelf.tail += 1
return True     
 
    #Deleting elements 
defdequeue(MySelf):
        #Checking if the queue is empty
ifMySelf.size() <= 0:
MySelf.resetQueue()
return ("Queue Empty") 
data = MySelf.queue[MySelf.head]
MySelf.head+=1
return data
 
    #Calculate size
def size(MySelf):
returnMySelf.tail - MySelf.head
 
    #Reset queue
defresetQueue(MySelf):
MySelf.tail = 0
MySelf.head = 0
MySelf.queue = list()
Testing the results
myQueue = Queue()
print(myQueue.enqueue(1))#prints True
print(myQueue.enqueue(2))#prints True
print(myQueue.enqueue(3))#prints True
print(myQueue.enqueue(4))#prints True
print(myQueue.enqueue(5))#prints True
print(myQueue.enqueue(6))#prints Queue Full!; Since we have defiend the 
size as 5
 
 
print(myQueue.size())#prints 5       
print(myQueue.dequeue())#prints 5
print(myQueue.dequeue())#prints 4 
print(myQueue.dequeue())#prints 3
print(myQueue.dequeue())#prints 2
print(myQueue.dequeue())#prints 1
print(myQueue.dequeue())#prints Queue Empty; Queue is reset here 
 
print(myQueue.enqueue(1))#prints True
print(myQueue.enqueue(2))#prints True
print(myQueue.enqueue(3))#prints True
print(myQueue.enqueue(4))#prints True

2.4.5.8  Searching
Searching is one of the common tasks we do in our day-to-day life, for example, we search for a 
book in the library, we search for a phone number from our contacts list, and we search for a mis-
placed key, etc. The simplest form of searching for a key element in a data structure is tracing a path 
from the root of the data structure. As each node or list is visited, the algorithm compares the data 
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element in a node or list with the key element to be searched. If a match is found, then the success 
message has to be returned. Otherwise, the search continues with the next successive nodes or lists. 
If the search has been completed without a match, then the algorithm returns a null, indicating that 
the key element has not been found in the list.

The search algorithms can handle two scenarios before searching:

• Algorithms that search irrespective of the order of the list.
• Algorithms that have a clear assumption about the order of the list.

Based on these scenarios, we have the following search algorithms in data structures:

• Linear Search
• Binary Search
• Interpolation Search
• Hash Table

2.4.5.8.1  Linear Search
One of the simplest search algorithms is the linear search algorithm. In this algorithm, a search 
is performed on all items in the list, one after the other. Each item is compared with the item to 
be searched; once the search item is found, the algorithm quits and returns the index at which the 
search item was found. Otherwise, it searches for the item up to the end of the list, and if no match 
is found, it returns a null. The process is explained through a flowchart as shown in Figure 2.13. 
Consider an array arr with length n. Let x be the element to be searched. Initially, the index of the 
array is set to 1 to ensure that the array consists of at least one element. If i > n, then the search 

FIGURE 2.13 Linear search.
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process terminates. If arr[i] = x, then search process terminates with i as the return value. If the 
match has not been found, then the search process continues until i = n.

2.4.5.8.2  Binary search
Linear search has been performing well on the unordered list of data elements. Linear search algo-
rithm suffers when the number of elements in the unordered search list is too big. The algorithm 
takes a long time to find the match or search for the element. But if the list of data elements is 
arranged in order before the search is performed, then the task of searching is made simpler. For 
example, think about searching for a person’s phone number in our contact list. The names in the 
contact list are ordered alphabetically. So it makes sense to confine the search based on the starting 
alphabet of the search element. A binary search algorithm can exploit such a situation.

In this algorithm, a comparison is made every time we make a search. Based on the comparison 
results, some part of the list (that does not contain the search element) is eliminated from the search 
process. Generally, the search is performed by comparing the middle item in a list. The search item 
can lie either in the upper half or in the lower half of the list. The algorithm eliminates one half of 
the list that does not contain the search element and the other half that contains the search element is 
again compared with the middle item. The search process continues by eliminating one-half of the 
list every time until the match is found. It can be concluded that the binary search algorithm halves 
the searchable list, thus reducing the number of comparisons.

The procedure of binary search is well explained through a flowchart as shown in Figure 2.14. 
Consider an ordered array arr with length n. Let x be the element to be searched. Initially, the lower 
bound (LB) of the array is set to 1, and the upper bound (UB) is set to the length of the array n. 
If UB is greater than LB, then the algorithm terminates. Otherwise, the algorithm continues by 
first computing the midpoint based on the UB and LB values. Next, if the element indexed by the 
midpoint in the array is greater than the search element, then the UB is set to midpoint-1; if the 
element indexed by the midpoint in the array is lesser than the search element, then the LB is set to 
midpoint+1. Finally, the index midpoint is saved if the element indexed by the midpoint in the array 
is equal to the search element. This indicates the location of the searched item x. 

2.4.5.8.3  Interpolation Search
The interpolation search algorithm is a variant of the binary search algorithm. The algorithm 
searches based on the probe position. Initially, the probe position is in the middle of the search list 
and then gets modified as the algorithm progresses. The algorithm is explained through a flowchart, 
as shown in Figure 2.15. The algorithm works similarly to binary search, except for the calculation 
of the midpoint value.

2.4.5.9  Implementation of Searching in Python

mylist = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47] # Defineing 
the list with Prime numbers
print('List has the items: ', mylist)
searchItem = int(input('Enter a number to search for: '))
found = False
for i in range(len(mylist)):
ifmylist[i] == searchItem:
found = True
print(searchItem, ' was found in the list at index ', i, '. So the number 
given is a prime number')
break
if found == False:
print(search item, ' was not found in the list!. So the given number is not a 
prime number')
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Testing the results:
List has the items:  [1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47]
Enter a number to search for: 31
31  was found in the list at index  11. So the number given is a prime number
*********************
Enter a number to search for: 45
45  was not found in the list!. So the given number is not a prime number
**********************

FIGURE 2.14 Binary search.



46 Machine Learning for Decision Sciences with Case Studies in Python

2.4.5.10  Sorting
In data structures, one has to understand how to arrange a set of elements in order. There are several 
ways or methods in which elements can be arranged. Sorting refers to these methods of arranging 
data in a specific format. Sorting algorithms provide a set of procedures to arrange the data. The 
process of searching can be optimized to an efficient level if the sorting is organized. Data can be 
represented in a simple, readable form once sorted. The most common sorting orders are lexico-
graphical order or numerical order.

FIGURE 2.15 Interpolation search.
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The sorting algorithms in data structures are bubble sort, insertion sort, selection sort, merge 
sort, shell sort, and quicksort. These algorithms can fall under two broad categories based on the 
additional memory requirement – in-place sorting and not-in-place sorting. When the sorting algo-
rithm works in-place (within the array itself) without consuming extra space, it is called in-place 
sorting. The best example of an in-place sorting algorithm is bubble sort. On the other hand, certain 
sorting algorithms require additional space (memory) apart from the array size. This space is gen-
erally more than the elements being sorted. Hence, this group of algorithms is called not-in-place 
sorting, and one of the best examples would be the merge sort.

2.4.5.10.1  Bubble Sort
One of the simplest sorting algorithms is the bubble sort, also known as the exchange sort. The algo-
rithm is based on a comparison between adjacent elements. If the elements are in the right order, 
they are left in their place and if the elements are in the wrong order, they are swapped (interchange 
their positions). The process is repeated until all the elements are compared and sorted. The algo-
rithm is found suitable for sorting fewer data elements.

The procedure for bubble sort is illustrated in the flowchart as shown in Figure 2.16. Consider an 
array arr[] with n elements. Let i be the index pointing to the elements in the array. For each element 
in the array, a comparison is made between arr[i] and arr[i+1]. If arr[i] is greater than arr[i+1], then 
the elements are swapped, else kept in place. The process is repeated, and each pair of the array arr 
is compared until the whole array is completely sorted. 

2.4.5.11  Implementation of Bubble Sort in Python

defbubbleSort(mylist):
forpassnum in range(len(mylist)-1,0,-1):
for i in range(passnum):
ifmylist[i]>mylist[i+1]:
temp = mylist[i]
mylist[i] = mylist[i+1]
mylist[i+1] = temp
 
mylist = [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47] # sameple 
list to get it bubble sorted
print('the original list:', mylist) # Before sort
bubbleSort(mylist)
print('the sorted list:', mylist) # After sort
 
Testing the results
 
the original list: [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47]
the sorted list: [1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 31, 37, 47, 47]

2.4.5.12  Insertion Sort
The insertion sort algorithm is a type of in-place sorting algorithm, which in turn is based on the 
comparison. In this algorithm, a sub-array is maintained, and this sub-array is sorted continuously. 
Successive elements of the array are added or inserted into this sub-array and sorted within the sub-
array. Hence, the name insertion sort. Sometimes, the algorithm is referred to as an online algorithm 
since the values are sorted and added into the sub-array.

The insertion sort algorithm is simple to implement, and it is efficient on small datasets. This 
comparison sort builds a sorted array by adding one element at a time. The algorithms are explained 
with a flowchart, as shown in Figure 2.17. Consider an array arr[] whose length is n. The first ele-
ment of the array is used to form the sub-array, and its position is noted. The next element is chosen 
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for comparison with the first element. If the first element is less than the second element, then the 
algorithm leaves the elements in their place and continues to compare the next value. If the first ele-
ment is greater than the second element, then the elements are sorted, and this forms the sub-array 
to which the third element would be added. The process repeats until all the elements are sorted.

FIGURE 2.16 Bubble sort.
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2.4.5.13  Implementation of Insertion Sort in Python

defmyinsertionSort(mylist):
# for every element in our array
for index in range(1, len(mylist)):
current = mylist[index]
position = index
 
while position > 0 and mylist[position-1] > current:
print("Swapped {} for {}".format(mylist[position], mylist[position-1]))
mylist[position] = mylist[position-1]
print(mylist)
position -= 1

FIGURE 2.17 Insertion sort.
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mylist[position] = current
 
return mylist
 
mylist = [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47]
 
print(myinsertionSort(mylist))
 
Testing the results
 
print(myinsertionSort(mylist))
Swapped 31 for 47
[1, 2, 3, 5, 47, 47, 13, 17, 19, 23, 29, 11, 37, 31, 47]
Swapped 13 for 47
[1, 2, 3, 5, 31, 47, 47, 17, 19, 23, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 31, 31, 47, 17, 19, 23, 29, 11, 37, 31, 47]
Swapped 17 for 47
[1, 2, 3, 5, 13, 31, 47, 47, 19, 23, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 31, 31, 47, 19, 23, 29, 11, 37, 31, 47]
Swapped 19 for 47
[1, 2, 3, 5, 13, 17, 31, 47, 47, 23, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 31, 31, 47, 23, 29, 11, 37, 31, 47]
Swapped 23 for 47
[1, 2, 3, 5, 13, 17, 19, 31, 47, 47, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 19, 31, 31, 47, 29, 11, 37, 31, 47]
Swapped 29 for 47
[1, 2, 3, 5, 13, 17, 19, 23, 31, 47, 47, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 19, 23, 31, 31, 47, 11, 37, 31, 47]
Swapped 11 for 47
[1, 2, 3, 5, 13, 17, 19, 23, 29, 31, 47, 47, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 19, 23, 29, 31, 31, 47, 37, 31, 47]
Swapped 31 for 29
[1, 2, 3, 5, 13, 17, 19, 23, 29, 29, 31, 47, 37, 31, 47]
Swapped 29 for 23
[1, 2, 3, 5, 13, 17, 19, 23, 23, 29, 31, 47, 37, 31, 47]
Swapped 23 for 19
[1, 2, 3, 5, 13, 17, 19, 19, 23, 29, 31, 47, 37, 31, 47]
Swapped 19 for 17
[1, 2, 3, 5, 13, 17, 17, 19, 23, 29, 31, 47, 37, 31, 47]
Swapped 17 for 13
[1, 2, 3, 5, 13, 13, 17, 19, 23, 29, 31, 47, 37, 31, 47]
Swapped 37 for 47
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 47, 47, 31, 47]
Swapped 31 for 47
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 47, 47, 47]
Swapped 47 for 37
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 37, 47, 47]
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 31, 37, 47, 47]
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2.4.5.14  Selection Sort
Selection sort is yet another in-place sort algorithm based on the comparison. The entire array is 
divided into two groups, one sorted part and the other unsorted part. The sorted portion of the array 
is kept empty initially, and the unsorted part contains all the elements of the array. The element 
that has the smallest value is selected from the unsorted portion and added as the first element to 
the sorted portion. The element that was located already in the sorted portion swaps position with 
the smallest element. The comparison process continues with the next smallest element from the 
unsorted portion. The algorithm continues until all the elements of the unsorted portion are com-
pared. The algorithm is explained with a flowchart as shown in Figure 2.18.

FIGURE 2.18 Selection sort.
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2.4.5.15  Implementation of Selection Sort in Python

defselectionSort(myLIST):
forfillslot in range(len(myLIST)-1,0,-1):
mp=0  # Max Position
for location in range(1,fillslot+1):
ifmyLIST[location]>myLIST[mp]:
mp = location
 
temp = myLIST[fillslot]
myLIST[fillslot] = myLIST[mp]
myLIST[mp] = temp
 
myLIST = [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47]
print('Before SELECTIONSORT:',myLIST)
selectionSort(myLIST)
print('After SELECTIONSORT:',myLIST)
 
Testing the results
 
Before SELECTIONSORT: [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 
47]
 
After SELECTIONSORT: [1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 31, 37, 47, 47]

2.4.5.16  Merge Sort
The merge sort algorithm works based on the divide and conquer mechanism. The array is first 
divided into two halves; then, each half portion is divided into equal halves. The dividing process 
continues until each divided portion consists of only one element of the array (the array cannot be 
further divided). Then, the elements are combined (merged) in the order of their division. During 
the combination of elements, a comparison is made, and sorting happens in successive halved 
arrays. Finally, the merged array results in a sorted array. An example for merge sort is shown in 
Figure 2.19. The algorithm is explained with a flowchart, as shown in Figure 2.20. 

FIGURE 2.19 Working of the merge sort algorithm.
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2.4.5.17  Implementation of Merge Sort in Python

defmergeSort(myLIST):
print("Splitting ",myLIST)
iflen(myLIST)>1:
mid = len(myLIST)//2
lefthalf = myLIST[:mid]
righthalf = myLIST[mid:]
 
mergeSort(lefthalf)
mergeSort(righthalf)
        i=j=k=0       
while i <len(lefthalf) and j <len(righthalf):
iflefthalf[i] <righthalf[j]:

FIGURE 2.20 Merge sort.
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myLIST[k]=lefthalf[i]
                i=i+1
else:
myLIST[k]=righthalf[j]
                j=j+1
            k=k+1
 
while i <len(lefthalf):
myLIST[k]=lefthalf[i]
            i=i+1
            k=k+1
 
while j <len(righthalf):
myLIST[k]=righthalf[j]
            j=j+1
            k=k+1
print("Merging ",myLIST)
 
myLIST = [1,6,7,8,3,2,8]
mergeSort(myLIST)
print(myLIST)
 
Testing the results
 
Splitting  [1, 6, 7, 8, 3, 2, 8]
Splitting  [1, 6, 7]
Splitting  [1]
Merging  [1]
Splitting  [6, 7]
Splitting  [6]
Merging  [6]
Splitting  [7]
Merging  [7]
Merging  [6, 7]
Merging  [1, 6, 7]
Splitting  [8, 3, 2, 8]
Splitting  [8, 3]
Splitting  [8]
Merging  [8]
Splitting  [3]
Merging  [3]
Merging  [3, 8]
Splitting  [2, 8]
Splitting  [2]
Merging  [2]
Splitting  [8]
Merging  [8]
Merging  [2, 8]
Merging  [2, 3, 8, 8]
Merging  [1, 2, 3, 6, 7, 8, 8]
[1, 2, 3, 6, 7, 8, 8]

2.4.5.18  Shell Sort
The shell sort algorithm is a variant of the insertion sort algorithm. It varies with insertion algo-
rithm in terms of the following features:
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• The insertion sort algorithm is more efficient for an array that is almost sorted.
• The insertion algorithm is not optimal since it moves an element only by one position at a 

time, thus consuming more time.

The insertion sort is improved in shell sort by comparing elements separated by a gap of several 
positions. This algorithm uses insertion sort on the large interval of elements to sort. Further, the 
interval keeps on decreasing until the value becomes 1. These intervals are referred to as the gap 
sequences. Thus, the algorithm allows sorting different combinations of smaller gap sizes through 
multiple passes. The array is almost sorted by the time the algorithm reaches its termination, so 
a normal insertion sort would be sufficient to get the sorted list. The algorithm of shell sort is 
explained with a flowchart as shown in Figure 2.21.

2.4.5.19  Quicksort
Quicksort is one of the efficient data structure algorithms based on partitioning the array into 
smaller sub-arrays. First, a pivot value is chosen, and the partitioning of a large array is done based 
on this value. Each sub-group of the array will be holding values based on the pivot value. Once 
the array is partitioned, the quicksort algorithm recursively calls itself to sort the sub-arrays. This 
algorithm is efficient on large-sized data. Indices start from both ends of the array, with one index 
starting from the left and the other starting from the right. The left index selects the element smaller 
than the pivot, while the right index selects the element larger than the pivot value. Then, these two 
selected elements are compared and exchanged based on the caparison results. The process repeats 
until all the elements to the left of the pivot and right of the pivot are compared. Finally, the pivot 
value is also moved if required to maintain the sorted order. The procedure of the algorithm is 
explained using a flowchart, as shown in Figure 2.22. 

2.4.5.20  Data Structures in Python with Sample Codes
The purpose of data structures is to hold some data together. It is used to store a collection of data. 
There are four built-in data structures in Python − list, tuple, dictionary, and set.

2.4.5.20.1  List
A list is a data structure that holds an ordered and similar collection of items, that is, one can store a 
sequence of members in a given list. In Python, the list is initialized with square brackets, and each 
item is comma-separated. Items in a list are stored with an index. Once the items are stored in the 
list, they are changeable in the future. This is easy to imagine if the user wants to store the student’s 
name of a class; the student’s name can be similar and is ordered.

Example:
StudentName [“Alice”, “Luna”, “Alice”, “Mack”, “Jhon”]
Output: [“Alice”, “Luna”, “Alice”, “Mack”, “Jhon”]
If the user wants to access the 1 st element of a list: print (StudentName[0])

2.4.5.20.2  Tuple
The main purpose of the tuple is to hold multiple objects. They are very similar to lists but lack the 
extensive functionality that list offers, that is, items not changeable once stored. To create a tuple, 
specific items need to be defined separated by commas within an optional pair of parenthesis. If the 
user wants to store final marks scored by students in different subjects,

Mack=(“Science”, 20, “English” 30)
Output : (Science”, 20, “English” 30)
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FIGURE 2.21 Shell sort.
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FIGURE 2.22 Quicksort.
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2.4.5.20.3  Dictionary
Dictionary is like a box of an unordered set of objects. It acts like a telephone dictionary that saves 
the telephone numbers based on a person’s name, the dictionary’s key, and phone numbers will be 
its details. In the dictionary, the key should always be unique.

Dictionary is initialized with curly braces; the key is separated from its value by a colon “:” and 
commas separate items. Items can be of any data type, but the key should be an immutable data 
type.

Example: Saving students record based on enrollment numbers which will be the key, and it is 
always unique.

Dict = {‘enroll’ : ‘121’, ‘name’ : ‘adam’, ‘class’ : ‘first’}
Print dict[‘enroll’]
Print dict[‘name’]
To access the value with the help key, Python uses the following code:
Dict[enroll];

2.4.5.20.4  Set
The concept of sets is same as sets we study in mathematics. An unordered group of items is known 
assets, and the user can find union, intersection, and set difference. Their usage is primarily when 
the existence of an object in a collection is more important than the order or how many times it 
occurs.

Set can be initialized by using brackets. Let’s take the example of an equal set.
Input:
A= {1, 2, 3};
B = {3,2, 1};
Print (A==B);
Output: true

2.4.5.21  Python Code Samples for Data Structures in Python
2.4.5.21.1  List
A list is a sequence of values, and these values can be of any type. Values in the list are called ele-
ments. There are several ways to create a new list, and the simplest is to enclose the elements in a 
square bracket. A few examples are illustrated below for better understanding.

In [8]: list= ['a',2,3,'xyz',True]
 
In [9]: list
Out[9]: ['a', 2, 3, 'xyz',True]
 
In [10]: x = [-10,-20,-30,-40] #from left to right index starts from 0 in 
python and for right to left it starts from -1
In [11]: x[1]
Out[11]:-20
 
In [12]: x[-2]
Out[12]:-30
 
In [13]: x[-1]
Out[13]:-40
 
In [14]: type(x)
Out[14]:list
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In [15]: car= ['Merceedes','audi','bmw']
         print(car)
 
         ['Merceedes', 'audi', 'bmw']

2.4.5.21.2  Nested List
A nested list is a list contained in another list.

In [16]: a = [10,20,30,['abc','xyz']]
 
In [17]: a
Out[17]: [10, 20, 30, ['abc','xyz']]
 
In [18]: a[2]
Out[18]:30
 
In [19]: a[1]
Out[19]:20
 
In [20]: alist= [ [4, [True, False], 6, 8], [888, 999],[1,[2,3],3]]
         ifalist[0][1][0]:
             print(alist[1][0])
         else:
             print(alist[1][1])
        888
In [21]: alist[0][1][0]
Out[21]:True
 
In [22]: alist[2][1][1]
Out[22]:3
 
In [23]: alist[1][1]
Out[23]:999
 
In [24]: alist[0]
Out[24]: [4, [True, False], 6,8]
 
In [25]: alist[1]
Out[25]: [888,999]
 
In [26]: alist[0][3]
Out[26]:8
 
In [27]: alist[0][1]
Out[27]: [True,False]
 
In [28]: alist[0][0:2]
Out[28]: [4, [True,False]]
 
In [29]: x = []
 
In [30]: type(x)
Out[30]:list

In [31]: s = 'hello python'
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In [32]: message= "Welcome to Python Class"
 
In [33]: message_list= message.split()
 
In [34]: message_list
Out[34]: ['Welcome', 'to', 'Python','Class']
 
In [35]: words = ['apple','mango','banana','fig','strawberry']
 
In [36]: words[1:7]
Out[36]: ['mango', 'banana', 'fig','strawberry']
 
In [37]: words[-2:4]
Out[37]:['fig']
 
In [38]: words[:]
Out[38]: ['apple', 'mango', 'banana', 'fig','strawberry']
 
In [39]: words[:2]
Out[39]: ['apple','mango']
 
In [40]: words[1:-1]
Out[40]: ['mango', 'banana','fig']
 
In [41]: words[-1]
Out[41]:'strawberry'
 
In [42]: len(words)
Out[42]:5
 
In [43]: words[3]
Out[43]:'fig'
 
In [44]: words.index('fig')
Out[44]:3
 
In [45]: words[1:3] #upper end is always exclusive
Out[45]: ['mango','banana']
 
In [46]: words[2:]
Out[46]: ['banana', 'fig','strawberry']
 
In [47]: words[-1]
Out[47]: 'strawberry'
 
In [48]: words[0:-1]
Out[48]: ['apple', 'mango', 'banana','fig']
 
In [49]: words[-2:5]
Out[49]: ['fig','strawberry']
 
In [50]: words[1:-1]
Out[50]: ['mango', 'banana','fig']
 
In [51]: words[:]
Out[51]: ['apple', 'mango', 'banana', 'fig','strawberry']
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In [52]: words[1:-1]
Out[52]: ['mango', 'banana','fig']
 
In [53]: words[2:4]
Out[53]: ['banana','fig']
 
In [54]: 'guava' in words
Out[54]: False
 
In [55]: animals = ['cat','dog','snake','fish','elephant','fish']
 
In [56]: animals.index('fish')
Out[56]:3
 
In [57]:len(animals) #To check no of elements in a list
Out[57]:6
 
In [58]: x = words + animals x
Out[58]:['apple',
         'mango',
         'banana',
         'fig',
         'strawberry',
         'cat',
         'dog',
         'snake',
         'fish',
         'elephant',
         'fish']
 
In [59]: words.append('cherry')
 
In [60]: words
Out[60]: ['apple', 'mango', 'banana', 'fig', 'strawberry','cherry']
 
In [61]: words.extend(['Gua','vaGrapes','berries','pineapple'])
 
In [62]: words
Out[62]:['apple',
         'mango',
         'banana',
         'fig',
         'strawberry',
         'cherry',
         'Gua',
         'vaGrapes',
         'berries',
         'pineapple']
 
In [63]: words.remove('berries')
 
In [64]: #remove first 4 elements from list x?
 
In [65]: words
Out[65]:['apple',
         'mango',
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         'banana',
         'fig',
         'strawberry',
         'cherry',
         'Gua',
         'vaGrapes',
         'pineapple']
In [66]: words.remove(words[1])
 
In [67]: words
Out[67]:['apple',
         'banana',
         'fig',
         'strawberry',
         'cherry',
         'Gua',
         'vaGrapes',
         'pineapple']
In [68]: words.append('cherry')
 
In [69]: words
Out[69]:['apple',
         'banana',
         'fig',
         'strawberry',
         'cherry',
         'Gua',
         'vaGrapes',
         'pineapple',
         'cherry']
In [70]: words.count('cherry')
Out[70]:2
 
In [71]: words.remove('cherry')
 
In [72]: words
Out[72]:['apple',
         'banana',
         'fig',
         'strawberry',
         'Gua',
         'vaGrapes',
         'pineapple',
         'cherry']
In [73]: my_list= [1,67,84,98,34,90,76,56]
 
In [74]: a = ['a','g','f']
         a.sort()
         a
Out[74]: ['a', 'f','g']
 
In [75]: my_list.sort()
 
In [76]: my_list
Out[76]: [1, 34, 56, 67, 76, 84, 90,98]
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In [77]: my_list= [1,67,22,9,77,13,78,48]
         print(my_list.sort())
         None
In [78]: my_list
Out[78]: [1, 9, 13, 22, 48, 67, 77,78]
 
In [79]: print(my_list)
         [1, 9, 13, 22, 48, 67, 77, 78]
 
In [80]: word=["apple","mango","banana","fig","strawberry"] 
         word
         #word[0]
Out[80]: ['apple', 'mango', 'banana', 'fig','strawberry']
 
In [81]: word[1:5:3]
Out[81]: ['mango','strawberry']
 
In [82]: word[1:5:2]
Out[82]: ['mango','fig']
 
In [83]: word[0]
Out[83]:'apple'

In [84]: my_list.sort(reverse = True) # Sort the list in descending 
order,reverse is true
 
In [85]: my_list
Out[85]: [78, 77, 67, 48, 22, 13, 9,1]
 
In [104]: my_list.sort(reverse = False)# Sort the list, Reverse is false 
which means make the list in ascending order
          my_list
Out[104]: [1, 9, 13, 22, 48, 67, 77, 78]
 
In [87]: my_list*3     
Out[87]: [1, 
          9, 
          13,
          22,
          48,
          67,
          77,
          78,
          1,
          9,
          13,
          22,
          48,
          67,
          77,
          78,
          1,
          9,
          13,
          22,
          48,
          67,



64 Machine Learning for Decision Sciences with Case Studies in Python

          77,
          78]
In [88]: my_list[1:7] #list[firstindex:lastindex:step]
Out[88]: [9, 13, 22, 48, 67,77]
 
In [89]: my_list[1:2]
Out[89]:[9]

2.4.5.21.3  Tuples
A tuple is a sequence of values much like a list. The values stored in a tuple can be any type, and 
integers index them. The important difference is that tuples are immutable.

In [90]: #To create a tuple with a single element, you have to include 
the final comma:
         t1 = ('a',)
         type(t1)
Out[90]:tuple
 
In [91]: t1 = ('a')
         type(t1)
Out[91]:str
 
In [92]: #Another way to construct a tuple is the built-in function tuple.
         #With no argument, it creates an empty tuple:
         t = tuple() print (t)
          ()
In [93]: #If the argument is a sequence (string, list or tuple),
         #the result of the call to tuple is a tuple with the elements of the 
sequence:
         t = tuple('123')
         print (t)
          ('1', '2', '3') 
 
In [94]: t1 = tuple("helloworld") print(t1) 
('h', 'e', 'l', 'l', 'o', 'w', 'o', 'r', 'l', 'd')
 
In [95]: l = (1,2,2,3,'xyz',(3,4)) 
 
In [96]: l 
Out[96]: (1, 2, 2, 3, 'xyz', (3, 4)) 
 
In [97]: l[1] 
Out[97]: 2 
 
In [98]: type(l) 
Out[98]: tuple 
 
In [99]: l.index(1) 
Out[99]: 0 
 
In [100]: l.count(2) #no of times that elemnt is occuring
Out[100]: 2 
 
In [101]: b = l*5 
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In [102]: b
Out[102]:(1,
          2,
          2,
          3,
          'xyz',
          (3, 4),
          1,
          2,
          2,
          3,
          'xyz',
          (3, 4),
          1,
          2,
          2,
          3,
          'xyz',
          (3, 4),
          1,
          2,
          2,
          3,
          'xyz',
          (3, 4),
          1,
          2,
          2,
          3,
          'xyz',
          (3, 4))
 
In [103]: len(b)
Out[103]:30

A good rule of thumb is as follows: Use lists when the items are similar and tuples when the items 
are non-similar. A sequence of 50 first names? That’s a list. A sequence consisting of a first name, 
last name, age, and address? That's a tuple.

2.4.5.21.4  Dictionary
Python dictionary is an unordered collection of items. While other compound data types have only 
value as an element, a dictionary has a key: value pair.

Dictionaries are optimized to retrieve values when the key is known.

In [4]: #Declaration and definition of dictionary variable
        ab= { 'Suresh' : 'Suresh@Sureshch.com', 'Ashok' : 'Ashok@wall.org',
              'Sumathi' :'Sumathi@rubylang.org', 'Surekha' :  
'Surekha@hotmail.com'
        }
        print(ab) #Prints in single line
 
        #Whereas here it prints as it is defined.
        ab
        {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org', 
'Sumathi': 'Sumathi@ruby

mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto::'Sumathi@rubylang.org'
mailto:'Surekha@hotmail.com'
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'


66 Machine Learning for Decision Sciences with Case Studies in Python

         -lang.org', 'Surekha': 'Surekha@hotmail.com'}
Out[4]: {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
         'Sumathi': 'Sumathi@rubylang.org', 'Surekha': 'Surkha@hotmail.com'}
 
In [5]: mydict= {1:['python',"2019-01-03"],2.5:'java',3:'C',4:'Machine 
Learning'}
 
In [6]: mydict
Out[6]: {1: ['python', '2019-01-03'], 2.5: 'java', 3: 'C', 4: 
'MachineLearning'}
 
In [7]: type(mydict) #Checking type of the variable
Out[7]:dict
 
In [8]: print(ab)
        print(type(ab))
        {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org', 
'Sumathi': 'Sumathi@ruby
        -lang.org', 'Surekha': 'Surekha@hotmail.com'}
        <class 'dict'>
 
In [9]: print("Suresh's e-address is", ab['Suresh'])
        Suresh's e-address is Suresh@Sureshch.com
 
In [10]: # Deleting a key-value pair
         Del ab[Surekha]
 
In [11]: ab
Out[11]: {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
          'Sumathi': 'Sumathi@ruby-lang.org'}
 
In [12]: # Adding a key-value pair ab['Chinmay'] = 
         'Chinmay@python.org' ab
 
Out[12]: {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
          'Sumathi': 'Sumathi@ruby-lang.org', 'Chinmay':  
'Chinmay@python.org'}
 
In [13]: mydict= {1:2,3:4,5:6}
 
In [14]: mydict
Out[14]: {1: 2, 3: 4, 5:6}
 
In [15]: dict1 = {1:'carrots', 'two':[1,2,3], 6.4:2,9:8}
 
In [16]: dict1
Out[16]: {1: 'carrots', 'two': [1, 2, 3], 6.4: 2, 9:8}
 
In [17]: len(dict1)
Out[17]:4
 
In [18]: 'two' in dict1 #check whether the value is present or not.
Out[18]:True
 
In [19]: 'carrots' in dict1
Out[19]:False

http://-lang.org'
mailto:'Surekha@hotmail.com'}
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto:'Sumathi@rubylang.org'
mailto:'Surkha@hotmail.com'}
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
http://-lang.org'
mailto:'Surekha@hotmail.com'}
mailto:Suresh@Sureshch.com
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto:'Sumathi@ruby-lang.org'}
mailto:'Chinmay@python.org'
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto:'Sumathi@ruby-lang.org'
mailto:'Chinmay@python.org'}
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In [20]: dict1['two'] = 'radish' #adding new value for key.
 
In [21]: dict1
Out[21]: {1: 'carrots', 'two': 'radish', 6.4: 2, 9:8}
 
In [22]: words= {'house': "haus",'cat ':" katze"}
 
In [23]: words["dog"] = "dogiee" #adding new value to the dictionary 
variable.
 
In [24]: words
Out[24]: {'house': 'haus', 'cat ': ' katze', 'dog':'dogiee'}
 
In [25]: #copy the value to another variable
         w = words.copy()
        #words["dog"] = "dogiee"
        print(w)
        {'house': 'haus', 'cat ': ' katze', 'dog': 'dogiee'}
 
In [26]: #check the result
         W
Out[26]: {'house': 'haus', 'cat ': ' katze', 'dog':'dogiee'}
 
In [27]: #clear the value
         w.clear()
        #now check out the result
        w
Out[27]:{}
 
In [28]: words1 = {"red": "rounge", "blue":"bleu"}
 
In [29]: words2 = {"red": "round", "blue":"bluue"}
 
In [30]: words1.update(words2) #update the key values 
 
In [31]: words1
Out[31]: {'red': 'round', 'blue':'bluue'}
 
In [32]: #list down the items like keys and data
         words1.items()
Out[32]: dict_items([('red', 'round'), ('blue','bluue')])
 
In [33]: #list down only the keys
         words1.keys()
Out[33]: dict_keys(['red','blue']) 
 
In [34]: #list down only the values
         words1.values()
Out[34]: dict_values(['round','bluue'])
 
In [35]: #list the keys
         for key in words1:
         print(key)
        red
        blue
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In [36]: #combine keys respective values from to dictionary variable.
         A={'a':72,'b':17,'c':8}
         B={'a':1308,'b':1,'c':12}
         combinedDict={}
         for key in A.keys():
 
                      if key in B.keys():
 
                                  combinedDict[key]=[]
                                  combinedDict[key].append
                                  (A[key])
                                  combinedDict[key].append
                                  (B[key])
In [37]: combinedDict
Out[37]: {'a': [72, 1308], 'b': [17, 1], 'c': [8,12]}

2.4.6  fUnctions in Python

To perform a task that will be used throughout the project, we code such a task as a function that 
will be reusable in the future. Thus, functions provide better modularity for the project. In addition, 
it becomes easy for programmers to manage code using functions.

The function can be initialized using the keyword “def” followed by the function name and 
brackets; input data are positioned within these brackets, and docstring describes the function's 
performance. It is an optional documentation string. Colon (:) signifies the end of function header.

Let’s take an example of writing a function of adding two numbers.

inta,b;
Def add (a, b) :
sum = a + b
Print (‘the sum is ’, sum)
Return

We can call the function using its name and parameters:

add(1,2);

2.4.6.1  Python Code Samples for Functions
A function is a block of organized, reusable code used to perform a single, related action. As a 
result, functions provide better modularity for the application and a high degree of code reusing.

SYNTAX: def functionname(parameters): "function_docstring" function_suite 
return [expression]
In [1]: def my_first_function(name): #Function declaration with parameters.
            return(name)
        print(my_first_function(‘suresh’)) # Arguments has to be passed.
        suresh

2.4.6.2  Returning Values from Functions
The user can use a function to return a single value or multiple values.

In [2]: def add_two_numbers(num1=6,num2=5): #Default assignment for 
parameters in function definition.
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          return(num1+num2)
        #number1 = 34
        #number2 = 44.6
        result= add_two_numbers() #No vales are passed, so default value is 
used.
        print(result)
        
        11
 
In [3]: def print_max(a, b): # Fucntion with parameters and must pass 
value.
            ifa>b:
                print(a, 'is maximum')
            elifa== b:
                print(a, 'is equal to', b)
            else:
                print(b, 'is maximum')
        # directly pass literal values
        #print_max(3, 4)
 
        x = 5
        y = 7
        #pass variables as arguments
        print_max(x, y) #Arguments must be passed else error may return.
        7 is maximum

2.4.6.3  Scope of Variables
All variables in a program may not be accessible at all locations in that program. This depends 
on where the user has declared a variable. The scope of a variable determines the portion of the 
program where the user can access a particular identifier. There are two basic scopes of variables 
in Python:

 i. Global variables
 ii. Local variables

The following example shows the use of a global and local variable in functions:

In [4]: total= 10 # This is global variable.
        # Function definition is here
        def sum(arg1, arg2):
           # Add both the parameters and return them."
           total1 = arg1 + arg2
           a = total + 2
           total; # Here total is local variable.
           print("Inside the function local total : ", total1)
           print(total)
           returntotal1
 
        # Now you can call sum function
        sum(10, 20)
        #print ("Outside the function global total : ", total)
 
        Inside the function local total : 30 10
Out[4]:30
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2.4.6.4  Function Arguments
The user can call a function by using the following types of formal arguments:

Keyword arguments
Default arguments
Variable-length arguments

2.4.6.4.1  Keyword Arguments
Keyword arguments are related to the function calls. When the user uses keyword arguments in a 
function call, the caller identifies the arguments by the parameter name. This allows the user to skip 
arguments or place them out of order because the Python interpreter can use the keywords provided 
to match the values with parameters. The user can also make keyword calls to the printme() func-
tion in the following ways:

In [1]: def printme(str):
           #"This prints a passed string into this function"
           print(str)
           return
 
        # Now you can call printme function
        printme(str= "My string")
 
        My string
 
In [3]: def func(a, b=5, c=10): # value assignment to function varible 
must be from right to left.
           print('a is', a, 'and b is', b, 'and c is', c)
 
        func(2) # In this case, Default value of b&c are taken as its value.
 
        func(25, c=24) # In this case, Default value of b laone is taken, 
since other two values are passed.
 
        func(c=50, a=100)
 
        a is 2 and b is 5 and c is 10 
        a is 25 and b is 5 and c is 24
        a is 100 and b is 5 and c is 50

2.4.6.4.2  Default Arguments
A default argument is an argument that assumes a default value if a value is not provided in the 
function call for that argument. The following example gives an idea of default arguments; it prints 
the default age if not passed.

In [9]: def say(message, times=3): 
            print (message * times)
 
        say('Hello ')
 
        say('World ', 5)
 
        Hello Hello Hello
        World WorldWorldWorldWorld
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In [10]: # Function definition is here
        def printinfo(name, age = 35):
          #"This prints a passed info into this function"
          print("Name: ", name)
          print("Age ", age)
          return
 
        # Now you can call printinfo function
        printinfo( age = 50, name = "miki" )
        printinfo( name = "miki")
 
        Name: miki
        Age 50
        Name: miki
        Age 35

2.4.6.4.3  Variable-Length Arguments
The user may need to process a function for more arguments than those specified while defining the 
function. Unlike required and default arguments, these arguments are variable-length arguments 
and are not named in the function definition.

Syntax for a function with non-keyword variable arguments is given below:
deffunctionname([formal_args,] *var_args_tuple): "function_docstring" function_suite return 

[expression]
An asterisk (*) is placed before the variable name that holds the values of all non-keyword 

variable arguments. This tuple remains empty if no additional arguments are specified during the 
function call.

In [24]:# Function definition is here
        def printinfo(arg1, *vartuple):
           #This prints a variable passed arguments
           print("Output is: ")
           print (arg1)
           forvarinvartuple:
               print (var)
           return
        # Now you can call printinfo function
 
        printinfo(10)
        printinfo(70, 60, 50)
 
Output is:
10
 
Output is:
70
60
50
In [12]: def multiply(*nums): #*arg is the variabl length list of the 
argument
            z  = 1
            fornuminnums:
                z*=num
            print(z)
 
In [13]: multiply(2,3)
         6
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In [14]: multiply(2,3,5)
        30

2.4.6.4.4  The Return Statement
The return statement [expression] exits a function, optionally passing back an expression to the 
caller. A return statement with no arguments is the same as a return None.

In [15]: # Function definition is here
         def sum(arg1, arg2):
            # Add both the parameters and return them."
            total= arg1 + arg2
            print("Inside the function : ", total)
            return total
 
         # Now you can call sum function
         total= sum(10, 20)
         print("Outside the function : ", total)
 
         Inside the function : 30
         Outside the function : 30
In [32]: #Function to Find the biggest number.
         def maximum(x, y):
             ifx>y:
                 returnx
             elifx== y:
                 return'The numbers are equal'
             else:
                 return y
 
         c = maximum(2,3) print(c)
 
3
In [33]: #Function to find its squares of a number.
         def square(x,y):
             return x*x,y*y
         t = square(2,3)
         print(t)
         (4, 9)

2.4.6.4.5  Lambda Function
The syntax of lambda functions contains only a single statement, which is given as follows:

lambda [arg1 [,arg2,.....argn]]:expression
In [35]: double= lambda x: x**2
         print(double(10))
 
         100
In [36]: my_list= [1,5,4,6,11,34,12]
         new_list= list(filter(lambda x : (x%2 == 0),
         my_list)) print(new_list)
 
          [4, 6, 34, 12]
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Most of the programming languages like C, C++, Java use braces { } to define a block of code. 
Python uses indentation. A code block (body of a function, loop, etc.) starts with indentation and 
ends with the first unindented line. The amount of indentation is up to the user, but it must be con-
sistent throughout that block. Generally, four white spaces are used for indentation and are preferred 
over tabs. The following example describes such a scenario:

In [4]: for I inrange(0,11): print(i)
              if i== 5:
                     break #Break and Exit the loop
        print("a")
 
        0
        1
        2
        3
        4
        5
        a

The enforcement of indentation in Python makes the code look neat and clean. This results in 
Python programs that look similar and consistent.

In [5]: a = 'apple'
 
        if a== 'apple': # Indented, If condition is true body of the if 
is executed
              print('Logging on...')
              print("True....")
        else:
              print('Incorrect password.') 
              print('All done!')
              print("unindent line")
 
        print("Always print")
 
        Logging on... 
        True....
        Always print
 
In [6]: """"learning about indentations learning about indentations"""""
        If  i =='apple':
              print('Logging on....')
        else:
              print('Incorrect password')
        print('All done!')
 
        Incorrect password
        All done!
 
In [7]:
#Anything after # is ignored by python
#comments in python
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2.4.7  file hanDling

File handling allows the application to access the files available on the computer. Therefore, it plays 
an important role in web applications.

The generic function of working with files is open() function. The file can be in four different 
states:

• Read: Opens the file for reading only, and the keyword used is “r.”
• Append: Opens to add a file, and the keyword used is “a.”
• Write: Opens the file for writing, creates a new file if the file doesn’t exist, and the key-

word used is “w.”
• Create: It creates a new file, identifies errors if the file already exists, and the keyword 

used is “x.”
• Text: it is the text mode by default, and the keyword used is “t.”

Example: Suppose we have an application that uploads the documents present on the computer and 
allows the user to update and create the documents.

Read Files

q = open (“myfile.txt”, “r”)
print(q.read())              

Write/Create Files

q = open (“myfile.txt”, “r”)
q.write(“hi”)
q.close()

Delete Files

import os
Os.remove(“myfile.txt”)

2.4.8  excePtion hanDling

It is the process of handling all the unexpected errors which occur during the execution of code. 
Exception handling helps to handle the errors so that the program does not stop working.

There are many exceptions like arithmetic errors, system errors, standard errors, index errors, 
and import errors.

The syntax of handling an exception is by defining a try, and except block, a try statement can 
have multiple exception blocks

try :
//perform your action

exceptExceptionI:
//if error occurs perform this action

The index error is the most common error that occurs during the execution; it occurs when a list 
contains ten elements and the user accesses the index not present in the list. Let’s take the example 
of the list of fruits.

p= [apple, banana, orange, peach]
 try :

Open func�on is a default func�on which will return
the file and as we had print the read func�on, as a
result it will print the data present in file
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print “the fruit is ” %(p[1])
print “the fruit is ” %(p[4]) //this will throw exception as there are only 3 elements

except for Index Error :
print “no fruit found”

2.4.9  DebUgging in Python

The process of identifying errors from the source code is called debugging. It helps the programmer 
dry run each step and identifies the exact line of code due to which error occurred. The software 
which allows the programmer to debug the code is called a debugger.

There are many ways to debug the code and identify errors. For example, some of the developers 
print all the lines, which may execute errors. The print statement will help show the output on each 
step; preserving the log is another way to debug the code. Besides all this, many debugging tools 
assist developers in automating the debugging.

Python has a debugger, which is known as PDB (Python Debugger). The user can configure it to 
explore all the debugging features included in it. Thus, the user can easily look into their code while 
debugging and identify the error-affected lines.

PDB can easily be configured using below-mentioned code:

import pdb;
Pdb.set_trace()

Following are the built-in commands used during debugging:

 1. List: Allow the user to view the line which is currently executed.
 2. Up and Down: The user can change the position of execution with this command.
 3. Step and Next: Both commands allow the sequential execution of the code. Next, it will 

go to the next line of the code, ignoring the call to another function. The step will not 
ignore the call to other functions and goes deeper.

 4. Break: Allow the user to add break points at different points. It stops the debugging.

2.4.9.1  Packages
Let’s take the example, suppose the user is creating an application that includes many modules, it 
becomes very difficult to manage the code if all are placed into one location. Packages help in creat-
ing a hierarchical structuring of the module name using dot notation.

Packages are the namespace that holds many packages and modules themselves. They are the 
directories that are imported into the projects. The directory should contain a file called “init.py”. It 
indicates that it is a Python library and is imported into the program.

Example: Suppose we have a package that contains two modules name “a.py” and “b.py”
Now the user can import the modules using the following package:
import package.a, package.b

2.5  NUMPY BASICS

Numpy stands for numerical Python, which deals with the multi-dimensional array and contains 
functions and objects to process and access it. Numpy allows performing all the logical and math-
ematical operations on the array.

While execu�on, as soon as compiler reaches this line ,
command prompt opens in the terminal which displays all the
debugging informa�on
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2.5.1  introDUction to nUMPy

Numpy is the library for multi-dimensional arrays and their operations. It is also used as a useful 
multi-dimensional container of generic data. Besides, Numpy also has a built-in function for linear 
algebra.

The array of Numpy is called ndarray because of its multi-dimension nature. It contains a col-
lection of data with the same data type. The data inside the ndarray can be accessed using an index 
that starts from zero. In Numpy, the dimensions of the array are called ranks.

2.5.1.1  Array Creation
The array can be initialized in multiple ways by defining several ranks and defining the array's size. 
Let’s initialize a multi-dimensional array:

import Numpy  as ns
 
a = ns.array([1, 2, 3])   # Create a rank 1 array
print(type(a))            # Prints "<class 'numpy.ndarray'>"
print(a.shape)            # Prints "(3,)"
print(a[0], a[1], a[2])   # Prints "1 2 3"
a[0] = 5                  # Change an element of the array
print(a)                  # Prints "[5, 2, 3]"
 
b = ns.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
print(b.shape)                     # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"
 
## The out put shown as below
##<class 'numpy.ndarray'>
## (3,)
## 1 2 3
## [5 2 3]
##  (2, 3)
##  b1 2 4
 
import Numpy  as ns
 
a = ns.zeros((3,3))   # Create an array of all zeros
print(a)              # Prints "[[0. 0. 0.]
                      #          [0. 0. 0.]
                      #          [0. 0. 0.]]
 
 
b = ns.ones((1,2))    # Create an array of all ones
print(b)              # Prints "[[ 1.  1.]]"
 
c = ns.full((2,2), 7)  # Create a constant array
print(c)               # Prints "[[ 7.  7.]
                       #          [ 7.  7.]]"
 
d = ns.eye(2)         # Create a 2x2 identity matrix
print(d)              # Prints "[[ 1.  0.]
                       #          [ 0.  1.]]"
 
e = ns.random.random((2,2))  # Create an array filled with random values
print(e)                     # Might print "[[ 0.91940167  0.08143941]
                             #               [ 0.68744134  0.87236687]]"
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2.5.1.2  Array Slicing
Array slicing is creating a duplicate of the original array, which contains an index of elements of the 
original array. It is the most powerful technique used in various ML algorithms.

Slicing is initiated using a colon “:” with a “start” and “end” index before and after the colon. The 
slicing extends from the “start” index and ends on 1 item before the “end” index.

slice[start : end]
 
 import Numpy  as ns
  
 # Create the following rank 2 array with shape (3, 4)
 # [[1,3,5,7]
 #  [2,4,6,8]
#  [3,6,9,12]]
a = ns.array([[1,3,5,7], [2,4,6,8], [3,6,9,12]])
  
# Use slicing to pull out the subarray consisting of the first two rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
#  [6 7]]
b = a[:2, 1:3]
  
# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print(a[0, 1])   # Prints "3"
b[0, 0] = 99     # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])   # Prints "99"

2.5.2  nUMerical oPerations

Once the array is created, the user can do arithmetic operations on it. Numpy  provides a large num-
ber of arithmetic operations which include arithmetic operations and trigonometric functions. An 
example of arithmetic operations in Numpy  is shown below.

import Numpy  as ns
 
x = ns.array([[1,2],[3,4]], dtype=np.float64)
y = ns.array([[5,6],[7,8]], dtype=np.float64)
 
# Element wise sum; both produce the array
# [[ 6.0  8.0]
#  [10.0 12.0]]
print(x + y)
print(ns.add(x, y))
 
# Element wise difference; both produce the array
# [[-4.0 -4.0]
#  [-4.0 -4.0]]
print(x - y)
print(ns.subtract(x, y))
 
# Element wise product; both produce the array
# [[ 5.0 12.0]
#  [21.0 32.0]]
print(x * y)
print(ns.multiply(x, y))
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# Element wise division; both produce the array
# [[ 0.2         0.33333333]
#  [ 0.42857143  0.5       ]]
print(x / y)
print(ns.divide(x, y))
 
# Element wise square root; produces the array
# [[ 1.          1.41421356]
#  [ 1.73205081  2.        ]]
print(ns.sqrt(x))

A set of additional Numpy functions are presented in Table 2.5.
Numpy solves linear algebra operations; some of the functions are mentioned below.

• Dot: It solves the dot product between two arrays.
• Determinant: Solves the determinant of two arrays.
• Multi Variate INVerse of the matrix (INV): Solves the multiplicative inverse of the matrix.

2.5.3  Python coDe saMPles for nUMPy Package

The example given in this section illustrates the declaration of an array using Numpy and the array 
variable type.

2.5.3.1  Array Creation
There are several ways to create arrays. For example, a user can create an array from a regular 
Python list or tuple using the array function. The type of the resulting array is deduced from the 
type of the elements in the sequences.

import numpy  as np # Array-processing package – The user had to import 
the package to create and use the array
 
x = np.array([1,2,3]) # 1-D Array
x
## OURPUT --> array([1, 2, 3])
 
x1 = np.array([1,2,3])
a = (1,3,5)
b = np.array(a) # Assigning array-a to new variable
print(b)
## OUTPUT --> [1 3 5]

type(b) # Type of the variable
##OUTPUT --> numpy.ndarray

TABLE 2.5
Additional Functions in Numpy 

Function Use Syntax

Real Returns the real part from complex number Numpy.real()

Imaginary Returns the imaginary part from complex number Numpy.imag()

Mode Returns the remainder of the division Numpy.mod()

Conjugate Returns the conjugate part of a complex number Numpy.conj()
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distance = [12,44,54,70,50]
time = [0.27,0.54,0.77,0.55,0.29]
distance1 = np.array(distance)
time1 = np.array(time)
 
type(distance)
##OUTPUT --> list
type(distance1)
##OUTPUT --> numpy.ndarray
## ARRAY CREATION
import numpy  as np
arr1 = np.array([2,3,4])
arr1
 
##OUTPUT --> array([2, 3, 4])
 
import numpy  as np
x = np.array([1,2,3])
arr2 = np.array([1.2, 3.5, 5.1])
arr2
##OUTPUT --> array([1.2, 3.5, 5.1])
 
arr3 = np.array(["abc","def"])
arr3
##OUTPUT --> rray(['abc', 'def'], dtype='<U3')
arr3.dtype
##OUTPUT --> dtype('<U3')
 
arr4 = np.array(["xyz","ijk"])
 
#A frequent error consists in calling array with multiple numeric arguments, 
rather than #providing a single list of numbers as an argument.
#a = np.array(1,2,3,4)    # WRONG
#a = np.array([1,2,3,4])  # RIGHT

Array transforms sequences into two-dimensional arrays, sequences of sequences into three-
dimensional arrays, and so on.

b = np.array([[[(1.5,2,3), (4,5,6),(7,8,9)]]])
b
##OUTPUT --> array([[[[1.5, 2., 3. ],
##OUTPUT -->       [4., 5., 6. ],
##OUTPUT -->      [7., 8., 9. ]]]])
 
b.ndim # Number of array dimensions.
##OUTPUT --> 4
 
b.shape # Current shape of an array
##OUTPUT -->  (1, 1, 3, 3)
 
c = np.array([ [1,2], [3,4] ], dtype=complex)
c
 
##OUTPUT --> array([[1.+0.j, 2.+0.j],
##OUTPUT -->        [3.+0.j, 4.+0.j]])
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d = np.ones((3,3,4), dtype=np.int16) #2=no.of arrays
d
 
##OUTPUT --> array([[[1, 1, 1, 1],
##OUTPUT -->         [1, 1, 1, 1],
##OUTPUT -->         [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT -->    [[1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT -->           [[1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1]]], dtype=int16)
 
d.ndim
##OUTPUT -->3
 
d.shape
##OUTPUT -->(3,3,4)
 
e= np.array([[[1,2],[3,4,5],[6,7,8,9]]])
e
 
##OUTPUT --> array([[list([1, 2]), list([3, 4, 5]), list([6, 7, 8, 9])]], 
dtype=object)
 
   
import numpy  as np
a = np.arange(10,21,3)
print(a)
##OUTPUT --> [10 13 16 19] - Array sttarting from 10 and ends in 21 with the 
increments in value of 3
s = slice(2,7)
s
print(a[s])
print(s)
##OUTPUT --> slice(2, 7, None)
a[2] = 3
print(a)
##OUTPUT -->[10 13  3 19] - Changed the thrid value (index value 2 from 16 to 
3)
 
s = slice(1)
print(a[s])
##OUTPUT --> [10]
 
a = ("a","b","c","d","e","f","g","h")
x = slice(4,6)
print(a[x])
##OUTPUT --> ('e', 'f')
 
b = np.arange(2.5,6.5)
b
##OUTPUT --> array([2.5, 3.5, 4.5, 5.5])
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# slice single item
a = np.arange(10)
b = a[5]
print (b)
##OUTPUT --> 5
 
x = np.arange(10,21)
print(x)
##OUTPUT --> [10 11 12 13 14 15 16 17 18 19 20]
 
a = np.arange(10)**2 # Square of number from zero to Nine
a
##OUTPUT --> array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81], dtype=int32)
 
a[0:6:2] = -1000  ## Please note the elements starting from index 0 and 
till index 5 in the increments of 2 will be changed to -1000
a
##OUTPUT --> array([-1000,     1, -1000,     9, -1000,    25,    36,    
49,    64, 81], dtype=int32)

The array can be created from scratch, as shown above, or from another array. The below code 
examples show how an array can be created from an existing array.

#creating an array from existing array
import numpy  as np
 
x = [1,2,3]
a = np.asarray(x)
print (a)
##OUTPUT --> [1,2,3]
 
# dtype is set
a = np.asarray(x, dtype = float)
print (a)
##OUTPUT --> [1. 2. 3.]
 
# ndarray from a tuple
 
x = (1,2,3)
a = np.asarray(x)
print (a)
##OUTPUT --> [1,2,3]
 
type(a)
##OUTPUT --> numpy.ndarray
 
# ndarray from list of tuples
 
x = [(1,2,3),(4,5)]
a = np.asarray(x)
print (a)
##OUTPUT -->[(1, 2, 3) (4, 5)]
 
import numpy  as np
x = np.arange(5)
print (x)
##OUTPUT --> [0 1 2 3 4]
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# dtype set
x = np.arange(5, dtype = float)
print (x)
##OUTPUT --> [0. 1. 2. 3. 4.]
 
# start and stop parameters set
x = np.arange(10,20)
print (x)
##OUTPUT --> [10 11 12 13 14 15 16 17 18 19]
 
import numpy  as np
#numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, 
dtype=None, axis=0)
x = np.linspace(10,20,4) # returns evenly spaced numbers over a specified 
interval.
#Start from 10 and End at 20
print (x)
##OUTPUT --> [10.         13.33333333 16.66666667 20.        ]
#PLEASE NOTE THE NUMBER OF ELEMENTS
 
import numpy  as np
x = np.linspace(10,20,10)
print (x)
##OUTPUT --> [10.         11.11111111 12.22222222 13.33333333 14.44444444 
15.55555556
##OUTPUT -->  16.66666667 17.77777778 18.88888889 20.        ]

2.5.3.2  Class and Attributes of ndarray—.ndim
Numpy’s array class is “ndarray,” also referred to as “numpy.ndarray.” This refers to the number of 
axes (dimensions) of the array. It is also called the rank of the array.

f = np.array([[[(1.5,2,3), (4,5,6),(7,8,9)]]])
f.ndim
##OUTPUT -->2
 
#Describes how the bytes in the fixed-size block of memory corresponding to 
an array item should be interpreted
f.dtype
##OUTPUT --> dtype('int32')
 
f.itemsize
##OUTPUT --> 4  ## The array is 32 bit length; 8 bytes ; 32/8 = 4
 
np_first_trial_cyclist = np.array([10,12,15,16]) #Create an array with data
np_second_trial_cyclist = np.array([20,25,30,45])
np_first_trial_cyclist + np_second_trial_cyclist # addition of two arrays
##OUTPUT -->  array([30, 37, 45, 61])

2.5.3.3  Class and Attributes of ndarray—.shape
This consists of a tuple of integers showing the size of the array in each dimension. The length of 
the “shape tuple” is the rank or ndim.

b = np.array([[[(1.5,2,3), (4,5,6),(7,8,9)]]])
b
##OUTPUT --> array([[[[1.5, 2., 3. ],
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##OUTPUT -->       [4., 5., 6. ],
##OUTPUT -->      [7., 8., 9. ]]]])

b.ndim # Number of array dimensions.
##OUTPUT --> 4
 
b.shape # Current shape of an array
##OUTPUT -->  (1, 1, 3, 3)

2.5.3.4  Class and Attributes of ndarray—ndarray.size, ndarray.Itemsize, ndarray.resize
It gives the total number of elements in the array. It is equal to the product of the elements of the 
shape tuple. Itemsize describes how the bytes in the fixed-size block of memory corresponding to 
an array item should be interpreted.

import  numpy  as np
f = np.array([[1, 2,5], [3, 4,7]])
print (f)
##OUTPUT -->[[1 2 5]
##OUTPUT --> [3 4 7]]
 
f.size
##OUTPUT -->6 - 6 elements
 
#Describes how the bytes in the fixed-size block of memory corresponding to 
an array item should be interpreted
f.dtype
##OUTPUT --> dtype('int32')
 
f.itemsize
##OUTPUT --> 4  ## The array is 32 bit length; 8 bytes ; 32/8 = 4
 
f.resize (3,3)
f
##output -->array([[1, 2, 5],
##output -->       [3, 4, 7],
##output -->       [0, 0, 0]]) - note the last elements are zeros

2.5.3.5  Class and Attributes of ndarray—.dtype
It is an object that describes the type of elements in the array. It can be created or specified using 
Python.

import numpy  as np
x = np.array([1,2,3])
arr2 = np.array([1.2, 3.5, 5.1])
arr2
##OUTPUT --> array([1.2, 3.5, 5.1])
 
arr3 = np.array(["abc","def"])
arr3
##OUTPUT --> rray(['abc', 'def'], dtype='<U3')
arr3.dtype
##OUTPUT --> dtype('<U3')
 
c = np.array([ [1,2], [3,4] ], dtype=complex)
c
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##OUTPUT --> array([[1.+0.j, 2.+0.j],
##OUTPUT -->        [3.+0.j, 4.+0.j]])

d = np.ones((3,3,4), dtype=np.int16) #2=no.of arrays
d
 
##OUTPUT --> array([[[1, 1, 1, 1],
##OUTPUT -->         [1, 1, 1, 1],
##OUTPUT -->         [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT -->    [[1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT -->           [[1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1],
##OUTPUT -->            [1, 1, 1, 1]]], dtype=int16)
 
d.ndim
##OUTPUT -->3
 
d.shape
##OUTPUT -->(3,3,4)
 
e= np.array([[[1,2],[3,4,5],[6,7,8,9]]])
e
 
##OUTPUT --> array([[list([1, 2]), list([3, 4, 5]), list([6, 7, 8, 9])]], 
dtype=object)

2.5.3.6  Basic Operations
Numpy uses the indices of the elements in each array to carry out basic operations. In this case, 
where we are looking at a dataset of four cyclists during two trials, vector addition of the arrays 
gives the required output.

import numpy  as np
cyclist_trial = np.array([[10,12,15,16],[20,25,30,45]])
cyclist_trial
 
##OUTPUT --> array([[10, 12, 15, 16],
##OUTPUT -->        [20, 25, 30, 45]])
 
first_trial = cyclist_trial[0] # Assign value at row-index(0) of all column
first_trial # Prints the data assigned to it.
##OUTPUT --> array([10, 12, 15, 16])
 
second_trial = cyclist_trial[1]
second_trial
##OUTPUT -->  array([20, 25, 30, 45])
 
third_trial = cyclist_trial[1][0] #secondrow,first column
third_trial
##OUTPUT -->  20
 
tst = cyclist_trial[1,1] # Second-row Second column
tst
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##OUTPUT -->  25

forth_trial = cyclist_trial[:,2]
forth_trial
##OUTPUT --> array([15, 30])
 
cyclist_trial.shape
##OUTPUT --> (2, 4) - TWO ROWS AND 4 COLUMNS
 
 
fifth_trial = cyclist_trial[:,1:3]
fifth_trial
##OUTPUT --> array([[12, 15],
##OUTPUT -->       [25, 30]])

2.5.3.7  Accessing Array Elements: Indexing
The user can access an entire row of an array by referencing its axis index. In addition, the indices 
of the elements in an array can be referred to access them. A particular index of more than one axis 
can also be selected.

import numpy  as np
a = np.arange(10,21,3)
print(a)
##OUTPUT --> [10 13 16 19] - Array sttarting from 10 and ends in 21 with the 
increments in value of 3
s = slice(2,7)
s
print(a[s])
print(s)
##OUTPUT --> slice(2, 7, None)
a[2] = 3
print(a)
##OUTPUT -->[10 13  3 19] - Changed the thrid value (index value 2 from 16 to 
3)
 
s = slice(1)
print(a[s])
##OUTPUT --> [10]
 
a = ("a","b","c","d","e","f","g","h")
x = slice(4,6)
print(a[x])
##OUTPUT --> ('e', 'f')
 
b = np.arange(2.5,6.5)
b
##OUTPUT --> array([2.5, 3.5, 4.5, 5.5])
 
# slice single item
a = np.arange(10)
b = a[5]
print (b)
##OUTPUT --> 5
 
x = np.arange(10,21)
print(x)
##OUTPUT --> [10 11 12 13 14 15 16 17 18 19 20]
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a = np.arange(10)**2 # Square of number from zero to Nine
a
##OUTPUT --> array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81], dtype=int32)
 
a[0:6:2] = -1000  ## Please note the elements starting from index 0 and 
till index 5 in the increments of 2 will be changed to -1000
a
##OUTPUT --> array([-1000,     1, -1000,     9, -1000,    25,    36,    49,    
64, 81], dtype=int32)
 
# slice items starting from index
a = np.arange(10)
print(a)
##OUTPUT -->[0 1 2 3 4 5 6 7 8 9]
print (a[2:])
##OUTPUT -->[2 3 4 5 6 7 8 9]
 
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print(a)
##OUTPUT -->[[1 2 3]
##OUTPUT --> [3 4 5]
##OUTPUT --> [4 5 6]]
a.ndim
##OUTPUT -->2
## slice items starting from index
#print ('Now we will slice the array from the index a[1:]')
print (a[1:])
##OUTPUT -->[[3 4 5]
##OUTPUT --> [4 5 6]]
 
print (a[1][1])
##OUTPUT --> 4
print (a[1][1:])
##OUTPUT --> [4 5]
 
a=np.array([[1,2,3,4,5],[1,2,4,78,8,],[3,6,8,4,3],([1,2,4],[2,3,4,4])])
print(a[2:])
##OUTPUT --> [list([3, 6, 8, 4, 3]) ([1, 2, 4], [2, 3, 4, 4])]
print(a[:1])
##OUTPUT --> [list([1, 2, 3, 4, 5])]
print(a[0:])
##OUTPUT --> [list([1, 2, 3, 4, 5]) list([1, 2, 4, 78, 8]) list([3, 6, 8, 4, 
3]) ([1, 2, 4], [2, 3, 4, 4])]
a.ndim
##OUTPUT -->1
 
import numpy  as np
np.random.random_sample((5,)) ## return random floats in half open 
interval[0.0,1.0)
##OUTPUT --> array([0.93582707, 0.45519645, 0.63904608, 0.72751779, 
0.03412199])
 
NOTE: The random numbers will be generated when run again, and the output 
will be different.
 
type(np.random.random_sample())
##OUTPUT --> float
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a = np.random.random([2,3]) #indices(no.ofrows,no.columns)
a
##OUTPUT -->array([[0.44139017, 0.50624907, 0.68734659],
##OUTPUT -->       [0.52525588, 0.03275437, 0.52491101]])
 
c = a.sum()
c
##OUTPUT --> 2.7179070918025525
 
x = np.arange(20).reshape(5, 4)
#row, col = np.indices((2, 3))
#x[row, col]
x
##OUTPUT -->array([[ 0,  1,  2,  3],
##OUTPUT -->       [ 4,  5,  6,  7],
##OUTPUT -->       [ 8,  9, 10, 11],
##OUTPUT -->       [12, 13, 14, 15],
##OUTPUT -->       [16, 17, 18, 19]])
 
row, col = np.indices((3, 2))
x[row, col]
 
##OUTPUT -->array([[0, 1],
##OUTPUT -->       [4, 5],
##OUTPUT -->       [8, 9]])
 
a.min()
##OUTPUT -->  0.032754372323505976
 
b = np.arange(12).reshape(3,4) # New shape to an array without changing its 
data.
b
##OUTPUT --> array([[ 0,  1,  2,  3],
##OUTPUT -->       [ 4,  5,  6,  7],
##OUTPUT -->       [ 8,  9, 10, 11]])
 
b[2][1] # 2nd-Row 1st-column
##OUTPUT --> 9
 
b.sum() # Sum of numbers in array b
##OUTPUT --> 66
 
b.sum(axis=0) #sum across column
##OUTPUT --> array([ 6, 22, 38])
 
A = np.array([[1,1],
              [0,1]])
B = np.array([[2,0],
              [3,4]])
 
type(A)
##OUTPUT --> numpy.ndarray
 
A*B   #Elementwise product
##OUTPUT --> array([[2, 0],
##OUTPUT -->        [0, 4]])
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A@B  #MatrixMultipication
##OUTPUT --> array([[5, 4],
##OUTPUT -->        [3, 4]])
 
A.dot(B)   #Another matrix multipication
##OUTPUT --> array([[5, 4],
##OUTPUT -->        [3, 4]])
Multidimensional arrays can have one index per axis. These indices are given 
in a tuple separated by commas:
 
a = np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
a
##OUTPUT --> array([[ True, False, False],
##OUTPUT -->        [False,  True, False],
##OUTPUT -->        [False, False,  True]])
 
x = np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
x
##OUTPUT -->array([[0, 1, 2],
##OUTPUT -->       [1, 2, 3],
##OUTPUT -->       [2, 3, 4]])
 
import numpy  as np
def f(x,y):
return 10*x+y
b = np.fromfunction(f,(5,5),dtype=int)#(X,Y) are coordinates
b
##OUTPUT -->array([[ 0,  1,  2,  3,  4],
##OUTPUT -->       [10, 11, 12, 13, 14],
##OUTPUT -->       [20, 21, 22, 23, 24],
##OUTPUT -->       [30, 31, 32, 33, 34],
##OUTPUT -->       [40, 41, 42, 43, 44]])
 
b[2,3] # 3rd row 4th Element (Please note the index starts at 0)
##OUTPUT --> 23
 
b[0:5, 1] # each row in the second column of b
##OUTPUT --> array([ 1, 11, 21, 31, 41])
 
b[-1]   # the last row. Equivalent to b[-1,:]
##OUTPUT --> array([40, 41, 42, 43, 44])

2.5.3.8  Shape Manipulation
The shape of the array can be manipulated and modified. This gives the orientation of the array.

#Shape Manipulation
#Changing the shape of an array
 
#An array has a shape given by the number of elements along each axis:
import numpy  as np
a = np.floor(10*np.random.random((3,4)))
##  Return the closest integer value which is less than or equal to the 
specified expression
a
##OUTPUT --> array([[4., 8., 4., 3.],
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##OUTPUT -->        [2., 7., 2., 8.],
##OUTPUT -->        [1., 8., 5., 2.]])

a.shape
##OUTPUT --> (3,4)
 
#The shape of an array can be changed with various commands.
#Note that the following three commands all return a modified array but do 
not change the original array:
 
a.ravel() #flatened array
##OUTPUT --> array([4., 8., 4., 3., 2., 7., 2., 8., 1., 8., 5., 2.])
 
# ravel() function is used to create a contiguous flattened array.
# Purpose of ravel() Function
# Return only reference/view of the original array
# If you modify the array, you will notice that the value of the original 
array also changes.
# Ravel is faster than flatten() as it does not occupy any memory.
# Ravel is a library-level function.
 
a.shape
##OUTPUT --> (3,4)
 
a = a.reshape(6,2)
a
 
##OUTPUT --> array([[4., 8.],
##OUTPUT -->        [4., 3.],
##OUTPUT -->        [2., 7.],
##OUTPUT -->        [2., 8.],
##OUTPUT -->        [1., 8.],
##OUTPUT -->        [5., 2.]])
 
a.T #Transpose:value of row changes to column
##OUTPUT -->  array([[4., 4., 2., 2., 1., 5.],
##OUTPUT -->         [8., 3., 7., 8., 8., 2.]])
 
a
##OUTPUT -->  array([[4., 8.],
##OUTPUT -->         [4., 3.],
##OUTPUT -->         [2., 7.],
##OUTPUT -->         [2., 8.],
##OUTPUT -->         [1., 8.],
##OUTPUT -->         [5., 2.]])
 
a.shape #After Reshape
##OUTPUT --> (6,2)
 
a.resize((2,6))
a
##OUTPUT -->array([[4., 8., 4., 3., 2., 7.],
##OUTPUT -->       [2., 8., 1., 8., 5., 2.]])
 
a.shape
##OUTPUT --> (2,6)
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2.5.3.9  Universal Functions (ufunc) in Numpy
Numpy provides useful mathematical functions called Universal Functions. These functions oper-
ate element-wise on an array, producing another array as output.

np_sqrt =np.sqrt([2,4,9,16]) # Takes Square-root of each value
np_sqrt
#OUTPUT --> array([1.41421356, 2.       , 3.       , 4.        ])
 
from numpy  import pi
np.cos(0) #Returns the cosine of value passed as argument. The value passed 
in this function should be in radians
##OUTPUT --> 1.0
 
np.sin(pi/2) # sine value of X
##OUTPUT --> 1.0
 
np.sin(90)
##OUTPUT --> 0.8939966636005579
 
np.cos(pi)
##OUTPUT --> -1.0
 
pi # Returns value of PI
##OUTPUT --> 3.141592653589793
 
np.floor([1.2,1.6,2.7,3.3,-0.3,-1.4])
##OUTPUT --> array([ 1.,  1.,  2.,  3., -1., -2.])
 
np.sin(90 * np.pi / 180)

2.5.3.10  Broadcasting
Numpy uses broadcasting to carry out arithmetic operations between arrays of different shapes. 
In this method, Numpy automatically broadcasts the smaller array over the larger array. Though 
broadcasting can help carry out mathematical operations between different-shaped arrays, they are 
subject to certain constraints as listed below.

When Numpy operates on two arrays, it compares their shapes element-wise. It finds these shapes 
compatible only if:

• Their dimensions are the same or
• One of them has a dimension of size 1.
• If these conditions are not met, a “ValueError” is thrown, indicating that the arrays have 

incompatible shapes.

import numpy  as np
a = np.array([1,2,3,4])
b = np.array([10,20,30,40])
c = a * b
c
##OUTPUT -->array([ 10,  40,  90, 160])
 
a = np.array([5])
a
##OUTPUT -->array([5])
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d = a * b
print (d)
##OUTPUT -->[ 50 100 150 200]
type(d)
##OUTPUT -->numpy.ndarray
 
e = np.array([4,5,6,7])
print(e)
##OUTPUT -->[4 5 6 7]
f = d*e
f
##OUTPUT -->array([ 200,  500,  900, 1400])
 
f = e*7
print(f)
##OUTPUT -->[28 35 42 49]
 
#Args and kwargs
def sum(*args):
    s = 0
    for i in args:
        s += i
    print("sum is", s)
 
sum(1,2,3)
##OUTPUT --> sum is 6
 
sum(1,2,3,4,5,6)
##OUTPUT --> sum is 21

2.5.3.11  Args and Kwargs
*Args are the signature of Numpy arguments, which means that other positional arguments could be 
passed. The special syntax **kwargs in function definitions in Python is used to pass a keyworded, 
\nvariable-length argument list. We use the name kwargs with the double star.\n; the reason is that 
the double star allows us to pass through keyword arguments (and any number of them).

def sum(*args):
    s = 0
    for i in args:
        s += i
    print("sum is", s)
 
sum(1,2,3)
##OUTPUT --> sum is 6
 
sum(1,2,3,4,5,6)
##OUTPUT --> sum is 21
 
#kwargs allows us to pass a variable number of keyword argument like this 
 
def my_func(**kwargs):
    for i,j in kwargs.items():
        print(i,j)
my_func(name='Suresh',sport='Cricket',Score=120)
##OUTPUT --> name Suresh
##OUTPUT --> sport Cricket
##OUTPUT --> Score 120



92 Machine Learning for Decision Sciences with Case Studies in Python

2.6  MATPLOTLIB BASICS

Creating the statistical view of the data is the most demanding; Python provides a library called 
“Matplotlib.” It is very powerful and easily understandable for programmers who are already work-
ing with Python and Numpy. It is used with Numpy to provide a 2D graphical view.

The matplotlib is useful for data scientists who want to visualize their data to provide the best 
outcome. Matplotlib is the most popular module of Python of data visualization.

To use matplotlib, the user should first download its package according to the Python installed. 
The library which is used to draw 2D data is called pyplot(). Matplotlib can be initialized as follows:

import matplotlib
import pyplot as plot
 
Let’s take the example of a survey on food items purchased by students from 
the canteen. Show the graphical representation of the most and least eaten 
items by students.
 
import numpy  as ns
import matplotlib
import pyplot as plot
fooditems = ns. array [“Chips”, “Burgers”, “Sandwich”, “Roll”, “Patties”, 
“Pizza”]
students = ns.array [0, 1, 2, 3, 4,5,6]
plot.title (“Survey on food items”)
plot.xlabel (“x-axis represents the food item sold in the canteen”)
plot.ylabel (“y-axis represents the number of students purchase items”)
plot.plot(fooditems,students)
plot.show()
 
Output : The output of the above code is shown in Figure 2.23.

FIGURE 2.23 Output for illustration on matplotlib.
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2.6.1  creating graPhs with MatPlotlib

 1. Bar graph: It is the most commonly used graph to show the data representations. Matplotlib 
provides a built-in function bar()to create bar graphs. It takes three input variables: fields, 
value, and color. Let’s consider the same example of a survey on students eating the same 
food items.

import numpy  as ns
Impot matplotlib
import pyplot as plot
fooditems = ns.array [“Chips”, “Burgers”, “Sandwich”, “Roll”, “Patties”, 
“Pizza”]
students = ns.array [ 10, 20, 30, 40,50,60]
plot.title (“Survey on food items”)
plot.xlabel (“x axis represents the food item sold in canteen”)
plot.ylabel (“y axis represents the number of students purchase 
items”)
plot.bar (fooditems,students, color = ‘green’)
plot.show()
 
Output: The output of the above code is shown in Figure 2.24.

 2. Pie chart: Another type of graph is a pie chart created using a built-in function called 
pie(). Explode defines the fraction of the radius with which to offset each wedge. Labels 
define the chunks in which the chart will be distributed; shadow adds additional effects in 
the pie chart.

import numpy  as ns
Impot matplotlib
import pyplot as plot

FIGURE 2.24 Output for illustration on graphs with matplotlib.



94 Machine Learning for Decision Sciences with Case Studies in Python

fooditems = ns.array [“Chips”, “Burgers”, “Sandwich”, “Roll”, “Patties”, 
“Pizza”]
students = ns.array [ 10, 20, 30, 40,50,60]
Explode = [0,0,0,0,0,0]
plot.title (“Survey on food items”)
plot.pie (students, explode = Explode,label = fooditems, shadow= 
false,startangle = 45)
plot.legend(title =” Food items in canteen”)
plot.show()
 
Output : The output of the above code is shown in Figure 2.25.

2.7  PANDAS BASICS

Pandas are the most well-liked Python library for data science. It helps to handle two-dimensional 
data tables in Python. It provides flexibility and ease of use. Pandas are used in various fields like 
finance, commercial, economics, and analytical.

2.7.1  getting starteD with PanDas

The major drawback of Python was it has very few features for data preparations and manipulation. 
Then, Pandas solve the problem; now, it allows preparing, manipulating, analyzing, and modeling 
the data.

Let’s take the example of data present in the computer in a (Comma Separated Value) CSV file, 
and the user wants to analyze the data to conclude the results. Pandas will help the user in this by 
importing the data and converting the data into a meaningful manner by analyzing and cleaning the 
data if any missing fields are found to filter the data in rows and columns accordingly.

Pandas are easy to install. For example, the following command is written in the command line 
install Pandas package:

Conda install pandas

To import Pandas in the source code, use the following code:

import pandas as pa

FIGURE 2.25 Output for illustration on pie chart.
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2.7.2  Data fraMes

Pandas mostly deal with three data structures:

• Series
• Data Frames
• Panels

Series: It is a one-dimensional array that holds any data. It is just a column of an Excel sheet. 
To create a series from the array, import the numpy () function.

import pandas as pd
importnumpy  as ns
a = ns.array ([“apple”, “banana”, “orange”, “peach”])
series = pd.series(a)
Print series
Retrieve data from series :
Print a[0]

Data frames: It is a two-dimensional array. It is like a table with rows and columns of dif-
ferent data types. Let’s take the example of storing student information as shown below.

Name Age Class Average Marks Scored

Alice 10 6 50

Mack 5 2 20

Jason 4 1 40

Adam 9 3 50

Row

Column

The syntax used to initialize the data frame:
Pandas.DataFrame (data, index, column, data type, copy)
Let’s explain each in detail:

• Data: The input data in the form of an array, list, set, or any other data structure.
• Index: Represents the row that is accessed.
• Column: Represents the column in the data.
• Data type: Data type, that is, int, string, float, etc.
• Copy: Used for copying the data.

Creating a Data Frame:

import pandas as pd
importnumpy  as ns
a = ns.array ([“apple”, “banana”, “orange”, “peach”])
dataframe= pd.DataFrame(a)
Print dataframe

2.7.3  key oPerations on Data fraMes

2.7.3.1  Data Frame from List
Data frames can be created using the list. Let’s take the example of displaying marks scored by 
students in English subject.

import pandas as pd
list = [[‘Anna’, 20], [‘Jhon’, 30], [‘Adam’, 55], [‘Jason’, 60]]
dataframe= pd.DataFrame(list, column = [‘Student Name’, ‘Marks Scored’], 
dtype = int)
Print dataframe

Output :

Apple
orange
banana

Output :

0  Apple
1  orange
2  banana

3  peach
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Output:

2.7.3.2  Rows and Columns in Data Frame
Data are saved in the form of a table that contains rows and columns. Thus, we can perform multiple 
operations, for example adding, selecting, deleting, etc.

2.7.3.2.1  Selecting the Column in Data Frames

import pandas as ps
data = {‘name’ : [‘Anna’, ‘Jhon’, ‘Adma’, ‘Jason’], ‘Marks’ : [20, 30, 55, 
60]}
dataframe = ps.DataFrame(data, index = [0,1,2,3])
first = dataframe(‘name’)
print (first)

2.7.3.2.2  Adding a Column to an Existing Data Frame

import pandas as ps
data = {‘Name’ : [‘Anna’, ‘Jhon’, ‘Adam’, ‘Jason’], ‘Marks’ : [20, 30, 55, 
60]}
dataframe = ps.DataFrame(data, index = [0,1,2,3])
print (dataframe)
class = [1, 2, 3, 4]
dataframe[‘Class’] = class# add new column
print(“after adding new column”)
print (dataframe)

Output:

After adding a new column

Student Name Marks Scored

0 Anna 20

1 Jhon 30

2 Adam 55

3 Jason 60

Name Marks

0 Anna 20

1 Jhon 30

2 Adam 55

3 Jason 60

Name Marks Class

0 Anna 20 1

1 Jhon 30 2

2 Adam 55 3

3 Jason 60 4
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2.7.3.2.3  Deleting a Column from a Data Frame

import pandas as ps
data = {‘Name’ : [‘Anna’, ‘Jhon’, ‘Adam’, ‘Jason’], ‘Marks’ : [20, 30, 55, 
60], ‘class’ : [1,2,3,4]}
dataframe = ps.DataFrame(data, index = [0,1,2,3])
print (dataframe)
print (“delete the column class”)
dataframe.pop(‘class’)
print(dataframe)           #deletes the column

2.8  COMPUTATIONAL COMPLEXITY

Computational complexity refers to the number of resources required to complete a task. 
Computational complexity helps the programmers identify the level of complexity the program will 
face to overcome it.

The complexity of a program or algorithm varies concerning the input data; it is generally 
expressed in the form of “f (n)” where n indicates the size of the input.

Computational complexity in terms of an algorithm is how long an algorithm will take to solve 
the problem in the worst case. Algorithms can be analyzed as follows:

• Asymptotic analysis: When creating an application, various things need to be focused on. 
Such application should be user-friendly, fast, easily configurable, and the performance is 
the key to an application. No one likes to run an application that is slow in operations and 
works badly in a large amount of data. How can we identify the speed of an algorithm and 
tell whether the algorithm will work best in large input? The answer to all the above ques-
tions is asymptotic analysis.

It evaluates the algorithm’s performance with large input data; it calculates how the time increases 
as the data input increases. When we have two algorithms for the same problem, asymptotic will 
help calculate and choose the best suitable algorithm.

The algorithm can be analyzed based on the following cases:

Worst-case complexity: Maximum number of steps algorithm will perform. Identify the UB 
on the run time of the algorithm. The case that causes a maximum number of operations. 
For example, searching an element in the data that is not present in it, as the loop will iter-
ate till the end to search the element, which is why it is the worst case.

Average-case complexity: Find all the possible inputs, calculate the time consumed, add all 
the calculated values, and divide it with several inputs. It is not easy to do and has rarely 
been used.

Best-case complexity: It generates the LB of the algorithm. Calculate the case that causes the 
minimum number of operations to be executed.

Space complexity: Space complexity is the required memory to solve a problem. Suppose 
the problem requires large memory. As a result, the program will become more complex.

Time complexity: How much time the algorithm takes to solve a problem. Time includes the 
execution time of the program.

2.9  REAL-WORLD EXAMPLES

Based on the topics explained in this chapter, the authors have provided real-world examples to 
understand the concepts better.
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2.9.1  iMPleMentation Using PanDas

Pandas help the data science field by boosting up the application flow. It helps to visualize the data 
in tabular form. Let’s take the example of analyzing the data newly of milk products of different 
brands.

The information will contain different attributes of milk products namely pH, multi-vitamins, 
density and a quality score between 0 and 5. The quality score is the average of three tests by a 
human. First, let’s explain how to save the data using Numpy.

From the above table, there are three rows. The first row is the header column. Each row after 
the header represents a different product and its quality. For example, the first row defines the brand 
name, then is the pH, energy, fat, and so on.

Let's input the data using Matplotlib:

import pandas as ps
data = {‘Brand: [‘OPI, ‘Milky’], ‘PH’: [3.51, 3.20], ‘Energy’ : [30,60], 
‘Fat’ : [66, 11], ‘Quality Score’ : [2, 3], ‘Carbohydrate’ : [23, 70], 
‘Protein’ : [40,50], ‘Sodium’ : 12, 13}
dataframe = ps.DataFrame(data, index = [0,1])
print (dataframe)

 1. Find the count of several rows and columns in the data frame.
dataframe. Shape

 2. How to access the last-row value?
dataframe.tail(1)

 3. How can we access the first-row value?
dataframe.head(1)

2.9.2  iMPleMentation Using nUMPy

Let’s solve the problem of finding the area and perimeter of five rectangles. To find the area and 
perimeter, we will need the length and width of the rectangle.

import numpy  as ns
length= ns.array ([5,10,15,20,25])
width = ns.array ([20, 22, 24, 25, 26])
area =  multiply(length, width)
perimeter1 = add(length, width)
perimeter = perimeter * 2
Print(perimeter)
print(area)

2.9.3  iMPleMentation Using MatPlotlib

Matplotlib provides the graphical representation of data to visualize it. With the help of matplotlib, 
the user can extract the required information and plot it on the graph as per the requirement. Let’s 
take the example of drawing a histogram with matplotlib.

Brand pH Energy Fat Quality Score Carbohydrate Protein Sodium

Open Process Interface (OPI) 3.51 30 66 2 23 40 12

Milky 3.20 60 11 3 70 50 13
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The histogram is a common type of plot when the user is looking for the data like height, weight, 
and customer waiting time. Histogram data are plotted within the range against its frequency.

Adam is working in a bank; nowadays, he is receiving many complaints from clients about the 
wait time to register complaints to complain officers. Adam decided to observe the waiting time for 
each customer. Data are given below:

import numpy  as ns
import matplotlib
importpyplot as plot
time= ns.array [43, 35, 36.5, 50.2, 50.2]
customer= ns.array [ “Customer 1”, “Customer 2”, “Customer 3”, “Customer 4”, 
“Customer 5”]
plot.title (“Customer Wait Ttime Observation”)
plot.xlabel (“x axis represents the time in seonds”)
plot.ylabel (“y axis represents the customers”)
plot.hist (time,customer)
plot.show()
 
Output - The output of the above code is shown in Figure 2.26.

SUMMARY

• Python: It is a high-level, interactive, and object-oriented language. Python is easy to 
understand. Most of the ML and artificial intelligence algorithms are written in Python.

Customer Time in Seconds

Customer 1 43

Customer 2 35

Customer 3 36.5

Customer 4 50.2

Customer 5 50.2

FIGURE 2.26 Histogram output.



100 Machine Learning for Decision Sciences with Case Studies in Python

• Major uses of Python: It is used as Object Oriented Programming (OOP)-oriented lan-
guage and scripting language, and it is easily integrated with other languages like C, C++, 
and JAVA. It is used heavily in data science, ML, and deep learning.

• Control flow statement: Control flow describes the order of the program in which the 
code will be executed. The control statements are handled with the help of conditional 
statements like a loop and function calls.

• List: List is the data structure that is changeable and ordered list. Each element of the list 
is called an item. The list is initiated using brackets.

• Tuple: A tuple is a sequence of absolute objects separated by a comma. Tuples are accessed 
with their index.

• Dictionary: It is the data structure used to map and store data with a key that acts as an 
index. Key will be a single element, whereas value can be array or list.

• Set: It is the same as sets in mathematics; it may consist of various elements, and the order 
of the elements is not defined.

• Exceptional handling: Errors are of different types that need to be handled to create a 
smooth application. Exceptional handling is the process of overcoming the unexpected 
error that occurs during the execution of the program. Whenever an error occurs within a 
method, it creates an object and hands off it to an exception handler block.

• Debugging: The process of identifying and removing the errors from the code is called 
debugging. It allows identifying the exact line and function due to which error occurred.

• Numpy: It is the library that supports an N-dimensional array and has sophisticated 
functions. It has the capability of performing functions like mathematics, statistics 
operations.

• Matplotlib: It is an another library of Python that supports the graphical representation of 
data in 2D and 3D charts like a pie chart, a bar graph, and a histogram. Matplotlib plays a 
very important role in today’s business as programmers use this library to show the busi-
ness status graphically.

• Pandas: The library of Python that provides the data in tabular form and performs arith-
metic functions like add, subtracts, and reciprocal.

REVIEW QUESTIONS

 1. What are the in-built data types used in Python?
 2. How to initialize a list?
 3. Difference between list and tuple?
 4. How can we initiate a dictionary?
 5. What is the main purpose of the break statement?
 6. What is the use of a continue statement?
 7. What is the use of the pass statement?
 8. Is Numpy better than a list?
 9. When is the else part of the try block in exception handling executed?
 10. How can we create a Boolean array using Numpy?
 11. What kind of graphs can be created using matplotlib?
 12. How can we drop the missing value using Pandas and Numpy?
 13. How can Pandas allow to read a CSV file?
 14. Read and print the first ten columns of the data.
 15. What is the computational complexity?
 16. What are the parameters of plot() function?
 17. What does the line imply – import matplotlib.pyplot as plt?
 18. Describe the importance of heatmap in matplotlib?
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 19. What are the plots available in matplotlib?
 20. Write a code to customize the color and adding legends to the plot?
 21. Write a code for scatterplot with color attribute.
 22. How to add labels to graph plots?
 23. Explain about bins in histogram function?
 24. What is rcdefaults()?
 25. Difference between bar plot, pie plot, and scatter plot?
 26. What is the importance of plotting?
 27. Mention the different types of data structures in Pandas?
 28. Explain the series in Pandas. How to create a copy of the series in Pandas?
 29. What is a Pandas data frame? How will you create an empty data frame in Pandas?
 30. Explain reindexing in Pandas.
 31. What are the key features of the Pandas’ library?
 32. What are Pandas used for?
 33. Explain categorical data in Pandas.
 34. What are the different ways a data frame can be created in Pandas?
 35. What is time series in Pandas?
 36. Which is the standard data missing marker used in Pandas?
 37. Is it possible to plot a histogram in Pandas without calling Matplotlib? If yes, then write the 

code to plot the histogram?
 38. What is the need to use Python Pandas?

EXERCISES FOR PRACTICE

Numpy

 1. Convert the list [3.14, 14.22, 160, 36.36] into one-dimensional array.
 2. Create a Numpy  program to create a 3 × 3 matrix with values ranging from 5 to 14.
 3. Given the array, write a program to reverse the array in Numpy

[1,3,6,9,12,15,18,21,24,27,30]
 4. Given the array, change the data type of the array to float using Numpy

[1,3,6,9,12,15,18,21,24,27,30]
 5. Given an array, write a Numpy program to create a 2d array with 0 on the border and one 

inside.
Original array:

[[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1.]
[ 1. 1. 1. 1. 1.]]

Expected output:
0 on the border and one inside in the array

[[ 0. 0. 0. 0. 0.]
[ 0. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 0.]
[ 0. 1. 1. 1. 0.]
[ 0. 0. 0. 0. 0.]]

 6. Given tuple, convert that into an array using Numpy
([1, 3, 5], [2, 4, 6])
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 7. Given the array values in Fahrenheit, convert them into centigrade using the formula: C= 
(F-32)*5/9 (Note: F is the array of the values)

F=[60,70,80,90,100,110]
 8. Given the array, find the length of the array, element size in bytes, and total bytes of the 

array (Note: use size, itemsize, and nbytes keywords)
[1,2,3,4,5,6,7,8,9,0]

 9. Given the array, sort the array in ascending and descending orders using Numpy
[13,24,54,23,4,5,6,7,1,9]

Pandas
Given an INFO.CSV file:

 1. Write a Pandas code to read the INFO.CSV file.
 2. How do you get the basic statistics of the file INFO.CSV?
 3. What does the following code do? –
  print(tabulate(print_table, headers=headers))
 4. Write a Pandas code for dropping the missing data.
 5. Write a Pandas code for replacing with value “test” the missing data in the INFO.CSV.
 6. Write a Pandas code to convert float to integer and vice versa.
 7. How do you convert Pandas data frame to Numpy array?
 8. Write a Pandas code to get a feature (dimension) name.
 9. Write a function that will multiply all values in the “height” column of the data frame by 2.5.

MatplotLib

 1. Write a matplotlib code for 3D plotting.
 2. Plot a sin wave graph using the “sin” function
 a. Voltage(mV) in Y-Axis
 b. Time(s) in X-Axis
 3. How do you save a matplotlib graph into a file?
 4. Given the INFO.CSV file (with two columns Voltage and Time), draw a line graph to plot 

the values.
 5. What is the purpose of scaling before plotting the graphs?

Voltage (mV) Time (s)

10 2

20 3.5

33 3.8

23 2.1

55 5.8

44 4.9

200 33.5

500 89.2 
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3 Data Analytics Life Cycle 
for Machine Learning

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to:

• Comprehend the phases involved in the Data Analytics Life Cycle for machine learning 
(ML).

• Appreciate the aspects involved in data discovery, data preparation, and exploratory data 
analysis.

• Understand the requirements for model planning and model building.
• Have a deep acquaintance on communicating results, optimize and operationalize the 

models.
• Gain knowledge on the roles and responsibilities of the members involved throughout the 

phases of the Data Analytics Life Cycle.

3.1  INTRODUCTION

The data generated in the last two years are much larger than the last 50 years combined. As the 
data grow exponentially, it brings a huge issue. We have to manage it properly so that the data can 
be used for business benefits. Adopting and successfully implementing a framework will help the 
user to avoid data-related pitfalls. The framework also helps the user to focus their time on data 
analysis (inference from data) than data preparation, ensure the rigor and completeness of the data, 
enable the better transition to members of the cross-functional analytic teams with repeatable scale 
to additional analytics, and to support the validity of findings.

Several real-world data problems look complex and chaotic, but with a well-framed approach, 
the complex problem can be broken down into simpler modules, which can be easily addressed. 
Sometimes, applying a tested procedure for analyzing the data is challenging. Hence, it is required 
to establish a comprehensive method for performing the analysis. Once data are collected in several 
instants, the user starts analyzing the data, then later plans and identifies the scope and the amount 
of work involved. During the process, the people involved try to explore a different objective or 
address a different issue that differs from the objectives communicated. The documentation process 
helps demonstrate rigor in the exploration and provides additional credibility to the project when 
shared among the team. This helps the team in knowledge sharing and to adopt the methods and 
analysis so it can be repeated and modified slightly over the successive years.

A well-defined process exists for developing a data science project. However, it is always recom-
mended to have a Data Analytic Life Cycle framework, which is of primary focus in this chapter. 
Many of the proposed framework phases will be similar. For example, the data discovery and data 
preparation phases will be common, with subtle differences. However, some phases would not be 
needed at all. For example, the model training phase of the framework requires the user to cre-
ate the training and testing datasets; the business intelligence project will not have those phases. 
Subsequently, data science often deals with various datasets such as big data, including semi-/
unstructured data and sparse datasets. Such datasets require more attentiveness in data preparation, 
data stitching, and enriching than projects that only focus on business intelligence.
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Data preparation may be the most important part of a ML project. It is the most time-consuming 
part, although it seems to be the least discussed topic. Data preparation is also called data pre-
processing and is the act of transforming raw data into a form that is appropriate for modeling. ML 
algorithms require input data to be numeric values, and most algorithm development and deploy-
ments maintain this expectation. So, if the data contain data types and values that are not numbers, 
such as labels, you will need to change the data into numbers. Further, specific ML algorithms have 
expectations regarding the data types, scale, probability distribution, and relationships between 
input variables. You may need to change the data to meet these expectations.

The viewpoint of data preparation is to discover how to best expose the unknown underlying 
structure of the problem to the ML algorithms. This often requires an iterative path of experimenta-
tion through a suite of different data preparation techniques to discover what works well or best. 
The vast majority of the ML algorithms used on a project are years-to-decades old. The imple-
mentation and application of the algorithms are well understood. So much so that they are routine, 
with amazing fully featured open-source ML libraries like Scikit-learn in python. The thing that is  
different from project to project is the data. We may acquire a new dataset for the first time in a new 
application setup to use a specific data set as the basis for a predictive modeling project. As such, 
the preparation of the data to best present it to the problem of the learning algorithms is the primary 
task of any modern ML project.

The challenge of data preparation is that each dataset is unique and different. Datasets differ in 
the number of variables (tens, hundreds, thousands, or more), the types of the variables (numeric, 
nominal, ordinal, Boolean), the scale of the variables, the drift in the values over time, and more. 
As such, this makes discussing data preparation a challenge. Either specific case studies are used, 
or focus is put on the general methods used across projects. The result is that neither approach is 
explored.

3.2  DATA ANALYTICS LIFE CYCLE

The Data Analytics Life Cycle comprises six phases, which are iterative between the steps through-
out the life cycle. The Data Analytics Life Cycle shown in Figure 3.1 portrays the best practices 
approach for an end-to-end data analytics process starting from data discovery to project comple-
tion and operation phase. The phases also cover the process improvement based on established 
methods in the domain of data analytics and decision science.

3.2.1  Phase 1 – Data Discovery

The question to answer in the data discovery phase is “Do we have enough information?”. Data 
discovery is the process of collecting and analyzing data from various sources to realize insight 
from hidden patterns and trends. It is the primary step in fully harnessing an organization’s data 
to tell critical business decisions. Through the data discovery process, data are gathered, com-
bined, and analyzed during a sequence of steps. The goal is to form messy and scattered data clean, 
understandable, and user-friendly. The primary focus of this phase is to learn the business domain, 
including learning from past experiences and further assessing the resources required to support 
the project, such as human resources, time, technology, and data. The business problem has to be 
framed in such a way with the focus on the analytic challenge, and this would be addressed in sub-
sequent Data Analytic Life Cycle phases. Finally, the initial hypotheses (IHs) have to be formulated 
to validate and begin learning the information.

Understanding the domain in-depth for the given problem we are trying to find an answer to is 
critical. In a few situations, data scientists are required to possess advanced computational and quan-
titative knowledge such that the applications can be multi-disciplinary. These scientists are expected 
to possess an in-depth knowledge of the techniques, methods, and models for applying heuristics to 
different business and conceptual problems. Experts from domain areas with quantitative expertise 
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will also partner with data scientists to address the gap between domain knowledge and analytical 
depth.

While assessing the resources, there should be a focus on the available tools and technology used 
for the process and the types of systems required for interaction with subsequent phases. It is also 
required to have an evaluation concerning analytical facilities available within the organization. 
Questions are as follows:

 a. What would be the type of roles required for end-users of the model?
 b. The current development model will drive success?
 c. Are the roles available within the organization?

Such evaluation will help decide on the current implementation and future implementations on the 
type of data handling. In addition, it is necessary to validate whether the information available is 
sufficient to support the objectives of the current project, or whether data collection is required, 
whether the purchase of data from outside sources is required, or any extensions or transformations 
on existing data are required.

Moreover, for successful project implementation, a good project team has a proper combination 
of subject matter experts (SMEs), domain experts, analytic team, customers, and the project man-
agement team. Also, it is required to assess the proportion of SMEs such that there is a clear focus 
on the depth and breadth of skills on the working team. Once the inventory for the project is decided 
concerning the team, tools, data, and technology, then another set of evaluations is done to decide 
on the resources, else additional resources are added.

Once the interaction is complete with the stakeholder and sufficient knowledge is obtained on 
the domain, the business problem can be framed by considering experience. Later, the analytics 
problem is defined, and during this phase, the role of the stakeholders, their project requirements, 
their interests, and their criteria to evaluate the project. Since the analytical part of the project aims 

FIGURE 3.1 The Data Analytics Life Cycle.
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at a business perspective, it is necessary to address the weak points very clearly so that haphazard 
can be avoided while working on the project.

Based on the number of participants and stakeholders, we must consider using the responsible, 
accountable consulted, and informed (RACI) matrix. This will give a clear picture of the expecta-
tion and participation from each stakeholder, set clear expectations with the participants, and avoid 
delays later when we need approvals from stakeholders, rather than the supervisor of the work 
product. The RACI matrix is a method in which the responsibilities are documented. These respon-
sibilities include the role of a person in the project, whether the person fits rightly in the project, etc., 
RACI refers to the role of people within a project:

• Responsible: Those individuals or groups responsible for doing the critical path activity 
and expected to complete the tasks actively.

• Accountable: Those individuals or groups who are answerable for a decision. In this case, 
only one accountable person/group is assigned to a given task to ensure clear ownership 
and accountability.

• Consult: Those individuals or groups who are the specific domain experts/SMEs will be 
in consultation throughout the project.

• Inform: Those individuals or groups who have to be kept informed whenever a decision 
or an action is taken.

A sample RACI matrix is given in Table 3.1.
Creating a framework similar to the RACI matrix will ensure that we have accountability and 

clear agreement on responsibilities in the project. In addition, the information to share with the right 
people is kept informed of progress.

Most likely, the project sponsors will start with the end goal (or the solution). The project team 
needs to use that as a reference and identify the problem and the desired outcomes. Thus, interview-
ing project sponsors (individuals like CFO, CIO, or Director) becomes a key. Here are some tips 
and samples for interviewing the project sponsor to frame the core business problem and project 
assumptions and constraints.

• What business problem are we trying to solve as part of the project?
• What industry issues (stable vs. dynamic industry, etc. – the data might be stable or chang-

ing rapidly) impact the project?
• What are the success criteria for this project (key project metrics)?
• How much historic information is needed for the analysis?
• What is in scope and out of scope for this project? (a lot of users focus on in-scope items ad 

ignore the out-of-scope items, and that will create a scope creep in the future)
• What are the time line and cost guidelines we should be working under (scope, time, and 

cost are called triple constraints. If one changes, the other two need to be evaluated and 
changed properly to avoid project cost overruns and delays)?

TABLE 3.1
RACI Matrix

Critical Path Activities Stakeholder 1 Stakeholder 2 Stakeholder 3 Stakeholder 4 Stakeholder 5

Activity 1 R R A C I

Activity 2 R C I A I

Activity 3 C R A C,I I

Activity 4 R R A I I
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• Where do we get the data from? (internal data sources vs. external data sources, one data 
source vs. many)

• Who can (internal vs. external to the organization) act as an SME to the project?
• How the scope changes will be handled (change control board, etc.)

Now, the IHs can be formed to approve or disapprove the data. It is always encouraged to develop 
a few IHs to test-generate additional ideas for the hypotheses. The IH formed initially serves as the 
basis of the tests that will be performed in later phases for analysis, and these serve as the founda-
tion for additional learning. Hypothesis testing will be covered in greater detail in supervised and 
unsupervised learning chapters. Initially, the type of data required to solve a specific problem is 
chosen along with the data sources and their classification, such as structured, semi-structured, 
or unstructured data. The volume, type, and time span of the data needed to test the hypotheses 
must be considered. In addition to this, the data sources should be identified so that easy access is 
ensured. In some applications, the raw data may be required to run through the models. Hence, the 
possibilities to access the data have to be identified to serve as a basis for experimental analysis.

Once the hypothesis definition is complete, a thorough diagnosis of the data situation is performed. 
Then, the tools and techniques can be listed for the application, starting from the data preparation 
phase to operationalizing the model. Also, if data exploration is performed during this phase, there is 
clarity on the quantity of data, which helps in structuring and formatting the data. Now the scope of 
the information is reviewed and validated with the help of the project domain experts.

Many articles describe how to become experts in various fields, specifically the amount of prac-
tice needed to become an expert. This context is referred to as deliberate learning. To develop the 
required expertise, it is important to identify the possible solutions to a problem. This will lead to 
a set of possible solutions. If the IHs are formulated, then it is much easier to arrive at conclusions 
on the analytic model.

Before moving on to the next phase, the following points are to be ensured:

• Availability of sufficient information to draft the analytic plan and share for peer review.
• Whether a clear understanding of the business problem exists and whether step-by-step 

approach exists to address the problem.
• Sufficient SMEs are available to support in the domain area of the problem.
• Whether the success criteria for the project are detected.

With the above points, the problem definition is more clear and helps when it comes to identifying 
the possible choices of analytical methods used in the following phases.

3.2.2  Phase 2 – Data PreParation anD exPloratory Data analysis

The primary focus in the data discovery phase is to ensure the “availability of good quality data.” 
In this phase, an analytic sandbox is prepared, such that it would be used for the remaining phases 
of the project. The extract, load, and transform (ELT) and extract, transform, and load (ETL) are 
performed to get the relevant data into the sandbox. Now the data get transformed so that analysis 
can be carried out. The basic idea is to obtain a clear understanding of the data and take the required 
measures to condition the data. Data analysts refer to this process as data enriching and harmoniz-
ing, and this phase is considered one of the most critical and time-consuming phases within the 
data life cycle.

In this phase, a space is defined to explore the data without interfering with the live production 
databases. In addition, all kinds of data should be collected in the sandbox since a high volume and 
variety of data would be required for the analytic project. Thus, huge data would include the sum-
mary, structured data, raw data feeds (e.g., sensors), and unstructured text data (log data). Hence, 
the sandbox is large and almost 10–50 times the size of an organization’s enterprise data warehouse.
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Due to the huge volume of data, a strong bandwidth with good network connections must be 
ensured to handle the data so that quick transformations and extractions from datasets can be 
done at ease. Now, the data analyst has a choice to make between ELT and ETL. In this context, 
ELT is preferred over ETL since this is a typical data approach problem. In the analytic sand-
box approach with ELT, data are extracted, loaded, and then transformed. Here, the raw data 
are extracted and loaded into the analytics sandbox, and then the data transformation happens. 
This approach is followed to maintain and preserve the raw data as part of the other data in the 
sandbox before being subjected to any transformations. Some of the key differences between  
the ELT and ETL approaches are listed in Table 3.2. The data analyst makes a choice based on 
the data needs.

For example, let us consider an analysis for fraud detection on credit card usage. Frequently, the 
outliers in this data population can represent higher-risk transactions that may be flag fraudulent 
credit card activity. Using ETL, these outliers could be unintentionally filtered out or transformed 
and cleaned before being loaded into the database. This might cause bias in the data. Due to this, 
the extraction load and then transform method (ELT) is encouraged to have the data in its raw state 
and the ability to transform it after loading in the staging or operational data store ODS area. This 
approach will give us clean data to analyze that is available in the database and also, the data in its 
original form for finding hidden features in the data.

The Hadoop, Alpine Miner, and SAS are some of the tools we can use to inject the data into 
analytics sandbox. Hadoop can perform parallel ingest and custom analysis for parsing web traffic, 
GPS location analytics, proteomic analysis, sensor data collection, genomic analysis, and combin-
ing massive unstructured data feeds from multiple sources. Alpine Miner provides a user-friendly 
graphical interface for creating analytic workflows, including data manipulations and a series of 
analytic events such as staged data mining techniques (e.g., select top 100 customers, then run 
descriptive statistics and clustering) on PostgresSQL and other big data sources. We can use Python 
libraries to bring data from various sources. For example, using the Python Pandas library, we can 
ingest data from various sources.

#Load the libraries
import pandas as pd

TABLE 3.2
Comparison of ELT and ETL Approaches

Extract, Transform, and Load Extract, Load, and Transform

Used for compute-intensive transformations and a small 
amount of data

Preferred and used for high amounts of data

Transformations are done at the staging/ETL server area Transformations are performed in the target system (e.g., 
analytics sandbox)

No data duplication; if we need to perform another 
transformation, we need to load it again

Data duplication; copy of the raw data available for further 
transformation and use

Data are first loaded into the staging layer and later pushed 
into the target system. Time-intensive

Data loaded into target system directly only once. So faster

High maintenance since we need to select data to load and 
transform

Low maintenance as data are already available in the target 
system

Implementation complexity is low comparatively ELT process requires the user to have deep knowledge of 
tools and expert skills

Supports only structured data; no support for data lakes Allows use of data lakes (analytics sandbox) with 
unstructured data
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Reading data from Flat file sources:

For example:

dataset = pd.read_csv('C:/Python Files/50_Startups.csv')

Reading data from Clipboard:

Reading data from Excel:

Reading data from JSON Files:

Reading data from HTML Files:

Reading data from Hadoop (HDFS files)

Reading data from Structured Query Language (SQL) tables

Read_table(filepath_or_buffer[, sep, …]) Read general delimited file into DataFrame.

read_csv(filepath_or_buffer[, sep, …]) Read a comma-separated values (csv) file into DataFrame.

read_fwf(filepath_or_buffer[, colspecs, …]) Read a table of fixed-width formatted lines into DataFrame.

read_clipboard([sep]) Read text from clipboard and pass to read_csv.

read_excel(*args, **kwargs) Read an Excel file into a Pandas DataFrame.

ExcelFile.parse([sheet_name, header, names, …]) Parse specified sheet(s) into a DataFrame.

ExcelWriter(path[, engine]) Class for writing DataFrame objects into Excel sheets.

read_json(*args, **kwargs) Convert a JSON string to a Pandas object.

json_normalize(data[, record_path, meta, …]) Normalize semi-structured JSON data into a flat table.

build_table_schema(data[, index, …]) Create a table schema from data.

read_html(*args, **kwargs) Read HTML tables into a list of DataFrame objects.

read_hdf(path_or_buf[, key, mode, errors, …]) Read from the store, close it if we open it.

HDFStore.put(key, value[, format, index, …]) Store object in HDFStore.

HDFStore.append(key, value[, format, axes, …]) Append to table in file.

HDFStore.get(key) Retrieve Pandas object stored in the file.

HDFStore.select(key[, where, start, stop, …]) Retrieve Pandas object stored in the file, optionally based 
on where criteria.

HDFStore.info() Print detailed information on the store.

HDFStore.keys([include]) Return a list of keys corresponding to objects stored in 
HDFStore.

HDFStore.groups() Return a list of all the top-level nodes.

HDFStore.walk([where]) Walk the pytables group hierarchy for Pandas objects.

read_sql_table() Read SQL database table into a DataFrame.

read_sql_query() Read SQL query into a DataFrame.

read_sql() Read SQL query or database table into a DataFrame.
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We can ingest data from other sources like Google BigQuery, SAS, STATA, and SPSS. The user 
can refer to the Pandas library help for the updated list of supported file types.

In data preparation, the people involved are as important as much as the tools employed. Proper 
guidance and assistance are required from IT analysts and database analysts. As illustrated earlier, 
this phase is critical within the analytics life cycle; if there is a lack of quality in the acquired data, it 
would be difficult to perform the subsequent steps in the life cycle process. In addition to data prepa-
ration, this phase also ensures that additional data aspects are considered, and common pitfalls are 
avoided. A few considerations in the data preparation phase are listed as follows:

• Identify the required data sources. Whether all the identified data sources are available? 
Proper clarity on the target fields is to be ensured.

• Whether the required data are clean?
• Whether the contents and files are consistent?

While preparing the data, there is a need to identify the amount of missing/inconsistent data that 
can be considered for the project, in other words, to understand the degree of allowance for blank/
inconsistent data. In addition, if consistent data are available and are found deviating from normal, 
then the consistency of the data types has to be assessed. For example, if data are expected to be 
numeric, then it has to be confirmed that any special character such as an alpha numeric character 
can be allowed or not. A crucial and critical review has to be conducted on the data columns to 
ensure they make sense and are in the right form. Also, the chances of occurrence of systematic 
errors have to be verified. Systematic error may occur due to the sensor data or unsupervised data. 
This may lead to irregular data or missing data. The data have to be reviewed to gauge if the defini-
tion of the data is uniform over the repeated measurements.

3.2.2.1  Exploratory Data Analysis
Data visualization: Once we get the data from the sources to the analytics sandbox, it is important 
to understand the data further through the visualization techniques. Python has a lot of visualiza-
tion libraries like Matplotlib (we have discussed that in Chapter 2) to Seaborn, which is based on 
Matplotlib and has advanced data visualization functions that help us understand the data behaviors 
visually. Seaborn library has multiple features, including an application programmable interface that 
allows comparing multiple variables, multi-plot grids to build easy visualizations, univariate (analy-
sis with one variable), and bivariate to compare between subsets of data. These multiple color pallets 
allow showing various kinds of patterns. In addition, there are mandatory dependency libraries that 
are needed for Seaborn to work. They are Numpy, Pandas, Matplotlib, SciPy, and Statsmodels.

Like any in python, before start using the library, we need to import the Seaborn library to your 
model to use the functions of that library.

import seaborn as sns # Importing the library

Seaborn has in-built datasets for the user to get familiarity with the functions of liberty. To see 
what are the datasets are available, use the following command:

sns.get_dataset_names() # returns a list of all the available datasets

The output shows as follows:

Out[2]:
['anagrams',
'anscombe',
'attention',
'brain_networks',
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'car_crashes',
'diamonds',
'dots',
'exercise',
'flights',
'fmri',
'gammas',
'geyser',
'iris',
'mpg',
'penguins',
'planets',
'tips',
'titanic']

We will be using some of the existing datasets to understand the plotting and visualizing statistical 
relationships, the process of understanding the relationship variables in a given dataset, and how 
these relationships depend on other variables. The first Seaborn function to explore is relplot(). This 
is a two-dimensional data visualization function. First, let us use the flights dataset that is available 
with the Seaborn.

#improting the required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="darkgrid") #style attribute is customizable and can take 
any value like darkgrid, ticks, etc.

fl = sns.load_dataset("flights") #Using fl as variable to denote Flights 
dataset. The user can use any var.
sns.relplot(x="passengers", y="month", data=fl);

Output is shown in Figure 3.2:
This is the basic plot. We can convert this plot into line, scatter, or violin plot using a parameter 

called “kind” in the relplot() function. This is discussed in the later part of this section. Before that, 
we need to explore another parameter of the replot() function. The next important semantic is hue. 
Using hue, we can add another dimension – year.

fl = sns.load_dataset("flights")
sns.relplot(x="passengers", y="month", hue="year", data=fl);

The output of the code snippet is shown in Figure 3.3 (the year is added to the graph).
The other parameters such as color, size, and style can be customized as shown in the below 

code snippet. The corresponding output is shown in Figures 3.4 and 3.5 with a slight variation in 
parameter “palette.”

sns.set(style="darkgrid")
fl = sns.load_dataset("flights")
sns.relplot(x="passengers", y="month", hue="year",palette="ch:r= 
-.5,l=.75", data=fl);

sns.set(style="darkgrid")
fl = sns.load_dataset("flights")
sns.relplot(x="passengers", y="month", hue="year",palette="ch:r=1,l=.9", 
data=fl);



112 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 3.3 Illustration for function replot().

FIGURE 3.2 Basic plot using Matplotlib.
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FIGURE 3.4 Illustration for function replot() with palette="ch:r=-.5,l=.75".

FIGURE 3.5 Illustration for function replot() with palette="ch:r=1,l=.9".
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There are color palettes available in Seaborn. To understand that,

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
presentcolors = sns.color_palette()
sns.palplot(presentcolors)

The output of these lines of code is presented in Figure 3.6.
To illustrate the conversion of a graph to a line graph, let us create a dataframe using Pandas as 

our data source.

gr=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Grocery':[30,80,45,50,51,90,76], 
'Clothes':[13,40,34,75,54,67,98],'Utensils':[12,32,27,56,87,54,34]}, 
index=[1,2,3,4,5,6,7])
g = sns.relplot(x="Day", y="Clothes", kind="line", data=gr)
g.fig.autofmt_xdate()

gr=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Grocery':[30,80,45,50,51,90,76], 
'Clothes':[13,40,34,75,54,67,98],'Utensils':[12,32,27,56,87,54,34]}, 
index=[1,2,3,4,5,6,7])
g = sns.relplot(x="Day", y="Grocery", kind="line", data=gr)
g.fig.autofmt_xdate()

The plot in Figures 3.7 and 3.8 shows the line graph for the data extracted from a dataframe.
Until now, we have used continuous data; let us explore the categorical data. The catplot() func-

tion is used for categorical data. This is similar to the function relplot() that is discussed earlier. This 
function can be categorized as scatter plots that include stripplot() and swarmplot(), distribution 
plots that include boxplot(), violinplot(), and boxenplot(), and estimate plots that include pointplot(), 
barplot(), and countplot().

We will be using a tips dataset that is also available in Seaborn.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="ticks", color_codes=True)
tp = sns.load_dataset("tips")
sns.catplot(x="day", y="total_bill", data=tp);

The default output is shown in Figure 3.9.
Let us convert the above graph to a violin graph by using the “kind” parameter.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="ticks", color_codes=True)
tp = sns.load_dataset("tips")
sns.catplot(x="day", y="total_bill", kind="violin", data=tp);

The output for the above code is shown in Figure 3.10.

FIGURE 3.6 Output using the function palplot().
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FIGURE 3.7 Line graph for data “clothes” vs. “day.”

FIGURE 3.8 Line graph for data “grocery” vs. “day.”
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FIGURE 3.9 Line graph for data “clothes” vs. “day.”

FIGURE 3.10 Illustration using the function catplot() with parameter kind = “violin.”
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Now that we have explored the basic visualizing features, let us focus on understanding the data 
in the context of univariate and bivariate. The distribution plot function, distplot(), is used for this 
purpose. Let us import all the required libraries.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
sns.set(color_codes=True)
tst = np.random.normal(loc=10,size=500,scale=10) #Univariate data
sns.distplot(tst);

The output is shown in Figure 3.11.
To illustrate the bivariate, let us create two dataframes and assign them to the variables x and y.

x=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Accessaries':[30,80,90,23,60,46,76
],'Cloths':[13,40,60,23,54,67,98],'Shoes':[12,32,27,56,87,54,34]}, 
index=[1,2,3,4,5,6,7])
y=pd.DataFrame({'Day':[8,9,10,11,12,13,14],'Accessaries':[30,90,45,23,60,
46,76],'Cloths':[13,40,60,23,54,67,98],'Shoes':[12,32,27,56,87,54,34]},in
dex=[8,9,10,11,12,13,14])
mean, cov = [0, 1], [(1,.5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
with sns.axes_style("white"):
sns.jointplot(x=x, y=y, kind="kde", color="g");

The output is shown in Figure 3.12.
So far, all our discussions have covered only plots with single grids. However, Seaborn allows 

multiple grids side by side to be plotted to visualize and infer the data better. The function, 
FacetGrid(), will help us to accomplish this.

Let us use a simple dataset IRIS. The sample data are shown in Table 3.3.

sns.set(style="darkgrid")
ir = sns.load_dataset("iris")

FIGURE 3.11 Illustration using the function distplot() – univariate.
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FIGURE 3.12 Illustration using the function distplot() –  multi-variate.

TABLE 3.3
Sample IRIS Data

A B C D E

Sepal. Leng Sepal. Width Petal. Length Petal. Width Species

5.1 3.5 1.4 0.2 Setosa

4.9 3 1.4 0.2 Setosa

4.7 3.2 1.3 0.2 Setosa

4.6 3.1 1.5 0.2 Setosa

5 3.6 1.4 0.2 Setosa

5.4 3.9 1.7 0.4 Setosa

4.6 3.4 1.4 0.3 Setosa

5 3.4 1.5 0.2 Setosa

4.4 2.9 1.4 0.2 Setosa

4.9 3.1 1.5 0.1 Setosa

5.4 3.7 1.5 0.2 Setosa

4.8 3.4 1.6 0.2 Setosa

4.8 3 1.4 0.1 Setosa
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mp = sns.FacetGrid(ir, col="species")
mp.map(plt.hist, "sepal_length", color="g");

The correlation between the sepal length and the species in the above code is shown clearly in 
Figure 3.13.

sns.set(style="darkgrid")
ir = sns.load_dataset("iris")
mp = sns.FacetGrid(ir, col="species")
mp.map(plt.hist, "sepal_width", color="g");

The correlation between the sepal width and the species in the above code is shown clearly in 
Figure 3.14.

To compare the pair of values, the PairGrid() function can be used.

sns.set(style="ticks")
a = sns.load_dataset("flights")
b = sns.PairGrid(a)
b.map(plt.scatter, color = "g");

The graph shown in Figure 3.15 compares the number of passengers and the years in different 
slices and dices.

We have explored the basic graphs/visualization samples in Seaborn. It is important to have a 
presentable graph when communicating quantitative insights. The technique is called controlling 
figure aesthetics.

FIGURE 3.13 Correlation between the sepal length and the species.

FIGURE 3.14 Correlation between the sepal width and the species.
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import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

def sinplot(flip=1):
    ng = np.linspace(0, 14, 100)
    for i in range(1, 7):
        plt.plot(ng, np.sin(ng + i * .5) * (7 - i) * flip)
sinplot()

In Seaborn, we can use the following code to generate a sine wave, and the output is shown in 
Figure 3.16.

FIGURE 3.15 Comparing pair values using the function PairGrid().

FIGURE 3.16 Illustration using the function sinplot().
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sns.set()
sinplot()

Another graph available is box plot. Below is the sample code snippet, and the output is shown 
in Figure 3.17.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(color_codes=True)
a = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=a);

The following code illustrates the steps to remove the background and present it in white back-
ground, and the corresponding output is shown in Figure 3.18.

FIGURE 3.17 Illustration using the function boxplot().

FIGURE 3.18 Illustration using the function boxplot() with white background.
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import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white",color_codes=True)
a = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=a);

In the above graph, we can notice the theme or the background is changed to white. We can 
explore further using the other themes as well (e.g., dark, darkgrid, white, and whitegrid). In the 
previous graph, there are axes; the rectangular line is present all around the graph. This can also be 
customized further using the despine() function. The code is presented below, and the correspond-
ing output is shown in Figure 3.19.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white",color_codes=True)
a = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=a);
sns.despine(offset=10, trim=True);

In multi-variate data exploration, correlation analysis is one of the primary techniques the data 
analysts use to understand the data. It is also known as a correlation matrix, auto-covariance matrix, 
variance matrix, or dispersion matrix. It is a matrix where the i-j position defines the correlation 
between the ith and jth parameters in the dataset.

When the data points result in a roughly straight-line trend, the variables have an approximately 
linear relationship. In other cases, the data points fall close to a straight line, but frequently there 
is quite a bit of variability of the points around the straight-line trend. A synopsis measure called 
the correlation describes the strength of the linear association. Correlation summarizes the strength 
and the linear (straight-line) association between two quantitative variables. Denoted by r, it takes 
values between −1 and +1. A positive r value indicates a positive association, and a negative r value 
indicates a negative association. The closer the r value is to 1, the closer the data points fall to a 
straight line. Thus, the linear association is stronger. On the other hand, the closer the r value is to 
0, making the linear association weaker.

To demonstrate, let us take a House Price dataset. The sample data in the CSV file are shown in 
Figure 3.20.

FIGURE 3.19 Illustration using the function despine().
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Once we load the file to our model, we can explore the file in detail before all the necessary 
libraries need to be imported as shown below.

#import libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm

#load data file
data = pd.read_csv("House Price.csv")
data.shape

The output for the data.shape command is shown below.

(1460, 81)

This means the CSV file has 1460 records with 81 columns.
Let us explore the file much more closer.

Data.columns

The output is shown below, and it is showing all the columns in that file.

Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
       'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
       'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
       'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 
'YearRemodAdd',
       'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
       'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
       'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
       'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
       'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
       'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 
'FullBath',
       'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
       'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 
'GarageType',
       'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 
'GarageQual',
       'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
       'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
       'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
       'SaleCondition', 'SalePrice'],
      dtype='object')

data.head(10) #gives the top ten records in that file

Id  MSSubClass MSZoning    ...        SaleType  SaleCondition SalePrice
0   1          60       RL    ...           WD         Normal    208500
1   2          20       RL    ...           WD         Normal    181500
2   3          60       RL    ...           WD         Normal    223500
3   4          70       RL    ...           WD        Abnorml    140000
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4   5          60       RL    ...           WD         Normal    250000
5   6          50       RL    ...           WD         Normal    143000
6   7          20       RL    ...           WD         Normal    307000
7   8          60       RL    ...           WD         Normal    200000
8   9          50       RM    ...           WD        Abnorml    129900
9  10         190       RL    ...           WD         Normal    118000

Data.tail() # gives the bottom five records by default.

        Id  MSSubClass MSZoning    ...  SaleType  SaleCondition SalePrice
1455  1456          60       RL    ...        WD         Normal    175000
1456  1457          20       RL    ...        WD         Normal    210000
1457  1458          70       RL    ...        WD         Normal    266500
1458  1459          20       RL    ...        WD         Normal    142125
1459  1460          20       RL    ...        WD         Normal    147500

data['SalePrice'].describe() # gives the description of the SalePrice column only.

count      1460.000000
mean     180921.195890
std       79442.502883
min       34900.000000
25%      129975.000000
50%      163000.000000
75%      214000.000000
max      755000.000000
Name: SalePrice, dtype: float64

To get the description of all the columns,

Data.describe()
                Id   MSSubClass      ...            YrSold      SalePrice
count  1460.000000  1460.000000      ...       1460.000000    1460.000000
mean    730.500000    56.897260      ...       2007.815753  180921.195890
std     421.610009    42.300571      ...          1.328095   79442.502883
min       1.000000    20.000000      ...       2006.000000   34900.000000
25%     365.750000    20.000000      ...       2007.000000  129975.000000
50%     730.500000    50.000000      ...       2008.000000  163000.000000
75%    1095.250000    70.000000      ...       2009.000000  214000.000000
max    1460.000000   190.000000      ...       2010.000000  755000.000000

Now plotting the data in graphs.
Histogram graph (Figure 3.21):

plt.figure(figsize = (9, 5))
data['SalePrice'].plot(kind ="hist", color= "g")

Line graph (Figure 3.22):

plt.figure(figsize = (9, 5))
data['SalePrice'].plot(kind ="line",color= "r")

Now let us get the correlation matrix, tabular data representing the ‘correlations’ between pairs 
of variables in given data.
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corr = data.corr()
f, ax = plt.subplots(figsize =(9, 8))
sns.heatmap(corr, ax = ax, cmap ="YlGnBu", linewidths = 0.2) #YlGnBu is 
the color pellet schema

The output is shown in Figure 3.23.

<matplotlib.axes._subplots.AxesSubplot at 0x2549578ff60>

FIGURE 3.21 Illustration of data in histogram graph.

FIGURE 3.22 Illustration of data in line graph.
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Another form of visualizing the data is a grid correlation matrix.

corr = data.corr()
cg = sns.clustermap(corr, cmap ="YlGnBu", linewidths = 0.1);
plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation = 0)
cg

The output is shown in Figure 3.24.
Now that we have explored the correlation between all variables, let us focus on the SalePrice 

column, and on how it is correlating with other columns (Figure 3.25).
k = 20 #k: number of variables for heatmap – the # of variables that will be compared against 

SalePrice.

cols = corr.nlargest(k, 'SalePrice')['SalePrice'].index
cm = np.corrcoef(data[cols].values.T)
f, ax = plt.subplots(figsize =(12, 10))
sns.heatmap(cm, ax = ax, cmap ="YlGnBu",
            linewidths = 0.1, yticklabels = cols.values,  
                              xticklabels = cols.values)

FIGURE 3.23 Correlation matrix.
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Another technique to clean and enrich the data is typecasting. It is the technique to convert the 
data into a different type than the source data. For example, a variable in the source data may be 
coded as string/character even though the permissible values in the variable are only numeric (inte-
gers and float types). Simply put, typecasting is converting one data type to another. There are basic 
functions that are int(), string(), and float(), and they are used for typecasting. Int() function is used 
for integer literal, and float() is for decimal numbers. In python, it is very straightforward to convert 
from one data type to another.

Here is the code snippet –
x=float(2)
y=float(30.0)
z=float("20")
print(x)
print(y)
print(z)

FIGURE 3.24 Grid correlation matrix.
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The output is:

2.0
30.0
20.0

To understand the data type of the variable, use the function type().
There are two types of typecasting, that is implicit and explicit. In implicit conversion, python 

automatically converts one data type to another. This process doesn't need any user involvement at 
all. When you add one integer and another float number, the result will be automatically casted as a 
float without the user specifying it. For example,

num_int = 123
num_float = 1.23

num_new = num_int + num_float

print("datatype of num_int:",type(num_int))
print("datatype of num_flo:",type(num_float))

FIGURE 3.25 Correlation matrix with other columns.
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print("Value of num_new:",num_new)
print("datatype of num_new:",type(num_new))

The output is:

datatype of num_int: <class 'int'>
datatype of num_flo: <class 'float'>
Value of num_new: 124.23
datatype of num_new: <class 'float'>

In explicit conversion, the users had to explicitly convert the data type of an object to the required data 
type. We use the predefined functions like int(), float(), and str() to perform explicit type conversion.

num_int = 123
num_str = "123"

print("Data type of num_int:",type(num_int))
print("Data type of num_str before Type Casting:",type(num_str))

num_str = int(num_str) # WE ARE EXPICITELY CONVERTING THE datatype
print("Data type of num_str after Type Casting:",type(num_str))

num_sum = num_int + num_str

print("Sum of num_int and num_str:",num_sum)
print("Data type of the sum:",type(num_sum))

The output is :
Data type of num_int: <class 'int'>
Data type of num_str before Type Casting: <class 'str'>
Data type of num_str after Type Casting: <class 'int'>
Sum of num_int and num_str: 246
Data type of the sum: <class 'int'>

Even though typecasting is a handy tool in data pre-processing, we need to have few cautions in 
mind when using it. For example, when the Python interpreter does the implicit conversion, the loss 
of data is prevented automatically by the Python. But when there is an explicit conversion, there 
could be data loss depending on the data types that might impact processes requiring data accuracy.

When complaining about the multiple despaired datasets, we need to employ joins. For example, 
there are datasets with one master and transaction data; to combine these datasets (tables), we 
need to use joins. The different types of joins are illustrated in Figure 3.26. We can use the Python 
Pandas library to use inner joins, full joins, left joins, and right joins. Inner joins get the results set 
that are common in both tables. For example, you have two tables from different sources with the 
customer data, and the inner join will bring only the common data available in both tables. The full 
join or outer join returns all records when there is a match in dataset1 and dataset2. Left join returns 
all records from the left table (dataset1) and the matched records from the right table (dataset2). 

FIGURE 3.26 Types of joins.
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Finally, the right join returns all records from the right table (dataset2) and the matched records 
from the left table (dataset1).

For example, let us create a customer DataFrame in Pandas as follows:

Import pandas as pd
customer=pd.DataFrame({
    'id':[1,2,3,4,5,6,7,8,9,10],

'name':['John','Joe','Cory','Steve','Richard','Tyler','Samuel','Daniel','
Jeremy','Stephan'],
    'age':[20,25,15,10,40,55,35,18,23,20],
    'Product_ID':[101,0,106,0,103,104,0,0,107,105],

'Purchased_Product':['Watch','NA','Oil','NA','Shoes','Smartphone','NA','N
A','Laptop','smartwatch'],

'City':['Delhi','Mumbai','Kolkatta','Chennai','Chennai','Coimbatore','Ban
galore','Bangalore','Mumbai','Coimbatore']
})
Customer

The output is shown below.

Another dataframe product  
product=pd.DataFrame({
    'Product_ID':[101,102,103,104,105,106,107],

'Product_name':['Watch','Bag','Shoes','Smartphone','smartwatch','Oil','La
ptop'],

'Category':['Fashion','Fashion','Fashion','Electronics','Study','Grocery'
,'Electronics'],
    'Price':[299.0,1350.50,2999.0,14999.0,145.0,110.0,79999.0],

'Seller_City':['Delhi','Mumbai','Chennai','Kolkata','Delhi','Chennai','Be
ngalore']
})
Product

Id Name Age Product_ID Purchased_Product City

0 1 John 20 101 Watch Delhi

1 2 Joe 25 0 NA Mumbai

2 3 Cory 15 106 Oil Kolkata

3 4 Steve 10 0 NA Chennai

4 5 Richard 40 103 Shoes Chennai

5 6 Tyler 55 104 Smartphone Coimbatore

6 7 Samuel 35 0 NA Bangalore

7 8 Daniel 18 0 NA Bangalore

8 9 Jeremy 23 107 Laptop Mumbai

9 10 Stephan 20 105 Smartwatch Coimbatore
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The output of the product DataFrame is as follows:

Now let us combine the product with the customer using the merge() function in Pandas. By 
default, the merge function performs inner joins unless we specify different join types.

pd.merge(product,customer,on='Product_ID')

The results bring only six rows matching in both dataframes.

To force the join type, we need to specify the left_on, right_on keywords.

pd.merge(product,customer,left_on='Product_name',right_on='Purchased_
Product')

One another data harmonization technique is data wrangling. When we get the data in various 
formats, this technique is helpful. Data wrangling allows us to merge, group, and concatenate the 
data for analyzing or provisioning them with another dataset. Python has built-in functions and 
features to apply these wrangling techniques to despaired datasets to achieve the analytical goal. 
We will look at few examples characterizing these methods. As we discussed, the merge() function 
helps do the data wrangling. Another method is called grouping. Grouping datasets is a recurring 

Product_ID Product_name Category Price Seller_City

0 101 Watch Fashion 299.0 Delhi

1 102 Bag Fashion 1350.5 Mumbai

2 103 Shoes Fashion 2999.0 Chennai

3 104 Smartphone Electronics 14999.0 Kolkata

4 105 Smartwatch Study 145.0 Delhi

5 106 Oil Grocery 110.0 Chennai

6 107 Laptop Electronics 79999.0 Bangalore

Product_ID Product_name ⋯ Purchased_Product City

0 101 Watch ⋯ Watch Delhi

1 102 Shoes ⋯ Shoes Chennai

2 103 Smartphone ⋯ Smartphone Coimbatore

3 104 Smartwatch ⋯ Smartwatch Coimbatore

4 105 Oil ⋯ Oil Kolkata

5 106 Laptop ⋯ Laptop Mumbai

[6 rows × 10 columns]

Product_ID_x Product_name ⋯ Purchases_Product City

0 101 Watch ⋯ Watch Delhi

1 103 Shoes ⋯ Shoes Chennai

2 104 Smartphone ⋯ Smartphone Coimbatore

3 105 Smartwatch ⋯ Smartwatch Coimbatore

4 106 Oil ⋯ Oil Kolkata

5 107 Laptop ⋯ Laptop Mumbai
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need in data analysis where we need the result in terms of various groups present in the dataset. 
Pandas has in-built methods/functions that can roll the data into various groups.

# import the pandas library
import pandas as pd
ipl_data = {'Team': ['CSK', 'RCB', 'KKR', 'KKR', 'DD',
         'DD', 'DD', 'DD', 'SRH', 'MI', 'MI', 'MI'],
         'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
         'Year': [2020,2015,2014,2015,2014,2020,2016,2017,2016,2014,2020,
2017],
         'Totalruns':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)

grouped = df.groupby('Year')
print (grouped.get_group(2014))

The output is shown below.

   Team   Rank   Year  Totalruns
2   KKR    2     2014     863
4    DD    3     2014     741
9    MI    4     2014     701

Another useful Pandas function for data wrangling is concatenating the data using the concat() 
function. Pandas provides various tools to combine Series, DataFrame, and Panel objects easily 
together. The example below depicts the concat function performing concatenation operations along 
an axis.

import pandas as pd
first_set = pd.DataFrame({
         'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
         'subject_id':['sub1','sub2','sub4','sub6','sub5'],
         'Marks_scored':[98,90,87,69,78]},
         index=[1,2,3,4,5])
second_set = pd.DataFrame({
         'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
         'subject_id':['sub2','sub4','sub3','sub6','sub5'],
         'Marks_scored':[89,80,79,97,88]},
         index=[1,2,3,4,5])
print (pd.concat([first_set,second_set]))

The output is shown below.

    Name     subject_id    Marks_scored
1   Alex        sub1            98
2   Amy         sub2            90
3   Allen       sub4            87
4   Alice       sub6            69
5   Ayoung      sub5            78
1   Billy       sub2            89
2   Brian       sub4            80
3   Bran        sub3            79
4   Bryce       sub6            97
5   Betty       sub5            88



134 Machine Learning for Decision Sciences with Case Studies in Python

A review process is performed to improve the data to ensure the calculations remain consistent 
within columns for a given data field. Some of the considerations are as follows:

• Ensure data distribution is consistent over the entire dataset. If not, the data preparation 
team proposes a new plan to handle the situation.

• Assess the granularity of the data, the range of values, and the level of aggregation of the data.
• For time-related variables, are the time measurements daily, weekly, monthly? Is that good 

enough? Is time measured in seconds everywhere? Or is it in milliseconds in some places? 
This will cause the data level mismatch when we combine the data and harmonizing it. 
Ensure the lowest level of data is consistent across data sources.

• Are the data standardized/normalized? Are the scales consistent? If not, how normal or 
irregular is the data? In this case, a scaling function is applied to smoothen the data.

• If geospatial datasets are considered, are country codes, state abbreviations, and postal 
codes consistent across the data? Are personal names normalized? Whether English units 
are considered? Whether standards metric units are considered?

• How is the data deduplication handled? When combining multiple sources due to various 
factors such as incorrect abbreviations, using the last name instead of the full name, the 
same records appear as duplicate records in the target database.

Gaining more deep knowledge about the data is essential while considering time-series analysis or 
running ML models. If a good amount of quality data is available, the project moves to the planning 
phase, where the focus lies on building the model.

Using Python libraries, we can do the data processing better. Below is the code snippet for the 
data processing.

# Import pandas
import pandas as pd
import numpy as np

# Read the file into a DataFrame: df
df=pd.read_csv('C:/Users/srajappa/Desktop/MLn
using Python/dob_job_application_filings_subset.csv')

# Print the head of df
print(df.head(2))

# Print the tail of df
print(df.tail())

# Print the shape of df
print(df.shape)

# Print the columns of df
print(df.columns)

##.describe() method to calculate summary statistics of your data
print(df.describe())

df.info()
##.value_counts() method, which returns the frequency counts for each 
unique value in a column!
# Print the value counts for 'Borough'
print(df['Borough'].value_counts(dropna=False))

# Print the value_counts for 'State'
print(df['State'].value_counts(dropna=True))
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# Print the value counts for 'Site Fill'
print(df['Site Fill'].value_counts(dropna=True))

df.dtypes
df.get_dtype_counts()

##seperating string and numerical columns
df_string=df.select_dtypes(include=['object'])
df_numerical=df.select_dtypes(exclude=['object'])

df_string.shape
df_numerical.shape

df_string.info()

##ensuring all categorical variables in a DataFrame are of type category reduces memory usage.

df_string['Job Type'] = df_string['Job Type'].astype('category')

##converting datatypes

tips = pd.read_csv('C:/Users/srajappa/Desktop/ML using Python/tips.csv')
print(tips.info())

# Convert the sex column to type 'category'
tips.sex = tips.sex.astype('category')

# Convert the smoker column to type 'category'
tips.smoker = tips.smoker.astype('category')

##for numeric directly
#df['column'] = df['column'].to_numeric()

# Print the info of tips
print(tips.info())
##numerica data conversion

tips.tip = tips.tip.astype('object')

#tips.tip = tips.tip.astype('float')
tips['tip'] = pd.to_numeric(tips['tip'], errors='coerce') ##incase some 
char values result into nan

def recode_gender(gender):

    # Return 0 if gender is 'Female'
    if gender == 'Female':
         return 0 
    # Return 1 if gender is 'Male'
    elif gender == 'Male':
        return 1
    # Return np.nan    
    else:
        return np.nan
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# Apply the function to the sex column
tips['recode'] = tips.sex.apply(recode_gender)

# Print the first five rows of tips
print(tips.head())

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
#sc_y = StandardScaler()
#y_train = sc_y.fit_transform(y_train)

3.2.3  Phase 3 – MoDel Planning

The next phase, ML model planning, is to understand whether a good model is available for the 
data chosen for the respective project. In this phase, the methods, model, approaches, and flow 
expected are finalized. In addition to this, the relationship between variables in the data, primary 
variables, and suitable models is explored. Since this phase executes just before executing the ana-
lytical model, care should be taken in understanding the features and choosing the model. At this 
phase, there is a need to refer to the hypotheses developed in the first phase, from where we get to 
know the data and understand the business problem. The IH helps in framing the analytics to be 
executed in the next phase and to choose the correct methods to meet the objectives. At this stage, 
there are some considerations based on the data listed as follows:

• The type of data is a major factor that will prescribe and confine the tools and analytical 
techniques in the next phase. Different tools and approaches are applied based on the data 
chosen, whether it is textual data or transactional data (e.g., tumor prediction using clinical 
data in Hadoop – contains structured, semi-structured, and unstructured while forecasting 
weather is based on structured data).

• There should be an assurance whether the analytical techniques will meet the business 
objectives and prove/disprove the working hypotheses.

• Understand if the solution to the business problem requires a single test or a series of 
techniques for analytic workflow. Tools such as SAS Miner will help set up a series of 
steps and analyses and serve as a user-friendly interface for manipulating larger data 
sources.

With the type of data and resources available, the review has to be performed to check whether 
smaller approaches are suitable or whether new approaches are required. On several occasions, 
ideas arise based on analogous problems solved in industry verticals.

There are a few guidelines and recommendations on choosing ML and deep learning models 
based on the question we are trying to answer. The specific algorithms are explained in detail in the 
further chapters: supervised, unsupervised, and deep learning model chapters.

We need to understand the border classification of ML models. There are three categories as follows:

• Supervised learning: The answer to the question is specific, for example, what is the sal-
ary of a 5-year-experienced ML engineer? The data are labeled, and this type of model 
predicts the outcome/future. Direct feedback is given to the model. Ground Truth (input) 
and Answer Key (output) are also given to the model.

• Unsupervised learning: The data are cumbersome and not labeled. The intention is to find 
the hidden patterns in the data. No feedback is given to the model.
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• Reinforcement learning: This type of model is based on the rewards systems. Suitable 
action is to maximize reward in a particular situation. These algorithms are learnt based 
on a series of actions.

Now that we understand the types of the algorithm, let us discuss the other factors that dictate a 
model type selection.

Size of training set: We all know that when the training dataset is not enough, it always 
results in poor estimation. An over-constrained model on the insufficient training data-
set will always end in underfitting; on the other hand, an under-constrained model will 
probably lead to overfitting the dataset; in both the cases, the outcome will turn to be 
poor performance. Thus, the size of the training dataset may be a factor that plays a 
significant role for us when deciding the algorithm of our choice. For a little training 
dataset, as the low-bias/high-variance classifiers (such as k-nearest neighbors) are likely 
to overfit the training dataset, the high-bias/low-variance classifiers are at an advantage 
over this.

Training time: Time taken to coach the model varies for every algorithm. This time corre-
lates with the size of the dataset and the accuracy we are aiming for.

The number of parameters: Parameters are one of the foremost important factors in an 
honest-performing model. Therefore, the components like an error tolerance level and a 
complete number of iterations depend on the algorithm’s nature. Usually, the foremost 
number of trail and errors is needed to seek an honest combination within the algorithms 
that have an enormous number of parameters. Although having many parameters typically 
gives more versatility, the time taken to train the model using a particular algorithm and 
the same accuracy may be sensitive in obtaining just the right setup.

The number of features: Compared with the number of data points, the number of features 
of certain datasets may be quite large. We face the same situation when dealing with 
the Natural Language Processing (NLP) datasets, which are more textual datasets. Some 
learning algorithms can consume a longer training time when dealing with many features 
and make the work unrealistic. Some ML algorithms like support vector machines are 
especially well designed for this situation. These assumptions we make based on past expe-
riences do not work for all situations, and we are required to have a better understanding 
of such algorithms to apply the best one for a specific problem.

Accuracy: The ML algorithms we use to make realistic decisions and greater accuracy on 
model results lead to better decisions. The expense of errors may be enormous, so we 
need to minimize that cost by improving the model’s accuracy. The accuracy needed will 
be distinct, depending on the requirement. The approximation is often sufficient, which 
can result in a massive decrease in processing time. However, approximate techniques are 
likely to result in overfitting of the training dataset.

Based on the factors described above, there are heuristics on the recommended type of model based 
on the situation (Table 3.4).

There are many tools available, and let us discuss few popular ones.
Python is very popular nowadays and has an entire range of modeling abilities, including a satis-

factory environment for building ML models with sophisticated code. In addition, Python also can 
work with SQL and run statistical analysis and tests on big data through open-source connectivity. 
Some of these abilities have made Python suitable for building models. Moreover, it contains more 
than 2000 packages and rapidly expanding everyday with the latest graphical features, thus making 
it user-friendly and more robust.

SAP HANA and Microsoft SQL Server provide SQL services such as in-database analysis of 
common data mining functions, basic predictive models, and involved aggregations.
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SAS provides a strong integration between SAS and databases through multiple data connectors, 
OBDC, JDBC, and OLE DB. Though SAS is used on file extracts, it can also be used to interface 
relational databases (Teradata or Oracle), data warehouse applications (snowflake), files, and also 
enterprise applications (SAP, JD Edwards).

The next step in the model selection process is data exploration. In this phase, it is critical to 
explore the data and observe the relationships among the variables in the data. The choice of variables 
and the methods for a corresponding problem are also challenging. Tools used for data visualization 
can be applied to review the data and assess the relationships between variables. Simultaneously, 
variable selection is also an important factor for successful model selection. In most cases, stake-
holders/SMEs will have a strong knowledge of the data that has to be considered for analysis.

Initially, the inputs and the data required for the problem are taken and reviewed to check 
whether these inputs are related to the proposed outcomes used in prediction and analysis. Some 
models properly handle such tasks. However, based on the proposed solutions, a different model 
may also be considered after examining the inputs and transforming the inputs. This enables the 
selection of the best model. Generally, the model should aim to capture the best features so that the 
outcome is as expected. The process involves several iterations to obtain the most critical variables 
for the analysis chosen. Then, testing is performed on the range of possible variables and features in 
the data, and the most prominent features are selected.

In case regression problems are handled, candidate features have to be identified concerning the 
model’s outcome. Here case should be taken in terms of correlation and collinearity between the 
data, such that they do not affect the model’s outcome.

The last step in this phase is model selection. The model created in Python or any other equiva-
lent tool should be converted to SQL so that the expected operation can be carried out in the data-
base. Such interaction with the database and the model is required for optimal performance during 
runtime. In addition, during the model selection, the user has to be vigilant about the various data 
mining and prediction techniques, namely classification, association rules, and regression. Finally, 
the user needs to determine the techniques based on the data type, such as structured, unstructured, 
or hybrid combination.

Some of the analytical methods used across multiple market segments for churn prediction are 
listed in the table. Most of these methods will be covered in the remaining chapters of this book. 
But for the benefit of readers, we have created a table (Table 3.5) with specific industries and the 
analytics methods used for churn prediction.

TABLE 3.4
Heuristics and Their Applications
ML/Deep Learning Strategy Description

Resampling strategy Use this when there is an unbalanced dataset

Principal component analysis Use this for reducing dimensionality, create new features

Autoencoding To create new features

Regularization techniques To prevent overfitting, outliers, and noise in linear regression and lasso 
regression

Random forest Use this to overcome the outliers

Linear regression Use this when predicting continuous variables

Logistic regression or simple vector machine Use this when predicting a binary outcome

Random forest Use this when predicting multi-class classification

Convolutional neural networks (CNNs) Use this when doing image classification, object detection, and image 
segmentation

RNNs (typically LSTM) Use this when doing sequence modeling such as natural language 
processing or text classifications
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3.2.4  Phase 4 – MoDel bUilDing

The objective of this phase is to understand whether the ML model is robust enough. Here the data-
sets are developed and categorized as testing, training, production, and validation. In addition, there 
is a need to ensure a suitable environment for executing models and workflows, which includes fast 
hardware and parallel processing.

The model will be fitted on the training data and evaluated against the testing data during this 
phase. This exercise is usually done in a sandbox rather than in a live production environment. ML 
model planning and model building have a lot of overlap. We can iterate between the two phases for 
a long time before agreeing on a final ML model. Some methods necessitate using a training dataset 
(and, in some cases, a validation dataset), depending on the method.

Although the modeling techniques and logic necessary to develop this step can be complex, the 
actual duration of this phase can be very brief compared to all of the data pretreatment and approach 
definition work. In general, project phases 1 and 2 will require more time in the actual world to 
prepare and study the data and construct a presentation of the data.

As part of this phase, the following steps are conducted:

• Put the models created in Phase 3 into action.
• Wherever possible, convert the models to SQL or another appropriate database language 

and run them as in-database functions. This is far faster and more efficient than run-
ning them in memory. (Use SQL to run Python models on huge datasets) SAS Scoring 
Accelerator allows us to run SAS models in the browser if we are using SAS software.

• For testing and tiny datasets, use Python (or SAS) models on file extracts.
• Assess the model’s validity and outcomes (for example, does it account for most of the data 

and has strong predictive power?)
• Adjust variable inputs to fine-tune the models for best results.
• Keep a record of the model’s outcomes and logic.

During these iterations and refinement of the model, document the answers to the questions below 
to access the model efficiency:

• Does the model look plausible and accurate on the test and validation data?
• Does the model output/behavior make sense to the domain experts and SMEs? In other 

words, does it look like the model is providing “the right answers” or answers that make 
sense in the business context?

• Does the model accurate enough to meet the success criteria? (efficiency, performance, and 
other key performance matrix defined in phase1)

• Does the model avoid the kind of mistakes it needs to avoid? Depending on the context, 
false positives may be more serious or less serious than false negatives, for instance.

• Do the parameter values of the fitted model make sense in the context of the business domain?

TABLE 3.5
Analytics Techniques Used in Industry
Industry Sector Analytics Techniques Used

Wireless telecom Neural networks, logistic regression, and decision tree

Retail Logistic regression, automatic relevance determination, and decision tree

Retail banking Multiple regression

Grocery stores Multiple linear regression and decision tree
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• Do we need more data or more inputs? Do we need to transform or eliminate any of the 
inputs?

• Do we need a different form of the model? Then, we will need to go back to the ML model 
planning phase (Phase 3) and revise the modeling approach.

3.2.5  Phase 5 – coMMUnicating resUlts

The question to answer in the prediction and communicating results phase is, “Is the model robust 
enough that predicts the results accurately (within the error value)?” First, based on the criteria we 
created in the data discovery phase (the key performance matrix for success criteria), we decide if 
the model succeeded or failed in this phase in partnership with the key stakeholders. Next, identify 
the most important results, quantify the business value, and write a narrative to synthesize and com-
municate the findings to key stakeholders.

Based on the criteria we created in the data discovery phase (the key performance matrix for 
success criteria), we decide if the model succeeded or failed in this phase in partnership with the 
key stakeholders. Identify the most important results, quantify the business value, and write a nar-
rative to synthesize and communicate the findings to key stakeholders. Because the findings will 
most likely be disseminated throughout the business at multiple levels, from executive to operations, 
consider how to frame the findings and effectively describe the consequences.

The project team will provide recommendations for future work or improvements to existing 
processes as part of the project exit, taking into account what each team member and stakeholder 
require from you to complete their tasks and numerous new use cases for the enriched data. In addi-
tion, this is the stage where we may emphasize the project’s business benefits. Finally, this stage will 
serve as the checkpoint for moving the models into production and operationalizing them.

As a final step in this phase, now that the model is successfully run, the following activities are 
conducted to document the lessons learned from the project:

• Evaluate the models’ outcomes.
• Do the findings appear to be statistically significant and consistent? If that’s the case, 

what characteristics/attributes of the outcomes stand out? If not, what changes do we 
need to make to the model to refine and iterate it to make it more sustainable?

• Which facts/details surprised you, and which were consistent with your arriving 
hypotheses from Phase 1? Correlating the confirmed outcomes to the ideas we for-
mulated early on usually results in additional ideas and insights that would have been 
missed if we hadn’t taken the effort to formulate IHs early on.

• What data have been observed as a result of the analytics?
• What are the most important discoveries from those?
• Do these discoveries have any commercial value or significance? We may need to 

spend time quantifying the business implications of the results to help prepare for the 
presentation, depending on what emerged as a consequence of the model.

We will document the important findings and major insights due to the analysis at the end of this 
phase. In addition, this phase’s end product will be the most visible part of the process to outside 
stakeholders and sponsors, so properly articulate the findings’ outcomes, methodology, and busi-
ness value.

3.2.6  Phase 6 – oPtiMize anD oPerationalize the MoDels

The question to answer in the operationalize models’ phase is, “Are technical predictions from the 
model are translated into the business language so that business team members can interpret the 
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results and act on them?” The project team delivers final reports, briefings, code, and technical 
documents throughout this project phase. Finally, we undertake a pilot project and put the models 
to the test in a real-world setting. It is vital to make sure that once we’ve run the models and got-
ten the results, we frame them in a way that’s appropriate for the audience who hired us and that 
provides demonstrable value. People will not perceive the value of a technically accurate analysis 
if we cannot interpret the data into a language they can understand. A lot of work will have been 
wasted.

In this phase, we’ll evaluate the work’s benefits and set up a pilot so we may launch the work in a 
controlled manner before expanding it to a larger enterprise or ecosystem of consumers. We scored 
the model in the sandbox in step 4, and most analytics approaches implementing new analytical 
methods or models in a production environment for the first time in Phase 6. Therefore, instead of 
deploying this on a large scale, we advocate starting with a small pilot rollout. This approach will 
allow us to limit the risk relative to full-enterprise-wide deployment, learn about the performance 
and related constraints on a small scale, and make fine-tune adjustments before a full deployment.

As we scope this effort, consider running the model in a production environment for a discrete 
set of single products or a single line of business, which will test the model in a live setting. This 
will allow the team to learn from the deployment and make adjustments before launching across 
the enterprise. Keep in mind that this phase can bring in a new set of team members, namely those 
responsible for the production environment, who have a new set of issues and concerns. The pro-
duction support team and administrators want to ensure that the model can be incorporated into 
downstream processes and that it runs well in the production environment. Be on the lookout for 
input irregularities before feeding them to the model when running the model in the production 
environment. Evaluate run times and resource competition with other processes in the manufactur-
ing environment.

Once the model is deployed, the project team conducts follow-ups to re-evaluate the model after 
it has been in production for a period of time. Assess whether the model is meeting goals and expec-
tations and whether desired changes (such as an increase in revenue, reduction in churn) are occur-
ring. If these final results are not occurring, determine if this is due to a model inaccuracy or if its 
predictions are not being acted on appropriately. If needed, automate the retraining/updating of the 
model. In any case, we will need ongoing monitoring of model accuracy, and if accuracy degrades, 
we will need to retrain the model. If possible, design alerts for when the model is operating “out-
of-bounds.” This includes situations when the inputs are far beyond the range that the model was 
trained on, which can cause the model’s outputs to be inaccurate. If this happens regularly, retrain-
ing is called for.

Analytical projects often yield new insights about a business, a problem, or a concept that indi-
viduals may have taken at face value or thought was impossible to big into. If appropriate, hold a 
post-mortem with your analytic team to discuss the process or project you would change if we had 
to do it again.

Presenting the results to various groups is a daunting task. However, because each group will 
require a unique set of data, here are some general principles for preparing the analysis’ findings for 
sharing with the major sponsors.

For a Business Audience: The more business-oriented the audience, the more succinct we must 
be. The majority of executive sponsors receive numerous briefings throughout the day and week. So, 
make sure the presentation gets to the point quickly and frames the results in terms of value to the 
sponsor’s organization. For instance, if we are working with a bank to analyze cases of credit card 
fraud, highlight the frequency of fraud, the number of cases in the last month or year, and the way 
much cost or revenue impacts the bank (or the main focus on the reverse, how much more revenue 
they might gain if they address the fraud problem). This will showcase the business impact better 
than deep dives on the methodology. We will need to include supporting information about analyti-
cal methodology and data sources. Still, generally, we took to analyze the data only as supporting 
detail or to ensure the audience has confidence in the approach.
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For Analysts Audience: If you’re giving a presentation to other analysts, spend more time on the 
process and results. Coevals will be more interested in the techniques if we establish a brand-new 
way of processing or evaluating data that will be reused in the future or applied to comparable prob-
lems. When possible, use photos and screenshots. People tend to recall mental images to illustrate 
extended lists of bullets to some extent.

SUMMARY

There are many Data Analytics Life Cycle frameworks available in the market; they tend to have 
few variations with the same basic structure. Following the phases and the activities will alleviate 
the known pitfalls in implementing the ML projects. However, the users need to be mindful of the 
iterative nature between the phases. Without putting a solid foundation in the previous phase, the 
next phase’s activities will be impacted. Therefore, we cannot emphasize the importance of data 
discovery and pre-processing data phases in the Data Analytics Life Cycle. A recent survey of data 
scientists from Gartner Inc. suggests that they spend over 80% of their time capturing, cleaning, and 
organizing data. The remaining less than 20% of their time was spent creating and optimizing the 
ML models. More than 75% also reported that preparing data was the least enjoyable part of their 
process. Table 3.6 shows the breakup of time consumed per activity in the data analytics projects.

Table 3.7
Key Roles and Responsibilities of Team Members
Key Project Role Description

Project sponsor A person responsible for the project’s existence, motivating, solving the core business problem, and 
providing funding

Business users Members who benefit from the end result of the project/product. They can advise and be consulted 
on the value of the end results

SMEs/subject matter 
advisors (SMAs)

Members who had domain knowledge and could guide the project team in Phase 1 and Phase 2 
primarily. They can be internal or external to the organization

Project manager Key member responsible for delivering the project on time and under budget with expected quality

Business intelligence 
analyst

A member who has a deep understanding of the data, KPIs, and other key metrics and a clear vision 
of the data visualization aspects

Data engineers Members who have deep technical skills to assist with data ingest queries and technically 
responsible for bringing the data into the analytics sandbox

Data scientists Members who provide subject matter expertise in analytical techniques, applying efficient analytical 
techniques for the given business problem and ensuring the overall analytical goal of the project, 
are met

Administrators Member of the Database Administrators Team, platform administrators, and cloud engineers who 
provisions and configures the environments to support the analytical team

TABLE 3.6
Time Consumption for Each Activity in a Project
Project Activity % of Project Time Allocated

Collecting data 19%

Building training datasets 3%

Cleaning, enriching, and organizing the data 60%

Mining data for patterns 9%

Refining algorithms 5%

Other activities 4%
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For the successful implementation of the project, there are many roles involved. Table 3.7 pres-
ents the roles and responsibilities of the team members.

Finally, the “analyst wish list” refers to suggestions for tools, data access, and working condi-
tions that will ensure that employees are productive on the project and boost your chances of a good 
outcome. These requirements reflect the need for more adaptable ecosystems for storing data and 
performing complex, iterative analysis. In addition to the technical requirements outlined above, 
the project would benefit from quick access to key stakeholders and domain experts. Table 3.8 illus-
trates a few examples of the “analyst wish list.”

REVIEW QUESTIONS

 1. Explain the importance of the Data Analytics Life Cycle framework.
 2. Describe the phases of the analytical life cycle and how these phases interact with other 

phases.
 3. Describe various techniques used for data pre-processing.
 4. What is the significance of correlation matrix in data preparation?
 5. What is data wrangling?
 6. What are data visualization techniques to understand the data better?
 7. What types of files and data can be brought into the analytical sandbox?
 8. What is the difference between traditional programming and ML model building?
 9. How do you ensure the results of the analytics project to executives and other analysts are 

communicated properly?
 10. What is the difference between ELT and ETL?
 11. Explain few use cases where ML can be effectively implemented.
 12. Explain the join types and what is the significance of those.

TABLE 3.8
Analyst Wish List
Data and workspaces Access to all the data, including raw and aggregated levels from various sources in structured, 

semi-structured, and unstructured data sources

Updated data dictionary and metadata for the data elements

Area for development, staging, testing, and production datasets

Move data between workspace and staging/testing area

Analytic sandbox with computer power to handle large dataset using complex ML models

Tools set Statistical /mathematical and analytics tools with visualization capabilities such as Python, SAS, 
Matlab, Tableau, and Alteryx

Collaboration tools like SharePoint

Error logging tools like Jira
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4 Unsupervised Learning

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand different types of clustering algorithms, namely k-means, fuzzy k-means, hier-
archical (agglomerative and divisive), and DBSCAN algorithms

• Implement the algorithms using Python
• Analyze the performance of the algorithms based on several evaluation metrics
• Appreciate the limitations of clustering algorithms and adapt suitable ones based on the 

working dataset

4.1  INTRODUCTION

One of the promising areas to learn systems formally is machine learning. Machine learning algo-
rithms are used mostly in interdisciplinary areas by combining the thoughts from several fields, 
such as optimization theory, cognitive science, mathematics, statistics, and computer science. In 
this chapter, the reader would benefit from the broad underlying area of machine learning known 
as unsupervised learning. The present-day data scientists apply various machine learning algo-
rithms to extract valuable information from the data provided. Most of the learning algorithms are 
supervised learning problems since we have a priori knowledge of the output of the type of data 
presented.

On the contrary, unsupervised learning is a complex and challenging approach to machine learn-
ing algorithms. Despite its complexity, the advantages of unsupervised learning algorithms are 
numerous. This class of algorithms has proven to be potential enough to provide solutions to previ-
ously unsolvable problems and has gained a lot of popularity in machine learning and deep learning. 
This chapter will explain the basics of unsupervised learning, distance measures, the concept of 
clustering, the most commonly used clustering algorithms, their applications to solve problems in 
real time, and their limitations. 

4.2  UNSUPERVISED LEARNING

The class of unsupervised learning is a kind of self-organized learning that helps us identify pat-
terns or similarities in our data related to various features. The three main categories of machine 
learning are supervised learning, unsupervised learning, and reinforcement learning.

Consider a machine or a system that receives a sequence of inputs x1, x2, x3,…, from a sensor 
where xt is the sensory input at time t. This input that is received sequentially concerning time is 
called the data. Data can be any real-time measurement such as an image from a camera and voltage 
or current values from a solar panel.

In supervised learning, the system is also presented with a sequence of desired outputs y1, y2,…, 
along with the received input data. The goal of the system is to learn to produce the correct output 
upon receiving successive inputs.

In reinforcement learning, the system interacts with its environment by producing a set of actions. 
These actions, in turn, impact the environment, and this change results in the system receiving a few 
scalar rewards or penalties corresponding to every action. Thus, the system’s goal is to act in such a 
way as to maximize future rewards or minimize future penalties.

DOI: 10.1201/9781003258803-4
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In unsupervised learning, the system, as shown in Figure 4.1, receives the set of sensory inputs 
x1, x2,…, but does not obtain the target outputs (like supervised learning), nor rewards or penalties 
from its environment (like reinforcement learning). Though it seems mysterious to imagine what 
the system could learn without any feedback from its environment, it is possible to develop a system-
atic framework for unsupervised learning. The framework’s goal is to build representation models 
similar to the input data, which can be used for prediction, decision-making, etc.

It is important to understand the need for unsupervised learning at this point. In situations such 
as speech recognition, the interpretation of large datasets is very costly. Unsupervised learning has 
been proving to be efficient in such application areas. In data mining, there may be a situation where 
the user cannot predict the number of classes the data can be divided into. Unsupervised learning 
has been proving to be successful in such situations as well.

Unsupervised learning is classified into two categories, namely parametric unsupervised learn-
ing and non-parametric unsupervised learning.

• Parametric unsupervised learning
When the given data can be represented in terms of parametric distribution, the case is 

referred to as parametric unsupervised learning. The algorithm assumes that the data is 
obtained from a probability distribution-based population that follows a fixed set of param-
eters. These fixed sets of parameters are usually mean and standard deviation. Using these 
parameters on normal distribution data, the probability of any future observation can be 
predicted easily. This learning algorithm involves structuring Gaussian mixture models 
with expectation-maximization (EM) algorithm to predict the class of the sample data 
taken for classification. This unsupervised learning approach is much more complex than 
any supervised learning approach, and research has not identified any standard measure of 
accuracy to validate the algorithm’s outcome.

FIGURE 4.1 Block diagram of unsupervised learning.
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• Non-parametric unsupervised learning
In non-parameterized unsupervised learning, the data obtained from the real world is 

assembled to form groups or clusters. Here, each cluster holds some information about 
the data present in its group. This approach is mostly used to analyze and mold data into 
a smaller set of samples. Here, the learning does not use any assumptions regarding the 
population distribution and hence is also known as a distribution-free method.

Two of the main methods used in unsupervised learning are principal component analysis and 
 cluster analysis, but the most commonly used method is clustering.

4.2.1  clUstering

One of the popular unsupervised learning problems is clustering. It evolves in determining a struc-
ture from a collection of data. The structure is comprised of a group of objects in which the mem-
bers have some similar relation. Thus, a cluster can be defined as a group of objects with “similar” 
properties among them and “dissimilar” properties concerning the objects in other clusters.

There are several definitions for the term clustering in the literature, and some of the common 
ones are as follows:

• The method of identifying groups in data.
• The method of segregating the data into homogeneous groups.
• The method of segregating the data into groups,  with similar points in each group -.
• The method of segregating the data into groups, where points within each group are simi-

lar while points of different groups are dissimilar.
• The method of segregating the population space into areas with a comparatively high den-

sity of points, separated by areas with a comparatively low density of points.

There is certainly a wide difference between clustering and classification. In unsupervised learning, 
clustering is applied on a set of unlabeled data without any knowledge about the dataset. On the 
contrary, in the classification approach, the grouping or class is formed on a set of unlabeled data 
after applying a suitable supervised learning algorithm.

Hence, a cluster is usually formed by grouping similar data points concerning a center called the 
centroid. Boundaries are usually not well defined for a cluster. Based on the boundaries, clusters are 
classified into crisp clusters and fuzzy clusters. Crisp clusters have a well-defined boundary, while 
fuzzy clusters do not have a well-defined boundary.

The main criteria for grouping objects into clusters are as follows:

• Each cluster should consist of objects similar to each other
• Each cluster should be unlike the other, which implies that the objects in one cluster are 

different from those present in other clusters.

The clustering technique provides many advantages, but the two most important benefits of cluster-
ing can be outlined as follows:

 1. Identification and analysis of noisy data are comparatively easier.
 2. Clustering facilitates the user to handle data with different types of variables.

4.3  EVALUATION METRICS FOR CLUSTERING

The main objective of clustering is to find an intrinsic grouping pattern among a set of unlabeled 
data. But how does anyone conclude that the grouping is the best? Or what constitutes a good 
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clustering? As far as the literature is concerned, there has not been the best criterion evolved as a 
result of clustering. It has been observed that the results of clustering mainly vary from application 
to application and are based on the user’s requirements.

In Figure 4.2, a sample clustering process is shown. How do we know what the best clustering 
solution is? Some of the evaluation metrics that govern the process of clustering are discussed in 
this section.

4.3.1  Distance MeasUres

According to the clustering process, we have discussed that similar objects are grouped. The param-
eter that governs this similarity is the distance measure, which is one of the vital properties mea-
suring the distance between two points. Thus, two or more objects are grouped into a cluster based 
on the closeness of objects concerning each other. This concept of grouping objects based on the 
geometric distance is called distance-based clustering.

Evaluating the distance between objects is completely dependent on the type of attributes of the 
data. According to Kaufman and Rousseeuw (2005), the distance function used to form clusters 
must satisfy the following criteria:

• The distance between any two objects should always be positive
• The distance from an object to itself is always zero
• The distance is symmetric
• The distance should always satisfy the triangle inequality. The distance from objects a to 

b to c should be greater than the direct distance from a to c.

Suppose the dataset consists of objects having the same physical units. In that case, the distance can 
be evaluated using the simple Euclidean distance metric to group the objects into different clusters. 
The Euclidean distance between two objects xi and x j in a D-dimensional space is expressed as 
follows:
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If the dataset consists of components represented in similar physical units, then the Euclidean dis-
tance metric is the best choice to group the data instances successfully. Euclidean distance is mostly 

FIGURE 4.2 A sample clustering process.
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used in cases where the attributes of the data vectors are color components, coordinates, or numeric 
types in D-dimensional Euclidean space.

4.3.1.1  Minkowski Metric
If the D-dimensional space is large, then the Minkowski metric is used to evaluate the distance. The 
Minkowski metric is expressed as follows:

 ,
1

1/

∑( ) = −










=

d x x x xi j

k

D

i
k

j
k p

p

 (4.2)

where D is the dimensionality of the data. In Euclidean distance, p = 2, while Manhattan metric 
has p = 1. As reported in the literature, there are no standard theoretical guidelines for choosing 
a measure for any given application. Researchers have formulated an appropriate measure using 
domain knowledge.

4.3.2  siMilarity MeasUres

There are a set of similarity measures (proximity measures) to obtain a specific clustering solution 
to a given set of data:

Proximity Measures
A proximity measure can be defined between two data points in clustering. The term proximity 

refers to the similarity or dissimilarity of the samples concerning each other. Assume xi and x j are 
the two data points in a set of D-dimensional data as shown in Figure 4.3:

• Similarity measure S x xi j( ),  is large if xi and x j are similar

• Dissimilarity(or distance) measure D x xi j( ),  is small if xi and x j are dissimilar

Several similarity measures exist in the literature that can be used to evaluate the similarity or 
dissimilarity.

• Vectors: cosine distance
If the data is represented in the form of vectors, then the similarity measure is evaluated 

using the cosine distance according to the equation

 S x x
x x

x x
i j

i j

i j
( ) =,  (4.3)

FIGURE 4.3 Similarity metrics based on distance.
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• Sets: Jaccard distance
If the data is represented in the form of sets, then the similarity measure is evaluated 

using the Jaccard distance given by the equation

 J A B
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If sets A and B are empty, then J A B( ) =, 1.
• Points: Euclidean distance

If the data is represented in the form of points, then the similarity measure is evaluated 
using the Euclidean distance given by the equation
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where p =2.

Generally, good proximity measures are also application-dependent. For example, for good proxim-
ity measures, the clustering user should not normalize the data drawn from multiple distributions.

4.4  CLUSTERING ALGORITHMS

In this section, a broad classification of the clustering algorithms is presented. The classification is 
performed based on the orthogonal characteristics of the data available for clustering. 

4.4.1  hierarchical anD Partitional clUstering aPProaches

In hierarchical clustering, similar objects in a dataset are grouped into clusters and can be repre-
sented as trees of clusters. Here, any two clusters are displaced, or one cluster includes the other like 
branches of a tree, hence the term hierarchical.

In partitional clustering, multiple groups or partitions are formed from the given dataset. Here, 
the user has to specify the number of partitions or clusters as required for the application.

4.4.2  aggloMerative anD Divisive clUstering aPProaches

The agglomerative and divisive clustering methods belong to the hierarchical clustering family 
work in a reverse fashion concerning each other. In the agglomerative approach, each object in the 
dataset is assigned to its cluster based on the pairwise distance, and then, the clusters are merged. 
On the contrary, in the divisive approach, all the objects in the dataset are assigned to a unique 
cluster, and then, the clusters are split further from the unique cluster.

4.4.3  harD anD fUzzy clUstering aPProaches

Each data object must belong to a single cluster while determining a clustering output for a given set 
of data. This approach is called hard clustering. But in a real-time scenario, the data can belong to 
more than one cluster since there may be many similarity relations between the data among clusters. 
To address this issue, fuzzy clustering algorithms are used with the concepts of fuzzy set theory. 
The algorithm allows objects to belong to different clusters based on certain degrees of member-
ship. This approach is referred to as the fuzzy clustering approach. 

All the algorithms discussed so far will find a clustering result, such that each data object must 
belong to a single cluster (called hard clustering). However, in real-time scientific and industrial 
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applications, a data object may belong to one or more clusters. The existing clustering methods 
have been extended with the concepts of fuzzy set theory to address such issues. Fuzzy cluster-
ing algorithms allow objects to belong to several clusters simultaneously with different degrees of 
membership Kutner et al. (2005).

4.4.4  Monothetic anD Polythetic clUstering aPProaches

Monothetic and polythetic clustering are mostly suitable for obtaining solutions to problems in 
taxonomy. The monothetic clustering algorithm uses the features or objects of the dataset one by 
one for clustering. In contrast, the polythetic clustering algorithm uses all the dataset features at one 
for clustering.

4.4.5  DeterMinistic anD Probabilistic clUstering aPProaches

In the deterministic clustering approach, the data objects are grouped into clusters in a determinis-
tic manner, while in the probabilistic approach, an object is assigned to a certain cluster based on 
probability.

Though there are different approaches used for clustering, as discussed in the previous section, 
only a few successful and popular algorithms are derived from these approaches. Therefore, the fol-
lowing sections will deal with the most common clustering algorithms such as k-means clustering, 
fuzzy k-means clustering, mixture of Gaussians, and density-based clustering, used for real-time 
applications.

4.5  k-MEANS CLUSTERING

One of the simplest and most commonly used unsupervised learning algorithms is the k-means clus-
tering algorithm proposed by MacQueen in 1967. The algorithm classifies the given set of unlabeled 
data into a pre-defined number of k clusters.

4.5.1  geoMetric intUition, centroiDs

The basic aim of the k-means clustering algorithm is to define k centroids, each cluster with one 
centroid, respectively. These pre-defined centroids should be placed cleverly since the different 
locations of centroids give different outputs. The better approach is to maintain the centroids as far 
away from each other. Once the centroids’ location is identified, the points in the dataset have to 
be associated with the nearest centroid. The process is repeated until no points are left free without 
association. This is specified as the first stage of grouping or clustering. Once the first stage is done, 
then a new set of k new centroids are computed. Once again, clustering is done according to the 
new k centroids. The iterative process is repeated until no change is observed between the k new 
centroids in the current iteration and the k centroids evaluated in the previous iteration. Once the 
final clusters are formed, then the objective function is evaluated; in this case, the objective function 
is to minimize the squared error function given by the equation

 J x ci
j

j

i

n

j

k

∑∑= −
==

2

11

 (4.6)

where x ci
j

j−
2
 is the distance evaluated between the data point xi

j and the cluster center cj. The 
above equation gives us the information of the n data points from their respective k cluster centers.

To minimize the objective function, the k-means clustering algorithm should satisfy the follow-
ing criterion:
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Criterion 1: If a cluster sample c is considered among the set of clusters in the set, then the 
sample should be the point that minimizes.
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In simple words, the objective function should be minimized over the samples of the 
cluster.

Criterion 2: A point xi
j must be assigned to the cluster whose centroid c x( )*  is the closest 

toc x x c
k

i
j

j( ) = −* arg min
2
. In simple words, the objective function should be minimized 

over the samples of x. 

4.5.2  the algorithM

The steps of the k-means clustering algorithm are explained as follows:

Step 1: Determine the value of k and place the k centroids in the data space consisting of the 
dataset to be clustering. These k points represent the initial group of centroids.

Step 2: Once the centroids are fixed, assign each object in the dataset to the cluster with the 
closest centroid.

Step 3: Verify if all objects of the dataset have been assigned. Then, recompute the positions 
of the k centroids.

Step 4: Repeat steps 2 and 3 until there is no change in the new centroids and the previous 
centroids. Now we get a set of clusters with objects grouped. Next, evaluate the objective 
function based on the equation.

4.5.3  choosing k

While finding the solution to a given dataset using the k-means algorithm, there always raises how 
to fix the value of initial k centroids. Based on research experiments on various datasets, there are 
several approaches to find the optimal value of k. The optimal value of k is required for proper 
convergence of the algorithm. The following are the various approaches to choose the value of k:

Elbow method
The elbow method is one of the common and popular approaches used in the k-means 

clustering algorithm to find the optimal value of k. First, for each k value, we will initialize 
k-means and identify the sum of squared distances of samples to the nearest cluster center. 
Then, a graph is plotted between various values of k and the sum of squared distances. 
Finally, a point on the graph corresponding to k is identified, beyond which the sum of 
squared distances starts declining. This point is known as the elbow point, and the k value 
is chosen as the optimal value of k.

Silhouette method
The silhouette method is a better approach to determine the number of clusters to be 

formulated from the dataset. We assume that the data has already been clustered into k 
clusters by k-means clustering. With the available information on the clusters, the silhou-
ette coefficient s(i) is given according to Equation 4.8:

 s i
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where x i
c i

( )
( ) −

1

1
. Then for each data point, we define the following:

• C(i) represents the cluster allocated to the ith data object

• |C (i)| is the number of data objects in the cluster allotted to the ith data point
• a(i) is a measure of how good the ith data object is grouped to its cluster
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• b(i) is the average dissimilarity to the nearest cluster, which is not its cluster
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The silhouette coefficient s(i) is given as follows:
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In unsupervised learning, the optimal number of clusters is determined by the value of 
k, which has a maximum value of s(i).

4.5.4  sPace anD tiMe coMPlexity

In terms of space, the k-means algorithm requires only storage of data points and centroids. 
Therefore, the space requirement is defined as O((m + k)n), where k is the number of clusters, m is 
the number of data points, and n is the number of attributes.

In terms of time, k-means is a linear algorithm concerning the number of data points. Therefore, 
the time required for the k-means algorithm is O(i*k*m*n), where i is the number of iterations 
required for the algorithm to converge, k is the number of clusters, m is the number of data points, 
and n is the number of attributes.

4.5.5  aDvantages anD DisaDvantages of k-Means clUstering

4.5.5.1  Advantages

 1. Highly scalable when the volume of data is large.
 2. Simpler to implement.
 3. Suitable for many new real-world examples
 4. Faster convergence by minimizing optimization function that is given in terms of sum of 

squared error(SSE)
 5. Faster and more effective based on the computational cost

4.5.5.2  Disadvantages

 1. Choice of k: One major factor that plays a very important role in the algorithm’s conver-
gence is the optimal choice of k, which is tricky for different kinds of problems.

 2. Size and density of data: The algorithm cannot perform well with clusters of varying 
sizes, shapes, and densities. The algorithm has to be generalized in such cases.
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 3. Points not belonging to a cluster: The points that are not part of any cluster have to be 
removed. Otherwise, upon iterations, these points tend to form another centroid due to a 
new cluster. This affects the performance of the algorithm.

 4. Dependence on initial values: The value of k is limited in the case of the k-means algo-
rithm. The performance of the algorithm decreases for higher values of k.

 5. Overlapping between clusters: Since the k-means clustering algorithm does not have a 
clear measure for uncertainty, it is difficult to identify the points in the overlapping region 
and becomes a complex task to assign them to a cluster.

4.5.6  k-Means clUstering in Practice Using Python

Before starting the clustering process, the data points from the raw unlabeled data have to be well 
separated from each other. The raw data has to be scaled or standardized before applying the 
k-means algorithm. The user should ensure that the data points are most similar to their centroid 
and dissimilar to the other centroids. Over several clustering iterations, one centroid can be chosen 
randomly, and the next centroid can be placed as far as possible from the chosen centroid. This helps 
to attain the objective function.

k-Means is a simpler and more efficient, unsupervised technique suitable for various real domains 
such as natural language processing, computer vision, and medical analysis. Let us start with a 
simple example for the fuzzy k-means algorithm.

4.5.6.1  Illustration of the k-Means Algorithm Using Python
Let us consider the following dataset consisting of two variables along with their scores on ten 
individuals:

The Python code for initializing the dataset is given below:

import random
import math

noOfClusters = 2
noOfDataSet = 10
low_range_sample = 7 #element 0 of DATA_SET.
high_range_sample = 5 #element 3 of DATA_SET.
high_number = math.pow(10, 10)

DATA_SET = [[1.5, 1.0], [1.5, 2.0], [2.5, 2.0], [2.5, 5.0], [3.0, 4.0], 
[6.0, 7.0], [3.5, 5.0], [1.0, 1.0], [3.5, 4.5], [4.5, 5.0]]

data = []
centroids = []

Subject I II

1 1.5 1.0

2 1.5 2.0

3 2.5 2.0

4 2.5 5.0

5 3.0 4.0

6 6.0 7.0

7 3.5 5.0

8 1.0 1.0

9 3.5 4.5

10 4.5 5.0
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The objective of this example is to group the given data into two clusters. The initial partition is 
chosen such that data I and II of the two individuals are far apart based on the Euclidean  distance. 
The centroid coordinates for this example are set to (1.5, 1.0) and (6.0, 7.0). The Python code  segment 
relevant to this step is given below:

def init_centroids():
    centroids.append(Centroid(DATA_SET[low_range_sample][0], DATA_
SET[low_range_sample][1]))
    centroids.append(Centroid(DATA_SET[high_range_sample][0], DATA_
SET[high_range_sample][1]))
    
    print("Initial Centroids are at:")
    print("(", centroids[0].get_x(), ", ", centroids[0].get_y(), ")")
    print("(", centroids[1].get_x(), ", ", centroids[1].get_y(), ")")
    return

The remaining coordinates are taken in sequence, and the Euclidean distance is evaluated with 
respect to the initial centroid chosen. The illustration is shown below:

def initialize_datapoints():
    for i in range(noOfDataSet):
        newPoint = DataPoint(DATA_SET[i][0], DATA_SET[i][1])
        
        if(i == low_range_sample):
            newPoint.set_cluster(0)
        elif(i == high_range_sample):
            newPoint.set_cluster(1)
        else:
            newPoint.set_cluster(None)
            
        data.append(newPoint)
    return

Calculation of Euclidean distance

def get_distance(dataPointX, dataPointY, centroidX, centroidY):
    # Calculate Euclidean distance.
    return math.sqrt(math.pow((centroidY - dataPointY), 2) + math.
pow((centroidX - dataPointX), 2))

The centroids chosen initially are recomputed, and we find that the initial partition is modified. 
Even at this stage, to ensure correct assignment to each cluster, the distance of each individual is 
computed to its cluster and that of the opposite cluster. The centroids are recomputed as illustrated 
in the code snippet.

def recompute_centroids():
    xSum = 0
    ySum = 0
    sumInCluster = 0

Individual Mean Vector (Centroid)

Group 1 8 (1.0, 1.0)

Group 2 6 (6.0, 7.0)
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    for j in range(noOfClusters):
        for k in range(len(data)):
            if(data[k].get_cluster() == j):
                xSum += data[k].get_x()
                ySum += data[k].get_y()
                sumInCluster += 1
        
        if(sumInCluster > 0):
            centroids[j].set_x(xSum / sumInCluster)
            centroids[j].set_y(ySum / sumInCluster)
   

    return

def cluster_updation():
    isStillMoving = 0
    
    for i in range(noOfDataSet):
        bestMinimum = high_number
        currentCluster = 0
        
        for j in range(noOfClusters):
            distance = get_distance(data[i].get_x(), data[i].
get_y(), centroids[j].get_x(), centroids[j].get_y())
            if(distance < bestMinimum):
                bestMinimum = distance
                currentCluster = j
                
        data[i].set_cluster(currentCluster)
        
        if(data[i].get_cluster() is None or data[i].
get_cluster() != currentCluster):
            data[i].set_cluster(currentCluster)
            isStillMoving = 1
        
       
    return isStillMoving
def kmeans():
    isStillMoving = 1
    
    init_centroids()
    
    initialize_datapoints()
    
    while(isStillMoving):
        recompute_centroids()
        isStillMoving = cluster_updation()
    
    return
       
def print_output():
    for i in range(noOfClusters):
        print("Data grouped under cluster", i, "are:")
        for j in range(noOfDataSet):
            if(data[j].get_cluster() == i):
                print("(", data[j].get_x(), ", ", data[j].get_y(), ")")
        print()
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    return
       
kmeans()
print_output()

The iterative process continues until a suitable number of iterations have been reached, and the fol-
lowing were the observations obtained:

The output of the code:

Initial Centroids are at:
( 1.0 ,  1.0 )
( 6.0 ,  7.0 )

Data grouped under cluster 0 are:
( 1.5 ,  1.0 )
( 1.5 ,  2.0 )
( 2.5 ,  2.0 )
( 1.0 ,  1.0 )
 
Data grouped under cluster 1 are:
( 2.5 ,  5.0 )
( 3.0 ,  4.0 )
( 6.0 ,  7.0 )
( 3.5 ,  5.0 )
( 3.5 ,  4.5 )
( 4.5 ,  5.0 )

4.5.7  fUzzy k-Means clUstering algorithM

In fuzzy k-means clustering, the points or objects in the data to be clustered have a probability that defines 
its association with each cluster. This is contradictory to the conventional k-means algorithm where data 
points belong to a cluster. Fuzzy k-means particularly deals with the degree of belonging. The degree 
of belonging is defined in terms of probability. This is achieved by replacing distance with probability, 
which can be a function of distance, such as having probability relative to the inverse of the distance. The 
fuzzy k-means clustering algorithm uses a weighted centroid based on the defined probabilities.

The algorithm of fuzzy k-means is similar to the conventional k-means algorithm in terms of 
initialization, iteration, and convergence. The clusters obtained at each stage are evolved based on 
the probabilistic distributions. The probability function in fuzzy k-means is defined within a range 
of [0,1], where “0” indicates that the data point is far away from the centroid while “1” indicates that 
the data point is closest to the centroid.

The fuzzy k-means algorithm was developed by Dunn in 1973 [27] and later improvised by 
Peizhuang in 1981 [28]. The clustering is performed by exploring a set of fuzzy groups, W, and the 
associated cluster centers, C, that define the structure of the data point as best as possible iteratively. 
The partition matrix obtained after clustering would be expressed as W with size k × m, where k 
denotes the cluster number and m defines the number of data points in each cluster. W can also be 
expressed as W wab[ ]= , where wab is the membership defined concerning the probability of a data 
point ub from a cluster center ca, where a denotes the cluster number varying from 1 to k, and b 
denotes the number of data points in each cluster varying from 1 to m. In the case of crisp partition-
ing, W wab[ ]= = 0. The final objective of the fuzzy k-means clustering algorithm is to minimize the 
sum of the squared error function Es ( )C,W  according to Equation 4.12:

 Es C W w u c s
b

m

a

k

ab
s

b a∑∑ [ ]( )( ) = − ∈ ∞
= =

, , 1,
1 1

2  (4.12)



158 Machine Learning for Decision Sciences with Case Studies in Python

where s is a real number and is the fuzziness coefficient. It is a very important factor that influences 
the membership grades, thus aiding the algorithm’s performance. As the value of s increases, the algo-
rithm becomes fuzzier, and researchers have proved that the fuzzy k-means algorithm converges for s 
value in the range [ ]∞1, . Here, wabis the membership degree of ub in cluster a, ca is the cluster center, 
and the ⋅  operator indicates the inner product showing the similarity between the data points and the 
cluster. The error function is mainly dependent on W and C, subject to two main constraints as follows:
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The algorithm is iterated to minimize the error function defined above.

4.5.7.1  The Algorithm
The steps of the fuzzy k-means clustering algorithm are explained as follows:

• Step 1: Choose an optimal value of k, which indicates the number of clusters.
• Step 2: Initialize the k-means membership μk associated with the clusters and evaluate the 

probability such that each data point xi is assigned to a cluster k, P µ x kk i( )| , .
• Step 3: Recompute the centroid of the cluster according to the equation.
• Step 4: Repeat steps 2 and 3 until convergence or until a specified number of iterations 

have been reached, and the error function is minimized.

4.5.8  aDvantages anD DisaDvantages of fUzzy k-Means clUstering

Since the fuzzy k-means clustering algorithm works similarly to the k-means clustering, most of 
the advantages and limitations of the fuzzy k-means clustering algorithm are common. Still, we 
 differentiate the two clustering algorithms as follows:

Advantages:
• For classification problems pertinent to hard classes, the k-means algorithm performs 

better than fuzzy k-means, despite an exploratory data analysis.
• The underlying benefit of the fuzzy k-means clustering algorithm becomes evi-

dent based on the membership values of the fuzzy clustering. The membership 
values show a powerful skewed bimodal distribution for classification problems. 
This is a major benefit for having proper clustering between classes in a clustering 
algorithm.

• For huge datasets, the fuzzy k-means clustering algorithm is recommended for analyz-
ing the substructure of the data, for existing known patterns, and unexplored data in 
the available dataset.

Disadvantages:
• The fuzzy k-means clustering algorithm requires more computation time (slower than 

k-means clustering). When compared to k-means clustering, it is observed in various 
studies that the computation time increases more rapidly for the fuzzy k-means cluster-
ing algorithm as the number of clusters increases.
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4.6  HIERARCHICAL CLUSTERING

Hierarchical clustering algorithm, otherwise called hierarchical cluster analysis, is a method used 
to create a tree of clusters by grouping homogeneous data points. The endpoint is a set of cluster in 
which each cluster is unique from every other.

For the given input of six raw data points {A,B,C,D,E,F}, hierarchical cluster analysis computes 
the distance matrix. 

Let’s see how hierarchical clustering works with an example. Initially, each observation is con-
sidered as a group or cluster. Execute the following two steps repetitively until all the clusters are 
merged:

• Identify the two closer clusters
• Merge the identified two clusters
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Treelike dendrograms represent the cluster relationship. The dendograms for the example con-
sidered is shown in Figure 4.4.

Types of Hierarchical Clustering
Hierarchical clustering is classified (Figure 4.5) as agglomerative or divisive based on how hierar-
chical decomposition is performed.

4.6.1  aggloMerative hierarchical clUstering

In agglomerative hierarchical clustering, dendrograms are built from the bottom level. Then, the 
two most similar or nearest clusters from the bottom are merged. The algorithm stops the merging 
process when all the data points are merged into a single cluster. The following steps (Figure 4.6) 
describe how to build a dendrogram based on agglomerative hierarchical clustering:
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• Step 1: Initialization – initially, each data point forms a separate cluster
• Step 2: Compute distance/proximity matrix of the cluster
• Step 3: Repeat

• Step 3.1: Merge the two most similar or nearest clusters from the bottom
• Step 3.2: Update the distance matrix

• Step 4: Repeat step 3 until a single cluster remains

Distance or proximity matrix can be constructed in different ways, as shown below:

• Single linkage: Similarity of the most similar data points
• Complete linkage: Similarity of the least similar data points
• Average linkage: Average cosine between pair of elements.

FIGURE 4.4 Dendrogram representation.

FIGURE 4.5 Classification of hierarchical clustering.

FIGURE 4.6 Step-by-step procedure in agglomerative hierarchical clustering.
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4.6.2  Divisive hierarchical clUstering

In divisive hierarchical clustering, the clustering process starts from the top or root of the den-
drogram where all data points are in one single cluster. Then, it starts to split the root into a set of 
child clusters. The process of splitting is continuously performed for each child cluster. The process 
of splitting stops only when a singleton cluster of one data point is present. Moreover, top-down 
divisive hierarchical clustering is more complex than the bottom-up approach because it uses a flat 
clustering algorithm. The most extensively used flat clustering algorithm is k-means clustering.

The top-down approach as shown in Figure 4.7 is more accurate as it gives a complete idea from 
global distribution, whereas the bottom-up approach decides from the local distributions. The fol-
lowing are the steps to perform divisive clustering:

Initialization: Initially start from the top or root of the dendrogram, which contains one 
single cluster with all data points.

Repeat
• Choose which cluster to split
• Determine how to split: Split that cluster by the flat clustering algorithm such as 

k-means clustering, and
Until termination condition: Each data is in its singleton cluster.

4.6.3  techniqUes to Merge clUster

To define inter-cluster distance for merging two clusters, the following approaches are used widely:

• Min or single link
• Max or complete link
• Group average or average link
• Centroid distance
• Ward’s method

Single linkage: The distance between two clusters C1 and C2 is represented by the distance 
of the closest pair of data objects belonging to different clusters, as shown in Figure 4.8. 
The single-link method is sensitive to outliers because they lie far away from the rest of 
the data points.

FIGURE 4.7 Step-by-step procedure in divisive hierarchical clustering.
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. , 1 2

 (4.14)

Complete linkage: The distance between two clusters C1 and C2 is represented by the dis-
tance of the farthest pair of data objects belonging to different clusters, i.e., the maximum 
distance between two data objects (Figure 4.9). 

 d C C d x y
x C y C

( )( ) =
∈ ∈

, max ,min 1 2
. , 1 2

 (4.15)

 The complete link method is less sensitive to outliers because they lie far away from the 
rest of the data points.

Average linkage: The similarity of two clusters is determined by the average similarity 
(Figure 4.10) between all pairs of data objects belonging to different clusters.

 d C C d x y
x C y C

( )( ) =
∈ ∈

, avg ,min 1 2
. , 1 2

 (4.16)

 The average link method is robust to noise and outlier. However, the limitation of average 
linkage is biased toward global clusters.

Centroid distance: The distance between two clusters is represented by the distance between 
the means (Figure 4.11) of the clusters.

 d C C d m m( ) ( )=, ,mean 1 2 1 2  (4.17)

FIGURE 4.8 Minimum distance between two data objects in two different clusters.

FIGURE 4.9 Maximum distance between two data objects in two different clusters.

FIGURE 4.10 Average distance between two data objects in two different clusters.
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Ward’s method:  The sum of squares of the distance of Pi and Pj is calculated in Ward’s 
method based on the relation

 C C P P C Ci j∑( )( )( ) = ∗sim , dist ,1 2
2

1 2  (4.18)

It performs well with noisy data, and the problem of Ward’s method is biased toward 
global clusters.

4.6.4  sPace anD tiMe coMPlexity

Space complexity: The space complexity remains high when the number of data points is 
more because more space is required to store the proximity matrix.

Space complexity S = O(n²), where n is the total count of input data objects.
Time complexity: The time complexity is also high as we need to update the similarity 

matrix in every iteration.
Time complexity = O(n³), where n is the total count of input data objects.

4.6.5  liMitations of hierarchical clUstering

• Highly sensitive to scaling
• Difficulty in handling noise data and not efficient with outliers
• High space and time complexity

4.6.6  hierarchical clUstering in Practice Using Python

An example is presented in this section to cluster a random dataset of data points (Figure 4.12) using 
the agglomerative hierarchical clustering. Initially, all the libraries required are imported.

import random
import math
import matplotlib.pyplot as plt
import numpy as np
from numpy import random

The next step is to obtain the data. Here, a random data ranging from 0 to 100 with 30 rows and two 
columns is generated. The dataset is also plotted for more clarity of the data points.

DATA_SET=random.randint(100, size=(30, 2))
print(DATA_SET)

labels = range(1, 100)
plt.figure(figsize=(10, 7))

FIGURE 4.11 Mean distance between two different clusters.
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plt.subplots_adjust(bottom=0.1)
plt.scatter(DATA_SET[:,0],DATA_SET[:,1], label='True Position')

for label, x, y in zip(labels, DATA_SET[:, 0], DATA_SET[:, 1]):
    plt.annotate(
        label,
        xy=(x, y), xytext=(-3, 3),
        textcoords='offset pixels', ha='right', va='bottom')
plt.show()

Now the class for Clustering AgglomerativeClustering is imported from the sklearn cluster library. 
Here, the cluster number is set to three, with affinity set to Euclidean and linkage set to “ward.”

from sklearn.cluster import AgglomerativeClustering
cluster = AgglomerativeClustering(n_
clusters=3, affinity='euclidean', linkage='average')
cluster.fit_predict(DATA_SET)
print(cluster.labels_)
plt.scatter(DATA_SET[:,0],DATA_SET[:,1], c=cluster.
labels_, cmap='rainbow')

4.6.6.1  DATA_SET
[[ 8 27] [12 25] [42 20] [62 78] [41 69] [77 84] [64 43] [ 6 65] [14 42] [33 40] [71 82] [98 56] [66 93] 
[75 23] [17 22] [75 60] [73 56] [78 51] [36 17] [88 17] [25 59] [11 58] [ 6 66] [47  7] [17 46] [25 68] 
[54 66] [54 50] [46 83] [68 55]]

FIGURE 4.12 Distribution of the random dataset generated.
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The following array shows the pattern in which the data points are clustered:
[2 2 0 1 1 1 1 2 2 2 1 1 1 0 2 1 1 1 0 0 2 2 2 0 2 2 1 1 1 1]
It is a one-dimensional array with 30 elements corresponding to the cluster assigned to 30 data 

points. The clustered output is shown in Figure 4.13.

4.7  MIXTURE OF GAUSSIAN CLUSTERING

The Gaussian clustering algorithm is probability-based which is highly suitable for unlabeled or 
unsupervised data. The Gaussian clustering algorithm performs similar to k-means clustering. 
However, the k-means clustering algorithm doesn’t take care of the distribution of data or vari-
ance. Moreover, the k-means algorithm only works well when the data is circular and unsuitable for 
oblong data distribution. But the Gaussian method can handle more elongated clusters.

Let’s understand with a simple example of classifying images based on their RGB intensity. In 
Figure 4.14, images of the sea (dark-shaded circles), forest (dark gray-shaded circles), and desert 
(light gray circles) without any labels are considered.

Select a data point xi that is circled in Figure 4.14, and associate probability kπ  with each Gaussian 
component. In this case, the π is represented as

 π = π = π = π = 0.8, 0.2, 01 2 3

The prior probability of the data point xi to be associated with the kth cluster is given as

 p z ki k( )= = π  (4.19)

The likelihood of seeing the data point xi in cluster sea is given as

 p x z ki i k kµ σ( )= , 2  (4.20)

To maximize the likelihood, we can use the EM algorithm.
The main advantages of model-based clustering are as follows:

• Less sensitive to scalability
• Highly flexible for any data distribution

FIGURE 4.13 Clustered output based on agglomerative hierarchical clustering.
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• Efficient in handling outliers
• Faster convergence
• A more effective method for noisy real-world data.

4.7.1  exPectation MaxiMization

To maximize the likelihood of Gaussian clustering, EM algorithm comes into the picture. Let us 
understand this with a simple example. EM proceeds iteratively with two steps. The expectation 
treats the Gaussian parameters, Mean μ, and covariance 

c∑  , while π for the cluster is fixed.

Expectation step (E step):
For each data point xi and cluster c, compute relative probability ric of data point xi such 

that it belongs to cluster c, using the equation below.
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If xi is very likely to be the cth cluster, then it will get high values. So the denominator 
is just to normalize, i.e., to make the sum to one.

Maximization step (M step):
Start with the relative probability ric and update the parameter of the clusters mean μ, 

covariance 
c∑ , and π.

For each cluster, z = c. Update the parameters using the weighted data points.

 m r cc ic
i∑ ( )=  Total responsibilityallocated tocluster

FIGURE 4.14 Example to understand the mixture of Gaussian clustering.
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Example: Suppose xk are the student marks and p(xk) are their probability.
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First case: We observe that the marks are so distributed among students:
x1: a students
x2: b students
x3: c students
x4: d students
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Maximize by deriving 0
∂
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=P
. Derive the logarithm of the function and maximize it:
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Suppose a = 14, b = 6, c = 9, and d = 10, and we can calculate µ = 1

10
.

Second case: We observe that marks are so distributed among students:
x1 + x2: h students
x3: c students
x4: d students
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 (4.24)
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This circularity can be solved iteratively.

The time complexity of the EM algorithm is O(NKD3), where N is the number of data objects, K is 
the number of Gaussian components, and D is number of dimensions.

Advantages of EM

• Convergence is guaranteed
• Likelihood increases in every iteration

Disadvantages of EM

• It is highly complex when the number of dimensions increases and thus of limited use.

4.7.2  MixtUre of gaUssian clUstering in Practice Using Python

This example applies GMM to a random dataset using the GaussianMixture from the sklearn 
library. All the necessary libraries are imported accordingly. A random dataset of size 100 is gener-
ated using the random function from the numpy library with 100 rows and two columns.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
from numpy import random
 
DATA_SET=random.randint(100, size=(100, 2))
print(DATA_SET)
plt.plot(DATA_SET[:,0], DATA_SET[:,1], 'gx')
plt.axis('equal')
plt.show()

gmm = GaussianMixture(n_components=2)
gmm.fit(DATA_SET)
print(gmm.means_)
print('\n')
print(gmm.covariances_)

X, Y = np.meshgrid(np.linspace(-200, 400), np.linspace(-200,400))
XX = np.array([X.ravel(), Y.ravel()]).T
Z = gmm.score_samples(XX)
Z = Z.reshape((50,50))
 
plt.contour(X, Y, Z)
plt.scatter(DATA_SET[:, 0], DATA_SET[:, 1])
 
plt.show()

The output of the above code is presented below:
The random data generated in the range between 0 and 100 are listed. The plot of the data is 

shown in Figure 4.15.

[[ 1 59] [32 88] [11 56] [79 47] [27 45] [87 71] [30 77] [93 31] [58 55] 
[31 97] [36 77] [10 11] [93 33] [32 50] [88 82] [12 78] [26  4] [70 10] [66  
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3] [83 78] [52 63] [15 51] [22  2] [67 16] [38 22] [ 9 27] [83 64] [13 64] 
[86  1] [84 49] [69 26] [40 42] [68 98] [52 83] [ 6 39] [88 11] [70 61] [55 
27]  [ 7 17] [73 52] [44 70] [88 31] [ 0 37] [32 41] [10 19] [31 50] [22 
21] [36 32] [66 69] [51 90] [94 93] [49 42] [25 78] [84 93] [87  4] [70 21] 
[95 91] [90 25] [ 6 27] [61 20] [54 83] [90 79] [41 79] [29 68] [47  7] [43 
31] [89 42] [88 62] [19 26] [83 73] [99 71] [88 53] [90 91] [ 0 70] [ 9  1] 
[85  8]  [78  1] [95 67] [67 53] [37 48] [35 25] [18 71] [73 97] [57 91]  
[0 80] [71 84] [15 48] [16 65] [53 36] [80 10] [94  9] [97 64] [11 75] [86 
78] [34 80]  [ 6 78] [81 56] [99 88] [88  0] [59 56]]

In this case, the input is a set of 2D data points. Hence, the Gaussians will be the same plot of 
the two Gaussians overlapping. Once the model has converged, the means and the covariances are 
determined and given as follows:

µ1 = [[43.89912658 36.92423653] [71.38718383 76.86583559]]

Σ1 = [[[ 931.53709452 -284.48772158]  [-284.48772158  602.82022267]]

µ2 = [[ 513.42101497  -31.36462194]  [ -31.36462194  188.92292275]]]

This example creates a grid with X- and Y-coordinates ranging from −200 to 400 to compute the 
GMM using the EM algorithm. GMM is then plotted as contours over the original data, as repre-
sented in Figure 4.16. It can be observed that with normal distribution, most of the data points are 
found around the mean and less as we move away.

4.8  DENSITY-BASED CLUSTERING ALGORITHM

A density-based clustering algorithm is a non-parametric approach of unsupervised learning used 
to cluster unlabeled data. Various density-based clustering algorithms are DBSCAN, OPTICS, 
DENCLUE, and CLIQUE. In this section, the DBSCAN algorithm is discussed in detail with rel-
evant Python implementation.

4.8.1  Dbscan (Density-baseD sPatial clUstering of aPPlications with noise)

The widely used density-based technique is DBSCAN, which was introduced by Ester et al. (1996). 
The main objective of DBSCAN is to identify the dense region. The main high-level idea of 
DBSCAN is as follows:

FIGURE 4.15 Distribution of the random data generated for a mixture of Gaussians.
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• Partition the data into three types of points (core, boundary, and noise). The core points are 
the high-density points at the center with lots of neighbors around them.

• Connect the core points to create clusters
• Assign boundary points to each cluster

Two parameters involved are eps and MinPts. ∈Neighborhood refers to the objects within the radius 
∈. The ∈Neighborhood is defined as follows:

 x y D d x y{ }( )( )∈ = ∈ ≤∈Neighborhood : ,

where D is the dataset and d is the distance between data objects.
The higher density of objects should hold at least MinPts of objects. For example, as shown in 

Figure 4.17, let us consider MinPts = 4. It is inferred from the figure that the density of p is higher 
than the density of q.

For Figure 4.18, the assigned parameters are eps = 1 unit and MinPts = 5. Based on the given 
parameters, the data points are classified into three points: core, border, and outlier points, as shown 
in Figure 4.18.

The core point is the data point if it has more objects than MinPts within the radius ∈. Border 
point has fewer objects than MinPts within the radius ∈, but it lies nearer to the core point. Outliers 
are the ones that are extreme data objects. The two approaches in DBSCAN are as follows:

• Density reachable
• Density-connected

FIGURE 4.16 Clustering using the GMM algorithm.

FIGURE 4.17 Illustration for density with MinPts = 4.
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Density reachable: The two variants of density-reachable  are directly and indirectly den-
sity-reachable. As shown in Figure 4.19, data point d is directly density-reachable from 
data point c. Point c is directly density-reachable from b. Similarly, point b is directly 
density-reachable from a. Chain of objects from data point d to data point a is directly 
density-reachable.

Density-connected: Data point a is density-connected to the point c if there is an interme-
diate data object b from which both a and b are density-reachable.

4.8.2  sPace anD tiMe coMPlexity

Time complexity is O(n2) for each data point; it has to be determined whether it is a core point or 
not. Therefore, space complexity is O(n).

4.8.3  aDvantages anD DisaDvantages of Dbscan

4.8.3.1  Advantages
It can handle outliers and noise.

It works well for any shape and size.

4.8.3.2  Disadvantages
It cannot handle varying densities and is sensitive to parameters.

Identifying the correct value for the parameter is not easy.

FIGURE 4.18 Illustration for density with MinPts = 5.

FIGURE 4.19 Illustration for density-reachable.
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4.8.4  Dbscan in Practice Using Python

The application of DBSCAN using Python is illustrated in this section. Here, a random cluster data 
is generated using the make_blobs function from the sklearn library. The data is transformed in this 
case. Compared to the k-means algorithm, it has been observed that in k-means, data clusters only 
around the nearest cluster center, whereas in DBSCAN, the entire plane of the data can be clustered. 
To illustrate this feature, the random data generated is transformed.

The total number of samples generated was 500, with four centers, center_box parameter set in 
the range [−20, 20]. The required functions are imported from the respective libraries. While using 
the DBSCAN function, the parameter “eps” plays a significant role in clustering. All the data points 
resulted in a single cluster when “eps” was set to a large value. At the same time, setting “eps” to 
small values resulted in data labeled as noise. Several experiments were conducted to have a trade-
off, and in this example, “eps” is set to 0.2. Thus, the readers can explore different values of “eps” 
and observe the data clustering.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn import metrics

# generate some random cluster data
X, labels_true = make_blobs(n_samples=500, n_
features=2,  centers=4, cluster_std=1.0, center_box=(-
20.0, 20.0), shuffle=True, random_state=100)
rng = np.random.RandomState(74)

# transform the data to be stretched
transformation = rng.normal(size=(2, 2))
X = np.dot(X, transformation)

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# cluster the data into five clusters
dbscan = DBSCAN(eps=0.123, min_samples = 2)
clusters = dbscan.fit_predict(X_scaled)
# plot the cluster assignments
plt.scatter(X[:, 0], X[:, 1], c=clusters, cmap="plasma")
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")

core_samples_mask = np.zeros_like(dbscan.labels_, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
labels=dbscan.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Adjusted Mutual Information: %0.3f"
      % metrics.adjusted_mutual_info_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
      % metrics.adjusted_rand_score(labels_true, labels))
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print("Completeness: %0.3f" % metrics.
completeness_score(labels_true, labels))
print("Homogeneity: %0.3f" % metrics.
homogeneity_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))

When it comes to analysis, it is important to understand the metrics involved in a code. In the exam-
ple considered for implementing DBSCAN, the metrics function from the sklearn library is used 
to evaluate all the metrics corresponding to clustering. The output of the above code is presented 
below with all the metrics shown for “eps”=0.2. Figure 4.20 shows the clustering for the random 
data chosen for clustering.

Estimated number of clusters: 4
Estimated number of noise points: 0
Adjusted Mutual Information: 1.000
Adjusted Rand Index: 1.000
Completeness: 1.000
Homogeneity: 1.000
V-measure: 1.000

The value of “eps” was then changed to 0.05, and the results are presented below with clustering 
shown in Figure 4.21. It is observed that though the number of clusters required was 4, the algorithm 
has estimated the number of clusters as 9. The number of noise points estimated has also increased 
considerably to 19. There is a variation concerning all the other evaluation metrics.

Estimated number of clusters: 9
Estimated number of noise points: 19
Adjusted Mutual Information: 0.858
Adjusted Rand Index: 0.866
Completeness: 0.777
Homogeneity: 0.964
V-measure: 0.860

FIGURE 4.20 DBSCAN clustering for “eps” = 0.2.
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SUMMARY

Unsupervised learning is a machine learning technique where the model does not require supervi-
sion. The unknown patterns of data can be explored based on the concept of clustering and associa-
tion. This chapter has discussed several clustering algorithms, namely the k-means clustering, fuzzy 
k-means clustering, hierarchical (agglomerative and divisive) clustering, and DBSCAN clustering. 
These algorithms were discussed in detail with the implementation of examples using Python. 
Unsupervised machine learning helps you to find all kinds of unknown patterns in data. The major 
limitation of unsupervised learning is the lack of precise information from the clustering process. 
This can be overcome by exploring and conducting several additional experiments by varying the 
model parameters.

REVIEW QUESTIONS

 1. Suppose we want to build a neural network that classifies two-dimensional data (i.e., X = [x1, 
x2]) into two classes: diamonds and crosses. The dataset has 1000 samples, including dia-
monds and crosses. Use k-means clustering and DBSCAN clustering algorithms to cluster 
the data and evaluate the clustering metrics. Compare the performance of the algorithms. 
List your observations by varying the model parameters.

 2. What is the role of principal component analysis in unsupervised learning? Explain in 
detail.

 3. List out all the unsupervised clustering algorithms and identify the model parameters rel-
evant to each algorithm. Then, generate a random dataset, and explain the observations for 
each algorithm to vary the model parameter for at least five settings covering the minimum 
and maximum range.

 4. What are the limitations of the fuzzy k-means algorithm?
 5. Discuss the differences between agglomerative hierarchical and divisive hierarchical clus-

tering algorithms. Then, implement these algorithms on a random dataset and observe the 
output.

 6. Does clustering using unsupervised learning algorithms require data cleaning? If so, what 
would be the suitable approach for data cleaning? Discuss.

FIGURE 4.21 DBSCAN clustering for “eps” = 0.05.
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 7. For performing a clustering analysis, what is the minimum number of features required?
 8. Suppose the k-means algorithm is run twice on the same dataset. Do you observe the same 

results? Justify your answer.
 9. What are dendrograms? Generate a dendrogram for random data. Is it possible to have two 

different dendrograms using agglomerative clustering for the same dataset? Discuss in 
detail.

 10. Is it possible to obtain dendrograms using k-means clustering algorithms? Discuss.
 11. What are all the evaluation metrics used to evaluate a clustering algorithm? List them and 

explain with relevant equations.
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5 Supervised Learning
Regression

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Know the basic paradigms and their underlying mathematical concept of supervised learn-
ing technique

• Understand the concepts of supervised learning for classification and regression problems
• Identify the appropriate supervised learning approaches for regression – linear regression
• Understand and implement linear regression using Python for practical problems

5.1  INTRODUCTION

Supervised learning is a variant of a machine learning algorithm to learn about the input– output 
paired samples. Medical image analysis, predictive analysis, and computer vision applications 
utilize these supervised algorithms for classifying data. To get useful insights and discover the 
patterns, data scientists utilize various types of machine learning algorithms. In general, these algo-
rithms are categorized into two types depending on the method of learning about data to predict 
the future: supervised and unsupervised learning. A user teaches the supervised learning algorithm 
to learn about big data in the desired fashion. Supervised learning is a widely used machine learn-
ing algorithm that is used to learn the relationship between the independent input variable (X) and 
dependent output variable (Y) by determining the approximate mapping function Y = f(X). This is 
shown in Figure 5.1. The objective is to learn an optimal mapping function to know how well it 
works to extrapolate for the new unknown input data (X).

Supervised learning techniques are support vector machines (SVMs), linear regression, logistic 
regression, multi-class classification, and decision trees. Training a supervised learning algorithm for 
each input requires a correct output label. For example, a classification algorithm needs to classify 
images of digits from 1 to 10 after being trained on a dataset of digit images that are properly labeled 
with the corresponding digits (1–10). Regression and classification are the two groups of the prob-
lem that can be efficiently learned using a supervised algorithm. The difference between the regres-
sion and classification problem is that the output variable is continuous or numerical for regression, 
whereas it is discrete or categorical for classification. This chapter introduces essential ideas behind all 
supervised algorithms in machine learning. The mathematical concept behind supervised algorithms 
with worked examples and implementation using Python is given in detail. Supervised algorithm for 
regression problem is well explained in this chapter with Python implementation. Linear regression 
is the fundamental regression algorithm to predict the output y-coordinate from the input x. Multiple 
linear regressions such as simple and multiple regression are discussed in this chapter.

5.2  SUPERVISED LEARNING – REAL-LIFE SCENARIO

Supervised learning is the task of uncovering hidden patterns and structures from labeled data. 
Successful supervised learning requires technical expertise to label data. In real-life applications, 
supervised learning is used widely, such as object detection, language processing, spoken word 
recognition, anomaly detection, product recommendation, credit risk analysis, optical character 
recognition, medical diagnosis, protein structure prediction, and biometrics.

DOI: 10.1201/9781003258803-5
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5.3  TYPES OF SUPERVISED LEARNING

Supervised techniques train the model using labeled data. The training process should continue 
until the level of performance is high enough. After training, the system should predict new unseen 
data correctly, as shown in Figure 5.2.

There are two types of supervised learning techniques: regression and classification. Classification 
separates the data, whereas regression fits the data.

5.3.1  sUPerviseD learning – classification

Classification is the process of categorizing the given input data into different classes. The output of 
the classification problem is a discrete or categorical value such as positive or negative, spam or not 
spam. Classifying the tumor as malignant or benign and classifying whether the account of a person 
is hacked or not are few examples of classification problems. Classification can be either binary or 
multi-class classification. Logistic regression is the best example for binary classification. Multi-class 
classification is a problem with more than two output classes; for example, alphabet character recog-
nition is a multi-class classification problem. The various classification techniques are decision tree, 
logistic regression, random forest, gradient boosted tree, SVM, and naïve Bayes algorithm.

Which of the following is/are classification problem(s)?

• Predicting the sales of a newly introduced SUV over the next 6 months.
• Predicting whether a customer account is hacked or not.

Solution: Predicting the sale of car output is a continuous value and therefore it is not a classification 
problem. Predicting whether an account is hacked or not is a classification problem where the output 
value is categorical.

FIGURE 5.2 Prediction using supervised learning.

FIGURE 5.1 Mapping between input and output.
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5.3.1.1  Classification – Predictive Modeling
Classification predictive modeling is the process of approximating a mapping function ( f) from 
input variables (X) to discrete output variables (y). The mapping function f predicts the class or 
category for a given observation.

A classification problem needs that input data to be categorized into one of two or more classes. 
The input data can be either discrete or continuous values. A problem with two distinct classes is 
called a two-class or binary classification problem, such as true or false. A problem with more than 
two classes is often called a multi-class classification problem, such as sentiment analysis with 
angry, sad, and happy labels.

In general, the classification models predict a continuous probability value for the given input 
corresponding to each output class. The probabilities can be interpreted as the likelihood or confi-
dence of a given input belonging to each output class. A predicted probability can be converted into 
a class value by selecting the class label with the highest probability. For example, for specific input 
data to predict whether it will rain tomorrow or not, assign the probability for the input data and 
select the label whose probability is greater than the cutoff value as it has the highest likelihood, as 
shown in Figure 5.3. There are many ways to measure the performance of a predictive classification 
model, but perhaps the most common is to calculate the classification accuracy. The classification 
accuracy is the percentage of correctly classified examples out of all predictions made.

For example, if a classification predictive model made ten predictions and seven of them were 
correct and three of them were incorrect, then the classification accuracy of the model based on just 
these predictions would be as follows:

accuracy = correct predictions / total predictions * 100
accuracy = 7 / 10 * 100 = 70%

5.3.2  sUPerviseD learning – regression

Regression is the process of identifying a model or function for fitting the data into continuous real 
values instead of using classes or discrete values. For example, a regression problem is quantity 
based where the output variable is a real or continuous value, such as salary, age, sales rate, speed, 
and weight. The simplest form is the linear regression that tries to fit data (Figure 5.4) with the opti-
mal hyperplane or line that goes through the points.

Which of the following is the regression task?

• Predicting credit risk analysis
• Predicting nationality of a person
• Predicting tomorrow’s wind speed in a specific site
• Predicting the sentiment of a product review

FIGURE 5.3 A simple classification example.
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Solution: Predicting tomorrow’s wind speed in a specific site (because it is a real value, 
predicting nationality and credit risk(low or high risk) is categorical, and predicting the 
sentiment is again discrete a good/bad answer).

5.3.2.1  Regression Predictive Modeling
Regression predictive modeling is the process of approximating a mapping function ( f) from input 
variables (X) to a continuous output variable (Y). A continuous output variable is a real value, such 
as an integer or floating-point value. These are often quantities, such as amounts and sizes.

A regression problem requires the prediction of a continuous value, such as predicting the amount 
of rainfall. Real values or discrete input variables can be used for regression analysis. A problem 
with a single input variable is simple regression, and a problem with multiple input variables is 
called a multivariate regression problem. Time series forecasting problem is a type of regression 
problem with an input ordered time value.

Because a predictive regression model predicts a quantity, the model’s performance must be 
calculated using error in predictions. There are many ways to estimate the performance of the pre-
dictive regression model. The most widely used is to calculate the root mean squared error (RMSE).

Sample RMSE calculation for regression predictive model which made two predictions, one of 
1.5 where the expected value is 1.0 and another of 3.3 and the expected value is 3.0, then the RMSE 
would be:

 = 











RMSE sqrt average error2  (5.1)

 ( )( )= − + − =RMSE sqrt (1.0 1.5) (3.0 3.3) 2 0.4122 2

5.3.3  classification vs. regression

Based on the target value, classification problems can be differentiated from regression, as shown in 
Figure 5.5. Both classification and regression problems can be learned using some algorithms with 
slight changes, such as decision trees and artificial neural networks. Linear regression is a regres-
sion predictive modeling algorithm, whereas logistic regression is a binary classification algorithm. 
Classification algorithm can be evaluated using accuracy, whereas regression algorithm can be esti-
mated using RMSE.

FIGURE 5.4 Data fitting.
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5.3.4  conversion between classification anD regression ProbleMs

In certain cases, a regression problem can be used to predict discrete values. This can be achieved 
using the discretization technique that converts continuous values between $0 and $1000 into two 
discrete class labels: class 1 (range from $0 to $499) and class 2 (range from $500 to $1000).

Similarly, a classification problem can be used to predict a numerical value. For example, the 
target output label can be converted into a continuous numerical range.

If there is a natural ordinal relationship, then the conversion from classification problem to 
regression learns well, or it may result in poor performance.

5.4  LINEAR REGRESSION

Regression analysis is an extensively used forecasting technique of supervised learning algorithms. 
Linear regression is the simplest form of regression analysis to analyze the trend behind the input 
data points. In this section, the working of regression and its types with real-time examples are 
explained.

Linear regression is a supervised learning technique in which we have a collection of training 
samples with a labeled output. It is a simple statistical technique and an interpretable method and is 
very widely used in prediction analysis. The main advantage of linear regression is to forecast the 
trend more feasibly. Linear regression can be used to predict the continuous target variable given 
the value of input variables. Regression analysis is used for analyzing the relationship among data 
to predict the continuous output variable. In other words, linear regression identifies the relationship 
between dependent and independent variables via a sloped straight line. The sloped straight line is 
known as the regression line or best-fit line. The representation of the regression model is given in 
Figure 5.6.

FIGURE 5.5 Differences between classification and regression.
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To understand the math behind linear regression, let’s see a simple example. Given a set of n 
data, samples can be represented as D D D Dn{ }= …, , ,1 2  as shown in Figure 5.7. The single data 
point is represented as D x yi i i= , , where x x x xi i i i d( )= , , ,,1 ,2 ,  is an input vector of size d and yi is 
the desired output. And the idea is to find the best linear relationship function x f xi i( )~  such that 
y f xi i( )~  for all i = 1,2,…,n.

The regression problem is defined as given a sample instance x and y we have to learn a function 
such that

 fn x y→:

  f x w w x w x w x w w xd d i i

i

d

 ∑= + + + + = +
=

( )      0 1 1 2 2 0

1

 (5.2)

where ,  , ,  0 1 …w w wd  are the weight parameters.
Definition of linear regression: Given a training dataset comprising N observations xn{ }
where n = 1, 2,…, N and their corresponding target values are tn{ }. The goal is to predict the 

value of t for a new value of x.

5.4.1  tyPes of linear regression

The variants of linear regression are simple and multiple linear regressions further classified as lin-
ear and non-linear, as shown in Figure 5.8. For simple regression, the input or independent variable 
is one, whereas for multiple regression, it is two or more.

FIGURE 5.6 Representation of regression.

FIGURE 5.7 Linear regression visualization.
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5.4.1.1  Simple Linear Regression
The simple linear regression consists of only one input or independent variable. The form of the 
simple linear regression model is given in Equation 5.3:

 y xβ β= + ⋅0 1  (5.3)

where y is the independent output variable, x is the dependent input variable, β0  is bias, and β1  is 
the slope of the regression line.

There are three possible cases.

Case 1: 0,1β <  which indicates the variable x has a negative impact on y. In this case, if x 
increases, y decreases, and vice versa.

Case 2:  0,1β =  which implies the variable x has no impact on y.
Case 3: 0,1β >  which indicates the variable x has a positive impact on y. In this case, if x 

increases, y increases, and vice versa.

To understand the linear regression model, let us see a simple linear model. For instance, if we want 
to predict the peak electricity demand of a city based on the high temperature recorded, a simple 
linear model can be constructed for predicting peak demand for tomorrow.

 y xi iθ θ= ⋅ +1 2 (5.4)

i.e., Predicted Peak Demand = θ1. high temperature + θ2

where
yi is the output or independent variable,
xi is the input or dependent variable,
θ θ= = −0.046 and 1.461 2   are model parameters.

For instance, if the high temperature recorded is 80°F, then the predicted output is

 y xi iθ θ= +.  1 2

 yi = −0.046 * 80 1.46

FIGURE 5.8 Regression types.
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Then, the predicted output of peak demand is 2.19 GW. There is a positive correlation between 
temperature and peak demand (Figure 5.9).

5.4.1.2  Multiple Linear Regression
The multiple linear regression consists of multiple input or independent variables. For example, let’s 
create a model for predicting the price of wine based on the age of the wine. Here, the dependent 
variable is the age of the wine, and the independent variable is the price of wine (Figure 5.10).

Pe
ak

 d
em

an
d 

(G
W

)

High Temperature (F) (GW)

Observed Data
Linear Regression 
Prediction 

FIGURE 5.9 High temperature vs. peak demand.

FIGURE 5.10 Age of wine vs. price.
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 β β= + ⋅WinePrice Ageof Wine0 1

Similarly, we can predict the price of wine based on multiple independent variables such as average 
growing-season temperature (Figure 5.11), harvest rain (Figure 5.12), and winter rain (Figure 5.13).

 β β= + ⋅WinePrice AverageGrowing-SeasonTemperature0 1

FIGURE 5.11 Average growing-season temperature (Celsius) vs. price.

FIGURE 5.12 Harvest rain (mm) vs. price.
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 β β= + ⋅WinePrice Harvest Rain0 1

 β β= + ⋅WinePrice Winter Rain0 1

The multiple linear regression is

 
WinePrice Ageof Wine   Average Growing-Season Temperature

Harvest Rain Winter Rain

0 1 2

3 4

β β β

β β ε

= + ⋅ + ⋅

+ ⋅ + ⋅ > +

5.4.2  geoMetric intUition

Given an input x, the goal is to compute an output y. The linear function can be the optimal line 
function where the line can be characterized by a slope and intercept with x- or y-axis, as repre-
sented in Figure 5.14.

Let us consider these blue points as input data points, and we want to fit a linear function. For 
example, predict height y from given age x. Similarly, predict the house price value from the given 
house area.

Figure 5.15 shows the parameters, and the population line is the actual line, and it is given as 
Equation 5.5:

 y xβ β= + + ∈0 1  (5.5)

where y is the linear dependent function, β0 is the population y-intercept, β1 is the population slope, 
and ∈ is the random error. The mean and the variance of the distribution are as follows:

 E y x xβ β( ) = +| 0 1  (5.6)

 y x xβ β σ( )( ) = + + ∈ =var | var 0 1
2 (5.7)

FIGURE 5.13 Winter rain (mm) vs. price.
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5.4.3  MatheMatical forMUlation

The equation of the line mathematically drives the statistical theory of linear regression technique 
is given as in equation 5.8:

 y x i ni i iβ β= + + ∈ = …for 1,2,0 1  (5.8)

To estimate the two unknown parameters β βand0 1, the least-squares criteria are

 S y xi i

i

n

∑β β β β( ) ( )= − −
=

,0 1 0 1
2

1

 (5.9)

FIGURE 5.14 Linear regression scatter plot.

FIGURE 5.15 Parameters of linear regression.
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The least-squares estimators of β βand0 1, say β βˆ and ˆ
0 1, must satisfy

 
S

y x
i

n

i i∑β
β β( )∂

∂
= − − − =β β

=

| 2   ˆ   ˆ 0
0

ˆ , ˆ

1

0 1
0 1

 (5.10)

And

 
S

y x x
i

n

i i i∑β
β β( )∂

∂
= − − − =β β

=

| 2   ˆ   ˆ 0
1

ˆ , ˆ

1

0 1
0 1

 (5.11)

Simplifying these two equation yields

 n x yi

i

n

i

i

n

∑ ∑β β+ =
= =

  ˆ   ˆ  0 1

1 1

 (5.12)

 x x y xi

i

n

i

i

n

i i

i

n

∑ ∑ ∑β β+ =
= = =

ˆ   ˆ    0

1

1
2

1 1

 (5.13)

The above equation is the least-squares normal equation; the solution to the normal equation is

 y xβ β= +ˆ ˆ   ˆ
0 1  (5.14)

where

 y
n

yi

i

n

∑=
=

1

1

 (5.15)

 x
n

xi

i

n

∑=
=

1

1

 (5.16)
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 (5.18)

The residual e is the difference between the observed value yi and their fitted value yi

    for 1, 2 ,= − = …e y y i ni i  (5.19)
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Example 5.1

The rocket propellant data is given in Table 5.1, and the corresponding scatter diagram is shown in 
Figure 5.16. There exists a relationship between shear strength and the age of the propellant. First, 
find the residual and equation of a line.

 S x
x

n
xx
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n

i

i
i

n

4677.69
71,422.56

20
1106.56

1

2 1

2
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= −
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y x

n
xy

i

n
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20
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1
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S

S
xy

xx

ˆ 41,112.65
1106.56

37.151β = = − = −

 ˆ ˆ 2131.3575 37.15 13.3625 2627.820 1β β ( )= − = − =y x

The results computed for the rocket propulsion data in terms of observed value, fitted value, and 
residual are presented in Table 5.2.

TABLE 5.1
Rocket Propellant Data

Observation, i Shear Strength, yi (psi) Age of Propellant, xi (weeks)

1 2158.70 15.50

2 1678.15 23.75

3 2316.00 8.00

4 2061.30 17.00

5 2207.50 5.50

6 1708.30 19.00

7 1784.70 24.00

8 2575.00 2.50

9 2357.90 7.50

10 2256.70 11.00

11 2165.20 13.00

12 2399.55 3.75

13 1779.80 25.00

14 2336.75 9.75

15 1765.30 22.00

16 2053.50 18.00

17 2414.40 6.00

18 2200.50 12.50

19 2654.20 2.00

20 1753.70 21.50
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Example 5.2

Predict the linear regression model based on the data given below in Table 5.3, and Figure 5.17 is 
the corresponding scatter plot.

FIGURE 5.16 Scatter plot of rocket propellant data.

TABLE 5.2
Results for Rocket Propellant Data

Age of Propellant, xi (weeks) Observed Value, yi Fitted Value, yi Residual, ei

15.50 2158.70 2051.94 106.76

23.75 1678.15 1745.42 −67.27

8.00 2316.00 2330.59 −14.59

17.00 2061.30 1996.21 65.09

5.50 2207.50 2423.48 −215.98

19.00 1708.30 1921.90 −213.60

24.00 1784.70 1736.14 48.56

2.50 2575.00 2534.94 40.06

7.50 2357.90 2349.17 8.73

11.00 2256.70 2219.13 37.57

13.00 2165.20 2144.83 20.37

3.75 2399.55 2488.50 −88.95

25.00 1779.80 1698.98 80.82

9.75 2336.75 2265.58 71.17

22.00 1765.30 1810.44 −45.14

18.00 2053.50 1959.06 94.44

6.00 2414.40 2404.90 9.50

12.50 2200.50 2163.40 37.10

2.00 2654.20 2553.52 100.68

21.50 1753.70 1829.02 −75.32

yi 42,627.15∑ = yi 42,627.15∑ = ei 0.00∑ =



191Supervised Learning: Regression

FIGURE 5.17 Scatter plot of hydrocarbon level vs. oxygen purity.

TABLE 5.3
Hydrocarbon Level versus Oxygen Purity Data

S. No. Hydrocarbon Level, x (%) Oxygen Purity, y (%)

1 0.99 90.01

2 1.02 89.05

3 1.15 91.43

4 1.29 93.74

5 1.46 96.73

6 1.36 94.45

7 0.87 87.59

8 1.23 91.77

9 1.55 99.42

10 1.40 93.65

11 1.19 93.54

12 1.15 92.52

13 0.98 90.56

14 1.01 89.54

15 1.11 89.85

16 1.20 90.39

17 1.26 93.25

18 1.32 93.41

19 1.43 94.98

20 0.95 87.33
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Solution:

n = 20
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Therefore, the least-squares estimates of the slope and intercept are

 
S

S
xy

xx

10.17744
0.68088

14.947481β = = =

and

 y x 92.1605 14.94748 1.196 74.283310 1β β ( )= − = − =

The linear regression model is

 y x74.28331 14.94748= +

Example 5.3

To understand mathematically behind regression, let’s see an example where 15 samples of houses 
of a region are given in Table 5.4. The idea is to predict the price y given area of the house x.

The 15 data points are plotted in a graph (Figure 5.18) where the x-axis is the house size in 
terms of 100 square feet and the y-axis is the prize. So given these 15 points, we have to find the 
equation of the line. This is a linear regression problem that consists of 15 independent variables.

 Prize * HouseSize0 1β β= +
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The equation of the above regression problems is given below:

 y x x x x x xp p0 1 1 2 2 3 3 4 4 4 5β β β β β β β= + + + + + + + + ∈

where p is the predictor or independent variable. Let us assume that the expected value of y given 
x is given by the population line.

 E Y X x x x x x xp p|  0 1 1 2 2 3 3 4 4 4 5β β β β β β β( ) = + + + + + + +

FIGURE 5.18 Scatter plot of house size vs. prize.

TABLE 5.4
Actual Housing Prize versus House Size Data

House Number Actual Housing Price (Y) House Size (X)

1 89.5 20.0

2 79.9 14.8

3 83.1 20.5

4 56.9 12.5

5 66.6 18.0

6 82.5 14.3

7 126.3 27.5

8 79.3 16.5

9 119.9 24.3

10 87.6 20.2

11 112.6 22.0

12 120.8 .019

13 78.5 12.3

14 74.3 14.0

15 74.8 16.7

Average 88.84 18.17
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To minimize the sum of squared errors based on the training points, the least-squares line equa-
tion is as follows:

 ��� �� �x x x xp pLeast-Square Line 0 1 1 2 2 3 3β β β β β= + + + + +

Now the data we may have may not form a perfect line. The error function is used to determine 
the deviation between actual and predicted. So, the assumptions about the errors are given as 
follows:

• 0 for 0,1,2,ε( ) = = …E i ni

• , where is unknownσ ε σ σ( ) = ε εi

• The errors εi are independent to each other
• The errors εi are normally distributed (with mean 0 and standard deviation σε)

So, this kind of noise is called Gaussian noise or white noise.

The least-squares regression line is the unique line such that the sum of squared vertical (y) dis-
tances between the data points (blue colored) and the line is the smallest possible. The red-colored 
vertical lines are errors, as given in Figure 5.19.

Let us consider for a training point d x yi i i( )=  ,  where yi is the actual value. The idea is to mini-
mize these errors. There are different methods to identify the error of the model. The mean absolute 
error is the simple one that calculates the average of the absolute value of errors and is given as

 MAE
1 ˆ

1

∑= −
=

n
y y

i

n

i i  (5.20)

where yi is the actual value and ŷi is the predicted value.
The mean squared error is given as MSE:

 MSE
1

  ˆ 2

1

∑( )= −
=

n
y yi l

i

n

 (5.21)

FIGURE 5.19 Measuring the distance between hyperplane and data points.
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where yi is the actual value and ŷi is the predicted value.
The root mean squared error is given as RMSE:

 
n

y yi l
i

n∑ ( )= −
=

RMSE
1 ˆ 2

1
 (5.22)

The rooted absolute error, also known as the residual sum of squares, is given as RAE:
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where yi is the actual value, ŷi is the predicted value, and y   is average value of y.
The rooted square error is RSE, which is similar to RAE:
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The least-squares regression line equation for n data points is given as

 y ax b= +  (5.25)

where a and b are
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Example 5.4

Find the least-squares regression line for the following set of data points {(−1, 0), (0, 2), (1, 4), (2, 5)} 
given in Table 5.5. Plot the given points and identify the regression line.

TABLE 5.5
Sample Data Points

x y Xy x2

−1 0 0 1

0 2 0 0

1 4 4 1

2 5 10 4

x 2∑ = y 11∑ = xy 14∑ = x 62∑ =
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The least-squares regression line equation for n data points is given as

 y ax b= +

where a and b are
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4*14 2*11

4*6 22= −
−

 17/10 1.7= =a

 b
1
4

11 1.7* 2( )= −

 b 1.9=

The least-squares regression line for the given problem is shown in Figure 5.20.

 y x1.7 1.9= +

Example 5.5

The values of x and their corresponding values of y are shown in Table 5.6.

 i. Find the least-squares regression line y = ax + b
 ii. Estimate the value of y when x = 10.

FIGURE 5.20 Least-squares regression line.
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Solution:

The least-squares regression line equation for n data points is given as

 y ax b= +

where a and b are
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= =

 a
5* 49 10* 20

5*30 102= −
−

 a 0.9=

 b
1 
5

20 0.9*10( )= −

 b 2.2=

Thus, the least-squares regression equation is

 y x0.9 2.2= +

Substitute the value of x = 10; then

 y 0.9*10 2.2= +

 y 11.2=

The output for the example is presented in Figure 5.21.

TABLE 5.6
Data for Example 5.5
x 0 1 2 3 4

y 2 3 5 4 6

x y xy x2

0 2 0 0

1 3 3 1

2 5 10 4

3 4 12 9

4 6 24 16

x 10∑ = y 20∑ = xy 49∑ = x 302∑ =
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Example 5.6

The sales of a company (in million dollars) for each year are shown in Table 5.7.

 i. Find the least-squares regression line y ax b= +
 ii. Use the least-squares regression line as a model to estimate the sales of the company in 

2012.

Solution:

First, we can normalize the data for easy computation. Subtract 2005 from x values.

The least-squares regression line equation for n data points is given as

 y ax b= +

x(year) 0 1 2 3 4

y(sales) 12 19 29 37 45

TABLE 5.7
Year vs. Sales Data
x(year) 2005 2006 2007 2008 2009

y(sales) 12 19 29 37 45

x y xy x2

0 12 0 0

1 19 19 1

2 29 58 4

3 37 111 9

4 45 180 16

x 10∑ = y 142∑ = xy 368∑ = x 302∑ =

FIGURE 5.21 (a) Least-squares regression line and (b) predicting the new data point for Example 5.5.
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where a and b are
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5*368 10*142
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5
142 8.4 *10

 b 11.6=

The least-squares regression equation is

 y x8.4 11.6= +

To estimate the sales of the company in 2012, substitute x = 2012 − 2005 = 7 in the least-squares 
regression equation:

 y 8.4* 7 11.6= +

 y 70.4 million dollars=

The output for the given example is shown in Figure 5.22.

Example 5.7

Predict CO2 emission vs. engine size and cylinders of cars for the data shown in Table 5.8. Find 
the mean absolute error.

Independent variables (x): engine size, cylinders, and fuel consumption
Dependent variables (y): CO2 emission

FIGURE 5.22 (a) Least-squares regression line and (b) predicting the new data point for Example 5.6.
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 CO emission Enginesize Cylinders Fuel consumption _ Comb2 0 1  2 3β β β β= + + +

 y xˆ 0 1 1 2 2 3 3β β β β β β= + + +

 y XTˆ β=

 X
x

x

x

T ,  , ,

1

0 1 2 3
1

2

3

β β β β β[ ]= =



















 T 125, 6.2,14,1.98β [ ]=

For the ninth instance, the CO2 emissions are

 CO emission 125 6.2* 2.4 14* 4 1.98*9.22 = + + +

 CO emission for instance 214.12 =ninth

TABLE 5.8
CO2 Emission Data

S. No. Enginesize Cylinders Fuelconsumption_Comb CO2 Emissions

0 2.0 4 8.5 196

1 2.4 4 9.6 221

2 1.5 4 5.9 136

3 3.5 6 11.1 255

4 3.5 6 10.6 244

5 3.5 6 10.0 230

6 3.5 6 10.1 232

7 3.7 6 11.1 255

8 3.7 6 11.6 267

9 2.4 4 9.2 ?

S. No. x1 x2 x3 yi ( )( )=RMSE sqrt average error2

0 2 4 8.5 196 210.23

1 2.4 4 9.6 221 214.888

2 1.5 4 5.9 136 201.982

3 3.5 6 11.1 255 252.678

4 3.5 6 10.6 244 251.688

5 3.5 6 10 230 250.5

6 3.5 6 10.1 232 250.698

7 3.7 6 11.1 255 253.918

8 3.7 6 11.6 267 254.908

9 2.4 4 9.2 214 214.096
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5.4.4  solving oPtiMization ProbleM

The optimization problem can be solved using two different strategies

• Deriving a closed-form solution, and
• Gradient descent

To understand the method of deriving a closed-form solution, let’s take a partial derivative of the 
mean squared error Jn  . For the optimal set of parameters, derivatives of the error concerning each 
parameter must be 0.
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The vector of derivatives
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5.4.4.1  Maxima and Minima
In Figure 5.23, the peaks in the data are called maxima. The global maxima are the highest peak in 
the entire data. The global minima are the lowest trough in the entire data.

For finding minima, let us see an example and set f z( )′ = 0 and solve z:

 f z z=( ) 2 (5.30)

FIGURE 5.23 Representation of maxima and minima.
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The derivative of f z z( ) = 2 is f z( )′ , and it can be written as

 f z z2( )′ =  (5.31)

If z = 0, then the derivative function becomes zero, and this point is known as local maxima or local 
minima:

 f z 0( )′ =  (5.32)

If the derivative is greater than zero or positive, the function increases, which implies that it is 
moving away from the trough. Else if the derivative is lesser than zero or negative, the function 
decreases, which means the function moves toward the trough.

Finding minima by assuming z = −1, then the function f z z( )′ = 2  becomes f ( )′ − = − = −1 2 * 1 2, 
which is decreasing and moving toward the trough (Figure 5.24). Then, increase z by the size of the 
gradient. If the size of the gradient is 2, then z becomes 1.

 z = − + =1 2 1

For the second iteration, by assuming z = 1, then the function f z z( )′ = 2  becomes f ( )′ = =1 2 *1 2,  
which is increasing and moving away from the trough. Then, increase z by the size of the gradient. 
If the size of the gradient is 2, then z becomes 1.

 z = − = −1 2 1

Thus, it is kept jumping between the same two points, which can be overcome by using the appropri-
ate learning rate or step size.

5.4.4.2  Gradient Descent
Gradient descent is an optimization algorithm used to minimize the error function in machine learn-
ing. Gradient descent is used to solve linear regression problems iteratively, as shown in Figure 5.25.

The objective of gradient descent is to minimize the error function. The simple example of the 
parabola for minimizing the error using gradient descent is explained below in Figure 5.26. If we 

FIGURE 5.24 Finding minima.
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start at point a and move left, the function f is increasing, and if we move right, it is decreasing. 
Therefore, choose the direction where it is decreasing.

But not all the functions are like a parabola. The other example is shown in Figure 5.27, where 
the local minima and global minima are depicted clearly. In this graph, if b moves right, it will reach 
local minima.

Define a cost function J θ( ):

 J h x yi i

i

m∑θ = −



=

( )
1

2
( )( ) ( )

1

2

 (5.33)

 h x xi i
i

n∑ β=
=

( )
0

 (5.34)

FIGURE 5.25 Geometric intuition of gradient descent.

FIGURE 5.26 Minimizing error in a parabola using gradient descent.
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where h x i( )  ( )  is the predicted value and y i( ) is the actual value. The main objective is to learn θ , 
which minimizes cost function J θ( )  .

Algorithm for Gradient Descent
Begin

Step 1: Initialize θ Randomly
Step 2: Do
{
Step 3: Jθ θ α θ( )= − ∇θ

}
Step 4: Jα ε( )∇ >while

The algorithm for gradient descent is as follows. First, initialize θ  randomly or often set to zero 
and then iterate. The learning rate is denoted as α  . The stopping condition is that either J is not 
changing quickly or the gradient is sufficiently small. Then, the process is repeated until it reaches 
minimal error or no further improvement is possible.

In gradient descent, the learning rate α   is used to ensure whether gradient descent is working 
correctly or not. The smaller the learning rates α  , the slower the convergence. Choose α  as 0.001, 
0.01, 0.1, and 1.

 Jj j
j

θ θ α
θ

θ( )= − ∂
∂

  (5.35)

Let the x-axis denote the number of iterations in gradient descent. θ( )J  should decrease at every 
iteration, as observed in Figure 5.28.

FIGURE 5.27 Minimizing error using an irregular function other than the parabola.
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5.4.4.3  LMS (Least Mean Square) Update Rule
Apply derivative to the cost function J θ( ):
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 (5.36)

5.4.4.4  SGD Algorithm
Stochastic gradient descent (SGD) is a widely used variant of gradient descent.

Algorithm for Stochastic Gradient Descent
Begin

Step 1: Repeat{
Step 2: For I = 1 to m do

Step 3: y h x xj j
i i

j
iθ θ α ( )( )= + − ( )  (for every j)

Step 4: End for
}
Step 5: until convergence

FIGURE 5.28 Learning rate.
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5.4.5  real-worlD aPPlications

Many real-world applications make use of linear regression techniques, as shown in Figure 5.29. 
To analyze the trend overtime -plays an important role in business sectors. The analyses of GDP, 
oil price, and stock prices are well-known examples of trend analysis. With the help of statistical 
analysis, the business can gather new insights and achieve operational efficiency.

5.4.5.1  Predictive Analysis
It can be used to generate insights on customer behavior, understanding business, and factors influ-
encing profitability. Linear regressions can be used in business to evaluate trends and make estimates 
or forecasts. Linear regression can also analyze the marketing effectiveness, pricing, and promo-
tions on sales of a product. Linear regression can also be used to assess risk in the financial services 
or insurance domain. The risk can be assessed based on the attributes of the car, driver information, 
or demographics. The results of such an analysis might guide important business decisions.

FIGURE 5.29 Applications of linear regression.
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In the credit card industry, a financial company may be interested in minimizing the risk portfo-
lio and understanding the top five factors that cause a customer to default. Then, based on the results, 
the company could implement specific EMI options to minimize default among risky customers.

To study the relationship between monthly e-commerce sales and online advertising costs, the 
survey results for seven online stores for the last year are given in Table 5.9. Identify the impact of 
online advertising in e-commerce sales.

Solution:
The scatter plot in Figure 5.30 clearly shows a positive relationship between the independent 

variable online advertising and the dependent variable e-commerce sales.

 β β= + ⋅MonthlySales Online Advertising0 1

The regression line is given as

 = +MonthlySales 125.8 171.5* Online Advertising

TABLE 5.9
E-Commerce Data

Online 
Store

Monthly E-Commerce 
Sales (in 1000 s)

Online Advertising 
Dollars (1000 s)

1 368 1.7

2 340 1.5

3 665 2.8

4 954 5

5 331 1.3

6 556 2.2

7 376 1.3

FIGURE 5.30 Online advertising versus sales.
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5.4.5.2  Medical Outcome Prediction
Linear regression plays an important role in medical analysis. For instance, smoking reduces the life 
span, and linear regression analyzes the relationship between these two variables. In this scenario, 
the relationship can be defined using the simple linear regression such as the following:

 β β= +LifeSpan Smoking0 1

where life span is the dependent variable and smoking is the independent variable. Similarly, it can 
also be represented using multiple linear regression form by adding another independent variable 
socioeconomic status:

 β β β= + +LifeSpan Smoking Socioeconomicstatus0 1 1

For another instance, to measure the lung capacity based on the exposure of dust, consider the scat-
ter plot in Figure 5.31, where the x-axis is the exposure to dust, and the y-axis is the measure of lung 
capacity (PEFR or PEAK expiratory flow rate).

 β β= + ⋅PEFR Exposure0 1

The regression line for this model is shown in Figure 5.32.

5.4.5.3  Wind Speed Prediction
Wind energy is one of the key renewable energies which is clean and exhaustive. Wind speed pre-
diction plays a key role in wind farms, disaster management, and aviation. Therefore, it is an impor-
tant technology in the wind power field. Due to their chaotic and fluctuating nature, predicting wind 

FIGURE 5.31 Exposure vs. PEFR.
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speeds accurately is difficult. The wind speed depends on various aspects. Therefore, multiple lin-
ear regression models can be utilized to design the model. Typically, there are two general methods 
for wind prediction: Short-term prediction involves timescales of minutes and hours, while long-
term involves a timescale of months or years.

5.4.5.4  Environmental Effects Monitoring
Time series regression is widely used in environmental epidemiology. Exposure to air pollution may 
lead to acute respiratory infections in humans. The regression analysis can be carried out to know 
the impact of exposure to air pollution on respiratory infection in humans. This is represented as

 β β= +Exposure toair pollution Respiratory Infection0 1

In Canada, the Environmental Effects Monitoring program uses statistical linear regression tech-
niques to measure the effects of pulp mill or metal mine effluent on the aquatic ecosystem.

5.4.6  linear regression in Practice Using Python

5.4.6.1  Simple Linear Regression Using Python
Before implementing regression, let us understand the data file. The sample data file we have used is 
shown below. It has two columns – years of experience and salary. Our goal is to predict the salary 
based on the number of years of experience.

FIGURE 5.32 Regression line.



210 Machine Learning for Decision Sciences with Case Studies in Python

A sample screenshot of the file is shown below:

# Coding →
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
 
#For this example, we have created a sample file, Salary_Data.CSV file. I 
have placed it in my C:/Python #Files/ directory
 
# Importing the dataset
dataset = pd.read_csv('C:/Python Files/Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
 
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 
1/3, random_state = 0)
 
# Feature Scaling – It means changing the range of values without 
changing the shape of the distribution. The range is often set to 0 to 1
 
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

A B

Years of Experience Salary

1.1 39,343

1.3 46,205

1.5 37,731

2 43,525

2.2 39,891

2.9 56,642

3 60,150

3.2 54,445

3.2 64,445

3.7 57,189

3.9 63,218

4 55,794

4 56,957

4.1 57,081

4.5 61,111

4.9 67,938

5.1 66,029

5.3 83,088

5.9 81,363

6 93,940
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#sc_y = StandardScaler()
#y_train = sc_y.fit_transform(y_train)
 
# Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
 
# regression coefficients
print('Coefficients: \n', regressor.coef_)
 
# OUTPUT →
Coefficients:
[23651.14412001]
 
print(regressor.intercept_)
 
# OUTPUT →
71022.5
 
# Predicting the Test set results
y_pred = regressor.predict(X_test)
 
# Visualizing the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show() #Figure 5.33 

# Visualizing the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')

FIGURE 5.33 Training set results.
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plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show() ###Figure 5.34 

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_pred)#mse
print(np.sqrt(mean_squared_error(y_test, y_pred))) #rmse
 
#OUTPUT →
4585.4157204675885
 
# print the R-squared value for the model
regressor.score(X_test, y_test)#rsquare
 
#OUTPUT →
0.9749154407708353

5.4.6.2  Multiple Linear Regression Using Python
Let us understand the data file for multiple linear regression. The sample data file we have used is 
shown below. It has five columns, as shown below. Our goal is to predict the profit based on multiple 
variables – spending on R&D, administrative spending, marketing spending, and the state in which 
the start-up is located.

The sample screenshot of the file is given in Figure 5.35.

FIGURE 5.34 Test set results.
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# Multiple Linear Regression
 
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
 
# Importing the dataset
dataset = pd.read_csv('C:/Users/mpandey1/Desktop/ML using Python 
Training/day4/Section 5 – Multiple Linear Regression/50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values
 
# Encoding categorical data – since we cannot use the text values as it 
is.
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()
 
# Avoiding the Dummy Variable Trap
X = X[:, 1:]
 
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split

FIGURE 5.35 Screenshot of sample dataset.



214 Machine Learning for Decision Sciences with Case Studies in Python

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 
0.2, random_state = 0)
 
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)
 
# Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
 
# Predicting the Test set results
y_pred = regressor.predict(X_test)
 
# regression coefficients
print('Coefficients: \n', regressor.coef_)
 
#OUTPUT →
#Coefficients:
# [ -415.38222603 333.57777773 35726.28774249 851.30163448
# 4519.88277698]
 
print(regressor.intercept_)
 
#OUTPUT →
109446.44724999998
 
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_pred)#mse
 
print(np.sqrt(mean_squared_error(y_test, y_pred))) #rmse
 
#OUTPUT →
9137.99015279494
 
# print the R-squared value for the model
regressor.score(X_test, y_test)#rsquare
 
#OUTPUT →
0.9347068473282425
 
from sklearn.linear_model import Ridge
ridgeReg = Ridge(alpha=0.05, normalize=True)
ridgeReg.fit(X_train,y_train)
pred = ridgeReg.predict(X_test)
mean_squared_error(y_test,pred)#mse
ridgeReg.score(X_test, y_test)
 
#OUTPUT →
0.9091504993722859
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from sklearn.linear_model import Lasso
lassoReg = Lasso(alpha=0.8, normalize=True)
lassoReg.fit(X_train,y_train)
predl = lassoReg.predict(X_test)
mean_squared_error(y_test,predl)#mse
lassoReg.score(X_test, y_test)
 
#OUTPUT →
0.934827712684663

SUMMARY

This chapter introduced the concepts of supervised learning and the types of supervised learning. 
A detailed analysis of supervised learning for regression is covered in this chapter. The simple and 
multiple linear regression methods with solved examples are illustrated to depict the procedure to 
find the optimal regression line clearly. In addition, the various error functions to converge the error 
between actual and predicted values are also shown clearly. Various real-world applications such 
as sales forecasting, medical prediction, and wind speed prediction are exemplified. Finally, sim-
ple and multiple linear regression implementation using Python is comprehensively demonstrated, 
starting from handling data to feature scaling, thus determining the output.

REVIEW QUESTIONS

 1. Estimate the cost of oil well drilling based on the depth. The data is collected from 
Philippines offshore oil wells and given in Table 5.10. Draw the scatter plot. Based on a 
scatter plot, predict a linear regression model.

 2. Calculate the residual for the above problem.
 3. Find the difference between simple linear regression and multiple linear regression with 

appropriate example.

TABLE 5.10
Oil Well Drilling Data

Depth Cost

5000 2596.8

5200 3328.0

6000 3181.1

6538 3198.4

7109 4779.9

7556 5905.6

8005 5769.2

8207 8089.5

8210 4813.1

8600 5618.7

9026 7736.0

9197 6788.3

9926 7840.8

10,813 8882.5

13,800 10,489.5

14,311 12,506.6
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TABLE 5.11
Advertisement Data

TV Radio Newspaper Sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9

TABLE 5.12
Water Pollution Variables

Variable Description

Y Mean nitrogen concentration (mg/liter)

x1 Percentage of agriculture land

x2 Percentage of forest land

x3 Percentage of residential land

x4 Percentage of industrial land

TABLE 5.13
Water Pollution Data in New York Rivers

S. No. River Y x1 x2 x3 x4

1 Olean 1.10 26 63 1.2 0.29

2 Cassadaga 1.01 29 57 0.7 0.09

3 Oatka 1.90 54 26 1.8 0.58

4 Neversink 1.00 2 84 1.9 1.98

5 Hackensack 1.99 3 27 29.4 3.11

6 Wappinger 1.42 19 61 3.4 0.56

7 Fishkill 2.04 16 60 5.6 1.11

8 Honeoye 1.65 40 43 1.3 0.24

9 Susquehanna 1.01 28 62 1.1 0.15

10 Chenango 1.21 26 60 0.9 0.23

11 Tioughnioga 1.33 26 53 0.9 0.18

12 West Canada 0.75 15 75 0.7 0.16

13 East Canada 0.73 6 84 0.5 0.12

14 Saranac 0.80 3 81 0.8 0.35

15 Ausable 0.76 2 89 0.7 0.35

16 Black 0.87 6 82 0.5 0.15

17 Schoharie 0.80 22 70 0.9 0.22

18 Raquette 0.87 4 75 0.4 0.18

19 Oswegatchie 0.66 21 56 0.5 0.13

20 Cohocton 1.25 40 49 1.1 0.13
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 4. Find the impact of advertising in TV, radio, and newspaper on sales as shown in Table 5.11. 
Identify the regression line.

 5. Find the multiple regression model for the given data in Table 5.13. Variables in the study 
of water pollution in New York rivers are given in Table 5.12.

 6. Find the least-squares regression line using data points {(−2, −1), (1, 1), (3, 2)}. Plot the 
given data points and the regression line in the graph.

 7. Students attended an entrance quiz for a machine learning course. Quiz marks and the ML 
grades are given in Table 5.14.

Perform least-squares regression and plot it in a graph.

TABLE 5.14
Quiz Mark Data

Student xi yi

1 95 85

2 85 95

3 80 70

4 70 65

5 60 70
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6 Supervised Learning
Classification

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the difference between supervised learning algorithms used for regression and 
classification

• Comprehend the various supervised learning algorithms related to classification problems
• Know the basic mathematical concepts involved in logistic regression, decision trees, ran-

dom forests, and support vector machines
• Solve examples based on the algorithms covered in this chapter
• Implement the supervised learning algorithms using Python for practical problems

6.1  INTRODUCTION

The idea of the classification problem is to classify the outcome variable into one or more categories. 
Then, the supervised learning method learns from the labeled data. Logistic regression, decision 
tree, and support vector machine (SVM) are the various supervised learning classification algo-
rithms widely used. In this chapter, a detailed description of these algorithms, their mathematical 
modeling, merits and demerits, solved examples, and real-world applications are provided with step-
by-step implementation in Python.

6.2  USE CASES OF CLASSIFICATION

Classification techniques are used for predictive analysis, image classification, and text analysis. In addi-
tion, many real-world applications such as handwritten character recognition, self-driving cars, remote 
sensing, marketing, and biomedical analysis utilize classification algorithm. As we walk through this 
chapter, several real-world examples are illustrated in the context of the classification algorithm.

6.3  LOGISTIC REGRESSION

Logistic regression is a supervised classification technique widely used to solve many real-world 
problems by data scientists. For example, various useful insights about big data can be obtained 
using logistic regression. Logistic regression is a simpler and powerful algorithm for both binary 
classification and multiclass classification problems. Some examples of binary classification prob-
lems are detecting spam email or not, whether an online transaction is fraudulent or not, and whether 
the examined tumor is malignant. In all of these above classification problems, we are trying to pre-
dict the output label y is either 0 (negative class) or 1 (positive class).

 
( )

( )
{ }∈






y 0,1

0 Negativeclass e.g., nota fraudulent transaction

1 Positiveclass e.g.,fraudulent transaction

Logistic regression is not a regression problem, as the name implies. It is different from linear 
regression, as given in Table 6.1.

DOI: 10.1201/9781003258803-6
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6.3.1  geoMetric intUition

Logistic regression makes use of the sigmoid function for separating two classes, as given in 
Equation 6.1. The logistic sigmoid function is otherwise called logit.

 σ =
+ −z

e z( )
1

1
 (6.1)

The value of sigmoid function σ ( )z  is bounded between 0 and 1, which looks like S as in Figure 6.1.
The hypothesis function or the threshold ( )θh x   is at 0.5.

 ≤ ≤θh x0 ( ) 1

 
σ θ( )( ) = =

+
θ θ( )−

h x x
e

T

xT

1

1  (6.2)

If ( ) ≥θh x  0.5, then predict output label y as 1. Else if ( ) <θh x  0.5, then predict output label y as 0.
Let us consider weight vector as βi, observations say xi and bias β0 as intercept in linear regres-

sion. Assume for a binary classification problem, one class is 0, and another class is one, and the 
formula for predicting probabilities is given below.

 

∑β β
( )= =

+ +





P Y X
xi i

0 |
1

1 exp 0

 (6.3)
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β β

β β
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P Y X
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x

i i

i i

1 |
exp

1 exp

0

0

 (6.4)

TABLE 6.1
Linear Regression Versus Logistic Regression

Linear Regression Logistic Regression

• Predicts continuous output value
• The aim is to identify the best fit line

β β= +Y x0 1 1

• Used to solve regression analysis
• Uses least squares regression for estimating parameters
• Applications: stock value prediction, wind speed 

prediction

• Predicts categorical output value
• The aim is to identify an S-shaped curve

β β
=







= +p

p
xln

1
0 1 1

• Used to solve the classification problem
• Uses MLE to estimate parameters
• Applications: spam email classification, customer 

churn prediction
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where exp[x] is similar to ex. More simply, it can be rewritten as

 ∑σ β β( )= = − +



P Y X xi i0 |    0  (6.5)

 ∑σ β β( )( )= = − − +





P Y X xi i1 |  1   0  (6.6)

where

 σ ( ) =
+ −z

e z

1

1

With a simple example, let us understand whether a person has a lung disease based on age and 
smoking habit.

 ( )= =
+ β β β( )− + +

P D
e

1 age,smokinghabit
1

1 age smokinghabit0 1 2

 ( )= =
+ β β β( )− + +P D x x

e x x
1 ,  

1

1
1 2

0 1 1 2 2

 ( )= =
+

β β β

β β β

( )

( )

− + +

− + +
P D

e

e
0 | age,smokinghabit

1

age smokinghabit

age smokinghabit

0 1 2

0 1 2

 ( )= =
+

β β β

β β β

( )

( )

− + +

− + +P D x x
e

e

x x

x x
0 ,  

1
1 2

0 1 1 2 2

0 1 1 2 2

where
D = presence of lung disease, discrete value {1 – Yes and 0 – No}
x1 = age, continuous value
x2 = smoking habit, discrete value {1 – Yes and 0 – No}
To estimate the parameters β β β, , and0 1 2, maximum likelihood estimation (MLE) is used

 β β
−







= +p

p
xln

1
0 1 1 (6.7)

FIGURE 6.1 Sigmoid curve.
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where −p p1  is the odds ratio and ( )−p pln 1  is the logit odds ratio.

 =
−
p

p
Odds

(event)

1 (event)
 (6.8)

The odds ratio is the ratio between the probability of success and the probability of failure. Let us 
understand how to calculate the odds ratio with a simple illustration using Table 6.2.

Odds that a person who had anger treatment got a heart attack = R11/R21 = 3/6 = 0.5
Odds that a person who had not undergone anger treatment got a heart attack = R12/R22 = 7/4 = 1.75
Relative odds/odds ratio = (R12/R22)/(R11/R21) = 1.75/0.5 = 0.285
To estimate the probability of heart attack with respect to anger treatment, logistic function is 

used

 β β
−







= +p

p
xln

1
  0 1 1

where β βand0 1 are regression coefficients and p is the probability of a person who has suffered a 
heart attack.

6.3.2  variants of logistic regression

The major types of logistic regression (Figure 6.2) are

• Simple logistic regression
• Multiple logistic regression
• Binary logistic regression

6.3.2.1  Simple Logistic Regression
It is a simpler form with only one independent variable. The general form of simple logistic regres-

sion is β β
−







= +p

p
ln

1
  0 1. To predict the presence of heart disease (Yes/No) based on only one 

variable, say a smoking habit is a simple logistic regression type. The variable description for heart 
disease y and smoking habit x1 is

 =





yPresenceof heart disease

1 Yes

0 No

TABLE 6.2
Example Illustration

Heart Attack

Anger Treatment

Yes (1) No (0) Total

Yes(1) 3(R11) 7(R12) 10 

No(0) 6(R21) 4(R22) 10

9 11 20
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 =





xSmokinghabit

1 Smoker
0 Nonsmoker1

The simple logistic function for predicting heart disease y based on smoking habit x1 is given as

 β β
( )

( )
=

− =






= +

p y x

p y x
xln

1

1 1
1

1
0 1 1

6.3.2.2  Multiple Logistic Regression
If we have more than one independent variable, say { }…x x xn, , ,1 2 , then, it is called multiple logistic 
regression. The general form of multiple logistic regression is in Equation 6.3

 β β β
−







= + + +p

p
x xn nln

1
  0 1 1  (6.9)

To predict the presence of heart disease y (Yes/No) based on more than one variable, say smoking 
habit x  1 and age-group x2 are examples of multiple logistic regression.

 β β β
( )

( )
=

− =






= + +

p y x x

p y x x
x xln

1 ,

1 1 ,
1 2

1 2
0 1 1 2 2 (6.10)

6.3.2.3  Binary Logistic Regression
It tries to predict the probability of binary target (0, 1). Binary logistic regression is a simpler 
method that makes use of the sigmoid function. For instance, as shown in Figure 6.3, to predict 
whether it will rain tomorrow or not based on humidity, the target-dependent variable “Will it Rain” 
contains exactly two classes, say rain (1) and no rain (0).

 ( )= =
+ β β( )− +P

e
rain 1 | humidity  

1

1 humidity0 1

FIGURE 6.2 Variants of logistic regression.
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 ( )= =
+

β β

β β

( )

( )

− +

− +P
e

e
rain 0 | humidity  

1

humidity

humidity

0 1

0 1

Few other examples of binary logistic regression classification:

• What factors influence a person’s decision to travel for leisure?
Y = 1 if visit for leisure, 0 if not

• What factors determine baby birth weight?
Y = 1 if baby birth weight is low, 0 if not

• Which demography is more likely to vote in favor of new legislation?
Y = 1 if a person voted Yes, 0 if not

• Which customers are more likely to buy a new car?
Y = 1 if a new car is bought, 0 if not

6.3.2.4  Multiclass Logistic Regression
Multiclass logistic regression tries to predict the probability of more than two target classes. Instead 
of using the sigmoid function, the softmax function is used for multiclass classification problems. 
Examples of multiclass logistic regression classification are given below.

Which party is a person going to vote for?

 

−
−
−









Republician 1

Democratic 2
Independent 3

What kind of symptoms does a person have?

 

−
−

−
−










Symptoms

None 0
Mild 1

Moderate 2
Severe 3

The two types of multiclass logistic regression are ordinal and nominal logistic regressions.

6.3.2.5  Nominal Logistic Regression
It is a type of multiclass logistic regression, where the target-dependent variable consists of more 
than two class labels. There is no inherent or natural ordering present in nominal class variables.

FIGURE 6.3 Binary logistic regression.



225Supervised Learning: Classification

Examples of the nominal variable are

 

−
−

−
−













Occupationalstatus 

Self employed 0

 Government employee 2

Privateemployee 3

Unemployed 1

For instance, let us consider a nominal variable called the type of a target variable. We aim to clas-
sify the target variable based on the input variables age-group and smoking.

 =
−
−

−









YTarget dependent variable Cancer type

 Lungcancer  0, 

Mouthcancer   1

other 2

 =
≤
>






xIndependentvariable Agegroup

0  if 50

1  if 501

 =
−

−






xIndependentvariable Smoking

0 Nonsmoker

1 Smoker
2

To perform multiclass logistic regression, let us assume any category as a reference and then sepa-
rately compare with the other two categories. For example, let us consider lung cancer {0} as a refer-
ence category and first compare mouth cancer {1} versus lung cancer {0} and later other {2} versus 
lung cancer {0}. Then, the odds ratio (OR) needs to be calculated for each separate comparison.
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( )= =

=
P Y

P Y
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1

0
1vs0
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0
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The logit expression for two comparisons is given as
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The logistic function for category mouth cancer {1} versus lung cancer {0} is
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The logistic function for category other {2} versus carcinoma {0} is
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6.3.2.6  Ordinal Logistic Regression
It is a type of multiclass logistic regression, where the target variable consists of more than two class 
labels. The natural order is present in the ordinal class variable. Examples of the ordinal variable are 
the performance of students and tumor grade.

 










Tumor grade 

Well differentiated

Modratelydifferentiated

Poorlydifferentiated

 









Performanceof student 
Good

Average

Poor

6.3.3  oPtiMization ProbleM

Optimization is a minimization or maximization problem. Let the actual output be y and the pre-
dicted output be ŷ, and the objective is to minimize the difference between the predicted output and 
actual output as given in Equation 6.4.

 ( )−y yObjective is tomin ˆ  (6.11)

Cross-entropy loss function LCE is the function used in logistic models

 ( )= −L p y xlogCE   (6.12)

 ( )( ) ( )= + − −p y x y y y ylog | log ˆ 1 log 1 ˆ  (6.13)

 ( )( )= − + − − L y y y ylog ˆ 1 log 1 ˆCE  (6.14)

6.3.4  regUlarization

The model performs well for training data and does not classify new unseen data, which is known 
as the overfitting problem. Overfitting occurs when our model fits with too much data. This can be 
resolved by using regularization term to generalize the logistic regression model. Regularization 
can be done by adding a penalty to the weight parameters. L1 and L2 regularizations are the 
two forms of regularizations. L2 regularization is a widely used one, and the general form is in 
Equation 6.15.

 ∑λ λ=
=

w wj

j

m

2
| |

2
2 2

1

 (6.15)

where λ is the regularization parameter.
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6.3.5  real-worlD aPPlications

6.3.5.1  Medical Diagnosis
Several studies utilized logistic regression for disease diagnosis. Evans County dataset collected by 
cohort study predicts the presence of heart disease using the logistic regression model. Some of the 
variables of the Evans County dataset are given in Table 6.3.

The multiple logistic regression form to predict coronary heart disease is given in Figure 6.4.

 ( )
( )=

− =









 =

+ β β β β β( )− + + + +

P

P e
ln

CHD 1 | CAT,CHL,SMK,ECG

1 CHD 1 | CAT,CHL,SMK,ECG

1

1 CAT CHL SMK ECG0 1 2 3 4

Several studies on cancer survival utilized the cancer dataset and performed multiclass ordinal 
logistic regression, as shown in Figure 6.5. Some of the variables of the cancer dataset are given in 
Table 6.4.

6.3.5.2  Text Classification
Data scientist widely uses logistic regression for text analysis and classification. Several applications 
such as sentiment analysis, Twitter data classification, spam email identification, and recommenda-
tion system utilize logistic regression. For example, you have a movie review, says “Very Boring,” 
and the aim is to predict whether this review has a positive or negative review, as given in Figure 6.6.

6.3.5.3  Marketing
The logistic regression technique is widely used to analyze customer behavior, retain the customer, 
and check a customer’s creditworthiness. Customer churn prediction application uses logistic 

TABLE 6.3
Evans County Dataset Variables Description

Variable Value Type

CHD (coronary heart disease) 1 – present
0 – absent

Discrete, binary value

CAT (catecholamine level) 1 – high
0 – normal

Discrete, binary value

CHL (cholesterol) - Continuous

SMK (smoking) 1 – ever smoked
0 – never smoked

Discrete, binary value

ECG (ECG abnormality) 1 – presence
0 – absence

Discrete, binary value

FIGURE 6.4 Binary multiple logistic regression.
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regression technique more efficiently. In churn prediction, the logistic regression model classifies 
customers into three types, namely newly acquired customer, existing customer, and churn cus-
tomer (who decided to end their relation). The customer can end their relationship based on various 
factors such as customer service. The variable description of churn prediction is given in Table 6.5.

6.3.6  logistic regression in Practice Using Python

Logistic regression is named for the function used at the core of the tactic, the logistic function. The 
logistic function, also called the sigmoid function, is developed by statisticians to elucidate proper-
ties of an increase in population, rising quickly and maxing out at the environment’s carrying capac-
ity. It’s an S-shaped curve that assumes any real-valued number and maps it into a worth between 0 
and 1 but never exactly at those limits.

 ( )+ −e1 1 value^

TABLE 6.4
Endometrial Cancer Dataset

Variable Value Type

Grade 0 – well-differentiated
1 – moderately differentiated
2 – poorly differentiated

Discrete, multiclass ordinal

Estrogen 1 – ever used
0 – never used

Discrete, binary value

Age - Continuous

SMK(smoking) 1 – current smoker
0 – not a current smoker

Discrete, binary value

FIGURE 6.6 Logistic regression in text classification.

FIGURE 6.5 Ordinal multi-class logistic regression.
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where e is that the base of the natural logarithms (Euler’s number or the EXP() function in your 
spreadsheet) and value is that the particular numerical value that you just simply want to remodel. 
Below might be a plot of the numbers between −5 and 5 transformed between the range 0 and 1 
using the logistic function.

Logistic regression could also be a linear method, but the predictions are transformed using the 
logistic function. The impact of this is often that we will not understand the predictions as a linear 
combination of the inputs as we will with linear regression; for instance, continuing from the above, 
the model is often stated as

 ( )= ++ +p X e eb b X b b X( ) 1^( ) ^( )0 1 0 1

We don’t want to dive into the math an excessive amount, but we will rotate the above equation as 
follows (remove the exponent term by adding a logarithm (ln) to the other):

 ( ) = +p X p X b b Xln ( ) 1 – ( ) *0 1

This is beneficial since we’ll notice that the output on the right is calculated linearly again (just like 
linear regression), and the input on the left might be a log of the default class’s probability. This ratio 
on the left is known as the default class’s chances (we’ve always used odds instead of probabilities; 
for example, odds are used in horse racing instead of probabilities). Odds are calculated as a ratio of 
the probability of an event divided by the probability of not occurring; for example, 0.8/(1 − 0.8) has 
a probability of 4. So instead, we could write:

 = +b b Xln(odds) *0 1

We call this left side the log-odds or the probit since the chances are log-converted. Of course, other 
types of functions can be used for the transform (which is beyond the scope of this article). Still, 
it’s customary to ask for the transformation that relates the linear regression equation to the prob-
abilities due to the link function, such as the probit link function. Then, we can return the exponent 
to its appropriate place and express it as

 ( )= +e b b Xodds *^
0 1

All of this lets us see that the model is still a linear combination of inputs but that this linear com-
bination is related to the default class’s log-odds. For explaining the logistic regression, we will be 
using a sample dataset called the Titanic dataset. Our goal is to predict, -the values for the variables 
(Pclass – Passenger class of travel, Name of the passenger, gender of the passenger, Age of the 
passenger, If they are related to any of other passengers – (like a spouse, sibling, or parent/child of 
another passenger and the fare paid) – if the person could have survived in the titanic mishap.

TABLE 6.5
Churn Prediction

Variable Value Type

Customer (y) 0 – new customers
1 – existing customer
2 – churn customer

Discrete, multiclass 

Customer service (x1) 1 – satisfied
0 – not satisfied

Discrete, binary value
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import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import sklearn

from pandas import Series, DataFrame
from pylab import rcParams
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn.metrics import classification_report

Survived Pclass Name Sex Age
Siblings/Spouses 

Aboard
Parents/Children 

Aboard Fare

0 3 Mr. Owen Harris Braund Male 22 1 0 7.25

1 1 Mrs. John Bradley (Florence 
Briggs Thayer) Cumings

Female 38 1 0 71.2833

1 3 Miss. Laina Heikkinen Female 26 0 0 7.925

1 1 Mrs. Jacques Heath (Lily May 
Peel) Futrelle

Female 35 1 0 53.1

0 3 Mr. William Henry Allen Male 35 0 0 8.05

0 3 Mr. James Moran Male 27 0 0 8.4583

0 1 Mr. Timothy J McCarthy Male 54 0 0 51.8625

0 3 Master. Gosta Leonard Palsson Male 2 3 1 21.075

1 3 Mrs. Oscar W (Elisabeth 
Vilhelmina Berg) Johnson

Female 27 0 2 11.1333

1 2 Mrs. Nicholas (Adele Achem) 
Nasser

Female 14 1 0 30.0708

1 3 Miss. Marguerite Rut 
Sandstrom

Female 4 1 1 16.7

1 1 Miss. Elizabeth Bonnell Female 58 0 0 26.55

0 3 Mr. William Henry 
Saundercock

Male 20 0 0 8.05

0 3 Mr. Anders Johan Andersson Male 39 1 5 31.275

0 3 Miss. Hulda Amanda Adolfina 
Vestrom

Female 14 0 0 7.8542

1 2 Mrs. (Mary D Kingcome) 
Hewlett

Female 55 0 0 16

0 3 Master. Eugene Rice Male 2 4 1 29.125

1 2 Mr. Charles Eugene Williams Male 23 0 0 13

0 3 Mrs. Julius (Emelia Maria 
Vandemoortele) Vander Planke

Female 31 1 0 18

1 3 Mrs. Fatima Masselmani Female 22 0 0 7.225

0 2 Mr. Joseph J Fynney Male 35 0 0 26

1 2 Mr. Lawrence Beesley Male 34 0 0 13
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The first thing we are going to do is to read in the dataset using the Pandas' read_csv() function. 
Then, we will put this data into a Pandas DataFrame, called “titanic,” and name each of the columns.

data = pd.read_csv("titanic.csv")
data.columns = ['Survived','Pclass','Name','Sex','Age','Siblings/Spouses 
Aboard','Number of Parents/Children Aboard','Fare']
data.head()

# The OUTPUT is shown below – top 5 values

6.3.6.1  Variable Descriptions
Survived – Survival (0 = No; 1 = Yes); Pclass – Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd); Name – 
Name; Sex – Sex; Age – Age; SibSp – Number of Siblings/Spouses Aboard; Parch – Number of 
Parents/Children Aboard; Fare – Passenger Fare (British pound)

6.3.6.2  Checking for Missing Values
It’s easy to check for missing values by calling the isnull() method, and the sum() method off of that, 
to return a tally of all the true values that are returned by the isnull() method.

data.isnull()
#The OUTPUT is shown below.

Survived Pclass Name Sex Age
Siblings/Spouses 

Aboard
Number of Parents/

Children Aboard Fare

0 0 3 Mr. Owen Harris Braund Male 22.0 1 0 7.2500

1 1 1 Mrs. John Bradley (Florence 
Briggs Thayer) Cum...

Female 38.0 1 0 71.2833

2 1 3 Miss. Laina Heikkinen Female 26.0 0 0 7.9250

3 1 1 Mrs. Jacques Heath (Lily 
May Peel) Futrelle

Female 35.0 1 0 53.1000

4 0 3 Mr. William Henry Allen Male 35.0 0 0 8.0500

Survived Pclass Name Sex Age Siblings/Spouses Aboard Number of Parents/Children Aboard Fare

0 False False False False False False False False

1 False False False False False False False False

2 False False False False False False False False

3 False False False False False False False False

4 False False False False False False False False

5 False False False False False False False False

6 False False False False False False False False

7 False False False False False False False False

8 False False False False False False False False

9 False False False False False False False False

10 False False False False False False False False

11 False False False False False False False False

12 False False False False False False False False

13 False False False False False False False False

14 False False False False False False False False

15 False False False False False False False False

(Continued)
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Survived Pclass Name Sex Age Siblings/Spouses Aboard Number of Parents/Children Aboard Fare

16 False False False False False False False False

17 False False False False False False False False

18 False False False False False False False False

19 False False False False False False False False

20 False False False False False False False False

21 False False False False False False False False

22 False False False False False False False False

23 False False False False False False False False

24 False False False False False False False False

25 False False False False False False False False

26 False False False False False False False False

27 False False False False False False False False

28 False False False False False False False False

29 False False False False False False False False

... ... ... ... ... ... ... ... ...

857 False False False False False False False False

858 False False False False False False False False

859 False False False False False False False False

860 False False False False False False False False

861 False False False False False False False False

862 False False False False False False False False

863 False False False False False False False False

864 False False False False False False False False

865 False False False False False False False False

866 False False False False False False False False

867 False False False False False False False False

868 False False False False False False False False

869 False False False False False False False False

870 False False False False False False False False

871 False False False False False False False False

872 False False False False False False False False

873 False False False False False False False False

874 False False False False False False False False

875 False False False False False False False False

876 False False False False False False False False

877 False False False False False False False False

878 False False False False False False False False

879 False False False False False False False False

880 False False False False False False False False

881 False False False False False False False False

882 False False False False False False False False

883 False False False False False False False False

884 False False False False False False False False

885 False False False False False False False False

886 False False False False False False False False
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887 rows × 8 columns

data.isnull().sum()

#The output is shown below.

Survived                   0
Pclass                     0
Name                       0
Sex                        0
Age                        0
Siblings/Spouses Aboard    0
Number of Parents/Children Aboard    0
Fare                       0
dtype: int64
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 887 entries, 0 to 886
Data columns (total 8 columns):
Survived                   887 non-null int64
Pclass                     887 non-null int64
Name                       887 non-null object
Sex                        887 non-null object
Age                        887 non-null float64
Siblings/Spouses Aboard    887 non-null int64
Number of Parents/Children Aboard    887 non-null int64
Fare                       887 non-null float64
dtypes: float64(2), int64(4), object(2)
memory usage: 55.5+ KB

So let’s just go ahead and drop all the variables that aren’t relevant for predicting survival. We 
should at least keep the following:

Survived: This variable is relevant.
Pclass: Does a passenger’s class on the boat affect their 
survivability?

Sex: Could a passenger’s gender impact their survival rate?
Age: Does a person’s age impact their survival rate?
SibSp: Does the number of relatives on the boat (siblings or a 
spouse) affect a person’s survivability? Probability

Parch: Does the number of relatives on the boat (children or 
parents) affect a person’s survivability? Probability

Fare: Does the fare a person paid affect his survivability?
Maybe: let's keep it.

titanic_data = data.drop(['Pclass','Name'], 1)
titanic_data.head()

http://data.info(
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#The output is shown below – top 5 rows

6.3.6.3  Converting Categorical Variables to a Dummy Indicator
The next thing we need to do is reformat our variables so that they work with the model. Specifically, 
we need to reformat the Sex and Embarked variables into numeric variables.

gender = pd.get_dummies(titanic_data['Sex'],drop_first=True)
gender.head()

itanic_dmy = pd.concat([titanic_data,gender],axis=1)
titanic_dmy.head()

titanic_dmy.drop(['Fare'],axis=1,inplace=True)
titanic_dmy.head()

Male

0 1

1 0

2 0

3 0

4 1

Survived Age Siblings/Spouses Aboard Number of Parents/Children Aboard Fare Male

0 0 22.0 1 0 7.2500 1

1 1 38.0 1 0 71.2833 0

2 1 26.0 0 0 7.9250 0

3 1 35.0 1 0 53.1000 0

4 0 35.0 0 0 8.0500 1

Survived Age Siblings/Spouses Aboard Number of Parents/Children Aboard Male

0 0 22.0 1 0 1

1 1 38.0 1 0 0

2 1 26.0 0 0 0

3 1 35.0 1 0 0

4 0 35.0 0 0 1

Survived Sex Age Siblings/Spouses Abroad Number of Parents/Children Aboard Fare

0 0 Male 22.0 1 0 7.2500

1 1 Female 38.0 1 0 71.2833

2 1 Female 26.0 0 0 7.9250

3 1 Female 35.0 1 0 53.1000

4 0 Male 35.0 0 0 8.0500
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X = titanic_dmy.ix[:,(1,2,3,4)].values
y = titanic_dmy.ix[:,0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =.3, 
random_state=25)

Deploying and evaluating the model:

LogReg = LogisticRegression()
LogReg.fit(X_train, y_train)

#The OUTPUT is shown below.

LogisticRegression(C=1.0, class_weight=None, dual=False, 
fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)

y_pred = LogReg.predict(X_test)
y_pred

#The OUTPUT is shown below.

array([0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
       0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
       0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
       1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,
       1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0,
       1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
       1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,
       0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,
       1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
       0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
       0, 0, 0], dtype=int64)

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_pred)
confusion_matrix

#The OUTPUT is shown below.

array([[140, 23],
        [ 31, 73]], dtype=int64)

The confusion matrix results tell us that 137 and 69 are the numbers of correct predictions. 
Conversely, 34 and 27 are the numbers of incorrect predictions.

print(classification_report(y_test, y_pred))

#The OUTPUT is shown below.

Precision Recall F1-score Support

0 0.82 0.86 0.84 163

1 0.76 0.70 0.73 104

Avg/total 0.80 0.80 0.80 267
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6.4  DECISION TREE CLASSIFIER

The decision tree belongs to the nonparametric supervised learning. A decision tree is one of the 
most popular classification and prediction algorithms. It is used in data mining, operation research, 
and machine learning (ML). A decision tree is a tree-structured classifier. The decision node and 
leaf node are the two nodes in the decision tree. A test is done on the decision node. A leaf node rep-
resents the class label. The path from the root to the leaf represents the classification rule. A decision 
tree is a flowchart-like structure. The test is conducted on each node of the decision tree, and the 
branch represents the outcome of the test. The last node or leaf node represents the class label. The 
path from the root node to the leaf node represents the classification rule. The goal of the decision 
tree is to create a decision model from the dataset that predicts the value of a target variable by using 
a simple decision rule. A decision tree is a visual representation of the decision. The real data have 
many features (i.e., in iris flower, the features are petal width and length). These features are repre-
sented clearly in the decision tree. The relationship between the features can be easily identified by 
using the decision tree. A decision tree can be built efficiently by using the decision tree algorithm.

The decision tree problem can be solved from the starting node (i.e., root node) to the end node. 
Figure 6.7 shows the sample decision tree. The decision tree can be used for classification or regres-
sion. A decision tree is very easy to understand because it has a graphical representation.

The decision trees are constructed based on the attributes. The attribute for Figure 6.7 is whether 
the climate is rainy or not. Based on the attribute, the decision trees are constructed. This section 
explains in detail about the selection of attributes for using a decision tree algorithm. The perfor-
mance of decision trees is affected by the overfitting and underfitting problem. The detailed proce-
dure for solving these problems is also discussed in this section. Nowadays, the decision trees play a 
vital role in medical, library management, healthcare management, business management, banking 
sector, etc.; these applications are discussed in detail.

6.4.1  iMPortant terMinology in the Decision tree

Figure 6.8 represents a simple decision tree. The various terminologies used in the decision tree are 
as follows:

Root node: The entire population of the tree is represented by the root node. The root node is 
divided into two or more nodes.

Decision node: The subnode dividing into a further subnode is called a decision node.
Splitting: The process of splitting a node into two or more nodes.
Leaf/terminal node: This node is also called a terminal node. A node that does not split 

further is called a terminal node.
Pruning: The removal of a subnode in a decision tree is called pruning.

FIGURE 6.7 Sample decision tree.
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Branch/subtree: A subsection of the entire tree is called a branch or subtree.
Parent node/child node: A node dividing into subnodes is called a parent node. A subnode 

is called a child node.
Information gain: The amount of energy that cannot be used to do work or a measure of 

disorder in the system.

 ∑=
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where
s is the training dataset
c is the number of the target class
P is the proportion of training data belonging to the target class

6.4.2  exaMPle for Decision tree

The decision tree in Figure 6.9 represents the sample decision tree for the selection of cars. From the 
decision tree, we can easily identify the car having high mileage (i.e., heavy weighted car and less 
weighted car with horse power >86) selected for buying a car. 

FIGURE 6.8 Decision tree with terminology.

FIGURE 6.9 Decision tree for buying a car.
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The decision tree in Figure 6.10 represents the decision for playing tennis. The status of climate is 
checked at the root node. The climate may be sunny, rainy, and overcast. The tennis player can select 
the leaf node having Yes for playing tennis. Table 6.6 represents the condition for playing tennis.

6.4.3  saMPle Decision tree

Let us consider a simple example of creating a decision tree for crediting a loan, as shown in 
Figure 6.11. First, the data are spitted into two parts based on the employment status at the root 
node (i.e., employed or not employed).

Decision tree classification for unemployed: The decision tree goes to node A if the applicant 
is not employed. Again, the data are divided based on the credit score (i.e., high or low). The loans 
are approved for the applicant having a high credit score.

Decision tree classification for unemployed: The decision tree goes to node B if the applicant 
is employed. Again, the data are divided based on the income (i.e., high or low). The loans are 
approved for the applicant having a high income.

6.4.4  Decision tree forMation

Let us consider a dataset having four attributes, namely A1, A2, A3, and A4. Let us assume that 
the decision tree is started with attribute A1 (i.e., root node). The data are divided into two parts at 
the root node based on attribute A1. Data d1 represent the data satisfying the attribute A1. Data d2 
represent the data that are not satisfying attribute A1, as shown in Figure 6.12.

FIGURE 6.10 Decision tree for weather forecast.

TABLE 6.6
Weather Forecast Data

Attribute Condition

Yes Overcast

Sunny and high humidity

Rainy and high wind blow

No Sunny and less humidity

Rainy and low wind blow
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Data d1: All the data in d1 belong to the same class. So it becomes a leaf node.
Data d2: The data d2 belong to a different class. So the data are divided further based on the 

attribute A3. d3 represent the data satisfying the condition A3. d4 represent the data that 
are not satisfying condition A3.

FIGURE 6.11 Decision tree for crediting loan.

FIGURE 6.12 Building a decision tree.
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Data d3: The data d3 belong to a different class. So the data are divided further based on the 
attribute A4. d5 represent the data satisfying attribute A4, and d6 represent the data that 
are not satisfying the condition A4.

Data d5, d6, and d3: The data in d5, d6, and d3 belong to the same class. So these data belong 
to a leaf node.

6.4.5  algorithMs UseD for Decision trees

The dataset having many attributes (i.e., bank loans are given based on the attributes like employ-
ment status and salary) for root nodes are calculated from the following algorithm:

 1. CART 4.5
 2. ID3
 3. C 4.5

In the ID3 algorithm, the information gain is used for the selection of root attributes. The infor-
mation gain is calculated for each attribute, and the attributes having high information gain are 
selected as the root node. In C 4.5 algorithm, the gain information is used for the calculation of root 
attributes. The attributes having maximum gain ratio are selected as the root node. The CART 4.5 
algorithm uses the Gini index to identify the attributes for the root node. The attribute having a low 
Gini index is selected as the root node.

6.4.5.1  ID3 Algorithm
If the decision tree has multiple attributes, then root node attributes can be selected using entropy 
and information gain.

Entropy: Entropy is a measure of disorder. Entropy is small for the sample with only positive 
or negative values. It is high for the half-positive or half-negative value of the sample. Entropy is 
defined as the average optimal number of bits to encode information about certainty and uncertainty 
about Sample S.

Information gain: Gain is a measure of uncertainty reduction. The sample having different 
classes has less information gain. Information gain is expressed in entropy.

Let S be the sample of training examples, p+ be the number of positive samples, and p− be the 
number of negative samples. Then, sample entropy is shown in Figure 6.13.
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Information gain of samples concerning attribute a is given as

 ∑ ( )= − Sv

S
svGain(S,A) Entropy(s) entropy  (6.18)

S.No. Algorithm Parameter Maximum/Minimum

1 ID3 algorithm Information gain Maximum

2 C 4.5 Gain index Maximum

3 CART Gini index Minimum
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6.4.5.2  C 4.5 Algorithm
C 4.5 algorithm is used to generate decision tree, and it’s developed by Ross Quinlan. It is an exten-
sion of the ID3 algorithm. The decision tree developed by using C 4.5 is used for classifications; it 
is called a statistical classifier. The data are split by using the gain ratio. The attributes having the 
highest gain ratio are used as root nodes. The C 4.5 is similar to the ID3 algorithm, but additionally, 
normalization is applied in this algorithm.
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6.4.5.3  CART Algorithm
CART represents the classification and regression tree algorithm. Breiman discovered this algo-
rithm in 1984. It’s a simple binary tree where a tree has one root node and two child nodes. This 
algorithm can be used in classification and regression problems. The classification is done by using 
the Gini index. The Gini index represents the squared probability of each class.

 ∑= −
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 (6.20)

where n represents the number of probabilities.

6.4.6  overfitting anD UnDerfitting

Overfitting is the phenomenon in which the learning process matches exactly with all the train-
ing data. As a result, the model’s accuracy is high for trained data and low for untrained data. 
Overfitting (Figure 6.14) occurs in decision trees when the tree is designed to fit all samples in the 
training dataset perfectly. Underfitting occurs when the training model does not capture the under-
lying pattern. Underfitting (Figure 6.14) is destroying the accuracy of our model of ML.

6.4.6.1  Overfitting
• Overfitting is a scenario in which the system is learned with the entire training data.
• It results in an inaccurate prediction of the data.
• Overfitting can be solved by using pruning (i.e., remove the decision node from the leaf 

node without reducing the accuracy).

FIGURE 6.13 Entropy curve.
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6.4.6.2  Underfitting
• Underfitting model is not a suitable model, and it will result in poor performance on train-

ing data.

A more splitting of data will result in a larger decision tree. The larger decision tree has less error 
rate. The overfitting results in a higher error on training data and a low error on test data. The accu-
racy is high on the training data but less on test data, as shown in Figure 6.15.

The overfitting occurs due to the following condition:

• Due to noise in the data
• Not enough data

FIGURE 6.14 Overfit and underfit curve.

FIGURE 6.15 Accuracy of decision tree.



243Supervised Learning: Classification

Due to noise
In Figure 6.16, the noise point occurs in the training data. The system is trained with noise points 

on overfitting. This will produce an error in the test data “Not enough data.”
The above training sample has two classes (one represents a circle and another represents a star). 

The number of data belonging to star classification is less at the bottom, as shown in Figure 6.17. 
This leads to misclassification.

6.4.6.3  Pruning to Avoid Overfitting
Overfitting can be eliminated by the following method:

• Prepruning
• Postpruning

FIGURE 6.16 Decision tree with noise point.

FIGURE 6.17 Decision tree with less data.
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6.4.6.3.1  Prepruning
It is the process of pruning the decision tree on growing. Tree growth is stopped for negative gain 
or low positive benefit value. It is used to stop overfitting at an earlier stage.

Considering Figure 6.18, the root node is divided based on an attribute A. Calculate the gain of 
the decision tree at S1 and S2. The decision tree will be stopped at S1 and S2 for the low or negative 
value of gain, as shown in Figure 6.18.

6.4.6.3.2  Postpruning
Postpruning is also called backward pruning (Figure 6.19). First, a complete decision tree is con-
structed fully. Then, the accuracy of the tree is improved by removing the least significant branches. 
In postpruning, a decision tree is grown fully first. Several heuristics are used to delete subnodes. 
The error is measured on the whole tree (i.e., error (T)) and at point ST1 (i.e., error (st1)). If the error 
at ST1 is small than error T, then we can remove the subtree. The pruning can be done by using 
reduced error pruning, minimum error pruning, and cost-based pruning. The reduced error pruning 
is the simplest pruning algorithm.

In this method, the error is measured on the whole tree (i.e., error (T)) and at point ST1 (i.e., error 
(st1)). If the error at ST1 is small than error T, then we can remove the subtree. In the minimum error 
pruning, the error rate is calculated at each non-leaf node by pruning subtree and without pruning 
subtree. If the error rate of the subtree with pruning is high, then keep that subnode. In cost-based 
pruning, the error and cost are also considered for pruning the data.

6.4.7  aDvantages anD DisaDvantages

6.4.7.1  Advantages
• Interpretability: Easy to understand. It can handle both categorical and numerical data
• Useful in data exploration and deal with missing data points
• Nonparametric method
• Capture nonlinear relationship
• Simple rule-based approach
• Feature scaling is not explicitly required for the algorithm work
• Quite useful for exploring a large dataset to pick out useful variables.
• Little effort is required for data preparation.

6.4.7.2  Disadvantages
• A highly complicated decision tree has a low bias.
• Overfitting is the major problem of decision tree
• It does not apply to the continuous variable
• Cost is high

FIGURE 6.18 Prepruning at stage S1.
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6.4.8  Decision tree exaMPles

Example 6.1: A Simple Decision Tree for Classification of Iris Flower

The problem describes the creation of a very simple decision tree using iris flower. The iris flower 
is classified based on the petal length. The iris flower with a petal length >2.45 belongs to versi-
Setsoa and <1.75 belongs to Versicolor. The iris flower having petal length between 2.45 and 1.75 
belongs to Verginica.

Draw a decision tree based on the data in Table 6.7 for the iris flower. The petal length of the 
iris flower differs for each flower. Take the petal length as an attribute for creating a decision tree.

Consider the decision tree shown in Figure 6.20 for the classification of the iris flower.
The three types of iris flower are iris Versisetosa, Versicolor, and Virginica. The data are divided 
into two parts at the root node based on the petal width (i.e., petal width having a length >2.45 cm). 
A petal width >2.45 cm belongs to Versisetosa. Again at point B, the data are divided further based 
on the petal width. Petal widths >1.75 are classified as Versicolor, and petal widths <1.75 are clas-
sified as Virginica.

FIGURE 6.19 Postpruning of decision tree.

TABLE 6.7
Iris Flower Data

Flower Petal Length

Versisetosa >2.45 cm

Versicolor <1.75 cm

Verginica Between 2.45 and 1.75
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Example 6.2: Oil Drill Using Decision Tree

Assume that you have land that you believe may have oil underground. There is only a 15% 
chance of having oil if you drill, but the payoff is $50,000. Therefore, it costs $15,000 to drill. 
Develop a decision tree for the above problem.

Root node: In the above problem, the root node decides whether the land has oil or not.
The root node has two probabilities. The land may or may not have fuel. This is referred to as 
a split point. The given data are divided into two parts at a split point. The land has oil, and the 
land does not have oil, as shown in Figure 6.21. Table 6.8 represents the profit for drilling the land 
having oil.

 
= =

=

The profit obtained for drilling the land 50,000 – 15,000 35,000

The profit obtained for not drilling the land 0

FIGURE 6.20 A decision tree for classification of iris flower.

FIGURE 6.21 Decision tree for oil from the root node.

TABLE 6.8
Drilling the Land Having Oil

Status Cost

The land is drilled Cost = $15,000

The land is not drilled Cost = 0
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Figure 6.22 represents the decision tree for drilling the land having oil.
Table 6.9 represents the cost of drilling the land having no oil.

 
= −

=

Loss for drilling the land 15,000

Loss for not drilling the land 0

Figure 6.23 represents the simple decision tree for drilling land. By using the decision tree, we can 
infer the profit and loss for drilling land for oil.

Example 6.3: Decision Tree for Purchasing Laptop

Create a decision tree for the following problem. Table 6.10 gives the details of purchasing a 
laptop.

CALCULATION OF MUTUAL INFORMATION

Mutual information between two random variables X and Y is given as

 ( )= −I X Y H X H X Y( ; ) ( )

FIGURE 6.22 Decision tree for oil from the root node to leaf node.

TABLE 6.9
Drilling Land Having no Oil

Status Cost

The land is drilled $15,000

The land is not drilled $0
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where
I(X; Y) is mutual information for X and Y
H(X) is entropy of X
H (X|Y) is the conditional entropy for X given Y.
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The mutual informationof twoclasses 4 / 7 log 4 / 7 3 / 7 log 3 / 7

4 / 7 log 0.571 3 / 7 log 0.48

4 / 7 0.808 3 / 7 1.05

0.461 0.45

0.911

2 2

2 2

FIGURE 6.23 Decision tree for oil drill.

TABLE 6.10
Data for Purchasing Laptop

RID Age Earning Class

1 ≤30 High No

2 ≤30 High No

3 31 … 40 High Yes

4 >40 Medium Yes

5 >40 Low Yes

6 >40 Low No

7 31 … 40 Low Yes



249Supervised Learning: Classification

CALCULATION OF GAIN BASED ON AGE

For age, we have two values for ≤ 30(1 – No, 1 – Yes), 2 values for  31 … 40 (2 – Yes, 0 – No), and 
3 values for > 40(2 – Yes, 1 – No).
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Entropy 2 / 7 0 2 / 7 0 3 / 7 2 / 7 log 2 / 7 1 / 7 log 1 / 7

3 / 7 2 / 7 1.83 1 / 7 2.81

3 / 7 0.5228 0.4014

0.3961

2 2

 
= −

=

Gain 0.911 0.391

0.52
 

CALCULATION BASED ON EARNING

For earning, we have three values for high (2 – No, 1 – Yes), one value for medium (1 – Yes, 0 – 
No), and three values for low (2 – Yes, 1 – No).

 

( )
( )

( ) ( ) ( )

( ) ( )

= − −

+ + − − − −

=

Entropy 3 / 7 1 / 7 log 1 / 7 2 / 7 log 2 / 7

0 3 / 7 2 / 7 log 2 / 7 1 / 7 log 1 / 7

0.7922

2 2

2 2  

 
= −

=

Gain 0.911 0.7922

0.1188

Since age has the highest again, the data are divided based on the age factor, as shown in 
Figure 6.24.

RID Age Class

1 ≤30 No

2 ≤30 Yes

3 31 … 40 Yes

4 >40 Yes

5 >40 Yes

6 >40 No

7 31 … 40 Yes

RID Earning Class

1 High No

2 High No

3 High Yes

4 Medium Yes

5 Low Yes

6 Low No

7 Low Yes
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In the above decision diagram, the age ≤ 30 falls under No class, as shown in Figure 6.25.
Similarly, the age 31–40 belongs to the Yes class, as shown in Figure 6.26.
The age >40 can be subdivided into two categories based on the earning. Using the above 

decision tree, we can infer the probability of purchasing a laptop, as shown in Figure 6.27.

FIGURE 6.26 Decision tree for laptop purchase from the root node to leaf node.

FIGURE 6.24 Decision tree for laptop purchase from the root node.

FIGURE 6.25 Decision tree for laptop purchase from the root node to leaf node.
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Example 6.4: A Simple Decision Tree for Crediting Loan

Create a decision tree for crediting the loan.

 1. If the income is <$20 k, then no need to credit the loan.
 2. If income is between $20 k and 80 k, credit the loan if the experience is >2 years.
 3. If income is >$80 k, credit the loan.

A decision tree is constructed based on the income range. The application having income <$ 
20 k is rejected and income >$80 k is credited with a loan. An applicant with a salary between 
$20 k and $80 k is divided further based on the experience details. From the decision tree shown 
in Figure 6.28, the loans are credited for a person having experience >2 years and having a salary 
>$20 k to $80 k and also for the person having a salary >$80.

FIGURE 6.27 Decision tree for laptop purchase from the root node to leaf node.

FIGURE 6.28 Decision tree for crediting the loan.
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Example 6.5: Calculate the Entropy for the Given Sample

The entropy of the dataset is the sum of entropy for Yes and the sum of entropy for No.
There are four Yes and two No on the weather data.
The entropy of the weather dataset:

 

∑= −

= +

=

p c p cH(s) ( ) log ( )

0.3933 0.523

0.9163

2

 
( ) ( ) ( )( )

( ) ( )

= − = − − =

= − = =

P

P X

yes 4 / 6 log 4 / 6 0.66 0.599 0.3933

no 2 / 6 log 2 / 6 0.333 1.584 0.523

2

2

 

Example 6.6: Construct a Decision Tree for the Data Given in Table 6.11

There are five positive and five negative data

 ( ) ( ) ( ) ( )= − + − =Entropy 5 / 10 log2 5 / 10 5 / 10 log2 5 / 10 1

The results of gain based on age are presented in Table 6.12.

Climate Temperature Humidity Play

Sunny Hot High No

Rainy Mild Normal Yes

Sunny Mild Normal Yes

Rainy Mild High No

Sunny Hot Normal Yes

Rainy Cool Normal No

TABLE 6.11
Positive and Negative Data

Age Competition Type Profit

Old Yes Software Down

Old No Software Down

Old No Hardware Down

Mid Yes Software Down

Mid Yes Hardware Down

Mid No Hardware Up

Mid No Software Up

New Yes Software UP

New No Hardware Up

New No Software Up
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( )
( )

( ) ( )

( ) ( ) ( ) ( )

( )( )

= =

= + =

= =

= + + =

= − = − =

Entropy old 3 / 3log 3 / 3 0

Entropy mid 2 / 4 log 2 / 4 2 / 4 log2 2 / 4 1

Entropy new 3 / 3log 3 / 3 0

Entropy age 3 / 10 * 0 4 / 10 *1 3 / 10 * 0 0.4

Gain Classentropy Entropy age 1 0.4 0.6

2

2

The results based on competition are presented in Table 6.13.

 

( )

( )
( )

( ) ( )

( ) ( )

( )

( )

= + =

= + =

= + =

= − = − =

Entropy yes 1 / 4 log 1 / 4 3 / 4 log 3 / 4 0.81127

Entropy no 4 / 6 log 4 / 6 2 / 6 log 2 / 6 0.918295

Entropy competition 4 / 10 * 0.81127 6 / 10 0.9182 0.8745

Gain Classentropy Entropy competition 1 0.8745 0.1245

2 2

2 2

The results based on profit are presented in Table 6.14.

 
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

= + =

= + =

= + = =

= − = − =

Entropy software 1 / 2 log 1 / 2 1 / 2 log 1 / 2 1

Entropy hardware 1 / 2 log 1 / 2 1 / 2 log 1 / 2 1

Entropy type 2 / 4 1 2 / 4 1 4 / 4 1

Gain Classentropy Entropy type 1 1 0

2 2

2 2

 

TABLE 6.12
Calculation of Gain Based on Age

Age Positive Negative I (Pi, Ni)

Old 0 3 0

Mid 2 2 1

New 3 0 0

TABLE 6.13
Calculation Based on Competition

Competition Positive Negative I (Pi, Ni)

Yes 1 3 0.81127

No 4 2 0.918295

TABLE 6.14
Calculation Based on Profit

Type Positive Negative I (Pi, Ni)

Software 1 1 1

Hardware 1 1 1
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Table 6.15 shows that age has high information gain. This is because the decision tree starts from 
the age attribute, as shown in Figure 6.29.

In the above tree, the old and new parameters have a negative sample. So it represents the leaf 
node as shown in Figure 6.30.

Again, the data are divided based on the competition, as shown in Figure 6.31.

FIGURE 6.29 Decision tree for attribute age.

FIGURE 6.30 Decision tree with a leaf node.

TABLE 6.15
Age and Profit

Age Profit

Old Down

Old Down

Old Down

Mid Down

Mid Down

Mid Up

Mid Up

New UP

New Up

New Up
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Example 6.7: The Toy Industry

ABC toys Pvt. Ltd is considering the addition of a new toy to its existing product line. Three alter-
native courses of action are available.

 a. Work overtime to meet the demand for the new toy. Overtime expenses are estimated at 
Rs. 20,000 per month.

 b. Install new equipment for which fixed expenses per month are expected at Rs.80,000.
 c. Lease (rent) a machine at the rate of Rs. 35,000 per month.

Variable costs associated with the above three alternatives are Rs. 9, Rs. 7, and Rs. 8 per toy. The 
price per unit of the toy, which is independent of the manufacturing alternative, is fixed at Rs. 15. 
The expected demand for the toys is given below.

10,000 pieces with a probability of 0.5
20,000 pieces with a probability of 0.3
50,000 pieces with a probability of 0.2

Which alternatives should the company adapt to manufacture the toy?

GIVEN DATA

ABC toys had decided to add a new product. They have three alternate courses.

 1. If workers work overtime, they are paid Rs. 20,000 per month with a variable cost of Rs. 
9 per toy

 2. If new equipment is installed, they have to pay 80,000 per month Rs. 7 per toy
 3. Lease the machine at the rate of 35,000 per month Rs. 8 per toy

The sales price of toys = Rs. 15

EXPECTED DEMAND

10,000 pieces with a probability of 0.5
20,000 pieces with a probability of 0.3
50,000 pieces with a probability of 0.2
There are three alternatives from a decision node as represented in Figure 6.32.
Each alternative node has three demands, as shown in Table 6.16.

 
= × × =

= =

Profit 10,000 15 – 10,000 9 – 20,000 15,0000 – 90,000 – 20,000

60,000 – 20,000 40,000

FIGURE 6.31 Decision tree for purchasing.
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The decision tree for purchasing new equipment with profit value is shown in Figure 6.33.

 = × + × + × =At point 2 0.5 40,000 0.3 100,000 0.2 280,000 106,000 

 = × + × + × =At the point3 0.5 0 0.3 80,000 0.2 320,000 88,000 

 = × + × + × =At point 4 0.5 35,000 0.3 105,000 0.2 315,000 112,000 

The decision tree for final equipment purchase is shown in Figure 6.34.

Example 6.8: Construct a Decision Tree for the Data in Table 6.17

The different nodes in the decision tree are illustrated in Figure 6.35. 
First, we have to draw a decision node, as shown in Figure 6.36.
The outcome of stocks, MF, and bonds is growing and declining. Let us consider the stocks, 

growing at 0.4 and declining at 0.6. The payoff is 70 and −13. The decision tree is shown in 
Figure 6.37.

Similarly, we have to construct for other MF and bonds. The decision tree for stocks and MF is 
shown in Figure 6.38 and for stocks and bonds in Figure 6.39.

FIGURE 6.32 Decision tree for purchasing new equipment.

TABLE 6.16
Alternatives and Their Demands

Alternatives Price per Unit V.C/Unit Monthly Profit

10,000 20,000 50,000

Overtime 15 9 40,000 100,000 280,000

New equipment 15 7 0 80,000 320,000

Leasing 15 8 35,000 105,000 315,000
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FIGURE 6.33 Decision tree for purchasing new equipment with profit value.

FIGURE 6.34 Decision tree for final purchasing equipment.
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= × + × − =

= × + × − =

The expected value of the tree for sticks 0.4 70 0.6 ( 13) 20.2

The expected value of the decision tree for MF 53 0.4 0.6 ( 5) 18.2
 

Since bonds have 20, no calculation is required. The expected values are given in Table 6.18.
Among these values, the stocks have a high value. So the decision should be done on the 

stocks.

FIGURE 6.35 Symbol for decision tree.

FIGURE 6.36 Root node for decision tree.

FIGURE 6.37 Decision tree for stocks.

TABLE 6.17
Growing Declining Data

Growing Declining

Stock 70 −13

Mutual funds 53 −5

Bonds 20 20

Probability 0.4 0.6
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Example 6.9: Construct a Decision Tree for the Data Given in Table 6.19

The probability for mobile production is 0.60 for profit and 0.40 for loss.
There are two technologies, A and B (Figure 6.40). So there are two possibilities (technology A 

and technology B) (Figure 6.41).  
$400,000 is credited for the technology A (profit)

$200,000 is credited for the technology A (loss)

FIGURE 6.38 Decision tree for stocks and MF.

FIGURE 6.39 Decision tree for stocks, MF, and bonds.

TABLE 6.18
Expected Results for Growing Declining Data

S.No. Company Expected Value

1 Stocks 20.2

2. MF 18.2

3 Bonds 20



260 Machine Learning for Decision Sciences with Case Studies in Python

TABLE 6.19
Mobile Production Data

Mobile Phase Production

Profit Loss

Technology A $400,000 $200,000

Technology B $300,000 $150,000

FIGURE 6.40 Classifying based on technology A and technology B.

FIGURE 6.41 Decision tree for classifying based on technology A and technology B..
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TECHNOLOGY A

The decision tree for profit and loss is shown in Figure 6.42
$300,000 is credited for the technology B (profit)
$150,000 is credited for the technology B (loss)

TECHNOLOGY B

Profit Loss

Amount Percentage Amount Percentage

$300,000 0.60 $150,000 0.40

Profit Loss

Amount Percentage Amount Percentage

$400,000 0.60 $200,000 0.40

FIGURE 6.42 Decision tree for profit and loss.
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= × + ×

= +

=

Expected value for technology A 400,000 0.60 200,000 0.40

2,40,000 80,000

3,20,000

 

 

= × + ×

= +

=

Expected value for technology B 300,000 0.60 150,000 0.40

1,80,000 60,000

2,40,000

 

Hence, we conclude that among the groups, technology A has the highest value.

Example 6.10: Decision to Buy a New Product

A company wants to decide on a new product. They can buy a new product, or they can make 
new products. There may be strong demand for the product or less demand for the product. The 
strong demand for making the product is $25 million, and the weak demand for making the prod-
uct is $20 million loss. The strong demand for making the product is $5 million and weak demand 
is $5 million loss. Draw the decision tree for the above problem.

The root node has two probabilities: They can either buy or make the new product. The cor-
responding decision tree is shown in Figure 6.43.

The decision tree is divided further for strong demand and weak demand, as presented in 
Figure 6.44. The cost of strong demand is $25 million, and the cost of weak demand is −$20 
million.

The cost of strong demand for buying is $5 million, and the cost of weak demand is −$5 mil-
lion, as shown in Figure 6.45.

 

( )= × −

= −

=

The expected value for making the product (25 0.75) 20 0.20

18.75 4

14.75

 

 

= × − ×

= −

=

The expected value for buying the product (0.75 5) (5 0.20)

3.75 1

2.75

6.4.9  regression Using Decision tree

Decision tree regression extracts the features of the object and trains the model to predict the data. 
The topmost node represents the root node, and the final node represents the leaf node. A decision 

FIGURE 6.43 Root node for decision tree.
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FIGURE 6.44 Decision tree for profit and loss (make).

FIGURE 6.45 Decision tree for profit and loss (buy).
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node has two or more sub-branches that represent the value to be tested. The regression tree will 
predict the value.

Consider the following example for the regression tree. A medical company produces a drug for 
the cold, and they have to determine a dosage of medicine. The medicine is given for different dos-
ages, and effectiveness is predicted by using a regression tree.

It’s difficult to solve the data in Figure 6.46 using linear regression. So it can be solved by using 
a non-regression tree. A regression tree classification is done using numeric values, while in a clas-
sification tree, the data are classified using true or false conditions. The above decision tree has 
low effectiveness for low dosage and high dosage. Introduce good results for medium dosage. The 
regression tree starts if the dosage is <14.5 mL. The six samples belong to the dosage <14.5 mL, and 
they have 4.2% of dosage effectiveness (Figure 6.47).

A dosage value >29 mL has 2.5% dosage effectiveness. The medium dosage has 52.8% effective-
ness. A dosage value >23.5mL has 100% dosage effectiveness. The corresponding decision tree is 
shown in Figure 6.48.

A regression tree is used for the prediction. In Figure 6.49, a regression decision tree is con-
structed for the iris flower. Data are divided into the root node based on the condition ×1 ≥0.1973. 
Again, the data are divided further until it reaches the leaf node. Suppose if you want to predict the 
value 0.71, it traverses along the path and it reaches the value 0.1106.

FIGURE 6.46 Medical data for nonlinear regression.

FIGURE 6.47 Dosage <14.5.
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FIGURE 6.48 Decision tree for medical data.

FIGURE 6.49 Regression decision tree.
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6.4.10  real-worlD exaMPles

A decision tree can be used in real-world problems. Some of the applications of the decision tree 
(Figure 6.50) covered in this section are as follows:

 1. Predicting library book usage
 2. Identification of tumor
 3. Classification of telescope image
 4. Healthcare management
 5. Fault diagnosis
 6. Energy consumption
 7. Fraudulent statement detection

6.4.10.1  Predicting Library Book
A decision tree is used to predict the future use of the library book. Harvard College Library uses 
this decision tree algorithm to move the book to off-site storage. The library has short storage space 
and stores the low-demand book into remote storage. The wider library in Harvard College has a 
lack of space problem. So they have to remove the old book and less useful modern book to remote 
storage. The books having lower expected future usage have to be moved to the remote storage. 

FIGURE 6.50 Application of decision tree.
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Comprehensive statistics have to be automated to select the book. The six attributes, such as check-
out details (number of past and last use), publication date, last use, language, country, and alphabetic 
prefix, are taken. Based on the EAR value, the book is moved to the off-site storage.

Figure 6.51 represents the simple decision tree. First, the tree is classified based on the language 
and then classified based on the publication country. The trees are also constructed based on the 
single criteria (i.e., last use) as shown in Figure 6.52.

Figure 6.53 represents the decision tree classification based on Fussler and Simon’s choice policy. 
First, a decision tree is constructed based on the root nodes divided between the language attribute 
and children of the root node divided based on the publication date.

The ID3 algorithm is used for designing a decision tree. First, the information gain is calculated 
for the different attributes, and the tree with the greatest gain is selected to divide the data. Then, the 
nodes are created based on the checkout. Finally, the smoothed tree is evaluated by using pruning.

6.4.10.2  Identification of Tumor
The decision tree plays a major role in medical decision-making. The single decision tree boosted 
the decision tree, and the decision tree forest is used in the decision tree. Decision tree classification 
provides an effective method of categorizing datasets. Decision-making can be done at the train-
ing and testing stages. For example, breast cancer is the most commonly diagnosed cancer among 

FIGURE 6.51 A simple decision tree for predicting books in the library.

FIGURE 6.52 A decision tree based on the single criteria.
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women, and early breast cancer diagnosis plays a major role in reducing mortality. On the other 
hand, mammograms have a high percentage of missed cancer cases. These can be identified prop-
erly by using the decision support system.

The brain tumor is a cluster of brain-growing abnormal cells. It can happen at almost any age 
in any person. It may even vary from one therapy session to the next, but it may not have the same 
effects for each patient. MRI images are preprocessed for feature extraction. First, the noise is intro-
duced by applying median filtering techniques. Next, power law transformation is used to enhance 
the image. Finally, the preprocessed image is given to the decision tree for further classification. 
Tumors can be identified by the following features such as tumor differentiation, cellularity, mitotic 
count, age, location, and cell type. The decision tree approach produces higher accuracy compared 
to the other classifications.

Figure 6.54 represents the identification of tumor in lungs. If the lung tumor is <3 cm, it belongs 
to class primary tumor and stage I. The tumor measuring 3–5 cm belongs to the stage II tumor. The 
tumor measuring 5–7 cm belongs to the stage III tumor. The tumor measuring >7 cm belongs to the 
stage IV tumor. The tumors are further classified based on the length, as shown in Table 6.20.

FIGURE 6.53 Fussler and Simon’s choice policy-based decision tree.

FIGURE 6.54 Decision tree for tumor identification.
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6.4.10.3  Classification of Telescope Image
The telescopic images are stars, galaxies, cosmic rays, plate defects, and other types of objects in 
the sky. A decision tree classifier is used to identify cosmic rays hit in telescope images. The deci-
sion tree is used to classify the stars and cosmic rays from a telescopic image. The features are 
extracted from the telescopic images and are classified further by using a decision tree. The correct 
attributes are selected by using the CART algorithm. Figure 6.55 represents the decision tree for the 
classification of telescope image.

The x20 and x16 are attributes for the decision tree. This method produces 95% of accuracy.

6.4.10.4  Business Management
In recent years, most of the companies have their database. We can extract the data from the data-
base using a decision tree because data can be extracted based on the domain. It can also be used in 
fraud detection or customer relationship management. Customer relationship management is used to 
investigate the frequency of accessing online services. The usage of data collects the information, 
and corresponding information is used for user recommendation. The online shopping users are 
divided into two equal parts: the user using online shopping frequently and rarely. The time needed 
by the customer for the transaction, degree of human resources, price of the product, and how urgent 
the product is needed are also considered in this model. Decision trees produce a successful result 
in online shopping.

FIGURE 6.55 Decision tree for classification of telescope image.

TABLE 6.20
Tumor Type and Length

S. No. Tumor Type Description

1 T1a <1 cm

2 T1b 1–2 cm

3 T1C 2–3 cm

4 T2a 3–4 cm

5 T2b 4–5 cm
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The decision tree in Figure 6.56 is used for selecting the strawberry milkshake or strawberry 
ice cream business. Among the two businesses, the success and failure rate and cost are given in 
Table 6.21.

 

= × + ×

= +

=

Total estimatedcost for strawberrymilkshake 0.8 20,000 0.2 2,000

16,000 400

16,400

 

= × + ×

= +

=

Total estimatedcost for strawberry icecream 0.9 25,00 0.1 3,000

22,500 300

22,800

 

Among these two estimations, it’s proved that the production of strawberry ice cream has more 
profit than the production of strawberry milkshake.

TABLE 6.21
Success Rate and Cost

S.No. Description Rate Cost

1 Strawberry milkshake – success 0.8 20,000

2 Strawberry milkshake – failure 0.2 2,000

3 Strawberry ice cream – success 0.9 25,000

4 Strawberry ice cream – failure 0.1 3,000

FIGURE 6.56 Decision tree for business management.
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6.4.10.5  Fault Diagnosis
Faults should be detected, identified, and removed as quickly as possible on transmission lines. In 
power transmission line safety, error detection and defective phase identification (fault classifica-
tion) are important. The measured voltage and current data at the relay point are used to identify and 
diagnose the fault with or without fault resistance in the line. A three-phase fault current is given 
as input to the decision tree for fault detection. In the case of fault classification, the three-phase 
currents and the zero-sequence current samples for half cycle are used as inputs to the decision tree 
to categorize all ten types of faults. The decision tree (Figure 6.57) has provided accurate results to 
identify and classify defects in the power system. DT also provides higher classification accuracy 
compared to SVM. The DT-based approach is validated for wide variations in the power system 
network operating conditions and can thus be applied to online fault detection for large power sys-
tem networks.

6.4.10.6  Healthcare Management
A decision tree may be used in the management of health care. Data mining is used to collect and 
view useful information in easy-to-interpret visualizations from large datasets. The medical use of 
decision trees includes the diagnosis of a symptom-specific medical disorder. The categories iden-
tified by the decision tree could be either separate clinical subtypes or a disease. With the advent 
of electronic data processing, the number of regularly tracked variables in clinical settings has 
increased dramatically. Many of these variables are of limited significance and should therefore 
likely not be included in experiments on data mining. However, many important input variables 
are to be used in decision-making tree models. Figure 6.58 represents the decision tree for fault 
identification.

6.4.10.7  Decision Tree in Data Mining
Data mining can be done on the decision tree on segmented images. Image segment is a process of 
extracting useful information from the image. The pixel with gray value ranges from 180 to 240, 
and its local variation >80 and its slope variation >0.5 are selected for segmentation. For example, 
the image in Figure 6.59a is segmented into Figure 6.59b using the decision tree.

FIGURE 6.57 Fault detection using decision tree.
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The outside contour is identified by checking the gray level, as shown in Figure 6.60. If the gray 
level is greater than eight and local variation is greater than five then the output of the decision tree 
is “no”.

FIGURE 6.58 Healthcare management in decision tree.

FIGURE 6.59 Segmenting data noise.

FIGURE 6.60 Segmenting data noise decision tree.
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6.4.11  Decision trees in Practice Using Python

Decision trees are widely used supervised models for classification and regression tasks. These 
classifiers build a sequence of straightforward if/else rules on the training data through which they 
predict the target value. Decision trees are simple to interpret thanks to their structure and, there-
fore, visualize the modeled tree.

By using the sklearn export_graphviz function, we can display the tree within a Jupyter Notebook. 
For this demonstration, we’ll use the sklearn wine dataset.

# Import packages for Decision Tree& GRAPHVIZ
from sklearn.tree importDecisionTreeClassifier, export_graphviz
from sklearn import tree
from sklearn.datasets import load_wine
from IPython.display import SVG  #Scalable Vector Graphics
from graphviz import Source
from IPython.display import display

# load Dataset
Data = load_wine() ## Since the data set is part of the package; we can 
directly load it

# The OUTPUT is shown below. Previewing gives all kinds of information about the dataset. #(Please 
note: the result contains actual data sample, Array information, Data set #Characteristics, Summary 
Statistics, Attributes Values to name a few. This will help the user to #understand the dataset.)

{'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 
3.920e+00,1.065e+03],
    [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,1.050e+03],
    [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,  1.185e+03],
        ...,
    [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,8.350e+02],
    [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,8.400e+02],
    [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,5.600e+02]]),
 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2]),

'target_names': array(['class_0', 'class_1', 'class_2'], dtype='<U7'),
 'DESCR': '.. _wine_dataset:\n\nWine recognition dataset\n---------------
---------\n\n**Data Set Characteristics:**\n\n    :Number of Instances: 
178 (50 in each of three classes)\n    :Number of Attributes: 13 numeric, 
predictive attributes and the class\n    :Attribute Information:\n \t\t- 
Alcohol\n \t\t- Malic acid\n \t\t- Ash\n\t\t- Alcalinity of ash  \n 
\t\t- Magnesium\n\t\t- Total phenols\n \t\t- Flavanoids\n \t\t- 
Nonflavanoid phenols\n \t\t- Proanthocyanins\n\t\t- Color intensity\n 
\t\t- Hue\n \t\t- OD280/OD315 of diluted wines\n \t\t- Proline\n\n    - 
class:\n            - class_0\n            - class_1\n            - 
class_2\n\t\t\n    :Summary Statistics:\n    \n============================= 
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==== ===== ======= =====\n                                   Min   Max   
Mean     SD\n    ============================= ==== ===== ======= =====\n    
Alcohol:                      11.0  14.8    13.0   0.8\n    Malic Acid:                   
0.74  5.80    2.34  1.12\n    Ash:                          1.36  3.23    
2.36  0.27\n    Alcalinity of Ash:            10.6  30.0    19.5   3.3\n    
Magnesium:                    70.0 162.0    99.7  14.3\n    Total 
Phenols:                0.98  3.88    2.29  0.63\n    Flavanoids:                   
0.34  5.08    2.03  1.00\n    Nonflavanoid Phenols:         0.13  0.66    
0.36  0.12\n    Proanthocyanins:              0.41  3.58    1.59  0.57\n    
Colour Intensity:              1.3  13.0     5.1   2.3\n    Hue:                          
0.48  1.71    0.96  0.23\n    OD280/OD315 of diluted wines: 1.27  4.00    
2.61  0.71\n    Proline:                       278  1680     746   315\n    
============================= ==== ===== ======= =====\n\n    :Missing 
Attribute Values: None\n    :Class Distribution: class_0 (59), class_1 
(71), class_2 (48)\n    :Creator: R.A. Fisher\n    :Donor: Michael 
Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThis is 
a copy of UCI ML Wine recognition datasets.\nhttps://archive.ics.uci.edu/
ml/machine-learning-databases/wine/wine.data\n\nThe data is the results 
of a chemical analysis of wines grown in the same\nregion in Italy by 
three different cultivators. There are thirteen different\nmeasurements 
taken for different constituents found in the three types of\nwine.\n\
nOriginal Owners: \n\nForina, M. et al, PARVUS - \nAn Extendible Package 
for Data Exploration, Classification and Correlation. \nInstitute of 
Pharmaceutical and Food Analysis and Technologies,\nViaBrigata Salerno, 
16147 Genoa, Italy.\n\nCitation:\n\nLichman, M. (2013). UCI Machine 
Learning Repository\n[http://archive.ics.uci.edu/ml]. Irvine, CA: 
University of California,\nSchool of Information and Computer Science. 
\n\n..topic:: References\n\n  (1) S. Aeberhard, D. Coomans and O. de Vel, 
\n  Comparison of Classifiers in High Dimensional Settings, \n  Tech. 
Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of  \n  
Mathematics and Statistics, James Cook University of North Queensland. \n  
(Also submitted to Technometrics). \n\n  The data was used with many 
others for comparing various \n  classifiers. The classes are separable, 
though only RDA \n  has achieved 100% correct classification. \n  (RDA : 
100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) \n  (All 
results using the leave-one-out technique) \n\n  (2) S. Aeberhard, D. 
Coomans and O. de Vel, \n  "THE CLASSIFICATION PERFORMANCE OF RDA" \n  
Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of \n  
Mathematics and Statistics, James Cook University of North Queensland. \n  
(Also submitted to Journal of Chemometrics).\n',
 'feature_names': ['alcohol',
  'malic_acid',
  'ash',
  'alcalinity_of_ash',
  'magnesium',
  'total_phenols',
  'flavanoids',
  'nonflavanoid_phenols',
  'proanthocyanins',
  'color_intensity',
  'hue',
  'od280/od315_of_diluted_wines',
  'proline']}
# Understand the Data Better - feature matrix
X=data.data

https://archive.ics.uci.edu
https://archive.ics.uci.edu
http://archive.ics.uci.edu
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# target vector
y=data.target

# class labels
labels=data.feature_names

# print dataset description
print(data.DESCR)

estimator=DecisionTreeClassifier()
estimator.fit(X,y)

graph=Source(tree.export_graphviz(estimator,out_file=None,feature_names=labels,
class_names=['0','1','2'],filled=True))

display(SVG(graph.pipe(format='svg')))
# The OUTPUT is shown below.

.. _wine_dataset:
Wine recognition dataset
------------------------

**Data Set Characteristics:**

:Number of Instances: 178 (50 in each of three classes)
:Number of Attributes: 13 numeric, predictive attributes and the class
:Attribute Information:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash  
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline

    - class:
            - class_0
            - class_1
            - class_2

: Summary Statistics:
    ============================= ==== ===== ======= =====
                                Min   Max   Mean   SD
    ============================= ==== ===== ======= =====
    Alcohol:                    11.0  14.8  13.0   0.8
    Malic Acid:                  0.74  5.80  2.34  1.12
    Ash:                         1.36  3.23  2.36  0.27
Alcalinity of Ash:              10.6  30.0  19.5   3.3
    Magnesium:                  70.0 162.0  99.7  14.3
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    Total Phenols:                0.98   3.88     2.29    0.63
Flavanoids:                       0.34   5.08     2.03    1.00
Nonflavanoid Phenols:             0.13   0.66     0.36    0.12
    Proanthocyanins:              0.41   3.58     1.59    0.57
    Colour Intensity:              1.3  13.0      5.1     2.3
    Hue:                          0.48   1.71     0.96    0.23
    OD280/OD315 of diluted wines: 1.27   4.00     2.61    0.71
    Proline:                       278  1680    746     315
    =============================    ====  =====   =======   =====

:Missing Attribute Values: None
:Class Distribution: class_0 (59), class_1 (71), class_2 (48)
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

This is a copy of UCI ML Wine recognition datasets.
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

The data results from a chemical analysis of wines grown in the same
region in Italy by three different cultivators. There are thirteen 
different
measurements taken for different constituents found in the three types of
wine.

Original Owners: 

Forina, M. et al, PARVUS - 
An Extendible Package for Data Exploration, Classification, and 
Correlation. 
Institute of Pharmaceutical and Food Analysis and Technologies,
Via Brigata Salerno, 16147 Genoa, Italy.

Citation:

Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science. 

.. topic:: References

  (1) S. Aeberhard, D. Coomans and O. de Vel, 
  Comparison of Classifiers in High Dimensional Settings, 
  Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of  
  Mathematics and Statistics, James Cook University of North Queensland. 
  (Also submitted to Technometrics). 

  The data was used with many others for comparing various 
  classifiers. The classes are separable, though only RDA 
  has achieved 100% correct classification. 
  (RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) 
  (All results using the leave-one-out technique) 

  (2) S. Aeberhard, D. Coomans and O. de Vel, 
  "THE CLASSIFICATION PERFORMANCE OF RDA" 
  Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of 
  Mathematics and Statistics, James Cook University of North Queensland. 
  (Also submitted to Journal of Chemometrics).

https://archive.ics.uci.edu
http://archive.ics.uci.edu
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In the tree plot shown in Figure 6.61, each node contains the condition (if/else rule) that splits the 
information alongside a series of other metrics of the node. For example, the Gini function refers 
to the Gini impurity, a measure of the impurity of the node, i.e., how homogeneous are the samples 
within the node. The user can say that a node is pure when all its samples belong to an equivalent 
class. In this case, there’s no need for further split, and this node is named a leaf. Samples are the 
number of instances within the node, while the value array shows the distribution of those instances 
per class. At the very bottom, we see the majority class of the node. When the filled option of 
export_graphviz is set to true, each node gets colored in line with the bulk class.

Decision trees tend to overfit the info (the data) by constructing complex models. Overfitted mod-
els will presumably not generalize well in “unseen” data. Two main approaches to avoid overfitting 
are pre- and postpruning. Prepruning means restricting the depth of a tree before creation, while 
postpruning is removing non-informative nodes after the tree has been built.

Let us do the iris dataset example. 

from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

import os
os.environ["PATH"] += os.pathsep + 
'C:\\Users\\<<USERNAME>>\\Downloads\\graphviz-2.38.zip\\release\\bin'
# Note: The user has to download and install the Graphviz add-on package.
import graphviz
from sklearn import tree

import graphviz
dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("iris")

FIGURE 6.61 Tree plot for wine data.
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# The output shows
‘iris.pdf.’

# Plotting the tree using Graphviz
dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,

                         filled=True, rounded=True,  
special_characters=True)
graph = graphviz.Source(dot_data)
graph

clf.predict(iris.data[:1,:])

#The output is shown in Figure 6.62.

array([0])

clf.predict_proba(iris.data[:1,:])
#The output is shown below.

array([[1., 0., 0.]])

FIGURE 6.62 Tree plot using Graphviz.
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sklearn decision tree classifier implements only prepruning. Prepruning is often controlled 
through several parameters like the utmost depth of the tree, the minimum number of samples 
required for a node to keep splitting, and therefore the minimum number of instances required for a 
leaf is selected  by setting max_depth as the  depth of tree the user requires. 

Note to download graphviz for Windows:

https://graphviz.gitlab.io/_pages/Download/Download_windows.html

6.5  RANDOM FOREST CLASSIFIER

ML algorithms are classified into supervised learning, unsupervised learning, and reinforced learn-
ing. Supervised learning is divided into classification and regression problems. The decision tree 
belongs to supervised learning. The decision tree is a popular ML algorithm. It’s a tree-like struc-
ture used for classification and regression problems. The decision tree is a tree-shaped diagram used 
to determine a course of action. Each branch of the tree represents the possible action. Entropy (i.e., 
the measure of randomness or unpredictability in the dataset) and information gain (i.e., a measure 
of the decrease in entropy after the dataset is split) are used to construct the decision tree. The test-
ing is done on the decision node, and it has two or more branches, and the leaf node carries classi-
fication or decision. It’s used in the classification and regression problem. The trees are constructed 
only with the relevant features. So to improve the accuracy, the tree has to construct in deep to learn 
a highly irregular pattern. So it leads to an overfitting problem (i.e., low bias and high variance). 
This overfitting problem can be solved by using random forest (RF).

The RF is a classification algorithm that consists of many decision trees. Each tree in the RF will 
predict the class. The class having majority voting is selected as the predicted class of the RF model. 
RF is an ensemble classifier first proposed by Tin Kam Ho of Bell Labs in 1995. It belongs to the 
classifier of the ensemble because it uses several ML algorithms for classification. If the number of 
trees is more, then the accuracy of the RF model is high.

RF is a method that operates by constructing multiple decision trees during the training phase. 
The main advantage of the RF tree is that it has less training due to multiple trees. Since we are 
training a large data, the system’s accuracy is very high in RF. The RF chooses the decision of the 
majority tree, which is the final decision. RF is based on the bagging concept.

The difference between RF and decision tree is the process of finding the root node and splitting 
features nodes that are done randomly in RF. The rules are formed by using information gain and 
the Gini index.

The sample RF with a decision tree is shown in Figure 6.63. The two decision trees classify the 
input parameter as α, and one classifies the input parameter as β. Since α has majority voting, the 
input parameters are classified into class α. RF is used in ETM devices, object detection, and game 
because it has high accuracy and less training time.

The RF works on the concept of bagging. In bagging, the given training data are split into small 
training datasets by using the sampling method. For example, in Figure 6.64, the training data are 

FIGURE 6.63 Voting mechanism in RF.

https://graphviz.gitlab.io
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divided into training data 1, training data 2 up to training data each decision tree model recon-
structed from the training data. Then, the n models are constructed, and prediction is done by using 
majority voting methods. Finally, the class having majority voting is selected as the predicted result 
of the model.

Important terminology used in random forest

Entropy: It is a randomness or unpredictability measure in the dataset.
Bagging:  It is parallel training of a bunch of individual models. A random subset of the data 

is conditioned for each model.
Boosting: It is training sequentially a bunch of individual models. Each node learns from the 

previous model’s mistake.
Gini index:  Gini index measures the degree or probability of error in classifying a particular 

variable when selected randomly.

6.5.1  ranDoM forest anD their constrUction

Bagging is also called bootstrap aggregating, which is used in the creation of RFs. It is used to avoid 
overfitting. RF is better than bagging trees because the prediction of all subtrees is considered dur-
ing classification.

FIGURE 6.64 Representation of RF.
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Feature a is the first sample having n data, and feature b has the second sample having n data. c1, c2, 
c3, …, cn represent the training class.

We can create a random subset, as shown below. For example, let S1, S2, S3, … and Sm be a ran-
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Decision trees are constructed from subset 1, subset 2, and subset M as represented in Figure 6.65. 
The prediction is done on this decision tree (i.e., decision tree 1, decision tree 2, and decision tree 
M). The given data are predicted by using the majority voting concept. The class with the highest 
voting is selected as the predicted class of the RF model, as shown in Figure 6.66.

Let X1, X2, X3, …, Xn be the parameter available in the dataset. Assume that the forest has 2 deci-
sion trees, as shown in Figure 6.67. X1, X3, X4,…, Xn will be used to build decision tree1and X3, X4, 
X5, and Xn to create decision tree 2. Since we are using only partial data, the model is very efficient 
compared to another method. Correlation represents the relationship between two random trees (i.e., 
some of the variables are used in both trees). The forest error rate is high for the tree with the highest 
correlation. A strong classifier has a low forest error rate. 

Figure 6.68 represents the sample RF. The input variable x is given to the RF. These variables are 
divided into the separate training set and are given to the decision tree. The decision tree output is 
combined, and the class with higher voting is selected for classification.

6.5.2  saMPling of the Dataset in ranDoM forest

Consider a dataset (Table 6.22) containing 9000 records, 8 features, and 2 classes. Each row of a 
table represents a record. The columns F-1, F-2, F-3, …, F-8 represent the features. The class rep-
resents the class type. A total of k trees are constructed from the given dataset. The given dataset is 
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FIGURE 6.65 Decision tree constructed from subset 1, subset 2, and subset M.

FIGURE 6.66 Creation of RF using bagging.
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split into K sampling by using bagging or bootstrap aggregating. A standard training set D of size 
n bagging generates in new training set Di each of size n’ by sampling from D uniformly and with 
replacement. By sampling with replacement, some observations may be repeated in each Di. In the 
above example, we have 9000 samples.

FIGURE 6.68 Diagrammatic representation of RF.

FIGURE 6.67 Dividing of data using bagging.
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( )=

=

=

Noof selectedsample 2/3 noof trainingset

2/3* 9000

6000

Six thousand random samples are selected, and it’s illustrated in Table 6.23.
Among this 6000 dataset, we apply attribute bagging (random subspace creation) and create the 

decision tree. If we have n features, then select square root (n) for creating a decision tree. In the 

TABLE 6.22
Total Number of Samples

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 Class

Fa1 Fb1 Fc1 Fd1 Fe1 Ff1 Fg1 Fh1 Class A

Fa2 Fb2 Fc2 Fd2 Fe2 Ff2 Fg2 Fh2 Class B

Fa3 Fb3 Fc3 Fd3 Fe3 Ff3 Fg3 Fh3 Class A

Fa4 Fb4 Fc4 Fd4 Fe4 Ff4 Fg4 Fh4 Class B

Fa5 Fb5 Fc5 Fd5 Fe5 Ff5 Fg5 Fh5 Class A

Fa6 Fb6 Fc6 Fd6 Fe6 Ff6 Fg6 Fh6 Class B

Fa7 Fb7 Fc7 Fd7 Fe7 Ff7 Fg7 Fh7 Class A

Fa8 Fb8 Fc8 Fd8 Fe8 Ff8 Fg8 Fh8 Class B

Fa9 Fb9 Fc9 Fd9 Fe9 Ff9 Fg9 Fh9 Class A

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fai Fbi Fci Fdi Fei Ffi Fgi Fhi Class B

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fa9000 Fb9000 Fc9000 Fd9000 Fe9000 Ff9000 Fg9000 Fh9000 Class A

TABLE 6.23
The 6000 Sample Selected from Table 6.22

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 Class

Fa1 Fb1 Fc1 Fd1 Fe1 Ff1 Fg1 Fh1 Class A

Fa2 Fb2 Fc2 Fd2 Fe2 Ff2 Fg2 Fh2 Class B

Fa3 Fb3 Fc3 Fd3 Fe3 Ff3 Fg3 Fh3 Class A

Fa4 Fb4 Fc4 Fd4 Fe4 Ff4 Fg4 Fh4 Class B

Fa5 Fb5 Fc5 Fd5 Fe5 Ff5 Fg5 Fh5 Class A

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fai Fbi Fci Fdi Fei Ffi Fgi Fhi Class B

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fa6000 Fb6000 Fc6000 Fd6000 Fe6000 Ff6000 Fg6000 Fh6000 Class A
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below example, we have eight features, the square root of 8 gives around 3. So we select three fea-
tures from the above dataset (Table 6.24); information gain, gain ratio, and Gini index are applied 
to create a decision tree from the sample.

Three features are selected from 6000 data, and decision tree 1 is constructed. Finally, a confu-
sion matrix is created for the features, as shown in Table 6.25.

The misclassification rate is calculated from the confusion matrix.
M is classification rate:

 
+ = + =FP FN

Total

25 15

200
0.2

The features having less misclassification rate are selected for the decision tree.

6.5.2.1  Creation of Subset Data

Let’s consider the dataset as shown in Figure 6.69 with circle  and star . First, we have to 
create a subset from the dataset by using the sampling method. Three subsets are created: Subset 1 
has 6 circles and 3 stars, Subset 2 has 4 circles and 5 stars, and Subset 3 has 2 circles and 5 stars. 
Let us consider the subset as shown in Figure 6.70.

TABLE 6.24
Data for Decision Tree 1

F-1 F-5 F-7 Class

Fa1 Fe1 Fg1 Class A

Fa2 Fe2 Fg2 Class B

Fa3 Fe3 Fg3 Class A

Fa4 Fe4 Fg4 Class B

Fa5 Fe5 Fg5 Class A

- - - -

- - - -

- - - -

Fai Fei Fgi Class B

- - - -

- - - -

- - - -

Fa6000 Fe6000 Fg6000 Class A

TABLE 6.25
Confusion Matrix for the Features

Total Result = 200
Predicted

No
Predicted

Yes
Row-wise

Total

Actual
No

TN = 30 FP = 25 55

Actual
Yes

FN = 15 TP = 130 145

Col-wise
Total

45 155
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Now, decision trees are constructed for the subsets. Next, each decision tree is obtained based on 
decision criteria, and finally, there are a group of decision trees. Finally, the average prediction is 
obtained from all the decision trees (subset), and an overall RF prediction is obtained, as illustrated 
in Figure 6.71.

6.5.3  PseUDocoDe for ranDoM forest

Step 1: Randomly select K features from total M features where k is less than M
Step 2: Among K features, calculate the node “d” using the best split node
Step 3: Split the node into daughter node using the best split

FIGURE 6.69 Creating subset from original dataset by using the sampling method.

FIGURE 6.70 A sample subset.
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Step 4: Repeat 1–3 steps until the “i” number of nodes has been reached.
Step 5: Building forest by repeating steps 1–4 for “n” times to create “n” of trees.

Let us assume a dataset that has M features. A K feature is selected from the dataset by using the 
sampling method. The selected K features should be less than M features in the dataset. The deci-
sion tree is constructed by using the K features. By using split node, first, determine the root node 
and daughter node. Then, the tree is constructed by using the split node concept until it reaches the 
leaf node. Similarly, construct another decision tree in the RF.

6.5.3.1  Pseudocode for Prediction in Random Forest

Step 1: Take the test features and use the rules of each randomly created decision tree to pre-
dict the outcome and store the predicted outcome

Step 2: Calculate the votes for each predicted target
Step 3: Consider the high voted predicted target as the final prediction from the RF algorithm.

Input is given to all the decision trees of the RF. Then, calculate the number of votes given to each 
class. The class having majority voting is selected as the predicted class of the model.

6.5.4  regression Using ranDoM forest

We can use the RF for regression also. Consider sample X. Sample x is divided into subsample 1, 
sample 2, sample 3, and sample. Decision tree 1, decision tree 2, decision tree 3, and decision tree 
m are constructed from the samples. Each tree can be constructed from any of the decision tree 

FIGURE 6.71 Creation of decision tree based on the salary.
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algorithms like CART and ID3. Each decision tree will produce a value. The output of each decision 
tree is considered in the regression process. In the classification process, the voting mechanisms 
are used. The average output of each tree is taken to compute the final class, as represented in 
Figure 6.72.

6.5.5  classification Using ranDoM forest

This section illustrates the step-by-step procedure of applying RF for a classification problem with 
a suitable example.

Step1: Create a bootstrap dataset
Consider the below dataset for predicting heart disease (Table 6.26).
The bootstrap dataset should be the same size as the original dataset and select randomly from 

the given dataset. The bootstrap dataset is created by randomly selecting data from the original 
dataset. In the above example, the data in row 2 are selected first (Table 6.27).

FIGURE 6.72 RF for regression.
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Then, the data from the first row are selected (Table 6.28).
Then, the data from the last row are selected (Table 6.29).
Then again, the data from the last row are selected (Table 6.30).
So we have selected four data from the original dataset (Table 6.31).

TABLE 6.26
Original Dataset

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

No No No 125 No

Yes Yes Yes 180 Yes

Yes Yes No 210 No

Yes No Yes 167 Yes

TABLE 6.27
Random Selection of Single Data

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

TABLE 6.28
Random Selection of Two Data

Chest Pain Good Blood Circ. Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

TABLE 6.29
Random Selection of Three Data

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

Yes No Yes 167 Yes

TABLE 6.30
Random Selection of Four Data

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

Yes No Yes 167 Yes

Yes No Yes 167 Yes
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Step 2: Create a decision tree using the bootstrap dataset, but only use a random variable 
subset at each step

In the above example, we have four variables. Instead of selecting all four variables, we will 
select only two variables as candidate variables (good blood circulation or blocked arteries). Even 
we can use the decision tree algorithm to select the candidate key. Let us take good blood circulation 
as a candidate key (Figure 6.73).

Then, the tree can be divided further using chest pain and weight. Figure 6.74 represents the 
decision tree.

TABLE 6.31
Bootstrap Dataset

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

Yes No Yes 167 Yes

Yes No Yes 167 Yes

FIGURE 6.73 Selection of candidate key.

FIGURE 6.74 Decision tree from the bootstrap dataset.
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Then again, we have to repeat Step 2 to create more decision trees by using different bootstrap 
datasets. Decision trees 2 and 3 are constructed as shown in Figures 6.75 and 6.76. 

Step 3: Evaluating the random forest
After the creation of a RF, we have to evaluate the performance. Consider the sample shown in 

Table 6.32.

FIGURE 6.75 Decision tree 2.

FIGURE 6.76 Decision tree 3.
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The above sample will be given to decision tree 1 (Figure 6.77).  
From the decision trees in Figures 6.78 and 6.79, Yes is selected. Finally, the voting for the class 

is given in Table 6.33.
Similarly, we have to pass the variable into another decision tree also. Finally, after passing to all 

decision trees, the voting is represented in Table 6.34.
So the majority of voting belongs to class Yes. So the data belong to class Yes (Table 6.35).

TABLE 6.32
Sample for Constructing Decision Tree 1

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes No No 168

FIGURE 6.77 Classification in decision tree 1.

FIGURE 6.78 Classification in decision tree 2.

FIGURE 6.79 Classification in decision tree 3.
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6.5.5.1  Random Forest Problem for Classification – Examples
6.5.5.1.1  Problem 1
Construct the RF for the example in Table 6.36.

Assume that we are splitting the data based on the attribute home type. The values for home type 
are between 6 and 31. The possible split of the dataset is

• home type ≤6
• home type ≤10
• home type ≤15
• home type ≤30
• home type ≤31

TABLE 6.33
Voting Results

Heart Disease

Yes No

1 0

TABLE 6.34
Voting Results from All the Decision Trees

Heart Disease

Yes No

5 1

TABLE 6.35
Majority Voting Results

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes No No 168 Yes

TABLE 6.36
Sample Data – Home Type, Salary, and Class

Record

Attributes

ClassHome Type Salary

1 31 3 1

2 30 1 0

3 6 2 0

4 15 4 1

5 10 4 0
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6.5.5.1.2  Gini Index
If dataset D contains n classes, Gini index is defined as

 ∑= −D PiGain( ) 1 2

where
Pi represents the sum of the probabilities of the positive index and negative index

Home type ≤6:

Gini (home type ≤ 6) = 1 − (12 + 0) = 0
Gini (home type >6) = 1 − ((2/4)2 + (2/4)2) = 0.5
Gini (split) = 1/5(0) + 4/5(0.5) = 0.4

Home type ≤10

Gini (home type ≤6) = 1 − (12 + 0) = 0
Gini (home type >10) = 1 − ((1/3)2 + (2/3)2) = 0.4452
Gini (split) = 2/5(0) + 3/5(0.445) = 0.2671
Home type ≥10 has the lowest value.

Best Split:
 ( )= + =Home type 10 15 / 2 12.5

If the home_type is <12.5, then it belongs to class 0. If home_type is >12.5, then it belongs to class 
1, as shown in Figure 6.80. The next Gini index is based on salary as shown in Figure 6.81.

Record

Number of Records

Zero One N = 5

Home type ≤6 1 0 n1 = 1

Home type >6 2 2 n2 = 4

Record

Number of Records

Zero One N=5

Home type ≤10 2 0 n1=2

Home type >10 1 2 n2=3

Gini Split Value

Home type ≤6 0.4000

Home type ≤10 0.2671

Home type ≤15 0.4671

Home type ≤30 0.3000

Home type ≤31 0.4800
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6.5.6  featUres anD ProPerties of ranDoM forest

6.5.6.1  Features
• It is the most accurate algorithm currently available, and it works quickly on huge datasets.
• It can handle tens of thousands of input variables without deleting any of them.
• It calculates the importance of several variables in the classification.
• As the forest grows, it generates an internal unbiased estimate of the generalization error.
• It offers a method for guessing missing data that works well and retains accuracy even with 

a considerable amount of missing data.
• It includes techniques for balancing errors in uneven datasets with a class population.
• The forests that are created can be preserved and used on other data in the future.

FIGURE 6.80 Creating RF based on home_type.

FIGURE 6.81 Creating RF based on home_type and salary.
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• Prototypes are created that reveal the relationship between the variables and the 
classification.

• It calculates distances between pairs of examples, which can be useful in clustering, detect-
ing outliers, or giving fascinating views of the data (by scale).

• Unlabeled data can be used to create unsupervised clustering, data visualizations, and 
outlier identification using the capabilities described above.

• It provides a mechanism for finding variable interactions through experimentation.

6.5.6.2  Properties
• Each tree has maximal strength
• Each tree has a minimal correlation with the other trees.
• Ensemble of trees votes for the final result.

6.5.7  aDvantages anD DisaDvantages of ranDoM forest

6.5.7.1  Advantages
• It can be used for both classification and regression tasks.
• Handle the missing value and maintains accuracy for missing data.
• No overfitting the model.
• Handle larger datasets with higher dimensionality.

6.5.7.2  Disadvantages
• Works well for classification and does not work for regression.
• Less control on the model.

6.5.8  calcUlation of error Using bias anD variance

The bias and variance represent the deviation of the result from the expected value. Let F be the true 
function having random noise. Then, hypothesis h is imperfect for the following reason.

6.5.8.1  Bias
H is unable to fit f perfectly because it lacks capacity or complexity.

6.5.8.2  Variance
H is fitting to the noise in the data and missing the true function f.

Let z be that arbitrary point and generated point is given as

 = +f z¥ ( ) € (6.22)

Expected value is given as

 =E f z[¥] ( ) (6.23)

Variance is given as

 =var[¥] var[€] (6.24)
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Mean squared error is given as
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where ¥ and (z) are independent.
Variance of ¥ and (z) is given as
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 (6.26)

(E[h(z)]−f(z))2 represents the squared bias. It represents the quantity in which the model differs from 
the real data distribution function.

var[h(Z)] represents the variance. The variance determines the risk factors.
var[€] represents the irreducible error. The error is due to the noise introduced in the input signal.

6.5.8.3  Properties of Bias and Variance
• Too much bias leads to underfitting
• Too much variance leads to overfitting.
• Training errors show bias.
• Test errors show bias and variance.
• If the n value is infinity, then the variance is zero.
• A model has sufficient modeling capacity when bias is zero when n tends to infinity
• If the number of features is increased, then there is a drop in bias.
• Noise in the test only affects var(€). Noise in the training set affects only bias and var(€).

6.5.9  tiMe coMPlexity

RF is a decision tree ensemble system. The time complexity for creating a complete unpruned deci-
sion tree is O(v * n log(n)), where n is the record number and v is the number of variables/attributes.

Let n tree be the number of trees in the RF and m try be the number of variables at each node. 
Then, the time complexity of a single tree is o(m try * n log (n)).

The time complexity of n tree is o(n tree * m try * n log(n)). Let the depth of the tree be o(log n). 
Let d represent the depth of the tree. Then, the time complexity is represented as o(n tree * m try * 
d * n).

6.5.10  extreMely ranDoMizeD tree

Extremely randomized trees do not use bagging to create a collection for each tree of training 
samples. Instead, the same set of input learning is used to train all trees. Extremely randomized 
trees strongly choose a split node (both a variable index and a variable split value are randomly 
selected). In contrast, RF considers the strongest split between random subsets of variables (optimal 
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by variable index and variable split value). Each tree is constructed from a complete learning sam-
ple. Let k be the number of random splits at each node. K is fixed to one; the resulted tree structure 
is independent of the output labels of the training set. Let P be the number of features. The value of 
K is the square root of p for the classification problem and k = p for the regression problem. The extra 
tree has increased bias and reduced variance; once the randomization rate is achieved, the variance 
will vanish, and bias will increase. If the level of randomization rises above the optimum level, the 
variance decreases, and the bias increases.

6.5.11  real-worlD exaMPles

The RF is a popular ML algorithm. The accuracy of RF is high because it has multiple decision 
trees. So it plays a major role in classification and regression problems. A few application areas 
where RF is popular are as follows:

 1. Machine fault diagnosis
 2. Medical field
 3. Banking
 4. E-Commerce
 5. Security

6.5.11.1  Machine Fault Diagnosis
RF algorithm is a novel assembly classifier that creates many decision trees to improve the single 
tree classification. While there are many current fault diagnostic techniques, such as artificial neural 
networks and SVMs, RF research is essential due to its fast speed, tree classifier characteristics, and 
high performance in computer fault diagnosis. Moreover, it is proved that by combining with other 
optimization methods, the RF-based diagnosis approach can produce more accurate results.

RF adopts a set of decision trees and defines by majority voting algorithm the categorical groups. 
To check the quality of RF, a serious consideration of overfitting is therefore required. Some of the 
research work is done by combining RFs with genetic algorithms. In this approach, the RF is developed 
by using a decision tree from the CART algorithm. The tree is built by splitting a node recursively. The 
tree is constructed from the sample data and the majority voting process. The class that has the highest 
voting is selected for classification. The RF can be strengthened by using a genetic algorithm. The rule 
of survival of the fittest is applied to the population of individuals. GA has a powerful search algorithm 
because of its simplicity and powerful features.GA is used for parameter optimization.

6.5.11.2  Medical Field
6.5.11.2.1  Diabetic Retinopathy Classification Analyses
RF methods are for evaluating the identification of data for diabetic retinopathy (DR) fundus pho-
tography. In the United States and worldwide, DR is one of the leading causes of blindness. DR is 
a chronic illness that may go unnoticed for effective treatment until it is too late. Early detection 
could therefore improve the chances of therapeutic interventions to reduce its effects. Graded 
fundus photography and structural data were used to estimate RF and logistic regression classi-
fiers. The impact of sample size on classifier performance and the possibility of using conditional 
probabilities are generated by RF as metrics describing DR risk. Variable RF measurements are 
used to identify factors that affect the quality of classification. By comparing participants with 
or without DR, both types of data are valuable. RF-based models provided much higher clas-
sification accuracy than those based on logistical regression. Combining both data types did not 
increase reliability but increased statistical bias among healthy participants who subsequently 
had or did not have DR events over 4 years of monitoring. RF factor value parameters showed 
that the number of microaneurysms in both eyes seemed to play the most important role in the 
discrimination between the graded fundus variables and the number of medicinal products.
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At the initial stage, the data are collected from the patient report. There should not be any miss-
ing data in the collected data. For example, among all the collected attributes, one of the attributes 
should represent whether the patient is suffering from liver damage or not.

Figure 6.82 represents the prediction of liver damage using RF. At the initial stage, the data are 
collected from the patient report. There should not be any missing data in the collected data. Among 
all the collected attributes, one of the attributes should represent whether the patient is suffering 
from liver damage or not. RF model is collected for the above model, and it produces an accuracy 
of 70.50%. The data are collected from the UCI ML repository. The dataset has 167 negative tests, 
and 416 positive test classifications are done at various decision trees. The final output is selected 
by using the voting mechanism. Liver damage occurs due to inhaling harmful gases, intake of con-
taminated food, different kinds of drugs, and excessive alcohol consumption. Preprocessing is used 
for cleansing the data attributes that are selected from the data.

6.5.11.3  Banking
RF algorithms are widely used in the banking sector in two main applications. These are meant 
to recognize clients who are trustworthy and to find customers who are fraud. The loyal customer 
is not the customer who pays well, but also the customer who can take the huge amount as a loan 
and pay the interest on the bank loan well. As the success of the bank is purely dependent on loyal 

FIGURE 6.82 Disease prediction using RF.
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customers, bank customer data are highly evaluated to determine the pattern for the loyal customer 
based on customer data.

Similarly, consumers who are not important to the bank need to be identified, such as taking the 
loan, paying interest on the loan appropriately, and finding outgoing customers. Then, bank will 
have a chance not to approve this customer loan form. Also used in this case is the RF algorithm to 
identify customers that are not beneficial to the bank.

The RF is used to predict bank failures. The bank-level financial statement is analyzed to identify 
the falling of the bank. RF improves classification accuracy because classification is done at many trees 
rather than single tree. The RF predicts the bank failure event by analyzing bank-level financial data to 
distinguish active and inactive banks. The data are collected from bank scope. $8 indicators are selected 
from these data, and these data are classified into four groups (profitability ratio, capitalization, loan 
quality, and funding). This method can be applied to a commercial bank, saving bank, and cooperative 
bank. A threshold value or explanatory variable is used to split the active and interactive banking. First, 
a large number of the trees are constructed based on the given data. Then, the class is selected based 
on the voting mechanism. The three trees are constructed for testing: first, a single tree, second one 
RF with many trees, and third one with a large dataset by training multiple tree parallel. A single tree 
represents a decision tree, and the accuracy obtained by the single tree is less than the RF tree.

First, the RF is constructed as a single tree, RF with many trees, and RF with multiple tree paral-
lel. Compared to single tree RF, the multiple tree RF produced higher accuracy.

The explanatory variables are

 1. The average rate of interest on loans and assets
 2. The average rate of a bank in deposits.

6.5.11.4  E-Commerce
For E-Commerce, the RF is used only in the small segment of the recommendation engine on vari-
ous types of customers to identify the likelihood of customers who like the recommended goods. It 
takes high-end GPU systems to run RF algorithms on very large datasets. If GPU is not available, 
the ML models can also be run on the cloud hosting environment. The online cloud computing 
system can be used from any corner of the world to run high-end ML models.

6.5.11.5  Security
In recent times, the RF has played a major role in the intrusion detecting system. Due to advance-
ments in the technologies like IoT, big data, and the cloud, there is increased usage of the computer 
system in business. A huge amount of data are transferred and processed. The IDS maintains the 
confidentiality and integrity of data. The IDS in the network should have a low false-positive rate. 
RF algorithm plays a major role in IDS because it requires less training time and fast prediction. 
Detection strategy type, problem domain, and software architecture are used to create a RF model. 
Proximity methods are used in the RF. The various data collected from the network are HOST log 
(i.e., operational system and system logs), application log (i.e., data generated from the applica-
tion), network traffic (i.e., OSI layer 3), and wireless traffic(i.e., OSI layer 1). Data can be collected 
from the centralized or distributed method. In analogy-based detection, patterns different from 
normal patterns are identified. In signature-based detection, the misused data are identified, and in 
specification-based detection, the data violated from the protocol specification are identified. The 
detection can be done by using online, i.e., block the IP address or off-line.

6.5.12  ranDoM forest in Practice Using Python

Before implementing RF classifier, let us understand the data file. The sample data file we have used 
is shown below. It has five columns – user ID, gender, age, estimated salary, and whether they have 
done any purchases or not. Our goal is to classify using RF classifier.
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The partial data are shown below.

# Random Forest Classification

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import confusion_matrix, classification_report, 
roc_curve,auc
import statistics

# Importing the dataset

User ID Gender Age Estimated Salary Purchased

15624510 Male 19 19,000 0

15810944 Male 35 20,000 0

15668575 Female 26 43,000 0

15603246 Female 27 57,000 0

15804002 Male 19 76,000 0

15728773 Male 27 58,000 0

15598044 Female 27 84,000 0

15694829 Female 32 150,000 1

15600575 Male 25 33,000 0

15727311 Female 35 65,000 0

15570769 Female 26 80,000 0

15606274 Female 26 52,000 0

15746139 Male 20 86,000 0

15704987 Male 32 18,000 0

15628972 Male 18 82,000 0

15697686 Male 29 80,000 0

15733883 Male 47 25,000 1

15617482 Male 45 26,000 1

15704583 Male 46 28,000 1

15621033 Female 48 29,000 1

15649487 Male 45 22,000 1

15736760 Female 47 49,000 1

15714658 Male 48 41,000 1

15599081 Female 45 22,000 1
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dataset = pd.read_csv('C:/Python Files/Decision Tree/Decision Tree/Source 
Files/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 
0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion = 
'entropy', random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

pd.crosstab(y_pred,y_test)

#OUTPUT ◊
#col_0 0 1
#row_0
#0 63 3
#1 5 29

total1=sum(sum(cm))

#####from confusion matrix calculate accuracy
accuracy=(cm[0,0]+cm[1,1])/total1
print ('Accuracy : ', accuracy)

#OUTPUT ◊
#Accuracy : 0.92

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity)

#OUTPUT ◊
#Sensitivity : 0.9264705882352942



303Supervised Learning: Classification

specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)

#OUTPUT ◊
#Specificity : 0.90625

precision = cm[0,0]/(cm[0,0]+cm[1,0])
print('precision : ', precision)

#OUTPUT ◊
#precision : 0.9545454545454546

classifier.score(X_test, y_test)
#OUTPUT ◊
#0.92

print(classification_report(y_test, y_pred))

#OUTPUT ◊
# precision recall f1-score support
#
# 0 0.95 0.93 0.94 68
# 1 0.85 0.91 0.88 32
#
#avg /total 0.92 0.92 0.92 100

decisiontree5= classifier.estimators_[5]
from sklearn import tree
from IPython.display import Image

tree.export_graphviz(decisiontree5, out_file='C:/Python Files/Decision 
Tree/Decision Tree/Source File/srandomforest_5_tree.dot')

Image(filename = 'C:/Python Files/Decision Tree/Decision Tree/Source 
Files/randomforest_5_tree.png')

## THE OUTPUT FILE IS given below and represented in Figure 6.83
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#################################################
##regressor

from sklearn.ensemble import RandomForestRegressor
# From the previous example in multiple regression, (50_Startups.csv) Use 
a Classifier 

dataset1 = pd.read_csv('C:/Python Files/50_Startups.csv')
X1 = dataset1.iloc[:, :-1].values
y1 = dataset1.iloc[:, 4].values

# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X1[:, 3] = labelencoder.fit_transform(X1[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X1 = onehotencoder.fit_transform(X1).toarray()

# Avoiding the Dummy Variable Trap
X1 = X1[:, 1:]

# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size 
= 0.2, random_state = 0)

regr = RandomForestRegressor()

regr.fit(X_train1,y_train1)

#OUTPUT ◊
# RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
#           max_features='auto', max_leaf_nodes=None,
#          min_impurity_decrease=0.0, min_impurity_split=None,
#         min_samples_leaf=1, min_samples_split=2,
#           min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
#           oob_score=False, random_state=None, verbose=0, 
warm_start=False)

# Predicting the Test set results
y_pred1 = regr.predict(X_test1)

from sklearn.metrics import mean_squared_error

mean_squared_error(y_test1,y_pred1)#mse

print(np.sqrt(mean_squared_error(y_test1, y_pred1))) #rmse

#OUTPUT ◊
8029.705866133677

# print the R-squared value for the model
regr.score(X_test1, y_test1)#rsquare

#OUTPUT ◊
0.9495843301735848
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sst=sum(np.power(y_test1-statistics.mean(y_test1),2))
sse=sum(np.power((y_test1-y_pred1),2))

rsquared=(sst-sse)/sst

adjusted_r_squared = 1 - (1-rsquared)*(len(y_test)-1)/(len(y_test)-X_
test.shape[1]-1)  
dt=regr.estimators_[5]

from sklearn.tree import export_graphviz
from IPython.display import Image

export_graphviz(dt, out_file='C:/Python Files/Decision Tree/Decision 
Tree/Source File/dt_regressor.dot',class_names = dataset1.Profit,
                rounded = True, filled = True)

##dot -Tpng sample_1.dot -o sample_1.png
Image(filename = 'C:/Python Files/Decision Tree/Decision Tree/Source 
File/tree_limited.png')
## THE OUTPUT FILE IS ATTACHED BELOW and shown in Figure 6.84

6.6  SUPPORT VECTOR MACHINES

ML aims to identify the pattern behind the data and build systems that learn from the experience gained. 
SVM gained research interest as it utilizes optimization techniques and achieves higher performance. 
SVM differs from other classical ML techniques since it makes use of statistical ideas. While learning a 
model in ML, we generally attempt to minimize the errors in the training phase, leading to the overfitting 
of data. SVM has a clever way to tackle the overfitting problem with the help of maximizing margin tech-
niques. This chapter presents the basic ideas of SVMs and kernel functions. SVM is the most effective 
kernel-based supervised ML classifier. This is a sophisticated classification technique that handles both 

FIGURE 6.84 RF output.
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linear and nonlinear data. Kernel machines have many useful properties to analyze nonlinear data. The 
variants of SVM are support vector regression (SVR), which can be used for solving regression analysis. 
SVM is a robust learning method as a piece of evidence from its usage in diverse fields of engineering. 
It has been applied for real-world applications, including handwritten OCR, face recognition, speaker 
identification, natural language processing, text mining, drug design, fault diagnosis in machines, dam-
age assessment of bridges, and pattern recognition. The only prerequisite for understanding SVM is 
constrained optimization based on the Lagrangian multiplier method. In this section, working of SVM, 
underlying statistical concept, kernel tricks, linear and nonlinear SVM classifier, finding optimal hyper-
plane, maximum margin classifier, the hard and soft margin of SVM, variants of SVM, pros and cons of 
SVM, SVM regression analysis, and applications are discussed in detail.

6.6.1  geoMetric intUition

SVM is a supervised learning algorithm in which the learning model is provided with the set of 
inputs and their associated outputs or labels. SVMs are used in classification problems. The clas-
sification problem can be viewed as the task of separating classes in feature space. To understand 
the mystery of SVM, a simple binary classification problem with two classes is considered as an 
example, as shown in Figure 6.85. It consists of a decision boundary or hyperplane that separates 
the two classes. The goal of SVM is to choose an optimized hyperplane for separating the classes. 
For example, in Figure 6.85, many possible lines separate the two classes, and the dark shaded thick 
line is the optimal hyperplane among all others.

The support vectors are the essential data points that are closer to the decision boundary. The main 
objective of SVM is to find an optimal hyperplane classifier for this problem. The optimal hyperplane 
is to identify the maximum distance between the support vectors and the hyperplane.

 a. the distance to the closest negative sample d2 is lesser than the distance to the closest posi-
tive sample d1. In contrast to Figure 6.86,

 b. the optimal hyperplane was found where the distance to the closest negative sample d2 is 
equal to the distance to the closest positive sample d1.

FIGURE 6.85 Identifying an optimal hyperplane.
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dOptimal hyperplane : distance to theclosest negativesample

Distance to theclosest positivesample

2

 (6.27)

Example Let us understand numerically with an example given in Figure 6.87 to find the optimal 
hyperplane from the given data points, which are linearly separable.

There are many possible infinite numbers of solutions available, as shown in Figure 6.88a. 
Therefore, the aim is to find the optimal hyperplane solution as shown in Figure 6.88b, which sepa-
rates the + and − classes.

Figure 6.89 illustrates the concept of binary classification with another simple example. There 
are two features (nodes and ages) and two labels (survived and lost). The hyperplane or decision 
boundary will distinctly separate the two classes.

FIGURE 6.86 (a) Not an optimal hyperplane d1 > d2 and (b) optimal hyperplane d1 = d2.

FIGURE 6.87 Example for linearly separable.



309Supervised Learning: Classification

The distance between the closest point (support vector) and the decision boundary is defined 
as margin. Among all possible decision surfaces, choose the optimal decision surface for which 
the margin width is high. There can be a minimum of two support vectors and a maximum of any 
number of vectors. But typically, the number of support vectors should be extremely small. These 
support vectors determine the equation of a line. SVM has a clear way to prevent overfitting and 
works well with a relatively larger number of features without requiring too much computation.

FIGURE 6.88 (a) Possible hyperplanes and (b) optimal hyperplane.

FIGURE 6.89 A simple SVM.
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6.6.2  MatheMatical forMUlation

Let us understand the mathematical intuition behind SVM by defining functional and geometrical 
margins. Functional margin is defined as the distance between the arbitrary point (xi, yi) and the 

decision boundary (w, b). Functional margin γ i is the distance between (xi, yi) and the decision 

boundary and is derived in Equation 6.28.

 γ ( )= +y w x bi
i

T
i  (6.28)

Similarly, for another point (xj, yj) that is farther from the decision boundary, the functional margin 
is as follows in Equation 6.29.

 γ ( )= +y w x bj
j

T
j  (6.29)

The functional margin of point (xi, yi) is greater than the functional margin of point (xj, yj), as shown 
in Figure 6.90. The larger the functional margin, the higher the confidence.

And now, we can define the functional margin for a set of training points 
{ }( ) ( ) ( )=S x y x y x ym m, , , , , ,1 1 2 2

 γ γ= = …i mimin for 1,2, ,  (6.30)

If we scale w and b, the functional margin gets larger. To overcome this drawback, a geometric mar-
gin comes into the picture. Figure 6.91 shows that the geometric margin is invariant to the scaling 
of the equation. Let w be the vector normal to the decision surface.

And let 
w

w
 be the unit vector normal to the decision surface. For example, let us assume ( )=w 2,3 ,  

then = +w 2 32 2

 =
√ √







w

w

2

13
,

3

13
 (6.31)

FIGURE 6.90 Functional margin.
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Now, if we want to find the distance of p from q. But the distance is in the direction of w, and we 
can write it as

 γ= +p q
w

w
   (6.32)

The above equation 6.6 can be rewritten as

 γ( ) ( )= +a a b b
w

w
, ,  1 2 1 2

 γ( ) −






+ =w a a

w

w
bT , 01 2

 γ
( )( )

=
+

y
w a a b

w

T  ,
 

1 2
 (6.33)

Now, we can scale ||w|| = 1; then,

 γ ( )( )= +y w a a bT ,1 2  (6.34)

After normalization, the geometric margin is

 
γ
w

    (6.35)

 γ+ ≥ +w x bT
i   for vepoints

 γ+ < −w x bT
i   for vepoints

FIGURE 6.91 Geometric margin.
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and can be rewritten as

 +y w x bi
T

i(   )1

 ( )+ < =y w x b i mi
T

i 1for 1,2,...,

 γ = 1

 ≡
w

wmaximize
1

minimize
1

2
2

Hence, the formulation for optimization problem concerning SVM subject to linear constraints is 
given as follows:

 wminimize
1

2
2 (6.36)

 ( )+ ≥y w x bi
T

is.t. 1

6.6.2.1  Maximize Margin with Noise
SVM can handle the noise in the data in a very efficient way. The optimization function is required 
to find the weight vector w and b such that the margin width is maximized. So the margin can be 
written as in Equation 6.37.

 
w

max
2

 (6.37)

And for each of the m training points ( )x yi i,

 ( )+ ≥y w x bi
T

is.t. 1

and can be rewritten as a minimization problem

 = ⋅w w w  isminimized2

And for each of the m training points ( )x yi i,

 ( )+ ≥y w x bi
T

is.t.   1

The main objective is to ⋅ +w w cminimize  where c is the distance of error points to their correct 
zones.

6.6.2.2  Slack Variable ξi

In Figure 6.92, there are two wrongly classified slack variables given as ξ1, ξ2 and the maximum 
margin is given as M, which we want to maximize.
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The maximum margin with noise is defined by adding the penalty due to slack variables.

 ∑ξ⋅ +
=

w w c k

k

n

minimize    
1

 (6.38)

 ξ( )⋅ + ≥ − = …y w x b k mk k ks.t.   1 ,   1, ,

 ξ ≥ = …k mk 0  1, ,

The Lagrangian of this quantity will be given in Equation 6.10.

 ∑ ∑ ∑ξ α β ξ α ξ β ξ[ ]( ) ( )= ⋅ + + ⋅ + − + −
= = =

L w b w w C y x w b
i

m

i

i

m

i i i

i

m

i i, , , ,
1

2
1

1 1 1

 (6.39)

where α βi iand  are Lagrange multipliers ≥ 0
The soft SVM separates the positive and negative points. And the solution to the dual problem 

is given in Equation 6.40.

 ∑α=
=

w y xi i i

i

m

1

 (6.40)

 ∑ξ α( )= − −
=

b y y x xk k i i i k

i

m

1
1

 (6.41)

for any k such that α >k 0. And for classification, the function f(x) is given as in Equation 6.42.

 ∑α= ⋅ +
=

f x y x x bi i i

i

m

( )
1

 (6.42)

where x is the test point and α i is nonzero support vectors.

FIGURE 6.92 Maximize margin with noise.
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However, the decision surface classifier is still linear and cannot handle the nonlinear case. 
Overfitting is controlled by soft margin SVM. The difference between soft margin and hard margin 
of SVM is presented in Figure 6.93.

Let see a simple example in one-dimensional space as shown in Figure 6.94. Suppose we have 
three data points and one scalar feature x with two negative classes (x = −3 and −1) and one positive 
class (x = 2). These data are easily separable with many linear classifiers (wx + b). So let’s find the 
classifier with maximum margin.

 = − = −x y3 and 1

 = − = −x y1 and 1

 = =x y2 and 1

The margin constraints are rewritten and visualized in two-dimensional spaces as in Figure 6.95. 
The set of parameters that satisfy our margin constraints are shown in the green-shaded region.

FIGURE 6.93 (a) Soft margin SVM and (b) hard margin SVM.

FIGURE 6.94 Points at one-dimensional space.
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 ( )− + < − → < −a b b a3 1  3 1

 ( )− + < − → < −a b b a1 1  1

 + < + → > − +a b b a(2) 1 2 1

Finally, the objective is to aminimize .

6.6.3  loss MiniMization

In Figure 6.96, the data point D is misclassified, and for such instance, SVM defines slack variable ξ

 ∑ξ+w C
i

minimize
1

2
 

2

 ( )+y w x bi
T

is.t. 1

 ∑ ( )(+ −w C y w xi
T

i

i

minimize
1

2
  max 0,1

2
 (6.43)

where C is the regularization parameter that can be set using cross-validation.
An instance may have four possible cases described in Figure 6.96 while classifying the data 

points.

 1. The data point A is on the correct side, and far away from the margin, then the penalty is 0
 2. The data point B is on the correct side, and closer tothe margin, then the penalty is 0
 3. The data point C is the correct side but is in the margin lying very close to the hyperplane 

then the penalty is ( )− y w xi
T

i1

 4. The data point D is on the wrong side; then, the penalty is ( )− y w xi
T

i1

And the comparison of hinge loss with 0–1 loss is shown in Figure 6.97.

FIGURE 6.95 Visualization of margin constraints in 2D space.
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FIGURE 6.96 Four possible cases in classifying.

FIGURE 6.97 Comparisons of 0–1 loss and hinge loss.
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6.6.4  DUal forMUlation

Lagrangian duality for a primal problem is to minimize f(w) where w is the parameter. There are 
two linear constraints: inequality constraints g(w) and equality constraints h(w).

 f wwmin ( ) (6.44)

 ≤ =g w i kis.t. ( ) 0,    1, 2,..,

 ( ) = = …h w i l0 1,2, ,

The generalized Lagrangian is given as α β( )L w, ,  where α β,  are Lagrange multipliers and α ≥ 0

 ∑ ∑α β α β= + +
= =

L w f w g w h wi i
i

k

i i
i

l

( , , )    ( )    ( ) ( )
1 1

 (6.45)

Lemma:

 α β =
∞






α β α ≥ L w

f w if w
imax ( , , )

( ) Satisfiesprimal constraints

Otherwise, , 0

The solution to the primal problem is p*, and the dual problem is d*.
Theorem (Weak Duality)

 α β α β= ≤ =α β α α β α≥ ≥d L w L w pw wi i  max min ( , , )  min max ( , , ) *
, , 0 , , 0

* (6.46)

Theorem (Strong Duality)
If there exists a saddle point of α β( )L w, , , we have d* = p*. As per the strong duality theorem, 

when the saddle point exists, the following Karush–Kuhn–Tucker (KKT) conditions are satisfied.

 α β∂
∂

= = …
w

L w i k
i

( , , ) 0,   1, ,

 α β∂
∂

= = …
b

L w i l
i

( , , ) 0,   1, ,

 α ( ) = = …g w i mi i 0,  1, ,

 ( ) ≤ = …g w i mi 0,  1, ,

 α ≥ = …i mi 0,   1, ,

The theorem states that if α βw , ,and* * * satisfy KKT conditions, then it is a solution to the primal 
and dual problems.

In SVM, as given in the above equation if α i   is nonzero, then such points are called support 
vectors.
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 α ( ) =g wi i 0 (6.47)

If α >i 0, then ( ) =g wi 0.
Now, let’s see how to solve the optimization problem in SVM. After applying Lagrangian, the 

quadratic programming with linear constraints is as follows.
min w and b with fixed α.

 ∑ α
∂
∂

= → =
=

L

w
w y xp

i i i
i

n

0 
1

 α
∂
∂

= → =
L

b
yp

i i0 0

 ∑ ∑ ∑α α α α α( )( ) = − −
= = =

L w b y y x x b yp

i

m

i

i j

m

i j i j i
T

j i i

i

m

, ,
1

2
1 , 1 1

 (6.48)

 ∑ ∑α α α α ( )( ) = −
= =

L w b y y x xp

i

m

i i j i j i
T

j

i j

m

, ,
1

2
1 , 1

Now, we have the following dual problem, and this is a quadratic programming problem where a 
global maxima α i can be found at all times.

 ∑ ∑α α α α ( )= −
= =

J y y x xa i

i

m

i j i j i
T

j

i j

m

max ( )
1

2
1 , 1

 (6.49)

α ≥ = …i kis.t, 0,  1, ,

 
∑α =

=

yi i

i

m

  0
1  

(6.50)

After getting the Lagrangian multiplier α j, then the parameter vectors w can be reconstructed as 
follows:

 ∑ ∑α α= =
=

∈
w y x w y xi i i

i

m

i i i
i SV

 
1

 (6.51)
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At last, compute with new data z

 ∑ α ( )+ = +
∈

w z b y x z bT
i i i

T

i SV
 (6.52)

If the resulting sum is +ve, then classify the new data z as 1, and else, if the sum is −ve, then z is 
classified as 2. The discriminant function w depends on the dot product of the new data z and sup-
port vector xi.

Example Consider the two-dimensional data as shown in Table 6.37, which contain eight instances.
Let w = (w w, 1 2) and b denote the parameters of the decision boundary; using the below equation, 

we can solve for w1 and w2 in the following way:

 ∑ α= = + − = −w y xi i i
i

65.5621*1* 0.3858 65.5621* 1* 0.4871 6.641 1

 ∑ α= = + − = −w y xi i i
i

  65.5621*1* 0.4687 65.5621* 1 * 0.611 9.322 2

The bias term b is computed using equation

 ( )( ) ( )( )= − ⋅ = − − − − =( )b w x1 1 6.64 0.3858   9.32 0.4687 7.93001
1

 ( )( ) ( )( )= − − ⋅ = − − − − − =( )b w x  1 1 6.64 0.4871 9.32 0.611 7.92892
2

 = + =
( ) ( )

b
b b

Bias
2

7.93
1 2

The decision boundary corresponding to these parameters is shown in Figure 6.98.
Once the decision boundary is found, a test instance z is classified as

 ∑ α= + = +



=

f z w z b y x z bi i i
i

N

( ) sign ( . ) sign .
1

If f(z) = 1, then the test instance is classified as a positive class; otherwise, it is classified as negative 

class.

TABLE 6.37
Two-Dimensional Data

x1 x2 y Lagrange Multiplier α
0.3858 0.4687  1 65.5261

0.4871 0.611 −1 65.5261

0.9218 0.4103 −1 0

0.7382 0.8936 −1 0

0.1763 0.0579  1 0

0.4057 0.3529  1 0

0.9355 0.8132  -1 0

0.2146 0.0099  1 0
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6.6.5  the kernel trick

To explore the kernel trick mechanism, we must understand the math behind linearly separable 
and nonlinearly separable. Consider a binary classification problem with class labels 0 and 1. A 
linearly separable case is the one in which a single line separates the two classes, whereas nonlin-
early separable case is the one in which more than one line is required to separate the two classes. 
Logic functions such as AND function and OR function are linearly separable, while XOR function 
is nonlinearly separable, as shown in Figures 6.99 and 6.100. Solved examples to understand the 
concept are illustrated in Section 6.6.10 of this chapter. 

6.6.6  PolynoMial kernel

The notion of the kernel function in SVM is given in Equation 6.53.

 ∑α( ) ( ) ( )= ∅ + = ∅ ∅ +
∈

g x w x b x x bT

i SV

i i
T  ( )  (6.53)

A kernel function is the dot product of two feature vectors in feature space in Equation 6.54.

 ( ) ( ) ( )= ∅ ⋅ ∅k x x x xa b a b,      (6.54)

The idea of the kernel function is to replace the dot product with the kernel function. To prove this, 
we can solve an example given two-dimensional vectors [ ]=x x x,1 2  where x1 and x2 are the two 
attributes of the vector. Let ( ) = +k x x x xi j i j, (1 . )2; we need to show ( ) ( )( )= ∅ ⋅ ∅k x x x xi j i j,  

 ( ) ( )= + ⋅k x x x xi j i j, 1
2

FIGURE 6.98 Decision boundary.
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where x xi i and1 2 are the two attributes of xi and x xj jand1 2 are the two attributes of x j.

 ( ) = + + + + +k x x x x x x x x x x x x x xi j i j i j i j i j i j i j,  1     2    2  21
2

1
2

1 1 2 2 2
2

2 
2

1 1 2 2

can be rewritten as

 
( )

( )( )

=   ⋅  

= ∅ ⋅ ∅

k x x x x x x x x x x x x x x

x x

i j i i i i i i j j j j j j

i j

, 1  2 2 2 1  2 2 21
2

1 2 2
2

1 2 1
2

1 2 2
2

1 2

where ( )∅ =  x x x x x x x1  2 2 21
2

1 2 2
2

1 2 . Thus, the solution of the determinant function is given 
as

 ∑α ( )( ) = +
∈

g x k x x b
i SV

i i j,

Commonly used kernel functions are the linear kernel, polynomial kernel, and Gaussian kernel.

FIGURE 6.100 Nonlinearly separable.

FIGURE 6.99 Linearly separable.
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Linear kernel is given in Equation 6.24.

 ( ) = ⋅K x x x xi j i j,       (6.55)

A non-stationary kernel is also called the polynomial kernel. It is well applicable for the problems 
where all the training data are normalized. Polynomial of power p is given in Equation 6.25.

 ( ) = + ⋅K x x x xi j i j
p,     (1     )  (6.56)

where p is the polynomial power.
The polynomial kernel is a nonlinear kernel that should satisfy Mercer’s theorem.

6.6.6.1  Mercer’s Theorem
A kernel function can be expressed as

 ( ) ( )( )= ∅ ⋅ ∅k x x x xi j i j,  (6.57)

∫( )g x g x dxIf andonly if foranyfunction such that ( ) is finite, then2

 ∫ ( ) ( )( ) ≥k x y g x g y dx dy,     0

6.6.6.2  Radial Basis Function (RBF) Kernel
The most common kernel function is the RBF or Gaussian similarity kernel shown in Figure 6.101. 
This kernel results in high values near the point x, and the parameter σ = 1 is used to control over- 
and underfitting. The equation for the RBF kernel is given in Equation 6.27.

 ( ) = σ
−

−

K x x ei j

x xi j

,      2

2

2
 (6.58)

FIGURE 6.101 RBF kernel.
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6.6.6.3  Other Domain-Specific Kernel
The most challenging part is choosing the right kernel function, and it is highly problem-specific.

6.6.6.4  Sigmoid Kernel
An SVM with a sigmoid kernel is equivalent to a simple two-layer neural network with no hidden 
layers known as a multilayer perceptron. It is also called the hyperbolic tangent kernel. It comes 
from neural networks, where artificial neurons often use the bipolar sigmoid mechanism as an acti-
vation function. The sigmoid kernel equation is given in Equation 6.59.

 α δ( ) ( )= ⋅ −K x x x xi j i j,   tanh    (6.59)

6.6.6.5  Exponential Kernel
It is closely equivalent to the Gaussian kernel and is shown below in Equation 6.60.

 ( ) = σ
−

−









K x x ei j

x xi j

, 
2 2

 (6.60)

6.6.6.6  ANOVA Kernel
It is said to perform well in multidimensional regression problems.

 ( )( )( ) = −{ }=K x x x xi j k
n

i
k

j
k

d

, sum exp sigma – 1

2
 (6.61)

6.6.6.7  Rational Quadratic Kernel
It is less computationally intensive than the Gaussian kernel. If the Gaussian becomes too expen-
sive, then rational quadratic kernel can be used as an alternative.

 ( ) = −
−

− +
k x x

x x

x x c
i j

i j

i j

, 1

2

2  (6.62)

6.6.6.8  Multiquadratic Kernel
The multiquadratic kernel can be used in the same situations as the rational quadratic kernel. As is 
the case with the sigmoid kernel, it is also an example of a non-positive definite kernel.

 ( ) = − +k x x x x ci j i j,
2 2  (6.63)

6.6.6.9  Inverse Multiquadratic Kernel
The Gaussian kernel results in a kernel matrix with full rank and thus forms an infinite dimension 
feature space.

 ( ) =
− +

k x x
x x c

i j

i j

,  
1

2 2
 (6.64)



324 Machine Learning for Decision Sciences with Case Studies in Python

6.6.6.10  Circular Kernel
The circular kernel is used in geostatic applications. It is an example of an isotropic stationary ker-
nel and is positive definite in R2.

 
σ σ( ) =

π
−

−











−
π

−
k x x

x x x x
i j

i j i j
,  

2
arccos

2
 (6.65)

6.6.6.11  Bayesian Kernel
The Bayesian kernel could be given as

 ∏( ) ( )=
=

k x y k x yl l l

l

N

,   ,
1

 (6.66)

6.6.6.12  Chi-Square Kernel
It is derived from chi-square distribution and is given as follows:

 ∑( ) ( )
( )

= −
−

+=

k x y
x y

x y

i i

i il

n

, 1 1

2

2

1

 (6.67)

6.6.6.13  Histogram Intersection Kernel
It is widely used in image classification and is also called as min kernel.

 ∑( ) ( )=
=

k x y x y
l

n

i i, min ,
1

 (6.68)

6.6.6.14  Generalized Histogram Intersection Kernel
It is a variant of histogram intersection kernel and is widely applicable in image classification.

 ∑ ( )( ) = α β

=

k x y x y
l

n

i i, min | | ,| |
1

 (6.69)

6.6.7  nU svM

In soft margin SVM, finding the parameter C is difficult. Instead of using C, Scholkopf et al. intro-
duce nu SVM. nu is bounded between 0 and 1. The function is given as in Equation 6.70.

 ∑γρ ξ− +w t

t
minimize

1

2
 
1

2
2

 (6.70)

Subject to

 ρ ξ ξ ρ( )+ ≥ − ≥ ≥r w x wt T t t t    ,  0,  00
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6.6.8  svM regression

Let us extend SVM to regression problem, given the training data { }( ) ( ) ∈ ∈X y X y X R y Rn n i
m

i, , , 1 1  
the idea is to learn the best optimal function to predict y given X. This regression problem can be 
parameterized by weight vector w as shown below in Equation 6.71,

 
( ) ( ) ( )

( )

= ∅ + + ∅ +

= ∅ +

′ ′g X W w x w x b

w x b

m m

T

,  1 1

 (6.71)

where ∅ →R Ri
m: . If we choose ( )∅ =X xi i, then it is a linear regression model. By specifying 

( )= ∅ ∈ ′Z X Rm , we are learning a linear model in a newly transformed feature space. Kernel func-

tions can be used instead of explicitly specifying the dot product.
Loss function L in regression problem is to minimize W and is given in Equation 6.72,

 ∑ ( )( )L y X Wi g i
i

  ,,  (6.72)

A special loss function called ε  insensitive loss is used, which allows us to use kernel trick in SVM 
regression as given in Equation 6.42.

 
ε

ε
( )( )

( )
( )

=
− <

− −






εL y g X W

y g X W

y g X W
i i

i i

i i

, ,
0 If ,

, Otherwise
 (6.73)

where ε  is the parameter of the loss function, and if the prediction is within ε  of true value, then 
there is no loss. And choose absolute error value instead of a square of the error to achieve high 
robustness.

Hence, empirical risk minimization under ε  insensitive loss would minimize

 ∑ ε( )( )− ∅ − −
=

y X W b oi i
T

i

n

  max ,
1

 (6.74)

The optimization problem for SVM regression is to find ε ε ′W b i i,  ,  ,

 ∑ ∑ε ε+ + ′










= =

W W CT
i

i

n

i

i

n

Minimize
1

2
 

1 1

 (6.75)

 ε ε( )− ∅ − ≤ + = …y W X b i ni
T

i iSubject to ,   1, ,

 ε ε( )∅ + − ≤ + ′ = …W X b y i nT
i i i ,   1, ,

 ε ε≥ ′ ≥ = …i ni i0,  0,  1, ,

To construct a dual problem for SVM regression, introduce non-negative multipliers α α ′i iand  as 
follows

 ∑ ∑ ∑α α ε α α α α α α( ) ( )( ) ( ) ( ) ( )− ′ − + ′ − − ′ − ′ ∅ ∅
α α

= =

y X Xi i i

i

n

i i

i

n

i i j j i
T

j
T

i j
max

1

2.
1 1

.
 (6.76)
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 ∑ α α( )− ′ =
=

i i

i

n

Subject to 0
1

 α α≤ ′ ≤ = …C i ni i0 , ,  1, ,

6.6.9  one-class svM

Outlier detection is an example of one-class SVM. Outlier detection is used for anomaly detection, 
where one is interested in detecting abnormal or unusual observations. The training data contain 
outliers, which are defined as observations that are far from the others. A one-class SVM is an unsu-
pervised learning algorithm that learns the boundaries of data points and can classify any points 
that lie outside the boundary as, you guessed it, outliers.

Figure 6.102 shows an example where the kitten and cub are the target classes with the label 
y = +1 and other extremes (neither kitten nor cub) are outliers y = −1. A one-class classifier is shown, 
which distinguishes kitten and cub from all other objects.

6.6.10  MUlticlass svM

In general, SVM is a binary classifier, but in real-time scenarios, there can be multiple classes. The 
multiclass classification can be achieved using one against one, one against all, and directed acyclic 
graph SVM methods.

6.6.10.1  One against All
In one against all, k binary SVM classifier is constructed where k is the number of classes. For 
example, there are three classes {1, 2, 3} as given in Figure 6.103. Initially, let us perform binary 
classification by assuming class 1 as positive and the remaining classes from 2 and 3 as negative. 
Similarly, repeat the same procedure for the other four classes.

FIGURE 6.102 One-class classifier for outlier detection.
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6.6.10.2  One against One
In one against one method, for M classes, M(M − 1)/2 classifiers are built. Figure 6.104 shows the 
architecture for three-class SVM problem using one against one method.

6.6.10.3  Directed Acyclic Graph SVM
It is a combination of one against one method and a directed acyclic graph concept. For the three-
class example {1, 2, 3}, initially construct a binary classifier for classes {1 and 2} as in one against 
one method. The binary classifier moves to the right node if the data belong to class 1, else to the left 
node. Finally, the directed acyclic graph shown in Figure 6.105 is constructed to make a decision. 
The leaf node indicates the final class label.

FIGURE 6.103 One against all.

FIGURE 6.104 One against one.
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6.6.11  svM exaMPles

Example 6.11

Let us see the linear SVM problem. Suppose we are given the following positively labeled data points
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and the following negatively labeled data points (see Figure 6.106):
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Let us identify a simple hyperplane that separates the positive and negative points. Linear SVM can 
be used because the data points are linearly separable.

Let us define a hyperplane by observing the given input data. There are three support vectors 
circled, as shown in Figure 6.107, which are close to the hyperplane and they are
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In what follows, we will use vectors augmented with 1 as a bias input
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FIGURE 6.105 Directed acyclic graph SVM.
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Figure 6.108 represents the SVM architecture, and their corresponding equations 6.77 to 6.79 are 
given below.

 α α α ( )( ) ( ) ( ) ( ) ( )∅ ⋅∅ + ∅ ⋅∅ + ∅ ⋅∅ = −s s s s s s          1 1 1 1 2 2 1 3 3 1  (6.77)

 α α α ( )( ) ( ) ( ) ( ) ( )∅ ⋅ ∅ + ∅ ⋅∅ + ∅ ⋅∅ = +s s s s s s            1 1 1 2 2 2 2 3 3 2  (6.78)

 α α α( ) ( ) ( ) ( )( ) ( )∅ ⋅∅ + ∅ ⋅∅ + ∅ ⋅∅ = +s s s s s s          1 1 1 3 2 2 3 3 3 3  (6.79)
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-0.5
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1
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-2 -1 0 1 2 3 4 5 6 7

FIGURE 6.106 Linear SVM.

FIGURE 6.107 Linearly separable data points with support vectors.
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Since, for now, we have ∅ = I() , this reduces to

    α α α⋅ + ⋅ + ⋅ = −s s s s s s    11 1 1 2 2 1 3 3 1

     α α α⋅ + ⋅ + ⋅ = +s s s s s s    11 1 2 2 2 2 3 3 2

     α α α⋅ + ⋅ + ⋅ = +s s s s s s    11 1 3 2 2 3 3 3 3

Let us substitute values for s1 , s2 , and s3  in the above equations

 α α α( ) ( ) ( )
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FIGURE 6.108 Linear SVM architecture.
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 α α α+ + = −2  4  4   11 2 3

 α α α+ + = +4  11  9   11 2 3

 α α α+ + = +4  9  11   11 2 3

By solving the above equations, we get α = −  3.51 , α2 = 0.75, and  α3 = 0.75.

Now, we have the α i . The equation of hyperplane can be written as

 = +y wx b   

The values of w and b are given by
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Here, =






w
1
0

 and b = −2. Plotting the line gives the expected decision boundary in a thick 

line, as shown in Figure 6.109.

FIGURE 6.109 Linearly separable SVM with a hyperplane.
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Example 6.12

Classify the given data points into two classes using SVM and find the optimal hyperplane

First, let us plot the data points in a graph; negative points are marked as ‘−’, and positive points 
are marked as ‘+’, as given in Figure 6.110. 

There can be many possible hyperplanes, as shown in Figure 6.111, and the aim is to identify 
the optimal hyperplane.

There are three support vectors (Figure 6.112), namely S1, S2, and S3.
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Bias input is 1. So, augment the support vectors with the bias input, and then, S1, S2, and S3 become 
���S S S, ,1 2 3  as shown below.
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FIGURE 6.110 Representation of data points.
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We need to find the three parameters α α α, , and,1 2 3 based on the following three linear equations

 ���� � �α α α ( )+ + = − −S S S S S S 1  ve class1 1 1 2 2 1 3 3 1

 �� �� ��α α α ( )+ + = − −S S S S S S  1 ve class1 1 2 2 2 2 3 3 2

 � � ����α α α ( )+ + = + +S S S S S S    1  ve class1 1 3 2 2 3 3 3 3

FIGURE 6.111 Possible hyperplanes.

FIGURE 6.112 Support vectors representation.
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Let’s substitute ���S S S,  , 1 2 3 values in the above equations
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After simplification, we get

 α α α+ + = −6  4  9   11 2 3

 α α α+ + = −4  6  9 11 2 3

 α α α+ + =9  9  17 11 2 3

After solving the above three simultaneous equations, we get

 α α α= = − =    3.25  and   3.51 2 3

The hyperplane that discriminates the two classes is given by
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Hence, we equate y = wx + b

where =






w
1
0

 and b = −3, and the expected hyperplane for this linear SVM is shown in 

Figure 6.113.
Most of the real-world data possess nonlinearity. Let’s consider an example in nonlinear data 

in one-dimensional space as in Figure 6.114.
Convert them to higher-dimensional space by adding quadratic feature =x x2 1

2, which in turn 
makes the data linearly separable and is shown in Figure 6.115.

The data that are not linearly separable will not be having a single hyperplane to separate 
them. The data point x in the nonlinear model of feature space is mapped to the linear model of 
feature space ( )∅ x . While mapping ( )→ ∅x x , the computational cost becomes very high. We 
can achieve this transformation without any major hike in computational cost by using the kernel 
function in SVM.

Figure 6.116a is not linearly separable, but when we transform these points to appropriate high-
dimensional feature space, the points may become linearly separable, as shown in Figure 6.116b.
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FIGURE 6.114 Nonlinearly separable data.

FIGURE 6.113 Optimal hyperplane.

FIGURE 6.115 Linearly separable data.
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Example 6.13

Let us see another problem to solve the nonlinear SVM case. Suppose we are given the following 
positively labeled (marked with ‘+’) data points
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and the following negatively labeled (marked with ‘−’) data points (see Figure 6.117):

 




 −







−
−







−
















1
1

,  1
1

,  1
1

, 1
1

The points are nonlinearly separable, as shown in Figure 6.118. Therefore, we must use nonlinear 
SVM; i.e., the mapping function ∅ is a nonlinear mapping from input space into some feature 
space. The mapping is given as
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FIGURE 6.116 (a) Hyperplane in the original two-dimensional space and (b) hyperplane in the trans-
formed space.
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and for negative examples as
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The points are plotted as shown in Figure 6.119 and support vectors (circled) are close to the 
hyperplane given by the coordinates.
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FIGURE 6.117 Nonlinear SVM.
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FIGURE 6.118 Nonlinearly separable data points.
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In what follows, we will use vectors augmented with 1 as a bias input
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The figure below represents the SVM architecture, and their corresponding equations are given 
below.

 α α( ) ( ) ( ) ( )∅ ⋅∅ + ∅ ⋅∅ = −s s s s        11 1 1 2 2 1

 α α( ) ( ) ( ) ( )∅ ⋅∅ + ∅ ⋅∅ = +s s s s      11 1 2 2 2 2

Since, for now, we have ∅ = I() , this reduces to

   α α⋅ + ⋅ = −s s s s    11 1 1 2 2 1

    α α⋅ + ⋅ = +s s s s    11 1 2 2 2 2

Let us substitute values for S1, S2, and S3 in the above equations
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FIGURE 6.119 Nonlinear SVM with support vectors.
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By solving the above equations, we get α = −  71 , α = 42

Now, we have the α i . The equation of hyperplane can be written as

 = +y wx b

The values of w and b are given by
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Here, =






w
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1

 and b = −3. The expected decision boundary is the dark line shown in 

Figure 6.120.

Example 6.14

Given the ten instances in a table which is a nonlinearly separable case as shown in Figure 6.121. 
How to transform the nonlinearly separable into linearly separable using the kernel trick?

To transform the feature space from the original nonlinear space, then x1 and x2 are transformed 
to high-dimensional space z1 and z2 using the formula.

 = = ⋅z x z x x  and1 1
2

2 1 2

The results are tabulated, and the output is shown in Figure 6.122.

FIGURE 6.120 Nonlinear SVM with hyperplane.
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FIGURE 6.121 Nonlinearly separable data points.

FIGURE 6.122 Transforming nonlinearly separable into linearly separable.
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6.6.12  real-worlD aPPlications

SVM has been used in many real-world applications such as image classification, handwritten OCR, 
bioinformatics, and text categorization (Figure 6.123). In addition, the bioinformatics field has been 
used for cancer diagnosis based on gene expression of data and protein secondary structure pre-
diction. The advantages of SVM are that sparseness of solution to problems and overfitting can be 
controlled by using a soft margin approach make it used in a wide range of applications.

6.6.12.1  Classification of Cognitive Impairment
Alzheimer’s disease (AD) is a degenerative brain disease and the most common cause of dementia. 
The symptoms of dementia include memory loss and difficulties with thinking, problem-solving, or 
language, which seriously affect a patient’s daily life. Mild cognitive impairment (MCI) is an early 
stage of AD characterized by significant cognitive impairment in the absence of dementia. In the 
United States, there were more than 5.2 million people with AD in 2014, and it is estimated that 
13.8 million Americans have AD by 2050. Thus, precise prediction and diagnosis of AD, especially 
at its early warning stage such as MCI, have become a crucial step to delay or even avoid dementia.

Commonly used modalities include magnetic resonance imaging (MRI), functional magnetic 
resonance imaging (fMRI), and positron emission tomography (PET). Owing to its easy access in 
clinical settings, MRI receives the most attention of researchers compared with other modalities. 
The structural changes in the brain associated with AD can be noninvasively assessed using MRI.

Early detection of AD at the early stage is of great importance in terms of patient management. 
Some of the earliest symptoms of AD, such as short-term memory loss, are often mistaken as related 
to aging and stress; it remains challenging to predict the disease in an early stage. The Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset is used for evaluation. The design of the system is 
given in Figure 6.124.

FIGURE 6.123 Applications of SVM.
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6.6.12.2  Preprocessing
A three-step preprocessing is applied to each MRI brain image. Steps in preproces-sing are as follows:

Step 1: Skull in the brain is not required for AD analysis, so skull stripping is done using a 
free surfer tool

Step 2: MRI image is segmented in white matter, gray matter, and CSF (cerebra spinal fluid) 
using free surfer tool

Step 3: Histogram equalization is done to adjust the contrast by modifying intensity distribu-
tion. Histogram equalization is preferred without loss of data; it equalizes the contrast of 
images.

6.6.12.3  Feature Extraction
Gray-level co-occurrence matrix (GLCM) is used to extract the 3D texture parameters of each 
region of interest (ROI). GLCM parameters are described in Table 6.38.

6.6.12.4  SVM Classification
SVM plots each data item as a point in n-dimensional space (where n is the number of features you 
have), with the value of each feature being the value of a particular coordinate. SVM maps the origi-
nal features via a kernel function to construct a maximum classifier in a high-dimensional feature 
space. Gaussian RBF kernel with an empirical scaling factor of three differentiates the two classes 
very well. Finally, SVM with fivefold cross-validation is done.

6.6.12.5  Procedure
Input: ADNI dataset
Output: SVM model for AD diagnosis with accuracy for a given dataset

FIGURE 6.124 Design of cognitive impairment classification.
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Step 1: Get a dataset for training the model as input
Step 2: Select the features and class label for a given dataset
Step 3: Set the value for classification type (0 – C-SVC, 1 – nu SVC, 2 – one-class SVM, 3 – 

epsilon SVR, 4 – nu-SVR)
Step 4: Set the value for kernel type (0 – linear, 1 – polynomial, 2 – RBF, 3 – sigmoid: tanh)
Step 5: Set the value for gamma (1/number_of_attributes)
Step 6: Set the value for the cost (default cost 1).
Step 7: Train the model using the given dataset based on specified options.
Step 8: Perform cross-validation for the generated model with the number of folds as 10.
Step 9: Accuracy by class is calculated for the model by constructing a confusion matrix.

6.6.12.6  Performance Analysis
The accuracy of the algorithm is implemented by using the confusion matrix. A confusion matrix 
illustrates the accuracy of the solution to a classification problem. A confusion matrix contains 
information about actual and predicted classifications done by a classification system. The perfor-
mance of such systems is commonly evaluated using the matrix data and presented in Table 6.39.

6.6.12.7  Text Categorization
As the volume of electronic information increases, there is growing interest in developing tools to 
help people find, filter, and manage these resources better. In real-life scenarios, we have hundreds 

TABLE 6.38
GLCM Parameters

Parameter Description

Entropy Measures the degree of disorder among pixels in the image

Energy Provides the sum of squared elements in the GLCM

Contrast Measures the local variations in GLCM

Correlation Measures the joint probability occurrence of the specified pixel pairs

Homogeneity Measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal.

Difference variance Measures the dispersion related to the gray-level difference distribution of image

Difference entropy Measures the disorder related to the gray-level difference distribution of image

TABLE 6.39
Evaluation of Result

Performance Metrics Formula Result

Accuracy +
+ + +

TP TN

TP TN FP FN

0.7500

Recall/sensitivity

+
TP

TP FN

0.8600

Specificity

+
TN

TN FP

0.6400

Precision

+
TP

TP FP

0.7049

F-score

( )+
2 * Recall * precision

Recall precision

0.7748
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of files and mails, and there is a need to organize and manage those files, since human text cat-
egorization is time-consuming with increase in data. The rule-based approach was carried out to 
categorize text, but it requires manual rule construction. Spam email detection and topic modeling 
of documents are based on text classification. For example, given mail content, the idea is to classify 
whether it is spam or not. Each document is represented as a vector of words. Document x can be 
represented by vector (doc2vec), i.e., ( )→ ∅x x .

 ∅ =
( )

( )i x
tfi idfi

k
 

log

The distance between two documents, say x and y in vector space, is represented as the dot prod-
uct of ( )( )∅ ⋅ ∅x y  . Using the kernel function ( ) ( )( )= ∅ ⋅ ∅k x y x y,     . SVM works well for linearly 
separable text categorization applications. The choice of kernel and kernel parameter improves the 
performance of categorization. The Reuters collection is popular for text categorization research.

6.6.12.8  Handwritten Optical Character Recognition
Optical character recognition is converting handwritten digits or text into an editable document, as 
given in Figure 6.125. In other words, it is a process of converting scanned documents and printed 
documents into readable and editable forms. SVM outperforms other ML models in recognizing 
handwritten characters. MNIST is an open-source dataset with 60,000 handwritten digit samples. 
SVM achieves a good accuracy when compared to neural network models. NIST and USPS are 
other datasets that can be used for evaluation. The polynomial kernel gives good results with better 
accuracy and a low error rate.

Represent input image as a vector x ∈ R. Learn a SVM classifier f(x) such that,

 { }→f x: 0,1,2,3,4,5,6,7,8,9

6.6.12.9  Natural Language Processing
Natural language processing is a process of automatically analyzing and processing natural lan-
guages. SVM is utilized for various natural languages processing techniques such as part-of-
speech (POS) tagging, word sense disambiguation, text categorization, named entity recognition, 

FIGURE 6.125 Handwritten OCR.
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information retrieval, and machine translation. The SVMTool is an open-source tool used for the 
effective generator of the sequential POS tagger. For a given sequence of words, the POS tagger tags 
the appropriate parts of speech, as shown in Figure 6.126.

SVMstruct is another open-source tool used for natural language processing applications. SVMstruct 
supports the task such as SVMcfg (SVM used for context-free grammars), SVMmulticlass (used for 
multiclass classification problem), and SVMhmm (uses the features of Markov model).

6.6.12.10  Cancer Prediction
In the last two decades, ML methods have been extensively applied to disease prediction. In particu-
lar, SVM is widely used in the bioinformatics field, such as gene classification, protein classification, 
and medical diagnosis.

SVM classifiers classify the tumor as either benign or malignant based on the size and gene 
expression (Figure 6.127). SVM can also be used in cancer recurrence and cancer prognosis pre-
diction. The various types of data such as clinical pathology, clinical gene expression, and clinical 
genomic can train and test the model. A schematic representation of SVM based on the patient age 
and size of the tumor is represented in Figure 6.128. SVM is classified into two classes called benign 
(O) and malignant x by an optimal decision boundary.

6.6.12.11  Stock Market Forecasting
In the financial sector, ML methods have made a great impact. The objective of stock prediction 
is to decide whether the stock value in the near future is high or low, given the present stock rate. 
The prediction can be either short term or long term. Stock market prediction is a nonlinear time 
series model because prediction is uncertain and depends on various external factors. Henceforth, 
nonlinear SVM works well for stock market prediction (Figure 6.129). Google finance Python is an 
open-source data available for stock prediction.

FIGURE 6.126 Parse tree.

FIGURE 6.127 Cancer prediction.
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6.6.12.12  Protein Structure Prediction
In bioinformatics, protein structure prediction plays a significant role in disease diagnosing and 
drug production. The Structural Classification of Proteins (SCOP) is the database used for protein 
classification, which is composed of four protein domain classes: (a) all α , (b) all β, (c) α β/ , and 
(d) α β+ . SVM classifies this four-class problem optimally.

6.6.12.13  Face Detection Using SVM
Face detection is widely used in computer vision tasks. Given as input an image, which could be a 
photograph, the goal is to determine whether there are any human faces in the image and fit the face 
in the bounding box. However, face detection is a difficult task because of the significant differences 
in pattern (Figure 6.130).

FIGURE 6.128 SVM cancer predictions.

FIGURE 6.129 Stock price predictions.
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6.6.13  aDvantages anD DisaDvantages of svM

The pros of SVM are

• Ability to handle high-dimensional dataset
• Kernel tricks are used to process the nonlinear problems in an efficient manner
• Nonparametric
• Robust against the outliers
• The number of support vectors provides a good indication of the complexity of the problem 

to handle
• Allow flexibility in using various parameter adjustments (e.g., linear vs. nonlinear, regu-

larization, etc.)
The cons of SVM are

• SVM is highly sensitive in identifying the optimal values of the parameters
• Difficulty in analyzing a large dataset

6.7  SVM CLASSIFICATION IN PRACTICE USING PYTHON

A SVM is grouped under a supervised ML algorithm used for both classification and regression 
purposes. SVMs are more commonly utilized in classification problems, and per se, this is often 
what we’ll concentrate on in this example code below.

SVMs have supported the thought of finding a hyperplane that best divides a dataset into two 
classes.

6.7.1  sUPPort vectors

Support vectors are the information points nearest to the hyperplane, the points of a dataset that, if 
removed, would alter the position of the dividing hyperplane. Because of this, it can be considered 
the critical elements of an information set.

FIGURE 6.130 Face detection using SVM.
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6.7.2  what is a hyPerPlane?

For a classification task with only two features, you’ll consider a hyperplane as a line that linearly 
separates and classifies a set of information. Intuitively, the more beyond the hyperplane our data 
points lie, the more confident we are that they need to be correctly classified. We, therefore, want 
our data points to be as far off from the hyperplane as possible while still being on the right side 
of it. So when new testing data are added, whatever side of the hyperplane it lands will decide the 
category that we assign. Let’s revisit the iris dataset:

import numpy as np
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn import datasets
from sklearn import svm

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.
target, test_size=0.4, random_state=0)

# Build an SVC model for predicting iris classifications using training data
clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

# Now measure its performance with the test data
clf.score(X_test, y_test)

# The output is shown below.

0.9666666666666667

For K-fold cross-validation, let’s use a K of 5

# let us give cross_val_score a model, the entire data set and its "real" 
values, and the number of folds:
scores = cross_val_score(clf, iris.data, iris.target, cv=5)

# Print the accuracy for each fold:
print(scores)

# and the mean accuracy of all 5 folds:
print(scores.mean())

# The output is shown below.

[0.96666667 1. 0.96666667 0.96666667 1. ]
0.9800000000000001
clf = svm.SVC(kernel='poly', C=1).fit(X_train, y_train)
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
print(scores)
print(scores.mean())

# The output is shown below.

[1. 1. 0.9 0.93333333 1. ]
0.9666666666666666
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SUMMARY

This chapter introduced the supervised learning algorithms applied for classification applications. 
Logistic regression, decision trees, RF, and SVMs were covered in detail with solved examples, 
real-world applications, and implementation in Python.

Some of the key points to be remembered are as follows:

• A decision tree is a tree-structured classifier. The decision node and leaf node are the two 
nodes in the decision tree. A test is done on the decision node. A leaf node represents the 
class label. The path from the root to the leaf represents the classification rule. Information 
gain is the amount of energy that cannot be used to do work or measure disorders in the 

system. ∑ −
=

P P
i

c

log
1

.

• In the ID3 algorithm, the information gain is used for the selection of root attributes. The 
information gain is calculated for each attribute, and the attributes having high information 
gain are selected as the root node.

• In C 4.5 algorithm, the gain information is used for the calculation of root attributes. The 
attributes having maximum gain ratio are selected as the root node.

• The CART 4.5 algorithm uses the Gini index to identify the attributes for the root node. 
The attribute having a low Gini index is selected as the root node.

• Advantages of the decision tree are
• Interpretability, used in data exploration, capture nonlinear relationship, simple rule-

based approach.
• Disadvantages of the decision tree are a low bias and overfitting problem
• Overfitting is the phenomenon in which the learning process matches exactly with all the 

training data. The accuracy of the model is high for trained data and low for untrained 
data. Overfitting can be eliminated by prepruning and postpruning.

• Underfitting occurs when the training model does not capture the underlying pattern. 
Underfitting is destroying the accuracy of our model of ML.

• Decision trees are used for predicting library book, identification of tumor, and classifica-
tion of telescope image.

• RF is a method that operates by constructing multiple decision trees during the training 
phase. The main advantage of the RF tree is that it has less training due to multiple trees.

• The various features of RF are high accuracy, and it runs efficiently on a large dataset, less 
error, handling missing data, no overfitting.

• The main drawback of RF is that it has less control on the model and does not work well 
for regression.

• The time complexity for creating a complete unpruned decision tree is O (v * n log (n)), 
where n is the record number and v is the number of variables/attributes.

REVIEW QUESTIONS

 1. Compare and contrast linear regression and logistic regression with examples.
 2. Discuss the various types of logistic regression in detail.
 3. Is it possible to use a logistic model given all the independent variables are continuous? Justify.
 4. Define odds ratio.
 5. Compare and contrast nominal and ordinal logistic regression with suitable examples.
 6. A dependent or outcome variable, say direction with values North, South, East, and West, 

is a nominal or ordinal variable. Another dependent variable called symptom with values 
absent, mild, moderate, and severe is a nominal or ordinal variable. Justify your answer.
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 7. Design a suitable logistic model with a neat sketch to differentiate tumor grade into three 
categories such as well-differentiated, moderately differentiated, and poorly differentiated 
using the input variables as age (categorical), sex (categorical), and type of cancer (adeno-
carcinoma, adenosquamous, and others).

 8. Discuss any three use cases of logistic regression in natural language processing.
 9. Solve the below decision tree to identify strep throat and cold.

 10. Explain the method used to avoid overfitting in the decision tree.
 11. Explain the various algorithms used in the decision tree.
 12. Create your own decision tree for classification and regression tree.
 13. Give some real-time application of the decision tree.
 14. How do we combine the decision tree with SVM for the classification process?
 15. Explain bias and variance in RF.
 16. Give some application of RF.
 17. What is the run-time complexity of RF?
 18. Draw a RF for the following table.

 19. Describe an extremely randomized tree.
 20. Create a RF with your own dataset and validate your result with sample input.
 21. Explain linearly separable and nonlinearly separable data with an example.
 22. Explain in brief why SVM is fast and works more accurately than logistic regression.
 23. Discuss hard margin and soft margin with a sketch.
 24. How to use SVM for multiclass classification?
 25. List out the different kernels used in SVM and justify which will best suit massive datasets.
 26. Name some software available for highly optimized SVM.
 27. Identify the optimal hyperplane for AND function.
 28. Identify the optimal hyperplane for XOR function using kernel trick.

Throat Pain Fever Swollen Glands Congestion Head Pain Diagnosis

Yes Yes Yes Yes Yes Strep throat

Yes Yes No Yes No Cold

Yes No Yes No No Strep throat

No Yes No Yes No Cold

No No Yes No No Strep throat

No Yes No Yes Yes Cold

Blood Flow Blocked Arteries Chest Pain Weight Heart Disease

Normal Yes Yes 195 Yes

Abnormal No No 130 No

Abnormal Yes Yes 180 Yes

Abnormal Yes Yes 180 Yes

Normal No No 100 No

Normal Yes No 150 Yes
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7 Feature Engineering

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the need for feature engineering in machine learning
• Appreciate the methods for feature selection
• Knowledge of factor analysis
• Understand the concepts of dimensionality reduction using PCA and LDA
• Implement Python-based examples using PCA and LDA

7.1  INTRODUCTION

Machine learning fits the types of statistics in the data for understanding or prediction. These 
types take features such as input. Feature representation of raw data is named as feature numbers. 
Features remain between data and models within the device, getting to know the machine learning 
pipeline. Feature engineering is the act of extracting features from raw data and converting them 
into formats suitable for machine learning models. It is an important step in the machine learning 
pipeline because proper features can reduce the issue of modeling and, therefore, allow the pipeline 
to produce high-quality results. Experts agree that most of the time building a machine learning 
pipeline is spent on feature engineering and statistics cleaning. However, as important as it is, the 
topic is not often discussed alone. Perhaps, this is because the relevant features can only be defined 
in the context of every model and data; because facts and models are so diverse, it’s difficult to gen-
eralize the exercise of feature engineering in all projects.

Feature engineering is the task of improving model prediction in the database by changing its 
feature space. Existing strategies to change this procedure depend on flexible spatial testing of per-
formance by experimentally guided search or the explicit enlargement of datasets with all the modi-
fied features observed by feature selection. However, such methods present higher computational 
expenses during operation and/or memory.

Feature engineering is the process of converting raw data into features that better represent the 
underlying problem in speculative models, which has led to the development of model accuracy on 
intangible data.

Feature engineering is the central task of preparing machine learning data. It is the practice of 
constructing relevant features from given features that lead to improved guesswork performance. 
Feature engineering involves using transformational functions such as arithmetic and integrated 
operators in a given new design feature. Conversion helps measure a feature or convert nonlinear 
relationships between an element and a target category in a line relationship, which is easy to read. 
Feature engineering is usually done by a data scientist who relies on the technology of his/her 
field and error testing and model testing. To carry out automated feature engineering, some present 
methods use targeted search in the feature space using heuristic feature quality measures and other 
contractual action steps.

A feature is a numeric illustration of raw data. There are numerous methods to convert raw data 
into numerical values, which is why features can end up looking like many things. Naturally, fea-
tures should come from the type of data available. Less ambiguous spaces are also tied to the model; 
some models are more suitable for certain types of features and vice versa. Appropriate features 
align with the work being done and should be easy for the model to swallow. Feature engineering is 
the technique of building the most relevant features given data, model, and function. If there aren’t 
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enough teaching features, the model will not perform the final task. If too many features or many of 
them do not work, the model will be more expensive and the trick to training it. Something may be 
wrong with the training process affecting the performance of the model.

Features and models reside between the raw data and the desired insight, depicted in Figure 7.1. 
In the workflow of machine learning, the model is not only chosen but also the features. This is a 
double-edged coin, and one choice affects the other. Positive features make the next step of model-
ing easier, and the emerging model is able to complete the task you are looking for. Negative fea-
tures may require a more sophisticated model to achieve the same level of performance. Throughout 
the book, we will talk about different features and discuss the advantages and disadvantages of 
different types of data and models.

Knowing where feature engineering fits into the context of the process of machine learning 
equipment highlights that it is not independent.

It is a repetitive process associated with data selection and model testing, over and over again, 
until we run out of time on our problem.

The process may look like the following:

 1. Brainstorm capabilities: Get into the problem, see more details, learn the feature engi-
neering of other problems and see what you can steal.

 2. Devise capabilities: The automatic feature extraction, text feature creation, and both com-
binations can be used depending on the problem.

 3. Select capabilities: Use key feature variations and feature selection methods to prepare 
one or more views for your working models.

 4. Examine models: Evaluate model accuracy on invisible data using selected features.

A well-defined problem is needed to know when to stop this repetitive process and then continue to 
try other models, other model configurations, model combinations, and so on. A well-thought-out 
test device is also needed to be designed to measure the potential of a model in intangible data. It 
will be the only measure got from the feature engineering process.

7.2  FEATURE SELECTION

Feature selection strategies have eliminated useless features to reduce the complexity of the emerg-
ing model. The ultimate goal is a model of pride that is quick to reckon with, with little or no dam-
age to speculation. To get to such a model, some feature selection techniques require more than one 

FIGURE 7.1 Feature engineering position in the workflow of machine learning.
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model training. In other words, the selection of features is not about reducing training time – in fact, 
some strategies increase the total training time – but reduce model installation time. Simply put, 
feature selection techniques fall into three categories: Preprocessing filtration methods to remove 
those that may apply to the model. For example, one can combine the knowledge of the relation or 
interaction between each element and the flexibility of the answer and then filter the features that 
fall under the threshold. Filter techniques are much cheaper than the wrapping techniques described 
below, but they do not consider the model used. Therefore, they may not be able to select the appro-
priate features of the model. Therefore, it’s best to make choices before saving to avoid unnecessar-
ily removing useful features before they get to the training step.

7.2.1  wraPPer MethoDs

Wrapper methods are expensive but try the subsets of features, which means that it can’t acciden-
tally cut out the features that are not only taught but useful when taken together. The wrap method 
treats the model like a black box that provides quality results of the proposed subset of features. 
There is a different way of over-filtering the set, which is described below.

Wrappers use a search strategy to search through the space of possible feature subsets and evalu-
ate each subset by the performance quality on an ML algorithm. Practically, any combination of 
search strategy and algorithm can be used as a wrapper. It is featured as:

• use ML models to score the feature subset
• train a new model on each subset
• very computationally expensive
• usually provide the best performing subset for a given ML algorithm but probably not for 

another
• need an arbitrarily defined stopping criteria

The most common search strategy group is Sequential search, including Forward Selection, 
Backward Elimination, and Exhaustive Search. Randomized search is another popular choice, 
including Evolutionary computation algorithms such as genetic and Simulated annealing.

Another key element in wrappers is stopping criteria. The searching process is stopped based 
on three criteria:

• performance increase
• performance decrease
• the predefined number of features is reached

7.2.1.1  Forward Selection
Forward feature selection starts by evaluating all features individually and selects the one that gen-
erates the best performing algorithm, according to preset evaluation criteria. Then, the algorithm 
evaluates all possible combinations of the selected feature and selects the pair that produces the best 
performing algorithm based on the same preset criteria. This selection procedure is called greedy 
because it evaluates all possible single, double, triple, and feature combinations. Therefore, it is 
quite computationally expensive, and sometimes, if feature space is big, even unfeasible.

7.2.1.2  Backward Elimination
Backward feature selection starts by fitting a model using all features. Then, it removes one feature. 
Next, it will remove the one that produces the highest performing algorithm (least statistically sig-
nificant) for certain evaluation criteria. The second step will remove a second feature, the one that 
again produces the best-performing algorithm. And it proceeds with removing feature after feature 
until a certain criterion is met.
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7.2.1.3  Exhaustive Feature Selection
The best subset of features is selected in an exhaustive feature selection, among all possible feature 
subsets, by optimizing a specified performance metric for a certain machine learning algorithm. 
For example, if the classifier is the logistic regression and the dataset consists of four features, the 
algorithm will evaluate all feature combinations as follows:

• all possible combinations of one feature
• all possible combinations of two features
• all possible combinations of three features
• all the four features

and select the one that results in the logistic regression classifier’s best performance (e.g., classi-
fication accuracy). This exhaustive search is very computationally expensive. In practice, for this 
computational cost, it is rarely used.

7.2.2  featUreD MethoDs

These methods make the selection of a feature part of the model training process. For example, the 
decision tree naturally makes a feature selection because it selects one element of tree division in each 
training step. Another example is the standardizer 1, which can be added to the training purpose of 
any specific model. The ℓ 1 trend encourages models that use fewer features instead of many features, 
so it is also known as the sparsity limit on the model. The included methods include feature selection 
as part of the model training process. They are not as powerful as threatening methods, but they are 
not as expensive. Compared with filters, embedded methods select features specific to the model. In 
this sense, embedded methods strike a balance between computer costs and the quality of results.

The steps can be summarized to solve the problem of feature selection in a checklist:

 1. Have you got any knowledge about the problem domain? If so, create an enhanced set of 
“ad hoc” features.

 2. Is the feature appropriate? If not, normalize them.
 3. Do you doubt feature interdependence? If yes, extend the feature set by formulating feature 

products or conjunctive features.
 4. Does the input variable need to be pruned? If no, create disjunctive features or weighted 

sums of features.
 5. Does the feature need to be accessed individually? If yes, apply a variable ranking method; 

otherwise, try to obtain the baseline results.
 6. Have you got a predictor? If no, stop.
 7. Do you doubt whether data are dirty? If yes, identify the outlier examples based on the 

top-ranking variables acquired from step 5 as representation; verify or reject them.
 8. Have you got an idea of what to try first? If no, apply a linear predictor. Then, utilize a 

forward selection method with the “probe” approach as a terminating condition or apply 
the 0-norm embedded approach. For evaluation, as a result of the ranking of step 5, create a 
sequence of predictors of the same nature using increasing subsets of features. Is it possible 
to match or improve performance with a smaller subset? If so, use a nonlinear predictor 
with that subset.

 9. Have you got new thoughts, time, computational resources, and enough examples? If yes, 
compare several feature selection methods, including your new idea, correlation coeffi-
cients, backward selection, and embedded methods. Next, apply linear and nonlinear pre-
dictors. Finally, choose the best approach with model selection.

 10. Is a stable solution needed to improve performance and understanding? If so, subsample 
your data and redo your analysis for several “bootstraps.”
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7.3  FACTOR ANALYSIS

Factor analysis (FA) is a method of analyzing experimental data to search for potential influential 
factors or hidden variables from a set of notable variables. It helps in translating data by reducing 
the amount of flexibility. It subtracts a complete standard variation across all variables and sets the 
same points.

FA is widely used in market research, marketing, psychology, finance, and performance research. 
For example, market analysts utilize FA to identify price-sensitive customers, identify product fea-
tures that influence consumer preferences, and help to understand the selection channels for distri-
bution channels. FA is a straightforward mathematical model. It is used to describe the differences 
between visual variables and obscure a set of invisible variables called factors. Visual differences 
are followed as a direct combination of features and error words. Factor or latent variable is associ-
ated with multiple visual variables, which have common response patterns. Each feature describes 
a certain amount of variability in observed variables. It helps in translating data by reducing the 
amount of flexibility.

 X F F ei i i i iβ β β ( )= + + +      10 1 1 2 2

FA is a way of investigating whether several variables of interest, X1, X2, …, Xk, are equally related 
to a small number of intangible factors F1, F2, …, Fk.

Assumptions:

 1. Outliers are not present in the data.
 2. The sample size must be larger than the factor.
 3. There must be no perfect multicollinearity.
 4. There must be no rigidity among the variables.

7.3.1  tyPes of factor analysis

• Exploratory Factor Analysis: It is the most popular way of analyzing factors for social 
researchers and administrators. Its basic assumption is that any apparent flexibility is 
directly related to any factor.

• Confirmatory Factor Analysis (CFA): Its basic assumption is that each item is associated 
with a specific set of observed variables. CFA confirms basic expectations.

7.3.2  working of factor analysis

The primary purpose of FA is to reduce the number of observations and detect invisible variables. 
These tangible variables help the market researcher to complete the research. This recognizable 
variation of the observed variables can be achieved in two steps:

• Factor extraction: In this step, the number of factors and the removal methods is chosen 
using variance partitioning methods like principal component analysis (PCA) and com-
mon factor analysis.

• Factor rotation: In this step, rotation attempts to convert factors into unrelated factors. 
The main purpose of this step is to improve the overall interpretation. Many rotation meth-
ods are available: Varimax rotation method, Quartimax rotation method, and Promax rota-
tion method.
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7.3.3  terMinologies

7.3.3.1  Definition of Factor
A factor is a subtle variable that describes the correlation between the number of variables observed. 
The maximum number of factors is equal to the number of variables detected. Everything explains 
a certain variation in the visual variability. Factors with very low variability have been reduced. 
Factors are also known as hidden or latent variables or hypothetical variables.

7.3.3.2  Factor Loading
The loading factor is a matrix that demonstrates the relationship of each variation to an underlying 
factor. It expresses the coefficient correlation for the observed variable and the factor. It shows the 
defined differences in the observed variables.

7.3.3.3  Eigenvalues
Eigenvalues represent diversity defining each item from a complete diversity. It is also known as the 
root of the feature.

7.3.3.4  Communalities
Communalities are the sum of double the loading of each variable. Represents common variations. 
It goes from 0 to 1, and the value around 1 represents the most varied.
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7.3.3.5  Factor Rotation
Rotation is a better translation tool for FA. Rotation can be orthogonal or oblique. It also distributed 
the standard with a clear loading pattern.

7.3.3.6  Selecting the Number of Factors
The Kaiser method is the analytical method based on the most important part of the variance 
defined by the factor to be selected. The eigenvalue is a good way to determine the number of fac-
tors. Mostly, eigenvalue larger than 1 will be considered as optional factors. The graphic method 
represents certain eigenvalue factors, also called scree plots, as shown in Figure 7.2. This scree 
structure helps us determine the number of factors in which a curve forms an elbow.

FIGURE 7.2 Scree plot.
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7.4  PRINCIPAL COMPONENT ANALYSIS

With automatic data collection and feature-generating techniques, one can quickly discover a large 
number of features. But not all are helpful. Let’s discuss feature dimensionality reduction using 
PCA. Often, we encounter situations where a particular outcome or decision depends not on a single 
indicator (forecaster) but many complex factors of the decision-making process. This is called the 
curse of dimensionality. It is a well-known fact that it is important to limit the number of important 
factors to reach the right conclusion. This process is called dimensionality reduction. In machine 
learning, the problem of high dimensionality is treated in two ways:

• Feature selection: a careful selection of key features by filtering out inconsistent features.
• Feature extraction: we create new and relevant features from the original features. PCA 

is one of the key means of extracting a feature.

Similarly, PCA converts the corresponding features of data into orthogonal components to capture 
all important information from the data while minimizing its size.

PCA can be used in the following means:

• Limit the number of features but cannot identify the less important ones that are ignored.
• Make sure that data features are standalone even if the features are not slightly interpreted.

7.4.1  center the Data

Eigen decomposition produces transformation matrices where eigenvectors denote the rotational 
matrix, while eigenvalues denote scaling factors. Conversely, the covariance matrix has no data 
related to data translation. Undeniably, the translation is represented by an affine transformation 
required instead of a linear transformation. Consequently, before installing PCA to exchange data 
for obtaining unrelated axes, any existing changes need to be calculated by removing the mean data 
from each data point. This is just like entering the data in such a way that its scale becomes zero.

7.4.2  norMalize the Data

Eigenvector covariance matrix points when referring to large data differences. Conversely, variance 
is a whole number, not a relative. This means that the difference in data measured in inches will 
be much greater than the same data when measured in feet. For instance, one feature denotes an 
object’s length in meters, while the second feature denotes the object in inches. If the data is normal-
ized, the biggest difference, and therefore the largest eigenvector, will be fully determined by the 
first factor. To avoid this PCA scale-based approach, it helps normalize the data by separating each 
feature with a standard deviation. This is particularly significant when different features are related 
to different metrics.

7.4.3  estiMate the eigen DecoMPosition

As details will be shown to larger eigenvectors to reduce the size, eigendecomposition must be 
determined. One of the most widely used methods of calculating eigendecomposition is singular 
value decomposition (SVD).

7.4.4  Project the Data

To reduce the size, the data is automatically displayed to the largest eigenvectors. Let W  be a matrix 
with its columns containing the largest eigenvectors and let O be the original data with its columns 
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containing different observations. After that, the projected data O′ is available as O W OT′ =  . The 
number of residual values is selected, such as columns of W  which, directly, can define the num-
ber of variations of actual data that need to be maintained while removing eigenvectors. If only 
N  eigenvectors are stored, and e eN…, ,1  denote the respective eigenvalues, the number of variants 
leftover after projected original d-dimensional data can be calculated as:
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 1. The original feature values of the given data are normalized by its mean and variance 
specified in equation 7.3, where k is the number of instances in the dataset and X i( ) are data 
points.
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 2. Substitute X i( ) with X i µ−( )   .
 3. Resize every vector X j i( )   to obtain unit variance with the help of equation 7.4.
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 4. Substitute X j i( )   with 
X j i

σ
( )  .

 5. Determine the covariance matrix CM as:
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     (7.5)

 6. Determine the eigenvectors and respective eigenvalues of CM.
 7. Decrease eigenvalues and sort the eigenvectors, and select k eigenvectors containing the 

largest eigenvalues to obtain V.
 8. Make use of V to change the samples to a new subspace using equation (7.6)

     = ×y V XT  (7.6)

where X denotes   1×d  dimensional vector representing one sample, y is the transformed   1×k  dimen-
sional vector sample in the new subspace. The execution of the designed PCA computational com-
plexity depends on the number of features P that depicts each data point given by

 O P( )3  (7.7)

PCA’s reduction ratio (RR) is defined as the relation between the number of target dimensions and 
several original dimensions. Thus, the efficiency of PCA is higher as the value of RR becomes low.
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7.5  EIGENVALUES AND PCA

PCA uses the structure of eigendecomposition. “Eigen” is a German word meaning “own.” Here, 
the matrix (A) is divided into:

• The diagonal matrix formed by eigenvalues of a matrix (A)
• And the matrix formed by the eigenvectors of a matrix (A)

A square matrix can have one eigenvector and as many eigenvalues as the size of the matrix. For 
example, a 4 × 4 matrix will have four eigenvalues.

7.5.1  Usage of eigenDecoMPosition in Pca

Suppose there is a database with a variety of “predictors.” After centering the forecasters in their 
way, the “n × n” covariance matrix is obtained. This matrix of covariance is then divided into eigen-
values and eigenvectors. The covariance matrix, also named as dispersion matrix or variance–cova-
riance matrix, is a matrix with its feature in i, j position is the covariance among ith and jth feature 
of a random vector. A random vector is a random variable with a maximum size. From the covari-
ance structures and the covariance matrix, the following aspects are defined.

• The covariance of random variables (forecasts) itself is simply a variance.
• Each item in the main diagonal of the covariance matrix demonstrates the variances of 

each random variance.
• The entire matrix of covariance is symmetric.

Therefore, the matrix of covariance has variances (covariance of a predictor with itself) and covari-
ances (between predictions). Eigenvector is units that have a length or size equal to 1. It is often 
called the right vector, also called a column vector. Eigenvalues are coefficients used in eigenvectors 
that give vectors their length or magnitude.

Therefore, PCA is a way of:

• Measurement of how each variable is linked using the covariance matrix.
• Interpretation of the guidelines of the spread of the data using eigenvectors.
• Exposing the comparative significance of these directions using eigenvalues.
• The PCA method can be defined and executed using the tools of linear algebra using 

the numpy package in python (without using its direct implementation function from the 
sklearn package).

Consider the data in Table 7.1.

TABLE 7.1
Data to Implement Eigendecomposition

Age Weight Height

20 60 4.5

35 65 5

40 70 5.5

45 75 6
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This data can be represented as a 5 × 3 matrix and named as A.

Let’s center the features of this matrix to mean, determine covariance matrix, and implement 
eigendecomposition as depicted below.

From the above output, it is clear that eigenvectors give PCA components, and eigenvalues give 
explained variances of the components. Therefore, since there are three predictors, three eigenval-
ues are obtained.

• Eigenvectors can now be organized by eigenvalues to reduce the supply of components or 
axes for the new matrix A.

• If there is an eigenvalue near zero, they represent disposable components.
• A total of “n” (here 3) or a few elements that make up the selected bottom area should be 

selected. Ideally, we can choose k (<n) eigenvectors, called principal components, with the 
largest eigenvalues.
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The explained variance ratio of the first component is given as:
explained variance of 1st component/(total of all explained variances)

• It can be noticed that the first component is enough to explain up to 98% of the variance in 
the data. So, the data can be projected into a 4 × 1 matrix instead of a 4 × 3 matrix, reducing 
the dimension of data, of course, with a minor loss in information.

7.6  FEATURE REDUCTION

The art of machine learning begins with the creation of appropriate data presentations. Better per-
formance is often achieved using features taken from the original input. Creating a feature pre-
sentation can add domain information to the data and can be specified by the specific application. 
However, there are many ways to make common features, including clustering, basic input linear 
transform variables [PCA/SVD, linear discriminant analysis (LDA)], complex line variations such 
as spectral transformations (Fourier, Hadamard), wavelet transform, or convolutions of kernels, and 
apply simple functions to flexible subsets, such as monomials.

Two different objectives can be pursued by feature design: to achieve data reconstruction or be 
more efficient in making predictions. The first problem is an unsupervised learning problem. It is 
very close to data compression, and many algorithms are used in both fields. The second problem 
is supervised. Are there reasons to select features in an unsupervised manner when the problem 
is supervised? Yes, with a few possibilities. Other problems, e.g., for text processing applications, 
come with unlabeled data compared to labeled data. Also, the selection of unsupervised features is 
not usually overdone to overfitting.

Our goal is to have an algorithm-friendly dataset. What do we mean by that?
If you have a lot of features, there are a few potential problems:

• The model has a high degree of difficulty.
• It can make a lot of noise.
• If they have different scales, it reduces the performance of several algorithms that are 

scale-sensitive.
• More complex visualizations in n-dimensional space.

Here comes the role of PCA. It reduces the dimensionality of the dataset by extracting/eliminating 
the important/unimportant features.

PCA detects a change that reduces the size of the data while calculating the variance as large as 
possible. PCA is the oldest process in a multivariate analysis. The basic concept of PCA is a pro-
jection-based process. Here, the actual dataset X ∈ R n with n columns (features) is projected into 
a subspace with k or lower dimensions’ representation X ∈ R K (fewer columns) while maintaining 
the total amount of original data.

The algorithm works as follows: to reduce the dimensionality of the feature from n-dimensions 
to k-dimensions, two stages are implemented; the preprocessing and dimensionality reduction stage. 
First, in the preprocessing stage (steps 1–4 in Section 7.4), the data is preprocessed to normalize 
its mean and variance using equations 7.3 and 7.4 in Section 7.4. Then, in the second stage (steps 
5–8 in Section 7.4), which denotes the reduction phase, the covariance matrix CM, eigenvectors and 
eigenvalues are calculated from equations 7.5 and 7.6 in Section 7.4.
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When using PCA to reduce dimension, one has to deal with how many principal components (k) 
should be used. As with all hyperparameters, this number can be changed based on the quality of 
the emerging model. But some tests do not include expensive calculations. Therefore, another option 
is to select a k in the account with the desired value of the total variance. (This option is available in 
the scikit-learn package PCA.) The variations of projection onto the kth component are:

 Xv uk k k kσ σ=     2 2 2 (7.8)

which is the square of the kth largest singular value of X. The ordered list of singular values of a 
matrix is called its spectrum. Therefore, to define how many components to use, one can perform 
a simple spectral analysis of the data matrix and pick the threshold that retains enough variance.

To retain enough components to cover 80% of the total variance in the data, pick k such that
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PCA is computationally expensive. It relies on SVD, which is an expensive process. Calculation 
of the full SVD of the matrix takes O-functions (nd2 + d3) by assuming n ≥ d where there are more 
data points than features. Even if we only want the principal components of k, using a reduced SVD 
(single k values and vectors) still takes O ((n + d)2 k) = O (n2k) operations. This is available when there 
are a large number of data points or features. It is difficult to perform PCA in the form of streaming, 
batch updates, or a sample of full data. Streaming computation of the SVD, updating the SVD, and 
computing the SVD from a subsample are all difficult research problems.

Algorithms exist but at the cost of reduced accuracy. One implication is that one has to expect 
lower representational accuracy when capturing test data in the principal components found in the 
training set. In addition, as the distribution of the data changes, one needs to recompute the princi-
pal components in the current dataset.

7.6.1  factor analysis vs. PrinciPal coMPonent analysis

• PCA components define a high degree of variability, while FA defines covariance in data.
• PCA components are completely orthogonal to each other, while FA does not require fac-

tors to be orthogonal.
• Components of PCA are a linear combination of the observed variable, while in FA, the 

observed variables are a linear combination of the unobserved variables or factors.
• PCA components are not defined. In FA, key factors are sets and interpretable.
• PCA is a method of reducing the dimension, whereas FA is the latent variable method.
• PCA is a type of FA. PCA is observational, whereas FA is a modeling technique.

7.7  PCA TRANSFORMATION IN PRACTICE USING PYTHON

In this example, we consider the role of PCA in dimension reduction. A random dataset with 100 
points is considered, and all the required libraries are imported as presented.

Import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
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from sklearn.datasets import make_blobs
from sklearn. Pre-processing import StandardScaler
from numpy import random
from sklearn.decomposition import PCA

DATA_SET=random.randint(100, size=(100, 2))
#print(DATA_SET)
plt.plot(DATA_SET[:,0], DATA_SET[:,1], ‘gx’)
plt.axis(‘equal’)
plt.show()

Using PCA, the relationship between the features in the data is quantified by estimating a set 
of principal axes in the data from which the dataset can be described. This is achieved in this 
example using the scikit-learn’s PCA estimator, and the parameters, namely the “components” and 
“explained variance,” are observed as follows:

pca = PCA(n_components=2)
pca.fit(DATA_SET)

print(“PCA components: “, pca.components_)
print(“PCA Explained Variance: “,pca.explained_variance_)

PCA is used for reducing the dimension, and this process involves zeroing out one or many small 
principal components. This results in reduced dimension data which maintains the maximal data 
variance. The following section of the code illustrates the dimension reduction:

pca = PCA(n_components=1)
pca.fit(DATA_SET)
DATA_SET_pca = pca.transform(DATA_SET)
print(“original shape:   “, DATA_SET.shape)
print(“transformed shape:”, DATA_SET_pca.shape)

In this case, the n_component parameter is set to “1” to transform the data to a single dimension. To 
visualize the transformation, the inverse transform of the reduced data is plotted.

DATA_SET_new = pca.inverse_transform(DATA_SET_pca)
plt.scatter(DATA_SET[:, 0], DATA_SET[:, 1], alpha=0.2)
plt.scatter(DATA_SET_new[:, 0], DATA_SET_new[:, 1], alpha=0.5)
plt.axis(‘equal’);

Observations:
The observations of PCA used for dimension reduction are as shown in Figure 7.3:
The figure shows a plot of the original data generated randomly, and the data size was 100 × 2. 

The parameter “components” and “explained variance” represent the principal axes of the data. 
This is a measure of the variance of the data when projected onto the principal axes. The projection 
of each data point onto the principal axes are the principal components of the data and are presented 
below for the random dataset chosen in this example.

PCA parameter components:  
[[ 0.63796827 -0.77006265] [ 0.77006265  0.63796827]]
PCA parameter Explained Variance:  [931.51919577 711.44787494]

The original shape of the dataset was 100 × 2, and after reducing the dimension using PCA, we find 
that the dataset has been transformed to 100 × 1.
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Original shape of the data:    (100, 2)
Transformed shape of the data after PCA: (100, 1)

Figure 7.4 shows the plot of transformed data points (shown in dark shade) and the original data 
points (shown in lighter shade). This shows that using PCA, the data points along the least signifi-
cant principal axis are removed, and the data points with the highest variance are retained.

7.8  LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis (LDA) is a common method of dimension reduction problems as a pre-
processing step for machine learning and pattern classification applications. Concurrently, it is often 
used as a black box, but is not well understood a few times. LDA easily manages a case where the 

FIGURE 7.4 Plot of the transformed and reduced data.

FIGURE 7.3 Plot of the original data.



365Feature Engineering

waves within a section are uneven, and randomly generated test data assess their performance. This 
method increases the variance rate between class and in-class variability in any dataset, thereby ensur-
ing high diversity. In the PCA, the structure and location of the original dataset are transformed when 
converted into a separate space. The LDA does not change the location but only attempts to provide 
additional segmentation and draw the decision area between assigned classes. This approach also ben-
efits from getting a better understanding of the distribution of feature data. Datasets can be modified, 
and test vectors can be separated from the converted space in two different ways.

• Class-dependent transformation: This approach implicates to maximize the ratio 
between-class variance to within-class variance. The main objective is to maximize this 
ratio so that adequate class separability is obtained. The class-specific-type approach uses 
two optimizing criteria to transform the datasets independently.

• Class-independent transformation: This approach implicates to maximize the ratio of 
overall variance to within-class variance. This approach uses only one optimizing criterion 
to transform the datasets, and hence all data points irrespective of their class identity are 
transformed using this transform. In this type of LDA, each class is considered a separate 
class against all other classes.

7.8.1  MatheMatical oPerations in lDa

The mathematical functions used in LDA are analyzed. To make it easier to understand, this con-
cept is applied to the problem of two classes. Each dataset contains 100 2-D data points. The math-
ematical design of the classification strategy is as follows:

Step 1: Create datasets and test sets, which should be separated in the original space provided 
datasets and built-in test vectors, the graphical structure of datasets, and test vectors for the 
sample taken in the original space. For the ease of reference, let us represent datasets as a 
matrix containing features in the form provided below:
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 (7.10)

Step 2: For each dataset and entire dataset, determine the mean. Let µ1 and µ2 be the mean of 
set 1 and set 2, respectively and µ3 represent the mean of entire data, which is achieved by 
merging set 1 and set 2, as given by equation 7.11.

 p pµ µ µ= × + ×           3 1 1 2 2 (7.11)

 where p1 and p2 are the a priori probabilities of the classes. The probability factor is 
assumed to be 0.5.

Step 3: In LDA, to formulate criteria for class separability within-class and between-class 
scatter are used. Within-class scatter the expected covariance of each class. The scatter 
measures are calculated using equations 7.12 and 7.13.

 S p cw

j

j j∑ ( )= ×        (7.12)
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Consequently, for the two-class problem, it is given as

 S c cw = × + × 0.5     0.5   1 2 (7.13)

All the covariance matrices are symmetric. Let c1 and c2 be the covariance of set 1 and 
set 2, respectively. The covariance matrix is determined using equation 7.14

 c x xj j j j j
Tµ µ( )( )= − −      (7.14)

The between-class scatter is determined using equation 7.15

 Sb

j

j j
T∑ µ µ µ µ( ) ( )= − × −         3 3  (7.15)

The covariance of the dataset Sb  contains the mean vectors of each class. The optimiz-
ing criterion in LDA represents the ratio of between-class scatters to the within-class 
scatter. The solution obtained by maximizing this criterion represents the axes of the 
transformed space. However, the optimizing criterion for the class-dependent transform 
is determined using equations 7.14 and 7.15. For L-class L, separate optimizing criteria 
are required for each class. The optimizing factors in the case of class-dependent type are 
determined as

 c Sj j b( )= ×Criterion inv      (7.16)

The optimizing criterion for the class-independent transform is determined as

 S Sw b( )= ×Criterion inv     (7.17)

Step 4: The eigenvector of the transformation denotes a 1-D invariant subspace of the vector 
space where the transformation is applied. These eigenvector sets consisting of eigenvalues 
of nonzero are all linearly independent and invariant under the transformation. Therefore, 
any vector space could be denoted by linear combinations of the given eigenvectors. The 
nonredundant set of features is obtained by considering all eigenvectors, which correspond 
to nonzero eigenvalues, whereas eigenvalues, which correspond to zero, are ignored. Thus, 
the transformations of LDA are obtained as the eigenvector matrix of the distinct criterion 
defined in equations 7.16 and 7.17.

Step 5: In any L-class problem, there exists L − 1 nonzero eigenvalues. In any L-class prob-
lem, there are L − 1 nonzero eigenvalues. This is due to the problems in the mean vectors 
of the classes at equation 7.11. Eigenvectors corresponding to nonzero eigenvalues are the 
definition of change.

 Now that we have the transformation matrices, we convert the datasets using a single LDA 
variable or the class-specific transforms. It can be observed that transforming all datasets 
into a single axis delivers precise parameters for classifying the data. The decision circuit 
in the transformed space is a solid line separating the converted datasets. Therefore, for the 
class-dependent LDA,

 jj j
T= ×Transformed  Transform set _set  (7.18)
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For the class-independent LDA,

 T T= ×Transformed Transform datasetset spec  (7.19)

 Correspondingly, the Euclidean distance of the test vectors from each class mean is used 
to transform the test vectors and classify them.

Step 6: After the transformations are finished utilizing LDA transforms, Euclidean distance 
or RMS distance is used to classify data points. First, euclidean distance is determined 
using equation 7.20. Euclidean distances are thus obtained for each test point.

 xn n

T

nµ( )= × −Dist Transform   transspec  (7.20)

Step 7: The smallest Euclidean distance among the distances classifies the test vector as 
belonging to class n. Two LDA approaches, namely, the independent and dependent classes, 
have been described. The choice of the LDA type depends on the dataset and the purpose 
of the classification problem. For example, if the performance is very important, an inde-
pendent class transformation is chosen. Conversely, if good discrimination is intended, the 
class-dependent type should be the first choice.

Algorithm 7.1: Class-Independent Linear Discriminant Analysis

 1. Given a set of N samples xi i

N[ ] =1, where each corresponds to a row of length M (step(A)), and 
X(N × M) is denoted by

 X

x x x

x x x

x x x

M

M

N N NM

�
�

� � � �
�

=



















 

11 12 1

21 22 2

1 2

 (7.21)

 2. Determine the mean of each class 1 µ ( )× Mi

 3. Determine the total mean of all data   1 µ ( )× M
 4. The between-class matrix  ( )×S M MB  is determined as

 S nB

i

c

i i i
T∑ µ µ µ µ( ) ( )= − −

=

     
1

   (7.22)

 5. The within-class matrix S M Mw ( )×  is determined as

 S x xW

j

c

i

n

ij j ij j
T

j

∑∑ µ µ( ) ( )= − −
= =

       
1 1

 (7.23)

 6. From equations 7.22 and 7.23, the matrix W  that maximizes Fisher’s formula is determined 
as W S SW B= −  1 . Determine the eigenvalues and eigenvectors of W .

 7. Sort eigenvectors in decreasing order per their respective eigenvalues. The first k eigenvec-
tors are used as a lower-dimensional space Vk( ).

 8. Project all original samples (X) onto the lower-dimensional space of LDA.
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Algorithm 7.2: Class-Dependent Linear Discriminant Analysis

 1. Given a set of N samples xi i

N[ ] =1, where each corresponds to a row of length M (step(A)), and 
X(N x M) is denoted by

 X

x x x

x x x

x x x

M

M

N N NM
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�

� � � �
�

=



















 

11 12 1

21 22 2

1 2

 (7.24)

 2. Determine the mean of each class 1 µ ( )× Mi

 3. Determine the total mean of all data   1 µ ( )× M
 4. The between-class matrix  ( )×S M MB  is determined as in equation 7.22.
 5. For all class i i c= …, 1,2, ,  do
 6. The within-class matrix  ( )×S M Mwi  is determined as

 S x xw

x

i j i j
T

j

i j

∑ µ µ( ) ( )= − −
ω∈

     
   

 (7.25)

 7. The transformation matrix for each class Wi( ) determined as

 W S Si W Bi= −    .1  (7.26)

 8. Determine the eigenvalues iλ( ) and eigenvectors V i( ) of each transformation matrix Wi( ),  
where iλ  and V i denote the determined eigenvalues and eigenvectors of the ith class, 
respectively.

 9. Sort eigenvectors in decreasing order per their respective eigenvalues. The first k eigenvec-
tors are used as a lower-dimensional space Vk( ).

 10. Project the samples of each class iω( ) onto the lower-dimensional space Vk
i( ) as follows:

 x V xj i k
j

i jωΩ = ∈  ,   (7.27)

where jΩ  denotes the projected samples of the class jω .
 11. End for loop

7.9  LDA TRANSFORMATION IN PRACTICE USING PYTHON

In this section, Python implementation of scattering within the class and scatter between the class 
is discussed on sample data.

7.9.1  iMPleMentation of scatter within the class (sw)

In this example, class 1 (11 × 2) and class 2 (10 × 2) are considered to have 11 and 10 samples, 
respectively. The within-class matrix Sw is computed for this data according to equation 7.25, 
S x xw i j i j

T

x
j

i j
∑ µ µ( ) ( )= − −

ω∈
       

   
 where xi is the data vector per instance per class and μj repre-

sents the mean vector of class j. The Python code to determine the scatter matrix within the class 
is as follows:

import numpy as np
import matplotlib.pyplot as plt
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# Data creation – Here random samples in the range [0,2] are generated 
for each class
class1 = np.array([[1.5,1.6,1.55,1.65,1.45,1.7,1.75,1.55,1.35, 
1.8],[1.75,1, 1.5,1.65,1.45,1.22,1.75,1.5, 1.45, 1.65]])
class2 = np.array([[0.25,0.55,0.15,0.25,0.3,0.66,0.35,0.1,0.45,0.55], 
[1.5,1.25,1.15,1.25,1,1,1.45,1.5,1.33,1.45]])

#Plotting the data using the plt function from matplotlib
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)

ax0.scatter(class1[0],class1[1],marker=‘*’,c=‘blue’,edgecolor=‘blue’)
ax0.scatter(class2[0],class2[1],marker=‘o’,c=‘green’,edgecolor=‘green’)
plt.show()

# Calculating the mean vectors per class by creating a 2x1 vector with 
means
mean_class1 = np.mean(class1,axis=1).reshape(2,1)
mean_class2 = np.mean(class2,axis=1).reshape(2,1)

# Calculaing the scatter matrices (within)
scatter_class1 = np.dot((class1-mean_class1),(class1-mean_class1).T)
scatter_class2 = np.dot((class2-mean_class2),(class2-mean_class2).T)

# Calculating the SW by adding the scatters within classes
SW = scatter_class1+scatter_class2
print(SW)

The resultant scatter (Figure 7.5) within the class as per the equation is computed and given as a 
2 × 2 matrix with elements shown below:

Scatter within class Sw = [[ 0.49509091 -0.03355455] [-0.03355455  
0.85203273]]

7.9.2  iMPleMentation of scatter between class (sb)

For the same data used in the previous section, the scatter matrix between classes is computed 

according to equation 7.22, S nB i i i
T

i

c∑ µ µ µ µ( ) ( )= − −
=

        
1

, where μ is the overall mean and μi is 

the mean for the respective class. Here, ni is the sample size of the respective class.

import numpy as np
import matplotlib.pyplot as plt

# Data creation – Here random samples in the range [0,2] are generated 
for each class
class1 = np.array([[1.5,1.6,1.55,1.65,1.45,1.7,1.75,1.55,1.35, 1.8], 
[1.75,1, 1.5,1.65,1.45,1.22,1.75,1.5, 1.45, 1.65]])
class2 = np.array([[0.25,0.55,0.15,0.25,0.3,0.66,0.35,0.1,0.45,0.55,0.25], 
[1.5,1.25,1.15,1.25,1,1,1.45,1.5,1.33,1.45,1.15]])

# Calculating the mean vectors per class by creating a 2x1 vector with 
means
mean_class1 = np.mean(class1,axis=1).reshape(2,1)  
mean_class2 = np.mean(class2,axis=1).reshape(2,1)
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# Calculating the overall mean vector 
ave_class = []
for i in range(len(class1)):
    row = []
    for j in range(len(class1[0])):
        row.append( ( class1[i][j] + class2[i][j] ) / 2 )
    ave_class.append(row)
print(ave_class)

overall_mean=np.mean(ave_class,axis=1).reshape(2,1)
print('overall mean=',overall_mean)

# Calculating the sample size of each class
n1=np.size(class1)
n2=np.size(class2)

Sb_class1=n1*(mean_class1 – overall_mean).
dot((mean_class1 – overall_mean).T)
Sb_class2=n2*(mean_class2 – overall_mean).
dot((mean_class2 – overall_mean).T)

FIGURE 7.5 Plot of the data with two classes (class1 – blue stars, class 2 – green circles).
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# Calculate the Sb by adding the scatters between classes 
Sb = Sb_class1 + Sb_class2
print('Scatter between class Sb =',Sb)

The output of the above code is the scatter between the matrix of size 2 × 2 given as follows:

Scatter between class Sb = [[16.13470868  2.82754909][ 2.82754909  
0.49673455]]

SUMMARY

In this chapter, a brief analysis of feature engineering was discussed. While choosing the best fea-
tures for implementing a machine learning model, it is always the best practice to ensure whether 
all the features computed are available for future observations. Furthermore, most of the features 
must have the potential to be predictive with complete domain knowledge for a detailed analysis. 
The chapter reviewed the basic requirements for feature selection, wrapper models, and FA. While 
choosing the features, it is found that dimensionality reduction plays a predominant role. This is 
mainly achieved by approaches, namely PCA and LDA. The implementation of these approaches 
regarding reducing the data dimensions is discussed in detail with relevant Python examples.

REVIEW QUESTIONS

 1. What are the deterministic algorithms in machine learning? Discuss them.
 2. What is the curse of dimensionality? Explain in the context of dimensionality reduction.
 3. Discuss the different strategies used to reduce dimension in a dataset.
 4. What happens to a dataset when collinear features are removed?
 5. Develop a dimensionality reduction model using PCA and LDA on random data. Compare 

the performance of both approaches.
 6. Are the following machine learning processes considered for feature engineering? Justify 

with a suitable explanation.
 a. Initial Data Collection
 b. Data Cleaning
 c. Normalization
 7. How are outliers handled while extracting features? Discuss.
 8. List out the machine learning models that are sensitive to outliers.
 9. Compute the scatter matrices in LDA for the class-dependant and class-independent cases. 

Record your observations.
 10. Develop a complete LDA model illustrating the concept of dimensionality reduction using 

the algorithms discussed in this chapter.
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8 Reinforcement Engineering

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the goal-oriented learning based on reinforcement learning (RL)
• Appreciate the difference between RL and other ML algorithms
• Have knowledge of elements of RL such as agent, policy function, and value function
• Apprehend the Markov decision process (MDP) and dynamic programming (DP) concern-

ing value functions, policy evaluation, and improvements
• Implement MDP and DP using Python

8.1  INTRODUCTION

When we consider the nature of learning, the idea of gaining information about dealing with our 
surroundings may be the first that comes to mind. A newborn does not have an unambiguous instruc-
tor when playing, swinging its fingers, or looking from side to side; instead, it is in direct contact 
with its senses and nature. Using this link shows a wealth of information on causes and effects, the 
effects of actions, and what you need to do to attain your objectives. Throughout our lives, such 
contact is unquestionably a rich source of information about our environment and ourselves. If we 
are going to learn cooking in a group, we know exactly how our place reacts to what we do, and we 
need to persuade what will happen with our behavior. Almost all theories of learning and knowl-
edge acquisition support collaborative learning as a fundamental notion. In this book, we look at 
how to learn from interactions using a computational method. Instead of directly considering how 
humans or animals learn, we study the investigated settings and evaluate the efficacy of artificial 
intelligence researchers or engineers’ numerous learning approaches. We investigate the structure 
of mathematical analysis and computational experimentation to design machines that effectively 
solve scientific or economic significance problems. The method we are testing, called reinforce-
ment learning, is more goal-oriented learning from interaction than other machine learning (ML) 
methods. This chapter discusses goal-oriented learning based on reinforcement learning (RL) and 
how RL varies with other ML algorithms. The elements of RL such as agent, policy function, and 
value function are explained in detail, followed by the RL algorithms the Markov decision process 
(MDP) and dynamic programming (DP). The value functions, policy evaluation, and improvements 
are covered by implementing MDP and DP in Python.

8.2  REINFORCEMENT LEARNING

RL is the process of learning what to do – how to map situations into actions – to raise the numeri-
cal reward signal’s value. The learner is not told which steps to follow; instead, he must deter-
mine which acts provide the highest reward for trying. In the most thrilling and difficult situations, 
actions may impact the current reward and the next situation and, as a result, all subsequent prizes. 
These are two most important parts of RL: trial-and-error search and delayed rewards.

RL, like other issues with names that finish in “ing,” such as ML and climbing, is a problem, a cat-
egory of successful solutions to the problem and a subject that studies the problem and its solutions 
all at the same time. It’s tempting to use a single word to describe all three issues, but it’s critical to 
keep these three issues separate in your mind. Furthermore, the distinction between problems and 
solutions in RL is particularly important; failing to express this distinction causes much confusion. 
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Therefore, we design a RL issue, including applying notions from dynamical system principles, 
such as complete control of Markov’s completely anonymous decision-making processes.

The learning agent must sense its natural state to some extent and take actions that influence it. 
In addition, the agent should have a goal or set of principles in mind when it comes to the status 
of the environment. Markov’s decision-making methods are designed to combine only these three 
variables – emotion, action, and purpose – in the most basic ways possible, without jeopardizing 
any of them. We recall that any effective strategy to solve such issues is a RL method. RL is not the 
same as supervised learning, which is the type of research being done in ML.

Supervised learning is based on categorized examples provided by an experienced external man-
ager as part of a training program. Each instance represents the current condition and a specific 
label of the proper action that the program should perform in that situation, which is normally to 
assign the situation to a category. This form of training aims to get the program out or combine 
its responses to function best in situations that aren’t covered in the training set. This is an impor-
tant method of learning knowledge, but it is not sufficient in and of itself. Finding instances of 
the desired behavior and representing all settings under which the agent must work is frequently 
unproductive in cooperative problems. Instead, an agent must research from their experience in an 
unmarked area, where one would expect learning to be most valuable.

RL is also distinct from unsupervised learning, commonly used to uncover a structure buried 
in unlabeled information by machine learning researchers. Although supervised and unsupervised 
learning appear to be two distinct ML models, they are no longer so. Although it is tempting to think 
of RL as an unsupervised form of learning because it does not rely on positive behavioral models, 
RL aims to magnify the reward signal rather than trying to identify a hidden structure. Finding 
the structure of an agent’s experience can be highly useful in reinforcement. Still, it does not solve 
the challenge of RL to increase the reward signal on its own. As a result, we consider RL to be a 
third ML paradigm, alongside supervised and unsupervised learning, as well as perhaps different 
paradigms.

The trade between exploration and exploitation is one of the challenges that arise from RL but 
not from other types of learning. The RL agent must choose actions that he or she has tried in the 
past and is proven to be effective in generating rewards to reap the most benefit. The agent must not 
only use his experience to win the prize, but he must also learn how to make the greatest decisions 
in the future. The issue is that exploration or exploitation cannot be carried out without fail. The 
agent must try for a broad range of acts while continuing to favor the ones that appear to be the most 
effective. In a stochastic challenge, each action must be repeated multiple times before an accurate 
estimate of the expected reward can be determined. Mathematicians have researched this problem 
of exploration and exploitation for decades, but it has yet to be solved. Meanwhile, we just recognize 
that the dilemma of balancing exploration and exploitation is no longer solvable.

Another distinguishing feature of RL is that it explicitly addresses the total difficulty of an 
intention-directed agent dealing with an unpredictable environment. Many ML researchers, for 
example, have researched supervised learning without specifying how such a capability may be 
valuable in the long run. Likewise, different researchers have advanced theories of planning with 
similar goals, but without considering the function of planning in real-time decision-making or 
the question of where the forecasting models needing to make plans will come from. Even though 
these strategies have had many positive outcomes, their focus on remote subtypes is a common 
problem. RL takes the opposite behavior, beginning with a whole, interactive, goal-achieving 
agent.

Furthermore, it is generally believed from the beginning that the agent has to function with a 
notwithstanding sizable uncertainty about the surroundings it faces. When planning is involved in 
RL, it has to address the interaction among making plans and the selection of real-time action, in 
addition, to knowing how the environmental model is derived and progressed. When supervised 
learning is involved in RL, it does so for unique reasons that determine which abilities are important 
and which are not.
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RL starts with a full, interacting, goal-achieving agent, the polar opposite of RL. Furthermore, 
it is widely assumed from the start that the agent must function despite significant uncertainty 
about the environment in which it finds itself. When planning is used in RL, it must consider the 
connection between generating plans and choosing real-time action and understanding how the 
environmental model is created and progressed. When supervised learning is used in RL, it is done 
for specific reasons that help establish which skills are valuable and which are not. For example, cer-
tain RL methods’ ability to study with standardized approximation addresses the classic “curse of 
dimensionality” in operations research and management of ideas. RL, in particular, has had a strong 
interaction with psychology and neuroscience, with both methods providing significant benefits. RL 
is the closest form of ML to study that humans and other animals conduct. Many of the primary 
algorithms for RL were inspired by biological studying structures.

RL has been given back through psychological models of animal learning, which matches some 
scientific statistics, and through influential components of the mind’s reward system. The methods 
were classified as “weak techniques” based on general principles such as discovery or learning and 
as “strong techniques” if they were based on specific information. This is an odd scene in today’s 
world. It became premature in our opinion: very little effort was expended in the search for gen-
eral principles, just to discover that there was none. Modern artificial intelligence today involves 
research into common ideas like mastering, seeking, and making decisions. It’s uncertain how far 
the pendulum will swing, but RL research is part of a trend toward artificial intelligence standards 
that are simpler and less general.

8.2.1  exaMPles of reinforceMent learning

An amazing way to understand RL is to consider some of the examples and feasible applications 
that have guided its development.

• A master chess player performs a trick. An immediate, spontaneous choice informs both 
the importance of special positions and actions, election planning, and waiting for feasible 
responses and counter-responses.

• After being born, a gazelle calf fights for its feet. It is now walking at a speed of 20 miles 
per hour.

• A cell robotic must decide whether to enter a new room in search of additional trash to 
collect or to begin finding its way back to its battery recharge station. It makes decisions 
based on the current charge level of its battery and how quickly and easily it could locate 
the recharger in the past.

These examples demonstrate functions that are so basic that they are easy to overlook. All of them 
entail a dynamic interaction between an active selection-making agent and its environment, in 
which the agent strives to attain a goal despite ambiguity about its surroundings. The agent’s moves 
can represent the future condition of the environment (for example, the next chess role, the refinery’s 
reservoir level, the robotic’s next region, and its battery’s future charge level), allowing for a later 
time.

Because the proper goal necessitates considering indirect rather than direct implications of 
movements, forethought or planning may be required. At the same time, in all of these cases, the 
completion of activities cannot be entirely foreseen; consequently, the agent must show its environ-
ment regularly and react properly. Phil, for example, must keep an eye on the milk he puts into 
his cereal dish to prevent it from overflowing. Many of these examples include desires that are so 
unique to the experience that the agent can predict progress toward its goal only based on what it 
has personally experienced.

The chess participant knows whether or not he/she wins, the gazelle calf knows when it falls, 
and the mobile robotic knows when its batteries run out. In each of these cases, the agent can use 
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its enthusiasm to increase its performance over time. The chess player improves his/her game by 
refining his/her instinct to evaluate his/her positions; the gazelle calf improves its running perfor-
mance, etc.

8.3  HOW RL DIFFERS FROM OTHER ML ALGORITHMS?

8.3.1  sUPerviseD learning

In supervised learning, the agent is aware of what work to do and what actions are appropriate. The 
data scientists train the agent in historic records on targeted data with  a label. The agent receives 
a direct response and can predict whether there will be any changes in the target to the new data or 
not.

Reinforcement studying doesn’t depend upon classified datasets. The agent isn’t instructed which 
actions to take or the most desirable manner to perform a task. RL uses rewards and penalties in 
preference to labels related to each dataset choice to indicate whether the action performed is posi-
tive or negative. Therefore, the agent only receives comments as soon as he or she has completed 
the task. Thus, the delayed response and the trial-and-error process help distinguish RL from super-
vised studying.

Reinforcement Learning vs. unsupervised learning: In unsupervised learning, the algo-
rithm analyzes anonymous data to detect hidden connections between fact points and 
structures through similarities or variations. RL goals to define an excellent action version 
to achieve the greatest long-term reward, differentiating it from unattended learning in 
terms of its primary purpose.

Reinforcement and deep learning: Most RL implementations use in-depth learning models. 
They contain the usage of deep neural networks because it is an important means of train-
ing agents. Deep learning is best suited to spotting complicated styles in snapshots, sounds, 
and text. In addition, neural networks permit data scientists to balance all processes into a 
single model without tearing down the agent structure into multiple modules.

8.4  ELEMENTS OF REINFORCEMENT LEARNING

The RL system has four basic layers – policy, reward signal, value function, and environmental 
model – in addition to the agency and the environment.

8.4.1  Policy

The policy denotes the information to detect an agent’s conduct over some time. The policy is a 
map of known regions of the surrounding areas and the steps to be taken while in those states. It 
goes hand in hand with what psychological research is called a set of policies or associations. In 
a few instances, the coverage can be an easy way to do things or a lookup table, while in others, 
it can contain excellent computation and search processes. A policy is a center for strengthening 
the acquisition of an agent’s knowledge within the feel that it is only appropriate to determine 
the conduct. In general, the rules can be stochastic, specifying the possibilities for each agent. 
In general, a policy can be the behavior of the agent. It can be mapped from state to action. For 
instance,

 Deterministicpolicy, ( )= πd p  (8.1)

 d p D d P p d pt t( ) ( ) ( )π = = = πStochasticpolicy,    (8.2)
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8.4.2  rewarD signal

The reward signal represents the objective of the problem of RL. In each step, the environment 
sends the consolidation agent to consolidate one number called reward. The agent’s main goal is 
to maximize the total compensation he or she receives over time. The reward signal specifies the 
agent’s positive and negative occurrences. We can think of rewards in the biological system as 
pleasant or sad experiences. They are succinct and descriptive descriptions of the agent’s problem. 
The reward signal is the primary driver of policy change. If a lesser reward follows a policy-
selected action, the policy can be altered in the future to select a different action. Environmental 
stock operations and moves are commonly used as reward signals. A pricing characteristic indi-
cates what is beneficial in the long run, but a reward signal specifies what is desirable in the short 
term.

8.4.3  valUe fUnction

The value function, in most cases, is the entire amount of reward that an agent can expect to get 
in the future from that point forward. Thus, the prices reflect the state’s long-term goals within the 
natural states after evaluating the prospective provinces and the rewards accessible in those states. 
In contrast, the rewards indicate instantaneous desire.

For instance, the state may always offer a short and modest prize, but the price is still excessive 
because it is always joined by other states that offer bigger prizes. Alternatively, the inverse may 
be true. To use a human comparison, rewards are similar to happiness (when high), and the most 
sophisticated criteria determine sorrow (when low) and values.

A reward Rt is a signal response scale indicating how well an agent performs in an agent’s job 
step to maximize aggregate reward. RL is dependent upon this reward hypothesis.

8.4.3.1  Examples of Rewards

Fly stunt flight in a helicopter
+ve reward for following your favorite route
−ve reward for colliding
Defeat the world champion at Scrabble
The ±ve reward for winning/losing a game
Manage a funding portfolio
The +ve reward for each currency in the bank
Control a power station
The +ve reward for generating electricity
The −ve reward for surpassing protection thresholds
Do a humanoid robot stroll
The +ve reward for moving forward
The −ve reward for falling over
Play many different Atari games better than humans
The ±ve reward for increasing/decreasing score

In other ways, rewards are primary, while values such as reward forecasts are secondary. There 
would be no values if there were no rewards because the only reason for measuring values is to 
get more money. Even yet, while choosing and comparing choices, it is a major source of concern. 
Value judgments are used to select actions. We seek behaviors that result in higher-value states, 
not just a bigger reward because these acts provide us with the best long-term payoff. It’s far more 
difficult to define values than assigning rewards, to put it bluntly. In reality, reliably measuring val-
ues is the most important challenge in practically all RL systems. The crucial role of quantitative 
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measurement is the most important lesson learned in RL over the past six decades. The value func-
tion is given by 

 V s R R R D dt t t t γ γ( ) = + + + = π π + + +Valuefunction      1 2
2

3  (8.3)

8.4.4  MoDel of the environMent

The last aspect of elements of RL is to strengthen the environmental model. This mimics how the 
environment works or, more typically, allows for a hypothesis about how the environment will act. 
For example, based on the current state and actions of the environment, the model might predict the 
future state of the outcome and follow rewards. Models are used to make plans, in which we rec-
ommend any method of deciding on a course of action by contemplating potential future activities 
before they are experienced. Solutions for RL using modeling and planning are called model-based 
approaches, in contrast to simple non-model approaches that explicitly expose learners to trials and 
errors – which are considered almost counter-planning. Current RL encompasses a wide range from 
low-level, experimental, and trail-and-mistake-based learning to advanced, deliberate planning.

Environment model can be described as

 P D d D d B ess
a

t t t= = ′ = = ′ +   ,1  (8.4)

 C C D d B es
a

t t t= = = +    ,1  (8.5)

where P predicts the next state and C predicts the next reward.

8.4.5  the reinforceMent learning algorithM

The RL problem can be framed primarily based on the following key elements:

Agent(): An entity that could observe or discover the environment and use it.
Environment(): A scenario wherein an agent is presented or surrounded through. In RL, we 

count on the stochastic surroundings; this means that it’s natural structures. It is nothing 
but the physical world wherein the agent works.

Action(): Actions are the moves taken using an agent inside the environment.
State(): State of affairs restored with the aid of the environment after each action is taken 

using the agent. It is the agent’s current status.
Reward(): A feedback returned to the agent from the environment to access the agent’s 

action. It is the response from the environment.
Policy(): Policy is an approach carried out by the agent for the next action depending upon the 

current state. It is an approach to map an agent’s state to actions.
Value(): It is predicted that it will also meet the discount factor for the long term and infringe-

ment of the interim reward. Future reward that an agent can earn by taking action in a 
specific situation.

Q-value(): Very similar to a value but takes one additional parameter as the current action (a).

The algorithm is given by

At every step t the agent: Performs the action At recognized by observation Ot and receives 
scalar reward Rt

The environment: Finds action At, produces observation Ot+1, radiates scalar reward Rt+1 at 
t increments.
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8.4.6  MethoDs to iMPleMent reinforceMent learning in Ml

RL in ML can be implemented using three main methods.

 1. Value-based: The value-based method determines the optimal value function, represent-
ing the maximum value at a state beneath any policy. Consequently, the agent presumes the 
long-term return at any state(s) beneath policy π.

 2. Policy-based: The policy-based method determines the optimal policy for the high-
est rewards of the future without restoring the value function. In this method, the agent 
attempts to use any policy so that the action taken in every step increases future rewards.

The policy-based method has particularly two kinds of policy:
• Deterministic: At any state, the same action is produced by the policy (π).
• Stochastic: The produced action is determined by probability.

 3. Model-based: In the model-based method, the environment creates a virtual model, and 
the agent examines that environment to analyze it. This approach doesn’t have any specific 
algorithm or solution because the virtual model is distinctive for every environment.

8.5  MARKOV DECISION PROCESS

In the RL framework, the decision is made by the agent from the environment as a signal function 
known as the environment’s state. This section defines the Markov property that defines the envi-
ronment’s property and the state signals at a specific interest. In this section, we concentrate not on 
designing the state signal but on deciding the function for which the signals are available.

8.5.1  PreliMinaries

The state should represent the immediate sensations to the agent and be able to intimate the agent 
more than that. It intimates not only everything about the environment but also everything useful in 
making decisions. For example, if the agent is communicating on a mobile, it is expected to identify 
who the caller is. If the agent is playing the Baccarat game, it is expected that the agent should know 
what the upcoming card will be. If we analyze these examples, there is some state information hid-
den in the environment, which the agent knows might be useful. Still, the agent could not predict it 
because no such relevant sensations were received. A state signal that can retain all information is 
named Markov or to devise the Markov property. For instance, the position of the checkers might 
serve as a Markov state where it encapsulates all information about the whole sequence of positions 
that was played in the game. Though some sequences might be missed out, all that is needed for the 
future is retained. In general, we can say that it should retain the history of the signals that have been 
made to reach this position. Let us consider a set of finite states and reward values and an environ-
ment that respond to the action taken at time t to t + 1. The response is dependent upon the whole thing 
that has occurred earlier. The dynamics are defined by stating the complete probability distribution:

 , | ,  ,  , , ,  ,  ,  , 1 1  0 0 1  1 1{ }= = ′ …+ + − −P C a D d D B C D B C D Br t t t t t t t  (8.6)

For all r, d ′ and all possible values of past events, namely, ,  ,  , , ,  ,  ,  , 0 0 1 1 1 − −D B C D B C D Bt t t t t . In 
case the state signal obtains Markov property, then the environment’s response at t + 1 be subject to 
the state and action representations at t, the environment’s dynamics is determined by

 p d a d e P C a D d D Br t t t t{ }′ = = = ′+ +( ,   |  ,  ) ,  |  , 1 1   (8.7)

For all a  , d ′  , D Bt tand . It can also be stated that the state signal contains the Markov property 
and Markov state, iff ( equation 8.7) is equal to (equation 8.6) for all r, d ′. And all possible values 
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of past events, namely, ,  ,  , , ,  ,  ,  , 0 0 1 1 1 − −D B C D B C D Bt t t t t . In this case, where the environment and 
complete process are said to contain the Markov property.

If the environment follows the Markov property, given the current state and action, the one-
step dynamics (equation 8.6) permits forecasting the next state and anticipating the next reward. 
By repeating this equation, all future states can be forecasted and anticipate the rewards given the 
entire history until the current time. RL considers Markov property an important criterion since the 
decisions and values are thought to function the current state’s function. So as for those to be power-
ful and informative, the representation of the state must be instructive.

The Markov property that is satisfied by the RL task is known as MDP. If there are a finite num-
ber of state and action spaces, then it is known as the finite Markov decision process (finite MDP). 
A specific finite MDP is determined by its state and action sets and the environment’s one-step 
dynamics. In case state (d) and action (e) are provided, the probability of every feasible pair of the 
next state (d ′) and reward (a) is represented by

 ,    ,      ,    , 1 1{ }( )′ = = = ′ = =+ +p d a d e P C a D d D d B er t t t t  (8.8)

If the dynamics represented in equation (8.8) is given, it becomes easy to compute any details about 
the environment, in particular for each state-action pairs the expected reward is

 r d e C D d B e a p d a d et t t

d Da C

∑∑ ( )( ) = = =  = ′+

′∈∈

, , ,  ,   1 

 

 (8.9)

The probabilities of state transition are given by,

 | ,        | ,    ( ,  | ,  )1 ∑( ) { }′ = = ′ = = = ′+

∈

p d d e P D d D d B e p d a d er t t t

a C

 (8.10)

and for state action next-state triples, the expected reward is given by,

 r d e d C D d B e D d
a p d a d e

p d d e
t t t t

a C∑ ( )
( )( )′ = = = = ′  =

′

′+ +
∈,  ,  ,  ,     

  ,  , 

, 
1 1  (8.11)

8.5.2  valUe fUnctions

Substantially, every RL algorithms encompass measuring the state-action pairs that evaluate how 
well an agent can carry out a given action in a given state. The opinion of “how well” can be defined 
about future rewards or, more accurately, concerning the expected return. The expected reward to 
receive from the agent in the future is depended upon the action it takes. Consequently, value func-
tions are defined in terms of particular policies.

A policy π is represented as a mapping from each state, d D∈  , and action, e A d( )∈  , to the prob-
ability e d( )π |  for captivating action e when in the state, d. The value of a state, d within a policy π, 
indicated by, is the expected return when beginning at d and under π thenceforth. v d( )π  for MDPs 
is represented as

 v d G D d C D dt t
k

t k t  ∑γ= =  = =












π π π + +

∞

( )           ,1

0

 (8.12)

where given an agent who follows policy π and time step t,  [ ]π .  represents the expected value of a 
random variable and vπ represents the state value function for policy π.
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Similarly, the value of captivating action e in state d within a policy π, i.e., the expected return 
beginning from d, represented by q d e( )π ,  the action value function for policy π is given by

 q d e G D d B e C D d B et t t
k

t k t t  ∑γ( ) = = =  = = =












π π + +

∞

,       ,       ,π 1

0

 (8.13)

The value functions vπ and qπ can be measured through expertise. For instance, for every state that 
is encountered, if an agent accompanies policy π and upholds an average of the actual returns for 
the state that has been followed, then the average shall intersect to the state’s value, vπ(d), as long as 
the number of times that state is confronted nears infinity.

In case for every action taken in a state, distinct averages are considered, then all these averages 
intersect with the value of the action, qπ(d, e). This approach can be called the Monte Carlo approach 
to averaging numerous random samples of actual returns.

The consistency condition possesses among the value of d and the value of its feasible descendant 
states for any policy π and any state d which is represented as
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 (8.14)

It is implied that from set A(d), the actions, e, are interpreted from set D, the next states, d0, 
and from set B, the rewards, a, are chosen. For every triple, the probability is computed, π(e|d) 
p(d0, a|d, e), weight the quantity in brackets by its probability, finally find the aggregate across 
all possibilities to obtain the expected value. Bellman equation for vπ is given in (equation 8.14), 
which demonstrates a correlation among the state value of its successor states. Equation (8.14), 
the Bellman equation, averages all the possibilities, scaling every possibility by its occurring 
probability. It declares that the start state value needs to equal the expected next state value and 
the sum of the expected reward. The value function vπ is considered the unique solution to its 
Bellman equation.

8.6  DYNAMIC PROGRAMMING

DP is the collection of algorithms to find optimal policies when a perfect environment model 
is given as a MDP. Due to huge computational expense and the need for a perfect environment 
model, the utility of classical DP algorithms in RL is limited. However, still, they are considered 
theoretically important. Indeed, these methods are viewed as attempts to obtain a similar impact 
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as DP but with lesser computation and no need for a perfect environment model. From hereon, 
we consider the environment a finite MDP. Let’s assume that all the state (D), action A(d), and 
reward sets, R for d ∈ D is finite. Its dynamics are represented as a set of probabilities p(d0, a|d, 
e), for all d ∈ D, e ∈ A(s), a ∈ R, and d0 ∈ D+, where + denotes the terminal state if the problem is 
discontinuous. Even though DP can solve problems involving continuous states and action spaces, 
exact solutions are only attainable in a few circumstances. However, the state and action spaces 
must be quantized for continuous states and actions, and finite-state DP techniques must be used. 
Using a value function to organize and construct the search for appropriate policies is the central 
principle of DP and RL.

8.6.1  Policy evalUation

Policy evaluation in DP denotes the computation of the state-value function vπ for a random policy 
π. This can also be referred to as a prediction problem.

 
v s R R R D d

R v S S s

t t t t

t t t





γ γ

γ ( )

( ) = + + + = 

= + = 

π π + + +

π + π +

     

     

1 2
2

3

1 !

 (8.15)

 , , ( )
,

∑∑ γν( )[ ]( )π ′ + ′π

′

e d p d a d e a d
d ae

 (8.16)

where e dπ( | ) denotes the probability of considering action, e in the state, d within the policy π, 
whereas the subscription of π represents the expectations that indicate the conditional policy is 
being followed. The vπ value is guaranteed for its existence and uniqueness until γ < 1 or if a guar-
antee is obtained from all states within the policy π that it has been terminated.

In case the dynamics of the environment are known completely, then equation (8.16) can be the 
system of  D  simultaneous linear equations in D  unknowns ,    ( ) ∈πv d d D. Let us consider a suc-
cession of value functions v0, v1, v2, … which are approximate, and each mapping D + to . The 
initial approximate value function v0 is selected randomly, and using the Bellman equation (8.14) 
for vπ the update rule obtains each succession approximation
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For all d D∈ . It is clear that v vk = π  acts as a fixed point to the update rule because the Bellman 
equation for vπ guarantees equality for this instance. In general, the sequence vk{ } converges to vπ 
as k → ∞ within the same condition that assures the presence of vπ. This procedure is known as an 
iterative policy evaluation and is illustrated in Figure 8.1.

To develop every succession approximation, vk+1 from vk, the same operation for each state, d 
is applied by the iterative procedure of policy evaluation. The previous value of d is applied to the 
obtained new value from the previous values of the states of d. The one-step transitions available 
within the policy and the expected immediate reward are evaluated. This operation is known as 
full backup. In dependence upon the state-action pair, numerous distinct types of full backups are 
backed up, and the estimated values of the successive states, dependent on the precise manner, are 
grouped. Since the backups done in DP algorithms depend on all feasible next states instead of 
sample next state, we say that all DP algorithms are called full backups.
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8.6.2  Policy imProvement

The policy’s value function is computed to identify good policies. Let us consider that the value 
function vπ for a random deterministic policy, π is determined if we want to change it to a new policy 
for some state, d. One question arises whether it is good to continue with the current policy or to 
move on with the new policy. This question could be answered by choosing e in d and continuing 
with the old policy π. This can be determined by
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The main idea is to check whether the value is greater or lesser than that v d( )π . If the value is 
greater, that means it would be a good choice to choose e once in d and to follow π, which insists 
on following π every time. In this case, it would be better to adopt the new policy. This result is 
considered the policy improvement theorem. Assume π and π0 be the deterministic policy pair such 
that, for all d ∈ D,

 ,( )( ) ( )′π ≥π πq d d v d  (8.19)

Here the policy π’ has to be better or good than π. This indicates that it should acquire greater or 
equal expected return from all states d ∈ D.

 v d v d( ) ( )≥′π π   (8.20)

In the case at any state in equation (8.19), a strict inequality exists, then in equation (8.20) also a 
string inequality must exist for any state. This applies to the two policies mentioned in the original 
deterministic policy, π, and to the new policy, π0. Certainly, equation (8.19) will hold for all states 
except d. Therefore, if qπ(d, e) is greater than vπ(d), then the need policy is better than the original 
deterministic policy, π.

Now, let us prove this policy improvement theorem. Let us start from equation (8.19), expand the 
qπ as well as while reapplying equation (8.19) till we obtain v d′π ( ) which is represented as

Read π, the policy that needs to be evaluated

Initialize an array V(d) = 0, for all d ∈ +

Loop

Δ ← 0

For each d ∈ D: 

← ( )

( ) ← ∑ ( | ) ∑ ( ′ , | , ) [ + ( ′)]′ ,

∆ ← max(∆, | − ( )|)

Until ∆ < ( )

Display ≈

FIGURE 8.1 Iterative policy evaluation.
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The new greedy policy,  π’, which is the native extension considered to change at all the states and 
all the feasible actions, chosen at every state in which the action seems best according to q D e( )π ,  
is represented as
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where argmaxa represents the maximized expression for the value of a. The greedy policy meets the 
conditions of the policy improvement theorem described in equation (8.19). As a result, we conclude 
that it is nearly as good as the original deterministic approach. As a result, policy improvement 
refers to the process of making a new policy better than the old one by making it greedy concerning 
the old policy’s value function.

Assume that the new greedy policy, π0, is well but not better than the existing policy π. Then, 
v v=π π  0  and from equation (8.22), it occurs that for all d D∈ :
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This equation is similar to the Bellman optimality equation, and subsequently, vπ0  should be v*, as 
well as π and π0 should be optimal policies. Generally, a stochastic policy π indicates probabilities, 
π(e|d), for each action, e, from each state, d. In specific, the policy improvement theorem carried 
across the stochastic case, beneath the normal definition is given by

 q d d e d q d e
e

∑( )′π = ′ππ π, ( ) ( , ) ( , )  (8.24)

In addition, if a connection exists in policy improvement stages, as shown in equation (8.22), then 
there is no need to choose a single action from among them in the case of a stochastic policy. Rather, 
each maximizing action might be given a percentage of the chance of being chosen under the new 
greedy policy. Because all submaximal actions have a zero probability, the newly allocated scheme 
could be authorized.
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8.6.3  Policy iteration

As soon as the policy, π, improves using vπ to provide a better policy, π’, and v ′π  is computed and 
improved to produce even a better policy π’’. Thus, a sequence of uniform improved policies and 
value functions are obtained by

 v v vE I E I E I E
π  →  → π  →  → π  →  → π  →π π π               0 1 2 *0 1 *

where E →  represents policy evaluation and I →  represents policy improvement.
Because there are only a finite number of policies in a finite MDP, this technique should focus 

on achieving optimal policy and the ideal value function in a finite number of repetitions. Policy 
iteration is the term for the process of determining the best policy. The policy iteration algorithm is 
depicted in Figure 8.2.

In this algorithm, if the policy constantly commutes between two or more policies that are even-
tually good, the algorithm will never terminate.

8.6.4  efficiency of DynaMic PrograMMing

Although DP is not ideal for really big problems, it is relatively efficient compared to other approaches 
to solving MDPs. In terms of the number of states and actions, the worst-case time complexity of the 
DP technique to achieve an optimal policy is polynomial. Assuming that n is the number of states 
and m is the number of actions, the DP technique requires fewer computer operations than a poly-
nomial function n and m. Thus, DP guarantees that the optimal policy will be found in polynomial 
time, even though the total number of policies required is mn. In this aspect, DP is exponentially 
faster than direct search in the policy space since direct search requires a thorough investigation of 

FIGURE 8.2 Policy iteration for v*.
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each policy to offer the promise. Compared to the DP approach, the worst-case intersection guaran-
tees for linear programming approaches, which are also employed to solve MDPs, are comparably 
good. However, compared to DP, the linear programming approach becomes unworkable with fewer 
states. However, only DP techniques are practical for the most serious situations.

Because the number of states grows exponentially with the number of state variables, the curse 
of dimensionality (Bellman, 1957), DP is frequently thought to be unproductive. Furthermore, DP 
outperforms direct search and linear programming when dealing with huge state spaces. If it starts 
with good initial value functions or policies, DP converges substantially faster than its theoretical 
worst cast difficulties.

8.6.5  DynaMic PrograMMing in Practice Using Python

###Importing libraries
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid")
%pylab inline
import random

####### Populating the interactive namespace from numpy and matplotlib
###Policy iteration
###Parameters
gamma = 1 # discounting rate
rewardSize = -1
gridSize = 4
terminationStates = [[0,0], [gridSize-1, gridSize-1]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000

###Functions
def actionRewardFunction(initialPosition, action):
    if initialPosition in terminationStates:
        return initialPosition, 0
    reward = rewardSize
    finalPosition = np.array(initialPosition) + np.array(action)
    if -1 in finalPosition or 4 in finalPosition: 
        finalPosition = initialPosition
    return finalPosition, reward
###Initialize
valueMap = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
####Value function at step 0
valueMap

####Evaluating the Policy
deltas = []
for it in range(numIterations):
    copyValueMap = np.copy(valueMap)
    deltaState = []
    for state in states:
        weightedRewards = 0
        for action in actions:
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            finalPosition, reward = actionRewardFunction(state, action)
            weightedRewards += (1/len(actions))*(reward+(gamma*valueMap[f
inalPosition[0], finalPosition[1]]))
        deltaState.append(np.abs(copyValueMap[state[0], 
state[1]]-weightedRewards))
        copyValueMap[state[0], state[1]] = weightedRewards
    deltas.append(deltaState)
    valueMap = copyValueMap
    if it in [0,1,2,9, 99, numIterations-1]:
        print("Iteration {}".format(it+1))
        print(valueMap)
        print("")
        
###Plotting the values
plt.figure(figsize=(20, 10))
plt.plot(deltas)

SUMMARY

RL is a ML technique that focuses on using a cut-and-try approach to train an algorithm. After 
each action, the algorithm (agent) examines the current situation (state), takes action, and receives 
feedback (reward) from the environment. Positive feedback is a form of reward (in the sense that 
we understand it), whereas negative feedback is a form of punishment for making a mistake. The 
goal-oriented learning based on RL is discussed in this chapter and how RL differs from other ML 
algorithms. First, the elements of RL, such as agent, policy function, and value function, are thor-
oughly discussed, followed by RL techniques, such as the MDP and DP. Finally, value functions, 
policy assessment, enhancements, and MDP and DP implementation in Python are all delineated.

REVIEW QUESTIONS

 1. List out a few real-world applications of RL. Explain concerning agent, value functions, 
and policy functions.

 2. Compare the performance of RL compared to other ML algorithms.
 3. Explain the terms: policy, reward, value function, and model of an environment.
 4. Consider a football ground as an environment and a robot as an intelligent agent. Try to 

model the game using the Bellman equation.
 5. List the differences between supervised learning and RL in terms of
 a. Dataset (labeled/unlabeled)
 b. Training
 c. Interaction with the environment
 d. Decision-making
 6. What are on-policy and off-policy functions? Explain.
 7 Explore the application of MDP in traffic light control for decision-making.
 8. Can RL be applied to self-driving cars? Interpret the agent, reward, action, and environ-

ment for the application.
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9 Case Studies for Decision 
Sciences Using Python

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to:

• Understand the application of phases of data analytics life cycle for machine learning (ML) 
problems,

• Comprehend the data for a given problem and the objective of the problem such that a suit-
able algorithm can be identified,

• Identify alternate ML models for the listed use cases,
• Apprehend the differences between common ML models from an application perspective, and
• Implement the use cases provided in this chapter using Python.

Machine learning is endlessly fascinating and constantly evolving. The use of ML in various industries 
has been gaining speed in the last few years. There are multiple uses to solve industry-related business 
problems, from retail to financial services to healthcare to manufacturing. This chapter discusses a few 
uses in different industries to solve the industry problem using deep learning. Traditional program-
ming cannot accommodate the logic for various combinations. Using the Price Elasticity of Demand 
Method, use case 1, Retail Price Optimization, finds the exact price at which maximum profit is gained. 
The use case highlights the step-by-step implementation of understanding the data, loading the data, 
exploring the data, and model building. In use case 2, Market Basket Analysis (MBA), we present the 
application based on a customer dataset in a supermarket, thus highlighting association rule mining. 
The product associations are compared based on Apriori and Fpgrowth algorithms. Use case 3, Sales 
Prediction of a Retailer, is illustrated to build a ML model and find out the sales of each product at a 
particular store. The code is implemented to compare different regression models and identify Gradient 
Boosting as the best model. Predicting the cost of insurance claims for a Property and Causalty (P&C) 
Insurance Company is covered in use case 4. This case study illustrates data cleaning, data preprocess-
ing, and handling outliers. Use case 5, E-Commerce Product Ranking and Sentiment Analysis, deals 
with understanding the data, data preprocessing-filtering (including gibberish, language, and profanity 
detection), feature extraction, pairwise review scoring, and further categorization.

9.1  USE CASE 1 − RETAIL PRICE OPTIMIZATION USING 
PRICE ELASTICITY OF DEMAND METHOD

9.1.1  backgroUnD

Product pricing is a vital aspect of the rental industry, and there are several strategies to determine 
the optimal price of the products. As such, there are two main types of goods. First, there are several 
goods whose prices affect their sales. Small changes in the price of these products can therefore lead 
to distinctive changes in sales. On the other hand, sales of goods can be unaffected by their price. 
These products are generally luxury items and necessities such as certain medicines. This notebook 
will focus on the former type of goods, where price changes the demand for the product.

Price elasticity of demand (PED) is a key economic measure defined as the degree to which 
demand changes as the cost of the product changes. In general, the demand for a product decreases 
as cost rises. However, in some cases, the demand can drop sharply even with a small increase 
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in price, while in other cases, demand can stay approximately the same even with a sharp price 
increase. Therefore, the term price elasticity defines the percentage change in demand due to a 
change in price by 1%, given that everything else is held constant.

In mathematical terms, the PED is the percentage change in quantity demanded, q, divided by 
the percentage change in price, p. The formula for the price elasticity (ǫ) is 𝑒 = %Δ𝑄/%Δ𝑃. In this 
program, we look at the sales of the items in a cafe, including burgers, coke, lemonade, and coffee. 
As data scientists, our task is to figure out the optimal prices to set for these items. If the price is set 
too high, the sales will drop, and if the price is low, then the margins will decrease. Hence, the cru-
cial question to get an answer for is “what is the optimal price point that will maximize the profit?”

9.1.2  UnDerstanDing the Data

For this use case, we will be using three files. The first file is the time dimension, which has all the 
calendar dates for a year, and that also has attributes, if the date is a holiday, weekend, or school 
beak days. It also contains another attribute, temperature, that will dictate the outdoor dining pos-
sible (as a categorical variable). The second file is the Product master data that contains the product 
list, and the third file contains the sale transactions.

# -*- coding: utf-8 -*-
"""
Created on Thu Dec  3 17:19:01 2020

@author: Suresh Rajappa
"""

# Import the reqiured libraries
import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.formula.api import ols
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(style="ticks", color_codes=True)

## Get multiple outputs in the same cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

## Ignore all warnings
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings(action='ignore', category=DeprecationWarning)

## Display all rows and columns of a dataframe instead of a truncated 
version
from IPython.display import display
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# # Load the data
sold = pd.read_csv('C:/Python Files/Usecases/Cafe Dataset - Product 
Master Data.csv')
transactions = pd.read_csv('C:/Python Files/Usecases/Cafe Dataset - Sales 
Transaction Data.csv')
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date_info = pd.read_csv('C:/Python Files/Usecases/Cafe Dataset - Time 
Dimension.csv')

# Undersatdning the Product master data
sold.head()
sold.describe()
sold.describe(include = ['O']) 
sold[sold.isnull().any(axis=1)]

# SELL_ID: a categorical variable identifier of the combination of items 
that are contained in the product.
# SELL_CATEGORY: “0” identifies single products; the category “2” 
identifies the combo ones.

# ITEM_ID: a categorical variable identifier of the item that is 
contained in the product.
# ITEM_NAME: a categorical variable, identifying the name of the item

sns.pairplot(sold) #Figure 9.1

# Understanding the Transaction data 
transactions.head()
transactions.describe()
transactions.describe(include = ['O'])
transactions[transactions.isnull().any(axis=1)]

# Important: It’s supposed the PRICE for that product on that day will 
not vary. In details:
# CALENDAR_DATE: a date/time variable, having the time always set to 
00:00 AM.
# PRICE: a numeric variable associated with the price of the product 
identified by the SELL_ID.
# QUANTITY: a numeric variable associated with the quantity of the 
product sold, identified by the SELL_ID.
# SELL_ID: a categorical variable identifier of the product sold.
# SELL_CATEGORY: a categorical variable, category of the product sold.
plt.hist(transactions.PRICE) #Figure 9.2

sns.pairplot(transactions) #Figure 9.3

date_info.head()
date_info.describe()
date_info.describe(include = ['O'])
date_info.dtypes
date_info[date_info.isnull().any(axis=1)]
date_info['HOLIDAY'] = date_info['HOLIDAY'].fillna("No Holiday")
date_info
sns.pairplot(date_info) #Figure 9.4

# # Further understanding the data deeper

np.unique(date_info['HOLIDAY'])
date_info['CALENDAR_DATE'].min()
date_info['CALENDAR_DATE'].max()
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FIGURE 9.2 Plot of the histogram for price.

FIGURE 9.1 Plot using pairplot for sold.
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date_info.shape
date_info[date_info.isnull().any(axis=1)]
pd.concat([sold.SELL_ID, pd.get_dummies(sold.ITEM_NAME)], axis=1)
pd.concat([sold.SELL_ID, pd.get_dummies(sold.ITEM_NAME)], axis=1).
groupby(sold.SELL_ID).sum()

data1 = pd.merge(sold.drop(['ITEM_ID'],axis=1), transactions.drop(['SELL_
CATEGORY'], axis= 1), on =  'SELL_ID')
data1.head(20)
b = data1.groupby(['SELL_ID', 'SELL_CATEGORY', 'ITEM_NAME', 'CALENDAR_
DATE','PRICE']).QUANTITY.sum()

data1.shape
intermediate_data = b.reset_index()

data1.shape
b.shape

FIGURE 9.3 Plot of pairplot for transactions.
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intermediate_data.head()
intermediate_data['CALENDAR_DATE'].min()
intermediate_data['CALENDAR_DATE'].max()

combined_data = pd.merge(intermediate_data, date_info, on = 
'CALENDAR_DATE')
combined_data.head()
combined_data.shape
combined_data[combined_data.isnull().any(axis=1)]

np.unique(combined_data['HOLIDAY'])
np.unique(combined_data['IS_WEEKEND'])
np.unique(combined_data['IS_SCHOOLBREAK'])

bau_data = combined_data[(combined_data['HOLIDAY']=='No Holiday') & 
(combined_data['IS_SCHOOLBREAK']==0) & (combined_data['IS_WEEKEND']==0)]

FIGURE 9.4 Plot using pairplot for dateInfo.
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bau_data.head()
bau_data.shape

np.unique(bau_data['HOLIDAY'])
np.unique(bau_data['IS_WEEKEND'])
np.unique(bau_data['IS_SCHOOLBREAK'])
bau_data[bau_data['IS_WEEKEND']==1]
bau_data[bau_data['HOLIDAY']!='No Holiday']

# DATA EXPLORATION
plt.hist(bau_data.ITEM_NAME)
plt.hist(bau_data.PRICE)
plt.scatter(combined_data['PRICE'], combined_data['QUANTITY'])
plt.scatter(bau_data['PRICE'], bau_data['QUANTITY'])

sns.pairplot(combined_data[['PRICE','QUANTITY','ITEM_NAME']], hue = 
'ITEM_NAME', plot_kws={'alpha':0.1})

sns.pairplot(bau_data[['PRICE','QUANTITY','ITEM_NAME']], hue = 'ITEM_
NAME', plot_kws={'alpha':0.1})

# The price density plot is bimodal. From the graph, we can see that as 
the price is 
#increased, quantity sold is decreased for all quantities. However, coke 
is hidden in this view. We can go ahead, and #calculate the price 
elasticities for this.

burger = combined_data[combined_data['ITEM_NAME'] == 'BURGER']
burger.head()
burger.shape
burger.describe()
sns.scatterplot(x = burger.PRICE, y = burger.QUANTITY )

# From the above scatter plot, it is visible that there must be different 
types of burgers being sold. 
#Now, let's see the same distribution when we differentiate with SELL_ID, 
which indicates if the burger was 
#a part of the combo and must be treated separately.

burger = combined_data[combined_data['ITEM_NAME'] == 'BURGER']
# print(burger)
# print(burger.describe())
sns.scatterplot(data = burger, x = burger.PRICE, y = burger.QUANTITY , 
hue = 'SELL_ID', legend=False, alpha = 0.1)
np.unique(combined_data.SELL_ID)
np.unique(combined_data.SELL_CATEGORY)

burger_1070 = combined_data[(combined_data['ITEM_NAME'] == 'BURGER') & 
(combined_data['SELL_ID'] == 1070)]

burger_1070.head()
burger_1070.describe()
sns.scatterplot(data = burger_1070, x = burger_1070.PRICE, y = 
burger_1070.QUANTITY, alpha = 0.1)
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# # MODELING
# This is for the combined data
burger_model = ols("QUANTITY ~ PRICE", data=burger_1070).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(burger_model, fig=fig)

burger = bau_data[bau_data['ITEM_NAME'] == 'BURGER']
burger.head()
burger.shape
burger.describe()
sns.scatterplot(x = burger.PRICE, y = burger.QUANTITY )

burger = bau_data[bau_data['ITEM_NAME'] == 'BURGER']
# print(burger)
# print(burger.describe())
sns.scatterplot(data = burger, x = burger.PRICE, y = burger.QUANTITY , 
hue = 'SELL_ID', legend=False, alpha = 0.1)

np.unique(bau_data.SELL_ID)
np.unique(bau_data.SELL_CATEGORY)

burger_1070 = bau_data[(bau_data['ITEM_NAME'] == 'BURGER') & (bau_
data['SELL_ID'] == 1070)]
burger_1070.head()
burger_1070.describe()
sns.scatterplot(data = burger_1070, x = burger_1070.PRICE, y = 
burger_1070.QUANTITY, alpha = 0.1)

# As we can see, the scatter plot is much cleaner. Although there does 
seem to be 2 separate trends
burger_model = ols("QUANTITY ~ PRICE", data=burger_1070).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(burger_model, fig=fig)

# Let's look at the burger data again to see if there is anything else we 
can use to refine our model further.

bau_data.head()
bau2_data = combined_data[(combined_data['HOLIDAY']=='No Holiday') & 
(combined_data['IS_SCHOOLBREAK']==0) & (combined_data['IS_WEEKEND']==0) & 
(combined_data['IS_OUTDOOR']==1)]

burger_1070 = bau2_data[(bau2_data['ITEM_NAME'] == 'BURGER') & (bau2_
data['SELL_ID'] == 1070)]

burger_1070.head()
burger_1070.describe()
sns.scatterplot(data = burger_1070, x = burger_1070.PRICE, y = 
burger_1070.QUANTITY, alpha = 0.1)

burger_model = ols("QUANTITY ~ PRICE", data=burger_1070).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
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fig = sm.graphics.plot_ccpr(burger_model, "PRICE")

fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(burger_model, "PRICE", fig=fig)

burger_2051 = combined_data[(combined_data['ITEM_NAME'] == 'BURGER') & 
(combined_data['SELL_ID'] == 2051)]

burger_2051.head()
burger_2051.describe()
sns.scatterplot(data = burger_2051, x = burger_2051.PRICE, y = 
burger_2051.QUANTITY, alpha = 0.1)

burger_model = ols("QUANTITY ~ PRICE", data=burger_2051).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(burger_model, fig=fig)
coke = combined_data[combined_data['ITEM_NAME'] == 'COKE']
coke.head()
coke.shape
coke.describe()
sns.scatterplot(x = coke.PRICE, y = coke.QUANTITY , alpha = 0.1)

coke_model = ols("QUANTITY ~ PRICE", data=coke).fit()
print(coke_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(coke_model, fig=fig)
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(coke_model, 'PRICE', fig=fig)

df = combined_data[combined_data['ITEM_NAME'] == 'COFFEE']
df.head()
df.shape
df.describe()
sns.scatterplot(x = df.PRICE, y = df.QUANTITY , alpha = 0.1)

model = ols("QUANTITY ~ PRICE", data=df).fit()
print(model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(model, fig=fig)
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(model, 'PRICE', fig=fig)

df = combined_data[combined_data['ITEM_NAME'] == 'LEMONADE']
df.head()
df.shape
df.describe()
sns.scatterplot(x = df.PRICE, y = df.QUANTITY , alpha = 0.1)

model = ols("QUANTITY ~ PRICE", data=df).fit()
print(model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(model, fig=fig)
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(model, 'PRICE', fig=fig)
elasticities = {}
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def create_model_and_find_elasticity(data):
    model = ols("QUANTITY ~ PRICE", data).fit()
    price_elasticity = model.params[1]
    print("Price elasticity of the product: " + str(price_elasticity))
    print(model.summary())
    fig = plt.figure(figsize=(12,8))
    fig = sm.graphics.plot_partregress_grid(model, fig=fig)
    return price_elasticity, model

price_elasticity, model_burger_1070 = 
create_model_and_find_elasticity(burger_1070)
elasticities['burger_1070'] = price_elasticity

burger2051_data = bau2_data[(bau2_data['ITEM_NAME'] == "BURGER") & (bau2_
data['SELL_ID'] == 2051)]
elasticities['burger_2051'], model_burger_2051 = 
create_model_and_find_elasticity(burger2051_data)

burger2052_data = bau2_data[(bau2_data['ITEM_NAME'] == "BURGER") & (bau2_
data['SELL_ID'] == 2052)]
elasticities['burger_2052'], model_burger_2052 = 
create_model_and_find_elasticity(burger2052_data)

burger2053_data = bau2_data[(bau2_data['ITEM_NAME'] == "BURGER") & (bau2_
data['SELL_ID'] == 2053)]
elasticities['burger_2053'], model_burger_2053 = 
create_model_and_find_elasticity(burger2053_data)

coke_data = bau2_data[bau2_data['ITEM_NAME'] == "COKE"]
create_model_and_find_elasticity(coke_data)

# 2 coke are available in combo, while 1 is available as single. So, it 
is likely that the bottom distribution belongs to single purchases of 
coke. Let's verfy this
coke_data = bau2_data[(bau2_data['ITEM_NAME'] == "COKE") & (bau2_
data['SELL_ID'] == 3067)]
elasticities['coke_3067'], model_coke_3067 = 
create_model_and_find_elasticity(coke_data)

coke_data
coke_data_2053 = bau2_data[(bau2_data['ITEM_NAME'] == "COKE") & (bau2_
data['SELL_ID'] == 2053)]
elasticities['coke_2053'], model_coke_2053 = 
create_model_and_find_elasticity(coke_data_2053)

coke_data_2051 = bau2_data[(bau2_data['ITEM_NAME'] == "COKE") & (bau2_
data['SELL_ID'] == 2051)]
elasticities['coke_2051'], model_coke_2051 = 
create_model_and_find_elasticity(coke_data_2051)

lemonade_data_2052 = bau2_data[(bau2_data['ITEM_NAME'] == "LEMONADE") & 
(bau2_data['SELL_ID'] == 2052)]
elasticities['lemonade_2052'], model_lemonade_2052 = 
create_model_and_find_elasticity(lemonade_data_2052)

lemonade_data_3028 = bau2_data[(bau2_data['ITEM_NAME'] == "LEMONADE") & 
(bau2_data['SELL_ID'] == 3028)]
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elasticities['lemonade_3028'], model_lemonade_3028 = 
create_model_and_find_elasticity(lemonade_data_3028)

coffee_data_2053 = bau2_data[(bau2_data['ITEM_NAME'] == "COFFEE") & 
(bau2_data['SELL_ID'] == 2053)]
elasticities['coffee_2053'], model_coffee_2053 = 
create_model_and_find_elasticity(coffee_data_2053)

coffee_data_3055 = bau2_data[(bau2_data['ITEM_NAME'] == "COFFEE") & 
(bau2_data['SELL_ID'] == 3055)]
elasticities['coffee_3055'], model_coffee_3055 = 
create_model_and_find_elasticity(coffee_data_3055)

# ## List in a table the items and their price elasticities

elasticities

# # Find optimal price for maximum profit
# Now, let's take coke (the sell_id was 2051 for the last coke data) and 
since we do not the buying price #of coke, let's assume it to be a little 
less than the minimum coke price in the dataset

coke_data = coke_data_2053
coke_data.PRICE.min()
coke_data.PRICE.max()

# Let's take nine as the buying price of coke. We now want to be able to 
set the price of coke to get the maximum profit. PRICE is the selling price

buying_price_coke = 9

# $$coke data.PROFIT = (coke data.PRICE - buying price coke) * coke data.
QUANTITY$$
# Let's see the profit for various price points:

start_price = 9.5
end_price = 20

test = pd.DataFrame(columns = ["PRICE", "QUANTITY"])
test['PRICE'] = np.arange(start_price, end_price,0.01)

test['QUANTITY'] = model_coke_2051.predict(test['PRICE'])

test
test['PROFIT'] = (test["PRICE"] - buying_price_coke) * test["QUANTITY"]
test

plt.plot(test['PRICE'],test['QUANTITY'])
plt.plot(test['PRICE'],test['PROFIT'])
plt.show()

# Let's find the exact price at which maximum profit is gained:
ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0]
test.loc[[ind]]

def find_optimal_price(data, model, buying_price):
    start_price = data.PRICE.min() - 1
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    end_price = data.PRICE.min() + 10
    test = pd.DataFrame(columns = ["PRICE", "QUANTITY"])
    test['PRICE'] = np.arange(start_price, end_price,0.01)
    test['QUANTITY'] = model.predict(test['PRICE'])
    test['PROFIT'] = (test["PRICE"] - buying_price) * test["QUANTITY"]
    plt.plot(test['PRICE'],test['QUANTITY'])
    plt.plot(test['PRICE'],test['PROFIT'])
    plt.show()
    ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0]
    values_at_max_profit = test.iloc[[ind]]
    return values_at_max_profit
    

# ## Calculate the optimal price for all and list in table
optimal_price = {}
buying_price = 9

optimal_price['burger_1070'] = find_optimal_price(burger_1070, model_
burger_1070, buying_price)
optimal_price

optimal_price['burger_2051'] = find_optimal_price(burger2051_data, model_
burger_2051, buying_price)

optimal_price['burger_2052'] = find_optimal_price(burger2052_data, model_
burger_2052, buying_price)

optimal_price['burger_2053'] = find_optimal_price(burger2053_data, model_
burger_2053, buying_price)
optimal_price['coke_2051'] = find_optimal_price(coke_data_2051, model_
coke_2051, buying_price)
optimal_price['coke_2053'] = find_optimal_price(coke_data_2053, model_
coke_2053, buying_price)
optimal_price['lemonade_2052'] = find_optimal_price(lemonade_data_2052, 
model_lemonade_2052, buying_price)
optimal_price['coffee_2053'] = find_optimal_price(coffee_data_2053, 
model_coffee_2053, buying_price)
optimal_price

coke_data_2051.PRICE.describe()

9.1.3  conclUsion

Based on its previous sales data, this is the optimal price the cafe must set on its items to earn the 
highest profit. It is essential to note that this is on a normal day. On “other” days, such as a holiday or 
an event, it has a different impact on customer buying behaviors and patterns. Usually, an increase 
in consumption is seen on such days. These must be treated separately.

Similarly, it is important to remove any external effects other than price that will affect custom-
ers' purchase behaviors, including the data points when the item was on discount. Once the new 
prices are put up, it is important to monitor the sales and profit continuously. If this pricing method 
is a part of a product, a dashboard can be created to monitor these items and calculate the lift in the 
profit.
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9.2  USE CASE 2 − MARKET BASKET ANALYSIS (MBA)

9.2.1  introDUction

Customer MBA is one of the important techniques used by large retailers to uncover combina-
tions and links between items. This process is done by looking for combinations of items that arise 
together, usually within transactions. To rephrase, this allows the retailers to identify connections 
between the items that people buy. This proposition is based on the theory that customers who buy 
one item are more likely to buy another related item.

For example, people who buy women’s hosiery usually buy kids’ clothes too. So the marketing teams 
at retail chains will target those customers who buy women’s and kids’ clothes and provide a discount 
to them to buy the third item, like small jewelry (which has a high margin for the retailer). This also 
dictates how the stores are organized. The variation of this is called space and capacity analysis. Based 
on customer behavior, the store layout can be arranged to maximize the revenue of the shelf space.

So, if customers buy women’s and kids’ clothes and see a discount or an offer on jewelry, they will 
be encouraged to spend more and buy the jewelry. This is what is referred to as Basket Analysis, or 
Market Basket Analysis, or, in short, called MBA. This is just one example. So, if we take hundreds 
and thousands of items of the supermarket's data, we can get a huge number of insights. And that is 
why association rule mining is so critical.

9.2.2  UnDerstating the Data

For this example, we use a customer dataset that describes the customer in detail such as location, 
age, income, and education, and product and product class give the sufficient details of the product 
and their groupings, store with details of location, sqft, store type (if this is a super market, mini-
store, etc.), region, and time dimension. We also use the sales transaction data.

In this solution, we use Apriori and Fpgrowth algorithms. Apriori is an algorithm for frequent 
item set mining and association rule mining based on learning over relational databases. It pro-
gresses by identifying the recurring individual items within the dataset and increasing them to 
larger item sets as long as those item sets appear sufficiently often in the database. On the other 
hand, Fpgrowth, also known as Frequent Pattern Growth Algorithm, only generates the frequent 
item sets per the user’s minimum support. One difference between Apriori and Fpgrowth algorithms 
is that the Fpgrowth algorithm doesn’t scan the whole database multiple times, and the scanning 
time increases linearly. Hence, the Fpgrowth algorithm is much faster than the Apriori algorithm.

#!/usr/bin/env python
# coding: utf-8
@author: Suresh Rajappa
# # Market Basket Analysis
# 

# **What is Market Basket Analysis ?**
# 
# Market Basket Analysis is one of the large retailers' important 
techniques to discover the relationship between items using the customer 
buying patterns. 
# It works by looking for combinations of items that occur together 
frequently in transactions. To put it another way, it allows retailers to 
identify relationships between the items that people buy
# # Market Basket Analysis (MBA) For Foodmart Store sample Dataset
# Food Mart (FM) is a chain of convenience stores in the United States. 
The private company's headquarters are located in Mentor, Ohio, and there 
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are currently approximately **325 stores located in the US**. Food Mart 
operates on the franchise system.

# **Importing Libraries**
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 

## Get multiple outputs in the same cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

## Ignore all warnings
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings(action='ignore', category=DeprecationWarning)

## Display all rows and columns of a dataframe instead of a truncated 
version
from IPython.display import display
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

# LOADING AND UNDERSTANDING THE DATAFILES
# **Loading Customers Dataset**

customer=pd.read_csv("/Python Files/Usecases/Use Case3/data/customer.
csv")
customer.head()

# **Loading Products Dataset**
product=pd.read_csv("../data/product.csv")
product.head()

# **Loading Departments Dataset**
product_class=pd.read_csv("../data/product_class.csv")
product_class.head()

# **Loading Region Dataset**
region=pd.read_csv("../data/region.csv")
region.head()

# **Loading Sales transaction Dataset**
df=pd.read_csv("../data/sales.csv")
df.head()

# **Loading Stores Dataset**
store=pd.read_csv("../data/store.csv")
store.head()

# **Loading Time by Day Dataset**
time_by_day=pd.read_csv("../data/time_by_day.csv")
time_by_day.head()

time_by_day.tail()

#DATA PREPROCESSING
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# **Merging Customer Dataset in df Dataframe**
df=df.merge(customer,on='customer_id')
df.head()

# **Merging Products Dataset in df Dataframe**
df=df.merge(product,on='product_id')
df.head()

# **Merging Department Dataset in df Dataframe**
df=df.merge(product_class,on='product_class_id')
df.head()

# **Merging Stores Dataset in df Dataframe**
df=df.merge(store,on='store_id')
df.head()

# **Merging Region Dataset in df Dataframe**
df=df.merge(region,on='region_id')
df.head()

# **Merging Time by Day Dataset in df Dataframe**
df=df.merge(time_by_day,on='time_id')
df.head()

# **Converting Dataframe to Final Foodmart Offline Dataset**
df.to_csv("../data/Foodmart_dataset.csv")

# # Exploratory Data Analysis (EDA)
# **Importing Libraries**
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import squarify
import networkx as nx
import warnings
import matplotlib as mpl
import gapminder as gapminder

get_ipython().run_line_magic('matplotlib', 'inline')

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

# **Loading Foodmart Offline Dataset**
df=pd.read_csv("../data/Foodmart_dataset.csv")

# **Size of Foodmart Dataset**
df.shape
df.head()

# # Data Exploration
# **Describe**

df.describe()
df.describe(include='all')
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# **Missing Values**
df.isnull().sum()

# **Datatypes**
df.dtypes

# **Checking Datatypes, Mising Value, Unique Value**
temp = pd.DataFrame(index=df.columns)
temp['data_type']=df.dtypes
temp['null_count']=df.isnull().sum()
temp['unique_count']=df.nunique()

temp

# # Univariate Analysis 
# **Histograms**
# **Frequency Plot Of Department Id**

fig=plt.figure(figsize=(15,10))
df['product_class_id'].plot.hist(bins = 50)
plt.xlabel('department id')

# **Frequency Plot Of Product Id**
fig=plt.figure(figsize=(15,10))
df['product_id'].plot.hist(bins = 100)
plt.xlabel('product id')

# **Frequency Plot Of Unit Sales**
fig=plt.figure(figsize=(15,10))
df['unit_sales'].plot.hist(bins = 25)
plt.xlabel('Unit Sales')

# **When do people order**
# **Year**
fig=plt.figure(figsize=(12,10))
df['the_year'].plot.hist(bins=10)
plt.xlabel('year')
plt.xticks([1996,1997,1998,1999])

# **Month**
fig=plt.figure(figsize=(15,10))
df['the_month'].plot.hist(bins=50)
plt.xlabel('Month')

# **Day Of Month**
fig=plt.figure(figsize=(15,10))
df['day_of_month'].plot.hist(bins=75)
plt.xlabel('Day of month')

# **Day Of Week**
df_day_freq=df['the_day'].value_counts()
fig=plt.figure(figsize=(15, 10))
df_day_freq.plot.bar() 

# ### Top choices
# **Top 10 First Choices in Products**
df['products'] = 'Products'
products = df.truncate(before = 605, after = 615)
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products = nx.from_pandas_edgelist(products, source = 'products', target 
= 'product_name', edge_attr = True)
products

warnings.filterwarnings('ignore')

plt.rcParams['figure.figsize']=(20,20)
pos=nx.spring_layout(products)
color=plt.cm.Reds(np.linspace(0,15,1))
nx.draw_networkx_nodes(products,pos,node_size=15000,node_color=color)
nx.draw_networkx_edges(products, pos, width = 3, alpha = 0.6, edge_color 
= 'black')
nx.draw_networkx_labels(products, pos, font_size = 20)
plt.axis('off')
plt.grid()
plt.title('Top 10 First Choices in Products', fontsize = 40)
plt.show()

# **Top 10 First Choices in Department**
df['departments'] = 'Departments'
departments = df.truncate(before = 150, after = 195)
departments = nx.from_pandas_edgelist(departments, source = 
'departments', target = 'department', edge_attr = True)

warnings.filterwarnings('ignore')

plt.rcParams['figure.figsize']=(20,20)
pos=nx.spring_layout(departments)
color=plt.cm.Blues(np.linspace(0,15,1))
nx.draw_networkx_nodes(departments,pos,node_size=15000,node_color=color)
nx.draw_networkx_edges(departments, pos, width = 3, alpha = 0.6, edge_
color = 'black')
nx.draw_networkx_labels(departments, pos, font_size = 20)
plt.axis('off')
plt.grid()
plt.title('Top 10 First Choices in Departments', fontsize = 40)
plt.show()

# **Highest Ordered**
# **Most Ordered Products**
df['product_name'].value_counts()

# **Most Ordered Products in Percentage**
df['product_name'].value_counts()/len(df)*100

# **Most Visited Departments**
df['department'].value_counts()

# **Most Visited Departments in Percentage**
df['department'].value_counts()/len(df)*100

# **Most Visited Aisle**
df['subcategory'].value_counts()

# **Most Visited Aisle in Percentage**
df['subcategory'].value_counts()/len(df)*100

# **BarPlot**
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# **BarPlot of Most Visied Aisle**
df_subcategory_freq=df['subcategory'].value_counts().iloc[:50]
fig=plt.figure(figsize=(15,10))
df_subcategory_freq.plot.bar()

# **BarPlot of Most Visited Department**
fig=plt.figure(figsize=(15,10))
df['department'].value_counts().plot(kind='bar')

# **BarPlot of Most Bought Product**
df_freq_products=df['product_name'].value_counts().iloc[:50]
fig=plt.figure(figsize=(15, 10))
df_freq_products.plot.bar() 

# **Array of Most Bought Product**
y=df_freq_products.head(50).to_frame()
y.index

# **TreeMap for Most Bought Products**
plt.rcParams['figure.figsize']=(20,20)
color=plt.cm.cool(np.linspace(0,1,50))
squarify.plot(sizes=y.values,label=y.index,alpha=0.8,color=color)
plt.title('tree map for frequent products')
plt.axis('off')

# # Data Manipulation
df.shape

# **Drop Duplicates**
df.drop_duplicates()
df.shape

# **Missing Values**
df.isnull().sum()

# **Datatypes**
df.dtypes

# # Bivariate Analysis
# **Bar Plot**
# **Bar Plot between customers and their products per order**
data_user_orders_num=df.groupby('customer_id')['unit_sales'].count()
data_user_orders_num

source_data = {}
for i in range(10):
    source_data[str(10*i)+'~'+str(10*(i+1))]=len([x for x in list(data_
user_orders_num) if x>=i*10 and x<(i+1)*10])
    
source_data

font_size=10
fig_size=(8,6)    
mpl.rcParams['font.size']=font_size
mpl.rcParams['figure.figsize']=fig_size
bar_width=0.3



407Case Studies for Decision Sciences

x_axis = tuple(source_data.keys())
y_axis = tuple(source_data.values())
#assign color
plt.bar(x_axis, y_axis, color='rgb')  
# descrpitions for x-axis, y-axis
plt.xlabel('Unit sales')  
plt.ylabel("No. of customers") 
plt.title("Orders Scatter Plot") 
plt.show()

# **Transaction ID** - create transaction id which denotes a basket
df['transaction_id'] = df['customer_id'].astype(str) + df['time_id'].
astype(str)
df.head()

# **Filtering out Columns**
cols = [77,3,1,24]
order_products=df[df.columns[cols]]
order_products.head()

# **Average products bought by customers per order**
data_user_products_num1=order_products.groupby('transaction_id')
['product_id'].count()
data_user_products_num1=pd.DataFrame(data_user_products_num1)
data_user_products_num1['transaction_id']=list(data_user_products_num1.
index)

data_user_products_num1.columns=['product_num','orderid']
data_user_products_num2=pd.merge(data_user_products_num1,df[ 
['transaction_id','customer_id']],on='transaction_id',how='left')

data_user_products_num3=data_user_products_num2.groupby('customer_id')
['product_num'].agg(['sum','count'])
data_user_products_num3['avg']=data_user_products_num3['sum']/
data_user_products_num3['count']
data_user_products_num3.head()

# # Featured Products Department Wise
cols = [1,36,38,24]
departments=df[df.columns[cols]]
departments.head()

# **List Of Departments**
temp=['department']
for i in temp:
    print('@@@@@@Value Count in',i,'@@@@@@@@@')
    print(df[i].value_counts())

# **Produce Department**
produce=departments.loc[df['department'] == 'Produce']
produce.head()

# **Featured Products in Produce Department**
top_produce=produce['product_name'].value_counts().iloc[:10]
top_produce.head()
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# **Featured Products in Snack Foods Department**
snacks=df.loc[df['department']=='Snack Foods']
top_snacks=snacks['product_name'].value_counts().iloc[:10]
top_snacks.head()

# **Featured Products in HouseHold Department**
household=df.loc[df['department']=='Household']
top_household=household['product_name'].value_counts().iloc[:10]
print(top_household)

# **Featured Products in Frozen Foods Department**
frozen=df.loc[df['department']=='Frozen Foods']
top_frozen=frozen['product_name'].value_counts().iloc[:10]
print(top_frozen)

# **Featured Products in Baking Goods Department**
baking=df.loc[df['department']=='Baking Goods']
top_baking=baking['product_name'].value_counts().iloc[:10]
print(top_baking)

# **Featured Products in Canned Foods Department**
canned=df.loc[df['department']=='Canned Foods']
top_canned=canned['product_name'].value_counts().iloc[:10]
print(top_canned)

# **Featured Products in Dairy Department**
dairy=(df.loc[df['department'] == 'Dairy'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# **Featured Products in Health and Hygiene Department**
dairy=(df.loc[df['department'] == 'Health and Hygiene'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# **Featured Products in Beverages Department**
dairy=(df.loc[df['department'] == 'Beverages'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# **Featured Products in Deli Department**
dairy=(df.loc[df['department'] == 'Deli'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# **Featured Products in Alcoholic Beverages Department**
dairy=(df.loc[df['department'] == 'Alcoholic Beverages'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# **Featured Products in Starchy Foods Department**
dairy=(df.loc[df['department'] == 'Starchy Foods'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# **Featured Products in Eggs Department**
dairy=(df.loc[df['department'] == 'Eggs'])
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top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

# # Market Basket Analysis
# ![market-basket-analysis.png](attachment:market-basket-analysis.png)
# **Importing Libraries**
import pandas as pd 
import numpy as np 
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
import matplotlib.pyplot as plt

# **Filtering the Columns**
cols = [77,3,1,24,7,2]
product_name=df[df.columns[cols]]
product_name.head()

# **Counting each product** The number of transactions a product appeared 
in
productCountDf = product_name.groupby("product_id",as_index = False)
['transaction_id'].count()
productCountDf.head()

# **Arranging Top Products**
productCountDf = productCountDf.sort_values("transaction_id",ascending = 
False)
productCountDf.head()

# **Top 100 most frequently purchased products**
topProdFrame = productCountDf.iloc[0:100,:]
productId= topProdFrame.loc[:,["product_id"]]
topProdFrame

# **Orders containting the the most frequently purchased products**
MarketBasketdf = product_name[0:0]
for i in range(0,99):
    pId = productId.iloc[i]['product_id'] 
    stDf = product_name[product_name.product_id == pId ]
    MarketBasketdf = MarketBasketdf.append(stDf,ignore_index = False)

MarketBasketdf.head()

# **Putting the items into 1 transaction**
basket = MarketBasketdf.groupby(['transaction_id','product_name'])['unit_
sales'].sum().unstack().reset_index().fillna(0).
set_index('transaction_id')
basket

# # One Hot Encoding
# **Converted the units into 1 encoded value**
def encode_units(x):
    if x <= 0:
        return 0
    if x >= 1:
        return 1  
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basket_sets = basket.applymap(encode_units)
basket_sets.head()

# **Size and shape of basket**
basket_sets.size
basket_sets.shape
dummy=basket_sets.head(10000)

# Model building using Apriori Algotithm
# # Apriori Algorithm
# **Importing Apriori and Association rules Libraries**
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

# **Frequent items with support 0.01% using Apriori Algorithm**
frequent_itemsets = apriori(dummy, min_support=0.0001, use_colnames=True)
frequent_itemsets

# **Association rules using Apriori Algorithm**
apriori_rules = association_rules(frequent_itemsets, metric="lift", 
min_threshold= 1)
apriori_rules

# **Filtering out co-realted products with higher Probability**
apriori_rules[ (apriori_rules['lift'] >= 50) & (apriori_
rules['confidence'] >= 0.01) ]

# # Recommendations using Apriori Algorithm
def recommendations_using_Apriori(item):
    recommend = []
    for i in range(0,2646):
        if item == apriori_rules.iloc[i,0]:
            recommend.append(apriori_rules.iloc[i,1])
    
    return recommend

# **5 Recommendations with Better Chicken Noodle Soup**
product_name = {'Better Chicken Noodle Soup'}
recommentations=recommendations_using_Apriori(product_name)
print(*recommentations[0:5], sep = "\n")

# **10 Recommendations with Moms Potato Salad**
product_name = {'Moms Potato Salad'}
recommentations=recommendations_using_Apriori(product_name)
print(*recommentations[0:10], sep = "\n")

# **15 Recommendations with Carrington Ice Cream Sandwich**
product_name = {'Carrington Ice Cream Sandwich'}
recommentations=recommendations_using_Apriori(product_name)
print(*recommentations[0:15], sep = "\n")

# # Fpgrowth Algorithm
# **Importing Fpgrowth Libraries**
from mlxtend.frequent_patterns import fpgrowth

# **Frequent Items with support 0.001% using Fpgrowth Algorithm**
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freq_items=fpgrowth(dummy,min_support=.0001,use_colnames=True)
freq_items

# **Association Rules using Fpgrowth Algorithm**
fpgrowth_rules=association_rules(freq_items,metric="lift",min_
threshold=1)
fpgrowth_rules

# # Recommendations using Fpgrowth Algorithm
def recommendations_using_Fpgrowth(item):
    recommend = []
    for i in range(0,2646):
        if item == fpgrowth_rules.iloc[i,0]:
            recommend.append(fpgrowth_rules.iloc[i,1])
    
    return recommend

# **5 Recommendations with Better Chicken Noodle Soup**
product_name = {'Better Chicken Noodle Soup'}
recommentations=recommendations_using_Fpgrowth(product_name)
print(*recommentations[0:5], sep = "\n")

# **10 Recommendations with Moms Potato Salad**
product_name = {'Moms Potato Salad'}
recommentations=recommendations_using_Fpgrowth(product_name)
print(*recommentations[0:10], sep = "\n")

# **15 Recommendations with Carrington Ice Cream Sandwich**
product_name = {'Carrington Ice Cream Sandwich'}
recommentations=recommendations_using_Fpgrowth(product_name)
print(*recommentations[0:15], sep = "\n")

# # Comapring Apriori VS fpgrowth Algorithms
# **Calculating Run Time of Apriori Algorithm**
import time
l=[0.01,0.02,0.03,0.04,0.05]
t=[]
for i in l:
    t1=time.time()
    apriori(dummy,min_support=i,use_colnames=True)
    t2=time.time()
    t.append((t2-t1)*1000)

# **Calculating Run Time of Fpgrowth Algorithm**
l=[0.01,0.02,0.03,0.04,0.05]
f=[]
for i in l:
    t1=time.time()
    fpgrowth(dummy,min_support=i,use_colnames=True)
    t2=time.time()
    f.append((t2-t1)*1000)

# **Graph of Run Time between Apriori and Fpgrowth Algorithm**
sns.lineplot(x=l,y=f,label="fpgrowth")
sns.lineplot(x=l,y=t,label="apriori")
plt.xlabel("Min_support Threshold")
plt.ylabel("Run Time in ms")
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9.2.3  conclUsion

We have used the two famous algorithms, Apriori and Fpgrowth, to develop product associations 
for the item set mining. The time taken by each algorithm is compared and evaluated. The graph in 
Figure 9.5 shows the time taken in milliseconds by each algorithm.

There are few subtle differences between these algorithms shown in Table 9.1.

9.3  USE CASE 3 − SALES PREDICTION OF A RETAILER

9.3.1  backgroUnD

Sales prediction or forecasting sales are a common use case of ML. Sales forecasts can identify 
benchmarks, determine the progressive influence of new initiatives, plan resources in response to 
expected demand, and project future budgets. The data scientists of a retailer have collected sales 

FIGURE 9.5 Time taken by Apriori and Fpgrowth algorithms.

TABLE 9.1
Differences between the Apriori and Fpgrowth algorithms

Apriori Algorithm Fpgrowth Algorithm

More memory usage Less memory usage

Time consuming Quicker than Apriori

Tree-based algorithm Array-based algorithm

Conducts multiple data scans of the database Requires two scans of the database

Uses breadth file search Used depth file search
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data by-products across the stores in different cities. Also, various attributes of each product and 
store have been defined. This project aims to build a ML model and find out the sales of each 
product at a particular store. Using this model, the retailer will try to understand the properties of 
products and stores, which play a key role in increasing sales.

9.3.2  UnDerstanDing the Data

The test and training dataset we use has the following format: item identifier or productId, and its 
features such as weight, fat content, and product category. This also contains information about the 
store such as, when the store was established, size of the store, location, and store type. The sample 
data are shown in Figure 9.6.

At a glance, we can see there are many null values in the Outlet Size column. We will examine 
the data using features engineering techniques to see which attributes are useful for the analysis and 
if there is an imbalance in the data, which is a very common data challenge as missing data.

#Importing Necessary Libraries
#Matplot and seaborn for making graphs
get_ipython().run_line_magic('matplotlib', 'notebook')
from sklearn.linear_model import Ridge
from sklearn.model_selection import KFold, cross_val_score
import featuretools as ft
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
import warnings
warnings.filterwarnings('ignore')
#Imorting the datasets
train =pd.read_csv("train.csv")
test=pd.read_csv("test.csv")
print(train.shape,test.shape)
def concat(X,Y):
df= pd.concat([X,Y],ignore_index=True)
return df
df=concat(train,test)
#Undersatning the data and data preprocessing
print(df.shape)

FIGURE 9.6 Sales prediction data.
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df.head()
#Checks number of null values for all the variables
#Item_Weight has 2439 null values
#Outlet Size has 4016 null values
df.isnull().sum()
#Checks the number of unique entries correspnding to each variable
df.apply(lambda x: len(x.unique()))
#defining a function:
#frequency of unique entries in each column with their names
def frequency_each_item(X,Y):
for i in Y:
print("frequency of each category for",i)
print(X[i].value_counts())
#frequency of unique entries in each columns with their names
category=['Item_Fat_Content','Item_Type','Outlet_Location_Type','Outlet_
Size','Outlet_Type']
frequency_each_item(df,category)
mode_Outlet_Size=df.pivot_table(values='Outlet_Size', index='Outlet_
Type',aggfunc=(lambda x: stats.mode(x)[0]))
print(mode_Outlet_Size)
bool2=df['Outlet_Size'].isnull()
df['Outlet_Size'][bool2]=df['Outlet_Type'][bool2].apply(lambda x : mode_
Outlet_Size.loc[x]).values
sum(df['Outlet_Size'].isnull())
# Correcting the mis-written datas
df['Item_Fat_Content'].replace(to_replace =['low fat','reg','LF'],
value =['Low Fat','Regular','Low Fat'],inplace=True)
df['Item_Fat_Content'].value_counts()
df.head()
avg_item_weight=df.pivot_table(values='Item_Weight', index='Item_
Identifier',aggfunc=[np.mean])
print(avg_item_weight)
bool=df['Item_Weight'].isnull()
df['Item_Weight'][bool]=df['Item_Identifier'][bool].apply(lambda x :avg_
item_weight.loc[x]).values
sum(df['Item_Weight'].isnull())
#Reducing food category to only 3 types with the help of the first 2 
alphabets of the Item_Identifier column
df['Item_Type_combined']=df['Item_Identifier'].apply(lambda x : x[0:2])
df['Item_Type_combined'].replace(to_replace =['FD','DR','NC'],
value =['Food','Drinks','Non_consumable'],inplace=True)
#dropping the redundant column
df=df.drop(columns=['Item_Type'])
df.head()
#Calculating number of Item_fat_contents that are also non_consumable
bool3=df['Item_Type_combined']=='Non_consumable'
df['Item_Fat_Content'][bool3]='Non_edible'
df['Item_Fat_Content'].value_counts()
#Using feature Engineering and adding new column
df['yearsold']=2013-df['Outlet_Establishment_Year']
df=df.drop(columns=['Outlet_Establishment_Year'])
df.head()
# Converting all the zero values to mean in the visibility column
Item_Visibility_mean=df.pivot_table(index='Item_Identifier',values='Item_
Visibility',aggfunc=[np.mean])
print(Item_Visibility_mean)
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bool4=df['Item_Visibility']==0
df['Item_Visibility'][bool4]=df['Item_Identifier'][bool4].apply(lambda 
x:Item_Visibility_mean.loc[x]).values
df.head()
#Checks for correation between different numerical columns
df.corr()
# # Identifying outliers and fixing them
df.describe()
sns.set(style="whitegrid")
ax = sns.boxplot(x=df["Item_Outlet_Sales"])
#As we know, only Item_Outlet_Sales have outliers we can fix them, but 
fixing them will increase our RMSE score
#to a large extent
# Plotting Graphs for more Analysis
#value of sales increases for the increase in MRP of the item
plt.scatter(df.Item_MRP,df.Item_Outlet_Sales,c='g')
plt.show()
sns.FacetGrid(df, col='Item_Type_combined', size=3, col_wrap=5).map(plt.
hist, 'Item_Outlet_Sales').add_legend();
# Maximum contribution to outlet sales is from Items that are food type 
and least is from drinks
sns.FacetGrid(df, col='Outlet_Location_Type', size=3, col_wrap=5).
map(plt.hist, 'Item_Outlet_Sales').add_legend();
#Tier3 type of outlet location provides for the maximum sales and other 
two provides the least sales
sns.FacetGrid(df, col='Outlet_Size', size=3, col_wrap=5).map(plt.hist, 
'Item_Outlet_Sales').add_legend();
#Small sized Outlets are providing the maximum sales whereas large sized 
outlets
# are contributing the least
sns.FacetGrid(df, col='Item_Fat_Content', size=3, col_wrap=5).map(plt.
hist, 'Item_Outlet_Sales').add_legend();
# people are prefering items with lowest fat content the most
sns.FacetGrid(df, col='Outlet_Type', size=3, col_wrap=2).map(plt.hist, 
'Item_Outlet_Sales').add_legend();
#Maximum of the high sales margin is from Supermarket Type1
#Grocery store has the least sales
#Label Encoding all the columns with text entries and dropping 
Item_identifier
le=LabelEncoder()
list=['Item_Fat_Content','Outlet_Location_Type','Outlet_Size','Outlet_
Type','Item_Type_combined',
'Outlet_Size']
for i in list:
le.fit(df[i])
df[i]=le.transform(df[i])
df_new=df.drop(columns='Item_Identifier')
df_new= pd.get_dummies(df_new,columns=['Outlet_Identifier'])
df_new.head()
#Separating test and train set
df_new_train=df_new.iloc[:8523,:]
df_new_test=df_new.iloc[8523:,:]
df_new_test=df_new_test.drop(columns=['Item_Outlet_Sales'])
Y_train=df_new_train['Item_Outlet_Sales']
df_train_test=df_new_train.drop(columns=['Item_Outlet_Sales'])
from sklearn.linear_model import LinearRegression



416 Machine Learning for Decision Sciences with Case Studies in Python

from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import ElasticNet
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import KFold, cross_val_score
from xgboost import XGBRegressor
import xgboost as xgb
models = [('lr',LinearRegression()),('ridge',Ridge()),('rfr',RandomForest
Regressor()),('etr',ExtraTreesRegressor()),
('br',BaggingRegressor()),('gbr',GradientBoostingRegressor()),('en',Elast
icNet()),('mlp',MLPRegressor())]
#Making function for making best 2 models for further hyperparameter 
tuning
def basic_model_selection(x,y,cross_folds,model):
scores=[]
names = []
for i, j in model:
cv_scores = cross_val_score(j, x, y, cv=cross_folds,n_jobs=5)
scores.append(cv_scores)
names.append(i)
for k in range(len(scores)):
print(names[k],scores[k].mean())
basic_model_selection(df_train_test,Y_train,4,models)
#Average score for XGBoost matrix
# define data_dmatrix
data_dmatrix = xgb.DMatrix(data=df_train_test,label=Y_train)
# import XGBRegressor
xgb1 = XGBRegressor()
cv_score = cross_val_score(xgb1, df_train_test, Y_train, cv=4,n_jobs=5)
print(cv_score.mean())
# Gradient Boost Regression and XGBoost Regression will be used for 
further hyperparameter tuning
def model_parameter_tuning(x,y,model,parameters,cross_folds):
model_grid = GridSearchCV(model,
parameters,
cv = cross_folds,
n_jobs = 5,
verbose=True)
model_grid.fit(x,y)
y_predicted = model_grid.predict(x)
print(model_grid.score)
print(model_grid.best_params_)
print("The RMSE score is",np.sqrt(np.mean((y-y_predicted)**2)))
#defining function for hyperparameter tuning and using RMSE as my metric
parameters_xgb = {'nthread':[3,4],
'learning_rate':[0.02,0.03], #so called `eta` value
'max_depth': [3,2,4],
'min_child_weight':[3,4,5],
'silent': [1],
'subsample': [0.5],
'colsample_bytree': [0.7],
'n_estimators': [300,320]
}
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parameters_gbr={'loss':['ls','lad'],
'learning_rate':[0.3],
'n_estimators':[300],
'min_samples_split':[3,4],
'max_depth':[3,4],
'min_samples_leaf':[3,4,2],
'max_features':['auto','log2','sqrt']
}
# Defining the useful parameters for parameter tuning
# to get the optimum output
model_parameter_tuning(df_train_test,Y_train,xgb1,parameters_xgb,4)
gbr=GradientBoostingRegressor()
model_parameter_tuning(df_train_test,Y_train,gbr,parameters_gbr,4)
from sklearn.neural_network import MLPRegressor
mlp=MLPRegressor()
parameters_mlp = {'hidden_layer_sizes':[300,400,500],
'activation':['relu','tanh'],
'learning_rate':['adaptive'],
'learning_rate_init':[0.001,0.004],
'solver':['adam'],
'max_iter':[200,300]
}
model_parameter_tuning(df_train_test,Y_train,mlp,parameters_mlp,4)
# Standardization of the model before training
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
standardized=scaler.fit_transform(df_train_test)
column_names = df_train_test.columns
df_standardized = pd.DataFrame(data=standardized,columns=column_names)
df_standardized.head()
basic_model_selection(df_standardized,Y_train,4,models)
#Average score for XGBoost matrix
# define data_dmatrix
data_dmatrix = xgb.DMatrix(data=df_standardized,label=Y_train)
# import XGBRegressor
xgb1 = XGBRegressor()
cv_score = cross_val_score(xgb1, df_standardized, Y_train, cv=4,n_jobs=5)
print(cv_score.mean())
# The Models for hyperparameter tuning are the same XGBoost and 
GradientBoostingRegression
model_parameter_tuning(df_standardized,Y_train,xgb1,parameters_xgb,4)
model_parameter_tuning(df_standardized,Y_train,gbr,parameters_gbr,4)
df_train_test.head()
# Using Robust Scaler
# My dataset having outliers make it more prone to mistakes
# Robust Scaler handles the outliers as well
# It scales according to the quartile range
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import MinMaxScaler
normalize = MinMaxScaler()
robust = RobustScaler(quantile_range = (0.1,0.8)) #range of inerquartile 
is one of the parameters
robust_stan = robust.fit_transform(df_train_test)
robust_stan_normalize = normalize.fit_transform(robust_stan)
# also normalized the dataset using MinMaxScaler i.e has bought the data 
set between (0,1)
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df_robust_normalize = pd.DataFrame(robust_stan_normalize,columns= 
column_names)
df_robust_normalize.head()
basic_model_selection(df_robust_normalize,Y_train,4,models)
cv_score = cross_val_score(xgb1, df_robust_normalize, Y_train, 
cv=4,n_jobs=5)
print(cv_score.mean())
model_parameter_tuning(df_robust_normalize,Y_train,xgb1,parameters_xgb,4)
model_parameter_tuning(df_robust_normalize,Y_train,gbr,parameters_gbr,4)
# Best Model
# Comparing all models using RMSE score
# Gradient Boosting Method is the best method when implemented using 
Robust Scaler and MinMaxScaler normalization
# PARAMETERS AND RMSE RESPECTIVELY
# {'learning_rate': 0.3, 'loss': 'lad', 'max_depth': 3, 'max_features': 
'auto', 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 
300}
# The RMSE score is 1049.14085875651
robust_test = robust.fit_transform(df_new_test)
robust_normalize_test = normalize.fit_transform(robust_test)
df_test_robust_normalize = pd.DataFrame(robust_normalize_test,columns= 
column_names)
gbr = GradientBoostingRegressor(learning_rate= 0.3, loss= 'lad',max_
depth= 3,min_samples_leaf=2,min_samples_split=3
,n_estimators= 300)
# Defining my final model that I will use for prediction
gbr.fit(df_robust_normalize,Y_train)
final_prediction=gbr.predict(df_test_robust_normalize) #Predicting the 
outlet sales
#the prediction is in the form of numpy array
# Converting into Dataframe
df_final_prediction = pd.DataFrame(final_prediction,columns= 
['Item_Outlet_Sales'])
df_final_prediction.head()
# Saving the final model using Joblib
import joblib
filename = 'final_model.sav' # Name of the model
joblib.dump(gbr, filename) # it is saved in your current working 
directory
# This command loads the model once again
load_model = joblib.load(filename)

9.3.3  conclUsion

When comparing the models, we can assess that overall, the XGBoost model had the best perfor-
mance, followed closely by other models. A caveat here is that all of the models above were derived 
in their most basic form to establish how they can be used for sales prediction. In addition, the 
models were only slightly tuned to minimize complexity.

To identify which model is right for the real-world use case, we must consider the following:

• The degree of model complexity vs. interpretability that we are content with.
• Models can be tuned, and features can be engineered to include combinations of attributes, 

etc.
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• Understand how we should be using the results and how data will be coming into the 
model.

• Tune models using cross-validation or similar practices to avoid overfitting and underfit-
ting data.

9.4  USE CASE 4 − PREDICTING THE COST OF INSURANCE CLAIMS FOR 
A PROPERTY AND CAUSALTY (P&C) INSURANCE COMPANY

9.4.1  backgroUnD

Property and Casualty Insurance (a.k.a P&C insurance) are types of coverage that help protect the 
insurer and the property they own. Property insurance helps cover the thing the insurer owns, like 
a home or a car. On the other hand, casualty insurance refers to the policy that includes liability 
coverage to help protect the insurer if they are found legally responsible for an accident that causes 
injuries to another person or damage to their person's belongings. Property and Casualty Insurance 
are typically packaged together into one policy. A clear understanding of a given claim's future cost, 
or severity, is fundamental to an insurance company and would enable it to price its plans more 
effectively. Additionally, knowing the perspective of different attributes would allow the company 
to evaluate potential customers more efficiently.

9.4.2  UnDerstanDing the Data

The given dataset contains 131 columns (Figure 9.7) of unlabeled data, as shown in the sample 
screenshot. We use the pickle library of python to implement binary protocols for serializing 
and deserializing a Python object structure (“Pickling” is the process through which a Python 
object hierarchy is transformed into a byte stream, and “unpickling” is the inverse operation of the 
pickling.).

# ##### Import the packages and load the training data
import pandas as pd
import numpy as np
import re
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
import seaborn as sns
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import chi2
import math
import pickle # this module implements binary protocols for serializing 
and de-serializing a Python object structure

#modify the display options to view entire dataframe
pd.options.display.max_columns = None

train_data = pd.read_csv("train.csv")

#Analyze the size of training data
#Verify the first few observations
#Check the column headers

train_data.shape
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train_data.head()

column_names = np.array(train_data.columns)
print(column_names)

# ###### Identify the categorical and numerical columns to check the data 
distribution and 5 point summary
column_datatypes = train_data.dtypes
categorical_columns = list(column_datatypes[column_datatypes=="object"].
index.values)
continuous_columns = list(column_datatypes[column_datatypes=="float64"].
index.values)
continuous_columns.remove('loss')

# ##### check the distribution of categorical variables
#function to check the distribution of values in categorical columns
#Training data and Categorical columns list
def category_distribution(train_data,categorical_columns):
    categorical_column_distribution = list()
    for cat_column in categorical_columns:
        categorical_column_distribution.append(train_data[cat_column].
value_counts())
    return(categorical_column_distribution)

categorical_column_distribution = 
category_distribution(train_data,categorical_columns)

categorical_column_distribution

length_categorical_columns = list(map(lambda 
x:len(x),categorical_column_distribution))

#count the number of columns having the same number of unique values
distribution_dict = dict()
for val in length_categorical_columns:
    if val in distribution_dict.keys():
        count = distribution_dict[val]
        distribution_dict[val] = count+1
    else:
        distribution_dict[val]=1

distribution_dict

# ### Plot a bar-graph
#plot showing the count of columns having same number of unique values
keys = distribution_dict.keys()
values = distribution_dict.values()
plt.bar(keys, values,width=0.8)
plt.xlabel('Distinct Values in Categorical Variable', fontsize=15)
plt.ylabel('Count', fontsize=15)
plt.title('Categorical Labels with Same Unique Values',fontsize=20)
plt.rcParams['figure.figsize'] = [48/2.54, 10/2.54]
plt.show()

# ##### check the distribution of continuous variables
#filter out the continous columns and view the descriptive statistics
train_data[continuous_columns].describe()
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# #### Data cleaning and pre-processing
#Check if there is any missing value in the columuns
#value of 0 indicates no missing values
missing_values = train_data.isnull().sum()
np.max(missing_values)

#Manually insert a blank value across 5 rows
total_rows = train_data.shape[0]
columns_with_blanks_cat = np.random.randint(1,116,2)
columns_with_blanks_cont = np.random.randint(117,130,3)
columns_with_blank = np.append(columns_with_blanks_cat, 
columns_with_blanks_cont)

#for every column insert 5 blanks at random locations
for col in columns_with_blank:
    rows_with_blanks = np.random.randint(1,total_rows,5)
    train_data.iloc[rows_with_blanks,col] = np.nan

#Validate the number of columns with missing values
missing_values = train_data.isnull().sum()
np.max(missing_values)

#Displaying the columns with missing values
columns_with_missing = train_data.columns[train_data.isnull().any()]
print(columns_with_missing)

# ##### Data Preprocessing class with the following functions:
#missing_value_continuous: function to handle missing values of 
continuous variables
#missing_value_categorical: function to handle missing values of 
categorical variables
#outlier_treatment: function to handle continuous outliers in the dataset

class Data_preprocessing:
    def __init__(self,train_data):
        self.train_data = train_data
    
    def 
missing_value_continuous(self,column_names_with_specific_type,imputation_
type="mean"):
        if imputation_type=="mean":
            mean_imputer = SimpleImputer(missing_values=np.nan, 
strategy='mean')
            mean_imputer.fit(self.train_data[column_names_with_specific_type])
            self.train_data[column_names_with_specific_type]=mean_
imputer.transform(self.train_data[column_names_with_specific_type])
        if imputation_type=="median":
            median_imputer = SimpleImputer(missing_values=np.nan, 
strategy='median')
            median_imputer.fit(self.train_data[column_names_with_specific_type])
            self.train_data[column_names_with_specific_type]=median_
imputer.transform(self.train_data[column_names_with_specific_type])
        return self.train_data
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    def 
missing_value_categorical(self,column_names_with_specific_
type,imputation_type="most_frequent"):
        most_frequent = SimpleImputer(strategy="most_frequent")
        most_frequent.fit(self.
train_data[column_names_with_specific_type])
        self.train_data[column_names_with_specific_type] = most_frequent.
transform(train_data[column_names_with_specific_type])
        return self.train_data
    
    def outlier_treatment(self,Q1,Q3,IQR,columns_with_outlier,action):
        if action=="median":
            for i in range(len(columns_with_outlier)):
                column_name = columns_with_outlier[i]
                meadian_outlier = np.median(self.train_data[column_name])
                self.train_data.loc[self.train_data[((self.train_
data[column_name]<(Q1[column_name]-(1.5*IQR[column_name])))|(self.train_
data[column_name]>(Q3[column_name]+(1.5*IQR[column_name]))))].
index,column_name]=meadian_outlier
        if action=="mean":
            for i in range(len(columns_with_outlier)):
                column_name = columns_with_outlier[i]
                mean_outlier = np.mean(self.train_data[column_name])
self.train_data.loc[self.train_data[((self.train_data[column_
name]<(Q1[column_name]-(1.5*IQR[column_name])))|(self.train_data[column_
name]>(Q3[column_name]+(1.5*IQR[column_name]))))].
index,column_name]=mean_outlier
        if action=="remove":
            for i in range(len(columns_with_outlier)):
                column_name = columns_with_outlier[i]
                self.train_data = self.train_data[~((self.train_
data[column_name]<(Q1[column_name]-(1.5*IQR[column_name])))|(self.
train_data[column_name]>(Q3[column_name]+(1.5*IQR[column_name]))))]
        return self.train_data

Data_preprocessing_obj = Data_preprocessing(train_data)
train_data = Data_preprocessing_obj.
missing_value_continuous(continuous_columns,"median")
train_data = Data_preprocessing_obj.
missing_value_categorical(categorical_columns)

# ##### Section on handling outliers in the dataset
ax = sns.boxplot(data=train_data[continuous_columns], orient="h", 
palette="Set2")

columns_with_outlier = ['cont7','cont9','cont10']

#compute the interquartile range for all continuous columns
Q1 = train_data[continuous_columns].quantile(0.25)
Q3 = train_data[continuous_columns].quantile(0.75)
IQR = (Q3-Q1)
train_data = Data_preprocessing_obj.
outlier_treatment(Q1,Q3,IQR,columns_with_outlier,"median")
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ax = sns.boxplot(data=train_data[continuous_columns], orient="h", 
palette="Set2")

# ##### Feature elimination techniques for continuous and categorical 
features
#Function for feature selection of numeric variables
#Remove variables with constant variance
#Remove variables with Quasi-Constant variance with a fixed threshold
#Remove correlated variables

def 
feature_selection_numerical_variables(train_data,qthreshold,corr_
threshold,exclude_numerical_cols_list):
    num_colums = ['int16', 'int32', 'int64', 'float16', 'float32', 
'float64']
    numerical_columns = list(train_data.select_dtypes(include=num_
colums).columns)
    numerical_columns = [column for column in numerical_columns if column 
not in exclude_numerical_cols_list]
    
    #remove variables with constant variance
    constant_filter = VarianceThreshold(threshold=0)
    constant_filter.fit(train_data[numerical_columns])
    constant_columns = [column for column in train_data[numerical_
columns].columns 
                    if column not in train_data[numerical_columns].
columns[constant_filter.get_support()]]
    if len(constant_columns)>0:
        train_data.drop(labels=constant_columns, axis=1, inplace=True)

    #remove deleted columns from dataframe
    numerical_columns = [column for column in numerical_columns if column 
not in constant_columns]
        
    #remove variables with qconstant variance
    #Remove quasi-constant variables
    qconstant_filter = VarianceThreshold(threshold=qthreshold)
    qconstant_filter.fit(train_data[numerical_columns])
    qconstant_columns = [column for column in train_data[numerical_
columns].columns 
                         if column not in train_data[numerical_columns].
columns[constant_filter.get_support()]]
    if len(qconstant_columns)>0:
        train_data.drop(labels=qconstant_columns, axis=1, inplace=True)
    
    #remove deleted columns from dataframe
    numerical_columns = [column for column in numerical_columns if column 
not in qconstant_columns]
    
    #remove correlated variables
    correlated_features = set()
    correlation_matrix = train_data[numerical_columns].corr()
    ax = sns.heatmap(
    correlation_matrix, 
    vmin=-1, vmax=1, center=0,
    cmap=sns.diverging_palette(20, 220, n=200),
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    square=True)
    ax.set_xticklabels(
        ax.get_xticklabels(),
        rotation=45,
        horizontalalignment='right');
    #print(correlation_matrix)
    
    for i in range(len(correlation_matrix.columns)):
        for j in range(i):
            if abs(correlation_matrix.iloc[i, j]) > corr_threshold:
                colname = correlation_matrix.columns[i]
                colcompared = correlation_matrix.columns[j]
                #check if the column compared against is not in the 
columns excluded list
                if colcompared not in correlated_features:
                    correlated_features.add(colname)
    train_data.drop(labels=correlated_features, axis=1, inplace=True)
    
    return train_data,constant_columns,qconstant_columns,correlated_features

train_data,constant_columns,qconstant_columns,correlated_features 
=feature_selection_numerical_variables(train_
data,0.01,0.75,['loss','id'],)
correlated_features

# ##### Handling correlation between categorical variables
# save the encoders to disk to be fitted on test data
for cf1 in categorical_columns:
    le = LabelEncoder()
    le.fit(train_data[cf1].unique())
    filename = cf1+".sav"
    pickle.dump(le, open(filename, 'wb'))
    train_data[cf1] = le.transform(train_data[cf1])

#snippet to calculate the unique values with a categorical columns
df = pd.DataFrame(columns=["Column_Name","Count"])
for cat in categorical_columns:
    unique_value_count = len(train_data[cat].unique())
    df = df.append({'Column_Name': cat, "Count":int(unique_value_count)}, 
ignore_index=True)
columns_unique_value = np.array(df.Count.value_counts().index)

#snippet to identify the dependent/correlated categorical variables and 
drop them
columns_to_drop_cat = set()
correlated_columns = dict()
for unique_value_count in columns_unique_value:
    if unique_value_count>1:
        categorical_columns = df.loc[df.
Count==unique_value_count,'Column_Name']
        categorical_columns = categorical_columns.reset_index(drop=True)
        columns_length=len(categorical_columns)
        for col in range(columns_length-1):
            column_to_compare = categorical_columns[col]
            columns_compare_against = 
categorical_columns[(col+1):columns_length]
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            chi_scores = 
chi2(train_data[columns_compare_against],train_data[column_to_compare])
            if column_to_compare not in columns_to_drop_cat:
                columns_to_be_dropped = [i for i in range(len(columns_
compare_against)) if chi_scores[1][i]<=0.05]
                columns_to_drop_array = np.array(columns_compare_against)
[columns_to_be_dropped]
               correlated_columns[column_to_compare]=columns_to_drop_array
                columns_to_drop_cat.update(columns_to_drop_array)

train_data = train_data.drop(columns_to_drop_cat,axis=1)

correlated_features = list(correlated_features)
columns_to_drop_cat = list(columns_to_drop_cat)
columns_to_drop_cat.extend(correlated_features)
columns_to_drop = columns_to_drop_cat.copy()

#output the columns_to_drop file to a csv
columns_to_drop_df=pd.DataFrame(columns_to_drop,columns=['colnames'])
columns_to_drop_df.to_csv("/model/columns_to_drop.csv",index=False)

# ##### Visualizing the Output Variable
#Visualizing the distribution of loss value
# Density Plot and Histogram of loss
sns.distplot(train_data['loss'], hist=True, kde=True, 
             bins=int(180/5), color = 'darkblue', 
             hist_kws={'edgecolor':'black'},
             kde_kws={'linewidth': 4})

#We will use a log transformation on the dependent variable to reduce the scale
train_data['loss'] = np.log(train_data['loss'])

# Visualizing the distribution of loss value
# Density Plot and Histogram of loss
sns.distplot(train_data['loss'], hist=True, kde=True, 
             bins=int(180/5), color = 'darkblue', 
             hist_kws={'edgecolor':'black'},
             kde_kws={'linewidth': 4})

#taking a anti-log to transform the variable back to its original scale
sns.distplot(np.exp(train_data['loss']), hist=True, kde=True, 
             bins=int(180/5), color = 'darkblue', 
             hist_kws={'edgecolor':'black'},
             kde_kws={'linewidth': 4})

# ##### Fit an ML Model
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import RandomizedSearchCV

#convert the int64 columns categorical
Column_datatypes= train_data.dtypes
Integer_columns = list(Column_datatypes.where(lambda x: x =="int64").
dropna().index.values)



427Case Studies for Decision Sciences

train_data[Integer_columns] = train_data[Integer_columns].
astype('category',copy=False)
X,y = train_data.drop(['id','loss'],axis=1),train_data['loss']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, 
random_state=42)
# Instantiate model with 100 decision trees
rf_base = RandomForestRegressor(n_estimators = 100, random_state = 
42,oob_score = True)
rf_base.fit(X_train, y_train)

#save the model output
pickle.dump(rf_base, open("basemodel_rf", 'wb'))

#load the saved model and predict on the test data
basedmodel_rf = pickle.load(open("basemodel_rf", 'rb'))

#validate the accuracy of the base model
#compare the model accuracies
Y_test_predict_base = basedmodel_rf.predict(X_test)
print("Base model accuracy:",np.sqrt(mean_squared_error(y_test, 
Y_test_predict_base)))

# ###### HyperParameter Tuning Using RandomSearchCV
#number of trees
n_estimators = [100,200,300,400,500]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
# Minimum number of samples required to split a node
min_samples_split = [200,400,600]
# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]
# Method of selecting samples for training each tree
bootstrap = [True, False]

# Create the random grid
random_grid = {'n_estimators': n_estimators,
               'max_features': max_features,
               'max_depth': max_depth,
               'min_samples_split': min_samples_split,
               'min_samples_leaf': min_samples_leaf,
               'bootstrap': bootstrap}

# Use the random grid to search for the best hyperparameters
# base model to tune
rf = RandomForestRegressor()

# 5 fold cross validation, 
# search across 150 different combinations, and use all available cores
rf_tuned = RandomizedSearchCV(estimator = rf, param_distributions = 
random_grid, cv = 3,n_iter = 5, verbose=2, random_state=42, n_jobs = -1)

# Fit the random search model
rf_tuned.fit(X_train, y_train)
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#save the model output
pickle.dump(rf_tuned, open("tunedmodel_rf", 'wb'))

#check the best params
rf_tuned.best_params_

#load the saved model and predict on the test data
tunedmodel_rf = pickle.load(open("tunedmodel_rf", 'rb'))

Y_test_predict_tuned = tunedmodel_rf.predict(X_test)
print("Tuned model accuracy:",np.sqrt(mean_squared_error(y_test, 
Y_test_predict_tuned)))

# ##### fit a GBM model
from sklearn.ensemble import GradientBoostingRegressor  #GBM algorithm
gbm_base = GradientBoostingRegressor(
    max_depth=2,
    n_estimators=3,
    learning_rate=1.0)

gbm_base.fit(X_train,y_train)

#save the GBM model
pickle.dump(gbm_base, open("basemodel_GBM", 'wb'))

#load the saved model and predict on the test data
basemodel_GBM = pickle.load(open("basemodel_GBM", 'rb'))

Y_test_predict_tuned = basemodel_GBM.predict(X_test)
print("Base model GBM accuracy:",np.sqrt(mean_squared_error(y_test, 
Y_test_predict_tuned)))

################  Model loss function prediction 
###############################

 #### Script to Predict the output on new observations
import pandas as pd
import pickle
import numpy as np

test_data = pd.read_csv("test_data_subset.csv")

#load the columns to drop file
columns_to_drop=pd.read_csv("columns_to_drop.csv")
columns_to_Retain = set(test_data.columns.values) - set(columns_to_drop.
colnames.values)
test_data = test_data[columns_to_Retain]

column_datatypes = test_data.dtypes
categorical_columns = list(column_datatypes[column_datatypes=="object"].
index.values)

#Transfor the categorical columns by loading the fit encodings on 
training data

for cf1 in categorical_columns:
    filename = cf1+".sav"
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    le = pickle.load(open(filename, 'rb'))
    
    #if an new classes is observed, set it to the 0 class
    le_dict = dict(zip(le.classes_, le.transform(le.classes_)))
    test_data[cf1]=test_data[cf1].apply(lambda x: le_dict.get(x, -1))

test_data_id = test_data['id']
test_data = test_data.drop('id',axis=1)

Column_datatypes= test_data.dtypes
Integer_columns = list(Column_datatypes.where(lambda x: x =="int64").
dropna().index.values)
#convert the int64 columns categorical
test_data[Integer_columns] = test_data[Integer_columns].
astype('category',copy=False)

#load the saved model and predict on the test data
tunedmodel_rf = pickle.load(open("tunedmodel_rf", 'rb'))

Y_test_predict = tunedmodel_rf.predict(test_data)
test_data['predict_loss']=Y_test_predict
test_data['id']=test_data_id
test_data = test_data[['id','predict_loss']]

test_data

############ Operationalize / Deploying to production using FLASK API 
########################

from flask import Flask, request #import main Flask Class and request
import pandas as pd
import pickle
import numpy as np
from pandas.io.json import json_normalize
app = Flask(__name__) #create the Flask app

@app.route('/load_model',methods=['POST'])
def load_model():
    req_data = request.get_json()
    test_data_subset = pd.DataFrame.from_dict(json_normalize(req_data), 
orient='columns')
    
    #load the columns to drop file
    columns_to_drop=pd.read_csv("/model/columns_to_drop.csv")
    
    #select the columns to be retained
    columns_to_Retain = set(test_data_subset.columns.values) - 
set(columns_to_drop.colnames.values)
    test_data_selected_columns = test_data_subset[columns_to_Retain]
    
    #select the categorical columns from the dataframe
    column_datatypes = test_data_selected_columns.dtypes
    categorical_columns = list(column_datatypes[column_
datatypes=="object"].index.values)
    
    #read the label encoders and apply the encoded values to the 
categorical variables



430 Machine Learning for Decision Sciences with Case Studies in Python

    for cf1 in categorical_columns:
        filename = "/model/"+cf1+".sav"
        le = pickle.load(open(filename, 'rb'))
        
        #if an new classes is observed, set it to the 0 class
        le_dict = dict(zip(le.classes_, le.transform(le.classes_)))
        test_data_selected_columns[cf1]=test_data_selected_columns[cf1].
apply(lambda x: le_dict.get(x, -1))
    
    test_data_id = test_data_selected_columns['id']
    test_data_selected_columns = test_data_selected_columns.
drop('id',axis=1)

    #convert the interger columns to categories as required by the ML 
model    
    Column_datatypes= test_data_selected_columns.dtypes
    Integer_columns = list(Column_datatypes.where(lambda x: x =="int64").
dropna().index.values)
    
    #convert the int64 columns categorical
    test_data_selected_columns[Integer_columns] = test_data_selected_
columns[Integer_columns].astype('category',copy=False)
    
    #load the saved model and predict on the test data
    tuned_model = pickle.load(open("/model/tunedmodel_rf", 'rb'))
    Y_test_predict = tuned_model.predict(test_data_selected_columns)
    
    #create a new output dataframe
    output = pd.DataFrame()
    output['id']=test_data_id
    output['predict_loss']=Y_test_predict
    
    output=output.to_json(orient='records')    
    return output
if __name__ =='__main__':
    app.run(debug=True,port=4000)#run app in debug mode on port 4000

9.5  USE CASE 5 − E-COMMERCE PRODUCT RANKING 
AND SENTIMENT ANALYSIS

9.5.1  backgroUnD

Customers can buy a product with the extra benefit of additional recommendations in the form of 
reviews, which are provided through E-Commerce applications. Reviews are, without question, valu-
able and effective for clients who are considering purchasing those products. Customers, on the other 
hand, will have difficulty separating relevant feedback from the avalanche of reviews. Nonetheless, 
these large reviews pose a problem for users, as useful filtering evaluations become extremely dif-
ficult. In this use instance, the proportionate issue has been addressed. After that, we'll discuss how 
we rank reviews based on their relevance to the product and how we rate immaterial reviews.

Understating the data, data preprocessing-filtering (which includes gibberish, language, and pro-
fanity detection), feature extraction, pairwise review scoring, and further categorization were the 
phases of this project. The result will be a collection of reviews used to create a precise product 
ranking based on applicability using a pairwise ranking approach. The process is shown as a time-
line graph, as shown in Figure 9.8.
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9.5.2  UnDerstanDing the Data

The dataset we will use has two distinct product and answer options columns, as shown below. We 
will use this training dataset for analysis and preprocessing of the data, including language detec-
tion. Furthermore, as shown in the preprocessing data code below, we will preprocess the data 
(understand the bad data) for gibberish and profanity detection.

#1. Data Preprocessing: This has four stages. The first stage is language detection. The second 
stage is gibberish review detection and filtering. The third stage is profanity filtering. In the last 
stage, spell check is performed tocorrect and improve the quality of the data. These phases are 
shown in Figure 9.9.

#!/usr/bin/env python
# coding: utf-8

%%capture

FIGURE 9.9 Data preprocessing phases.

FIGURE 9.8 Phases of implementation of E-Commerce Product Ranking and Sentiment Analysis.

Product Answer_option

Accucheck Fast and accurate delivery

Accucheck As usual, it is genuine

Accucheck Behavior of delivery boy is very bad. Delivery time is long whereas other online stores are providing 
better facilities

Accucheck Fwegwrqdsdvwfg

Accucheck These strips were as per my requirement

Accucheck Fast service was good

Accucheck Received 10 strips and 2 packets of lancets in place of 100 strips

Accucheck Does not fit my machine

Accucheck Discount and quick response

Accucheck Fast delivery with good packing
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!python3 -m spacy download en_core_web_sm
!python3 -m textblob.download_corpora

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from pylab import rcParams
rcParams['figure.figsize'] = 7, 6

from copy import deepcopy
import seaborn as sns

import sys
sys.path.append('./utils')
from utils import review_feature
rf = review_feature()
%matplotlib inline

!ls data
df = pd.read_csv('data/train.csv')
df

# ## Analysis to understand per product who many informative and how many 
not informative reviews are there. 
label_analysis = pd.crosstab(df['product'],df['label'], margins='All')
label_analysis

analysis = label_analysis.reset_index()
analysis.columns = ['product','not info', 'info', 'All']
analysis.iloc[:-1].plot(x="product", y=["not info", "info"], kind="bar")

# ## Lets check the length quality of reviews we have?
df['review_len'] = df['answer_option'].apply(lambda x: len(x.split()))
df

checklen = []
for i in range(5,50, 5):
    checklen.append(len(df[ (df['review_len']>=i-5) & 
(df['review_len']<i)]))
checklen

index = np.arange(len(checklen))
plt.bar(index, checklen)
plt.xlabel('Length of a Review', fontsize=15)
plt.ylabel('No. of Reviews', fontsize=15)
plt.xticks(index, range(5,50,5), fontsize=15, rotation=30)
plt.title('Review Survey Length Analysis')
plt.show()

# ## We have a fair amount of both details reviews (having length >=5) 
and short reviews (having length <5)
# ## Data Preprocessing
# ![datapreprocessing](Photos/datapreprocessing.png)
# ## Stage1: Language Detection
bad_reviews = []
for indx in df.index:
    review = df.at[indx, 'answer_option']
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    try:
        b = rf.language_detection(review)
        if b == 'hi' or b == 'mr':
            bad_reviews.append(indx)
    except:
        bad_reviews.append(indx)
        print("Language exception for:", review)
print("Number of Bad Reviews at Stage 1: ", len(bad_reviews))

df[df.index.isin(bad_reviews)]

df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

# ## Stage 2: Gibberish Reviews
# When we collect data from customers, just out of frustration, many 
reviews write gibberish reviews. 
# Example: svfsfg, fsdfgdfgfsgsfgdgh, ffgrthyryj, rhrhfas, kuopip
# We need to detect such reviews and filter those out.
# Working
# we could build a model of character to character transitions from a 
bunch of text in English. So for example, you find out how common it is 
for there to be a 'h' after a 't' (pretty common). 

# If you have a bunch of query logs, you might first make a model of 
general English text and then heavily weigh your queries in that model 
training phase 
# For background read about Markov Chains. 
# Source: https://github.com/rrenaud/Gibberish-Detector
# we have trained a model for and have stored its pickle file.
bad_reviews = []
for indx in df.index:
    review = df.at[indx, 'answer_option']
    if rf.gibberish_detection(review, prefix_path = 'utils'):
        bad_reviews.append(indx)

print("Number of Bad Reviews at Stage 2: ", len(bad_reviews))

bad_reviews

df[df.index.isin(bad_reviews)]

df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

# ## Stage 3: Profanity Detection
# At times, reviewers are not happy with the delivery or service out of 
frustration, they type profanity words in reviews. 
# Profanity content also penalizes SEO ranking
bad_reviews = []
for indx in df.index:
    review = df.at[indx, 'answer_option']
    if rf.english_swear_check(review) or rf.hindi_swear_check(review):
        bad_reviews.append(indx)

print("Number of Bad Reviews at Stage 3: ", len(bad_reviews))

df[df.index.isin(bad_reviews)]
df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

https://github.com
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# ## Stage 4: Spelling Correction (Optional Stage not that necessary)
# Trying to improve quality of reviews which have high confidence spell 
errors. Like withut -> without
for indx in df.index:
    review = df.at[indx, 'answer_option']
    df.at[indx, 'answer_option'] = rf.spell_correct(review, 0.9)

# ## Stage 4.1: Company Tag (Optional Stage)
bad_reviews = []
for indx in df.index:
    review = df.at[indx, 'answer_option']
    if rf.competitive_brand_tag(review):
        bad_reviews.append(indx)

print("Number of Bad Reviews at Stage 4.1: ", len(bad_reviews))

df[df.index.isin(bad_reviews)]

df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

print("Total Count of Reviews after preprocessing: ", len(df))

df.to_csv('data/Preprocessed_Reviews.csv',index = False)

# # Summary :
# So far, we have done EDA (Exploratory Data Analysis) of Data.
# Preprocessing of reviews in 4 main stages. 
# ### Initial Count of Reviews was: 1676
# ### Final Count of Reviews is: 1655
# We must be strict in preprocessing so that no bad content is shown on 
our website. 
# By preprocessing, we are reducing False positives. 
# ### Note: You may feel that only 21 reviews are scrapped, but when you 
will be working on a full scale, we observe that about 7-10% of total 
reviews would be junk.

#Features Engineering:

This contains 7 step process as shown in Figure 9.10- Starting with Noun 
Scoring till compound score.

FIGURE 9.10 Seven-step feature engineering process.
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#!/usr/bin/env python
# coding: utf-8
import pandas as pd
import numpy as np
from copy import deepcopy
import sys
sys.path.append('./utils')
from utils import review_feature
rf = review_feature()

from pandas_profiling import ProfileReport

df = pd.read_csv('data/Preprocessed_Reviews.csv').sort_values(by = 
['product'], ignore_index = True)

df
# Features extraction covers every necessary property/viewpoint, and to 
live features quantitatively may be a much-needed task. Hence, let us 
discuss all the features extracted from reviews.
# Step 1: Noun Strength (Rn): Nouns are subjects regarded as the most 
informative language section. The number of subjects shows the importance 
of review because only a noun describes the prime factors of review 
(which tells us what the review is about). We did POS Tagging to seek out 
nouns during a review and computed score as:
# Step 2: Score (Rn) = TFIDF(noun) / TFIDF(all words)
# Step 3: Review Polarity (Rp): Its value lies between -1 to +1, which 
tells whether a review has sentiment or negative sentiment.
# Step 4: Review Subjectivity (Rs): The subjectivity could measure the 
objective to subjective sentiment and goes from 0 to 1. Objective 
expressions are facts, while Subjective expressions are opinions that 
describe a person’s feelings. Consider the following expression:
# Bournvita tastes excellent with milk: Subjective
# Bournvita is brown: Objective
# Step 5: Review Complexity (Rc): to gauge how good and sophisticated a 
review is in terms of unique words within and across a specific product's 
entire review corpus.
# Rc = Number of unique words during a Review / Number of unique words in 
the entire Corpus
# Step 6: Review Word Length (Rw): Word count of a Review
# Step 7: Service Tagger (Rd): the simplest review talks more about how 
the product, how it tastes, what its uses are, and therefore the one 
which talks about the effectiveness of a product. Reviews are basically 
to describe a product. So, a dictionary of words is made, which might 
mark reviews as service-based, delivery reviews, and customer support.
# Fuzzy matching each word during a review is finished with the words 
within the dictionary with Levenshtein distance. Levenshtein distance 
helps measure the difference between two sequences and tackles spell 
errors in review. For instance, rather than “My delivery was on time”, 
Reviews is wrongly written as “My delivery was on time”. In this case, 
Fuzzy matching would help us to match both the reviews.
# Step 8: Compound Score (Rsc): to enhance the efficiency of the system. 
We compute the compound score using VaderSentimentAnalyser. This library 
is taken from VADER (Valence Aware Dictionary and sEntiment Reasoner). 
This is a lexicon and rule-based sentiment analysis tool specifically 
tuned to figure out sentiments expressed in social media content. It has 
the power to seek out the sentiment of Slang (e.g., SUX!), Emoji (, ), 
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Emoticons ( :), :D ) and, therefore, the difference between capitalized 
word expressions(I am SAD, I'm sad are different expressions).
#Rsc ≥ 0.5 (Positive Sentiment)
# -0.5
(Positive Sentiment)
# -0.5<Rsc<+0.5 (Neural Sentiment)
# Rsc≤ -0.5 (Negative Sentiment)
# Miscellaneous: We purposely did not include Reviews Rating as a 
feature. The inclusion of Ratings blunders the entire system because of 
two reasons:
# 1. Common confusion between Rating and Reviews. For example, someone 
who rates the product ‘1’ (On a rating scale of 1–5, ‘1’ being the 
‘lowest’ and ‘5’ being the ‘highest’) writes the review comment as ‘very 
good and useful medicine’.
# 2. A large portion of Reviews from customers are either five stars or 
one star.
# 
# TextBlob: https://textblob.readthedocs.io/en/dev/index.html
# VaderSentiment: https://github.com/cjhutto/vaderSentiment
# spaCy: https://spacy.io/ 

## Add Feature Columns
df['Rn'] = 0.0
df['Rp'] = 0.0
df['Rs'] = 0.0
df['Rc'] = 0.0
df['Rd'] = 0.0
df['Rsc'] = 0.0

df

product_list = df['product'].unique()
for product in product_list:
    data = df[df['product']==product]
    unique_bag = set()
    for review in data['answer_option']:
        review = review.lower()
        words = review.split()
        unique_bag = unique_bag.union(set(words))

    for indx in data.index:
        review = data.at[indx, 'answer_option']
        df.at[indx, 'Rp'] = rf.polarity_sentiment(review)
        df.at[indx, 'Rs'] = rf.subjectivity_sentiment(review)
        df.at[indx, 'Rd'] = rf.service_tag(review)
        df.at[indx, 'Rsc'] = 
rf.slang_emoji_polarity_compoundscore(review)
        df.at[indx, 'Rc'] = float(len(set(review.split()))) / 
float(len(unique_bag))

    df.loc[df['product']==product, 'Rn'] = rf.noun_score(data['answer_
option'].values).values

 df

#With these features, we have leached out all informative from a Review. 

https://textblob.readthedocs.io
https://github.com
https://spacy.io
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#One may add more features like Readability Score: SMOG Index depending 
on the use case of your problem. 
#Reason we are not taking Readability score as a metric is that we have 
taken reviews from Tier I, Tier II, and Tier III cities. We don't want to 
penalize reviews (from an underprivileged background) by adding this. 
#Source- [Wikipedia](https://en.wikipedia.org/wiki/Readability)

df.to_csv('data/Features.csv',index = False)

# ## Now more insightful analysis
profile = ProfileReport(df)

profile

profile.to_file(output_file="feature_analysis.html")
# ## We have 1655 Reviews with use, let's get to the Model Training Section.

#MODEL BUILDING:
#!/usr/bin/env python
# coding: utf-8

import pandas as pd
import numpy as np
from joblib import load, dump
from copy import deepcopy
from statistics import mean

from sklearn.metrics import accuracy_score, classification_report, 
confusion_matrix
from collections import Counter

df = pd.read_csv('data/Features.csv')

df

# Ranking is a canonical problem for humans. It is easy to classify 
whether a review is useful (informative) or not. However, ranking reviews 
based on usefulness is a complex task. Our ranking methodology is based 
on this simple education.
#Pairwise ranking approach is applied to rank reviews in the semi-
supervised learning method. The pairwise ranking approach looks at a pair 
of documents in a loss function and predicts a relative ordering. The 
objective is not to determine the relevance score but to find which 
document is more relevant. This relevance is developed to judge the 
preference of one review over another.
#In this semi-supervised learning method, mapping is constructed between 
input and output. This input-output pair in the training model is used to 
learn the system.

#Review Segregation: We segregated two sets of reviews on which we train 
our model.
#Set 0 represents reviews with label 0, i.e., ones that are not 
informative. These include reviews based on delivery, customer support, 
packaging, etc. These reviews do not describe the product.

#Set 1 represents reviews with label 1, i.e., reviews that are 
informative and are better than all reviews of Set 0;

https://en.wikipedia.org
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#How we segregated and determined labels for reviews:
#Our entire review ranking system is based on the idea that it is easier 
for humans to binary classify reviews which we call Set 0 and Set 1.

#For each product 'Accucheck', 'Becadexamin', 'Evion', 'Neurobion','Seven
seascodLiverOil', 'Shelcal', 'Supradyn','shampoo', we asked 10 different 
people to label reviews as a 1 (informative review) and 0 ( not 
informative review). Different participants were asked to label so that 
there is no bias and the model learns to its best.

data_split = pd.crosstab(df['product'],df['label'])
data_split

# ## Building the training set:
# #### We pairwise compared each review of set1 with all reviews of set0 
and vice-versa
# + (Rx, Ry,1) where x∈Set1 and y∈Set0 → Rx is better than Ry
# + (Ry, Rx, 0) where x∈Set1 and y∈Set0 → Ry is worst than Rx

# #### This now becomes a classification problem, as illustrated in 
Figure 9.11.

def building_training_data(df):
    A = df[df['label']==1]
    A.loc[df['label']==1,'join'] = 'j'
    B = df[df['label']==0]
    B.loc[df['label']==0,'join'] = 'j'
    trainset1 = pd.merge(A,B,how='outer',on='join')
    trainset2 = pd.merge(B,A,how='outer',on ='join')

    trainset = pd.merge(trainset1,trainset2,how='outer')
    return trainset

product_list = df['product'].unique()
data_stack = []
for product in product_list:
    temp = deepcopy(df[df['product']==product].iloc[:,2:])
    build_data = building_training_data(temp)
    print(product, len(temp), len(build_data))

FIGURE 9.11 Pairwise ranking model.
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    build_data.drop(columns = ['join','label_y'],inplace=True)
    data = build_data.iloc[:,1:]
    data['target'] = build_data.iloc[:,0]
    data_stack.append(data)

train = pd.concat(data_stack).reset_index(drop = True)

train

X = train.iloc[:,:-1].values
y = train.iloc[:,-1].values

from sklearn.model_selection import train_test_split
X_train,X_test, y_train, y_test = train_test_split(X,y,test_size = 
0.2,shuffle = True, stratify = y) 
print("Test Len:",len(X_test)," ",len(y_test))

train

# # Spot Checking-
# Linear Model
# Non-Linear Model
# Ensemble Model

# ## Linear Model: Logistic Regression

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train,y_train)
print("Training Accuracy\n", accuracy_score(y_train,classifier.
predict(X_train)))
print("Test Accuracy\n", accuracy_score(y_test,classifier.
predict(X_test)))

print('CLASSIFICATION REPORT')
print("Training\n", classification_report(y_train,classifier.
predict(X_train)))
print("Test \n", classification_report(y_test,classifier.
predict(X_test)))

# ### Accuracy: 85%
# ### F1-score: 85%

# ## Non-Linear Model: DecisionTree
# Decision Tree
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier.fit(X_train,y_train)

print("Training Accuracy\n", accuracy_score(y_train,classifier.
predict(X_train)))
print("Test Accuracy\n", accuracy_score(y_test,classifier.
predict(X_test)))

print('CLASSIFICATION REPORT')
print("Training\n", classification_report(y_train,classifier.
predict(X_train)))
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print("Test \n", classification_report(y_test,classifier.
predict(X_test)))

# ## Ensemble Model: RandomForest
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=50, n_jobs = -1, oob_
score = True,random_state=42)
classifier.fit(X_train,y_train)

print("Training Accuracy\n", accuracy_score(y_train,classifier.
predict(X_train)))
print("Test Accuracy\n", accuracy_score(y_test,classifier.
predict(X_test)))

print('CLASSIFICATION REPORT')
print("Training\n", classification_report(y_train,classifier.
predict(X_train)))
print("Test \n", classification_report(y_test,classifier.
predict(X_test)))

print("Test\nConfusion Matrix: \n", confusion_matrix(y_test, classifier.
predict(X_test)))

## Score of the training dataset obtained using an out-of-bag estimate. 
This attribute exists only when oob_score is True.

classifier.oob_score_
feature_importances = pd.DataFrame(classifier.feature_importances_,
                                   index = train.iloc[:,:-1].columns,

columns=['importance']).sort_values('importance',ascending=False)
feature_importances
dump(classifier, 'randomforest.joblib', compress = 2)

# ## RandomForest Classifier Weights Saved. 
# ### Accuracy: 0.98
# ### oob_score: 0.98 
# Note, if in your usecase data is too small to split to train-test-split 
then one can train model on entire data and measure out of bag score. 

#PART 2. Model Ranking Metric
#Accuracy of Ranking Methodology
#After sorting the reviews by the review score, we wanted all reviews in 
Set 1 to be above all reviews of Set 0.
#To test this hypothesis, we developed the following Ranking Metric
#Let the number of 1s in our Dataset be x.
# `Ranking Accuracy on Single Product = Number of 1s found in first x 
positions / x

classifier = load('randomforest.joblib')

product_list = df['product'].unique()
df['win']=0
df['lose']=0
df['review_score'] = 0.0
df.reset_index(inplace = True, drop = True)
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def score_giver(C,D):
    E = pd.merge(C,D,how='outer',on='j')
    E.drop(columns=['j'],inplace = True)
    q= classifier.predict(E.values)
    return Counter(q)

for product in product_list:
    data = df[df['product']==product]
    for indx in data.index:
        review = df.iloc[indx, 3:-3]
        review['j'] = 'jn'
        C = pd.DataFrame([review])
        D = data[data.index!=indx].iloc[:,3:-3]
        D['j'] = 'jn'
        score = score_giver(C,D)
        df.at[indx, 'win'] = 0 if score.get(1) is None else score.get(1)
        df.at[indx, 'lose'] = 0 if score.get(0) is None else score.get(0)
        df.at[indx, 'review_score'] = float(0 if score.get(1) is None 
else score.get(1)) / len(data) * 1.0

df = df.sort_values(by = ['product','review_score'], ascending = False)

r_accuracy =[]
for product in product_list:
    x = data_split[data_split.index == product][1][0]
    number_of_1_in_x = Counter(df[df['product']==product].iloc[:x, ]
['label']).get(1)
    rank_accuracy = float(number_of_1_in_x*1.0 / x*1.0)
    print("Product: {} | Rank Accuracy: {}".format(product, 
rank_accuracy))
    r_accuracy.append(rank_accuracy)
print("Mean Rank Accuracy: {}".format(mean(r_accuracy)))

df

df.iloc[:, [0,1,-1]].to_csv('data/train_ranked_output.csv',index = False)

!ls
t = pd.read_csv('data/test.csv')

SUMMARY

In this chapter, we discussed a few ML applications in various industries to solve problems where 
traditional programming cannot accommodate the reasoning for many combinations. The first use 
case, Retail Price Optimization Using the Price Elasticity of Demand Method, identifies the exact 
price at which the most profit may be made. Next, we present the application based on a customer 
dataset in a supermarket in use case 2, Market Basket Analysis, highlighting association rule min-
ing. Next, use case 3, Retailer Sales Prediction, shows how to create a ML model and determine 
the sales of each product at a certain store. Finally, in use case 4, the cost of insurance claims is 
predicted for a Property and Casualty (P&C) Insurance Company. This case study shows how to 
clean data, preprocess data, and deal with outliers.
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REVIEW QUESTIONS

 1. Develop the phases of data analytics life cycle for MNIST Handwritten Digit Classification 
data.

 2. Apply different supervised learning algorithms for Wine Quality Prediction using Wine 
Quality Dataset and compare the results in terms of model parameters.

 3. Develop a ML model for Sales Forecasting using Walmart dataset starting from under-
standing the data, data preprocessing, exploratory data analysis, model building, and pre-
diction of output.

 4. Evaluate ML models for Sensorless Drive Diagnosis and choose the optimal model.
 5. Compare supervised learning algorithms for classifying Human Body Postures and 

Movements. Note down your observations and identify the best algorithm for classification.
 6. Implement a prediction model for BigMart Sales using unsupervised learning algorithms 

and compare their performance. In addition, identify the time and space complexity of the 
algorithms.

 7. Estimate the suitable ML model for Mine Social Media Sentiment and Improve Health 
Care dataset.

 8. Apply ML algorithms to predict Quora Question Pairs Meaning using Natural Language 
Processing in Python.

 9. For the Human Activity Recognition using Smartphone Dataset, identify the process to 
choose features. How are outliers handled while extracting features?

 10. Develop feature engineering model based on Principal Componant Analysis (PCA) and 
Linear Discrimination Analysis (LDA) for Walmart dataset.
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Appendix
Python Cheat Sheet for Machine Learning 

Matplotlib Cheat Sheet

Import Library

from matplotlib import pyplot as plt

Basic Line Plot

x_values

days = [0, 1, 2, 3, 4, 5, 6]

y_values1

money_spent = [10, 12, 12, 10, 14, 22, 24]

y_values2

money_spent_2 = [11, 14, 15, 15, 22, 21, 12]

assigend to one plot

plt.plot(days, money_spent)
plt.plot(days, money_spent_2)

plt.show()

The object that contains all subplots is called figure
Always put specific Attributes (color, markers, ...) for a subplot
directly under plt.plot()

# Create subplots

plt.subplot(rows, columns, index_of_subplot)

# Example

# First Subplot

plt.subplot(1, 2, 1)

plt.plot(x, y, color='green')
# Second Subplot

plt.subplot(1, 2, 2)

plt.plot(x, y, color='steelblue')
# Format Subplots

plt.subplots_adjust( arguements)

left, right, top, bottom -margin

wspace, hspace horizontal/vertical margin between

plots

Linestyles

plt.plot(x, y, style=" ")

Keywords to put in for style:

color=  green,  #AAAAAA

linestyle= dotted: :, dashed: -- or -.

marker= o, *, s, x, d, h

linewidth= 1, 2, ...

Linestyles (cont)

alpha= 0.1 - 1

Boilerplate Styles:

plt.style.use("fivethirtyeight")

plt.style.use("ggplot")

plt.style.use("seaborn")

plt.style.use("default")

Legends

loc specifies the legends location (if not specified: finds "best"
location)

# Create Legend

plt.legend(["first_line", "second_line", loc=])

# loc Numbercode

1 upper left

2 upper right

3 lower left

4 lower right

5 right

6 center left

7 center right

8 lower center

9 upper center
10 center

Figures

When we’re making lots of plots, it’s easy to end up withlines that

have been plotted and not displayed. If we’re not careful, these
“forgotten” lines will show up in your new plots. In order to be sure
that you don’t have any stray lines, you can use the command plt.c-

lose('all') to clear all existing plots before you plot a new one.

# Create Figure with custom size

plt.figure(figsize=( width, heigth))

plt.plot(x, y)

plt.savefig('tall_and_narrow. png/ .svg/ .pdf')

Modify Ticks

We have to do it this way, even if we only have one plot

# Specify subplot to modify

ax1 = plt.subplot( row, column, index)

# Attributes

ax1.set_xticks([1, 2, 4])

ax1.set_yticks([ 0.1, 0.2, ...])

ax1.set_xticklabels(["Jan", "Feb", "Apr"], rota-
tion=30)

# rotation=degrees rotates the labels

ax1.set_yticklabels(["10%", "20%", ...])

Subplots
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Histogram

# Create one Histogram

plt.hist(dataset, range=(0,100), bins=20)

# Specifiy number of bins (default = 10)
5.9049 pt

Scatter Plot

plt.scatter(x_values, y_values)

Side-By-Side Bars

# We have to specifiy the location of each Dataset in the Plot

using this pattern:

n = ? # Number of specific dataset

t = ? # Number of datasets

d = ? # Number of sets of bars

w = 0.8 # Width of each bar

x_values1 = [t*element + w*n for element in range(d)]

# Get x_values in the middle of both bars

middle_x = [ (a + b) / 2.0 for a, b in zip(x_val-ues1, x_values2)]

Stacked Bars

If we want to compare "different sub-attributes from one attribute"

we can use stacked bar charts. For example:
Attribute: Entertainment hours

Sub-Attributes: Gaming, Reading, ...

# We use the keyword bottom to do this

# The top bar will have bottom set as height # First Bar

video_game_hours = [1, 2, 2, 1, 2]

plt.bar(range(len(video_game_hours)),

video_game_hours)

# Second Bar

book_hours = [2, 3, 4, 2, 1]

plt.bar(range(len(book_hours)),

book_hours,

bottom=video_game_hours)

# Get each bottom for 3+ bars

sport_hours = np.add(video_game_hours, book_hours)

Error Bars

If we want to present an uncertainty Range within a Bar Chart we
can use Error Bars

# Use the keyword yerr to repersent the error range
values = [10, 13, 11, 15, 20]

yerr = [1, 3, 0.5, 2, 4] # singe value possible plt.bar(y, x, yerr
=yerr, capsize=10)

plt.show()

Fill Between (Line Plot)

Returns a shaded are around the line

x = range(3)

y = [10, 12, 13]

y_lower = [8, 10, 11]

y_upper = [i + 2 for i in y_values]

# Calculate a % deviation

y_lower_bound = [element - (element * error_in_-decimal) for

element in original_list_of_y_values] #this is the shaded error
plt.fill_between(x, y_lower, y_upper, alpha =0.2) #this is the line
itself

plt.plot(x, y)

plt.show()

Axis and Labels

Zoom in or out of the plot:

plt.axis(x_min, x_max, y_min, y_max)

Labeling the Axes:

plt.xlabel("str ")/ plt.ylabel() / plt.title()

Add Text to Graph

plt.text(x_coord, y_coord, "text");

Simple Bar Chart

We use range(len(y_values)) to get a tick for each value we
want to represent in the Bar Chart

plt.bar(range(len(y_values)), y_values)

Pie Chart

payment_names = ["Card Swipe", "Cash", "Apple Pay",

"Other"]

payment_freqs = [270, 77, 32, 11]

# Creating Pie Chart

plt.pie(payment_freqs)

plt.axis('equal')

# Two Methods for Labeling

# First Method

plt.legend(payment_names)

# Second Method (directly when creating)

plt.pie(payment_freqs, labels=payment_names)

Show percentages of total in each slice:

plt.pie(payment_freqs, labels=payment_names, auto-pct='%

0.1f%%')
# autopct takes a string formatting instruction

# %d%% -> round to decimal

plt.show()
# Create multiple Histograms 

plt.hist(a, alpha=0.5, normed=True) 

plt.hist(b, histtype='step', linewidth=2 normed-=True) 
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Import the Seaborn Library

Seaborn is a extension to Matplotlib with
more visually appealing syntax and
additional Chart Types. That's why Matplot-
lib should also be imported.

If we want to calculate aggregates we need
to import numpy aswell.

from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np

Seaborn Styling (Figure Style and

Scale)(cont)

'font.size': 19.2,

'grid.linewidth': 1.6,

'legend.fontsize': 16.0,

'lines.linewidth': 2.8,

'lines.markeredgewidth': 0.0, 'li

nes.markersize': 11.2,

'patch.linewidth': 0.48,

'xtick.labelsize': 16.0,

'xtick.major.pad': 11.2,

'xtick.major.width': 1.6,

'xtick.minor.width': 0.8,

'ytick.labelsize': 16.0,

'ytick.major.pad': 11.2,

'ytick.major.width': 1.6,

'ytick.minor.width': 0.8

}

Aggregates (with numpy)

Median np.median(df.column_name)

Seaborn Cheat Sheet

Seaborn Styling (Color)

# If you want to quickly see what a
palette looks like

# Save a palette to a variable:

palette = sns.color_palette -("bright")#

Use palplot and pass in the variable:

sns.palplot(palette)

# Select a palette in Seaborn:

sns.set_palette("Paired")

# Default Palettes

-> deep, muted, pastel, bright, dark,

colorblind

# Themes: (called prior to plot) sns.set

_style("")

->darkgrid, whitegrid, dark, white, ticks

#Removes Plot Borders (called after plot)

sns.despine() (default:

top=True, right=True)

-> bottom, left

#Adjust font- and label size sns.set_co

ntext(context="paper", font_scale=1.4, rc

={"grid.li-newidth": 0.6} )

Bar Plot

If the specified columns need to be aggr-
egated first, Seaborn will perform that
aggregation automatically. (mean by
default)

Seaborn will, by default, provide an error
bar displaying the bootstrapped

confidence interval(95%).

sns.barplot(

data=df ,

x="x value column" , y="y

value column" ,

# everything specified below is optional

ci="sd"

estimator=np.median |  len

hue="column to compare"

)

plt.show()

# ci="sd" changes the error bar to

standard deviation

# estimator is used to specifiy the aggr

egation and takes any argument that works 

on a list.(examples provided in code)

# hue adds a nested categorical variableto

compare to the "y value column"

Boxplots

The box represents the interquartile range
The line in the middle of the box is the
median
The end lines are the first and third quarti-
les
The diamonds show outliers

sns.boxplot(

data=df,

x='label',

y='value',

# optional

width=0.45

)
plt.show()

# In Seaborn it's also possible to plot

multiple Boxplots in one viz

Violin Plots

Two KDE plots that are symmetrical along
the center line. (Just for visual effect)

A white dot represents the median.

The thick black line in the center of each

violin represents the interquartile range.

The lines that extend from the center are

the confidence intervals (95%)

sns.violinplot(

data=df, x="l

abel", y="valu

e"

)

KDE Plots show the distribution of an

univariate dataset.

univariate datasets have only one
variable.(e.g.: Temperature)

shade defines if the are under the line is

shaded

sns.kdeplot(dataset1,  shade=True)

sns.kdeplot(dataset2,  shade=True)

...
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Machine Learning

Scikit-Learn Python Cheat Sheet

Supervised

Learning

Unsupervised learning

The model maps No training is given to

input to an the model and it has to

output based on discover the features of

the previous input by self-training

input-output mechanism.

pairs

Scikit learn can be used in Classification,

Regression, Clustering, Dimensionality

reduction, Model Selection and

preprocessing by supervised and

unsupervised training models.

Basic Commands

>>> from sklearn import neighbors,

datasets, preprocessing

>>> from sklearn.model_selection import

train_test_split

>>> from sklearn.metrics import accuracy_‐

score

>>> iris = datasets.load_iris()

>>> X, y = iris.data[:, :2], iris.target

>>> X_train, X_test, y_train, y_test = train_‐

test_split(X, y, random_state=33)

>>> scaler = preprocessing.StandardScale‐

r().fit(X_train)

>>> X_train = scaler.transform(X_train)

>>> X_test = scaler.transform(X_test)

>>> knn = neighbors.KNeighborsClassifier‐

(n_neighbors=5)

>>> knn.fit(X_train, y_train)

>>> y_pred = knn.predict(X_test)

>>> accuracy_score(y_test, y_pred)

Loading Data example

The data being loaded should be numeric

and has to be stored as NumPy arrays or

SciPy sparse matrices.

>>> import numpy as np

>>> X = np.random.random((20,2))

>>> y = np.array(['A','B','C','D','E','F','G','‐

A','C','A','B'])

>>> X[X < 0.7] = 0

Standardi
‐

Normal
‐

Binarization

>>> from >>> from >>> from

sklearn.prep‐ sklearn.p‐

sklearn.p‐ rocessing

reproc‐ reproc‐

import essing essing

StandardS‐ import import

caler Normalizer Binarizer

>>> scaler = >>> scaler =    >>>

StandardS‐ Normalize‐ binarizer =

caler().fit(X_t‐ r().fit(X‐ Binarizer‐

rain) _train) (threshol‐

>>> standa‐

rdized_X =

scaler.trans‐

form(X_train)

>>>
normal‐

ized_X =

scaler.tr‐

ansform(X‐

>>>

binary_X =

binarizer.tr

‐

>>> standa‐ >>> normalized_X_test =

rdized_X_test scaler.transform(X_test)

= scaler.tr‐

ansform(X‐

_test)

Processing Loaded Data

Training And Test Data

>>> from sklearn.model_selection import

train_test_split

>>> X_train, X_test, y_train, y_test = train_‐

test_split(X,y,random_state=0)

Supervised Learning Estimators

Linear

Regression

Support Naive Bayes

Vector

Machines

(SVM)

>>> from >>> from >>> from

sklearn.line‐ sklear‐ sklearn.naiv‐

ar_model n.svm e_bayes

import Linear‐ import import

Regression SVC GaussianNB

>>> lr = Linear‐

Regression(n‐

ormalize=True)

>>> svc

=

SVC(ke

‐

rnel='lin

>>> gnb =

Gaussi

‐

Creating Model

Creating Model

>>> from sklear‐ >>> from sklearn.c‐

n.decomposition luster import KMeans

import PCA

>>> pca = >>> k_means =

PCA(n_compon‐ KMeans(n_clusters=3,

ents=0.95) random_state=0)

K MeansPrincipal

Component

Analysis (PCA)

Unsupervised Learning Estimators

Supervised

Learning

Unsupervised learning

>>> lr.fit(X, y) >>> k_means.fit(X_train)

>>> knn.fit(X‐ >>> pca_model = pca.fi‐

_train, y_train) t_transform(X_train)

>>> svc.fit(X_train, y_train)

Model Fitting

http://>>>pca_model=pca.fi
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Accuracy Score

>>> knn.score-
(X_test, y_test)

>>> from sklear-
n.metrics import
accuracy_score

Classification
Report

>>> from sklearn.m

-etrics import classi-
fication_report

>>> print(classific-
ation_report(y_test,
y_pred)))

Confusion Matrix

>>> from sklear-
n.metrics import
confusion_matrix

>>> print(confus-
ion_matrix(y_test,
y_pred)))

>>> accuracy_score(y_test, y_pred)

Classification Metrics Model Performance

Predicting output

Supervised Estimators

>>> y_pred = svc.predict(np.ran

-dom.random((2,5)))

>>> y_pred = lr.predict(X_test)

Unsupervised Estimators

>>> y_pred = k_means.p

-redict(X_test)

>>> y_pred = knn.predict_proba(X_test))

Adjusted Rand

Index

>>> from sklear-
n.metrics import
adjusted_ran-
d_score

Homogeneity Cross-Validation

>>> from sklear-
n.metrics import
homogeneity_-
score

>>> adjusted_ran >>> homogenei-
-d_score(y_true, ty_score(y_true,
y_pred)) y_pred))

>>> print(cross_
-val_score(knn,
X_train, y_train,
cv=4))

>>> print(cross_-
val_score(lr, X, y,
cv=2))

Clustering Metrics Model Performance



https://taylorandfrancis.com


449

Bibliography

Aeberhard, S., Coomans, D., and de Vel, O. (1992a) The classification performance of RDA. Technical Report 
no. 92-01, Department of Computer Science and Department of Mathematics and Statistics, James Cook 
University of North Queensland.

Aeberhard, S., Coomans, D., and de Vel, O. (1992b) Comparison of classifiers in high dimensional settings, 
Technical Report no. 92-02, Department of Computer Science and Department of Mathematics and 
Statistics, James Cook University of North Queensland.

Ayodele, T. (2010) Types of machine learning algorithms. In: Zhang, Y. (ed.) New Advances in Machine 
Learning (pp. 19–48). InTech, London.

Bellman, R. (1958). Dynamic programming and stochastic control processes. Information and Control 1(3), 
228–239.

Bioconductor.org. (2017) Bioconductor - BiocViews. [online] Available at: https://bioconductor.org/packages 
[Accessed 28 December 2017].

Bone, D., Goodwin, M., Black, M., Lee, C., Audhkhasi, K., and Narayanan, S. (2014) Applying machine 
learning to facilitate autism diagnostics: Pitfalls and promises. Journal of Autism and Developmental 
Disorders, 45(5), 1121–1136.

Breiman, L. (2001) Random forests. Machine Learning, 45(1), 5–32.
Carbonell, J., Michalski, R., and Mitchell, T. (1983) An overview of machine learning. In: Machine Learning, 

pp. 3–23. Springer, Berlin Heidelberg.
Chen, T., and Guestrin, C. (2016) XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, ACM, San 
Francisco.

Cortes, C., and Vapnik, V. (1995) Support vector networks. Machine Learning, 20(3), 273–297.
Criminisi, A., and Shotton, J. (2013) Decision Forests for Computer Vision and Medical Image Analysis. 

Springer, Berlin.
Data-mining-blog.com. (2017) RapidMiner at CeBIT 2010: The Enterprise Edition, Rapid-I and Cloud Mining -  

Data Mining - Blog.com. [online] Available at: http://www.data-mining-blog.com/cloud-mining/rapid-
miner-cebit-2010/ [Accessed 20 December 2017].

De Ville, B. (2006) Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner. 
SAS Institute, Cary.

Díaz-Uriarte, R., and Alvarez de Andrés, S. (2006) Gene selection and classification of microarray data using 
random forest. BMC Bioinformatics, 7, 3.

Dietterich, T.G. (2000) An experimental comparison of three methods for constructing ensembles of decision 
trees: Bagging, boosting, and randomization. Machine Learning, 40(2), 139–157.

Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., and Vapnik, V. (1997) Support vector regression machines. 
In Conference on Advances in Neural Information Processing Systems, San Diego, pp. 155–161.

Duda, R.O., Hart, P.E., and Sytork, D.G. (2001) Pattern Classification, 2nd ed. John Wiley & Sons, Hoboken, 
NJ.

Friedman, J., Hastie, T., and Tibshirani, R. (2001) The Elements of Statistical Learning, vol. 1. Springer Series 
in Statistics New York, NY.

Geladi, P., and Kowalski, B.R. (1986) Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 
1–17.

Hastie, T., Tibshirani, R., and Friedman, J. (2000) The Elements of Statistical Learning. Springer Series in 
Statistics, Berlin, Heidelberg.

He, Q. (1999) A review of clustering algorithms as applied to IR. Technical Report UIUCLIS– 1999/6+IRG, 
University of Illinois at Urbana-Champaign.

Hehn, T.M., and Hamprecht, F.A. (2018) End-to-end learning of deterministic decision trees. In German 
Conference on Pattern Recognition, Berlin, Springer, pp. 612–627.

Ho, T.K. (1995) Random decision forests. Proceedings of the 3rd International Conference on Document 
Analysis and Recognition, Montreal, QC, 14–16 August 1995, pp. 278–282.

Hyafil, L., and Rivest, R.L. (1976) Constructing optimal binary decision trees is NP-complete. Information 
Processing Letters, 5(1), 15–17.

http://Bioconductor.org
https://bioconductor.org
http://Data-mining-blog.com
http://Blog.com
http://www.data-mining-blog.com
http://www.data-mining-blog.com


450 Bibliography

Jain, A.K., Murthy, M.N., and Flynn, P.J. (1999) Data clustering, a review. ACM Computing Surveys, 31(3), 
265–323.

Jordan, M.I. (1994) A statistical approach to decision tree modeling. In Proceedings of the Seventh Annual 
Conference on Computational Learning Theory, COLT’94, New York, NY, pp. 13–20.x

Karthikeyan, T., and Ravikumar, N. (2014) A survey on association rule mining. International Journal of 
Advanced Research in Computer and Communication Engineering, 3(1),  2278–1021.

Kohavi, R., and John, G. (1997) Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.
Kuhn, M., and Johnson, K. (2013) Applied Predictive Modeling, vol. 26. Springer, Berlin, Heidelberg.
Kutner, M.H., Nachtsheim, C.J., Neter, J., and Li, W. (2005) Applied Linear Statistical Models, 5th ed. McGraw 

Hill, New York.
LeCun, Y., Bengio, Y., and Hinton, G. (2015) Deep learning. Nature, 521(7553), 436–444.
Linde, Y., Buzo, A., and Gray, R.M. (1980) An algorithm for vector quantizer design. IEEE Transaction 

Communications, COM-28(1), 84–95.
Montillo, A., Tu, J., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., and Criminisi, A. (2013) Entanglement 

and differentiable information gain maximization, Chapter 19. In: Criminisi, A. and Shotton, J. (eds), 
Decision Forests for Computer Vision and Medical Image Analysis, pp. 273–293). Springer, Berlin, 
Heidelberg.

Prinzie, A., and Van den Poel, D. (2008) Random forests for multiclass classification: Random MultiNomial 
Logit. Expert Systems with Applications, 34(3), 1721–1732.

Puterman, M.L. (2014) Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley 
& Sons, Hoboken, NJ.

Quinlan, J.R. (1986) Induction of decision trees. Machine Learning, 1(1), 81–106.
Rakhmetulayeva, S.B., Duisebekova, K.S., Mamyrbekov, A.M., Kozhamzharova, D.K., Astaubayeva, G.N., 

and Stamkulova, K. (2018) Application of classification algorithm based on SVM for determining the 
effectiveness of treatment of tuberculosis. Procedia Computer Science, 130, 231–238. doi: 10.1016/j.
procs.2018.04.034.

Rangarajan, L., and Nagabhushan, P. (2005) Linear regression for dimensionality reduction and classification 
of multi dimensional data. In: Pal, S.K., Bandyopadhyay, S., and Biswas S. (eds), Pattern Recognition 
and Machine Intelligence. PReMI 2005. Lecture Notes in Computer Science, vol. 3776. Springer, Berlin, 
Heidelberg. doi: 10.1007/11590316_25.

Rokach, L. (2016) Decision forest: Twenty years of research. Information Fusion, 27, 111–125.
Shi, T., and Horvath, S. (2006) Unsupervised learning with random forest predictors. Journal of Computational 

and Graphical Statistics, 15(1), 118–138. doi: 10.1198/106186006X94072.
Skiena, S.S. (2017) Linear and Logistic Regression. In: The Data Science Design Manual. Texts in Computer 

Science. Springer, Cham. doi: 10.1007/978-3-319-55444-0_9.
Uyanık, G.K., and Güler, N. (2013) A study on multiple linear regression analysis. Procedia - Social and 

Behavioral Sciences, 106, 234–240. doi: 10.1016/j.sbspro.2013.12.027.
Vapnik, V.N. (1995) Statistical Learning Theory. Springer, New York.
Xu, T., Duy Le, T., Liu, L., Su, N., Wang, R., Sun, B., Colaprico, A., Bontempi, G., and Li, J. (2017) 

CancerSubtypes: An R/Bioconductor package for molecular cancer subtype identification, validation, 
and visualization. Bioinformatics, 33(19), 3131–3133.

Yahiaoui, O. Er, and Yumusak, N. (2017) A new method of automatic recognition for tuberculosis disease diag-
nosis using support vector machines. Biomedical Research, 28(9), 1–9.

Zhang, Y. (2012) Support vector machine classification algorithm and its application. In: Liu, C., Wang, L., and 
Yang, A. (eds), Information Computing and Applications. ICICA 2012. Communications in Computer 
and Information Science, vol. 308. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-34041-3_27.

Zhang, Y., Zhu, Y., Lin, S., and Liu, X. (2011) Application of Least Squares Support Vector Machine in Fault 
Diagnosis. In: Liu, C., Chang, J., and Yang, A. (eds.) ICICA 2011, Part II. CCIS, vol. 244, pp. 192–200. 
Springer, Heidelberg.

datascienceschool.net.
Abdulhammed, R., Musafer, H., Alessa, A., Faezipour, M., and Abuzneid, A. (2019). Features dimensionality 

reduction approaches for machine learning based network intrusion detection. Electronics, 8(3), 322.
hirogosomewhere.com.
http://cs.uef.fi/sipu/pub/MSc_JarkkoPiiroinen.pdf.
http://www.ee.columbia.edu/~vittorio/UnsupervisedLearning.pdf.
http://www.hnhdqp.com/.
http://www.incompleteideas.net/book/RLbook2020.pdf.
https://blog.clairvoyantsoft.com/eigen-decomposition-and-pca-c50f4ca15501.

http://datascienceschool.net
http://cs.uef.fi
http://cs.uef.fi
http://www.ee.columbia.edu
http://www.hnhdqp.com
http://www.incompleteideas.net
https://blog.clairvoyantsoft.com
https://doi.org/10.1016/j.procs.2018.04.034
https://doi.org/10.1016/j.procs.2018.04.034
https://doi.org/10.1007/11590316_25
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1016/j.sbspro.2013.12.027
https://doi.org/10.1007/978-3-319-55444-0_9
https://doi.org/10.1007/978-3-642-34041-3_27


451Bibliography

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-k-means-clustering-40e1d55e2f4c.
https://ieeexplore.ieee.org/document/7837907.
https://towardsdatascience.com/selecting-the-best-machine-learning-algorithm-for-your-regression-problem-

20c330bad4ef.
https://www.datacamp.com/community/tutorials/introduction-factor-analysis.
https://www.datasciencee.org/post/data-science-life-cycle.
https://www.displayr.com/what-is-hierarchical-clustering/.
https://www.ibm.com/cloud/learn/data-science-introduction#toc-data-scien-92g2jgm.
https://www.javatpoint.com/reinforcement-learning#Approaches.
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf.
https://www.kaggle.com/datasets?datasetsOnly=true.
https://www.kaggle.com/datasets?tags=13302-Classification.
https://www.python-course.eu/linear_discriminant_analysis.php.
https://www.researchgate.net/publication/316994943_Linear_discriminant_analysis_A_detailed_tutorial.
https://www.visiondummy.com/2014/05/feature-extraction-using-pca.
incompleteideas.net.
jonathonbechtel.com.
machinelearningmastery.com.
medium.com.
myditto.tistory.com.

https://heartbeat.fritz.ai
https://ieeexplore.ieee.org
https://towardsdatascience.com
https://towardsdatascience.com
https://www.datacamp.com
https://www.datasciencee.org
https://www.displayr.com
https://www.ibm.com
https://www.javatpoint.com
https://www.jmlr.org
https://www.kaggle.com
https://www.kaggle.com
https://www.python-course.eu
https://www.researchgate.net
https://www.visiondummy.com
http://incompleteideas.net
http://jonathonbechtel.com
http://machinelearningmastery.com
http://medium.com
http://myditto.tistory.com


https://taylorandfrancis.com


453

Index

action 378
adapter design pattern 2
administrators 143
agent 378
agglomerative 159, 160, 164
Apriori algorithm 401, 412
array creation 76, 78

indexing 85
array slicing 77
artificial intelligence 4
average linkage 162

bagging 282, 283
bargraph 93
Bellman optimality equation 384
bias 300, 301
boosting 283
bootstrap aggregating 283
brainstorm capabilities 352
branch/subtree 240
business intelligence analyst 142
business users 142

centroid distance 162
class-dependent transformation 366
classification 180, 181
classification predictive  

modeling 179
class-independent transformation 366
complete linkage 162
computational complexity 97

asymptotic analysis 97
average-case complexity 97
best-case complexity 97
space complexity 97
time complexity 97
worst-case complexity 97

data analytics life cycle 104
data and workspaces 144
data engineers 143
data frame from list 95
data frames 95
data preparation 7
data science 1
data science life cycle 6
data scientists 143
data structures 34

array data structure 34, 35
arrays in Python 35
linked list 36
linked list in Python 36
queues 40
stacks and queues 38

data structures in Python 55
dictionary 58, 65
list 55, 58
nested list 59

set 58
tuples 55, 64

DBSCAN 170, 173
debugging 75; see also Python debugger
decision node 236
deep learning 4
density-connected 171, 172
density reachable 171, 172
describing structural patterns 2
deterministic policy 376, 380
devise capabilities 352
dimensionality reduction 357
discovery 7
distance-based clustering 148
distance measure 148
distplot 117
divisive 159, 161

elbow method 152
ELT 107, 108
ensemble model, random forest 440
entropy 240, 279–80
environment 378
ETL 107, 108
examine models 352
expectation step 166

FacetGrid 117
factor extraction 355
factor rotation 355, 356
file handling 74

append 74
create 74
read 74
text 74
write 74

flow control 24
if & elif statement 24
loop statement 25

Fpgrowth algorithms 401, 412
functions in python

default arguments 70
keyword arguments 70
lambda function 72
return 68, 72
variable-length arguments 71

Gini index 241, 279–80
global variables 69
gradient descent 202

HDFS files 110
heuristics 138

index error 74
information gain 240, 243

k clusters 151
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leaf/terminal node 239
least-squares estimates 192
least-squares regression line 194, 195
linear model, logistic regression 439
linked list

first 36
link 36
next 36

loading factor 356
local variables 69
logistic regression 219–29
loop control statement 26

break statement 26
continue statement 26
for loop 25
nested loop 25
pass statement 26
while loop 25

machine learning 4
maximization step 166
Mercer’s theorem 322
Minkowski metric 149
model-based 380
model building 7
model planning 7

non-parametric unsupervised learning 147

operationalize 7

palplot 114
parametric unsupervised learning 146
parent node/child node 237
pie chart 93
points, Euclidean distance 150
policy 378
policy-based 380
postpruning 246, 247
preprocessing 353
prepruning 246, 247
project manager 142
project sponsor 142
proximity measures 149
pruning 239
pyplot 92
Python 15, 16
Python debugger 75
Python on Linux 17
Python on Windows 16
Python operators

arithmetic operators 18, 19
assignment operators 18
comparison operators 18, 21
logical operators 18, 22
membership operators 19, 23
range() function 29

Q-value 378

RACI matrix 106
reading data from HTML files 110
reading data from JSON files 110
regression 179, 180, 181
regression predictive modeling 180

replot 113
reward signal 377
root mean squared error 180, 195
rooted absolute error 195
rooted square error 195
root node 239, 249

saturated data 8
seaborn 111
searching 42, 44

binary search 44
interpolation search 44
linear search 43

select capabilities 352
semi-supervised machine learning algorithm 4
series 95
sets, Jaccard distance 150
silhouette method 152
single linkage 161
SMEs/subject matter advisors (SMAs) 142
sorting 46

bubble sort 47
insertion sort 47, 49
merge sort 52, 53
quicksort 55
selection sort 51, 52
shell sort 54

splitting 239
stacks and queues

deque 38
isEmpty 38, 40
isFull 38, 40
peek 38, 40

state 378
statistics types

classification 4
forecasting 4
regression 4

stochastic gradient descent 205
stochastic policy 376, 380
structural patterns 2

adapter design pattern 2
bridge design pattern 2
composite design pattern 2
decorator design pattern 2
façade design pattern 3
private class 3
proxy 3

structured query language 110
subnode 239
supervised machine learning algorithm 3

terminal 239
tools set 144

unsaturated data 8
unsupervised machine learning algorithm 3

value 378
value-based 379
variance 300, 301
vectors, cosine distance 149

Ward’s method 163
wrappers 353
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