

Machine Learning for Decision
Sciences with Case Studies

in Python

https://taylorandfrancis.com

Machine Learning for Decision
Sciences with Case Studies

in Python

S. Sumathi
Suresh V. Rajappa
L. Ashok Kumar

Surekha Paneerselvam

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 S. Sumathi, Suresh V. Rajappa, L Ashok Kumar and Surekha Paneerselvam

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl-
edged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 978-1-032-19356-4 (hbk)
ISBN: 978-1-032-19357-1 (pbk)
ISBN: 978-1-003-25880-3 (ebk)

DOI: 10.1201/9781003258803

Typeset in Times
by codeMantra

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003258803

v

Contents
Preface..xv
Acknowledgment ...xvii
About the Authors ...xix
Introduction ...xxi

Chapter 1 Introduction ..1

1.1 Introduction to Data Science ...1
1.1.1 Mathematics ...1
1.1.2 Statistics ...1

1.2 Describing Structural Patterns ..2
1.2.1 Uses of Structural Patterns ...2

1.3 Machine Learning and Statistics ...3
1.4 Relation between Artificial Intelligence, Machine Learning, Neural

Networks, and Deep Learning ..4
1.5 Data Science Life Cycle ..6
1.6 Key Role of Data Scientist ...8

1.6.1 Difference between Data Scientist and Machine
Learning Engineer..8

1.7 Real-World Examples ..8
1.8 Use Cases ...9

1.8.1 Financial and Insurance Industries ..9
1.8.1.1 Fraud Mitigation ...9
1.8.1.2 Personalized Pricing ... 10
1.8.1.3 AML – Anti-Money Laundering .. 10

1.8.2 Utility Industries .. 11
1.8.2.1 Smart Meter and Smart Grid .. 11
1.8.2.2 Manage disaster and Outages ... 11
1.8.2.3 Compliance ... 11

1.8.3 Oil and Gas Industries .. 11
1.8.3.1 Manage Exponential Growth .. 11
1.8.3.2 3D Seismic Imaging and Kirchhoff.................................... 12
1.8.3.3 Rapidly Process and Display Seismic Data 12

1.8.4 E-Commerce and Hi-Tech Industries ... 12
1.8.4.1 Association and Complementary Products 12
1.8.4.2 Cross-Channel Analytics .. 12
1.8.4.3 Event analytics .. 13

Summary .. 13
Review Questions ... 14

Chapter 2 Overview of Python for Machine Learning ... 15

2.1 Introduction ... 15
2.1.1 The Flow of Program Execution in Python 15

2.2 Python for Machine Learning ... 15
2.2.1 Why Is Python Good for ML? .. 16

2.3 Setting up Python .. 16

vi Contents

2.3.1 Python on Windows ... 16
2.3.2 Python on Linux ... 17

2.3.2.1 Ubuntu .. 17
2.4 Python Basics .. 17

2.4.1 Python Operators ... 18
2.4.1.1 Arithmetic Operators .. 18
2.4.1.2 Comparison Operators .. 18
2.4.1.3 Assignment Operators .. 18
2.4.1.4 Logical Operators ... 18
2.4.1.5 Membership Operators ... 19

2.4.2 Python Code Samples on Basic Operators ... 19
2.4.2.1 Arithmetic Operators .. 19
2.4.2.2 Comparison Operators .. 21
2.4.2.3 Logical Operators ...22
2.4.2.4 Membership Operators ...23

2.4.3 Flow Control ...24
2.4.3.1 If & elif Statement ..24
2.4.3.2 Loop Statement ...25
2.4.3.3 Loop Control Statements ..26

2.4.4 Python Code Samples on Flow Control Statements...........................26
2.4.4.1 Conditional Statements ...26
2.4.4.2 Python if...else Statement..27
2.4.4.3 Python if…elif…else Statement ...28
2.4.4.4 The For Loop ..29
2.4.4.5 The range() Function ..29
2.4.4.6 For Loop with else .. 31
2.4.4.7 While Loop ... 31
2.4.4.8 While Loop with else.. 32
2.4.4.9 Python Break and Continue .. 32
2.4.4.10 Python Break Statement ... 32
2.4.4.11 Python Continue Statement .. 33

2.4.5 Review of Basic Data Structures and Implementation in Python34
2.4.5.1 Array Data Structure ..34
2.4.5.2 Implementation of Arrays in Python 35
2.4.5.3 Linked List ..36
2.4.5.4 Implementation of Linked List in Python36
2.4.5.5 Stacks and Queues .. 38
2.4.5.6 Queues ..40
2.4.5.7 Implementation of Queue in Python 41
2.4.5.8 Searching .. 42
2.4.5.9 Implementation of Searching in Python44
2.4.5.10 Sorting ..46
2.4.5.11 Implementation of Bubble Sort in Python 47
2.4.5.12 Insertion Sort .. 47
2.4.5.13 Implementation of Insertion Sort in Python 49
2.4.5.14 Selection Sort .. 51
2.4.5.15 Implementation of Selection Sort in Python....................... 52
2.4.5.16 Merge Sort .. 52
2.4.5.17 Implementation of Merge Sort in Python 53
2.4.5.18 Shell Sort ..54
2.4.5.19 Quicksort .. 55

viiContents

2.4.5.20 Data Structures in Python with Sample Codes 55
2.4.5.21 Python Code Samples for Data Structures in Python 58

2.4.6 Functions in Python ...68
2.4.6.1 Python Code Samples for Functions68
2.4.6.2 Returning Values from Functions68
2.4.6.3 Scope of Variables ..69
2.4.6.4 Function Arguments ... 70

2.4.7 File Handling .. 74
2.4.8 Exception Handling .. 74
2.4.9 Debugging in Python ... 75

2.4.9.1 Packages.. 75
2.5 Numpy Basics .. 75

2.5.1 Introduction to Numpy ... 76
2.5.1.1 Array Creation .. 76
2.5.1.2 Array Slicing...77

2.5.2 Numerical Operations .. 77
2.5.3 Python Code Samples for Numpy Package .. 78

2.5.3.1 Array Creation .. 78
2.5.3.2 Class and Attributes of ndarray—.ndim 82
2.5.3.3 Class and Attributes of ndarray—.shape 82
2.5.3.4 Class and Attributes of ndarray—ndarray.size,

ndarray.Itemsize, ndarray.resize ... 83
2.5.3.5 Class and Attributes of ndarray—.dtype 83
2.5.3.6 Basic Operations ...84
2.5.3.7 Accessing Array Elements: Indexing85
2.5.3.8 Shape Manipulation ..88
2.5.3.9 Universal Functions (ufunc) in Numpy90
2.5.3.10 Broadcasting ...90
2.5.3.11 Args and Kwargs .. 91

2.6 Matplotlib Basics ...92
2.6.1 Creating Graphs with Matplotlib ...93

2.7 Pandas Basics ..94
2.7.1 Getting Started with Pandas...94
2.7.2 Data Frames ...95
2.7.3 Key Operations on Data Frames ..95

2.7.3.1 Data Frame from List ...95
2.7.3.2 Rows and Columns in Data Frame96

2.8 Computational Complexity ..97
2.9 Real-world Examples ...97

2.9.1 Implementation using Pandas ...98
2.9.2 Implementation using Numpy ..98
2.9.3 Implementation using Matplotlib ...98

Summary ..99
Review Questions ... 100
Exercises for Practice ... 101

Chapter 3 Data Analytics Life Cycle for Machine Learning.. 103

3.1 Introduction ... 103
3.2 Data Analytics Life Cycle ... 104

3.2.1 Phase 1 – Data Discovery ... 104

viii Contents

3.2.2 Phase 2 – Data Preparation and Exploratory Data Analysis 107
3.2.2.1 Exploratory Data Analysis .. 110

3.2.3 Phase 3 – Model Planning .. 136
3.2.4 Phase 4 – Model Building .. 139
3.2.5 Phase 5 – Communicating Results ... 140
3.2.6 Phase 6 – Optimize and Operationalize the Models 140

Summary .. 142
Review Questions ... 143

Chapter 4 Unsupervised Learning .. 145

4.1 Introduction ... 145
4.2 Unsupervised Learning ... 145

4.2.1 Clustering ... 147
4.3 Evaluation Metrics for Clustering ... 147

4.3.1 Distance Measures ... 148
4.3.1.1 Minkowski Metric .. 149

4.3.2 Similarity Measures ... 149
4.4 Clustering Algorithms ... 150

4.4.1 Hierarchical and Partitional Clustering Approaches 150
4.4.2 Agglomerative and Divisive Clustering Approaches 150
4.4.3 Hard and Fuzzy Clustering Approaches .. 150
4.4.4 Monothetic and Polythetic Clustering Approaches 151
4.4.5 Deterministic and Probabilistic Clustering Approaches 151

4.5 k-Means Clustering .. 151
4.5.1 Geometric Intuition, Centroids .. 151
4.5.2 The Algorithm .. 152
4.5.3 Choosing k .. 152
4.5.4 Space and Time Complexity .. 153
4.5.5 Advantages and Disadvantages of k-Means Clustering 153

4.5.5.1 Advantages .. 153
4.5.5.2 Disadvantages ... 153

4.5.6 k-Means Clustering in Practice Using Python 154
4.5.6.1 Illustration of the k-Means Algorithm Using Python 154

4.5.7 Fuzzy k-Means Clustering Algorithm .. 157
4.5.7.1 The Algorithm .. 158

4.5.8 Advantages and Disadvantages of Fuzzy k-Means Clustering 158
4.6 Hierarchical Clustering ... 159

4.6.1 Agglomerative Hierarchical Clustering ... 159
4.6.2 Divisive Hierarchical Clustering .. 161
4.6.3 Techniques to Merge Cluster .. 161
4.6.4 Space and Time Complexity .. 163
4.6.5 Limitations of Hierarchical Clustering .. 163
4.6.6 Hierarchical Clustering in Practice Using Python 163

4.6.6.1 DATA_SET... 164
4.7 Mixture of Gaussian Clustering .. 165

4.7.1 Expectation Maximization ... 166
4.7.2 Mixture of Gaussian Clustering in Practice Using Python 168

4.8 Density-Based Clustering Algorithm .. 169
4.8.1 DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) .. 169

ixContents

4.8.2 Space and Time Complexity .. 171
4.8.3 Advantages and Disadvantages of DBSCAN 171

4.8.3.1 Advantages .. 171
4.8.3.2 Disadvantages ... 171

4.8.4 DBSCAN in Practice Using Python ... 172
Summary .. 174
Review Questions ... 174

Chapter 5 Supervised Learning: Regression .. 177

5.1 Introduction ... 177
5.2 Supervised Learning – Real-Life Scenario ... 177
5.3 Types of Supervised Learning ... 178

5.3.1 Supervised Learning – Classification .. 178
5.3.1.1 Classification – Predictive Modeling 179

5.3.2 Supervised Learning – Regression... 179
5.3.2.1 Regression Predictive Modeling 180

5.3.3 Classification vs. Regression .. 180
5.3.4 Conversion between Classification and Regression Problems 181

5.4 Linear Regression .. 181
5.4.1 Types of Linear Regression .. 182

5.4.1.1 Simple Linear Regression ... 183
5.4.1.2 Multiple Linear Regression .. 184

5.4.2 Geometric Intuition .. 186
5.4.3 Mathematical Formulation ... 187
5.4.4 Solving Optimization Problem ... 201

5.4.4.1 Maxima and Minima .. 201
5.4.4.2 Gradient Descent ..202
5.4.4.3 LMS (Least Mean Square) Update Rule205
5.4.4.4 SGD Algorithm ...205

5.4.5 Real-World Applications ..206
5.4.5.1 Predictive Analysis ...206
5.4.5.2 Medical Outcome Prediction ..208
5.4.5.3 Wind Speed Prediction ...208
5.4.5.4 Environmental Effects Monitoring209

5.4.6 Linear Regression in Practice Using Python209
5.4.6.1 Simple Linear Regression Using Python209
5.4.6.2 Multiple Linear Regression Using Python 212

Summary .. 215
Review Questions ... 215

Chapter 6 Supervised Learning: Classification .. 219

6.1 Introduction ... 219
6.2 Use Cases of Classification .. 219
6.3 Logistic Regression ... 219

6.3.1 Geometric Intuition ..220
6.3.2 Variants of Logistic Regression ... 222

6.3.2.1 Simple Logistic Regression .. 222
6.3.2.2 Multiple Logistic Regression .. 223
6.3.2.3 Binary Logistic Regression .. 223

x Contents

6.3.2.4 Multiclass Logistic Regression ...224
6.3.2.5 Nominal Logistic Regression ...224
6.3.2.6 Ordinal Logistic Regression ...226

6.3.3 Optimization Problem ..226
6.3.4 Regularization ..226
6.3.5 Real-World Applications .. 227

6.3.5.1 Medical Diagnosis .. 227
6.3.5.2 Text Classification ... 227
6.3.5.3 Marketing .. 227

6.3.6 Logistic Regression in Practice using Python228
6.3.6.1 Variable Descriptions ... 231
6.3.6.2 Checking for Missing Values .. 231
6.3.6.3 Converting Categorical Variables to a

Dummy Indicator ..234
6.4 Decision Tree Classifier ... 236

6.4.1 Important Terminology in the Decision Tree 236
6.4.2 Example for Decision Tree ... 237
6.4.3 Sample Decision Tree ... 238
6.4.4 Decision Tree Formation .. 238
6.4.5 Algorithms Used for Decision Trees ..240

6.4.5.1 ID3 Algorithm ..240
6.4.5.2 C 4.5 Algorithm .. 241
6.4.5.3 CART Algorithm .. 241

6.4.6 Overfitting and Underfitting ... 241
6.4.6.1 Overfitting ... 241
6.4.6.2 Underfitting ...242
6.4.6.3 Pruning to Avoid Overfitting .. 243

6.4.7 Advantages and Disadvantages ..244
6.4.7.1 Advantages ..244
6.4.7.2 Disadvantages ...244

6.4.8 Decision Tree Examples ...245
6.4.9 Regression Using Decision Tree .. 262
6.4.10 Real-World Examples ...266

6.4.10.1 Predicting Library Book ...266
6.4.10.2 Identification of Tumor ... 267
6.4.10.3 Classification of Telescope Image269
6.4.10.4 Business Management ..269
6.4.10.5 Fault Diagnosis ... 271
6.4.10.6 Healthcare Management ... 271
6.4.10.7 Decision Tree in Data Mining .. 271

6.4.11 Decision Trees in Practice Using Python ... 273
6.5 Random Forest Classifier... 279

6.5.1 Random Forest and Their Construction ...280
6.5.2 Sampling of the Dataset in Random Forest...................................... 281

6.5.2.1 Creation of Subset Data ..285
6.5.3 Pseudocode for Random Forest ..286

6.5.3.1 Pseudocode for Prediction in Random Forest287
6.5.4 Regression Using Random Forest ..287
6.5.5 Classification Using Random Forest ..288

6.5.5.1 Random Forest Problem for Classification – Examples ... 293
6.5.6 Features and Properties of Random Forest 295

xiContents

6.5.6.1 Features ... 295
6.5.6.2 Properties ..296

6.5.7 Advantages and Disadvantages of Random Forest296
6.5.7.1 Advantages ..296
6.5.7.2 Disadvantages ...296

6.5.8 Calculation of Error Using Bias and Variance296
6.5.8.1 Bias ...296
6.5.8.2 Variance ..296
6.5.8.3 Properties of Bias and Variance297

6.5.9 Time Complexity ..297
6.5.10 Extremely Randomized Tree ..297
6.5.11 Real-World Examples ... 298

6.5.11.1 Machine Fault Diagnosis .. 298
6.5.11.2 Medical Field .. 298
6.5.11.3 Banking...299
6.5.11.4 E-Commerce ...300
6.5.11.5 Security ...300

6.5.12 Random Forest in Practice Using Python ..300
6.6 Support Vector Machines ..306

6.6.1 Geometric Intuition ..307
6.6.2 Mathematical Formulation ... 310

6.6.2.1 Maximize Margin with Noise .. 312
6.6.2.2 Slack Variable ξi ... 312

6.6.3 Loss Minimization ... 315
6.6.4 Dual Formulation ... 317
6.6.5 The Kernel Trick .. 320
6.6.6 Polynomial Kernel .. 320

6.6.6.1 Mercer’s Theorem ... 322
6.6.6.2 Radial Basis Function (RBF) Kernel 322
6.6.6.3 Other Domain-Specific Kernel ... 323
6.6.6.4 Sigmoid Kernel ... 323
6.6.6.5 Exponential Kernel ... 323
6.6.6.6 ANOVA Kernel ... 323
6.6.6.7 Rational Quadratic Kernel .. 323
6.6.6.8 Multiquadratic Kernel ... 323
6.6.6.9 Inverse Multiquadratic Kernel .. 323
6.6.6.10 Circular Kernel ...324
6.6.6.11 Bayesian Kernel .. 324
6.6.6.12 Chi-Square Kernel .. 324
6.6.6.13 Histogram Intersection Kernel ...324
6.6.6.14 Generalized Histogram Intersection Kernel324

6.6.7 nu SVM .. 324
6.6.8 SVM Regression ... 325
6.6.9 One-Class SVM ... 326
6.6.10 Multiclass SVM .. 326

6.6.10.1 One against All ... 326
6.6.10.2 One against One ... 327
6.6.10.3 Directed Acyclic Graph SVM .. 327

6.6.11 SVM Examples .. 328
6.6.12 Real-World Applications .. 341

6.6.12.1 Classification of Cognitive Impairment 341

xii Contents

6.6.12.2 Preprocessing .. 342
6.6.12.3 Feature Extraction .. 342
6.6.12.4 SVM Classification ... 342
6.6.12.5 Procedure .. 342
6.6.12.6 Performance Analysis ... 343
6.6.12.7 Text Categorization ... 343
6.6.12.8 Handwritten Optical Character Recognition344
6.6.12.9 Natural Language Processing ...344
6.6.12.10 Cancer Prediction ... 345
6.6.12.11 Stock Market Forecasting ... 345
6.6.12.12 Protein Structure Prediction ...346
6.6.12.13 Face Detection Using SVM ..346

6.6.13 Advantages and Disadvantages of SVM .. 347
6.7 SVM Classification in Practice Using Python ... 347

6.7.1 Support Vectors .. 347
6.7.2 What Is a Hyperplane? ...348

Summary .. 349
Review Questions ... 349

Chapter 7 Feature Engineering ... 351

7.1 Introduction ... 351
7.2 Feature Selection ... 352

7.2.1 Wrapper Methods ... 353
7.2.1.1 Forward Selection ... 353
7.2.1.2 Backward Elimination .. 353
7.2.1.3 Exhaustive Feature Selection .. 354

7.2.2 Featured Methods ... 354
7.3 Factor Analysis .. 355

7.3.1 Types of Factor Analysis .. 355
7.3.2 Working of Factor Analysis ... 355
7.3.3 Terminologies ... 356

7.3.3.1 Definition of Factor ... 356
7.3.3.2 Factor Loading .. 356
7.3.3.3 Eigenvalues ... 356
7.3.3.4 Communalities .. 356
7.3.3.5 Factor Rotation ... 356
7.3.3.6 Selecting the Number of Factors 356

7.4 Principal Component Analysis .. 357
7.4.1 Center the Data ... 357
7.4.2 Normalize the Data .. 357
7.4.3 Estimate the Eigen decomposition ... 357
7.4.4 Project the Data .. 357

7.5 Eigenvalues and PCA .. 359
7.5.1 Usage of eigendecomposition in PCA .. 359

7.6 Feature Reduction .. 361
7.6.1 Factor Analysis Vs. Principal Component Analysis 362

7.7 PCA Transformation in Practice Using Python .. 362
7.8 Linear Discriminant Analysis ...364

7.8.1 Mathematical Operations in LDA .. 365
7.9 LDA Transformation in Practice Using Python .. 368

xiiiContents

7.9.1 Implementation of Scatter within the Class (Sw) 368
7.9.2 Implementation of Scatter between Class (Sb) 369

Summary .. 371
Review Questions ... 371

Chapter 8 Reinforcement Engineering ... 373

8.1 Introduction ... 373
8.2 Reinforcement Learning .. 373

8.2.1 Examples of Reinforcement Learning ... 375
8.3 How RL Differs from Other ML Algorithms? .. 376

8.3.1 Supervised Learning .. 376
8.4 Elements of Reinforcement Learning ... 376

8.4.1 Policy .. 376
8.4.2 Reward Signal .. 377
8.4.3 Value Function ... 377

8.4.3.1 Examples of Rewards ... 377
8.4.4 Model of the Environment ... 378
8.4.5 The Reinforcement Learning Algorithm ... 378
8.4.6 Methods to Implement Reinforcement Learning in ML 379

8.5 Markov Decision Process .. 379
8.5.1 Preliminaries .. 379
8.5.2 Value Functions ..380

8.6 Dynamic Programming ... 381
8.6.1 Policy Evaluation .. 382
8.6.2 Policy Improvement ... 383
8.6.3 Policy Iteration ... 385
8.6.4 Efficiency of Dynamic Programming .. 385
8.6.5 Dynamic Programming in Practice using Python 386

Summary .. 387
Review Questions ... 387

Chapter 9 Case Studies for Decision Sciences Using Python ... 389

9.1 Use Case 1 − Retail Price Optimization Using Price Elasticity of
Demand Method .. 389
9.1.1 Background .. 389
9.1.2 Understanding the Data ..390
9.1.3 Conclusion ..400

9.2 Use Case 2 − Market Basket Analysis (MBA) ... 401
9.2.1 Introduction .. 401
9.2.2 Understating the Data ... 401
9.2.3 Conclusion .. 412

9.3 Use Case 3 − Sales Prediction of a Retailer ... 412
9.3.1 Background .. 412
9.3.2 Understanding the Data .. 413
9.3.3 Conclusion .. 418

9.4 Use Case 4 − Predicting the Cost of Insurance Claims for a
Property and Causalty (P&C) Insurance Company 419
9.4.1 Background .. 419
9.4.2 Understanding the Data .. 419

xiv Contents

9.5 Use Case 5 − E-Commerce Product Ranking and Sentiment Analysis 430
9.5.1 Background .. 430
9.5.2 Understanding the Data .. 431

Summary .. 441
Review Questions ...442

Appendix: Python Cheat Sheet for Machine Learning .. 443

Bibliography ...449

Index .. 453

xv

Preface
Decision science is a set of quantitative tools for informing individual- and population-level deci-
sion-making. It includes decision analysis, cost-effectiveness analysis, constrained optimization,
risk analysis, and behavioral decision theory. Decision science provides a unique framework for
understanding and designing strategies to address such problems by focusing on decisions as the
unit of study. Machine learning generates usable models by evaluating a large number of solutions
against the given data and selecting the one that best fits the situation. As a result, machine learning
can be useful for solving problems that require a lot of human effort. It can efficiently and accurately
inform judgments and generate predictions about challenging topics. Insurers may predict likely
results of crucial decisions using the Data Science Life Cycle and Decision Science platform, which
is powered by machine learning, to achieve optimal decision outcomes. After decisions have been
made, the results can be used to inform future decisions. As a result, high-value decision-making is
streamlined and repeatable, which benefits both shareholders and policyholders.

https://taylorandfrancis.com

xvii

Acknowledgment
The authors are always thankful to the Almighty for perseverance and achievements.

The authors owe their gratitude to Shri L. Gopalakrishnan, Managing Trustee, PSG Institutions,
and to Dr K. Prakasan, Principal-In-Charge, PSG College of Technology, Coimbatore, India, for
their wholehearted cooperation and great encouragement in this successful endeavor.

Dr. Sumathi owes much to her daughter S. Priyanka, who has helped a lot in monopolizing her
time on bookwork and substantially realized the responsibility. She feels happy and proud of the
steel frame support rendered by her husband, Mr. Sai Vadivel. Dr. Sumathi would like to extend
wholehearted thanks to her parents who have reduced the family commitments and their constant
support. She is greatly thankful to her brother Mr. M.S. Karthikeyan who has always been a “stimu-
lator” for her progress. She is thankful to her parents-in-law for their great moral support.

Dr. Suresh V. Rajappa would like to thank his wife, Mrs. Padmini Govindarajan, for her uncon-
ditional support and time whenever needed during the writing of the book. Dr. Suresh also thanks
his twin daughters Ms. Dharshini Suresh and Ms. Varshini Suresh for their continued encourage-
ment for the book. He would also like to extend his gratitude to his present and former colleagues at
KPMG, especially Mr. Vimal Kumar Mehta for his advice. Dr. Suresh also thanks Juan José Chacón-
Quirós, CEO, Establishment Labs and Pratip Dastidar, Global Head of Operations, Establishment
Labs for continuous encouragement. Finally, Dr. Suresh thanks Mr. Srihari Govindarajan, Principal
at Kloudlogic Inc., for helping him to proofread the materials for this book and keeping his sanity.

Dr. L. Ashok Kumar would like to take this opportunity to acknowledge those people who helped
me in completing this book. I am thankful to all my research scholars and students who are doing
their projects and research work with me. But the writing of this book is possible mainly because
of the support of my family members, parents, and sisters. Most importantly, I am very grateful to
my wife, Y. Uma Maheswari, for her constant support during the writing. Without her, all these
things would not be possible. I would like to express my special gratitude to my daughter, A.K.
Sangamithra, for her smiling face and support. I would like to dedicate this work to her.

Dr. Surekha Paneerselvam would like to thank her parents, husband Mr. S. Srinivasan, and
daughter Saisusritha who shouldered a lot of extra responsibilities during the months and years
spent in writing this book. They did this with a long-term vision, depth of character, and positive
outlook that are truly befitting of their name. Dr. Surekha offers her humble pranams at the lotus
feet of Amma, Mata Amritanandamayi.

The authors wish to thank all their friends, colleagues, and research assistants who have been
with them in all their endeavors with their excellent, unforgettable help and assistance in the suc-
cessful execution of the work.

https://taylorandfrancis.com

xix

About the Authors

Dr. S. Sumathi is working as a Professor in the Department of Electrical and Electronics
Engineering, PSG College of Technology, Coimbatore, with teaching and research experience of
30 years. Her research interests include neural networks, fuzzy systems and genetic algorithms,
pattern recognition and classification, data warehousing and data mining, operating systems, and
parallel computing. She is the author of more than 40 papers in refereed journals and international
conferences. She has authored books with reputed publishers such as Springer and CRC Press.

Dr. L. Ashok Kumar was a Postdoctoral Research Fellow from San Diego State University,
California. He is a recipient of the BHAVAN Fellowship from the Indo-US Science and Technology
Forum and SYST Fellowship from DST, Govt. of India. His current research focuses on integration
of renewable energy systems in the smart grid and wearable electronics. He has 3 years of industrial
experience and 19 years of academic and research experience. He has published 167 technical papers
in international and national journals and presented 157 papers in national and international confer-
ences. He has authored ten books with leading publishers such as CRC, Springer, and Elsevier. He
has completed 26 Government-of-India-funded projects, and currently, 7 projects are in progress.

Dr. Suresh V. Rajappa, PhD, PMP, MBA, is seasoned senior IT management consulting pro-
fessional with 25 years’ experience leading large global IT programs and projects in IT strategy,
finance IT (Fintech) transformation strategy, BI, and data warehousing/data analytics and manage-
ment for multiple Fortune 100 clients across diverse industries, generating millions of dollars to top
and bottom lines. Successful professional in recruiting and leading onshore/offshore cross-cultural
teams to deliver complex enterprise-wide solutions within tight deadlines and budgets. Highly
effective in breaking down strategic program/project initiatives into tactical plans and processes to
achieve aggressive customer goals. Excelled at leveraging strategic partnerships, global resources,
process improvements, and best practices to maximize project delivery performance and ROI. He
is an inspirational, solution-focused leader with exceptional ability managing multimillion-dollar
P&Ls/budgets and change management initiatives. As an adjunct professor, Dr. Suresh V. Rajappa
teaches data science for graduate and doctoral students at PSG College of Technology. His industry
specializations include utility, finance (banking and insurance), and hi-tech manufacturing. He is
a frequent speaker at Microsoft PASS conferences and SAP Financials and SAP TechEd confer-
ences on data analytics-related topics. He also teaches data analytics and IT project management
for undergraduate- and graduate-level students. He is also keynote speaker in the International
Conference on Artificial Intelligence, Smart Grid and Smart City Applications.

Dr. Surekha Paneerselvam is an Assistant Professor (Sr. Gr) in the Department of Electrical and
Electronics Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru,
India, with 20 years of experience in teaching, industry, and research. She has published 35 papers
in international and national journals and conferences. She has authored seven books with leading
publishers such as CRC Press and Springer. Her research interests include control systems, compu-
tational intelligence, machine learning, signal and image processing, embedded systems, real-time
operating systems, and virtual instrumentation.

https://taylorandfrancis.com

xxi

Introduction
Chapter 1 describes the basic concepts of data science, and structural patterns involved in decision
sciences. The relation between machine learning and statistics is highlighted with an introduction
to data science life cycle. The key role of a data scientist is briefed, and the real-world applications
in these areas are emphasized.

In Chapter 2, the need for Python programming in machine learning, basics of Python program-
ming, and data structures and their implementation using Python are presented. In addition, we
introduce the readers to NumPy basics, Matplotlib basics, Pandas basics, and the computational
complexity involved in programming using Python. The chapter also provides programming exam-
ples for beginners using Python. A few real-world examples are also programmed so that the reader
will understand implementation in Python with NumPy, Pandas, and Matplotlib libraries.

Chapter 3 focuses on the phases involved in the data analytics life cycle for machine learning.
The aspects involved in data discovery, data preparation and exploratory data analysis, model plan-
ning, and model building are delineated. The reader is also exposed to the process of communicat-
ing results and optimizing and operationalizing the models. The roles and responsibilities of the
members involved throughout the phases of data analytics life cycle are explained in detail.

Chapter 4 gives an insight into the basics of unsupervised learning, distance measures, the con-
cept of clustering, the most commonly used clustering algorithms, their applications to solve prob-
lems in real time, and their limitations.

In Chapter 5, the essential ideas behind all supervised algorithms in machine learning are dis-
cussed. The mathematical concept behind supervised algorithm with worked examples and imple-
mentation using Python is given in detail. Supervised algorithm for regression problem is well
explained in this chapter with Python implementation.

The supervised learning method learns from the labeled data. Logistic regression, decision tree,
and support vector machine are the various supervised learning classification algorithms widely
used. In Chapter 6, a detailed description of these algorithms, their mathematical modeling, merits
and demerits, solved examples, and real-world applications are provided with step-by-step imple-
mentation in Python.

Chapter 7 enlightens an analysis on feature engineering and reviews the basic requirements for
features selection, wrapper models, and factor analysis with relevant Python examples.

In Chapter 8, we discuss the goal-oriented learning based on reinforcement learning, and how
reinforcement learning (RL) varies when compared with other machine learning algorithms. The
elements of RL such as agent, policy function, and value function are explained in detail, followed
by the RL algorithms the Markov decision process (MDP) and dynamic programming (DP). The
value functions, policy evaluation, and improvements are covered along with implementation of
MDP and DP in Python.

Chapter 9 highlights a few applications of machine learning in various industries to solve prob-
lems where traditional programming cannot accommodate the reasoning for many combinations.
The first use case, Retail Price Optimization Using the Price Elasticity of Demand Method, identi-
fies the exact price at which the most profit may be made. We present the application based on a
customer dataset in a supermarket in use case 2 – Market Basket Analysis – highlighting association
rule mining. Use case 3 – Sales Prediction of a Retailer – shows how to create a machine learning
model and determine the sales of each product at a certain store. In use case 4, the cost of insurance
claims is predicted for a property and casualty (P&C) insurance company. This case study shows
how to clean data, preprocess data, and deal with outliers.

https://taylorandfrancis.com

1

1 Introduction

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the need for data science and machine learning (ML) in a real-world scenario.
• Appreciate the fundamentals of ML and deep learning.
• Describe structural patterns and understand their variants.
• Know the key roles of a data scientist for solving practical problems.
• Identify the real-world application areas of ML models.

1.1 INTRODUCTION TO DATA SCIENCE

The process of considering the algorithm and coding it with the help of a programming language
can be executed by the computer. IT world has made people’s life easier by providing helpful soft-
ware. A design pattern provides a general refusal solution to the common problems that usually
occur in software design. The patterns identify the connections between classes and objects. The
primary purpose of patterns is to boost the performance of the development process. This chap-
ter will understand the need for data science and machine learning (ML) in real-world scenarios,
highlight the basics of ML and deep learning (DL), know how to describe structural patterns, and
understand their variants. In addition, a detailed description of the key role of a data scientist in
solving real-world applications is highlighted. Several areas in which ML algorithms are applied
are also illustrated.

Data science is a part of software engineering in which we study where the information comes
from and its organization. It represents how we can turn the valuable resources in the initializa-
tion of any business and the information technology strategies. Data science allows mining a large
amount of data that helps to identify the patterns for any organization’s efficiencies. There are some
fields of data science: statistics, disciplines of computer science, data visualization, and data min-
ing. Data scientists possess a combination of ML and analytic and statistical skills and experience
in coding and algorithms. Data science is everywhere in today’s world. Let’s imagine that you are
traveling to a new city. The user can search for some tourist places, restaurants, parks, hotels, etc.,
with just one click. How is this possible? It’s the data science that saves and displays the results on
your phone screen in a few seconds.

1.1.1 MatheMatics

Mathematics is everywhere around us, from counting money, temperature calculation, shapes, etc.
Data science and mathematics have a strong relation in all the decision-making processes like pre-
dicting the routes and searching for the best possible answer. All these tasks are incomplete without
mathematics. Data science uses ML algorithms for decision-making processes.

1.1.2 statistics

Data science is nothing without statistics, and data scientists require a graphical representation of
the data with less theory. Business providers prefer data visualization like a bar chart as it becomes
easier to evaluate the data and gain more information.

DOI: 10.1201/9781003258803-1

https://doi.org/10.1201/9781003258803-1

2 Machine Learning for Decision Sciences with Case Studies in Python

1.2 DESCRIBING STRUCTURAL PATTERNS

Creating an application or software is a complex task. It becomes more difficult if not created with
proper flow or patterns – software engineers use some patterns to symbolize their application pat-
terns to solve many problems. The selection of patterns depends upon the application requirements.
Design patterns boost the development process; structural patterns are all about the classes and their
instances creation. For example, to create a website that stores student records, the class will be
Student and will have attributes like student name, age, father’s name, and address.

1.2.1 Uses of strUctUral Patterns

Structural patterns play an essential role in effectively solving the problems, as it covers the central
concept of object-oriented programming, i.e., classes and their inheritance. These patterns allow
classes to work together as a group. With the help of structural patterns, software engineers write
less source code as most of the functions are extracted from inherited classes. Some of the com-
monly used design patterns are listed below:

• Adapter design pattern
Adapter patterns create a connection between interfaces of different classes; let’s take

the real-life example; we have two applications created with two different programming
languages. Now, you want to compile both applications on a single platform. The adapter
works here as it changes the interface of one instance so that other instances can easily
understand it. The adapter hides all the complex conversions.

• Bridge design pattern
The bridge design pattern splits the abstraction from its implementation. Let’s take the

example of the main socket, which controls the lights, fan, TV, and AC of the house. This
main socket acts as a bridge between the house’s sub-switches that control turning ON/
OFF of the utilities.

• Composite design pattern
Composite design patterns are used where a group of identical instances is considered

as one instance. This pattern creates a hierarchal structure of similar objects. For example,
the composite pattern creates a class that includes the faction of its objects.

Let’s understand the pattern with an example of grouping the teachers into different
departments, classes will contain all the details of a teacher like a name, salary, address,
and department, and composite teacher class will use teacher class to add teachers in a
different department and print the teachers.

• Decorator design pattern
Decorator design patterns are used whenever new functions are needed to be added

to existing objects without changing the entire structure of the class. Decorator design
pattern creates a new class that abstracts the original class and provides the newly added
functionalities. Let’s discuss an example of a decorator design pattern for a clearer under-
standing. Suppose we need to develop an online ordering system of a well-known burger
restaurant that takes all requirements from a customer like what kind of bun, patty, and
cheese they need in the burger and according to the requirement estimate the burger price.

Since customer customization may vary from customer to customer, creating classes
for each type of customization will be a difficult task. Here we can create a decorator
pattern class, which will contain all the information to customize the burger, like adding
extra cheese, extra patty etc. The main class will be the burger with the regular base price.
By using a decorator class, the burger class can be extended and the price can be added
according to the customization.

3Introduction

• Façade design pattern
Façade design patterns act like abstraction, which conceals all the inner complex details

of the application and provides a simple interface to the client to access the applications.
Let us consider an example of a grocery shop, which is equipped with loads of items. When
a customer visits the shop for the first time, he is unable to search and find the items he
wishes to purchase. So he gives a list to the shopkeeper and the shopkeeper gives the cus-
tomer all the required items. This is an example of Facade design pattern.

• Flyweight design pattern
Flyweight design patterns, as the name implies, are patterns that fly away from the

weight, i.e., a memory from the application. It reduces the objects from the source code
to release the memory and boosts the performance. Flyweight design can be called code
optimization. Flyweight searches the objects that are similar and use them. In case no
match is found, it creates a new object. Improving system performance is a non-func-
tional and essential requirement of software as it affects its appearance. Suppose we
have an application running too slow due to lines and lines of code written and wast-
age of cache; now, flyweight design patterns work here. It will eliminate all the similar
objects that are created and waste memory.

• Private class
This type of pattern is used for security purposes where data are crucial. Create a pri-

vate class and store the data, which will be in the same state throughout the code. All vari-
ables defined in the private class are only accessible within its class. To access the private
class attributes, you need to create their getters and setters. The private class is used where
information needs to be hidden from the outside world and only displayed to you.

• Proxy
Proxy is all about providing access. In proxy design patterns, a class is created, which

represents the functionality of other classes. Let’s take the example of a credit card that
acts as a proxy and contains all your bank account amounts.

1.3 MACHINE LEARNING AND STATISTICS

ML can forecast better and more accurate output. It builds the algorithms that use the input data
statistics to predict the output. All social media websites use ML to display the data on the feed. The
procedure of ML involves searching through data to look for patterns and program them accord-
ingly. Some ML examples include ads displayed as a suggestion and fraud detection. Some of the
ML methods are as follows:

Supervised machine learning algorithm
Supervised learning deals with the known and categorizes data. It can classify uncategorized

data also. In supervised learning, a sample set contains input data with desired output data.
Based on this new test, data can easily be categorized. For example, an application identifies
the animal that is either an herbivore, a carnivore, or an omnivore animal. Using supervised
learning, it already knew the classification of the animal. Now, whenever a new animal is
entered into the system as an input, the system will automatically predict its category.

Unsupervised machine learning algorithm
In the unsupervised learning sample set, data are unknown and unlabeled. The data cannot

be implemented directly as we are unaware of the outputs. It simply works on finding the
similarities between the data and categorizes them as one. For example, categorize the
customer based on which product they purchase, and based on a similar product, we can
categorize customers.

4 Machine Learning for Decision Sciences with Case Studies in Python

Semi-supervised machine learning algorithm
Semi-supervised learning is the mixture of supervised and unsupervised learning as its data-

set contains categorized and uncategorized data. The aim is to predict the new data that are
more effective and accurate than the output data given by the user. For example, you wish
to buy a product and watch ads related to the product, and suddenly, you want to review the
same product. Though the product is from a different company, the categorized data would
be the basic ad released by the company.

Reinforcement machine learning algorithm
In reinforcement learning, the machine does not learn from classified data; instead it learns

from its experience and prediction, an agent takes all the actions (robotic avatar), finds all
possible scenarios and fits in the best solution. Games such as hangman is the best example
of reinforcement learning algorithm. Statistics is a representation of data, hypothesis, etc.
It’s the correlation between the points, invariable and multivariable.

Statistics types are as follows:

Forecasting continuous variable: If a variable can adapt value between minimum and
maximum, then it is called continuous variable, for example, weight and age. It may be
deterministic or probabilistic. A deterministic result can be compared and evaluated with
respective observations. Probabilistic results are in the form of distribution.

Regression: It deals with the relationship between predictor and outcome variables. It ana-
lyzes the results based on predictive analysis and modeling. Let’s take the example of diet-
ing apps that predict the diet schedule based on your daily food routine, weight, and height.

Classification: It’s the process of grouping the data on the basis of similar categories. For
example, classify animals based on their habitats.

ML and statistics are two different methodologies, but how are they similar? The similarity between
both of them is the prediction from the data. The primary difference between ML and statistics is
manipulating the data; ML is simply working out the data using algorithms, whereas statistics is just
mathematics in finding the patterns from the data.

1.4 RELATION BETWEEN ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING, NEURAL NETWORKS, AND DEEP LEARNING

There is always a debate among researchers and beginners about artificial intelligence (AI), ML,
neural networks (NNs), and DL. Some of the popular Google search questions are “Are AI and ML
different?”, “Are ML and DL the same?”, “How is NN related to ML and DL?”, etc. Data scientists
have come up with a clear definition for these terms:

Artificial intelligence (AI), like mathematics and biology, is a science. It researches how to
create intelligent programs and machines that can solve issues creatively, which has his-
torically been considered a human right.

Machine learning (ML) is a subcategory of AI that allows systems to learn and improve
independently without being explicitly programmed. Different learning algorithms based
on different architectures (e.g., NNs) are used in ML to address problems.

Deep learning (DL), also known as deep neural learning, is a type of ML that employs NNs
to assess various elements with a structure similar to that of the human nervous system.

IBM data scientists illustrate the relation between AI, ML, NN, and DL through simple nesting
dolls. An illustration is given in the figure to represent how each paradigm is a subset of the previ-
ous paradigm. In other words, ML is a subset of AI. For example, the foundation of DL techniques
is NN, which is a subset of ML. In practice, the number of hidden layers in a NN determines the
architecture of a DL algorithm (Figure 1.1).

5Introduction

AI is a discipline of computer science that teaches machines to think and function in the same
way that people do. DL is a branch of AI that processes and manipulates data by mimicking the
human brain’s working pattern. For example, the NN is used in DL to predict output patterns.
Let’s look at the shortest route computation application as an illustration of how DL works.
When we hurry and want to get to our end destination as soon as possible, we look for a shorter
path.

The user will be asked to provide the following system input:

• Place to begin
• Destination

As previously said, DL is based on NNs, which have nodes similar to interconnected neurons. The
input, hidden, and output layers are the three layers that make up a neuron. The input layer con-
tains the records entered by the user, such as the beginning place and destination. The hidden layer
contains all the calculations and implementation, such as calculating the shortest path that covers
the least amount of time and kilometers based on the user’s starting location and destination. There
can be one or several hidden layers. Here are some DL implementations that feature more than one
hidden layer. The final user output is contained in the output layer. In other words, it will show the
user the optimized shortest route.

AI, DL, and ML all have one thing in common: They all use massive data and modern computer
languages to anticipate outcomes. DL is the interrelationship between the three. ML is a subset of
AI, and AI is a subset of ML.

So, as the figure suggests, AI is a broad concept that first exploded in the late 1950s, causing a
significant shift in the data science industry. Later, in the late 1980s, ML was introduced, which
improved AI features. Finally, in the late 1990s, DL was introduced, which combines AI and ML
(Figure 1.2).

FIGURE 1.1 AI vs. ML vs. NN vs. DL analogous to a nesting doll.

6 Machine Learning for Decision Sciences with Case Studies in Python

1.5 DATA SCIENCE LIFE CYCLE

Collection of data manipulates and analyzes the data and shows a meaningful result. All these pro-
cesses are complex and lengthy. The Data scientists require a proper flow or cycle to perform the
data science life cycle tasks. On the other hand, working with big data is an easy task; data scientist
uses a proper workflow for the result. The data science life cycle consists of six phases (Figure 1.3):

• Discovery
• Data preparation
• Model planning
• Model building
• Communicate results
• Operationalize

FIGURE 1.2 AI vs ML vs NN vs DL.

7Introduction

• Discovery
Before starting the project, having a strong command of the background of the project

is essential. It’s essential to have all the questions clear at the start. Gather all the require-
ments needed during the project. A data scientist must have a question/answer session
with clients for a better understanding of requirements. Quick review on the history of
company and project whether the similar project has been done in the past for reference.

• Data preparation
This step plays a critical and time-consuming role in the life cycle; this phase acts as a

filtration process of data. In this step, all the cleaning and elimination of missing attributes
are done. Why is the phase time-consuming? When we talk about big data, it can be in
terabytes or more than that. Cleaning a large amount of data requires hundreds of sce-
narios. Let’s take the example of variable “area,” which has the data type integer. All the
records are in integer except one record, which is in decimal. The integer data type cannot
contain a decimal value; here, you need to eliminate that particular record.

• Model planning
In this phase, you need to select the ML model for your project, which algorithm needs

to be applied, and select the mathematical approach which will give the best possible
outcome.

• Model building
Once the model is finalized and created just codes, the most commonly used language is

Python. As soon as the project is ready, we deploy the system and share it with a customer.
In this way, QA is done by the client itself. Any changes at the client end are urgently taken
up and resolved.

• Communicate results
The client should have a clearer understanding of the model and result, which is very

difficult as the client has no understanding of data science. Therefore, model interfaces
should be transparent and interpretable as it will become easier for the client to absorb
them.

• Operationalize
The final step is where documentation and maintenance of the project are done.

Documentation will help the client to understand the project and run it efficiently.

FIGURE 1.3 Phases of data science life cycle.

8 Machine Learning for Decision Sciences with Case Studies in Python

1.6 KEY ROLE OF DATA SCIENTIST

The activities the data scientists do are arranging the appropriate data and selecting models to meet
the application needs. Data scientists are responsible for managing and presenting accurate data.
Data scientist plays a vital role as all the business is depending on data analysis and data modeling.

The primary role of a data scientist is to investigate and manipulate the data in meaningful
aspects and solve diverse problems. They have core knowledge of computer science, ML, big data,
statistics, and mathematics. In addition, data scientists have core expertise in different program-
ming languages like Java and Python. A data scientist’s work starts with collecting, analyzing, and
concluding a final result based on the decision-making process. Scientists also work on big data.

There are two types of big data:

• Saturated data: The data are mainly in an organized, sorted manner, for example, data
gathered from devices like biometric devices, face detection devices, and longitudes and
latitudes of different locations.

• Unsaturated data: The data are scattered and unorganized, which need to be organized
before further processing. E.g., social media adds data, client feedback data, emails, let-
ters, posts all are unsaturated data.

Data scientists manage these types of data. Below are some application examples on which data
scientists work:

• Fraud detection applications
• Predictable applications
• Cost estimation applications
• Search engines

1.6.1 Difference between Data scientist anD Machine learning engineer

A data scientist is responsible for the evaluation and classification of the data according to the busi-
ness requirements. Whenever a problem needs to be solved based on data, at this point, data scien-
tist plays their role. Data scientists analyze the data using statistical methods and create charts and
graphs to understand the result better. On the other hand, ML engineers use algorithms to solve their
problems. They develop programs that control robots and computer machines. They implement or
create new models for better predictive results.

1.7 REAL-WORLD EXAMPLES

There is a wide range of application areas where AI, ML, and DL are gaining popularity. Some of
the common areas that find the vast application of these domains are illustrated below:

Check deposit apps
Whether the business is small or large, AI is present in every field. AI helps in all cash

management processes. People feel odium going to the bank and standing in the enormous
queue for check deposits. AI had solved this problem. Check deposit applications allow the
customer to automate the entire transaction process. AI observed the transaction patterns
and saved them in the database now if any unusual step is identified in a transaction. It is
considered fraud.

Google translator
Google translator uses an artificial neural network. It converts a sentence of one language

into another language in just a few seconds. It works on the same pattern identification.

9Introduction

Patterns are saved in the database whenever a new word system matches the patterns from
the history and concludes the translation.

Google Maps
Google Maps use AI tools for the navigation and calculation of the shortest route. So

whenever you are lost or at some new place, you google the location, and it displays the
navigation in just a few seconds. How this is possible? It’s just because of AI.

Online shopping recommendation
Whenever you search for an item on a search engine, it is saved as a history. As per

your search, next time, you will be displayed recommended ads. How is this possible? It’s
because of AI. Same with online shopping, whenever you purchase an item from an online
store, you start getting suggestions related to the same product and your interests.

Rideshare applications
The rideshare application uses a ML technique to predict the ride fare. So whenever

you book a ride, all the rides close to your current location are displayed on the screen and
associated estimated costs for your destination. How is this possible? It’s because of ML.

1.8 USE CASES

Following are the use cases of industries that use ML:

1.8.1 financial anD insUrance inDUstries

1.8.1.1 Fraud Mitigation
Many organizations give less importance to fraud detection; as a result, they experience significant
losses.

1.8.1.1.1 How Can We Identify Fraud?
There are various frauds and threats taking place in almost every industry. The primary and most
challenging step is to identify how fraud took place. Fraud can occur inside or outside the company.
Fraud inside the company can occur like a company employee changing bank information without
the permission of an authorized person. In the same manner, outside fraud can be like hacking web-
sites or credit card fraud. In either case, to get rid of such kinds of fraud, data science helps here.
Using predictive data science methodology, this issue can be overcome.

1.8.1.1.2 Machine Learning for Fraud Detection
Nowadays, ML is used in every field. ML algorithms identify the patterns with the help of data.
It combines the data, relate them together, and concludes the fraud before something big happens.
ML algorithms find the connection relation between locations and products and map them to people
connected to that particular field. This approach of ML is convenient as it connects the data with all
the individuals related to the fields.

1.8.1.1.3 Fraud Detection in Insurance Industries
Insurance industries are all about making a relationship with clients. However, it is next to impossible
to keep the authenticity and verify each customer’s information, which leads to data privacy issues.

These problems can be overcome by implementing a data analysis and ingestion platform, which
makes data collaboration possible, checks transactions, and claims inappropriate information across
insurance products. This solution identifies the unusual information about the insurer.

1.8.1.1.4 Fraud Detection in Financial Industries
The banking industry relies on data that need to be captured and preserved.. 14ike customer service
calls, transactions etc. This is nearly impossible to keep the record, keep track, and analyze the data.

10 Machine Learning for Decision Sciences with Case Studies in Python

Fraud detections may occur in many forms including credit / debit card fraud, application fraud,
and account take overs. To overcome this banking frauds, business providers use pattern analysis,
which helps to analyze the data and build fraud prevention systems that identify unusual transac-
tions taking place.

1.8.1.2 Personalized Pricing
1.8.1.2.1 What Is Personalized Pricing?
Personalized pricing is where retailers already know about customers, and prices vary from cus-
tomer to customer, which depends on characteristics and behavior. Let’s take the example of a shop
market where retailers sell the same item at different prices to different customers. The customers
who stay long-term, keep purchasing the items that retailers offer a special discount..

1.8.1.2.2 How Personalized Pricing Works?
As defined earlier, the pricing varies from customer to customer. This is because customers are
categorized into different groups, and each group has a different price. Whenever a new or old cus-
tomer arrives, the purchase system matches the customer with the most suitable group depending on
their specifications and past visits. Accordingly, the prices are offered.

Let’s take a hotel management system, for example, and their prices depend on the weather con-
ditions and vacations. Whenever there are winters with snowfall, hotels’ pricing is high due to the
season. In the same off-season, hotels offer a special discount to their customers.

1.8.1.2.3 Client Response on Customized Pricing
No one agrees on paying more when someone is paying less. When a customer came to knew about
customized pricing, majority of customers were loud and not satisfied. Even people who paid less for
the product raised the objection. As per their understanding, companies are offering fewer prices to
customers who don’t want the product to attract them. The customer did not know it’s legal to charge
different prices to different customers.

1.8.1.3 AML – Anti-Money Laundering
Anti-money laundering refers to the laws and procedures that identify the criminals who show ille-
gally obtained money as legal income.

1.8.1.3.1 How AML Works?
AML targets unlawful activities, including business activities, bank details, trading goods, drug
smuggling, and taking money in large amounts to other countries.

All these activities are inspected by police officers who are hired for these works. They need to
keep records of all the suspicious activities going around.

1.8.1.3.2 Machine Learning in Anti-money Laundering
To detect the criminal, it’s essential to keep a record of every step taken. Manually, it’s next to
impossible. ML helps here; many models can be implemented to catch the criminal.

Anti-laundering software is built using ML and AI, and this software can learn and gain infor-
mation from historical data. For example, discover hidden patterns, and identify the connection and
relationship between the data. On the other hand, detect and predict the auspicious event taking
place. The software decreases the risk of false alarms and predictions.

AI-based analytical engine helps to discover money laundering activities. It monitors all the
banking activities like transferring money, payments, purchases, and investments; social media
activities are also monitored to keep track of the extracurricular activities performed by the
suspect.

The engine uses supervised and unsupervised learning techniques to discover irregularity taken
place.

11Introduction

1.8.2 Utility inDUstries

1.8.2.1 Smart Meter and Smart Grid
Smart grid is the digital technology that allows communication between the utility and its custom-
ers; it controls energy consumption. Some of the smart grids are smart meters, smart appliances, etc.

Smart meters are advanced meters that give statistical information about the electricity that has
been used; it tells the cost monthly/daily/hourly as per the usage. All the information is displayed
on the digital screen.

1.8.2.1.1 Machine Learning in Smart Meters and Grid
The ML technique cuts the cost, decreases wastage, and improves convenience. Energy optimiza-
tion is done based on preferences like the necessary appliances that need to be ON (AC, TV, wash-
ing machine, etc.). Based on historical data and preferences, smart meters work using analytical
models.

It analyzes the house’s resident profile and energy profile; then, as per the collected data, resident
profile and energy consumptions are predicted. Now, based on the forecasted energy consumption,
solar energy is fitted on an additional electricity power grid to reduce the main electricity power
grid demand.

1.8.2.2 Manage disaster and Outages
Electricity utility companies find it a difficult job to manage and plan natural disasters. In addition,
restoration of power in a disaster is a hazardous job. Let’s take the example of the thunderstorm that
destroys the trees and power lines that affect the electricity supply in the affected areas.

Due to significant storms/hurricanes in a city, people face 10–15 days of an electricity outage,
and it becomes challenging to survive. AI cuts the duration to approx 4 days by using a prediction
tool that detects the areas that will be affected after the disaster.

A predictive and data-driven approach will allow operational power to communicate with emer-
gency service for instant recovery quickly. It can also control and analyze the historical data to
improve its effectiveness.

AI had taken control over the disaster like earthquakes. It stores the information about the build-
ing constructions like soil and bricks used to identify which building will be effective in case of an
earthquake.

1.8.2.3 Compliance
Utility companies’ business flow differs from normal ones, as they do not buy the product and sell
it to customers at a higher price. In utilities, prices are fixed by the government (or related public
utility commissions – PUCs), which everyone has followed.

The utility industry is under extraordinary pressure from aging infrastructure and rapidly shift-
ing customers and fulfilling their demands.

A utility can meet changing dynamics by applying AI; the first step is to improve utility programs
and increase customer engagement and then enhance the customer experience using an AI-enabled
digital experience that delivers real-time and secure information on mobile.

1.8.3 oil anD gas inDUstries

1.8.3.1 Manage Exponential Growth
Oil has been one of the most demanding resources for decades. Oil providers cover half of the
world’s energy. Oil has been used everywhere, from vehicles to industries.

Since the business is vast, it needs to be controlled and managed correctly. The oil and gas indus-
try is divided into different sectors, and AI technology can be applied differently. AI can help in
lowering the cost and making the appropriate decision.

12 Machine Learning for Decision Sciences with Case Studies in Python

Using AI, the industry is applying new technology to gain more profit with a low margin. With
the help of AI sensors, companies can keep a record of failures.

The companies that locate and extract oil and natural gas require a large amount of machinery
and workers, increasing cost. We can reduce the cost by using AI sensors to control a real-time
system and monitor data collection.

The companies that store, process, and deliver the oil and gas to providers also use AI for forecast-
ing and measuring the optimization for better decision-making, which enhances the performance.

AI is growing day by day and increasing the efficiency and cost-effectiveness in the oil and gas
industries.

1.8.3.2 3D Seismic Imaging and Kirchhoff
3D seismic is a tool that identifies crude oil and natural gas with the help of sound waves of rock
underground. Seismologist uses ultrasensitive devices to record the sound of rock.

1.8.3.2.1 How Are the Seismic Data Collected?
There are two types of data recordings:

Passive source: They are generated by the movement of the earth. Humans are unable to feel
as they produce significantly less vibration.

Active source: The data are gained by sending vibrations to the earth.

1.8.3.2.2 How Do AI and Machine Learning Work Here?
Using ML algorithms, the company can group oil and gas fields, which are implemented to predict
and implement the preservation of pumps, trackers, turbines, etc. In addition, DL and ML tech-
niques like image processing, forecasting methods, and analytical tools are implemented.

1.8.3.3 Rapidly Process and Display Seismic Data
ML systems automatically collect the data and identify the relation between them. Firstly, ML iden-
tifies all the data patterns, which may include some missing traces. It analyzes the data and identi-
fies the hidden relationship between them. Now, using the known data, it will identify the missing
traces for another set of input data.

This method only relies on its experience, i.e., learned and concluded from the identified dataset.
It reduces the cost and time wasted in identifying the missing traces.

1.8.4 e-coMMerce anD hi-tech inDUstries

1.8.4.1 Association and Complementary Products
Nowadays, everything is associated with the Internet, whether the purchase of items, selling, or
studying. Most of the e-commerce business providers are looking for doing business and selling
goods online. These companies try selling their products by promotion, displaying ads, and market-
ing. AI plays its role by creating a recommendation system that uses complementarity and similarity
among goods and offers the best deal per customer needs and wants.

Recommendation systems are designed based on association. Therefore, they give importance to
user interests and recommend only the products users are interested in.

Another critical factor is complementary association; it is applied in almost every field of e-com-
merce, where complementary products are offered to the customer. To increase the system’s accu-
racy, users are offered suggestions.

1.8.4.2 Cross-Channel Analytics
Cross-channel analytics is a marketing intelligence technique that allows data from different plat-
forms, including ads, promotion, and presenting it on a single platform.

13Introduction

It understands users’ behavior to narrow downwhat sort of ads, products are popular among
them. In an e-commerce website, data analysts investigate and find the paths and links created.
These paths will help in making it possible for future marketing.

1.8.4.3 Event analytics
AI and ML are everywhere and have become popular due to their approach to solving problems,
algorithms, and predictive models.

Analytics plays a vital role in a powerful AI system. The organization that uses a large amount of
data collection and integrations and has mature model analytics plays its part here.

It has been identified that the business providers who are willing to opt for AI techniques inte-
grate the data and functionality into their core system. An enterprise-wide strategy on data stan-
dards can help in analytics and ML practice.

SUMMARY

Design patterns: In computer science, it’s a generalized solution to the most commonly faced
problems. It’s like a dummy template that develops. Then, based on the template code, the
whole source code is written. There are three types of design patterns, creational, struc-
tural, and behavioral design patterns.

Data science: It’s the study of data and its manipulation, analyzing the data, sorting the raw
data into a meaningful manner. Data science includes mathematics, computer study, eco-
nomics, and statistics.

Computer science: It is the branch of science that deals with computers and their study, how
a computer works, and how to operate it. The person who studies computers is called a
computer scientist.

Economics: It deals with the study of construction, expenditure, and distribution.
Machine learning: It’s all about the representation of data, algorithms, and patterns.

Nowadays, data scientist uses ML techniques and patterns to build an application.
Artificial intelligence: It is the process where a machine acts like a human. For example,

human-like robots are created. This is possible because of AI.
Statistics: The branch of mathematics deals with gathering, arranging, organizing, and repre-

senting the data in graphical forms. It works excellent in concluding the results in the form
of sets, charts, and graphs.

Data scientist: Data scientists are responsible for managing and presenting accurate data. Data
scientist plays a vital role as all the business is depending on data analysis and data modeling.

Object-oriented programming: Explain its types, and object-oriented programming is all
about creating classes and their instances. Data are converted into objects, and all the
behavior of the data is performed in classes. It’s an excellent aspect of writing code.

Object: The instance of a class is called an object; if we need to access the attributes and
functions of class, it’s compulsory to create its object.

Supervised machine learning algorithm: In this type of learning, data are in a meaningful
format, and machines have some knowledge about the data and can predict the output.

Unsupervised machine learning algorithm: This type of data machine is unaware of the
data and its output. It models the structure and classifies it to know much about the data.

Semi-supervised machine learning algorithm: In this type of data, both classified and
unclassified data are present; machines learn from unclassified data without using the
labeled data; in this manner, machines can learn some new information that was not pres-
ent in human entered label data.

Reinforcement machine learning algorithm: In this type, no classified data machine learns
from its experience and prediction. There is an agent who takes all the actions (robotic
avatar), finds all the possible scenarios, and fits in the best.

14 Machine Learning for Decision Sciences with Case Studies in Python

REVIEW QUESTIONS

 1. Is it necessary to use design patterns?
 2. How many design patterns are there?
 3. How are the proxy design patterns helpful?
 4. Give an example of a private class.
 5. Are mathematics and statistics the same?
 6. How important is it to follow the data science life cycle?
 7. What is the final step of the data science life cycle?
 8. Give real-life examples where ML is used.
 9. What is DL?
 10. What are the advantages of a NN?
 11. Which is the best suitable programming language to implement ML?
 12. Give a real-life example of data science.
 13. Explain the data science life cycle with an example.

15

2 Overview of Python for
Machine Learning

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to:

• Understand the need for Python in machine learning (ML),
• Rejuvenate the basic Python programming concepts with simple examples,
• Refresh the basics of Numpy, MatplotLib, and Pandas libraries relevant to ML,
• Understand the computational complexity, and
• Implement Python-based simple examples using Pandas, Numpy, and MatplotLib.

2.1 INTRODUCTION

Python is a high-level, object-oriented programming language that is easy to learn; its syntax is easy
to be remembered. Its effectiveness makes it the best language for applications. The language had
made success in data sciences and ML. Python is an interpreted language; it uses compatible modules
instead of a single long list of instructions standard for functional programming. Python does not con-
vert its code into machine code. Instead, it converts the code into byte code which is not understand-
able by the CPU. So, we need an interpreter which executes the byte code, as shown in Figure 2.1.
This interpreter is called a virtual machine. This chapter presents the need for Python programming
in ML, the basics of Python programming, and data structures and their implementation using Python.
In addition, we introduce the readers to Numpy basics, MatplotLib basics, Pandas basics, and the com-
putational complexity involved in programming using Python. The chapter also provides program-
ming examples for beginners using Python. A few real-world examples are also programmed so that
the reader will understand implementation in Python with Numpy, Pandas, and MatplotLib libraries.

2.1.1 the flow of PrograM execUtion in Python

Steps were taken by the interpreter to execute a program:

 1. The interpreter reads each line of the code and checks if any syntax error is found. In case
of error, it halts the translation and displays an error message.

 2. If no error is found, the interpreter translates the code into the equivalent language called
byte code.

 3. Byte code is sent to Python virtual machine, the byte code is again executed on the virtual
machine, and if any error is found in this execution, an error message is displayed.

2.2 PYTHON FOR MACHINE LEARNING

Python is the fastest growing and multi-purpose programming language, because it is easily pro-
grammable and is less complex. Programmers can easily understand it. Python is open source,
which has many advantages like maintainability, compatibility, and ease to learn and understand.
Programmers can quickly code and update it without any complexity. Apart from this, it is an
object-oriented, interpreted, and interactive programming language. It contains classes, objects,
functions, and error-handling features. ML concepts are difficult to adapt to quick implementation.

DOI: 10.1201/9781003258803-2

https://doi.org/10.1201/9781003258803-2

16 Machine Learning for Decision Sciences with Case Studies in Python

Most ML models and concepts are built using Python because it is easy to understand, and the
syntax is less complex.

2.2.1 why is Python gooD for Ml?

There has been a growing popularity of the Python language in ML, deep learning, and artificial
intelligence in the last decade because of the following:

• Python is a platform-independent language.
• Python has concise and readable code, promotes rapid testing of complex algorithms, and

makes the language accessible to non-programmers.
• While complex algorithms and versatile workflows stand behind ML, Python’s simplicity

allows developers to write reliable code.
• Developers get to focus on solving an ML problem instead of focusing on the technical

nuances of the language.
• It can do a set of complex ML tasks and enable you to build prototypes quickly that allow

you to test your product for ML purposes.
• Python comes with multiple frameworks and libraries to reduce developers’ development

time, and these libraries can be easily configurable. A software library is a pre-written
code that developers use to solve everyday programming tasks.

• Python, with its rich technology stack, has an extensive set of libraries for ML.
• Python contains statistical libraries for statistical operation. It makes data visualizations easier.
• A larger user community works toward updating and sharing the libraries continuously.
• If the organization uses Python for other development activities, such as desktop develop-

ment, those skills can be easily transferred to ML projects.

This chapter discusses how to set up Python Integrated Development Environment (IDE), Python
frameworks, and libraries useful for ML and deep learning.

2.3 SETTING UP PYTHON

To enjoy the fast-growing programming language, the user will need to install a Python interpreter
as per the operating system like Windows, macOS, and Linux.

2.3.1 Python on winDows

• Download the latest Python installation package from https://www.python.org/downloads/
and run the executable file

• Choose the optional installation options; the user can add additional features or adjust the
location as per the need.

• To access Python from any command prompt, kindly check on the second option, “Add
Python 3.7 to PATH,” as shown in Figure 2.2.

• The user can now verify the installation from the command prompt.

FIGURE 2.1 Python code with its interpreter.

https://www.python.org

17Overview of Python for Machine Learning

2.3.2 Python on linUx

Linux distribution already has Python installed in the system; to verify, use the below-mentioned
command:

Shell Response−
−

→
−

Python version

Python2 version $Python3 version

If Python installed is not the latest version and the user wants the latest version, then the steps
depend on Linux distribution.

2.3.2.1 Ubuntu
If the users are using Ubuntu 16.10 or latest, then write the following command :

$ sudoapt-get update
$ sudoapt-get install python3.6

If the users are using Ubuntu 14.0, then they need to get personal package active, then write the
following:

$ sudo add-apt-repository ppa: deadsnakes/ppa
$ sudoapt-get update
$ sudoapt-get install python3.6

2.4 PYTHON BASICS

Python is a high-level programming language with straightforward syntax. As a prerequisite, the
user can learn Python faster if he appreciates the concepts of classes, objects, interface, etc. This
section would directly deal with the Python operators, flow control, data structures, functions,
exception handling, and debugging issues related to Python programming.

FIGURE 2.2 Screenshot of the installable window.

18 Machine Learning for Decision Sciences with Case Studies in Python

2.4.1 Python oPerators

Operators manipulate the value of operands, and it performs operations on variables and values. In
addition, it carries out all the arithmetic and logic operations.

Example: Consider the expression, 3+ 4 = 7, where 3 and 4 are operands and + is the operator.
A variety of operations are supported by Python, namely arithmetic, comparison, assignment,

and logical operations. A detailed discussion of these operations is presented in this section with
relevant Python examples.

2.4.1.1 Arithmetic Operators
Arithmetic operators perform all the arithmetic operations like addition, subtraction, multiplication,
and division. Table 2.1 shows a list of all arithmetic operations supported by Python.

2.4.1.2 Comparison Operators
Comparison operators compare the variables and identify the relationship between them; it returns
either True or False. Table 2.2 presents the comparison operators supported by Python.

2.4.1.3 Assignment Operators
Similar to other programming languages, a group of Python operators assign values to the variable,
as shown in Table 2.3.

2.4.1.4 Logical Operators
Logical operators are used in Python to combine conditional statements. The list of Python logical
operators is shown in Table 2.4.

TABLE 2.1
Arithmetic Operators in Python

Operator Details Example Syntax

+ Add two operands X + Y X = 3; Y = 2; print(X + Y)

− Sub two operands X − Y X = 3; Y = 2; print(X − Y)

* Multiply two operands X * Y X = 3; Y = 2; print(X * Y)

/ Divide two operands X/Y X = 2; Y = 2; print(X/Y)

% Divides left hand operand with right hand operand
and returns remainder

X %Y X = 2; Y = 2; print(X%Y)

** Exponent calculates power X ** Y X = 2; Y = 2; print(X**Y)

// Floor division X//Y X = 2; Y = 2; print(X//Y)

TABLE 2.2
Comparison Operators in Python

Operator Details Example

= = Values of two operands are equal; it returns True X = = Y

!= The values of two operands are not equal; it returns True X != Y

<> The values of two operands are not equal; it returns True same like (! =) X <> Y

> Greater than X > Y

< Less than X < Y

>= Greater than or equal to X > = Y

< = Less than or equal to X < = Y

19Overview of Python for Machine Learning

2.4.1.5 Membership Operators
These operators test for membership in a sequence such as lists, strings, or tuples. Two membership
operators are used in Python (in, not in). It gives the result based on the variable present in a speci-
fied sequence or string.

2.4.2 Python coDe saMPles on basic oPerators

Operators are special symbols in Python that carry out arithmetic or logical computation. The value
that the operator operates on is called the operand. This section provides the user with Python code
snippets using the operators discussed in the above sections.

2.4.2.1 Arithmetic Operators

In [33]: 5+7 #adding integers
Out[33]:12

In [34]: 2+3+4+87
Out[34]:96

In [35]: 2*4+4+87 #Operators precedence(/,*,+,-)
Out[35]:99

In [36]: 2+10/2*5+20
 #order of operator precedence
 # 10/2 = 5
 # 5*5 = 25
 # 2+25+20=47
Out[36]:47.0

TABLE 2.3
Assignment Operators in Python

Operator Details Example

= Assign a value to the variable X = 5

+ = Add right operand to left operand and assign value to left operand X + = Y

-= Subtract right operand to left operand and assign value to left operand X − = Y

*= Multiply right operand to left operand and assign value to left operand X *= Y

/= Divide left operand to right operand and assign value to the right operand X /= Y

%= Find the modulus of two variables and assign the value to the left operand X % = Y

**= Calculate the power and assign value to left operand X ** = Y

//= It calculates floor division and assigns value to the left operand X //= Y

TABLE 2.4
Logical Operators in Python

Operator Details Syntax

AND True when both conditions are True X < 5 and X < 6

OR True when any one of the condition is True X < 5 or X < 6

NOT Reverse the result if the condition is True; it will return False not (x < 5 and x < 10)

20 Machine Learning for Decision Sciences with Case Studies in Python

In [37]: 2+3*15%2+3*2
3*15 = 45
45%2 = 1
3*2=6
2+1+6=9

Out[37]:9

In [38]: x = 5 #variable declaration and initialization

In [39]: x#prints value of variable x
Out[39]:5

In [40]: type(x) #type is single argument built-in function and it returns
Data-type of the variable
Out[40]:int

In [41]: a = 2 #declaring a variable

In [42]: a
Out[42]:2

In [43]: type(a)
Out[43]:int

In [44]: a = 4

In [45]: atype(a)
Out[45]:int

In [46]: y = 5.67
 ytype(y)
Out[46]:float

In [47]: x = 2.5/2 #Dividing float value by integer
 #result will float since integer is upcasted.

In [48]: X #prints value of variable x
Out[48]:1.25

In [49]: type(x) #data-type of variable x
Out[49]:float

In [50]: #String varible declaration and initialization
 string_one= 'first string'
 string_two= "second string"
 string_three= "'third string'"

In [51]: string_one
Out[51]: 'firststring'

In [52]: print(string_two) #prints value stored in the variable stirng_two
 second string

In [53]: type(string_one) #type is single argument built-in function and it
returns type of the variable
Out[53]:str

21Overview of Python for Machine Learning

In [54]: type(string_three)
Out[54]:str

In [55]: #everything after # will be considered as a comment

In [56]: x = 4

In [57]: x
Out[57]:4

In [58]: type(x)
Out[58]:int

In [59]: #this is comment
 #this is second comment

In [60]: x = 15
 y = 4

In [61]: print('x + y =',x+y)
 x + y = 19

In [62]: print('x - y =',x-y) # Subtraction operation
 x - y = 11

In [63]: print(10-20) # NOTE:-lower is subtracted by higher value then result
is negative. """
 -10

In [64]: print('x * y =',x*y) # Multiplication operation
 x * y = 60

In [65]: print('x / y =',x/y) #Division- Result is accurate division value
 x / y = 3.75

In [66]: print('x // y =',x//y) # Floor division - division that results
into whole number adjusted to the left in the number line
 x // y = 3

In [67]: print('x **y=',x**y) # Exponent - left operand raised to the
power of right
 x ** y = 50625

In [68]: 25*25
Out[68]:625

2.4.2.2 Comparison Operators
These operators compare the values on either side of the operand and determine the relation between
them. It is also referred to as a relational operator. Various comparison operators are (==,!=, >,<=, etc.)

In [69]: x = 20
 y = 35

In [70]: print('x>y is',x>y) # Operator Greater than - Left hand operand is
greaterthenre turns TRUE
 x > y is False

22 Machine Learning for Decision Sciences with Case Studies in Python

In [71]: print('x<y is',x<y) # Operator Less than - Left hand operand is
Lesserthenreturn s TRUE
 x < y is True

In [72]: print('x == y is',x==y) # Operator Equal - Left hand operand is
equal to the right ha nd operand then returns TRUE
 x == y is False

In [73]: print('x!= y is',x!=y) # Operator Not Equal - Left hand operand
is not equal then re turns TRUE
 x!= y is True

In [74]: print('x >= y is',x>=y) # Operator Greaterthan or Equal to - If left
hand operator is greater than or equal to then returns true
 x >= y is False

In [75]: print('x <= y is',x<=y) # Operator Less than or Equal to -If left
hand operand is les s than or equal to then returns true
 x <= y is True

In [80]: x = 4
 y = 5

In [81]: print(('x>y is',x>y))# Operator Greater than - left-hand operand is
greater than then returns true
 ('x > y is', False)

In [82]: print(x==y) # Operator Equals - BOth the operands are equal by
values then returns true
 False

In [83]: print(x!=y) # Operator Not equal to - Both operands are not
equal by values then returns true
 True

2.4.2.3 Logical Operators
Logical operators are the and, or, not operators.

In [76]: x = True
 y = False

In [77]: print('x and y is',xandy) # Operator Logical AND - True if both are
true or same
 x and y is False

In [78]: print('x or y is',xory) # Operator Logical OR - True if Either one
is true
 x or y is True

In [79]: print('not x is',notx) # Operator Logical NOT -If true then returns
false
 not x is False

23Overview of Python for Machine Learning

2.4.2.4 Membership Operators
The examples of in and not in operators used in Python are discussed in this section. For instance,
we check whether the value of x = 4 and y = 8 is available in the list or not by using in and not in
operators.

In [84]: x = 4
 y = 8
 list= [1, 2, 3, 4, 5] #List is a collection which is ordered and
changeable and als o allows Duplication
 if(x in list):
 print("Line 1 - x is available in the given list")
 else:
 print("Line 1 - x is not available in the given list")
 if(y not in list):
 print("Line 2 - y is not available in the given list")
 else:
 print("Line 2 - y is available in the given list")

 Line 1 - x is available in the given list
 Line 2 - y is not available in the given list

In [85]: s = "sakshi"

In [86]: 'a' in s # IN operator is to validate or evaluate the s of value
Out[86]:True

In [87]: 'b' in s
Out[87]:False

In [88]: "a" not in s # NOT IN operator is
Out[88]:False

In [89]: "b" not in s
Out[89]:True

In [90]: import keyword

In [91]: print(keyword.kwlist)
 ['False', 'None', 'True', 'and', 'as', 'assert', 'async',
'await', 'break', 'class',
 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally',
'for', 'from', 'globa
 l', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not',
'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

In [92]: print(keyword.kwlist)
 ['False', 'None', 'True', 'and', 'as', 'assert', 'async',
'await', 'break', 'class',
 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally',
'for', 'from', 'globa
 l', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not',
'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

24 Machine Learning for Decision Sciences with Case Studies in Python

2.4.3 flow control

The flow of the program is sequential. One by one, each statement is executed. There is a condition
when the user needs to repeat the statement again and again. In this case, the control flow statement
works. Control flow statement includes if condition, for condition, else, if-else, and while loop. The
computer program understands True and False’s language; let’s explain this with a flow diagram as
shown in Figure 2.3.

2.4.3.1 If & elif Statement
Sometimes the user needs to execute statements depending on some conditions; for multiple condi-
tions, we use elif.

If expression :
 Statement
Elifexpression :
 Statement
Elifexpression :
 Statement
Else expression :
 Statement

Let’s explain this with an example, suppose create a program that identifies if the number is nega-
tive, else if the number is positive and even number else consider the number as a positive odd
number

If y<0 :
 print “y is negative”
elif
 y/2 = 0:
 print “y is even number”
else :
 print “y is a negative number.”

FIGURE 2.3 Control flow statement.

25Overview of Python for Machine Learning

2.4.3.2 Loop Statement
A loop statement allows us to execute a statement multiple times. For example, if the user wants to
print his/her name ten times, this care loop will help; instead of writing the name ten times, use the
loop function and define its range. The flow diagram shown in Figure 2.4 explains the loop statement.

As discussed in the following sections, there are different types of loop statements, namely for,
while, nested loops, etc.

For loop: The loop executes the statement repeatedly using the iterator variable that incre-
ments each execution. Let’s take the same example of printing fruits name. Let “fruits” be
the list that contains the names of three fruits. When the program executes, each fruit is
saved in variable “I” and then printed one by one.

Fruits = [“apple”, “mango”, “banana”];
For I in fruits :
Print (i);

While loop: Repeats the group of a statement if the given condition is True. For example, add
the first five natural numbers.

I = 0;
While y<6:
y = y+y
I++;

Nested loop: To use the loop inside another loop is called a nested loop. Let’s take an example
of distributing four chocolates to each student of the class. The nested loop will work here,
as we have to use two loops, that is, for chocolate and students.

chocolate = [“Cadbury”, “kitkat” “ mars”, “ galaxy”];
students = [“Alice”, “ Jhon”, “ Nick”];

FIGURE 2.4 Flow diagram of the loop statement.

26 Machine Learning for Decision Sciences with Case Studies in Python

For students in students :
For chocolate in chocolate :
Print (students + “got” + chocolate);

2.4.3.3 Loop Control Statements
To change the sequence of executing a code, Python provides multiple control statements. Following
are the loop control statements:

Break statement: To exit from a loop, break statements are used. Let’s take the example of 20
enrollment numbers, and the user wants to print only ten enrollment numbers.

x=1;
While x< = 20:
Ifx ==10:
break
Print (x)
x++;

Continue statement: It is similar to the break statement, it exits the loop, but the loop itself is
not exited. Let’s consider the same previous example and replace the break with continue.

x=1;
While x < = 20:
if x ==10:
continue
Print (x)
x++;

Pass statement: It is also called a null operator. Nothing happens when it is executed.
Consider a project that two programmers complete; one falls sick and cannot come on a
specific day. The problem is that another programmer cannot hold the work. In this case,
all the functions that the sick programmer wrote will be left empty using the pass state-
ment. Let’s consider the same previous example with a pass statement.

x=1;
While x < = 20:
if x ==10:
pass
print “10 not included”
Print (x)
x++;

2.4.4 Python coDe saMPles on flow control stateMents

2.4.4.1 Conditional Statements
Decision-making is required when we want to execute code only if a specific condition is satisfied.
The if…elif…else statement is used in Python for decision-making.

syntax:if test expression: statement(s)
The program evaluates the test expression and will execute statement(s) only if the text expres-

sion is True. If the text expression is False, the statement(s) is not executed. In Python, the body of
the if statement is indicated by the indentation. The body starts with an indentation, and the first
unindented line marks the end.

As soon as loop reaches the 10thenrollement the beak
statement will exit the loop and will display 10
enrollements only

As soon as loop reaches the 10thenrollement the
con�nue statement will exit the loop and will display
all the enrollement from 1 �ll 20 except the
enrollement 10

As soon as loop reaches the 10thenrollement the pass
statement will work and display all the enrollement from 1
	ll 20 except the enrollement 10 as we had passed it and
will print 10 not included with it

27Overview of Python for Machine Learning

In [1]:
a = 5 #Declaration and assignment.
If a== 7: #Condition is false.
 print("True")
 print("True123") #Both these statements are not executed.
print("false") #Executed whenever it is encountered.
false

In [2]:
num= 3
ifnum>0: #Condition is true then body of the statement is executed
 print(num, "is a positive number.")
print("This is always printed.")#Executed whenever it is encountered.
num= -1
ifnum> 0:
 print(num, "is a positive number.")
 #print("abc")
 print("This is also always printed.")
 #print("xyz")
print("xyz") #Executed whenever it is encountered.
3 is a positive number.
This is always printed.
xyz

2.4.4.2 Python if...else Statement
Syntax of if...else

if test expression: Body of if-else: Body of else
The if..else statement evaluates test expression and will execute the body of if only when the

test condition is True. If the condition is False, the body of else is executed. Indentation is used to
separate the blocks.

In [3]:
a = 5
if a== 4: #condition is true body of the conditional statement is executed.
 print("True")
else:
 print("False") #Whenever condition fails this statement will be executed.

#print ("in else")#first unindentend line
False

In [4]:
Program checks if the number is positive or negative
And displays an appropriate message

num= -8

Try these two variations as well.
num = -5
num = 0

if num>= -5:
 print("Positive or Zero")
 print("this no positive")

28 Machine Learning for Decision Sciences with Case Studies in Python

else: #Condition fails, Else part is executed.
 print("Negative number")
Negative number

2.4.4.3 Python if…elif…else Statement

Syntax of if...elif...else

if test expression: Body of if elif test expression: Body of elif else: Body of else. The elif is short for
else if. It allows us to check for multiple expressions.

If the condition for if is False, it checks the condition of the next elif block and so on. If all the
conditions are False, the body of else is executed. Only one block among the several if…elif…else
blocks is executed according to the condition. The if block can have only one else block. But it can
have multiple elif blocks.

In [5]:
 var= 150
 if(var< 200 and var> 50): #Condition with logical "and", means both
must be true onl y then its body gets executed.
 print("Expression value is less than 200")
 ifvar== 150: #Nested if condition
 print("Which is 150")
 elifvar== 100: #inner else if part
 print("Which is 100")
 elifvar==50: #inner else if part
 print("Which is 50")
 elifvar<50: #outer else if part
 print("Expression value is less than 50")
 else: #outer else part
 print("Could not find true expression")
 print ("Good bye!")
Expression value is less than 200
Which is 150
Good bye!

In [6]:
 # In this program,
 # we check if the number is positive or
 # negative or zero and
 # display an appropriate message

num= -8

 # Try these two variations as well:
 # num = 0
 # num = -4.5

ifnum> 0:
 print("Positive number")
elifnum==0: #else if conditional statement.
 print("Zero")
else:
 print("Negative number")
Negative number

29Overview of Python for Machine Learning

2.4.4.4 The For Loop
The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable objects.
Iterating over a sequence is called traversal.

Syntax of for Loop
For Val in sequence: Body of for
Here, Val is the variable that takes the item’s value inside the sequence on each iteration.
Loop continues until we reach the last item in the sequence. The body of for loop is separated

from the rest of the code using indentation.

In [7]:
 # Program to find the sum of all numbers stored in a list

 # List of numbers
 numbers= [6, 5, 3, 8, 4, 2, 5, 4, 11] #list

 # variable to store the sum
 sum= 0

 # iterate over the list
 # val takes values in the list and increments till the list range.
 forvalinnumbers:
 sum = sum+val

 # Output: The sum is 48
 print("The sum is", sum)
The sum is 48

n = 6
iterates from 0 to range of n
range() returns sequence of numbers from 0(by default) to N, Increment by
1(default)
foriinrange(n):
 print(i)
print('DDD')
0
1
2
3
4
5
DDD

In [9]:
a
Out[9]:
5

2.4.4.5 The range() Function
We can generate a sequence of numbers using the range() function. range(10) will generate numbers
from 0 to 9 (10 numbers). We can also define the start, stop, and step size as range(start, stop, step
size). Step size defaults to 1 if not provided. This function does not store all the values in memory;
it would be inefficient. So it remembers the start, stop, step size, and generates the next number on
the go. To force this function to output all the items, we can use the function list(). The following
example will illustrate this.

30 Machine Learning for Decision Sciences with Case Studies in Python

In [10]:
 # creating a list by start from 2 end by 20 increment by 2 using
range() function.
 print(list(range(2, 20, 2)))
[2, 4, 6, 8, 10, 12, 14, 16, 18]

In [11]:
 a = range(10) # assigning range for variable.

In [8]:
a# prints starting and ending range.
Out[12]:

range(0, 10)
In [13]:
 # prints starting and ending range.
 print(range(10))
range(0, 10)

In [14]:
 # create list and assign it to variable.
 a = (list(range(10)))

In [15]:
 a# By default range starts from 0 and increments by 1.
Out[15]:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [16]:
 type(a) # returns the type of the argument
Out[16]:
List

In [17]:
 len(a) # returns the length of the argument
Out[17]:
10
In [18]:
 # Defining range,with start and end position
 print(list(range(2, 8))) #creates list.
[2, 3, 4, 5, 6, 7]

In [19]:
 # Defining range, with starting, ending position and increment value.
 print(list(range(2,20,2))) # stepsize=2
[2, 4, 6, 8, 10, 12, 14, 16, 18]

We can use the range() function for loops to iterate through a sequence of numbers. It can be com-
bined with the len() function to iterate through a sequence using indexing. Here is an example to
illustrate the usage of the range function.

In [20]:
 # Program to iterate through a list using indexing

 genre= ['pop', 'rock', 'jazz'] # List

31Overview of Python for Machine Learning

 # iterate over the list using index
 foriinrange(len(genre)): # defining the range as list length
 print("I like", genre[i]) # Iterates through the list using
indexing
 print("z")
I like pop
I like rock
I like jazz z

2.4.4.6 For Loop with else
A for loop can have an optional else block as well. The else part is executed if the items in the
sequence are used in for loop exhausts. The break statement can be used to stop a for loop. In such
a case, the else part is ignored. Hence, a for loop’s else part runs if no break occurs. Here is an
example to illustrate this.

In [21]:
 digits= [1,2,3]

 foriindigits:
 print(i)
 #else:
 print("No items left.")
1
2
3
No items left.

2.4.4.7 While Loop
A while loop statement in Python programming language repeatedly executes a target statement as
long as a given condition is True. The syntax of a while loop in the Python programming language is –

while expression: statement(s)
Here, statement(s) may be a single statement or a block of statements. The condition may be any

expression, and True is any non-zero value. The loop iterates while the condition is True. When the
condition becomes False, program control passes to the line immediately following the loop. The
following example illustrates an application of the while loop:

In [22]:
 # Program to add natural
 # numbersupto
 # sum = 1+2+3+...+n

 # To take input from the user,
 # n = int(input("Enter n: "))

 n = 10

 # initialize sum and counter
 sum= 0
 i = 1

 whilei<= n:
 sum = sum + i
 i=i+1 # update counter

32 Machine Learning for Decision Sciences with Case Studies in Python

 # print the sum
 print("The sum is", sum)
The sum is 55

In [23]:
 n = 5
 i = 1
 while(i <= n):
 if(i==3):
 print(i)
 i = i + 1 # Each iteration i get incremented
3

In the above program, the test expression will be True as long as our counter variable i is less than
or equal to n (10 in our program). Therefore, we need to increase the value of the counter variable
in the body of the loop. This is very important (and mostly forgotten). Failing to do so will result in
an infinite loop (never-ending loop).

2.4.4.8 While Loop with else
Same as for loop, we can have an optional block with while loop as well. The else part is executed
if the condition in the while loop evaluates to False. The while loop can be terminated with a break
statement. In such a case, the else part is ignored. Hence, a while loop’s else part runs if no break
occurs and the condition is False. Here is an example to illustrate the while loop with else.

In [24]:
 # Example to illustrate
 # the use of else statement
 # with the while loop

 counter= 0

 whilecounter< 0: #condtion fails and its body doesn't gets executed
 print("Inside loop")
 counter = counter + 1
 else:
 print("Inside else")
Inside else

2.4.4.9 Python Break and Continue
In Python, break and continue statements can alter the flow of a normal loop. For example, loops
iterate over a code block until the test expression is False. Still, sometimes we wish to terminate
the current iteration or even the whole loop without checking the test expression. The break and
continue statements are used in these cases.

2.4.4.10 Python Break Statement
The break statement terminates the loop containing it. Control of the program flows to the statement
immediately after the body of the loop. If the break statement is inside a nested loop (loop inside
another loop), the break will terminate the innermost loop.

Syntax
break
The working of break statement in Python with for loop and while loop is shown in the following

example:

33Overview of Python for Machine Learning

forvalin"string":
 ifval== "i": # if condition true break the loop and exit.
 break
 print(val)
print("The end")
s t r
The end

In [26]:
 forletterin'Python': # First Example
 ifletter== 'h':
 break
 print('Current Letter :', letter)
 print('Out of For')

Current Letter : P
Current Letter : y
Current Letter : t Out of For

2.4.4.11 Python Continue Statement
The continue statement is used to skip the rest of the code inside a loop for the current iteration.
Loop does not terminate but continues on with the next iteration.

Syntax of Continue
continue

In [27]:
 forletterin'Django': # First Example
 ifletter== 'D': # condition true then continue by going back to the
for loop statement.
 continue
 print('Current Letter:', letter)

Current Letter: j
Current Letter: a
Current Letter: n
Current Letter: g
Current Letter: o

Program to show the use of continue statement inside loops

forvalin"string":
 ifval== "i": # condition true then continue by going back to the for
loop statement.
 continue
print(val)

#print("The end")
s t r
n g

This program is the same as the above example, except the break statement has been replaced with
continue. We continue with the loop if the string is "i," not executing the rest of the block. Hence,
we see in our output that all the letters except "i" get printed.

34 Machine Learning for Decision Sciences with Case Studies in Python

In [36]:
 sequence=[1,2,3,4,5]
 forvarinsequence:
 #codes inside the loop
 ifvar==3:
 continue
 print(var)
 #codes inside for loop
 #codes outside for loop
1
2
4
5

2.4.5 review of basic Data strUctUres anD iMPleMentation in Python

When we handle a huge amount of data, it is challenging to organize the data and use it effi-
ciently. In recent years, applications are getting more complex with a large amount of data,
which has led to issues in terms of data search, processor speed, and handling multiple requests.
Thus, data structures have proved their efficiency to solve such complicated situations in the
information technology world. Data structures are a systematic way to organize such data, thus
enabling efficient use of data. A data structure has an interface, which corresponds to a set of
operations and parameter types supported by the data structure. The internal representation and
definition of the algorithms used in data structure operations are provided by the implementa-
tion. The three basic characteristics of a data structure are appropriateness, time efficiency, and
space efficiency.

• Appropriateness: The data structure implementation should be able to employ its inter-
face in the right way.

• Time efficiency: The operations executed by a data structure should consume as little time
as possible.

• Space efficiency: The operations about data structures should be capable of occupying as
little memory as possible.

In this section, we will review the following data structures with relevant Python examples:

• Array Data Structure
• Linked List
• Stacks and Queue
• Searching
• Sorting
• Recursion

2.4.5.1 Array Data Structure
Data structures use arrays to perform operations. Arrays, as we know, are an entity to hold a
collection of similar items which belong to the same data type. The items stored in an array are
called elements, and the location of each element is assigned with an index to access or operate
on it.

In general, arrays are declared as data_typearray_name [array_size]. For instance,
Int matrixA [5] = {1, 2, 3, 4, 5};

35Overview of Python for Machine Learning

In the above example, the following points are to be considered:

• Array index starts from 0 and not 1.
• Array length is 5 – it can store five elements.
• Its index value accesses each element; for example, element three can be accessed as

martixA[2].

#Commonly Used Codes
Code C Type Python Type Min bytes
'b' signed char int ` 1
'B' unsigned char int 1
'u' Py_UNICODE Unicode 2
'h' signed short int 2
'H' unsigned short int 2
'i' signed int int 2
'I' unsigned int int 2
'l' signed long int 4
'L' unsigned long int 4
'f' float float 4
'd' double float 8

2.4.5.2 Implementation of Arrays in Python

import array as arr
myArray = arr.array('d', [3.14, 3.5, 4.99])
print(myArray) # Output is shown as --> array('d', [3.14, 3.5, 4.99])

import array as arr
myArray2 = arr.array('i', [1, 2, 3, 5, 7, 11, 13, 17, 19])
print("First element:", myArray2[0]) # output is shown as --> First element:
1
print("Second element:", myArray2[1]) # output is shown as --> Second
element: 2
print("Last element:", myArray2[-1]) # output is shown as --> Last element:
19

Slicing the Array
print(myArray2[2:5]) # 3rd to 5th; The output is shown as --> array('i', [3,
5, 7])
print(myArray2[:-5]) # beginning to 4th ; The output is shown as -->
array('i', [1, 2, 3, 5])
print(myArray2[5:]) # 6th to end; The output is shown as --> array('i', [11,
13, 17, 19])
print(myArray2[:]) # beginning to end; The output is shown as -->
array('i', [1, 2, 3, 5, 7, 11, 13, 17, 19])

Changing the values in the array
changing first element
myArray2[0] = 99
print(myArray2) # the first value of the array is changed to 99; The
output is shown as --> array('i', [99, 2, 3, 5, 7, 11, 13, 17, 19])

changing 3rd and 4th element
myArray2[2:3]= arr.array('i', [88,77])
print(myArray2) # the third and forth value of the array is changed to 88
and 77 respectively; The output is shown as --> array('i', [99, 2, 88, 77, 5, 7,
11, 13, 17, 19])

36 Machine Learning for Decision Sciences with Case Studies in Python

2.4.5.3 Linked List
While storing data as arrays, the size cannot be extended or reduced to fit a certain set of data, since
they are static structures. It becomes expensive to update arrays with new insertions and deletions.
These limitations are overcome to an extent using Linked lists.

A sequence of data structures connected through links is called a linked list or simply a singly
linked list, as shown in Figure 2.5. This sequence of links contains items that include the data and
link element. The link element provides a link to the next link. Each link of a linked list stores a
set of data called the data elements. Every link in a linked list has a link to the next link through
the element called next. Every linked list has an element called first. Overall, each element has a
list consisting of the data and a reference to the next list. The last list consists of a reference with a
null. Due to its dynamic property, the number of lists can expand or shrink based on the demand.

The disadvantage of a linked list is that we cannot access individual elements in a list. To access
a single item, we need to start from the first list and travel down until access to the item is required.
Another disadvantage of a linked list is the memory usage. In addition to storing elements in the
memory, each reference element will also occupy nearly 4 bytes of memory on a 32-bit processor.

The variants of a linked list are doubly linked lists and circular linked lists. The lists can be navi-
gated bidirectionally in a doubly linked list, that is, forward and backward, as shown in Figure 2.6.
In contrast, the last list contains a link to the first link in the circular linked list, and the traversing
happens circularly. The operations supported by a linked list are insertion, deletion, display, and
search.

2.4.5.4 Implementation of Linked List in Python

class Node: #Creating the Node Class
def __init__(mySelf, data):
mySelf.item = data
mySelf.ref = None

classmyLinkedList: #Creating the Single Linked List Class
def __init__(mySelf):
mySelf.start_node = None # First Node of the List

deftraverse_list(mySelf): # to go through the List
ifmySelf.start_node is None: # if the list is empty
print("List has no element")
return
else: # If the List is not empty
 n = mySelf.start_node
while n is not None:

FIGURE 2.5 Singly linked list.

FIGURE 2.6 Doubly linked list.

37Overview of Python for Machine Learning

print(n.item , " ")
 n = n.ref

MANUPULATING THE LIST

definsert_start(mySelf, data): # Inserting the value at the begining of the
list
new_node = Node(data)
new_node.ref = mySelf.start_node
mySelf.start_node= new_node

definsert_end(mySelf, data): # Inserting the value at the end of the list
new_node = Node(data)
ifmySelf.start_node is None:
mySelf.start_node = new_node
return
 n = mySelf.start_node
whilen.ref is not None:
 n= n.ref
n.ref = new_node;

definsert_specific(mySelf, x, data): # Inserting after another specific item
 n = mySelf.start_node
print(n.ref)
while n is not None:
ifn.item == x:
break
 n = n.ref
if n is None:
print("item not in the list")
else:
new_node = Node(data)
new_node.ref = n.ref
n.ref = new_node

definsert_index (mySelf, index, data): # Inserting after Specific Index
if index == 1:
new_node = Node(data)
new_node.ref = mySelf.start_node
mySelf.start_node = new_node
 i = 1
 n = mySelf.start_node
while i < index-1 and n is not None:
 n = n.ref
 i = i+1
if n is None:
print("Index out of bound")
else:
new_node = Node(data)
new_node.ref = n.ref
n.ref = new_node

38 Machine Learning for Decision Sciences with Case Studies in Python

Testing the Results

myLIST = myLinkedList()# Creating "myLIST" as an object of the class
"myLinkedList”
myLIST = [1, 2, 3]
myLIST.insert_end(1) # Inserting at the end
myLIST.insert_end(3)
myLIST.insert_end(5)
myLIST.traverse_list()
myLIST.get_count()

myLIST.insert_start(7) # Inserting at the begining
myLIST.insert_start(9)
myLIST.insert_start(11)

2.4.5.5 Stacks and Queues
Consider a real-world example of a stack – a pile of books or a stack of plates. We will be able to
place or remove a book from the top of the stack only. This implies that the stack operations can be
performed from one end only, the top of the stack. Such a data structure is commonly referred to
as a Last-In First-Out data structure. The element placed first will be accessed last, and the element
placed last will be accessed first. The process of inserting an element into the stack is called PUSH
operation, and removing an element from the stack is called POP operation.

In data structures, stacks can be implemented using arrays and linked lists. The size of the stack
can either be static or dynamic (stack grows).

The primary operations of the stack involve push and pop, as illustrated in Figure 2.7. To check
the efficiency of the stack, the user has to keep track of the data on the stack. To track the stack,
functions such as peek(), isFull(), and isEmpty() are available. Peek() is used to access the element
on top of the stack without getting it removed, while isFull() is used to check whether the stack is
full and isEmpty() is used to check whether the stack is empty.

The series of steps involved in the PUSH operation is illustrated through a flowchart in Figure 2.8.
The first step to initialize the PUSH operation is to check whether the stack is full. If the stack is
empty, the PUSH operation will progress; otherwise, exit the PUSH operation with an error. The
stack pointer (top of stack) increments and points to the next available space in memory to insert
data. The data element is added to the location, and a success message is returned.

The steps involved in the POP operation are illustrated with a flowchart, as shown in Figure 2.9.
In the POP operation, data are accessed from the top of the stack, and the top of the stack is decre-
mented to the next lower address. Finally, the memory location is deallocated.

Implementing Stack in Python Using list and collections. deque

FIGURE 2.7 Stack operation.

39Overview of Python for Machine Learning

myLIST = []
myLIST.append('I')
myLIST.append('Love')
myLIST.append('Python')
myLIST.append('Coding')

myLIST # Returns the valuses -->['I', 'Love', 'Python', 'Coding']

myLIST.pop# myLIST Returns the valuses -->['I', 'Love', 'Python']
'Coding'
myLIST.pop() # myLIST Returns the valuses -->['I', 'Love']
'Python'
myLIST.pop() # myLIST Returns the valuses -->['I']
'Love'

FIGURE 2.8 Flowchart for PUSH operation.

FIGURE 2.9 Flowchart for POP operation.

40 Machine Learning for Decision Sciences with Case Studies in Python

myLIST.pop()
'I'
when the lis is empty
myLIST.pop() # We get the Error -->IndexError: "pop from empty list"

USING collections.deque AS STACK
from collections import deque
myQUEUE = deque()
myQUEUE.append('I')
myQUEUE.append('Love')
myQUEUE.append('Python')
myQUEUE.append('Coding')

myQUEUE # Returns the valuses -->deque(['I', 'Love', 'Python', 'Coding'])

myQUEUE.pop# myQUEUE Returns the valuses -->['I', 'Love', 'Python']
'Coding'
myQUEUE.pop() # myQUEUE Returns the valuses -->['I', 'Love']
'Python'
myQUEUE.pop() # myQUEUE Returns the valuses -->['I']
'Love'
myQUEUE.pop()
'I'

when the lis is empty
myQUEUE.pop() # We get the Error -->IndexError: "pop from empty list"

2.4.5.6 Queues
Though similar in appearance to stacks, queues are accessed from both ends. Data are usually inserted
from one end and removed from the other end. The process of inserting elements into the queue is called
enqueue, and removing elements from the queue is called dequeue. Therefore, the queue is based on
the concept of First-In First-Out, as shown in Figure 2.10. Unfortunately, queues use two separate data
pointers – front and rear – making it difficult for the programmer to implement the algorithm.

The primary operations of the queue are enqueue and dequeue. To track the queue, functions
such as peek(), isFull(), and isEmpty() are available. Peek() is used to access the element from the
front of the queue without getting it removed, while isFull() is used to check whether the queue is
full and isEmpty() is used to check whether the queue is empty.

The series of steps involved in the enqueue operation is illustrated in the flowchart as shown in
Figure 2.11. The first step to initialize the enqueue operation is to check whether the queue is full. If
the queue is empty, the insert operation will progress; otherwise, exit the process with an overflow
error – next, the rear pointer increments and points to the next available space in memory to insert
data. Finally, the data element is added to the location, and a success message is returned.

The series of steps involved in the dequeue operation is illustrated with a flowchart in Figure 2.12.
In the remove operation, data are accessed from the front pointer. The front pointer is incremented
to the point to the next available data element.

FIGURE 2.10 Queue operation.

41Overview of Python for Machine Learning

2.4.5.7 Implementation of Queue in Python

class Queue:

 #Constructor
def __init__(mySelf):
mySelf.queue = list()
mySelf.maxSize = 5
mySelf.head = 0
mySelf.tail = 0

 #Adding elements
defenqueue(MySelf,data):

FIGURE 2.11 Enqueue operation.

FIGURE 2.12 Dequeue operation.

42 Machine Learning for Decision Sciences with Case Studies in Python

 #Checking if the queue is full
ifMySelf.size() >= MySelf.maxSize:
return ("Queue Full")
MySelf.queue.append(data)
MySelf.tail += 1
return True

 #Deleting elements
defdequeue(MySelf):
 #Checking if the queue is empty
ifMySelf.size() <= 0:
MySelf.resetQueue()
return ("Queue Empty")
data = MySelf.queue[MySelf.head]
MySelf.head+=1
return data

 #Calculate size
def size(MySelf):
returnMySelf.tail - MySelf.head

 #Reset queue
defresetQueue(MySelf):
MySelf.tail = 0
MySelf.head = 0
MySelf.queue = list()
Testing the results
myQueue = Queue()
print(myQueue.enqueue(1))#prints True
print(myQueue.enqueue(2))#prints True
print(myQueue.enqueue(3))#prints True
print(myQueue.enqueue(4))#prints True
print(myQueue.enqueue(5))#prints True
print(myQueue.enqueue(6))#prints Queue Full!; Since we have defiend the
size as 5

print(myQueue.size())#prints 5
print(myQueue.dequeue())#prints 5
print(myQueue.dequeue())#prints 4
print(myQueue.dequeue())#prints 3
print(myQueue.dequeue())#prints 2
print(myQueue.dequeue())#prints 1
print(myQueue.dequeue())#prints Queue Empty; Queue is reset here

print(myQueue.enqueue(1))#prints True
print(myQueue.enqueue(2))#prints True
print(myQueue.enqueue(3))#prints True
print(myQueue.enqueue(4))#prints True

2.4.5.8 Searching
Searching is one of the common tasks we do in our day-to-day life, for example, we search for a
book in the library, we search for a phone number from our contacts list, and we search for a mis-
placed key, etc. The simplest form of searching for a key element in a data structure is tracing a path
from the root of the data structure. As each node or list is visited, the algorithm compares the data

43Overview of Python for Machine Learning

element in a node or list with the key element to be searched. If a match is found, then the success
message has to be returned. Otherwise, the search continues with the next successive nodes or lists.
If the search has been completed without a match, then the algorithm returns a null, indicating that
the key element has not been found in the list.

The search algorithms can handle two scenarios before searching:

• Algorithms that search irrespective of the order of the list.
• Algorithms that have a clear assumption about the order of the list.

Based on these scenarios, we have the following search algorithms in data structures:

• Linear Search
• Binary Search
• Interpolation Search
• Hash Table

2.4.5.8.1 Linear Search
One of the simplest search algorithms is the linear search algorithm. In this algorithm, a search
is performed on all items in the list, one after the other. Each item is compared with the item to
be searched; once the search item is found, the algorithm quits and returns the index at which the
search item was found. Otherwise, it searches for the item up to the end of the list, and if no match
is found, it returns a null. The process is explained through a flowchart as shown in Figure 2.13.
Consider an array arr with length n. Let x be the element to be searched. Initially, the index of the
array is set to 1 to ensure that the array consists of at least one element. If i > n, then the search

FIGURE 2.13 Linear search.

44 Machine Learning for Decision Sciences with Case Studies in Python

process terminates. If arr[i] = x, then search process terminates with i as the return value. If the
match has not been found, then the search process continues until i = n.

2.4.5.8.2 Binary search
Linear search has been performing well on the unordered list of data elements. Linear search algo-
rithm suffers when the number of elements in the unordered search list is too big. The algorithm
takes a long time to find the match or search for the element. But if the list of data elements is
arranged in order before the search is performed, then the task of searching is made simpler. For
example, think about searching for a person’s phone number in our contact list. The names in the
contact list are ordered alphabetically. So it makes sense to confine the search based on the starting
alphabet of the search element. A binary search algorithm can exploit such a situation.

In this algorithm, a comparison is made every time we make a search. Based on the comparison
results, some part of the list (that does not contain the search element) is eliminated from the search
process. Generally, the search is performed by comparing the middle item in a list. The search item
can lie either in the upper half or in the lower half of the list. The algorithm eliminates one half of
the list that does not contain the search element and the other half that contains the search element is
again compared with the middle item. The search process continues by eliminating one-half of the
list every time until the match is found. It can be concluded that the binary search algorithm halves
the searchable list, thus reducing the number of comparisons.

The procedure of binary search is well explained through a flowchart as shown in Figure 2.14.
Consider an ordered array arr with length n. Let x be the element to be searched. Initially, the lower
bound (LB) of the array is set to 1, and the upper bound (UB) is set to the length of the array n.
If UB is greater than LB, then the algorithm terminates. Otherwise, the algorithm continues by
first computing the midpoint based on the UB and LB values. Next, if the element indexed by the
midpoint in the array is greater than the search element, then the UB is set to midpoint-1; if the
element indexed by the midpoint in the array is lesser than the search element, then the LB is set to
midpoint+1. Finally, the index midpoint is saved if the element indexed by the midpoint in the array
is equal to the search element. This indicates the location of the searched item x.

2.4.5.8.3 Interpolation Search
The interpolation search algorithm is a variant of the binary search algorithm. The algorithm
searches based on the probe position. Initially, the probe position is in the middle of the search list
and then gets modified as the algorithm progresses. The algorithm is explained through a flowchart,
as shown in Figure 2.15. The algorithm works similarly to binary search, except for the calculation
of the midpoint value.

2.4.5.9 Implementation of Searching in Python

mylist = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47] # Defineing
the list with Prime numbers
print('List has the items: ', mylist)
searchItem = int(input('Enter a number to search for: '))
found = False
for i in range(len(mylist)):
ifmylist[i] == searchItem:
found = True
print(searchItem, ' was found in the list at index ', i, '. So the number
given is a prime number')
break
if found == False:
print(search item, ' was not found in the list!. So the given number is not a
prime number')

45Overview of Python for Machine Learning

Testing the results:
List has the items: [1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47]
Enter a number to search for: 31
31 was found in the list at index 11. So the number given is a prime number

Enter a number to search for: 45
45 was not found in the list!. So the given number is not a prime number

FIGURE 2.14 Binary search.

46 Machine Learning for Decision Sciences with Case Studies in Python

2.4.5.10 Sorting
In data structures, one has to understand how to arrange a set of elements in order. There are several
ways or methods in which elements can be arranged. Sorting refers to these methods of arranging
data in a specific format. Sorting algorithms provide a set of procedures to arrange the data. The
process of searching can be optimized to an efficient level if the sorting is organized. Data can be
represented in a simple, readable form once sorted. The most common sorting orders are lexico-
graphical order or numerical order.

FIGURE 2.15 Interpolation search.

47Overview of Python for Machine Learning

The sorting algorithms in data structures are bubble sort, insertion sort, selection sort, merge
sort, shell sort, and quicksort. These algorithms can fall under two broad categories based on the
additional memory requirement – in-place sorting and not-in-place sorting. When the sorting algo-
rithm works in-place (within the array itself) without consuming extra space, it is called in-place
sorting. The best example of an in-place sorting algorithm is bubble sort. On the other hand, certain
sorting algorithms require additional space (memory) apart from the array size. This space is gen-
erally more than the elements being sorted. Hence, this group of algorithms is called not-in-place
sorting, and one of the best examples would be the merge sort.

2.4.5.10.1 Bubble Sort
One of the simplest sorting algorithms is the bubble sort, also known as the exchange sort. The algo-
rithm is based on a comparison between adjacent elements. If the elements are in the right order,
they are left in their place and if the elements are in the wrong order, they are swapped (interchange
their positions). The process is repeated until all the elements are compared and sorted. The algo-
rithm is found suitable for sorting fewer data elements.

The procedure for bubble sort is illustrated in the flowchart as shown in Figure 2.16. Consider an
array arr[] with n elements. Let i be the index pointing to the elements in the array. For each element
in the array, a comparison is made between arr[i] and arr[i+1]. If arr[i] is greater than arr[i+1], then
the elements are swapped, else kept in place. The process is repeated, and each pair of the array arr
is compared until the whole array is completely sorted.

2.4.5.11 Implementation of Bubble Sort in Python

defbubbleSort(mylist):
forpassnum in range(len(mylist)-1,0,-1):
for i in range(passnum):
ifmylist[i]>mylist[i+1]:
temp = mylist[i]
mylist[i] = mylist[i+1]
mylist[i+1] = temp

mylist = [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47] # sameple
list to get it bubble sorted
print('the original list:', mylist) # Before sort
bubbleSort(mylist)
print('the sorted list:', mylist) # After sort

Testing the results

the original list: [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47]
the sorted list: [1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 31, 37, 47, 47]

2.4.5.12 Insertion Sort
The insertion sort algorithm is a type of in-place sorting algorithm, which in turn is based on the
comparison. In this algorithm, a sub-array is maintained, and this sub-array is sorted continuously.
Successive elements of the array are added or inserted into this sub-array and sorted within the sub-
array. Hence, the name insertion sort. Sometimes, the algorithm is referred to as an online algorithm
since the values are sorted and added into the sub-array.

The insertion sort algorithm is simple to implement, and it is efficient on small datasets. This
comparison sort builds a sorted array by adding one element at a time. The algorithms are explained
with a flowchart, as shown in Figure 2.17. Consider an array arr[] whose length is n. The first ele-
ment of the array is used to form the sub-array, and its position is noted. The next element is chosen

48 Machine Learning for Decision Sciences with Case Studies in Python

for comparison with the first element. If the first element is less than the second element, then the
algorithm leaves the elements in their place and continues to compare the next value. If the first ele-
ment is greater than the second element, then the elements are sorted, and this forms the sub-array
to which the third element would be added. The process repeats until all the elements are sorted.

FIGURE 2.16 Bubble sort.

49Overview of Python for Machine Learning

2.4.5.13 Implementation of Insertion Sort in Python

defmyinsertionSort(mylist):
for every element in our array
for index in range(1, len(mylist)):
current = mylist[index]
position = index

while position > 0 and mylist[position-1] > current:
print("Swapped {} for {}".format(mylist[position], mylist[position-1]))
mylist[position] = mylist[position-1]
print(mylist)
position -= 1

FIGURE 2.17 Insertion sort.

50 Machine Learning for Decision Sciences with Case Studies in Python

mylist[position] = current

return mylist

mylist = [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47]

print(myinsertionSort(mylist))

Testing the results

print(myinsertionSort(mylist))
Swapped 31 for 47
[1, 2, 3, 5, 47, 47, 13, 17, 19, 23, 29, 11, 37, 31, 47]
Swapped 13 for 47
[1, 2, 3, 5, 31, 47, 47, 17, 19, 23, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 31, 31, 47, 17, 19, 23, 29, 11, 37, 31, 47]
Swapped 17 for 47
[1, 2, 3, 5, 13, 31, 47, 47, 19, 23, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 31, 31, 47, 19, 23, 29, 11, 37, 31, 47]
Swapped 19 for 47
[1, 2, 3, 5, 13, 17, 31, 47, 47, 23, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 31, 31, 47, 23, 29, 11, 37, 31, 47]
Swapped 23 for 47
[1, 2, 3, 5, 13, 17, 19, 31, 47, 47, 29, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 19, 31, 31, 47, 29, 11, 37, 31, 47]
Swapped 29 for 47
[1, 2, 3, 5, 13, 17, 19, 23, 31, 47, 47, 11, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 19, 23, 31, 31, 47, 11, 37, 31, 47]
Swapped 11 for 47
[1, 2, 3, 5, 13, 17, 19, 23, 29, 31, 47, 47, 37, 31, 47]
Swapped 47 for 31
[1, 2, 3, 5, 13, 17, 19, 23, 29, 31, 31, 47, 37, 31, 47]
Swapped 31 for 29
[1, 2, 3, 5, 13, 17, 19, 23, 29, 29, 31, 47, 37, 31, 47]
Swapped 29 for 23
[1, 2, 3, 5, 13, 17, 19, 23, 23, 29, 31, 47, 37, 31, 47]
Swapped 23 for 19
[1, 2, 3, 5, 13, 17, 19, 19, 23, 29, 31, 47, 37, 31, 47]
Swapped 19 for 17
[1, 2, 3, 5, 13, 17, 17, 19, 23, 29, 31, 47, 37, 31, 47]
Swapped 17 for 13
[1, 2, 3, 5, 13, 13, 17, 19, 23, 29, 31, 47, 37, 31, 47]
Swapped 37 for 47
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 47, 47, 31, 47]
Swapped 31 for 47
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 47, 47, 47]
Swapped 47 for 37
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 37, 47, 47]
[1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 31, 37, 47, 47]

51Overview of Python for Machine Learning

2.4.5.14 Selection Sort
Selection sort is yet another in-place sort algorithm based on the comparison. The entire array is
divided into two groups, one sorted part and the other unsorted part. The sorted portion of the array
is kept empty initially, and the unsorted part contains all the elements of the array. The element
that has the smallest value is selected from the unsorted portion and added as the first element to
the sorted portion. The element that was located already in the sorted portion swaps position with
the smallest element. The comparison process continues with the next smallest element from the
unsorted portion. The algorithm continues until all the elements of the unsorted portion are com-
pared. The algorithm is explained with a flowchart as shown in Figure 2.18.

FIGURE 2.18 Selection sort.

52 Machine Learning for Decision Sciences with Case Studies in Python

2.4.5.15 Implementation of Selection Sort in Python

defselectionSort(myLIST):
forfillslot in range(len(myLIST)-1,0,-1):
mp=0 # Max Position
for location in range(1,fillslot+1):
ifmyLIST[location]>myLIST[mp]:
mp = location

temp = myLIST[fillslot]
myLIST[fillslot] = myLIST[mp]
myLIST[mp] = temp

myLIST = [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31, 47]
print('Before SELECTIONSORT:',myLIST)
selectionSort(myLIST)
print('After SELECTIONSORT:',myLIST)

Testing the results

Before SELECTIONSORT: [1, 2, 3, 5, 47, 31, 13, 17, 19, 23, 29, 11, 37, 31,
47]

After SELECTIONSORT: [1, 2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 31, 37, 47, 47]

2.4.5.16 Merge Sort
The merge sort algorithm works based on the divide and conquer mechanism. The array is first
divided into two halves; then, each half portion is divided into equal halves. The dividing process
continues until each divided portion consists of only one element of the array (the array cannot be
further divided). Then, the elements are combined (merged) in the order of their division. During
the combination of elements, a comparison is made, and sorting happens in successive halved
arrays. Finally, the merged array results in a sorted array. An example for merge sort is shown in
Figure 2.19. The algorithm is explained with a flowchart, as shown in Figure 2.20.

FIGURE 2.19 Working of the merge sort algorithm.

53Overview of Python for Machine Learning

2.4.5.17 Implementation of Merge Sort in Python

defmergeSort(myLIST):
print("Splitting ",myLIST)
iflen(myLIST)>1:
mid = len(myLIST)//2
lefthalf = myLIST[:mid]
righthalf = myLIST[mid:]

mergeSort(lefthalf)
mergeSort(righthalf)
 i=j=k=0
while i <len(lefthalf) and j <len(righthalf):
iflefthalf[i] <righthalf[j]:

FIGURE 2.20 Merge sort.

54 Machine Learning for Decision Sciences with Case Studies in Python

myLIST[k]=lefthalf[i]
 i=i+1
else:
myLIST[k]=righthalf[j]
 j=j+1
 k=k+1

while i <len(lefthalf):
myLIST[k]=lefthalf[i]
 i=i+1
 k=k+1

while j <len(righthalf):
myLIST[k]=righthalf[j]
 j=j+1
 k=k+1
print("Merging ",myLIST)

myLIST = [1,6,7,8,3,2,8]
mergeSort(myLIST)
print(myLIST)

Testing the results

Splitting [1, 6, 7, 8, 3, 2, 8]
Splitting [1, 6, 7]
Splitting [1]
Merging [1]
Splitting [6, 7]
Splitting [6]
Merging [6]
Splitting [7]
Merging [7]
Merging [6, 7]
Merging [1, 6, 7]
Splitting [8, 3, 2, 8]
Splitting [8, 3]
Splitting [8]
Merging [8]
Splitting [3]
Merging [3]
Merging [3, 8]
Splitting [2, 8]
Splitting [2]
Merging [2]
Splitting [8]
Merging [8]
Merging [2, 8]
Merging [2, 3, 8, 8]
Merging [1, 2, 3, 6, 7, 8, 8]
[1, 2, 3, 6, 7, 8, 8]

2.4.5.18 Shell Sort
The shell sort algorithm is a variant of the insertion sort algorithm. It varies with insertion algo-
rithm in terms of the following features:

55Overview of Python for Machine Learning

• The insertion sort algorithm is more efficient for an array that is almost sorted.
• The insertion algorithm is not optimal since it moves an element only by one position at a

time, thus consuming more time.

The insertion sort is improved in shell sort by comparing elements separated by a gap of several
positions. This algorithm uses insertion sort on the large interval of elements to sort. Further, the
interval keeps on decreasing until the value becomes 1. These intervals are referred to as the gap
sequences. Thus, the algorithm allows sorting different combinations of smaller gap sizes through
multiple passes. The array is almost sorted by the time the algorithm reaches its termination, so
a normal insertion sort would be sufficient to get the sorted list. The algorithm of shell sort is
explained with a flowchart as shown in Figure 2.21.

2.4.5.19 Quicksort
Quicksort is one of the efficient data structure algorithms based on partitioning the array into
smaller sub-arrays. First, a pivot value is chosen, and the partitioning of a large array is done based
on this value. Each sub-group of the array will be holding values based on the pivot value. Once
the array is partitioned, the quicksort algorithm recursively calls itself to sort the sub-arrays. This
algorithm is efficient on large-sized data. Indices start from both ends of the array, with one index
starting from the left and the other starting from the right. The left index selects the element smaller
than the pivot, while the right index selects the element larger than the pivot value. Then, these two
selected elements are compared and exchanged based on the caparison results. The process repeats
until all the elements to the left of the pivot and right of the pivot are compared. Finally, the pivot
value is also moved if required to maintain the sorted order. The procedure of the algorithm is
explained using a flowchart, as shown in Figure 2.22.

2.4.5.20 Data Structures in Python with Sample Codes
The purpose of data structures is to hold some data together. It is used to store a collection of data.
There are four built-in data structures in Python − list, tuple, dictionary, and set.

2.4.5.20.1 List
A list is a data structure that holds an ordered and similar collection of items, that is, one can store a
sequence of members in a given list. In Python, the list is initialized with square brackets, and each
item is comma-separated. Items in a list are stored with an index. Once the items are stored in the
list, they are changeable in the future. This is easy to imagine if the user wants to store the student’s
name of a class; the student’s name can be similar and is ordered.

Example:
StudentName [“Alice”, “Luna”, “Alice”, “Mack”, “Jhon”]
Output: [“Alice”, “Luna”, “Alice”, “Mack”, “Jhon”]
If the user wants to access the 1 st element of a list: print (StudentName[0])

2.4.5.20.2 Tuple
The main purpose of the tuple is to hold multiple objects. They are very similar to lists but lack the
extensive functionality that list offers, that is, items not changeable once stored. To create a tuple,
specific items need to be defined separated by commas within an optional pair of parenthesis. If the
user wants to store final marks scored by students in different subjects,

Mack=(“Science”, 20, “English” 30)
Output : (Science”, 20, “English” 30)

56 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 2.21 Shell sort.

57Overview of Python for Machine Learning

FIGURE 2.22 Quicksort.

58 Machine Learning for Decision Sciences with Case Studies in Python

2.4.5.20.3 Dictionary
Dictionary is like a box of an unordered set of objects. It acts like a telephone dictionary that saves
the telephone numbers based on a person’s name, the dictionary’s key, and phone numbers will be
its details. In the dictionary, the key should always be unique.

Dictionary is initialized with curly braces; the key is separated from its value by a colon “:” and
commas separate items. Items can be of any data type, but the key should be an immutable data
type.

Example: Saving students record based on enrollment numbers which will be the key, and it is
always unique.

Dict = {‘enroll’ : ‘121’, ‘name’ : ‘adam’, ‘class’ : ‘first’}
Print dict[‘enroll’]
Print dict[‘name’]
To access the value with the help key, Python uses the following code:
Dict[enroll];

2.4.5.20.4 Set
The concept of sets is same as sets we study in mathematics. An unordered group of items is known
assets, and the user can find union, intersection, and set difference. Their usage is primarily when
the existence of an object in a collection is more important than the order or how many times it
occurs.

Set can be initialized by using brackets. Let’s take the example of an equal set.
Input:
A= {1, 2, 3};
B = {3,2, 1};
Print (A==B);
Output: true

2.4.5.21 Python Code Samples for Data Structures in Python
2.4.5.21.1 List
A list is a sequence of values, and these values can be of any type. Values in the list are called ele-
ments. There are several ways to create a new list, and the simplest is to enclose the elements in a
square bracket. A few examples are illustrated below for better understanding.

In [8]: list= ['a',2,3,'xyz',True]

In [9]: list
Out[9]: ['a', 2, 3, 'xyz',True]

In [10]: x = [-10,-20,-30,-40] #from left to right index starts from 0 in
python and for right to left it starts from -1
In [11]: x[1]
Out[11]:-20

In [12]: x[-2]
Out[12]:-30

In [13]: x[-1]
Out[13]:-40

In [14]: type(x)
Out[14]:list

59Overview of Python for Machine Learning

In [15]: car= ['Merceedes','audi','bmw']
 print(car)

 ['Merceedes', 'audi', 'bmw']

2.4.5.21.2 Nested List
A nested list is a list contained in another list.

In [16]: a = [10,20,30,['abc','xyz']]

In [17]: a
Out[17]: [10, 20, 30, ['abc','xyz']]

In [18]: a[2]
Out[18]:30

In [19]: a[1]
Out[19]:20

In [20]: alist= [[4, [True, False], 6, 8], [888, 999],[1,[2,3],3]]
 ifalist[0][1][0]:
 print(alist[1][0])
 else:
 print(alist[1][1])
 888
In [21]: alist[0][1][0]
Out[21]:True

In [22]: alist[2][1][1]
Out[22]:3

In [23]: alist[1][1]
Out[23]:999

In [24]: alist[0]
Out[24]: [4, [True, False], 6,8]

In [25]: alist[1]
Out[25]: [888,999]

In [26]: alist[0][3]
Out[26]:8

In [27]: alist[0][1]
Out[27]: [True,False]

In [28]: alist[0][0:2]
Out[28]: [4, [True,False]]

In [29]: x = []

In [30]: type(x)
Out[30]:list

In [31]: s = 'hello python'

60 Machine Learning for Decision Sciences with Case Studies in Python

In [32]: message= "Welcome to Python Class"

In [33]: message_list= message.split()

In [34]: message_list
Out[34]: ['Welcome', 'to', 'Python','Class']

In [35]: words = ['apple','mango','banana','fig','strawberry']

In [36]: words[1:7]
Out[36]: ['mango', 'banana', 'fig','strawberry']

In [37]: words[-2:4]
Out[37]:['fig']

In [38]: words[:]
Out[38]: ['apple', 'mango', 'banana', 'fig','strawberry']

In [39]: words[:2]
Out[39]: ['apple','mango']

In [40]: words[1:-1]
Out[40]: ['mango', 'banana','fig']

In [41]: words[-1]
Out[41]:'strawberry'

In [42]: len(words)
Out[42]:5

In [43]: words[3]
Out[43]:'fig'

In [44]: words.index('fig')
Out[44]:3

In [45]: words[1:3] #upper end is always exclusive
Out[45]: ['mango','banana']

In [46]: words[2:]
Out[46]: ['banana', 'fig','strawberry']

In [47]: words[-1]
Out[47]: 'strawberry'

In [48]: words[0:-1]
Out[48]: ['apple', 'mango', 'banana','fig']

In [49]: words[-2:5]
Out[49]: ['fig','strawberry']

In [50]: words[1:-1]
Out[50]: ['mango', 'banana','fig']

In [51]: words[:]
Out[51]: ['apple', 'mango', 'banana', 'fig','strawberry']

61Overview of Python for Machine Learning

In [52]: words[1:-1]
Out[52]: ['mango', 'banana','fig']

In [53]: words[2:4]
Out[53]: ['banana','fig']

In [54]: 'guava' in words
Out[54]: False

In [55]: animals = ['cat','dog','snake','fish','elephant','fish']

In [56]: animals.index('fish')
Out[56]:3

In [57]:len(animals) #To check no of elements in a list
Out[57]:6

In [58]: x = words + animals x
Out[58]:['apple',
 'mango',
 'banana',
 'fig',
 'strawberry',
 'cat',
 'dog',
 'snake',
 'fish',
 'elephant',
 'fish']

In [59]: words.append('cherry')

In [60]: words
Out[60]: ['apple', 'mango', 'banana', 'fig', 'strawberry','cherry']

In [61]: words.extend(['Gua','vaGrapes','berries','pineapple'])

In [62]: words
Out[62]:['apple',
 'mango',
 'banana',
 'fig',
 'strawberry',
 'cherry',
 'Gua',
 'vaGrapes',
 'berries',
 'pineapple']

In [63]: words.remove('berries')

In [64]: #remove first 4 elements from list x?

In [65]: words
Out[65]:['apple',
 'mango',

62 Machine Learning for Decision Sciences with Case Studies in Python

 'banana',
 'fig',
 'strawberry',
 'cherry',
 'Gua',
 'vaGrapes',
 'pineapple']
In [66]: words.remove(words[1])

In [67]: words
Out[67]:['apple',
 'banana',
 'fig',
 'strawberry',
 'cherry',
 'Gua',
 'vaGrapes',
 'pineapple']
In [68]: words.append('cherry')

In [69]: words
Out[69]:['apple',
 'banana',
 'fig',
 'strawberry',
 'cherry',
 'Gua',
 'vaGrapes',
 'pineapple',
 'cherry']
In [70]: words.count('cherry')
Out[70]:2

In [71]: words.remove('cherry')

In [72]: words
Out[72]:['apple',
 'banana',
 'fig',
 'strawberry',
 'Gua',
 'vaGrapes',
 'pineapple',
 'cherry']
In [73]: my_list= [1,67,84,98,34,90,76,56]

In [74]: a = ['a','g','f']
 a.sort()
 a
Out[74]: ['a', 'f','g']

In [75]: my_list.sort()

In [76]: my_list
Out[76]: [1, 34, 56, 67, 76, 84, 90,98]

63Overview of Python for Machine Learning

In [77]: my_list= [1,67,22,9,77,13,78,48]
 print(my_list.sort())
 None
In [78]: my_list
Out[78]: [1, 9, 13, 22, 48, 67, 77,78]

In [79]: print(my_list)
 [1, 9, 13, 22, 48, 67, 77, 78]

In [80]: word=["apple","mango","banana","fig","strawberry"]
 word
 #word[0]
Out[80]: ['apple', 'mango', 'banana', 'fig','strawberry']

In [81]: word[1:5:3]
Out[81]: ['mango','strawberry']

In [82]: word[1:5:2]
Out[82]: ['mango','fig']

In [83]: word[0]
Out[83]:'apple'

In [84]: my_list.sort(reverse = True) # Sort the list in descending
order,reverse is true

In [85]: my_list
Out[85]: [78, 77, 67, 48, 22, 13, 9,1]

In [104]: my_list.sort(reverse = False)# Sort the list, Reverse is false
which means make the list in ascending order
 my_list
Out[104]: [1, 9, 13, 22, 48, 67, 77, 78]

In [87]: my_list*3
Out[87]: [1,
 9,
 13,
 22,
 48,
 67,
 77,
 78,
 1,
 9,
 13,
 22,
 48,
 67,
 77,
 78,
 1,
 9,
 13,
 22,
 48,
 67,

64 Machine Learning for Decision Sciences with Case Studies in Python

 77,
 78]
In [88]: my_list[1:7] #list[firstindex:lastindex:step]
Out[88]: [9, 13, 22, 48, 67,77]

In [89]: my_list[1:2]
Out[89]:[9]

2.4.5.21.3 Tuples
A tuple is a sequence of values much like a list. The values stored in a tuple can be any type, and
integers index them. The important difference is that tuples are immutable.

In [90]: #To create a tuple with a single element, you have to include
the final comma:
 t1 = ('a',)
 type(t1)
Out[90]:tuple

In [91]: t1 = ('a')
 type(t1)
Out[91]:str

In [92]: #Another way to construct a tuple is the built-in function tuple.
 #With no argument, it creates an empty tuple:
 t = tuple() print (t)
 ()
In [93]: #If the argument is a sequence (string, list or tuple),
 #the result of the call to tuple is a tuple with the elements of the
sequence:
 t = tuple('123')
 print (t)
 ('1', '2', '3')

In [94]: t1 = tuple("helloworld") print(t1)
('h', 'e', 'l', 'l', 'o', 'w', 'o', 'r', 'l', 'd')

In [95]: l = (1,2,2,3,'xyz',(3,4))

In [96]: l
Out[96]: (1, 2, 2, 3, 'xyz', (3, 4))

In [97]: l[1]
Out[97]: 2

In [98]: type(l)
Out[98]: tuple

In [99]: l.index(1)
Out[99]: 0

In [100]: l.count(2) #no of times that elemnt is occuring
Out[100]: 2

In [101]: b = l*5

65Overview of Python for Machine Learning

In [102]: b
Out[102]:(1,
 2,
 2,
 3,
 'xyz',
 (3, 4),
 1,
 2,
 2,
 3,
 'xyz',
 (3, 4),
 1,
 2,
 2,
 3,
 'xyz',
 (3, 4),
 1,
 2,
 2,
 3,
 'xyz',
 (3, 4),
 1,
 2,
 2,
 3,
 'xyz',
 (3, 4))

In [103]: len(b)
Out[103]:30

A good rule of thumb is as follows: Use lists when the items are similar and tuples when the items
are non-similar. A sequence of 50 first names? That’s a list. A sequence consisting of a first name,
last name, age, and address? That's a tuple.

2.4.5.21.4 Dictionary
Python dictionary is an unordered collection of items. While other compound data types have only
value as an element, a dictionary has a key: value pair.

Dictionaries are optimized to retrieve values when the key is known.

In [4]: #Declaration and definition of dictionary variable
 ab= { 'Suresh' : 'Suresh@Sureshch.com', 'Ashok' : 'Ashok@wall.org',
 'Sumathi' :'Sumathi@rubylang.org', 'Surekha' :
'Surekha@hotmail.com'
 }
 print(ab) #Prints in single line

 #Whereas here it prints as it is defined.
 ab
 {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
'Sumathi': 'Sumathi@ruby

mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto::'Sumathi@rubylang.org'
mailto:'Surekha@hotmail.com'
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'

66 Machine Learning for Decision Sciences with Case Studies in Python

 -lang.org', 'Surekha': 'Surekha@hotmail.com'}
Out[4]: {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
 'Sumathi': 'Sumathi@rubylang.org', 'Surekha': 'Surkha@hotmail.com'}

In [5]: mydict= {1:['python',"2019-01-03"],2.5:'java',3:'C',4:'Machine
Learning'}

In [6]: mydict
Out[6]: {1: ['python', '2019-01-03'], 2.5: 'java', 3: 'C', 4:
'MachineLearning'}

In [7]: type(mydict) #Checking type of the variable
Out[7]:dict

In [8]: print(ab)
 print(type(ab))
 {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
'Sumathi': 'Sumathi@ruby
 -lang.org', 'Surekha': 'Surekha@hotmail.com'}
 <class 'dict'>

In [9]: print("Suresh's e-address is", ab['Suresh'])
 Suresh's e-address is Suresh@Sureshch.com

In [10]: # Deleting a key-value pair
 Del ab[Surekha]

In [11]: ab
Out[11]: {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
 'Sumathi': 'Sumathi@ruby-lang.org'}

In [12]: # Adding a key-value pair ab['Chinmay'] =
 'Chinmay@python.org' ab

Out[12]: {'Suresh': 'Suresh@Sureshch.com', 'Ashok': 'Ashok@wall.org',
 'Sumathi': 'Sumathi@ruby-lang.org', 'Chinmay':
'Chinmay@python.org'}

In [13]: mydict= {1:2,3:4,5:6}

In [14]: mydict
Out[14]: {1: 2, 3: 4, 5:6}

In [15]: dict1 = {1:'carrots', 'two':[1,2,3], 6.4:2,9:8}

In [16]: dict1
Out[16]: {1: 'carrots', 'two': [1, 2, 3], 6.4: 2, 9:8}

In [17]: len(dict1)
Out[17]:4

In [18]: 'two' in dict1 #check whether the value is present or not.
Out[18]:True

In [19]: 'carrots' in dict1
Out[19]:False

http://-lang.org'
mailto:'Surekha@hotmail.com'}
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto:'Sumathi@rubylang.org'
mailto:'Surkha@hotmail.com'}
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
http://-lang.org'
mailto:'Surekha@hotmail.com'}
mailto:Suresh@Sureshch.com
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto:'Sumathi@ruby-lang.org'}
mailto:'Chinmay@python.org'
mailto:'Suresh@Sureshch.com'
mailto:'Ashok@wall.org'
mailto:'Sumathi@ruby-lang.org'
mailto:'Chinmay@python.org'}

67Overview of Python for Machine Learning

In [20]: dict1['two'] = 'radish' #adding new value for key.

In [21]: dict1
Out[21]: {1: 'carrots', 'two': 'radish', 6.4: 2, 9:8}

In [22]: words= {'house': "haus",'cat ':" katze"}

In [23]: words["dog"] = "dogiee" #adding new value to the dictionary
variable.

In [24]: words
Out[24]: {'house': 'haus', 'cat ': ' katze', 'dog':'dogiee'}

In [25]: #copy the value to another variable
 w = words.copy()
 #words["dog"] = "dogiee"
 print(w)
 {'house': 'haus', 'cat ': ' katze', 'dog': 'dogiee'}

In [26]: #check the result
 W
Out[26]: {'house': 'haus', 'cat ': ' katze', 'dog':'dogiee'}

In [27]: #clear the value
 w.clear()
 #now check out the result
 w
Out[27]:{}

In [28]: words1 = {"red": "rounge", "blue":"bleu"}

In [29]: words2 = {"red": "round", "blue":"bluue"}

In [30]: words1.update(words2) #update the key values

In [31]: words1
Out[31]: {'red': 'round', 'blue':'bluue'}

In [32]: #list down the items like keys and data
 words1.items()
Out[32]: dict_items([('red', 'round'), ('blue','bluue')])

In [33]: #list down only the keys
 words1.keys()
Out[33]: dict_keys(['red','blue'])

In [34]: #list down only the values
 words1.values()
Out[34]: dict_values(['round','bluue'])

In [35]: #list the keys
 for key in words1:
 print(key)
 red
 blue

68 Machine Learning for Decision Sciences with Case Studies in Python

In [36]: #combine keys respective values from to dictionary variable.
 A={'a':72,'b':17,'c':8}
 B={'a':1308,'b':1,'c':12}
 combinedDict={}
 for key in A.keys():

 if key in B.keys():

 combinedDict[key]=[]
 combinedDict[key].append
 (A[key])
 combinedDict[key].append
 (B[key])
In [37]: combinedDict
Out[37]: {'a': [72, 1308], 'b': [17, 1], 'c': [8,12]}

2.4.6 fUnctions in Python

To perform a task that will be used throughout the project, we code such a task as a function that
will be reusable in the future. Thus, functions provide better modularity for the project. In addition,
it becomes easy for programmers to manage code using functions.

The function can be initialized using the keyword “def” followed by the function name and
brackets; input data are positioned within these brackets, and docstring describes the function's
performance. It is an optional documentation string. Colon (:) signifies the end of function header.

Let’s take an example of writing a function of adding two numbers.

inta,b;
Def add (a, b) :
sum = a + b
Print (‘the sum is ’, sum)
Return

We can call the function using its name and parameters:

add(1,2);

2.4.6.1 Python Code Samples for Functions
A function is a block of organized, reusable code used to perform a single, related action. As a
result, functions provide better modularity for the application and a high degree of code reusing.

SYNTAX: def functionname(parameters): "function_docstring" function_suite
return [expression]
In [1]: def my_first_function(name): #Function declaration with parameters.
 return(name)
 print(my_first_function(‘suresh’)) # Arguments has to be passed.
 suresh

2.4.6.2 Returning Values from Functions
The user can use a function to return a single value or multiple values.

In [2]: def add_two_numbers(num1=6,num2=5): #Default assignment for
parameters in function definition.

69Overview of Python for Machine Learning

 return(num1+num2)
 #number1 = 34
 #number2 = 44.6
 result= add_two_numbers() #No vales are passed, so default value is
used.
 print(result)

 11

In [3]: def print_max(a, b): # Fucntion with parameters and must pass
value.
 ifa>b:
 print(a, 'is maximum')
 elifa== b:
 print(a, 'is equal to', b)
 else:
 print(b, 'is maximum')
 # directly pass literal values
 #print_max(3, 4)

 x = 5
 y = 7
 #pass variables as arguments
 print_max(x, y) #Arguments must be passed else error may return.
 7 is maximum

2.4.6.3 Scope of Variables
All variables in a program may not be accessible at all locations in that program. This depends
on where the user has declared a variable. The scope of a variable determines the portion of the
program where the user can access a particular identifier. There are two basic scopes of variables
in Python:

 i. Global variables
 ii. Local variables

The following example shows the use of a global and local variable in functions:

In [4]: total= 10 # This is global variable.
 # Function definition is here
 def sum(arg1, arg2):
 # Add both the parameters and return them."
 total1 = arg1 + arg2
 a = total + 2
 total; # Here total is local variable.
 print("Inside the function local total : ", total1)
 print(total)
 returntotal1

 # Now you can call sum function
 sum(10, 20)
 #print ("Outside the function global total : ", total)

 Inside the function local total : 30 10
Out[4]:30

70 Machine Learning for Decision Sciences with Case Studies in Python

2.4.6.4 Function Arguments
The user can call a function by using the following types of formal arguments:

Keyword arguments
Default arguments
Variable-length arguments

2.4.6.4.1 Keyword Arguments
Keyword arguments are related to the function calls. When the user uses keyword arguments in a
function call, the caller identifies the arguments by the parameter name. This allows the user to skip
arguments or place them out of order because the Python interpreter can use the keywords provided
to match the values with parameters. The user can also make keyword calls to the printme() func-
tion in the following ways:

In [1]: def printme(str):
 #"This prints a passed string into this function"
 print(str)
 return

 # Now you can call printme function
 printme(str= "My string")

 My string

In [3]: def func(a, b=5, c=10): # value assignment to function varible
must be from right to left.
 print('a is', a, 'and b is', b, 'and c is', c)

 func(2) # In this case, Default value of b&c are taken as its value.

 func(25, c=24) # In this case, Default value of b laone is taken,
since other two values are passed.

 func(c=50, a=100)

 a is 2 and b is 5 and c is 10
 a is 25 and b is 5 and c is 24
 a is 100 and b is 5 and c is 50

2.4.6.4.2 Default Arguments
A default argument is an argument that assumes a default value if a value is not provided in the
function call for that argument. The following example gives an idea of default arguments; it prints
the default age if not passed.

In [9]: def say(message, times=3):
 print (message * times)

 say('Hello ')

 say('World ', 5)

 Hello Hello Hello
 World WorldWorldWorldWorld

71Overview of Python for Machine Learning

In [10]: # Function definition is here
 def printinfo(name, age = 35):
 #"This prints a passed info into this function"
 print("Name: ", name)
 print("Age ", age)
 return

 # Now you can call printinfo function
 printinfo(age = 50, name = "miki")
 printinfo(name = "miki")

 Name: miki
 Age 50
 Name: miki
 Age 35

2.4.6.4.3 Variable-Length Arguments
The user may need to process a function for more arguments than those specified while defining the
function. Unlike required and default arguments, these arguments are variable-length arguments
and are not named in the function definition.

Syntax for a function with non-keyword variable arguments is given below:
deffunctionname([formal_args,] *var_args_tuple): "function_docstring" function_suite return

[expression]
An asterisk (*) is placed before the variable name that holds the values of all non-keyword

variable arguments. This tuple remains empty if no additional arguments are specified during the
function call.

In [24]:# Function definition is here
 def printinfo(arg1, *vartuple):
 #This prints a variable passed arguments
 print("Output is: ")
 print (arg1)
 forvarinvartuple:
 print (var)
 return
 # Now you can call printinfo function

 printinfo(10)
 printinfo(70, 60, 50)

Output is:
10

Output is:
70
60
50
In [12]: def multiply(*nums): #*arg is the variabl length list of the
argument
 z = 1
 fornuminnums:
 z*=num
 print(z)

In [13]: multiply(2,3)
 6

72 Machine Learning for Decision Sciences with Case Studies in Python

In [14]: multiply(2,3,5)
 30

2.4.6.4.4 The Return Statement
The return statement [expression] exits a function, optionally passing back an expression to the
caller. A return statement with no arguments is the same as a return None.

In [15]: # Function definition is here
 def sum(arg1, arg2):
 # Add both the parameters and return them."
 total= arg1 + arg2
 print("Inside the function : ", total)
 return total

 # Now you can call sum function
 total= sum(10, 20)
 print("Outside the function : ", total)

 Inside the function : 30
 Outside the function : 30
In [32]: #Function to Find the biggest number.
 def maximum(x, y):
 ifx>y:
 returnx
 elifx== y:
 return'The numbers are equal'
 else:
 return y

 c = maximum(2,3) print(c)

3
In [33]: #Function to find its squares of a number.
 def square(x,y):
 return x*x,y*y
 t = square(2,3)
 print(t)
 (4, 9)

2.4.6.4.5 Lambda Function
The syntax of lambda functions contains only a single statement, which is given as follows:

lambda [arg1 [,arg2,.....argn]]:expression
In [35]: double= lambda x: x**2
 print(double(10))

 100
In [36]: my_list= [1,5,4,6,11,34,12]
 new_list= list(filter(lambda x : (x%2 == 0),
 my_list)) print(new_list)

 [4, 6, 34, 12]

73Overview of Python for Machine Learning

Most of the programming languages like C, C++, Java use braces { } to define a block of code.
Python uses indentation. A code block (body of a function, loop, etc.) starts with indentation and
ends with the first unindented line. The amount of indentation is up to the user, but it must be con-
sistent throughout that block. Generally, four white spaces are used for indentation and are preferred
over tabs. The following example describes such a scenario:

In [4]: for I inrange(0,11): print(i)
 if i== 5:
 break #Break and Exit the loop
 print("a")

 0
 1
 2
 3
 4
 5
 a

The enforcement of indentation in Python makes the code look neat and clean. This results in
Python programs that look similar and consistent.

In [5]: a = 'apple'

 if a== 'apple': # Indented, If condition is true body of the if
is executed
 print('Logging on...')
 print("True....")
 else:
 print('Incorrect password.')
 print('All done!')
 print("unindent line")

 print("Always print")

 Logging on...
 True....
 Always print

In [6]: """"learning about indentations learning about indentations"""""
 If i =='apple':
 print('Logging on....')
 else:
 print('Incorrect password')
 print('All done!')

 Incorrect password
 All done!

In [7]:
#Anything after # is ignored by python
#comments in python

74 Machine Learning for Decision Sciences with Case Studies in Python

2.4.7 file hanDling

File handling allows the application to access the files available on the computer. Therefore, it plays
an important role in web applications.

The generic function of working with files is open() function. The file can be in four different
states:

• Read: Opens the file for reading only, and the keyword used is “r.”
• Append: Opens to add a file, and the keyword used is “a.”
• Write: Opens the file for writing, creates a new file if the file doesn’t exist, and the key-

word used is “w.”
• Create: It creates a new file, identifies errors if the file already exists, and the keyword

used is “x.”
• Text: it is the text mode by default, and the keyword used is “t.”

Example: Suppose we have an application that uploads the documents present on the computer and
allows the user to update and create the documents.

Read Files

q = open (“myfile.txt”, “r”)
print(q.read())

Write/Create Files

q = open (“myfile.txt”, “r”)
q.write(“hi”)
q.close()

Delete Files

import os
Os.remove(“myfile.txt”)

2.4.8 excePtion hanDling

It is the process of handling all the unexpected errors which occur during the execution of code.
Exception handling helps to handle the errors so that the program does not stop working.

There are many exceptions like arithmetic errors, system errors, standard errors, index errors,
and import errors.

The syntax of handling an exception is by defining a try, and except block, a try statement can
have multiple exception blocks

try :
//perform your action

exceptExceptionI:
//if error occurs perform this action

The index error is the most common error that occurs during the execution; it occurs when a list
contains ten elements and the user accesses the index not present in the list. Let’s take the example
of the list of fruits.

p= [apple, banana, orange, peach]
 try :

Open func�on is a default func�on which will return
the file and as we had print the read func�on, as a
result it will print the data present in file

75Overview of Python for Machine Learning

print “the fruit is ” %(p[1])
print “the fruit is ” %(p[4]) //this will throw exception as there are only 3 elements

except for Index Error :
print “no fruit found”

2.4.9 DebUgging in Python

The process of identifying errors from the source code is called debugging. It helps the programmer
dry run each step and identifies the exact line of code due to which error occurred. The software
which allows the programmer to debug the code is called a debugger.

There are many ways to debug the code and identify errors. For example, some of the developers
print all the lines, which may execute errors. The print statement will help show the output on each
step; preserving the log is another way to debug the code. Besides all this, many debugging tools
assist developers in automating the debugging.

Python has a debugger, which is known as PDB (Python Debugger). The user can configure it to
explore all the debugging features included in it. Thus, the user can easily look into their code while
debugging and identify the error-affected lines.

PDB can easily be configured using below-mentioned code:

import pdb;
Pdb.set_trace()

Following are the built-in commands used during debugging:

 1. List: Allow the user to view the line which is currently executed.
 2. Up and Down: The user can change the position of execution with this command.
 3. Step and Next: Both commands allow the sequential execution of the code. Next, it will

go to the next line of the code, ignoring the call to another function. The step will not
ignore the call to other functions and goes deeper.

 4. Break: Allow the user to add break points at different points. It stops the debugging.

2.4.9.1 Packages
Let’s take the example, suppose the user is creating an application that includes many modules, it
becomes very difficult to manage the code if all are placed into one location. Packages help in creat-
ing a hierarchical structuring of the module name using dot notation.

Packages are the namespace that holds many packages and modules themselves. They are the
directories that are imported into the projects. The directory should contain a file called “init.py”. It
indicates that it is a Python library and is imported into the program.

Example: Suppose we have a package that contains two modules name “a.py” and “b.py”
Now the user can import the modules using the following package:
import package.a, package.b

2.5 NUMPY BASICS

Numpy stands for numerical Python, which deals with the multi-dimensional array and contains
functions and objects to process and access it. Numpy allows performing all the logical and math-
ematical operations on the array.

While execu�on, as soon as compiler reaches this line ,
command prompt opens in the terminal which displays all the
debugging informa�on

76 Machine Learning for Decision Sciences with Case Studies in Python

2.5.1 introDUction to nUMPy

Numpy is the library for multi-dimensional arrays and their operations. It is also used as a useful
multi-dimensional container of generic data. Besides, Numpy also has a built-in function for linear
algebra.

The array of Numpy is called ndarray because of its multi-dimension nature. It contains a col-
lection of data with the same data type. The data inside the ndarray can be accessed using an index
that starts from zero. In Numpy, the dimensions of the array are called ranks.

2.5.1.1 Array Creation
The array can be initialized in multiple ways by defining several ranks and defining the array's size.
Let’s initialize a multi-dimensional array:

import Numpy as ns

a = ns.array([1, 2, 3]) # Create a rank 1 array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"
print(a[0], a[1], a[2]) # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"

b = ns.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"

The out put shown as below
##<class 'numpy.ndarray'>
(3,)
1 2 3
[5 2 3]
(2, 3)
b1 2 4

import Numpy as ns

a = ns.zeros((3,3)) # Create an array of all zeros
print(a) # Prints "[[0. 0. 0.]
 # [0. 0. 0.]
 # [0. 0. 0.]]

b = ns.ones((1,2)) # Create an array of all ones
print(b) # Prints "[[1. 1.]]"

c = ns.full((2,2), 7) # Create a constant array
print(c) # Prints "[[7. 7.]
 # [7. 7.]]"

d = ns.eye(2) # Create a 2x2 identity matrix
print(d) # Prints "[[1. 0.]
 # [0. 1.]]"

e = ns.random.random((2,2)) # Create an array filled with random values
print(e) # Might print "[[0.91940167 0.08143941]
 # [0.68744134 0.87236687]]"

77Overview of Python for Machine Learning

2.5.1.2 Array Slicing
Array slicing is creating a duplicate of the original array, which contains an index of elements of the
original array. It is the most powerful technique used in various ML algorithms.

Slicing is initiated using a colon “:” with a “start” and “end” index before and after the colon. The
slicing extends from the “start” index and ends on 1 item before the “end” index.

slice[start : end]

 import Numpy as ns

 # Create the following rank 2 array with shape (3, 4)
 # [[1,3,5,7]
 # [2,4,6,8]
[3,6,9,12]]
a = ns.array([[1,3,5,7], [2,4,6,8], [3,6,9,12]])

Use slicing to pull out the subarray consisting of the first two rows
and columns 1 and 2; b is the following array of shape (2, 2):
[[2 3]
[6 7]]
b = a[:2, 1:3]

A slice of an array is a view into the same data, so modifying it
will modify the original array.
print(a[0, 1]) # Prints "3"
b[0, 0] = 99 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) # Prints "99"

2.5.2 nUMerical oPerations

Once the array is created, the user can do arithmetic operations on it. Numpy provides a large num-
ber of arithmetic operations which include arithmetic operations and trigonometric functions. An
example of arithmetic operations in Numpy is shown below.

import Numpy as ns

x = ns.array([[1,2],[3,4]], dtype=np.float64)
y = ns.array([[5,6],[7,8]], dtype=np.float64)

Element wise sum; both produce the array
[[6.0 8.0]
[10.0 12.0]]
print(x + y)
print(ns.add(x, y))

Element wise difference; both produce the array
[[-4.0 -4.0]
[-4.0 -4.0]]
print(x - y)
print(ns.subtract(x, y))

Element wise product; both produce the array
[[5.0 12.0]
[21.0 32.0]]
print(x * y)
print(ns.multiply(x, y))

78 Machine Learning for Decision Sciences with Case Studies in Python

Element wise division; both produce the array
[[0.2 0.33333333]
[0.42857143 0.5]]
print(x / y)
print(ns.divide(x, y))

Element wise square root; produces the array
[[1. 1.41421356]
[1.73205081 2.]]
print(ns.sqrt(x))

A set of additional Numpy functions are presented in Table 2.5.
Numpy solves linear algebra operations; some of the functions are mentioned below.

• Dot: It solves the dot product between two arrays.
• Determinant: Solves the determinant of two arrays.
• Multi Variate INVerse of the matrix (INV): Solves the multiplicative inverse of the matrix.

2.5.3 Python coDe saMPles for nUMPy Package

The example given in this section illustrates the declaration of an array using Numpy and the array
variable type.

2.5.3.1 Array Creation
There are several ways to create arrays. For example, a user can create an array from a regular
Python list or tuple using the array function. The type of the resulting array is deduced from the
type of the elements in the sequences.

import numpy as np # Array-processing package – The user had to import
the package to create and use the array

x = np.array([1,2,3]) # 1-D Array
x
OURPUT --> array([1, 2, 3])

x1 = np.array([1,2,3])
a = (1,3,5)
b = np.array(a) # Assigning array-a to new variable
print(b)
OUTPUT --> [1 3 5]

type(b) # Type of the variable
##OUTPUT --> numpy.ndarray

TABLE 2.5
Additional Functions in Numpy

Function Use Syntax

Real Returns the real part from complex number Numpy.real()

Imaginary Returns the imaginary part from complex number Numpy.imag()

Mode Returns the remainder of the division Numpy.mod()

Conjugate Returns the conjugate part of a complex number Numpy.conj()

79Overview of Python for Machine Learning

distance = [12,44,54,70,50]
time = [0.27,0.54,0.77,0.55,0.29]
distance1 = np.array(distance)
time1 = np.array(time)

type(distance)
##OUTPUT --> list
type(distance1)
##OUTPUT --> numpy.ndarray
ARRAY CREATION
import numpy as np
arr1 = np.array([2,3,4])
arr1

##OUTPUT --> array([2, 3, 4])

import numpy as np
x = np.array([1,2,3])
arr2 = np.array([1.2, 3.5, 5.1])
arr2
##OUTPUT --> array([1.2, 3.5, 5.1])

arr3 = np.array(["abc","def"])
arr3
##OUTPUT --> rray(['abc', 'def'], dtype='<U3')
arr3.dtype
##OUTPUT --> dtype('<U3')

arr4 = np.array(["xyz","ijk"])

#A frequent error consists in calling array with multiple numeric arguments,
rather than #providing a single list of numbers as an argument.
#a = np.array(1,2,3,4) # WRONG
#a = np.array([1,2,3,4]) # RIGHT

Array transforms sequences into two-dimensional arrays, sequences of sequences into three-
dimensional arrays, and so on.

b = np.array([[[(1.5,2,3), (4,5,6),(7,8,9)]]])
b
##OUTPUT --> array([[[[1.5, 2., 3.],
##OUTPUT --> [4., 5., 6.],
##OUTPUT --> [7., 8., 9.]]]])

b.ndim # Number of array dimensions.
##OUTPUT --> 4

b.shape # Current shape of an array
##OUTPUT --> (1, 1, 3, 3)

c = np.array([[1,2], [3,4]], dtype=complex)
c

##OUTPUT --> array([[1.+0.j, 2.+0.j],
##OUTPUT --> [3.+0.j, 4.+0.j]])

80 Machine Learning for Decision Sciences with Case Studies in Python

d = np.ones((3,3,4), dtype=np.int16) #2=no.of arrays
d

##OUTPUT --> array([[[1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT --> [[1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT --> [[1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1]]], dtype=int16)

d.ndim
##OUTPUT -->3

d.shape
##OUTPUT -->(3,3,4)

e= np.array([[[1,2],[3,4,5],[6,7,8,9]]])
e

##OUTPUT --> array([[list([1, 2]), list([3, 4, 5]), list([6, 7, 8, 9])]],
dtype=object)

import numpy as np
a = np.arange(10,21,3)
print(a)
##OUTPUT --> [10 13 16 19] - Array sttarting from 10 and ends in 21 with the
increments in value of 3
s = slice(2,7)
s
print(a[s])
print(s)
##OUTPUT --> slice(2, 7, None)
a[2] = 3
print(a)
##OUTPUT -->[10 13 3 19] - Changed the thrid value (index value 2 from 16 to
3)

s = slice(1)
print(a[s])
##OUTPUT --> [10]

a = ("a","b","c","d","e","f","g","h")
x = slice(4,6)
print(a[x])
##OUTPUT --> ('e', 'f')

b = np.arange(2.5,6.5)
b
##OUTPUT --> array([2.5, 3.5, 4.5, 5.5])

81Overview of Python for Machine Learning

slice single item
a = np.arange(10)
b = a[5]
print (b)
##OUTPUT --> 5

x = np.arange(10,21)
print(x)
##OUTPUT --> [10 11 12 13 14 15 16 17 18 19 20]

a = np.arange(10)**2 # Square of number from zero to Nine
a
##OUTPUT --> array([0, 1, 4, 9, 16, 25, 36, 49, 64, 81], dtype=int32)

a[0:6:2] = -1000 ## Please note the elements starting from index 0 and
till index 5 in the increments of 2 will be changed to -1000
a
##OUTPUT --> array([-1000, 1, -1000, 9, -1000, 25, 36,
49, 64, 81], dtype=int32)

The array can be created from scratch, as shown above, or from another array. The below code
examples show how an array can be created from an existing array.

#creating an array from existing array
import numpy as np

x = [1,2,3]
a = np.asarray(x)
print (a)
##OUTPUT --> [1,2,3]

dtype is set
a = np.asarray(x, dtype = float)
print (a)
##OUTPUT --> [1. 2. 3.]

ndarray from a tuple

x = (1,2,3)
a = np.asarray(x)
print (a)
##OUTPUT --> [1,2,3]

type(a)
##OUTPUT --> numpy.ndarray

ndarray from list of tuples

x = [(1,2,3),(4,5)]
a = np.asarray(x)
print (a)
##OUTPUT -->[(1, 2, 3) (4, 5)]

import numpy as np
x = np.arange(5)
print (x)
##OUTPUT --> [0 1 2 3 4]

82 Machine Learning for Decision Sciences with Case Studies in Python

dtype set
x = np.arange(5, dtype = float)
print (x)
##OUTPUT --> [0. 1. 2. 3. 4.]

start and stop parameters set
x = np.arange(10,20)
print (x)
##OUTPUT --> [10 11 12 13 14 15 16 17 18 19]

import numpy as np
#numpy.linspace(start, stop, num=50, endpoint=True, retstep=False,
dtype=None, axis=0)
x = np.linspace(10,20,4) # returns evenly spaced numbers over a specified
interval.
#Start from 10 and End at 20
print (x)
##OUTPUT --> [10. 13.33333333 16.66666667 20.]
#PLEASE NOTE THE NUMBER OF ELEMENTS

import numpy as np
x = np.linspace(10,20,10)
print (x)
##OUTPUT --> [10. 11.11111111 12.22222222 13.33333333 14.44444444
15.55555556
##OUTPUT --> 16.66666667 17.77777778 18.88888889 20.]

2.5.3.2 Class and Attributes of ndarray—.ndim
Numpy’s array class is “ndarray,” also referred to as “numpy.ndarray.” This refers to the number of
axes (dimensions) of the array. It is also called the rank of the array.

f = np.array([[[(1.5,2,3), (4,5,6),(7,8,9)]]])
f.ndim
##OUTPUT -->2

#Describes how the bytes in the fixed-size block of memory corresponding to
an array item should be interpreted
f.dtype
##OUTPUT --> dtype('int32')

f.itemsize
##OUTPUT --> 4 ## The array is 32 bit length; 8 bytes ; 32/8 = 4

np_first_trial_cyclist = np.array([10,12,15,16]) #Create an array with data
np_second_trial_cyclist = np.array([20,25,30,45])
np_first_trial_cyclist + np_second_trial_cyclist # addition of two arrays
##OUTPUT --> array([30, 37, 45, 61])

2.5.3.3 Class and Attributes of ndarray—.shape
This consists of a tuple of integers showing the size of the array in each dimension. The length of
the “shape tuple” is the rank or ndim.

b = np.array([[[(1.5,2,3), (4,5,6),(7,8,9)]]])
b
##OUTPUT --> array([[[[1.5, 2., 3.],

83Overview of Python for Machine Learning

##OUTPUT --> [4., 5., 6.],
##OUTPUT --> [7., 8., 9.]]]])

b.ndim # Number of array dimensions.
##OUTPUT --> 4

b.shape # Current shape of an array
##OUTPUT --> (1, 1, 3, 3)

2.5.3.4 Class and Attributes of ndarray—ndarray.size, ndarray.Itemsize, ndarray.resize
It gives the total number of elements in the array. It is equal to the product of the elements of the
shape tuple. Itemsize describes how the bytes in the fixed-size block of memory corresponding to
an array item should be interpreted.

import numpy as np
f = np.array([[1, 2,5], [3, 4,7]])
print (f)
##OUTPUT -->[[1 2 5]
##OUTPUT --> [3 4 7]]

f.size
##OUTPUT -->6 - 6 elements

#Describes how the bytes in the fixed-size block of memory corresponding to
an array item should be interpreted
f.dtype
##OUTPUT --> dtype('int32')

f.itemsize
##OUTPUT --> 4 ## The array is 32 bit length; 8 bytes ; 32/8 = 4

f.resize (3,3)
f
##output -->array([[1, 2, 5],
##output --> [3, 4, 7],
##output --> [0, 0, 0]]) - note the last elements are zeros

2.5.3.5 Class and Attributes of ndarray—.dtype
It is an object that describes the type of elements in the array. It can be created or specified using
Python.

import numpy as np
x = np.array([1,2,3])
arr2 = np.array([1.2, 3.5, 5.1])
arr2
##OUTPUT --> array([1.2, 3.5, 5.1])

arr3 = np.array(["abc","def"])
arr3
##OUTPUT --> rray(['abc', 'def'], dtype='<U3')
arr3.dtype
##OUTPUT --> dtype('<U3')

c = np.array([[1,2], [3,4]], dtype=complex)
c

84 Machine Learning for Decision Sciences with Case Studies in Python

##OUTPUT --> array([[1.+0.j, 2.+0.j],
##OUTPUT --> [3.+0.j, 4.+0.j]])

d = np.ones((3,3,4), dtype=np.int16) #2=no.of arrays
d

##OUTPUT --> array([[[1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT --> [[1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1]],
##OUTPUT -->
##OUTPUT --> [[1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1],
##OUTPUT --> [1, 1, 1, 1]]], dtype=int16)

d.ndim
##OUTPUT -->3

d.shape
##OUTPUT -->(3,3,4)

e= np.array([[[1,2],[3,4,5],[6,7,8,9]]])
e

##OUTPUT --> array([[list([1, 2]), list([3, 4, 5]), list([6, 7, 8, 9])]],
dtype=object)

2.5.3.6 Basic Operations
Numpy uses the indices of the elements in each array to carry out basic operations. In this case,
where we are looking at a dataset of four cyclists during two trials, vector addition of the arrays
gives the required output.

import numpy as np
cyclist_trial = np.array([[10,12,15,16],[20,25,30,45]])
cyclist_trial

##OUTPUT --> array([[10, 12, 15, 16],
##OUTPUT --> [20, 25, 30, 45]])

first_trial = cyclist_trial[0] # Assign value at row-index(0) of all column
first_trial # Prints the data assigned to it.
##OUTPUT --> array([10, 12, 15, 16])

second_trial = cyclist_trial[1]
second_trial
##OUTPUT --> array([20, 25, 30, 45])

third_trial = cyclist_trial[1][0] #secondrow,first column
third_trial
##OUTPUT --> 20

tst = cyclist_trial[1,1] # Second-row Second column
tst

85Overview of Python for Machine Learning

##OUTPUT --> 25

forth_trial = cyclist_trial[:,2]
forth_trial
##OUTPUT --> array([15, 30])

cyclist_trial.shape
##OUTPUT --> (2, 4) - TWO ROWS AND 4 COLUMNS

fifth_trial = cyclist_trial[:,1:3]
fifth_trial
##OUTPUT --> array([[12, 15],
##OUTPUT --> [25, 30]])

2.5.3.7 Accessing Array Elements: Indexing
The user can access an entire row of an array by referencing its axis index. In addition, the indices
of the elements in an array can be referred to access them. A particular index of more than one axis
can also be selected.

import numpy as np
a = np.arange(10,21,3)
print(a)
##OUTPUT --> [10 13 16 19] - Array sttarting from 10 and ends in 21 with the
increments in value of 3
s = slice(2,7)
s
print(a[s])
print(s)
##OUTPUT --> slice(2, 7, None)
a[2] = 3
print(a)
##OUTPUT -->[10 13 3 19] - Changed the thrid value (index value 2 from 16 to
3)

s = slice(1)
print(a[s])
##OUTPUT --> [10]

a = ("a","b","c","d","e","f","g","h")
x = slice(4,6)
print(a[x])
##OUTPUT --> ('e', 'f')

b = np.arange(2.5,6.5)
b
##OUTPUT --> array([2.5, 3.5, 4.5, 5.5])

slice single item
a = np.arange(10)
b = a[5]
print (b)
##OUTPUT --> 5

x = np.arange(10,21)
print(x)
##OUTPUT --> [10 11 12 13 14 15 16 17 18 19 20]

86 Machine Learning for Decision Sciences with Case Studies in Python

a = np.arange(10)**2 # Square of number from zero to Nine
a
##OUTPUT --> array([0, 1, 4, 9, 16, 25, 36, 49, 64, 81], dtype=int32)

a[0:6:2] = -1000 ## Please note the elements starting from index 0 and
till index 5 in the increments of 2 will be changed to -1000
a
##OUTPUT --> array([-1000, 1, -1000, 9, -1000, 25, 36, 49,
64, 81], dtype=int32)

slice items starting from index
a = np.arange(10)
print(a)
##OUTPUT -->[0 1 2 3 4 5 6 7 8 9]
print (a[2:])
##OUTPUT -->[2 3 4 5 6 7 8 9]

a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print(a)
##OUTPUT -->[[1 2 3]
##OUTPUT --> [3 4 5]
##OUTPUT --> [4 5 6]]
a.ndim
##OUTPUT -->2
slice items starting from index
#print ('Now we will slice the array from the index a[1:]')
print (a[1:])
##OUTPUT -->[[3 4 5]
##OUTPUT --> [4 5 6]]

print (a[1][1])
##OUTPUT --> 4
print (a[1][1:])
##OUTPUT --> [4 5]

a=np.array([[1,2,3,4,5],[1,2,4,78,8,],[3,6,8,4,3],([1,2,4],[2,3,4,4])])
print(a[2:])
##OUTPUT --> [list([3, 6, 8, 4, 3]) ([1, 2, 4], [2, 3, 4, 4])]
print(a[:1])
##OUTPUT --> [list([1, 2, 3, 4, 5])]
print(a[0:])
##OUTPUT --> [list([1, 2, 3, 4, 5]) list([1, 2, 4, 78, 8]) list([3, 6, 8, 4,
3]) ([1, 2, 4], [2, 3, 4, 4])]
a.ndim
##OUTPUT -->1

import numpy as np
np.random.random_sample((5,)) ## return random floats in half open
interval[0.0,1.0)
##OUTPUT --> array([0.93582707, 0.45519645, 0.63904608, 0.72751779,
0.03412199])

NOTE: The random numbers will be generated when run again, and the output
will be different.

type(np.random.random_sample())
##OUTPUT --> float

87Overview of Python for Machine Learning

a = np.random.random([2,3]) #indices(no.ofrows,no.columns)
a
##OUTPUT -->array([[0.44139017, 0.50624907, 0.68734659],
##OUTPUT --> [0.52525588, 0.03275437, 0.52491101]])

c = a.sum()
c
##OUTPUT --> 2.7179070918025525

x = np.arange(20).reshape(5, 4)
#row, col = np.indices((2, 3))
#x[row, col]
x
##OUTPUT -->array([[0, 1, 2, 3],
##OUTPUT --> [4, 5, 6, 7],
##OUTPUT --> [8, 9, 10, 11],
##OUTPUT --> [12, 13, 14, 15],
##OUTPUT --> [16, 17, 18, 19]])

row, col = np.indices((3, 2))
x[row, col]

##OUTPUT -->array([[0, 1],
##OUTPUT --> [4, 5],
##OUTPUT --> [8, 9]])

a.min()
##OUTPUT --> 0.032754372323505976

b = np.arange(12).reshape(3,4) # New shape to an array without changing its
data.
b
##OUTPUT --> array([[0, 1, 2, 3],
##OUTPUT --> [4, 5, 6, 7],
##OUTPUT --> [8, 9, 10, 11]])

b[2][1] # 2nd-Row 1st-column
##OUTPUT --> 9

b.sum() # Sum of numbers in array b
##OUTPUT --> 66

b.sum(axis=0) #sum across column
##OUTPUT --> array([6, 22, 38])

A = np.array([[1,1],
 [0,1]])
B = np.array([[2,0],
 [3,4]])

type(A)
##OUTPUT --> numpy.ndarray

A*B #Elementwise product
##OUTPUT --> array([[2, 0],
##OUTPUT --> [0, 4]])

88 Machine Learning for Decision Sciences with Case Studies in Python

A@B #MatrixMultipication
##OUTPUT --> array([[5, 4],
##OUTPUT --> [3, 4]])

A.dot(B) #Another matrix multipication
##OUTPUT --> array([[5, 4],
##OUTPUT --> [3, 4]])
Multidimensional arrays can have one index per axis. These indices are given
in a tuple separated by commas:

a = np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
a
##OUTPUT --> array([[True, False, False],
##OUTPUT --> [False, True, False],
##OUTPUT --> [False, False, True]])

x = np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
x
##OUTPUT -->array([[0, 1, 2],
##OUTPUT --> [1, 2, 3],
##OUTPUT --> [2, 3, 4]])

import numpy as np
def f(x,y):
return 10*x+y
b = np.fromfunction(f,(5,5),dtype=int)#(X,Y) are coordinates
b
##OUTPUT -->array([[0, 1, 2, 3, 4],
##OUTPUT --> [10, 11, 12, 13, 14],
##OUTPUT --> [20, 21, 22, 23, 24],
##OUTPUT --> [30, 31, 32, 33, 34],
##OUTPUT --> [40, 41, 42, 43, 44]])

b[2,3] # 3rd row 4th Element (Please note the index starts at 0)
##OUTPUT --> 23

b[0:5, 1] # each row in the second column of b
##OUTPUT --> array([1, 11, 21, 31, 41])

b[-1] # the last row. Equivalent to b[-1,:]
##OUTPUT --> array([40, 41, 42, 43, 44])

2.5.3.8 Shape Manipulation
The shape of the array can be manipulated and modified. This gives the orientation of the array.

#Shape Manipulation
#Changing the shape of an array

#An array has a shape given by the number of elements along each axis:
import numpy as np
a = np.floor(10*np.random.random((3,4)))
Return the closest integer value which is less than or equal to the
specified expression
a
##OUTPUT --> array([[4., 8., 4., 3.],

89Overview of Python for Machine Learning

##OUTPUT --> [2., 7., 2., 8.],
##OUTPUT --> [1., 8., 5., 2.]])

a.shape
##OUTPUT --> (3,4)

#The shape of an array can be changed with various commands.
#Note that the following three commands all return a modified array but do
not change the original array:

a.ravel() #flatened array
##OUTPUT --> array([4., 8., 4., 3., 2., 7., 2., 8., 1., 8., 5., 2.])

ravel() function is used to create a contiguous flattened array.
Purpose of ravel() Function
Return only reference/view of the original array
If you modify the array, you will notice that the value of the original
array also changes.
Ravel is faster than flatten() as it does not occupy any memory.
Ravel is a library-level function.

a.shape
##OUTPUT --> (3,4)

a = a.reshape(6,2)
a

##OUTPUT --> array([[4., 8.],
##OUTPUT --> [4., 3.],
##OUTPUT --> [2., 7.],
##OUTPUT --> [2., 8.],
##OUTPUT --> [1., 8.],
##OUTPUT --> [5., 2.]])

a.T #Transpose:value of row changes to column
##OUTPUT --> array([[4., 4., 2., 2., 1., 5.],
##OUTPUT --> [8., 3., 7., 8., 8., 2.]])

a
##OUTPUT --> array([[4., 8.],
##OUTPUT --> [4., 3.],
##OUTPUT --> [2., 7.],
##OUTPUT --> [2., 8.],
##OUTPUT --> [1., 8.],
##OUTPUT --> [5., 2.]])

a.shape #After Reshape
##OUTPUT --> (6,2)

a.resize((2,6))
a
##OUTPUT -->array([[4., 8., 4., 3., 2., 7.],
##OUTPUT --> [2., 8., 1., 8., 5., 2.]])

a.shape
##OUTPUT --> (2,6)

90 Machine Learning for Decision Sciences with Case Studies in Python

2.5.3.9 Universal Functions (ufunc) in Numpy
Numpy provides useful mathematical functions called Universal Functions. These functions oper-
ate element-wise on an array, producing another array as output.

np_sqrt =np.sqrt([2,4,9,16]) # Takes Square-root of each value
np_sqrt
#OUTPUT --> array([1.41421356, 2. , 3. , 4.])

from numpy import pi
np.cos(0) #Returns the cosine of value passed as argument. The value passed
in this function should be in radians
##OUTPUT --> 1.0

np.sin(pi/2) # sine value of X
##OUTPUT --> 1.0

np.sin(90)
##OUTPUT --> 0.8939966636005579

np.cos(pi)
##OUTPUT --> -1.0

pi # Returns value of PI
##OUTPUT --> 3.141592653589793

np.floor([1.2,1.6,2.7,3.3,-0.3,-1.4])
##OUTPUT --> array([1., 1., 2., 3., -1., -2.])

np.sin(90 * np.pi / 180)

2.5.3.10 Broadcasting
Numpy uses broadcasting to carry out arithmetic operations between arrays of different shapes.
In this method, Numpy automatically broadcasts the smaller array over the larger array. Though
broadcasting can help carry out mathematical operations between different-shaped arrays, they are
subject to certain constraints as listed below.

When Numpy operates on two arrays, it compares their shapes element-wise. It finds these shapes
compatible only if:

• Their dimensions are the same or
• One of them has a dimension of size 1.
• If these conditions are not met, a “ValueError” is thrown, indicating that the arrays have

incompatible shapes.

import numpy as np
a = np.array([1,2,3,4])
b = np.array([10,20,30,40])
c = a * b
c
##OUTPUT -->array([10, 40, 90, 160])

a = np.array([5])
a
##OUTPUT -->array([5])

91Overview of Python for Machine Learning

d = a * b
print (d)
##OUTPUT -->[50 100 150 200]
type(d)
##OUTPUT -->numpy.ndarray

e = np.array([4,5,6,7])
print(e)
##OUTPUT -->[4 5 6 7]
f = d*e
f
##OUTPUT -->array([200, 500, 900, 1400])

f = e*7
print(f)
##OUTPUT -->[28 35 42 49]

#Args and kwargs
def sum(*args):
 s = 0
 for i in args:
 s += i
 print("sum is", s)

sum(1,2,3)
##OUTPUT --> sum is 6

sum(1,2,3,4,5,6)
##OUTPUT --> sum is 21

2.5.3.11 Args and Kwargs
*Args are the signature of Numpy arguments, which means that other positional arguments could be
passed. The special syntax **kwargs in function definitions in Python is used to pass a keyworded,
\nvariable-length argument list. We use the name kwargs with the double star.\n; the reason is that
the double star allows us to pass through keyword arguments (and any number of them).

def sum(*args):
 s = 0
 for i in args:
 s += i
 print("sum is", s)

sum(1,2,3)
##OUTPUT --> sum is 6

sum(1,2,3,4,5,6)
##OUTPUT --> sum is 21

#kwargs allows us to pass a variable number of keyword argument like this

def my_func(**kwargs):
 for i,j in kwargs.items():
 print(i,j)
my_func(name='Suresh',sport='Cricket',Score=120)
##OUTPUT --> name Suresh
##OUTPUT --> sport Cricket
##OUTPUT --> Score 120

92 Machine Learning for Decision Sciences with Case Studies in Python

2.6 MATPLOTLIB BASICS

Creating the statistical view of the data is the most demanding; Python provides a library called
“Matplotlib.” It is very powerful and easily understandable for programmers who are already work-
ing with Python and Numpy. It is used with Numpy to provide a 2D graphical view.

The matplotlib is useful for data scientists who want to visualize their data to provide the best
outcome. Matplotlib is the most popular module of Python of data visualization.

To use matplotlib, the user should first download its package according to the Python installed.
The library which is used to draw 2D data is called pyplot(). Matplotlib can be initialized as follows:

import matplotlib
import pyplot as plot

Let’s take the example of a survey on food items purchased by students from
the canteen. Show the graphical representation of the most and least eaten
items by students.

import numpy as ns
import matplotlib
import pyplot as plot
fooditems = ns. array [“Chips”, “Burgers”, “Sandwich”, “Roll”, “Patties”,
“Pizza”]
students = ns.array [0, 1, 2, 3, 4,5,6]
plot.title (“Survey on food items”)
plot.xlabel (“x-axis represents the food item sold in the canteen”)
plot.ylabel (“y-axis represents the number of students purchase items”)
plot.plot(fooditems,students)
plot.show()

Output : The output of the above code is shown in Figure 2.23.

FIGURE 2.23 Output for illustration on matplotlib.

93Overview of Python for Machine Learning

2.6.1 creating graPhs with MatPlotlib

 1. Bar graph: It is the most commonly used graph to show the data representations. Matplotlib
provides a built-in function bar()to create bar graphs. It takes three input variables: fields,
value, and color. Let’s consider the same example of a survey on students eating the same
food items.

import numpy as ns
Impot matplotlib
import pyplot as plot
fooditems = ns.array [“Chips”, “Burgers”, “Sandwich”, “Roll”, “Patties”,
“Pizza”]
students = ns.array [10, 20, 30, 40,50,60]
plot.title (“Survey on food items”)
plot.xlabel (“x axis represents the food item sold in canteen”)
plot.ylabel (“y axis represents the number of students purchase
items”)
plot.bar (fooditems,students, color = ‘green’)
plot.show()

Output: The output of the above code is shown in Figure 2.24.

 2. Pie chart: Another type of graph is a pie chart created using a built-in function called
pie(). Explode defines the fraction of the radius with which to offset each wedge. Labels
define the chunks in which the chart will be distributed; shadow adds additional effects in
the pie chart.

import numpy as ns
Impot matplotlib
import pyplot as plot

FIGURE 2.24 Output for illustration on graphs with matplotlib.

94 Machine Learning for Decision Sciences with Case Studies in Python

fooditems = ns.array [“Chips”, “Burgers”, “Sandwich”, “Roll”, “Patties”,
“Pizza”]
students = ns.array [10, 20, 30, 40,50,60]
Explode = [0,0,0,0,0,0]
plot.title (“Survey on food items”)
plot.pie (students, explode = Explode,label = fooditems, shadow=
false,startangle = 45)
plot.legend(title =” Food items in canteen”)
plot.show()

Output : The output of the above code is shown in Figure 2.25.

2.7 PANDAS BASICS

Pandas are the most well-liked Python library for data science. It helps to handle two-dimensional
data tables in Python. It provides flexibility and ease of use. Pandas are used in various fields like
finance, commercial, economics, and analytical.

2.7.1 getting starteD with PanDas

The major drawback of Python was it has very few features for data preparations and manipulation.
Then, Pandas solve the problem; now, it allows preparing, manipulating, analyzing, and modeling
the data.

Let’s take the example of data present in the computer in a (Comma Separated Value) CSV file,
and the user wants to analyze the data to conclude the results. Pandas will help the user in this by
importing the data and converting the data into a meaningful manner by analyzing and cleaning the
data if any missing fields are found to filter the data in rows and columns accordingly.

Pandas are easy to install. For example, the following command is written in the command line
install Pandas package:

Conda install pandas

To import Pandas in the source code, use the following code:

import pandas as pa

FIGURE 2.25 Output for illustration on pie chart.

95Overview of Python for Machine Learning

2.7.2 Data fraMes

Pandas mostly deal with three data structures:

• Series
• Data Frames
• Panels

Series: It is a one-dimensional array that holds any data. It is just a column of an Excel sheet.
To create a series from the array, import the numpy () function.

import pandas as pd
importnumpy as ns
a = ns.array ([“apple”, “banana”, “orange”, “peach”])
series = pd.series(a)
Print series
Retrieve data from series :
Print a[0]

Data frames: It is a two-dimensional array. It is like a table with rows and columns of dif-
ferent data types. Let’s take the example of storing student information as shown below.

Name Age Class Average Marks Scored

Alice 10 6 50

Mack 5 2 20

Jason 4 1 40

Adam 9 3 50

Row

Column

The syntax used to initialize the data frame:
Pandas.DataFrame (data, index, column, data type, copy)
Let’s explain each in detail:

• Data: The input data in the form of an array, list, set, or any other data structure.
• Index: Represents the row that is accessed.
• Column: Represents the column in the data.
• Data type: Data type, that is, int, string, float, etc.
• Copy: Used for copying the data.

Creating a Data Frame:

import pandas as pd
importnumpy as ns
a = ns.array ([“apple”, “banana”, “orange”, “peach”])
dataframe= pd.DataFrame(a)
Print dataframe

2.7.3 key oPerations on Data fraMes

2.7.3.1 Data Frame from List
Data frames can be created using the list. Let’s take the example of displaying marks scored by
students in English subject.

import pandas as pd
list = [[‘Anna’, 20], [‘Jhon’, 30], [‘Adam’, 55], [‘Jason’, 60]]
dataframe= pd.DataFrame(list, column = [‘Student Name’, ‘Marks Scored’],
dtype = int)
Print dataframe

Output :

Apple
orange
banana

Output :

0 Apple
1 orange
2 banana

3 peach

96 Machine Learning for Decision Sciences with Case Studies in Python

Output:

2.7.3.2 Rows and Columns in Data Frame
Data are saved in the form of a table that contains rows and columns. Thus, we can perform multiple
operations, for example adding, selecting, deleting, etc.

2.7.3.2.1 Selecting the Column in Data Frames

import pandas as ps
data = {‘name’ : [‘Anna’, ‘Jhon’, ‘Adma’, ‘Jason’], ‘Marks’ : [20, 30, 55,
60]}
dataframe = ps.DataFrame(data, index = [0,1,2,3])
first = dataframe(‘name’)
print (first)

2.7.3.2.2 Adding a Column to an Existing Data Frame

import pandas as ps
data = {‘Name’ : [‘Anna’, ‘Jhon’, ‘Adam’, ‘Jason’], ‘Marks’ : [20, 30, 55,
60]}
dataframe = ps.DataFrame(data, index = [0,1,2,3])
print (dataframe)
class = [1, 2, 3, 4]
dataframe[‘Class’] = class# add new column
print(“after adding new column”)
print (dataframe)

Output:

After adding a new column

Student Name Marks Scored

0 Anna 20

1 Jhon 30

2 Adam 55

3 Jason 60

Name Marks

0 Anna 20

1 Jhon 30

2 Adam 55

3 Jason 60

Name Marks Class

0 Anna 20 1

1 Jhon 30 2

2 Adam 55 3

3 Jason 60 4

97Overview of Python for Machine Learning

2.7.3.2.3 Deleting a Column from a Data Frame

import pandas as ps
data = {‘Name’ : [‘Anna’, ‘Jhon’, ‘Adam’, ‘Jason’], ‘Marks’ : [20, 30, 55,
60], ‘class’ : [1,2,3,4]}
dataframe = ps.DataFrame(data, index = [0,1,2,3])
print (dataframe)
print (“delete the column class”)
dataframe.pop(‘class’)
print(dataframe) #deletes the column

2.8 COMPUTATIONAL COMPLEXITY

Computational complexity refers to the number of resources required to complete a task.
Computational complexity helps the programmers identify the level of complexity the program will
face to overcome it.

The complexity of a program or algorithm varies concerning the input data; it is generally
expressed in the form of “f (n)” where n indicates the size of the input.

Computational complexity in terms of an algorithm is how long an algorithm will take to solve
the problem in the worst case. Algorithms can be analyzed as follows:

• Asymptotic analysis: When creating an application, various things need to be focused on.
Such application should be user-friendly, fast, easily configurable, and the performance is
the key to an application. No one likes to run an application that is slow in operations and
works badly in a large amount of data. How can we identify the speed of an algorithm and
tell whether the algorithm will work best in large input? The answer to all the above ques-
tions is asymptotic analysis.

It evaluates the algorithm’s performance with large input data; it calculates how the time increases
as the data input increases. When we have two algorithms for the same problem, asymptotic will
help calculate and choose the best suitable algorithm.

The algorithm can be analyzed based on the following cases:

Worst-case complexity: Maximum number of steps algorithm will perform. Identify the UB
on the run time of the algorithm. The case that causes a maximum number of operations.
For example, searching an element in the data that is not present in it, as the loop will iter-
ate till the end to search the element, which is why it is the worst case.

Average-case complexity: Find all the possible inputs, calculate the time consumed, add all
the calculated values, and divide it with several inputs. It is not easy to do and has rarely
been used.

Best-case complexity: It generates the LB of the algorithm. Calculate the case that causes the
minimum number of operations to be executed.

Space complexity: Space complexity is the required memory to solve a problem. Suppose
the problem requires large memory. As a result, the program will become more complex.

Time complexity: How much time the algorithm takes to solve a problem. Time includes the
execution time of the program.

2.9 REAL-WORLD EXAMPLES

Based on the topics explained in this chapter, the authors have provided real-world examples to
understand the concepts better.

98 Machine Learning for Decision Sciences with Case Studies in Python

2.9.1 iMPleMentation Using PanDas

Pandas help the data science field by boosting up the application flow. It helps to visualize the data
in tabular form. Let’s take the example of analyzing the data newly of milk products of different
brands.

The information will contain different attributes of milk products namely pH, multi-vitamins,
density and a quality score between 0 and 5. The quality score is the average of three tests by a
human. First, let’s explain how to save the data using Numpy.

From the above table, there are three rows. The first row is the header column. Each row after
the header represents a different product and its quality. For example, the first row defines the brand
name, then is the pH, energy, fat, and so on.

Let's input the data using Matplotlib:

import pandas as ps
data = {‘Brand: [‘OPI, ‘Milky’], ‘PH’: [3.51, 3.20], ‘Energy’ : [30,60],
‘Fat’ : [66, 11], ‘Quality Score’ : [2, 3], ‘Carbohydrate’ : [23, 70],
‘Protein’ : [40,50], ‘Sodium’ : 12, 13}
dataframe = ps.DataFrame(data, index = [0,1])
print (dataframe)

 1. Find the count of several rows and columns in the data frame.
dataframe. Shape

 2. How to access the last-row value?
dataframe.tail(1)

 3. How can we access the first-row value?
dataframe.head(1)

2.9.2 iMPleMentation Using nUMPy

Let’s solve the problem of finding the area and perimeter of five rectangles. To find the area and
perimeter, we will need the length and width of the rectangle.

import numpy as ns
length= ns.array ([5,10,15,20,25])
width = ns.array ([20, 22, 24, 25, 26])
area = multiply(length, width)
perimeter1 = add(length, width)
perimeter = perimeter * 2
Print(perimeter)
print(area)

2.9.3 iMPleMentation Using MatPlotlib

Matplotlib provides the graphical representation of data to visualize it. With the help of matplotlib,
the user can extract the required information and plot it on the graph as per the requirement. Let’s
take the example of drawing a histogram with matplotlib.

Brand pH Energy Fat Quality Score Carbohydrate Protein Sodium

Open Process Interface (OPI) 3.51 30 66 2 23 40 12

Milky 3.20 60 11 3 70 50 13

99Overview of Python for Machine Learning

The histogram is a common type of plot when the user is looking for the data like height, weight,
and customer waiting time. Histogram data are plotted within the range against its frequency.

Adam is working in a bank; nowadays, he is receiving many complaints from clients about the
wait time to register complaints to complain officers. Adam decided to observe the waiting time for
each customer. Data are given below:

import numpy as ns
import matplotlib
importpyplot as plot
time= ns.array [43, 35, 36.5, 50.2, 50.2]
customer= ns.array [“Customer 1”, “Customer 2”, “Customer 3”, “Customer 4”,
“Customer 5”]
plot.title (“Customer Wait Ttime Observation”)
plot.xlabel (“x axis represents the time in seonds”)
plot.ylabel (“y axis represents the customers”)
plot.hist (time,customer)
plot.show()

Output - The output of the above code is shown in Figure 2.26.

SUMMARY

• Python: It is a high-level, interactive, and object-oriented language. Python is easy to
understand. Most of the ML and artificial intelligence algorithms are written in Python.

Customer Time in Seconds

Customer 1 43

Customer 2 35

Customer 3 36.5

Customer 4 50.2

Customer 5 50.2

FIGURE 2.26 Histogram output.

100 Machine Learning for Decision Sciences with Case Studies in Python

• Major uses of Python: It is used as Object Oriented Programming (OOP)-oriented lan-
guage and scripting language, and it is easily integrated with other languages like C, C++,
and JAVA. It is used heavily in data science, ML, and deep learning.

• Control flow statement: Control flow describes the order of the program in which the
code will be executed. The control statements are handled with the help of conditional
statements like a loop and function calls.

• List: List is the data structure that is changeable and ordered list. Each element of the list
is called an item. The list is initiated using brackets.

• Tuple: A tuple is a sequence of absolute objects separated by a comma. Tuples are accessed
with their index.

• Dictionary: It is the data structure used to map and store data with a key that acts as an
index. Key will be a single element, whereas value can be array or list.

• Set: It is the same as sets in mathematics; it may consist of various elements, and the order
of the elements is not defined.

• Exceptional handling: Errors are of different types that need to be handled to create a
smooth application. Exceptional handling is the process of overcoming the unexpected
error that occurs during the execution of the program. Whenever an error occurs within a
method, it creates an object and hands off it to an exception handler block.

• Debugging: The process of identifying and removing the errors from the code is called
debugging. It allows identifying the exact line and function due to which error occurred.

• Numpy: It is the library that supports an N-dimensional array and has sophisticated
functions. It has the capability of performing functions like mathematics, statistics
operations.

• Matplotlib: It is an another library of Python that supports the graphical representation of
data in 2D and 3D charts like a pie chart, a bar graph, and a histogram. Matplotlib plays a
very important role in today’s business as programmers use this library to show the busi-
ness status graphically.

• Pandas: The library of Python that provides the data in tabular form and performs arith-
metic functions like add, subtracts, and reciprocal.

REVIEW QUESTIONS

 1. What are the in-built data types used in Python?
 2. How to initialize a list?
 3. Difference between list and tuple?
 4. How can we initiate a dictionary?
 5. What is the main purpose of the break statement?
 6. What is the use of a continue statement?
 7. What is the use of the pass statement?
 8. Is Numpy better than a list?
 9. When is the else part of the try block in exception handling executed?
 10. How can we create a Boolean array using Numpy?
 11. What kind of graphs can be created using matplotlib?
 12. How can we drop the missing value using Pandas and Numpy?
 13. How can Pandas allow to read a CSV file?
 14. Read and print the first ten columns of the data.
 15. What is the computational complexity?
 16. What are the parameters of plot() function?
 17. What does the line imply – import matplotlib.pyplot as plt?
 18. Describe the importance of heatmap in matplotlib?

101Overview of Python for Machine Learning

 19. What are the plots available in matplotlib?
 20. Write a code to customize the color and adding legends to the plot?
 21. Write a code for scatterplot with color attribute.
 22. How to add labels to graph plots?
 23. Explain about bins in histogram function?
 24. What is rcdefaults()?
 25. Difference between bar plot, pie plot, and scatter plot?
 26. What is the importance of plotting?
 27. Mention the different types of data structures in Pandas?
 28. Explain the series in Pandas. How to create a copy of the series in Pandas?
 29. What is a Pandas data frame? How will you create an empty data frame in Pandas?
 30. Explain reindexing in Pandas.
 31. What are the key features of the Pandas’ library?
 32. What are Pandas used for?
 33. Explain categorical data in Pandas.
 34. What are the different ways a data frame can be created in Pandas?
 35. What is time series in Pandas?
 36. Which is the standard data missing marker used in Pandas?
 37. Is it possible to plot a histogram in Pandas without calling Matplotlib? If yes, then write the

code to plot the histogram?
 38. What is the need to use Python Pandas?

EXERCISES FOR PRACTICE

Numpy

 1. Convert the list [3.14, 14.22, 160, 36.36] into one-dimensional array.
 2. Create a Numpy program to create a 3 × 3 matrix with values ranging from 5 to 14.
 3. Given the array, write a program to reverse the array in Numpy

[1,3,6,9,12,15,18,21,24,27,30]
 4. Given the array, change the data type of the array to float using Numpy

[1,3,6,9,12,15,18,21,24,27,30]
 5. Given an array, write a Numpy program to create a 2d array with 0 on the border and one

inside.
Original array:

[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]

Expected output:
0 on the border and one inside in the array

[[0. 0. 0. 0. 0.]
[0. 1. 1. 1. 0.]
[0. 1. 1. 1. 0.]
[0. 1. 1. 1. 0.]
[0. 0. 0. 0. 0.]]

 6. Given tuple, convert that into an array using Numpy
([1, 3, 5], [2, 4, 6])

102 Machine Learning for Decision Sciences with Case Studies in Python

 7. Given the array values in Fahrenheit, convert them into centigrade using the formula: C=
(F-32)*5/9 (Note: F is the array of the values)

F=[60,70,80,90,100,110]
 8. Given the array, find the length of the array, element size in bytes, and total bytes of the

array (Note: use size, itemsize, and nbytes keywords)
[1,2,3,4,5,6,7,8,9,0]

 9. Given the array, sort the array in ascending and descending orders using Numpy
[13,24,54,23,4,5,6,7,1,9]

Pandas
Given an INFO.CSV file:

 1. Write a Pandas code to read the INFO.CSV file.
 2. How do you get the basic statistics of the file INFO.CSV?
 3. What does the following code do? –
 print(tabulate(print_table, headers=headers))
 4. Write a Pandas code for dropping the missing data.
 5. Write a Pandas code for replacing with value “test” the missing data in the INFO.CSV.
 6. Write a Pandas code to convert float to integer and vice versa.
 7. How do you convert Pandas data frame to Numpy array?
 8. Write a Pandas code to get a feature (dimension) name.
 9. Write a function that will multiply all values in the “height” column of the data frame by 2.5.

MatplotLib

 1. Write a matplotlib code for 3D plotting.
 2. Plot a sin wave graph using the “sin” function
 a. Voltage(mV) in Y-Axis
 b. Time(s) in X-Axis
 3. How do you save a matplotlib graph into a file?
 4. Given the INFO.CSV file (with two columns Voltage and Time), draw a line graph to plot

the values.
 5. What is the purpose of scaling before plotting the graphs?

Voltage (mV) Time (s)

10 2

20 3.5

33 3.8

23 2.1

55 5.8

44 4.9

200 33.5

500 89.2

103

3 Data Analytics Life Cycle
for Machine Learning

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to:

• Comprehend the phases involved in the Data Analytics Life Cycle for machine learning
(ML).

• Appreciate the aspects involved in data discovery, data preparation, and exploratory data
analysis.

• Understand the requirements for model planning and model building.
• Have a deep acquaintance on communicating results, optimize and operationalize the

models.
• Gain knowledge on the roles and responsibilities of the members involved throughout the

phases of the Data Analytics Life Cycle.

3.1 INTRODUCTION

The data generated in the last two years are much larger than the last 50 years combined. As the
data grow exponentially, it brings a huge issue. We have to manage it properly so that the data can
be used for business benefits. Adopting and successfully implementing a framework will help the
user to avoid data-related pitfalls. The framework also helps the user to focus their time on data
analysis (inference from data) than data preparation, ensure the rigor and completeness of the data,
enable the better transition to members of the cross-functional analytic teams with repeatable scale
to additional analytics, and to support the validity of findings.

Several real-world data problems look complex and chaotic, but with a well-framed approach,
the complex problem can be broken down into simpler modules, which can be easily addressed.
Sometimes, applying a tested procedure for analyzing the data is challenging. Hence, it is required
to establish a comprehensive method for performing the analysis. Once data are collected in several
instants, the user starts analyzing the data, then later plans and identifies the scope and the amount
of work involved. During the process, the people involved try to explore a different objective or
address a different issue that differs from the objectives communicated. The documentation process
helps demonstrate rigor in the exploration and provides additional credibility to the project when
shared among the team. This helps the team in knowledge sharing and to adopt the methods and
analysis so it can be repeated and modified slightly over the successive years.

A well-defined process exists for developing a data science project. However, it is always recom-
mended to have a Data Analytic Life Cycle framework, which is of primary focus in this chapter.
Many of the proposed framework phases will be similar. For example, the data discovery and data
preparation phases will be common, with subtle differences. However, some phases would not be
needed at all. For example, the model training phase of the framework requires the user to cre-
ate the training and testing datasets; the business intelligence project will not have those phases.
Subsequently, data science often deals with various datasets such as big data, including semi-/
unstructured data and sparse datasets. Such datasets require more attentiveness in data preparation,
data stitching, and enriching than projects that only focus on business intelligence.

DOI: 10.1201/9781003258803-3

https://doi.org/10.1201/9781003258803-3

104 Machine Learning for Decision Sciences with Case Studies in Python

Data preparation may be the most important part of a ML project. It is the most time-consuming
part, although it seems to be the least discussed topic. Data preparation is also called data pre-
processing and is the act of transforming raw data into a form that is appropriate for modeling. ML
algorithms require input data to be numeric values, and most algorithm development and deploy-
ments maintain this expectation. So, if the data contain data types and values that are not numbers,
such as labels, you will need to change the data into numbers. Further, specific ML algorithms have
expectations regarding the data types, scale, probability distribution, and relationships between
input variables. You may need to change the data to meet these expectations.

The viewpoint of data preparation is to discover how to best expose the unknown underlying
structure of the problem to the ML algorithms. This often requires an iterative path of experimenta-
tion through a suite of different data preparation techniques to discover what works well or best.
The vast majority of the ML algorithms used on a project are years-to-decades old. The imple-
mentation and application of the algorithms are well understood. So much so that they are routine,
with amazing fully featured open-source ML libraries like Scikit-learn in python. The thing that is
different from project to project is the data. We may acquire a new dataset for the first time in a new
application setup to use a specific data set as the basis for a predictive modeling project. As such,
the preparation of the data to best present it to the problem of the learning algorithms is the primary
task of any modern ML project.

The challenge of data preparation is that each dataset is unique and different. Datasets differ in
the number of variables (tens, hundreds, thousands, or more), the types of the variables (numeric,
nominal, ordinal, Boolean), the scale of the variables, the drift in the values over time, and more.
As such, this makes discussing data preparation a challenge. Either specific case studies are used,
or focus is put on the general methods used across projects. The result is that neither approach is
explored.

3.2 DATA ANALYTICS LIFE CYCLE

The Data Analytics Life Cycle comprises six phases, which are iterative between the steps through-
out the life cycle. The Data Analytics Life Cycle shown in Figure 3.1 portrays the best practices
approach for an end-to-end data analytics process starting from data discovery to project comple-
tion and operation phase. The phases also cover the process improvement based on established
methods in the domain of data analytics and decision science.

3.2.1 Phase 1 – Data Discovery

The question to answer in the data discovery phase is “Do we have enough information?”. Data
discovery is the process of collecting and analyzing data from various sources to realize insight
from hidden patterns and trends. It is the primary step in fully harnessing an organization’s data
to tell critical business decisions. Through the data discovery process, data are gathered, com-
bined, and analyzed during a sequence of steps. The goal is to form messy and scattered data clean,
understandable, and user-friendly. The primary focus of this phase is to learn the business domain,
including learning from past experiences and further assessing the resources required to support
the project, such as human resources, time, technology, and data. The business problem has to be
framed in such a way with the focus on the analytic challenge, and this would be addressed in sub-
sequent Data Analytic Life Cycle phases. Finally, the initial hypotheses (IHs) have to be formulated
to validate and begin learning the information.

Understanding the domain in-depth for the given problem we are trying to find an answer to is
critical. In a few situations, data scientists are required to possess advanced computational and quan-
titative knowledge such that the applications can be multi-disciplinary. These scientists are expected
to possess an in-depth knowledge of the techniques, methods, and models for applying heuristics to
different business and conceptual problems. Experts from domain areas with quantitative expertise

105Data Analytics Life Cycle for ML

will also partner with data scientists to address the gap between domain knowledge and analytical
depth.

While assessing the resources, there should be a focus on the available tools and technology used
for the process and the types of systems required for interaction with subsequent phases. It is also
required to have an evaluation concerning analytical facilities available within the organization.
Questions are as follows:

 a. What would be the type of roles required for end-users of the model?
 b. The current development model will drive success?
 c. Are the roles available within the organization?

Such evaluation will help decide on the current implementation and future implementations on the
type of data handling. In addition, it is necessary to validate whether the information available is
sufficient to support the objectives of the current project, or whether data collection is required,
whether the purchase of data from outside sources is required, or any extensions or transformations
on existing data are required.

Moreover, for successful project implementation, a good project team has a proper combination
of subject matter experts (SMEs), domain experts, analytic team, customers, and the project man-
agement team. Also, it is required to assess the proportion of SMEs such that there is a clear focus
on the depth and breadth of skills on the working team. Once the inventory for the project is decided
concerning the team, tools, data, and technology, then another set of evaluations is done to decide
on the resources, else additional resources are added.

Once the interaction is complete with the stakeholder and sufficient knowledge is obtained on
the domain, the business problem can be framed by considering experience. Later, the analytics
problem is defined, and during this phase, the role of the stakeholders, their project requirements,
their interests, and their criteria to evaluate the project. Since the analytical part of the project aims

FIGURE 3.1 The Data Analytics Life Cycle.

106 Machine Learning for Decision Sciences with Case Studies in Python

at a business perspective, it is necessary to address the weak points very clearly so that haphazard
can be avoided while working on the project.

Based on the number of participants and stakeholders, we must consider using the responsible,
accountable consulted, and informed (RACI) matrix. This will give a clear picture of the expecta-
tion and participation from each stakeholder, set clear expectations with the participants, and avoid
delays later when we need approvals from stakeholders, rather than the supervisor of the work
product. The RACI matrix is a method in which the responsibilities are documented. These respon-
sibilities include the role of a person in the project, whether the person fits rightly in the project, etc.,
RACI refers to the role of people within a project:

• Responsible: Those individuals or groups responsible for doing the critical path activity
and expected to complete the tasks actively.

• Accountable: Those individuals or groups who are answerable for a decision. In this case,
only one accountable person/group is assigned to a given task to ensure clear ownership
and accountability.

• Consult: Those individuals or groups who are the specific domain experts/SMEs will be
in consultation throughout the project.

• Inform: Those individuals or groups who have to be kept informed whenever a decision
or an action is taken.

A sample RACI matrix is given in Table 3.1.
Creating a framework similar to the RACI matrix will ensure that we have accountability and

clear agreement on responsibilities in the project. In addition, the information to share with the right
people is kept informed of progress.

Most likely, the project sponsors will start with the end goal (or the solution). The project team
needs to use that as a reference and identify the problem and the desired outcomes. Thus, interview-
ing project sponsors (individuals like CFO, CIO, or Director) becomes a key. Here are some tips
and samples for interviewing the project sponsor to frame the core business problem and project
assumptions and constraints.

• What business problem are we trying to solve as part of the project?
• What industry issues (stable vs. dynamic industry, etc. – the data might be stable or chang-

ing rapidly) impact the project?
• What are the success criteria for this project (key project metrics)?
• How much historic information is needed for the analysis?
• What is in scope and out of scope for this project? (a lot of users focus on in-scope items ad

ignore the out-of-scope items, and that will create a scope creep in the future)
• What are the time line and cost guidelines we should be working under (scope, time, and

cost are called triple constraints. If one changes, the other two need to be evaluated and
changed properly to avoid project cost overruns and delays)?

TABLE 3.1
RACI Matrix

Critical Path Activities Stakeholder 1 Stakeholder 2 Stakeholder 3 Stakeholder 4 Stakeholder 5

Activity 1 R R A C I

Activity 2 R C I A I

Activity 3 C R A C,I I

Activity 4 R R A I I

107Data Analytics Life Cycle for ML

• Where do we get the data from? (internal data sources vs. external data sources, one data
source vs. many)

• Who can (internal vs. external to the organization) act as an SME to the project?
• How the scope changes will be handled (change control board, etc.)

Now, the IHs can be formed to approve or disapprove the data. It is always encouraged to develop
a few IHs to test-generate additional ideas for the hypotheses. The IH formed initially serves as the
basis of the tests that will be performed in later phases for analysis, and these serve as the founda-
tion for additional learning. Hypothesis testing will be covered in greater detail in supervised and
unsupervised learning chapters. Initially, the type of data required to solve a specific problem is
chosen along with the data sources and their classification, such as structured, semi-structured,
or unstructured data. The volume, type, and time span of the data needed to test the hypotheses
must be considered. In addition to this, the data sources should be identified so that easy access is
ensured. In some applications, the raw data may be required to run through the models. Hence, the
possibilities to access the data have to be identified to serve as a basis for experimental analysis.

Once the hypothesis definition is complete, a thorough diagnosis of the data situation is performed.
Then, the tools and techniques can be listed for the application, starting from the data preparation
phase to operationalizing the model. Also, if data exploration is performed during this phase, there is
clarity on the quantity of data, which helps in structuring and formatting the data. Now the scope of
the information is reviewed and validated with the help of the project domain experts.

Many articles describe how to become experts in various fields, specifically the amount of prac-
tice needed to become an expert. This context is referred to as deliberate learning. To develop the
required expertise, it is important to identify the possible solutions to a problem. This will lead to
a set of possible solutions. If the IHs are formulated, then it is much easier to arrive at conclusions
on the analytic model.

Before moving on to the next phase, the following points are to be ensured:

• Availability of sufficient information to draft the analytic plan and share for peer review.
• Whether a clear understanding of the business problem exists and whether step-by-step

approach exists to address the problem.
• Sufficient SMEs are available to support in the domain area of the problem.
• Whether the success criteria for the project are detected.

With the above points, the problem definition is more clear and helps when it comes to identifying
the possible choices of analytical methods used in the following phases.

3.2.2 Phase 2 – Data PreParation anD exPloratory Data analysis

The primary focus in the data discovery phase is to ensure the “availability of good quality data.”
In this phase, an analytic sandbox is prepared, such that it would be used for the remaining phases
of the project. The extract, load, and transform (ELT) and extract, transform, and load (ETL) are
performed to get the relevant data into the sandbox. Now the data get transformed so that analysis
can be carried out. The basic idea is to obtain a clear understanding of the data and take the required
measures to condition the data. Data analysts refer to this process as data enriching and harmoniz-
ing, and this phase is considered one of the most critical and time-consuming phases within the
data life cycle.

In this phase, a space is defined to explore the data without interfering with the live production
databases. In addition, all kinds of data should be collected in the sandbox since a high volume and
variety of data would be required for the analytic project. Thus, huge data would include the sum-
mary, structured data, raw data feeds (e.g., sensors), and unstructured text data (log data). Hence,
the sandbox is large and almost 10–50 times the size of an organization’s enterprise data warehouse.

108 Machine Learning for Decision Sciences with Case Studies in Python

Due to the huge volume of data, a strong bandwidth with good network connections must be
ensured to handle the data so that quick transformations and extractions from datasets can be
done at ease. Now, the data analyst has a choice to make between ELT and ETL. In this context,
ELT is preferred over ETL since this is a typical data approach problem. In the analytic sand-
box approach with ELT, data are extracted, loaded, and then transformed. Here, the raw data
are extracted and loaded into the analytics sandbox, and then the data transformation happens.
This approach is followed to maintain and preserve the raw data as part of the other data in the
sandbox before being subjected to any transformations. Some of the key differences between
the ELT and ETL approaches are listed in Table 3.2. The data analyst makes a choice based on
the data needs.

For example, let us consider an analysis for fraud detection on credit card usage. Frequently, the
outliers in this data population can represent higher-risk transactions that may be flag fraudulent
credit card activity. Using ETL, these outliers could be unintentionally filtered out or transformed
and cleaned before being loaded into the database. This might cause bias in the data. Due to this,
the extraction load and then transform method (ELT) is encouraged to have the data in its raw state
and the ability to transform it after loading in the staging or operational data store ODS area. This
approach will give us clean data to analyze that is available in the database and also, the data in its
original form for finding hidden features in the data.

The Hadoop, Alpine Miner, and SAS are some of the tools we can use to inject the data into
analytics sandbox. Hadoop can perform parallel ingest and custom analysis for parsing web traffic,
GPS location analytics, proteomic analysis, sensor data collection, genomic analysis, and combin-
ing massive unstructured data feeds from multiple sources. Alpine Miner provides a user-friendly
graphical interface for creating analytic workflows, including data manipulations and a series of
analytic events such as staged data mining techniques (e.g., select top 100 customers, then run
descriptive statistics and clustering) on PostgresSQL and other big data sources. We can use Python
libraries to bring data from various sources. For example, using the Python Pandas library, we can
ingest data from various sources.

#Load the libraries
import pandas as pd

TABLE 3.2
Comparison of ELT and ETL Approaches

Extract, Transform, and Load Extract, Load, and Transform

Used for compute-intensive transformations and a small
amount of data

Preferred and used for high amounts of data

Transformations are done at the staging/ETL server area Transformations are performed in the target system (e.g.,
analytics sandbox)

No data duplication; if we need to perform another
transformation, we need to load it again

Data duplication; copy of the raw data available for further
transformation and use

Data are first loaded into the staging layer and later pushed
into the target system. Time-intensive

Data loaded into target system directly only once. So faster

High maintenance since we need to select data to load and
transform

Low maintenance as data are already available in the target
system

Implementation complexity is low comparatively ELT process requires the user to have deep knowledge of
tools and expert skills

Supports only structured data; no support for data lakes Allows use of data lakes (analytics sandbox) with
unstructured data

109Data Analytics Life Cycle for ML

Reading data from Flat file sources:

For example:

dataset = pd.read_csv('C:/Python Files/50_Startups.csv')

Reading data from Clipboard:

Reading data from Excel:

Reading data from JSON Files:

Reading data from HTML Files:

Reading data from Hadoop (HDFS files)

Reading data from Structured Query Language (SQL) tables

Read_table(filepath_or_buffer[, sep, …]) Read general delimited file into DataFrame.

read_csv(filepath_or_buffer[, sep, …]) Read a comma-separated values (csv) file into DataFrame.

read_fwf(filepath_or_buffer[, colspecs, …]) Read a table of fixed-width formatted lines into DataFrame.

read_clipboard([sep]) Read text from clipboard and pass to read_csv.

read_excel(*args, **kwargs) Read an Excel file into a Pandas DataFrame.

ExcelFile.parse([sheet_name, header, names, …]) Parse specified sheet(s) into a DataFrame.

ExcelWriter(path[, engine]) Class for writing DataFrame objects into Excel sheets.

read_json(*args, **kwargs) Convert a JSON string to a Pandas object.

json_normalize(data[, record_path, meta, …]) Normalize semi-structured JSON data into a flat table.

build_table_schema(data[, index, …]) Create a table schema from data.

read_html(*args, **kwargs) Read HTML tables into a list of DataFrame objects.

read_hdf(path_or_buf[, key, mode, errors, …]) Read from the store, close it if we open it.

HDFStore.put(key, value[, format, index, …]) Store object in HDFStore.

HDFStore.append(key, value[, format, axes, …]) Append to table in file.

HDFStore.get(key) Retrieve Pandas object stored in the file.

HDFStore.select(key[, where, start, stop, …]) Retrieve Pandas object stored in the file, optionally based
on where criteria.

HDFStore.info() Print detailed information on the store.

HDFStore.keys([include]) Return a list of keys corresponding to objects stored in
HDFStore.

HDFStore.groups() Return a list of all the top-level nodes.

HDFStore.walk([where]) Walk the pytables group hierarchy for Pandas objects.

read_sql_table() Read SQL database table into a DataFrame.

read_sql_query() Read SQL query into a DataFrame.

read_sql() Read SQL query or database table into a DataFrame.

110 Machine Learning for Decision Sciences with Case Studies in Python

We can ingest data from other sources like Google BigQuery, SAS, STATA, and SPSS. The user
can refer to the Pandas library help for the updated list of supported file types.

In data preparation, the people involved are as important as much as the tools employed. Proper
guidance and assistance are required from IT analysts and database analysts. As illustrated earlier,
this phase is critical within the analytics life cycle; if there is a lack of quality in the acquired data, it
would be difficult to perform the subsequent steps in the life cycle process. In addition to data prepa-
ration, this phase also ensures that additional data aspects are considered, and common pitfalls are
avoided. A few considerations in the data preparation phase are listed as follows:

• Identify the required data sources. Whether all the identified data sources are available?
Proper clarity on the target fields is to be ensured.

• Whether the required data are clean?
• Whether the contents and files are consistent?

While preparing the data, there is a need to identify the amount of missing/inconsistent data that
can be considered for the project, in other words, to understand the degree of allowance for blank/
inconsistent data. In addition, if consistent data are available and are found deviating from normal,
then the consistency of the data types has to be assessed. For example, if data are expected to be
numeric, then it has to be confirmed that any special character such as an alpha numeric character
can be allowed or not. A crucial and critical review has to be conducted on the data columns to
ensure they make sense and are in the right form. Also, the chances of occurrence of systematic
errors have to be verified. Systematic error may occur due to the sensor data or unsupervised data.
This may lead to irregular data or missing data. The data have to be reviewed to gauge if the defini-
tion of the data is uniform over the repeated measurements.

3.2.2.1 Exploratory Data Analysis
Data visualization: Once we get the data from the sources to the analytics sandbox, it is important
to understand the data further through the visualization techniques. Python has a lot of visualiza-
tion libraries like Matplotlib (we have discussed that in Chapter 2) to Seaborn, which is based on
Matplotlib and has advanced data visualization functions that help us understand the data behaviors
visually. Seaborn library has multiple features, including an application programmable interface that
allows comparing multiple variables, multi-plot grids to build easy visualizations, univariate (analy-
sis with one variable), and bivariate to compare between subsets of data. These multiple color pallets
allow showing various kinds of patterns. In addition, there are mandatory dependency libraries that
are needed for Seaborn to work. They are Numpy, Pandas, Matplotlib, SciPy, and Statsmodels.

Like any in python, before start using the library, we need to import the Seaborn library to your
model to use the functions of that library.

import seaborn as sns # Importing the library

Seaborn has in-built datasets for the user to get familiarity with the functions of liberty. To see
what are the datasets are available, use the following command:

sns.get_dataset_names() # returns a list of all the available datasets

The output shows as follows:

Out[2]:
['anagrams',
'anscombe',
'attention',
'brain_networks',

111Data Analytics Life Cycle for ML

'car_crashes',
'diamonds',
'dots',
'exercise',
'flights',
'fmri',
'gammas',
'geyser',
'iris',
'mpg',
'penguins',
'planets',
'tips',
'titanic']

We will be using some of the existing datasets to understand the plotting and visualizing statistical
relationships, the process of understanding the relationship variables in a given dataset, and how
these relationships depend on other variables. The first Seaborn function to explore is relplot(). This
is a two-dimensional data visualization function. First, let us use the flights dataset that is available
with the Seaborn.

#improting the required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="darkgrid") #style attribute is customizable and can take
any value like darkgrid, ticks, etc.

fl = sns.load_dataset("flights") #Using fl as variable to denote Flights
dataset. The user can use any var.
sns.relplot(x="passengers", y="month", data=fl);

Output is shown in Figure 3.2:
This is the basic plot. We can convert this plot into line, scatter, or violin plot using a parameter

called “kind” in the relplot() function. This is discussed in the later part of this section. Before that,
we need to explore another parameter of the replot() function. The next important semantic is hue.
Using hue, we can add another dimension – year.

fl = sns.load_dataset("flights")
sns.relplot(x="passengers", y="month", hue="year", data=fl);

The output of the code snippet is shown in Figure 3.3 (the year is added to the graph).
The other parameters such as color, size, and style can be customized as shown in the below

code snippet. The corresponding output is shown in Figures 3.4 and 3.5 with a slight variation in
parameter “palette.”

sns.set(style="darkgrid")
fl = sns.load_dataset("flights")
sns.relplot(x="passengers", y="month", hue="year",palette="ch:r=
-.5,l=.75", data=fl);

sns.set(style="darkgrid")
fl = sns.load_dataset("flights")
sns.relplot(x="passengers", y="month", hue="year",palette="ch:r=1,l=.9",
data=fl);

112 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 3.3 Illustration for function replot().

FIGURE 3.2 Basic plot using Matplotlib.

113Data Analytics Life Cycle for ML

FIGURE 3.4 Illustration for function replot() with palette="ch:r=-.5,l=.75".

FIGURE 3.5 Illustration for function replot() with palette="ch:r=1,l=.9".

114 Machine Learning for Decision Sciences with Case Studies in Python

There are color palettes available in Seaborn. To understand that,

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
presentcolors = sns.color_palette()
sns.palplot(presentcolors)

The output of these lines of code is presented in Figure 3.6.
To illustrate the conversion of a graph to a line graph, let us create a dataframe using Pandas as

our data source.

gr=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Grocery':[30,80,45,50,51,90,76],
'Clothes':[13,40,34,75,54,67,98],'Utensils':[12,32,27,56,87,54,34]},
index=[1,2,3,4,5,6,7])
g = sns.relplot(x="Day", y="Clothes", kind="line", data=gr)
g.fig.autofmt_xdate()

gr=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Grocery':[30,80,45,50,51,90,76],
'Clothes':[13,40,34,75,54,67,98],'Utensils':[12,32,27,56,87,54,34]},
index=[1,2,3,4,5,6,7])
g = sns.relplot(x="Day", y="Grocery", kind="line", data=gr)
g.fig.autofmt_xdate()

The plot in Figures 3.7 and 3.8 shows the line graph for the data extracted from a dataframe.
Until now, we have used continuous data; let us explore the categorical data. The catplot() func-

tion is used for categorical data. This is similar to the function relplot() that is discussed earlier. This
function can be categorized as scatter plots that include stripplot() and swarmplot(), distribution
plots that include boxplot(), violinplot(), and boxenplot(), and estimate plots that include pointplot(),
barplot(), and countplot().

We will be using a tips dataset that is also available in Seaborn.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="ticks", color_codes=True)
tp = sns.load_dataset("tips")
sns.catplot(x="day", y="total_bill", data=tp);

The default output is shown in Figure 3.9.
Let us convert the above graph to a violin graph by using the “kind” parameter.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="ticks", color_codes=True)
tp = sns.load_dataset("tips")
sns.catplot(x="day", y="total_bill", kind="violin", data=tp);

The output for the above code is shown in Figure 3.10.

FIGURE 3.6 Output using the function palplot().

115Data Analytics Life Cycle for ML

FIGURE 3.7 Line graph for data “clothes” vs. “day.”

FIGURE 3.8 Line graph for data “grocery” vs. “day.”

116 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 3.9 Line graph for data “clothes” vs. “day.”

FIGURE 3.10 Illustration using the function catplot() with parameter kind = “violin.”

117Data Analytics Life Cycle for ML

Now that we have explored the basic visualizing features, let us focus on understanding the data
in the context of univariate and bivariate. The distribution plot function, distplot(), is used for this
purpose. Let us import all the required libraries.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
sns.set(color_codes=True)
tst = np.random.normal(loc=10,size=500,scale=10) #Univariate data
sns.distplot(tst);

The output is shown in Figure 3.11.
To illustrate the bivariate, let us create two dataframes and assign them to the variables x and y.

x=pd.DataFrame({'Day':[1,2,3,4,5,6,7],'Accessaries':[30,80,90,23,60,46,76
],'Cloths':[13,40,60,23,54,67,98],'Shoes':[12,32,27,56,87,54,34]},
index=[1,2,3,4,5,6,7])
y=pd.DataFrame({'Day':[8,9,10,11,12,13,14],'Accessaries':[30,90,45,23,60,
46,76],'Cloths':[13,40,60,23,54,67,98],'Shoes':[12,32,27,56,87,54,34]},in
dex=[8,9,10,11,12,13,14])
mean, cov = [0, 1], [(1,.5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
with sns.axes_style("white"):
sns.jointplot(x=x, y=y, kind="kde", color="g");

The output is shown in Figure 3.12.
So far, all our discussions have covered only plots with single grids. However, Seaborn allows

multiple grids side by side to be plotted to visualize and infer the data better. The function,
FacetGrid(), will help us to accomplish this.

Let us use a simple dataset IRIS. The sample data are shown in Table 3.3.

sns.set(style="darkgrid")
ir = sns.load_dataset("iris")

FIGURE 3.11 Illustration using the function distplot() – univariate.

118 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 3.12 Illustration using the function distplot() – multi-variate.

TABLE 3.3
Sample IRIS Data

A B C D E

Sepal. Leng Sepal. Width Petal. Length Petal. Width Species

5.1 3.5 1.4 0.2 Setosa

4.9 3 1.4 0.2 Setosa

4.7 3.2 1.3 0.2 Setosa

4.6 3.1 1.5 0.2 Setosa

5 3.6 1.4 0.2 Setosa

5.4 3.9 1.7 0.4 Setosa

4.6 3.4 1.4 0.3 Setosa

5 3.4 1.5 0.2 Setosa

4.4 2.9 1.4 0.2 Setosa

4.9 3.1 1.5 0.1 Setosa

5.4 3.7 1.5 0.2 Setosa

4.8 3.4 1.6 0.2 Setosa

4.8 3 1.4 0.1 Setosa

119Data Analytics Life Cycle for ML

mp = sns.FacetGrid(ir, col="species")
mp.map(plt.hist, "sepal_length", color="g");

The correlation between the sepal length and the species in the above code is shown clearly in
Figure 3.13.

sns.set(style="darkgrid")
ir = sns.load_dataset("iris")
mp = sns.FacetGrid(ir, col="species")
mp.map(plt.hist, "sepal_width", color="g");

The correlation between the sepal width and the species in the above code is shown clearly in
Figure 3.14.

To compare the pair of values, the PairGrid() function can be used.

sns.set(style="ticks")
a = sns.load_dataset("flights")
b = sns.PairGrid(a)
b.map(plt.scatter, color = "g");

The graph shown in Figure 3.15 compares the number of passengers and the years in different
slices and dices.

We have explored the basic graphs/visualization samples in Seaborn. It is important to have a
presentable graph when communicating quantitative insights. The technique is called controlling
figure aesthetics.

FIGURE 3.13 Correlation between the sepal length and the species.

FIGURE 3.14 Correlation between the sepal width and the species.

120 Machine Learning for Decision Sciences with Case Studies in Python

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

def sinplot(flip=1):
 ng = np.linspace(0, 14, 100)
 for i in range(1, 7):
 plt.plot(ng, np.sin(ng + i * .5) * (7 - i) * flip)
sinplot()

In Seaborn, we can use the following code to generate a sine wave, and the output is shown in
Figure 3.16.

FIGURE 3.15 Comparing pair values using the function PairGrid().

FIGURE 3.16 Illustration using the function sinplot().

121Data Analytics Life Cycle for ML

sns.set()
sinplot()

Another graph available is box plot. Below is the sample code snippet, and the output is shown
in Figure 3.17.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(color_codes=True)
a = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=a);

The following code illustrates the steps to remove the background and present it in white back-
ground, and the corresponding output is shown in Figure 3.18.

FIGURE 3.17 Illustration using the function boxplot().

FIGURE 3.18 Illustration using the function boxplot() with white background.

122 Machine Learning for Decision Sciences with Case Studies in Python

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white",color_codes=True)
a = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=a);

In the above graph, we can notice the theme or the background is changed to white. We can
explore further using the other themes as well (e.g., dark, darkgrid, white, and whitegrid). In the
previous graph, there are axes; the rectangular line is present all around the graph. This can also be
customized further using the despine() function. The code is presented below, and the correspond-
ing output is shown in Figure 3.19.

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white",color_codes=True)
a = sns.load_dataset("tips")
sns.boxplot(x="day", y="total_bill", data=a);
sns.despine(offset=10, trim=True);

In multi-variate data exploration, correlation analysis is one of the primary techniques the data
analysts use to understand the data. It is also known as a correlation matrix, auto-covariance matrix,
variance matrix, or dispersion matrix. It is a matrix where the i-j position defines the correlation
between the ith and jth parameters in the dataset.

When the data points result in a roughly straight-line trend, the variables have an approximately
linear relationship. In other cases, the data points fall close to a straight line, but frequently there
is quite a bit of variability of the points around the straight-line trend. A synopsis measure called
the correlation describes the strength of the linear association. Correlation summarizes the strength
and the linear (straight-line) association between two quantitative variables. Denoted by r, it takes
values between −1 and +1. A positive r value indicates a positive association, and a negative r value
indicates a negative association. The closer the r value is to 1, the closer the data points fall to a
straight line. Thus, the linear association is stronger. On the other hand, the closer the r value is to
0, making the linear association weaker.

To demonstrate, let us take a House Price dataset. The sample data in the CSV file are shown in
Figure 3.20.

FIGURE 3.19 Illustration using the function despine().

123Data Analytics Life Cycle for ML

FI
G

U
R

E
3.

20

Sa
m

pl
e

da
ta

 in
 C

SV
 fi

le
 f

or
m

at
.

124 Machine Learning for Decision Sciences with Case Studies in Python

Once we load the file to our model, we can explore the file in detail before all the necessary
libraries need to be imported as shown below.

#import libraries
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm

#load data file
data = pd.read_csv("House Price.csv")
data.shape

The output for the data.shape command is shown below.

(1460, 81)

This means the CSV file has 1460 records with 81 columns.
Let us explore the file much more closer.

Data.columns

The output is shown below, and it is showing all the columns in that file.

Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street',
 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig',
 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt',
'YearRemodAdd',
 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType',
 'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1',
 'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating',
 'HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF',
 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath',
'FullBath',
 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual',
 'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu',
'GarageType',
 'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea',
'GarageQual',
 'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',
 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC',
 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',
 'SaleCondition', 'SalePrice'],
 dtype='object')

data.head(10) #gives the top ten records in that file

Id MSSubClass MSZoning ... SaleType SaleCondition SalePrice
0 1 60 RL ... WD Normal 208500
1 2 20 RL ... WD Normal 181500
2 3 60 RL ... WD Normal 223500
3 4 70 RL ... WD Abnorml 140000

125Data Analytics Life Cycle for ML

4 5 60 RL ... WD Normal 250000
5 6 50 RL ... WD Normal 143000
6 7 20 RL ... WD Normal 307000
7 8 60 RL ... WD Normal 200000
8 9 50 RM ... WD Abnorml 129900
9 10 190 RL ... WD Normal 118000

Data.tail() # gives the bottom five records by default.

 Id MSSubClass MSZoning ... SaleType SaleCondition SalePrice
1455 1456 60 RL ... WD Normal 175000
1456 1457 20 RL ... WD Normal 210000
1457 1458 70 RL ... WD Normal 266500
1458 1459 20 RL ... WD Normal 142125
1459 1460 20 RL ... WD Normal 147500

data['SalePrice'].describe() # gives the description of the SalePrice column only.

count 1460.000000
mean 180921.195890
std 79442.502883
min 34900.000000
25% 129975.000000
50% 163000.000000
75% 214000.000000
max 755000.000000
Name: SalePrice, dtype: float64

To get the description of all the columns,

Data.describe()
 Id MSSubClass ... YrSold SalePrice
count 1460.000000 1460.000000 ... 1460.000000 1460.000000
mean 730.500000 56.897260 ... 2007.815753 180921.195890
std 421.610009 42.300571 ... 1.328095 79442.502883
min 1.000000 20.000000 ... 2006.000000 34900.000000
25% 365.750000 20.000000 ... 2007.000000 129975.000000
50% 730.500000 50.000000 ... 2008.000000 163000.000000
75% 1095.250000 70.000000 ... 2009.000000 214000.000000
max 1460.000000 190.000000 ... 2010.000000 755000.000000

Now plotting the data in graphs.
Histogram graph (Figure 3.21):

plt.figure(figsize = (9, 5))
data['SalePrice'].plot(kind ="hist", color= "g")

Line graph (Figure 3.22):

plt.figure(figsize = (9, 5))
data['SalePrice'].plot(kind ="line",color= "r")

Now let us get the correlation matrix, tabular data representing the ‘correlations’ between pairs
of variables in given data.

126 Machine Learning for Decision Sciences with Case Studies in Python

corr = data.corr()
f, ax = plt.subplots(figsize =(9, 8))
sns.heatmap(corr, ax = ax, cmap ="YlGnBu", linewidths = 0.2) #YlGnBu is
the color pellet schema

The output is shown in Figure 3.23.

<matplotlib.axes._subplots.AxesSubplot at 0x2549578ff60>

FIGURE 3.21 Illustration of data in histogram graph.

FIGURE 3.22 Illustration of data in line graph.

127Data Analytics Life Cycle for ML

Another form of visualizing the data is a grid correlation matrix.

corr = data.corr()
cg = sns.clustermap(corr, cmap ="YlGnBu", linewidths = 0.1);
plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation = 0)
cg

The output is shown in Figure 3.24.
Now that we have explored the correlation between all variables, let us focus on the SalePrice

column, and on how it is correlating with other columns (Figure 3.25).
k = 20 #k: number of variables for heatmap – the # of variables that will be compared against

SalePrice.

cols = corr.nlargest(k, 'SalePrice')['SalePrice'].index
cm = np.corrcoef(data[cols].values.T)
f, ax = plt.subplots(figsize =(12, 10))
sns.heatmap(cm, ax = ax, cmap ="YlGnBu",
 linewidths = 0.1, yticklabels = cols.values,
 xticklabels = cols.values)

FIGURE 3.23 Correlation matrix.

128 Machine Learning for Decision Sciences with Case Studies in Python

Another technique to clean and enrich the data is typecasting. It is the technique to convert the
data into a different type than the source data. For example, a variable in the source data may be
coded as string/character even though the permissible values in the variable are only numeric (inte-
gers and float types). Simply put, typecasting is converting one data type to another. There are basic
functions that are int(), string(), and float(), and they are used for typecasting. Int() function is used
for integer literal, and float() is for decimal numbers. In python, it is very straightforward to convert
from one data type to another.

Here is the code snippet –
x=float(2)
y=float(30.0)
z=float("20")
print(x)
print(y)
print(z)

FIGURE 3.24 Grid correlation matrix.

129Data Analytics Life Cycle for ML

The output is:

2.0
30.0
20.0

To understand the data type of the variable, use the function type().
There are two types of typecasting, that is implicit and explicit. In implicit conversion, python

automatically converts one data type to another. This process doesn't need any user involvement at
all. When you add one integer and another float number, the result will be automatically casted as a
float without the user specifying it. For example,

num_int = 123
num_float = 1.23

num_new = num_int + num_float

print("datatype of num_int:",type(num_int))
print("datatype of num_flo:",type(num_float))

FIGURE 3.25 Correlation matrix with other columns.

130 Machine Learning for Decision Sciences with Case Studies in Python

print("Value of num_new:",num_new)
print("datatype of num_new:",type(num_new))

The output is:

datatype of num_int: <class 'int'>
datatype of num_flo: <class 'float'>
Value of num_new: 124.23
datatype of num_new: <class 'float'>

In explicit conversion, the users had to explicitly convert the data type of an object to the required data
type. We use the predefined functions like int(), float(), and str() to perform explicit type conversion.

num_int = 123
num_str = "123"

print("Data type of num_int:",type(num_int))
print("Data type of num_str before Type Casting:",type(num_str))

num_str = int(num_str) # WE ARE EXPICITELY CONVERTING THE datatype
print("Data type of num_str after Type Casting:",type(num_str))

num_sum = num_int + num_str

print("Sum of num_int and num_str:",num_sum)
print("Data type of the sum:",type(num_sum))

The output is :
Data type of num_int: <class 'int'>
Data type of num_str before Type Casting: <class 'str'>
Data type of num_str after Type Casting: <class 'int'>
Sum of num_int and num_str: 246
Data type of the sum: <class 'int'>

Even though typecasting is a handy tool in data pre-processing, we need to have few cautions in
mind when using it. For example, when the Python interpreter does the implicit conversion, the loss
of data is prevented automatically by the Python. But when there is an explicit conversion, there
could be data loss depending on the data types that might impact processes requiring data accuracy.

When complaining about the multiple despaired datasets, we need to employ joins. For example,
there are datasets with one master and transaction data; to combine these datasets (tables), we
need to use joins. The different types of joins are illustrated in Figure 3.26. We can use the Python
Pandas library to use inner joins, full joins, left joins, and right joins. Inner joins get the results set
that are common in both tables. For example, you have two tables from different sources with the
customer data, and the inner join will bring only the common data available in both tables. The full
join or outer join returns all records when there is a match in dataset1 and dataset2. Left join returns
all records from the left table (dataset1) and the matched records from the right table (dataset2).

FIGURE 3.26 Types of joins.

131Data Analytics Life Cycle for ML

Finally, the right join returns all records from the right table (dataset2) and the matched records
from the left table (dataset1).

For example, let us create a customer DataFrame in Pandas as follows:

Import pandas as pd
customer=pd.DataFrame({
 'id':[1,2,3,4,5,6,7,8,9,10],

'name':['John','Joe','Cory','Steve','Richard','Tyler','Samuel','Daniel','
Jeremy','Stephan'],
 'age':[20,25,15,10,40,55,35,18,23,20],
 'Product_ID':[101,0,106,0,103,104,0,0,107,105],

'Purchased_Product':['Watch','NA','Oil','NA','Shoes','Smartphone','NA','N
A','Laptop','smartwatch'],

'City':['Delhi','Mumbai','Kolkatta','Chennai','Chennai','Coimbatore','Ban
galore','Bangalore','Mumbai','Coimbatore']
})
Customer

The output is shown below.

Another dataframe product
product=pd.DataFrame({
 'Product_ID':[101,102,103,104,105,106,107],

'Product_name':['Watch','Bag','Shoes','Smartphone','smartwatch','Oil','La
ptop'],

'Category':['Fashion','Fashion','Fashion','Electronics','Study','Grocery'
,'Electronics'],
 'Price':[299.0,1350.50,2999.0,14999.0,145.0,110.0,79999.0],

'Seller_City':['Delhi','Mumbai','Chennai','Kolkata','Delhi','Chennai','Be
ngalore']
})
Product

Id Name Age Product_ID Purchased_Product City

0 1 John 20 101 Watch Delhi

1 2 Joe 25 0 NA Mumbai

2 3 Cory 15 106 Oil Kolkata

3 4 Steve 10 0 NA Chennai

4 5 Richard 40 103 Shoes Chennai

5 6 Tyler 55 104 Smartphone Coimbatore

6 7 Samuel 35 0 NA Bangalore

7 8 Daniel 18 0 NA Bangalore

8 9 Jeremy 23 107 Laptop Mumbai

9 10 Stephan 20 105 Smartwatch Coimbatore

132 Machine Learning for Decision Sciences with Case Studies in Python

The output of the product DataFrame is as follows:

Now let us combine the product with the customer using the merge() function in Pandas. By
default, the merge function performs inner joins unless we specify different join types.

pd.merge(product,customer,on='Product_ID')

The results bring only six rows matching in both dataframes.

To force the join type, we need to specify the left_on, right_on keywords.

pd.merge(product,customer,left_on='Product_name',right_on='Purchased_
Product')

One another data harmonization technique is data wrangling. When we get the data in various
formats, this technique is helpful. Data wrangling allows us to merge, group, and concatenate the
data for analyzing or provisioning them with another dataset. Python has built-in functions and
features to apply these wrangling techniques to despaired datasets to achieve the analytical goal.
We will look at few examples characterizing these methods. As we discussed, the merge() function
helps do the data wrangling. Another method is called grouping. Grouping datasets is a recurring

Product_ID Product_name Category Price Seller_City

0 101 Watch Fashion 299.0 Delhi

1 102 Bag Fashion 1350.5 Mumbai

2 103 Shoes Fashion 2999.0 Chennai

3 104 Smartphone Electronics 14999.0 Kolkata

4 105 Smartwatch Study 145.0 Delhi

5 106 Oil Grocery 110.0 Chennai

6 107 Laptop Electronics 79999.0 Bangalore

Product_ID Product_name ⋯ Purchased_Product City

0 101 Watch ⋯ Watch Delhi

1 102 Shoes ⋯ Shoes Chennai

2 103 Smartphone ⋯ Smartphone Coimbatore

3 104 Smartwatch ⋯ Smartwatch Coimbatore

4 105 Oil ⋯ Oil Kolkata

5 106 Laptop ⋯ Laptop Mumbai

[6 rows × 10 columns]

Product_ID_x Product_name ⋯ Purchases_Product City

0 101 Watch ⋯ Watch Delhi

1 103 Shoes ⋯ Shoes Chennai

2 104 Smartphone ⋯ Smartphone Coimbatore

3 105 Smartwatch ⋯ Smartwatch Coimbatore

4 106 Oil ⋯ Oil Kolkata

5 107 Laptop ⋯ Laptop Mumbai

133Data Analytics Life Cycle for ML

need in data analysis where we need the result in terms of various groups present in the dataset.
Pandas has in-built methods/functions that can roll the data into various groups.

import the pandas library
import pandas as pd
ipl_data = {'Team': ['CSK', 'RCB', 'KKR', 'KKR', 'DD',
 'DD', 'DD', 'DD', 'SRH', 'MI', 'MI', 'MI'],
 'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
 'Year': [2020,2015,2014,2015,2014,2020,2016,2017,2016,2014,2020,
2017],
 'Totalruns':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)

grouped = df.groupby('Year')
print (grouped.get_group(2014))

The output is shown below.

 Team Rank Year Totalruns
2 KKR 2 2014 863
4 DD 3 2014 741
9 MI 4 2014 701

Another useful Pandas function for data wrangling is concatenating the data using the concat()
function. Pandas provides various tools to combine Series, DataFrame, and Panel objects easily
together. The example below depicts the concat function performing concatenation operations along
an axis.

import pandas as pd
first_set = pd.DataFrame({
 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
 'subject_id':['sub1','sub2','sub4','sub6','sub5'],
 'Marks_scored':[98,90,87,69,78]},
 index=[1,2,3,4,5])
second_set = pd.DataFrame({
 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
 'subject_id':['sub2','sub4','sub3','sub6','sub5'],
 'Marks_scored':[89,80,79,97,88]},
 index=[1,2,3,4,5])
print (pd.concat([first_set,second_set]))

The output is shown below.

 Name subject_id Marks_scored
1 Alex sub1 98
2 Amy sub2 90
3 Allen sub4 87
4 Alice sub6 69
5 Ayoung sub5 78
1 Billy sub2 89
2 Brian sub4 80
3 Bran sub3 79
4 Bryce sub6 97
5 Betty sub5 88

134 Machine Learning for Decision Sciences with Case Studies in Python

A review process is performed to improve the data to ensure the calculations remain consistent
within columns for a given data field. Some of the considerations are as follows:

• Ensure data distribution is consistent over the entire dataset. If not, the data preparation
team proposes a new plan to handle the situation.

• Assess the granularity of the data, the range of values, and the level of aggregation of the data.
• For time-related variables, are the time measurements daily, weekly, monthly? Is that good

enough? Is time measured in seconds everywhere? Or is it in milliseconds in some places?
This will cause the data level mismatch when we combine the data and harmonizing it.
Ensure the lowest level of data is consistent across data sources.

• Are the data standardized/normalized? Are the scales consistent? If not, how normal or
irregular is the data? In this case, a scaling function is applied to smoothen the data.

• If geospatial datasets are considered, are country codes, state abbreviations, and postal
codes consistent across the data? Are personal names normalized? Whether English units
are considered? Whether standards metric units are considered?

• How is the data deduplication handled? When combining multiple sources due to various
factors such as incorrect abbreviations, using the last name instead of the full name, the
same records appear as duplicate records in the target database.

Gaining more deep knowledge about the data is essential while considering time-series analysis or
running ML models. If a good amount of quality data is available, the project moves to the planning
phase, where the focus lies on building the model.

Using Python libraries, we can do the data processing better. Below is the code snippet for the
data processing.

Import pandas
import pandas as pd
import numpy as np

Read the file into a DataFrame: df
df=pd.read_csv('C:/Users/srajappa/Desktop/MLn
using Python/dob_job_application_filings_subset.csv')

Print the head of df
print(df.head(2))

Print the tail of df
print(df.tail())

Print the shape of df
print(df.shape)

Print the columns of df
print(df.columns)

##.describe() method to calculate summary statistics of your data
print(df.describe())

df.info()
##.value_counts() method, which returns the frequency counts for each
unique value in a column!
Print the value counts for 'Borough'
print(df['Borough'].value_counts(dropna=False))

Print the value_counts for 'State'
print(df['State'].value_counts(dropna=True))

135Data Analytics Life Cycle for ML

Print the value counts for 'Site Fill'
print(df['Site Fill'].value_counts(dropna=True))

df.dtypes
df.get_dtype_counts()

##seperating string and numerical columns
df_string=df.select_dtypes(include=['object'])
df_numerical=df.select_dtypes(exclude=['object'])

df_string.shape
df_numerical.shape

df_string.info()

##ensuring all categorical variables in a DataFrame are of type category reduces memory usage.

df_string['Job Type'] = df_string['Job Type'].astype('category')

##converting datatypes

tips = pd.read_csv('C:/Users/srajappa/Desktop/ML using Python/tips.csv')
print(tips.info())

Convert the sex column to type 'category'
tips.sex = tips.sex.astype('category')

Convert the smoker column to type 'category'
tips.smoker = tips.smoker.astype('category')

##for numeric directly
#df['column'] = df['column'].to_numeric()

Print the info of tips
print(tips.info())
##numerica data conversion

tips.tip = tips.tip.astype('object')

#tips.tip = tips.tip.astype('float')
tips['tip'] = pd.to_numeric(tips['tip'], errors='coerce') ##incase some
char values result into nan

def recode_gender(gender):

 # Return 0 if gender is 'Female'
 if gender == 'Female':
 return 0
 # Return 1 if gender is 'Male'
 elif gender == 'Male':
 return 1
 # Return np.nan
 else:
 return np.nan

136 Machine Learning for Decision Sciences with Case Studies in Python

Apply the function to the sex column
tips['recode'] = tips.sex.apply(recode_gender)

Print the first five rows of tips
print(tips.head())

Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
#sc_y = StandardScaler()
#y_train = sc_y.fit_transform(y_train)

3.2.3 Phase 3 – MoDel Planning

The next phase, ML model planning, is to understand whether a good model is available for the
data chosen for the respective project. In this phase, the methods, model, approaches, and flow
expected are finalized. In addition to this, the relationship between variables in the data, primary
variables, and suitable models is explored. Since this phase executes just before executing the ana-
lytical model, care should be taken in understanding the features and choosing the model. At this
phase, there is a need to refer to the hypotheses developed in the first phase, from where we get to
know the data and understand the business problem. The IH helps in framing the analytics to be
executed in the next phase and to choose the correct methods to meet the objectives. At this stage,
there are some considerations based on the data listed as follows:

• The type of data is a major factor that will prescribe and confine the tools and analytical
techniques in the next phase. Different tools and approaches are applied based on the data
chosen, whether it is textual data or transactional data (e.g., tumor prediction using clinical
data in Hadoop – contains structured, semi-structured, and unstructured while forecasting
weather is based on structured data).

• There should be an assurance whether the analytical techniques will meet the business
objectives and prove/disprove the working hypotheses.

• Understand if the solution to the business problem requires a single test or a series of
techniques for analytic workflow. Tools such as SAS Miner will help set up a series of
steps and analyses and serve as a user-friendly interface for manipulating larger data
sources.

With the type of data and resources available, the review has to be performed to check whether
smaller approaches are suitable or whether new approaches are required. On several occasions,
ideas arise based on analogous problems solved in industry verticals.

There are a few guidelines and recommendations on choosing ML and deep learning models
based on the question we are trying to answer. The specific algorithms are explained in detail in the
further chapters: supervised, unsupervised, and deep learning model chapters.

We need to understand the border classification of ML models. There are three categories as follows:

• Supervised learning: The answer to the question is specific, for example, what is the sal-
ary of a 5-year-experienced ML engineer? The data are labeled, and this type of model
predicts the outcome/future. Direct feedback is given to the model. Ground Truth (input)
and Answer Key (output) are also given to the model.

• Unsupervised learning: The data are cumbersome and not labeled. The intention is to find
the hidden patterns in the data. No feedback is given to the model.

137Data Analytics Life Cycle for ML

• Reinforcement learning: This type of model is based on the rewards systems. Suitable
action is to maximize reward in a particular situation. These algorithms are learnt based
on a series of actions.

Now that we understand the types of the algorithm, let us discuss the other factors that dictate a
model type selection.

Size of training set: We all know that when the training dataset is not enough, it always
results in poor estimation. An over-constrained model on the insufficient training data-
set will always end in underfitting; on the other hand, an under-constrained model will
probably lead to overfitting the dataset; in both the cases, the outcome will turn to be
poor performance. Thus, the size of the training dataset may be a factor that plays a
significant role for us when deciding the algorithm of our choice. For a little training
dataset, as the low-bias/high-variance classifiers (such as k-nearest neighbors) are likely
to overfit the training dataset, the high-bias/low-variance classifiers are at an advantage
over this.

Training time: Time taken to coach the model varies for every algorithm. This time corre-
lates with the size of the dataset and the accuracy we are aiming for.

The number of parameters: Parameters are one of the foremost important factors in an
honest-performing model. Therefore, the components like an error tolerance level and a
complete number of iterations depend on the algorithm’s nature. Usually, the foremost
number of trail and errors is needed to seek an honest combination within the algorithms
that have an enormous number of parameters. Although having many parameters typically
gives more versatility, the time taken to train the model using a particular algorithm and
the same accuracy may be sensitive in obtaining just the right setup.

The number of features: Compared with the number of data points, the number of features
of certain datasets may be quite large. We face the same situation when dealing with
the Natural Language Processing (NLP) datasets, which are more textual datasets. Some
learning algorithms can consume a longer training time when dealing with many features
and make the work unrealistic. Some ML algorithms like support vector machines are
especially well designed for this situation. These assumptions we make based on past expe-
riences do not work for all situations, and we are required to have a better understanding
of such algorithms to apply the best one for a specific problem.

Accuracy: The ML algorithms we use to make realistic decisions and greater accuracy on
model results lead to better decisions. The expense of errors may be enormous, so we
need to minimize that cost by improving the model’s accuracy. The accuracy needed will
be distinct, depending on the requirement. The approximation is often sufficient, which
can result in a massive decrease in processing time. However, approximate techniques are
likely to result in overfitting of the training dataset.

Based on the factors described above, there are heuristics on the recommended type of model based
on the situation (Table 3.4).

There are many tools available, and let us discuss few popular ones.
Python is very popular nowadays and has an entire range of modeling abilities, including a satis-

factory environment for building ML models with sophisticated code. In addition, Python also can
work with SQL and run statistical analysis and tests on big data through open-source connectivity.
Some of these abilities have made Python suitable for building models. Moreover, it contains more
than 2000 packages and rapidly expanding everyday with the latest graphical features, thus making
it user-friendly and more robust.

SAP HANA and Microsoft SQL Server provide SQL services such as in-database analysis of
common data mining functions, basic predictive models, and involved aggregations.

138 Machine Learning for Decision Sciences with Case Studies in Python

SAS provides a strong integration between SAS and databases through multiple data connectors,
OBDC, JDBC, and OLE DB. Though SAS is used on file extracts, it can also be used to interface
relational databases (Teradata or Oracle), data warehouse applications (snowflake), files, and also
enterprise applications (SAP, JD Edwards).

The next step in the model selection process is data exploration. In this phase, it is critical to
explore the data and observe the relationships among the variables in the data. The choice of variables
and the methods for a corresponding problem are also challenging. Tools used for data visualization
can be applied to review the data and assess the relationships between variables. Simultaneously,
variable selection is also an important factor for successful model selection. In most cases, stake-
holders/SMEs will have a strong knowledge of the data that has to be considered for analysis.

Initially, the inputs and the data required for the problem are taken and reviewed to check
whether these inputs are related to the proposed outcomes used in prediction and analysis. Some
models properly handle such tasks. However, based on the proposed solutions, a different model
may also be considered after examining the inputs and transforming the inputs. This enables the
selection of the best model. Generally, the model should aim to capture the best features so that the
outcome is as expected. The process involves several iterations to obtain the most critical variables
for the analysis chosen. Then, testing is performed on the range of possible variables and features in
the data, and the most prominent features are selected.

In case regression problems are handled, candidate features have to be identified concerning the
model’s outcome. Here case should be taken in terms of correlation and collinearity between the
data, such that they do not affect the model’s outcome.

The last step in this phase is model selection. The model created in Python or any other equiva-
lent tool should be converted to SQL so that the expected operation can be carried out in the data-
base. Such interaction with the database and the model is required for optimal performance during
runtime. In addition, during the model selection, the user has to be vigilant about the various data
mining and prediction techniques, namely classification, association rules, and regression. Finally,
the user needs to determine the techniques based on the data type, such as structured, unstructured,
or hybrid combination.

Some of the analytical methods used across multiple market segments for churn prediction are
listed in the table. Most of these methods will be covered in the remaining chapters of this book.
But for the benefit of readers, we have created a table (Table 3.5) with specific industries and the
analytics methods used for churn prediction.

TABLE 3.4
Heuristics and Their Applications
ML/Deep Learning Strategy Description

Resampling strategy Use this when there is an unbalanced dataset

Principal component analysis Use this for reducing dimensionality, create new features

Autoencoding To create new features

Regularization techniques To prevent overfitting, outliers, and noise in linear regression and lasso
regression

Random forest Use this to overcome the outliers

Linear regression Use this when predicting continuous variables

Logistic regression or simple vector machine Use this when predicting a binary outcome

Random forest Use this when predicting multi-class classification

Convolutional neural networks (CNNs) Use this when doing image classification, object detection, and image
segmentation

RNNs (typically LSTM) Use this when doing sequence modeling such as natural language
processing or text classifications

139Data Analytics Life Cycle for ML

3.2.4 Phase 4 – MoDel bUilDing

The objective of this phase is to understand whether the ML model is robust enough. Here the data-
sets are developed and categorized as testing, training, production, and validation. In addition, there
is a need to ensure a suitable environment for executing models and workflows, which includes fast
hardware and parallel processing.

The model will be fitted on the training data and evaluated against the testing data during this
phase. This exercise is usually done in a sandbox rather than in a live production environment. ML
model planning and model building have a lot of overlap. We can iterate between the two phases for
a long time before agreeing on a final ML model. Some methods necessitate using a training dataset
(and, in some cases, a validation dataset), depending on the method.

Although the modeling techniques and logic necessary to develop this step can be complex, the
actual duration of this phase can be very brief compared to all of the data pretreatment and approach
definition work. In general, project phases 1 and 2 will require more time in the actual world to
prepare and study the data and construct a presentation of the data.

As part of this phase, the following steps are conducted:

• Put the models created in Phase 3 into action.
• Wherever possible, convert the models to SQL or another appropriate database language

and run them as in-database functions. This is far faster and more efficient than run-
ning them in memory. (Use SQL to run Python models on huge datasets) SAS Scoring
Accelerator allows us to run SAS models in the browser if we are using SAS software.

• For testing and tiny datasets, use Python (or SAS) models on file extracts.
• Assess the model’s validity and outcomes (for example, does it account for most of the data

and has strong predictive power?)
• Adjust variable inputs to fine-tune the models for best results.
• Keep a record of the model’s outcomes and logic.

During these iterations and refinement of the model, document the answers to the questions below
to access the model efficiency:

• Does the model look plausible and accurate on the test and validation data?
• Does the model output/behavior make sense to the domain experts and SMEs? In other

words, does it look like the model is providing “the right answers” or answers that make
sense in the business context?

• Does the model accurate enough to meet the success criteria? (efficiency, performance, and
other key performance matrix defined in phase1)

• Does the model avoid the kind of mistakes it needs to avoid? Depending on the context,
false positives may be more serious or less serious than false negatives, for instance.

• Do the parameter values of the fitted model make sense in the context of the business domain?

TABLE 3.5
Analytics Techniques Used in Industry
Industry Sector Analytics Techniques Used

Wireless telecom Neural networks, logistic regression, and decision tree

Retail Logistic regression, automatic relevance determination, and decision tree

Retail banking Multiple regression

Grocery stores Multiple linear regression and decision tree

140 Machine Learning for Decision Sciences with Case Studies in Python

• Do we need more data or more inputs? Do we need to transform or eliminate any of the
inputs?

• Do we need a different form of the model? Then, we will need to go back to the ML model
planning phase (Phase 3) and revise the modeling approach.

3.2.5 Phase 5 – coMMUnicating resUlts

The question to answer in the prediction and communicating results phase is, “Is the model robust
enough that predicts the results accurately (within the error value)?” First, based on the criteria we
created in the data discovery phase (the key performance matrix for success criteria), we decide if
the model succeeded or failed in this phase in partnership with the key stakeholders. Next, identify
the most important results, quantify the business value, and write a narrative to synthesize and com-
municate the findings to key stakeholders.

Based on the criteria we created in the data discovery phase (the key performance matrix for
success criteria), we decide if the model succeeded or failed in this phase in partnership with the
key stakeholders. Identify the most important results, quantify the business value, and write a nar-
rative to synthesize and communicate the findings to key stakeholders. Because the findings will
most likely be disseminated throughout the business at multiple levels, from executive to operations,
consider how to frame the findings and effectively describe the consequences.

The project team will provide recommendations for future work or improvements to existing
processes as part of the project exit, taking into account what each team member and stakeholder
require from you to complete their tasks and numerous new use cases for the enriched data. In addi-
tion, this is the stage where we may emphasize the project’s business benefits. Finally, this stage will
serve as the checkpoint for moving the models into production and operationalizing them.

As a final step in this phase, now that the model is successfully run, the following activities are
conducted to document the lessons learned from the project:

• Evaluate the models’ outcomes.
• Do the findings appear to be statistically significant and consistent? If that’s the case,

what characteristics/attributes of the outcomes stand out? If not, what changes do we
need to make to the model to refine and iterate it to make it more sustainable?

• Which facts/details surprised you, and which were consistent with your arriving
hypotheses from Phase 1? Correlating the confirmed outcomes to the ideas we for-
mulated early on usually results in additional ideas and insights that would have been
missed if we hadn’t taken the effort to formulate IHs early on.

• What data have been observed as a result of the analytics?
• What are the most important discoveries from those?
• Do these discoveries have any commercial value or significance? We may need to

spend time quantifying the business implications of the results to help prepare for the
presentation, depending on what emerged as a consequence of the model.

We will document the important findings and major insights due to the analysis at the end of this
phase. In addition, this phase’s end product will be the most visible part of the process to outside
stakeholders and sponsors, so properly articulate the findings’ outcomes, methodology, and busi-
ness value.

3.2.6 Phase 6 – oPtiMize anD oPerationalize the MoDels

The question to answer in the operationalize models’ phase is, “Are technical predictions from the
model are translated into the business language so that business team members can interpret the

141Data Analytics Life Cycle for ML

results and act on them?” The project team delivers final reports, briefings, code, and technical
documents throughout this project phase. Finally, we undertake a pilot project and put the models
to the test in a real-world setting. It is vital to make sure that once we’ve run the models and got-
ten the results, we frame them in a way that’s appropriate for the audience who hired us and that
provides demonstrable value. People will not perceive the value of a technically accurate analysis
if we cannot interpret the data into a language they can understand. A lot of work will have been
wasted.

In this phase, we’ll evaluate the work’s benefits and set up a pilot so we may launch the work in a
controlled manner before expanding it to a larger enterprise or ecosystem of consumers. We scored
the model in the sandbox in step 4, and most analytics approaches implementing new analytical
methods or models in a production environment for the first time in Phase 6. Therefore, instead of
deploying this on a large scale, we advocate starting with a small pilot rollout. This approach will
allow us to limit the risk relative to full-enterprise-wide deployment, learn about the performance
and related constraints on a small scale, and make fine-tune adjustments before a full deployment.

As we scope this effort, consider running the model in a production environment for a discrete
set of single products or a single line of business, which will test the model in a live setting. This
will allow the team to learn from the deployment and make adjustments before launching across
the enterprise. Keep in mind that this phase can bring in a new set of team members, namely those
responsible for the production environment, who have a new set of issues and concerns. The pro-
duction support team and administrators want to ensure that the model can be incorporated into
downstream processes and that it runs well in the production environment. Be on the lookout for
input irregularities before feeding them to the model when running the model in the production
environment. Evaluate run times and resource competition with other processes in the manufactur-
ing environment.

Once the model is deployed, the project team conducts follow-ups to re-evaluate the model after
it has been in production for a period of time. Assess whether the model is meeting goals and expec-
tations and whether desired changes (such as an increase in revenue, reduction in churn) are occur-
ring. If these final results are not occurring, determine if this is due to a model inaccuracy or if its
predictions are not being acted on appropriately. If needed, automate the retraining/updating of the
model. In any case, we will need ongoing monitoring of model accuracy, and if accuracy degrades,
we will need to retrain the model. If possible, design alerts for when the model is operating “out-
of-bounds.” This includes situations when the inputs are far beyond the range that the model was
trained on, which can cause the model’s outputs to be inaccurate. If this happens regularly, retrain-
ing is called for.

Analytical projects often yield new insights about a business, a problem, or a concept that indi-
viduals may have taken at face value or thought was impossible to big into. If appropriate, hold a
post-mortem with your analytic team to discuss the process or project you would change if we had
to do it again.

Presenting the results to various groups is a daunting task. However, because each group will
require a unique set of data, here are some general principles for preparing the analysis’ findings for
sharing with the major sponsors.

For a Business Audience: The more business-oriented the audience, the more succinct we must
be. The majority of executive sponsors receive numerous briefings throughout the day and week. So,
make sure the presentation gets to the point quickly and frames the results in terms of value to the
sponsor’s organization. For instance, if we are working with a bank to analyze cases of credit card
fraud, highlight the frequency of fraud, the number of cases in the last month or year, and the way
much cost or revenue impacts the bank (or the main focus on the reverse, how much more revenue
they might gain if they address the fraud problem). This will showcase the business impact better
than deep dives on the methodology. We will need to include supporting information about analyti-
cal methodology and data sources. Still, generally, we took to analyze the data only as supporting
detail or to ensure the audience has confidence in the approach.

142 Machine Learning for Decision Sciences with Case Studies in Python

For Analysts Audience: If you’re giving a presentation to other analysts, spend more time on the
process and results. Coevals will be more interested in the techniques if we establish a brand-new
way of processing or evaluating data that will be reused in the future or applied to comparable prob-
lems. When possible, use photos and screenshots. People tend to recall mental images to illustrate
extended lists of bullets to some extent.

SUMMARY

There are many Data Analytics Life Cycle frameworks available in the market; they tend to have
few variations with the same basic structure. Following the phases and the activities will alleviate
the known pitfalls in implementing the ML projects. However, the users need to be mindful of the
iterative nature between the phases. Without putting a solid foundation in the previous phase, the
next phase’s activities will be impacted. Therefore, we cannot emphasize the importance of data
discovery and pre-processing data phases in the Data Analytics Life Cycle. A recent survey of data
scientists from Gartner Inc. suggests that they spend over 80% of their time capturing, cleaning, and
organizing data. The remaining less than 20% of their time was spent creating and optimizing the
ML models. More than 75% also reported that preparing data was the least enjoyable part of their
process. Table 3.6 shows the breakup of time consumed per activity in the data analytics projects.

Table 3.7
Key Roles and Responsibilities of Team Members
Key Project Role Description

Project sponsor A person responsible for the project’s existence, motivating, solving the core business problem, and
providing funding

Business users Members who benefit from the end result of the project/product. They can advise and be consulted
on the value of the end results

SMEs/subject matter
advisors (SMAs)

Members who had domain knowledge and could guide the project team in Phase 1 and Phase 2
primarily. They can be internal or external to the organization

Project manager Key member responsible for delivering the project on time and under budget with expected quality

Business intelligence
analyst

A member who has a deep understanding of the data, KPIs, and other key metrics and a clear vision
of the data visualization aspects

Data engineers Members who have deep technical skills to assist with data ingest queries and technically
responsible for bringing the data into the analytics sandbox

Data scientists Members who provide subject matter expertise in analytical techniques, applying efficient analytical
techniques for the given business problem and ensuring the overall analytical goal of the project,
are met

Administrators Member of the Database Administrators Team, platform administrators, and cloud engineers who
provisions and configures the environments to support the analytical team

TABLE 3.6
Time Consumption for Each Activity in a Project
Project Activity % of Project Time Allocated

Collecting data 19%

Building training datasets 3%

Cleaning, enriching, and organizing the data 60%

Mining data for patterns 9%

Refining algorithms 5%

Other activities 4%

143Data Analytics Life Cycle for ML

For the successful implementation of the project, there are many roles involved. Table 3.7 pres-
ents the roles and responsibilities of the team members.

Finally, the “analyst wish list” refers to suggestions for tools, data access, and working condi-
tions that will ensure that employees are productive on the project and boost your chances of a good
outcome. These requirements reflect the need for more adaptable ecosystems for storing data and
performing complex, iterative analysis. In addition to the technical requirements outlined above,
the project would benefit from quick access to key stakeholders and domain experts. Table 3.8 illus-
trates a few examples of the “analyst wish list.”

REVIEW QUESTIONS

 1. Explain the importance of the Data Analytics Life Cycle framework.
 2. Describe the phases of the analytical life cycle and how these phases interact with other

phases.
 3. Describe various techniques used for data pre-processing.
 4. What is the significance of correlation matrix in data preparation?
 5. What is data wrangling?
 6. What are data visualization techniques to understand the data better?
 7. What types of files and data can be brought into the analytical sandbox?
 8. What is the difference between traditional programming and ML model building?
 9. How do you ensure the results of the analytics project to executives and other analysts are

communicated properly?
 10. What is the difference between ELT and ETL?
 11. Explain few use cases where ML can be effectively implemented.
 12. Explain the join types and what is the significance of those.

TABLE 3.8
Analyst Wish List
Data and workspaces Access to all the data, including raw and aggregated levels from various sources in structured,

semi-structured, and unstructured data sources

Updated data dictionary and metadata for the data elements

Area for development, staging, testing, and production datasets

Move data between workspace and staging/testing area

Analytic sandbox with computer power to handle large dataset using complex ML models

Tools set Statistical /mathematical and analytics tools with visualization capabilities such as Python, SAS,
Matlab, Tableau, and Alteryx

Collaboration tools like SharePoint

Error logging tools like Jira

https://taylorandfrancis.com

145

4 Unsupervised Learning

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand different types of clustering algorithms, namely k-means, fuzzy k-means, hier-
archical (agglomerative and divisive), and DBSCAN algorithms

• Implement the algorithms using Python
• Analyze the performance of the algorithms based on several evaluation metrics
• Appreciate the limitations of clustering algorithms and adapt suitable ones based on the

working dataset

4.1 INTRODUCTION

One of the promising areas to learn systems formally is machine learning. Machine learning algo-
rithms are used mostly in interdisciplinary areas by combining the thoughts from several fields,
such as optimization theory, cognitive science, mathematics, statistics, and computer science. In
this chapter, the reader would benefit from the broad underlying area of machine learning known
as unsupervised learning. The present-day data scientists apply various machine learning algo-
rithms to extract valuable information from the data provided. Most of the learning algorithms are
supervised learning problems since we have a priori knowledge of the output of the type of data
presented.

On the contrary, unsupervised learning is a complex and challenging approach to machine learn-
ing algorithms. Despite its complexity, the advantages of unsupervised learning algorithms are
numerous. This class of algorithms has proven to be potential enough to provide solutions to previ-
ously unsolvable problems and has gained a lot of popularity in machine learning and deep learning.
This chapter will explain the basics of unsupervised learning, distance measures, the concept of
clustering, the most commonly used clustering algorithms, their applications to solve problems in
real time, and their limitations.

4.2 UNSUPERVISED LEARNING

The class of unsupervised learning is a kind of self-organized learning that helps us identify pat-
terns or similarities in our data related to various features. The three main categories of machine
learning are supervised learning, unsupervised learning, and reinforcement learning.

Consider a machine or a system that receives a sequence of inputs x1, x2, x3,…, from a sensor
where xt is the sensory input at time t. This input that is received sequentially concerning time is
called the data. Data can be any real-time measurement such as an image from a camera and voltage
or current values from a solar panel.

In supervised learning, the system is also presented with a sequence of desired outputs y1, y2,…,
along with the received input data. The goal of the system is to learn to produce the correct output
upon receiving successive inputs.

In reinforcement learning, the system interacts with its environment by producing a set of actions.
These actions, in turn, impact the environment, and this change results in the system receiving a few
scalar rewards or penalties corresponding to every action. Thus, the system’s goal is to act in such a
way as to maximize future rewards or minimize future penalties.

DOI: 10.1201/9781003258803-4

https://doi.org/10.1201/9781003258803-4

146 Machine Learning for Decision Sciences with Case Studies in Python

In unsupervised learning, the system, as shown in Figure 4.1, receives the set of sensory inputs
x1, x2,…, but does not obtain the target outputs (like supervised learning), nor rewards or penalties
from its environment (like reinforcement learning). Though it seems mysterious to imagine what
the system could learn without any feedback from its environment, it is possible to develop a system-
atic framework for unsupervised learning. The framework’s goal is to build representation models
similar to the input data, which can be used for prediction, decision-making, etc.

It is important to understand the need for unsupervised learning at this point. In situations such
as speech recognition, the interpretation of large datasets is very costly. Unsupervised learning has
been proving to be efficient in such application areas. In data mining, there may be a situation where
the user cannot predict the number of classes the data can be divided into. Unsupervised learning
has been proving to be successful in such situations as well.

Unsupervised learning is classified into two categories, namely parametric unsupervised learn-
ing and non-parametric unsupervised learning.

• Parametric unsupervised learning
When the given data can be represented in terms of parametric distribution, the case is

referred to as parametric unsupervised learning. The algorithm assumes that the data is
obtained from a probability distribution-based population that follows a fixed set of param-
eters. These fixed sets of parameters are usually mean and standard deviation. Using these
parameters on normal distribution data, the probability of any future observation can be
predicted easily. This learning algorithm involves structuring Gaussian mixture models
with expectation-maximization (EM) algorithm to predict the class of the sample data
taken for classification. This unsupervised learning approach is much more complex than
any supervised learning approach, and research has not identified any standard measure of
accuracy to validate the algorithm’s outcome.

FIGURE 4.1 Block diagram of unsupervised learning.

147Unsupervised Learning

• Non-parametric unsupervised learning
In non-parameterized unsupervised learning, the data obtained from the real world is

assembled to form groups or clusters. Here, each cluster holds some information about
the data present in its group. This approach is mostly used to analyze and mold data into
a smaller set of samples. Here, the learning does not use any assumptions regarding the
population distribution and hence is also known as a distribution-free method.

Two of the main methods used in unsupervised learning are principal component analysis and
 cluster analysis, but the most commonly used method is clustering.

4.2.1 clUstering

One of the popular unsupervised learning problems is clustering. It evolves in determining a struc-
ture from a collection of data. The structure is comprised of a group of objects in which the mem-
bers have some similar relation. Thus, a cluster can be defined as a group of objects with “similar”
properties among them and “dissimilar” properties concerning the objects in other clusters.

There are several definitions for the term clustering in the literature, and some of the common
ones are as follows:

• The method of identifying groups in data.
• The method of segregating the data into homogeneous groups.
• The method of segregating the data into groups, with similar points in each group -.
• The method of segregating the data into groups, where points within each group are simi-

lar while points of different groups are dissimilar.
• The method of segregating the population space into areas with a comparatively high den-

sity of points, separated by areas with a comparatively low density of points.

There is certainly a wide difference between clustering and classification. In unsupervised learning,
clustering is applied on a set of unlabeled data without any knowledge about the dataset. On the
contrary, in the classification approach, the grouping or class is formed on a set of unlabeled data
after applying a suitable supervised learning algorithm.

Hence, a cluster is usually formed by grouping similar data points concerning a center called the
centroid. Boundaries are usually not well defined for a cluster. Based on the boundaries, clusters are
classified into crisp clusters and fuzzy clusters. Crisp clusters have a well-defined boundary, while
fuzzy clusters do not have a well-defined boundary.

The main criteria for grouping objects into clusters are as follows:

• Each cluster should consist of objects similar to each other
• Each cluster should be unlike the other, which implies that the objects in one cluster are

different from those present in other clusters.

The clustering technique provides many advantages, but the two most important benefits of cluster-
ing can be outlined as follows:

 1. Identification and analysis of noisy data are comparatively easier.
 2. Clustering facilitates the user to handle data with different types of variables.

4.3 EVALUATION METRICS FOR CLUSTERING

The main objective of clustering is to find an intrinsic grouping pattern among a set of unlabeled
data. But how does anyone conclude that the grouping is the best? Or what constitutes a good

148 Machine Learning for Decision Sciences with Case Studies in Python

clustering? As far as the literature is concerned, there has not been the best criterion evolved as a
result of clustering. It has been observed that the results of clustering mainly vary from application
to application and are based on the user’s requirements.

In Figure 4.2, a sample clustering process is shown. How do we know what the best clustering
solution is? Some of the evaluation metrics that govern the process of clustering are discussed in
this section.

4.3.1 Distance MeasUres

According to the clustering process, we have discussed that similar objects are grouped. The param-
eter that governs this similarity is the distance measure, which is one of the vital properties mea-
suring the distance between two points. Thus, two or more objects are grouped into a cluster based
on the closeness of objects concerning each other. This concept of grouping objects based on the
geometric distance is called distance-based clustering.

Evaluating the distance between objects is completely dependent on the type of attributes of the
data. According to Kaufman and Rousseeuw (2005), the distance function used to form clusters
must satisfy the following criteria:

• The distance between any two objects should always be positive
• The distance from an object to itself is always zero
• The distance is symmetric
• The distance should always satisfy the triangle inequality. The distance from objects a to

b to c should be greater than the direct distance from a to c.

Suppose the dataset consists of objects having the same physical units. In that case, the distance can
be evaluated using the simple Euclidean distance metric to group the objects into different clusters.
The Euclidean distance between two objects xi and x j in a D-dimensional space is expressed as
follows:

 d x x x x x xi j i
k

j
k

k

D

i j∑()() = − = −
=

,
2

1

 (4.1)

If the dataset consists of components represented in similar physical units, then the Euclidean dis-
tance metric is the best choice to group the data instances successfully. Euclidean distance is mostly

FIGURE 4.2 A sample clustering process.

149Unsupervised Learning

used in cases where the attributes of the data vectors are color components, coordinates, or numeric
types in D-dimensional Euclidean space.

4.3.1.1 Minkowski Metric
If the D-dimensional space is large, then the Minkowski metric is used to evaluate the distance. The
Minkowski metric is expressed as follows:

 ,
1

1/

∑() = −

=

d x x x xi j

k

D

i
k

j
k p

p

 (4.2)

where D is the dimensionality of the data. In Euclidean distance, p = 2, while Manhattan metric
has p = 1. As reported in the literature, there are no standard theoretical guidelines for choosing
a measure for any given application. Researchers have formulated an appropriate measure using
domain knowledge.

4.3.2 siMilarity MeasUres

There are a set of similarity measures (proximity measures) to obtain a specific clustering solution
to a given set of data:

Proximity Measures
A proximity measure can be defined between two data points in clustering. The term proximity

refers to the similarity or dissimilarity of the samples concerning each other. Assume xi and x j are
the two data points in a set of D-dimensional data as shown in Figure 4.3:

• Similarity measure S x xi j(), is large if xi and x j are similar

• Dissimilarity(or distance) measure D x xi j(), is small if xi and x j are dissimilar

Several similarity measures exist in the literature that can be used to evaluate the similarity or
dissimilarity.

• Vectors: cosine distance
If the data is represented in the form of vectors, then the similarity measure is evaluated

using the cosine distance according to the equation

 S x x
x x

x x
i j

i j

i j
() =, (4.3)

FIGURE 4.3 Similarity metrics based on distance.

150 Machine Learning for Decision Sciences with Case Studies in Python

• Sets: Jaccard distance
If the data is represented in the form of sets, then the similarity measure is evaluated

using the Jaccard distance given by the equation

 J A B
A B

A B

A B

A B A B
J A B() ()= ∩

∪
= ∩

+ − ∩
≤ ≤, , where 0 , 1 (4.4)

If sets A and B are empty, then J A B() =, 1.
• Points: Euclidean distance

If the data is represented in the form of points, then the similarity measure is evaluated
using the Euclidean distance given by the equation

 ,
1

1/

∑() = −

=

d x x x xi j

k

D

i
k

j
k p

p

 (4.5)

where p =2.

Generally, good proximity measures are also application-dependent. For example, for good proxim-
ity measures, the clustering user should not normalize the data drawn from multiple distributions.

4.4 CLUSTERING ALGORITHMS

In this section, a broad classification of the clustering algorithms is presented. The classification is
performed based on the orthogonal characteristics of the data available for clustering.

4.4.1 hierarchical anD Partitional clUstering aPProaches

In hierarchical clustering, similar objects in a dataset are grouped into clusters and can be repre-
sented as trees of clusters. Here, any two clusters are displaced, or one cluster includes the other like
branches of a tree, hence the term hierarchical.

In partitional clustering, multiple groups or partitions are formed from the given dataset. Here,
the user has to specify the number of partitions or clusters as required for the application.

4.4.2 aggloMerative anD Divisive clUstering aPProaches

The agglomerative and divisive clustering methods belong to the hierarchical clustering family
work in a reverse fashion concerning each other. In the agglomerative approach, each object in the
dataset is assigned to its cluster based on the pairwise distance, and then, the clusters are merged.
On the contrary, in the divisive approach, all the objects in the dataset are assigned to a unique
cluster, and then, the clusters are split further from the unique cluster.

4.4.3 harD anD fUzzy clUstering aPProaches

Each data object must belong to a single cluster while determining a clustering output for a given set
of data. This approach is called hard clustering. But in a real-time scenario, the data can belong to
more than one cluster since there may be many similarity relations between the data among clusters.
To address this issue, fuzzy clustering algorithms are used with the concepts of fuzzy set theory.
The algorithm allows objects to belong to different clusters based on certain degrees of member-
ship. This approach is referred to as the fuzzy clustering approach.

All the algorithms discussed so far will find a clustering result, such that each data object must
belong to a single cluster (called hard clustering). However, in real-time scientific and industrial

151Unsupervised Learning

applications, a data object may belong to one or more clusters. The existing clustering methods
have been extended with the concepts of fuzzy set theory to address such issues. Fuzzy cluster-
ing algorithms allow objects to belong to several clusters simultaneously with different degrees of
membership Kutner et al. (2005).

4.4.4 Monothetic anD Polythetic clUstering aPProaches

Monothetic and polythetic clustering are mostly suitable for obtaining solutions to problems in
taxonomy. The monothetic clustering algorithm uses the features or objects of the dataset one by
one for clustering. In contrast, the polythetic clustering algorithm uses all the dataset features at one
for clustering.

4.4.5 DeterMinistic anD Probabilistic clUstering aPProaches

In the deterministic clustering approach, the data objects are grouped into clusters in a determinis-
tic manner, while in the probabilistic approach, an object is assigned to a certain cluster based on
probability.

Though there are different approaches used for clustering, as discussed in the previous section,
only a few successful and popular algorithms are derived from these approaches. Therefore, the fol-
lowing sections will deal with the most common clustering algorithms such as k-means clustering,
fuzzy k-means clustering, mixture of Gaussians, and density-based clustering, used for real-time
applications.

4.5 k-MEANS CLUSTERING

One of the simplest and most commonly used unsupervised learning algorithms is the k-means clus-
tering algorithm proposed by MacQueen in 1967. The algorithm classifies the given set of unlabeled
data into a pre-defined number of k clusters.

4.5.1 geoMetric intUition, centroiDs

The basic aim of the k-means clustering algorithm is to define k centroids, each cluster with one
centroid, respectively. These pre-defined centroids should be placed cleverly since the different
locations of centroids give different outputs. The better approach is to maintain the centroids as far
away from each other. Once the centroids’ location is identified, the points in the dataset have to
be associated with the nearest centroid. The process is repeated until no points are left free without
association. This is specified as the first stage of grouping or clustering. Once the first stage is done,
then a new set of k new centroids are computed. Once again, clustering is done according to the
new k centroids. The iterative process is repeated until no change is observed between the k new
centroids in the current iteration and the k centroids evaluated in the previous iteration. Once the
final clusters are formed, then the objective function is evaluated; in this case, the objective function
is to minimize the squared error function given by the equation

 J x ci
j

j

i

n

j

k

∑∑= −
==

2

11

 (4.6)

where x ci
j

j−
2
 is the distance evaluated between the data point xi

j and the cluster center cj. The
above equation gives us the information of the n data points from their respective k cluster centers.

To minimize the objective function, the k-means clustering algorithm should satisfy the follow-
ing criterion:

152 Machine Learning for Decision Sciences with Case Studies in Python

Criterion 1: If a cluster sample c is considered among the set of clusters in the set, then the
sample should be the point that minimizes.

1 1

2∑∑ −
= =

x c
j

k

i

n

i
j

j (4.7)

In simple words, the objective function should be minimized over the samples of the
cluster.

Criterion 2: A point xi
j must be assigned to the cluster whose centroid c x()* is the closest

toc x x c
k

i
j

j() = −* arg min
2
. In simple words, the objective function should be minimized

over the samples of x.

4.5.2 the algorithM

The steps of the k-means clustering algorithm are explained as follows:

Step 1: Determine the value of k and place the k centroids in the data space consisting of the
dataset to be clustering. These k points represent the initial group of centroids.

Step 2: Once the centroids are fixed, assign each object in the dataset to the cluster with the
closest centroid.

Step 3: Verify if all objects of the dataset have been assigned. Then, recompute the positions
of the k centroids.

Step 4: Repeat steps 2 and 3 until there is no change in the new centroids and the previous
centroids. Now we get a set of clusters with objects grouped. Next, evaluate the objective
function based on the equation.

4.5.3 choosing k

While finding the solution to a given dataset using the k-means algorithm, there always raises how
to fix the value of initial k centroids. Based on research experiments on various datasets, there are
several approaches to find the optimal value of k. The optimal value of k is required for proper
convergence of the algorithm. The following are the various approaches to choose the value of k:

Elbow method
The elbow method is one of the common and popular approaches used in the k-means

clustering algorithm to find the optimal value of k. First, for each k value, we will initialize
k-means and identify the sum of squared distances of samples to the nearest cluster center.
Then, a graph is plotted between various values of k and the sum of squared distances.
Finally, a point on the graph corresponding to k is identified, beyond which the sum of
squared distances starts declining. This point is known as the elbow point, and the k value
is chosen as the optimal value of k.

Silhouette method
The silhouette method is a better approach to determine the number of clusters to be

formulated from the dataset. We assume that the data has already been clustered into k
clusters by k-means clustering. With the available information on the clusters, the silhou-
ette coefficient s(i) is given according to Equation 4.8:

 s i
x i y i

x i y i()() () ()
() ()
−

max ,
 (4.8)

153Unsupervised Learning

where x i
c i

()
() −

1

1
. Then for each data point, we define the following:

• C(i) represents the cluster allocated to the ith data object

• |C (i)| is the number of data objects in the cluster allotted to the ith data point
• a(i) is a measure of how good the ith data object is grouped to its cluster

 a i
C i

d i j
C i i j∑=

− ≠
()

1

() 1
(,)

(),
 (4.9)

• b(i) is the average dissimilarity to the nearest cluster, which is not its cluster

 b i
C j

d i ji j
j C j∑=

≠

∈
() min

1

()
(,)

()
 (4.10)

The silhouette coefficient s(i) is given as follows:

 s i
b i a i

a i b i()= −
()

() ()

max (), ()
 (4.11)

In unsupervised learning, the optimal number of clusters is determined by the value of
k, which has a maximum value of s(i).

4.5.4 sPace anD tiMe coMPlexity

In terms of space, the k-means algorithm requires only storage of data points and centroids.
Therefore, the space requirement is defined as O((m + k)n), where k is the number of clusters, m is
the number of data points, and n is the number of attributes.

In terms of time, k-means is a linear algorithm concerning the number of data points. Therefore,
the time required for the k-means algorithm is O(i*k*m*n), where i is the number of iterations
required for the algorithm to converge, k is the number of clusters, m is the number of data points,
and n is the number of attributes.

4.5.5 aDvantages anD DisaDvantages of k-Means clUstering

4.5.5.1 Advantages

 1. Highly scalable when the volume of data is large.
 2. Simpler to implement.
 3. Suitable for many new real-world examples
 4. Faster convergence by minimizing optimization function that is given in terms of sum of

squared error(SSE)
 5. Faster and more effective based on the computational cost

4.5.5.2 Disadvantages

 1. Choice of k: One major factor that plays a very important role in the algorithm’s conver-
gence is the optimal choice of k, which is tricky for different kinds of problems.

 2. Size and density of data: The algorithm cannot perform well with clusters of varying
sizes, shapes, and densities. The algorithm has to be generalized in such cases.

154 Machine Learning for Decision Sciences with Case Studies in Python

 3. Points not belonging to a cluster: The points that are not part of any cluster have to be
removed. Otherwise, upon iterations, these points tend to form another centroid due to a
new cluster. This affects the performance of the algorithm.

 4. Dependence on initial values: The value of k is limited in the case of the k-means algo-
rithm. The performance of the algorithm decreases for higher values of k.

 5. Overlapping between clusters: Since the k-means clustering algorithm does not have a
clear measure for uncertainty, it is difficult to identify the points in the overlapping region
and becomes a complex task to assign them to a cluster.

4.5.6 k-Means clUstering in Practice Using Python

Before starting the clustering process, the data points from the raw unlabeled data have to be well
separated from each other. The raw data has to be scaled or standardized before applying the
k-means algorithm. The user should ensure that the data points are most similar to their centroid
and dissimilar to the other centroids. Over several clustering iterations, one centroid can be chosen
randomly, and the next centroid can be placed as far as possible from the chosen centroid. This helps
to attain the objective function.

k-Means is a simpler and more efficient, unsupervised technique suitable for various real domains
such as natural language processing, computer vision, and medical analysis. Let us start with a
simple example for the fuzzy k-means algorithm.

4.5.6.1 Illustration of the k-Means Algorithm Using Python
Let us consider the following dataset consisting of two variables along with their scores on ten
individuals:

The Python code for initializing the dataset is given below:

import random
import math

noOfClusters = 2
noOfDataSet = 10
low_range_sample = 7 #element 0 of DATA_SET.
high_range_sample = 5 #element 3 of DATA_SET.
high_number = math.pow(10, 10)

DATA_SET = [[1.5, 1.0], [1.5, 2.0], [2.5, 2.0], [2.5, 5.0], [3.0, 4.0],
[6.0, 7.0], [3.5, 5.0], [1.0, 1.0], [3.5, 4.5], [4.5, 5.0]]

data = []
centroids = []

Subject I II

1 1.5 1.0

2 1.5 2.0

3 2.5 2.0

4 2.5 5.0

5 3.0 4.0

6 6.0 7.0

7 3.5 5.0

8 1.0 1.0

9 3.5 4.5

10 4.5 5.0

155Unsupervised Learning

The objective of this example is to group the given data into two clusters. The initial partition is
chosen such that data I and II of the two individuals are far apart based on the Euclidean distance.
The centroid coordinates for this example are set to (1.5, 1.0) and (6.0, 7.0). The Python code segment
relevant to this step is given below:

def init_centroids():
 centroids.append(Centroid(DATA_SET[low_range_sample][0], DATA_
SET[low_range_sample][1]))
 centroids.append(Centroid(DATA_SET[high_range_sample][0], DATA_
SET[high_range_sample][1]))

 print("Initial Centroids are at:")
 print("(", centroids[0].get_x(), ", ", centroids[0].get_y(), ")")
 print("(", centroids[1].get_x(), ", ", centroids[1].get_y(), ")")
 return

The remaining coordinates are taken in sequence, and the Euclidean distance is evaluated with
respect to the initial centroid chosen. The illustration is shown below:

def initialize_datapoints():
 for i in range(noOfDataSet):
 newPoint = DataPoint(DATA_SET[i][0], DATA_SET[i][1])

 if(i == low_range_sample):
 newPoint.set_cluster(0)
 elif(i == high_range_sample):
 newPoint.set_cluster(1)
 else:
 newPoint.set_cluster(None)

 data.append(newPoint)
 return

Calculation of Euclidean distance

def get_distance(dataPointX, dataPointY, centroidX, centroidY):
 # Calculate Euclidean distance.
 return math.sqrt(math.pow((centroidY - dataPointY), 2) + math.
pow((centroidX - dataPointX), 2))

The centroids chosen initially are recomputed, and we find that the initial partition is modified.
Even at this stage, to ensure correct assignment to each cluster, the distance of each individual is
computed to its cluster and that of the opposite cluster. The centroids are recomputed as illustrated
in the code snippet.

def recompute_centroids():
 xSum = 0
 ySum = 0
 sumInCluster = 0

Individual Mean Vector (Centroid)

Group 1 8 (1.0, 1.0)

Group 2 6 (6.0, 7.0)

156 Machine Learning for Decision Sciences with Case Studies in Python

 for j in range(noOfClusters):
 for k in range(len(data)):
 if(data[k].get_cluster() == j):
 xSum += data[k].get_x()
 ySum += data[k].get_y()
 sumInCluster += 1

 if(sumInCluster > 0):
 centroids[j].set_x(xSum / sumInCluster)
 centroids[j].set_y(ySum / sumInCluster)

 return

def cluster_updation():
 isStillMoving = 0

 for i in range(noOfDataSet):
 bestMinimum = high_number
 currentCluster = 0

 for j in range(noOfClusters):
 distance = get_distance(data[i].get_x(), data[i].
get_y(), centroids[j].get_x(), centroids[j].get_y())
 if(distance < bestMinimum):
 bestMinimum = distance
 currentCluster = j

 data[i].set_cluster(currentCluster)

 if(data[i].get_cluster() is None or data[i].
get_cluster() != currentCluster):
 data[i].set_cluster(currentCluster)
 isStillMoving = 1

 return isStillMoving
def kmeans():
 isStillMoving = 1

 init_centroids()

 initialize_datapoints()

 while(isStillMoving):
 recompute_centroids()
 isStillMoving = cluster_updation()

 return

def print_output():
 for i in range(noOfClusters):
 print("Data grouped under cluster", i, "are:")
 for j in range(noOfDataSet):
 if(data[j].get_cluster() == i):
 print("(", data[j].get_x(), ", ", data[j].get_y(), ")")
 print()

157Unsupervised Learning

 return

kmeans()
print_output()

The iterative process continues until a suitable number of iterations have been reached, and the fol-
lowing were the observations obtained:

The output of the code:

Initial Centroids are at:
(1.0 , 1.0)
(6.0 , 7.0)

Data grouped under cluster 0 are:
(1.5 , 1.0)
(1.5 , 2.0)
(2.5 , 2.0)
(1.0 , 1.0)

Data grouped under cluster 1 are:
(2.5 , 5.0)
(3.0 , 4.0)
(6.0 , 7.0)
(3.5 , 5.0)
(3.5 , 4.5)
(4.5 , 5.0)

4.5.7 fUzzy k-Means clUstering algorithM

In fuzzy k-means clustering, the points or objects in the data to be clustered have a probability that defines
its association with each cluster. This is contradictory to the conventional k-means algorithm where data
points belong to a cluster. Fuzzy k-means particularly deals with the degree of belonging. The degree
of belonging is defined in terms of probability. This is achieved by replacing distance with probability,
which can be a function of distance, such as having probability relative to the inverse of the distance. The
fuzzy k-means clustering algorithm uses a weighted centroid based on the defined probabilities.

The algorithm of fuzzy k-means is similar to the conventional k-means algorithm in terms of
initialization, iteration, and convergence. The clusters obtained at each stage are evolved based on
the probabilistic distributions. The probability function in fuzzy k-means is defined within a range
of [0,1], where “0” indicates that the data point is far away from the centroid while “1” indicates that
the data point is closest to the centroid.

The fuzzy k-means algorithm was developed by Dunn in 1973 [27] and later improvised by
Peizhuang in 1981 [28]. The clustering is performed by exploring a set of fuzzy groups, W, and the
associated cluster centers, C, that define the structure of the data point as best as possible iteratively.
The partition matrix obtained after clustering would be expressed as W with size k × m, where k
denotes the cluster number and m defines the number of data points in each cluster. W can also be
expressed as W wab[]= , where wab is the membership defined concerning the probability of a data
point ub from a cluster center ca, where a denotes the cluster number varying from 1 to k, and b
denotes the number of data points in each cluster varying from 1 to m. In the case of crisp partition-
ing, W wab[]= = 0. The final objective of the fuzzy k-means clustering algorithm is to minimize the
sum of the squared error function Es ()C,W according to Equation 4.12:

 Es C W w u c s
b

m

a

k

ab
s

b a∑∑ []()() = − ∈ ∞
= =

, , 1,
1 1

2 (4.12)

158 Machine Learning for Decision Sciences with Case Studies in Python

where s is a real number and is the fuzziness coefficient. It is a very important factor that influences
the membership grades, thus aiding the algorithm’s performance. As the value of s increases, the algo-
rithm becomes fuzzier, and researchers have proved that the fuzzy k-means algorithm converges for s
value in the range []∞1, . Here, wabis the membership degree of ub in cluster a, ca is the cluster center,
and the ⋅ operator indicates the inner product showing the similarity between the data points and the
cluster. The error function is mainly dependent on W and C, subject to two main constraints as follows:

 w b m
a

k

ab∑ = = …
=

1, for 1,2,
1

 (4.13)

and

 w k a k
b

m

ab∑< < = …
=

0 , for 1,2,
1

The algorithm is iterated to minimize the error function defined above.

4.5.7.1 The Algorithm
The steps of the fuzzy k-means clustering algorithm are explained as follows:

• Step 1: Choose an optimal value of k, which indicates the number of clusters.
• Step 2: Initialize the k-means membership μk associated with the clusters and evaluate the

probability such that each data point xi is assigned to a cluster k, P µ x kk i()| , .
• Step 3: Recompute the centroid of the cluster according to the equation.
• Step 4: Repeat steps 2 and 3 until convergence or until a specified number of iterations

have been reached, and the error function is minimized.

4.5.8 aDvantages anD DisaDvantages of fUzzy k-Means clUstering

Since the fuzzy k-means clustering algorithm works similarly to the k-means clustering, most of
the advantages and limitations of the fuzzy k-means clustering algorithm are common. Still, we
 differentiate the two clustering algorithms as follows:

Advantages:
• For classification problems pertinent to hard classes, the k-means algorithm performs

better than fuzzy k-means, despite an exploratory data analysis.
• The underlying benefit of the fuzzy k-means clustering algorithm becomes evi-

dent based on the membership values of the fuzzy clustering. The membership
values show a powerful skewed bimodal distribution for classification problems.
This is a major benefit for having proper clustering between classes in a clustering
algorithm.

• For huge datasets, the fuzzy k-means clustering algorithm is recommended for analyz-
ing the substructure of the data, for existing known patterns, and unexplored data in
the available dataset.

Disadvantages:
• The fuzzy k-means clustering algorithm requires more computation time (slower than

k-means clustering). When compared to k-means clustering, it is observed in various
studies that the computation time increases more rapidly for the fuzzy k-means cluster-
ing algorithm as the number of clusters increases.

159Unsupervised Learning

4.6 HIERARCHICAL CLUSTERING

Hierarchical clustering algorithm, otherwise called hierarchical cluster analysis, is a method used
to create a tree of clusters by grouping homogeneous data points. The endpoint is a set of cluster in
which each cluster is unique from every other.

For the given input of six raw data points {A,B,C,D,E,F}, hierarchical cluster analysis computes
the distance matrix.

Let’s see how hierarchical clustering works with an example. Initially, each observation is con-
sidered as a group or cluster. Execute the following two steps repetitively until all the clusters are
merged:

• Identify the two closer clusters
• Merge the identified two clusters

B 16

C 47 37

D 72 57 40

E 77 65 30 31

F 79 66 35 23 10

A B C D E

B 16

C 47 37

D 72 57 40

EF 77 65 30 23

A B C D

C 37

D 57 40

EF 65 30 23

A

B

C D

C 37

D 57 40

EF 65 30 23

A B C D

C 37

EF

D

57 30

A B C

EF D

C

37

A B

Treelike dendrograms represent the cluster relationship. The dendograms for the example con-
sidered is shown in Figure 4.4.

Types of Hierarchical Clustering
Hierarchical clustering is classified (Figure 4.5) as agglomerative or divisive based on how hierar-
chical decomposition is performed.

4.6.1 aggloMerative hierarchical clUstering

In agglomerative hierarchical clustering, dendrograms are built from the bottom level. Then, the
two most similar or nearest clusters from the bottom are merged. The algorithm stops the merging
process when all the data points are merged into a single cluster. The following steps (Figure 4.6)
describe how to build a dendrogram based on agglomerative hierarchical clustering:

B 16

C 47 37

D 72 57 40

E 77 65 30 31

F 79 66 35 23 10

A B C D E

160 Machine Learning for Decision Sciences with Case Studies in Python

• Step 1: Initialization – initially, each data point forms a separate cluster
• Step 2: Compute distance/proximity matrix of the cluster
• Step 3: Repeat

• Step 3.1: Merge the two most similar or nearest clusters from the bottom
• Step 3.2: Update the distance matrix

• Step 4: Repeat step 3 until a single cluster remains

Distance or proximity matrix can be constructed in different ways, as shown below:

• Single linkage: Similarity of the most similar data points
• Complete linkage: Similarity of the least similar data points
• Average linkage: Average cosine between pair of elements.

FIGURE 4.4 Dendrogram representation.

FIGURE 4.5 Classification of hierarchical clustering.

FIGURE 4.6 Step-by-step procedure in agglomerative hierarchical clustering.

161Unsupervised Learning

4.6.2 Divisive hierarchical clUstering

In divisive hierarchical clustering, the clustering process starts from the top or root of the den-
drogram where all data points are in one single cluster. Then, it starts to split the root into a set of
child clusters. The process of splitting is continuously performed for each child cluster. The process
of splitting stops only when a singleton cluster of one data point is present. Moreover, top-down
divisive hierarchical clustering is more complex than the bottom-up approach because it uses a flat
clustering algorithm. The most extensively used flat clustering algorithm is k-means clustering.

The top-down approach as shown in Figure 4.7 is more accurate as it gives a complete idea from
global distribution, whereas the bottom-up approach decides from the local distributions. The fol-
lowing are the steps to perform divisive clustering:

Initialization: Initially start from the top or root of the dendrogram, which contains one
single cluster with all data points.

Repeat
• Choose which cluster to split
• Determine how to split: Split that cluster by the flat clustering algorithm such as

k-means clustering, and
Until termination condition: Each data is in its singleton cluster.

4.6.3 techniqUes to Merge clUster

To define inter-cluster distance for merging two clusters, the following approaches are used widely:

• Min or single link
• Max or complete link
• Group average or average link
• Centroid distance
• Ward’s method

Single linkage: The distance between two clusters C1 and C2 is represented by the distance
of the closest pair of data objects belonging to different clusters, as shown in Figure 4.8.
The single-link method is sensitive to outliers because they lie far away from the rest of
the data points.

FIGURE 4.7 Step-by-step procedure in divisive hierarchical clustering.

162 Machine Learning for Decision Sciences with Case Studies in Python

 d C C d x y
x C y C

()() =
∈ ∈

, min ,min 1 2
. , 1 2

 (4.14)

Complete linkage: The distance between two clusters C1 and C2 is represented by the dis-
tance of the farthest pair of data objects belonging to different clusters, i.e., the maximum
distance between two data objects (Figure 4.9).

 d C C d x y
x C y C

()() =
∈ ∈

, max ,min 1 2
. , 1 2

 (4.15)

 The complete link method is less sensitive to outliers because they lie far away from the
rest of the data points.

Average linkage: The similarity of two clusters is determined by the average similarity
(Figure 4.10) between all pairs of data objects belonging to different clusters.

 d C C d x y
x C y C

()() =
∈ ∈

, avg ,min 1 2
. , 1 2

 (4.16)

 The average link method is robust to noise and outlier. However, the limitation of average
linkage is biased toward global clusters.

Centroid distance: The distance between two clusters is represented by the distance between
the means (Figure 4.11) of the clusters.

 d C C d m m() ()=, ,mean 1 2 1 2 (4.17)

FIGURE 4.8 Minimum distance between two data objects in two different clusters.

FIGURE 4.9 Maximum distance between two data objects in two different clusters.

FIGURE 4.10 Average distance between two data objects in two different clusters.

163Unsupervised Learning

Ward’s method: The sum of squares of the distance of Pi and Pj is calculated in Ward’s
method based on the relation

 C C P P C Ci j∑()()() = ∗sim , dist ,1 2
2

1 2 (4.18)

It performs well with noisy data, and the problem of Ward’s method is biased toward
global clusters.

4.6.4 sPace anD tiMe coMPlexity

Space complexity: The space complexity remains high when the number of data points is
more because more space is required to store the proximity matrix.

Space complexity S = O(n²), where n is the total count of input data objects.
Time complexity: The time complexity is also high as we need to update the similarity

matrix in every iteration.
Time complexity = O(n³), where n is the total count of input data objects.

4.6.5 liMitations of hierarchical clUstering

• Highly sensitive to scaling
• Difficulty in handling noise data and not efficient with outliers
• High space and time complexity

4.6.6 hierarchical clUstering in Practice Using Python

An example is presented in this section to cluster a random dataset of data points (Figure 4.12) using
the agglomerative hierarchical clustering. Initially, all the libraries required are imported.

import random
import math
import matplotlib.pyplot as plt
import numpy as np
from numpy import random

The next step is to obtain the data. Here, a random data ranging from 0 to 100 with 30 rows and two
columns is generated. The dataset is also plotted for more clarity of the data points.

DATA_SET=random.randint(100, size=(30, 2))
print(DATA_SET)

labels = range(1, 100)
plt.figure(figsize=(10, 7))

FIGURE 4.11 Mean distance between two different clusters.

164 Machine Learning for Decision Sciences with Case Studies in Python

plt.subplots_adjust(bottom=0.1)
plt.scatter(DATA_SET[:,0],DATA_SET[:,1], label='True Position')

for label, x, y in zip(labels, DATA_SET[:, 0], DATA_SET[:, 1]):
 plt.annotate(
 label,
 xy=(x, y), xytext=(-3, 3),
 textcoords='offset pixels', ha='right', va='bottom')
plt.show()

Now the class for Clustering AgglomerativeClustering is imported from the sklearn cluster library.
Here, the cluster number is set to three, with affinity set to Euclidean and linkage set to “ward.”

from sklearn.cluster import AgglomerativeClustering
cluster = AgglomerativeClustering(n_
clusters=3, affinity='euclidean', linkage='average')
cluster.fit_predict(DATA_SET)
print(cluster.labels_)
plt.scatter(DATA_SET[:,0],DATA_SET[:,1], c=cluster.
labels_, cmap='rainbow')

4.6.6.1 DATA_SET
[[8 27] [12 25] [42 20] [62 78] [41 69] [77 84] [64 43] [6 65] [14 42] [33 40] [71 82] [98 56] [66 93]
[75 23] [17 22] [75 60] [73 56] [78 51] [36 17] [88 17] [25 59] [11 58] [6 66] [47 7] [17 46] [25 68]
[54 66] [54 50] [46 83] [68 55]]

FIGURE 4.12 Distribution of the random dataset generated.

165Unsupervised Learning

The following array shows the pattern in which the data points are clustered:
[2 2 0 1 1 1 1 2 2 2 1 1 1 0 2 1 1 1 0 0 2 2 2 0 2 2 1 1 1 1]
It is a one-dimensional array with 30 elements corresponding to the cluster assigned to 30 data

points. The clustered output is shown in Figure 4.13.

4.7 MIXTURE OF GAUSSIAN CLUSTERING

The Gaussian clustering algorithm is probability-based which is highly suitable for unlabeled or
unsupervised data. The Gaussian clustering algorithm performs similar to k-means clustering.
However, the k-means clustering algorithm doesn’t take care of the distribution of data or vari-
ance. Moreover, the k-means algorithm only works well when the data is circular and unsuitable for
oblong data distribution. But the Gaussian method can handle more elongated clusters.

Let’s understand with a simple example of classifying images based on their RGB intensity. In
Figure 4.14, images of the sea (dark-shaded circles), forest (dark gray-shaded circles), and desert
(light gray circles) without any labels are considered.

Select a data point xi that is circled in Figure 4.14, and associate probability kπ with each Gaussian
component. In this case, the π is represented as

 π = π = π = π = 0.8, 0.2, 01 2 3

The prior probability of the data point xi to be associated with the kth cluster is given as

 p z ki k()= = π (4.19)

The likelihood of seeing the data point xi in cluster sea is given as

 p x z ki i k kµ σ()= , 2 (4.20)

To maximize the likelihood, we can use the EM algorithm.
The main advantages of model-based clustering are as follows:

• Less sensitive to scalability
• Highly flexible for any data distribution

FIGURE 4.13 Clustered output based on agglomerative hierarchical clustering.

166 Machine Learning for Decision Sciences with Case Studies in Python

• Efficient in handling outliers
• Faster convergence
• A more effective method for noisy real-world data.

4.7.1 exPectation MaxiMization

To maximize the likelihood of Gaussian clustering, EM algorithm comes into the picture. Let us
understand this with a simple example. EM proceeds iteratively with two steps. The expectation
treats the Gaussian parameters, Mean μ, and covariance

c∑ , while π for the cluster is fixed.

Expectation step (E step):
For each data point xi and cluster c, compute relative probability ric of data point xi such

that it belongs to cluster c, using the equation below.

; ,

; ,

∑
∑ ∑

µ

µ
=

π

π

′

′
′

r
N x

N x
ic

i c
c

c
i c

c

 (4.21)

If xi is very likely to be the cth cluster, then it will get high values. So the denominator
is just to normalize, i.e., to make the sum to one.

Maximization step (M step):
Start with the relative probability ric and update the parameter of the clusters mean μ,

covariance
c∑ , and π.

For each cluster, z = c. Update the parameters using the weighted data points.

 m r cc ic
i∑ ()= Total responsibilityallocated tocluster

FIGURE 4.14 Example to understand the mixture of Gaussian clustering.

167Unsupervised Learning

m

m
cc

c ()π = Fractionof totalassigned tocluster

m

r xc
c

ic
i

i∑µ ()= 1
Weightedmeanof assigneddata()

m

r x xc
c

ic
i

c
T i

c
i∑ µ µ() ()∑ = − −

1
(Weightedcovarianceof assigneddata)() ()

Example: Suppose xk are the student marks and p(xk) are their probability.

 x P x()= =30
1

2
1 1

 x P x µ()= =182 2

 x P x µ()= =0 23 3

 x P x µ()= = −23
1

2
34 4

First case: We observe that the marks are so distributed among students:
x1: a students
x2: b students
x3: c students
x4: d students

 P a b c d
a

b c
d

µ µ µ µ() () ()∝

 ∗ ∗ ∗ −

, , ,

1

2
2

1

2
3 (4.22)

Maximize by deriving 0
∂
∂ µ

=P
. Derive the logarithm of the function and maximize it:

log
1
2

log() log(2) log
1
2

3

2
2

3
1
2

3
0

6

µ µ µ

∂
∂ µ µ µ µ

µ ()

=

 + + + −

= + −
−

=

⇒ = +
+ +

P

P b c d

b c
b c d

L

a
b c

d

L (4.23)

Suppose a = 14, b = 6, c = 9, and d = 10, and we can calculate µ = 1

10
.

Second case: We observe that marks are so distributed among students:
x1 + x2: h students
x3: c students
x4: d students

 a h b hµ
µ

µ

µ
→ =

+
=

+
expectation:

1

2
1

2

, 1

2

 (4.24)

168 Machine Learning for Decision Sciences with Case Studies in Python

 a b
b c

b c d
µ→ = +

+ +
maximization: ,

6()
 (4.25)

This circularity can be solved iteratively.

The time complexity of the EM algorithm is O(NKD3), where N is the number of data objects, K is
the number of Gaussian components, and D is number of dimensions.

Advantages of EM

• Convergence is guaranteed
• Likelihood increases in every iteration

Disadvantages of EM

• It is highly complex when the number of dimensions increases and thus of limited use.

4.7.2 MixtUre of gaUssian clUstering in Practice Using Python

This example applies GMM to a random dataset using the GaussianMixture from the sklearn
library. All the necessary libraries are imported accordingly. A random dataset of size 100 is gener-
ated using the random function from the numpy library with 100 rows and two columns.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
from numpy import random

DATA_SET=random.randint(100, size=(100, 2))
print(DATA_SET)
plt.plot(DATA_SET[:,0], DATA_SET[:,1], 'gx')
plt.axis('equal')
plt.show()

gmm = GaussianMixture(n_components=2)
gmm.fit(DATA_SET)
print(gmm.means_)
print('\n')
print(gmm.covariances_)

X, Y = np.meshgrid(np.linspace(-200, 400), np.linspace(-200,400))
XX = np.array([X.ravel(), Y.ravel()]).T
Z = gmm.score_samples(XX)
Z = Z.reshape((50,50))

plt.contour(X, Y, Z)
plt.scatter(DATA_SET[:, 0], DATA_SET[:, 1])

plt.show()

The output of the above code is presented below:
The random data generated in the range between 0 and 100 are listed. The plot of the data is

shown in Figure 4.15.

[[1 59] [32 88] [11 56] [79 47] [27 45] [87 71] [30 77] [93 31] [58 55]
[31 97] [36 77] [10 11] [93 33] [32 50] [88 82] [12 78] [26 4] [70 10] [66

169Unsupervised Learning

3] [83 78] [52 63] [15 51] [22 2] [67 16] [38 22] [9 27] [83 64] [13 64]
[86 1] [84 49] [69 26] [40 42] [68 98] [52 83] [6 39] [88 11] [70 61] [55
27] [7 17] [73 52] [44 70] [88 31] [0 37] [32 41] [10 19] [31 50] [22
21] [36 32] [66 69] [51 90] [94 93] [49 42] [25 78] [84 93] [87 4] [70 21]
[95 91] [90 25] [6 27] [61 20] [54 83] [90 79] [41 79] [29 68] [47 7] [43
31] [89 42] [88 62] [19 26] [83 73] [99 71] [88 53] [90 91] [0 70] [9 1]
[85 8] [78 1] [95 67] [67 53] [37 48] [35 25] [18 71] [73 97] [57 91]
[0 80] [71 84] [15 48] [16 65] [53 36] [80 10] [94 9] [97 64] [11 75] [86
78] [34 80] [6 78] [81 56] [99 88] [88 0] [59 56]]

In this case, the input is a set of 2D data points. Hence, the Gaussians will be the same plot of
the two Gaussians overlapping. Once the model has converged, the means and the covariances are
determined and given as follows:

µ1 = [[43.89912658 36.92423653] [71.38718383 76.86583559]]

Σ1 = [[[931.53709452 -284.48772158] [-284.48772158 602.82022267]]

µ2 = [[513.42101497 -31.36462194] [-31.36462194 188.92292275]]]

This example creates a grid with X- and Y-coordinates ranging from −200 to 400 to compute the
GMM using the EM algorithm. GMM is then plotted as contours over the original data, as repre-
sented in Figure 4.16. It can be observed that with normal distribution, most of the data points are
found around the mean and less as we move away.

4.8 DENSITY-BASED CLUSTERING ALGORITHM

A density-based clustering algorithm is a non-parametric approach of unsupervised learning used
to cluster unlabeled data. Various density-based clustering algorithms are DBSCAN, OPTICS,
DENCLUE, and CLIQUE. In this section, the DBSCAN algorithm is discussed in detail with rel-
evant Python implementation.

4.8.1 Dbscan (Density-baseD sPatial clUstering of aPPlications with noise)

The widely used density-based technique is DBSCAN, which was introduced by Ester et al. (1996).
The main objective of DBSCAN is to identify the dense region. The main high-level idea of
DBSCAN is as follows:

FIGURE 4.15 Distribution of the random data generated for a mixture of Gaussians.

170 Machine Learning for Decision Sciences with Case Studies in Python

• Partition the data into three types of points (core, boundary, and noise). The core points are
the high-density points at the center with lots of neighbors around them.

• Connect the core points to create clusters
• Assign boundary points to each cluster

Two parameters involved are eps and MinPts. ∈Neighborhood refers to the objects within the radius
∈. The ∈Neighborhood is defined as follows:

 x y D d x y{ }()()∈ = ∈ ≤∈Neighborhood : ,

where D is the dataset and d is the distance between data objects.
The higher density of objects should hold at least MinPts of objects. For example, as shown in

Figure 4.17, let us consider MinPts = 4. It is inferred from the figure that the density of p is higher
than the density of q.

For Figure 4.18, the assigned parameters are eps = 1 unit and MinPts = 5. Based on the given
parameters, the data points are classified into three points: core, border, and outlier points, as shown
in Figure 4.18.

The core point is the data point if it has more objects than MinPts within the radius ∈. Border
point has fewer objects than MinPts within the radius ∈, but it lies nearer to the core point. Outliers
are the ones that are extreme data objects. The two approaches in DBSCAN are as follows:

• Density reachable
• Density-connected

FIGURE 4.16 Clustering using the GMM algorithm.

FIGURE 4.17 Illustration for density with MinPts = 4.

171Unsupervised Learning

Density reachable: The two variants of density-reachable are directly and indirectly den-
sity-reachable. As shown in Figure 4.19, data point d is directly density-reachable from
data point c. Point c is directly density-reachable from b. Similarly, point b is directly
density-reachable from a. Chain of objects from data point d to data point a is directly
density-reachable.

Density-connected: Data point a is density-connected to the point c if there is an interme-
diate data object b from which both a and b are density-reachable.

4.8.2 sPace anD tiMe coMPlexity

Time complexity is O(n2) for each data point; it has to be determined whether it is a core point or
not. Therefore, space complexity is O(n).

4.8.3 aDvantages anD DisaDvantages of Dbscan

4.8.3.1 Advantages
It can handle outliers and noise.

It works well for any shape and size.

4.8.3.2 Disadvantages
It cannot handle varying densities and is sensitive to parameters.

Identifying the correct value for the parameter is not easy.

FIGURE 4.18 Illustration for density with MinPts = 5.

FIGURE 4.19 Illustration for density-reachable.

172 Machine Learning for Decision Sciences with Case Studies in Python

4.8.4 Dbscan in Practice Using Python

The application of DBSCAN using Python is illustrated in this section. Here, a random cluster data
is generated using the make_blobs function from the sklearn library. The data is transformed in this
case. Compared to the k-means algorithm, it has been observed that in k-means, data clusters only
around the nearest cluster center, whereas in DBSCAN, the entire plane of the data can be clustered.
To illustrate this feature, the random data generated is transformed.

The total number of samples generated was 500, with four centers, center_box parameter set in
the range [−20, 20]. The required functions are imported from the respective libraries. While using
the DBSCAN function, the parameter “eps” plays a significant role in clustering. All the data points
resulted in a single cluster when “eps” was set to a large value. At the same time, setting “eps” to
small values resulted in data labeled as noise. Several experiments were conducted to have a trade-
off, and in this example, “eps” is set to 0.2. Thus, the readers can explore different values of “eps”
and observe the data clustering.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn import metrics

generate some random cluster data
X, labels_true = make_blobs(n_samples=500, n_
features=2, centers=4, cluster_std=1.0, center_box=(-
20.0, 20.0), shuffle=True, random_state=100)
rng = np.random.RandomState(74)

transform the data to be stretched
transformation = rng.normal(size=(2, 2))
X = np.dot(X, transformation)

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
cluster the data into five clusters
dbscan = DBSCAN(eps=0.123, min_samples = 2)
clusters = dbscan.fit_predict(X_scaled)
plot the cluster assignments
plt.scatter(X[:, 0], X[:, 1], c=clusters, cmap="plasma")
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")

core_samples_mask = np.zeros_like(dbscan.labels_, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
labels=dbscan.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Adjusted Mutual Information: %0.3f"
 % metrics.adjusted_mutual_info_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
 % metrics.adjusted_rand_score(labels_true, labels))

173Unsupervised Learning

print("Completeness: %0.3f" % metrics.
completeness_score(labels_true, labels))
print("Homogeneity: %0.3f" % metrics.
homogeneity_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))

When it comes to analysis, it is important to understand the metrics involved in a code. In the exam-
ple considered for implementing DBSCAN, the metrics function from the sklearn library is used
to evaluate all the metrics corresponding to clustering. The output of the above code is presented
below with all the metrics shown for “eps”=0.2. Figure 4.20 shows the clustering for the random
data chosen for clustering.

Estimated number of clusters: 4
Estimated number of noise points: 0
Adjusted Mutual Information: 1.000
Adjusted Rand Index: 1.000
Completeness: 1.000
Homogeneity: 1.000
V-measure: 1.000

The value of “eps” was then changed to 0.05, and the results are presented below with clustering
shown in Figure 4.21. It is observed that though the number of clusters required was 4, the algorithm
has estimated the number of clusters as 9. The number of noise points estimated has also increased
considerably to 19. There is a variation concerning all the other evaluation metrics.

Estimated number of clusters: 9
Estimated number of noise points: 19
Adjusted Mutual Information: 0.858
Adjusted Rand Index: 0.866
Completeness: 0.777
Homogeneity: 0.964
V-measure: 0.860

FIGURE 4.20 DBSCAN clustering for “eps” = 0.2.

174 Machine Learning for Decision Sciences with Case Studies in Python

SUMMARY

Unsupervised learning is a machine learning technique where the model does not require supervi-
sion. The unknown patterns of data can be explored based on the concept of clustering and associa-
tion. This chapter has discussed several clustering algorithms, namely the k-means clustering, fuzzy
k-means clustering, hierarchical (agglomerative and divisive) clustering, and DBSCAN clustering.
These algorithms were discussed in detail with the implementation of examples using Python.
Unsupervised machine learning helps you to find all kinds of unknown patterns in data. The major
limitation of unsupervised learning is the lack of precise information from the clustering process.
This can be overcome by exploring and conducting several additional experiments by varying the
model parameters.

REVIEW QUESTIONS

 1. Suppose we want to build a neural network that classifies two-dimensional data (i.e., X = [x1,
x2]) into two classes: diamonds and crosses. The dataset has 1000 samples, including dia-
monds and crosses. Use k-means clustering and DBSCAN clustering algorithms to cluster
the data and evaluate the clustering metrics. Compare the performance of the algorithms.
List your observations by varying the model parameters.

 2. What is the role of principal component analysis in unsupervised learning? Explain in
detail.

 3. List out all the unsupervised clustering algorithms and identify the model parameters rel-
evant to each algorithm. Then, generate a random dataset, and explain the observations for
each algorithm to vary the model parameter for at least five settings covering the minimum
and maximum range.

 4. What are the limitations of the fuzzy k-means algorithm?
 5. Discuss the differences between agglomerative hierarchical and divisive hierarchical clus-

tering algorithms. Then, implement these algorithms on a random dataset and observe the
output.

 6. Does clustering using unsupervised learning algorithms require data cleaning? If so, what
would be the suitable approach for data cleaning? Discuss.

FIGURE 4.21 DBSCAN clustering for “eps” = 0.05.

175Unsupervised Learning

 7. For performing a clustering analysis, what is the minimum number of features required?
 8. Suppose the k-means algorithm is run twice on the same dataset. Do you observe the same

results? Justify your answer.
 9. What are dendrograms? Generate a dendrogram for random data. Is it possible to have two

different dendrograms using agglomerative clustering for the same dataset? Discuss in
detail.

 10. Is it possible to obtain dendrograms using k-means clustering algorithms? Discuss.
 11. What are all the evaluation metrics used to evaluate a clustering algorithm? List them and

explain with relevant equations.

https://taylorandfrancis.com

177

5 Supervised Learning
Regression

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Know the basic paradigms and their underlying mathematical concept of supervised learn-
ing technique

• Understand the concepts of supervised learning for classification and regression problems
• Identify the appropriate supervised learning approaches for regression – linear regression
• Understand and implement linear regression using Python for practical problems

5.1 INTRODUCTION

Supervised learning is a variant of a machine learning algorithm to learn about the input– output
paired samples. Medical image analysis, predictive analysis, and computer vision applications
utilize these supervised algorithms for classifying data. To get useful insights and discover the
patterns, data scientists utilize various types of machine learning algorithms. In general, these algo-
rithms are categorized into two types depending on the method of learning about data to predict
the future: supervised and unsupervised learning. A user teaches the supervised learning algorithm
to learn about big data in the desired fashion. Supervised learning is a widely used machine learn-
ing algorithm that is used to learn the relationship between the independent input variable (X) and
dependent output variable (Y) by determining the approximate mapping function Y = f(X). This is
shown in Figure 5.1. The objective is to learn an optimal mapping function to know how well it
works to extrapolate for the new unknown input data (X).

Supervised learning techniques are support vector machines (SVMs), linear regression, logistic
regression, multi-class classification, and decision trees. Training a supervised learning algorithm for
each input requires a correct output label. For example, a classification algorithm needs to classify
images of digits from 1 to 10 after being trained on a dataset of digit images that are properly labeled
with the corresponding digits (1–10). Regression and classification are the two groups of the prob-
lem that can be efficiently learned using a supervised algorithm. The difference between the regres-
sion and classification problem is that the output variable is continuous or numerical for regression,
whereas it is discrete or categorical for classification. This chapter introduces essential ideas behind all
supervised algorithms in machine learning. The mathematical concept behind supervised algorithms
with worked examples and implementation using Python is given in detail. Supervised algorithm for
regression problem is well explained in this chapter with Python implementation. Linear regression
is the fundamental regression algorithm to predict the output y-coordinate from the input x. Multiple
linear regressions such as simple and multiple regression are discussed in this chapter.

5.2 SUPERVISED LEARNING – REAL-LIFE SCENARIO

Supervised learning is the task of uncovering hidden patterns and structures from labeled data.
Successful supervised learning requires technical expertise to label data. In real-life applications,
supervised learning is used widely, such as object detection, language processing, spoken word
recognition, anomaly detection, product recommendation, credit risk analysis, optical character
recognition, medical diagnosis, protein structure prediction, and biometrics.

DOI: 10.1201/9781003258803-5

https://doi.org/10.1201/9781003258803-5

178 Machine Learning for Decision Sciences with Case Studies in Python

5.3 TYPES OF SUPERVISED LEARNING

Supervised techniques train the model using labeled data. The training process should continue
until the level of performance is high enough. After training, the system should predict new unseen
data correctly, as shown in Figure 5.2.

There are two types of supervised learning techniques: regression and classification. Classification
separates the data, whereas regression fits the data.

5.3.1 sUPerviseD learning – classification

Classification is the process of categorizing the given input data into different classes. The output of
the classification problem is a discrete or categorical value such as positive or negative, spam or not
spam. Classifying the tumor as malignant or benign and classifying whether the account of a person
is hacked or not are few examples of classification problems. Classification can be either binary or
multi-class classification. Logistic regression is the best example for binary classification. Multi-class
classification is a problem with more than two output classes; for example, alphabet character recog-
nition is a multi-class classification problem. The various classification techniques are decision tree,
logistic regression, random forest, gradient boosted tree, SVM, and naïve Bayes algorithm.

Which of the following is/are classification problem(s)?

• Predicting the sales of a newly introduced SUV over the next 6 months.
• Predicting whether a customer account is hacked or not.

Solution: Predicting the sale of car output is a continuous value and therefore it is not a classification
problem. Predicting whether an account is hacked or not is a classification problem where the output
value is categorical.

FIGURE 5.2 Prediction using supervised learning.

FIGURE 5.1 Mapping between input and output.

179Supervised Learning: Regression

5.3.1.1 Classification – Predictive Modeling
Classification predictive modeling is the process of approximating a mapping function (f) from
input variables (X) to discrete output variables (y). The mapping function f predicts the class or
category for a given observation.

A classification problem needs that input data to be categorized into one of two or more classes.
The input data can be either discrete or continuous values. A problem with two distinct classes is
called a two-class or binary classification problem, such as true or false. A problem with more than
two classes is often called a multi-class classification problem, such as sentiment analysis with
angry, sad, and happy labels.

In general, the classification models predict a continuous probability value for the given input
corresponding to each output class. The probabilities can be interpreted as the likelihood or confi-
dence of a given input belonging to each output class. A predicted probability can be converted into
a class value by selecting the class label with the highest probability. For example, for specific input
data to predict whether it will rain tomorrow or not, assign the probability for the input data and
select the label whose probability is greater than the cutoff value as it has the highest likelihood, as
shown in Figure 5.3. There are many ways to measure the performance of a predictive classification
model, but perhaps the most common is to calculate the classification accuracy. The classification
accuracy is the percentage of correctly classified examples out of all predictions made.

For example, if a classification predictive model made ten predictions and seven of them were
correct and three of them were incorrect, then the classification accuracy of the model based on just
these predictions would be as follows:

accuracy = correct predictions / total predictions * 100
accuracy = 7 / 10 * 100 = 70%

5.3.2 sUPerviseD learning – regression

Regression is the process of identifying a model or function for fitting the data into continuous real
values instead of using classes or discrete values. For example, a regression problem is quantity
based where the output variable is a real or continuous value, such as salary, age, sales rate, speed,
and weight. The simplest form is the linear regression that tries to fit data (Figure 5.4) with the opti-
mal hyperplane or line that goes through the points.

Which of the following is the regression task?

• Predicting credit risk analysis
• Predicting nationality of a person
• Predicting tomorrow’s wind speed in a specific site
• Predicting the sentiment of a product review

FIGURE 5.3 A simple classification example.

180 Machine Learning for Decision Sciences with Case Studies in Python

Solution: Predicting tomorrow’s wind speed in a specific site (because it is a real value,
predicting nationality and credit risk(low or high risk) is categorical, and predicting the
sentiment is again discrete a good/bad answer).

5.3.2.1 Regression Predictive Modeling
Regression predictive modeling is the process of approximating a mapping function (f) from input
variables (X) to a continuous output variable (Y). A continuous output variable is a real value, such
as an integer or floating-point value. These are often quantities, such as amounts and sizes.

A regression problem requires the prediction of a continuous value, such as predicting the amount
of rainfall. Real values or discrete input variables can be used for regression analysis. A problem
with a single input variable is simple regression, and a problem with multiple input variables is
called a multivariate regression problem. Time series forecasting problem is a type of regression
problem with an input ordered time value.

Because a predictive regression model predicts a quantity, the model’s performance must be
calculated using error in predictions. There are many ways to estimate the performance of the pre-
dictive regression model. The most widely used is to calculate the root mean squared error (RMSE).

Sample RMSE calculation for regression predictive model which made two predictions, one of
1.5 where the expected value is 1.0 and another of 3.3 and the expected value is 3.0, then the RMSE
would be:

 =

RMSE sqrt average error2 (5.1)

 ()()= − + − =RMSE sqrt (1.0 1.5) (3.0 3.3) 2 0.4122 2

5.3.3 classification vs. regression

Based on the target value, classification problems can be differentiated from regression, as shown in
Figure 5.5. Both classification and regression problems can be learned using some algorithms with
slight changes, such as decision trees and artificial neural networks. Linear regression is a regres-
sion predictive modeling algorithm, whereas logistic regression is a binary classification algorithm.
Classification algorithm can be evaluated using accuracy, whereas regression algorithm can be esti-
mated using RMSE.

FIGURE 5.4 Data fitting.

181Supervised Learning: Regression

5.3.4 conversion between classification anD regression ProbleMs

In certain cases, a regression problem can be used to predict discrete values. This can be achieved
using the discretization technique that converts continuous values between $0 and $1000 into two
discrete class labels: class 1 (range from $0 to $499) and class 2 (range from $500 to $1000).

Similarly, a classification problem can be used to predict a numerical value. For example, the
target output label can be converted into a continuous numerical range.

If there is a natural ordinal relationship, then the conversion from classification problem to
regression learns well, or it may result in poor performance.

5.4 LINEAR REGRESSION

Regression analysis is an extensively used forecasting technique of supervised learning algorithms.
Linear regression is the simplest form of regression analysis to analyze the trend behind the input
data points. In this section, the working of regression and its types with real-time examples are
explained.

Linear regression is a supervised learning technique in which we have a collection of training
samples with a labeled output. It is a simple statistical technique and an interpretable method and is
very widely used in prediction analysis. The main advantage of linear regression is to forecast the
trend more feasibly. Linear regression can be used to predict the continuous target variable given
the value of input variables. Regression analysis is used for analyzing the relationship among data
to predict the continuous output variable. In other words, linear regression identifies the relationship
between dependent and independent variables via a sloped straight line. The sloped straight line is
known as the regression line or best-fit line. The representation of the regression model is given in
Figure 5.6.

FIGURE 5.5 Differences between classification and regression.

182 Machine Learning for Decision Sciences with Case Studies in Python

To understand the math behind linear regression, let’s see a simple example. Given a set of n
data, samples can be represented as D D D Dn{ }= …, , ,1 2 as shown in Figure 5.7. The single data
point is represented as D x yi i i= , , where x x x xi i i i d()= , , ,,1 ,2 , is an input vector of size d and yi is
the desired output. And the idea is to find the best linear relationship function x f xi i()~ such that
y f xi i()~ for all i = 1,2,…,n.

The regression problem is defined as given a sample instance x and y we have to learn a function
such that

 fn x y→:

 f x w w x w x w x w w xd d i i

i

d

 ∑= + + + + = +
=

() 0 1 1 2 2 0

1

 (5.2)

where , , , 0 1 …w w wd are the weight parameters.
Definition of linear regression: Given a training dataset comprising N observations xn{ }
where n = 1, 2,…, N and their corresponding target values are tn{ }. The goal is to predict the

value of t for a new value of x.

5.4.1 tyPes of linear regression

The variants of linear regression are simple and multiple linear regressions further classified as lin-
ear and non-linear, as shown in Figure 5.8. For simple regression, the input or independent variable
is one, whereas for multiple regression, it is two or more.

FIGURE 5.6 Representation of regression.

FIGURE 5.7 Linear regression visualization.

183Supervised Learning: Regression

5.4.1.1 Simple Linear Regression
The simple linear regression consists of only one input or independent variable. The form of the
simple linear regression model is given in Equation 5.3:

 y xβ β= + ⋅0 1 (5.3)

where y is the independent output variable, x is the dependent input variable, β0 is bias, and β1 is
the slope of the regression line.

There are three possible cases.

Case 1: 0,1β < which indicates the variable x has a negative impact on y. In this case, if x
increases, y decreases, and vice versa.

Case 2: 0,1β = which implies the variable x has no impact on y.
Case 3: 0,1β > which indicates the variable x has a positive impact on y. In this case, if x

increases, y increases, and vice versa.

To understand the linear regression model, let us see a simple linear model. For instance, if we want
to predict the peak electricity demand of a city based on the high temperature recorded, a simple
linear model can be constructed for predicting peak demand for tomorrow.

 y xi iθ θ= ⋅ +1 2 (5.4)

i.e., Predicted Peak Demand = θ1. high temperature + θ2

where
yi is the output or independent variable,
xi is the input or dependent variable,
θ θ= = −0.046 and 1.461 2 are model parameters.

For instance, if the high temperature recorded is 80°F, then the predicted output is

 y xi iθ θ= +. 1 2

 yi = −0.046 * 80 1.46

FIGURE 5.8 Regression types.

184 Machine Learning for Decision Sciences with Case Studies in Python

Then, the predicted output of peak demand is 2.19 GW. There is a positive correlation between
temperature and peak demand (Figure 5.9).

5.4.1.2 Multiple Linear Regression
The multiple linear regression consists of multiple input or independent variables. For example, let’s
create a model for predicting the price of wine based on the age of the wine. Here, the dependent
variable is the age of the wine, and the independent variable is the price of wine (Figure 5.10).

Pe
ak

 d
em

an
d

(G
W

)

High Temperature (F) (GW)

Observed Data
Linear Regression
Prediction

FIGURE 5.9 High temperature vs. peak demand.

FIGURE 5.10 Age of wine vs. price.

185Supervised Learning: Regression

 β β= + ⋅WinePrice Ageof Wine0 1

Similarly, we can predict the price of wine based on multiple independent variables such as average
growing-season temperature (Figure 5.11), harvest rain (Figure 5.12), and winter rain (Figure 5.13).

 β β= + ⋅WinePrice AverageGrowing-SeasonTemperature0 1

FIGURE 5.11 Average growing-season temperature (Celsius) vs. price.

FIGURE 5.12 Harvest rain (mm) vs. price.

186 Machine Learning for Decision Sciences with Case Studies in Python

 β β= + ⋅WinePrice Harvest Rain0 1

 β β= + ⋅WinePrice Winter Rain0 1

The multiple linear regression is

WinePrice Ageof Wine Average Growing-Season Temperature

Harvest Rain Winter Rain

0 1 2

3 4

β β β

β β ε

= + ⋅ + ⋅

+ ⋅ + ⋅ > +

5.4.2 geoMetric intUition

Given an input x, the goal is to compute an output y. The linear function can be the optimal line
function where the line can be characterized by a slope and intercept with x- or y-axis, as repre-
sented in Figure 5.14.

Let us consider these blue points as input data points, and we want to fit a linear function. For
example, predict height y from given age x. Similarly, predict the house price value from the given
house area.

Figure 5.15 shows the parameters, and the population line is the actual line, and it is given as
Equation 5.5:

 y xβ β= + + ∈0 1 (5.5)

where y is the linear dependent function, β0 is the population y-intercept, β1 is the population slope,
and ∈ is the random error. The mean and the variance of the distribution are as follows:

 E y x xβ β() = +| 0 1 (5.6)

 y x xβ β σ()() = + + ∈ =var | var 0 1
2 (5.7)

FIGURE 5.13 Winter rain (mm) vs. price.

187Supervised Learning: Regression

5.4.3 MatheMatical forMUlation

The equation of the line mathematically drives the statistical theory of linear regression technique
is given as in equation 5.8:

 y x i ni i iβ β= + + ∈ = …for 1,2,0 1 (5.8)

To estimate the two unknown parameters β βand0 1, the least-squares criteria are

 S y xi i

i

n

∑β β β β() ()= − −
=

,0 1 0 1
2

1

 (5.9)

FIGURE 5.14 Linear regression scatter plot.

FIGURE 5.15 Parameters of linear regression.

188 Machine Learning for Decision Sciences with Case Studies in Python

The least-squares estimators of β βand0 1, say β βˆ and ˆ
0 1, must satisfy

S

y x
i

n

i i∑β
β β()∂

∂
= − − − =β β

=

| 2 ˆ ˆ 0
0

ˆ , ˆ

1

0 1
0 1

 (5.10)

And

S

y x x
i

n

i i i∑β
β β()∂

∂
= − − − =β β

=

| 2 ˆ ˆ 0
1

ˆ , ˆ

1

0 1
0 1

 (5.11)

Simplifying these two equation yields

 n x yi

i

n

i

i

n

∑ ∑β β+ =
= =

 ˆ ˆ 0 1

1 1

 (5.12)

 x x y xi

i

n

i

i

n

i i

i

n

∑ ∑ ∑β β+ =
= = =

ˆ ˆ 0

1

1
2

1 1

 (5.13)

The above equation is the least-squares normal equation; the solution to the normal equation is

 y xβ β= +ˆ ˆ ˆ
0 1 (5.14)

where

 y
n

yi

i

n

∑=
=

1

1

 (5.15)

 x
n

xi

i

n

∑=
=

1

1

 (5.16)

s

s
xx

xy

β =ˆ
1 (5.17)

where

 S x
x

n
y x xxx

i

n

i

i
i

n

i i

i

n

∑ ∑ ∑ ()= −

= −
=

=

=

1

2 1

2

2

1

 S x y
y x

n
y x xxy i i

i

n i
i

n

i
i

n

i i

i

n

∑ ∑ ∑ ∑ ()= −

= −
=

= =

=1

1 1

1

 (5.18)

The residual e is the difference between the observed value yi and their fitted value yi

 for 1, 2 ,= − = …e y y i ni i (5.19)

189Supervised Learning: Regression

Example 5.1

The rocket propellant data is given in Table 5.1, and the corresponding scatter diagram is shown in
Figure 5.16. There exists a relationship between shear strength and the age of the propellant. First,
find the residual and equation of a line.

 S x
x

n
xx

i

n

i

i
i

n

4677.69
71,422.56

20
1106.56

1

2 1

2

∑ ∑
= −

= − =
=

=

 S x y
y x

n
xy

i

n

i i
i

n

i
i

n

i

528,492.64
267.25 42,627.15

20
41,112.65

1

1 1∑ ∑ ∑ ()()= −

= − = −
=

= =

S

S
xy

xx

ˆ 41,112.65
1106.56

37.151β = = − = −

 ˆ ˆ 2131.3575 37.15 13.3625 2627.820 1β β ()= − = − =y x

The results computed for the rocket propulsion data in terms of observed value, fitted value, and
residual are presented in Table 5.2.

TABLE 5.1
Rocket Propellant Data

Observation, i Shear Strength, yi (psi) Age of Propellant, xi (weeks)

1 2158.70 15.50

2 1678.15 23.75

3 2316.00 8.00

4 2061.30 17.00

5 2207.50 5.50

6 1708.30 19.00

7 1784.70 24.00

8 2575.00 2.50

9 2357.90 7.50

10 2256.70 11.00

11 2165.20 13.00

12 2399.55 3.75

13 1779.80 25.00

14 2336.75 9.75

15 1765.30 22.00

16 2053.50 18.00

17 2414.40 6.00

18 2200.50 12.50

19 2654.20 2.00

20 1753.70 21.50

190 Machine Learning for Decision Sciences with Case Studies in Python

Example 5.2

Predict the linear regression model based on the data given below in Table 5.3, and Figure 5.17 is
the corresponding scatter plot.

FIGURE 5.16 Scatter plot of rocket propellant data.

TABLE 5.2
Results for Rocket Propellant Data

Age of Propellant, xi (weeks) Observed Value, yi Fitted Value, yi Residual, ei

15.50 2158.70 2051.94 106.76

23.75 1678.15 1745.42 −67.27

8.00 2316.00 2330.59 −14.59

17.00 2061.30 1996.21 65.09

5.50 2207.50 2423.48 −215.98

19.00 1708.30 1921.90 −213.60

24.00 1784.70 1736.14 48.56

2.50 2575.00 2534.94 40.06

7.50 2357.90 2349.17 8.73

11.00 2256.70 2219.13 37.57

13.00 2165.20 2144.83 20.37

3.75 2399.55 2488.50 −88.95

25.00 1779.80 1698.98 80.82

9.75 2336.75 2265.58 71.17

22.00 1765.30 1810.44 −45.14

18.00 2053.50 1959.06 94.44

6.00 2414.40 2404.90 9.50

12.50 2200.50 2163.40 37.10

2.00 2654.20 2553.52 100.68

21.50 1753.70 1829.02 −75.32

yi 42,627.15∑ = yi 42,627.15∑ = ei 0.00∑ =

191Supervised Learning: Regression

FIGURE 5.17 Scatter plot of hydrocarbon level vs. oxygen purity.

TABLE 5.3
Hydrocarbon Level versus Oxygen Purity Data

S. No. Hydrocarbon Level, x (%) Oxygen Purity, y (%)

1 0.99 90.01

2 1.02 89.05

3 1.15 91.43

4 1.29 93.74

5 1.46 96.73

6 1.36 94.45

7 0.87 87.59

8 1.23 91.77

9 1.55 99.42

10 1.40 93.65

11 1.19 93.54

12 1.15 92.52

13 0.98 90.56

14 1.01 89.54

15 1.11 89.85

16 1.20 90.39

17 1.26 93.25

18 1.32 93.41

19 1.43 94.98

20 0.95 87.33

192 Machine Learning for Decision Sciences with Case Studies in Python

Solution:

n = 20

 x y
i

i

i

i23.92 1843.21
1

20

1

20

∑ ∑= =
= =

 x y1.1960 92.1605= =

 x
i

i 29.2892
1

20
2∑ =

=

 y
i

i 170,044.5321
1

20
2∑ =

=

 x y
i

i i 2214.6566
1

20

∑ =
=

 S x
x

xx

i

i
i

i

20
29.2892

(23.92)
20

0.68088
1

20
2 1

20 2

2

∑ ∑
= −

= − =
=

=

and

S x y

x y

xy

i

i i
i

i
i

i

20

2214.6566
23.92 1843.21

20
10.17744

1

20
1

20

1

20

∑ ∑ ∑

()()

= −

= − =

=

= =

Therefore, the least-squares estimates of the slope and intercept are

S

S
xy

xx

10.17744
0.68088

14.947481β = = =

and

 y x 92.1605 14.94748 1.196 74.283310 1β β ()= − = − =

The linear regression model is

 y x74.28331 14.94748= +

Example 5.3

To understand mathematically behind regression, let’s see an example where 15 samples of houses
of a region are given in Table 5.4. The idea is to predict the price y given area of the house x.

The 15 data points are plotted in a graph (Figure 5.18) where the x-axis is the house size in
terms of 100 square feet and the y-axis is the prize. So given these 15 points, we have to find the
equation of the line. This is a linear regression problem that consists of 15 independent variables.

 Prize * HouseSize0 1β β= +

193Supervised Learning: Regression

The equation of the above regression problems is given below:

 y x x x x x xp p0 1 1 2 2 3 3 4 4 4 5β β β β β β β= + + + + + + + + ∈

where p is the predictor or independent variable. Let us assume that the expected value of y given
x is given by the population line.

 E Y X x x x x x xp p| 0 1 1 2 2 3 3 4 4 4 5β β β β β β β() = + + + + + + +

FIGURE 5.18 Scatter plot of house size vs. prize.

TABLE 5.4
Actual Housing Prize versus House Size Data

House Number Actual Housing Price (Y) House Size (X)

1 89.5 20.0

2 79.9 14.8

3 83.1 20.5

4 56.9 12.5

5 66.6 18.0

6 82.5 14.3

7 126.3 27.5

8 79.3 16.5

9 119.9 24.3

10 87.6 20.2

11 112.6 22.0

12 120.8 .019

13 78.5 12.3

14 74.3 14.0

15 74.8 16.7

Average 88.84 18.17

194 Machine Learning for Decision Sciences with Case Studies in Python

To minimize the sum of squared errors based on the training points, the least-squares line equa-
tion is as follows:

 ��� �� �x x x xp pLeast-Square Line 0 1 1 2 2 3 3β β β β β= + + + + +

Now the data we may have may not form a perfect line. The error function is used to determine
the deviation between actual and predicted. So, the assumptions about the errors are given as
follows:

• 0 for 0,1,2,ε() = = …E i ni

• , where is unknownσ ε σ σ() = ε εi

• The errors εi are independent to each other
• The errors εi are normally distributed (with mean 0 and standard deviation σε)

So, this kind of noise is called Gaussian noise or white noise.

The least-squares regression line is the unique line such that the sum of squared vertical (y) dis-
tances between the data points (blue colored) and the line is the smallest possible. The red-colored
vertical lines are errors, as given in Figure 5.19.

Let us consider for a training point d x yi i i()= , where yi is the actual value. The idea is to mini-
mize these errors. There are different methods to identify the error of the model. The mean absolute
error is the simple one that calculates the average of the absolute value of errors and is given as

 MAE
1 ˆ

1

∑= −
=

n
y y

i

n

i i (5.20)

where yi is the actual value and ŷi is the predicted value.
The mean squared error is given as MSE:

 MSE
1

 ˆ 2

1

∑()= −
=

n
y yi l

i

n

 (5.21)

FIGURE 5.19 Measuring the distance between hyperplane and data points.

195Supervised Learning: Regression

where yi is the actual value and ŷi is the predicted value.
The root mean squared error is given as RMSE:

n

y yi l
i

n∑ ()= −
=

RMSE
1 ˆ 2

1
 (5.22)

The rooted absolute error, also known as the residual sum of squares, is given as RAE:

y y

y y

i l
i

n

i
i

n

∑
∑

=
−

−
=

=

RAE
ˆ

1

1

 (5.23)

where yi is the actual value, ŷi is the predicted value, and y is average value of y.
The rooted square error is RSE, which is similar to RAE:

y y

y y

i l
i

n

i
i

n

∑
∑

()
()

=
−

−
=

=

RSE
ˆ 2

1

2

1

 (5.24)

The least-squares regression line equation for n data points is given as

 y ax b= + (5.25)

where a and b are

 a
n x y x y

n x x

i i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

∑ ∑ ∑
∑ ∑

=
−

−

= = =

= =

1 1 1

2

1 1

2 (5.26)

 b
n

y a x
i

n

i

i

n

i∑ ∑= −

= =

1

1 1

 (5.27)

Example 5.4

Find the least-squares regression line for the following set of data points {(−1, 0), (0, 2), (1, 4), (2, 5)}
given in Table 5.5. Plot the given points and identify the regression line.

TABLE 5.5
Sample Data Points

x y Xy x2

−1 0 0 1

0 2 0 0

1 4 4 1

2 5 10 4

x 2∑ = y 11∑ = xy 14∑ = x 62∑ =

196 Machine Learning for Decision Sciences with Case Studies in Python

The least-squares regression line equation for n data points is given as

 y ax b= +

where a and b are

 a
n x y x y

n x x

i

n

i i
i

n

i
i

n

i

i

n

i
i

n

i

1 1 1

1

2

1

2

∑ ∑ ∑
∑ ∑

=
−

−

= = =

= =

 b
n

y a x
i

n

i

i

n

i
1

1 1

∑ ∑= −

= =

 a
4*14 2*11

4*6 22= −
−

 17/10 1.7= =a

 b
1
4

11 1.7* 2()= −

 b 1.9=

The least-squares regression line for the given problem is shown in Figure 5.20.

 y x1.7 1.9= +

Example 5.5

The values of x and their corresponding values of y are shown in Table 5.6.

 i. Find the least-squares regression line y = ax + b
 ii. Estimate the value of y when x = 10.

FIGURE 5.20 Least-squares regression line.

197Supervised Learning: Regression

Solution:

The least-squares regression line equation for n data points is given as

 y ax b= +

where a and b are

 a
n x y x y

n x x

i

n

i i
i

n

i
i

n

i

i
i

n

i
i

n

1 1 1

2

1 1

2

∑ ∑ ∑
∑ ∑

=
−

−

= = =

= =

 b
n

y a x
i

n

i

i

n

i
1

1 1

∑ ∑= −

= =

 a
5* 49 10* 20

5*30 102= −
−

 a 0.9=

 b
1
5

20 0.9*10()= −

 b 2.2=

Thus, the least-squares regression equation is

 y x0.9 2.2= +

Substitute the value of x = 10; then

 y 0.9*10 2.2= +

 y 11.2=

The output for the example is presented in Figure 5.21.

TABLE 5.6
Data for Example 5.5
x 0 1 2 3 4

y 2 3 5 4 6

x y xy x2

0 2 0 0

1 3 3 1

2 5 10 4

3 4 12 9

4 6 24 16

x 10∑ = y 20∑ = xy 49∑ = x 302∑ =

198 Machine Learning for Decision Sciences with Case Studies in Python

Example 5.6

The sales of a company (in million dollars) for each year are shown in Table 5.7.

 i. Find the least-squares regression line y ax b= +
 ii. Use the least-squares regression line as a model to estimate the sales of the company in

2012.

Solution:

First, we can normalize the data for easy computation. Subtract 2005 from x values.

The least-squares regression line equation for n data points is given as

 y ax b= +

x(year) 0 1 2 3 4

y(sales) 12 19 29 37 45

TABLE 5.7
Year vs. Sales Data
x(year) 2005 2006 2007 2008 2009

y(sales) 12 19 29 37 45

x y xy x2

0 12 0 0

1 19 19 1

2 29 58 4

3 37 111 9

4 45 180 16

x 10∑ = y 142∑ = xy 368∑ = x 302∑ =

FIGURE 5.21 (a) Least-squares regression line and (b) predicting the new data point for Example 5.5.

199Supervised Learning: Regression

where a and b are

 a
n x y x y

n x x

i

n

i i
i

n

i
i

n

i
i

n

i
i

n

1 1 1

2

1 1

2

∑ ∑ ∑
∑ ∑

=
−

−

= = =

= =

 b
n

y a x
i

n

i

i

n

i
1

1 1

∑ ∑= −

= =

 a
5*368 10*142

5*30 102= −
−

 a 8.4=

 b ()= −1

5
142 8.4 *10

 b 11.6=

The least-squares regression equation is

 y x8.4 11.6= +

To estimate the sales of the company in 2012, substitute x = 2012 − 2005 = 7 in the least-squares
regression equation:

 y 8.4* 7 11.6= +

 y 70.4 million dollars=

The output for the given example is shown in Figure 5.22.

Example 5.7

Predict CO2 emission vs. engine size and cylinders of cars for the data shown in Table 5.8. Find
the mean absolute error.

Independent variables (x): engine size, cylinders, and fuel consumption
Dependent variables (y): CO2 emission

FIGURE 5.22 (a) Least-squares regression line and (b) predicting the new data point for Example 5.6.

200 Machine Learning for Decision Sciences with Case Studies in Python

 CO emission Enginesize Cylinders Fuel consumption _ Comb2 0 1 2 3β β β β= + + +

 y xˆ 0 1 1 2 2 3 3β β β β β β= + + +

 y XTˆ β=

 X
x

x

x

T , , ,

1

0 1 2 3
1

2

3

β β β β β[]= =

 T 125, 6.2,14,1.98β []=

For the ninth instance, the CO2 emissions are

 CO emission 125 6.2* 2.4 14* 4 1.98*9.22 = + + +

 CO emission for instance 214.12 =ninth

TABLE 5.8
CO2 Emission Data

S. No. Enginesize Cylinders Fuelconsumption_Comb CO2 Emissions

0 2.0 4 8.5 196

1 2.4 4 9.6 221

2 1.5 4 5.9 136

3 3.5 6 11.1 255

4 3.5 6 10.6 244

5 3.5 6 10.0 230

6 3.5 6 10.1 232

7 3.7 6 11.1 255

8 3.7 6 11.6 267

9 2.4 4 9.2 ?

S. No. x1 x2 x3 yi ()()=RMSE sqrt average error2

0 2 4 8.5 196 210.23

1 2.4 4 9.6 221 214.888

2 1.5 4 5.9 136 201.982

3 3.5 6 11.1 255 252.678

4 3.5 6 10.6 244 251.688

5 3.5 6 10 230 250.5

6 3.5 6 10.1 232 250.698

7 3.7 6 11.1 255 253.918

8 3.7 6 11.6 267 254.908

9 2.4 4 9.2 214 214.096

201Supervised Learning: Regression

5.4.4 solving oPtiMization ProbleM

The optimization problem can be solved using two different strategies

• Deriving a closed-form solution, and
• Gradient descent

To understand the method of deriving a closed-form solution, let’s take a partial derivative of the
mean squared error Jn . For the optimal set of parameters, derivatives of the error concerning each
parameter must be 0.

w

J w
n

y w x w x w x x
j

n

i

n

i i i d i d i j∑()()∂
∂

= − − − − − =
=

2
0

1

0 ,0 1 ,1 , , (5.28)

The vector of derivatives

 J w J w
n

y w x xw n w n

i

n

i
T

i i∑()()() ()= ∇ = − − =
=

grad
2

0
1

 (5.29)

5.4.4.1 Maxima and Minima
In Figure 5.23, the peaks in the data are called maxima. The global maxima are the highest peak in
the entire data. The global minima are the lowest trough in the entire data.

For finding minima, let us see an example and set f z()′ = 0 and solve z:

 f z z=() 2 (5.30)

FIGURE 5.23 Representation of maxima and minima.

202 Machine Learning for Decision Sciences with Case Studies in Python

The derivative of f z z() = 2 is f z()′ , and it can be written as

 f z z2()′ = (5.31)

If z = 0, then the derivative function becomes zero, and this point is known as local maxima or local
minima:

 f z 0()′ = (5.32)

If the derivative is greater than zero or positive, the function increases, which implies that it is
moving away from the trough. Else if the derivative is lesser than zero or negative, the function
decreases, which means the function moves toward the trough.

Finding minima by assuming z = −1, then the function f z z()′ = 2 becomes f ()′ − = − = −1 2 * 1 2,
which is decreasing and moving toward the trough (Figure 5.24). Then, increase z by the size of the
gradient. If the size of the gradient is 2, then z becomes 1.

 z = − + =1 2 1

For the second iteration, by assuming z = 1, then the function f z z()′ = 2 becomes f ()′ = =1 2 *1 2,
which is increasing and moving away from the trough. Then, increase z by the size of the gradient.
If the size of the gradient is 2, then z becomes 1.

 z = − = −1 2 1

Thus, it is kept jumping between the same two points, which can be overcome by using the appropri-
ate learning rate or step size.

5.4.4.2 Gradient Descent
Gradient descent is an optimization algorithm used to minimize the error function in machine learn-
ing. Gradient descent is used to solve linear regression problems iteratively, as shown in Figure 5.25.

The objective of gradient descent is to minimize the error function. The simple example of the
parabola for minimizing the error using gradient descent is explained below in Figure 5.26. If we

FIGURE 5.24 Finding minima.

203Supervised Learning: Regression

start at point a and move left, the function f is increasing, and if we move right, it is decreasing.
Therefore, choose the direction where it is decreasing.

But not all the functions are like a parabola. The other example is shown in Figure 5.27, where
the local minima and global minima are depicted clearly. In this graph, if b moves right, it will reach
local minima.

Define a cost function J θ():

 J h x yi i

i

m∑θ = −

=

()
1

2
()() ()

1

2

 (5.33)

 h x xi i
i

n∑ β=
=

()
0

 (5.34)

FIGURE 5.25 Geometric intuition of gradient descent.

FIGURE 5.26 Minimizing error in a parabola using gradient descent.

204 Machine Learning for Decision Sciences with Case Studies in Python

where h x i() () is the predicted value and y i() is the actual value. The main objective is to learn θ ,
which minimizes cost function J θ() .

Algorithm for Gradient Descent
Begin

Step 1: Initialize θ Randomly
Step 2: Do
{
Step 3: Jθ θ α θ()= − ∇θ

}
Step 4: Jα ε()∇ >while

The algorithm for gradient descent is as follows. First, initialize θ randomly or often set to zero
and then iterate. The learning rate is denoted as α . The stopping condition is that either J is not
changing quickly or the gradient is sufficiently small. Then, the process is repeated until it reaches
minimal error or no further improvement is possible.

In gradient descent, the learning rate α is used to ensure whether gradient descent is working
correctly or not. The smaller the learning rates α , the slower the convergence. Choose α as 0.001,
0.01, 0.1, and 1.

 Jj j
j

θ θ α
θ

θ()= − ∂
∂

 (5.35)

Let the x-axis denote the number of iterations in gradient descent. θ()J should decrease at every
iteration, as observed in Figure 5.28.

FIGURE 5.27 Minimizing error using an irregular function other than the parabola.

205Supervised Learning: Regression

5.4.4.3 LMS (Least Mean Square) Update Rule
Apply derivative to the cost function J θ():

J h x y

h x y h x y

h x y x y

h x y x

j

j

j i

n

i i

j

∑

θ
θ

θ

θ

θ
θ

()

() ()

()

()

() ()

() ()

()

∂
∂

= ∂
∂

−

= − ∂
∂

−

= − ∂
∂

−

= −

=

1

2

2.
1

2

.

()

2

0

 (5.36)

5.4.4.4 SGD Algorithm
Stochastic gradient descent (SGD) is a widely used variant of gradient descent.

Algorithm for Stochastic Gradient Descent
Begin

Step 1: Repeat{
Step 2: For I = 1 to m do

Step 3: y h x xj j
i i

j
iθ θ α ()()= + − () (for every j)

Step 4: End for
}
Step 5: until convergence

FIGURE 5.28 Learning rate.

206 Machine Learning for Decision Sciences with Case Studies in Python

5.4.5 real-worlD aPPlications

Many real-world applications make use of linear regression techniques, as shown in Figure 5.29.
To analyze the trend overtime -plays an important role in business sectors. The analyses of GDP,
oil price, and stock prices are well-known examples of trend analysis. With the help of statistical
analysis, the business can gather new insights and achieve operational efficiency.

5.4.5.1 Predictive Analysis
It can be used to generate insights on customer behavior, understanding business, and factors influ-
encing profitability. Linear regressions can be used in business to evaluate trends and make estimates
or forecasts. Linear regression can also analyze the marketing effectiveness, pricing, and promo-
tions on sales of a product. Linear regression can also be used to assess risk in the financial services
or insurance domain. The risk can be assessed based on the attributes of the car, driver information,
or demographics. The results of such an analysis might guide important business decisions.

FIGURE 5.29 Applications of linear regression.

207Supervised Learning: Regression

In the credit card industry, a financial company may be interested in minimizing the risk portfo-
lio and understanding the top five factors that cause a customer to default. Then, based on the results,
the company could implement specific EMI options to minimize default among risky customers.

To study the relationship between monthly e-commerce sales and online advertising costs, the
survey results for seven online stores for the last year are given in Table 5.9. Identify the impact of
online advertising in e-commerce sales.

Solution:
The scatter plot in Figure 5.30 clearly shows a positive relationship between the independent

variable online advertising and the dependent variable e-commerce sales.

 β β= + ⋅MonthlySales Online Advertising0 1

The regression line is given as

 = +MonthlySales 125.8 171.5* Online Advertising

TABLE 5.9
E-Commerce Data

Online
Store

Monthly E-Commerce
Sales (in 1000 s)

Online Advertising
Dollars (1000 s)

1 368 1.7

2 340 1.5

3 665 2.8

4 954 5

5 331 1.3

6 556 2.2

7 376 1.3

FIGURE 5.30 Online advertising versus sales.

208 Machine Learning for Decision Sciences with Case Studies in Python

5.4.5.2 Medical Outcome Prediction
Linear regression plays an important role in medical analysis. For instance, smoking reduces the life
span, and linear regression analyzes the relationship between these two variables. In this scenario,
the relationship can be defined using the simple linear regression such as the following:

 β β= +LifeSpan Smoking0 1

where life span is the dependent variable and smoking is the independent variable. Similarly, it can
also be represented using multiple linear regression form by adding another independent variable
socioeconomic status:

 β β β= + +LifeSpan Smoking Socioeconomicstatus0 1 1

For another instance, to measure the lung capacity based on the exposure of dust, consider the scat-
ter plot in Figure 5.31, where the x-axis is the exposure to dust, and the y-axis is the measure of lung
capacity (PEFR or PEAK expiratory flow rate).

 β β= + ⋅PEFR Exposure0 1

The regression line for this model is shown in Figure 5.32.

5.4.5.3 Wind Speed Prediction
Wind energy is one of the key renewable energies which is clean and exhaustive. Wind speed pre-
diction plays a key role in wind farms, disaster management, and aviation. Therefore, it is an impor-
tant technology in the wind power field. Due to their chaotic and fluctuating nature, predicting wind

FIGURE 5.31 Exposure vs. PEFR.

209Supervised Learning: Regression

speeds accurately is difficult. The wind speed depends on various aspects. Therefore, multiple lin-
ear regression models can be utilized to design the model. Typically, there are two general methods
for wind prediction: Short-term prediction involves timescales of minutes and hours, while long-
term involves a timescale of months or years.

5.4.5.4 Environmental Effects Monitoring
Time series regression is widely used in environmental epidemiology. Exposure to air pollution may
lead to acute respiratory infections in humans. The regression analysis can be carried out to know
the impact of exposure to air pollution on respiratory infection in humans. This is represented as

 β β= +Exposure toair pollution Respiratory Infection0 1

In Canada, the Environmental Effects Monitoring program uses statistical linear regression tech-
niques to measure the effects of pulp mill or metal mine effluent on the aquatic ecosystem.

5.4.6 linear regression in Practice Using Python

5.4.6.1 Simple Linear Regression Using Python
Before implementing regression, let us understand the data file. The sample data file we have used is
shown below. It has two columns – years of experience and salary. Our goal is to predict the salary
based on the number of years of experience.

FIGURE 5.32 Regression line.

210 Machine Learning for Decision Sciences with Case Studies in Python

A sample screenshot of the file is shown below:

Coding →
Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

#For this example, we have created a sample file, Salary_Data.CSV file. I
have placed it in my C:/Python #Files/ directory

Importing the dataset
dataset = pd.read_csv('C:/Python Files/Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values

Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
1/3, random_state = 0)

Feature Scaling – It means changing the range of values without
changing the shape of the distribution. The range is often set to 0 to 1

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

A B

Years of Experience Salary

1.1 39,343

1.3 46,205

1.5 37,731

2 43,525

2.2 39,891

2.9 56,642

3 60,150

3.2 54,445

3.2 64,445

3.7 57,189

3.9 63,218

4 55,794

4 56,957

4.1 57,081

4.5 61,111

4.9 67,938

5.1 66,029

5.3 83,088

5.9 81,363

6 93,940

211Supervised Learning: Regression

#sc_y = StandardScaler()
#y_train = sc_y.fit_transform(y_train)

Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

regression coefficients
print('Coefficients: \n', regressor.coef_)

OUTPUT →
Coefficients:
[23651.14412001]

print(regressor.intercept_)

OUTPUT →
71022.5

Predicting the Test set results
y_pred = regressor.predict(X_test)

Visualizing the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show() #Figure 5.33

Visualizing the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')

FIGURE 5.33 Training set results.

212 Machine Learning for Decision Sciences with Case Studies in Python

plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show() ###Figure 5.34

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_pred)#mse
print(np.sqrt(mean_squared_error(y_test, y_pred))) #rmse

#OUTPUT →
4585.4157204675885

print the R-squared value for the model
regressor.score(X_test, y_test)#rsquare

#OUTPUT →
0.9749154407708353

5.4.6.2 Multiple Linear Regression Using Python
Let us understand the data file for multiple linear regression. The sample data file we have used is
shown below. It has five columns, as shown below. Our goal is to predict the profit based on multiple
variables – spending on R&D, administrative spending, marketing spending, and the state in which
the start-up is located.

The sample screenshot of the file is given in Figure 5.35.

FIGURE 5.34 Test set results.

213Supervised Learning: Regression

Multiple Linear Regression

Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Importing the dataset
dataset = pd.read_csv('C:/Users/mpandey1/Desktop/ML using Python
Training/day4/Section 5 – Multiple Linear Regression/50_Startups.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 4].values

Encoding categorical data – since we cannot use the text values as it
is.
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()

Avoiding the Dummy Variable Trap
X = X[:, 1:]

Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split

FIGURE 5.35 Screenshot of sample dataset.

214 Machine Learning for Decision Sciences with Case Studies in Python

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random_state = 0)

Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
sc_y = StandardScaler()
y_train = sc_y.fit_transform(y_train)

Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

Predicting the Test set results
y_pred = regressor.predict(X_test)

regression coefficients
print('Coefficients: \n', regressor.coef_)

#OUTPUT →
#Coefficients:
[-415.38222603 333.57777773 35726.28774249 851.30163448
4519.88277698]

print(regressor.intercept_)

#OUTPUT →
109446.44724999998

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_pred)#mse

print(np.sqrt(mean_squared_error(y_test, y_pred))) #rmse

#OUTPUT →
9137.99015279494

print the R-squared value for the model
regressor.score(X_test, y_test)#rsquare

#OUTPUT →
0.9347068473282425

from sklearn.linear_model import Ridge
ridgeReg = Ridge(alpha=0.05, normalize=True)
ridgeReg.fit(X_train,y_train)
pred = ridgeReg.predict(X_test)
mean_squared_error(y_test,pred)#mse
ridgeReg.score(X_test, y_test)

#OUTPUT →
0.9091504993722859

215Supervised Learning: Regression

from sklearn.linear_model import Lasso
lassoReg = Lasso(alpha=0.8, normalize=True)
lassoReg.fit(X_train,y_train)
predl = lassoReg.predict(X_test)
mean_squared_error(y_test,predl)#mse
lassoReg.score(X_test, y_test)

#OUTPUT →
0.934827712684663

SUMMARY

This chapter introduced the concepts of supervised learning and the types of supervised learning.
A detailed analysis of supervised learning for regression is covered in this chapter. The simple and
multiple linear regression methods with solved examples are illustrated to depict the procedure to
find the optimal regression line clearly. In addition, the various error functions to converge the error
between actual and predicted values are also shown clearly. Various real-world applications such
as sales forecasting, medical prediction, and wind speed prediction are exemplified. Finally, sim-
ple and multiple linear regression implementation using Python is comprehensively demonstrated,
starting from handling data to feature scaling, thus determining the output.

REVIEW QUESTIONS

 1. Estimate the cost of oil well drilling based on the depth. The data is collected from
Philippines offshore oil wells and given in Table 5.10. Draw the scatter plot. Based on a
scatter plot, predict a linear regression model.

 2. Calculate the residual for the above problem.
 3. Find the difference between simple linear regression and multiple linear regression with

appropriate example.

TABLE 5.10
Oil Well Drilling Data

Depth Cost

5000 2596.8

5200 3328.0

6000 3181.1

6538 3198.4

7109 4779.9

7556 5905.6

8005 5769.2

8207 8089.5

8210 4813.1

8600 5618.7

9026 7736.0

9197 6788.3

9926 7840.8

10,813 8882.5

13,800 10,489.5

14,311 12,506.6

216 Machine Learning for Decision Sciences with Case Studies in Python

TABLE 5.11
Advertisement Data

TV Radio Newspaper Sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9

TABLE 5.12
Water Pollution Variables

Variable Description

Y Mean nitrogen concentration (mg/liter)

x1 Percentage of agriculture land

x2 Percentage of forest land

x3 Percentage of residential land

x4 Percentage of industrial land

TABLE 5.13
Water Pollution Data in New York Rivers

S. No. River Y x1 x2 x3 x4

1 Olean 1.10 26 63 1.2 0.29

2 Cassadaga 1.01 29 57 0.7 0.09

3 Oatka 1.90 54 26 1.8 0.58

4 Neversink 1.00 2 84 1.9 1.98

5 Hackensack 1.99 3 27 29.4 3.11

6 Wappinger 1.42 19 61 3.4 0.56

7 Fishkill 2.04 16 60 5.6 1.11

8 Honeoye 1.65 40 43 1.3 0.24

9 Susquehanna 1.01 28 62 1.1 0.15

10 Chenango 1.21 26 60 0.9 0.23

11 Tioughnioga 1.33 26 53 0.9 0.18

12 West Canada 0.75 15 75 0.7 0.16

13 East Canada 0.73 6 84 0.5 0.12

14 Saranac 0.80 3 81 0.8 0.35

15 Ausable 0.76 2 89 0.7 0.35

16 Black 0.87 6 82 0.5 0.15

17 Schoharie 0.80 22 70 0.9 0.22

18 Raquette 0.87 4 75 0.4 0.18

19 Oswegatchie 0.66 21 56 0.5 0.13

20 Cohocton 1.25 40 49 1.1 0.13

217Supervised Learning: Regression

 4. Find the impact of advertising in TV, radio, and newspaper on sales as shown in Table 5.11.
Identify the regression line.

 5. Find the multiple regression model for the given data in Table 5.13. Variables in the study
of water pollution in New York rivers are given in Table 5.12.

 6. Find the least-squares regression line using data points {(−2, −1), (1, 1), (3, 2)}. Plot the
given data points and the regression line in the graph.

 7. Students attended an entrance quiz for a machine learning course. Quiz marks and the ML
grades are given in Table 5.14.

Perform least-squares regression and plot it in a graph.

TABLE 5.14
Quiz Mark Data

Student xi yi

1 95 85

2 85 95

3 80 70

4 70 65

5 60 70

https://taylorandfrancis.com

219

6 Supervised Learning
Classification

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the difference between supervised learning algorithms used for regression and
classification

• Comprehend the various supervised learning algorithms related to classification problems
• Know the basic mathematical concepts involved in logistic regression, decision trees, ran-

dom forests, and support vector machines
• Solve examples based on the algorithms covered in this chapter
• Implement the supervised learning algorithms using Python for practical problems

6.1 INTRODUCTION

The idea of the classification problem is to classify the outcome variable into one or more categories.
Then, the supervised learning method learns from the labeled data. Logistic regression, decision
tree, and support vector machine (SVM) are the various supervised learning classification algo-
rithms widely used. In this chapter, a detailed description of these algorithms, their mathematical
modeling, merits and demerits, solved examples, and real-world applications are provided with step-
by-step implementation in Python.

6.2 USE CASES OF CLASSIFICATION

Classification techniques are used for predictive analysis, image classification, and text analysis. In addi-
tion, many real-world applications such as handwritten character recognition, self-driving cars, remote
sensing, marketing, and biomedical analysis utilize classification algorithm. As we walk through this
chapter, several real-world examples are illustrated in the context of the classification algorithm.

6.3 LOGISTIC REGRESSION

Logistic regression is a supervised classification technique widely used to solve many real-world
problems by data scientists. For example, various useful insights about big data can be obtained
using logistic regression. Logistic regression is a simpler and powerful algorithm for both binary
classification and multiclass classification problems. Some examples of binary classification prob-
lems are detecting spam email or not, whether an online transaction is fraudulent or not, and whether
the examined tumor is malignant. In all of these above classification problems, we are trying to pre-
dict the output label y is either 0 (negative class) or 1 (positive class).

()

()
{ }∈

y 0,1

0 Negativeclass e.g., nota fraudulent transaction

1 Positiveclass e.g.,fraudulent transaction

Logistic regression is not a regression problem, as the name implies. It is different from linear
regression, as given in Table 6.1.

DOI: 10.1201/9781003258803-6

https://doi.org/10.1201/9781003258803-6

220 Machine Learning for Decision Sciences with Case Studies in Python

6.3.1 geoMetric intUition

Logistic regression makes use of the sigmoid function for separating two classes, as given in
Equation 6.1. The logistic sigmoid function is otherwise called logit.

 σ =
+ −z

e z()
1

1
 (6.1)

The value of sigmoid function σ ()z is bounded between 0 and 1, which looks like S as in Figure 6.1.
The hypothesis function or the threshold ()θh x is at 0.5.

 ≤ ≤θh x0 () 1

σ θ()() = =

+
θ θ()−

h x x
e

T

xT

1

1 (6.2)

If () ≥θh x 0.5, then predict output label y as 1. Else if () <θh x 0.5, then predict output label y as 0.
Let us consider weight vector as βi, observations say xi and bias β0 as intercept in linear regres-

sion. Assume for a binary classification problem, one class is 0, and another class is one, and the
formula for predicting probabilities is given below.

∑β β
()= =

+ +

P Y X
xi i

0 |
1

1 exp 0

 (6.3)

∑
∑

β β

β β
()= =

+

+ +

P Y X
x

x

i i

i i

1 |
exp

1 exp

0

0

 (6.4)

TABLE 6.1
Linear Regression Versus Logistic Regression

Linear Regression Logistic Regression

• Predicts continuous output value
• The aim is to identify the best fit line

β β= +Y x0 1 1

• Used to solve regression analysis
• Uses least squares regression for estimating parameters
• Applications: stock value prediction, wind speed

prediction

• Predicts categorical output value
• The aim is to identify an S-shaped curve

β β
=

= +p

p
xln

1
0 1 1

• Used to solve the classification problem
• Uses MLE to estimate parameters
• Applications: spam email classification, customer

churn prediction

221Supervised Learning: Classification

where exp[x] is similar to ex. More simply, it can be rewritten as

 ∑σ β β()= = − +

P Y X xi i0 | 0 (6.5)

 ∑σ β β()()= = − − +

P Y X xi i1 | 1 0 (6.6)

where

 σ () =
+ −z

e z

1

1

With a simple example, let us understand whether a person has a lung disease based on age and
smoking habit.

 ()= =
+ β β β()− + +

P D
e

1 age,smokinghabit
1

1 age smokinghabit0 1 2

 ()= =
+ β β β()− + +P D x x

e x x
1 ,

1

1
1 2

0 1 1 2 2

 ()= =
+

β β β

β β β

()

()

− + +

− + +
P D

e

e
0 | age,smokinghabit

1

age smokinghabit

age smokinghabit

0 1 2

0 1 2

 ()= =
+

β β β

β β β

()

()

− + +

− + +P D x x
e

e

x x

x x
0 ,

1
1 2

0 1 1 2 2

0 1 1 2 2

where
D = presence of lung disease, discrete value {1 – Yes and 0 – No}
x1 = age, continuous value
x2 = smoking habit, discrete value {1 – Yes and 0 – No}
To estimate the parameters β β β, , and0 1 2, maximum likelihood estimation (MLE) is used

 β β
−

= +p

p
xln

1
0 1 1 (6.7)

FIGURE 6.1 Sigmoid curve.

222 Machine Learning for Decision Sciences with Case Studies in Python

where −p p1 is the odds ratio and ()−p pln 1 is the logit odds ratio.

 =
−
p

p
Odds

(event)

1 (event)
 (6.8)

The odds ratio is the ratio between the probability of success and the probability of failure. Let us
understand how to calculate the odds ratio with a simple illustration using Table 6.2.

Odds that a person who had anger treatment got a heart attack = R11/R21 = 3/6 = 0.5
Odds that a person who had not undergone anger treatment got a heart attack = R12/R22 = 7/4 = 1.75
Relative odds/odds ratio = (R12/R22)/(R11/R21) = 1.75/0.5 = 0.285
To estimate the probability of heart attack with respect to anger treatment, logistic function is

used

 β β
−

= +p

p
xln

1
 0 1 1

where β βand0 1 are regression coefficients and p is the probability of a person who has suffered a
heart attack.

6.3.2 variants of logistic regression

The major types of logistic regression (Figure 6.2) are

• Simple logistic regression
• Multiple logistic regression
• Binary logistic regression

6.3.2.1 Simple Logistic Regression
It is a simpler form with only one independent variable. The general form of simple logistic regres-

sion is β β
−

= +p

p
ln

1
 0 1. To predict the presence of heart disease (Yes/No) based on only one

variable, say a smoking habit is a simple logistic regression type. The variable description for heart
disease y and smoking habit x1 is

 =

yPresenceof heart disease

1 Yes

0 No

TABLE 6.2
Example Illustration

Heart Attack

Anger Treatment

Yes (1) No (0) Total

Yes(1) 3(R11) 7(R12) 10

No(0) 6(R21) 4(R22) 10

9 11 20

223Supervised Learning: Classification

 =

xSmokinghabit

1 Smoker
0 Nonsmoker1

The simple logistic function for predicting heart disease y based on smoking habit x1 is given as

 β β
()

()
=

− =

= +

p y x

p y x
xln

1

1 1
1

1
0 1 1

6.3.2.2 Multiple Logistic Regression
If we have more than one independent variable, say { }…x x xn, , ,1 2 , then, it is called multiple logistic
regression. The general form of multiple logistic regression is in Equation 6.3

 β β β
−

= + + +p

p
x xn nln

1
 0 1 1 (6.9)

To predict the presence of heart disease y (Yes/No) based on more than one variable, say smoking
habit x 1 and age-group x2 are examples of multiple logistic regression.

 β β β
()

()
=

− =

= + +

p y x x

p y x x
x xln

1 ,

1 1 ,
1 2

1 2
0 1 1 2 2 (6.10)

6.3.2.3 Binary Logistic Regression
It tries to predict the probability of binary target (0, 1). Binary logistic regression is a simpler
method that makes use of the sigmoid function. For instance, as shown in Figure 6.3, to predict
whether it will rain tomorrow or not based on humidity, the target-dependent variable “Will it Rain”
contains exactly two classes, say rain (1) and no rain (0).

 ()= =
+ β β()− +P

e
rain 1 | humidity

1

1 humidity0 1

FIGURE 6.2 Variants of logistic regression.

224 Machine Learning for Decision Sciences with Case Studies in Python

 ()= =
+

β β

β β

()

()

− +

− +P
e

e
rain 0 | humidity

1

humidity

humidity

0 1

0 1

Few other examples of binary logistic regression classification:

• What factors influence a person’s decision to travel for leisure?
Y = 1 if visit for leisure, 0 if not

• What factors determine baby birth weight?
Y = 1 if baby birth weight is low, 0 if not

• Which demography is more likely to vote in favor of new legislation?
Y = 1 if a person voted Yes, 0 if not

• Which customers are more likely to buy a new car?
Y = 1 if a new car is bought, 0 if not

6.3.2.4 Multiclass Logistic Regression
Multiclass logistic regression tries to predict the probability of more than two target classes. Instead
of using the sigmoid function, the softmax function is used for multiclass classification problems.
Examples of multiclass logistic regression classification are given below.

Which party is a person going to vote for?

−
−
−

Republician 1

Democratic 2
Independent 3

What kind of symptoms does a person have?

−
−

−
−

Symptoms

None 0
Mild 1

Moderate 2
Severe 3

The two types of multiclass logistic regression are ordinal and nominal logistic regressions.

6.3.2.5 Nominal Logistic Regression
It is a type of multiclass logistic regression, where the target-dependent variable consists of more
than two class labels. There is no inherent or natural ordering present in nominal class variables.

FIGURE 6.3 Binary logistic regression.

225Supervised Learning: Classification

Examples of the nominal variable are

−
−

−
−

Occupationalstatus

Self employed 0

 Government employee 2

Privateemployee 3

Unemployed 1

For instance, let us consider a nominal variable called the type of a target variable. We aim to clas-
sify the target variable based on the input variables age-group and smoking.

 =
−
−

−

YTarget dependent variable Cancer type

 Lungcancer 0,

Mouthcancer 1

other 2

 =
≤
>

xIndependentvariable Agegroup

0 if 50

1 if 501

 =
−

−

xIndependentvariable Smoking

0 Nonsmoker

1 Smoker
2

To perform multiclass logistic regression, let us assume any category as a reference and then sepa-
rately compare with the other two categories. For example, let us consider lung cancer {0} as a refer-
ence category and first compare mouth cancer {1} versus lung cancer {0} and later other {2} versus
lung cancer {0}. Then, the odds ratio (OR) needs to be calculated for each separate comparison.

()
()= =

=
P Y

P Y
OR

1

0
1vs0

()
()= =

=
P Y

P Y
OR

2

0
2vs0

The logit expression for two comparisons is given as

()
()

()
()

=
=

=
=

P Y

P Y

P Y

P Y
ln

1

0
and ln

2

0

The logistic function for category mouth cancer {1} versus lung cancer {0} is

()

()
=

= π

=

+ β β β()− + +

P Y x x

P Y x x e
ln

1 ,

0 ,

1

1

1 2

1 2
agegroup smoking0 1 2

The logistic function for category other {2} versus carcinoma {0} is

()
()

=
=

=

+ β β β()− + +

P Y x x

P Y x x e o
ln

2 ,

0 ,

1

1

1 2

1 2
agegroup smoking1 2

226 Machine Learning for Decision Sciences with Case Studies in Python

6.3.2.6 Ordinal Logistic Regression
It is a type of multiclass logistic regression, where the target variable consists of more than two class
labels. The natural order is present in the ordinal class variable. Examples of the ordinal variable are
the performance of students and tumor grade.

Tumor grade

Well differentiated

Modratelydifferentiated

Poorlydifferentiated

Performanceof student
Good

Average

Poor

6.3.3 oPtiMization ProbleM

Optimization is a minimization or maximization problem. Let the actual output be y and the pre-
dicted output be ŷ, and the objective is to minimize the difference between the predicted output and
actual output as given in Equation 6.4.

 ()−y yObjective is tomin ˆ (6.11)

Cross-entropy loss function LCE is the function used in logistic models

 ()= −L p y xlogCE (6.12)

 ()() ()= + − −p y x y y y ylog | log ˆ 1 log 1 ˆ (6.13)

 ()()= − + − − L y y y ylog ˆ 1 log 1 ˆCE (6.14)

6.3.4 regUlarization

The model performs well for training data and does not classify new unseen data, which is known
as the overfitting problem. Overfitting occurs when our model fits with too much data. This can be
resolved by using regularization term to generalize the logistic regression model. Regularization
can be done by adding a penalty to the weight parameters. L1 and L2 regularizations are the
two forms of regularizations. L2 regularization is a widely used one, and the general form is in
Equation 6.15.

 ∑λ λ=
=

w wj

j

m

2
| |

2
2 2

1

 (6.15)

where λ is the regularization parameter.

227Supervised Learning: Classification

6.3.5 real-worlD aPPlications

6.3.5.1 Medical Diagnosis
Several studies utilized logistic regression for disease diagnosis. Evans County dataset collected by
cohort study predicts the presence of heart disease using the logistic regression model. Some of the
variables of the Evans County dataset are given in Table 6.3.

The multiple logistic regression form to predict coronary heart disease is given in Figure 6.4.

 ()
()=

− =

 =

+ β β β β β()− + + + +

P

P e
ln

CHD 1 | CAT,CHL,SMK,ECG

1 CHD 1 | CAT,CHL,SMK,ECG

1

1 CAT CHL SMK ECG0 1 2 3 4

Several studies on cancer survival utilized the cancer dataset and performed multiclass ordinal
logistic regression, as shown in Figure 6.5. Some of the variables of the cancer dataset are given in
Table 6.4.

6.3.5.2 Text Classification
Data scientist widely uses logistic regression for text analysis and classification. Several applications
such as sentiment analysis, Twitter data classification, spam email identification, and recommenda-
tion system utilize logistic regression. For example, you have a movie review, says “Very Boring,”
and the aim is to predict whether this review has a positive or negative review, as given in Figure 6.6.

6.3.5.3 Marketing
The logistic regression technique is widely used to analyze customer behavior, retain the customer,
and check a customer’s creditworthiness. Customer churn prediction application uses logistic

TABLE 6.3
Evans County Dataset Variables Description

Variable Value Type

CHD (coronary heart disease) 1 – present
0 – absent

Discrete, binary value

CAT (catecholamine level) 1 – high
0 – normal

Discrete, binary value

CHL (cholesterol) - Continuous

SMK (smoking) 1 – ever smoked
0 – never smoked

Discrete, binary value

ECG (ECG abnormality) 1 – presence
0 – absence

Discrete, binary value

FIGURE 6.4 Binary multiple logistic regression.

228 Machine Learning for Decision Sciences with Case Studies in Python

regression technique more efficiently. In churn prediction, the logistic regression model classifies
customers into three types, namely newly acquired customer, existing customer, and churn cus-
tomer (who decided to end their relation). The customer can end their relationship based on various
factors such as customer service. The variable description of churn prediction is given in Table 6.5.

6.3.6 logistic regression in Practice Using Python

Logistic regression is named for the function used at the core of the tactic, the logistic function. The
logistic function, also called the sigmoid function, is developed by statisticians to elucidate proper-
ties of an increase in population, rising quickly and maxing out at the environment’s carrying capac-
ity. It’s an S-shaped curve that assumes any real-valued number and maps it into a worth between 0
and 1 but never exactly at those limits.

 ()+ −e1 1 value^

TABLE 6.4
Endometrial Cancer Dataset

Variable Value Type

Grade 0 – well-differentiated
1 – moderately differentiated
2 – poorly differentiated

Discrete, multiclass ordinal

Estrogen 1 – ever used
0 – never used

Discrete, binary value

Age - Continuous

SMK(smoking) 1 – current smoker
0 – not a current smoker

Discrete, binary value

FIGURE 6.6 Logistic regression in text classification.

FIGURE 6.5 Ordinal multi-class logistic regression.

229Supervised Learning: Classification

where e is that the base of the natural logarithms (Euler’s number or the EXP() function in your
spreadsheet) and value is that the particular numerical value that you just simply want to remodel.
Below might be a plot of the numbers between −5 and 5 transformed between the range 0 and 1
using the logistic function.

Logistic regression could also be a linear method, but the predictions are transformed using the
logistic function. The impact of this is often that we will not understand the predictions as a linear
combination of the inputs as we will with linear regression; for instance, continuing from the above,
the model is often stated as

 ()= ++ +p X e eb b X b b X() 1^() ^()0 1 0 1

We don’t want to dive into the math an excessive amount, but we will rotate the above equation as
follows (remove the exponent term by adding a logarithm (ln) to the other):

 () = +p X p X b b Xln () 1 – () *0 1

This is beneficial since we’ll notice that the output on the right is calculated linearly again (just like
linear regression), and the input on the left might be a log of the default class’s probability. This ratio
on the left is known as the default class’s chances (we’ve always used odds instead of probabilities;
for example, odds are used in horse racing instead of probabilities). Odds are calculated as a ratio of
the probability of an event divided by the probability of not occurring; for example, 0.8/(1 − 0.8) has
a probability of 4. So instead, we could write:

 = +b b Xln(odds) *0 1

We call this left side the log-odds or the probit since the chances are log-converted. Of course, other
types of functions can be used for the transform (which is beyond the scope of this article). Still,
it’s customary to ask for the transformation that relates the linear regression equation to the prob-
abilities due to the link function, such as the probit link function. Then, we can return the exponent
to its appropriate place and express it as

 ()= +e b b Xodds *^
0 1

All of this lets us see that the model is still a linear combination of inputs but that this linear com-
bination is related to the default class’s log-odds. For explaining the logistic regression, we will be
using a sample dataset called the Titanic dataset. Our goal is to predict, -the values for the variables
(Pclass – Passenger class of travel, Name of the passenger, gender of the passenger, Age of the
passenger, If they are related to any of other passengers – (like a spouse, sibling, or parent/child of
another passenger and the fare paid) – if the person could have survived in the titanic mishap.

TABLE 6.5
Churn Prediction

Variable Value Type

Customer (y) 0 – new customers
1 – existing customer
2 – churn customer

Discrete, multiclass

Customer service (x1) 1 – satisfied
0 – not satisfied

Discrete, binary value

230 Machine Learning for Decision Sciences with Case Studies in Python

import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import sklearn

from pandas import Series, DataFrame
from pylab import rcParams
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn.metrics import classification_report

Survived Pclass Name Sex Age
Siblings/Spouses

Aboard
Parents/Children

Aboard Fare

0 3 Mr. Owen Harris Braund Male 22 1 0 7.25

1 1 Mrs. John Bradley (Florence
Briggs Thayer) Cumings

Female 38 1 0 71.2833

1 3 Miss. Laina Heikkinen Female 26 0 0 7.925

1 1 Mrs. Jacques Heath (Lily May
Peel) Futrelle

Female 35 1 0 53.1

0 3 Mr. William Henry Allen Male 35 0 0 8.05

0 3 Mr. James Moran Male 27 0 0 8.4583

0 1 Mr. Timothy J McCarthy Male 54 0 0 51.8625

0 3 Master. Gosta Leonard Palsson Male 2 3 1 21.075

1 3 Mrs. Oscar W (Elisabeth
Vilhelmina Berg) Johnson

Female 27 0 2 11.1333

1 2 Mrs. Nicholas (Adele Achem)
Nasser

Female 14 1 0 30.0708

1 3 Miss. Marguerite Rut
Sandstrom

Female 4 1 1 16.7

1 1 Miss. Elizabeth Bonnell Female 58 0 0 26.55

0 3 Mr. William Henry
Saundercock

Male 20 0 0 8.05

0 3 Mr. Anders Johan Andersson Male 39 1 5 31.275

0 3 Miss. Hulda Amanda Adolfina
Vestrom

Female 14 0 0 7.8542

1 2 Mrs. (Mary D Kingcome)
Hewlett

Female 55 0 0 16

0 3 Master. Eugene Rice Male 2 4 1 29.125

1 2 Mr. Charles Eugene Williams Male 23 0 0 13

0 3 Mrs. Julius (Emelia Maria
Vandemoortele) Vander Planke

Female 31 1 0 18

1 3 Mrs. Fatima Masselmani Female 22 0 0 7.225

0 2 Mr. Joseph J Fynney Male 35 0 0 26

1 2 Mr. Lawrence Beesley Male 34 0 0 13

231Supervised Learning: Classification

The first thing we are going to do is to read in the dataset using the Pandas' read_csv() function.
Then, we will put this data into a Pandas DataFrame, called “titanic,” and name each of the columns.

data = pd.read_csv("titanic.csv")
data.columns = ['Survived','Pclass','Name','Sex','Age','Siblings/Spouses
Aboard','Number of Parents/Children Aboard','Fare']
data.head()

The OUTPUT is shown below – top 5 values

6.3.6.1 Variable Descriptions
Survived – Survival (0 = No; 1 = Yes); Pclass – Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd); Name –
Name; Sex – Sex; Age – Age; SibSp – Number of Siblings/Spouses Aboard; Parch – Number of
Parents/Children Aboard; Fare – Passenger Fare (British pound)

6.3.6.2 Checking for Missing Values
It’s easy to check for missing values by calling the isnull() method, and the sum() method off of that,
to return a tally of all the true values that are returned by the isnull() method.

data.isnull()
#The OUTPUT is shown below.

Survived Pclass Name Sex Age
Siblings/Spouses

Aboard
Number of Parents/

Children Aboard Fare

0 0 3 Mr. Owen Harris Braund Male 22.0 1 0 7.2500

1 1 1 Mrs. John Bradley (Florence
Briggs Thayer) Cum...

Female 38.0 1 0 71.2833

2 1 3 Miss. Laina Heikkinen Female 26.0 0 0 7.9250

3 1 1 Mrs. Jacques Heath (Lily
May Peel) Futrelle

Female 35.0 1 0 53.1000

4 0 3 Mr. William Henry Allen Male 35.0 0 0 8.0500

Survived Pclass Name Sex Age Siblings/Spouses Aboard Number of Parents/Children Aboard Fare

0 False False False False False False False False

1 False False False False False False False False

2 False False False False False False False False

3 False False False False False False False False

4 False False False False False False False False

5 False False False False False False False False

6 False False False False False False False False

7 False False False False False False False False

8 False False False False False False False False

9 False False False False False False False False

10 False False False False False False False False

11 False False False False False False False False

12 False False False False False False False False

13 False False False False False False False False

14 False False False False False False False False

15 False False False False False False False False

(Continued)

232 Machine Learning for Decision Sciences with Case Studies in Python

Survived Pclass Name Sex Age Siblings/Spouses Aboard Number of Parents/Children Aboard Fare

16 False False False False False False False False

17 False False False False False False False False

18 False False False False False False False False

19 False False False False False False False False

20 False False False False False False False False

21 False False False False False False False False

22 False False False False False False False False

23 False False False False False False False False

24 False False False False False False False False

25 False False False False False False False False

26 False False False False False False False False

27 False False False False False False False False

28 False False False False False False False False

29 False False False False False False False False

...

857 False False False False False False False False

858 False False False False False False False False

859 False False False False False False False False

860 False False False False False False False False

861 False False False False False False False False

862 False False False False False False False False

863 False False False False False False False False

864 False False False False False False False False

865 False False False False False False False False

866 False False False False False False False False

867 False False False False False False False False

868 False False False False False False False False

869 False False False False False False False False

870 False False False False False False False False

871 False False False False False False False False

872 False False False False False False False False

873 False False False False False False False False

874 False False False False False False False False

875 False False False False False False False False

876 False False False False False False False False

877 False False False False False False False False

878 False False False False False False False False

879 False False False False False False False False

880 False False False False False False False False

881 False False False False False False False False

882 False False False False False False False False

883 False False False False False False False False

884 False False False False False False False False

885 False False False False False False False False

886 False False False False False False False False

233Supervised Learning: Classification

887 rows × 8 columns

data.isnull().sum()

#The output is shown below.

Survived 0
Pclass 0
Name 0
Sex 0
Age 0
Siblings/Spouses Aboard 0
Number of Parents/Children Aboard 0
Fare 0
dtype: int64
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 887 entries, 0 to 886
Data columns (total 8 columns):
Survived 887 non-null int64
Pclass 887 non-null int64
Name 887 non-null object
Sex 887 non-null object
Age 887 non-null float64
Siblings/Spouses Aboard 887 non-null int64
Number of Parents/Children Aboard 887 non-null int64
Fare 887 non-null float64
dtypes: float64(2), int64(4), object(2)
memory usage: 55.5+ KB

So let’s just go ahead and drop all the variables that aren’t relevant for predicting survival. We
should at least keep the following:

Survived: This variable is relevant.
Pclass: Does a passenger’s class on the boat affect their
survivability?

Sex: Could a passenger’s gender impact their survival rate?
Age: Does a person’s age impact their survival rate?
SibSp: Does the number of relatives on the boat (siblings or a
spouse) affect a person’s survivability? Probability

Parch: Does the number of relatives on the boat (children or
parents) affect a person’s survivability? Probability

Fare: Does the fare a person paid affect his survivability?
Maybe: let's keep it.

titanic_data = data.drop(['Pclass','Name'], 1)
titanic_data.head()

http://data.info(

234 Machine Learning for Decision Sciences with Case Studies in Python

#The output is shown below – top 5 rows

6.3.6.3 Converting Categorical Variables to a Dummy Indicator
The next thing we need to do is reformat our variables so that they work with the model. Specifically,
we need to reformat the Sex and Embarked variables into numeric variables.

gender = pd.get_dummies(titanic_data['Sex'],drop_first=True)
gender.head()

itanic_dmy = pd.concat([titanic_data,gender],axis=1)
titanic_dmy.head()

titanic_dmy.drop(['Fare'],axis=1,inplace=True)
titanic_dmy.head()

Male

0 1

1 0

2 0

3 0

4 1

Survived Age Siblings/Spouses Aboard Number of Parents/Children Aboard Fare Male

0 0 22.0 1 0 7.2500 1

1 1 38.0 1 0 71.2833 0

2 1 26.0 0 0 7.9250 0

3 1 35.0 1 0 53.1000 0

4 0 35.0 0 0 8.0500 1

Survived Age Siblings/Spouses Aboard Number of Parents/Children Aboard Male

0 0 22.0 1 0 1

1 1 38.0 1 0 0

2 1 26.0 0 0 0

3 1 35.0 1 0 0

4 0 35.0 0 0 1

Survived Sex Age Siblings/Spouses Abroad Number of Parents/Children Aboard Fare

0 0 Male 22.0 1 0 7.2500

1 1 Female 38.0 1 0 71.2833

2 1 Female 26.0 0 0 7.9250

3 1 Female 35.0 1 0 53.1000

4 0 Male 35.0 0 0 8.0500

235Supervised Learning: Classification

X = titanic_dmy.ix[:,(1,2,3,4)].values
y = titanic_dmy.ix[:,0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =.3,
random_state=25)

Deploying and evaluating the model:

LogReg = LogisticRegression()
LogReg.fit(X_train, y_train)

#The OUTPUT is shown below.

LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
 verbose=0, warm_start=False)

y_pred = LogReg.predict(X_test)
y_pred

#The OUTPUT is shown below.

array([0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,
 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0,
 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0,
 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,
 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
 0, 0, 0], dtype=int64)

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_pred)
confusion_matrix

#The OUTPUT is shown below.

array([[140, 23],
 [31, 73]], dtype=int64)

The confusion matrix results tell us that 137 and 69 are the numbers of correct predictions.
Conversely, 34 and 27 are the numbers of incorrect predictions.

print(classification_report(y_test, y_pred))

#The OUTPUT is shown below.

Precision Recall F1-score Support

0 0.82 0.86 0.84 163

1 0.76 0.70 0.73 104

Avg/total 0.80 0.80 0.80 267

236 Machine Learning for Decision Sciences with Case Studies in Python

6.4 DECISION TREE CLASSIFIER

The decision tree belongs to the nonparametric supervised learning. A decision tree is one of the
most popular classification and prediction algorithms. It is used in data mining, operation research,
and machine learning (ML). A decision tree is a tree-structured classifier. The decision node and
leaf node are the two nodes in the decision tree. A test is done on the decision node. A leaf node rep-
resents the class label. The path from the root to the leaf represents the classification rule. A decision
tree is a flowchart-like structure. The test is conducted on each node of the decision tree, and the
branch represents the outcome of the test. The last node or leaf node represents the class label. The
path from the root node to the leaf node represents the classification rule. The goal of the decision
tree is to create a decision model from the dataset that predicts the value of a target variable by using
a simple decision rule. A decision tree is a visual representation of the decision. The real data have
many features (i.e., in iris flower, the features are petal width and length). These features are repre-
sented clearly in the decision tree. The relationship between the features can be easily identified by
using the decision tree. A decision tree can be built efficiently by using the decision tree algorithm.

The decision tree problem can be solved from the starting node (i.e., root node) to the end node.
Figure 6.7 shows the sample decision tree. The decision tree can be used for classification or regres-
sion. A decision tree is very easy to understand because it has a graphical representation.

The decision trees are constructed based on the attributes. The attribute for Figure 6.7 is whether
the climate is rainy or not. Based on the attribute, the decision trees are constructed. This section
explains in detail about the selection of attributes for using a decision tree algorithm. The perfor-
mance of decision trees is affected by the overfitting and underfitting problem. The detailed proce-
dure for solving these problems is also discussed in this section. Nowadays, the decision trees play a
vital role in medical, library management, healthcare management, business management, banking
sector, etc.; these applications are discussed in detail.

6.4.1 iMPortant terMinology in the Decision tree

Figure 6.8 represents a simple decision tree. The various terminologies used in the decision tree are
as follows:

Root node: The entire population of the tree is represented by the root node. The root node is
divided into two or more nodes.

Decision node: The subnode dividing into a further subnode is called a decision node.
Splitting: The process of splitting a node into two or more nodes.
Leaf/terminal node: This node is also called a terminal node. A node that does not split

further is called a terminal node.
Pruning: The removal of a subnode in a decision tree is called pruning.

FIGURE 6.7 Sample decision tree.

237Supervised Learning: Classification

Branch/subtree: A subsection of the entire tree is called a branch or subtree.
Parent node/child node: A node dividing into subnodes is called a parent node. A subnode

is called a child node.
Information gain: The amount of energy that cannot be used to do work or a measure of

disorder in the system.

 ∑=
=

E s P P
i

c

() log
1

 (6.16)

where
s is the training dataset
c is the number of the target class
P is the proportion of training data belonging to the target class

6.4.2 exaMPle for Decision tree

The decision tree in Figure 6.9 represents the sample decision tree for the selection of cars. From the
decision tree, we can easily identify the car having high mileage (i.e., heavy weighted car and less
weighted car with horse power >86) selected for buying a car.

FIGURE 6.8 Decision tree with terminology.

FIGURE 6.9 Decision tree for buying a car.

238 Machine Learning for Decision Sciences with Case Studies in Python

The decision tree in Figure 6.10 represents the decision for playing tennis. The status of climate is
checked at the root node. The climate may be sunny, rainy, and overcast. The tennis player can select
the leaf node having Yes for playing tennis. Table 6.6 represents the condition for playing tennis.

6.4.3 saMPle Decision tree

Let us consider a simple example of creating a decision tree for crediting a loan, as shown in
Figure 6.11. First, the data are spitted into two parts based on the employment status at the root
node (i.e., employed or not employed).

Decision tree classification for unemployed: The decision tree goes to node A if the applicant
is not employed. Again, the data are divided based on the credit score (i.e., high or low). The loans
are approved for the applicant having a high credit score.

Decision tree classification for unemployed: The decision tree goes to node B if the applicant
is employed. Again, the data are divided based on the income (i.e., high or low). The loans are
approved for the applicant having a high income.

6.4.4 Decision tree forMation

Let us consider a dataset having four attributes, namely A1, A2, A3, and A4. Let us assume that
the decision tree is started with attribute A1 (i.e., root node). The data are divided into two parts at
the root node based on attribute A1. Data d1 represent the data satisfying the attribute A1. Data d2
represent the data that are not satisfying attribute A1, as shown in Figure 6.12.

FIGURE 6.10 Decision tree for weather forecast.

TABLE 6.6
Weather Forecast Data

Attribute Condition

Yes Overcast

Sunny and high humidity

Rainy and high wind blow

No Sunny and less humidity

Rainy and low wind blow

239Supervised Learning: Classification

Data d1: All the data in d1 belong to the same class. So it becomes a leaf node.
Data d2: The data d2 belong to a different class. So the data are divided further based on the

attribute A3. d3 represent the data satisfying the condition A3. d4 represent the data that
are not satisfying condition A3.

FIGURE 6.11 Decision tree for crediting loan.

FIGURE 6.12 Building a decision tree.

240 Machine Learning for Decision Sciences with Case Studies in Python

Data d3: The data d3 belong to a different class. So the data are divided further based on the
attribute A4. d5 represent the data satisfying attribute A4, and d6 represent the data that
are not satisfying the condition A4.

Data d5, d6, and d3: The data in d5, d6, and d3 belong to the same class. So these data belong
to a leaf node.

6.4.5 algorithMs UseD for Decision trees

The dataset having many attributes (i.e., bank loans are given based on the attributes like employ-
ment status and salary) for root nodes are calculated from the following algorithm:

 1. CART 4.5
 2. ID3
 3. C 4.5

In the ID3 algorithm, the information gain is used for the selection of root attributes. The infor-
mation gain is calculated for each attribute, and the attributes having high information gain are
selected as the root node. In C 4.5 algorithm, the gain information is used for the calculation of root
attributes. The attributes having maximum gain ratio are selected as the root node. The CART 4.5
algorithm uses the Gini index to identify the attributes for the root node. The attribute having a low
Gini index is selected as the root node.

6.4.5.1 ID3 Algorithm
If the decision tree has multiple attributes, then root node attributes can be selected using entropy
and information gain.

Entropy: Entropy is a measure of disorder. Entropy is small for the sample with only positive
or negative values. It is high for the half-positive or half-negative value of the sample. Entropy is
defined as the average optimal number of bits to encode information about certainty and uncertainty
about Sample S.

Information gain: Gain is a measure of uncertainty reduction. The sample having different
classes has less information gain. Information gain is expressed in entropy.

Let S be the sample of training examples, p+ be the number of positive samples, and p− be the
number of negative samples. Then, sample entropy is shown in Figure 6.13.

() ()

()

= − + −

= − −

+ + − −

+ + −

p p p p

p p p

Entropy(S) log log

 log

2 2

2

 (6.17)

Information gain of samples concerning attribute a is given as

 ∑ ()= − Sv

S
svGain(S,A) Entropy(s) entropy (6.18)

S.No. Algorithm Parameter Maximum/Minimum

1 ID3 algorithm Information gain Maximum

2 C 4.5 Gain index Maximum

3 CART Gini index Minimum

241Supervised Learning: Classification

6.4.5.2 C 4.5 Algorithm
C 4.5 algorithm is used to generate decision tree, and it’s developed by Ross Quinlan. It is an exten-
sion of the ID3 algorithm. The decision tree developed by using C 4.5 is used for classifications; it
is called a statistical classifier. The data are split by using the gain ratio. The attributes having the
highest gain ratio are used as root nodes. The C 4.5 is similar to the ID3 algorithm, but additionally,
normalization is applied in this algorithm.

∑
()=

=

D

D

D

D
j j

Gain ratio Gainof theattribute/Splitinfo A .

Split info(A) log2

 (6.19)

6.4.5.3 CART Algorithm
CART represents the classification and regression tree algorithm. Breiman discovered this algo-
rithm in 1984. It’s a simple binary tree where a tree has one root node and two child nodes. This
algorithm can be used in classification and regression problems. The classification is done by using
the Gini index. The Gini index represents the squared probability of each class.

 ∑= −
=

p
k

n

Gini index 1 2

0

 (6.20)

where n represents the number of probabilities.

6.4.6 overfitting anD UnDerfitting

Overfitting is the phenomenon in which the learning process matches exactly with all the train-
ing data. As a result, the model’s accuracy is high for trained data and low for untrained data.
Overfitting (Figure 6.14) occurs in decision trees when the tree is designed to fit all samples in the
training dataset perfectly. Underfitting occurs when the training model does not capture the under-
lying pattern. Underfitting (Figure 6.14) is destroying the accuracy of our model of ML.

6.4.6.1 Overfitting
• Overfitting is a scenario in which the system is learned with the entire training data.
• It results in an inaccurate prediction of the data.
• Overfitting can be solved by using pruning (i.e., remove the decision node from the leaf

node without reducing the accuracy).

FIGURE 6.13 Entropy curve.

242 Machine Learning for Decision Sciences with Case Studies in Python

6.4.6.2 Underfitting
• Underfitting model is not a suitable model, and it will result in poor performance on train-

ing data.

A more splitting of data will result in a larger decision tree. The larger decision tree has less error
rate. The overfitting results in a higher error on training data and a low error on test data. The accu-
racy is high on the training data but less on test data, as shown in Figure 6.15.

The overfitting occurs due to the following condition:

• Due to noise in the data
• Not enough data

FIGURE 6.14 Overfit and underfit curve.

FIGURE 6.15 Accuracy of decision tree.

243Supervised Learning: Classification

Due to noise
In Figure 6.16, the noise point occurs in the training data. The system is trained with noise points

on overfitting. This will produce an error in the test data “Not enough data.”
The above training sample has two classes (one represents a circle and another represents a star).

The number of data belonging to star classification is less at the bottom, as shown in Figure 6.17.
This leads to misclassification.

6.4.6.3 Pruning to Avoid Overfitting
Overfitting can be eliminated by the following method:

• Prepruning
• Postpruning

FIGURE 6.16 Decision tree with noise point.

FIGURE 6.17 Decision tree with less data.

244 Machine Learning for Decision Sciences with Case Studies in Python

6.4.6.3.1 Prepruning
It is the process of pruning the decision tree on growing. Tree growth is stopped for negative gain
or low positive benefit value. It is used to stop overfitting at an earlier stage.

Considering Figure 6.18, the root node is divided based on an attribute A. Calculate the gain of
the decision tree at S1 and S2. The decision tree will be stopped at S1 and S2 for the low or negative
value of gain, as shown in Figure 6.18.

6.4.6.3.2 Postpruning
Postpruning is also called backward pruning (Figure 6.19). First, a complete decision tree is con-
structed fully. Then, the accuracy of the tree is improved by removing the least significant branches.
In postpruning, a decision tree is grown fully first. Several heuristics are used to delete subnodes.
The error is measured on the whole tree (i.e., error (T)) and at point ST1 (i.e., error (st1)). If the error
at ST1 is small than error T, then we can remove the subtree. The pruning can be done by using
reduced error pruning, minimum error pruning, and cost-based pruning. The reduced error pruning
is the simplest pruning algorithm.

In this method, the error is measured on the whole tree (i.e., error (T)) and at point ST1 (i.e., error
(st1)). If the error at ST1 is small than error T, then we can remove the subtree. In the minimum error
pruning, the error rate is calculated at each non-leaf node by pruning subtree and without pruning
subtree. If the error rate of the subtree with pruning is high, then keep that subnode. In cost-based
pruning, the error and cost are also considered for pruning the data.

6.4.7 aDvantages anD DisaDvantages

6.4.7.1 Advantages
• Interpretability: Easy to understand. It can handle both categorical and numerical data
• Useful in data exploration and deal with missing data points
• Nonparametric method
• Capture nonlinear relationship
• Simple rule-based approach
• Feature scaling is not explicitly required for the algorithm work
• Quite useful for exploring a large dataset to pick out useful variables.
• Little effort is required for data preparation.

6.4.7.2 Disadvantages
• A highly complicated decision tree has a low bias.
• Overfitting is the major problem of decision tree
• It does not apply to the continuous variable
• Cost is high

FIGURE 6.18 Prepruning at stage S1.

245Supervised Learning: Classification

6.4.8 Decision tree exaMPles

Example 6.1: A Simple Decision Tree for Classification of Iris Flower

The problem describes the creation of a very simple decision tree using iris flower. The iris flower
is classified based on the petal length. The iris flower with a petal length >2.45 belongs to versi-
Setsoa and <1.75 belongs to Versicolor. The iris flower having petal length between 2.45 and 1.75
belongs to Verginica.

Draw a decision tree based on the data in Table 6.7 for the iris flower. The petal length of the
iris flower differs for each flower. Take the petal length as an attribute for creating a decision tree.

Consider the decision tree shown in Figure 6.20 for the classification of the iris flower.
The three types of iris flower are iris Versisetosa, Versicolor, and Virginica. The data are divided
into two parts at the root node based on the petal width (i.e., petal width having a length >2.45 cm).
A petal width >2.45 cm belongs to Versisetosa. Again at point B, the data are divided further based
on the petal width. Petal widths >1.75 are classified as Versicolor, and petal widths <1.75 are clas-
sified as Virginica.

FIGURE 6.19 Postpruning of decision tree.

TABLE 6.7
Iris Flower Data

Flower Petal Length

Versisetosa >2.45 cm

Versicolor <1.75 cm

Verginica Between 2.45 and 1.75

246 Machine Learning for Decision Sciences with Case Studies in Python

Example 6.2: Oil Drill Using Decision Tree

Assume that you have land that you believe may have oil underground. There is only a 15%
chance of having oil if you drill, but the payoff is $50,000. Therefore, it costs $15,000 to drill.
Develop a decision tree for the above problem.

Root node: In the above problem, the root node decides whether the land has oil or not.
The root node has two probabilities. The land may or may not have fuel. This is referred to as
a split point. The given data are divided into two parts at a split point. The land has oil, and the
land does not have oil, as shown in Figure 6.21. Table 6.8 represents the profit for drilling the land
having oil.

= =

=

The profit obtained for drilling the land 50,000 – 15,000 35,000

The profit obtained for not drilling the land 0

FIGURE 6.20 A decision tree for classification of iris flower.

FIGURE 6.21 Decision tree for oil from the root node.

TABLE 6.8
Drilling the Land Having Oil

Status Cost

The land is drilled Cost = $15,000

The land is not drilled Cost = 0

247Supervised Learning: Classification

Figure 6.22 represents the decision tree for drilling the land having oil.
Table 6.9 represents the cost of drilling the land having no oil.

= −

=

Loss for drilling the land 15,000

Loss for not drilling the land 0

Figure 6.23 represents the simple decision tree for drilling land. By using the decision tree, we can
infer the profit and loss for drilling land for oil.

Example 6.3: Decision Tree for Purchasing Laptop

Create a decision tree for the following problem. Table 6.10 gives the details of purchasing a
laptop.

CALCULATION OF MUTUAL INFORMATION

Mutual information between two random variables X and Y is given as

 ()= −I X Y H X H X Y(;) ()

FIGURE 6.22 Decision tree for oil from the root node to leaf node.

TABLE 6.9
Drilling Land Having no Oil

Status Cost

The land is drilled $15,000

The land is not drilled $0

248 Machine Learning for Decision Sciences with Case Studies in Python

where
I(X; Y) is mutual information for X and Y
H(X) is entropy of X
H (X|Y) is the conditional entropy for X given Y.

() ()

() ()

() ()

= − −

= −

= +

= +

=

The mutual informationof twoclasses 4 / 7 log 4 / 7 3 / 7 log 3 / 7

4 / 7 log 0.571 3 / 7 log 0.48

4 / 7 0.808 3 / 7 1.05

0.461 0.45

0.911

2 2

2 2

FIGURE 6.23 Decision tree for oil drill.

TABLE 6.10
Data for Purchasing Laptop

RID Age Earning Class

1 ≤30 High No

2 ≤30 High No

3 31 … 40 High Yes

4 >40 Medium Yes

5 >40 Low Yes

6 >40 Low No

7 31 … 40 Low Yes

249Supervised Learning: Classification

CALCULATION OF GAIN BASED ON AGE

For age, we have two values for ≤ 30(1 – No, 1 – Yes), 2 values for 31 … 40 (2 – Yes, 0 – No), and
3 values for > 40(2 – Yes, 1 – No).

()
()
() () () ()

() ()

()

= + + − −

= − + −

= +

=

Entropy 2 / 7 0 2 / 7 0 3 / 7 2 / 7 log 2 / 7 1 / 7 log 1 / 7

3 / 7 2 / 7 1.83 1 / 7 2.81

3 / 7 0.5228 0.4014

0.3961

2 2

= −

=

Gain 0.911 0.391

0.52

CALCULATION BASED ON EARNING

For earning, we have three values for high (2 – No, 1 – Yes), one value for medium (1 – Yes, 0 –
No), and three values for low (2 – Yes, 1 – No).

()
()

() () ()

() ()

= − −

+ + − − − −

=

Entropy 3 / 7 1 / 7 log 1 / 7 2 / 7 log 2 / 7

0 3 / 7 2 / 7 log 2 / 7 1 / 7 log 1 / 7

0.7922

2 2

2 2

= −

=

Gain 0.911 0.7922

0.1188

Since age has the highest again, the data are divided based on the age factor, as shown in
Figure 6.24.

RID Age Class

1 ≤30 No

2 ≤30 Yes

3 31 … 40 Yes

4 >40 Yes

5 >40 Yes

6 >40 No

7 31 … 40 Yes

RID Earning Class

1 High No

2 High No

3 High Yes

4 Medium Yes

5 Low Yes

6 Low No

7 Low Yes

250 Machine Learning for Decision Sciences with Case Studies in Python

In the above decision diagram, the age ≤ 30 falls under No class, as shown in Figure 6.25.
Similarly, the age 31–40 belongs to the Yes class, as shown in Figure 6.26.
The age >40 can be subdivided into two categories based on the earning. Using the above

decision tree, we can infer the probability of purchasing a laptop, as shown in Figure 6.27.

FIGURE 6.26 Decision tree for laptop purchase from the root node to leaf node.

FIGURE 6.24 Decision tree for laptop purchase from the root node.

FIGURE 6.25 Decision tree for laptop purchase from the root node to leaf node.

251Supervised Learning: Classification

Example 6.4: A Simple Decision Tree for Crediting Loan

Create a decision tree for crediting the loan.

 1. If the income is <$20 k, then no need to credit the loan.
 2. If income is between $20 k and 80 k, credit the loan if the experience is >2 years.
 3. If income is >$80 k, credit the loan.

A decision tree is constructed based on the income range. The application having income <$
20 k is rejected and income >$80 k is credited with a loan. An applicant with a salary between
$20 k and $80 k is divided further based on the experience details. From the decision tree shown
in Figure 6.28, the loans are credited for a person having experience >2 years and having a salary
>$20 k to $80 k and also for the person having a salary >$80.

FIGURE 6.27 Decision tree for laptop purchase from the root node to leaf node.

FIGURE 6.28 Decision tree for crediting the loan.

252 Machine Learning for Decision Sciences with Case Studies in Python

Example 6.5: Calculate the Entropy for the Given Sample

The entropy of the dataset is the sum of entropy for Yes and the sum of entropy for No.
There are four Yes and two No on the weather data.
The entropy of the weather dataset:

∑= −

= +

=

p c p cH(s) () log ()

0.3933 0.523

0.9163

2

() () ()()

() ()

= − = − − =

= − = =

P

P X

yes 4 / 6 log 4 / 6 0.66 0.599 0.3933

no 2 / 6 log 2 / 6 0.333 1.584 0.523

2

2

Example 6.6: Construct a Decision Tree for the Data Given in Table 6.11

There are five positive and five negative data

 () () () ()= − + − =Entropy 5 / 10 log2 5 / 10 5 / 10 log2 5 / 10 1

The results of gain based on age are presented in Table 6.12.

Climate Temperature Humidity Play

Sunny Hot High No

Rainy Mild Normal Yes

Sunny Mild Normal Yes

Rainy Mild High No

Sunny Hot Normal Yes

Rainy Cool Normal No

TABLE 6.11
Positive and Negative Data

Age Competition Type Profit

Old Yes Software Down

Old No Software Down

Old No Hardware Down

Mid Yes Software Down

Mid Yes Hardware Down

Mid No Hardware Up

Mid No Software Up

New Yes Software UP

New No Hardware Up

New No Software Up

253Supervised Learning: Classification

()
()

() ()

() () () ()

()()

= =

= + =

= =

= + + =

= − = − =

Entropy old 3 / 3log 3 / 3 0

Entropy mid 2 / 4 log 2 / 4 2 / 4 log2 2 / 4 1

Entropy new 3 / 3log 3 / 3 0

Entropy age 3 / 10 * 0 4 / 10 *1 3 / 10 * 0 0.4

Gain Classentropy Entropy age 1 0.4 0.6

2

2

The results based on competition are presented in Table 6.13.

()

()
()

() ()

() ()

()

()

= + =

= + =

= + =

= − = − =

Entropy yes 1 / 4 log 1 / 4 3 / 4 log 3 / 4 0.81127

Entropy no 4 / 6 log 4 / 6 2 / 6 log 2 / 6 0.918295

Entropy competition 4 / 10 * 0.81127 6 / 10 0.9182 0.8745

Gain Classentropy Entropy competition 1 0.8745 0.1245

2 2

2 2

The results based on profit are presented in Table 6.14.

()

()

() () ()

() () ()

() ()

= + =

= + =

= + = =

= − = − =

Entropy software 1 / 2 log 1 / 2 1 / 2 log 1 / 2 1

Entropy hardware 1 / 2 log 1 / 2 1 / 2 log 1 / 2 1

Entropy type 2 / 4 1 2 / 4 1 4 / 4 1

Gain Classentropy Entropy type 1 1 0

2 2

2 2

TABLE 6.12
Calculation of Gain Based on Age

Age Positive Negative I (Pi, Ni)

Old 0 3 0

Mid 2 2 1

New 3 0 0

TABLE 6.13
Calculation Based on Competition

Competition Positive Negative I (Pi, Ni)

Yes 1 3 0.81127

No 4 2 0.918295

TABLE 6.14
Calculation Based on Profit

Type Positive Negative I (Pi, Ni)

Software 1 1 1

Hardware 1 1 1

254 Machine Learning for Decision Sciences with Case Studies in Python

Table 6.15 shows that age has high information gain. This is because the decision tree starts from
the age attribute, as shown in Figure 6.29.

In the above tree, the old and new parameters have a negative sample. So it represents the leaf
node as shown in Figure 6.30.

Again, the data are divided based on the competition, as shown in Figure 6.31.

FIGURE 6.29 Decision tree for attribute age.

FIGURE 6.30 Decision tree with a leaf node.

TABLE 6.15
Age and Profit

Age Profit

Old Down

Old Down

Old Down

Mid Down

Mid Down

Mid Up

Mid Up

New UP

New Up

New Up

255Supervised Learning: Classification

Example 6.7: The Toy Industry

ABC toys Pvt. Ltd is considering the addition of a new toy to its existing product line. Three alter-
native courses of action are available.

 a. Work overtime to meet the demand for the new toy. Overtime expenses are estimated at
Rs. 20,000 per month.

 b. Install new equipment for which fixed expenses per month are expected at Rs.80,000.
 c. Lease (rent) a machine at the rate of Rs. 35,000 per month.

Variable costs associated with the above three alternatives are Rs. 9, Rs. 7, and Rs. 8 per toy. The
price per unit of the toy, which is independent of the manufacturing alternative, is fixed at Rs. 15.
The expected demand for the toys is given below.

10,000 pieces with a probability of 0.5
20,000 pieces with a probability of 0.3
50,000 pieces with a probability of 0.2

Which alternatives should the company adapt to manufacture the toy?

GIVEN DATA

ABC toys had decided to add a new product. They have three alternate courses.

 1. If workers work overtime, they are paid Rs. 20,000 per month with a variable cost of Rs.
9 per toy

 2. If new equipment is installed, they have to pay 80,000 per month Rs. 7 per toy
 3. Lease the machine at the rate of 35,000 per month Rs. 8 per toy

The sales price of toys = Rs. 15

EXPECTED DEMAND

10,000 pieces with a probability of 0.5
20,000 pieces with a probability of 0.3
50,000 pieces with a probability of 0.2
There are three alternatives from a decision node as represented in Figure 6.32.
Each alternative node has three demands, as shown in Table 6.16.

= × × =

= =

Profit 10,000 15 – 10,000 9 – 20,000 15,0000 – 90,000 – 20,000

60,000 – 20,000 40,000

FIGURE 6.31 Decision tree for purchasing.

256 Machine Learning for Decision Sciences with Case Studies in Python

The decision tree for purchasing new equipment with profit value is shown in Figure 6.33.

 = × + × + × =At point 2 0.5 40,000 0.3 100,000 0.2 280,000 106,000

 = × + × + × =At the point3 0.5 0 0.3 80,000 0.2 320,000 88,000

 = × + × + × =At point 4 0.5 35,000 0.3 105,000 0.2 315,000 112,000

The decision tree for final equipment purchase is shown in Figure 6.34.

Example 6.8: Construct a Decision Tree for the Data in Table 6.17

The different nodes in the decision tree are illustrated in Figure 6.35.
First, we have to draw a decision node, as shown in Figure 6.36.
The outcome of stocks, MF, and bonds is growing and declining. Let us consider the stocks,

growing at 0.4 and declining at 0.6. The payoff is 70 and −13. The decision tree is shown in
Figure 6.37.

Similarly, we have to construct for other MF and bonds. The decision tree for stocks and MF is
shown in Figure 6.38 and for stocks and bonds in Figure 6.39.

FIGURE 6.32 Decision tree for purchasing new equipment.

TABLE 6.16
Alternatives and Their Demands

Alternatives Price per Unit V.C/Unit Monthly Profit

10,000 20,000 50,000

Overtime 15 9 40,000 100,000 280,000

New equipment 15 7 0 80,000 320,000

Leasing 15 8 35,000 105,000 315,000

257Supervised Learning: Classification

FIGURE 6.33 Decision tree for purchasing new equipment with profit value.

FIGURE 6.34 Decision tree for final purchasing equipment.

258 Machine Learning for Decision Sciences with Case Studies in Python

= × + × − =

= × + × − =

The expected value of the tree for sticks 0.4 70 0.6 (13) 20.2

The expected value of the decision tree for MF 53 0.4 0.6 (5) 18.2

Since bonds have 20, no calculation is required. The expected values are given in Table 6.18.
Among these values, the stocks have a high value. So the decision should be done on the

stocks.

FIGURE 6.35 Symbol for decision tree.

FIGURE 6.36 Root node for decision tree.

FIGURE 6.37 Decision tree for stocks.

TABLE 6.17
Growing Declining Data

Growing Declining

Stock 70 −13

Mutual funds 53 −5

Bonds 20 20

Probability 0.4 0.6

259Supervised Learning: Classification

Example 6.9: Construct a Decision Tree for the Data Given in Table 6.19

The probability for mobile production is 0.60 for profit and 0.40 for loss.
There are two technologies, A and B (Figure 6.40). So there are two possibilities (technology A

and technology B) (Figure 6.41).
$400,000 is credited for the technology A (profit)

$200,000 is credited for the technology A (loss)

FIGURE 6.38 Decision tree for stocks and MF.

FIGURE 6.39 Decision tree for stocks, MF, and bonds.

TABLE 6.18
Expected Results for Growing Declining Data

S.No. Company Expected Value

1 Stocks 20.2

2. MF 18.2

3 Bonds 20

260 Machine Learning for Decision Sciences with Case Studies in Python

TABLE 6.19
Mobile Production Data

Mobile Phase Production

Profit Loss

Technology A $400,000 $200,000

Technology B $300,000 $150,000

FIGURE 6.40 Classifying based on technology A and technology B.

FIGURE 6.41 Decision tree for classifying based on technology A and technology B..

261Supervised Learning: Classification

TECHNOLOGY A

The decision tree for profit and loss is shown in Figure 6.42
$300,000 is credited for the technology B (profit)
$150,000 is credited for the technology B (loss)

TECHNOLOGY B

Profit Loss

Amount Percentage Amount Percentage

$300,000 0.60 $150,000 0.40

Profit Loss

Amount Percentage Amount Percentage

$400,000 0.60 $200,000 0.40

FIGURE 6.42 Decision tree for profit and loss.

262 Machine Learning for Decision Sciences with Case Studies in Python

= × + ×

= +

=

Expected value for technology A 400,000 0.60 200,000 0.40

2,40,000 80,000

3,20,000

= × + ×

= +

=

Expected value for technology B 300,000 0.60 150,000 0.40

1,80,000 60,000

2,40,000

Hence, we conclude that among the groups, technology A has the highest value.

Example 6.10: Decision to Buy a New Product

A company wants to decide on a new product. They can buy a new product, or they can make
new products. There may be strong demand for the product or less demand for the product. The
strong demand for making the product is $25 million, and the weak demand for making the prod-
uct is $20 million loss. The strong demand for making the product is $5 million and weak demand
is $5 million loss. Draw the decision tree for the above problem.

The root node has two probabilities: They can either buy or make the new product. The cor-
responding decision tree is shown in Figure 6.43.

The decision tree is divided further for strong demand and weak demand, as presented in
Figure 6.44. The cost of strong demand is $25 million, and the cost of weak demand is −$20
million.

The cost of strong demand for buying is $5 million, and the cost of weak demand is −$5 mil-
lion, as shown in Figure 6.45.

()= × −

= −

=

The expected value for making the product (25 0.75) 20 0.20

18.75 4

14.75

= × − ×

= −

=

The expected value for buying the product (0.75 5) (5 0.20)

3.75 1

2.75

6.4.9 regression Using Decision tree

Decision tree regression extracts the features of the object and trains the model to predict the data.
The topmost node represents the root node, and the final node represents the leaf node. A decision

FIGURE 6.43 Root node for decision tree.

263Supervised Learning: Classification

FIGURE 6.44 Decision tree for profit and loss (make).

FIGURE 6.45 Decision tree for profit and loss (buy).

264 Machine Learning for Decision Sciences with Case Studies in Python

node has two or more sub-branches that represent the value to be tested. The regression tree will
predict the value.

Consider the following example for the regression tree. A medical company produces a drug for
the cold, and they have to determine a dosage of medicine. The medicine is given for different dos-
ages, and effectiveness is predicted by using a regression tree.

It’s difficult to solve the data in Figure 6.46 using linear regression. So it can be solved by using
a non-regression tree. A regression tree classification is done using numeric values, while in a clas-
sification tree, the data are classified using true or false conditions. The above decision tree has
low effectiveness for low dosage and high dosage. Introduce good results for medium dosage. The
regression tree starts if the dosage is <14.5 mL. The six samples belong to the dosage <14.5 mL, and
they have 4.2% of dosage effectiveness (Figure 6.47).

A dosage value >29 mL has 2.5% dosage effectiveness. The medium dosage has 52.8% effective-
ness. A dosage value >23.5mL has 100% dosage effectiveness. The corresponding decision tree is
shown in Figure 6.48.

A regression tree is used for the prediction. In Figure 6.49, a regression decision tree is con-
structed for the iris flower. Data are divided into the root node based on the condition ×1 ≥0.1973.
Again, the data are divided further until it reaches the leaf node. Suppose if you want to predict the
value 0.71, it traverses along the path and it reaches the value 0.1106.

FIGURE 6.46 Medical data for nonlinear regression.

FIGURE 6.47 Dosage <14.5.

265Supervised Learning: Classification

FIGURE 6.48 Decision tree for medical data.

FIGURE 6.49 Regression decision tree.

266 Machine Learning for Decision Sciences with Case Studies in Python

6.4.10 real-worlD exaMPles

A decision tree can be used in real-world problems. Some of the applications of the decision tree
(Figure 6.50) covered in this section are as follows:

 1. Predicting library book usage
 2. Identification of tumor
 3. Classification of telescope image
 4. Healthcare management
 5. Fault diagnosis
 6. Energy consumption
 7. Fraudulent statement detection

6.4.10.1 Predicting Library Book
A decision tree is used to predict the future use of the library book. Harvard College Library uses
this decision tree algorithm to move the book to off-site storage. The library has short storage space
and stores the low-demand book into remote storage. The wider library in Harvard College has a
lack of space problem. So they have to remove the old book and less useful modern book to remote
storage. The books having lower expected future usage have to be moved to the remote storage.

FIGURE 6.50 Application of decision tree.

267Supervised Learning: Classification

Comprehensive statistics have to be automated to select the book. The six attributes, such as check-
out details (number of past and last use), publication date, last use, language, country, and alphabetic
prefix, are taken. Based on the EAR value, the book is moved to the off-site storage.

Figure 6.51 represents the simple decision tree. First, the tree is classified based on the language
and then classified based on the publication country. The trees are also constructed based on the
single criteria (i.e., last use) as shown in Figure 6.52.

Figure 6.53 represents the decision tree classification based on Fussler and Simon’s choice policy.
First, a decision tree is constructed based on the root nodes divided between the language attribute
and children of the root node divided based on the publication date.

The ID3 algorithm is used for designing a decision tree. First, the information gain is calculated
for the different attributes, and the tree with the greatest gain is selected to divide the data. Then, the
nodes are created based on the checkout. Finally, the smoothed tree is evaluated by using pruning.

6.4.10.2 Identification of Tumor
The decision tree plays a major role in medical decision-making. The single decision tree boosted
the decision tree, and the decision tree forest is used in the decision tree. Decision tree classification
provides an effective method of categorizing datasets. Decision-making can be done at the train-
ing and testing stages. For example, breast cancer is the most commonly diagnosed cancer among

FIGURE 6.51 A simple decision tree for predicting books in the library.

FIGURE 6.52 A decision tree based on the single criteria.

268 Machine Learning for Decision Sciences with Case Studies in Python

women, and early breast cancer diagnosis plays a major role in reducing mortality. On the other
hand, mammograms have a high percentage of missed cancer cases. These can be identified prop-
erly by using the decision support system.

The brain tumor is a cluster of brain-growing abnormal cells. It can happen at almost any age
in any person. It may even vary from one therapy session to the next, but it may not have the same
effects for each patient. MRI images are preprocessed for feature extraction. First, the noise is intro-
duced by applying median filtering techniques. Next, power law transformation is used to enhance
the image. Finally, the preprocessed image is given to the decision tree for further classification.
Tumors can be identified by the following features such as tumor differentiation, cellularity, mitotic
count, age, location, and cell type. The decision tree approach produces higher accuracy compared
to the other classifications.

Figure 6.54 represents the identification of tumor in lungs. If the lung tumor is <3 cm, it belongs
to class primary tumor and stage I. The tumor measuring 3–5 cm belongs to the stage II tumor. The
tumor measuring 5–7 cm belongs to the stage III tumor. The tumor measuring >7 cm belongs to the
stage IV tumor. The tumors are further classified based on the length, as shown in Table 6.20.

FIGURE 6.53 Fussler and Simon’s choice policy-based decision tree.

FIGURE 6.54 Decision tree for tumor identification.

269Supervised Learning: Classification

6.4.10.3 Classification of Telescope Image
The telescopic images are stars, galaxies, cosmic rays, plate defects, and other types of objects in
the sky. A decision tree classifier is used to identify cosmic rays hit in telescope images. The deci-
sion tree is used to classify the stars and cosmic rays from a telescopic image. The features are
extracted from the telescopic images and are classified further by using a decision tree. The correct
attributes are selected by using the CART algorithm. Figure 6.55 represents the decision tree for the
classification of telescope image.

The x20 and x16 are attributes for the decision tree. This method produces 95% of accuracy.

6.4.10.4 Business Management
In recent years, most of the companies have their database. We can extract the data from the data-
base using a decision tree because data can be extracted based on the domain. It can also be used in
fraud detection or customer relationship management. Customer relationship management is used to
investigate the frequency of accessing online services. The usage of data collects the information,
and corresponding information is used for user recommendation. The online shopping users are
divided into two equal parts: the user using online shopping frequently and rarely. The time needed
by the customer for the transaction, degree of human resources, price of the product, and how urgent
the product is needed are also considered in this model. Decision trees produce a successful result
in online shopping.

FIGURE 6.55 Decision tree for classification of telescope image.

TABLE 6.20
Tumor Type and Length

S. No. Tumor Type Description

1 T1a <1 cm

2 T1b 1–2 cm

3 T1C 2–3 cm

4 T2a 3–4 cm

5 T2b 4–5 cm

270 Machine Learning for Decision Sciences with Case Studies in Python

The decision tree in Figure 6.56 is used for selecting the strawberry milkshake or strawberry
ice cream business. Among the two businesses, the success and failure rate and cost are given in
Table 6.21.

= × + ×

= +

=

Total estimatedcost for strawberrymilkshake 0.8 20,000 0.2 2,000

16,000 400

16,400

= × + ×

= +

=

Total estimatedcost for strawberry icecream 0.9 25,00 0.1 3,000

22,500 300

22,800

Among these two estimations, it’s proved that the production of strawberry ice cream has more
profit than the production of strawberry milkshake.

TABLE 6.21
Success Rate and Cost

S.No. Description Rate Cost

1 Strawberry milkshake – success 0.8 20,000

2 Strawberry milkshake – failure 0.2 2,000

3 Strawberry ice cream – success 0.9 25,000

4 Strawberry ice cream – failure 0.1 3,000

FIGURE 6.56 Decision tree for business management.

271Supervised Learning: Classification

6.4.10.5 Fault Diagnosis
Faults should be detected, identified, and removed as quickly as possible on transmission lines. In
power transmission line safety, error detection and defective phase identification (fault classifica-
tion) are important. The measured voltage and current data at the relay point are used to identify and
diagnose the fault with or without fault resistance in the line. A three-phase fault current is given
as input to the decision tree for fault detection. In the case of fault classification, the three-phase
currents and the zero-sequence current samples for half cycle are used as inputs to the decision tree
to categorize all ten types of faults. The decision tree (Figure 6.57) has provided accurate results to
identify and classify defects in the power system. DT also provides higher classification accuracy
compared to SVM. The DT-based approach is validated for wide variations in the power system
network operating conditions and can thus be applied to online fault detection for large power sys-
tem networks.

6.4.10.6 Healthcare Management
A decision tree may be used in the management of health care. Data mining is used to collect and
view useful information in easy-to-interpret visualizations from large datasets. The medical use of
decision trees includes the diagnosis of a symptom-specific medical disorder. The categories iden-
tified by the decision tree could be either separate clinical subtypes or a disease. With the advent
of electronic data processing, the number of regularly tracked variables in clinical settings has
increased dramatically. Many of these variables are of limited significance and should therefore
likely not be included in experiments on data mining. However, many important input variables
are to be used in decision-making tree models. Figure 6.58 represents the decision tree for fault
identification.

6.4.10.7 Decision Tree in Data Mining
Data mining can be done on the decision tree on segmented images. Image segment is a process of
extracting useful information from the image. The pixel with gray value ranges from 180 to 240,
and its local variation >80 and its slope variation >0.5 are selected for segmentation. For example,
the image in Figure 6.59a is segmented into Figure 6.59b using the decision tree.

FIGURE 6.57 Fault detection using decision tree.

272 Machine Learning for Decision Sciences with Case Studies in Python

The outside contour is identified by checking the gray level, as shown in Figure 6.60. If the gray
level is greater than eight and local variation is greater than five then the output of the decision tree
is “no”.

FIGURE 6.58 Healthcare management in decision tree.

FIGURE 6.59 Segmenting data noise.

FIGURE 6.60 Segmenting data noise decision tree.

273Supervised Learning: Classification

6.4.11 Decision trees in Practice Using Python

Decision trees are widely used supervised models for classification and regression tasks. These
classifiers build a sequence of straightforward if/else rules on the training data through which they
predict the target value. Decision trees are simple to interpret thanks to their structure and, there-
fore, visualize the modeled tree.

By using the sklearn export_graphviz function, we can display the tree within a Jupyter Notebook.
For this demonstration, we’ll use the sklearn wine dataset.

Import packages for Decision Tree& GRAPHVIZ
from sklearn.tree importDecisionTreeClassifier, export_graphviz
from sklearn import tree
from sklearn.datasets import load_wine
from IPython.display import SVG #Scalable Vector Graphics
from graphviz import Source
from IPython.display import display

load Dataset
Data = load_wine() ## Since the data set is part of the package; we can
directly load it

The OUTPUT is shown below. Previewing gives all kinds of information about the dataset. #(Please
note: the result contains actual data sample, Array information, Data set #Characteristics, Summary
Statistics, Attributes Values to name a few. This will help the user to #understand the dataset.)

{'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00,
3.920e+00,1.065e+03],
 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,1.050e+03],
 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00, 1.185e+03],
 ...,
 [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,8.350e+02],
 [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,8.400e+02],
 [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,5.600e+02]]),
 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
 1,
 1,
 1, 2, 2,
 2,
 2,
 2, 2]),

'target_names': array(['class_0', 'class_1', 'class_2'], dtype='<U7'),
 'DESCR': '.. _wine_dataset:\n\nWine recognition dataset\n---------------
---------\n\n**Data Set Characteristics:**\n\n :Number of Instances:
178 (50 in each of three classes)\n :Number of Attributes: 13 numeric,
predictive attributes and the class\n :Attribute Information:\n \t\t-
Alcohol\n \t\t- Malic acid\n \t\t- Ash\n\t\t- Alcalinity of ash \n
\t\t- Magnesium\n\t\t- Total phenols\n \t\t- Flavanoids\n \t\t-
Nonflavanoid phenols\n \t\t- Proanthocyanins\n\t\t- Color intensity\n
\t\t- Hue\n \t\t- OD280/OD315 of diluted wines\n \t\t- Proline\n\n -
class:\n - class_0\n - class_1\n -
class_2\n\t\t\n :Summary Statistics:\n \n=============================

274 Machine Learning for Decision Sciences with Case Studies in Python

==== ===== ======= =====\n Min Max
Mean SD\n ============================= ==== ===== ======= =====\n
Alcohol: 11.0 14.8 13.0 0.8\n Malic Acid:
0.74 5.80 2.34 1.12\n Ash: 1.36 3.23
2.36 0.27\n Alcalinity of Ash: 10.6 30.0 19.5 3.3\n
Magnesium: 70.0 162.0 99.7 14.3\n Total
Phenols: 0.98 3.88 2.29 0.63\n Flavanoids:
0.34 5.08 2.03 1.00\n Nonflavanoid Phenols: 0.13 0.66
0.36 0.12\n Proanthocyanins: 0.41 3.58 1.59 0.57\n
Colour Intensity: 1.3 13.0 5.1 2.3\n Hue:
0.48 1.71 0.96 0.23\n OD280/OD315 of diluted wines: 1.27 4.00
2.61 0.71\n Proline: 278 1680 746 315\n
============================= ==== ===== ======= =====\n\n :Missing
Attribute Values: None\n :Class Distribution: class_0 (59), class_1
(71), class_2 (48)\n :Creator: R.A. Fisher\n :Donor: Michael
Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n :Date: July, 1988\n\nThis is
a copy of UCI ML Wine recognition datasets.\nhttps://archive.ics.uci.edu/
ml/machine-learning-databases/wine/wine.data\n\nThe data is the results
of a chemical analysis of wines grown in the same\nregion in Italy by
three different cultivators. There are thirteen different\nmeasurements
taken for different constituents found in the three types of\nwine.\n\
nOriginal Owners: \n\nForina, M. et al, PARVUS - \nAn Extendible Package
for Data Exploration, Classification and Correlation. \nInstitute of
Pharmaceutical and Food Analysis and Technologies,\nViaBrigata Salerno,
16147 Genoa, Italy.\n\nCitation:\n\nLichman, M. (2013). UCI Machine
Learning Repository\n[http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California,\nSchool of Information and Computer Science.
\n\n..topic:: References\n\n (1) S. Aeberhard, D. Coomans and O. de Vel,
\n Comparison of Classifiers in High Dimensional Settings, \n Tech.
Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of \n
Mathematics and Statistics, James Cook University of North Queensland. \n
(Also submitted to Technometrics). \n\n The data was used with many
others for comparing various \n classifiers. The classes are separable,
though only RDA \n has achieved 100% correct classification. \n (RDA :
100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data)) \n (All
results using the leave-one-out technique) \n\n (2) S. Aeberhard, D.
Coomans and O. de Vel, \n "THE CLASSIFICATION PERFORMANCE OF RDA" \n
Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of \n
Mathematics and Statistics, James Cook University of North Queensland. \n
(Also submitted to Journal of Chemometrics).\n',
 'feature_names': ['alcohol',
 'malic_acid',
 'ash',
 'alcalinity_of_ash',
 'magnesium',
 'total_phenols',
 'flavanoids',
 'nonflavanoid_phenols',
 'proanthocyanins',
 'color_intensity',
 'hue',
 'od280/od315_of_diluted_wines',
 'proline']}
Understand the Data Better - feature matrix
X=data.data

https://archive.ics.uci.edu
https://archive.ics.uci.edu
http://archive.ics.uci.edu

275Supervised Learning: Classification

target vector
y=data.target

class labels
labels=data.feature_names

print dataset description
print(data.DESCR)

estimator=DecisionTreeClassifier()
estimator.fit(X,y)

graph=Source(tree.export_graphviz(estimator,out_file=None,feature_names=labels,
class_names=['0','1','2'],filled=True))

display(SVG(graph.pipe(format='svg')))
The OUTPUT is shown below.

.. _wine_dataset:
Wine recognition dataset

Data Set Characteristics:

:Number of Instances: 178 (50 in each of three classes)
:Number of Attributes: 13 numeric, predictive attributes and the class
:Attribute Information:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline

 - class:
 - class_0
 - class_1
 - class_2

: Summary Statistics:
 ============================= ==== ===== ======= =====
 Min Max Mean SD
 ============================= ==== ===== ======= =====
 Alcohol: 11.0 14.8 13.0 0.8
 Malic Acid: 0.74 5.80 2.34 1.12
 Ash: 1.36 3.23 2.36 0.27
Alcalinity of Ash: 10.6 30.0 19.5 3.3
 Magnesium: 70.0 162.0 99.7 14.3

276 Machine Learning for Decision Sciences with Case Studies in Python

 Total Phenols: 0.98 3.88 2.29 0.63
Flavanoids: 0.34 5.08 2.03 1.00
Nonflavanoid Phenols: 0.13 0.66 0.36 0.12
 Proanthocyanins: 0.41 3.58 1.59 0.57
 Colour Intensity: 1.3 13.0 5.1 2.3
 Hue: 0.48 1.71 0.96 0.23
 OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71
 Proline: 278 1680 746 315
 ============================= ==== ===== ======= =====

:Missing Attribute Values: None
:Class Distribution: class_0 (59), class_1 (71), class_2 (48)
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

This is a copy of UCI ML Wine recognition datasets.
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

The data results from a chemical analysis of wines grown in the same
region in Italy by three different cultivators. There are thirteen
different
measurements taken for different constituents found in the three types of
wine.

Original Owners:

Forina, M. et al, PARVUS -
An Extendible Package for Data Exploration, Classification, and
Correlation.
Institute of Pharmaceutical and Food Analysis and Technologies,
Via Brigata Salerno, 16147 Genoa, Italy.

Citation:

Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

.. topic:: References

 (1) S. Aeberhard, D. Coomans and O. de Vel,
 Comparison of Classifiers in High Dimensional Settings,
 Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of
 Mathematics and Statistics, James Cook University of North Queensland.
 (Also submitted to Technometrics).

 The data was used with many others for comparing various
 classifiers. The classes are separable, though only RDA
 has achieved 100% correct classification.
 (RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))
 (All results using the leave-one-out technique)

 (2) S. Aeberhard, D. Coomans and O. de Vel,
 "THE CLASSIFICATION PERFORMANCE OF RDA"
 Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of
 Mathematics and Statistics, James Cook University of North Queensland.
 (Also submitted to Journal of Chemometrics).

https://archive.ics.uci.edu
http://archive.ics.uci.edu

277Supervised Learning: Classification

In the tree plot shown in Figure 6.61, each node contains the condition (if/else rule) that splits the
information alongside a series of other metrics of the node. For example, the Gini function refers
to the Gini impurity, a measure of the impurity of the node, i.e., how homogeneous are the samples
within the node. The user can say that a node is pure when all its samples belong to an equivalent
class. In this case, there’s no need for further split, and this node is named a leaf. Samples are the
number of instances within the node, while the value array shows the distribution of those instances
per class. At the very bottom, we see the majority class of the node. When the filled option of
export_graphviz is set to true, each node gets colored in line with the bulk class.

Decision trees tend to overfit the info (the data) by constructing complex models. Overfitted mod-
els will presumably not generalize well in “unseen” data. Two main approaches to avoid overfitting
are pre- and postpruning. Prepruning means restricting the depth of a tree before creation, while
postpruning is removing non-informative nodes after the tree has been built.

Let us do the iris dataset example.

from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

import os
os.environ["PATH"] += os.pathsep +
'C:\\Users\\<<USERNAME>>\\Downloads\\graphviz-2.38.zip\\release\\bin'
Note: The user has to download and install the Graphviz add-on package.
import graphviz
from sklearn import tree

import graphviz
dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("iris")

FIGURE 6.61 Tree plot for wine data.

278 Machine Learning for Decision Sciences with Case Studies in Python

The output shows
‘iris.pdf.’

Plotting the tree using Graphviz
dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,

 filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
graph

clf.predict(iris.data[:1,:])

#The output is shown in Figure 6.62.

array([0])

clf.predict_proba(iris.data[:1,:])
#The output is shown below.

array([[1., 0., 0.]])

FIGURE 6.62 Tree plot using Graphviz.

279Supervised Learning: Classification

sklearn decision tree classifier implements only prepruning. Prepruning is often controlled
through several parameters like the utmost depth of the tree, the minimum number of samples
required for a node to keep splitting, and therefore the minimum number of instances required for a
leaf is selected by setting max_depth as the depth of tree the user requires.

Note to download graphviz for Windows:

https://graphviz.gitlab.io/_pages/Download/Download_windows.html

6.5 RANDOM FOREST CLASSIFIER

ML algorithms are classified into supervised learning, unsupervised learning, and reinforced learn-
ing. Supervised learning is divided into classification and regression problems. The decision tree
belongs to supervised learning. The decision tree is a popular ML algorithm. It’s a tree-like struc-
ture used for classification and regression problems. The decision tree is a tree-shaped diagram used
to determine a course of action. Each branch of the tree represents the possible action. Entropy (i.e.,
the measure of randomness or unpredictability in the dataset) and information gain (i.e., a measure
of the decrease in entropy after the dataset is split) are used to construct the decision tree. The test-
ing is done on the decision node, and it has two or more branches, and the leaf node carries classi-
fication or decision. It’s used in the classification and regression problem. The trees are constructed
only with the relevant features. So to improve the accuracy, the tree has to construct in deep to learn
a highly irregular pattern. So it leads to an overfitting problem (i.e., low bias and high variance).
This overfitting problem can be solved by using random forest (RF).

The RF is a classification algorithm that consists of many decision trees. Each tree in the RF will
predict the class. The class having majority voting is selected as the predicted class of the RF model.
RF is an ensemble classifier first proposed by Tin Kam Ho of Bell Labs in 1995. It belongs to the
classifier of the ensemble because it uses several ML algorithms for classification. If the number of
trees is more, then the accuracy of the RF model is high.

RF is a method that operates by constructing multiple decision trees during the training phase.
The main advantage of the RF tree is that it has less training due to multiple trees. Since we are
training a large data, the system’s accuracy is very high in RF. The RF chooses the decision of the
majority tree, which is the final decision. RF is based on the bagging concept.

The difference between RF and decision tree is the process of finding the root node and splitting
features nodes that are done randomly in RF. The rules are formed by using information gain and
the Gini index.

The sample RF with a decision tree is shown in Figure 6.63. The two decision trees classify the
input parameter as α, and one classifies the input parameter as β. Since α has majority voting, the
input parameters are classified into class α. RF is used in ETM devices, object detection, and game
because it has high accuracy and less training time.

The RF works on the concept of bagging. In bagging, the given training data are split into small
training datasets by using the sampling method. For example, in Figure 6.64, the training data are

FIGURE 6.63 Voting mechanism in RF.

https://graphviz.gitlab.io

280 Machine Learning for Decision Sciences with Case Studies in Python

divided into training data 1, training data 2 up to training data each decision tree model recon-
structed from the training data. Then, the n models are constructed, and prediction is done by using
majority voting methods. Finally, the class having majority voting is selected as the predicted result
of the model.

Important terminology used in random forest

Entropy: It is a randomness or unpredictability measure in the dataset.
Bagging: It is parallel training of a bunch of individual models. A random subset of the data

is conditioned for each model.
Boosting: It is training sequentially a bunch of individual models. Each node learns from the

previous model’s mistake.
Gini index: Gini index measures the degree or probability of error in classifying a particular

variable when selected randomly.

6.5.1 ranDoM forest anD their constrUction

Bagging is also called bootstrap aggregating, which is used in the creation of RFs. It is used to avoid
overfitting. RF is better than bagging trees because the prediction of all subtrees is considered dur-
ing classification.

FIGURE 6.64 Representation of RF.

281Supervised Learning: Classification

 =

fa fb c

f f c
SM . . .

3 3 3

12 12 12

 (6.21)

Feature a is the first sample having n data, and feature b has the second sample having n data. c1, c2,
c3, …, cn represent the training class.

We can create a random subset, as shown below. For example, let S1, S2, S3, … and Sm be a ran-
dom subset.

=

S

fa fb c

f f cn n

Subset1 . . .1

1 1 1

35 35 35

=

S

fa fb c

f f c
Subset 2

.

. . .2

2 12 2

20 20 20

=

M SM

fa fb c

f f c
Subset . . .

3 3 3

12 12 12

Decision trees are constructed from subset 1, subset 2, and subset M as represented in Figure 6.65.
The prediction is done on this decision tree (i.e., decision tree 1, decision tree 2, and decision tree
M). The given data are predicted by using the majority voting concept. The class with the highest
voting is selected as the predicted class of the RF model, as shown in Figure 6.66.

Let X1, X2, X3, …, Xn be the parameter available in the dataset. Assume that the forest has 2 deci-
sion trees, as shown in Figure 6.67. X1, X3, X4,…, Xn will be used to build decision tree1and X3, X4,
X5, and Xn to create decision tree 2. Since we are using only partial data, the model is very efficient
compared to another method. Correlation represents the relationship between two random trees (i.e.,
some of the variables are used in both trees). The forest error rate is high for the tree with the highest
correlation. A strong classifier has a low forest error rate.

Figure 6.68 represents the sample RF. The input variable x is given to the RF. These variables are
divided into the separate training set and are given to the decision tree. The decision tree output is
combined, and the class with higher voting is selected for classification.

6.5.2 saMPling of the Dataset in ranDoM forest

Consider a dataset (Table 6.22) containing 9000 records, 8 features, and 2 classes. Each row of a
table represents a record. The columns F-1, F-2, F-3, …, F-8 represent the features. The class rep-
resents the class type. A total of k trees are constructed from the given dataset. The given dataset is

282 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 6.65 Decision tree constructed from subset 1, subset 2, and subset M.

FIGURE 6.66 Creation of RF using bagging.

283Supervised Learning: Classification

split into K sampling by using bagging or bootstrap aggregating. A standard training set D of size
n bagging generates in new training set Di each of size n’ by sampling from D uniformly and with
replacement. By sampling with replacement, some observations may be repeated in each Di. In the
above example, we have 9000 samples.

FIGURE 6.68 Diagrammatic representation of RF.

FIGURE 6.67 Dividing of data using bagging.

284 Machine Learning for Decision Sciences with Case Studies in Python

()=

=

=

Noof selectedsample 2/3 noof trainingset

2/3* 9000

6000

Six thousand random samples are selected, and it’s illustrated in Table 6.23.
Among this 6000 dataset, we apply attribute bagging (random subspace creation) and create the

decision tree. If we have n features, then select square root (n) for creating a decision tree. In the

TABLE 6.22
Total Number of Samples

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 Class

Fa1 Fb1 Fc1 Fd1 Fe1 Ff1 Fg1 Fh1 Class A

Fa2 Fb2 Fc2 Fd2 Fe2 Ff2 Fg2 Fh2 Class B

Fa3 Fb3 Fc3 Fd3 Fe3 Ff3 Fg3 Fh3 Class A

Fa4 Fb4 Fc4 Fd4 Fe4 Ff4 Fg4 Fh4 Class B

Fa5 Fb5 Fc5 Fd5 Fe5 Ff5 Fg5 Fh5 Class A

Fa6 Fb6 Fc6 Fd6 Fe6 Ff6 Fg6 Fh6 Class B

Fa7 Fb7 Fc7 Fd7 Fe7 Ff7 Fg7 Fh7 Class A

Fa8 Fb8 Fc8 Fd8 Fe8 Ff8 Fg8 Fh8 Class B

Fa9 Fb9 Fc9 Fd9 Fe9 Ff9 Fg9 Fh9 Class A

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fai Fbi Fci Fdi Fei Ffi Fgi Fhi Class B

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fa9000 Fb9000 Fc9000 Fd9000 Fe9000 Ff9000 Fg9000 Fh9000 Class A

TABLE 6.23
The 6000 Sample Selected from Table 6.22

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 Class

Fa1 Fb1 Fc1 Fd1 Fe1 Ff1 Fg1 Fh1 Class A

Fa2 Fb2 Fc2 Fd2 Fe2 Ff2 Fg2 Fh2 Class B

Fa3 Fb3 Fc3 Fd3 Fe3 Ff3 Fg3 Fh3 Class A

Fa4 Fb4 Fc4 Fd4 Fe4 Ff4 Fg4 Fh4 Class B

Fa5 Fb5 Fc5 Fd5 Fe5 Ff5 Fg5 Fh5 Class A

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fai Fbi Fci Fdi Fei Ffi Fgi Fhi Class B

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

Fa6000 Fb6000 Fc6000 Fd6000 Fe6000 Ff6000 Fg6000 Fh6000 Class A

285Supervised Learning: Classification

below example, we have eight features, the square root of 8 gives around 3. So we select three fea-
tures from the above dataset (Table 6.24); information gain, gain ratio, and Gini index are applied
to create a decision tree from the sample.

Three features are selected from 6000 data, and decision tree 1 is constructed. Finally, a confu-
sion matrix is created for the features, as shown in Table 6.25.

The misclassification rate is calculated from the confusion matrix.
M is classification rate:

+ = + =FP FN

Total

25 15

200
0.2

The features having less misclassification rate are selected for the decision tree.

6.5.2.1 Creation of Subset Data

Let’s consider the dataset as shown in Figure 6.69 with circle and star . First, we have to
create a subset from the dataset by using the sampling method. Three subsets are created: Subset 1
has 6 circles and 3 stars, Subset 2 has 4 circles and 5 stars, and Subset 3 has 2 circles and 5 stars.
Let us consider the subset as shown in Figure 6.70.

TABLE 6.24
Data for Decision Tree 1

F-1 F-5 F-7 Class

Fa1 Fe1 Fg1 Class A

Fa2 Fe2 Fg2 Class B

Fa3 Fe3 Fg3 Class A

Fa4 Fe4 Fg4 Class B

Fa5 Fe5 Fg5 Class A

- - - -

- - - -

- - - -

Fai Fei Fgi Class B

- - - -

- - - -

- - - -

Fa6000 Fe6000 Fg6000 Class A

TABLE 6.25
Confusion Matrix for the Features

Total Result = 200
Predicted

No
Predicted

Yes
Row-wise

Total

Actual
No

TN = 30 FP = 25 55

Actual
Yes

FN = 15 TP = 130 145

Col-wise
Total

45 155

286 Machine Learning for Decision Sciences with Case Studies in Python

Now, decision trees are constructed for the subsets. Next, each decision tree is obtained based on
decision criteria, and finally, there are a group of decision trees. Finally, the average prediction is
obtained from all the decision trees (subset), and an overall RF prediction is obtained, as illustrated
in Figure 6.71.

6.5.3 PseUDocoDe for ranDoM forest

Step 1: Randomly select K features from total M features where k is less than M
Step 2: Among K features, calculate the node “d” using the best split node
Step 3: Split the node into daughter node using the best split

FIGURE 6.69 Creating subset from original dataset by using the sampling method.

FIGURE 6.70 A sample subset.

287Supervised Learning: Classification

Step 4: Repeat 1–3 steps until the “i” number of nodes has been reached.
Step 5: Building forest by repeating steps 1–4 for “n” times to create “n” of trees.

Let us assume a dataset that has M features. A K feature is selected from the dataset by using the
sampling method. The selected K features should be less than M features in the dataset. The deci-
sion tree is constructed by using the K features. By using split node, first, determine the root node
and daughter node. Then, the tree is constructed by using the split node concept until it reaches the
leaf node. Similarly, construct another decision tree in the RF.

6.5.3.1 Pseudocode for Prediction in Random Forest

Step 1: Take the test features and use the rules of each randomly created decision tree to pre-
dict the outcome and store the predicted outcome

Step 2: Calculate the votes for each predicted target
Step 3: Consider the high voted predicted target as the final prediction from the RF algorithm.

Input is given to all the decision trees of the RF. Then, calculate the number of votes given to each
class. The class having majority voting is selected as the predicted class of the model.

6.5.4 regression Using ranDoM forest

We can use the RF for regression also. Consider sample X. Sample x is divided into subsample 1,
sample 2, sample 3, and sample. Decision tree 1, decision tree 2, decision tree 3, and decision tree
m are constructed from the samples. Each tree can be constructed from any of the decision tree

FIGURE 6.71 Creation of decision tree based on the salary.

288 Machine Learning for Decision Sciences with Case Studies in Python

algorithms like CART and ID3. Each decision tree will produce a value. The output of each decision
tree is considered in the regression process. In the classification process, the voting mechanisms
are used. The average output of each tree is taken to compute the final class, as represented in
Figure 6.72.

6.5.5 classification Using ranDoM forest

This section illustrates the step-by-step procedure of applying RF for a classification problem with
a suitable example.

Step1: Create a bootstrap dataset
Consider the below dataset for predicting heart disease (Table 6.26).
The bootstrap dataset should be the same size as the original dataset and select randomly from

the given dataset. The bootstrap dataset is created by randomly selecting data from the original
dataset. In the above example, the data in row 2 are selected first (Table 6.27).

FIGURE 6.72 RF for regression.

289Supervised Learning: Classification

Then, the data from the first row are selected (Table 6.28).
Then, the data from the last row are selected (Table 6.29).
Then again, the data from the last row are selected (Table 6.30).
So we have selected four data from the original dataset (Table 6.31).

TABLE 6.26
Original Dataset

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

No No No 125 No

Yes Yes Yes 180 Yes

Yes Yes No 210 No

Yes No Yes 167 Yes

TABLE 6.27
Random Selection of Single Data

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

TABLE 6.28
Random Selection of Two Data

Chest Pain Good Blood Circ. Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

TABLE 6.29
Random Selection of Three Data

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

Yes No Yes 167 Yes

TABLE 6.30
Random Selection of Four Data

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

Yes No Yes 167 Yes

Yes No Yes 167 Yes

290 Machine Learning for Decision Sciences with Case Studies in Python

Step 2: Create a decision tree using the bootstrap dataset, but only use a random variable
subset at each step

In the above example, we have four variables. Instead of selecting all four variables, we will
select only two variables as candidate variables (good blood circulation or blocked arteries). Even
we can use the decision tree algorithm to select the candidate key. Let us take good blood circulation
as a candidate key (Figure 6.73).

Then, the tree can be divided further using chest pain and weight. Figure 6.74 represents the
decision tree.

TABLE 6.31
Bootstrap Dataset

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes Yes Yes 180 Yes

No No No 125 No

Yes No Yes 167 Yes

Yes No Yes 167 Yes

FIGURE 6.73 Selection of candidate key.

FIGURE 6.74 Decision tree from the bootstrap dataset.

291Supervised Learning: Classification

Then again, we have to repeat Step 2 to create more decision trees by using different bootstrap
datasets. Decision trees 2 and 3 are constructed as shown in Figures 6.75 and 6.76.

Step 3: Evaluating the random forest
After the creation of a RF, we have to evaluate the performance. Consider the sample shown in

Table 6.32.

FIGURE 6.75 Decision tree 2.

FIGURE 6.76 Decision tree 3.

292 Machine Learning for Decision Sciences with Case Studies in Python

The above sample will be given to decision tree 1 (Figure 6.77).
From the decision trees in Figures 6.78 and 6.79, Yes is selected. Finally, the voting for the class

is given in Table 6.33.
Similarly, we have to pass the variable into another decision tree also. Finally, after passing to all

decision trees, the voting is represented in Table 6.34.
So the majority of voting belongs to class Yes. So the data belong to class Yes (Table 6.35).

TABLE 6.32
Sample for Constructing Decision Tree 1

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes No No 168

FIGURE 6.77 Classification in decision tree 1.

FIGURE 6.78 Classification in decision tree 2.

FIGURE 6.79 Classification in decision tree 3.

293Supervised Learning: Classification

6.5.5.1 Random Forest Problem for Classification – Examples
6.5.5.1.1 Problem 1
Construct the RF for the example in Table 6.36.

Assume that we are splitting the data based on the attribute home type. The values for home type
are between 6 and 31. The possible split of the dataset is

• home type ≤6
• home type ≤10
• home type ≤15
• home type ≤30
• home type ≤31

TABLE 6.33
Voting Results

Heart Disease

Yes No

1 0

TABLE 6.34
Voting Results from All the Decision Trees

Heart Disease

Yes No

5 1

TABLE 6.35
Majority Voting Results

Chest Pain Good Blood Circulation Blocked Arteries Weight Heart Disease

Yes No No 168 Yes

TABLE 6.36
Sample Data – Home Type, Salary, and Class

Record

Attributes

ClassHome Type Salary

1 31 3 1

2 30 1 0

3 6 2 0

4 15 4 1

5 10 4 0

294 Machine Learning for Decision Sciences with Case Studies in Python

6.5.5.1.2 Gini Index
If dataset D contains n classes, Gini index is defined as

 ∑= −D PiGain() 1 2

where
Pi represents the sum of the probabilities of the positive index and negative index

Home type ≤6:

Gini (home type ≤ 6) = 1 − (12 + 0) = 0
Gini (home type >6) = 1 − ((2/4)2 + (2/4)2) = 0.5
Gini (split) = 1/5(0) + 4/5(0.5) = 0.4

Home type ≤10

Gini (home type ≤6) = 1 − (12 + 0) = 0
Gini (home type >10) = 1 − ((1/3)2 + (2/3)2) = 0.4452
Gini (split) = 2/5(0) + 3/5(0.445) = 0.2671
Home type ≥10 has the lowest value.

Best Split:
 ()= + =Home type 10 15 / 2 12.5

If the home_type is <12.5, then it belongs to class 0. If home_type is >12.5, then it belongs to class
1, as shown in Figure 6.80. The next Gini index is based on salary as shown in Figure 6.81.

Record

Number of Records

Zero One N = 5

Home type ≤6 1 0 n1 = 1

Home type >6 2 2 n2 = 4

Record

Number of Records

Zero One N=5

Home type ≤10 2 0 n1=2

Home type >10 1 2 n2=3

Gini Split Value

Home type ≤6 0.4000

Home type ≤10 0.2671

Home type ≤15 0.4671

Home type ≤30 0.3000

Home type ≤31 0.4800

295Supervised Learning: Classification

6.5.6 featUres anD ProPerties of ranDoM forest

6.5.6.1 Features
• It is the most accurate algorithm currently available, and it works quickly on huge datasets.
• It can handle tens of thousands of input variables without deleting any of them.
• It calculates the importance of several variables in the classification.
• As the forest grows, it generates an internal unbiased estimate of the generalization error.
• It offers a method for guessing missing data that works well and retains accuracy even with

a considerable amount of missing data.
• It includes techniques for balancing errors in uneven datasets with a class population.
• The forests that are created can be preserved and used on other data in the future.

FIGURE 6.80 Creating RF based on home_type.

FIGURE 6.81 Creating RF based on home_type and salary.

296 Machine Learning for Decision Sciences with Case Studies in Python

• Prototypes are created that reveal the relationship between the variables and the
classification.

• It calculates distances between pairs of examples, which can be useful in clustering, detect-
ing outliers, or giving fascinating views of the data (by scale).

• Unlabeled data can be used to create unsupervised clustering, data visualizations, and
outlier identification using the capabilities described above.

• It provides a mechanism for finding variable interactions through experimentation.

6.5.6.2 Properties
• Each tree has maximal strength
• Each tree has a minimal correlation with the other trees.
• Ensemble of trees votes for the final result.

6.5.7 aDvantages anD DisaDvantages of ranDoM forest

6.5.7.1 Advantages
• It can be used for both classification and regression tasks.
• Handle the missing value and maintains accuracy for missing data.
• No overfitting the model.
• Handle larger datasets with higher dimensionality.

6.5.7.2 Disadvantages
• Works well for classification and does not work for regression.
• Less control on the model.

6.5.8 calcUlation of error Using bias anD variance

The bias and variance represent the deviation of the result from the expected value. Let F be the true
function having random noise. Then, hypothesis h is imperfect for the following reason.

6.5.8.1 Bias
H is unable to fit f perfectly because it lacks capacity or complexity.

6.5.8.2 Variance
H is fitting to the noise in the data and missing the true function f.

Let z be that arbitrary point and generated point is given as

 = +f z¥ () € (6.22)

Expected value is given as

 =E f z[¥] () (6.23)

Variance is given as

 =var[¥] var[€] (6.24)

297Supervised Learning: Classification

Mean squared error is given as

[]

()= −

= + −

R h E h z

E h z E E h z

() [] ¥

() ¥ 2 ¥ ()

2

2 2

 (6.25)

where ¥ and (z) are independent.
Variance of ¥ and (z) is given as

()

[]

[] [] []

[]

[]

()

= + −

= + + + −

= − + +

= − + +

E h z E E h z

h z E h Z E E E h Z

E h z E h z

Eh z f Z h z

() ¥ 2 ¥ ()

var () () var[¥] [¥] 2 [¥] ()

[()] [¥] var () var[¥]

() () var () var[€]

2 2

2 2

2

2

 (6.26)

(E[h(z)]−f(z))2 represents the squared bias. It represents the quantity in which the model differs from
the real data distribution function.

var[h(Z)] represents the variance. The variance determines the risk factors.
var[€] represents the irreducible error. The error is due to the noise introduced in the input signal.

6.5.8.3 Properties of Bias and Variance
• Too much bias leads to underfitting
• Too much variance leads to overfitting.
• Training errors show bias.
• Test errors show bias and variance.
• If the n value is infinity, then the variance is zero.
• A model has sufficient modeling capacity when bias is zero when n tends to infinity
• If the number of features is increased, then there is a drop in bias.
• Noise in the test only affects var(€). Noise in the training set affects only bias and var(€).

6.5.9 tiMe coMPlexity

RF is a decision tree ensemble system. The time complexity for creating a complete unpruned deci-
sion tree is O(v * n log(n)), where n is the record number and v is the number of variables/attributes.

Let n tree be the number of trees in the RF and m try be the number of variables at each node.
Then, the time complexity of a single tree is o(m try * n log (n)).

The time complexity of n tree is o(n tree * m try * n log(n)). Let the depth of the tree be o(log n).
Let d represent the depth of the tree. Then, the time complexity is represented as o(n tree * m try *
d * n).

6.5.10 extreMely ranDoMizeD tree

Extremely randomized trees do not use bagging to create a collection for each tree of training
samples. Instead, the same set of input learning is used to train all trees. Extremely randomized
trees strongly choose a split node (both a variable index and a variable split value are randomly
selected). In contrast, RF considers the strongest split between random subsets of variables (optimal

298 Machine Learning for Decision Sciences with Case Studies in Python

by variable index and variable split value). Each tree is constructed from a complete learning sam-
ple. Let k be the number of random splits at each node. K is fixed to one; the resulted tree structure
is independent of the output labels of the training set. Let P be the number of features. The value of
K is the square root of p for the classification problem and k = p for the regression problem. The extra
tree has increased bias and reduced variance; once the randomization rate is achieved, the variance
will vanish, and bias will increase. If the level of randomization rises above the optimum level, the
variance decreases, and the bias increases.

6.5.11 real-worlD exaMPles

The RF is a popular ML algorithm. The accuracy of RF is high because it has multiple decision
trees. So it plays a major role in classification and regression problems. A few application areas
where RF is popular are as follows:

 1. Machine fault diagnosis
 2. Medical field
 3. Banking
 4. E-Commerce
 5. Security

6.5.11.1 Machine Fault Diagnosis
RF algorithm is a novel assembly classifier that creates many decision trees to improve the single
tree classification. While there are many current fault diagnostic techniques, such as artificial neural
networks and SVMs, RF research is essential due to its fast speed, tree classifier characteristics, and
high performance in computer fault diagnosis. Moreover, it is proved that by combining with other
optimization methods, the RF-based diagnosis approach can produce more accurate results.

RF adopts a set of decision trees and defines by majority voting algorithm the categorical groups.
To check the quality of RF, a serious consideration of overfitting is therefore required. Some of the
research work is done by combining RFs with genetic algorithms. In this approach, the RF is developed
by using a decision tree from the CART algorithm. The tree is built by splitting a node recursively. The
tree is constructed from the sample data and the majority voting process. The class that has the highest
voting is selected for classification. The RF can be strengthened by using a genetic algorithm. The rule
of survival of the fittest is applied to the population of individuals. GA has a powerful search algorithm
because of its simplicity and powerful features.GA is used for parameter optimization.

6.5.11.2 Medical Field
6.5.11.2.1 Diabetic Retinopathy Classification Analyses
RF methods are for evaluating the identification of data for diabetic retinopathy (DR) fundus pho-
tography. In the United States and worldwide, DR is one of the leading causes of blindness. DR is
a chronic illness that may go unnoticed for effective treatment until it is too late. Early detection
could therefore improve the chances of therapeutic interventions to reduce its effects. Graded
fundus photography and structural data were used to estimate RF and logistic regression classi-
fiers. The impact of sample size on classifier performance and the possibility of using conditional
probabilities are generated by RF as metrics describing DR risk. Variable RF measurements are
used to identify factors that affect the quality of classification. By comparing participants with
or without DR, both types of data are valuable. RF-based models provided much higher clas-
sification accuracy than those based on logistical regression. Combining both data types did not
increase reliability but increased statistical bias among healthy participants who subsequently
had or did not have DR events over 4 years of monitoring. RF factor value parameters showed
that the number of microaneurysms in both eyes seemed to play the most important role in the
discrimination between the graded fundus variables and the number of medicinal products.

299Supervised Learning: Classification

At the initial stage, the data are collected from the patient report. There should not be any miss-
ing data in the collected data. For example, among all the collected attributes, one of the attributes
should represent whether the patient is suffering from liver damage or not.

Figure 6.82 represents the prediction of liver damage using RF. At the initial stage, the data are
collected from the patient report. There should not be any missing data in the collected data. Among
all the collected attributes, one of the attributes should represent whether the patient is suffering
from liver damage or not. RF model is collected for the above model, and it produces an accuracy
of 70.50%. The data are collected from the UCI ML repository. The dataset has 167 negative tests,
and 416 positive test classifications are done at various decision trees. The final output is selected
by using the voting mechanism. Liver damage occurs due to inhaling harmful gases, intake of con-
taminated food, different kinds of drugs, and excessive alcohol consumption. Preprocessing is used
for cleansing the data attributes that are selected from the data.

6.5.11.3 Banking
RF algorithms are widely used in the banking sector in two main applications. These are meant
to recognize clients who are trustworthy and to find customers who are fraud. The loyal customer
is not the customer who pays well, but also the customer who can take the huge amount as a loan
and pay the interest on the bank loan well. As the success of the bank is purely dependent on loyal

FIGURE 6.82 Disease prediction using RF.

300 Machine Learning for Decision Sciences with Case Studies in Python

customers, bank customer data are highly evaluated to determine the pattern for the loyal customer
based on customer data.

Similarly, consumers who are not important to the bank need to be identified, such as taking the
loan, paying interest on the loan appropriately, and finding outgoing customers. Then, bank will
have a chance not to approve this customer loan form. Also used in this case is the RF algorithm to
identify customers that are not beneficial to the bank.

The RF is used to predict bank failures. The bank-level financial statement is analyzed to identify
the falling of the bank. RF improves classification accuracy because classification is done at many trees
rather than single tree. The RF predicts the bank failure event by analyzing bank-level financial data to
distinguish active and inactive banks. The data are collected from bank scope. $8 indicators are selected
from these data, and these data are classified into four groups (profitability ratio, capitalization, loan
quality, and funding). This method can be applied to a commercial bank, saving bank, and cooperative
bank. A threshold value or explanatory variable is used to split the active and interactive banking. First,
a large number of the trees are constructed based on the given data. Then, the class is selected based
on the voting mechanism. The three trees are constructed for testing: first, a single tree, second one
RF with many trees, and third one with a large dataset by training multiple tree parallel. A single tree
represents a decision tree, and the accuracy obtained by the single tree is less than the RF tree.

First, the RF is constructed as a single tree, RF with many trees, and RF with multiple tree paral-
lel. Compared to single tree RF, the multiple tree RF produced higher accuracy.

The explanatory variables are

 1. The average rate of interest on loans and assets
 2. The average rate of a bank in deposits.

6.5.11.4 E-Commerce
For E-Commerce, the RF is used only in the small segment of the recommendation engine on vari-
ous types of customers to identify the likelihood of customers who like the recommended goods. It
takes high-end GPU systems to run RF algorithms on very large datasets. If GPU is not available,
the ML models can also be run on the cloud hosting environment. The online cloud computing
system can be used from any corner of the world to run high-end ML models.

6.5.11.5 Security
In recent times, the RF has played a major role in the intrusion detecting system. Due to advance-
ments in the technologies like IoT, big data, and the cloud, there is increased usage of the computer
system in business. A huge amount of data are transferred and processed. The IDS maintains the
confidentiality and integrity of data. The IDS in the network should have a low false-positive rate.
RF algorithm plays a major role in IDS because it requires less training time and fast prediction.
Detection strategy type, problem domain, and software architecture are used to create a RF model.
Proximity methods are used in the RF. The various data collected from the network are HOST log
(i.e., operational system and system logs), application log (i.e., data generated from the applica-
tion), network traffic (i.e., OSI layer 3), and wireless traffic(i.e., OSI layer 1). Data can be collected
from the centralized or distributed method. In analogy-based detection, patterns different from
normal patterns are identified. In signature-based detection, the misused data are identified, and in
specification-based detection, the data violated from the protocol specification are identified. The
detection can be done by using online, i.e., block the IP address or off-line.

6.5.12 ranDoM forest in Practice Using Python

Before implementing RF classifier, let us understand the data file. The sample data file we have used
is shown below. It has five columns – user ID, gender, age, estimated salary, and whether they have
done any purchases or not. Our goal is to classify using RF classifier.

301Supervised Learning: Classification

The partial data are shown below.

Random Forest Classification

Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import confusion_matrix, classification_report,
roc_curve,auc
import statistics

Importing the dataset

User ID Gender Age Estimated Salary Purchased

15624510 Male 19 19,000 0

15810944 Male 35 20,000 0

15668575 Female 26 43,000 0

15603246 Female 27 57,000 0

15804002 Male 19 76,000 0

15728773 Male 27 58,000 0

15598044 Female 27 84,000 0

15694829 Female 32 150,000 1

15600575 Male 25 33,000 0

15727311 Female 35 65,000 0

15570769 Female 26 80,000 0

15606274 Female 26 52,000 0

15746139 Male 20 86,000 0

15704987 Male 32 18,000 0

15628972 Male 18 82,000 0

15697686 Male 29 80,000 0

15733883 Male 47 25,000 1

15617482 Male 45 26,000 1

15704583 Male 46 28,000 1

15621033 Female 48 29,000 1

15649487 Male 45 22,000 1

15736760 Female 47 49,000 1

15714658 Male 48 41,000 1

15599081 Female 45 22,000 1

302 Machine Learning for Decision Sciences with Case Studies in Python

dataset = pd.read_csv('C:/Python Files/Decision Tree/Decision Tree/Source
Files/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.25, random_state = 0)

Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10, criterion =
'entropy', random_state = 0)
classifier.fit(X_train, y_train)

Predicting the Test set results
y_pred = classifier.predict(X_test)

Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

pd.crosstab(y_pred,y_test)

#OUTPUT ◊
#col_0 0 1
#row_0
#0 63 3
#1 5 29

total1=sum(sum(cm))

#####from confusion matrix calculate accuracy
accuracy=(cm[0,0]+cm[1,1])/total1
print ('Accuracy : ', accuracy)

#OUTPUT ◊
#Accuracy : 0.92

sensitivity = cm[0,0]/(cm[0,0]+cm[0,1])
print('Sensitivity : ', sensitivity)

#OUTPUT ◊
#Sensitivity : 0.9264705882352942

303Supervised Learning: Classification

specificity = cm[1,1]/(cm[1,0]+cm[1,1])
print('Specificity : ', specificity)

#OUTPUT ◊
#Specificity : 0.90625

precision = cm[0,0]/(cm[0,0]+cm[1,0])
print('precision : ', precision)

#OUTPUT ◊
#precision : 0.9545454545454546

classifier.score(X_test, y_test)
#OUTPUT ◊
#0.92

print(classification_report(y_test, y_pred))

#OUTPUT ◊
precision recall f1-score support
#
0 0.95 0.93 0.94 68
1 0.85 0.91 0.88 32
#
#avg /total 0.92 0.92 0.92 100

decisiontree5= classifier.estimators_[5]
from sklearn import tree
from IPython.display import Image

tree.export_graphviz(decisiontree5, out_file='C:/Python Files/Decision
Tree/Decision Tree/Source File/srandomforest_5_tree.dot')

Image(filename = 'C:/Python Files/Decision Tree/Decision Tree/Source
Files/randomforest_5_tree.png')

THE OUTPUT FILE IS given below and represented in Figure 6.83

304 Machine Learning for Decision Sciences with Case Studies in Python

FI
G

U
R

E
6.

83

D
ec

is
io

n
tr

ee
 f

or
 e

st
im

at
in

g
th

e
cl

as
se

s.

305Supervised Learning: Classification

###
##regressor

from sklearn.ensemble import RandomForestRegressor
From the previous example in multiple regression, (50_Startups.csv) Use
a Classifier

dataset1 = pd.read_csv('C:/Python Files/50_Startups.csv')
X1 = dataset1.iloc[:, :-1].values
y1 = dataset1.iloc[:, 4].values

Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X1[:, 3] = labelencoder.fit_transform(X1[:, 3])
onehotencoder = OneHotEncoder(categorical_features = [3])
X1 = onehotencoder.fit_transform(X1).toarray()

Avoiding the Dummy Variable Trap
X1 = X1[:, 1:]

Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, test_size
= 0.2, random_state = 0)

regr = RandomForestRegressor()

regr.fit(X_train1,y_train1)

#OUTPUT ◊
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

Predicting the Test set results
y_pred1 = regr.predict(X_test1)

from sklearn.metrics import mean_squared_error

mean_squared_error(y_test1,y_pred1)#mse

print(np.sqrt(mean_squared_error(y_test1, y_pred1))) #rmse

#OUTPUT ◊
8029.705866133677

print the R-squared value for the model
regr.score(X_test1, y_test1)#rsquare

#OUTPUT ◊
0.9495843301735848

306 Machine Learning for Decision Sciences with Case Studies in Python

sst=sum(np.power(y_test1-statistics.mean(y_test1),2))
sse=sum(np.power((y_test1-y_pred1),2))

rsquared=(sst-sse)/sst

adjusted_r_squared = 1 - (1-rsquared)*(len(y_test)-1)/(len(y_test)-X_
test.shape[1]-1)
dt=regr.estimators_[5]

from sklearn.tree import export_graphviz
from IPython.display import Image

export_graphviz(dt, out_file='C:/Python Files/Decision Tree/Decision
Tree/Source File/dt_regressor.dot',class_names = dataset1.Profit,
 rounded = True, filled = True)

##dot -Tpng sample_1.dot -o sample_1.png
Image(filename = 'C:/Python Files/Decision Tree/Decision Tree/Source
File/tree_limited.png')
THE OUTPUT FILE IS ATTACHED BELOW and shown in Figure 6.84

6.6 SUPPORT VECTOR MACHINES

ML aims to identify the pattern behind the data and build systems that learn from the experience gained.
SVM gained research interest as it utilizes optimization techniques and achieves higher performance.
SVM differs from other classical ML techniques since it makes use of statistical ideas. While learning a
model in ML, we generally attempt to minimize the errors in the training phase, leading to the overfitting
of data. SVM has a clever way to tackle the overfitting problem with the help of maximizing margin tech-
niques. This chapter presents the basic ideas of SVMs and kernel functions. SVM is the most effective
kernel-based supervised ML classifier. This is a sophisticated classification technique that handles both

FIGURE 6.84 RF output.

307Supervised Learning: Classification

linear and nonlinear data. Kernel machines have many useful properties to analyze nonlinear data. The
variants of SVM are support vector regression (SVR), which can be used for solving regression analysis.
SVM is a robust learning method as a piece of evidence from its usage in diverse fields of engineering.
It has been applied for real-world applications, including handwritten OCR, face recognition, speaker
identification, natural language processing, text mining, drug design, fault diagnosis in machines, dam-
age assessment of bridges, and pattern recognition. The only prerequisite for understanding SVM is
constrained optimization based on the Lagrangian multiplier method. In this section, working of SVM,
underlying statistical concept, kernel tricks, linear and nonlinear SVM classifier, finding optimal hyper-
plane, maximum margin classifier, the hard and soft margin of SVM, variants of SVM, pros and cons of
SVM, SVM regression analysis, and applications are discussed in detail.

6.6.1 geoMetric intUition

SVM is a supervised learning algorithm in which the learning model is provided with the set of
inputs and their associated outputs or labels. SVMs are used in classification problems. The clas-
sification problem can be viewed as the task of separating classes in feature space. To understand
the mystery of SVM, a simple binary classification problem with two classes is considered as an
example, as shown in Figure 6.85. It consists of a decision boundary or hyperplane that separates
the two classes. The goal of SVM is to choose an optimized hyperplane for separating the classes.
For example, in Figure 6.85, many possible lines separate the two classes, and the dark shaded thick
line is the optimal hyperplane among all others.

The support vectors are the essential data points that are closer to the decision boundary. The main
objective of SVM is to find an optimal hyperplane classifier for this problem. The optimal hyperplane
is to identify the maximum distance between the support vectors and the hyperplane.

 a. the distance to the closest negative sample d2 is lesser than the distance to the closest posi-
tive sample d1. In contrast to Figure 6.86,

 b. the optimal hyperplane was found where the distance to the closest negative sample d2 is
equal to the distance to the closest positive sample d1.

FIGURE 6.85 Identifying an optimal hyperplane.

308 Machine Learning for Decision Sciences with Case Studies in Python

=

dOptimal hyperplane : distance to theclosest negativesample

Distance to theclosest positivesample

2

 (6.27)

Example Let us understand numerically with an example given in Figure 6.87 to find the optimal
hyperplane from the given data points, which are linearly separable.

There are many possible infinite numbers of solutions available, as shown in Figure 6.88a.
Therefore, the aim is to find the optimal hyperplane solution as shown in Figure 6.88b, which sepa-
rates the + and − classes.

Figure 6.89 illustrates the concept of binary classification with another simple example. There
are two features (nodes and ages) and two labels (survived and lost). The hyperplane or decision
boundary will distinctly separate the two classes.

FIGURE 6.86 (a) Not an optimal hyperplane d1 > d2 and (b) optimal hyperplane d1 = d2.

FIGURE 6.87 Example for linearly separable.

309Supervised Learning: Classification

The distance between the closest point (support vector) and the decision boundary is defined
as margin. Among all possible decision surfaces, choose the optimal decision surface for which
the margin width is high. There can be a minimum of two support vectors and a maximum of any
number of vectors. But typically, the number of support vectors should be extremely small. These
support vectors determine the equation of a line. SVM has a clear way to prevent overfitting and
works well with a relatively larger number of features without requiring too much computation.

FIGURE 6.88 (a) Possible hyperplanes and (b) optimal hyperplane.

FIGURE 6.89 A simple SVM.

310 Machine Learning for Decision Sciences with Case Studies in Python

6.6.2 MatheMatical forMUlation

Let us understand the mathematical intuition behind SVM by defining functional and geometrical
margins. Functional margin is defined as the distance between the arbitrary point (xi, yi) and the

decision boundary (w, b). Functional margin γ i is the distance between (xi, yi) and the decision

boundary and is derived in Equation 6.28.

 γ ()= +y w x bi
i

T
i (6.28)

Similarly, for another point (xj, yj) that is farther from the decision boundary, the functional margin
is as follows in Equation 6.29.

 γ ()= +y w x bj
j

T
j (6.29)

The functional margin of point (xi, yi) is greater than the functional margin of point (xj, yj), as shown
in Figure 6.90. The larger the functional margin, the higher the confidence.

And now, we can define the functional margin for a set of training points
{ }() () ()=S x y x y x ym m, , , , , ,1 1 2 2

 γ γ= = …i mimin for 1,2, , (6.30)

If we scale w and b, the functional margin gets larger. To overcome this drawback, a geometric mar-
gin comes into the picture. Figure 6.91 shows that the geometric margin is invariant to the scaling
of the equation. Let w be the vector normal to the decision surface.

And let
w

w
 be the unit vector normal to the decision surface. For example, let us assume ()=w 2,3 ,

then = +w 2 32 2

 =
√ √

w

w

2

13
,

3

13
 (6.31)

FIGURE 6.90 Functional margin.

311Supervised Learning: Classification

Now, if we want to find the distance of p from q. But the distance is in the direction of w, and we
can write it as

 γ= +p q
w

w
 (6.32)

The above equation 6.6 can be rewritten as

 γ() ()= +a a b b
w

w
, , 1 2 1 2

 γ() −

+ =w a a

w

w
bT , 01 2

 γ
()()

=
+

y
w a a b

w

T ,

1 2
 (6.33)

Now, we can scale ||w|| = 1; then,

 γ ()()= +y w a a bT ,1 2 (6.34)

After normalization, the geometric margin is

γ
w

 (6.35)

 γ+ ≥ +w x bT
i for vepoints

 γ+ < −w x bT
i for vepoints

FIGURE 6.91 Geometric margin.

312 Machine Learning for Decision Sciences with Case Studies in Python

and can be rewritten as

 +y w x bi
T

i()1

 ()+ < =y w x b i mi
T

i 1for 1,2,...,

 γ = 1

 ≡
w

wmaximize
1

minimize
1

2
2

Hence, the formulation for optimization problem concerning SVM subject to linear constraints is
given as follows:

 wminimize
1

2
2 (6.36)

 ()+ ≥y w x bi
T

is.t. 1

6.6.2.1 Maximize Margin with Noise
SVM can handle the noise in the data in a very efficient way. The optimization function is required
to find the weight vector w and b such that the margin width is maximized. So the margin can be
written as in Equation 6.37.

w

max
2

 (6.37)

And for each of the m training points ()x yi i,

 ()+ ≥y w x bi
T

is.t. 1

and can be rewritten as a minimization problem

 = ⋅w w w isminimized2

And for each of the m training points ()x yi i,

 ()+ ≥y w x bi
T

is.t. 1

The main objective is to ⋅ +w w cminimize where c is the distance of error points to their correct
zones.

6.6.2.2 Slack Variable ξi

In Figure 6.92, there are two wrongly classified slack variables given as ξ1, ξ2 and the maximum
margin is given as M, which we want to maximize.

313Supervised Learning: Classification

The maximum margin with noise is defined by adding the penalty due to slack variables.

 ∑ξ⋅ +
=

w w c k

k

n

minimize
1

 (6.38)

 ξ()⋅ + ≥ − = …y w x b k mk k ks.t. 1 , 1, ,

 ξ ≥ = …k mk 0 1, ,

The Lagrangian of this quantity will be given in Equation 6.10.

 ∑ ∑ ∑ξ α β ξ α ξ β ξ[]() ()= ⋅ + + ⋅ + − + −
= = =

L w b w w C y x w b
i

m

i

i

m

i i i

i

m

i i, , , ,
1

2
1

1 1 1

 (6.39)

where α βi iand are Lagrange multipliers ≥ 0
The soft SVM separates the positive and negative points. And the solution to the dual problem

is given in Equation 6.40.

 ∑α=
=

w y xi i i

i

m

1

 (6.40)

 ∑ξ α()= − −
=

b y y x xk k i i i k

i

m

1
1

 (6.41)

for any k such that α >k 0. And for classification, the function f(x) is given as in Equation 6.42.

 ∑α= ⋅ +
=

f x y x x bi i i

i

m

()
1

 (6.42)

where x is the test point and α i is nonzero support vectors.

FIGURE 6.92 Maximize margin with noise.

314 Machine Learning for Decision Sciences with Case Studies in Python

However, the decision surface classifier is still linear and cannot handle the nonlinear case.
Overfitting is controlled by soft margin SVM. The difference between soft margin and hard margin
of SVM is presented in Figure 6.93.

Let see a simple example in one-dimensional space as shown in Figure 6.94. Suppose we have
three data points and one scalar feature x with two negative classes (x = −3 and −1) and one positive
class (x = 2). These data are easily separable with many linear classifiers (wx + b). So let’s find the
classifier with maximum margin.

 = − = −x y3 and 1

 = − = −x y1 and 1

 = =x y2 and 1

The margin constraints are rewritten and visualized in two-dimensional spaces as in Figure 6.95.
The set of parameters that satisfy our margin constraints are shown in the green-shaded region.

FIGURE 6.93 (a) Soft margin SVM and (b) hard margin SVM.

FIGURE 6.94 Points at one-dimensional space.

315Supervised Learning: Classification

 ()− + < − → < −a b b a3 1 3 1

 ()− + < − → < −a b b a1 1 1

 + < + → > − +a b b a(2) 1 2 1

Finally, the objective is to aminimize .

6.6.3 loss MiniMization

In Figure 6.96, the data point D is misclassified, and for such instance, SVM defines slack variable ξ

 ∑ξ+w C
i

minimize
1

2

2

 ()+y w x bi
T

is.t. 1

 ∑ ()(+ −w C y w xi
T

i

i

minimize
1

2
 max 0,1

2
 (6.43)

where C is the regularization parameter that can be set using cross-validation.
An instance may have four possible cases described in Figure 6.96 while classifying the data

points.

 1. The data point A is on the correct side, and far away from the margin, then the penalty is 0
 2. The data point B is on the correct side, and closer tothe margin, then the penalty is 0
 3. The data point C is the correct side but is in the margin lying very close to the hyperplane

then the penalty is ()− y w xi
T

i1

 4. The data point D is on the wrong side; then, the penalty is ()− y w xi
T

i1

And the comparison of hinge loss with 0–1 loss is shown in Figure 6.97.

FIGURE 6.95 Visualization of margin constraints in 2D space.

316 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 6.96 Four possible cases in classifying.

FIGURE 6.97 Comparisons of 0–1 loss and hinge loss.

317Supervised Learning: Classification

6.6.4 DUal forMUlation

Lagrangian duality for a primal problem is to minimize f(w) where w is the parameter. There are
two linear constraints: inequality constraints g(w) and equality constraints h(w).

 f wwmin () (6.44)

 ≤ =g w i kis.t. () 0, 1, 2,..,

 () = = …h w i l0 1,2, ,

The generalized Lagrangian is given as α β()L w, , where α β, are Lagrange multipliers and α ≥ 0

 ∑ ∑α β α β= + +
= =

L w f w g w h wi i
i

k

i i
i

l

(, ,) () () ()
1 1

 (6.45)

Lemma:

 α β =
∞

α β α ≥ L w

f w if w
imax (, ,)

() Satisfiesprimal constraints

Otherwise, , 0

The solution to the primal problem is p*, and the dual problem is d*.
Theorem (Weak Duality)

 α β α β= ≤ =α β α α β α≥ ≥d L w L w pw wi i max min (, ,) min max (, ,) *
, , 0 , , 0

* (6.46)

Theorem (Strong Duality)
If there exists a saddle point of α β()L w, , , we have d* = p*. As per the strong duality theorem,

when the saddle point exists, the following Karush–Kuhn–Tucker (KKT) conditions are satisfied.

 α β∂
∂

= = …
w

L w i k
i

(, ,) 0, 1, ,

 α β∂
∂

= = …
b

L w i l
i

(, ,) 0, 1, ,

 α () = = …g w i mi i 0, 1, ,

 () ≤ = …g w i mi 0, 1, ,

 α ≥ = …i mi 0, 1, ,

The theorem states that if α βw , ,and* * * satisfy KKT conditions, then it is a solution to the primal
and dual problems.

In SVM, as given in the above equation if α i is nonzero, then such points are called support
vectors.

318 Machine Learning for Decision Sciences with Case Studies in Python

 α () =g wi i 0 (6.47)

If α >i 0, then () =g wi 0.
Now, let’s see how to solve the optimization problem in SVM. After applying Lagrangian, the

quadratic programming with linear constraints is as follows.
min w and b with fixed α.

 ∑ α
∂
∂

= → =
=

L

w
w y xp

i i i
i

n

0
1

 α
∂
∂

= → =
L

b
yp

i i0 0

 ∑ ∑ ∑α α α α α()() = − −
= = =

L w b y y x x b yp

i

m

i

i j

m

i j i j i
T

j i i

i

m

, ,
1

2
1 , 1 1

 (6.48)

 ∑ ∑α α α α ()() = −
= =

L w b y y x xp

i

m

i i j i j i
T

j

i j

m

, ,
1

2
1 , 1

Now, we have the following dual problem, and this is a quadratic programming problem where a
global maxima α i can be found at all times.

 ∑ ∑α α α α ()= −
= =

J y y x xa i

i

m

i j i j i
T

j

i j

m

max ()
1

2
1 , 1

 (6.49)

α ≥ = …i kis.t, 0, 1, ,

∑α =

=

yi i

i

m

 0
1

(6.50)

After getting the Lagrangian multiplier α j, then the parameter vectors w can be reconstructed as
follows:

 ∑ ∑α α= =
=

∈
w y x w y xi i i

i

m

i i i
i SV

1

 (6.51)

319Supervised Learning: Classification

At last, compute with new data z

 ∑ α ()+ = +
∈

w z b y x z bT
i i i

T

i SV
 (6.52)

If the resulting sum is +ve, then classify the new data z as 1, and else, if the sum is −ve, then z is
classified as 2. The discriminant function w depends on the dot product of the new data z and sup-
port vector xi.

Example Consider the two-dimensional data as shown in Table 6.37, which contain eight instances.
Let w = (w w, 1 2) and b denote the parameters of the decision boundary; using the below equation,

we can solve for w1 and w2 in the following way:

 ∑ α= = + − = −w y xi i i
i

65.5621*1* 0.3858 65.5621* 1* 0.4871 6.641 1

 ∑ α= = + − = −w y xi i i
i

 65.5621*1* 0.4687 65.5621* 1 * 0.611 9.322 2

The bias term b is computed using equation

 ()() ()()= − ⋅ = − − − − =()b w x1 1 6.64 0.3858 9.32 0.4687 7.93001
1

 ()() ()()= − − ⋅ = − − − − − =()b w x 1 1 6.64 0.4871 9.32 0.611 7.92892
2

 = + =
() ()

b
b b

Bias
2

7.93
1 2

The decision boundary corresponding to these parameters is shown in Figure 6.98.
Once the decision boundary is found, a test instance z is classified as

 ∑ α= + = +

=

f z w z b y x z bi i i
i

N

() sign (.) sign .
1

If f(z) = 1, then the test instance is classified as a positive class; otherwise, it is classified as negative

class.

TABLE 6.37
Two-Dimensional Data

x1 x2 y Lagrange Multiplier α
0.3858 0.4687 1 65.5261

0.4871 0.611 −1 65.5261

0.9218 0.4103 −1 0

0.7382 0.8936 −1 0

0.1763 0.0579 1 0

0.4057 0.3529 1 0

0.9355 0.8132 -1 0

0.2146 0.0099 1 0

320 Machine Learning for Decision Sciences with Case Studies in Python

6.6.5 the kernel trick

To explore the kernel trick mechanism, we must understand the math behind linearly separable
and nonlinearly separable. Consider a binary classification problem with class labels 0 and 1. A
linearly separable case is the one in which a single line separates the two classes, whereas nonlin-
early separable case is the one in which more than one line is required to separate the two classes.
Logic functions such as AND function and OR function are linearly separable, while XOR function
is nonlinearly separable, as shown in Figures 6.99 and 6.100. Solved examples to understand the
concept are illustrated in Section 6.6.10 of this chapter.

6.6.6 PolynoMial kernel

The notion of the kernel function in SVM is given in Equation 6.53.

 ∑α() () ()= ∅ + = ∅ ∅ +
∈

g x w x b x x bT

i SV

i i
T () (6.53)

A kernel function is the dot product of two feature vectors in feature space in Equation 6.54.

 () () ()= ∅ ⋅ ∅k x x x xa b a b, (6.54)

The idea of the kernel function is to replace the dot product with the kernel function. To prove this,
we can solve an example given two-dimensional vectors []=x x x,1 2 where x1 and x2 are the two
attributes of the vector. Let () = +k x x x xi j i j, (1 .)2; we need to show () ()()= ∅ ⋅ ∅k x x x xi j i j,

 () ()= + ⋅k x x x xi j i j, 1
2

FIGURE 6.98 Decision boundary.

321Supervised Learning: Classification

where x xi i and1 2 are the two attributes of xi and x xj jand1 2 are the two attributes of x j.

 () = + + + + +k x x x x x x x x x x x x x xi j i j i j i j i j i j i j, 1 2 2 21
2

1
2

1 1 2 2 2
2

2
2

1 1 2 2

can be rewritten as

()

()()

= ⋅

= ∅ ⋅ ∅

k x x x x x x x x x x x x x x

x x

i j i i i i i i j j j j j j

i j

, 1 2 2 2 1 2 2 21
2

1 2 2
2

1 2 1
2

1 2 2
2

1 2

where ()∅ = x x x x x x x1 2 2 21
2

1 2 2
2

1 2 . Thus, the solution of the determinant function is given
as

 ∑α ()() = +
∈

g x k x x b
i SV

i i j,

Commonly used kernel functions are the linear kernel, polynomial kernel, and Gaussian kernel.

FIGURE 6.100 Nonlinearly separable.

FIGURE 6.99 Linearly separable.

322 Machine Learning for Decision Sciences with Case Studies in Python

Linear kernel is given in Equation 6.24.

 () = ⋅K x x x xi j i j, (6.55)

A non-stationary kernel is also called the polynomial kernel. It is well applicable for the problems
where all the training data are normalized. Polynomial of power p is given in Equation 6.25.

 () = + ⋅K x x x xi j i j
p, (1) (6.56)

where p is the polynomial power.
The polynomial kernel is a nonlinear kernel that should satisfy Mercer’s theorem.

6.6.6.1 Mercer’s Theorem
A kernel function can be expressed as

 () ()()= ∅ ⋅ ∅k x x x xi j i j, (6.57)

∫()g x g x dxIf andonly if foranyfunction such that () is finite, then2

 ∫ () ()() ≥k x y g x g y dx dy, 0

6.6.6.2 Radial Basis Function (RBF) Kernel
The most common kernel function is the RBF or Gaussian similarity kernel shown in Figure 6.101.
This kernel results in high values near the point x, and the parameter σ = 1 is used to control over-
and underfitting. The equation for the RBF kernel is given in Equation 6.27.

 () = σ
−

−

K x x ei j

x xi j

, 2

2

2
 (6.58)

FIGURE 6.101 RBF kernel.

323Supervised Learning: Classification

6.6.6.3 Other Domain-Specific Kernel
The most challenging part is choosing the right kernel function, and it is highly problem-specific.

6.6.6.4 Sigmoid Kernel
An SVM with a sigmoid kernel is equivalent to a simple two-layer neural network with no hidden
layers known as a multilayer perceptron. It is also called the hyperbolic tangent kernel. It comes
from neural networks, where artificial neurons often use the bipolar sigmoid mechanism as an acti-
vation function. The sigmoid kernel equation is given in Equation 6.59.

 α δ() ()= ⋅ −K x x x xi j i j, tanh (6.59)

6.6.6.5 Exponential Kernel
It is closely equivalent to the Gaussian kernel and is shown below in Equation 6.60.

 () = σ
−

−

K x x ei j

x xi j

,
2 2

 (6.60)

6.6.6.6 ANOVA Kernel
It is said to perform well in multidimensional regression problems.

 ()()() = −{ }=K x x x xi j k
n

i
k

j
k

d

, sum exp sigma – 1

2
 (6.61)

6.6.6.7 Rational Quadratic Kernel
It is less computationally intensive than the Gaussian kernel. If the Gaussian becomes too expen-
sive, then rational quadratic kernel can be used as an alternative.

 () = −
−

− +
k x x

x x

x x c
i j

i j

i j

, 1

2

2 (6.62)

6.6.6.8 Multiquadratic Kernel
The multiquadratic kernel can be used in the same situations as the rational quadratic kernel. As is
the case with the sigmoid kernel, it is also an example of a non-positive definite kernel.

 () = − +k x x x x ci j i j,
2 2 (6.63)

6.6.6.9 Inverse Multiquadratic Kernel
The Gaussian kernel results in a kernel matrix with full rank and thus forms an infinite dimension
feature space.

 () =
− +

k x x
x x c

i j

i j

,
1

2 2
 (6.64)

324 Machine Learning for Decision Sciences with Case Studies in Python

6.6.6.10 Circular Kernel
The circular kernel is used in geostatic applications. It is an example of an isotropic stationary ker-
nel and is positive definite in R2.

σ σ() =

π
−

−

−
π

−
k x x

x x x x
i j

i j i j
,

2
arccos

2
 (6.65)

6.6.6.11 Bayesian Kernel
The Bayesian kernel could be given as

 ∏() ()=
=

k x y k x yl l l

l

N

, ,
1

 (6.66)

6.6.6.12 Chi-Square Kernel
It is derived from chi-square distribution and is given as follows:

 ∑() ()
()

= −
−

+=

k x y
x y

x y

i i

i il

n

, 1 1

2

2

1

 (6.67)

6.6.6.13 Histogram Intersection Kernel
It is widely used in image classification and is also called as min kernel.

 ∑() ()=
=

k x y x y
l

n

i i, min ,
1

 (6.68)

6.6.6.14 Generalized Histogram Intersection Kernel
It is a variant of histogram intersection kernel and is widely applicable in image classification.

 ∑ ()() = α β

=

k x y x y
l

n

i i, min | | ,| |
1

 (6.69)

6.6.7 nU svM

In soft margin SVM, finding the parameter C is difficult. Instead of using C, Scholkopf et al. intro-
duce nu SVM. nu is bounded between 0 and 1. The function is given as in Equation 6.70.

 ∑γρ ξ− +w t

t
minimize

1

2

1

2
2

 (6.70)

Subject to

 ρ ξ ξ ρ()+ ≥ − ≥ ≥r w x wt T t t t , 0, 00

325Supervised Learning: Classification

6.6.8 svM regression

Let us extend SVM to regression problem, given the training data { }() () ∈ ∈X y X y X R y Rn n i
m

i, , , 1 1
the idea is to learn the best optimal function to predict y given X. This regression problem can be
parameterized by weight vector w as shown below in Equation 6.71,

() () ()

()

= ∅ + + ∅ +

= ∅ +

′ ′g X W w x w x b

w x b

m m

T

, 1 1

 (6.71)

where ∅ →R Ri
m: . If we choose ()∅ =X xi i, then it is a linear regression model. By specifying

()= ∅ ∈ ′Z X Rm , we are learning a linear model in a newly transformed feature space. Kernel func-

tions can be used instead of explicitly specifying the dot product.
Loss function L in regression problem is to minimize W and is given in Equation 6.72,

 ∑ ()()L y X Wi g i
i

 ,, (6.72)

A special loss function called ε insensitive loss is used, which allows us to use kernel trick in SVM
regression as given in Equation 6.42.

ε

ε
()()

()
()

=
− <

− −

εL y g X W

y g X W

y g X W
i i

i i

i i

, ,
0 If ,

, Otherwise
 (6.73)

where ε is the parameter of the loss function, and if the prediction is within ε of true value, then
there is no loss. And choose absolute error value instead of a square of the error to achieve high
robustness.

Hence, empirical risk minimization under ε insensitive loss would minimize

 ∑ ε()()− ∅ − −
=

y X W b oi i
T

i

n

 max ,
1

 (6.74)

The optimization problem for SVM regression is to find ε ε ′W b i i, , ,

 ∑ ∑ε ε+ + ′

= =

W W CT
i

i

n

i

i

n

Minimize
1

2

1 1

 (6.75)

 ε ε()− ∅ − ≤ + = …y W X b i ni
T

i iSubject to , 1, ,

 ε ε()∅ + − ≤ + ′ = …W X b y i nT
i i i , 1, ,

 ε ε≥ ′ ≥ = …i ni i0, 0, 1, ,

To construct a dual problem for SVM regression, introduce non-negative multipliers α α ′i iand as
follows

 ∑ ∑ ∑α α ε α α α α α α() ()() () () ()− ′ − + ′ − − ′ − ′ ∅ ∅
α α

= =

y X Xi i i

i

n

i i

i

n

i i j j i
T

j
T

i j
max

1

2.
1 1

.
 (6.76)

326 Machine Learning for Decision Sciences with Case Studies in Python

 ∑ α α()− ′ =
=

i i

i

n

Subject to 0
1

 α α≤ ′ ≤ = …C i ni i0 , , 1, ,

6.6.9 one-class svM

Outlier detection is an example of one-class SVM. Outlier detection is used for anomaly detection,
where one is interested in detecting abnormal or unusual observations. The training data contain
outliers, which are defined as observations that are far from the others. A one-class SVM is an unsu-
pervised learning algorithm that learns the boundaries of data points and can classify any points
that lie outside the boundary as, you guessed it, outliers.

Figure 6.102 shows an example where the kitten and cub are the target classes with the label
y = +1 and other extremes (neither kitten nor cub) are outliers y = −1. A one-class classifier is shown,
which distinguishes kitten and cub from all other objects.

6.6.10 MUlticlass svM

In general, SVM is a binary classifier, but in real-time scenarios, there can be multiple classes. The
multiclass classification can be achieved using one against one, one against all, and directed acyclic
graph SVM methods.

6.6.10.1 One against All
In one against all, k binary SVM classifier is constructed where k is the number of classes. For
example, there are three classes {1, 2, 3} as given in Figure 6.103. Initially, let us perform binary
classification by assuming class 1 as positive and the remaining classes from 2 and 3 as negative.
Similarly, repeat the same procedure for the other four classes.

FIGURE 6.102 One-class classifier for outlier detection.

327Supervised Learning: Classification

6.6.10.2 One against One
In one against one method, for M classes, M(M − 1)/2 classifiers are built. Figure 6.104 shows the
architecture for three-class SVM problem using one against one method.

6.6.10.3 Directed Acyclic Graph SVM
It is a combination of one against one method and a directed acyclic graph concept. For the three-
class example {1, 2, 3}, initially construct a binary classifier for classes {1 and 2} as in one against
one method. The binary classifier moves to the right node if the data belong to class 1, else to the left
node. Finally, the directed acyclic graph shown in Figure 6.105 is constructed to make a decision.
The leaf node indicates the final class label.

FIGURE 6.103 One against all.

FIGURE 6.104 One against one.

328 Machine Learning for Decision Sciences with Case Studies in Python

6.6.11 svM exaMPles

Example 6.11

Let us see the linear SVM problem. Suppose we are given the following positively labeled data points

 −

 −

3
1

,
3
1

,
6
1

,
6
1

and the following negatively labeled data points (see Figure 6.106):

 −

−

1
0

,
0
1

,
0
1

,
1

0

Let us identify a simple hyperplane that separates the positive and negative points. Linear SVM can
be used because the data points are linearly separable.

Let us define a hyperplane by observing the given input data. There are three support vectors
circled, as shown in Figure 6.107, which are close to the hyperplane and they are

 =

=

=
−

s s s

1
0

,
3
1

,
3
1

1 2 3

In what follows, we will use vectors augmented with 1 as a bias input

 =

=

= −

s s s

1

0
1

,

3

1
1

,

3

1
1

1 2 3

FIGURE 6.105 Directed acyclic graph SVM.

329Supervised Learning: Classification

Figure 6.108 represents the SVM architecture, and their corresponding equations 6.77 to 6.79 are
given below.

 α α α ()() () () () ()∅ ⋅∅ + ∅ ⋅∅ + ∅ ⋅∅ = −s s s s s s 1 1 1 1 2 2 1 3 3 1 (6.77)

 α α α ()() () () () ()∅ ⋅ ∅ + ∅ ⋅∅ + ∅ ⋅∅ = +s s s s s s 1 1 1 2 2 2 2 3 3 2 (6.78)

 α α α() () () ()() ()∅ ⋅∅ + ∅ ⋅∅ + ∅ ⋅∅ = +s s s s s s 1 1 1 3 2 2 3 3 3 3 (6.79)

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2 3 4 5 6 7

FIGURE 6.106 Linear SVM.

FIGURE 6.107 Linearly separable data points with support vectors.

330 Machine Learning for Decision Sciences with Case Studies in Python

Since, for now, we have ∅ = I() , this reduces to

 α α α⋅ + ⋅ + ⋅ = −s s s s s s 11 1 1 2 2 1 3 3 1

 α α α⋅ + ⋅ + ⋅ = +s s s s s s 11 1 2 2 2 2 3 3 2

 α α α⋅ + ⋅ + ⋅ = +s s s s s s 11 1 3 2 2 3 3 3 3

Let us substitute values for s1 , s2 , and s3 in the above equations

 α α α() () ()

⋅ +

⋅ + −

⋅ = −
1

0
1

1 0 1

3

1
1

1 0 1

3

1
1

1 0 1 11 2 3

 α α α() () ()

⋅ +

⋅ + −

⋅ = +
1

0
1

3 1 1

3

1
1

3 1 1

3

1
1

3 1 1 11 2 3

FIGURE 6.108 Linear SVM architecture.

331Supervised Learning: Classification

α α α() () ()

⋅ − +

⋅ − + −

⋅ − = +
1

0
1

3 1 1

3

1
1

3 1 1

3

1
1

3 1 1 11 2 3

 α α α+ + = −2 4 4 11 2 3

 α α α+ + = +4 11 9 11 2 3

 α α α+ + = +4 9 11 11 2 3

By solving the above equations, we get α = − 3.51 , α2 = 0.75, and α3 = 0.75.

Now, we have the α i . The equation of hyperplane can be written as

 = +y wx b

The values of w and b are given by

� �∑α= ⋅

= −

+

+ −

=
−

w s
i

i i

3.5*

1

0
1

 0.75*

3

1
1

 0.75*

3

1
1

1

0
2

Here, =

w
1
0

 and b = −2. Plotting the line gives the expected decision boundary in a thick

line, as shown in Figure 6.109.

FIGURE 6.109 Linearly separable SVM with a hyperplane.

332 Machine Learning for Decision Sciences with Case Studies in Python

Example 6.12

Classify the given data points into two classes using SVM and find the optimal hyperplane

First, let us plot the data points in a graph; negative points are marked as ‘−’, and positive points
are marked as ‘+’, as given in Figure 6.110.

There can be many possible hyperplanes, as shown in Figure 6.111, and the aim is to identify
the optimal hyperplane.

There are three support vectors (Figure 6.112), namely S1, S2, and S3.

 =

=
−

=

S S S 2
1

 2
1

4
01 2 3

Bias input is 1. So, augment the support vectors with the bias input, and then, S1, S2, and S3 become
���S S S, ,1 2 3 as shown below.

 ��� =

= −

=

S S S

2

1
1

,

2

1
1

,

4

0
1

1 2 3

x y Label

1 1 −ve

2 1 −ve

1 −1 −ve

2 −1 −ve

4 0 +ve

5 1 +ve

5 −1 +ve

6 0 +ve

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

FIGURE 6.110 Representation of data points.

333Supervised Learning: Classification

We need to find the three parameters α α α, , and,1 2 3 based on the following three linear equations

 ���� � �α α α ()+ + = − −S S S S S S 1 ve class1 1 1 2 2 1 3 3 1

 �� �� ��α α α ()+ + = − −S S S S S S 1 ve class1 1 2 2 2 2 3 3 2

 � � ����α α α ()+ + = + +S S S S S S 1 ve class1 1 3 2 2 3 3 3 3

FIGURE 6.111 Possible hyperplanes.

FIGURE 6.112 Support vectors representation.

334 Machine Learning for Decision Sciences with Case Studies in Python

Let’s substitute ���S S S, , 1 2 3 values in the above equations

 α α α

+ −

+

= −
2

1
1

2

1
1

2

1
1

2

1
1

4
0
1

2

1
1

 11 2 3

 α α α

−

+ −

−

+

 −

= −
2

1
1

2

1
1

2

1
1

2

1
1

4
0
1

2

1
1

 11 2 3

 α α α

 + −

 +

 = +

2

1
1

4
0
1

2

1
1

4
0
1

4
0
1

4
1
1

 11 2 3

After simplification, we get

 α α α+ + = −6 4 9 11 2 3

 α α α+ + = −4 6 9 11 2 3

 α α α+ + =9 9 17 11 2 3

After solving the above three simultaneous equations, we get

 α α α= = − = 3.25 and 3.51 2 3

The hyperplane that discriminates the two classes is given by

 ∑α=w S
i

i i

 = −

− −

+

 =

−

w 3.25

2

1
1

3.25

2

1
1

 3.5
4
0
1

1
0
3

Hence, we equate y = wx + b

where =

w
1
0

 and b = −3, and the expected hyperplane for this linear SVM is shown in

Figure 6.113.
Most of the real-world data possess nonlinearity. Let’s consider an example in nonlinear data

in one-dimensional space as in Figure 6.114.
Convert them to higher-dimensional space by adding quadratic feature =x x2 1

2, which in turn
makes the data linearly separable and is shown in Figure 6.115.

The data that are not linearly separable will not be having a single hyperplane to separate
them. The data point x in the nonlinear model of feature space is mapped to the linear model of
feature space ()∅ x . While mapping ()→ ∅x x , the computational cost becomes very high. We
can achieve this transformation without any major hike in computational cost by using the kernel
function in SVM.

Figure 6.116a is not linearly separable, but when we transform these points to appropriate high-
dimensional feature space, the points may become linearly separable, as shown in Figure 6.116b.

335Supervised Learning: Classification

FIGURE 6.114 Nonlinearly separable data.

FIGURE 6.113 Optimal hyperplane.

FIGURE 6.115 Linearly separable data.

336 Machine Learning for Decision Sciences with Case Studies in Python

Example 6.13

Let us see another problem to solve the nonlinear SVM case. Suppose we are given the following
positively labeled (marked with ‘+’) data points

 −

−
−

−

2
2

, 2
2

, 2
2

, 2
2

and the following negatively labeled (marked with ‘−’) data points (see Figure 6.117):

 −

−
−

−

1
1

, 1
1

, 1
1

, 1
1

The points are nonlinearly separable, as shown in Figure 6.118. Therefore, we must use nonlinear
SVM; i.e., the mapping function ∅ is a nonlinear mapping from input space into some feature
space. The mapping is given as

 ∅

 =

− + −

− + −

+ >

x

x

x x x

x x x
x x

x

x

4

4
if 2

Otherwise

1

2

2 1 2

1 1 2
1
2

2
2

1

2

The data are mapped into feature space for positive examples as

2
2

,
6
2

,
6
6

,
2
6

FIGURE 6.116 (a) Hyperplane in the original two-dimensional space and (b) hyperplane in the trans-
formed space.

337Supervised Learning: Classification

and for negative examples as

 −

−
−

−

1
1

, 1
1

, 1
1

, 1
1

The points are plotted as shown in Figure 6.119 and support vectors (circled) are close to the
hyperplane given by the coordinates.

 =

=

s s

1
1

, 2
21 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

FIGURE 6.117 Nonlinear SVM.

-2

-1

0

1

2

3

4

5

6

7

-2 -1 0 1 2 3 4 5 6 7

FIGURE 6.118 Nonlinearly separable data points.

338 Machine Learning for Decision Sciences with Case Studies in Python

In what follows, we will use vectors augmented with 1 as a bias input

 =

 =

s s
1
1
1

,
2
2
1

1 2

The figure below represents the SVM architecture, and their corresponding equations are given
below.

 α α() () () ()∅ ⋅∅ + ∅ ⋅∅ = −s s s s 11 1 1 2 2 1

 α α() () () ()∅ ⋅∅ + ∅ ⋅∅ = +s s s s 11 1 2 2 2 2

Since, for now, we have ∅ = I() , this reduces to

 α α⋅ + ⋅ = −s s s s 11 1 1 2 2 1

 α α⋅ + ⋅ = +s s s s 11 1 2 2 2 2

Let us substitute values for S1, S2, and S3 in the above equations

 α α() ()

⋅ +

⋅ = −
1

1
1

1 1 1

2

2
1

1 1 1 11 2

 α α() ()

⋅ +

⋅ = +
1

1
1

2 2 1

2

2
1

2 2 1 11 2

 α α+ = −3 5 11 2

 α α+ = +5 9 11 2

-2

-1

0

1

2

3

4

5

6

7

-2 -1 0 1 2 3 4 5 6 7

FIGURE 6.119 Nonlinear SVM with support vectors.

339Supervised Learning: Classification

By solving the above equations, we get α = − 71 , α = 42

Now, we have the α i . The equation of hyperplane can be written as

 = +y wx b

The values of w and b are given by

� �∑α= ⋅

= − ⋅

+ ⋅

=
−

w s
i

i i

 7

1

1
1

 4

2

2
1

1

1
3

Here, =

w
1
1

 and b = −3. The expected decision boundary is the dark line shown in

Figure 6.120.

Example 6.14

Given the ten instances in a table which is a nonlinearly separable case as shown in Figure 6.121.
How to transform the nonlinearly separable into linearly separable using the kernel trick?

To transform the feature space from the original nonlinear space, then x1 and x2 are transformed
to high-dimensional space z1 and z2 using the formula.

 = = ⋅z x z x x and1 1
2

2 1 2

The results are tabulated, and the output is shown in Figure 6.122.

FIGURE 6.120 Nonlinear SVM with hyperplane.

340 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 6.121 Nonlinearly separable data points.

FIGURE 6.122 Transforming nonlinearly separable into linearly separable.

341Supervised Learning: Classification

6.6.12 real-worlD aPPlications

SVM has been used in many real-world applications such as image classification, handwritten OCR,
bioinformatics, and text categorization (Figure 6.123). In addition, the bioinformatics field has been
used for cancer diagnosis based on gene expression of data and protein secondary structure pre-
diction. The advantages of SVM are that sparseness of solution to problems and overfitting can be
controlled by using a soft margin approach make it used in a wide range of applications.

6.6.12.1 Classification of Cognitive Impairment
Alzheimer’s disease (AD) is a degenerative brain disease and the most common cause of dementia.
The symptoms of dementia include memory loss and difficulties with thinking, problem-solving, or
language, which seriously affect a patient’s daily life. Mild cognitive impairment (MCI) is an early
stage of AD characterized by significant cognitive impairment in the absence of dementia. In the
United States, there were more than 5.2 million people with AD in 2014, and it is estimated that
13.8 million Americans have AD by 2050. Thus, precise prediction and diagnosis of AD, especially
at its early warning stage such as MCI, have become a crucial step to delay or even avoid dementia.

Commonly used modalities include magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), and positron emission tomography (PET). Owing to its easy access in
clinical settings, MRI receives the most attention of researchers compared with other modalities.
The structural changes in the brain associated with AD can be noninvasively assessed using MRI.

Early detection of AD at the early stage is of great importance in terms of patient management.
Some of the earliest symptoms of AD, such as short-term memory loss, are often mistaken as related
to aging and stress; it remains challenging to predict the disease in an early stage. The Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset is used for evaluation. The design of the system is
given in Figure 6.124.

FIGURE 6.123 Applications of SVM.

342 Machine Learning for Decision Sciences with Case Studies in Python

6.6.12.2 Preprocessing
A three-step preprocessing is applied to each MRI brain image. Steps in preproces-sing are as follows:

Step 1: Skull in the brain is not required for AD analysis, so skull stripping is done using a
free surfer tool

Step 2: MRI image is segmented in white matter, gray matter, and CSF (cerebra spinal fluid)
using free surfer tool

Step 3: Histogram equalization is done to adjust the contrast by modifying intensity distribu-
tion. Histogram equalization is preferred without loss of data; it equalizes the contrast of
images.

6.6.12.3 Feature Extraction
Gray-level co-occurrence matrix (GLCM) is used to extract the 3D texture parameters of each
region of interest (ROI). GLCM parameters are described in Table 6.38.

6.6.12.4 SVM Classification
SVM plots each data item as a point in n-dimensional space (where n is the number of features you
have), with the value of each feature being the value of a particular coordinate. SVM maps the origi-
nal features via a kernel function to construct a maximum classifier in a high-dimensional feature
space. Gaussian RBF kernel with an empirical scaling factor of three differentiates the two classes
very well. Finally, SVM with fivefold cross-validation is done.

6.6.12.5 Procedure
Input: ADNI dataset
Output: SVM model for AD diagnosis with accuracy for a given dataset

FIGURE 6.124 Design of cognitive impairment classification.

343Supervised Learning: Classification

Step 1: Get a dataset for training the model as input
Step 2: Select the features and class label for a given dataset
Step 3: Set the value for classification type (0 – C-SVC, 1 – nu SVC, 2 – one-class SVM, 3 –

epsilon SVR, 4 – nu-SVR)
Step 4: Set the value for kernel type (0 – linear, 1 – polynomial, 2 – RBF, 3 – sigmoid: tanh)
Step 5: Set the value for gamma (1/number_of_attributes)
Step 6: Set the value for the cost (default cost 1).
Step 7: Train the model using the given dataset based on specified options.
Step 8: Perform cross-validation for the generated model with the number of folds as 10.
Step 9: Accuracy by class is calculated for the model by constructing a confusion matrix.

6.6.12.6 Performance Analysis
The accuracy of the algorithm is implemented by using the confusion matrix. A confusion matrix
illustrates the accuracy of the solution to a classification problem. A confusion matrix contains
information about actual and predicted classifications done by a classification system. The perfor-
mance of such systems is commonly evaluated using the matrix data and presented in Table 6.39.

6.6.12.7 Text Categorization
As the volume of electronic information increases, there is growing interest in developing tools to
help people find, filter, and manage these resources better. In real-life scenarios, we have hundreds

TABLE 6.38
GLCM Parameters

Parameter Description

Entropy Measures the degree of disorder among pixels in the image

Energy Provides the sum of squared elements in the GLCM

Contrast Measures the local variations in GLCM

Correlation Measures the joint probability occurrence of the specified pixel pairs

Homogeneity Measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal.

Difference variance Measures the dispersion related to the gray-level difference distribution of image

Difference entropy Measures the disorder related to the gray-level difference distribution of image

TABLE 6.39
Evaluation of Result

Performance Metrics Formula Result

Accuracy +
+ + +

TP TN

TP TN FP FN

0.7500

Recall/sensitivity

+
TP

TP FN

0.8600

Specificity

+
TN

TN FP

0.6400

Precision

+
TP

TP FP

0.7049

F-score

()+
2 * Recall * precision

Recall precision

0.7748

344 Machine Learning for Decision Sciences with Case Studies in Python

of files and mails, and there is a need to organize and manage those files, since human text cat-
egorization is time-consuming with increase in data. The rule-based approach was carried out to
categorize text, but it requires manual rule construction. Spam email detection and topic modeling
of documents are based on text classification. For example, given mail content, the idea is to classify
whether it is spam or not. Each document is represented as a vector of words. Document x can be
represented by vector (doc2vec), i.e., ()→ ∅x x .

 ∅ =
()

()i x
tfi idfi

k

log

The distance between two documents, say x and y in vector space, is represented as the dot prod-
uct of ()()∅ ⋅ ∅x y . Using the kernel function () ()()= ∅ ⋅ ∅k x y x y, . SVM works well for linearly
separable text categorization applications. The choice of kernel and kernel parameter improves the
performance of categorization. The Reuters collection is popular for text categorization research.

6.6.12.8 Handwritten Optical Character Recognition
Optical character recognition is converting handwritten digits or text into an editable document, as
given in Figure 6.125. In other words, it is a process of converting scanned documents and printed
documents into readable and editable forms. SVM outperforms other ML models in recognizing
handwritten characters. MNIST is an open-source dataset with 60,000 handwritten digit samples.
SVM achieves a good accuracy when compared to neural network models. NIST and USPS are
other datasets that can be used for evaluation. The polynomial kernel gives good results with better
accuracy and a low error rate.

Represent input image as a vector x ∈ R. Learn a SVM classifier f(x) such that,

 { }→f x: 0,1,2,3,4,5,6,7,8,9

6.6.12.9 Natural Language Processing
Natural language processing is a process of automatically analyzing and processing natural lan-
guages. SVM is utilized for various natural languages processing techniques such as part-of-
speech (POS) tagging, word sense disambiguation, text categorization, named entity recognition,

FIGURE 6.125 Handwritten OCR.

345Supervised Learning: Classification

information retrieval, and machine translation. The SVMTool is an open-source tool used for the
effective generator of the sequential POS tagger. For a given sequence of words, the POS tagger tags
the appropriate parts of speech, as shown in Figure 6.126.

SVMstruct is another open-source tool used for natural language processing applications. SVMstruct
supports the task such as SVMcfg (SVM used for context-free grammars), SVMmulticlass (used for
multiclass classification problem), and SVMhmm (uses the features of Markov model).

6.6.12.10 Cancer Prediction
In the last two decades, ML methods have been extensively applied to disease prediction. In particu-
lar, SVM is widely used in the bioinformatics field, such as gene classification, protein classification,
and medical diagnosis.

SVM classifiers classify the tumor as either benign or malignant based on the size and gene
expression (Figure 6.127). SVM can also be used in cancer recurrence and cancer prognosis pre-
diction. The various types of data such as clinical pathology, clinical gene expression, and clinical
genomic can train and test the model. A schematic representation of SVM based on the patient age
and size of the tumor is represented in Figure 6.128. SVM is classified into two classes called benign
(O) and malignant x by an optimal decision boundary.

6.6.12.11 Stock Market Forecasting
In the financial sector, ML methods have made a great impact. The objective of stock prediction
is to decide whether the stock value in the near future is high or low, given the present stock rate.
The prediction can be either short term or long term. Stock market prediction is a nonlinear time
series model because prediction is uncertain and depends on various external factors. Henceforth,
nonlinear SVM works well for stock market prediction (Figure 6.129). Google finance Python is an
open-source data available for stock prediction.

FIGURE 6.126 Parse tree.

FIGURE 6.127 Cancer prediction.

346 Machine Learning for Decision Sciences with Case Studies in Python

6.6.12.12 Protein Structure Prediction
In bioinformatics, protein structure prediction plays a significant role in disease diagnosing and
drug production. The Structural Classification of Proteins (SCOP) is the database used for protein
classification, which is composed of four protein domain classes: (a) all α , (b) all β, (c) α β/ , and
(d) α β+ . SVM classifies this four-class problem optimally.

6.6.12.13 Face Detection Using SVM
Face detection is widely used in computer vision tasks. Given as input an image, which could be a
photograph, the goal is to determine whether there are any human faces in the image and fit the face
in the bounding box. However, face detection is a difficult task because of the significant differences
in pattern (Figure 6.130).

FIGURE 6.128 SVM cancer predictions.

FIGURE 6.129 Stock price predictions.

347Supervised Learning: Classification

6.6.13 aDvantages anD DisaDvantages of svM

The pros of SVM are

• Ability to handle high-dimensional dataset
• Kernel tricks are used to process the nonlinear problems in an efficient manner
• Nonparametric
• Robust against the outliers
• The number of support vectors provides a good indication of the complexity of the problem

to handle
• Allow flexibility in using various parameter adjustments (e.g., linear vs. nonlinear, regu-

larization, etc.)
The cons of SVM are

• SVM is highly sensitive in identifying the optimal values of the parameters
• Difficulty in analyzing a large dataset

6.7 SVM CLASSIFICATION IN PRACTICE USING PYTHON

A SVM is grouped under a supervised ML algorithm used for both classification and regression
purposes. SVMs are more commonly utilized in classification problems, and per se, this is often
what we’ll concentrate on in this example code below.

SVMs have supported the thought of finding a hyperplane that best divides a dataset into two
classes.

6.7.1 sUPPort vectors

Support vectors are the information points nearest to the hyperplane, the points of a dataset that, if
removed, would alter the position of the dividing hyperplane. Because of this, it can be considered
the critical elements of an information set.

FIGURE 6.130 Face detection using SVM.

348 Machine Learning for Decision Sciences with Case Studies in Python

6.7.2 what is a hyPerPlane?

For a classification task with only two features, you’ll consider a hyperplane as a line that linearly
separates and classifies a set of information. Intuitively, the more beyond the hyperplane our data
points lie, the more confident we are that they need to be correctly classified. We, therefore, want
our data points to be as far off from the hyperplane as possible while still being on the right side
of it. So when new testing data are added, whatever side of the hyperplane it lands will decide the
category that we assign. Let’s revisit the iris dataset:

import numpy as np
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn import datasets
from sklearn import svm

iris = datasets.load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.
target, test_size=0.4, random_state=0)

Build an SVC model for predicting iris classifications using training data
clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)

Now measure its performance with the test data
clf.score(X_test, y_test)

The output is shown below.

0.9666666666666667

For K-fold cross-validation, let’s use a K of 5

let us give cross_val_score a model, the entire data set and its "real"
values, and the number of folds:
scores = cross_val_score(clf, iris.data, iris.target, cv=5)

Print the accuracy for each fold:
print(scores)

and the mean accuracy of all 5 folds:
print(scores.mean())

The output is shown below.

[0.96666667 1. 0.96666667 0.96666667 1.]
0.9800000000000001
clf = svm.SVC(kernel='poly', C=1).fit(X_train, y_train)
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
print(scores)
print(scores.mean())

The output is shown below.

[1. 1. 0.9 0.93333333 1.]
0.9666666666666666

349Supervised Learning: Classification

SUMMARY

This chapter introduced the supervised learning algorithms applied for classification applications.
Logistic regression, decision trees, RF, and SVMs were covered in detail with solved examples,
real-world applications, and implementation in Python.

Some of the key points to be remembered are as follows:

• A decision tree is a tree-structured classifier. The decision node and leaf node are the two
nodes in the decision tree. A test is done on the decision node. A leaf node represents the
class label. The path from the root to the leaf represents the classification rule. Information
gain is the amount of energy that cannot be used to do work or measure disorders in the

system. ∑ −
=

P P
i

c

log
1

.

• In the ID3 algorithm, the information gain is used for the selection of root attributes. The
information gain is calculated for each attribute, and the attributes having high information
gain are selected as the root node.

• In C 4.5 algorithm, the gain information is used for the calculation of root attributes. The
attributes having maximum gain ratio are selected as the root node.

• The CART 4.5 algorithm uses the Gini index to identify the attributes for the root node.
The attribute having a low Gini index is selected as the root node.

• Advantages of the decision tree are
• Interpretability, used in data exploration, capture nonlinear relationship, simple rule-

based approach.
• Disadvantages of the decision tree are a low bias and overfitting problem
• Overfitting is the phenomenon in which the learning process matches exactly with all the

training data. The accuracy of the model is high for trained data and low for untrained
data. Overfitting can be eliminated by prepruning and postpruning.

• Underfitting occurs when the training model does not capture the underlying pattern.
Underfitting is destroying the accuracy of our model of ML.

• Decision trees are used for predicting library book, identification of tumor, and classifica-
tion of telescope image.

• RF is a method that operates by constructing multiple decision trees during the training
phase. The main advantage of the RF tree is that it has less training due to multiple trees.

• The various features of RF are high accuracy, and it runs efficiently on a large dataset, less
error, handling missing data, no overfitting.

• The main drawback of RF is that it has less control on the model and does not work well
for regression.

• The time complexity for creating a complete unpruned decision tree is O (v * n log (n)),
where n is the record number and v is the number of variables/attributes.

REVIEW QUESTIONS

 1. Compare and contrast linear regression and logistic regression with examples.
 2. Discuss the various types of logistic regression in detail.
 3. Is it possible to use a logistic model given all the independent variables are continuous? Justify.
 4. Define odds ratio.
 5. Compare and contrast nominal and ordinal logistic regression with suitable examples.
 6. A dependent or outcome variable, say direction with values North, South, East, and West,

is a nominal or ordinal variable. Another dependent variable called symptom with values
absent, mild, moderate, and severe is a nominal or ordinal variable. Justify your answer.

350 Machine Learning for Decision Sciences with Case Studies in Python

 7. Design a suitable logistic model with a neat sketch to differentiate tumor grade into three
categories such as well-differentiated, moderately differentiated, and poorly differentiated
using the input variables as age (categorical), sex (categorical), and type of cancer (adeno-
carcinoma, adenosquamous, and others).

 8. Discuss any three use cases of logistic regression in natural language processing.
 9. Solve the below decision tree to identify strep throat and cold.

 10. Explain the method used to avoid overfitting in the decision tree.
 11. Explain the various algorithms used in the decision tree.
 12. Create your own decision tree for classification and regression tree.
 13. Give some real-time application of the decision tree.
 14. How do we combine the decision tree with SVM for the classification process?
 15. Explain bias and variance in RF.
 16. Give some application of RF.
 17. What is the run-time complexity of RF?
 18. Draw a RF for the following table.

 19. Describe an extremely randomized tree.
 20. Create a RF with your own dataset and validate your result with sample input.
 21. Explain linearly separable and nonlinearly separable data with an example.
 22. Explain in brief why SVM is fast and works more accurately than logistic regression.
 23. Discuss hard margin and soft margin with a sketch.
 24. How to use SVM for multiclass classification?
 25. List out the different kernels used in SVM and justify which will best suit massive datasets.
 26. Name some software available for highly optimized SVM.
 27. Identify the optimal hyperplane for AND function.
 28. Identify the optimal hyperplane for XOR function using kernel trick.

Throat Pain Fever Swollen Glands Congestion Head Pain Diagnosis

Yes Yes Yes Yes Yes Strep throat

Yes Yes No Yes No Cold

Yes No Yes No No Strep throat

No Yes No Yes No Cold

No No Yes No No Strep throat

No Yes No Yes Yes Cold

Blood Flow Blocked Arteries Chest Pain Weight Heart Disease

Normal Yes Yes 195 Yes

Abnormal No No 130 No

Abnormal Yes Yes 180 Yes

Abnormal Yes Yes 180 Yes

Normal No No 100 No

Normal Yes No 150 Yes

351

7 Feature Engineering

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the need for feature engineering in machine learning
• Appreciate the methods for feature selection
• Knowledge of factor analysis
• Understand the concepts of dimensionality reduction using PCA and LDA
• Implement Python-based examples using PCA and LDA

7.1 INTRODUCTION

Machine learning fits the types of statistics in the data for understanding or prediction. These
types take features such as input. Feature representation of raw data is named as feature numbers.
Features remain between data and models within the device, getting to know the machine learning
pipeline. Feature engineering is the act of extracting features from raw data and converting them
into formats suitable for machine learning models. It is an important step in the machine learning
pipeline because proper features can reduce the issue of modeling and, therefore, allow the pipeline
to produce high-quality results. Experts agree that most of the time building a machine learning
pipeline is spent on feature engineering and statistics cleaning. However, as important as it is, the
topic is not often discussed alone. Perhaps, this is because the relevant features can only be defined
in the context of every model and data; because facts and models are so diverse, it’s difficult to gen-
eralize the exercise of feature engineering in all projects.

Feature engineering is the task of improving model prediction in the database by changing its
feature space. Existing strategies to change this procedure depend on flexible spatial testing of per-
formance by experimentally guided search or the explicit enlargement of datasets with all the modi-
fied features observed by feature selection. However, such methods present higher computational
expenses during operation and/or memory.

Feature engineering is the process of converting raw data into features that better represent the
underlying problem in speculative models, which has led to the development of model accuracy on
intangible data.

Feature engineering is the central task of preparing machine learning data. It is the practice of
constructing relevant features from given features that lead to improved guesswork performance.
Feature engineering involves using transformational functions such as arithmetic and integrated
operators in a given new design feature. Conversion helps measure a feature or convert nonlinear
relationships between an element and a target category in a line relationship, which is easy to read.
Feature engineering is usually done by a data scientist who relies on the technology of his/her
field and error testing and model testing. To carry out automated feature engineering, some present
methods use targeted search in the feature space using heuristic feature quality measures and other
contractual action steps.

A feature is a numeric illustration of raw data. There are numerous methods to convert raw data
into numerical values, which is why features can end up looking like many things. Naturally, fea-
tures should come from the type of data available. Less ambiguous spaces are also tied to the model;
some models are more suitable for certain types of features and vice versa. Appropriate features
align with the work being done and should be easy for the model to swallow. Feature engineering is
the technique of building the most relevant features given data, model, and function. If there aren’t

DOI: 10.1201/9781003258803-7

https://doi.org/10.1201/9781003258803-7

352 Machine Learning for Decision Sciences with Case Studies in Python

enough teaching features, the model will not perform the final task. If too many features or many of
them do not work, the model will be more expensive and the trick to training it. Something may be
wrong with the training process affecting the performance of the model.

Features and models reside between the raw data and the desired insight, depicted in Figure 7.1.
In the workflow of machine learning, the model is not only chosen but also the features. This is a
double-edged coin, and one choice affects the other. Positive features make the next step of model-
ing easier, and the emerging model is able to complete the task you are looking for. Negative fea-
tures may require a more sophisticated model to achieve the same level of performance. Throughout
the book, we will talk about different features and discuss the advantages and disadvantages of
different types of data and models.

Knowing where feature engineering fits into the context of the process of machine learning
equipment highlights that it is not independent.

It is a repetitive process associated with data selection and model testing, over and over again,
until we run out of time on our problem.

The process may look like the following:

 1. Brainstorm capabilities: Get into the problem, see more details, learn the feature engi-
neering of other problems and see what you can steal.

 2. Devise capabilities: The automatic feature extraction, text feature creation, and both com-
binations can be used depending on the problem.

 3. Select capabilities: Use key feature variations and feature selection methods to prepare
one or more views for your working models.

 4. Examine models: Evaluate model accuracy on invisible data using selected features.

A well-defined problem is needed to know when to stop this repetitive process and then continue to
try other models, other model configurations, model combinations, and so on. A well-thought-out
test device is also needed to be designed to measure the potential of a model in intangible data. It
will be the only measure got from the feature engineering process.

7.2 FEATURE SELECTION

Feature selection strategies have eliminated useless features to reduce the complexity of the emerg-
ing model. The ultimate goal is a model of pride that is quick to reckon with, with little or no dam-
age to speculation. To get to such a model, some feature selection techniques require more than one

FIGURE 7.1 Feature engineering position in the workflow of machine learning.

353Feature Engineering

model training. In other words, the selection of features is not about reducing training time – in fact,
some strategies increase the total training time – but reduce model installation time. Simply put,
feature selection techniques fall into three categories: Preprocessing filtration methods to remove
those that may apply to the model. For example, one can combine the knowledge of the relation or
interaction between each element and the flexibility of the answer and then filter the features that
fall under the threshold. Filter techniques are much cheaper than the wrapping techniques described
below, but they do not consider the model used. Therefore, they may not be able to select the appro-
priate features of the model. Therefore, it’s best to make choices before saving to avoid unnecessar-
ily removing useful features before they get to the training step.

7.2.1 wraPPer MethoDs

Wrapper methods are expensive but try the subsets of features, which means that it can’t acciden-
tally cut out the features that are not only taught but useful when taken together. The wrap method
treats the model like a black box that provides quality results of the proposed subset of features.
There is a different way of over-filtering the set, which is described below.

Wrappers use a search strategy to search through the space of possible feature subsets and evalu-
ate each subset by the performance quality on an ML algorithm. Practically, any combination of
search strategy and algorithm can be used as a wrapper. It is featured as:

• use ML models to score the feature subset
• train a new model on each subset
• very computationally expensive
• usually provide the best performing subset for a given ML algorithm but probably not for

another
• need an arbitrarily defined stopping criteria

The most common search strategy group is Sequential search, including Forward Selection,
Backward Elimination, and Exhaustive Search. Randomized search is another popular choice,
including Evolutionary computation algorithms such as genetic and Simulated annealing.

Another key element in wrappers is stopping criteria. The searching process is stopped based
on three criteria:

• performance increase
• performance decrease
• the predefined number of features is reached

7.2.1.1 Forward Selection
Forward feature selection starts by evaluating all features individually and selects the one that gen-
erates the best performing algorithm, according to preset evaluation criteria. Then, the algorithm
evaluates all possible combinations of the selected feature and selects the pair that produces the best
performing algorithm based on the same preset criteria. This selection procedure is called greedy
because it evaluates all possible single, double, triple, and feature combinations. Therefore, it is
quite computationally expensive, and sometimes, if feature space is big, even unfeasible.

7.2.1.2 Backward Elimination
Backward feature selection starts by fitting a model using all features. Then, it removes one feature.
Next, it will remove the one that produces the highest performing algorithm (least statistically sig-
nificant) for certain evaluation criteria. The second step will remove a second feature, the one that
again produces the best-performing algorithm. And it proceeds with removing feature after feature
until a certain criterion is met.

354 Machine Learning for Decision Sciences with Case Studies in Python

7.2.1.3 Exhaustive Feature Selection
The best subset of features is selected in an exhaustive feature selection, among all possible feature
subsets, by optimizing a specified performance metric for a certain machine learning algorithm.
For example, if the classifier is the logistic regression and the dataset consists of four features, the
algorithm will evaluate all feature combinations as follows:

• all possible combinations of one feature
• all possible combinations of two features
• all possible combinations of three features
• all the four features

and select the one that results in the logistic regression classifier’s best performance (e.g., classi-
fication accuracy). This exhaustive search is very computationally expensive. In practice, for this
computational cost, it is rarely used.

7.2.2 featUreD MethoDs

These methods make the selection of a feature part of the model training process. For example, the
decision tree naturally makes a feature selection because it selects one element of tree division in each
training step. Another example is the standardizer 1, which can be added to the training purpose of
any specific model. The ℓ 1 trend encourages models that use fewer features instead of many features,
so it is also known as the sparsity limit on the model. The included methods include feature selection
as part of the model training process. They are not as powerful as threatening methods, but they are
not as expensive. Compared with filters, embedded methods select features specific to the model. In
this sense, embedded methods strike a balance between computer costs and the quality of results.

The steps can be summarized to solve the problem of feature selection in a checklist:

 1. Have you got any knowledge about the problem domain? If so, create an enhanced set of
“ad hoc” features.

 2. Is the feature appropriate? If not, normalize them.
 3. Do you doubt feature interdependence? If yes, extend the feature set by formulating feature

products or conjunctive features.
 4. Does the input variable need to be pruned? If no, create disjunctive features or weighted

sums of features.
 5. Does the feature need to be accessed individually? If yes, apply a variable ranking method;

otherwise, try to obtain the baseline results.
 6. Have you got a predictor? If no, stop.
 7. Do you doubt whether data are dirty? If yes, identify the outlier examples based on the

top-ranking variables acquired from step 5 as representation; verify or reject them.
 8. Have you got an idea of what to try first? If no, apply a linear predictor. Then, utilize a

forward selection method with the “probe” approach as a terminating condition or apply
the 0-norm embedded approach. For evaluation, as a result of the ranking of step 5, create a
sequence of predictors of the same nature using increasing subsets of features. Is it possible
to match or improve performance with a smaller subset? If so, use a nonlinear predictor
with that subset.

 9. Have you got new thoughts, time, computational resources, and enough examples? If yes,
compare several feature selection methods, including your new idea, correlation coeffi-
cients, backward selection, and embedded methods. Next, apply linear and nonlinear pre-
dictors. Finally, choose the best approach with model selection.

 10. Is a stable solution needed to improve performance and understanding? If so, subsample
your data and redo your analysis for several “bootstraps.”

355Feature Engineering

7.3 FACTOR ANALYSIS

Factor analysis (FA) is a method of analyzing experimental data to search for potential influential
factors or hidden variables from a set of notable variables. It helps in translating data by reducing
the amount of flexibility. It subtracts a complete standard variation across all variables and sets the
same points.

FA is widely used in market research, marketing, psychology, finance, and performance research.
For example, market analysts utilize FA to identify price-sensitive customers, identify product fea-
tures that influence consumer preferences, and help to understand the selection channels for distri-
bution channels. FA is a straightforward mathematical model. It is used to describe the differences
between visual variables and obscure a set of invisible variables called factors. Visual differences
are followed as a direct combination of features and error words. Factor or latent variable is associ-
ated with multiple visual variables, which have common response patterns. Each feature describes
a certain amount of variability in observed variables. It helps in translating data by reducing the
amount of flexibility.

 X F F ei i i i iβ β β ()= + + + 10 1 1 2 2

FA is a way of investigating whether several variables of interest, X1, X2, …, Xk, are equally related
to a small number of intangible factors F1, F2, …, Fk.

Assumptions:

 1. Outliers are not present in the data.
 2. The sample size must be larger than the factor.
 3. There must be no perfect multicollinearity.
 4. There must be no rigidity among the variables.

7.3.1 tyPes of factor analysis

• Exploratory Factor Analysis: It is the most popular way of analyzing factors for social
researchers and administrators. Its basic assumption is that any apparent flexibility is
directly related to any factor.

• Confirmatory Factor Analysis (CFA): Its basic assumption is that each item is associated
with a specific set of observed variables. CFA confirms basic expectations.

7.3.2 working of factor analysis

The primary purpose of FA is to reduce the number of observations and detect invisible variables.
These tangible variables help the market researcher to complete the research. This recognizable
variation of the observed variables can be achieved in two steps:

• Factor extraction: In this step, the number of factors and the removal methods is chosen
using variance partitioning methods like principal component analysis (PCA) and com-
mon factor analysis.

• Factor rotation: In this step, rotation attempts to convert factors into unrelated factors.
The main purpose of this step is to improve the overall interpretation. Many rotation meth-
ods are available: Varimax rotation method, Quartimax rotation method, and Promax rota-
tion method.

356 Machine Learning for Decision Sciences with Case Studies in Python

7.3.3 terMinologies

7.3.3.1 Definition of Factor
A factor is a subtle variable that describes the correlation between the number of variables observed.
The maximum number of factors is equal to the number of variables detected. Everything explains
a certain variation in the visual variability. Factors with very low variability have been reduced.
Factors are also known as hidden or latent variables or hypothetical variables.

7.3.3.2 Factor Loading
The loading factor is a matrix that demonstrates the relationship of each variation to an underlying
factor. It expresses the coefficient correlation for the observed variable and the factor. It shows the
defined differences in the observed variables.

7.3.3.3 Eigenvalues
Eigenvalues represent diversity defining each item from a complete diversity. It is also known as the
root of the feature.

7.3.3.4 Communalities
Communalities are the sum of double the loading of each variable. Represents common variations.
It goes from 0 to 1, and the value around 1 represents the most varied.

 h li

k

n

ik∑=
=

ˆ ˆ2

1

2 (7.1)

7.3.3.5 Factor Rotation
Rotation is a better translation tool for FA. Rotation can be orthogonal or oblique. It also distributed
the standard with a clear loading pattern.

7.3.3.6 Selecting the Number of Factors
The Kaiser method is the analytical method based on the most important part of the variance
defined by the factor to be selected. The eigenvalue is a good way to determine the number of fac-
tors. Mostly, eigenvalue larger than 1 will be considered as optional factors. The graphic method
represents certain eigenvalue factors, also called scree plots, as shown in Figure 7.2. This scree
structure helps us determine the number of factors in which a curve forms an elbow.

FIGURE 7.2 Scree plot.

357Feature Engineering

7.4 PRINCIPAL COMPONENT ANALYSIS

With automatic data collection and feature-generating techniques, one can quickly discover a large
number of features. But not all are helpful. Let’s discuss feature dimensionality reduction using
PCA. Often, we encounter situations where a particular outcome or decision depends not on a single
indicator (forecaster) but many complex factors of the decision-making process. This is called the
curse of dimensionality. It is a well-known fact that it is important to limit the number of important
factors to reach the right conclusion. This process is called dimensionality reduction. In machine
learning, the problem of high dimensionality is treated in two ways:

• Feature selection: a careful selection of key features by filtering out inconsistent features.
• Feature extraction: we create new and relevant features from the original features. PCA

is one of the key means of extracting a feature.

Similarly, PCA converts the corresponding features of data into orthogonal components to capture
all important information from the data while minimizing its size.

PCA can be used in the following means:

• Limit the number of features but cannot identify the less important ones that are ignored.
• Make sure that data features are standalone even if the features are not slightly interpreted.

7.4.1 center the Data

Eigen decomposition produces transformation matrices where eigenvectors denote the rotational
matrix, while eigenvalues denote scaling factors. Conversely, the covariance matrix has no data
related to data translation. Undeniably, the translation is represented by an affine transformation
required instead of a linear transformation. Consequently, before installing PCA to exchange data
for obtaining unrelated axes, any existing changes need to be calculated by removing the mean data
from each data point. This is just like entering the data in such a way that its scale becomes zero.

7.4.2 norMalize the Data

Eigenvector covariance matrix points when referring to large data differences. Conversely, variance
is a whole number, not a relative. This means that the difference in data measured in inches will
be much greater than the same data when measured in feet. For instance, one feature denotes an
object’s length in meters, while the second feature denotes the object in inches. If the data is normal-
ized, the biggest difference, and therefore the largest eigenvector, will be fully determined by the
first factor. To avoid this PCA scale-based approach, it helps normalize the data by separating each
feature with a standard deviation. This is particularly significant when different features are related
to different metrics.

7.4.3 estiMate the eigen DecoMPosition

As details will be shown to larger eigenvectors to reduce the size, eigendecomposition must be
determined. One of the most widely used methods of calculating eigendecomposition is singular
value decomposition (SVD).

7.4.4 Project the Data

To reduce the size, the data is automatically displayed to the largest eigenvectors. Let W be a matrix
with its columns containing the largest eigenvectors and let O be the original data with its columns

358 Machine Learning for Decision Sciences with Case Studies in Python

containing different observations. After that, the projected data O′ is available as O W OT′ = . The
number of residual values is selected, such as columns of W which, directly, can define the num-
ber of variations of actual data that need to be maintained while removing eigenvectors. If only
N eigenvectors are stored, and e eN…, ,1 denote the respective eigenvalues, the number of variants
leftover after projected original d-dimensional data can be calculated as:

 s

e

e

i

i

N

j

j

d

∑
∑

= =

=

 0

0

 (7.2)

 1. The original feature values of the given data are normalized by its mean and variance
specified in equation 7.3, where k is the number of instances in the dataset and X i() are data
points.

n

X
i

n

i∑µ = ()
=

1

1

 (7.3)

 2. Substitute X i() with X i µ−() .
 3. Resize every vector X j i() to obtain unit variance with the help of equation 7.4.

n

jσ =
12 (7.4)

 4. Substitute X j i() with
X j i

σ
() .

 5. Determine the covariance matrix CM as:

 C
m

X XM i i
T() ()= () ()

1

 (7.5)

 6. Determine the eigenvectors and respective eigenvalues of CM.
 7. Decrease eigenvalues and sort the eigenvectors, and select k eigenvectors containing the

largest eigenvalues to obtain V.
 8. Make use of V to change the samples to a new subspace using equation (7.6)

 = ×y V XT (7.6)

where X denotes 1×d dimensional vector representing one sample, y is the transformed 1×k dimen-
sional vector sample in the new subspace. The execution of the designed PCA computational com-
plexity depends on the number of features P that depicts each data point given by

 O P()3 (7.7)

PCA’s reduction ratio (RR) is defined as the relation between the number of target dimensions and
several original dimensions. Thus, the efficiency of PCA is higher as the value of RR becomes low.

359Feature Engineering

7.5 EIGENVALUES AND PCA

PCA uses the structure of eigendecomposition. “Eigen” is a German word meaning “own.” Here,
the matrix (A) is divided into:

• The diagonal matrix formed by eigenvalues of a matrix (A)
• And the matrix formed by the eigenvectors of a matrix (A)

A square matrix can have one eigenvector and as many eigenvalues as the size of the matrix. For
example, a 4 × 4 matrix will have four eigenvalues.

7.5.1 Usage of eigenDecoMPosition in Pca

Suppose there is a database with a variety of “predictors.” After centering the forecasters in their
way, the “n × n” covariance matrix is obtained. This matrix of covariance is then divided into eigen-
values and eigenvectors. The covariance matrix, also named as dispersion matrix or variance–cova-
riance matrix, is a matrix with its feature in i, j position is the covariance among ith and jth feature
of a random vector. A random vector is a random variable with a maximum size. From the covari-
ance structures and the covariance matrix, the following aspects are defined.

• The covariance of random variables (forecasts) itself is simply a variance.
• Each item in the main diagonal of the covariance matrix demonstrates the variances of

each random variance.
• The entire matrix of covariance is symmetric.

Therefore, the matrix of covariance has variances (covariance of a predictor with itself) and covari-
ances (between predictions). Eigenvector is units that have a length or size equal to 1. It is often
called the right vector, also called a column vector. Eigenvalues are coefficients used in eigenvectors
that give vectors their length or magnitude.

Therefore, PCA is a way of:

• Measurement of how each variable is linked using the covariance matrix.
• Interpretation of the guidelines of the spread of the data using eigenvectors.
• Exposing the comparative significance of these directions using eigenvalues.
• The PCA method can be defined and executed using the tools of linear algebra using

the numpy package in python (without using its direct implementation function from the
sklearn package).

Consider the data in Table 7.1.

TABLE 7.1
Data to Implement Eigendecomposition

Age Weight Height

20 60 4.5

35 65 5

40 70 5.5

45 75 6

360 Machine Learning for Decision Sciences with Case Studies in Python

This data can be represented as a 5 × 3 matrix and named as A.

Let’s center the features of this matrix to mean, determine covariance matrix, and implement
eigendecomposition as depicted below.

From the above output, it is clear that eigenvectors give PCA components, and eigenvalues give
explained variances of the components. Therefore, since there are three predictors, three eigenval-
ues are obtained.

• Eigenvectors can now be organized by eigenvalues to reduce the supply of components or
axes for the new matrix A.

• If there is an eigenvalue near zero, they represent disposable components.
• A total of “n” (here 3) or a few elements that make up the selected bottom area should be

selected. Ideally, we can choose k (<n) eigenvectors, called principal components, with the
largest eigenvalues.

361Feature Engineering

The explained variance ratio of the first component is given as:
explained variance of 1st component/(total of all explained variances)

• It can be noticed that the first component is enough to explain up to 98% of the variance in
the data. So, the data can be projected into a 4 × 1 matrix instead of a 4 × 3 matrix, reducing
the dimension of data, of course, with a minor loss in information.

7.6 FEATURE REDUCTION

The art of machine learning begins with the creation of appropriate data presentations. Better per-
formance is often achieved using features taken from the original input. Creating a feature pre-
sentation can add domain information to the data and can be specified by the specific application.
However, there are many ways to make common features, including clustering, basic input linear
transform variables [PCA/SVD, linear discriminant analysis (LDA)], complex line variations such
as spectral transformations (Fourier, Hadamard), wavelet transform, or convolutions of kernels, and
apply simple functions to flexible subsets, such as monomials.

Two different objectives can be pursued by feature design: to achieve data reconstruction or be
more efficient in making predictions. The first problem is an unsupervised learning problem. It is
very close to data compression, and many algorithms are used in both fields. The second problem
is supervised. Are there reasons to select features in an unsupervised manner when the problem
is supervised? Yes, with a few possibilities. Other problems, e.g., for text processing applications,
come with unlabeled data compared to labeled data. Also, the selection of unsupervised features is
not usually overdone to overfitting.

Our goal is to have an algorithm-friendly dataset. What do we mean by that?
If you have a lot of features, there are a few potential problems:

• The model has a high degree of difficulty.
• It can make a lot of noise.
• If they have different scales, it reduces the performance of several algorithms that are

scale-sensitive.
• More complex visualizations in n-dimensional space.

Here comes the role of PCA. It reduces the dimensionality of the dataset by extracting/eliminating
the important/unimportant features.

PCA detects a change that reduces the size of the data while calculating the variance as large as
possible. PCA is the oldest process in a multivariate analysis. The basic concept of PCA is a pro-
jection-based process. Here, the actual dataset X ∈ R n with n columns (features) is projected into
a subspace with k or lower dimensions’ representation X ∈ R K (fewer columns) while maintaining
the total amount of original data.

The algorithm works as follows: to reduce the dimensionality of the feature from n-dimensions
to k-dimensions, two stages are implemented; the preprocessing and dimensionality reduction stage.
First, in the preprocessing stage (steps 1–4 in Section 7.4), the data is preprocessed to normalize
its mean and variance using equations 7.3 and 7.4 in Section 7.4. Then, in the second stage (steps
5–8 in Section 7.4), which denotes the reduction phase, the covariance matrix CM, eigenvectors and
eigenvalues are calculated from equations 7.5 and 7.6 in Section 7.4.

362 Machine Learning for Decision Sciences with Case Studies in Python

When using PCA to reduce dimension, one has to deal with how many principal components (k)
should be used. As with all hyperparameters, this number can be changed based on the quality of
the emerging model. But some tests do not include expensive calculations. Therefore, another option
is to select a k in the account with the desired value of the total variance. (This option is available in
the scikit-learn package PCA.) The variations of projection onto the kth component are:

 Xv uk k k kσ σ= 2 2 2 (7.8)

which is the square of the kth largest singular value of X. The ordered list of singular values of a
matrix is called its spectrum. Therefore, to define how many components to use, one can perform
a simple spectral analysis of the data matrix and pick the threshold that retains enough variance.

To retain enough components to cover 80% of the total variance in the data, pick k such that

i

i

k

i

i

d

∑
∑

σ

σ
≥=

=

0.8

2

1

2

1

 (7.9)

PCA is computationally expensive. It relies on SVD, which is an expensive process. Calculation
of the full SVD of the matrix takes O-functions (nd2 + d3) by assuming n ≥ d where there are more
data points than features. Even if we only want the principal components of k, using a reduced SVD
(single k values and vectors) still takes O ((n + d)2 k) = O (n2k) operations. This is available when there
are a large number of data points or features. It is difficult to perform PCA in the form of streaming,
batch updates, or a sample of full data. Streaming computation of the SVD, updating the SVD, and
computing the SVD from a subsample are all difficult research problems.

Algorithms exist but at the cost of reduced accuracy. One implication is that one has to expect
lower representational accuracy when capturing test data in the principal components found in the
training set. In addition, as the distribution of the data changes, one needs to recompute the princi-
pal components in the current dataset.

7.6.1 factor analysis vs. PrinciPal coMPonent analysis

• PCA components define a high degree of variability, while FA defines covariance in data.
• PCA components are completely orthogonal to each other, while FA does not require fac-

tors to be orthogonal.
• Components of PCA are a linear combination of the observed variable, while in FA, the

observed variables are a linear combination of the unobserved variables or factors.
• PCA components are not defined. In FA, key factors are sets and interpretable.
• PCA is a method of reducing the dimension, whereas FA is the latent variable method.
• PCA is a type of FA. PCA is observational, whereas FA is a modeling technique.

7.7 PCA TRANSFORMATION IN PRACTICE USING PYTHON

In this example, we consider the role of PCA in dimension reduction. A random dataset with 100
points is considered, and all the required libraries are imported as presented.

Import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

363Feature Engineering

from sklearn.datasets import make_blobs
from sklearn. Pre-processing import StandardScaler
from numpy import random
from sklearn.decomposition import PCA

DATA_SET=random.randint(100, size=(100, 2))
#print(DATA_SET)
plt.plot(DATA_SET[:,0], DATA_SET[:,1], ‘gx’)
plt.axis(‘equal’)
plt.show()

Using PCA, the relationship between the features in the data is quantified by estimating a set
of principal axes in the data from which the dataset can be described. This is achieved in this
example using the scikit-learn’s PCA estimator, and the parameters, namely the “components” and
“explained variance,” are observed as follows:

pca = PCA(n_components=2)
pca.fit(DATA_SET)

print(“PCA components: “, pca.components_)
print(“PCA Explained Variance: “,pca.explained_variance_)

PCA is used for reducing the dimension, and this process involves zeroing out one or many small
principal components. This results in reduced dimension data which maintains the maximal data
variance. The following section of the code illustrates the dimension reduction:

pca = PCA(n_components=1)
pca.fit(DATA_SET)
DATA_SET_pca = pca.transform(DATA_SET)
print(“original shape: “, DATA_SET.shape)
print(“transformed shape:”, DATA_SET_pca.shape)

In this case, the n_component parameter is set to “1” to transform the data to a single dimension. To
visualize the transformation, the inverse transform of the reduced data is plotted.

DATA_SET_new = pca.inverse_transform(DATA_SET_pca)
plt.scatter(DATA_SET[:, 0], DATA_SET[:, 1], alpha=0.2)
plt.scatter(DATA_SET_new[:, 0], DATA_SET_new[:, 1], alpha=0.5)
plt.axis(‘equal’);

Observations:
The observations of PCA used for dimension reduction are as shown in Figure 7.3:
The figure shows a plot of the original data generated randomly, and the data size was 100 × 2.

The parameter “components” and “explained variance” represent the principal axes of the data.
This is a measure of the variance of the data when projected onto the principal axes. The projection
of each data point onto the principal axes are the principal components of the data and are presented
below for the random dataset chosen in this example.

PCA parameter components:
[[0.63796827 -0.77006265] [0.77006265 0.63796827]]
PCA parameter Explained Variance: [931.51919577 711.44787494]

The original shape of the dataset was 100 × 2, and after reducing the dimension using PCA, we find
that the dataset has been transformed to 100 × 1.

364 Machine Learning for Decision Sciences with Case Studies in Python

Original shape of the data: (100, 2)
Transformed shape of the data after PCA: (100, 1)

Figure 7.4 shows the plot of transformed data points (shown in dark shade) and the original data
points (shown in lighter shade). This shows that using PCA, the data points along the least signifi-
cant principal axis are removed, and the data points with the highest variance are retained.

7.8 LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis (LDA) is a common method of dimension reduction problems as a pre-
processing step for machine learning and pattern classification applications. Concurrently, it is often
used as a black box, but is not well understood a few times. LDA easily manages a case where the

FIGURE 7.4 Plot of the transformed and reduced data.

FIGURE 7.3 Plot of the original data.

365Feature Engineering

waves within a section are uneven, and randomly generated test data assess their performance. This
method increases the variance rate between class and in-class variability in any dataset, thereby ensur-
ing high diversity. In the PCA, the structure and location of the original dataset are transformed when
converted into a separate space. The LDA does not change the location but only attempts to provide
additional segmentation and draw the decision area between assigned classes. This approach also ben-
efits from getting a better understanding of the distribution of feature data. Datasets can be modified,
and test vectors can be separated from the converted space in two different ways.

• Class-dependent transformation: This approach implicates to maximize the ratio
between-class variance to within-class variance. The main objective is to maximize this
ratio so that adequate class separability is obtained. The class-specific-type approach uses
two optimizing criteria to transform the datasets independently.

• Class-independent transformation: This approach implicates to maximize the ratio of
overall variance to within-class variance. This approach uses only one optimizing criterion
to transform the datasets, and hence all data points irrespective of their class identity are
transformed using this transform. In this type of LDA, each class is considered a separate
class against all other classes.

7.8.1 MatheMatical oPerations in lDa

The mathematical functions used in LDA are analyzed. To make it easier to understand, this con-
cept is applied to the problem of two classes. Each dataset contains 100 2-D data points. The math-
ematical design of the classification strategy is as follows:

Step 1: Create datasets and test sets, which should be separated in the original space provided
datasets and built-in test vectors, the graphical structure of datasets, and test vectors for the
sample taken in the original space. For the ease of reference, let us represent datasets as a
matrix containing features in the form provided below:

a a

a a

a a

b b

b b

b bm m m m

=

=

set 1 set 2

11 12

21 22

1 2

11 12

21 22

1 2

 (7.10)

Step 2: For each dataset and entire dataset, determine the mean. Let µ1 and µ2 be the mean of
set 1 and set 2, respectively and µ3 represent the mean of entire data, which is achieved by
merging set 1 and set 2, as given by equation 7.11.

 p pµ µ µ= × + × 3 1 1 2 2 (7.11)

 where p1 and p2 are the a priori probabilities of the classes. The probability factor is
assumed to be 0.5.

Step 3: In LDA, to formulate criteria for class separability within-class and between-class
scatter are used. Within-class scatter the expected covariance of each class. The scatter
measures are calculated using equations 7.12 and 7.13.

 S p cw

j

j j∑ ()= × (7.12)

366 Machine Learning for Decision Sciences with Case Studies in Python

Consequently, for the two-class problem, it is given as

 S c cw = × + × 0.5 0.5 1 2 (7.13)

All the covariance matrices are symmetric. Let c1 and c2 be the covariance of set 1 and
set 2, respectively. The covariance matrix is determined using equation 7.14

 c x xj j j j j
Tµ µ()()= − − (7.14)

The between-class scatter is determined using equation 7.15

 Sb

j

j j
T∑ µ µ µ µ() ()= − × − 3 3 (7.15)

The covariance of the dataset Sb contains the mean vectors of each class. The optimiz-
ing criterion in LDA represents the ratio of between-class scatters to the within-class
scatter. The solution obtained by maximizing this criterion represents the axes of the
transformed space. However, the optimizing criterion for the class-dependent transform
is determined using equations 7.14 and 7.15. For L-class L, separate optimizing criteria
are required for each class. The optimizing factors in the case of class-dependent type are
determined as

 c Sj j b()= ×Criterion inv (7.16)

The optimizing criterion for the class-independent transform is determined as

 S Sw b()= ×Criterion inv (7.17)

Step 4: The eigenvector of the transformation denotes a 1-D invariant subspace of the vector
space where the transformation is applied. These eigenvector sets consisting of eigenvalues
of nonzero are all linearly independent and invariant under the transformation. Therefore,
any vector space could be denoted by linear combinations of the given eigenvectors. The
nonredundant set of features is obtained by considering all eigenvectors, which correspond
to nonzero eigenvalues, whereas eigenvalues, which correspond to zero, are ignored. Thus,
the transformations of LDA are obtained as the eigenvector matrix of the distinct criterion
defined in equations 7.16 and 7.17.

Step 5: In any L-class problem, there exists L − 1 nonzero eigenvalues. In any L-class prob-
lem, there are L − 1 nonzero eigenvalues. This is due to the problems in the mean vectors
of the classes at equation 7.11. Eigenvectors corresponding to nonzero eigenvalues are the
definition of change.

 Now that we have the transformation matrices, we convert the datasets using a single LDA
variable or the class-specific transforms. It can be observed that transforming all datasets
into a single axis delivers precise parameters for classifying the data. The decision circuit
in the transformed space is a solid line separating the converted datasets. Therefore, for the
class-dependent LDA,

 jj j
T= ×Transformed Transform set _set (7.18)

367Feature Engineering

For the class-independent LDA,

 T T= ×Transformed Transform datasetset spec (7.19)

 Correspondingly, the Euclidean distance of the test vectors from each class mean is used
to transform the test vectors and classify them.

Step 6: After the transformations are finished utilizing LDA transforms, Euclidean distance
or RMS distance is used to classify data points. First, euclidean distance is determined
using equation 7.20. Euclidean distances are thus obtained for each test point.

 xn n

T

nµ()= × −Dist Transform transspec (7.20)

Step 7: The smallest Euclidean distance among the distances classifies the test vector as
belonging to class n. Two LDA approaches, namely, the independent and dependent classes,
have been described. The choice of the LDA type depends on the dataset and the purpose
of the classification problem. For example, if the performance is very important, an inde-
pendent class transformation is chosen. Conversely, if good discrimination is intended, the
class-dependent type should be the first choice.

Algorithm 7.1: Class-Independent Linear Discriminant Analysis

 1. Given a set of N samples xi i

N[] =1, where each corresponds to a row of length M (step(A)), and
X(N × M) is denoted by

 X

x x x

x x x

x x x

M

M

N N NM

�
�

� � � �
�

=

11 12 1

21 22 2

1 2

 (7.21)

 2. Determine the mean of each class 1 µ ()× Mi

 3. Determine the total mean of all data 1 µ ()× M
 4. The between-class matrix ()×S M MB is determined as

 S nB

i

c

i i i
T∑ µ µ µ µ() ()= − −

=

1

 (7.22)

 5. The within-class matrix S M Mw ()× is determined as

 S x xW

j

c

i

n

ij j ij j
T

j

∑∑ µ µ() ()= − −
= =

1 1

 (7.23)

 6. From equations 7.22 and 7.23, the matrix W that maximizes Fisher’s formula is determined
as W S SW B= − 1 . Determine the eigenvalues and eigenvectors of W .

 7. Sort eigenvectors in decreasing order per their respective eigenvalues. The first k eigenvec-
tors are used as a lower-dimensional space Vk().

 8. Project all original samples (X) onto the lower-dimensional space of LDA.

368 Machine Learning for Decision Sciences with Case Studies in Python

Algorithm 7.2: Class-Dependent Linear Discriminant Analysis

 1. Given a set of N samples xi i

N[] =1, where each corresponds to a row of length M (step(A)), and
X(N x M) is denoted by

 X

x x x

x x x

x x x

M

M

N N NM

�
�

� � � �
�

=

11 12 1

21 22 2

1 2

 (7.24)

 2. Determine the mean of each class 1 µ ()× Mi

 3. Determine the total mean of all data 1 µ ()× M
 4. The between-class matrix ()×S M MB is determined as in equation 7.22.
 5. For all class i i c= …, 1,2, , do
 6. The within-class matrix ()×S M Mwi is determined as

 S x xw

x

i j i j
T

j

i j

∑ µ µ() ()= − −
ω∈

 (7.25)

 7. The transformation matrix for each class Wi() determined as

 W S Si W Bi= − .1 (7.26)

 8. Determine the eigenvalues iλ() and eigenvectors V i() of each transformation matrix Wi(),
where iλ and V i denote the determined eigenvalues and eigenvectors of the ith class,
respectively.

 9. Sort eigenvectors in decreasing order per their respective eigenvalues. The first k eigenvec-
tors are used as a lower-dimensional space Vk().

 10. Project the samples of each class iω() onto the lower-dimensional space Vk
i() as follows:

 x V xj i k
j

i jωΩ = ∈ , (7.27)

where jΩ denotes the projected samples of the class jω .
 11. End for loop

7.9 LDA TRANSFORMATION IN PRACTICE USING PYTHON

In this section, Python implementation of scattering within the class and scatter between the class
is discussed on sample data.

7.9.1 iMPleMentation of scatter within the class (sw)

In this example, class 1 (11 × 2) and class 2 (10 × 2) are considered to have 11 and 10 samples,
respectively. The within-class matrix Sw is computed for this data according to equation 7.25,
S x xw i j i j

T

x
j

i j
∑ µ µ() ()= − −

ω∈

 where xi is the data vector per instance per class and μj repre-

sents the mean vector of class j. The Python code to determine the scatter matrix within the class
is as follows:

import numpy as np
import matplotlib.pyplot as plt

369Feature Engineering

Data creation – Here random samples in the range [0,2] are generated
for each class
class1 = np.array([[1.5,1.6,1.55,1.65,1.45,1.7,1.75,1.55,1.35,
1.8],[1.75,1, 1.5,1.65,1.45,1.22,1.75,1.5, 1.45, 1.65]])
class2 = np.array([[0.25,0.55,0.15,0.25,0.3,0.66,0.35,0.1,0.45,0.55],
[1.5,1.25,1.15,1.25,1,1,1.45,1.5,1.33,1.45]])

#Plotting the data using the plt function from matplotlib
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(111)

ax0.scatter(class1[0],class1[1],marker=‘*’,c=‘blue’,edgecolor=‘blue’)
ax0.scatter(class2[0],class2[1],marker=‘o’,c=‘green’,edgecolor=‘green’)
plt.show()

Calculating the mean vectors per class by creating a 2x1 vector with
means
mean_class1 = np.mean(class1,axis=1).reshape(2,1)
mean_class2 = np.mean(class2,axis=1).reshape(2,1)

Calculaing the scatter matrices (within)
scatter_class1 = np.dot((class1-mean_class1),(class1-mean_class1).T)
scatter_class2 = np.dot((class2-mean_class2),(class2-mean_class2).T)

Calculating the SW by adding the scatters within classes
SW = scatter_class1+scatter_class2
print(SW)

The resultant scatter (Figure 7.5) within the class as per the equation is computed and given as a
2 × 2 matrix with elements shown below:

Scatter within class Sw = [[0.49509091 -0.03355455] [-0.03355455
0.85203273]]

7.9.2 iMPleMentation of scatter between class (sb)

For the same data used in the previous section, the scatter matrix between classes is computed

according to equation 7.22, S nB i i i
T

i

c∑ µ µ µ µ() ()= − −
=

1

, where μ is the overall mean and μi is

the mean for the respective class. Here, ni is the sample size of the respective class.

import numpy as np
import matplotlib.pyplot as plt

Data creation – Here random samples in the range [0,2] are generated
for each class
class1 = np.array([[1.5,1.6,1.55,1.65,1.45,1.7,1.75,1.55,1.35, 1.8],
[1.75,1, 1.5,1.65,1.45,1.22,1.75,1.5, 1.45, 1.65]])
class2 = np.array([[0.25,0.55,0.15,0.25,0.3,0.66,0.35,0.1,0.45,0.55,0.25],
[1.5,1.25,1.15,1.25,1,1,1.45,1.5,1.33,1.45,1.15]])

Calculating the mean vectors per class by creating a 2x1 vector with
means
mean_class1 = np.mean(class1,axis=1).reshape(2,1)
mean_class2 = np.mean(class2,axis=1).reshape(2,1)

370 Machine Learning for Decision Sciences with Case Studies in Python

Calculating the overall mean vector
ave_class = []
for i in range(len(class1)):
 row = []
 for j in range(len(class1[0])):
 row.append((class1[i][j] + class2[i][j]) / 2)
 ave_class.append(row)
print(ave_class)

overall_mean=np.mean(ave_class,axis=1).reshape(2,1)
print('overall mean=',overall_mean)

Calculating the sample size of each class
n1=np.size(class1)
n2=np.size(class2)

Sb_class1=n1*(mean_class1 – overall_mean).
dot((mean_class1 – overall_mean).T)
Sb_class2=n2*(mean_class2 – overall_mean).
dot((mean_class2 – overall_mean).T)

FIGURE 7.5 Plot of the data with two classes (class1 – blue stars, class 2 – green circles).

371Feature Engineering

Calculate the Sb by adding the scatters between classes
Sb = Sb_class1 + Sb_class2
print('Scatter between class Sb =',Sb)

The output of the above code is the scatter between the matrix of size 2 × 2 given as follows:

Scatter between class Sb = [[16.13470868 2.82754909][2.82754909
0.49673455]]

SUMMARY

In this chapter, a brief analysis of feature engineering was discussed. While choosing the best fea-
tures for implementing a machine learning model, it is always the best practice to ensure whether
all the features computed are available for future observations. Furthermore, most of the features
must have the potential to be predictive with complete domain knowledge for a detailed analysis.
The chapter reviewed the basic requirements for feature selection, wrapper models, and FA. While
choosing the features, it is found that dimensionality reduction plays a predominant role. This is
mainly achieved by approaches, namely PCA and LDA. The implementation of these approaches
regarding reducing the data dimensions is discussed in detail with relevant Python examples.

REVIEW QUESTIONS

 1. What are the deterministic algorithms in machine learning? Discuss them.
 2. What is the curse of dimensionality? Explain in the context of dimensionality reduction.
 3. Discuss the different strategies used to reduce dimension in a dataset.
 4. What happens to a dataset when collinear features are removed?
 5. Develop a dimensionality reduction model using PCA and LDA on random data. Compare

the performance of both approaches.
 6. Are the following machine learning processes considered for feature engineering? Justify

with a suitable explanation.
 a. Initial Data Collection
 b. Data Cleaning
 c. Normalization
 7. How are outliers handled while extracting features? Discuss.
 8. List out the machine learning models that are sensitive to outliers.
 9. Compute the scatter matrices in LDA for the class-dependant and class-independent cases.

Record your observations.
 10. Develop a complete LDA model illustrating the concept of dimensionality reduction using

the algorithms discussed in this chapter.

https://taylorandfrancis.com

373

8 Reinforcement Engineering

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to

• Understand the goal-oriented learning based on reinforcement learning (RL)
• Appreciate the difference between RL and other ML algorithms
• Have knowledge of elements of RL such as agent, policy function, and value function
• Apprehend the Markov decision process (MDP) and dynamic programming (DP) concern-

ing value functions, policy evaluation, and improvements
• Implement MDP and DP using Python

8.1 INTRODUCTION

When we consider the nature of learning, the idea of gaining information about dealing with our
surroundings may be the first that comes to mind. A newborn does not have an unambiguous instruc-
tor when playing, swinging its fingers, or looking from side to side; instead, it is in direct contact
with its senses and nature. Using this link shows a wealth of information on causes and effects, the
effects of actions, and what you need to do to attain your objectives. Throughout our lives, such
contact is unquestionably a rich source of information about our environment and ourselves. If we
are going to learn cooking in a group, we know exactly how our place reacts to what we do, and we
need to persuade what will happen with our behavior. Almost all theories of learning and knowl-
edge acquisition support collaborative learning as a fundamental notion. In this book, we look at
how to learn from interactions using a computational method. Instead of directly considering how
humans or animals learn, we study the investigated settings and evaluate the efficacy of artificial
intelligence researchers or engineers’ numerous learning approaches. We investigate the structure
of mathematical analysis and computational experimentation to design machines that effectively
solve scientific or economic significance problems. The method we are testing, called reinforce-
ment learning, is more goal-oriented learning from interaction than other machine learning (ML)
methods. This chapter discusses goal-oriented learning based on reinforcement learning (RL) and
how RL varies with other ML algorithms. The elements of RL such as agent, policy function, and
value function are explained in detail, followed by the RL algorithms the Markov decision process
(MDP) and dynamic programming (DP). The value functions, policy evaluation, and improvements
are covered by implementing MDP and DP in Python.

8.2 REINFORCEMENT LEARNING

RL is the process of learning what to do – how to map situations into actions – to raise the numeri-
cal reward signal’s value. The learner is not told which steps to follow; instead, he must deter-
mine which acts provide the highest reward for trying. In the most thrilling and difficult situations,
actions may impact the current reward and the next situation and, as a result, all subsequent prizes.
These are two most important parts of RL: trial-and-error search and delayed rewards.

RL, like other issues with names that finish in “ing,” such as ML and climbing, is a problem, a cat-
egory of successful solutions to the problem and a subject that studies the problem and its solutions
all at the same time. It’s tempting to use a single word to describe all three issues, but it’s critical to
keep these three issues separate in your mind. Furthermore, the distinction between problems and
solutions in RL is particularly important; failing to express this distinction causes much confusion.

DOI: 10.1201/9781003258803-8

https://doi.org/10.1201/9781003258803-8

374 Machine Learning for Decision Sciences with Case Studies in Python

Therefore, we design a RL issue, including applying notions from dynamical system principles,
such as complete control of Markov’s completely anonymous decision-making processes.

The learning agent must sense its natural state to some extent and take actions that influence it.
In addition, the agent should have a goal or set of principles in mind when it comes to the status
of the environment. Markov’s decision-making methods are designed to combine only these three
variables – emotion, action, and purpose – in the most basic ways possible, without jeopardizing
any of them. We recall that any effective strategy to solve such issues is a RL method. RL is not the
same as supervised learning, which is the type of research being done in ML.

Supervised learning is based on categorized examples provided by an experienced external man-
ager as part of a training program. Each instance represents the current condition and a specific
label of the proper action that the program should perform in that situation, which is normally to
assign the situation to a category. This form of training aims to get the program out or combine
its responses to function best in situations that aren’t covered in the training set. This is an impor-
tant method of learning knowledge, but it is not sufficient in and of itself. Finding instances of
the desired behavior and representing all settings under which the agent must work is frequently
unproductive in cooperative problems. Instead, an agent must research from their experience in an
unmarked area, where one would expect learning to be most valuable.

RL is also distinct from unsupervised learning, commonly used to uncover a structure buried
in unlabeled information by machine learning researchers. Although supervised and unsupervised
learning appear to be two distinct ML models, they are no longer so. Although it is tempting to think
of RL as an unsupervised form of learning because it does not rely on positive behavioral models,
RL aims to magnify the reward signal rather than trying to identify a hidden structure. Finding
the structure of an agent’s experience can be highly useful in reinforcement. Still, it does not solve
the challenge of RL to increase the reward signal on its own. As a result, we consider RL to be a
third ML paradigm, alongside supervised and unsupervised learning, as well as perhaps different
paradigms.

The trade between exploration and exploitation is one of the challenges that arise from RL but
not from other types of learning. The RL agent must choose actions that he or she has tried in the
past and is proven to be effective in generating rewards to reap the most benefit. The agent must not
only use his experience to win the prize, but he must also learn how to make the greatest decisions
in the future. The issue is that exploration or exploitation cannot be carried out without fail. The
agent must try for a broad range of acts while continuing to favor the ones that appear to be the most
effective. In a stochastic challenge, each action must be repeated multiple times before an accurate
estimate of the expected reward can be determined. Mathematicians have researched this problem
of exploration and exploitation for decades, but it has yet to be solved. Meanwhile, we just recognize
that the dilemma of balancing exploration and exploitation is no longer solvable.

Another distinguishing feature of RL is that it explicitly addresses the total difficulty of an
intention-directed agent dealing with an unpredictable environment. Many ML researchers, for
example, have researched supervised learning without specifying how such a capability may be
valuable in the long run. Likewise, different researchers have advanced theories of planning with
similar goals, but without considering the function of planning in real-time decision-making or
the question of where the forecasting models needing to make plans will come from. Even though
these strategies have had many positive outcomes, their focus on remote subtypes is a common
problem. RL takes the opposite behavior, beginning with a whole, interactive, goal-achieving
agent.

Furthermore, it is generally believed from the beginning that the agent has to function with a
notwithstanding sizable uncertainty about the surroundings it faces. When planning is involved in
RL, it has to address the interaction among making plans and the selection of real-time action, in
addition, to knowing how the environmental model is derived and progressed. When supervised
learning is involved in RL, it does so for unique reasons that determine which abilities are important
and which are not.

375Reinforcement Engineering

RL starts with a full, interacting, goal-achieving agent, the polar opposite of RL. Furthermore,
it is widely assumed from the start that the agent must function despite significant uncertainty
about the environment in which it finds itself. When planning is used in RL, it must consider the
connection between generating plans and choosing real-time action and understanding how the
environmental model is created and progressed. When supervised learning is used in RL, it is done
for specific reasons that help establish which skills are valuable and which are not. For example, cer-
tain RL methods’ ability to study with standardized approximation addresses the classic “curse of
dimensionality” in operations research and management of ideas. RL, in particular, has had a strong
interaction with psychology and neuroscience, with both methods providing significant benefits. RL
is the closest form of ML to study that humans and other animals conduct. Many of the primary
algorithms for RL were inspired by biological studying structures.

RL has been given back through psychological models of animal learning, which matches some
scientific statistics, and through influential components of the mind’s reward system. The methods
were classified as “weak techniques” based on general principles such as discovery or learning and
as “strong techniques” if they were based on specific information. This is an odd scene in today’s
world. It became premature in our opinion: very little effort was expended in the search for gen-
eral principles, just to discover that there was none. Modern artificial intelligence today involves
research into common ideas like mastering, seeking, and making decisions. It’s uncertain how far
the pendulum will swing, but RL research is part of a trend toward artificial intelligence standards
that are simpler and less general.

8.2.1 exaMPles of reinforceMent learning

An amazing way to understand RL is to consider some of the examples and feasible applications
that have guided its development.

• A master chess player performs a trick. An immediate, spontaneous choice informs both
the importance of special positions and actions, election planning, and waiting for feasible
responses and counter-responses.

• After being born, a gazelle calf fights for its feet. It is now walking at a speed of 20 miles
per hour.

• A cell robotic must decide whether to enter a new room in search of additional trash to
collect or to begin finding its way back to its battery recharge station. It makes decisions
based on the current charge level of its battery and how quickly and easily it could locate
the recharger in the past.

These examples demonstrate functions that are so basic that they are easy to overlook. All of them
entail a dynamic interaction between an active selection-making agent and its environment, in
which the agent strives to attain a goal despite ambiguity about its surroundings. The agent’s moves
can represent the future condition of the environment (for example, the next chess role, the refinery’s
reservoir level, the robotic’s next region, and its battery’s future charge level), allowing for a later
time.

Because the proper goal necessitates considering indirect rather than direct implications of
movements, forethought or planning may be required. At the same time, in all of these cases, the
completion of activities cannot be entirely foreseen; consequently, the agent must show its environ-
ment regularly and react properly. Phil, for example, must keep an eye on the milk he puts into
his cereal dish to prevent it from overflowing. Many of these examples include desires that are so
unique to the experience that the agent can predict progress toward its goal only based on what it
has personally experienced.

The chess participant knows whether or not he/she wins, the gazelle calf knows when it falls,
and the mobile robotic knows when its batteries run out. In each of these cases, the agent can use

376 Machine Learning for Decision Sciences with Case Studies in Python

its enthusiasm to increase its performance over time. The chess player improves his/her game by
refining his/her instinct to evaluate his/her positions; the gazelle calf improves its running perfor-
mance, etc.

8.3 HOW RL DIFFERS FROM OTHER ML ALGORITHMS?

8.3.1 sUPerviseD learning

In supervised learning, the agent is aware of what work to do and what actions are appropriate. The
data scientists train the agent in historic records on targeted data with a label. The agent receives
a direct response and can predict whether there will be any changes in the target to the new data or
not.

Reinforcement studying doesn’t depend upon classified datasets. The agent isn’t instructed which
actions to take or the most desirable manner to perform a task. RL uses rewards and penalties in
preference to labels related to each dataset choice to indicate whether the action performed is posi-
tive or negative. Therefore, the agent only receives comments as soon as he or she has completed
the task. Thus, the delayed response and the trial-and-error process help distinguish RL from super-
vised studying.

Reinforcement Learning vs. unsupervised learning: In unsupervised learning, the algo-
rithm analyzes anonymous data to detect hidden connections between fact points and
structures through similarities or variations. RL goals to define an excellent action version
to achieve the greatest long-term reward, differentiating it from unattended learning in
terms of its primary purpose.

Reinforcement and deep learning: Most RL implementations use in-depth learning models.
They contain the usage of deep neural networks because it is an important means of train-
ing agents. Deep learning is best suited to spotting complicated styles in snapshots, sounds,
and text. In addition, neural networks permit data scientists to balance all processes into a
single model without tearing down the agent structure into multiple modules.

8.4 ELEMENTS OF REINFORCEMENT LEARNING

The RL system has four basic layers – policy, reward signal, value function, and environmental
model – in addition to the agency and the environment.

8.4.1 Policy

The policy denotes the information to detect an agent’s conduct over some time. The policy is a
map of known regions of the surrounding areas and the steps to be taken while in those states. It
goes hand in hand with what psychological research is called a set of policies or associations. In
a few instances, the coverage can be an easy way to do things or a lookup table, while in others,
it can contain excellent computation and search processes. A policy is a center for strengthening
the acquisition of an agent’s knowledge within the feel that it is only appropriate to determine
the conduct. In general, the rules can be stochastic, specifying the possibilities for each agent.
In general, a policy can be the behavior of the agent. It can be mapped from state to action. For
instance,

 Deterministicpolicy, ()= πd p (8.1)

 d p D d P p d pt t() () ()π = = = πStochasticpolicy, (8.2)

377Reinforcement Engineering

8.4.2 rewarD signal

The reward signal represents the objective of the problem of RL. In each step, the environment
sends the consolidation agent to consolidate one number called reward. The agent’s main goal is
to maximize the total compensation he or she receives over time. The reward signal specifies the
agent’s positive and negative occurrences. We can think of rewards in the biological system as
pleasant or sad experiences. They are succinct and descriptive descriptions of the agent’s problem.
The reward signal is the primary driver of policy change. If a lesser reward follows a policy-
selected action, the policy can be altered in the future to select a different action. Environmental
stock operations and moves are commonly used as reward signals. A pricing characteristic indi-
cates what is beneficial in the long run, but a reward signal specifies what is desirable in the short
term.

8.4.3 valUe fUnction

The value function, in most cases, is the entire amount of reward that an agent can expect to get
in the future from that point forward. Thus, the prices reflect the state’s long-term goals within the
natural states after evaluating the prospective provinces and the rewards accessible in those states.
In contrast, the rewards indicate instantaneous desire.

For instance, the state may always offer a short and modest prize, but the price is still excessive
because it is always joined by other states that offer bigger prizes. Alternatively, the inverse may
be true. To use a human comparison, rewards are similar to happiness (when high), and the most
sophisticated criteria determine sorrow (when low) and values.

A reward Rt is a signal response scale indicating how well an agent performs in an agent’s job
step to maximize aggregate reward. RL is dependent upon this reward hypothesis.

8.4.3.1 Examples of Rewards

Fly stunt flight in a helicopter
+ve reward for following your favorite route
−ve reward for colliding
Defeat the world champion at Scrabble
The ±ve reward for winning/losing a game
Manage a funding portfolio
The +ve reward for each currency in the bank
Control a power station
The +ve reward for generating electricity
The −ve reward for surpassing protection thresholds
Do a humanoid robot stroll
The +ve reward for moving forward
The −ve reward for falling over
Play many different Atari games better than humans
The ±ve reward for increasing/decreasing score

In other ways, rewards are primary, while values such as reward forecasts are secondary. There
would be no values if there were no rewards because the only reason for measuring values is to
get more money. Even yet, while choosing and comparing choices, it is a major source of concern.
Value judgments are used to select actions. We seek behaviors that result in higher-value states,
not just a bigger reward because these acts provide us with the best long-term payoff. It’s far more
difficult to define values than assigning rewards, to put it bluntly. In reality, reliably measuring val-
ues is the most important challenge in practically all RL systems. The crucial role of quantitative

378 Machine Learning for Decision Sciences with Case Studies in Python

measurement is the most important lesson learned in RL over the past six decades. The value func-
tion is given by

 V s R R R D dt t t t γ γ() = + + + = π π + + +Valuefunction 1 2
2

3 (8.3)

8.4.4 MoDel of the environMent

The last aspect of elements of RL is to strengthen the environmental model. This mimics how the
environment works or, more typically, allows for a hypothesis about how the environment will act.
For example, based on the current state and actions of the environment, the model might predict the
future state of the outcome and follow rewards. Models are used to make plans, in which we rec-
ommend any method of deciding on a course of action by contemplating potential future activities
before they are experienced. Solutions for RL using modeling and planning are called model-based
approaches, in contrast to simple non-model approaches that explicitly expose learners to trials and
errors – which are considered almost counter-planning. Current RL encompasses a wide range from
low-level, experimental, and trail-and-mistake-based learning to advanced, deliberate planning.

Environment model can be described as

 P D d D d B ess
a

t t t= = ′ = = ′ + ,1 (8.4)

 C C D d B es
a

t t t= = = + ,1 (8.5)

where P predicts the next state and C predicts the next reward.

8.4.5 the reinforceMent learning algorithM

The RL problem can be framed primarily based on the following key elements:

Agent(): An entity that could observe or discover the environment and use it.
Environment(): A scenario wherein an agent is presented or surrounded through. In RL, we

count on the stochastic surroundings; this means that it’s natural structures. It is nothing
but the physical world wherein the agent works.

Action(): Actions are the moves taken using an agent inside the environment.
State(): State of affairs restored with the aid of the environment after each action is taken

using the agent. It is the agent’s current status.
Reward(): A feedback returned to the agent from the environment to access the agent’s

action. It is the response from the environment.
Policy(): Policy is an approach carried out by the agent for the next action depending upon the

current state. It is an approach to map an agent’s state to actions.
Value(): It is predicted that it will also meet the discount factor for the long term and infringe-

ment of the interim reward. Future reward that an agent can earn by taking action in a
specific situation.

Q-value(): Very similar to a value but takes one additional parameter as the current action (a).

The algorithm is given by

At every step t the agent: Performs the action At recognized by observation Ot and receives
scalar reward Rt

The environment: Finds action At, produces observation Ot+1, radiates scalar reward Rt+1 at
t increments.

379Reinforcement Engineering

8.4.6 MethoDs to iMPleMent reinforceMent learning in Ml

RL in ML can be implemented using three main methods.

 1. Value-based: The value-based method determines the optimal value function, represent-
ing the maximum value at a state beneath any policy. Consequently, the agent presumes the
long-term return at any state(s) beneath policy π.

 2. Policy-based: The policy-based method determines the optimal policy for the high-
est rewards of the future without restoring the value function. In this method, the agent
attempts to use any policy so that the action taken in every step increases future rewards.

The policy-based method has particularly two kinds of policy:
• Deterministic: At any state, the same action is produced by the policy (π).
• Stochastic: The produced action is determined by probability.

 3. Model-based: In the model-based method, the environment creates a virtual model, and
the agent examines that environment to analyze it. This approach doesn’t have any specific
algorithm or solution because the virtual model is distinctive for every environment.

8.5 MARKOV DECISION PROCESS

In the RL framework, the decision is made by the agent from the environment as a signal function
known as the environment’s state. This section defines the Markov property that defines the envi-
ronment’s property and the state signals at a specific interest. In this section, we concentrate not on
designing the state signal but on deciding the function for which the signals are available.

8.5.1 PreliMinaries

The state should represent the immediate sensations to the agent and be able to intimate the agent
more than that. It intimates not only everything about the environment but also everything useful in
making decisions. For example, if the agent is communicating on a mobile, it is expected to identify
who the caller is. If the agent is playing the Baccarat game, it is expected that the agent should know
what the upcoming card will be. If we analyze these examples, there is some state information hid-
den in the environment, which the agent knows might be useful. Still, the agent could not predict it
because no such relevant sensations were received. A state signal that can retain all information is
named Markov or to devise the Markov property. For instance, the position of the checkers might
serve as a Markov state where it encapsulates all information about the whole sequence of positions
that was played in the game. Though some sequences might be missed out, all that is needed for the
future is retained. In general, we can say that it should retain the history of the signals that have been
made to reach this position. Let us consider a set of finite states and reward values and an environ-
ment that respond to the action taken at time t to t + 1. The response is dependent upon the whole thing
that has occurred earlier. The dynamics are defined by stating the complete probability distribution:

 , | , , , , , , , , 1 1 0 0 1 1 1{ }= = ′ …+ + − −P C a D d D B C D B C D Br t t t t t t t (8.6)

For all r, d ′ and all possible values of past events, namely, , , , , , , , , 0 0 1 1 1 − −D B C D B C D Bt t t t t . In
case the state signal obtains Markov property, then the environment’s response at t + 1 be subject to
the state and action representations at t, the environment’s dynamics is determined by

 p d a d e P C a D d D Br t t t t{ }′ = = = ′+ +(, | ,) , | , 1 1 (8.7)

For all a , d ′ , D Bt tand . It can also be stated that the state signal contains the Markov property
and Markov state, iff (equation 8.7) is equal to (equation 8.6) for all r, d ′. And all possible values

380 Machine Learning for Decision Sciences with Case Studies in Python

of past events, namely, , , , , , , , , 0 0 1 1 1 − −D B C D B C D Bt t t t t . In this case, where the environment and
complete process are said to contain the Markov property.

If the environment follows the Markov property, given the current state and action, the one-
step dynamics (equation 8.6) permits forecasting the next state and anticipating the next reward.
By repeating this equation, all future states can be forecasted and anticipate the rewards given the
entire history until the current time. RL considers Markov property an important criterion since the
decisions and values are thought to function the current state’s function. So as for those to be power-
ful and informative, the representation of the state must be instructive.

The Markov property that is satisfied by the RL task is known as MDP. If there are a finite num-
ber of state and action spaces, then it is known as the finite Markov decision process (finite MDP).
A specific finite MDP is determined by its state and action sets and the environment’s one-step
dynamics. In case state (d) and action (e) are provided, the probability of every feasible pair of the
next state (d ′) and reward (a) is represented by

 , , , , 1 1{ }()′ = = = ′ = =+ +p d a d e P C a D d D d B er t t t t (8.8)

If the dynamics represented in equation (8.8) is given, it becomes easy to compute any details about
the environment, in particular for each state-action pairs the expected reward is

 r d e C D d B e a p d a d et t t

d Da C

∑∑ ()() = = = = ′+

′∈∈

, , , , 1

 (8.9)

The probabilities of state transition are given by,

 | , | , (, | ,)1 ∑() { }′ = = ′ = = = ′+

∈

p d d e P D d D d B e p d a d er t t t

a C

 (8.10)

and for state action next-state triples, the expected reward is given by,

 r d e d C D d B e D d
a p d a d e

p d d e
t t t t

a C∑ ()
()()′ = = = = ′ =

′

′+ +
∈, , , ,

 , ,

,
1 1 (8.11)

8.5.2 valUe fUnctions

Substantially, every RL algorithms encompass measuring the state-action pairs that evaluate how
well an agent can carry out a given action in a given state. The opinion of “how well” can be defined
about future rewards or, more accurately, concerning the expected return. The expected reward to
receive from the agent in the future is depended upon the action it takes. Consequently, value func-
tions are defined in terms of particular policies.

A policy π is represented as a mapping from each state, d D∈ , and action, e A d()∈ , to the prob-
ability e d()π | for captivating action e when in the state, d. The value of a state, d within a policy π,
indicated by, is the expected return when beginning at d and under π thenceforth. v d()π for MDPs
is represented as

 v d G D d C D dt t
k

t k t ∑γ= = = =

π π π + +

∞

() ,1

0

 (8.12)

where given an agent who follows policy π and time step t, []π . represents the expected value of a
random variable and vπ represents the state value function for policy π.

381Reinforcement Engineering

Similarly, the value of captivating action e in state d within a policy π, i.e., the expected return
beginning from d, represented by q d e()π , the action value function for policy π is given by

 q d e G D d B e C D d B et t t
k

t k t t ∑γ() = = = = = =

π π + +

∞

, , ,π 1

0

 (8.13)

The value functions vπ and qπ can be measured through expertise. For instance, for every state that
is encountered, if an agent accompanies policy π and upholds an average of the actual returns for
the state that has been followed, then the average shall intersect to the state’s value, vπ(d), as long as
the number of times that state is confronted nears infinity.

In case for every action taken in a state, distinct averages are considered, then all these averages
intersect with the value of the action, qπ(d, e). This approach can be called the Monte Carlo approach
to averaging numerous random samples of actual returns.

The consistency condition possesses among the value of d and the value of its feasible descendant
states for any policy π and any state d which is represented as

v d G D d

C D d

C D d

e d p d a d e r C D d

e d p d a d e r d

t t

k
t k t

k
t k t

rde

k
t k t

k

d ae

∑

∑

∑∑∑ ∑

∑∑

γ

γ

γ γ

γυ

() ()

() () (

= =

= =

= =

= π ′ + = ′

= π ′ + ′ π

π π

π + +

∞

π + +

∞

′

π + + +

=

∞

′

()

 , ,

 , ,

1

0

2

0

2 1

0

,

 (8.14)

It is implied that from set A(d), the actions, e, are interpreted from set D, the next states, d0,
and from set B, the rewards, a, are chosen. For every triple, the probability is computed, π(e|d)
p(d0, a|d, e), weight the quantity in brackets by its probability, finally find the aggregate across
all possibilities to obtain the expected value. Bellman equation for vπ is given in (equation 8.14),
which demonstrates a correlation among the state value of its successor states. Equation (8.14),
the Bellman equation, averages all the possibilities, scaling every possibility by its occurring
probability. It declares that the start state value needs to equal the expected next state value and
the sum of the expected reward. The value function vπ is considered the unique solution to its
Bellman equation.

8.6 DYNAMIC PROGRAMMING

DP is the collection of algorithms to find optimal policies when a perfect environment model
is given as a MDP. Due to huge computational expense and the need for a perfect environment
model, the utility of classical DP algorithms in RL is limited. However, still, they are considered
theoretically important. Indeed, these methods are viewed as attempts to obtain a similar impact

382 Machine Learning for Decision Sciences with Case Studies in Python

as DP but with lesser computation and no need for a perfect environment model. From hereon,
we consider the environment a finite MDP. Let’s assume that all the state (D), action A(d), and
reward sets, R for d ∈ D is finite. Its dynamics are represented as a set of probabilities p(d0, a|d,
e), for all d ∈ D, e ∈ A(s), a ∈ R, and d0 ∈ D+, where + denotes the terminal state if the problem is
discontinuous. Even though DP can solve problems involving continuous states and action spaces,
exact solutions are only attainable in a few circumstances. However, the state and action spaces
must be quantized for continuous states and actions, and finite-state DP techniques must be used.
Using a value function to organize and construct the search for appropriate policies is the central
principle of DP and RL.

8.6.1 Policy evalUation

Policy evaluation in DP denotes the computation of the state-value function vπ for a random policy
π. This can also be referred to as a prediction problem.

v s R R R D d

R v S S s

t t t t

t t t

γ γ

γ ()

() = + + + =

= + =

π π + + +

π + π +

1 2
2

3

1 !

 (8.15)

 , , ()
,

∑∑ γν()[]()π ′ + ′π

′

e d p d a d e a d
d ae

 (8.16)

where e dπ(|) denotes the probability of considering action, e in the state, d within the policy π,
whereas the subscription of π represents the expectations that indicate the conditional policy is
being followed. The vπ value is guaranteed for its existence and uniqueness until γ < 1 or if a guar-
antee is obtained from all states within the policy π that it has been terminated.

In case the dynamics of the environment are known completely, then equation (8.16) can be the
system of D simultaneous linear equations in D unknowns , () ∈πv d d D. Let us consider a suc-
cession of value functions v0, v1, v2, … which are approximate, and each mapping D + to . The
initial approximate value function v0 is selected randomly, and using the Bellman equation (8.14)
for vπ the update rule obtains each succession approximation

v s R v D D d

e d p d a d e a v d

t k t t

k

da

∑∑
γ

γ[]() ()

()= + =

= π ′ + ′

π π + +

′

()

 , , ()

1 1

 (8.17)

For all d D∈ . It is clear that v vk = π acts as a fixed point to the update rule because the Bellman
equation for vπ guarantees equality for this instance. In general, the sequence vk{ } converges to vπ
as k → ∞ within the same condition that assures the presence of vπ. This procedure is known as an
iterative policy evaluation and is illustrated in Figure 8.1.

To develop every succession approximation, vk+1 from vk, the same operation for each state, d
is applied by the iterative procedure of policy evaluation. The previous value of d is applied to the
obtained new value from the previous values of the states of d. The one-step transitions available
within the policy and the expected immediate reward are evaluated. This operation is known as
full backup. In dependence upon the state-action pair, numerous distinct types of full backups are
backed up, and the estimated values of the successive states, dependent on the precise manner, are
grouped. Since the backups done in DP algorithms depend on all feasible next states instead of
sample next state, we say that all DP algorithms are called full backups.

383Reinforcement Engineering

8.6.2 Policy imProvement

The policy’s value function is computed to identify good policies. Let us consider that the value
function vπ for a random deterministic policy, π is determined if we want to change it to a new policy
for some state, d. One question arises whether it is good to continue with the current policy or to
move on with the new policy. This question could be answered by choosing e in d and continuing
with the old policy π. This can be determined by

, | ,

, , ()

1 1

,

∑
γ

γ[]()

()() = + = =

= ′ + ′

π π + π +

π

′

q d e C v D D d B e

p d a d e a v d

t t t t

d a

 (8.18)

The main idea is to check whether the value is greater or lesser than that v d()π . If the value is
greater, that means it would be a good choice to choose e once in d and to follow π, which insists
on following π every time. In this case, it would be better to adopt the new policy. This result is
considered the policy improvement theorem. Assume π and π0 be the deterministic policy pair such
that, for all d ∈ D,

 ,()() ()′π ≥π πq d d v d (8.19)

Here the policy π’ has to be better or good than π. This indicates that it should acquire greater or
equal expected return from all states d ∈ D.

 v d v d() ()≥′π π (8.20)

In the case at any state in equation (8.19), a strict inequality exists, then in equation (8.20) also a
string inequality must exist for any state. This applies to the two policies mentioned in the original
deterministic policy, π, and to the new policy, π0. Certainly, equation (8.19) will hold for all states
except d. Therefore, if qπ(d, e) is greater than vπ(d), then the need policy is better than the original
deterministic policy, π.

Now, let us prove this policy improvement theorem. Let us start from equation (8.19), expand the
qπ as well as while reapplying equation (8.19) till we obtain v d′π () which is represented as

Read π, the policy that needs to be evaluated

Initialize an array V(d) = 0, for all d ∈ +

Loop

Δ ← 0

For each d ∈ D:

← ()

() ← ∑ (|) ∑ (′ , | ,) [+ (′)]′ ,

∆ ← max(∆, | − ()|)

Until ∆ < ()

Display ≈

FIGURE 8.1 Iterative policy evaluation.

384 Machine Learning for Decision Sciences with Case Studies in Python

v d q d d

C v D D d

C q D D D d

C C v D D d

C C v D D d

C C C v D D d

C C C C D d

v d

t t t

t t t t

t t t t

t t t t

t t t t t

t t t t t

γ

γ

γ γ

γ γ

γ γ γ

γ γ γ

()

()

()

()

()

()

()

()

≤ ′π

= + =

≤ + ′π =

= + + =

= + + =

≤ + + + =

≤ + + + =

=

π π

′π + π +

′π + π + +

′π + ′π + π +

′π + + π +

′π + + + π +

′π + + + +

′π

() , ()

 ,

 ,

1 1

1 1 1

1 2 2

1 2
2

2

1 2
2

3
3

3

1 2
2

3
3

4

 (8.21)

The new greedy policy, π’, which is the native extension considered to change at all the states and
all the feasible actions, chosen at every state in which the action seems best according to q D e()π ,
is represented as

d q d a

C v D D d B e

p d a d e a v d

a

a t t t t

a

d a

∑
γ

γ() ()

()

′π =

= + = =

= ′ + ′

π

+ π +

′

π

() argmax (,)

argmax ,

argmax , ,

1 1

,

 (8.22)

where argmaxa represents the maximized expression for the value of a. The greedy policy meets the
conditions of the policy improvement theorem described in equation (8.19). As a result, we conclude
that it is nearly as good as the original deterministic approach. As a result, policy improvement
refers to the process of making a new policy better than the old one by making it greedy concerning
the old policy’s value function.

Assume that the new greedy policy, π0, is well but not better than the existing policy π. Then,
v v=π π 0 and from equation (8.22), it occurs that for all d D∈ :

 ∑
γ

γ ()

()= + = =

= ′ + ′

′π + ′π +

′

′π

v d C v D D d B e

p d a d e a v s

a t t t t

a

s a

() max ,

max (, | ,)

1 1

,

 (8.23)

This equation is similar to the Bellman optimality equation, and subsequently, vπ0 should be v*, as
well as π and π0 should be optimal policies. Generally, a stochastic policy π indicates probabilities,
π(e|d), for each action, e, from each state, d. In specific, the policy improvement theorem carried
across the stochastic case, beneath the normal definition is given by

 q d d e d q d e
e

∑()′π = ′ππ π, () (,) (,) (8.24)

In addition, if a connection exists in policy improvement stages, as shown in equation (8.22), then
there is no need to choose a single action from among them in the case of a stochastic policy. Rather,
each maximizing action might be given a percentage of the chance of being chosen under the new
greedy policy. Because all submaximal actions have a zero probability, the newly allocated scheme
could be authorized.

385Reinforcement Engineering

8.6.3 Policy iteration

As soon as the policy, π, improves using vπ to provide a better policy, π’, and v ′π is computed and
improved to produce even a better policy π’’. Thus, a sequence of uniform improved policies and
value functions are obtained by

 v v vE I E I E I E
π → → π → → π → → π →π π π 0 1 2 *0 1 *

where E → represents policy evaluation and I → represents policy improvement.
Because there are only a finite number of policies in a finite MDP, this technique should focus

on achieving optimal policy and the ideal value function in a finite number of repetitions. Policy
iteration is the term for the process of determining the best policy. The policy iteration algorithm is
depicted in Figure 8.2.

In this algorithm, if the policy constantly commutes between two or more policies that are even-
tually good, the algorithm will never terminate.

8.6.4 efficiency of DynaMic PrograMMing

Although DP is not ideal for really big problems, it is relatively efficient compared to other approaches
to solving MDPs. In terms of the number of states and actions, the worst-case time complexity of the
DP technique to achieve an optimal policy is polynomial. Assuming that n is the number of states
and m is the number of actions, the DP technique requires fewer computer operations than a poly-
nomial function n and m. Thus, DP guarantees that the optimal policy will be found in polynomial
time, even though the total number of policies required is mn. In this aspect, DP is exponentially
faster than direct search in the policy space since direct search requires a thorough investigation of

FIGURE 8.2 Policy iteration for v*.

386 Machine Learning for Decision Sciences with Case Studies in Python

each policy to offer the promise. Compared to the DP approach, the worst-case intersection guaran-
tees for linear programming approaches, which are also employed to solve MDPs, are comparably
good. However, compared to DP, the linear programming approach becomes unworkable with fewer
states. However, only DP techniques are practical for the most serious situations.

Because the number of states grows exponentially with the number of state variables, the curse
of dimensionality (Bellman, 1957), DP is frequently thought to be unproductive. Furthermore, DP
outperforms direct search and linear programming when dealing with huge state spaces. If it starts
with good initial value functions or policies, DP converges substantially faster than its theoretical
worst cast difficulties.

8.6.5 DynaMic PrograMMing in Practice Using Python

###Importing libraries
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid")
%pylab inline
import random

####### Populating the interactive namespace from numpy and matplotlib
###Policy iteration
###Parameters
gamma = 1 # discounting rate
rewardSize = -1
gridSize = 4
terminationStates = [[0,0], [gridSize-1, gridSize-1]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000

###Functions
def actionRewardFunction(initialPosition, action):
 if initialPosition in terminationStates:
 return initialPosition, 0
 reward = rewardSize
 finalPosition = np.array(initialPosition) + np.array(action)
 if -1 in finalPosition or 4 in finalPosition:
 finalPosition = initialPosition
 return finalPosition, reward
###Initialize
valueMap = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
####Value function at step 0
valueMap

####Evaluating the Policy
deltas = []
for it in range(numIterations):
 copyValueMap = np.copy(valueMap)
 deltaState = []
 for state in states:
 weightedRewards = 0
 for action in actions:

387Reinforcement Engineering

 finalPosition, reward = actionRewardFunction(state, action)
 weightedRewards += (1/len(actions))*(reward+(gamma*valueMap[f
inalPosition[0], finalPosition[1]]))
 deltaState.append(np.abs(copyValueMap[state[0],
state[1]]-weightedRewards))
 copyValueMap[state[0], state[1]] = weightedRewards
 deltas.append(deltaState)
 valueMap = copyValueMap
 if it in [0,1,2,9, 99, numIterations-1]:
 print("Iteration {}".format(it+1))
 print(valueMap)
 print("")

###Plotting the values
plt.figure(figsize=(20, 10))
plt.plot(deltas)

SUMMARY

RL is a ML technique that focuses on using a cut-and-try approach to train an algorithm. After
each action, the algorithm (agent) examines the current situation (state), takes action, and receives
feedback (reward) from the environment. Positive feedback is a form of reward (in the sense that
we understand it), whereas negative feedback is a form of punishment for making a mistake. The
goal-oriented learning based on RL is discussed in this chapter and how RL differs from other ML
algorithms. First, the elements of RL, such as agent, policy function, and value function, are thor-
oughly discussed, followed by RL techniques, such as the MDP and DP. Finally, value functions,
policy assessment, enhancements, and MDP and DP implementation in Python are all delineated.

REVIEW QUESTIONS

 1. List out a few real-world applications of RL. Explain concerning agent, value functions,
and policy functions.

 2. Compare the performance of RL compared to other ML algorithms.
 3. Explain the terms: policy, reward, value function, and model of an environment.
 4. Consider a football ground as an environment and a robot as an intelligent agent. Try to

model the game using the Bellman equation.
 5. List the differences between supervised learning and RL in terms of
 a. Dataset (labeled/unlabeled)
 b. Training
 c. Interaction with the environment
 d. Decision-making
 6. What are on-policy and off-policy functions? Explain.
 7 Explore the application of MDP in traffic light control for decision-making.
 8. Can RL be applied to self-driving cars? Interpret the agent, reward, action, and environ-

ment for the application.

https://taylorandfrancis.com

389

9 Case Studies for Decision
Sciences Using Python

LEARNING OBJECTIVES

At the end of this chapter, the reader will be able to:

• Understand the application of phases of data analytics life cycle for machine learning (ML)
problems,

• Comprehend the data for a given problem and the objective of the problem such that a suit-
able algorithm can be identified,

• Identify alternate ML models for the listed use cases,
• Apprehend the differences between common ML models from an application perspective, and
• Implement the use cases provided in this chapter using Python.

Machine learning is endlessly fascinating and constantly evolving. The use of ML in various industries
has been gaining speed in the last few years. There are multiple uses to solve industry-related business
problems, from retail to financial services to healthcare to manufacturing. This chapter discusses a few
uses in different industries to solve the industry problem using deep learning. Traditional program-
ming cannot accommodate the logic for various combinations. Using the Price Elasticity of Demand
Method, use case 1, Retail Price Optimization, finds the exact price at which maximum profit is gained.
The use case highlights the step-by-step implementation of understanding the data, loading the data,
exploring the data, and model building. In use case 2, Market Basket Analysis (MBA), we present the
application based on a customer dataset in a supermarket, thus highlighting association rule mining.
The product associations are compared based on Apriori and Fpgrowth algorithms. Use case 3, Sales
Prediction of a Retailer, is illustrated to build a ML model and find out the sales of each product at a
particular store. The code is implemented to compare different regression models and identify Gradient
Boosting as the best model. Predicting the cost of insurance claims for a Property and Causalty (P&C)
Insurance Company is covered in use case 4. This case study illustrates data cleaning, data preprocess-
ing, and handling outliers. Use case 5, E-Commerce Product Ranking and Sentiment Analysis, deals
with understanding the data, data preprocessing-filtering (including gibberish, language, and profanity
detection), feature extraction, pairwise review scoring, and further categorization.

9.1 USE CASE 1 − RETAIL PRICE OPTIMIZATION USING
PRICE ELASTICITY OF DEMAND METHOD

9.1.1 backgroUnD

Product pricing is a vital aspect of the rental industry, and there are several strategies to determine
the optimal price of the products. As such, there are two main types of goods. First, there are several
goods whose prices affect their sales. Small changes in the price of these products can therefore lead
to distinctive changes in sales. On the other hand, sales of goods can be unaffected by their price.
These products are generally luxury items and necessities such as certain medicines. This notebook
will focus on the former type of goods, where price changes the demand for the product.

Price elasticity of demand (PED) is a key economic measure defined as the degree to which
demand changes as the cost of the product changes. In general, the demand for a product decreases
as cost rises. However, in some cases, the demand can drop sharply even with a small increase

DOI: 10.1201/9781003258803-9

https://doi.org/10.1201/9781003258803-9

390 Machine Learning for Decision Sciences with Case Studies in Python

in price, while in other cases, demand can stay approximately the same even with a sharp price
increase. Therefore, the term price elasticity defines the percentage change in demand due to a
change in price by 1%, given that everything else is held constant.

In mathematical terms, the PED is the percentage change in quantity demanded, q, divided by
the percentage change in price, p. The formula for the price elasticity (ǫ) is 𝑒 = %Δ𝑄/%Δ𝑃. In this
program, we look at the sales of the items in a cafe, including burgers, coke, lemonade, and coffee.
As data scientists, our task is to figure out the optimal prices to set for these items. If the price is set
too high, the sales will drop, and if the price is low, then the margins will decrease. Hence, the cru-
cial question to get an answer for is “what is the optimal price point that will maximize the profit?”

9.1.2 UnDerstanDing the Data

For this use case, we will be using three files. The first file is the time dimension, which has all the
calendar dates for a year, and that also has attributes, if the date is a holiday, weekend, or school
beak days. It also contains another attribute, temperature, that will dictate the outdoor dining pos-
sible (as a categorical variable). The second file is the Product master data that contains the product
list, and the third file contains the sale transactions.

-*- coding: utf-8 -*-
"""
Created on Thu Dec 3 17:19:01 2020

@author: Suresh Rajappa
"""

Import the reqiured libraries
import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.formula.api import ols
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(style="ticks", color_codes=True)

Get multiple outputs in the same cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Ignore all warnings
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings(action='ignore', category=DeprecationWarning)

Display all rows and columns of a dataframe instead of a truncated
version
from IPython.display import display
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

Load the data
sold = pd.read_csv('C:/Python Files/Usecases/Cafe Dataset - Product
Master Data.csv')
transactions = pd.read_csv('C:/Python Files/Usecases/Cafe Dataset - Sales
Transaction Data.csv')

391Case Studies for Decision Sciences

date_info = pd.read_csv('C:/Python Files/Usecases/Cafe Dataset - Time
Dimension.csv')

Undersatdning the Product master data
sold.head()
sold.describe()
sold.describe(include = ['O'])
sold[sold.isnull().any(axis=1)]

SELL_ID: a categorical variable identifier of the combination of items
that are contained in the product.
SELL_CATEGORY: “0” identifies single products; the category “2”
identifies the combo ones.

ITEM_ID: a categorical variable identifier of the item that is
contained in the product.
ITEM_NAME: a categorical variable, identifying the name of the item

sns.pairplot(sold) #Figure 9.1

Understanding the Transaction data
transactions.head()
transactions.describe()
transactions.describe(include = ['O'])
transactions[transactions.isnull().any(axis=1)]

Important: It’s supposed the PRICE for that product on that day will
not vary. In details:
CALENDAR_DATE: a date/time variable, having the time always set to
00:00 AM.
PRICE: a numeric variable associated with the price of the product
identified by the SELL_ID.
QUANTITY: a numeric variable associated with the quantity of the
product sold, identified by the SELL_ID.
SELL_ID: a categorical variable identifier of the product sold.
SELL_CATEGORY: a categorical variable, category of the product sold.
plt.hist(transactions.PRICE) #Figure 9.2

sns.pairplot(transactions) #Figure 9.3

date_info.head()
date_info.describe()
date_info.describe(include = ['O'])
date_info.dtypes
date_info[date_info.isnull().any(axis=1)]
date_info['HOLIDAY'] = date_info['HOLIDAY'].fillna("No Holiday")
date_info
sns.pairplot(date_info) #Figure 9.4

Further understanding the data deeper

np.unique(date_info['HOLIDAY'])
date_info['CALENDAR_DATE'].min()
date_info['CALENDAR_DATE'].max()

392 Machine Learning for Decision Sciences with Case Studies in Python

FIGURE 9.2 Plot of the histogram for price.

FIGURE 9.1 Plot using pairplot for sold.

393Case Studies for Decision Sciences

date_info.shape
date_info[date_info.isnull().any(axis=1)]
pd.concat([sold.SELL_ID, pd.get_dummies(sold.ITEM_NAME)], axis=1)
pd.concat([sold.SELL_ID, pd.get_dummies(sold.ITEM_NAME)], axis=1).
groupby(sold.SELL_ID).sum()

data1 = pd.merge(sold.drop(['ITEM_ID'],axis=1), transactions.drop(['SELL_
CATEGORY'], axis= 1), on = 'SELL_ID')
data1.head(20)
b = data1.groupby(['SELL_ID', 'SELL_CATEGORY', 'ITEM_NAME', 'CALENDAR_
DATE','PRICE']).QUANTITY.sum()

data1.shape
intermediate_data = b.reset_index()

data1.shape
b.shape

FIGURE 9.3 Plot of pairplot for transactions.

394 Machine Learning for Decision Sciences with Case Studies in Python

intermediate_data.head()
intermediate_data['CALENDAR_DATE'].min()
intermediate_data['CALENDAR_DATE'].max()

combined_data = pd.merge(intermediate_data, date_info, on =
'CALENDAR_DATE')
combined_data.head()
combined_data.shape
combined_data[combined_data.isnull().any(axis=1)]

np.unique(combined_data['HOLIDAY'])
np.unique(combined_data['IS_WEEKEND'])
np.unique(combined_data['IS_SCHOOLBREAK'])

bau_data = combined_data[(combined_data['HOLIDAY']=='No Holiday') &
(combined_data['IS_SCHOOLBREAK']==0) & (combined_data['IS_WEEKEND']==0)]

FIGURE 9.4 Plot using pairplot for dateInfo.

395Case Studies for Decision Sciences

bau_data.head()
bau_data.shape

np.unique(bau_data['HOLIDAY'])
np.unique(bau_data['IS_WEEKEND'])
np.unique(bau_data['IS_SCHOOLBREAK'])
bau_data[bau_data['IS_WEEKEND']==1]
bau_data[bau_data['HOLIDAY']!='No Holiday']

DATA EXPLORATION
plt.hist(bau_data.ITEM_NAME)
plt.hist(bau_data.PRICE)
plt.scatter(combined_data['PRICE'], combined_data['QUANTITY'])
plt.scatter(bau_data['PRICE'], bau_data['QUANTITY'])

sns.pairplot(combined_data[['PRICE','QUANTITY','ITEM_NAME']], hue =
'ITEM_NAME', plot_kws={'alpha':0.1})

sns.pairplot(bau_data[['PRICE','QUANTITY','ITEM_NAME']], hue = 'ITEM_
NAME', plot_kws={'alpha':0.1})

The price density plot is bimodal. From the graph, we can see that as
the price is
#increased, quantity sold is decreased for all quantities. However, coke
is hidden in this view. We can go ahead, and #calculate the price
elasticities for this.

burger = combined_data[combined_data['ITEM_NAME'] == 'BURGER']
burger.head()
burger.shape
burger.describe()
sns.scatterplot(x = burger.PRICE, y = burger.QUANTITY)

From the above scatter plot, it is visible that there must be different
types of burgers being sold.
#Now, let's see the same distribution when we differentiate with SELL_ID,
which indicates if the burger was
#a part of the combo and must be treated separately.

burger = combined_data[combined_data['ITEM_NAME'] == 'BURGER']
print(burger)
print(burger.describe())
sns.scatterplot(data = burger, x = burger.PRICE, y = burger.QUANTITY ,
hue = 'SELL_ID', legend=False, alpha = 0.1)
np.unique(combined_data.SELL_ID)
np.unique(combined_data.SELL_CATEGORY)

burger_1070 = combined_data[(combined_data['ITEM_NAME'] == 'BURGER') &
(combined_data['SELL_ID'] == 1070)]

burger_1070.head()
burger_1070.describe()
sns.scatterplot(data = burger_1070, x = burger_1070.PRICE, y =
burger_1070.QUANTITY, alpha = 0.1)

396 Machine Learning for Decision Sciences with Case Studies in Python

MODELING
This is for the combined data
burger_model = ols("QUANTITY ~ PRICE", data=burger_1070).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(burger_model, fig=fig)

burger = bau_data[bau_data['ITEM_NAME'] == 'BURGER']
burger.head()
burger.shape
burger.describe()
sns.scatterplot(x = burger.PRICE, y = burger.QUANTITY)

burger = bau_data[bau_data['ITEM_NAME'] == 'BURGER']
print(burger)
print(burger.describe())
sns.scatterplot(data = burger, x = burger.PRICE, y = burger.QUANTITY ,
hue = 'SELL_ID', legend=False, alpha = 0.1)

np.unique(bau_data.SELL_ID)
np.unique(bau_data.SELL_CATEGORY)

burger_1070 = bau_data[(bau_data['ITEM_NAME'] == 'BURGER') & (bau_
data['SELL_ID'] == 1070)]
burger_1070.head()
burger_1070.describe()
sns.scatterplot(data = burger_1070, x = burger_1070.PRICE, y =
burger_1070.QUANTITY, alpha = 0.1)

As we can see, the scatter plot is much cleaner. Although there does
seem to be 2 separate trends
burger_model = ols("QUANTITY ~ PRICE", data=burger_1070).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(burger_model, fig=fig)

Let's look at the burger data again to see if there is anything else we
can use to refine our model further.

bau_data.head()
bau2_data = combined_data[(combined_data['HOLIDAY']=='No Holiday') &
(combined_data['IS_SCHOOLBREAK']==0) & (combined_data['IS_WEEKEND']==0) &
(combined_data['IS_OUTDOOR']==1)]

burger_1070 = bau2_data[(bau2_data['ITEM_NAME'] == 'BURGER') & (bau2_
data['SELL_ID'] == 1070)]

burger_1070.head()
burger_1070.describe()
sns.scatterplot(data = burger_1070, x = burger_1070.PRICE, y =
burger_1070.QUANTITY, alpha = 0.1)

burger_model = ols("QUANTITY ~ PRICE", data=burger_1070).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))

397Case Studies for Decision Sciences

fig = sm.graphics.plot_ccpr(burger_model, "PRICE")

fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(burger_model, "PRICE", fig=fig)

burger_2051 = combined_data[(combined_data['ITEM_NAME'] == 'BURGER') &
(combined_data['SELL_ID'] == 2051)]

burger_2051.head()
burger_2051.describe()
sns.scatterplot(data = burger_2051, x = burger_2051.PRICE, y =
burger_2051.QUANTITY, alpha = 0.1)

burger_model = ols("QUANTITY ~ PRICE", data=burger_2051).fit()
print(burger_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(burger_model, fig=fig)
coke = combined_data[combined_data['ITEM_NAME'] == 'COKE']
coke.head()
coke.shape
coke.describe()
sns.scatterplot(x = coke.PRICE, y = coke.QUANTITY , alpha = 0.1)

coke_model = ols("QUANTITY ~ PRICE", data=coke).fit()
print(coke_model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(coke_model, fig=fig)
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(coke_model, 'PRICE', fig=fig)

df = combined_data[combined_data['ITEM_NAME'] == 'COFFEE']
df.head()
df.shape
df.describe()
sns.scatterplot(x = df.PRICE, y = df.QUANTITY , alpha = 0.1)

model = ols("QUANTITY ~ PRICE", data=df).fit()
print(model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(model, fig=fig)
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(model, 'PRICE', fig=fig)

df = combined_data[combined_data['ITEM_NAME'] == 'LEMONADE']
df.head()
df.shape
df.describe()
sns.scatterplot(x = df.PRICE, y = df.QUANTITY , alpha = 0.1)

model = ols("QUANTITY ~ PRICE", data=df).fit()
print(model.summary())
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_partregress_grid(model, fig=fig)
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(model, 'PRICE', fig=fig)
elasticities = {}

398 Machine Learning for Decision Sciences with Case Studies in Python

def create_model_and_find_elasticity(data):
 model = ols("QUANTITY ~ PRICE", data).fit()
 price_elasticity = model.params[1]
 print("Price elasticity of the product: " + str(price_elasticity))
 print(model.summary())
 fig = plt.figure(figsize=(12,8))
 fig = sm.graphics.plot_partregress_grid(model, fig=fig)
 return price_elasticity, model

price_elasticity, model_burger_1070 =
create_model_and_find_elasticity(burger_1070)
elasticities['burger_1070'] = price_elasticity

burger2051_data = bau2_data[(bau2_data['ITEM_NAME'] == "BURGER") & (bau2_
data['SELL_ID'] == 2051)]
elasticities['burger_2051'], model_burger_2051 =
create_model_and_find_elasticity(burger2051_data)

burger2052_data = bau2_data[(bau2_data['ITEM_NAME'] == "BURGER") & (bau2_
data['SELL_ID'] == 2052)]
elasticities['burger_2052'], model_burger_2052 =
create_model_and_find_elasticity(burger2052_data)

burger2053_data = bau2_data[(bau2_data['ITEM_NAME'] == "BURGER") & (bau2_
data['SELL_ID'] == 2053)]
elasticities['burger_2053'], model_burger_2053 =
create_model_and_find_elasticity(burger2053_data)

coke_data = bau2_data[bau2_data['ITEM_NAME'] == "COKE"]
create_model_and_find_elasticity(coke_data)

2 coke are available in combo, while 1 is available as single. So, it
is likely that the bottom distribution belongs to single purchases of
coke. Let's verfy this
coke_data = bau2_data[(bau2_data['ITEM_NAME'] == "COKE") & (bau2_
data['SELL_ID'] == 3067)]
elasticities['coke_3067'], model_coke_3067 =
create_model_and_find_elasticity(coke_data)

coke_data
coke_data_2053 = bau2_data[(bau2_data['ITEM_NAME'] == "COKE") & (bau2_
data['SELL_ID'] == 2053)]
elasticities['coke_2053'], model_coke_2053 =
create_model_and_find_elasticity(coke_data_2053)

coke_data_2051 = bau2_data[(bau2_data['ITEM_NAME'] == "COKE") & (bau2_
data['SELL_ID'] == 2051)]
elasticities['coke_2051'], model_coke_2051 =
create_model_and_find_elasticity(coke_data_2051)

lemonade_data_2052 = bau2_data[(bau2_data['ITEM_NAME'] == "LEMONADE") &
(bau2_data['SELL_ID'] == 2052)]
elasticities['lemonade_2052'], model_lemonade_2052 =
create_model_and_find_elasticity(lemonade_data_2052)

lemonade_data_3028 = bau2_data[(bau2_data['ITEM_NAME'] == "LEMONADE") &
(bau2_data['SELL_ID'] == 3028)]

399Case Studies for Decision Sciences

elasticities['lemonade_3028'], model_lemonade_3028 =
create_model_and_find_elasticity(lemonade_data_3028)

coffee_data_2053 = bau2_data[(bau2_data['ITEM_NAME'] == "COFFEE") &
(bau2_data['SELL_ID'] == 2053)]
elasticities['coffee_2053'], model_coffee_2053 =
create_model_and_find_elasticity(coffee_data_2053)

coffee_data_3055 = bau2_data[(bau2_data['ITEM_NAME'] == "COFFEE") &
(bau2_data['SELL_ID'] == 3055)]
elasticities['coffee_3055'], model_coffee_3055 =
create_model_and_find_elasticity(coffee_data_3055)

List in a table the items and their price elasticities

elasticities

Find optimal price for maximum profit
Now, let's take coke (the sell_id was 2051 for the last coke data) and
since we do not the buying price #of coke, let's assume it to be a little
less than the minimum coke price in the dataset

coke_data = coke_data_2053
coke_data.PRICE.min()
coke_data.PRICE.max()

Let's take nine as the buying price of coke. We now want to be able to
set the price of coke to get the maximum profit. PRICE is the selling price

buying_price_coke = 9

$$coke data.PROFIT = (coke data.PRICE - buying price coke) * coke data.
QUANTITY$$
Let's see the profit for various price points:

start_price = 9.5
end_price = 20

test = pd.DataFrame(columns = ["PRICE", "QUANTITY"])
test['PRICE'] = np.arange(start_price, end_price,0.01)

test['QUANTITY'] = model_coke_2051.predict(test['PRICE'])

test
test['PROFIT'] = (test["PRICE"] - buying_price_coke) * test["QUANTITY"]
test

plt.plot(test['PRICE'],test['QUANTITY'])
plt.plot(test['PRICE'],test['PROFIT'])
plt.show()

Let's find the exact price at which maximum profit is gained:
ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0]
test.loc[[ind]]

def find_optimal_price(data, model, buying_price):
 start_price = data.PRICE.min() - 1

400 Machine Learning for Decision Sciences with Case Studies in Python

 end_price = data.PRICE.min() + 10
 test = pd.DataFrame(columns = ["PRICE", "QUANTITY"])
 test['PRICE'] = np.arange(start_price, end_price,0.01)
 test['QUANTITY'] = model.predict(test['PRICE'])
 test['PROFIT'] = (test["PRICE"] - buying_price) * test["QUANTITY"]
 plt.plot(test['PRICE'],test['QUANTITY'])
 plt.plot(test['PRICE'],test['PROFIT'])
 plt.show()
 ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0]
 values_at_max_profit = test.iloc[[ind]]
 return values_at_max_profit

Calculate the optimal price for all and list in table
optimal_price = {}
buying_price = 9

optimal_price['burger_1070'] = find_optimal_price(burger_1070, model_
burger_1070, buying_price)
optimal_price

optimal_price['burger_2051'] = find_optimal_price(burger2051_data, model_
burger_2051, buying_price)

optimal_price['burger_2052'] = find_optimal_price(burger2052_data, model_
burger_2052, buying_price)

optimal_price['burger_2053'] = find_optimal_price(burger2053_data, model_
burger_2053, buying_price)
optimal_price['coke_2051'] = find_optimal_price(coke_data_2051, model_
coke_2051, buying_price)
optimal_price['coke_2053'] = find_optimal_price(coke_data_2053, model_
coke_2053, buying_price)
optimal_price['lemonade_2052'] = find_optimal_price(lemonade_data_2052,
model_lemonade_2052, buying_price)
optimal_price['coffee_2053'] = find_optimal_price(coffee_data_2053,
model_coffee_2053, buying_price)
optimal_price

coke_data_2051.PRICE.describe()

9.1.3 conclUsion

Based on its previous sales data, this is the optimal price the cafe must set on its items to earn the
highest profit. It is essential to note that this is on a normal day. On “other” days, such as a holiday or
an event, it has a different impact on customer buying behaviors and patterns. Usually, an increase
in consumption is seen on such days. These must be treated separately.

Similarly, it is important to remove any external effects other than price that will affect custom-
ers' purchase behaviors, including the data points when the item was on discount. Once the new
prices are put up, it is important to monitor the sales and profit continuously. If this pricing method
is a part of a product, a dashboard can be created to monitor these items and calculate the lift in the
profit.

401Case Studies for Decision Sciences

9.2 USE CASE 2 − MARKET BASKET ANALYSIS (MBA)

9.2.1 introDUction

Customer MBA is one of the important techniques used by large retailers to uncover combina-
tions and links between items. This process is done by looking for combinations of items that arise
together, usually within transactions. To rephrase, this allows the retailers to identify connections
between the items that people buy. This proposition is based on the theory that customers who buy
one item are more likely to buy another related item.

For example, people who buy women’s hosiery usually buy kids’ clothes too. So the marketing teams
at retail chains will target those customers who buy women’s and kids’ clothes and provide a discount
to them to buy the third item, like small jewelry (which has a high margin for the retailer). This also
dictates how the stores are organized. The variation of this is called space and capacity analysis. Based
on customer behavior, the store layout can be arranged to maximize the revenue of the shelf space.

So, if customers buy women’s and kids’ clothes and see a discount or an offer on jewelry, they will
be encouraged to spend more and buy the jewelry. This is what is referred to as Basket Analysis, or
Market Basket Analysis, or, in short, called MBA. This is just one example. So, if we take hundreds
and thousands of items of the supermarket's data, we can get a huge number of insights. And that is
why association rule mining is so critical.

9.2.2 UnDerstating the Data

For this example, we use a customer dataset that describes the customer in detail such as location,
age, income, and education, and product and product class give the sufficient details of the product
and their groupings, store with details of location, sqft, store type (if this is a super market, mini-
store, etc.), region, and time dimension. We also use the sales transaction data.

In this solution, we use Apriori and Fpgrowth algorithms. Apriori is an algorithm for frequent
item set mining and association rule mining based on learning over relational databases. It pro-
gresses by identifying the recurring individual items within the dataset and increasing them to
larger item sets as long as those item sets appear sufficiently often in the database. On the other
hand, Fpgrowth, also known as Frequent Pattern Growth Algorithm, only generates the frequent
item sets per the user’s minimum support. One difference between Apriori and Fpgrowth algorithms
is that the Fpgrowth algorithm doesn’t scan the whole database multiple times, and the scanning
time increases linearly. Hence, the Fpgrowth algorithm is much faster than the Apriori algorithm.

#!/usr/bin/env python
coding: utf-8
@author: Suresh Rajappa
Market Basket Analysis

What is Market Basket Analysis ?

Market Basket Analysis is one of the large retailers' important
techniques to discover the relationship between items using the customer
buying patterns.
It works by looking for combinations of items that occur together
frequently in transactions. To put it another way, it allows retailers to
identify relationships between the items that people buy
Market Basket Analysis (MBA) For Foodmart Store sample Dataset
Food Mart (FM) is a chain of convenience stores in the United States.
The private company's headquarters are located in Mentor, Ohio, and there

402 Machine Learning for Decision Sciences with Case Studies in Python

are currently approximately **325 stores located in the US**. Food Mart
operates on the franchise system.

Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Get multiple outputs in the same cell
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

Ignore all warnings
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings(action='ignore', category=DeprecationWarning)

Display all rows and columns of a dataframe instead of a truncated
version
from IPython.display import display
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

LOADING AND UNDERSTANDING THE DATAFILES
Loading Customers Dataset

customer=pd.read_csv("/Python Files/Usecases/Use Case3/data/customer.
csv")
customer.head()

Loading Products Dataset
product=pd.read_csv("../data/product.csv")
product.head()

Loading Departments Dataset
product_class=pd.read_csv("../data/product_class.csv")
product_class.head()

Loading Region Dataset
region=pd.read_csv("../data/region.csv")
region.head()

Loading Sales transaction Dataset
df=pd.read_csv("../data/sales.csv")
df.head()

Loading Stores Dataset
store=pd.read_csv("../data/store.csv")
store.head()

Loading Time by Day Dataset
time_by_day=pd.read_csv("../data/time_by_day.csv")
time_by_day.head()

time_by_day.tail()

#DATA PREPROCESSING

403Case Studies for Decision Sciences

Merging Customer Dataset in df Dataframe
df=df.merge(customer,on='customer_id')
df.head()

Merging Products Dataset in df Dataframe
df=df.merge(product,on='product_id')
df.head()

Merging Department Dataset in df Dataframe
df=df.merge(product_class,on='product_class_id')
df.head()

Merging Stores Dataset in df Dataframe
df=df.merge(store,on='store_id')
df.head()

Merging Region Dataset in df Dataframe
df=df.merge(region,on='region_id')
df.head()

Merging Time by Day Dataset in df Dataframe
df=df.merge(time_by_day,on='time_id')
df.head()

Converting Dataframe to Final Foodmart Offline Dataset
df.to_csv("../data/Foodmart_dataset.csv")

Exploratory Data Analysis (EDA)
Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import squarify
import networkx as nx
import warnings
import matplotlib as mpl
import gapminder as gapminder

get_ipython().run_line_magic('matplotlib', 'inline')

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

Loading Foodmart Offline Dataset
df=pd.read_csv("../data/Foodmart_dataset.csv")

Size of Foodmart Dataset
df.shape
df.head()

Data Exploration
Describe

df.describe()
df.describe(include='all')

404 Machine Learning for Decision Sciences with Case Studies in Python

Missing Values
df.isnull().sum()

Datatypes
df.dtypes

Checking Datatypes, Mising Value, Unique Value
temp = pd.DataFrame(index=df.columns)
temp['data_type']=df.dtypes
temp['null_count']=df.isnull().sum()
temp['unique_count']=df.nunique()

temp

Univariate Analysis
Histograms
Frequency Plot Of Department Id

fig=plt.figure(figsize=(15,10))
df['product_class_id'].plot.hist(bins = 50)
plt.xlabel('department id')

Frequency Plot Of Product Id
fig=plt.figure(figsize=(15,10))
df['product_id'].plot.hist(bins = 100)
plt.xlabel('product id')

Frequency Plot Of Unit Sales
fig=plt.figure(figsize=(15,10))
df['unit_sales'].plot.hist(bins = 25)
plt.xlabel('Unit Sales')

When do people order
Year
fig=plt.figure(figsize=(12,10))
df['the_year'].plot.hist(bins=10)
plt.xlabel('year')
plt.xticks([1996,1997,1998,1999])

Month
fig=plt.figure(figsize=(15,10))
df['the_month'].plot.hist(bins=50)
plt.xlabel('Month')

Day Of Month
fig=plt.figure(figsize=(15,10))
df['day_of_month'].plot.hist(bins=75)
plt.xlabel('Day of month')

Day Of Week
df_day_freq=df['the_day'].value_counts()
fig=plt.figure(figsize=(15, 10))
df_day_freq.plot.bar()

Top choices
Top 10 First Choices in Products
df['products'] = 'Products'
products = df.truncate(before = 605, after = 615)

405Case Studies for Decision Sciences

products = nx.from_pandas_edgelist(products, source = 'products', target
= 'product_name', edge_attr = True)
products

warnings.filterwarnings('ignore')

plt.rcParams['figure.figsize']=(20,20)
pos=nx.spring_layout(products)
color=plt.cm.Reds(np.linspace(0,15,1))
nx.draw_networkx_nodes(products,pos,node_size=15000,node_color=color)
nx.draw_networkx_edges(products, pos, width = 3, alpha = 0.6, edge_color
= 'black')
nx.draw_networkx_labels(products, pos, font_size = 20)
plt.axis('off')
plt.grid()
plt.title('Top 10 First Choices in Products', fontsize = 40)
plt.show()

Top 10 First Choices in Department
df['departments'] = 'Departments'
departments = df.truncate(before = 150, after = 195)
departments = nx.from_pandas_edgelist(departments, source =
'departments', target = 'department', edge_attr = True)

warnings.filterwarnings('ignore')

plt.rcParams['figure.figsize']=(20,20)
pos=nx.spring_layout(departments)
color=plt.cm.Blues(np.linspace(0,15,1))
nx.draw_networkx_nodes(departments,pos,node_size=15000,node_color=color)
nx.draw_networkx_edges(departments, pos, width = 3, alpha = 0.6, edge_
color = 'black')
nx.draw_networkx_labels(departments, pos, font_size = 20)
plt.axis('off')
plt.grid()
plt.title('Top 10 First Choices in Departments', fontsize = 40)
plt.show()

Highest Ordered
Most Ordered Products
df['product_name'].value_counts()

Most Ordered Products in Percentage
df['product_name'].value_counts()/len(df)*100

Most Visited Departments
df['department'].value_counts()

Most Visited Departments in Percentage
df['department'].value_counts()/len(df)*100

Most Visited Aisle
df['subcategory'].value_counts()

Most Visited Aisle in Percentage
df['subcategory'].value_counts()/len(df)*100

BarPlot

406 Machine Learning for Decision Sciences with Case Studies in Python

BarPlot of Most Visied Aisle
df_subcategory_freq=df['subcategory'].value_counts().iloc[:50]
fig=plt.figure(figsize=(15,10))
df_subcategory_freq.plot.bar()

BarPlot of Most Visited Department
fig=plt.figure(figsize=(15,10))
df['department'].value_counts().plot(kind='bar')

BarPlot of Most Bought Product
df_freq_products=df['product_name'].value_counts().iloc[:50]
fig=plt.figure(figsize=(15, 10))
df_freq_products.plot.bar()

Array of Most Bought Product
y=df_freq_products.head(50).to_frame()
y.index

TreeMap for Most Bought Products
plt.rcParams['figure.figsize']=(20,20)
color=plt.cm.cool(np.linspace(0,1,50))
squarify.plot(sizes=y.values,label=y.index,alpha=0.8,color=color)
plt.title('tree map for frequent products')
plt.axis('off')

Data Manipulation
df.shape

Drop Duplicates
df.drop_duplicates()
df.shape

Missing Values
df.isnull().sum()

Datatypes
df.dtypes

Bivariate Analysis
Bar Plot
Bar Plot between customers and their products per order
data_user_orders_num=df.groupby('customer_id')['unit_sales'].count()
data_user_orders_num

source_data = {}
for i in range(10):
 source_data[str(10*i)+'~'+str(10*(i+1))]=len([x for x in list(data_
user_orders_num) if x>=i*10 and x<(i+1)*10])

source_data

font_size=10
fig_size=(8,6)
mpl.rcParams['font.size']=font_size
mpl.rcParams['figure.figsize']=fig_size
bar_width=0.3

407Case Studies for Decision Sciences

x_axis = tuple(source_data.keys())
y_axis = tuple(source_data.values())
#assign color
plt.bar(x_axis, y_axis, color='rgb')
descrpitions for x-axis, y-axis
plt.xlabel('Unit sales')
plt.ylabel("No. of customers")
plt.title("Orders Scatter Plot")
plt.show()

Transaction ID - create transaction id which denotes a basket
df['transaction_id'] = df['customer_id'].astype(str) + df['time_id'].
astype(str)
df.head()

Filtering out Columns
cols = [77,3,1,24]
order_products=df[df.columns[cols]]
order_products.head()

Average products bought by customers per order
data_user_products_num1=order_products.groupby('transaction_id')
['product_id'].count()
data_user_products_num1=pd.DataFrame(data_user_products_num1)
data_user_products_num1['transaction_id']=list(data_user_products_num1.
index)

data_user_products_num1.columns=['product_num','orderid']
data_user_products_num2=pd.merge(data_user_products_num1,df[
['transaction_id','customer_id']],on='transaction_id',how='left')

data_user_products_num3=data_user_products_num2.groupby('customer_id')
['product_num'].agg(['sum','count'])
data_user_products_num3['avg']=data_user_products_num3['sum']/
data_user_products_num3['count']
data_user_products_num3.head()

Featured Products Department Wise
cols = [1,36,38,24]
departments=df[df.columns[cols]]
departments.head()

List Of Departments
temp=['department']
for i in temp:
 print('@@@@@@Value Count in',i,'@@@@@@@@@')
 print(df[i].value_counts())

Produce Department
produce=departments.loc[df['department'] == 'Produce']
produce.head()

Featured Products in Produce Department
top_produce=produce['product_name'].value_counts().iloc[:10]
top_produce.head()

408 Machine Learning for Decision Sciences with Case Studies in Python

Featured Products in Snack Foods Department
snacks=df.loc[df['department']=='Snack Foods']
top_snacks=snacks['product_name'].value_counts().iloc[:10]
top_snacks.head()

Featured Products in HouseHold Department
household=df.loc[df['department']=='Household']
top_household=household['product_name'].value_counts().iloc[:10]
print(top_household)

Featured Products in Frozen Foods Department
frozen=df.loc[df['department']=='Frozen Foods']
top_frozen=frozen['product_name'].value_counts().iloc[:10]
print(top_frozen)

Featured Products in Baking Goods Department
baking=df.loc[df['department']=='Baking Goods']
top_baking=baking['product_name'].value_counts().iloc[:10]
print(top_baking)

Featured Products in Canned Foods Department
canned=df.loc[df['department']=='Canned Foods']
top_canned=canned['product_name'].value_counts().iloc[:10]
print(top_canned)

Featured Products in Dairy Department
dairy=(df.loc[df['department'] == 'Dairy'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Featured Products in Health and Hygiene Department
dairy=(df.loc[df['department'] == 'Health and Hygiene'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Featured Products in Beverages Department
dairy=(df.loc[df['department'] == 'Beverages'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Featured Products in Deli Department
dairy=(df.loc[df['department'] == 'Deli'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Featured Products in Alcoholic Beverages Department
dairy=(df.loc[df['department'] == 'Alcoholic Beverages'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Featured Products in Starchy Foods Department
dairy=(df.loc[df['department'] == 'Starchy Foods'])
top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Featured Products in Eggs Department
dairy=(df.loc[df['department'] == 'Eggs'])

409Case Studies for Decision Sciences

top_dairy=dairy['product_name'].value_counts().iloc[:10]
print(top_dairy)

Market Basket Analysis
![market-basket-analysis.png](attachment:market-basket-analysis.png)
Importing Libraries
import pandas as pd
import numpy as np
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
import matplotlib.pyplot as plt

Filtering the Columns
cols = [77,3,1,24,7,2]
product_name=df[df.columns[cols]]
product_name.head()

Counting each product The number of transactions a product appeared
in
productCountDf = product_name.groupby("product_id",as_index = False)
['transaction_id'].count()
productCountDf.head()

Arranging Top Products
productCountDf = productCountDf.sort_values("transaction_id",ascending =
False)
productCountDf.head()

Top 100 most frequently purchased products
topProdFrame = productCountDf.iloc[0:100,:]
productId= topProdFrame.loc[:,["product_id"]]
topProdFrame

Orders containting the the most frequently purchased products
MarketBasketdf = product_name[0:0]
for i in range(0,99):
 pId = productId.iloc[i]['product_id']
 stDf = product_name[product_name.product_id == pId]
 MarketBasketdf = MarketBasketdf.append(stDf,ignore_index = False)

MarketBasketdf.head()

Putting the items into 1 transaction
basket = MarketBasketdf.groupby(['transaction_id','product_name'])['unit_
sales'].sum().unstack().reset_index().fillna(0).
set_index('transaction_id')
basket

One Hot Encoding
Converted the units into 1 encoded value
def encode_units(x):
 if x <= 0:
 return 0
 if x >= 1:
 return 1

410 Machine Learning for Decision Sciences with Case Studies in Python

basket_sets = basket.applymap(encode_units)
basket_sets.head()

Size and shape of basket
basket_sets.size
basket_sets.shape
dummy=basket_sets.head(10000)

Model building using Apriori Algotithm
Apriori Algorithm
Importing Apriori and Association rules Libraries
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

Frequent items with support 0.01% using Apriori Algorithm
frequent_itemsets = apriori(dummy, min_support=0.0001, use_colnames=True)
frequent_itemsets

Association rules using Apriori Algorithm
apriori_rules = association_rules(frequent_itemsets, metric="lift",
min_threshold= 1)
apriori_rules

Filtering out co-realted products with higher Probability
apriori_rules[(apriori_rules['lift'] >= 50) & (apriori_
rules['confidence'] >= 0.01)]

Recommendations using Apriori Algorithm
def recommendations_using_Apriori(item):
 recommend = []
 for i in range(0,2646):
 if item == apriori_rules.iloc[i,0]:
 recommend.append(apriori_rules.iloc[i,1])

 return recommend

5 Recommendations with Better Chicken Noodle Soup
product_name = {'Better Chicken Noodle Soup'}
recommentations=recommendations_using_Apriori(product_name)
print(*recommentations[0:5], sep = "\n")

10 Recommendations with Moms Potato Salad
product_name = {'Moms Potato Salad'}
recommentations=recommendations_using_Apriori(product_name)
print(*recommentations[0:10], sep = "\n")

15 Recommendations with Carrington Ice Cream Sandwich
product_name = {'Carrington Ice Cream Sandwich'}
recommentations=recommendations_using_Apriori(product_name)
print(*recommentations[0:15], sep = "\n")

Fpgrowth Algorithm
Importing Fpgrowth Libraries
from mlxtend.frequent_patterns import fpgrowth

Frequent Items with support 0.001% using Fpgrowth Algorithm

411Case Studies for Decision Sciences

freq_items=fpgrowth(dummy,min_support=.0001,use_colnames=True)
freq_items

Association Rules using Fpgrowth Algorithm
fpgrowth_rules=association_rules(freq_items,metric="lift",min_
threshold=1)
fpgrowth_rules

Recommendations using Fpgrowth Algorithm
def recommendations_using_Fpgrowth(item):
 recommend = []
 for i in range(0,2646):
 if item == fpgrowth_rules.iloc[i,0]:
 recommend.append(fpgrowth_rules.iloc[i,1])

 return recommend

5 Recommendations with Better Chicken Noodle Soup
product_name = {'Better Chicken Noodle Soup'}
recommentations=recommendations_using_Fpgrowth(product_name)
print(*recommentations[0:5], sep = "\n")

10 Recommendations with Moms Potato Salad
product_name = {'Moms Potato Salad'}
recommentations=recommendations_using_Fpgrowth(product_name)
print(*recommentations[0:10], sep = "\n")

15 Recommendations with Carrington Ice Cream Sandwich
product_name = {'Carrington Ice Cream Sandwich'}
recommentations=recommendations_using_Fpgrowth(product_name)
print(*recommentations[0:15], sep = "\n")

Comapring Apriori VS fpgrowth Algorithms
Calculating Run Time of Apriori Algorithm
import time
l=[0.01,0.02,0.03,0.04,0.05]
t=[]
for i in l:
 t1=time.time()
 apriori(dummy,min_support=i,use_colnames=True)
 t2=time.time()
 t.append((t2-t1)*1000)

Calculating Run Time of Fpgrowth Algorithm
l=[0.01,0.02,0.03,0.04,0.05]
f=[]
for i in l:
 t1=time.time()
 fpgrowth(dummy,min_support=i,use_colnames=True)
 t2=time.time()
 f.append((t2-t1)*1000)

Graph of Run Time between Apriori and Fpgrowth Algorithm
sns.lineplot(x=l,y=f,label="fpgrowth")
sns.lineplot(x=l,y=t,label="apriori")
plt.xlabel("Min_support Threshold")
plt.ylabel("Run Time in ms")

412 Machine Learning for Decision Sciences with Case Studies in Python

9.2.3 conclUsion

We have used the two famous algorithms, Apriori and Fpgrowth, to develop product associations
for the item set mining. The time taken by each algorithm is compared and evaluated. The graph in
Figure 9.5 shows the time taken in milliseconds by each algorithm.

There are few subtle differences between these algorithms shown in Table 9.1.

9.3 USE CASE 3 − SALES PREDICTION OF A RETAILER

9.3.1 backgroUnD

Sales prediction or forecasting sales are a common use case of ML. Sales forecasts can identify
benchmarks, determine the progressive influence of new initiatives, plan resources in response to
expected demand, and project future budgets. The data scientists of a retailer have collected sales

FIGURE 9.5 Time taken by Apriori and Fpgrowth algorithms.

TABLE 9.1
Differences between the Apriori and Fpgrowth algorithms

Apriori Algorithm Fpgrowth Algorithm

More memory usage Less memory usage

Time consuming Quicker than Apriori

Tree-based algorithm Array-based algorithm

Conducts multiple data scans of the database Requires two scans of the database

Uses breadth file search Used depth file search

413Case Studies for Decision Sciences

data by-products across the stores in different cities. Also, various attributes of each product and
store have been defined. This project aims to build a ML model and find out the sales of each
product at a particular store. Using this model, the retailer will try to understand the properties of
products and stores, which play a key role in increasing sales.

9.3.2 UnDerstanDing the Data

The test and training dataset we use has the following format: item identifier or productId, and its
features such as weight, fat content, and product category. This also contains information about the
store such as, when the store was established, size of the store, location, and store type. The sample
data are shown in Figure 9.6.

At a glance, we can see there are many null values in the Outlet Size column. We will examine
the data using features engineering techniques to see which attributes are useful for the analysis and
if there is an imbalance in the data, which is a very common data challenge as missing data.

#Importing Necessary Libraries
#Matplot and seaborn for making graphs
get_ipython().run_line_magic('matplotlib', 'notebook')
from sklearn.linear_model import Ridge
from sklearn.model_selection import KFold, cross_val_score
import featuretools as ft
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
import warnings
warnings.filterwarnings('ignore')
#Imorting the datasets
train =pd.read_csv("train.csv")
test=pd.read_csv("test.csv")
print(train.shape,test.shape)
def concat(X,Y):
df= pd.concat([X,Y],ignore_index=True)
return df
df=concat(train,test)
#Undersatning the data and data preprocessing
print(df.shape)

FIGURE 9.6 Sales prediction data.

414 Machine Learning for Decision Sciences with Case Studies in Python

df.head()
#Checks number of null values for all the variables
#Item_Weight has 2439 null values
#Outlet Size has 4016 null values
df.isnull().sum()
#Checks the number of unique entries correspnding to each variable
df.apply(lambda x: len(x.unique()))
#defining a function:
#frequency of unique entries in each column with their names
def frequency_each_item(X,Y):
for i in Y:
print("frequency of each category for",i)
print(X[i].value_counts())
#frequency of unique entries in each columns with their names
category=['Item_Fat_Content','Item_Type','Outlet_Location_Type','Outlet_
Size','Outlet_Type']
frequency_each_item(df,category)
mode_Outlet_Size=df.pivot_table(values='Outlet_Size', index='Outlet_
Type',aggfunc=(lambda x: stats.mode(x)[0]))
print(mode_Outlet_Size)
bool2=df['Outlet_Size'].isnull()
df['Outlet_Size'][bool2]=df['Outlet_Type'][bool2].apply(lambda x : mode_
Outlet_Size.loc[x]).values
sum(df['Outlet_Size'].isnull())
Correcting the mis-written datas
df['Item_Fat_Content'].replace(to_replace =['low fat','reg','LF'],
value =['Low Fat','Regular','Low Fat'],inplace=True)
df['Item_Fat_Content'].value_counts()
df.head()
avg_item_weight=df.pivot_table(values='Item_Weight', index='Item_
Identifier',aggfunc=[np.mean])
print(avg_item_weight)
bool=df['Item_Weight'].isnull()
df['Item_Weight'][bool]=df['Item_Identifier'][bool].apply(lambda x :avg_
item_weight.loc[x]).values
sum(df['Item_Weight'].isnull())
#Reducing food category to only 3 types with the help of the first 2
alphabets of the Item_Identifier column
df['Item_Type_combined']=df['Item_Identifier'].apply(lambda x : x[0:2])
df['Item_Type_combined'].replace(to_replace =['FD','DR','NC'],
value =['Food','Drinks','Non_consumable'],inplace=True)
#dropping the redundant column
df=df.drop(columns=['Item_Type'])
df.head()
#Calculating number of Item_fat_contents that are also non_consumable
bool3=df['Item_Type_combined']=='Non_consumable'
df['Item_Fat_Content'][bool3]='Non_edible'
df['Item_Fat_Content'].value_counts()
#Using feature Engineering and adding new column
df['yearsold']=2013-df['Outlet_Establishment_Year']
df=df.drop(columns=['Outlet_Establishment_Year'])
df.head()
Converting all the zero values to mean in the visibility column
Item_Visibility_mean=df.pivot_table(index='Item_Identifier',values='Item_
Visibility',aggfunc=[np.mean])
print(Item_Visibility_mean)

415Case Studies for Decision Sciences

bool4=df['Item_Visibility']==0
df['Item_Visibility'][bool4]=df['Item_Identifier'][bool4].apply(lambda
x:Item_Visibility_mean.loc[x]).values
df.head()
#Checks for correation between different numerical columns
df.corr()
Identifying outliers and fixing them
df.describe()
sns.set(style="whitegrid")
ax = sns.boxplot(x=df["Item_Outlet_Sales"])
#As we know, only Item_Outlet_Sales have outliers we can fix them, but
fixing them will increase our RMSE score
#to a large extent
Plotting Graphs for more Analysis
#value of sales increases for the increase in MRP of the item
plt.scatter(df.Item_MRP,df.Item_Outlet_Sales,c='g')
plt.show()
sns.FacetGrid(df, col='Item_Type_combined', size=3, col_wrap=5).map(plt.
hist, 'Item_Outlet_Sales').add_legend();
Maximum contribution to outlet sales is from Items that are food type
and least is from drinks
sns.FacetGrid(df, col='Outlet_Location_Type', size=3, col_wrap=5).
map(plt.hist, 'Item_Outlet_Sales').add_legend();
#Tier3 type of outlet location provides for the maximum sales and other
two provides the least sales
sns.FacetGrid(df, col='Outlet_Size', size=3, col_wrap=5).map(plt.hist,
'Item_Outlet_Sales').add_legend();
#Small sized Outlets are providing the maximum sales whereas large sized
outlets
are contributing the least
sns.FacetGrid(df, col='Item_Fat_Content', size=3, col_wrap=5).map(plt.
hist, 'Item_Outlet_Sales').add_legend();
people are prefering items with lowest fat content the most
sns.FacetGrid(df, col='Outlet_Type', size=3, col_wrap=2).map(plt.hist,
'Item_Outlet_Sales').add_legend();
#Maximum of the high sales margin is from Supermarket Type1
#Grocery store has the least sales
#Label Encoding all the columns with text entries and dropping
Item_identifier
le=LabelEncoder()
list=['Item_Fat_Content','Outlet_Location_Type','Outlet_Size','Outlet_
Type','Item_Type_combined',
'Outlet_Size']
for i in list:
le.fit(df[i])
df[i]=le.transform(df[i])
df_new=df.drop(columns='Item_Identifier')
df_new= pd.get_dummies(df_new,columns=['Outlet_Identifier'])
df_new.head()
#Separating test and train set
df_new_train=df_new.iloc[:8523,:]
df_new_test=df_new.iloc[8523:,:]
df_new_test=df_new_test.drop(columns=['Item_Outlet_Sales'])
Y_train=df_new_train['Item_Outlet_Sales']
df_train_test=df_new_train.drop(columns=['Item_Outlet_Sales'])
from sklearn.linear_model import LinearRegression

416 Machine Learning for Decision Sciences with Case Studies in Python

from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import ElasticNet
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import KFold, cross_val_score
from xgboost import XGBRegressor
import xgboost as xgb
models = [('lr',LinearRegression()),('ridge',Ridge()),('rfr',RandomForest
Regressor()),('etr',ExtraTreesRegressor()),
('br',BaggingRegressor()),('gbr',GradientBoostingRegressor()),('en',Elast
icNet()),('mlp',MLPRegressor())]
#Making function for making best 2 models for further hyperparameter
tuning
def basic_model_selection(x,y,cross_folds,model):
scores=[]
names = []
for i, j in model:
cv_scores = cross_val_score(j, x, y, cv=cross_folds,n_jobs=5)
scores.append(cv_scores)
names.append(i)
for k in range(len(scores)):
print(names[k],scores[k].mean())
basic_model_selection(df_train_test,Y_train,4,models)
#Average score for XGBoost matrix
define data_dmatrix
data_dmatrix = xgb.DMatrix(data=df_train_test,label=Y_train)
import XGBRegressor
xgb1 = XGBRegressor()
cv_score = cross_val_score(xgb1, df_train_test, Y_train, cv=4,n_jobs=5)
print(cv_score.mean())
Gradient Boost Regression and XGBoost Regression will be used for
further hyperparameter tuning
def model_parameter_tuning(x,y,model,parameters,cross_folds):
model_grid = GridSearchCV(model,
parameters,
cv = cross_folds,
n_jobs = 5,
verbose=True)
model_grid.fit(x,y)
y_predicted = model_grid.predict(x)
print(model_grid.score)
print(model_grid.best_params_)
print("The RMSE score is",np.sqrt(np.mean((y-y_predicted)**2)))
#defining function for hyperparameter tuning and using RMSE as my metric
parameters_xgb = {'nthread':[3,4],
'learning_rate':[0.02,0.03], #so called `eta` value
'max_depth': [3,2,4],
'min_child_weight':[3,4,5],
'silent': [1],
'subsample': [0.5],
'colsample_bytree': [0.7],
'n_estimators': [300,320]
}

417Case Studies for Decision Sciences

parameters_gbr={'loss':['ls','lad'],
'learning_rate':[0.3],
'n_estimators':[300],
'min_samples_split':[3,4],
'max_depth':[3,4],
'min_samples_leaf':[3,4,2],
'max_features':['auto','log2','sqrt']
}
Defining the useful parameters for parameter tuning
to get the optimum output
model_parameter_tuning(df_train_test,Y_train,xgb1,parameters_xgb,4)
gbr=GradientBoostingRegressor()
model_parameter_tuning(df_train_test,Y_train,gbr,parameters_gbr,4)
from sklearn.neural_network import MLPRegressor
mlp=MLPRegressor()
parameters_mlp = {'hidden_layer_sizes':[300,400,500],
'activation':['relu','tanh'],
'learning_rate':['adaptive'],
'learning_rate_init':[0.001,0.004],
'solver':['adam'],
'max_iter':[200,300]
}
model_parameter_tuning(df_train_test,Y_train,mlp,parameters_mlp,4)
Standardization of the model before training
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
standardized=scaler.fit_transform(df_train_test)
column_names = df_train_test.columns
df_standardized = pd.DataFrame(data=standardized,columns=column_names)
df_standardized.head()
basic_model_selection(df_standardized,Y_train,4,models)
#Average score for XGBoost matrix
define data_dmatrix
data_dmatrix = xgb.DMatrix(data=df_standardized,label=Y_train)
import XGBRegressor
xgb1 = XGBRegressor()
cv_score = cross_val_score(xgb1, df_standardized, Y_train, cv=4,n_jobs=5)
print(cv_score.mean())
The Models for hyperparameter tuning are the same XGBoost and
GradientBoostingRegression
model_parameter_tuning(df_standardized,Y_train,xgb1,parameters_xgb,4)
model_parameter_tuning(df_standardized,Y_train,gbr,parameters_gbr,4)
df_train_test.head()
Using Robust Scaler
My dataset having outliers make it more prone to mistakes
Robust Scaler handles the outliers as well
It scales according to the quartile range
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import MinMaxScaler
normalize = MinMaxScaler()
robust = RobustScaler(quantile_range = (0.1,0.8)) #range of inerquartile
is one of the parameters
robust_stan = robust.fit_transform(df_train_test)
robust_stan_normalize = normalize.fit_transform(robust_stan)
also normalized the dataset using MinMaxScaler i.e has bought the data
set between (0,1)

418 Machine Learning for Decision Sciences with Case Studies in Python

df_robust_normalize = pd.DataFrame(robust_stan_normalize,columns=
column_names)
df_robust_normalize.head()
basic_model_selection(df_robust_normalize,Y_train,4,models)
cv_score = cross_val_score(xgb1, df_robust_normalize, Y_train,
cv=4,n_jobs=5)
print(cv_score.mean())
model_parameter_tuning(df_robust_normalize,Y_train,xgb1,parameters_xgb,4)
model_parameter_tuning(df_robust_normalize,Y_train,gbr,parameters_gbr,4)
Best Model
Comparing all models using RMSE score
Gradient Boosting Method is the best method when implemented using
Robust Scaler and MinMaxScaler normalization
PARAMETERS AND RMSE RESPECTIVELY
{'learning_rate': 0.3, 'loss': 'lad', 'max_depth': 3, 'max_features':
'auto', 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators':
300}
The RMSE score is 1049.14085875651
robust_test = robust.fit_transform(df_new_test)
robust_normalize_test = normalize.fit_transform(robust_test)
df_test_robust_normalize = pd.DataFrame(robust_normalize_test,columns=
column_names)
gbr = GradientBoostingRegressor(learning_rate= 0.3, loss= 'lad',max_
depth= 3,min_samples_leaf=2,min_samples_split=3
,n_estimators= 300)
Defining my final model that I will use for prediction
gbr.fit(df_robust_normalize,Y_train)
final_prediction=gbr.predict(df_test_robust_normalize) #Predicting the
outlet sales
#the prediction is in the form of numpy array
Converting into Dataframe
df_final_prediction = pd.DataFrame(final_prediction,columns=
['Item_Outlet_Sales'])
df_final_prediction.head()
Saving the final model using Joblib
import joblib
filename = 'final_model.sav' # Name of the model
joblib.dump(gbr, filename) # it is saved in your current working
directory
This command loads the model once again
load_model = joblib.load(filename)

9.3.3 conclUsion

When comparing the models, we can assess that overall, the XGBoost model had the best perfor-
mance, followed closely by other models. A caveat here is that all of the models above were derived
in their most basic form to establish how they can be used for sales prediction. In addition, the
models were only slightly tuned to minimize complexity.

To identify which model is right for the real-world use case, we must consider the following:

• The degree of model complexity vs. interpretability that we are content with.
• Models can be tuned, and features can be engineered to include combinations of attributes,

etc.

419Case Studies for Decision Sciences

• Understand how we should be using the results and how data will be coming into the
model.

• Tune models using cross-validation or similar practices to avoid overfitting and underfit-
ting data.

9.4 USE CASE 4 − PREDICTING THE COST OF INSURANCE CLAIMS FOR
A PROPERTY AND CAUSALTY (P&C) INSURANCE COMPANY

9.4.1 backgroUnD

Property and Casualty Insurance (a.k.a P&C insurance) are types of coverage that help protect the
insurer and the property they own. Property insurance helps cover the thing the insurer owns, like
a home or a car. On the other hand, casualty insurance refers to the policy that includes liability
coverage to help protect the insurer if they are found legally responsible for an accident that causes
injuries to another person or damage to their person's belongings. Property and Casualty Insurance
are typically packaged together into one policy. A clear understanding of a given claim's future cost,
or severity, is fundamental to an insurance company and would enable it to price its plans more
effectively. Additionally, knowing the perspective of different attributes would allow the company
to evaluate potential customers more efficiently.

9.4.2 UnDerstanDing the Data

The given dataset contains 131 columns (Figure 9.7) of unlabeled data, as shown in the sample
screenshot. We use the pickle library of python to implement binary protocols for serializing
and deserializing a Python object structure (“Pickling” is the process through which a Python
object hierarchy is transformed into a byte stream, and “unpickling” is the inverse operation of the
pickling.).

Import the packages and load the training data
import pandas as pd
import numpy as np
import re
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
import seaborn as sns
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import chi2
import math
import pickle # this module implements binary protocols for serializing
and de-serializing a Python object structure

#modify the display options to view entire dataframe
pd.options.display.max_columns = None

train_data = pd.read_csv("train.csv")

#Analyze the size of training data
#Verify the first few observations
#Check the column headers

train_data.shape

420 Machine Learning for Decision Sciences with Case Studies in Python

FI
G

U
R

E
9.

7
Sa

m
pl

e
vi

ew
 o

f
th

e
da

ta
se

t f
or

 u
se

 c
as

e
4.

421Case Studies for Decision Sciences

train_data.head()

column_names = np.array(train_data.columns)
print(column_names)

Identify the categorical and numerical columns to check the data
distribution and 5 point summary
column_datatypes = train_data.dtypes
categorical_columns = list(column_datatypes[column_datatypes=="object"].
index.values)
continuous_columns = list(column_datatypes[column_datatypes=="float64"].
index.values)
continuous_columns.remove('loss')

check the distribution of categorical variables
#function to check the distribution of values in categorical columns
#Training data and Categorical columns list
def category_distribution(train_data,categorical_columns):
 categorical_column_distribution = list()
 for cat_column in categorical_columns:
 categorical_column_distribution.append(train_data[cat_column].
value_counts())
 return(categorical_column_distribution)

categorical_column_distribution =
category_distribution(train_data,categorical_columns)

categorical_column_distribution

length_categorical_columns = list(map(lambda
x:len(x),categorical_column_distribution))

#count the number of columns having the same number of unique values
distribution_dict = dict()
for val in length_categorical_columns:
 if val in distribution_dict.keys():
 count = distribution_dict[val]
 distribution_dict[val] = count+1
 else:
 distribution_dict[val]=1

distribution_dict

Plot a bar-graph
#plot showing the count of columns having same number of unique values
keys = distribution_dict.keys()
values = distribution_dict.values()
plt.bar(keys, values,width=0.8)
plt.xlabel('Distinct Values in Categorical Variable', fontsize=15)
plt.ylabel('Count', fontsize=15)
plt.title('Categorical Labels with Same Unique Values',fontsize=20)
plt.rcParams['figure.figsize'] = [48/2.54, 10/2.54]
plt.show()

check the distribution of continuous variables
#filter out the continous columns and view the descriptive statistics
train_data[continuous_columns].describe()

422 Machine Learning for Decision Sciences with Case Studies in Python

Data cleaning and pre-processing
#Check if there is any missing value in the columuns
#value of 0 indicates no missing values
missing_values = train_data.isnull().sum()
np.max(missing_values)

#Manually insert a blank value across 5 rows
total_rows = train_data.shape[0]
columns_with_blanks_cat = np.random.randint(1,116,2)
columns_with_blanks_cont = np.random.randint(117,130,3)
columns_with_blank = np.append(columns_with_blanks_cat,
columns_with_blanks_cont)

#for every column insert 5 blanks at random locations
for col in columns_with_blank:
 rows_with_blanks = np.random.randint(1,total_rows,5)
 train_data.iloc[rows_with_blanks,col] = np.nan

#Validate the number of columns with missing values
missing_values = train_data.isnull().sum()
np.max(missing_values)

#Displaying the columns with missing values
columns_with_missing = train_data.columns[train_data.isnull().any()]
print(columns_with_missing)

Data Preprocessing class with the following functions:
#missing_value_continuous: function to handle missing values of
continuous variables
#missing_value_categorical: function to handle missing values of
categorical variables
#outlier_treatment: function to handle continuous outliers in the dataset

class Data_preprocessing:
 def __init__(self,train_data):
 self.train_data = train_data

 def
missing_value_continuous(self,column_names_with_specific_type,imputation_
type="mean"):
 if imputation_type=="mean":
 mean_imputer = SimpleImputer(missing_values=np.nan,
strategy='mean')
 mean_imputer.fit(self.train_data[column_names_with_specific_type])
 self.train_data[column_names_with_specific_type]=mean_
imputer.transform(self.train_data[column_names_with_specific_type])
 if imputation_type=="median":
 median_imputer = SimpleImputer(missing_values=np.nan,
strategy='median')
 median_imputer.fit(self.train_data[column_names_with_specific_type])
 self.train_data[column_names_with_specific_type]=median_
imputer.transform(self.train_data[column_names_with_specific_type])
 return self.train_data

423Case Studies for Decision Sciences

 def
missing_value_categorical(self,column_names_with_specific_
type,imputation_type="most_frequent"):
 most_frequent = SimpleImputer(strategy="most_frequent")
 most_frequent.fit(self.
train_data[column_names_with_specific_type])
 self.train_data[column_names_with_specific_type] = most_frequent.
transform(train_data[column_names_with_specific_type])
 return self.train_data

 def outlier_treatment(self,Q1,Q3,IQR,columns_with_outlier,action):
 if action=="median":
 for i in range(len(columns_with_outlier)):
 column_name = columns_with_outlier[i]
 meadian_outlier = np.median(self.train_data[column_name])
 self.train_data.loc[self.train_data[((self.train_
data[column_name]<(Q1[column_name]-(1.5*IQR[column_name])))|(self.train_
data[column_name]>(Q3[column_name]+(1.5*IQR[column_name]))))].
index,column_name]=meadian_outlier
 if action=="mean":
 for i in range(len(columns_with_outlier)):
 column_name = columns_with_outlier[i]
 mean_outlier = np.mean(self.train_data[column_name])
self.train_data.loc[self.train_data[((self.train_data[column_
name]<(Q1[column_name]-(1.5*IQR[column_name])))|(self.train_data[column_
name]>(Q3[column_name]+(1.5*IQR[column_name]))))].
index,column_name]=mean_outlier
 if action=="remove":
 for i in range(len(columns_with_outlier)):
 column_name = columns_with_outlier[i]
 self.train_data = self.train_data[~((self.train_
data[column_name]<(Q1[column_name]-(1.5*IQR[column_name])))|(self.
train_data[column_name]>(Q3[column_name]+(1.5*IQR[column_name]))))]
 return self.train_data

Data_preprocessing_obj = Data_preprocessing(train_data)
train_data = Data_preprocessing_obj.
missing_value_continuous(continuous_columns,"median")
train_data = Data_preprocessing_obj.
missing_value_categorical(categorical_columns)

Section on handling outliers in the dataset
ax = sns.boxplot(data=train_data[continuous_columns], orient="h",
palette="Set2")

columns_with_outlier = ['cont7','cont9','cont10']

#compute the interquartile range for all continuous columns
Q1 = train_data[continuous_columns].quantile(0.25)
Q3 = train_data[continuous_columns].quantile(0.75)
IQR = (Q3-Q1)
train_data = Data_preprocessing_obj.
outlier_treatment(Q1,Q3,IQR,columns_with_outlier,"median")

424 Machine Learning for Decision Sciences with Case Studies in Python

ax = sns.boxplot(data=train_data[continuous_columns], orient="h",
palette="Set2")

Feature elimination techniques for continuous and categorical
features
#Function for feature selection of numeric variables
#Remove variables with constant variance
#Remove variables with Quasi-Constant variance with a fixed threshold
#Remove correlated variables

def
feature_selection_numerical_variables(train_data,qthreshold,corr_
threshold,exclude_numerical_cols_list):
 num_colums = ['int16', 'int32', 'int64', 'float16', 'float32',
'float64']
 numerical_columns = list(train_data.select_dtypes(include=num_
colums).columns)
 numerical_columns = [column for column in numerical_columns if column
not in exclude_numerical_cols_list]

 #remove variables with constant variance
 constant_filter = VarianceThreshold(threshold=0)
 constant_filter.fit(train_data[numerical_columns])
 constant_columns = [column for column in train_data[numerical_
columns].columns
 if column not in train_data[numerical_columns].
columns[constant_filter.get_support()]]
 if len(constant_columns)>0:
 train_data.drop(labels=constant_columns, axis=1, inplace=True)

 #remove deleted columns from dataframe
 numerical_columns = [column for column in numerical_columns if column
not in constant_columns]

 #remove variables with qconstant variance
 #Remove quasi-constant variables
 qconstant_filter = VarianceThreshold(threshold=qthreshold)
 qconstant_filter.fit(train_data[numerical_columns])
 qconstant_columns = [column for column in train_data[numerical_
columns].columns
 if column not in train_data[numerical_columns].
columns[constant_filter.get_support()]]
 if len(qconstant_columns)>0:
 train_data.drop(labels=qconstant_columns, axis=1, inplace=True)

 #remove deleted columns from dataframe
 numerical_columns = [column for column in numerical_columns if column
not in qconstant_columns]

 #remove correlated variables
 correlated_features = set()
 correlation_matrix = train_data[numerical_columns].corr()
 ax = sns.heatmap(
 correlation_matrix,
 vmin=-1, vmax=1, center=0,
 cmap=sns.diverging_palette(20, 220, n=200),

425Case Studies for Decision Sciences

 square=True)
 ax.set_xticklabels(
 ax.get_xticklabels(),
 rotation=45,
 horizontalalignment='right');
 #print(correlation_matrix)

 for i in range(len(correlation_matrix.columns)):
 for j in range(i):
 if abs(correlation_matrix.iloc[i, j]) > corr_threshold:
 colname = correlation_matrix.columns[i]
 colcompared = correlation_matrix.columns[j]
 #check if the column compared against is not in the
columns excluded list
 if colcompared not in correlated_features:
 correlated_features.add(colname)
 train_data.drop(labels=correlated_features, axis=1, inplace=True)

 return train_data,constant_columns,qconstant_columns,correlated_features

train_data,constant_columns,qconstant_columns,correlated_features
=feature_selection_numerical_variables(train_
data,0.01,0.75,['loss','id'],)
correlated_features

Handling correlation between categorical variables
save the encoders to disk to be fitted on test data
for cf1 in categorical_columns:
 le = LabelEncoder()
 le.fit(train_data[cf1].unique())
 filename = cf1+".sav"
 pickle.dump(le, open(filename, 'wb'))
 train_data[cf1] = le.transform(train_data[cf1])

#snippet to calculate the unique values with a categorical columns
df = pd.DataFrame(columns=["Column_Name","Count"])
for cat in categorical_columns:
 unique_value_count = len(train_data[cat].unique())
 df = df.append({'Column_Name': cat, "Count":int(unique_value_count)},
ignore_index=True)
columns_unique_value = np.array(df.Count.value_counts().index)

#snippet to identify the dependent/correlated categorical variables and
drop them
columns_to_drop_cat = set()
correlated_columns = dict()
for unique_value_count in columns_unique_value:
 if unique_value_count>1:
 categorical_columns = df.loc[df.
Count==unique_value_count,'Column_Name']
 categorical_columns = categorical_columns.reset_index(drop=True)
 columns_length=len(categorical_columns)
 for col in range(columns_length-1):
 column_to_compare = categorical_columns[col]
 columns_compare_against =
categorical_columns[(col+1):columns_length]

426 Machine Learning for Decision Sciences with Case Studies in Python

 chi_scores =
chi2(train_data[columns_compare_against],train_data[column_to_compare])
 if column_to_compare not in columns_to_drop_cat:
 columns_to_be_dropped = [i for i in range(len(columns_
compare_against)) if chi_scores[1][i]<=0.05]
 columns_to_drop_array = np.array(columns_compare_against)
[columns_to_be_dropped]
 correlated_columns[column_to_compare]=columns_to_drop_array
 columns_to_drop_cat.update(columns_to_drop_array)

train_data = train_data.drop(columns_to_drop_cat,axis=1)

correlated_features = list(correlated_features)
columns_to_drop_cat = list(columns_to_drop_cat)
columns_to_drop_cat.extend(correlated_features)
columns_to_drop = columns_to_drop_cat.copy()

#output the columns_to_drop file to a csv
columns_to_drop_df=pd.DataFrame(columns_to_drop,columns=['colnames'])
columns_to_drop_df.to_csv("/model/columns_to_drop.csv",index=False)

Visualizing the Output Variable
#Visualizing the distribution of loss value
Density Plot and Histogram of loss
sns.distplot(train_data['loss'], hist=True, kde=True,
 bins=int(180/5), color = 'darkblue',
 hist_kws={'edgecolor':'black'},
 kde_kws={'linewidth': 4})

#We will use a log transformation on the dependent variable to reduce the scale
train_data['loss'] = np.log(train_data['loss'])

Visualizing the distribution of loss value
Density Plot and Histogram of loss
sns.distplot(train_data['loss'], hist=True, kde=True,
 bins=int(180/5), color = 'darkblue',
 hist_kws={'edgecolor':'black'},
 kde_kws={'linewidth': 4})

#taking a anti-log to transform the variable back to its original scale
sns.distplot(np.exp(train_data['loss']), hist=True, kde=True,
 bins=int(180/5), color = 'darkblue',
 hist_kws={'edgecolor':'black'},
 kde_kws={'linewidth': 4})

Fit an ML Model
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import RandomizedSearchCV

#convert the int64 columns categorical
Column_datatypes= train_data.dtypes
Integer_columns = list(Column_datatypes.where(lambda x: x =="int64").
dropna().index.values)

427Case Studies for Decision Sciences

train_data[Integer_columns] = train_data[Integer_columns].
astype('category',copy=False)
X,y = train_data.drop(['id','loss'],axis=1),train_data['loss']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
random_state=42)
Instantiate model with 100 decision trees
rf_base = RandomForestRegressor(n_estimators = 100, random_state =
42,oob_score = True)
rf_base.fit(X_train, y_train)

#save the model output
pickle.dump(rf_base, open("basemodel_rf", 'wb'))

#load the saved model and predict on the test data
basedmodel_rf = pickle.load(open("basemodel_rf", 'rb'))

#validate the accuracy of the base model
#compare the model accuracies
Y_test_predict_base = basedmodel_rf.predict(X_test)
print("Base model accuracy:",np.sqrt(mean_squared_error(y_test,
Y_test_predict_base)))

HyperParameter Tuning Using RandomSearchCV
#number of trees
n_estimators = [100,200,300,400,500]
Number of features to consider at every split
max_features = ['auto', 'sqrt']
Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
Minimum number of samples required to split a node
min_samples_split = [200,400,600]
Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]
Method of selecting samples for training each tree
bootstrap = [True, False]

Create the random grid
random_grid = {'n_estimators': n_estimators,
 'max_features': max_features,
 'max_depth': max_depth,
 'min_samples_split': min_samples_split,
 'min_samples_leaf': min_samples_leaf,
 'bootstrap': bootstrap}

Use the random grid to search for the best hyperparameters
base model to tune
rf = RandomForestRegressor()

5 fold cross validation,
search across 150 different combinations, and use all available cores
rf_tuned = RandomizedSearchCV(estimator = rf, param_distributions =
random_grid, cv = 3,n_iter = 5, verbose=2, random_state=42, n_jobs = -1)

Fit the random search model
rf_tuned.fit(X_train, y_train)

428 Machine Learning for Decision Sciences with Case Studies in Python

#save the model output
pickle.dump(rf_tuned, open("tunedmodel_rf", 'wb'))

#check the best params
rf_tuned.best_params_

#load the saved model and predict on the test data
tunedmodel_rf = pickle.load(open("tunedmodel_rf", 'rb'))

Y_test_predict_tuned = tunedmodel_rf.predict(X_test)
print("Tuned model accuracy:",np.sqrt(mean_squared_error(y_test,
Y_test_predict_tuned)))

fit a GBM model
from sklearn.ensemble import GradientBoostingRegressor #GBM algorithm
gbm_base = GradientBoostingRegressor(
 max_depth=2,
 n_estimators=3,
 learning_rate=1.0)

gbm_base.fit(X_train,y_train)

#save the GBM model
pickle.dump(gbm_base, open("basemodel_GBM", 'wb'))

#load the saved model and predict on the test data
basemodel_GBM = pickle.load(open("basemodel_GBM", 'rb'))

Y_test_predict_tuned = basemodel_GBM.predict(X_test)
print("Base model GBM accuracy:",np.sqrt(mean_squared_error(y_test,
Y_test_predict_tuned)))

################ Model loss function prediction
###############################

 #### Script to Predict the output on new observations
import pandas as pd
import pickle
import numpy as np

test_data = pd.read_csv("test_data_subset.csv")

#load the columns to drop file
columns_to_drop=pd.read_csv("columns_to_drop.csv")
columns_to_Retain = set(test_data.columns.values) - set(columns_to_drop.
colnames.values)
test_data = test_data[columns_to_Retain]

column_datatypes = test_data.dtypes
categorical_columns = list(column_datatypes[column_datatypes=="object"].
index.values)

#Transfor the categorical columns by loading the fit encodings on
training data

for cf1 in categorical_columns:
 filename = cf1+".sav"

429Case Studies for Decision Sciences

 le = pickle.load(open(filename, 'rb'))

 #if an new classes is observed, set it to the 0 class
 le_dict = dict(zip(le.classes_, le.transform(le.classes_)))
 test_data[cf1]=test_data[cf1].apply(lambda x: le_dict.get(x, -1))

test_data_id = test_data['id']
test_data = test_data.drop('id',axis=1)

Column_datatypes= test_data.dtypes
Integer_columns = list(Column_datatypes.where(lambda x: x =="int64").
dropna().index.values)
#convert the int64 columns categorical
test_data[Integer_columns] = test_data[Integer_columns].
astype('category',copy=False)

#load the saved model and predict on the test data
tunedmodel_rf = pickle.load(open("tunedmodel_rf", 'rb'))

Y_test_predict = tunedmodel_rf.predict(test_data)
test_data['predict_loss']=Y_test_predict
test_data['id']=test_data_id
test_data = test_data[['id','predict_loss']]

test_data

############ Operationalize / Deploying to production using FLASK API
########################

from flask import Flask, request #import main Flask Class and request
import pandas as pd
import pickle
import numpy as np
from pandas.io.json import json_normalize
app = Flask(__name__) #create the Flask app

@app.route('/load_model',methods=['POST'])
def load_model():
 req_data = request.get_json()
 test_data_subset = pd.DataFrame.from_dict(json_normalize(req_data),
orient='columns')

 #load the columns to drop file
 columns_to_drop=pd.read_csv("/model/columns_to_drop.csv")

 #select the columns to be retained
 columns_to_Retain = set(test_data_subset.columns.values) -
set(columns_to_drop.colnames.values)
 test_data_selected_columns = test_data_subset[columns_to_Retain]

 #select the categorical columns from the dataframe
 column_datatypes = test_data_selected_columns.dtypes
 categorical_columns = list(column_datatypes[column_
datatypes=="object"].index.values)

 #read the label encoders and apply the encoded values to the
categorical variables

430 Machine Learning for Decision Sciences with Case Studies in Python

 for cf1 in categorical_columns:
 filename = "/model/"+cf1+".sav"
 le = pickle.load(open(filename, 'rb'))

 #if an new classes is observed, set it to the 0 class
 le_dict = dict(zip(le.classes_, le.transform(le.classes_)))
 test_data_selected_columns[cf1]=test_data_selected_columns[cf1].
apply(lambda x: le_dict.get(x, -1))

 test_data_id = test_data_selected_columns['id']
 test_data_selected_columns = test_data_selected_columns.
drop('id',axis=1)

 #convert the interger columns to categories as required by the ML
model
 Column_datatypes= test_data_selected_columns.dtypes
 Integer_columns = list(Column_datatypes.where(lambda x: x =="int64").
dropna().index.values)

 #convert the int64 columns categorical
 test_data_selected_columns[Integer_columns] = test_data_selected_
columns[Integer_columns].astype('category',copy=False)

 #load the saved model and predict on the test data
 tuned_model = pickle.load(open("/model/tunedmodel_rf", 'rb'))
 Y_test_predict = tuned_model.predict(test_data_selected_columns)

 #create a new output dataframe
 output = pd.DataFrame()
 output['id']=test_data_id
 output['predict_loss']=Y_test_predict

 output=output.to_json(orient='records')
 return output
if __name__ =='__main__':
 app.run(debug=True,port=4000)#run app in debug mode on port 4000

9.5 USE CASE 5 − E-COMMERCE PRODUCT RANKING
AND SENTIMENT ANALYSIS

9.5.1 backgroUnD

Customers can buy a product with the extra benefit of additional recommendations in the form of
reviews, which are provided through E-Commerce applications. Reviews are, without question, valu-
able and effective for clients who are considering purchasing those products. Customers, on the other
hand, will have difficulty separating relevant feedback from the avalanche of reviews. Nonetheless,
these large reviews pose a problem for users, as useful filtering evaluations become extremely dif-
ficult. In this use instance, the proportionate issue has been addressed. After that, we'll discuss how
we rank reviews based on their relevance to the product and how we rate immaterial reviews.

Understating the data, data preprocessing-filtering (which includes gibberish, language, and pro-
fanity detection), feature extraction, pairwise review scoring, and further categorization were the
phases of this project. The result will be a collection of reviews used to create a precise product
ranking based on applicability using a pairwise ranking approach. The process is shown as a time-
line graph, as shown in Figure 9.8.

431Case Studies for Decision Sciences

9.5.2 UnDerstanDing the Data

The dataset we will use has two distinct product and answer options columns, as shown below. We
will use this training dataset for analysis and preprocessing of the data, including language detec-
tion. Furthermore, as shown in the preprocessing data code below, we will preprocess the data
(understand the bad data) for gibberish and profanity detection.

#1. Data Preprocessing: This has four stages. The first stage is language detection. The second
stage is gibberish review detection and filtering. The third stage is profanity filtering. In the last
stage, spell check is performed tocorrect and improve the quality of the data. These phases are
shown in Figure 9.9.

#!/usr/bin/env python
coding: utf-8

%%capture

FIGURE 9.9 Data preprocessing phases.

FIGURE 9.8 Phases of implementation of E-Commerce Product Ranking and Sentiment Analysis.

Product Answer_option

Accucheck Fast and accurate delivery

Accucheck As usual, it is genuine

Accucheck Behavior of delivery boy is very bad. Delivery time is long whereas other online stores are providing
better facilities

Accucheck Fwegwrqdsdvwfg

Accucheck These strips were as per my requirement

Accucheck Fast service was good

Accucheck Received 10 strips and 2 packets of lancets in place of 100 strips

Accucheck Does not fit my machine

Accucheck Discount and quick response

Accucheck Fast delivery with good packing

432 Machine Learning for Decision Sciences with Case Studies in Python

!python3 -m spacy download en_core_web_sm
!python3 -m textblob.download_corpora

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from pylab import rcParams
rcParams['figure.figsize'] = 7, 6

from copy import deepcopy
import seaborn as sns

import sys
sys.path.append('./utils')
from utils import review_feature
rf = review_feature()
%matplotlib inline

!ls data
df = pd.read_csv('data/train.csv')
df

Analysis to understand per product who many informative and how many
not informative reviews are there.
label_analysis = pd.crosstab(df['product'],df['label'], margins='All')
label_analysis

analysis = label_analysis.reset_index()
analysis.columns = ['product','not info', 'info', 'All']
analysis.iloc[:-1].plot(x="product", y=["not info", "info"], kind="bar")

Lets check the length quality of reviews we have?
df['review_len'] = df['answer_option'].apply(lambda x: len(x.split()))
df

checklen = []
for i in range(5,50, 5):
 checklen.append(len(df[(df['review_len']>=i-5) &
(df['review_len']<i)]))
checklen

index = np.arange(len(checklen))
plt.bar(index, checklen)
plt.xlabel('Length of a Review', fontsize=15)
plt.ylabel('No. of Reviews', fontsize=15)
plt.xticks(index, range(5,50,5), fontsize=15, rotation=30)
plt.title('Review Survey Length Analysis')
plt.show()

We have a fair amount of both details reviews (having length >=5)
and short reviews (having length <5)
Data Preprocessing
![datapreprocessing](Photos/datapreprocessing.png)
Stage1: Language Detection
bad_reviews = []
for indx in df.index:
 review = df.at[indx, 'answer_option']

433Case Studies for Decision Sciences

 try:
 b = rf.language_detection(review)
 if b == 'hi' or b == 'mr':
 bad_reviews.append(indx)
 except:
 bad_reviews.append(indx)
 print("Language exception for:", review)
print("Number of Bad Reviews at Stage 1: ", len(bad_reviews))

df[df.index.isin(bad_reviews)]

df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

Stage 2: Gibberish Reviews
When we collect data from customers, just out of frustration, many
reviews write gibberish reviews.
Example: svfsfg, fsdfgdfgfsgsfgdgh, ffgrthyryj, rhrhfas, kuopip
We need to detect such reviews and filter those out.
Working
we could build a model of character to character transitions from a
bunch of text in English. So for example, you find out how common it is
for there to be a 'h' after a 't' (pretty common).

If you have a bunch of query logs, you might first make a model of
general English text and then heavily weigh your queries in that model
training phase
For background read about Markov Chains.
Source: https://github.com/rrenaud/Gibberish-Detector
we have trained a model for and have stored its pickle file.
bad_reviews = []
for indx in df.index:
 review = df.at[indx, 'answer_option']
 if rf.gibberish_detection(review, prefix_path = 'utils'):
 bad_reviews.append(indx)

print("Number of Bad Reviews at Stage 2: ", len(bad_reviews))

bad_reviews

df[df.index.isin(bad_reviews)]

df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

Stage 3: Profanity Detection
At times, reviewers are not happy with the delivery or service out of
frustration, they type profanity words in reviews.
Profanity content also penalizes SEO ranking
bad_reviews = []
for indx in df.index:
 review = df.at[indx, 'answer_option']
 if rf.english_swear_check(review) or rf.hindi_swear_check(review):
 bad_reviews.append(indx)

print("Number of Bad Reviews at Stage 3: ", len(bad_reviews))

df[df.index.isin(bad_reviews)]
df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

https://github.com

434 Machine Learning for Decision Sciences with Case Studies in Python

Stage 4: Spelling Correction (Optional Stage not that necessary)
Trying to improve quality of reviews which have high confidence spell
errors. Like withut -> without
for indx in df.index:
 review = df.at[indx, 'answer_option']
 df.at[indx, 'answer_option'] = rf.spell_correct(review, 0.9)

Stage 4.1: Company Tag (Optional Stage)
bad_reviews = []
for indx in df.index:
 review = df.at[indx, 'answer_option']
 if rf.competitive_brand_tag(review):
 bad_reviews.append(indx)

print("Number of Bad Reviews at Stage 4.1: ", len(bad_reviews))

df[df.index.isin(bad_reviews)]

df = df[~df.index.isin(bad_reviews)].reset_index(drop = True)

print("Total Count of Reviews after preprocessing: ", len(df))

df.to_csv('data/Preprocessed_Reviews.csv',index = False)

Summary :
So far, we have done EDA (Exploratory Data Analysis) of Data.
Preprocessing of reviews in 4 main stages.
Initial Count of Reviews was: 1676
Final Count of Reviews is: 1655
We must be strict in preprocessing so that no bad content is shown on
our website.
By preprocessing, we are reducing False positives.
Note: You may feel that only 21 reviews are scrapped, but when you
will be working on a full scale, we observe that about 7-10% of total
reviews would be junk.

#Features Engineering:

This contains 7 step process as shown in Figure 9.10- Starting with Noun
Scoring till compound score.

FIGURE 9.10 Seven-step feature engineering process.

435Case Studies for Decision Sciences

#!/usr/bin/env python
coding: utf-8
import pandas as pd
import numpy as np
from copy import deepcopy
import sys
sys.path.append('./utils')
from utils import review_feature
rf = review_feature()

from pandas_profiling import ProfileReport

df = pd.read_csv('data/Preprocessed_Reviews.csv').sort_values(by =
['product'], ignore_index = True)

df
Features extraction covers every necessary property/viewpoint, and to
live features quantitatively may be a much-needed task. Hence, let us
discuss all the features extracted from reviews.
Step 1: Noun Strength (Rn): Nouns are subjects regarded as the most
informative language section. The number of subjects shows the importance
of review because only a noun describes the prime factors of review
(which tells us what the review is about). We did POS Tagging to seek out
nouns during a review and computed score as:
Step 2: Score (Rn) = TFIDF(noun) / TFIDF(all words)
Step 3: Review Polarity (Rp): Its value lies between -1 to +1, which
tells whether a review has sentiment or negative sentiment.
Step 4: Review Subjectivity (Rs): The subjectivity could measure the
objective to subjective sentiment and goes from 0 to 1. Objective
expressions are facts, while Subjective expressions are opinions that
describe a person’s feelings. Consider the following expression:
Bournvita tastes excellent with milk: Subjective
Bournvita is brown: Objective
Step 5: Review Complexity (Rc): to gauge how good and sophisticated a
review is in terms of unique words within and across a specific product's
entire review corpus.
Rc = Number of unique words during a Review / Number of unique words in
the entire Corpus
Step 6: Review Word Length (Rw): Word count of a Review
Step 7: Service Tagger (Rd): the simplest review talks more about how
the product, how it tastes, what its uses are, and therefore the one
which talks about the effectiveness of a product. Reviews are basically
to describe a product. So, a dictionary of words is made, which might
mark reviews as service-based, delivery reviews, and customer support.
Fuzzy matching each word during a review is finished with the words
within the dictionary with Levenshtein distance. Levenshtein distance
helps measure the difference between two sequences and tackles spell
errors in review. For instance, rather than “My delivery was on time”,
Reviews is wrongly written as “My delivery was on time”. In this case,
Fuzzy matching would help us to match both the reviews.
Step 8: Compound Score (Rsc): to enhance the efficiency of the system.
We compute the compound score using VaderSentimentAnalyser. This library
is taken from VADER (Valence Aware Dictionary and sEntiment Reasoner).
This is a lexicon and rule-based sentiment analysis tool specifically
tuned to figure out sentiments expressed in social media content. It has
the power to seek out the sentiment of Slang (e.g., SUX!), Emoji (,),

436 Machine Learning for Decision Sciences with Case Studies in Python

Emoticons (:), :D) and, therefore, the difference between capitalized
word expressions(I am SAD, I'm sad are different expressions).
#Rsc ≥ 0.5 (Positive Sentiment)
-0.5
(Positive Sentiment)
-0.5<Rsc<+0.5 (Neural Sentiment)
Rsc≤ -0.5 (Negative Sentiment)
Miscellaneous: We purposely did not include Reviews Rating as a
feature. The inclusion of Ratings blunders the entire system because of
two reasons:
1. Common confusion between Rating and Reviews. For example, someone
who rates the product ‘1’ (On a rating scale of 1–5, ‘1’ being the
‘lowest’ and ‘5’ being the ‘highest’) writes the review comment as ‘very
good and useful medicine’.
2. A large portion of Reviews from customers are either five stars or
one star.

TextBlob: https://textblob.readthedocs.io/en/dev/index.html
VaderSentiment: https://github.com/cjhutto/vaderSentiment
spaCy: https://spacy.io/

Add Feature Columns
df['Rn'] = 0.0
df['Rp'] = 0.0
df['Rs'] = 0.0
df['Rc'] = 0.0
df['Rd'] = 0.0
df['Rsc'] = 0.0

df

product_list = df['product'].unique()
for product in product_list:
 data = df[df['product']==product]
 unique_bag = set()
 for review in data['answer_option']:
 review = review.lower()
 words = review.split()
 unique_bag = unique_bag.union(set(words))

 for indx in data.index:
 review = data.at[indx, 'answer_option']
 df.at[indx, 'Rp'] = rf.polarity_sentiment(review)
 df.at[indx, 'Rs'] = rf.subjectivity_sentiment(review)
 df.at[indx, 'Rd'] = rf.service_tag(review)
 df.at[indx, 'Rsc'] =
rf.slang_emoji_polarity_compoundscore(review)
 df.at[indx, 'Rc'] = float(len(set(review.split()))) /
float(len(unique_bag))

 df.loc[df['product']==product, 'Rn'] = rf.noun_score(data['answer_
option'].values).values

 df

#With these features, we have leached out all informative from a Review.

https://textblob.readthedocs.io
https://github.com
https://spacy.io

437Case Studies for Decision Sciences

#One may add more features like Readability Score: SMOG Index depending
on the use case of your problem.
#Reason we are not taking Readability score as a metric is that we have
taken reviews from Tier I, Tier II, and Tier III cities. We don't want to
penalize reviews (from an underprivileged background) by adding this.
#Source- [Wikipedia](https://en.wikipedia.org/wiki/Readability)

df.to_csv('data/Features.csv',index = False)

Now more insightful analysis
profile = ProfileReport(df)

profile

profile.to_file(output_file="feature_analysis.html")
We have 1655 Reviews with use, let's get to the Model Training Section.

#MODEL BUILDING:
#!/usr/bin/env python
coding: utf-8

import pandas as pd
import numpy as np
from joblib import load, dump
from copy import deepcopy
from statistics import mean

from sklearn.metrics import accuracy_score, classification_report,
confusion_matrix
from collections import Counter

df = pd.read_csv('data/Features.csv')

df

Ranking is a canonical problem for humans. It is easy to classify
whether a review is useful (informative) or not. However, ranking reviews
based on usefulness is a complex task. Our ranking methodology is based
on this simple education.
#Pairwise ranking approach is applied to rank reviews in the semi-
supervised learning method. The pairwise ranking approach looks at a pair
of documents in a loss function and predicts a relative ordering. The
objective is not to determine the relevance score but to find which
document is more relevant. This relevance is developed to judge the
preference of one review over another.
#In this semi-supervised learning method, mapping is constructed between
input and output. This input-output pair in the training model is used to
learn the system.

#Review Segregation: We segregated two sets of reviews on which we train
our model.
#Set 0 represents reviews with label 0, i.e., ones that are not
informative. These include reviews based on delivery, customer support,
packaging, etc. These reviews do not describe the product.

#Set 1 represents reviews with label 1, i.e., reviews that are
informative and are better than all reviews of Set 0;

https://en.wikipedia.org

438 Machine Learning for Decision Sciences with Case Studies in Python

#How we segregated and determined labels for reviews:
#Our entire review ranking system is based on the idea that it is easier
for humans to binary classify reviews which we call Set 0 and Set 1.

#For each product 'Accucheck', 'Becadexamin', 'Evion', 'Neurobion','Seven
seascodLiverOil', 'Shelcal', 'Supradyn','shampoo', we asked 10 different
people to label reviews as a 1 (informative review) and 0 (not
informative review). Different participants were asked to label so that
there is no bias and the model learns to its best.

data_split = pd.crosstab(df['product'],df['label'])
data_split

Building the training set:
We pairwise compared each review of set1 with all reviews of set0
and vice-versa
+ (Rx, Ry,1) where x∈Set1 and y∈Set0 → Rx is better than Ry
+ (Ry, Rx, 0) where x∈Set1 and y∈Set0 → Ry is worst than Rx

This now becomes a classification problem, as illustrated in
Figure 9.11.

def building_training_data(df):
 A = df[df['label']==1]
 A.loc[df['label']==1,'join'] = 'j'
 B = df[df['label']==0]
 B.loc[df['label']==0,'join'] = 'j'
 trainset1 = pd.merge(A,B,how='outer',on='join')
 trainset2 = pd.merge(B,A,how='outer',on ='join')

 trainset = pd.merge(trainset1,trainset2,how='outer')
 return trainset

product_list = df['product'].unique()
data_stack = []
for product in product_list:
 temp = deepcopy(df[df['product']==product].iloc[:,2:])
 build_data = building_training_data(temp)
 print(product, len(temp), len(build_data))

FIGURE 9.11 Pairwise ranking model.

439Case Studies for Decision Sciences

 build_data.drop(columns = ['join','label_y'],inplace=True)
 data = build_data.iloc[:,1:]
 data['target'] = build_data.iloc[:,0]
 data_stack.append(data)

train = pd.concat(data_stack).reset_index(drop = True)

train

X = train.iloc[:,:-1].values
y = train.iloc[:,-1].values

from sklearn.model_selection import train_test_split
X_train,X_test, y_train, y_test = train_test_split(X,y,test_size =
0.2,shuffle = True, stratify = y)
print("Test Len:",len(X_test)," ",len(y_test))

train

Spot Checking-
Linear Model
Non-Linear Model
Ensemble Model

Linear Model: Logistic Regression

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train,y_train)
print("Training Accuracy\n", accuracy_score(y_train,classifier.
predict(X_train)))
print("Test Accuracy\n", accuracy_score(y_test,classifier.
predict(X_test)))

print('CLASSIFICATION REPORT')
print("Training\n", classification_report(y_train,classifier.
predict(X_train)))
print("Test \n", classification_report(y_test,classifier.
predict(X_test)))

Accuracy: 85%
F1-score: 85%

Non-Linear Model: DecisionTree
Decision Tree
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier.fit(X_train,y_train)

print("Training Accuracy\n", accuracy_score(y_train,classifier.
predict(X_train)))
print("Test Accuracy\n", accuracy_score(y_test,classifier.
predict(X_test)))

print('CLASSIFICATION REPORT')
print("Training\n", classification_report(y_train,classifier.
predict(X_train)))

440 Machine Learning for Decision Sciences with Case Studies in Python

print("Test \n", classification_report(y_test,classifier.
predict(X_test)))

Ensemble Model: RandomForest
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=50, n_jobs = -1, oob_
score = True,random_state=42)
classifier.fit(X_train,y_train)

print("Training Accuracy\n", accuracy_score(y_train,classifier.
predict(X_train)))
print("Test Accuracy\n", accuracy_score(y_test,classifier.
predict(X_test)))

print('CLASSIFICATION REPORT')
print("Training\n", classification_report(y_train,classifier.
predict(X_train)))
print("Test \n", classification_report(y_test,classifier.
predict(X_test)))

print("Test\nConfusion Matrix: \n", confusion_matrix(y_test, classifier.
predict(X_test)))

Score of the training dataset obtained using an out-of-bag estimate.
This attribute exists only when oob_score is True.

classifier.oob_score_
feature_importances = pd.DataFrame(classifier.feature_importances_,
 index = train.iloc[:,:-1].columns,

columns=['importance']).sort_values('importance',ascending=False)
feature_importances
dump(classifier, 'randomforest.joblib', compress = 2)

RandomForest Classifier Weights Saved.
Accuracy: 0.98
oob_score: 0.98
Note, if in your usecase data is too small to split to train-test-split
then one can train model on entire data and measure out of bag score.

#PART 2. Model Ranking Metric
#Accuracy of Ranking Methodology
#After sorting the reviews by the review score, we wanted all reviews in
Set 1 to be above all reviews of Set 0.
#To test this hypothesis, we developed the following Ranking Metric
#Let the number of 1s in our Dataset be x.
`Ranking Accuracy on Single Product = Number of 1s found in first x
positions / x

classifier = load('randomforest.joblib')

product_list = df['product'].unique()
df['win']=0
df['lose']=0
df['review_score'] = 0.0
df.reset_index(inplace = True, drop = True)

441Case Studies for Decision Sciences

def score_giver(C,D):
 E = pd.merge(C,D,how='outer',on='j')
 E.drop(columns=['j'],inplace = True)
 q= classifier.predict(E.values)
 return Counter(q)

for product in product_list:
 data = df[df['product']==product]
 for indx in data.index:
 review = df.iloc[indx, 3:-3]
 review['j'] = 'jn'
 C = pd.DataFrame([review])
 D = data[data.index!=indx].iloc[:,3:-3]
 D['j'] = 'jn'
 score = score_giver(C,D)
 df.at[indx, 'win'] = 0 if score.get(1) is None else score.get(1)
 df.at[indx, 'lose'] = 0 if score.get(0) is None else score.get(0)
 df.at[indx, 'review_score'] = float(0 if score.get(1) is None
else score.get(1)) / len(data) * 1.0

df = df.sort_values(by = ['product','review_score'], ascending = False)

r_accuracy =[]
for product in product_list:
 x = data_split[data_split.index == product][1][0]
 number_of_1_in_x = Counter(df[df['product']==product].iloc[:x,]
['label']).get(1)
 rank_accuracy = float(number_of_1_in_x*1.0 / x*1.0)
 print("Product: {} | Rank Accuracy: {}".format(product,
rank_accuracy))
 r_accuracy.append(rank_accuracy)
print("Mean Rank Accuracy: {}".format(mean(r_accuracy)))

df

df.iloc[:, [0,1,-1]].to_csv('data/train_ranked_output.csv',index = False)

!ls
t = pd.read_csv('data/test.csv')

SUMMARY

In this chapter, we discussed a few ML applications in various industries to solve problems where
traditional programming cannot accommodate the reasoning for many combinations. The first use
case, Retail Price Optimization Using the Price Elasticity of Demand Method, identifies the exact
price at which the most profit may be made. Next, we present the application based on a customer
dataset in a supermarket in use case 2, Market Basket Analysis, highlighting association rule min-
ing. Next, use case 3, Retailer Sales Prediction, shows how to create a ML model and determine
the sales of each product at a certain store. Finally, in use case 4, the cost of insurance claims is
predicted for a Property and Casualty (P&C) Insurance Company. This case study shows how to
clean data, preprocess data, and deal with outliers.

442 Machine Learning for Decision Sciences with Case Studies in Python

REVIEW QUESTIONS

 1. Develop the phases of data analytics life cycle for MNIST Handwritten Digit Classification
data.

 2. Apply different supervised learning algorithms for Wine Quality Prediction using Wine
Quality Dataset and compare the results in terms of model parameters.

 3. Develop a ML model for Sales Forecasting using Walmart dataset starting from under-
standing the data, data preprocessing, exploratory data analysis, model building, and pre-
diction of output.

 4. Evaluate ML models for Sensorless Drive Diagnosis and choose the optimal model.
 5. Compare supervised learning algorithms for classifying Human Body Postures and

Movements. Note down your observations and identify the best algorithm for classification.
 6. Implement a prediction model for BigMart Sales using unsupervised learning algorithms

and compare their performance. In addition, identify the time and space complexity of the
algorithms.

 7. Estimate the suitable ML model for Mine Social Media Sentiment and Improve Health
Care dataset.

 8. Apply ML algorithms to predict Quora Question Pairs Meaning using Natural Language
Processing in Python.

 9. For the Human Activity Recognition using Smartphone Dataset, identify the process to
choose features. How are outliers handled while extracting features?

 10. Develop feature engineering model based on Principal Componant Analysis (PCA) and
Linear Discrimination Analysis (LDA) for Walmart dataset.

443

Appendix
Python Cheat Sheet for Machine Learning

Matplotlib Cheat Sheet

Import Library

from matplotlib import pyplot as plt

Basic Line Plot

x_values

days = [0, 1, 2, 3, 4, 5, 6]

y_values1

money_spent = [10, 12, 12, 10, 14, 22, 24]

y_values2

money_spent_2 = [11, 14, 15, 15, 22, 21, 12]

assigend to one plot

plt.plot(days, money_spent)
plt.plot(days, money_spent_2)

plt.show()

The object that contains all subplots is called figure
Always put specific Attributes (color, markers, ...) for a subplot
directly under plt.plot()

Create subplots

plt.subplot(rows, columns, index_of_subplot)

Example

First Subplot

plt.subplot(1, 2, 1)

plt.plot(x, y, color='green')
Second Subplot

plt.subplot(1, 2, 2)

plt.plot(x, y, color='steelblue')
Format Subplots

plt.subplots_adjust(arguements)

left, right, top, bottom -margin

wspace, hspace horizontal/vertical margin between

plots

Linestyles

plt.plot(x, y, style=" ")

Keywords to put in for style:

color= green, #AAAAAA

linestyle= dotted: :, dashed: -- or -.

marker= o, *, s, x, d, h

linewidth= 1, 2, ...

Linestyles (cont)

alpha= 0.1 - 1

Boilerplate Styles:

plt.style.use("fivethirtyeight")

plt.style.use("ggplot")

plt.style.use("seaborn")

plt.style.use("default")

Legends

loc specifies the legends location (if not specified: finds "best"
location)

Create Legend

plt.legend(["first_line", "second_line", loc=])

loc Numbercode

1 upper left

2 upper right

3 lower left

4 lower right

5 right

6 center left

7 center right

8 lower center

9 upper center
10 center

Figures

When we’re making lots of plots, it’s easy to end up withlines that

have been plotted and not displayed. If we’re not careful, these
“forgotten” lines will show up in your new plots. In order to be sure
that you don’t have any stray lines, you can use the command plt.c-

lose('all') to clear all existing plots before you plot a new one.

Create Figure with custom size

plt.figure(figsize=(width, heigth))

plt.plot(x, y)

plt.savefig('tall_and_narrow. png/ .svg/ .pdf')

Modify Ticks

We have to do it this way, even if we only have one plot

Specify subplot to modify

ax1 = plt.subplot(row, column, index)

Attributes

ax1.set_xticks([1, 2, 4])

ax1.set_yticks([0.1, 0.2, ...])

ax1.set_xticklabels(["Jan", "Feb", "Apr"], rota-
tion=30)

rotation=degrees rotates the labels

ax1.set_yticklabels(["10%", "20%", ...])

Subplots

444 Appendix

Histogram

Create one Histogram

plt.hist(dataset, range=(0,100), bins=20)

Specifiy number of bins (default = 10)
5.9049 pt

Scatter Plot

plt.scatter(x_values, y_values)

Side-By-Side Bars

We have to specifiy the location of each Dataset in the Plot

using this pattern:

n = ? # Number of specific dataset

t = ? # Number of datasets

d = ? # Number of sets of bars

w = 0.8 # Width of each bar

x_values1 = [t*element + w*n for element in range(d)]

Get x_values in the middle of both bars

middle_x = [(a + b) / 2.0 for a, b in zip(x_val-ues1, x_values2)]

Stacked Bars

If we want to compare "different sub-attributes from one attribute"

we can use stacked bar charts. For example:
Attribute: Entertainment hours

Sub-Attributes: Gaming, Reading, ...

We use the keyword bottom to do this

The top bar will have bottom set as height # First Bar

video_game_hours = [1, 2, 2, 1, 2]

plt.bar(range(len(video_game_hours)),

video_game_hours)

Second Bar

book_hours = [2, 3, 4, 2, 1]

plt.bar(range(len(book_hours)),

book_hours,

bottom=video_game_hours)

Get each bottom for 3+ bars

sport_hours = np.add(video_game_hours, book_hours)

Error Bars

If we want to present an uncertainty Range within a Bar Chart we
can use Error Bars

Use the keyword yerr to repersent the error range
values = [10, 13, 11, 15, 20]

yerr = [1, 3, 0.5, 2, 4] # singe value possible plt.bar(y, x, yerr
=yerr, capsize=10)

plt.show()

Fill Between (Line Plot)

Returns a shaded are around the line

x = range(3)

y = [10, 12, 13]

y_lower = [8, 10, 11]

y_upper = [i + 2 for i in y_values]

Calculate a % deviation

y_lower_bound = [element - (element * error_in_-decimal) for

element in original_list_of_y_values] #this is the shaded error
plt.fill_between(x, y_lower, y_upper, alpha =0.2) #this is the line
itself

plt.plot(x, y)

plt.show()

Axis and Labels

Zoom in or out of the plot:

plt.axis(x_min, x_max, y_min, y_max)

Labeling the Axes:

plt.xlabel("str ")/ plt.ylabel() / plt.title()

Add Text to Graph

plt.text(x_coord, y_coord, "text");

Simple Bar Chart

We use range(len(y_values)) to get a tick for each value we
want to represent in the Bar Chart

plt.bar(range(len(y_values)), y_values)

Pie Chart

payment_names = ["Card Swipe", "Cash", "Apple Pay",

"Other"]

payment_freqs = [270, 77, 32, 11]

Creating Pie Chart

plt.pie(payment_freqs)

plt.axis('equal')

Two Methods for Labeling

First Method

plt.legend(payment_names)

Second Method (directly when creating)

plt.pie(payment_freqs, labels=payment_names)

Show percentages of total in each slice:

plt.pie(payment_freqs, labels=payment_names, auto-pct='%

0.1f%%')
autopct takes a string formatting instruction

%d%% -> round to decimal

plt.show()
Create multiple Histograms

plt.hist(a, alpha=0.5, normed=True)

plt.hist(b, histtype='step', linewidth=2 normed-=True)

445Appendix

Import the Seaborn Library

Seaborn is a extension to Matplotlib with
more visually appealing syntax and
additional Chart Types. That's why Matplot-
lib should also be imported.

If we want to calculate aggregates we need
to import numpy aswell.

from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np

Seaborn Styling (Figure Style and

Scale)(cont)

'font.size': 19.2,

'grid.linewidth': 1.6,

'legend.fontsize': 16.0,

'lines.linewidth': 2.8,

'lines.markeredgewidth': 0.0, 'li

nes.markersize': 11.2,

'patch.linewidth': 0.48,

'xtick.labelsize': 16.0,

'xtick.major.pad': 11.2,

'xtick.major.width': 1.6,

'xtick.minor.width': 0.8,

'ytick.labelsize': 16.0,

'ytick.major.pad': 11.2,

'ytick.major.width': 1.6,

'ytick.minor.width': 0.8

}

Aggregates (with numpy)

Median np.median(df.column_name)

Seaborn Cheat Sheet

Seaborn Styling (Color)

If you want to quickly see what a
palette looks like

Save a palette to a variable:

palette = sns.color_palette -("bright")#

Use palplot and pass in the variable:

sns.palplot(palette)

Select a palette in Seaborn:

sns.set_palette("Paired")

Default Palettes

-> deep, muted, pastel, bright, dark,

colorblind

Themes: (called prior to plot) sns.set

_style("")

->darkgrid, whitegrid, dark, white, ticks

#Removes Plot Borders (called after plot)

sns.despine() (default:

top=True, right=True)

-> bottom, left

#Adjust font- and label size sns.set_co

ntext(context="paper", font_scale=1.4, rc

={"grid.li-newidth": 0.6})

Bar Plot

If the specified columns need to be aggr-
egated first, Seaborn will perform that
aggregation automatically. (mean by
default)

Seaborn will, by default, provide an error
bar displaying the bootstrapped

confidence interval(95%).

sns.barplot(

data=df ,

x="x value column" , y="y

value column" ,

everything specified below is optional

ci="sd"

estimator=np.median | len

hue="column to compare"

)

plt.show()

ci="sd" changes the error bar to

standard deviation

estimator is used to specifiy the aggr

egation and takes any argument that works

on a list.(examples provided in code)

hue adds a nested categorical variableto

compare to the "y value column"

Boxplots

The box represents the interquartile range
The line in the middle of the box is the
median
The end lines are the first and third quarti-
les
The diamonds show outliers

sns.boxplot(

data=df,

x='label',

y='value',

optional

width=0.45

)
plt.show()

In Seaborn it's also possible to plot

multiple Boxplots in one viz

Violin Plots

Two KDE plots that are symmetrical along
the center line. (Just for visual effect)

A white dot represents the median.

The thick black line in the center of each

violin represents the interquartile range.

The lines that extend from the center are

the confidence intervals (95%)

sns.violinplot(

data=df, x="l

abel", y="valu

e"

)

KDE Plots show the distribution of an

univariate dataset.

univariate datasets have only one
variable.(e.g.: Temperature)

shade defines if the are under the line is

shaded

sns.kdeplot(dataset1, shade=True)

sns.kdeplot(dataset2, shade=True)

...

446 Appendix

Machine Learning

Scikit-Learn Python Cheat Sheet

Supervised

Learning

Unsupervised learning

The model maps No training is given to

input to an the model and it has to

output based on discover the features of

the previous input by self-training

input-output mechanism.

pairs

Scikit learn can be used in Classification,

Regression, Clustering, Dimensionality

reduction, Model Selection and

preprocessing by supervised and

unsupervised training models.

Basic Commands

>>> from sklearn import neighbors,

datasets, preprocessing

>>> from sklearn.model_selection import

train_test_split

>>> from sklearn.metrics import accuracy_‐

score

>>> iris = datasets.load_iris()

>>> X, y = iris.data[:, :2], iris.target

>>> X_train, X_test, y_train, y_test = train_‐

test_split(X, y, random_state=33)

>>> scaler = preprocessing.StandardScale‐

r().fit(X_train)

>>> X_train = scaler.transform(X_train)

>>> X_test = scaler.transform(X_test)

>>> knn = neighbors.KNeighborsClassifier‐

(n_neighbors=5)

>>> knn.fit(X_train, y_train)

>>> y_pred = knn.predict(X_test)

>>> accuracy_score(y_test, y_pred)

Loading Data example

The data being loaded should be numeric

and has to be stored as NumPy arrays or

SciPy sparse matrices.

>>> import numpy as np

>>> X = np.random.random((20,2))

>>> y = np.array(['A','B','C','D','E','F','G','‐

A','C','A','B'])

>>> X[X < 0.7] = 0

Standardi
‐

Normal
‐

Binarization

>>> from >>> from >>> from

sklearn.prep‐ sklearn.p‐

sklearn.p‐ rocessing

reproc‐ reproc‐

import essing essing

StandardS‐ import import

caler Normalizer Binarizer

>>> scaler = >>> scaler = >>>

StandardS‐ Normalize‐ binarizer =

caler().fit(X_t‐ r().fit(X‐ Binarizer‐

rain) _train) (threshol‐

>>> standa‐

rdized_X =

scaler.trans‐

form(X_train)

>>>
normal‐

ized_X =

scaler.tr‐

ansform(X‐

>>>

binary_X =

binarizer.tr

‐

>>> standa‐ >>> normalized_X_test =

rdized_X_test scaler.transform(X_test)

= scaler.tr‐

ansform(X‐

_test)

Processing Loaded Data

Training And Test Data

>>> from sklearn.model_selection import

train_test_split

>>> X_train, X_test, y_train, y_test = train_‐

test_split(X,y,random_state=0)

Supervised Learning Estimators

Linear

Regression

Support Naive Bayes

Vector

Machines

(SVM)

>>> from >>> from >>> from

sklearn.line‐ sklear‐ sklearn.naiv‐

ar_model n.svm e_bayes

import Linear‐ import import

Regression SVC GaussianNB

>>> lr = Linear‐

Regression(n‐

ormalize=True)

>>> svc

=

SVC(ke

‐

rnel='lin

>>> gnb =

Gaussi

‐

Creating Model

Creating Model

>>> from sklear‐ >>> from sklearn.c‐

n.decomposition luster import KMeans

import PCA

>>> pca = >>> k_means =

PCA(n_compon‐ KMeans(n_clusters=3,

ents=0.95) random_state=0)

K MeansPrincipal

Component

Analysis (PCA)

Unsupervised Learning Estimators

Supervised

Learning

Unsupervised learning

>>> lr.fit(X, y) >>> k_means.fit(X_train)

>>> knn.fit(X‐ >>> pca_model = pca.fi‐

_train, y_train) t_transform(X_train)

>>> svc.fit(X_train, y_train)

Model Fitting

http://>>>pca_model=pca.fi

447Appendix

Accuracy Score

>>> knn.score-
(X_test, y_test)

>>> from sklear-
n.metrics import
accuracy_score

Classification
Report

>>> from sklearn.m

-etrics import classi-
fication_report

>>> print(classific-
ation_report(y_test,
y_pred)))

Confusion Matrix

>>> from sklear-
n.metrics import
confusion_matrix

>>> print(confus-
ion_matrix(y_test,
y_pred)))

>>> accuracy_score(y_test, y_pred)

Classification Metrics Model Performance

Predicting output

Supervised Estimators

>>> y_pred = svc.predict(np.ran

-dom.random((2,5)))

>>> y_pred = lr.predict(X_test)

Unsupervised Estimators

>>> y_pred = k_means.p

-redict(X_test)

>>> y_pred = knn.predict_proba(X_test))

Adjusted Rand

Index

>>> from sklear-
n.metrics import
adjusted_ran-
d_score

Homogeneity Cross-Validation

>>> from sklear-
n.metrics import
homogeneity_-
score

>>> adjusted_ran >>> homogenei-
-d_score(y_true, ty_score(y_true,
y_pred)) y_pred))

>>> print(cross_
-val_score(knn,
X_train, y_train,
cv=4))

>>> print(cross_-
val_score(lr, X, y,
cv=2))

Clustering Metrics Model Performance

https://taylorandfrancis.com

449

Bibliography

Aeberhard, S., Coomans, D., and de Vel, O. (1992a) The classification performance of RDA. Technical Report
no. 92-01, Department of Computer Science and Department of Mathematics and Statistics, James Cook
University of North Queensland.

Aeberhard, S., Coomans, D., and de Vel, O. (1992b) Comparison of classifiers in high dimensional settings,
Technical Report no. 92-02, Department of Computer Science and Department of Mathematics and
Statistics, James Cook University of North Queensland.

Ayodele, T. (2010) Types of machine learning algorithms. In: Zhang, Y. (ed.) New Advances in Machine
Learning (pp. 19–48). InTech, London.

Bellman, R. (1958). Dynamic programming and stochastic control processes. Information and Control 1(3),
228–239.

Bioconductor.org. (2017) Bioconductor - BiocViews. [online] Available at: https://bioconductor.org/packages
[Accessed 28 December 2017].

Bone, D., Goodwin, M., Black, M., Lee, C., Audhkhasi, K., and Narayanan, S. (2014) Applying machine
learning to facilitate autism diagnostics: Pitfalls and promises. Journal of Autism and Developmental
Disorders, 45(5), 1121–1136.

Breiman, L. (2001) Random forests. Machine Learning, 45(1), 5–32.
Carbonell, J., Michalski, R., and Mitchell, T. (1983) An overview of machine learning. In: Machine Learning,

pp. 3–23. Springer, Berlin Heidelberg.
Chen, T., and Guestrin, C. (2016) XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, ACM, San
Francisco.

Cortes, C., and Vapnik, V. (1995) Support vector networks. Machine Learning, 20(3), 273–297.
Criminisi, A., and Shotton, J. (2013) Decision Forests for Computer Vision and Medical Image Analysis.

Springer, Berlin.
Data-mining-blog.com. (2017) RapidMiner at CeBIT 2010: The Enterprise Edition, Rapid-I and Cloud Mining -

Data Mining - Blog.com. [online] Available at: http://www.data-mining-blog.com/cloud-mining/rapid-
miner-cebit-2010/ [Accessed 20 December 2017].

De Ville, B. (2006) Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner.
SAS Institute, Cary.

Díaz-Uriarte, R., and Alvarez de Andrés, S. (2006) Gene selection and classification of microarray data using
random forest. BMC Bioinformatics, 7, 3.

Dietterich, T.G. (2000) An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine Learning, 40(2), 139–157.

Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., and Vapnik, V. (1997) Support vector regression machines.
In Conference on Advances in Neural Information Processing Systems, San Diego, pp. 155–161.

Duda, R.O., Hart, P.E., and Sytork, D.G. (2001) Pattern Classification, 2nd ed. John Wiley & Sons, Hoboken,
NJ.

Friedman, J., Hastie, T., and Tibshirani, R. (2001) The Elements of Statistical Learning, vol. 1. Springer Series
in Statistics New York, NY.

Geladi, P., and Kowalski, B.R. (1986) Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185,
1–17.

Hastie, T., Tibshirani, R., and Friedman, J. (2000) The Elements of Statistical Learning. Springer Series in
Statistics, Berlin, Heidelberg.

He, Q. (1999) A review of clustering algorithms as applied to IR. Technical Report UIUCLIS– 1999/6+IRG,
University of Illinois at Urbana-Champaign.

Hehn, T.M., and Hamprecht, F.A. (2018) End-to-end learning of deterministic decision trees. In German
Conference on Pattern Recognition, Berlin, Springer, pp. 612–627.

Ho, T.K. (1995) Random decision forests. Proceedings of the 3rd International Conference on Document
Analysis and Recognition, Montreal, QC, 14–16 August 1995, pp. 278–282.

Hyafil, L., and Rivest, R.L. (1976) Constructing optimal binary decision trees is NP-complete. Information
Processing Letters, 5(1), 15–17.

http://Bioconductor.org
https://bioconductor.org
http://Data-mining-blog.com
http://Blog.com
http://www.data-mining-blog.com
http://www.data-mining-blog.com

450 Bibliography

Jain, A.K., Murthy, M.N., and Flynn, P.J. (1999) Data clustering, a review. ACM Computing Surveys, 31(3),
265–323.

Jordan, M.I. (1994) A statistical approach to decision tree modeling. In Proceedings of the Seventh Annual
Conference on Computational Learning Theory, COLT’94, New York, NY, pp. 13–20.x

Karthikeyan, T., and Ravikumar, N. (2014) A survey on association rule mining. International Journal of
Advanced Research in Computer and Communication Engineering, 3(1), 2278–1021.

Kohavi, R., and John, G. (1997) Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.
Kuhn, M., and Johnson, K. (2013) Applied Predictive Modeling, vol. 26. Springer, Berlin, Heidelberg.
Kutner, M.H., Nachtsheim, C.J., Neter, J., and Li, W. (2005) Applied Linear Statistical Models, 5th ed. McGraw

Hill, New York.
LeCun, Y., Bengio, Y., and Hinton, G. (2015) Deep learning. Nature, 521(7553), 436–444.
Linde, Y., Buzo, A., and Gray, R.M. (1980) An algorithm for vector quantizer design. IEEE Transaction

Communications, COM-28(1), 84–95.
Montillo, A., Tu, J., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., and Criminisi, A. (2013) Entanglement

and differentiable information gain maximization, Chapter 19. In: Criminisi, A. and Shotton, J. (eds),
Decision Forests for Computer Vision and Medical Image Analysis, pp. 273–293). Springer, Berlin,
Heidelberg.

Prinzie, A., and Van den Poel, D. (2008) Random forests for multiclass classification: Random MultiNomial
Logit. Expert Systems with Applications, 34(3), 1721–1732.

Puterman, M.L. (2014) Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, Hoboken, NJ.

Quinlan, J.R. (1986) Induction of decision trees. Machine Learning, 1(1), 81–106.
Rakhmetulayeva, S.B., Duisebekova, K.S., Mamyrbekov, A.M., Kozhamzharova, D.K., Astaubayeva, G.N.,

and Stamkulova, K. (2018) Application of classification algorithm based on SVM for determining the
effectiveness of treatment of tuberculosis. Procedia Computer Science, 130, 231–238. doi: 10.1016/j.
procs.2018.04.034.

Rangarajan, L., and Nagabhushan, P. (2005) Linear regression for dimensionality reduction and classification
of multi dimensional data. In: Pal, S.K., Bandyopadhyay, S., and Biswas S. (eds), Pattern Recognition
and Machine Intelligence. PReMI 2005. Lecture Notes in Computer Science, vol. 3776. Springer, Berlin,
Heidelberg. doi: 10.1007/11590316_25.

Rokach, L. (2016) Decision forest: Twenty years of research. Information Fusion, 27, 111–125.
Shi, T., and Horvath, S. (2006) Unsupervised learning with random forest predictors. Journal of Computational

and Graphical Statistics, 15(1), 118–138. doi: 10.1198/106186006X94072.
Skiena, S.S. (2017) Linear and Logistic Regression. In: The Data Science Design Manual. Texts in Computer

Science. Springer, Cham. doi: 10.1007/978-3-319-55444-0_9.
Uyanık, G.K., and Güler, N. (2013) A study on multiple linear regression analysis. Procedia - Social and

Behavioral Sciences, 106, 234–240. doi: 10.1016/j.sbspro.2013.12.027.
Vapnik, V.N. (1995) Statistical Learning Theory. Springer, New York.
Xu, T., Duy Le, T., Liu, L., Su, N., Wang, R., Sun, B., Colaprico, A., Bontempi, G., and Li, J. (2017)

CancerSubtypes: An R/Bioconductor package for molecular cancer subtype identification, validation,
and visualization. Bioinformatics, 33(19), 3131–3133.

Yahiaoui, O. Er, and Yumusak, N. (2017) A new method of automatic recognition for tuberculosis disease diag-
nosis using support vector machines. Biomedical Research, 28(9), 1–9.

Zhang, Y. (2012) Support vector machine classification algorithm and its application. In: Liu, C., Wang, L., and
Yang, A. (eds), Information Computing and Applications. ICICA 2012. Communications in Computer
and Information Science, vol. 308. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-34041-3_27.

Zhang, Y., Zhu, Y., Lin, S., and Liu, X. (2011) Application of Least Squares Support Vector Machine in Fault
Diagnosis. In: Liu, C., Chang, J., and Yang, A. (eds.) ICICA 2011, Part II. CCIS, vol. 244, pp. 192–200.
Springer, Heidelberg.

datascienceschool.net.
Abdulhammed, R., Musafer, H., Alessa, A., Faezipour, M., and Abuzneid, A. (2019). Features dimensionality

reduction approaches for machine learning based network intrusion detection. Electronics, 8(3), 322.
hirogosomewhere.com.
http://cs.uef.fi/sipu/pub/MSc_JarkkoPiiroinen.pdf.
http://www.ee.columbia.edu/~vittorio/UnsupervisedLearning.pdf.
http://www.hnhdqp.com/.
http://www.incompleteideas.net/book/RLbook2020.pdf.
https://blog.clairvoyantsoft.com/eigen-decomposition-and-pca-c50f4ca15501.

http://datascienceschool.net
http://cs.uef.fi
http://cs.uef.fi
http://www.ee.columbia.edu
http://www.hnhdqp.com
http://www.incompleteideas.net
https://blog.clairvoyantsoft.com
https://doi.org/10.1016/j.procs.2018.04.034
https://doi.org/10.1016/j.procs.2018.04.034
https://doi.org/10.1007/11590316_25
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1016/j.sbspro.2013.12.027
https://doi.org/10.1007/978-3-319-55444-0_9
https://doi.org/10.1007/978-3-642-34041-3_27

451Bibliography

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-k-means-clustering-40e1d55e2f4c.
https://ieeexplore.ieee.org/document/7837907.
https://towardsdatascience.com/selecting-the-best-machine-learning-algorithm-for-your-regression-problem-

20c330bad4ef.
https://www.datacamp.com/community/tutorials/introduction-factor-analysis.
https://www.datasciencee.org/post/data-science-life-cycle.
https://www.displayr.com/what-is-hierarchical-clustering/.
https://www.ibm.com/cloud/learn/data-science-introduction#toc-data-scien-92g2jgm.
https://www.javatpoint.com/reinforcement-learning#Approaches.
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf.
https://www.kaggle.com/datasets?datasetsOnly=true.
https://www.kaggle.com/datasets?tags=13302-Classification.
https://www.python-course.eu/linear_discriminant_analysis.php.
https://www.researchgate.net/publication/316994943_Linear_discriminant_analysis_A_detailed_tutorial.
https://www.visiondummy.com/2014/05/feature-extraction-using-pca.
incompleteideas.net.
jonathonbechtel.com.
machinelearningmastery.com.
medium.com.
myditto.tistory.com.

https://heartbeat.fritz.ai
https://ieeexplore.ieee.org
https://towardsdatascience.com
https://towardsdatascience.com
https://www.datacamp.com
https://www.datasciencee.org
https://www.displayr.com
https://www.ibm.com
https://www.javatpoint.com
https://www.jmlr.org
https://www.kaggle.com
https://www.kaggle.com
https://www.python-course.eu
https://www.researchgate.net
https://www.visiondummy.com
http://incompleteideas.net
http://jonathonbechtel.com
http://machinelearningmastery.com
http://medium.com
http://myditto.tistory.com

https://taylorandfrancis.com

453

Index

action 378
adapter design pattern 2
administrators 143
agent 378
agglomerative 159, 160, 164
Apriori algorithm 401, 412
array creation 76, 78

indexing 85
array slicing 77
artificial intelligence 4
average linkage 162

bagging 282, 283
bargraph 93
Bellman optimality equation 384
bias 300, 301
boosting 283
bootstrap aggregating 283
brainstorm capabilities 352
branch/subtree 240
business intelligence analyst 142
business users 142

centroid distance 162
class-dependent transformation 366
classification 180, 181
classification predictive

modeling 179
class-independent transformation 366
complete linkage 162
computational complexity 97

asymptotic analysis 97
average-case complexity 97
best-case complexity 97
space complexity 97
time complexity 97
worst-case complexity 97

data analytics life cycle 104
data and workspaces 144
data engineers 143
data frame from list 95
data frames 95
data preparation 7
data science 1
data science life cycle 6
data scientists 143
data structures 34

array data structure 34, 35
arrays in Python 35
linked list 36
linked list in Python 36
queues 40
stacks and queues 38

data structures in Python 55
dictionary 58, 65
list 55, 58
nested list 59

set 58
tuples 55, 64

DBSCAN 170, 173
debugging 75; see also Python debugger
decision node 236
deep learning 4
density-connected 171, 172
density reachable 171, 172
describing structural patterns 2
deterministic policy 376, 380
devise capabilities 352
dimensionality reduction 357
discovery 7
distance-based clustering 148
distance measure 148
distplot 117
divisive 159, 161

elbow method 152
ELT 107, 108
ensemble model, random forest 440
entropy 240, 279–80
environment 378
ETL 107, 108
examine models 352
expectation step 166

FacetGrid 117
factor extraction 355
factor rotation 355, 356
file handling 74

append 74
create 74
read 74
text 74
write 74

flow control 24
if & elif statement 24
loop statement 25

Fpgrowth algorithms 401, 412
functions in python

default arguments 70
keyword arguments 70
lambda function 72
return 68, 72
variable-length arguments 71

Gini index 241, 279–80
global variables 69
gradient descent 202

HDFS files 110
heuristics 138

index error 74
information gain 240, 243

k clusters 151

454 Index

leaf/terminal node 239
least-squares estimates 192
least-squares regression line 194, 195
linear model, logistic regression 439
linked list

first 36
link 36
next 36

loading factor 356
local variables 69
logistic regression 219–29
loop control statement 26

break statement 26
continue statement 26
for loop 25
nested loop 25
pass statement 26
while loop 25

machine learning 4
maximization step 166
Mercer’s theorem 322
Minkowski metric 149
model-based 380
model building 7
model planning 7

non-parametric unsupervised learning 147

operationalize 7

palplot 114
parametric unsupervised learning 146
parent node/child node 237
pie chart 93
points, Euclidean distance 150
policy 378
policy-based 380
postpruning 246, 247
preprocessing 353
prepruning 246, 247
project manager 142
project sponsor 142
proximity measures 149
pruning 239
pyplot 92
Python 15, 16
Python debugger 75
Python on Linux 17
Python on Windows 16
Python operators

arithmetic operators 18, 19
assignment operators 18
comparison operators 18, 21
logical operators 18, 22
membership operators 19, 23
range() function 29

Q-value 378

RACI matrix 106
reading data from HTML files 110
reading data from JSON files 110
regression 179, 180, 181
regression predictive modeling 180

replot 113
reward signal 377
root mean squared error 180, 195
rooted absolute error 195
rooted square error 195
root node 239, 249

saturated data 8
seaborn 111
searching 42, 44

binary search 44
interpolation search 44
linear search 43

select capabilities 352
semi-supervised machine learning algorithm 4
series 95
sets, Jaccard distance 150
silhouette method 152
single linkage 161
SMEs/subject matter advisors (SMAs) 142
sorting 46

bubble sort 47
insertion sort 47, 49
merge sort 52, 53
quicksort 55
selection sort 51, 52
shell sort 54

splitting 239
stacks and queues

deque 38
isEmpty 38, 40
isFull 38, 40
peek 38, 40

state 378
statistics types

classification 4
forecasting 4
regression 4

stochastic gradient descent 205
stochastic policy 376, 380
structural patterns 2

adapter design pattern 2
bridge design pattern 2
composite design pattern 2
decorator design pattern 2
façade design pattern 3
private class 3
proxy 3

structured query language 110
subnode 239
supervised machine learning algorithm 3

terminal 239
tools set 144

unsaturated data 8
unsupervised machine learning algorithm 3

value 378
value-based 379
variance 300, 301
vectors, cosine distance 149

Ward’s method 163
wrappers 353

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Acknowledgment
	About the Authors
	Introduction
	Chapter 1 Introduction
	1.1 Introduction to Data Science
	1.1.1 Mathematics
	1.1.2 Statistics

	1.2 Describing Structural Patterns
	1.2.1 Uses of Structural Patterns

	1.3 Machine Learning and Statistics
	1.4 Relation between Artificial Intelligence, Machine Learning, NeuralNetworks, and Deep Learning
	1.5 Data Science Life Cycle
	1.6 Key Role of Data Scientist
	1.6.1 Difference between Data Scientist and Machine Learning Engineer

	1.7 Real-World Examples
	1.8 Use Cases
	1.8.1 Financial and Insurance Industries
	1.8.1.1 Fraud Mitigation
	1.8.1.2 Personalized Pricing
	1.8.1.3 AML – Anti-Money Laundering

	1.8.2 Utility Industries
	1.8.2.1 Smart Meter and Smart Grid
	1.8.2.2 Manage disaster and Outages
	1.8.2.3 Compliance

	1.8.3 Oil and Gas Industries
	1.8.3.1 Manage Exponential Growth
	1.8.3.2 3D Seismic Imaging and Kirchhoff
	1.8.3.3 Rapidly Process and Display Seismic Data

	1.8.4 E-Commerce and Hi-Tech Industries
	1.8.4.1 Association and Complementary Products
	1.8.4.2 Cross-Channel Analytics
	1.8.4.3 Event analytics

	Summary
	Review Questions

	Chapter 2 Overview of Python for Machine Learning
	2.1 Introduction
	2.1.1 The Flow of Program Execution in Python

	2.2 Python for Machine Learning
	2.2.1 Why Is Python Good for ML?

	2.3 Setting up Python
	2.3.1 Python on Windows
	2.3.2 Python on Linux
	2.3.2.1 Ubuntu

	2.4 Python Basics
	2.4.1 Python Operators
	2.4.1.1 Arithmetic Operators
	2.4.1.2 Comparison Operators
	2.4.1.3 Assignment Operators
	2.4.1.4 Logical Operators
	2.4.1.5 Membership Operators

	2.4.2 Python Code Samples on Basic Operators
	2.4.2.1 Arithmetic Operators
	2.4.2.2 Comparison Operators
	2.4.2.3 Logical Operators
	2.4.2.4 Membership Operators

	2.4.3 Flow Control
	2.4.3.1 If & elif Statement
	2.4.3.2 Loop Statement
	2.4.3.3 Loop Control Statements

	2.4.4 Python Code Samples on Flow Control Statements
	2.4.4.1 Conditional Statements
	2.4.4.2 Python if...else Statement
	2.4.4.3 Python if…elif…else Statement
	2.4.4.4 The For Loop
	2.4.4.5 The range() Function
	2.4.4.6 For Loop with else
	2.4.4.7 While Loop
	2.4.4.8 While Loop with else
	2.4.4.9 Python Break and Continue
	2.4.4.10 Python Break Statement
	2.4.4.11 Python Continue Statement

	2.4.5 Review of Basic Data Structures and Implementation in Python
	2.4.5.1 Array Data Structure
	2.4.5.2 Implementation of Arrays in Python
	2.4.5.3 Linked List
	2.4.5.4 Implementation of Linked List in Python
	2.4.5.5 Stacks and Queues
	2.4.5.6 Queues
	2.4.5.7 Implementation of Queue in Python
	2.4.5.8 Searching
	2.4.5.9 Implementation of Searching in Python
	2.4.5.10 Sorting
	2.4.5.11 Implementation of Bubble Sort in Python
	2.4.5.12 Insertion Sort
	2.4.5.13 Implementation of Insertion Sort in Python
	2.4.5.14 Selection Sort
	2.4.5.15 Implementation of Selection Sort in Python
	2.4.5.16 Merge Sort
	2.4.5.17 Implementation of Merge Sort in Python
	2.4.5.18 Shell Sort
	2.4.5.19 Quicksort
	2.4.5.20 Data Structures in Python with Sample Codes
	2.4.5.21 Python Code Samples for Data Structures in Python

	2.4.6 Functions in Python
	2.4.6.1 Python Code Samples for Functions
	2.4.6.2 Returning Values from Functions
	2.4.6.3 Scope of Variables
	2.4.6.4 Function Arguments

	2.4.7 File Handling
	2.4.8 Exception Handling
	2.4.9 Debugging in Python
	2.4.9.1 Packages

	2.5 Numpy Basics
	2.5.1 Introduction to Numpy
	2.5.1.1 Array Creation
	2.5.1.2 Array Slicing

	2.5.2 Numerical Operations
	2.5.3 Python Code Samples for Numpy Package
	2.5.3.1 Array Creation
	2.5.3.2 Class and Attributes of ndarray—.ndim
	2.5.3.3 Class and Attributes of ndarray—.shape
	2.5.3.4 Class and Attributes of ndarray—ndarray.size, ndarray.Itemsize, ndarray.resize
	2.5.3.5 Class and Attributes of ndarray—.dtype
	2.5.3.6 Basic Operations
	2.5.3.7 Accessing Array Elements: Indexing
	2.5.3.8 Shape Manipulation
	2.5.3.9 Universal Functions (ufunc) in Numpy
	2.5.3.10 Broadcasting
	2.5.3.11 Args and Kwargs

	2.6 Matplotlib Basics
	2.6.1 Creating Graphs with Matplotlib

	2.7 Pandas Basics
	2.7.1 Getting Started with Pandas
	2.7.2 Data Frames
	2.7.3 Key Operations on Data Frames
	2.7.3.1 Data Frame from List
	2.7.3.2 Rows and Columns in Data Frame

	2.8 Computational Complexity
	2.9 Real-world Examples
	2.9.1 Implementation using Pandas
	2.9.2 Implementation using Numpy
	2.9.3 Implementation using Matplotlib

	Summary
	Review Questions
	Exercises for Practice

	Chapter 3 Data Analytics Life Cycle for Machine Learning
	3.1 Introduction
	3.2 Data Analytics Life Cycle
	3.2.1 Phase 1 – Data Discovery
	3.2.2 Phase 2 – Data Preparation and Exploratory Data Analysis
	3.2.2.1 Exploratory Data Analysis

	3.2.3 Phase 3 – Model Planning
	3.2.4 Phase 4 – Model Building
	3.2.5 Phase 5 – Communicating Results
	3.2.6 Phase 6 – Optimize and Operationalize the Models

	Summary
	Review Questions

	Chapter 4 Unsupervised Learning
	4.1 Introduction
	4.2 Unsupervised Learning
	4.2.1 Clustering

	4.3 Evaluation Metrics for Clustering
	4.3.1 Distance Measures
	4.3.1.1 Minkowski Metric

	4.3.2 Similarity Measures

	4.4 Clustering Algorithms
	4.4.1 Hierarchical and Partitional Clustering Approaches
	4.4.2 Agglomerative and Divisive Clustering Approaches
	4.4.3 Hard and Fuzzy Clustering Approaches
	4.4.4 Monothetic and Polythetic Clustering Approaches
	4.4.5 Deterministic and Probabilistic Clustering Approaches

	4.5 k-Means Clustering
	4.5.1 Geometric Intuition, Centroids
	4.5.2 The Algorithm
	4.5.3 Choosing k
	4.5.4 Space and Time Complexity
	4.5.5 Advantages and Disadvantages of k-Means Clustering
	4.5.5.1 Advantages
	4.5.5.2 Disadvantages

	4.5.6 k-Means Clustering in Practice Using Python
	4.5.6.1 Illustration of the k-Means Algorithm Using Python

	4.5.7 Fuzzy k-Means Clustering Algorithm
	4.5.7.1 The Algorithm

	4.5.8 Advantages and Disadvantages of Fuzzy k-Means Clustering

	4.6 Hierarchical Clustering
	4.6.1 Agglomerative Hierarchical Clustering
	4.6.2 Divisive Hierarchical Clustering
	4.6.3 Techniques to Merge Cluster
	4.6.4 Space and Time Complexity
	4.6.5 Limitations of Hierarchical Clustering
	4.6.6 Hierarchical Clustering in Practice Using Python
	4.6.6.1 DATA_SET

	4.7 Mixture of Gaussian Clustering
	4.7.1 Expectation Maximization
	4.7.2 Mixture of Gaussian Clustering in Practice Using Python

	4.8 Density-Based Clustering Algorithm
	4.8.1 DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
	4.8.2 Space and Time Complexity
	4.8.3 Advantages and Disadvantages of DBSCAN
	4.8.3.1 Advantages
	4.8.3.2 Disadvantages

	4.8.4 DBSCAN in Practice Using Python

	Summary
	Review Questions

	Chapter 5 Supervised Learning: Regression
	5.1 Introduction
	5.2 Supervised Learning – Real-Life Scenario
	5.3 Types of Supervised Learning
	5.3.1 Supervised Learning – Classification
	5.3.1.1 Classification – Predictive Modeling

	5.3.2 Supervised Learning – Regression
	5.3.2.1 Regression Predictive Modeling

	5.3.3 Classification vs. Regression
	5.3.4 Conversion between Classification and Regression Problems

	5.4 Linear Regression
	5.4.1 Types of Linear Regression
	5.4.1.1 Simple Linear Regression
	5.4.1.2 Multiple Linear Regression

	5.4.2 Geometric Intuition
	5.4.3 Mathematical Formulation
	5.4.4 Solving Optimization Problem
	5.4.4.1 Maxima and Minima
	5.4.4.2 Gradient Descent
	5.4.4.3 LMS (Least Mean Square) Update Rule
	5.4.4.4 SGD Algorithm

	5.4.5 Real-World Applications
	5.4.5.1 Predictive Analysis
	5.4.5.2 Medical Outcome Prediction
	5.4.5.3 Wind Speed Prediction
	5.4.5.4 Environmental Effects Monitoring

	5.4.6 Linear Regression in Practice Using Python
	5.4.6.1 Simple Linear Regression Using Python
	5.4.6.2 Multiple Linear Regression Using Python

	Summary
	Review Questions

	Chapter 6 Supervised Learning: Classification
	6.1 Introduction
	6.2 Use Cases of Classification
	6.3 Logistic Regression
	6.3.1 Geometric Intuition
	6.3.2 Variants of Logistic Regression
	6.3.2.1 Simple Logistic Regression
	6.3.2.2 Multiple Logistic Regression
	6.3.2.3 Binary Logistic Regression
	6.3.2.4 Multiclass Logistic Regression
	6.3.2.5 Nominal Logistic Regression
	6.3.2.6 Ordinal Logistic Regression

	6.3.3 Optimization Problem
	6.3.4 Regularization
	6.3.5 Real-World Applications
	6.3.5.1 Medical Diagnosis
	6.3.5.2 Text Classification
	6.3.5.3 Marketing

	6.3.6 Logistic Regression in Practice using Python
	6.3.6.1 Variable Descriptions
	6.3.6.2 Checking for Missing Values
	6.3.6.3 Converting Categorical Variables to a Dummy Indicator

	6.4 Decision Tree Classifier
	6.4.1 Important Terminology in the Decision Tree
	6.4.2 Example for Decision Tree
	6.4.3 Sample Decision Tree
	6.4.4 Decision Tree Formation
	6.4.5 Algorithms Used for Decision Trees
	6.4.5.1 ID3 Algorithm
	6.4.5.2 C 4.5 Algorithm
	6.4.5.3 CART Algorithm

	6.4.6 Overfitting and Underfitting
	6.4.6.1 Overfitting
	6.4.6.2 Underfitting
	6.4.6.3 Pruning to Avoid Overfitting

	6.4.7 Advantages and Disadvantages
	6.4.7.1 Advantages
	6.4.7.2 Disadvantages

	6.4.8 Decision Tree Examples
	6.4.9 Regression Using Decision Tree
	6.4.10 Real-World Examples
	6.4.10.1 Predicting Library Book
	6.4.10.2 Identification of Tumor
	6.4.10.3 Classification of Telescope Image
	6.4.10.4 Business Management
	6.4.10.5 Fault Diagnosis
	6.4.10.6 Healthcare Management
	6.4.10.7 Decision Tree in Data Mining

	6.4.11 Decision Trees in Practice Using Python

	6.5 Random Forest Classifier
	6.5.1 Random Forest and Their Construction
	6.5.2 Sampling of the Dataset in Random Forest
	6.5.2.1 Creation of Subset Data

	6.5.3 Pseudocode for Random Forest
	6.5.3.1 Pseudocode for Prediction in Random Forest

	6.5.4 Regression Using Random Forest
	6.5.5 Classification Using Random Forest
	6.5.5.1 Random Forest Problem for Classification – Examples

	6.5.6 Features and Properties of Random Forest
	6.5.6.1 Features
	6.5.6.2 Properties

	6.5.7 Advantages and Disadvantages of Random Forest
	6.5.7.1 Advantages
	6.5.7.2 Disadvantages

	6.5.8 Calculation of Error Using Bias and Variance
	6.5.8.1 Bias
	6.5.8.2 Variance
	6.5.8.3 Properties of Bias and Variance

	6.5.9 Time Complexity
	6.5.10 Extremely Randomized Tree
	6.5.11 Real-World Examples
	6.5.11.1 Machine Fault Diagnosis
	6.5.11.2 Medical Field
	6.5.11.3 Banking
	6.5.11.4 E-Commerce
	6.5.11.5 Security

	6.5.12 Random Forest in Practice Using Python

	6.6 Support Vector Machines
	6.6.1 Geometric Intuition
	6.6.2 Mathematical Formulation
	6.6.2.1 Maximize Margin with Noise
	6.6.2.2 Slack Variable ᶓ[sub(i)]

	6.6.3 Loss Minimization
	6.6.4 Dual Formulation
	6.6.5 The Kernel Trick
	6.6.6 Polynomial Kernel
	6.6.6.1 Mercer’s Theorem
	6.6.6.2 Radial Basis Function (RBF) Kernel
	6.6.6.3 Other Domain-Specific Kernel
	6.6.6.4 Sigmoid Kernel
	6.6.6.5 Exponential Kernel
	6.6.6.6 ANOVA Kernel
	6.6.6.7 Rational Quadratic Kernel
	6.6.6.8 Multiquadratic Kernel
	6.6.6.9 Inverse Multiquadratic Kernel
	6.6.6.10 Circular Kernel
	6.6.6.11 Bayesian Kernel
	6.6.6.12 Chi-Square Kernel
	6.6.6.13 Histogram Intersection Kernel
	6.6.6.14 Generalized Histogram Intersection Kernel

	6.6.7 nu SVM
	6.6.8 SVM Regression
	6.6.9 One-Class SVM
	6.6.10 Multiclass SVM
	6.6.10.1 One against All
	6.6.10.2 One against One
	6.6.10.3 Directed Acyclic Graph SVM

	6.6.11 SVM Examples
	6.6.12 Real-World Applications
	6.6.12.1 Classification of Cognitive Impairment
	6.6.12.2 Preprocessing
	6.6.12.3 Feature Extraction
	6.6.12.4 SVM Classification
	6.6.12.5 Procedure
	6.6.12.6 Performance Analysis
	6.6.12.7 Text Categorization
	6.6.12.8 Handwritten Optical Character Recognition
	6.6.12.9 Natural Language Processing
	6.6.12.10 Cancer Prediction
	6.6.12.11 Stock Market Forecasting
	6.6.12.12 Protein Structure Prediction
	6.6.12.13 Face Detection Using SVM

	6.6.13 Advantages and Disadvantages of SVM

	6.7 SVM Classification in Practice Using Python
	6.7.1 Support Vectors
	6.7.2 What Is a Hyperplane?

	Summary
	Review Questions

	Chapter 7 Feature Engineering
	7.1 Introduction
	7.2 Feature Selection
	7.2.1 Wrapper Methods
	7.2.1.1 Forward Selection
	7.2.1.2 Backward Elimination
	7.2.1.3 Exhaustive Feature Selection

	7.2.2 Featured Methods

	7.3 Factor Analysis
	7.3.1 Types of Factor Analysis
	7.3.2 Working of Factor Analysis
	7.3.3 Terminologies
	7.3.3.1 Definition of Factor
	7.3.3.2 Factor Loading
	7.3.3.3 Eigenvalues
	7.3.3.4 Communalities
	7.3.3.5 Factor Rotation
	7.3.3.6 Selecting the Number of Factors

	7.4 Principal Component Analysis
	7.4.1 Center the Data
	7.4.2 Normalize the Data
	7.4.3 Estimate the Eigen decomposition
	7.4.4 Project the Data

	7.5 Eigenvalues and PCA
	7.5.1 Usage of eigendecomposition in PCA

	7.6 Feature Reduction
	7.6.1 Factor Analysis Vs. Principal Component Analysis

	7.7 PCA Transformation in Practice Using Python
	7.8 Linear Discriminant Analysis
	7.8.1 Mathematical Operations in LDA

	7.9 LDA Transformation in Practice Using Python
	7.9.1 Implementation of Scatter within the Class (Sw)
	7.9.2 Implementation of Scatter between Class (Sb)

	Summary
	Review Questions

	Chapter 8 Reinforcement Engineering
	8.1 Introduction
	8.2 Reinforcement Learning
	8.2.1 Examples of Reinforcement Learning

	8.3 How RL Differs from Other ML Algorithms?
	8.3.1 Supervised Learning

	8.4 Elements of Reinforcement Learning
	8.4.1 Policy
	8.4.2 Reward Signal
	8.4.3 Value Function
	8.4.3.1 Examples of Rewards

	8.4.4 Model of the Environment
	8.4.5 The Reinforcement Learning Algorithm
	8.4.6 Methods to Implement Reinforcement Learning in ML

	8.5 Markov Decision Process
	8.5.1 Preliminaries
	8.5.2 Value Functions

	8.6 Dynamic Programming
	8.6.1 Policy Evaluation
	8.6.2 Policy Improvement
	8.6.3 Policy Iteration
	8.6.4 Efficiency of Dynamic Programming
	8.6.5 Dynamic Programming in Practice using Python

	Summary
	Review Questions

	Chapter 9 Case Studies for Decision Sciences Using Python
	9.1 Use Case 1 − Retail Price Optimization Using Price Elasticity ofDemand Method
	9.1.1 Background
	9.1.2 Understanding the Data
	9.1.3 Conclusion

	9.2 Use Case 2 − Market Basket Analysis (MBA)
	9.2.1 Introduction
	9.2.2 Understating the Data
	9.2.3 Conclusion

	9.3 Use Case 3 − Sales Prediction of a Retailer
	9.3.1 Background
	9.3.2 Understanding the Data
	9.3.3 Conclusion

	9.4 Use Case 4 − Predicting the Cost of Insurance Claims for aProperty and Causalty (P&C) Insurance Company
	9.4.1 Background
	9.4.2 Understanding the Data

	9.5 Use Case 5 − E-Commerce Product Ranking and Sentiment Analysis
	9.5.1 Background
	9.5.2 Understanding the Data

	Summary
	Review Questions

	Appendix: Python Cheat Sheet for Machine Learning
	Bibliography
	Index

