

Rapid Product
Development with n8n
Practical guide to creating digital products on the
web using workflow automation and n8n

Jason McFeetors

Tanay Pant

n8n IS AN IMPRINT OF PACKT PUBLISHING

Rapid Product Development with n8n
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Dhruv Kataria
Senior Editor: Sofi Rogers
Content Development Editor: Feza Shaikh
Technical Editor: Shubham Sharma
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Teny Thomas

First published: February 2022

Production reference: 1230222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80181-736-3

www.packt.com

http://www.packt.com

To my wife, Janelle, and daughters, Rayna and Caris, who put up with
endless conversations about writing, technical documentation, JSON, and

APIs. I would not have been able to do this without them as my inspiration.

– Jason McFeetors

To my companion and best friend, Isabel, who helped me fight
procrastination and finish this book in time. To my family and everyone

who has supported me with all the things I have been working on. It's easier
standing on the shoulders of giants :)

– Tanay Pant

Foreword
I created n8n, an open and free (https://faircode.io/) workflow automation tool, in
2019. Since its inception, n8n has attracted creators and developers to build digital products
online quickly. To fuel the learning and utility of n8n, Tanay and Jason have come up with
this step-by-step guide to n8n that will get you up and running with it in no time.

Tanay and Jason are tech advocates who work closely with the community. They have
distilled their years of experience in this hands-on book that will make you appreciate
the versatility of n8n. This book enables all web developers to build apps that automate
repetitive tasks and make things easier for teams and start-ups. I am fascinated by the
easy-to-follow approach of this book about n8n. We created n8n to be an easy-to-use
platform. However, with its range of capabilities, a good guide is a must for everyone
taking their first step in exploring n8n. This book does that job for everyone.

I recommend this book and encourage people to take the journey into the world of n8n.
Finally, I hope you enjoy reading the book as much as I did.

Jan Oberhauser

Founder and CEO, n8n.io

https://faircode.io/

Contributors

About the authors
Jason McFeetors works as a senior management consultant for a large IT consulting firm
in Canada, where he is presently working with a team designing and building cloud-based
call center solutions. Jason has been working in the IT industry for over 25 years and
has worked at nearly every level in the industry, from support tech to system architect to
chief technology officer. His love for all things tech takes him to all sectors of the industry,
including software development, hardware design, automation, and IoT. His work has
previously been featured in Popular Science and Lifehacker.

If it had not been for Tanay going out on a limb and asking me to work on this project with
him, it would have never crossed my mind. You are a true inspiration. And to the n8n team
and community, your support and encouragement have allowed me to believe the impossible

is within my grasp.

Tanay Pant is an author, speaker, and developer relations expert. He has written the
books Learning Web-based Virtual Reality, Building a Virtual Assistant for Raspberry Pi,
and Learning Firefox OS Application Development. He has been listed in the about credits
of the Firefox web browser for his contributions to the different open source projects of
the Mozilla Foundation. He also writes for several websites, such as SitePoint and Tuts+,
where he shares tips and tricks about web development.

I would like to thank my co-author, Jason, and the whole n8n team for supporting me with
this book and for nurturing the next generation of builders.

About the reviewers
Max Tkacz is a principal product designer. He's a low-code evangelist who's
focused on building and scaling products that empower makers to create more
easily. He is experienced in automation, blockchain, and fintech. He works to give
automation superpowers to all as head of design at n8n. 

Omar Ajoue was born and raised in Brazil, where he studied computer science.

His life in technology started early, at the age of 10, when he would dismantle broken
toys to understand how they worked. Piles of batteries, wires, motors, and electronic
components were part of his collection.

He always loved tinkering, but mostly destroying, in order to learn. He was never focused
on building stuff until he got his first job as a programmer.

With no previous experience, he spent 7 years working for the same company, which
taught him his future craft: software development.

With broad experience in the IT industry, Omar worked as a software engineer, team lead,
and CEO and is now a senior software engineer for n8n.

Table of Contents
Preface

Section 1 – An Introduction to Your Toolkit

1
Introduction to No Code, n8n, and Bubble

Technical requirements� 4
What is no code?� 4
Why does no code matter?� 5
An introduction to n8n� 7
Installing n8n� 10

How do people use n8n to solve
problems?� 14
CRM call recording access� 15
Goomer pivots during COVID-19� 15
n8n sails the seven seas� 16

An introduction to Bubble� 16
Summary� 17

2
Using the Editor UI to Create Workflows

Technical requirements� 20
Introduction to the Editor UI� 20
Exploring the regular and
trigger nodes� 22
Expressions – using dynamic
data� 28

Workflows – putting it all
together� 31
Creating your first workflow –
Hello World� 33
Summary� 38

viii Table of Contents

3
Diving into Core Nodes and Data in n8n

Technical requirements� 40
Introduction to the data
structure in n8n� 40
JSON syntax� 41
n8n JSON structure� 43

Function node – Custom
JavaScript in workflows� 46
The items array� 48
Dot notation� 48
Outputting data� 50
Data from other nodes
(the $items method)� 50
Manipulating data� 51

HTTP Request node – Talk to
any API� 53
Web API 101� 53
Anatomy of an API URL� 54

Other parameters� 55
HTTP methods� 56
Response codes� 57
Basic API call� 58
Using basic authentication� 60

Webhook node – Handling real-
time events� 61
Creating a basic test Webhook� 62
Sending information to n8n� 64
Responding to the client� 64

Working with arrays and JSON
objects� 65
Separating the cats from the dogs� 67
Combining two arrays� 67
Adding the same value to all JSON
objects� 68

Summary� 69

4
Learn by Doing: Building Two
n8n Apps

Technical requirements� 72
Building products with n8n� 72
Building a Telegram bot� 72
Building a metrics dashboard� 82

Sharing and discovering
workflows� 92
Summary� 93

Table of Contents ix

Section 2 – Building an API to Power Your
Application

5
Building Your First API Endpoints

Technical requirements� 98
Planning your project's API� 99
Easy to understand� 99
Output data in JSON� 99
Using the GET, HEAD, and POST HTTP
methods� 99
Knowing what your API will do� 100
Having meaningful and consistent
response codes� 100
Consistent noun/verb design� 102
Submitting data� 102
Versioning your API� 103
Documenting your API� 103

Configuring the Webhook node
to handle requests� 106
Parameters� 107
Response Code� 112
Response Mode� 112

Building the API in n8n� 114
API project specifications� 114

Creating credentials� 115
Creating Webhooks� 116
The rest of the workflow� 116

Securing your API endpoints� 117
Using SSL/TLS security� 117
Limiting where users come from� 117
Proxying your API� 117
Rotating security tokens� 118
Tracking and limiting the number of
requests� 118
Providing metadata in your API
responses� 118

Testing your API� 119
Use a testing platform� 119
Follow the documentation� 119
Try to break it� 119
Confirm the data� 120
Ongoing testing� 120

Summary� 120

6
Powering Your API with a No Code Database

Technical requirements� 122
Learning about no code
databases� 122
Selecting a database for your
project� 123

Using Airtable for reading and
writing data� 125
Best practices for working with
databases� 132
Minimizing bandwidth� 132
Compressing data� 132

x Table of Contents

Minimizing API calls� 133
Minimizing database queries� 133
Minimizing database writes� 133
Enabling data caching� 133
Backing up the database� 134
Recording transactions� 134
Using record references and
table views� 134
Securing your database� 135
Performing calculations on the
database� 135
Load testing the database� 135

Optimizing your API for
production� 136
Reducing database calls� 136
Caching data before the API� 136
Minimizing API calls� 136
Requiring authentication� 136
Encrypting API data on the wire� 137
Tracking API requests� 137
Tying API users to IP addresses� 137
Limiting the number of API calls per
user per second� 138
Properly documenting the API� 138

Summary� 138

7
Transforming Your Data inside a Workflow

Technical requirements� 140
Sharing data between
workflows� 140
Merging datasets� 144

Performing calculations and
analytics� 147
Summary� 153

8
Utilizing the Bubble API in n8n

Technical requirements� 156
Introducing the Bubble API� 156
Bubble API endpoints� 157
Bubble API settings� 160

Understanding Bubble's data
structure� 161
Data types� 161
Data security (privacy)� 162

Understanding Bubble's
workflow engine� 164
Using Bubble's Data API� 166

Authentication� 166
Data manipulation� 167
Searching for data� 171

Using Bubble's Workflow API� 173
Activating a workflow� 173
Sending data to a workflow� 174

Receiving events and data from
Bubble� 176
Configuring n8n� 176
Configuring Bubble� 176

Summary� 179

Table of Contents xi

Section 3 – Building the User Interface and
Connecting the API

9
Building the User Interface of the Application

Implementing responsive
design for your web app� 184
Responsive design factors� 185
Using the Responsive Viewer� 188
Learning more� 189

Working with events in Bubble� 190
Event types� 190
Setting up events� 192
Going deeper� 193

Validating data in Bubble� 193
Field types� 194
Custom data types� 194

Using the fields� 195
More data validation� 195

Designing the application
structure� 196
Reviewing the design� 198

Dealing with errors in Bubble� 198
Planning for user error� 199
Locking down the application� 199
Detailed logging� 199
Debugging tools� 199

Summary� 201

10
We’ve Only Just Begun

We’ve come a long way� 203
Introducing no-code tools� 204
APIs and data� 204
Building the user interface� 204

Where to next?� 205
Look for a problem to solve� 205
Dream big and start small� 206
Start an automation journal� 206

Get ideas from others� 206

Starting your next project� 207
Break it down� 207
Write it down� 207
Review n8n nodes� 207
Steal others’ code� 207

Conclusion� 207

Index

Other Books You May Enjoy

Preface
n8n enables users to connect different systems and cloud services without needing
expensive developers or technical skillsets. It allows you to reduce the time required to
develop new products, helping you bring them to the market quicker than if you had to
muster a whole development team.

Developers working with n8n will be able to put their knowledge to work with this
practical guide to building low-code applications. The book takes a hands-on approach
to implementation and associated methodologies that will have you up and running and
productive in no time.

You will begin by learning about where n8n fits in the tech stack of your business and
how it provides opportunities for reducing costs as well as increasing efficiency and
revenue. Later, you will identify opportunities where you can leverage n8n's connectivity
and automation functionality within your working environment and progress to building
out an n8n-based toolset that will immediately have a positive effect on your operation's
bottom line.

By the end of this book, you will be able to identify real-world opportunities to generate
income, improve efficiency, and build tools to capitalize on those opportunities.

Who this book is for
This book is for web developers and low-code enthusiasts who have basic knowledge of
the JavaScript programming language and web concepts such as APIs and webhooks.
The book assumes beginner-level knowledge of JavaScript programming.

What this book covers
Chapter 1, Introduction to No Code, n8n, and Bubble, is where you will gain an
understanding of no code and why it is becoming important to business and technology.
You will also become familiar with n8n, a no code automation tool, and Bubble, a no-code
development platform.

xiv Preface

Chapter 2, Using the Editor UI to Create Workflows, teaches you how to use n8n's Editor
UI. You will also learn about the different kinds of nodes in n8n and how to use them.
You will then learn about workflows, deal with dynamic data, and finally create your first
workflow in n8n.

Chapter 3, Diving into Core Nodes and Data in n8n, is where you will learn how to
use n8n's data structure to manipulate and transform data inside workflows, and use
JavaScript inside your low-code workflows to unlock custom functionalities. You'll call
REST APIs from inside your workflows using the HTTP Request node. The chapter
will also cover how to handle real-time events using the Webhook node and how to
trigger workflows based on this data. You'll work with arrays and JSON objects inside
n8n, understand when to use what kind of data format, and transform data inside your
workflows.

Chapter 4, Learn by Doing: Building Two n8n Apps, shows you how to combine concepts
from the previous chapters and use them to build multiple projects. Some of these projects
will reinforce the concepts you learned earlier and others will introduce some new ideas.
This will help you understand the kind of products that you can build using n8n. Finally,
you will learn how to share and discover new workflows as well as participate in n8n's
active community.

Chapter 5, Building Your First API Endpoints, will see you create blueprints for an API
endpoint so that there's minimal friction when building the API; you'll also configure the
Webhook node so that it can handle requests sent to the API and reply to them. You'll
build an API endpoint in n8n based on the blueprints that you created earlier, and you'll
secure your API endpoints by using the different authentication methods available in the
Webhook node. Later, you'll also test your API to make sure that all the functionalities
that you implemented work as expected.

Chapter 6, Powering Your API with a No Code Database, shows you how to work with
no-code databases for data storage. You will learn about no-code databases, selecting a
database for your project, and reading and writing to Airtable. You will also learn about
some of the best practices when working with these databases. The concepts covered in
this chapter will help you to use a data store for your projects to store user-generated data
and build a complete product.

Chapter 7, Transforming Your Data inside a Workflow, explores how to manipulate data
within workflows so that the APIs that you create can return data in a useful format. You
will also learn about sharing data between workflows, working with arrays and JSON
objects, merging datasets, and performing analytics and calculations.

To get the most out of this book xv

Chapter 8, Utilizing the Bubble API in n8n, looks at how to communicate between Bubble
and n8n, access Bubble's data using the Data API, use Bubble's workflows and interact
with them using the Workflow API, and receive events and data from Bubble in n8n.

Chapter 9, Building the User Interface of the Application, dives into how to design
responsive applications using the Bubble graphical user interface and how the look and
feel of an application can change the user experience. You'll learn about underlying data
structures and how to guide users to enter appropriate data into data structures. You'll
discover how to identify errors in applications and workflows and proactively handle how
errors are presented to users. Finally, you'll design a logging system to capture events and
errors and analyze data captured in logs for application improvement.

Chapter 10, We've Only Just Begun, is where you'll see how far you've come in such a short
period of time! In this last chapter, you'll have a look at what you learned from the book
and get some help in finding and starting that next n8n project!

To get the most out of this book
Depending on the version that you are presently using, you may notice that what is on
your screen may look a bit different than what is in the book. As we were nearing the
end of the book, n8n updated their user interface, which explains why the examples here
are different. With that being said, the scripts all continue to work exactly the same as
described in the book and should work just fine for you.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Rapid-Product-Development-with-n8n.
If there's an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n

xvi Preface

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in
this book. You can download it here:

https://static.packt-cdn.com/downloads/9781801817363_
ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Now, go to your bot and enter /pokemon ditto."

A block of code is set as follows:

<html>
<body>
<h1>From n8n with love </h1>
Host: {{$json["headers"]["host"]}}
</br>
User Agent: {{$json["headers"]["user-agent"]}}
</body>
</html>

Any command-line input or output is written as follows:

npm install pm2@latest -g

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Next up,
we have the Executions tab, which opens up a modal (popup) where you can view the
executions of your different workflows."

Tips or Important Notes
Appear like this.

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801817363_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801817363_ColorImages.pdf

Get in touch xvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Rapid Product Development with n8n, we'd love to hear your thoughts!
Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://customercare@packtpub.com
http://www.packtpub.com/support/errata
http://copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801817367

Section 1 –
An Introduction to

Your Toolkit

In this section, you will learn about the low-code space, install n8n, learn how n8n works,
and build workflows for your specific use cases.

In this section, there are the following chapters:

•	 Chapter 1, Introduction to No Code, n8n, and Bubble

•	 Chapter 2, Using the Editor UI to Create Workflows

•	 Chapter 3, Diving into Core Nodes and Data in n8n

•	 Chapter 4, Learn by Doing: Building two n8n Apps

1
Introduction to

No Code, n8n, and
Bubble

A movement is slowly building in the tech industry. This movement sees ordinary
computer users developing digital solutions and integrations with tools that abstract away
computer code complexity. These tools, collectively referred to as no code tools, empower
people who, previously, would never have been able to build solutions.

By the end of this chapter, you will have an understanding of no code and why it is
becoming important to businesses and technology. You will also become familiar with
n8n, a no code automation tool, and Bubble, a no code development platform.

This chapter will cover the following main topics:

•	 What is no code?

•	 Why does no code matter?

•	 An introduction to n8n

•	 How do people use n8n to solve problems?

•	 An introduction to Bubble

4 Introduction to No Code, n8n, and Bubble

Technical requirements
For this chapter, you will need the following requirements:

•	 A computer running a Debian-based Linux distribution such as Ubuntu or
Raspberry Pi OS

•	 Internet access to install n8n

What is no code?
Software has completely revolutionized how we work and live over the last half-century. In
as little as half a century, expensive and bulky systems reserved for science and academia
have evolved to become as ubiquitous as the kitchen sink, and often more affordable. We
now collaborate with people on the other side of the planet as effortlessly as we talk with
our neighbors over the back fence.

These systems have transformed modern society with their ability to automate complex
tasks and manipulate data consistently. Instead of handwriting a letter, putting a stamp on
it, and mailing it across the country to be received several days later, we compose an email.
Thanks to the underlying infrastructure systems and automation that's been deployed over
the last few decades, this information arrives in seconds.

But what happens when you want to do something unique or specific to your
environment? What if you're going to do something niche? What do you do when there
isn't an app for that?

Historically, you would learn a programming language and write a script or application
to perform that task. Unfortunately, for many ordinary users, this is more than they are
willing to take on. The idea of learning an entirely new language to save a few minutes
each day does not feel like a favorable return on investment.

The other option is to hire a software developer to build the application. This option sounds
like a logical one. But with the average annual salary of a software engineer in the United
States being $110,000 (https://www.indeed.com/career/software-engineer/
salaries), this may be too costly an option with little return on investment.

So, where does that leave us? Do you abandon the project, deciding that the savings are
not worth the cost or the effort? Previously, that probably would have been the outcome of
such a dilemma, but a third option has recently appeared on the horizon. It is at this point
where no code steps into the picture.

https://www.indeed.com/career/software-engineer/salaries
https://www.indeed.com/career/software-engineer/salaries

Why does no code matter? 5

Ordinary people use no code tools to create applications and services without learning
a new programming language. They are often web-based tools that are intuitive to
learn with minimal coding (if any) required. When coding is needed, the solutions are
usually easily found on the product's community forums or built for a nominal fee by an
entrepreneurial hobbyist.

This doesn't mean that having a coding background isn't helpful. Knowing the basic
concepts surrounding computer programming such as how to write out the steps for a
process from start to finish will help speed up the successes that a no coder experiences.
But they are not strictly necessary.

Now that we have a better understanding of no code tools and the entire no code
movement, it is essential to look at the ramifications of no code on the tech industry,
business, and the average citizen. Is it something that completely changes how we, as a
society, look at computers and technology in general, or is it just the latest tech fad that, in
the end, will be quickly replaced with the "next big thing?"

Why does no code matter?
If you speak to certain developers today about no code tools, many of them will tell you
that they are nothing but toys that don't have any real power. They may say that this is
nothing but a fad and that if you genuinely want to develop applications, you need to use
traditional programming languages.

Simultaneously, many businesses see these no code tools as a distraction, which takes their
employees away from their tasks and duties. Rather than writing reports and filling out
spreadsheets, these people waste their time making shiny phone apps that don't solve real
problems or create bonafide value.

To be fair, these perspectives were once very valid. But in recent years, the no code
landscape has significantly changed, and the gap between no code and traditional
development tools has been shrinking. As the no code tools have been improving, the
value that they bring to business has also been increasing.

Ironically, these two arguments are incredibly similar to statements that were used in the
earlier days of computing. But they weren't talking about no code tools at that time. They
often referred to flashy programming interfaces and upstart programming languages such
as Visual Basic or JavaScript because real developers wrote in low-level machine language!

6 Introduction to No Code, n8n, and Bubble

Many of these "distracting" toys are now valuable tools. For example, JavaScript was once
just a tool used to create dynamic web pages. Now, tools written with JavaScript, such
as Node.js, which is used by millions of developers worldwide, or jQuery, which can be
found in over 75% of the websites on the internet, have proven how a once simple, niche
idea can have a profound impact.

But there is a third perspective. These are the people who have embraced no code tools
and see the potential that they truly offer. No longer is the business handcuffed to
expensive developers or left to be dissatisfied with an off-the-shelf software package that
performs some of the functions you require, but not really.

Instead, the worker who does the task every day has the power to use these no code tools
to reduce their workload, increase their productivity, and reduce human error through
data validation, automation, and eliminating repetitive tasks.

And because the worker is developing a solution, this end product can often quickly
and accurately create value compared to a more expensive custom solution created by
a developer who does not truly understand the role that this employee plays within the
organization. No code tools are quicker to develop, cheaper to own, and often more
efficient than development big brothers.

There is one final point about developing applications with no code tools. Because the
barrier to entry is so much lower than complete development suites, tasks that would
have otherwise been too cost-prohibitive to automate now become something that the
employee can realize programmatically, by themselves.

Outside of daily business, we are starting to see a whole new class of entrepreneurs
developing before our eyes on the internet. These are people who identify problems in
day-to-day life and identify a win-win situation for both themselves and others. They are
then using these no code tools to create applications and full-blown systems to solve
these problems.

These entrepreneurs have also discovered that because the cost to develop these
applications is so minimal and the time to market from initial concept to production
is relatively short, a whole new way of building businesses has emerged. Rather than
come up with an idea and put all of their time and effort into making that idea successful
without knowing whether it will be successful in the end, these entrepreneurs are taking a
different approach.

An introduction to n8n 7

They will build several businesses simultaneously, some as many as 200 in one calendar
year. This way, the entire market is their testing ground. They might try different strategies
with different products, and instead of putting their heart and soul into one thing, they
treat these businesses like cattle. The ones that grow strong and have a good return on
investment are groomed and fed. The companies that don't produce or end up taking
more time and energy than they are worth are taken out back and dealt with accordingly.
No tears are shed for the failed business because the lost time/effort/money is minimal.
The entrepreneur is too busy either growing the successful companies or returning to their
no code tools to start the next one.

Now that we have a better understanding of the importance of no code tools in our
modern businesses and day-to-day lives, let's take a closer look at a couple of these tools to
understand some of their capabilities better.

An introduction to n8n
n8n is one of these no code tools. n8n's primary purpose is to connect different types of
systems to share information in a meaningful way.

On its surface, that statement may sound like a relatively trivial thing that would have
minimal impact on day-to-day work. But, when you start to dig a little deeper into how
we do tasks and complete our work, you will quickly realize that there are many little jobs
that we repeatedly do over and over again. If we can find a way for a system such as n8n
to perform these little tasks for us, the cascade effect is more significant than just the time
saved with that one task.

You also save the transition time between jobs. Many researchers have looked at context
switching or how long it takes for us to transition from one task to another. They have
discovered that it takes approximately 20 minutes to shift from doing one type of work to
another. If you have one fewer job to do, that's one shift between tasks not needed, saving
you that 20-minute transition time. There is also the time that's lost while waiting for
something to happen.

8 Introduction to No Code, n8n, and Bubble

If, for example, you have to fill out an online form with a set of information, such as a
username and a password, and then wait for an email to come in after you have submitted
the form, you have lost that time between hitting "submit" and waiting for that email to
arrive. Instead, if you were to configure n8n to use an API connection to submit this data,
not only would you not have to wait for the email to come in, you wouldn't even have to
enter the data in a web form. n8n could perform this entire set of tasks on your behalf in
a fraction of the amount of time it took you to fill out the form and wait for the email, all
while you could have been doing something else far more critical. Now, imagine you have
to do this 80 times a day. Wouldn't you rather spend that time figuring out how to get
your computer to do it for you? I think you would.

n8n is a web-based tool. n8n can run on a computer system as small and inexpensive as
a Raspberry Pi. It can connect to several hundred different systems with nodes designed
explicitly for those systems and thousands more that use standard REST API interfaces.
It can also manipulate the data that it receives and sends out so that the information in
each system does not have to be identical when moving data around. It can also produce
some analytics, providing insights into the information that's returned from the processed
data. And because it can interface with almost any REST API-based system, this means
that the only limits to its capabilities are the limits of those other systems. Do you want
any of them to be able to create 3D images? There's a system with an API for that. Do you
want n8n to be able to remix music on the fly based on the color patterns it sees coming in
from a webcam? There's a workflow for that. Would you like n8n to automatically balance
your business's books to provide you with a real-time dashboard of the fiscal health of
your organization? There are ways to do that as well. If there is a way to connect n8n to a
system, then n8n can inherit those powers.

While each of these nodes is very powerful in and of itself, the true potential of n8n is
evident when you begin to connect them. Each node is designed to perform a specific
set of actions. Upon completion, it then passes this information on to the next node.
How does a node know where to send its data to next? It simply looks at the connections
between the nodes.

Each node has an input (left) side and an output (right) side. If a node's output connects
to a second node's input, the second node receives the outcome of the first node as its
input. A collection of two or more nodes is known as a workflow.

These workflows can then be saved in the n8n system and activated to run on their own in
the background when you do not have the n8n Editor UI open:

An introduction to n8n 9

Figure 1.1 – Sample n8n workflow

But how do these workflows know how to run when I don't tell them to run? When the
workflow is on my screen in the n8n Editor UI, I can click the Execute Node button to
make the workflow run. But if I'm not available to click the button, how does it know to
run? Now is the time for the trigger nodes to shine!

In general, the trigger node starts a workflow. The first one is the Cron node. The Cron
node gets its name from a Linux service that executes commands at specifically scheduled
times. The Cron node does the same thing. You specify a time – for example, every day at
noon – and the workflow connected to this Cron node will run at that specific time.

What happens if an event occurs between the times you have the Cron node configured
to run? Several other trigger nodes come into play. Most of these nodes listen for events
coming in from a specific system. When it detects these events, it will take the information
that's been sent to it and process it through the workflow connected to that node.

New trigger nodes are added to n8n regularly. But there is still a chance that the specific
system you want to listen to does not exist as a node. What do you do now? The answer is
to use a webhook node. A webhook node is a generic version of these customized trigger
notes. It allows any system to submit an HTTP request to an address on the network to
send information to n8n when it's using this node. The webhook node opens up n8n to all
kinds of other possibilities.

Now, wouldn't it be great if there was a node much like the webhook node but instead
of listening to any system that can make an HTTP request, it could talk to any system
listening for HTTP requests? As you may have guessed, that is what the HTTP request
node does. This node gives any system the ability to talk with almost any other system
with a REST API.

10 Introduction to No Code, n8n, and Bubble

The REST API is an internet standard used for data communication between two systems.
More and more developers are writing REST APIs for their new systems and services.
Older systems and services are often retrofitted with new APIs to make them more
accessible to other data systems.

Now that we have been introduced to n8n and its benefits, let's install it!

Installing n8n
n8n is operating system agnostic, meaning it will run on Mac, Windows, and Linux
operating systems. n8n can do this because it runs on top of the Node.js JavaScript library,
enabling developers to run JavaScript applications as services.

Note
Just prior to this book going to press, n8n released a new version called n8n
Desktop. It installs much more like a typical application rather than a service.

Installing n8n varies from one operating system to the next, but people generally have
the most difficulty with Linux. This is primarily because Linux is the clear choice for
installations such as cloud service providers or inexpensive home lab scenarios such as
Raspberry Pi installations. We have chosen to provide detailed installation instructions
for Linux systems, specifically Debian-based systems, because of these challenges. Some
examples of Debian-based systems include Ubuntu and Raspberry Pi OS. You can find
instructions for other operating systems on the n8n website at https://docs.n8n.
io/#getting-started.

Prerequisites
To successfully install n8n on a Linux computer, you will require the following items:

•	 A Debian-based Linux operating system

•	 A regular user account with sudo access

•	 A modern web browser

•	 An internet connection

1. Updating the operating system
It is crucial to have an updated operating system to make sure that you are installing the
latest version of the software. Perform this by following these steps:

1.	 Log into your computer with a standard user account.

https://docs.n8n.io/#getting-started
https://docs.n8n.io/#getting-started

An introduction to n8n 11

2.	 At a Terminal, enter the following command to update the system:

sudo apt install update -y &&sudo apt install upgrade -y

3.	 When you're prompted for a password, enter your user password.
4.	 The system will then install several packages and updates.
5.	 Once the installation is complete, proceed to the next section.

2. Installing the prerequisites
n8n requires several different packages to run correctly. Follow these steps to install these
packages:

1.	 At a Terminal, enter the following command to install the prerequisites:

sudo apt install build-essential python -y

2.	 If you're prompted for a password, enter your user password.
3.	 The system will then install several packages.
4.	 Once the installation is complete, proceed to the next section.

3. Installing Node.js
As we mentioned earlier, Node.js is the core upon which n8n is written. Without Node.js,
n8n will not run. These instructions will install version 14.x:

1.	 At a Terminal, enter the following command to configure the installation source for
Node.js 14.x:

curl -sL https://deb.nodesource.com/setup_14.x | sudo -E
bash -

2.	 If you're prompted for a password, enter your user password.
3.	 Enter the following command to install Node.js:

sudo apt install nodejs -y

4.	 If you're prompted for a password, enter your user password.
5.	 Once the installation is complete, proceed to the next section.

12 Introduction to No Code, n8n, and Bubble

4. Configuring the Node.js environment
For n8n to work properly, it needs to be installed globally on the system. By default,
Node.js does not allow you to install n8n globally without configuration changes. Follow
these steps to configure the Node.js environment properly:

1.	 At a Terminal, enter the following commands to create a new hidden folder in your
home directory:

cd ~

mkdir ~/.nodejs_global

2.	 The following commands configure the npm package manager to use the new folder
for global installations:

npm config set prefix ~/.nodejs_global

echo 'export PATH=~/.nodejs_global/bin:$PATH' | tee
--append ~/.profile

source ~/.profile

3.	 Once the installation is complete, proceed to the next section.

5. Installing n8n
The system is now ready to install n8n:

1.	 At a Terminal, enter the following command to start the n8n installation:

npm install n8n -g

2.	 The installation will now proceed to install several packages, along with the
n8n application.

Note
While n8n is installing, you may encounter several warnings. It is normal to
receive them, and you should not be alarmed.

3.	 Once the installation is complete, proceed to the next section.

An introduction to n8n 13

6. Using PM2 to run n8n as a service
n8n typically runs in a Terminal, but as soon as you exit the Terminal or reboot your
computer, n8n will no longer run. To solve this issue, we can use an application called
PM2 to run n8n as a service. Let's install it:

1.	 At a Terminal, enter the following commands to install PM2:

cd ~

npm install pm2@latest -g

2.	 Once PM2 is installed, use PM2 to start n8n:

pm2 start n8n

3.	 Next, configure PM2 to start n8n automatically if your computer is restarted:

pm2 startup

4.	 The system will now prompt you to execute a command line. Make sure that you
enter it exactly as it is presented on the screen.

5.	 Finally, save the new PM2 configuration:

pm2 save

7. Opening the n8n Editor UI
n8n should now be running. You can check that it is running properly by following
these steps:

1.	 If you don't know your computer's IP address, enter the following command in a
Terminal:

hostname -i | awk '{print $1}'

2.	 It will return a value like 192.168.0.1.
3.	 Open a web browser and go to http://<IP address>:5678. So, for our

example, you would go to http://192.168.0.1:5678.

http://<IP address>:5678
http://192.168.0.1:5678

14 Introduction to No Code, n8n, and Bubble

4.	 The n8n Editor UI will open with an empty workflow, as shown in the following
screenshot:

Figure 1.2 – n8n Editor UI

With n8n successfully installed, it's time to start building some valuable solutions. But,
sometimes, the most challenging part of building a solution is deciding what to make in
the first place. Let's explore some ways in which people have used n8n to resolve real-
world problems.

How do people use n8n to solve problems?
While n8n has many different capabilities, its primary role is connecting systems and
preparing the data correctly for each system to ingest.

An excellent way to understand the capabilities of n8n is with a few real-world examples.
The following are setups that are being run by real companies, giving them a technical
advantage over the competition.

How do people use n8n to solve problems? 15

CRM call recording access
One of my former employers had purchased a new Linux-based phone system and a
separate Raspberry Pi-based system to record all of the phone calls that came into the
organization, along with Windows-based software to manage the recordings. They also
had a Windows-based customer relationship management (CRM) system for keeping
track of sales and inventory, with a Microsoft SQL Server backend.

The sales division head wanted the sales team to retrieve all the calls that had been made
or received from a customer based on date and then click on a button or link to listen to
the recording.

The final solution grabbed all of the call log data from the phone system and temporarily
stored it in a text file. n8n would then monitor this file for changes and import the data.
At this point, it would pull in the call recording information, correlate it with the call logs,
and write this data to Microsoft SQL Server. The IT team then modified the CRM to look
for this information in the new table and display it in the CRM.

Because n8n is both data- and system-agnostic, it effectively bridged these radically
different devices and enabled efficient, accurate communication among all of them.
Without n8n, this would have required a series of different scripts, scheduled jobs, file
exports, network shares, and constant monitoring. n8n allowed the IT team to perform
these same tasks in one single system using only the tools that came with it.

Goomer pivots during COVID-19
Goomer started as a restaurant ordering software company in Brazil. But when COVID-
19 struck in early 2020, the government shut down all restaurants, and Goomer's clients
were now struggling to stay in business. Goomer's business was suddenly in trouble.

Goomer decided to become a delivery application, shifting all of their development teams
to designing and engineering the new program. Their technical teams did not have time to
focus on automation or deployment tools. It was at this point that they decided to turn to
n8n to build out this automation.

They chose n8n because it was significantly cheaper and more flexible than other hosted
solutions. Because they could run it locally without any surprise billing, they could focus
on deploying their tools and running their business without having to worry about scaling
or prohibitive pricing.

Goomer uses n8n to manage their business workflow by connecting systems such as
Airtable, Coda, and HubSpot. n8n automatically reacts to events in these systems to update
data and information in the other systems without relying on any user intervention.

16 Introduction to No Code, n8n, and Bubble

n8n sails the seven seas
n8n isn't limited to dry land. Maranics takes human manual processes and digitizes them
to increase the quality of the process and reduce workloads. After using other automation
solutions for several years, Maranics started to migrate their automation workflows to n8n
for many clients, including several cruise ships.

Maranics used n8n to easily connect different databases such as MongoDB and Postgres
to other systems with standard REST APIs, which would have been significantly more
difficult using other solutions.

Since n8n can be installed locally in a business (or a ship), there is no need for a persistent
internet connection when all the data is stored on systems locally. Plus, there is no need
for the data to leave the network or local business since all of the data can be processed
right there on-premises.

These are just a few examples of how people have taken n8n and built workflows to make
their processes more efficient, less prone to human error, and available 24/7.

It's fascinating to see how people have used n8n to connect systems. But, occasionally,
there is no all-in-one system out there that does what you want. Other no code tools step
in at this point to fill in the gap. They provide various services such as web frontends or
data storage. Then, n8n is used to connect it to the rest of the world. Bubble is one of those
tools, and we will be using it extensively throughout this book.

An introduction to Bubble
Because n8n's forte is integrating different systems, the development team at n8n has
not focused on user interface development. The development team knows that entire
companies focus on excellent no code tools for building that frontend and are happy to
leave that to them. (Although, we will show you how to make a web frontend entirely
using n8n later in this book.)

Since n8n's focus is not on frontend design, we chose to go with Bubble as the no code
development tool for this purpose. Specifically, we decided to use Bubble because of the
following reasons:

•	 It has a simple and intuitive development interface.

•	 It is a popular and well-known no code tool.

•	 It has APIs for both data access and workflow activation.

•	 It has limited workflow functionality.

•	 It has little integration with other systems.

Summary 17

These factors make it an excellent tool to use. But it is not the only tool that we could have
used to interact with n8n. There are very few no code tools that n8n cannot connect with,
using a custom-designed node or a REST API.

Summary
This introductory chapter explored no code and the people who make it a driving force
for change in present-day businesses. We also discussed some of the significant benefits of
using tools such as n8n and provided some real-world examples of how companies have
leveraged no code's flexibility.

We also took some necessary first steps toward understanding n8n a bit better. You
learned how to install n8n on a Debian-based Linux system so that you can get started
right away with using n8n at your home or business at no cost to you.

Finally, we introduced you to Bubble, a no code tool that we will be using to develop
frontends for many of our example applications. We'll be able to use Bubble and n8n in
tandem to create full-fledged solutions that are user-friendly (Bubble) and interact with
various systems and services.

Now that you have a better understanding of no code, n8n, and Bubble, it's time to dig
deeper into how n8n works and build some of our first workflows. We will do this in the
next chapter.

2
Using the Editor UI

to Create Workflows
In this chapter, you will learn how to use n8n's Editor UI. This will help you find the
different functionalities of n8n. You will also learn about the different kinds of nodes
in n8n and how to use them. You will then learn about building workflows and dealing
with dynamic data to handle different kinds of scenarios. You will finally create your first
workflow in n8n.

This chapter will cover the following main topics:

•	 Introduction to the Editor UI

•	 Exploring the regular and trigger nodes

•	 Expressions – using dynamic data

•	 Workflows – putting it all together

•	 Creating your first workflow – Hello World

20 Using the Editor UI to Create Workflows

Technical requirements
This is a list of technical requirements to prepare before continuing with the chapter:

•	 Have n8n installed.

•	 Ensure n8n is running and the Editor UI is open.

•	 Create an account on Telegram.

Introduction to the Editor UI
The Editor UI is a graphical interface that allows you to create automations using a node-
based approach. n8n takes its inspiration for node-based visualization from the film and
television industry, where many tools have a node-based system. Let's take a look at what
we have here:

Figure 2.1 – The Editor UI in n8n

Introduction to the Editor UI 21

Let's start from the top left. You can expand the menu by clicking on the > button beneath
the n8n logo.

For now, we'll get ourselves familiar with the interface so that we can quickly find our way
through n8n. We'll dive deeper into specific sections, such as Executions, as we progress
through the chapters in this book. Let's take a look at the menu bar on the left.

First of all, we have the Workflows menu. In the menu, we have the following options:

•	 New: Create a new workflow.

•	 Open: Open an existing workflow.

•	 Save: Save changes to the current workflow.

•	 Save As: Save the current workflow.

•	 Rename: Rename the current workflow.

•	 Delete: Delete the current workflow.

•	 Download: Download the workflow as a JSON file.

•	 Import from URL: Import a workflow from a URL.

•	 Import from File: Import a workflow from a JSON file.

•	 Settings: Configure the settings for the current workflow.

Please note that some of these options will be grayed out since we haven't saved the
workflow.

Next, we have the Credentials menu. In this menu, we have two options:

•	 New: Create a new credential.

•	 Open: Open an existing credential.

n8n allows you to connect to many different applications, services, and APIs. A lot of these
require credentials to authenticate yourself. n8n enables you to encrypt and save these
credentials in its database so that they can be quickly reused when building workflows.

Next up, we have the Executions tab, which opens up a modal (popup) where you can
view the executions of your different workflows. You can also filter the executions by their
name and status.

22 Using the Editor UI to Create Workflows

Finally, we have the Help tab, which lists resources that will be useful for you:

•	 Documentation: A link to the n8n docs. The n8n docs contain detailed information
on each node, example workflows, and references.

•	 Forum: n8n has a very active and friendly community. If you get stuck on anything,
feel free to drop a question there and someone will help you resolve it.

•	 Workflows: This page lists workflows that have been submitted by the community.
It's a great place to gain some inspiration for your next automation.

•	 About n8n: This option opens up a modal with details about n8n's version, a link to
the GitHub repository, and the license.

At the bottom left, you'll see options to zoom in and out of the canvas. The canvas is the
grid of boxes in the Editor UI where you'll be adding the nodes to create workflows. You'll
also notice that all new n8n workflows have a Start node.

At the bottom center of the Editor UI, you'll notice a button labeled Execute Workflow.
This is useful for manually executing the workflows that you have created in n8n.
Workflows can run in two ways:

•	 Manual executions: These are useful for testing your workflows while you are
building them or for one-off executions. An example of one-off execution can be
a workflow that migrates all the data from a CSV file to Google Sheets. You can
manually execute a workflow by clicking on the Execute Workflow button.

•	 Automated executions: Once your automations are ready, most of the time, you'd
want them to run at regular intervals or when a specific event occurs. For this to
happen, you'll need to activate a workflow. You can do so by clicking on the Active
button at the top left, which will change the state of the toggle from inactive to active.
Please note that you'll need to first save the workflow before being able to activate it.

Finally, we have the + button on the right side of the Editor UI. Clicking on it will reveal
the Nodes panel. You can use this to add new nodes to the canvas and build out your
workflow. You'll notice that it has three categories: All, Regular, and Trigger. Let's learn a
bit more about nodes in n8n to understand what these sections mean.

Exploring the regular and trigger nodes
Nodes are the building blocks of workflows in n8n. Nodes can connect to applications,
services, and APIs, and do anything that is possible with Node.js in general. Each node
performs tasks based on its design. Upon completion, the data is passed on to the next node.
This data is the result of the work performed by the configured task in the previous node.

Exploring the regular and trigger nodes 23

Each node has an input (left) side and an output (right) side. If a node's output connects to
a second node's input, the second node receives the outcome of the first node as its input.

Note
We will cover specific nodes in greater detail later on in the book.

From an abstract point of view, there are two types of nodes in n8n:

•	 Regular nodes: Regular nodes are useful for things such as handling Create, Read,
Update, and Delete (CRUD) operations with applications and APIs, transforming
data, and pulling information from the internet. Some examples of regular nodes
include the following:

	� Airtable node: It can read, add, update, and delete data from an Airtable table.

	� Function node: It can execute JavaScript code, most often to manipulate workflow
data.

	� Bubble node: This node allows you to create, delete, update, and get objects from
Bubble.

You can find the whole list of regular nodes in the latest version of n8n by
heading over to the Apps & nodes page of the n8n website (https://n8n.io/
integrations) and clicking on the Regular tab (see Figure 2.2):

Figure 2.2 – Some of the regular nodes that n8n comes with

https://n8n.io/integrations
https://n8n.io/integrations

24 Using the Editor UI to Create Workflows

•	 Trigger nodes: Trigger nodes start the execution of a workflow. These nodes can
start a workflow based on events such as time-based intervals or events from
external systems. You need a trigger node in a workflow if you want it to execute
automatically. You cannot activate workflows unless they have a trigger node. A
couple of examples of trigger nodes include the following:

	� Cron node: This node can be configured to activate a workflow every minute or
every hour, or specify using custom Cron expressions.

	� Telegram trigger node: This node can be configured to activate a workflow every
time a Telegram bot receives a message.

You can also find an exhaustive list of trigger nodes on n8n's Apps & nodes page by
clicking on the Trigger tab (see Figure 2.3):

Figure 2.3 – Some of the trigger nodes that n8n comes with

Some of the nodes in n8n are referred to as core nodes. As of the time of writing, there
isn't a distinction in the Editor UI for these nodes. Core nodes could be both regular or
trigger nodes. These are nodes that are more general purpose, such as the following:

•	 Webhook node: Can be used to receive webhook responses

•	 Function node: Can be used to manipulate workflow data

Exploring the regular and trigger nodes 25

•	 Cron node: Can be used to trigger workflows at specific intervals

•	 HTTP Request node: Can be used to make HTTP requests to a web page or an API
endpoint

We'll dive deeper into the core nodes in n8n in Chapter 3, Diving into Core Nodes and
Data in n8n. To put this concept to practice, follow these steps:

1.	 Let's go back to the Editor UI. First of all, click on the Start node so that it's
highlighted. Doing this ensures that the new node that you add to the canvas will
automatically connect to the highlighted node.

Figure 2.4 – Highlighting the Start node by clicking on it
If you didn't do that, no worries. You can always connect two disconnected nodes
by clicking on the circle in front of the node and dragging it to the rectangle of the
next node.

2.	 Let's add a node to the canvas by clicking on the + button in the Editor UI.
3.	 Type Hacker News into the Nodes panel and select the Hacker News node.

26 Using the Editor UI to Create Workflows

4.	 Clicking on the node will add it to the canvas and open the node to be configured.
Select All for the Resource field and click on the Execute Node button at the top
right of the node panel.

Figure 2.5 – Output of the Hacker News node

You will notice that the node returns 100 news articles from Hacker News. It produces a
variety of information for each news item. Let's take a few minutes to understand what we
have in the node panel.

Clicking on any node in n8n will open up the node details view, which allows you to
configure the node, execute it, and look at the data that was either received or generated by it.

Let's start with the top left of the node panel. It says Hacker News, which is the name of
the node. If you add another Hacker News node to the workflow, it will be called Hacker
News1, and so on. You can rename a node so that it's easy to gain context later on. To
do that, click on the node name, type in the new name, and click on the tick icon. Let's
rename it to Get news for now.

Under the name of the node, we have two tabs:

•	 Parameters: This tab contains parameters to configure the task. Most of the nodes
have the Resource and Operation fields. They are a way to bundle together the wide
variety of functionalities offered by the various applications and APIs.

To understand this better, let's take the example of a CRM where you can store the
data of individuals and companies. In n8n, a node for this CRM would have People
and Company as resources. For each of the resources, it might then have create,
read, update, and delete as the operations.

Exploring the regular and trigger nodes 27

Underneath these two fields, you would have the fields that are required, for
example, Name. Like the last name, any optional fields are always bundled together
under the Additional Fields section, which keeps the UI uncluttered.

•	 Settings: This tab contains a couple of options, such as adding notes, and a couple of
other settings that we'll cover later on in the book as they become relevant.

In the top middle of the node panel, you will see two tabs:

•	 JSON: Clicking on this tab will showcase the data received from Hacker News in
JSON format.

Figure 2.6 – Viewing the output by clicking on the JSON tab

•	 Table: The table view is the default view for displaying data in n8n.

At the top right of the panel, you'll see the Execute Node button. This button enables
you to execute this specific node manually without re-triggering the entire workflow
or executing the following nodes in the workflow. This is very useful for testing the
workflows while building them step by step. We then have an X button next to it. You can
click on it to go back to the canvas in the Editor UI.

Finally, at the bottom of the node panel, you'll see a link to the node's documentation
that you have opened up. Click on it to reach the node documentation, which contains
example workflows with that node along with some FAQs.

When working with nodes, you will often need to reference data between nodes. This data
would usually be dynamic. For example, weather data might change every hour. Let's learn
about how we can reference dynamic data in n8n using expressions.

28 Using the Editor UI to Create Workflows

Expressions – using dynamic data
Consider this scenario: you only want the name of the news article and the URL as part
of your workflow data because the rest of the data returned by the Hacker News node is
irrelevant to you. We can filter out the workflow data in a couple of ways, but we'll use the
Set node here. The Set node is one of the code nodes in n8n that helps you to configure
workflow data To create a Set node for the aforementioned scenario, follow these steps:

1.	 Add the Set node to the canvas and connect it to the Get news node.

Figure 2.7 – Adding the Set node to the Hacker News node

2.	 Now, open the Set node by double-clicking on it. Toggle the Keep Only Set field
to true (green). It removes all incoming workflow data and only appends the new
values configured in the Set node.

3.	 Click on the Add Value button and select String. You'll notice that we now have two
fields: Name and Value. These two fields design the JSON data structure.

4.	 Delete propertyName from the Name field and enter Title.

Expressions – using dynamic data 29

Now, the value of the title will be different each time the node iterates over the 100
items that it will receive from the previous node. It is also possible that those 100
values will be completely different as new articles appear on Hacker News and so on.

Because of that, the Value field needs to be dynamic since the value keeps changing.
You can achieve this in n8n using expressions.

5.	 To add an expression to a field, click on the gears icon next to the field and click on
Add Expression. Perform this step with the Value field. These actions will open up
the Expression Editor.

6.	 On the left-hand side, you'll notice the Variable Selector section. Click on the
current node and go through the nesting to find the title. It should look like this:

Figure 2.8 – Selecting the title of a post using the Expression Editor in n8n

If the data does not show up for you, check the following:

•	 This node and the previous node are connected.

•	 The previous node has been executed.

30 Using the Editor UI to Create Workflows

We'll perform the same steps for the URL and then click on the Execute Node button for
the Set node.

Figure 2.9 – Output of the Set node

We now have only the relevant data that we wanted in the workflow, thanks to the Set
node and expressions.

Expressions are a powerful feature in n8n. You can use them to reference data from the
workflow, other nodes, the environment, and even self-generated data. Let's say we want
to add a random ID to each of the news articles. Add a numerical value in the Set node,
enter ID as the name, and click on Add Expression for the Value field.

Delete the 0 and enter the following: {{ Math.floor(Math.random() *1000) }}.

Expressions can execute JavaScript between double curly braces, and here we've used it
to generate three-digit random numbers. Let's say that we want the IDs to be prefixed
by ID_. Edit the expression so that it looks like this: ID_{{ Math.floor(Math.
random() *1000) }}. Click on the Execute Node button to see the result.

Workflows – putting it all together 31

Figure 2.10 – Output of the Set node after adding the ID

There are many other things that you can do with expressions, and we'll introduce more
concepts throughout the rest of the book.

Now that we know about expressions, let's learn more about workflows in n8n to
understand what they are.

Workflows – putting it all together
Workflows are a collection of nodes in n8n. Workflows can range anywhere from two
nodes to hundreds of nodes, with workflows calling sub-workflows. These workflows can
then be saved in n8n's database and activated to run on their own in the background even
when you do not have the n8n Editor UI open.

While each of these nodes in n8n is very powerful in and of itself, the true potential of
n8n is evident when you begin to connect these nodes. In n8n, you can join one node to
many other nodes. Workflows don't necessarily have to follow a linear structure.

Real-world problems or tasks are usually made up of a series of steps. n8n is powerful
because you can model your complex processes and tasks as a workflow, a series of nodes
that each performs a step toward completing the bigger process.

Let's now save the workflow created by clicking on the Workflows icon at the top right
and clicking on Save As. Let's call it My first workflow and press Enter.

32 Using the Editor UI to Create Workflows

Workflows are JSON objects. You can take a look at the underlying JSON in one of two ways:

•	 Click on the Workflows icon and click on the Download button to download the
JSON file.

•	 Press Ctrl + A on the canvas to select all the nodes in your workflow, press Ctrl + C
to copy them, head over to a text editor, and paste the JSON by pressing Ctrl + V.

Here's how the JSON for the workflow that we created appears:

Figure 2.11 – JSON for the workflow that we created

Creating your first workflow – Hello World 33

If you look at the JSON file, you'll see that it contains information about the different
nodes present in your workflow, how they are connected, and the set parameters. In the
preceding screenshot, you can notice the title, URL, and ID that we configured in the Set
node and the expressions that we added.

You can then share these files with your friends and colleagues so that they can load them
on their n8n instances and run the workflows that you created. They can either import the
workflow as a file or the JSON and paste it into their Editor UI.

Now that we have learned about workflows, let's create our first workflow in n8n, which
will send us a cocktail recipe in Telegram every day at 6 P.M.

Creating your first workflow – Hello World
Now that we are familiar with n8n's Editor UI, nodes, and workflows, let's create a new
workflow that allows us to send a random cocktail recipe to Telegram every day. Follow
these steps:

1.	 Create a new workflow on n8n by clicking on the Workflows icon and then clicking
on New. Since this is an automation that runs every day, we'll need to add a trigger
node.

2.	 Click on the + button, click on the Trigger tab, and select the Cron node.
3.	 From the Cron node's details view, click on Add Cron Time and change Hour to

18. By doing this, we ensure that the workflow runs every day at 1800 hours.
4.	 Save the workflow and name it Hello World. Now, the workflow will be triggered at

1800 hours for the default time zone in n8n. n8n's default time zone is New York.
5.	 Let's change the time zone for this specific workflow by clicking on the Workflows

icon and selecting Settings. There, you can choose your time zone.

34 Using the Editor UI to Create Workflows

6.	 Once you have done that, click on the Save button and return to the Editor UI.

Figure 2.12 – Adding a Cron node to the Editor UI and saving the workflow

7.	 Now, highlight the Cron node by clicking on it and then add the HTTP Request
node to the canvas. Make sure that it is connected to the Cron node.

We'll use the HTTP Request node since the cocktail API does not have a node in
n8n. The HTTP Request node allows us to make HTTP requests and enables us to
make API calls to services that don't have a node in n8n yet. We'll be making a call
to the random endpoint of the CocktailDB API.

8.	 Enter https://www.thecocktaildb.com/api/json/v1/1/random.php
in the URL field of the HTTP Request node and click on the Execute Node button.
You will notice that it returns details about a random cocktail.

Figure 2.13 – Output of the HTTP Request node after making a request to the random endpoint of the
CocktailDB API

https://www.thecocktaildb.com/api/json/v1/1/random.php

Creating your first workflow – Hello World 35

Now, we'll have to send this data to Telegram. To do that, we'll first need to create
a Telegram bot. You can use either the Telegram mobile app, web app, or desktop
application for that. In the example screenshot (Figure 2.14), I am using the desktop app
for macOS. To do that, follow these steps:

1.	 Search for BotFather with a blue and white "verified" symbol next to its name. To
verify, click on the BotFather username.

Figure 2.14 – BotFather in the Telegram application

2.	 Enter the /newbot command and follow the instructions to create your bot. You
can name it as you please, but the username needs to be unique.

3.	 Once completed, it will give you an access token for the HTTP API. Copy that; we'll
need that in n8n. Next, click on your bot link provided by BotFather and click on
Start.

4.	 Now head over to n8n and add a Telegram node. Make sure that the input of the
Telegram node is connected to the output of the HTTP Request node. You will
notice that the node has a section called Credentials.

5.	 Click on the Telegram API field and select Create New from the dropdown.

36 Using the Editor UI to Create Workflows

6.	 The Create New Credentials modal will open up. Enter a name for the credentials.
You can name it anything you want. I called it Daily Drinks Bot to
differentiate it from my other Telegram bots at a glance.

7.	 Now, paste the access token you copied from BotFather in the Access Token field,
and click on the Save button.

8.	 Now, we need the chat ID. To find that, open a new tab in your web browser and go
to https://api.telegram.org/bot<YourBOTToken>/getUpdates.

Don't forget to replace <YourBOTToken> with the access token that you got from
BotFather. If you see nothing on that page, send a message to your bot and open the
URL again. You can then copy the chat ID from there and paste it into the Chat ID
field in n8n.

Now, we have to craft the message for the Text field. We'll use expressions for this.
Feel free to craft the message as you like. Here's how mine looked:

Figure 2.15 – Using the Expressions Editor to specify the content of the Telegram message

https://api.telegram.org/bot<YourBOTToken>/getUpdates

Creating your first workflow – Hello World 37

9.	 Head back to the Telegram node panel and click on the Execute Node button. You
should now see a message from your bot on Telegram. Here's how mine looked:

Figure 2.16 – Message sent by our n8n workflow via the Telegram bot
Now that our bot is up and running, we will have to activate the workflow to get a
new cocktail recipe every day at 1800 hours.

38 Using the Editor UI to Create Workflows

10.	 Return to the canvas in the Editor UI, click on the Activate button at the top right,
and select Yes, then activate and save! My final workflow looks like this:

Figure 2.17 – Final workflow that has been activated

As long as n8n is running, you will now get cocktail recipes every evening. Congrats on
creating your first n8n workflow!

Summary
In this chapter, we learned about n8n's Editor UI. We then learned about the two types of
nodes in n8n. We then covered expressions to reference dynamic data in n8n workflows
and learned more about workflows in n8n. Finally, we created our first workflow in n8n
by putting together knowledge of the Editor UI, nodes, expressions, and workflows. We'll
use the principles that we've learned throughout this chapter to build workflows that
will handle the backend of our products. An understanding of these topics will help with
building workflows of any complexity in n8n.

In the next chapter, we are going to dig deeper into the core nodes that make n8n so
powerful. We will then take a look at how n8n workflows share data between themselves
and learn how to access that information.

3
Diving into Core

Nodes and Data in
n8n

If you have ever been to a construction site just as they are starting to build a home, it
can sometimes be challenging to envision what the final home will be like, and the future
owners are probably very excited to get into the home and make it their own. If they had
their way, they would probably skip this part of the home build and focus on all the details
such as paint color, room layout, and furniture placement.

But if all home builders were to do this, none of their homes would last very long. They
would not have a proper foundation upon which to sit, and the frame of the home would
quickly fail.

The same thing can be said for learning to design computer programs. If a new developer
does not learn the foundational parts and concepts of a programming system, then the
application build goes very slowly and tends to be of poor quality. But unlike with a
traditional computer programmer, it is not necessary to understand complex syntax or
coding structure to become proficient at developing with a no-code solution.

It is crucial to properly understand the core nodes and how data is structured in n8n.
Without these foundational concepts, you will not get very far with n8n.

40 Diving into Core Nodes and Data in n8n

This chapter covers the following topics:

•	 Introduction to the data structure in n8n

•	 Function node—Custom JavaScript in workflows

•	 The items array

•	 HTTP Request node—Talk to any application programming interface (API)

•	 Webhook node — Handling real-time events

•	 Working with arrays and JavaScript Object Notation (JSON) objects

By the end of the chapter, you will have learned how to do the following:

•	 Use n8n's data structure to manipulate and transform data inside workflows

•	 Use JavaScript inside your low-code workflows to unlock custom functionalities

•	 Call REpresentational State Transfer (REST) APIs from inside your workflows
using the HTTP Request node

•	 Handle real-time events using the Webhook node and trigger workflows based on
this data

•	 Work with arrays and JSON objects inside n8n, understand when to use what kind
of data format, and transform data inside the workflows

Technical requirements
•	 You should have installed n8n

•	 n8n should be running, and the Editor user interface (UI) is open

•	 You have access to the GitHub repository, which can be found here: https://
github.com/PacktPublishing/Rapid-Product-Development-with-
n8n

Introduction to the data structure in n8n
I love traveling to different countries and experiencing life from a different perspective.
Different cultures and customs fascinate me.

But unfortunately, I often find myself running into trouble because I am only fluent in a
single language. Without having a language in common, it is easy to misunderstand what
someone else is trying to communicate to me.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n
https://github.com/PacktPublishing/Enabling-Workflow-Automation-with-n8n

Introduction to the data structure in n8n 41

n8n also has its version of a language that it uses to communicate between nodes. This
"language" is known as JSON and is a simple text format that is easy for both computers
and humans to read. Using JSON, n8n can transfer both text and non-text (known as
binary) information.

The developers at n8n designed each node in the workflow to receive and output data in this
specific JSON format. This standard data structure allows n8n to chain these nodes together
in infinite workflow combinations to produce a wide variety of different solutions.

It is essential to have a strong understanding of JSON in general and, specifically, how n8n
uses JSON. This section talks about how JSON represents information and two different
ways of grouping it—objects and arrays. We also delve into how n8n uses JSON to
communicate inside a workflow and store the two main types of data inside a workflow—
JSON and binary data.

In the following code snippet, you will find a sample of JSON-formatted information. This
example describes a 2021 red car with automatic transmission:

[

 {

 "vehicle": {

 "type": "car",

 "colour": "red",

 "year": 2021,

 "automatic": true

 }

 }

]

JSON syntax
There are a few syntax items to cover, making it easier to understand these JSON files.
These items can be broken down into the following categories:

•	 Values—Data or information

•	 Key-value pairs—Name of the information and the information itself

•	 Objects—Groups of key-value pairs

•	 Arrays—Groups of values

We will be learning more about these in the following sections.

42 Diving into Core Nodes and Data in n8n

Values
A value is a piece of data represented in JSON. A value can be:

•	 A string (a series of alphanumeric symbols)

•	 A number (standard numeric value)

•	 A JSON object (see the Objects section)

•	 An array (see the Arrays section)

•	 A Boolean (true or false value)

Key-value pairs
The first piece of JSON information to understand is key-value pairs. These are made of a
field name in double quotes and a value separated by a colon.

For example, "fruit": "apple" is a key-value pair, with "fruit" being the key and
"apple" being the value.

You can reference a key in n8n to retrieve the value that is paired with it.

Objects
An object is a group of key-pair values enclosed within curly brackets and separated by a
comma. For example, {"name": "Jill", "age": 27, "certified": true}
is an object with three keys (name, age, and certified), and each key has a value
(Jill, 27, and true).

Their key can reference values in the object.

To take this a step further, let's imagine we have the following JSON object:

{"user1":

 {"name": "Jill", "age": 27, "certified": true},

 "user2":

 {"name": "James", "age": 43, "certified": false}

}

In this example, user1.name would be Jill and user2.name would be James.

Introduction to the data structure in n8n 43

Arrays
An array is a group of values enclosed within square brackets and separated by a comma.
For example, ["zero", "one", "two"] is an array with three values.

Arrays are similar to objects, except they do not have keys, so their index references
the values.

An index is the position of a value in the array. The index value starts with zero (0) and
increases by one for each portion in the array. In our example, these are the indexes of the
array and their values:

•	 0—"zero"

•	 1—"one"

•	 2—"two"

n8n JSON structure
The JSON that is passed between nodes in n8n is a particular structure. It is made up of an
array of at least one object.

That object has either one or two sub-objects inside it. The two object keys are json and
binary.

The json object
The json object is a required object. Inside it is all of the JSON data that you will see as
the result of a node execution.

The contents of the json object are flexible and can be a mixture of other objects, arrays,
and key-value pairs.

For example, if you have a set note that sets the key colour to a red value, the node
output will appear like this in JSON:

[{ "colour": "red" }]

44 Diving into Core Nodes and Data in n8n

But when this information is stored in the n8n JSON format, it is passed between nodes,
looking like this:

[

 {

 "json": {

 "colour": "red"

 }

 }

]

This way, the nodes understand that the information is meant to be for them and identify
the information as test information. There is also an optional binary section to go along
with the json section, and that will be covered a bit later.

The following diagram illustrates the format in which data is passed between nodes. It
represents the framework for the data:

Figure 3.1 – n8n data structure

Introduction to the data structure in n8n 45

The entire set of data that is passed between nodes is built into a JSON array. Inside that
array, there are two JSON objects—one called JSON and another called Binary. The
JSON object contains key-value pairs representing text data. Meanwhile, the Binary
object contains binary information (think of this as a file). Along with the actual data of
the Binary object, there is some metadata such as mimeType (this is the type of file the
data contains), fileExtension, and fileName.

The binary object
The second object in the n8n JSON data structure is the binary object. The binary
object is an optional component since not every JSON dataset contains a binary element.
But when it is provided, this object contains information that generally represents a file in
a filesystem.

But if you are to include this object in your n8n JSON data, it has a particular structure.
Inside the binary object is a key named whatever you wish (for our example, we will call
it binaryKeyName). The value associated with this key is another object. This object is
made up of up to four key-value pairs:

•	 data (required)—Base64-encoded binary data or unique data ID reference

•	 mimeType (optional)—The type of data stored in the data value based on
standard mime types

•	 fileExtension (optional)—The extension that the file representing the
information in the data value has

•	 fileName (optional)—The name of the file describing the data in the data value

•	 path (optional) - The location of the file on the system

When the binary object is set in the n8n JSON data, you will see an extra Binary tab at
the top of the open node. It will contain the information that is in the binary object, as
illustrated in the following screenshot:

Figure 3.2 – Binary data in n8n Editor UI

46 Diving into Core Nodes and Data in n8n

In the next section, we are going to take a look at the Function node. It allows you to
create custom code in JavaScript in case there is no node to perform the exact action you
need. This is where understanding the n8n data structure becomes extremely important
for manipulating information using JavaScript code.

Function node – Custom JavaScript in
workflows
Sometimes, the perfect n8n node for the action you want to complete simply doesn't exist.
This makes sense because there are an infinite number of different actions that could
take place. This is why n8n created the Function node: so that we would have a way of
creating our own custom actions, and we are going to learn how to do that next.

The Function node is the most versatile node in the n8n toolbox. It can execute
JavaScript to manipulate data output from other nodes and then output it in the standard
n8n data structure. You can see a screenshot representation of it here:

Figure 3.3 – Function node

But the flexibility of the Function node does require you to be able to use some
JavaScript. Unlike many other nodes with several options and parameters to pick and
choose from, the Function node only has a single parameter—the JavaScript code field.
It is in this field that you will do all of your work.

The JavaScript code field contains, surprisingly, JavaScript. You will use this programming
language to do all data manipulations within the Function node. While you don't need
to be a JavaScript expert, there is some value in getting to know this language better. For
what we will be talking about in this book, a basic understanding of JavaScript will suffice.

Function node – Custom JavaScript in workflows 47

The first time you open up the JavaScript code field in a new Function node, you will
notice that there are already several lines of code:

// Code here will run only once, no matter how many input items
there are.

// More info and help: https://docs.n8n.io/nodes/n8n-nodes-
base.function

// Loop over inputs and add a new field called 'myNewField' to
the JSON of each one

for (item of items) {

 item.json.myNewField = 1;

}

// You can write logs to the browser console

console.log('Done!');

return items;

This gives you an excellent example of how the Function node works. This script assigns
the value of 1 to the myNewField key in every item in the JSON object of the n8n data
structure. It then writes to the web browser console that the action is done. Finally, it
outputs the results.

If you execute this Function node, you will get the following output as a result:

[

 {

 " myNewField": 1

 }

]

So, just how did this work? It worked because of the items array, which we are going to
be covering in the next section.

48 Diving into Core Nodes and Data in n8n

The items array
The key to this code is the items array. This stores all of the information in the n8n data
structure passed to the Function node from the previous node. The value in the square
brackets represents the index of the JSON object in the items array with which you wish
to work.

The most basic items array only has a single object represented by the zero (0) index
number, but it is possible to have several more objects in the items array, and you can
access each of these objects using the array index number associated with that object.

In the next sections, we are going to talk a bit about referencing different parts of the
items array using dot notation, along with how to output the information once we have
transformed it. Plus, we will also cover how to access data in different nodes other than
the one that immediately preceded the node you are in.

Dot notation
Once you have chosen the proper object within the items array by indicating its index
number, you need to determine if you will work with the JSON or the binary object. You
can do this by using what is referred to as dot notation. Dot notation allows you to work
your way deeper into an array or object by distinguishing parent and child items with a
dot or period (.). In line 1 of our code, the dot between items[0] and json tells n8n to
reference the json object in the items array with the 0 index.

Most of the time, you will be working in the json object, but there are situations where
you would use the binary object.

The items array 49

To better understand the dot notation used to reference different parts of the items array,
refer to the following table with the dot notation name on the left and the piece of the
JSON it is referencing on the right:

50 Diving into Core Nodes and Data in n8n

Outputting data
As with functions in other programming languages, the Function node needs to
indicate which information gets passed to the rest of the program. This is accomplished by
the second line of code, which returns the newly updated items array to the next node.

While it is a best practice to modify the value of the items array and pass it on to the
next node, this is technically not required, and you can return any array that follows the
proper n8n data structure.

Data from other nodes (the $items method)
Sometimes, it is necessary to reference the output of a node that is not directly connected
to the Function node that you are working with but has been executed before your
node. In this instance, referencing the items array will not give you the correct
information.

To resolve this issue, you can use the $items method. This method allows you to access
all of the data in a node as long as that node is before the present node you are working in
and has already been executed.

Let's take a look at this in action. Let's build the following workflow:

Figure 3.4 – Basic workflow with three Function nodes

Since this is a default Function node, the output of the myFunction node is this:

[

 {

 "myVariable": 0

 },

 {

 "myVariable": 1

 }

]

The items array 51

The Reset node then deletes everything that it receives and sets the output to empty, as
indicated here:

[

 {

 }

]

We set the JavaScript in the Function node to output the information from the previous
node, as follows:

return items;

As you will see, we end up with the same results as we have from the Reset node.

Now, let's use the $items method to pull the data from the myFunction node, essentially
skipping the Reset node. Change the JavaScript in the Function node to this:

items = $items("myFunction");

return items;

When you run the workflow now, you will see that the output of the Function node
matches the output of the myFunction node.

As with the items array, you can specify which item in the $items method to reference
by setting the index in square brackets. Along with using the array index, you can also use
dot notation to reference deeper into the array and objects. For example, this is a perfectly
acceptable way of accessing specific information from a node:

items[0].json = $items("myFunction")[1].json;

Manipulating data
Because the Function node uses JavaScript, you have all of the power of JavaScript at
your disposal for manipulating data. A deep dive into JavaScript and its capabilities is
outside of the scope of this book, but there are some useful commands that we have put
together to give you a head start.

52 Diving into Core Nodes and Data in n8n

Strings
For these examples, we will assume that we have a variable called fullName, and the
value assigned to it is Jim Nasium. Have a look at the following table:

Mathematics
JavaScript also has potent mathematical abilities. Here are some practical examples:

As you should now realize, the Function node is extremely powerful. We have learned
how to reference data both inside the node and from other nodes, manipulate both strings
and numbers, and output the data so that it can be used by other nodes.

HTTP Request node – Talk to any API 53

Now that we have a better understanding of the power of the Function node and some
ideas of what can be done with the data, let's look at getting some data from remote
systems via their API using the HTTP Request node.

HTTP Request node – Talk to any API
Computer systems are fantastic for storing and processing massive amounts of data, but
computer users and developers very quickly discovered that there was no actual standard
for allowing these computers to share information.

Someone had the bright idea to use the new web standard to create a way for these
systems to communicate. They would use standard request methods to retrieve, add,
delete, or update information on remote computers. Along with these functions, they
would even provide the ability to secure these connections using various methods to
ensure only authorized individuals could get to the data.

This system setup is collectively referred to as a web API, which is one of the most popular
ways of working with remote data today. There are thousands of different APIs available,
providing access to an extensive range of data and information.

Since one of the primary functions of n8n is to connect different systems to share data, it
only makes sense to talk to these web APIs.

In this section, we are going to learn how APIs work, how they are formatted, ways that
data can be passed through APIs, and primary methods supported by APIs, along with the
response codes that they return. Finally, we will perform some basic API calls, as well as
look at how to secure these calls.

Web API 101
Before we look at the HTTP Request node, let's first do a quick overview of how APIs
work to better understand how they allow systems to interact with them.

Web APIs run on the same technology as most of the websites on the internet, but instead of
dishing up your favorite web pages or cat videos, web servers configured to run APIs allow
remote systems to make a request and then reply to the request with data based on the input
received earlier. The data that is sent between the systems is often formatted in JSON.

54 Diving into Core Nodes and Data in n8n

To see the most basic API in action, let's take a look at the Random User API. Open up
your web browser, and in the address bar, enter https://randomuser.me/api/.
When you press the Enter key, you will see a bunch of text similar to this:

{"results":[{"gender":"female","name":{"title":"Miss",
"first":"Hanna","last":"Farias"},"location":{"street":
{"number":4304,"name":"Rua São Paulo "},"city":"São
Luís","state":"Piauí","country":"Brazil","post-
code":35435,"coordinates":{"latitude":"-77.5289","longi-
tude":"3.6948"},"timezone":{"offset":"-11:00","descrip-
tion":"Midway Island, Samoa"}},"email":"hanna.farias@example.
com","login":{"uuid":"66406cea-46a3-47c4-a9aa-0717ab96ae-
41","username":"redbear531","password":"onlyme","salt":
"xOlBVsMM","md5":"e5aaa5fa1141ced7a3d0b83edbd76ef5","sha1":
"cacfc3f023c50af7c9da3a1bafdd5cd653663ea-
b","sha256":"91e134083ebaf9a721a3f7890be3a186b56a0dde8e-
406f37abf4b68cb41e91a0"},"dob":{"date":"1951-02-27T05:4-
2:48.601Z","age":70},"registered":{"date":"2010-05-19T04:2
1:25.465Z","age":11},"phone":"(65) 4693-1327","cell":"(81)
4446-9285","id":{"name":"","value":null},"pic-
ture":{"large":"https://randomuser.me/api/portraits/women/64.
jpg","medium":"https://randomuser.me/api/portraits/med/wom-
en/64.jpg","thumbnail":"https://randomuser.me/api/portraits/
thumb/women/64.jpg","medium":"https://randomuser.me/api/
portraits/med/women/64.jpg","thumbnail":"https://randomuser.me/
api/portraits/thumb/women/64.jpg"},"nat":"BR"}],"info":
{"seed":"3e10360b4732e141","results":1,"page":1,"ver-
sion":"1.3"}}

While this may look like a lot of gibberish, you will see a few characters that look familiar
from our Function node chapter if you look closely. What we've come across is
compressed or unformatted JSON!

Anatomy of an API URL
To access an API, one of the essential items you will need is a Uniform Resource Locator
(URL). It is vital to understand the different parts of a URL because you or your system
will often be required to build the URL yourself so that you can work with your desired
information.

Let's look at a fictional API URL, dissect the different parts of the URL, and determine
their purpose. For this exercise, we are going to use the following URL: https://api.
example.com/v3/computers?type=laptop&ram=32&hdd=1024

https://randomuser.me/api/
https://api.example.com/v3/computers?type=laptop&ram=32&hdd=1024
https://api.example.com/v3/computers?type=laptop&ram=32&hdd=1024

HTTP Request node – Talk to any API 55

The parts of the API URL are explained in the following sections.

Protocol
In our example, this is the https:// portion of the URL. This will generally be either
http:// or https://. This is important because if the protocol is http://, the data
is not encrypted between the API server and the client. Anyone can see what information
is passing between these two computers, including passwords.

Always make sure that the protocol is https://.

Base URL
The base URL in our example is api.example.com. It is sometimes referred to as the
hostname, domain name, or Domain Name System (DNS) name. These all refer to the
same thing. The base URL is generally the server that is hosting the API.

Endpoint
For our example, the endpoint is /v3/computers. It is sometimes referred to as the API
path. The endpoint is either static (that is, it stays the same) or dynamic (that is, it changes
based on the information that is being requested). While there is no absolute standard for
how endpoints are used, there are some common practices.

From our example, the /v3 portion tells us that this is version 3 of the API, and the
/computers portion tells us that we can expect one or more records to be returned by
this endpoint.

Query parameters
The example has three query parameters—type=laptop, ram=32, and hdd=1024.
Two delimiters identify the query parameters. The ? delimiter separates the query
parameters from the rest of the URL, and the & delimiter separates each query parameter.

Much as with JSON key-value pairs, the key is the portion before the equals sign (=), and
the value is the portion after the equals sign (=).

Other parameters
While using specific endpoints and query parameters are the most common ways of
controlling the type of information that is passed between the API client and server, other
parameters can further modify the information flow.

http://api.example.com
http:///v3/computers

56 Diving into Core Nodes and Data in n8n

Headers
Headers are typically used to provide metadata about the API request. They often give
information on the type of data being transmitted, security tokens, or server information.

These are generally transmitted in a key-value pair.

Body parameters
The body of a request typically carries information or data required to complete the
request or is supplied by the server based on the request made by the client.

This information is generally sent in a key-value pair.

HTTP methods
There are different ways of interacting with APIs, each producing a different result on
the server hosting the API and the client requesting the action. These are referred to as
methods and can be thought of as action verbs that allow the system to know how to
deal with the request. The next sections provide a brief overview of each method and its
general use.

GET
GET is the most common method. It is used every time you use a web browser to retrieve
information from a web server.

GET is typically used for retrieving data from an API.

POST
The POST method is the other most commonly used method. Web browsers will often use
this method to submit information from a web form.

POST is generally used for submitting information to an API that is then stored by the
API as a new record.

DELETE
The DELETE method is usually used to delete a resource or record on the API's remote
server.

HTTP Request node – Talk to any API 57

HEAD
The HEAD method works very much like the GET method, except that the API only
returns header information and no other data.

PATCH
Patching a resource allows you to change only part of the information in the record,
leaving everything else the same as it was before.

PUT
PUT is similar to the POST method in that it creates a new record on the API server if
no record exists. But if the information being put to the API has a matching record, this
record will be overwritten and replaced by the new information.

Response codes
When a request is made to an API server and the data and metadata is returned to the
client, there is also a response code. While diving deep into what each response code
means and how you can use them for detailed troubleshooting is beyond the scope of this
book, it is essential to know each classification of response code and what they represent.

1xx (informational)
The request was received by the server and is still being processed. Please wait for it to
finish.

2xx (success)
Everything worked as expected, more or less.

3xx (redirection)
The API is no longer at the location you requested. Check the error message to get a better
idea of the new API location.

4xx (client error)
Something is wrong with how you formed the API request. Check the error message and
then update the request.

58 Diving into Core Nodes and Data in n8n

5xx (server error)
There's a problem with the server, and generally, there is little that you can do to resolve
the issue. If you have the contact information for the person/team managing the API
server, you could report the error to them and see if they can assist.

Now that we understand what APIs are about, let's start using n8n's HTTP Request
node to connect to a few APIs.

Basic API call
Let's start with a simple API call. Let's get information from GitHub about the n8n
project.

Add a new HTTP Request node to the canvas in the n8n Editor UI and open the node.
Please leave all of the parameters at their defaults, except for the URL value. Set the URL
value to https://api.github.com/users/n8n-io/.

And that's it! We are now ready to retrieve the data from the server via the API! Click
on Execute Node to perform the API request. You should get a response that looks
something like this:

[

 {

 "login": "n8n-io",

 "id": 45487711,

 "node_id": "MDEyOk9yZ2FuaXphdGlvbjQ1NDg3NzEx",

 "avatar_url": "https://avatars.

 githubusercontent.com/u/45487711?v=4",

 "gravatar_id": "",

 "url": "https://api.github.com/users/n8n-io",

 "html_url": "https://github.com/n8n-io",

 "followers_url": "https://api.github.com/users/n8n-

 io/followers",

 "following_url": "https://api.github.com/users/n8n-

 io/following{/other_user}",

 "gists_url": "https://api.github.com/users/n8n-

 io/gists{/gist_id}",

 "starred_url": "https://api.github.com/users/n8n-

 io/starred{/owner}{/repo}",

 "subscriptions_url": "https://api.github.com/

HTTP Request node – Talk to any API 59

 users/n8n-io/subscriptions",

 "organizations_url": "https://api.github.com/

 users/n8n-io/orgs",

 "repos_url": "https://api.github.com/users/n8n-

 io/repos",

 "events_url": "https://api.github.com/users/n8n-

 io/events{/privacy}",

 "received_events_url": "https://api.github.com/

 users/n8n-io/received_events",

 "type": "Organization",

 "site_admin": false,

 "name": "n8n - Workflow Automation",

 "company": null,

 "blog": "https://n8n.io",

 "location": "Berlin, Germany",

 "email": "hello@n8n.io",

 "hireable": null,

 "bio": "Free and open fair-code licensed node based

 Workflow Automation Tool.",

 "twitter_username": "n8n_io",

 "public_repos": 12,

 "public_gists": 0,

 "followers": 0,

 "following": 0,

 "created_at": "2018-11-30T12:19:59Z",

 "updated_at": "2022-01-07T17:49:22Z" }

]

You can now connect other nodes to the output of the HTTP Request node and process
the information however you wish, or send it to another system.

60 Diving into Core Nodes and Data in n8n

Using basic authentication
Now, let's try something a bit more complicated. We're going to look up Universal
Product Code (UPC) values at UPC Database. Follow these instructions to set up the user
account, get a token for API authentication, and configure a new HTTP Request node
to query the API:

1.	 Browse to https://upcdatabase.org/signup and create an account.
2.	 Once you have your account created, go to https://upcdatabase.org/

apikeys and copy the token on that page. If there is no token on the page, create a
new token and then copy it.

3.	 In the n8n Editor UI, add a new HTTP Request node to the canvas.
4.	 For the Authentication parameter, select Basic Auth.
5.	 Next, click Create New to open up a new credential window for the Basic Auth

parameter.
6.	 Enter in a value for Credentials Name (for example, UPC), enter your email address

in the User field, and paste your token into the Password field.
7.	 Click on the Create button. This will save the credentials and return you to the

HTTP Request node. Notice that the Basic Auth parameter now has the name of
the credentials that you just created.

8.	 In the URL parameter field, enter https://api.upcdatabase.org/
product/765756931182.

9.	 Your HTTP Request node should be ready to go. Hit Execute Node and check out
your results. They should look something like this:

[

 {

 "added_time": "2020-04-03 00:28:03",

 "modified_time": "2020-04-03 00:28:03",

 "title": "Raspberry Pi 4 4GB model - New 2019 4GB Ram",

 "alias": "",

 "description": "",

 "brand": "Raspberry Pi",

 "manufacturer": "",

 "mpn": "",

 "msrp": "64.99",

 "ASIN": "",

 "category": "",

https://upcdatabase.org/signup
https://upcdatabase.org/apikeys
https://upcdatabase.org/apikeys
https://api.upcdatabase.org/product/765756931182
https://api.upcdatabase.org/product/765756931182

Webhook node – Handling real-time events 61

 "metadata": {

 "age": null,

 "size": null,

 "color": null,

 "gender": null

 },

 "stores": null,

 "barcode": "765756931182",

 "success": true,

 "timestamp": 1620901566,

 "images": null

 }

]

Try changing the number at the end of the URL and replace it with other UPCs you have
around your home, and see what information you can find out about the products.

In this section, we covered the basics of APIs including the parts that make up an API,
how information is transmitted using APIs, the different HyperText Transfer Protocol
(HTTP) methods, and their corresponding response codes. We then made both basic and
secured API calls.

Now that we better understand APIs, let's move away from retrieving information that we
request from other servers and take a look at receiving information that is pushed to n8n.

Webhook node – Handling real-time events
You can think of Webhooks as the cousin of APIs. In fact, you can create an API server
using the Webhook node!

A Webhook listens for GET, HEAD, or POST requests and then starts a workflow when it
detects one. The Webhook node can do this because it is a trigger node.

In this section, we are going to learn how to create a Webhook using n8n. As part of this
build, we will learn how to send information to the Webhook and how to respond back
with the requested information.

62 Diving into Core Nodes and Data in n8n

Creating a basic test Webhook
To build a basic Webhook, follow these instructions:

1.	 Add a Webhook node to the n8n Editor UI canvas and open the node.
2.	 Leave all of the parameter values at their defaults.
3.	 Expand the Webhook URLs section by clicking on the Webhook URLs text.
4.	 Click on the Test URL toggle under the Display URL for section.
5.	 Click on the URL to copy it to your clipboard (for example, https://tephlon.

app.n8n.cloud/webhook-test/373227bb-5fda-49e9-b491-
54ef33db3eed).

6.	 Close the Webhook node.
7.	 Save the workflow. This is important because the Webhook URL can't register until

the workflow is saved.

That's it! You've just created your first basic Webhook!

Now, let's test it to see if it is working! Follow these steps:

1.	 In the n8n Editor UI, open up the Webhook node.
2.	 Click on the Execute Node button to start the Webhook listening.
3.	 Open up a new web browser, paste the Webhook URL you copied earlier into the

address bar, and press Enter.

If everything is working correctly, you should see two things happen, as follows:

1.	 In the web browser window, you should get the following message:

{"message":"Workflow got started."}

2.	 In the n8n Editor UI, you should receive a bunch of information in the Webhook
node output window, similar to this:

[

 {

 "headers": {

 "host": "tephlon.app.n8n.cloud",

 "x-request-id":

 "30d32a403776b5bbce58ce0ef8a4c245",

 "x-real-ip": "10.40.0.4",

 "x-forwarded-for": "10.40.0.4",

https://tephlon.app.n8n.cloud/webhook-test/373227bb-5fda-49e9-b491-54ef33db3eed
https://tephlon.app.n8n.cloud/webhook-test/373227bb-5fda-49e9-b491-54ef33db3eed
https://tephlon.app.n8n.cloud/webhook-test/373227bb-5fda-49e9-b491-54ef33db3eed

Webhook node – Handling real-time events 63

 "x-forwarded-host": "tephlon.app.n8n.cloud",

 "x-forwarded-port": "443",

 "x-forwarded-proto": "https",

 "x-scheme": "https",

 "sec-ch-ua-mobile": "?0",

 "dnt": "1",

 "upgrade-insecure-requests": "1",

 "user-agent": "Mozilla/5.0 (Windows NT 10.0;

 Win64; x64) AppleWebKit/537.36 (KHTML, like

 Gecko) Chrome/90.0.4430.212 Safari/537.36",

 "accept": "text/html,application/xhtml+xml,

 application/xml;q=0.9,image/avif,image/

 webp,image/apng,*/*;q=0.8,application/signed-

 exchange;v=b3;q=0.9",

 "sec-fetch-site": "none",

 "sec-fetch-mode": "navigate",

 "sec-fetch-user": "?1",

 "sec-fetch-dest": "document",

 "accept-encoding": "gzip, deflate, br",

 "accept-language": "en-CA,en-GB;q=0.9,en-

 US;q=0.8,en;q=0.7",

 "cookie":

 "token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

 eyJpc3MiOiJjbG91ZCIsInN1YiI6NDAzMSwi

 dXNlcm5hbWUiOiJ0ZXBobG9uIiwiaWF0IjoxNj

 IwODIwMDYzLCJleHAiOjE2MjE0MjQ4NjN9.

 Q77PkeKY6OUbSJI5Ms56lWvTg8jqSvNOKCp325kTjKo"

 },

 "params": {},

 "query": {},

 "body": {}

 }

]

64 Diving into Core Nodes and Data in n8n

This is all of the information that has been sent to n8n from the web browser. While there
is some interesting data here, there isn't anything helpful at this time.

Sending information to n8n
Since we have a basic Webhook running, let's see what happens when we send some
information to it as a query in the URL. Follow these steps:

1.	 In the n8n Editor UI, open up the Webhook node and press the Execute Node
button.

2.	 In the web browser window that you used previously, paste the Webhook URL into
the address bar, but before you press Enter, add ?fname=Jim&lname=Nasium to
the end of the URL. Then, press Enter.

Everything looks the same in the web browser, but let's look closely at the query section
in the Webhook node output window, which you can see here:

"query": {

 "fname": "Jim",

 "lname": "Nasium"

},

These values match the values entered at the end of the URL that was entered into the web
browser. You can now use this information received from the client in the rest of your
workflow.

Responding to the client
Now that we know we can receive information from the client, let's send a confirmation
message to the sender! Follow these steps:

1.	 In the Webhook node, change Response Mode to Last Node.
2.	 Under the Options section of the Webhook node, add a Property Name option

and give it a value of html.
3.	 Next, add a Raw Body option to the Webhook node and enable the option.
4.	 Close the Webhook node.
5.	 Add a Set node to the n8n Editor UI and connect it to the output of the Webhook

node.
6.	 Open the Set node and add a string value.

Working with arrays and JSON objects 65

7.	 Name the value html.
8.	 Click on the gears next to Value and click on the Add Expression option.
9.	 In the Expression Editor, paste <H1>Thanks for visiting,

{{$json["query"]["fname"]}} {{$json["query"]["lname"]}}!</
H1> in the Expression field.

10.	 Close the Expression Editor and the Set node.

Let's see what this does for us. In the n8n Editor UI, click on the Execute Workflow
button. Then, go back to your web browser and enter the URL you used last time, ending
with ?fname=Jim&lname=Nasium.

If everything has been set up correctly, you should get a message in large letters stating
"Thanks for visiting, Jim Nasium!".

How does that work?
When the web browser sends the information to the Webhook, the Webhook grabs the
fname=Jim&lname=Nasium portion of the URL and sends it on to the Set node. The
Set node then uses the values for fname and lname to dynamically generate HyperText
Markup Language (HTML), which the Webhook uses to send back to the web browser.
The web browser then displays the HTML accordingly.

We've essentially turned n8n into a web server that can generate real-time dynamic web
pages!

We have one last section that we want to cover before we close out this chapter. Let's talk
about manipulating data stored in arrays and JSON objects.

Working with arrays and JSON objects
n8n uses a lot of arrays and JSON objects, and it is important that you are comfortable
working with them. In this section, we will learn how to manipulate arrays and objects by
splitting, combining, and writing to these items.

There is a lot of data flying around an n8n workflow, and it can be constructive to learn a
few tips and tricks about manipulating this data stored in arrays and JSON objects.

66 Diving into Core Nodes and Data in n8n

For these examples, we are going to use an array with three JSON objects with the same
keys, as illustrated in the following code snippet:

[

 {

 "species": "dog",

 "name": "Cocoa",

 "color": "brown"

 },

 {

 "species": "cat",

 "name": "Lucky",

 "color": "brown"

 },

 {

 "species": "cat",

 "name": "Skittles",

 "color": "grey"

 }

]

If you look at this information using the Table tab at the top of the n8n node generating
this information, it will look something like this:

You can generate this table in a Function node by adding a Function node to the n8n
Editor UI and then pasting the following into the JavaScript code field:

items = [{ "json": { "species": "dog", "name": "Cocoa",
"color": "brown"}}, { "json": { "species": "cat", "name":
"Lucky", "color": "brown"}}, { "json": { "species": "cat",
"name": "Skittles", "color": "grey"} }];

return items;

Working with arrays and JSON objects 67

Now, the output of the Function node should match the preceding table.

Next, let's learn how to split data from the Function node using the IF node.

Separating the cats from the dogs
The first thing we are going to do is split this array into two arrays using the IF node.
We are going to send all of the dogs to the true output and all of the cats to the false
output.

To do this, follow these steps:

1.	 Attach an IF node to the output of the node generating the array.
2.	 Open the IF node and add a string condition to the node.
3.	 In the Value 1 field, click on the gears icon and select Add Expression.
4.	 In the Expression Editor, enter {{$json["species"]}} into the Expression

field and close the Expression editor.
5.	 In the Value 2 field, type dog for the value.
6.	 Close the IF node and execute the workflow.
7.	 Open the IF node and take a look at the results for the true and false outputs.

You should see that there are two entries in the false output and one in the true
output.

Combining two arrays
Now that we have split the array apart, let's see if we can bring them back together again.
We're going to do this using the Merge node. Follow these steps:

1.	 Add a Merge node to the n8n Editor UI.
2.	 Connect the true output from the IF node to Input 1 of the Merge node.
3.	 Connect the false output from the IF node to Input 2 of the Merge node
4.	 Open the Merge node.
5.	 For the Mode parameter, select Append.
6.	 Close the Merge node.

68 Diving into Core Nodes and Data in n8n

Your final workflow should look something like this:

Figure 3.5 – Splitting and merging an array workflow

It's now time to test it out! Execute the workflow. When it finishes running, open up the
Merge node. The output windows should show that the array is once again back together.

Adding the same value to all JSON objects
Now, let's imagine we want to add another key to all records in the array coming out from
the Merge node. Let's also assume that each copy of the key will be the same.

We can accomplish this by using the Set node. Here are the steps you need to follow:

1.	 Add a Set node to the n8n Editor UI and attach it to the output of the Merge
node.

2.	 Open the Set node.
3.	 Add a new Boolean value and name it adopted.
4.	 Set the value of adopted to true.
5.	 Close the Set node.

To check if it worked, execute the workflow and open up the IF node. The table in the
output window should now look like this:

Using the IF, Merge, and Set nodes allows us to perform some instrumental data
manipulation tasks quickly and easily without resorting to custom coding using the
Function node.

Summary 69

Summary
This chapter covered some critical concepts, and in it, we learned how to build some
powerful tools within n8n.

We first covered how n8n structures data with JSON using the primary components
of key-value pairs, objects, and arrays. We followed this by showing how n8n stores
JSON and binary data internally. Then we talked about using the Function node and
understanding the items array, dot notation, and the $items method. Once functions
were figured out, we learned about APIs and how to send and receive data using basic
and authenticated calls. Next, we reviewed Webhooks and used them in n8n to send
information and generate HTML files. Finally, we went over how n8n works with JSON
objects and arrays, including manipulating data that is stored in these items.

With this new information under your belt, you are well on your way to building practical
tools using n8n.

In the next chapter, you will put this new knowledge to use and build three applications
in n8n!

4
Learn by Doing:

Building Two
n8n Apps

In this chapter, you will learn to combine concepts from the previous chapters and use
them to build multiple projects. Some of these projects will reinforce the concepts you
learned earlier and others will introduce some new ideas. This will help you understand
the kinds of products that you can build using n8n. Finally, we will learn how to share and
discover new workflows as well as participate in n8n's active community.

This chapter will cover the following main topics:

•	 Building products with n8n

•	 Building a Telegram bot

•	 Creating a metrics dashboard

•	 Sharing and discovering workflows

72 Learn by Doing: Building Two n8n Apps

Technical requirements
This is a list of technical requirements that you'll need to prepare before continuing with
the chapter:

•	 Install n8n.

•	 Ensure n8n is running and the Editor UI is open.

•	 Get an account on Telegram.

•	 Get an account on GitHub.

You can find the completed code examples for the chapter on GitHub at https://
github.com/PacktPublishing/Rapid-Product-Development-with-n8n/
tree/main/Chapter%204

Building products with n8n
If you are anything like me, you have no shortage of ideas for building new and exciting
online services or automating boring tasks that are the same every day. Historically, many
of these ideas never got any further than that and I didn't know how to get to the next step
of actually building the solutions or starting to work on a prototype.

No code tools provide a much simpler way of producing that early minimum viable
product (MVP) or designing the next great web service.

n8n shares this no code philosophy, allowing you to build applications and tools in a
fraction of the time that it would take to build them with regular programming languages.
Not only is it faster, but it is also easier since all you need to do is understand a bit of
JavaScript for the more complicated applications, and maybe not even that, depending on
what you want to build!

To get you motivated to start building some applications with n8n, here are a couple of
sample apps that perform some fun functions and demonstrate how quick and easy it is to
get things up and running.

Building a Telegram bot
Pokémon was one of my favorite shows when growing up. Even today, I enjoy playing
Pokémon Go. At times, you will come across very tough opponents in the game and you
have to do some research on what the weakness of the opposing Pokemon is. My search
history is full of queries like, "How to defeat Tyranitar." Let's create a Telegram bot that
gives us information about a Pokemon's abilities, moves, and types.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%204
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%204
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%204

Building a Telegram bot 73

In Chapter 2, Using the Editor UI to Create Workflows, we learned how to create Telegram
bots, as well as how to query a REST API. We'll be using a similar workflow but with
some catches:

•	 We'll have to check whether the user of the bot has entered the name of a Pokemon
along with the slash command.

•	 We'll query the Pokemon API (https://pokeapi.co) to get the data. However,
that API is very comprehensive and we'll need to massage the data so that it fits the
format that we want to consume this information in.

Let's get started by creating a new Telegram bot by following the instructions provided in
Chapter 2, Using the Editor UI to Create Workflows. I named my bot Pokemon Bot. Next,
we'll need to set a command for our bot. Go to the chat with BotFather and enter
/setcommands. Choose the bot that you just created, and enter the following:

pokemon - Get details about a specific pokemon

You should be able to see something similar to the following screenshot after running the
command:

Figure 4.1 – Setting a command for our Telegram bot

https://pokeapi.co

74 Learn by Doing: Building Two n8n Apps

Congratulations, you have just created the first command for your bot.

Let's start building the backend for this bot in n8n. To do this, follow these steps:

1.	 Open your n8n Editor UI and add a Telegram Trigger node.
2.	 Enter the credentials for your new bot and select * from the drop-down list for the

Updates field.
3.	 Now, save and execute the workflow.

Figure 4.2 – Settings for the Telegram Trigger node

Note
If you are running n8n locally, make sure that you are running using tunnel
mode.

Building a Telegram bot 75

4.	 Now, go to your bot and enter /pokemon ditto.

Figure 4.3 – Sending a command to the Pokemon bot

5.	 Go back to the Editor UI and you will see a response there. It is likely that the
response is /start. If it is, press Execute Workflow again, until you see
/pokemon ditto in the respons

Figure 4.4 – Receiving /pokemon ditto as a command with the Telegram Trigger node

76 Learn by Doing: Building Two n8n Apps

You will notice that it is quite likely that someone just clicks on the command without
entering the name of the Pokemon. We will have to account for the fact that someone
might make the same mistake while using this bot. To make sure that this does not
happen, let's add an IF node to check whether the user provided the name of a Pokemon.

Add an IF node to the Editor UI and make sure that it is connected to the Telegram
Trigger node. Enter the Node Editor view, click on the Add Condition button, and select
String. Select Is Empty for Operation. Add an expression to the Value 1 field and enter
the following:

{{ $json["message"]["text"].split(' ')[1] }}

This JavaScript snippet points to '/pokemon ditto' using $json["message"]
["text"]. The .split(' ') method splits the string at the space and converts it into
an array, which looks like this: ['/pokemon', 'ditto']. Then we select the item at
position 1, which is 'ditto'. Execute the node.

Figure 4.5 – Executed IF node with no output for true

You will notice that the output for the true section is empty since the condition that we
specified is false. If you select false instead of true for the Output field at the top, you will
see one result. Let's now set a default message in case the name of the Pokemon has not
been specified.

Building a Telegram bot 77

1.	 Add a Telegram node to the Editor UI and connect it to the true output of the IF
node.

2.	 Configure the credentials for the node, and use the expressions to set the value for
Chat ID (you can get it from the Telegram Trigger node). The expression should
look something like this:

{{$node["Telegram1 Trigger"].json["message"]["chat"]
["id"]}}

Note
We used an expression here as compared to the Telegram node in Chapter 2,
Using the Editor UI to Create Workflows, since many people might be using the
Telegram bot and we want to send the answer to the person who queried it.

3.	 Enter the following in the text field, Please enter the name of
a Pokemon. For example, '/pokemon ditto' (without the
quotes). Feel free to customize the message.

4.	 Now let's execute the workflow and this time, let's just send /pokemon to the bot.
The response should look something like this.

Figure 4.6 – Response after sending /pokemon as the command to the bot

78 Learn by Doing: Building Two n8n Apps

Now that we have cleared one of the challenges that we mentioned before, let's focus on
getting the data from the API and sending it back to the user. To do this, follow these steps:

1.	 Add an HTTP Request node to the Editor UI and connect it with the false output
of the IF node. The workflow should now look like this.

Figure 4.7 – Your workflow should look like this after adding the HTTP Request node
Before we move forward, execute the workflow again, and send /pokemon ditto
to the bot. This will make the data in the workflow flow toward the false branch as
we build that branch.

Building a Telegram bot 79

2.	 Open the HTTP Request node, add an expression to the URL field, and enter the
following:

https://pokeapi.co/api/v2/pokemon/{{$json["message"]
["text"].split(' ')[1]}}

This will ensure that the API returns details about the Pokemon that you asked for.
Execute the node and you will notice that you get loads of data about Ditto. We are
specifically interested in the abilities, moves, and types. However, these are arrays with
objects in them. We'll have to massage the data so that it converts into a format that is
useful for us. We will use the Function node to do that.

Add a Function node to the Editor UI and connect it to the HTTP Request node. Open
the JavaScript Code field and enter the following code:

const abilities = [];

const moves = [];

const types = [];

for (let i=0; i<items[0].json.abilities.length;i++) {

abilities.push(items[0].json.abilities[i].ability.name);

}

for (let i=0; i<items[0].json.moves.length;i++) {

moves.push(items[0].json.moves[i].move.name);

}

for (let i=0; i<items[0].json.types.length;i++) {

types.push(items[0].json.types[i].type.name);

}

return [{json: {name: items[0].json.name, abilities, moves,
types}}];

80 Learn by Doing: Building Two n8n Apps

Let's understand what is happening here. We created three new arrays called abilities,
moves, and types. We then created a loop that will push the name of each ability, move,
and type into its respective array. Finally, we returned the data in a format expected by
n8n. Execute the node and it should then look like this:

Figure 4.8 – Output of the Function node

Perfect, we now have just the data that we need. Now we need to send it to the Telegram bot.

Add a new Telegram node and connect it with the Function node. Configure your
credentials and Chat ID as discussed before. Now, add an expression to the Text field and
format the data as you see fit.

Here's what my expression looks like:

Name: {{$json["name"]}}

Abilities: {{$json["abilities"].join(', ')}}

Moves: {{$json["moves"].join(', ')}}

Types: {{$json["types"].join(', ')}}

Notes
When adding values to expressions that are an array, such as abilities,
you can click on the gray dot next to the value in the expression editor, and
click on Values as shown in the following screenshot.

In the preceding example, I have used the bold HTML tags to bold some text.
If you would like to include that as well, click on the Add Field button, select
Parse Mode, and set it to HTML.

Building a Telegram bot 81

Figure 4.9 – Adding values from an array in the expression editor

Now, save and activate your workflow. Here's what your workflow should look like:

Figure 4.10 – Final workflow

82 Learn by Doing: Building Two n8n Apps

Now, go ahead and enter /pokemon ditto in your Telegram bot. Here's what the result
looked like for me:

Figure 4.11 – Result of the /pokemon ditto command in the Telegram bot

Go ahead and try a few more. Here are some names of Pokemons: Meowth, Pikachu,
Bulbasaur. Gotta catch them all.

Let's use our knowledge of webhooks from Chapter 3, Diving into Core Nodes and Data in
n8n, to build a metrics dashboard with n8n.

Building a metrics dashboard
Metrics are a key component of any business. It's important to keep an eye on metrics
to measure the health and growth of communities, products, revenue, and many other
things. Let's build a metrics dashboard that will show us the count for the following:

•	 GitHub stars

•	 GitHub forks

•	 Docker pulls

Building a metrics dashboard 83

It should be straightforward to add or redact any other numbers that you'd like to see in
there. There are two main components to building this numbers dashboard:

•	 Serving the web page for displaying the metrics in an easy-to-read format

•	 Getting the data from different services and inserting it into the web page

Let's start off by learning how to serve a web page with n8n. The following are the steps
for it:

1.	 Open your Editor UI and add a Webhook node. Select Last Node from the drop-
down list for the Response Mode field.

2.	 Click on the Add Option button and select Property Name. Enter html into the
Property Name field.

3.	 Save the workflow and execute the workflow. Copy the test webhook URL and paste
it into your web browser. The Webhook node should look something like this now.

Figure 4.12 – Configuring the Webhook node to serve web pages

4.	 Add a Set node to the Editor UI and connect it to the Webhook node. Toggle the
Keep Only Set button to true (green).

84 Learn by Doing: Building Two n8n Apps

5.	 Click on the Add Value button and select String. Enter html in the Name field and
enter the following expression in the Value field:

<html>

<body>

<h1>From n8n with love </h1>

Host: {{$json["headers"]["host"]}}

</br>

User Agent: {{$json["headers"]["user-agent"]}}

</body>

</html>

Here, we have added some HTML and used the expressions to point to the host and
user-agent values that the Webhook node provided. Execute your workflow and open
the test webhook URL again in your browser. You should see something like this.

Figure 4.13 – Web page served by the n8n workflow

Now that we know how to serve web pages with n8n, let's take a look at the next piece of
the puzzle – getting the data from GitHub and Docker Hub. To do this, follow these steps:

1.	 In your current workflow, delete the Set node. Add the GitHub node to the Editor
UI and connect it with the Webhook node.

2.	 Configure your credentials for the GitHub node by following the steps given here:
https://docs.n8n.io/credentials/github.

https://docs.n8n.io/credentials/github

Building a metrics dashboard 85

3.	 Select Repository for Resource and Get for Operation. Fill in the Repository
Owner and the Repository Name fields. I filled n8n-io and n8n in the fields
respectively.

4.	 Click on the Execute Node button and it should return details about the repository
that you specified. It should look something like this:

Figure 4.14 – Output from the GitHub node
If you browse through the output from this node, you will notice that we get the
star and fork counts as a result too. Next, we need to get the number of pulls from
Docker Hub. We'll use the HTTP Request node to do that.

86 Learn by Doing: Building Two n8n Apps

5.	 Add the HTTP Request node to the Editor UI and connect it to the GitHub node.
Enter the following URL in the HTTP Request node: https://hub.docker.
com/v2/repositories/n8nio/n8n. Feel free to replace this with the URL of
your repository. Execute the node and the output should look like this:

Figure 4.15 – Output of the HTTP Request node
Now that we have all the information that we need, we just need to create a nice
HTML template to display all this information and we will be ready.

6.	 Add a Set node to the Editor UI and connect it to the HTTP Request node. Toggle
the Keep Only Set field to true (green).

7.	 Click on the Add Value button and select String. Enter html in the Name field and
add an expression to the Value field. Paste this HTML code in the expression editor:

<html>

<head>

Add styling to our dashboard so that it looks nice

<style>

@importurl(https://fonts.googleapis.com/
css?family=Droid+Sans);

@importurl(http://weloveiconfonts.com/
api/?family=fontawesome);

/* fontawesome */

https://hub.docker.com/v2/repositories/n8nio/n8n
https://hub.docker.com/v2/repositories/n8nio/n8n

Building a metrics dashboard 87

[class*="fontawesome-"]:before {

font-family: 'FontAwesome', sans-serif;

}

* {

 margin: 0;

 padding: 0;

 border: 0;

 font-size: 100%;

 font: inherit;

 vertical-align: baseline;

 -webkit-box-sizing: border-box;

 -moz-box-sizing: border-box;

 box-sizing: border-box;

}

.fl{ float:left; }

.fr{ float: right; }

/*its also known as clearfix*/

.group:before,

.group:after {

 content: "";

 display: table;

}

.group:after {

 clear: both;

}

.group {

 zoom: 1; /*For IE 6/7 (trigger hasLayout) */

}

body {

 background: #F2F2F2;

 font-family: 'Droid Sans', sans-serif;

 line-height: 1;

 font-size: 16px;

}

.pricing-table {

88 Learn by Doing: Building Two n8n Apps

 width: 80%;

 margin: 50px auto;

 text-align: center;

 padding: 10px;

 padding-right: 0;

}

.pricing-table.heading{

 color: #9C9E9F;

 text-transform: uppercase;

 font-size: 1.3rem;

 margin-bottom: 4rem;

}

.block{

 width: 30%;

 margin: 015px;

 overflow: hidden;

 -webkit-border-radius: 5px;

 -moz-border-radius: 5px;

 border-radius: 5px;

/* border: 1px solid red;*/

}

/*Shared properties*/

.title,.pt-footer{

 color: #FEFEFE;

 text-transform: capitalize;

 line-height: 2.5;

 position: relative;

}

.content{

 position: relative;

 color: #FEFEFE;

 padding: 20px010px0;

}

.price{

 position: relative;

 display: inline-block;

Building a metrics dashboard 89

 margin-bottom: 0.625rem;

}

.pricespan{

 font-size: 3rem;

 letter-spacing: 8px;

 font-weight: bold;

}

.pt-footer{

 font-size: 0.95rem;

 text-transform: capitalize;

}

/*PERSONAL*/

.block.personal.fl{

 background: #78CFBF;

}

.block.personal.fl .content,.block.personal.fl

.pt-footer{

 background: #82DACA;

}

.block.personal.fl .content:after{

border-top-color: #82DACA;

}

.block.personal.fl .pt-footer:after{

 border-top-color: #FFFFFF;

}

.block.business .title{

 background: #3EC6E0;

}

.block.business .content,.professional .pt-footer{

 background: #53CFE9;

}

.block.business .content:after{

border-top-color: #53CFE9;

}

.block.business .pt-footer:after{

 border-top-color: #FFFFFF;

90 Learn by Doing: Building Two n8n Apps

}

/*BUSINESS*/

.block.business.fl .title{

 background: #E3536C;

}

.block.business.fl .content, .block.business.fl

.pt-footer{

 background: #EB6379;

}

.block.business.fl .content:after{

border-top-color: #EB6379;

}

.block.business.fl .pt-footer:after {

border-top-color: #FFFFFF;

}

</style>

</head>

Create three different div elements to position and
display the three metrics

<body>

 <div class="wrapper">

 <div class="pricing-table group">

 <h1 class="heading">

 Metrics overview

 </h1>

 <div class="block personal fl">

 <h2 class="title">GitHub Stars</h2>

 <div class="content">

 <p class="price">

 {{$node["GitHub"].json

 ["stargazers_count"]}}

 </p>

 </div>

 </div>

 <div class="block business fl">

Building a metrics dashboard 91

 <h2 class="title">GitHub Forks</h2>

 <div class="content">

 <p class="price">

 {{$node["GitHub"].json["forks"]}}

 </p>

 </div>

 </div>

 <div class="block business">

 <h2 class="title">Docker Pulls</h2>

 <div class="content">

 <p class="price">

 {{$node["HTTP

 Request"].json["pull_count"]}}

 </p>

 </div>

 </div>

 </div>

 </div>

</body>

</html>

We have used some HTML and CSS to make the metrics dashboard presentable.
You will notice that we have three different containers for the three different values
that we are pulling from GitHub and Docker Hub.

8.	 Save and activate the workflow. Now grab the production webhook URL and open it
in your browser. It should look something like this:

Figure 4.16 – Opening the dashboard using the production webhook URL

Congratulations, you have built a metrics dashboard that pulls in data from two different
sources and displays it using a web page that is served from your n8n workflow.

As we move forward, you'll be building a lot of different workflows. Let's take a look at
how you can discover and share workflows with the n8n community.

92 Learn by Doing: Building Two n8n Apps

Sharing and discovering workflows
Sometimes, it makes sense to share your workflows with the community to showcase what
you have been building and inspire them. It is also useful to discover workflows submitted
by the other community members to get inspiration for your next project.

The n8n.io website has a page dedicated to sharing and discovering workflows. You can
access the page here: https://n8n.io/workflows. You can submit workflows with a
title, description, and JSON. This is what a submitted workflow looks like:

Figure 4.17 – Example of a submitted workflow on n8n.io/workflows

The website automatically recognizes the nodes that you have included in the workflow
and lists them on the right side. When submitting a workflow, make sure of the following:

•	 The specific workflow doesn't already exist.

•	 The title is descriptive.

•	 The description has an explanation of what the workflow does and a screenshot of it
to aid the explanation.

https://n8n.io/workflows

Summary 93

This is also a great place to discover workflows submitted by other members of the
community to gain inspiration. While building your workflows, if you run into any
trouble, you can always post about your problem in the community forum: https://
community.n8n.io/.

n8n has a very active community and the forum is very useful for getting timely help
whenever you are stuck. We, ourselves, also spend a lot of time answering questions
on the forum, so if you get stuck at any point during the book, tell us about it in the
community forum and we'll be there to help you out. Our usernames in the forum are
@tanay and @tephlon.

Summary
In this chapter, we learned about why it makes sense to build products with n8n and
translated two of our ideas for products into n8n workflows by building a Telegram bot
and a metrics dashboard. Having a product mindset and an understanding of which
nodes to use to move your project forward will be useful in the next chapters, where we
will build our own project with n8n and Bubble.

In the next chapter, we will examine how to build a common way of communicating
between modern systems: the application programming interface, or API, as it is more
commonly known. We will learn how to use n8n to build APIs for both exposing and
collecting data for systems that do not have this way of accessing information already.

https://community.n8n.io/
https://community.n8n.io/

Section 2 – Building
an API to Power

Your Application

In this section, you will build a complete API solution for receiving and responding to
real-time requests from external systems.

In this section, there are the following chapters:

•	 Chapter 5, Building Your First API Endpoints

•	 Chapter 6, Powering Your API with a No Code Database

•	 Chapter 7, Transforming Your Data inside a Workflow

•	 Chapter 8, Utilizing the Bubble API in n8n

5
Building Your First

API Endpoints
Communication is at the core of all relationships. Good or bad relationships are often
defined by how well two individuals can convey their thoughts, feelings, and ideas.
Communication needs to be clear, accurate, and trusted.

Sharing information appropriately is also critical for computer applications. Having a
standard way of sending and receiving data between two different applications is critical
for many programs.

One of these standards is referred to as an API, which stands for application programming
interface. We are working specifically with the REST API architecture style. It was designed
to quickly provide information and perform actions based on standard HTTP methods.

Because of this well-known and understood standard, in this chapter, we will show
you how to plan and build an API using n8n. We will help you plan your API by
understanding the core concepts of APIs and thinking about what you want the final
product to perform. You will also understand how to use n8n to build, secure, and test the
API that you designed.

98 Building Your First API Endpoints

In this chapter, we are going to cover the following topics:

•	 Planning your project's API

•	 Configuring the Webhook node to handle requests

•	 Building the API in n8n

•	 Securing your API endpoints

•	 Testing your API

By the end of the chapter, you will be able to do the following:

•	 Create blueprints for an API endpoint so that there's minimal friction when
building the API.

•	 Configure the Webhook node so that it can handle requests that are sent to our API
and reply to them.

•	 Build an API endpoint in n8n based on the blueprints that we created.

•	 Secure your API endpoints by using the different authentication methods available
in the Webhook node.

•	 Test your API to make sure that all the functionalities that we have implemented
work as expected.

Technical requirements
The following are the technical requirements for this chapter:

•	 A working version of n8n.

•	 A web browser.

•	 Access to this book's GitHub repository: https://github.com/
PacktPublishing/Rapid-Product-Development-with-n8n. Another
useful tool is the Insomnia API tool, which can be found at https://insomnia.
rest/.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n
https://insomnia.rest/
https://insomnia.rest/

Planning your project's API 99

Planning your project's API
Before you start building out your API, you must have a solid roadmap. This plan allows
you to create the API quicker and ensure the design is consistent and accurate.

There are several different dimensions to consider when you are planning out your
API. For an example of good API design, see the OpenAPI Specification at https://
swagger.io/specification/.

Easy to understand
How an API works should be almost obvious to a developer using it. The API should have
terms that are consistent with similar APIs and adequately describe the information it is
using and the action it is performing.

Output data in JSON
While several different data formats are available to use, such as XML, YAML, and SOAP,
REST APIs most often output their data in JSON format. To maintain consistency, it is
recommended that all of your APIs, at the very least, be able to output their data in JSON.

Using the GET, HEAD, and POST HTTP methods
n8n supports three different HTTP methods (you can think of HTTP methods like action
verbs that tell the system what to do with the request it has received):

1.	 GET

2.	 HEAD

3.	 POST

4.	 DELETE

5.	 PATCH

6.	 PUT

While several other HTTP methods are available, such as UPDATE, at the time of writing
this book, n8n does not support them.

The two most commonly used HTTP methods are GET and POST, each of which provides
a specific action.

The GET method is generally used when we're attempting to retrieve (or get) information
from the API. It should not be used to pass sensitive information to the API. It is common
for the query parameters to be passed along in a URL format that is human readable and
often stored in web browser history.

https://swagger.io/specification/
https://swagger.io/specification/

100 Building Your First API Endpoints

However, the flip side of this method is that it is straightforward to create a website URL
that specifies all the information being requested by the user in a simple link.

Note
This assumes that no security has been applied to the API that needs to be
passed in the headers.

The POST HTTP method is usually used to create or add a new record to the system
providing the API. In n8n, it is also often used to change a record since there is no
UPDATE HTTP method support.

One of the advantages of using the POST HTTP method is that it does not show up in the
URL when it is submitted to the server.

Note
For more information about response codes, check out the HTTP methods
subsection of the HTTP Request node – talk to any API section of Chapter 3,
Diving into Core Nodes and Data in n8n.

Knowing what your API will do
It is critical to know precisely what your API is meant to do, not only in terms of the
capabilities of the API but also inside the system. A simple API call can efficiently perform
many different actions behind the scenes.

Plan out what each API call does in detail once the system receives the API request. This
should be very detailed and documented exceptionally well.

Having meaningful and consistent response codes
Several different response codes can be used in response to an API call. Still, it is generally
recommended that you limit yourself to the 2xx and 4xx codes since most other codes are
handled by other systems, such as the web server (although we have an exception for this).

In general, it is recommended that you use the following code for each stated purpose:

•	 200 (OK): All the data has been received, processed, and returned correctly. No
further actions are required.

Planning your project's API 101

•	 201 (Created): Often used with POST requests, this indicates that the request
has resulted in creating a new resource and that the information for the resource has
been returned in the results.

•	 202 (Accepted): When information is processed asynchronously, the system
may have been received but is not yet active in the system, so the API could
return a 202 code. This lets the requester know that the information made it to its
destination, but that it cannot be accessed yet.

•	 203 (Non-Authoritative Information): If you are caching local data
to reduce the number of calls to a remote data source, your API can respond with
a 203 response code to let the user know that the information they received was
accurate the last time it pulled a copy of the information, though this could have
changed in the interim.

•	 204 (No Content): Sometimes, a request for information is made to an API,
but there is nothing to return to the user. For example, if an API references a list
of animals (for example, cat, dog, and horse) and the user has requested a list of
all reptiles, there would be no animals in the results. This is when the API would
respond with a 204 response code so that the user knows that the API meant to
send back no information and that there wasn't some error returning no results
from the API.

•	 206 (Partial Content): It is not uncommon for an API GET request to
generate several thousands of records. Returning all of these records can be very
taxing on both the server hosting the API and the client receiving the data. There
can also be a considerable amount of bandwidth used when transmitting large
amounts of data.

•	 The API only sends out a portion of the records (often referred to as pagination) to
the requestor to alleviate this issue. It includes a 206 response code to let us know
that there is more information to be received.

•	 400 (Bad Request): It is straightforward to miswrite an API request, and it
is important to let the requester know that they made a mistake. For example, if a
requester was searching for a user by email address but asked the system to look for
the information in the first name field, then a 400 response would be warranted.

•	 401 (Unauthorized): You should secure your API with some sort of
authentication scheme. When someone provides the wrong authentication
information, a 401 response code should be generated and returned to the user.

102 Building Your First API Endpoints

•	 403 (Forbidden): Sometimes, people attempt to access information that they
shouldn't, regardless of whether or not they are properly authenticated to the system.
In this instance, a 403 response code would be returned to the user. I often use this
response code when I have my API set up to only be accessed from a specific IP
address and the IP addresses do not match.

•	 404 (Not Found): It is not uncommon for users to accidentally enter the wrong
information for a URL or for a resource to move. When that happens, the user
making the request will automatically get a 404 error.

Note
For more information about response codes, see the Response codes section of
Chapter 3, Diving into Core Nodes and Data in n8n.

Consistent noun/verb design
One very common way of laying out an API is by using a noun/verb architecture. The
idea behind this design is that the requestor starts with an object or item that is directly
followed by an action to be performed in that object.

For example, if we were to create an API that would change the name of a device in its
database, the request path may look something like this:

/device/rename

Similarly, if we were to remove that device from the database, the API call path might look
something like this:

/device/remove

Submitting data
There are several different ways to submit data to an API. It is entirely up to you how you
want your users to send information to your API:

•	 Body: The body of the API request is a common place to place information. This is
most often used in POST HTTP requests.

•	 API Path: The API path is a different way of sending information. It is often used
when you're referencing a specific record item and then performing an action on that
item. For example, if you needed to delete record ID 237 from the system, you may
have the user send a request to /record/237/delete to accomplish this task.

Planning your project's API 103

•	 Query: A query is often used with the GET HTTP method as it is used to ask for
specific information. A query is often represented by a URL and is even displayed
that way. For example, if you were to request record 237 from the system using a
query, the URL path may look something like https://api.example.com/
record/display?recordID=237. The ? character separates the API path
and the query. recordID is the data key to be searched for, while 237 is the value
of the key the system is looking for. You can also have multiple key/value pairs
in a query by concatenating the queries together with a & character; for example,
recordID=237&fname=Tim.

•	 Header: You can also send information as a part of the headers in the request. This
is often done when you're sending authentication information such as an API token
to the API.

Versioning your API
It is not uncommon that, as your system changes and matures, you may want to make
changes to your API. The problem with modifying how your API works is that the
changes can suddenly make a large number of user programs and scripts fail. This quickly
leads to several upset and disgruntled customers.

One easy way around this is to create multiple versions of your API. This way, people
can continue to use their scripts with previous versions of the API while new users can
automatically move to the new version.

However, there is an issue with creating multiple versions of your API. As the number of
versions grows, so does the effort required to maintain the system and all of its versions.

To avoid this ever-growing effort, it is recommended that you maintain no more than two
versions of an API at any given time. When a new version of the API is released, clearly
communicate to the users that the previous version has been replaced and that the old
version will be decommissioned in a reasonable amount of time ("reasonable" depends on
the audience, where it could be a couple of weeks, or several years).

Documenting your API
One of the most important parts of the design process is documenting the API so that
others can use it properly. This can also help you figure out what you did when you come
to troubleshoot it 2 years later.

https://api.example.com/record/display?recordID=237
https://api.example.com/record/display?recordID=237

104 Building Your First API Endpoints

The OpenAPI Specification
One of the more common forms of documentation is the OpenAPI Specification
(https://github.com/OAI/OpenAPI-Specification). This specification
only takes a couple of hours to learn and can be used in conjunction with other tools to
automatically create an API testing platform and all user documentation.

The specification uses either a JSON or YAML file to outline how your API behaves and
how to create the documentation for the specification.

The following is a simple JSON OpenAPI Specification file's contents:

{"openapi": "3.0.0",

 "servers": [

 {"description": "User Example",

 "url": "https://virtserver.swaggerhub.com/

 tephlon/user-example/1.0.0"}

],

 "info": {"version": "1.0.0",

 "title": "User Example",

 "description": "Add a user with the API"},

 "paths": {

 "/api/v1/user/add": {

 "post": {

 "tags": ["Users"],

 "operationId": "addUser",

 "parameters": [

 {"name": "email",

 "in": "query",

 "description": "User's Email Address",

 "schema": {"type": "string"}

 },

 {"name": "password",

 "in": "query",

 "description": "User's Password",

 "schema": {"type": "string"}

 }

],

 "responses": {

https://github.com/OAI/OpenAPI-Specification

Planning your project's API 105

 "200": {

 "description": "User Added Successfully",

 "content": {

 "application/json": {

 "schema": {

 "properties": {

 "userID": {"type" : "integer"}

 }

 }

 }

 }

 }

 }

 }

 }

 }

}

This is only a small piece of the API that we are going to be building in the next few
sections of this chapter.

The following screenshot shows the documentation that is generated from this
specification file:

Figure 5.1 – Generated documentation from the OpenAPI Specification file

106 Building Your First API Endpoints

We have created a full API definition for this, which you can find here:

https://github.com/PacktPublishing/Rapid-Product-Development-
with-n8n/tree/main/Chapter%205

Now that we know how to design APIs, it is time to dive into n8n and start the basic setup
for creating our API.

Configuring the Webhook node to handle
requests
The core node for building an API in n8n is the Webhook node. While this may seem a bit
strange on the surface, it makes a lot of sense when you start to think of it in the correct
frame of mind.

Webhooks are web services that are sitting on a system, waiting to be called upon to
perform some action. Meanwhile, an API is a service that a client uses to perform actions
on a remote server:

Figure 5.2 – The Webhook node

So, what is seen as an API from the client's perspective is the same as a Webhook from the
server's perspective! And this is why we use a Webhook to create an API.

The Webhook node is a trigger node that executes a workflow when it receives a remote
connection. It collects the information that it receives and performs actions based on that
information.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%205
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%205

Configuring the Webhook node to handle requests 107

Parameters
The Webhook node is configured by setting the parameters in the node itself. Each of
these parameters modifies the behavior of the Webhook and some parameters, such as the
Authentication and HTTP Method parameters, enable even more options for the user.

Webhook URLs
If you click on the text in the Webhook node that reads Webhook URLs, it will open up
a small panel below it. You will see two buttons, one reading Production and the other
reading Test. These are the two different types of Webhook URLs that are available to use.

These URLs in n8n cloud are built by combining the n8n protocol (https://), the
hostname (tephlon.app.n8n.cloud/), the Webhook root (webhook for production
and webhook-test for test), and the Webhook path (f929fdc9-b62a-4661-
913e-b5648c407edd). This creates the two Webhook paths of https://tephlon.
app.n8n.cloud/webhook/f929fdc9-b62a-4661-913e-b5648c407edd
for Production and https://tephlon.app.n8n.cloud/webhook-test/
f929fdc9-b62a-4661-913e-b5648c407edd for Test:

Figure 5.3 – Initial Webhook properties

https://tephlon.app.n8n.cloud/webhook-test/f929fdc9-b62a-4661-913e-b5648c407edd
https://tephlon.app.n8n.cloud/webhook-test/f929fdc9-b62a-4661-913e-b5648c407edd

108 Building Your First API Endpoints

You can modify the Webhook's endpoint locations by changing the Path parameter. If
we were to change the path from f929fdc9-b62a-4661-913e-b5648c407edd to
api/v1/user/add, then the Webhook paths would change to https://tephlon.
app.n8n.cloud/webhook/api/v1/user for Production and https://
tephlon.app.n8n.cloud/webhook-test/api/v1/user/add for Test:

Figure 5.4 – Changing the Webhook paths

The two different types of Webhook URLs – Production and Test – serve two different
purposes. The Production URL is used when your workflow has been saved and set
to Active. The Webhook will then respond even when the Editor UI is not open. It is
designed to be available and work completely on its own.

The Test URL is designed to be used when you are building and troubleshooting your
API. It still requires that your workflow be saved to register the Webhook URL but it will
only be active when one of the following conditions has been met:

•	 You press the Execute Workflow button in the Editor UI.

•	 You press the Execute Node button in an open node that is either the Webhook
node or a child node to the Webhook node with no cached information available to
be processed.

The Test URL is available until one of the following actions occurs:

•	 A connection attempt is made.

•	 The Stop button is pressed in the Editor UI.

•	 120 seconds have passed since the Webhook was initiated.

Once this happens, the Webhook URL will unregister and the workflow will stop.

The purpose of the Test URL is to provide an easy way to see what is happening in each
node when a request is made and troubleshoot the workflow for development.

https://tephlon.app.n8n.cloud/webhook/api/v1/user
https://tephlon.app.n8n.cloud/webhook/api/v1/user
https://tephlon.app.n8n.cloud/webhook-test/api/v1/user/add
https://tephlon.app.n8n.cloud/webhook-test/api/v1/user/add

Configuring the Webhook node to handle requests 109

Authentication
Since APIs are a very common way for people to programmatically access pure data from
a system, there is a good chance that you may want to secure that data. Even if your API is
going to be publicly available to everyone, it can be a good idea to set up registration and
authentication for your API so that you can track who is using (or abusing) your API.

While there are many different aspects of securing your API (many of which will be
covered a bit later in this chapter), we want to take a quick look at authentication for your
API. This can be accomplished using the Authentication parameter.

The Authentication parameter has three different options:

•	 None

•	 Basic Auth

•	 Header Auth

Selecting None for the Authentication parameter is self-explanatory: the Webhook
will not look for any form of authentication before executing the workflow or returning
information. While there are valid use cases for not using any authentication for your API
(for example, you want to use the Webhook like a web server and display web content),
it is generally frowned upon as a practice.

Basic Auth is the simplest form of authentication that n8n can use. It essentially sends a
Base64 calculated version of a username and a password to n8n and compares it to the
password information that it has on record.

For example, if we were to use Basic Auth for our API and the username and password
required are jim.nasium and 123456, the API client would calculate the Base64
version of jim.nasium:123456 (which is amltLm5hc2l1bToxMjM0NTY=) and send
it in the header request.

Calculating the Base64 Value
If you ever find yourself in need of generating the Base64 value for a
Function node, you can use the following code to do this for you. Simply
replace the values of the username and password:

var username = "jim.nasium";

var password = "123456";

var encoded = Buffer.from(username + ":" +
password).toString('base64');

110 Building Your First API Endpoints

While this is better than no authentication at all, it isn't all that great. Since Base64-
encoded text is really easy to reverse engineer, it is recommended that the API is secured
properly by complimentary means such as SSL/TLS certificates.

Header Auth is similar to Basic Auth in that it sends a value in the header of the API
request. However, the difference is that it is just a random string of characters that is very
difficult to memorize.

In both the Basic and Header Auth scenarios, you are required to create credentials that
hold the information that's required for users to access the API. Without these credentials,
you users will not be able to use the API.

HTTP methods
As we mentioned earlier in this chapter, the n8n Webhook node supports three different
HTTP methods:

•	 GET

•	 HEAD

•	 POST

Depending on the HTTP method that you select, different options become available to you.

General options
Four options are available for all the methods:

•	 Response Content-Type

•	 Response Headers

•	 Property Name

•	 Raw Body

Response Content-Type indicates the media type that will be returned to the user. This is
typically a two-part designation, with the first part representing the type and the second
part representing the subtype, separated by a slash ("/") character.

For example, if your API is returning JSON data, you would set Response Content-Type
to text/json.

Configuring the Webhook node to handle requests 111

For an official list of all the media types that are available, visit the Internet Assigned
Numbers Authority (IANA) Media Types web page at https://www.iana.org/
assignments/media-types/media-types.xhtml.

The Response Headers option allows you to add additional key/value pairs to the headers
to provide extra metadata to the response. This is information about the data that the user
is receiving from the API.

It is often used to confirm that the data is accurate and has not been tampered with
between the sender and the receiver. It could contain a hash algorithm that the receiver
could calculate to determine that the information is accurate or a timestamp to indicate
when the information was received.

The Property Name option allows you to return just the value of a specific value/key pair.

For example, let's assume that you have a Webhook set up that outputs the following
JSON object:

{

 "response": "Hello!",

 "status": "Successful"

}

Now, if we were to modify that Webhook and add the Property Name option with a value
of status, our output would be as follows:

Successful

This is useful if you have HTML in a key-value pair and you just want to output the
HTML to display a web page.

The final option is Raw Body. The Raw Body option is a binary (off or on) value that
indicates the information coming into the Webhook is in a raw format, such as XML
or JSON.

Additional POST option
When you select Post for the HTTP method, there is one extra option available. This is
the Binary Data option. This option is used to indicate that the API is expecting that there
will be binary data attached to the request. This is handy when you are uploading files to
the system.

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml

112 Building Your First API Endpoints

Response Code
The Response Code parameter is used to reply to the sender with a quick response, letting
the requester know the results of their request.

We went through response codes in detail earlier in this chapter, so I'm not going
to go over them again, but make sure that you reference the code and reply with the
appropriate response.

Note
The response code that you are selecting is going to be sent when everything
goes well. Other failure response codes (for example, 404) will be sent by the
system and do not need to be programmed here.

Response Mode
The Response Mode option controls how the Webhook responds to the request. Two
options can be set for the Response Mode option:

•	 On Received

•	 Last Node

In general, if you are not passing data back to the requester, you will want to use the On
Received option. Otherwise, if you are sending information back via the API, you should
use the Last Node option.

The On Received option will immediately send the value of the Response Code option back
to the sender. It does not wait for the workflow to complete before returning this code.

Things get a little bit more interesting with the Last Node option. When you want to return
information to the requester, this option will initiate a workflow and then the results (or part
of the results) of the last executed node will be returned to the requester as JSON.

Response Data options
When you select the Last Node option for Response Mode, this enables a new parameter
called Response Data. The three options for Response Data are as follows:

•	 All Entries

•	 First Entry JSON

•	 First Entry Binary

Configuring the Webhook node to handle requests 113

To understand how this option works, we will look at an example. Let's assume that we
have a workflow with the final node outputting the following JSON array:

[

 {

 "name": "Jim Nasium",

 "city": "Berlin"

 },

 {

 "name": "Kris P. Bayken",

 "city": "Edmonton"

 }

]

Also, for each JSON object in the array, there is a binary file attached to the object; CV -
Jim Nasium.pdf for the first one and Resume - Kris P. Bayken.pdf for the
second one.

If we set the Response Data parameter to All Entries, the requester will receive the entire
array contents but none of the files.

When we change Response Data to First Entry JSON, the receiver will receive the
following JSON object:

{

 "name": "Jim Nasium",

 "city": "Berlin"

}

Finally, if we use the First Entry Binary option, the requester will be sent the CV - Jim
Nasium.pdf file.

Now that we have gone through the Webhook node in great detail, it is time to start
building out our API in n8n.

114 Building Your First API Endpoints

Building the API in n8n
We are finally ready to start building in n8n! Let's start by outlining our project.

API project specifications
For our project, we are going to build a simple user management API that will modify the
user information in an Airtable database. Most of the workflow that we will be building
isn't important to the API itself. All we have to be aware of is the result of each API.

Our API is going to have five endpoints:

•	 POST /api/v1/user/add

•	 GET /api/v1/user/list

•	 GET /api/v1/user/search

•	 POST /api/v1/user/delete

•	 POST /api/v1/user/changepw

The base URL for our API will be https://tephlon.app.n8n.cloud/webhook
since that is the Webhook URL for my n8n cloud instance.

Our API will also use header authentication with a bearer token value of
675tryfhgui89765tyrfghjui89765uyr4thfgjuio.

The Airtable database will store the following information:

•	 First Name: The user's first name

•	 Last Name: The user's last name

•	 Email: The user's email address

•	 Password Hash: A calculated value representing the user's password

Note
The reason that we do not store the user's password is for security. If the data
table were to become compromised, the user's password would be out in the
wild. By storing a calculated value based on the user's password, the same
calculation can be performed each time the password is supplied to n8n, and
the calculated value is compared to the stored value.

https://tephlon.app.n8n.cloud/webhook

Building the API in n8n 115

Creating credentials
The first step will be to create the header authentication:

1.	 In the n8n Editor UI, click on the "^" icon and click on New.
2.	 When prompted, select Header Auth for Credential type.
3.	 In the Create New Credentials form, enter the following information:

	� Credentials Name: Header Authentication

	� Name: Auth

	� Value: Bearer 675tryfhgui89765tyrfghjui89765uyr4thfgjuio

	� Nodes with Access: Webhook

The final credentials form should look like this:

Figure 5.5 – Header Auth credentials

4.	 Click the Create button to complete this process.

116 Building Your First API Endpoints

Creating Webhooks
Next, let's create the Webhooks in n8n:

1.	 Create five new Webhook nodes and name them like so:

	� Add

	� List

	� Search

	� Delete

	� ChangePW

2.	 Configure each of the Webhooks based on the following table:

That should complete the initial Webhook creation. Make sure to save and activate the
workflow.

The rest of the workflow
While the rest of the workflow is important for generating the proper outcomes for the
API, it has very little to do with the API itself.

You can download the whole workflow here: https://github.com/
PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/
Chapter%205/User_Management_API.json.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%205/User_Management_API.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%205/User_Management_API.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%205/User_Management_API.json

Securing your API endpoints 117

Now that we have built the API in n8n, let's look at how to add further security to your
API endpoints.

Securing your API endpoints
Earlier in this chapter, we talked about using Webhook authorization to help secure your
API. This is an important first step but that does not mean that your API is secure. There
are several extra actions that you can take to secure your API.

Using SSL/TLS security
SSL and its younger brother, TLS, are common security standards on the internet. Any
time you see https in front of a website address, this means that one of these systems is
at work.

The purpose of SSL/TLS is to encrypt the communication between the client software (for
example, the web browser, n8n, and API client) and the web server that is hosting the API.
This way, if someone were to set themselves up between you and the API server, all they
would get is jibberish instead of the API tokens and passwords that are used to access that
information.

Limiting where users come from
One way of reducing the probability of being taken down by a malicious actor is to limit
who can access your API based on where they are coming from. For example, if all your
clients who use your API are from Germany, then there is no point in allowing people
from Canada to access the API.

While this is not a perfect solution, since it is relatively easy to get around by using a VPN,
this means that people who are out to cause trouble need to jump through yet another hoop.

If you want to take this option to the next level, you can even limit access to a single IP
address so that only people from a specific office can use your API.

Proxying your API
Putting your API behind a proxy is one of the smartest things that you can do. Here are
some of the benefits of doing this:

•	 It prevents people from directly accessing your API server.

•	 It hides other potentially dangerous open ports.

118 Building Your First API Endpoints

•	 It can reduce calls to your API and other tools by caching requests and returning
results without having to talk to the API server.

•	 It can distribute requests across several servers.

With all of these advantages from the proxy, it is well worth looking into setting up a proxy.

Rotating security tokens
With security breaches happening daily, it is well worth changing the API tokens regularly
as well. There are several different ways to do this but you need to find a way that works
for you.

One of the best ways to do this is to have a token expire after a certain period. At that
point, the user would be required to get a new token. This can be automated so that as
soon as the token times out, the system knows to reach out and request a new one.

This way, even if your token were to get out and someone on the internet were to start
using it, they would only have access for a short period before the token would expire and
then require a new token to be generated.

Tracking and limiting the number of requests
It is important to record every single connection attempt that occurs on your API server.
This provides you with two advantages:

•	 You can identify if there is any strange behavior occurring on your API server.

•	 You can prevent one person or organization from abusing the API server.

Users (as identified by their token) and organizations (as identified by their IP address)
should have the number of calls they make throttled to a reasonable speed.

Providing metadata in your API responses
Embedding useful metadata in the information that you provide to your users is a great
way to allow the end user to verify the information that they are receiving is accurate.
Some examples of good metadata are as follows:

•	 Providing an MD5 sum value when downloading a file for the user

•	 Indicating the record count being returned from a query

•	 Performing a GeoIP lookup of the city the user is coming from so that they can
confirm the request is legitimate

Testing your API 119

•	 Returning the length of the results in a certain number of characters

Once your API is secure, it is time to start testing its robustness.

Testing your API
Creating a testing plan for your API is an important part of the design and rollout process.
If you do not test your API properly, there is no telling what results your clients will get.

Because of its importance, let's look at some recommendations for API testing.

Use a testing platform
While you may be able to manually test some small or simple APIs, the bigger they
become, the harder they are to test. Not only does this allow you to do more for testing,
but it also allows you to easily retest after you make changes, knowing that the test is the
same as it was the previous time.

If you don't have a testing platform, you can easily create several testing scripts using the
cURL command-line tool or use something such as the documentation and testing tool
built into Insomnia (https://insomnia.rest).

Follow the documentation
The documentation that you have created or been provided with is very important. Make
sure you can do everything that the documentation says that it can do and none of the
things that it doesn't say you can do.

You should be able to do absolutely everything that is in the documentation without fail.

Try to break it
This is the part of the testing process that you can have a lot of fun with. Here are some
ideas I've had success with in the past:

•	 Send information in different character sets.

•	 Enter SQL commands as usernames or passwords and see if the commands execute
on the server.

•	 Overload the server by making thousands of calls per second.

•	 Try to get access to the information you shouldn't be able to on the server.

120 Building Your First API Endpoints

Confirm the data
When you are testing the API, make sure that the data you are expecting to receive is the
data you are receiving. It is really easy to look at one or two samples and then extrapolate
over the entire dataset that the information being returned is accurate.

Ongoing testing
Just like data backups should be tested regularly to ensure that the data is recoverable, it is
also important to continue testing your API regularly.

As the environment that the API is running in changes, so can the performance of your
API. Some environmental changes that could cause your API to begin behaving poorly
include the following:

•	 A sudden increase in the number of users

•	 Increased database size

•	 Larger and more frequent data requests

•	 A poorly designed proxy

•	 Changes to the work schedules

By continually testing and upgrading the API, you can continue to ensure that the API
performs as expected and continues to keep your clients happy.

Summary
In this chapter, we showed you how to plan out your API and build it in n8n using
Webhooks. We also covered how to test and secure your API so that it functions properly
when it is in production.

While it may feel as though we have covered a lot about APIs, there are still considerable
amounts for us to go through.

One of the aspects of APIs that I did not go into very much detail about was manipulating
the data that's sent and received by APIs in the workflows. If APIs are a language that
computer systems use to communicate with each other, then the data manipulation that
occurs inside an n8n workflow is the translation of that API language so that two or more
different systems can communicate, even when they don't know each other's language.

We are going to be talking about this data manipulation in more depth in the next chapter
as it is not just an important topic – it is a critical one.

6
Powering Your API

with a No Code
Database

In this chapter, you will learn to work with no code databases for data storage. You will
learn about no code databases, selecting a database for your project, and reading and
writing to Airtable. You will also learn about some of the best practices when working
with these databases. The concepts learned in this chapter will help you to use a data store
for your projects to store user-generated data and build a complete product.

This chapter will cover the following main topics:

•	 Learning about no code databases

•	 Selecting a database for your project

•	 Using Airtable for reading and writing data

•	 Best practices for working with databases

•	 Optimizing your application programming interface (API) for production

122 Powering Your API with a No Code Database

Technical requirements
Here is a list of technical requirements that you'll need to prepare before continuing with
the chapter:

•	 You have created an account on Airtable

•	 n8n is running and the Editor user interface (UI) is open

Learning about no code databases
Databases often form the backbone of products. Databases are generally systems that store
large amounts of data. The user can add, delete, or modify data while also viewing and
performing calculations on that data.

Databases come in many different forms, such as Structured Query Language (SQL)
databases, NoSQL databases, and time series databases. Depending on the use cases,
it often makes sense to choose one over the other. A lot of these databases use query
languages to be able to interact with the database to conduct basic queries such as
inserting, reading, updating, and deleting data. You can see some database examples in the
following screenshot:

Figure 6.1 – Historical trend chart from db-engines.com

Selecting a database for your project 123

Since we are focusing on building a product with no code tools and we don't have the time
to learn these query languages quickly, we'll have to look for some alternatives. Luckily,
there are already a number of great alternatives that we can choose from. Two of the most
popular ones are Airtable and Google Sheets. These tools are easier to use as compared
to traditional databases as they employ a familiar spreadsheet-like design that is easier to
comprehend than database models. Since these tools are rather robust as well, more and
more people have started using them in their projects.

Both Airtable and Google Sheets have an n8n node, and we can use these nodes
to perform create, read, update, and delete (CRUD) actions to power our API and
application. Now that we have an idea about what no code databases are, let's think about
how we can choose one that we can use during the duration of this book.

Selecting a database for your project
Apart from Google Sheets and Airtable, there are a number of really cool no code
databases such as Baserow, Supabase, SeaTable, and NocoDB. How do we select the right
database for our product? There are a couple of questions that you can ask yourself that
might help in making this decision easier:

•	 What do I want the database to do for my project?

•	 Does this tool have an n8n node or at least an API?

•	 How active is the community and support ecosystem for this tool?

•	 What's the level of maturity of the product? Is it stable? Has it been in the market
long enough to be battle-tested by users?

•	 Are educational resources about the tool widely available? What's the learning curve
like?

While choosing the no code database to include in this book, we asked ourselves the same
questions. We decided to go with Airtable because of the following reasons:

•	 Airtable has a large community and an incredible support system.

•	 Airtable has a decent API with an easy authentication system. n8n has a well-
documented Airtable node too!

•	 Airtable has been around for a bit, and a lot of makers use it to build their projects.

•	 Airtable puts out a lot of educational content regularly and it's straightforward to
get started with.

124 Powering Your API with a No Code Database

The following screenshot provides an overview of the Airtable database:

Figure 6.2 – Airtable has a lot of educational resources and a strong community

While you are asking yourselves these questions, it is quite possible that your answers
might be different depending on the project that you are planning to work on. That's
okay! Each tool has its own niche and superpowers that might make it more suitable for a
certain type of project.

Now that we've made sure that Airtable is the correct choice for us right now, let's take a
look at how we can use it from n8n workflows.

Using Airtable for reading and writing data 125

Using Airtable for reading and writing data
Let's start off by creating a new base from scratch in Airtable. I am going to name it The
n8n book. Edit all the existing fields so that we have the following four fields with the
single-line text field type:

•	 UserID

•	 First Name

•	 Last Name

•	 Email

This is very similar to the table into which data was being inserted in the previous chapter.
For the sake of brevity, we have taken out the Password Hash field. Your table should now
look like this:

Figure 6.3 – This is what your Airtable table should look like

126 Powering Your API with a No Code Database

Now that we have prepared our table, let's pop over to n8n's Editor UI and follow these
next steps:

Create a new workflow and add a Set node to it. We'll need the Set node to make sure that
we send well-formatted data to the Airtable node.

Open the Set node and add four values of the String type. For each of these four
values, do the following. In the Name field, enter the same as the name of the columns in
the Airtable table. Toggle the Keep Only Set button to true (green). In the Value field,
enter anything you like.

Click on the Execute Node button, and your Set node should look like this:

Figure 6.4 – Output from the Set node after following the aforementioned steps

Using Airtable for reading and writing data 127

Now that we have structured the data in a way that would correspond to the columns in
Airtable, let's add the Airtable node and connect it with the Set node. Here's what your
Editor UI should look like at this point:

Figure 6.5 – The workflow should look like this at this point

Open the Airtable node and enter your credentials. You can find the API key by
following the steps mentioned on this page: https://docs.n8n.io/credentials/
airtable/.

https://docs.n8n.io/credentials/airtable/
https://docs.n8n.io/credentials/airtable/

128 Powering Your API with a No Code Database

Change the Operation field to Append, since we want to insert the data from the Set node
to our Airtable table. We now need to acquire the Base ID value. Head over to the API page
in Airtable (https://airtable.com/api) and select the base that you created. You'll
find the Base ID value there. Paste it in the Base ID field in n8n. Enter Table 1 in the
Table field and click on the Execute Node button. It should now look like this:

Figure 6.6 – Output from the Airtable node after following the aforementioned steps

If you go back to your Airtable base, you'll notice that the record has been added to
the table by this n8n workflow. Congratulations—you've just added your first record to
Airtable using n8n! Here's a screenshot that showcases how your Airtable table should
look at this point and how it relates to the data that we structured in the Set node:

Figure 6.7 – Record inserted into the Airtable table and how it related to the data from the Set node

https://airtable.com/api

Using Airtable for reading and writing data 129

You can replace the Start node with other nodes to source the data that you want to add to
Airtable and make the appropriate changes to the Set node. You might remember from the
last chapter that we got the data from the API that we created using the Webhook node.

This combination of the Set node (to structure the data in a form expected by the
database) and the Airtable node (to insert the data into Airtable) will remain the same
across workflows. In case you want to use another database for some other project, you'd
replace the Airtable node with that node.

Here are some key things to keep in mind about inserting data into databases:

•	 Spreadsheets and databases have columns, such as First Name and Last Name. The
data you send to a database node needs to match these column names for each row
of data that you want to insert.

•	 A lot of times, you might not get data from APIs in a form that works best for you.
In those cases, the Set node can help you remodel the data that you need according
to your database's columns and discard the data that you don't need.

•	 Spreadsheet and database nodes in n8n perform their configured action (such as
Append) on each item of input data.

Reading data from an Airtable table is relatively straightforward. To do that, create a new
workflow and connect the Airtable node to the Start node. Select List as the operation
and enter the same credentials and Base ID value as the previous workflow.

Click on the Execute Node button, and the output should look like this:

Figure 6.8 – Output of the List operation of the Airtable node

130 Powering Your API with a No Code Database

Now that we have listing data from Airtable out of the way, let's learn how to update a
record that already exists in Airtable. You might have noticed that the List operation of
the Airtable node returns an identifier (ID) as well. Each record in Airtable has a unique
ID as well as a timestamp of when it was created. The ID is especially useful for operations
such as Update and Delete.

Consider this scenario: You need to find a record where the first name is Nathan and
update the last name of the person to Automaton.

You can then build a workflow like the one shown in the following screenshot to update
the particular record in the Airtable table:

Figure 6.9 – Updating a particular record in Airtable using an n8n workflow

Using Airtable for reading and writing data 131

The first Airtable node lists all the records that are present in the table. The IF node
checks whether the first name of the record is Nathan. If it isn't, n8n goes to the NoOp
node, and nothing happens. If the first name is found to be Nathan, we use a Set node
to add the new value for the Last Name field. Here's what the Set node looks like after
configuration and execution:

Figure 6.10 – Configuring the Last Name field for updating the record with Nathan as the first name

And finally, we have the Airtable1 node, which will update the record. We have used
the ID of the record to be updated from the first Set node (we originally got it from the
Airtable node) as well as specifying that only the Last Name field should be updated. You
can see the Airtable1 node here:

Figure 6.11 – Configuring the Airtable1 node for updating the Last Name field of the record

132 Powering Your API with a No Code Database

And voilà! The workflow has updated the Last Name column for the specified record in
Airtable. You can use a similar workflow to delete records as well.

When using this workflow as part of an API, you can get values such as the text for which
to perform a lookup and which column to look in, as well as the updated record using the
Webhook node. You can then use expressions to make sure that the API endpoint with
this workflow can handle dynamic requests without having to create specific workflows
for different columns. Now that we know how to work with no code databases using n8n,
let's learn about some best practices for working with databases.

Best practices for working with databases
There are a lot of different aspects that go into working with databases that you will
generally use in an enterprise environment, but things can be a bit different with no code
databases. Because of how these databases are designed, built, and hosted, we need to
think a bit differently when we use them.

Let's take a look at some of the best practices around working with databases and how you
can use them in a way that is both effective and efficient.

Minimizing bandwidth
While it is not always the case, no code databases are generally hosted somewhere on the
internet. This means that you do not have as much bandwidth available between you and
the database that you would use if the database were hosted on the same network, which is
the case for traditional databases.

Because this bandwidth is now at a premium (and, depending upon how your database
is hosted/priced, you may literally be paying for every byte that you send and/or receive
from the database), it is very important that you make sure you use it wisely.

Compressing data
Often, the data that is stored in databases is text-based. Text data has a very high
compression ratio, which reduces how much information needs to be sent or received
between you and your database.

If you have the ability to compress data between the two systems, this will increase the
speed of your transactions and reduce your bandwidth.

However, keep in mind that this will also increase the central processing unit (CPU)
utilization on both n8n and your database as the compression needs to be calculated on
both sides.

Best practices for working with databases 133

Minimizing API calls
API calls to your database, such as bandwidth, can be expensive (literally, if you are
paying per API request). They take up resources, slow down your application (as the
application needs to wait for the call to complete or time out), and increase dependencies
on the database.

If you do everything you can to reduce API calls, these issues can be minimized or, in
some cases, avoided altogether.

Minimizing database queries
Because databases generally work very quickly, it is easy for us as developers to become
lazy when accessing a database. Why bother modifying the code to write three records to
the database with a single query when it is easier to write each record on its own in three
separate queries?

This type of programming may work with large databases that are sitting on the same
network as you, but when they can be located on the other side of the planet over a
fluctuating internet connection, these queries must be optimized and minimized.

Minimizing database writes
While it is one thing to read data from a database, it is a completely different thing to write
data to a database. Write operations tend to consume significantly more resources than
read operations on a database. Plus, they take longer to execute, often because data needs
to move around in memory, or even sometimes on disk.

Because the cost of writing to your database is relatively expensive, only write data when
you absolutely have to and write as much data as possible each time you do write. This will
give you the most bang for your buck for each database write.

Enabling data caching
If we are truly serious about minimizing the amount of data we read and write between
n8n and the database, a great strategy is to store a copy of select database tables locally in
n8n, either in memory or in a local JavaScript Object Notation (JSON) file.

Then, each time a request needs to be made to the database, you can first ask whether the
database has changed since the last time the cache was updated. If it has, then n8n should
pull down just the changes that were made to the database and write those to the cached
data. If there were no changes, then updating the cache can be skipped and the query can
be executed locally.

134 Powering Your API with a No Code Database

This can be a significantly more efficient way of looking at the data in a database than
querying the database each time. It not only speeds up your database lookups but also
reduces the number of calls to the database in the long run as well.

Backing up the database
Your database is the core of your application. The database must be available as much as
possible and, if the database is lost, you have a way to recover it.

Your best line of defense is to back up your database as often as possible. This way, you will
minimize the amount of data loss and reduce the amount of time it takes to recover.

Recording transactions
Another way to ensure that you can recover from not only data loss but also data
overwrite is to record every transaction that occurs on the database to a separate
transaction table. This way, if there is a gap between the time your database became
unavailable and the time of the last backup, you can recreate those transactions.

Also, if your database backup is completely lost, you can still recover from the data loss by
executing the transactions again. This is significantly slower than recovering from backup
but infinitely better than losing all of the data.

Using record references and table views
When you are using data that needs to be entered several times, it is more efficient to
create a separate record in a different database table with a unique record ID rather than
repeatedly writing the same data each time.

For example, if I was creating a database that needed to refer to user information such as
first name, last name, and address, I could just write all this information to the database
table each time it was needed. But if we were to write this information to a user table, we
could then just reference the UserID value stored in the table and write that rather than
the entire record.

This allows you to reduce the amount of information that gets transferred and minimizes
the size of the write.

Best practices for working with databases 135

Securing your database
Because these databases are hosted on the internet and can generally be accessed from
anywhere on the internet, it is extremely important that they be properly secured.
Ensure that all credentials and API keys are stored securely and are not hardcoded into
your applications.

Also, make sure all transactions are over an encrypted (HyperText Transfer Protocol
Secure, or HTTPS for short) connection and, if possible, only allow specific Internet
Protocol (IP) addresses to talk with the database.

Performing calculations on the database
Your database will most likely be a lot more powerful than the system you are using to host
n8n. Because of that, if it is possible, get the database to perform calculations, especially if
the goal is to provide summary statistics of the data that is already on the database.

Rather than sending all of the data to n8n for processing, perform the processing
on the database using query functions such as COUNT, MIN, and MAX. This moves
the calculations (that is, CPU load) over to the database and reduces the amount of
information that needs to be transmitted between the database and your application.

Load testing the database
It is not uncommon for developers to build an application and it runs just fine in both
development and testing, but once it goes into production, the database cannot handle
the load due to resource constraints (for example, CPU maxed out; storage too slow;
bandwidth constraints).

Make sure that you have a way of load testing the database before it goes into production.
This way, you will be able to ensure that the database has all of the necessary resources
before it becomes a problem.

Now that our database is ready to go, let's take a look at how we can design and build the
API to provide the best performance to users.

136 Powering Your API with a No Code Database

Optimizing your API for production
Your API can be one of the most important parts of your application since it is one of the
primary ways that your clients read and write data. Because of this importance, it is vital
that your API is ready for production right from the start.

Here are some of the ways you can make sure your API is production-ready.

Reducing database calls
Very much in line with the best practices for databases, the fewer times you need to
read and write to the database, the better your application will perform. Use many of the
strategies mentioned in the previous section to accomplish this.

Caching data before the API
If you have relatively static data behind your API, one of the tricks you can use is to put
a caching system in front of your API, which will allow you to give out the information
requested by the users without actually touching the API itself. The caching system
updates itself with information from the API on a regular basis, and if it determines that
there has been no change in the data given out by that API based on the same call being
made to the API, the caching system will just send back the data that it has stored locally
without bothering the API.

Minimizing API calls
Some APIs require you to have information that is in the database to make another query
to the database. A good example of this is user accounts. Generally, you would use the
API to query the user table to find the user that you need. Then, you would query the API
again, looking for specific information for that user.

What you could do instead is to keep a local copy of the user table in your application and
use that to look up user IDs. Then, with that information already in hand, you can query
your API only once to get the information you need.

Requiring authentication
While there are a lot of open APIs out there on the internet, it is very important to require
authentication, even if you are giving the API service away for free. This increases the level
of responsibility that the user has and reduces the likelihood that the API will be abused.

Optimizing your API for production 137

In the event that someone is abusing your API, authentication can make it easier to track
down that individual and resolve the issue with their system or stop them from interfering
with your API.

Encrypting API data on the wire
Unless your data is encrypted on the wire (that is, when it is being transmitted between
the application and the database), API keys, credentials, and sensitive data are susceptible
to being eavesdropped upon.

The easiest way to secure this data while in transit is to have a Secure Sockets Layer (SSL)
certificate installed on the server that is providing the API. This encrypts the data and
greatly reduces the possibility of someone listening to your API's conversations.

Tracking API requests
It is guaranteed that if you make an API available on the internet, there will be someone
out there who is looking to abuse that API. This is why it is critical to keep a log of all API
transactions in the event that you need to deal with one of these abusers.

Ensure you track, at a minimum, the following information:

•	 Timestamp

•	 API call

•	 Parameters

•	 IP address

•	 Authentication key

This will provide you with the base information to perform some analytics on the data and
determine who the abuser is and where they may be working from.

Tying API users to IP addresses
In line with the previous item, if you can get your API to only allow a user to access it from
a specific IP or IP range, this can reduce the likelihood that your API will be abused and will
allow you to help your users in the event that their information has been compromised.

138 Powering Your API with a No Code Database

Limiting the number of API calls per user per second
If you put limits on how quickly users can access the API, this will help to distribute
resources more evenly to all your users, along with reducing the likelihood that a user will
inadvertently perform a denial-of-service (DoS) attack on your API.

Properly documenting the API
If you have proper API documentation available for your users and developers, it will
be easier for them to use your API properly and keep your error logs clean. This will
increase customer satisfaction and reduce the stress on your support team, who need to
help these people.

Summary
In this chapter, we learned about no code databases, choosing a no code database for your
project, reading and writing to Airtable, as well as some best practices when it comes to
working with databases and optimizing APIs for production. The concepts learned in this
chapter will help you to use a data store for your projects to store user-generated data and
build a complete product.

In the next chapter, we examine how you can transform your data inside n8n workflows.
We will do some hands-on exercises on sharing data between different n8n workflows,
merge datasets from different tables, and also perform some analytics and calculations on
these datasets.

7
Transforming

Your Data inside a
Workflow

In this chapter, you will learn how to manipulate data within workflows so that the APIs
that you create can return the data in a useful format. You will also learn about sharing
data between workflows, working with arrays and JSON objects, merging datasets, and
performing analytics and calculations.

This chapter will cover the following main topics:

•	 Sharing data between workflows

•	 Merging datasets

•	 Performing calculations and analytics

140 Transforming Your Data inside a Workflow

Technical requirements
The following are the technical requirements that you'll need to prepare before continuing
with this chapter:

•	 You should have created an account on Airtable.

•	 n8n should be running and the Editor UI should be open.

You can find the completed code examples for the chapter on GitHub at https://
github.com/PacktPublishing/Rapid-Product-Development-with-n8n/
tree/main/Chapter%207.

Sharing data between workflows
When you're building workflows with n8n, you may find yourself repeating certain patterns.
Examples of such patterns could be pushing data to Airtable, transforming the data to fit
a particular format, or performing checks regarding the validity of the incoming data. At
other times, your workflows might grow in size with more than 20 or 30 nodes, and it might
become difficult to manage so many different nodes and logic in a single workflow.

If you come from a programming background, you can probably relate this to creating
functions or modules so that you can create reusable chunks of code that are modular and
easier to manage. n8n allows you to do this using the Execute Workflow node.

Let's consider a workflow: we need to get data using the Hacker News node, filter the data
in the workflow to include only the title and the URL of the articles, and insert the data
into an Airtable. Let's break this workflow down into two parts for illustration purposes:

•	 Getting the data from Hacker News

•	 Filtering the data and inserting it into Airtable

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%207
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%207
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%207

Sharing data between workflows 141

To do this follow these steps:

1.	 Open the n8n Editor UI and create a new Workflow. Add a Hacker News node and
connect it to the Start node.

2.	 Select the All resource for the Hacker News node. Now, add an Execute Workflow
node and connect it to the Hacker News node. We'll refer to this workflow as
Workflow 1 from here on.

3.	 Save this Workflow. It should now look something like this:

Figure 7.1 – A workflow that was created using the Execute Workflow node

4.	 In a new tab, create a new Workflow. In this new Workflow, add a Set node and an
Airtable node.

5.	 Connect the Set node to the Start node and the Airtable node to the Set node. Set
it up so that only the title and url properties of the article get set and inserted
into the Airtable node. Since we don't have any data in our Workflow, using
expressions might be a bit tricky. You can use the following expressions here:

	� {{$json["title"]}}

	� {{$json["url"]}}

142 Transforming Your Data inside a Workflow

6.	 Now, configure the Airtable node, save this Workflow, and obtain its ID. We'll refer to
this workflow as Workflow 2 from here on. You can find the ID of a Workflow using
its URL (as shown in Figure 7.2). For example, the URL of my saved Workflow is
http://localhost:5678/workflow/297, so the ID would be 297.

Here's what my Workflow and its ID look like:

Figure 7.2 – A workflow for filtering and inserting data into Airtable

7.	 Now, go back to the workflow with the Execute Workflow node and enter the ID of
the new workflow. Execute the workflow.

You will notice that Workflow 1 runs Workflow 2, gets the data that's returned
by it, and displays it in the output of the Execute Workflow node. This is how
you can share data between multiple workflows in n8n and break them into more
manageable chunks.

Sharing data between workflows 143

Let's understand how the data passes between the two workflows that we created. The
Execute Workflow node in Workflow 1 passes the data to the Start node of Workflow 2.
Because of this, all the nodes of Workflow 2 must be connected to the Start node. The last
node of Workflow 2 sends the data back to the Execute Workflow node in Workflow 1,
as shown here:

Figure 7.3 – Flow of data between the two workflows

Let's take a look at the options provided by the Execute Workflow node. The Source field
allows you to specify how the node should look for the workflow:

•	 Database: Loads the workflow from the database by its ID.

•	 Local File: Loads the workflow from a locally saved file. This path must be relative
to where n8n is running.

•	 Parameter: Loads the workflow from a parameter. Here, you can provide the
workflow JSON.

•	 URL: Loads the workflow from a URL.

Now, let's look at how we can merge datasets in an n8n workflow using the Merge node.

144 Transforming Your Data inside a Workflow

Merging datasets
In Chapter 6, Powering Your API with a No Code Database, we learned how to use Airtable
as a no-code database for our application. Let's build on that example to visualize what
a database for a newsletter management app could look like. Typically, databases have
different tables for different categories of data points, and we can reference data between
different tables using unique IDs. Let's understand this with the help of an example:

1.	 Open the Airtable base called The n8n book that you created in Chapter 6, Powering
Your API with a No Code Database. Rename Table 1 to Users.

2.	 Add two new tables to it called Newsletters and Stats. In the Newsletters table, add
the following columns:

NewsletterID (single-line text)

Subject (single-line text)

Content (long text)

Clicks (single-line text)
3.	 Add an entry to the table called NewsletterID1. It should now look like this:

Figure 7.4 – Creating and filling the Newsletters table

4.	 In the Stats table, add the following columns:

UserID (single-line text)

Clicks (single-line text)

Merging datasets 145

5.	 Add an entry to the table called UserID1. It should now look like this:

Figure 7.5 – Creating and filling the Stats table

Now, we have three tables with unique IDs that can be used to cross-reference data
between the different tables.

Let's say that we want to know how many clicks have been made by each user. We want
to know this number so that we can send them an email, thanking them for their active
engagement if it is greater than 9. To build out a workflow for this, we'd need to have two
crucial pieces of information: the user's email address and their number of clicks. Both
these details reside in different tables that are linked only by the unique UserID. Let's use
the Merge node to get all the information that we need.

1.	 Open the Editor UI and add an Airtable node. Configure it so that it lists all the
data from the Users table. The details that we need are nested in the fields object.
Since we don't need the timestamp and the Airtable node's ID, we can get rid of
them. You can use either the Set node or the Function/Function Item nodes to do
that. I used the Function node with the following code:

const newItems = [];

for(let i=0; i<items.length; i++) {

newItems.push({json: items[i].json.fields});

}

return newItems;

146 Transforming Your Data inside a Workflow

The preceding code ensures that only the fields array is returned by this node.
The data should now look as follows:

Figure 7.6 – This is what the data from the Function node should look like
2.	 Now, add a Merge node and connect Input 1 to the Function node.
3.	 Now, we need to get the data from the Stats table. Perform the same steps that we

mentioned at the beginning of this section by adding an Airtable node (which
we will call Airtable1), along with a Function (or Set) node (which we will call
Function1), and connecting it to Input 2 of the Merge node. The workflow should
look like this:

Figure 7.7 – This is what the workflow should look like

Performing calculations and analytics 147

4.	 Open the Merge node and set Mode to Merge By Key.
5.	 Enter UserID in the Property Input 1 and Property Input 2 fields. We are doing

this since UserID is the field linking the two datasets from the two different tables
together.

6.	 Execute the workflow; the result of the Merge node should look something like this:

Figure 7.8 – The Merge node merging the data from two different tables

Note
The latest version of n8n also has an Item Lists node that can be used.

Now that we have the two pieces of data that we need, we can add an IF node and an
email node (such as the Send Email or Gmail node) after the Merge node so that we can
thank the engaged readers of the newsletter.

The Merge node has several different modes that can be used to merge the data in the
format that works best for your use case. Now that we know how we can merge datasets
inside a workflow using n8n, let's learn how to perform calculations and analytics in n8n
using JavaScript.

Performing calculations and analytics
You can use JavaScript in n8n within expressions and use the Function nodes to perform
mathematical calculations and basic analytics.

148 Transforming Your Data inside a Workflow

Let's use the newsletter database from the Merging datasets section to try out some
calculations. We have added a few more records to the tables. You can clone the Airtable
using the following link if you'd like to use our records: https://airtable.com/
invite/l?inviteId=invRJMGCMu7HWQzKW&inviteToken=3b6fbc536cc
c17cf24fbeb01b5e8a253fe99afd27616f3abaeaffb046cedf8aa&utm_
source=email.

Let's calculate a few things from our Airtable database:

•	 The number of users

•	 The average number of clicks per newsletter

•	 The highest number of clicks by a user

To do this, follow these steps:

1.	 Open the Editor UI and open a new Workflow. Add an Airtable node and list all
the records from the Users table.

2.	 Add a Set node and connect it to the Airtable node. Our Workflow should look
like this:

Figure 7.9 – A workflow for calculating the total number of users in the Users table

https://airtable.com/invite/l?inviteId=invRJMGCMu7HWQzKW&inviteToken=3b6fbc536ccc17cf24fbeb01b5e8a253fe99afd27616f3abaeaffb046cedf8aa&utm_source=email
https://airtable.com/invite/l?inviteId=invRJMGCMu7HWQzKW&inviteToken=3b6fbc536ccc17cf24fbeb01b5e8a253fe99afd27616f3abaeaffb046cedf8aa&utm_source=email
https://airtable.com/invite/l?inviteId=invRJMGCMu7HWQzKW&inviteToken=3b6fbc536ccc17cf24fbeb01b5e8a253fe99afd27616f3abaeaffb046cedf8aa&utm_source=email
https://airtable.com/invite/l?inviteId=invRJMGCMu7HWQzKW&inviteToken=3b6fbc536ccc17cf24fbeb01b5e8a253fe99afd27616f3abaeaffb046cedf8aa&utm_source=email

Performing calculations and analytics 149

3.	 Set Keep Only Set to true. This removes all incoming workflow data and only
appends the new values that have been configured in the Set node.

4.	 Add a value of the Number type and name it Total Users. Add an expression for the
Value field:

{{$items.length}}

This will calculate the total number of items that are returned by the Airtable node,
which is also the total number of users. Executing this node will cause this value to
be returned three times (once for each item).

5.	 In the node's Settings area, set Execute Once to true. Your workflow should now
calculate the total number of users in the Users table for you. The result from the
Set node should look like this:

Figure 7.10 – Output of the Set node

150 Transforming Your Data inside a Workflow

Let's calculate the Average clicks value per newsletter.

1.	 Create another Workflow and add an Airtable node that lists all the entries from
the Newsletters table. Add a Function node and connect it to the Airtable node.
The workflow should look like this:

Figure 7.11 – A workflow for calculating the average clicks per newsletter

2.	 In the Function node, add the following JavaScript code:

let total = 0;

let average = 0;

for (let i=0; i<items.length; i++) {

 total = total + parseInt(items[i].json.fields.Clicks);

}

average = total/items.length;

return [{json: {average_clicks: average}}];

Performing calculations and analytics 151

In the preceding code, we iterated over all the records that were returned by the
Airtable node and added them to the total variable. We used the parseInt()
function because the value of Clicks is of the String data type and we need to
convert it into the integer data type. Finally, we calculated the average value by
dividing the total clicks by the number of newsletters, which we calculated with
items.length (exactly like we did in the preceding workflow). This provides us
with the average clicks per newsletter. The following screenshot illustrates this:

Figure 7.12 – Calculating the average clicks per newsletter
Finally, let's calculate the highest number of clicks by a user.

3.	 Create another workflow and add an Airtable node that lists all the entries from the
Stats table. Add a Function node and connect it to the Airtable node. The workflow
should look like the one shown in Figure 7.11.

4.	 In the Function node, add the following JavaScript code:

const clicks = [];

let highest = 0;

for (let i=0; i<items.length; i++) {

clicks.push(items[i].json.fields.Clicks);

}

152 Transforming Your Data inside a Workflow

highest = Math.max(...clicks);

return [{json: {highest_clicks: highest}}];

In the preceding code, we added all the number clicks to an array called clicks.
Then, we used the Math.max() function to find the maximum value in that
array. This provides us with the highest number of clicks per user. The following
screenshot illustrates this:

Figure 7.13 – Calculating the highest number of clicks per user

Math is a useful built-in object that can be utilized for a lot of these calculations. You
can find out more at https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Math.

These were some basic examples of how you can use JavaScript to perform calculations
and create workflows for analytics to gain insights from the data that you accrue through
your APIs and apps.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

Summary 153

Summary
In this chapter, we learned about sharing data between multiple workflows in n8n,
merging data coming from different sources within a workflow, and using JavaScript to
perform calculations and analytics from within a workflow. The concepts we learned in
this chapter will help you when you're sending data to other services or no-code tools
using our custom API.

In the next chapter, we are going to introduce the Bubble APIs and integrate them into
n8n. We will learn how to work with Bubble data and workflows, along with how to
configure n8n to receive events and data initiated by Bubble.

8
Utilizing the Bubble

API in n8n
Regardless of how hard we try, we can't be good at everything! Some people are great
organizers, others are fantastic planners, while still others excel at public speaking. When
we notice that we are good at something, we tend to focus on that thing and pursue it,
making us even better at it.

No-code tools are like that as well. They discover what they are really good at and focus on
it. n8n is really good at connecting systems and automating their tasks, which is the major
focus of this tool.

And sometimes, just as with people, if no-code tools want to get something accomplished
but need a little help, they will turn to a friend.

For us, we have turned to Bubble to be n8n's partner. Bubble is designed to be a really
good web app development tool, allowing us to create a web frontend for n8n. It allows
no-code builders to design web pages for submitting information to n8n or even
complete web applications so that n8n can then connect the data to other systems and
automate the processes.

156 Utilizing the Bubble API in n8n

This chapter covers the following topics:

•	 Introducing the Bubble application programming interface (API)

•	 Understanding Bubble's data structure

•	 Understanding Bubble's workflow engine

•	 Using Bubble's Data API

•	 Using Bubble's Workflow API

•	 Receiving events and data from Bubble

Once you have completed this chapter, you will know how to do the following:

•	 Communicate between Bubble and n8n.

•	 Access Bubble's data using the Data API.

•	 Use Bubble's workflows and interact with them using the Workflow API.

•	 Receive events and data from Bubble in n8n.

Technical requirements
You can find the completed code examples for the chapter on GitHub at https://
github.com/PacktPublishing/Rapid-Product-Development-with-n8n/
tree/main/Chapter%208.

Introducing the Bubble API
If you have worked with other APIs in the past, you should feel entirely comfortable
working with the Bubble API. It follows relatively standard API design practices, such
as using regular HyperText Transfer Protocol (HTTP) responses and HTTP Secure
(HTTPS) for over-the-wire encryption.

However, some specifics about the API will make it easier for you to find success early if
you learn them upfront.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%208
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%208
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/tree/main/Chapter%208

Introducing the Bubble API 157

Bubble API endpoints
The primary endpoint for your app depends on a few factors, such as the following:

•	 Are you using a custom domain?

•	 Are you using the live or development environment?

•	 Which version of the API are you using?

Base URL
The first item to look at is whether you are using a custom domain or not for your Bubble
app. This is used to figure out your base Uniform Resource Locator (URL). You can
determine whether or not you are using a custom domain by opening up your Bubble app,
going to the Settings menu, and then clicking on the Domain / email tab, as illustrated in
the following screenshot:

Figure 8.1 – Bubble domain settings without a custom domain

If you have a custom domain, it is registered in this location. Otherwise, it displays the
default settings, as shown in Figure 8.1.

For default domain settings, the base URL is https://<appname>.bubbleapps.
io, where <appname> is the name you have provided for your app. For example, if
you named your application fancyApp, then the base URL is https://fancyApp.
bubbleapps.io.

If you have a custom domain for your app, then the URL is your custom domain.

https://fancyApp.bubbleapps.io
https://fancyApp.bubbleapps.io

158 Utilizing the Bubble API in n8n

Live or development
The next factor used to determine your API endpoint is whether you are using the
live or development version of your Bubble application. By default, you will be in the
development version. Once you are ready to make your application public, you can then
switch it to the live version.

Be aware that the API endpoints change when you go from the development version to
the live version.

If you use the live version of the application, then the path after the base URL is /api, but
if you are performing some testing on the development version of your application, then
this subdirectory is /version-test/api.

API version
Chances are, you are using the latest version of the API. Version 1.1 was released on
January 19, 2017, and if you created your application after January 19, 2017, you are
probably using version 1.1.

The path after specifying your environment is your API version. This is either /1.0 or
/1.1, based on when your application was created.

Workflow or data
Bubble can be broken into two different pieces: workflow and data. Workflow deals with
events that occur within Bubble (for example, a button is clicked), and then it performs
specific actions based on how you have configured Bubble.

The data piece refers to the built-in database that Bubble uses (for example, information
about a newsletter). It is all about saving, changing, and deleting data within the Bubble
environment.

Once your API version is specified, you need to indicate whether you access the Workflow
or Data API. This is done in the next part of the path. If you are accessing the Workflow
data, the next part of the path is /wf. Meanwhile, if you want to access the Data portion of
the API, this part of the path is /obj.

Introducing the Bubble API 159

Name
The final part of the endpoint is to specify the name of the item you are accessing.
Depending on whether you are accessing a workflow or a data item, this value specifies
that item.

For example, if you are accessing a data item named users, the path portion after /obj
is /users.

Building your API endpoint
Now that we have a solid understanding of how the API endpoints are put together, let's
demonstrate how to build an API endpoint using an example.

Let's assume we are accessing the development version of the newsletter information
collected by the myApp application we created in May 2019. There is a plan to use a
custom domain for this application, but it hasn't been deployed yet.

Since this application doesn't have a custom domain, the base URL is https://myApp.
bubbleapps.io. We are accessing the development environment, so we add
/version-test/api to the path. This application uses version 1.1 of the API as it
was created after January 19, 2017, and this portion of the path is /1.1. We then add
/obj to the path followed by the /newsletter data item name to access the Data API.

Our final API endpoint in this example is https://myApp.bubbleapps.io/
version-test/api/1.1/obj/newsletter.

160 Utilizing the Bubble API in n8n

Bubble API settings
You can control several aspects of the Bubble API for your application. By going to
Settings in the application and selecting the API tab, as illustrated in the following
screenshot, you can make several changes:

Figure 8.2 – Bubble API setting options

Enabling/disabling API access
You can enable or disable API access by selecting or deselecting the checkbox next to
Enable Workflow API and backend workflows or Enable Data API.

You can also specify workflows or data items by selecting or deselecting the checkbox next
to their name.

API tokens
To secure your API access, it is essential to create a private API key. You can regenerate an
API token in this section or create a new token altogether.

Understanding Bubble's data structure 161

You can authenticate using the API token by adding a header with a key of Authorization
and a value of Bearer <API key>, as illustrated in the following screenshot:

Figure 8.3 – Bubble API header authentication

Now that we have a better understanding of how Bubble's API works so that we can access
data from other systems, let's delve a bit deeper into the actual structure of that data. This
is important so that you know exactly what you are retrieving when using the API and you
will be able to properly navigate around the API to retrieve specific data.

Understanding Bubble's data structure
To properly use the Bubble API to access and modify data, it is crucial to understand how
data is stored in Bubble.

Data types
In Bubble, a data type is essentially the equivalent of a JavaScript Object Notation
(JSON) object. It is defined in Bubble under the Data section for the application and
provides a list of fields (represented by a key in JSON). Each field is a property of the data
type. You can see a sample Bubble data type in the following screenshot:

Figure 8.4 – Sample Bubble data type

162 Utilizing the Bubble API in n8n

For example, the Newsletter data type in the preceding screenshot has six fields, two of
which are custom, as follows:

•	 Content —The actual body of the newsletter

•	 Title —The newsletter's title

Four of the fields are default fields, as follows:

•	 Creator—The username of the person who created the record/newsletter entry

•	 Modified Date—The date the record was last created, changed, or updated

•	 Created Date—The date the record was initially created

•	 Slug—Shortcut used for accessing the record, usually when using a URL form

Data security (privacy)
There are two general privacy or data security settings for data types, as follows:

•	 Public

•	 Private

The Public privacy setting gives everyone access to read the data in the data type. This is
generally frowned upon unless the data is truly public and you do not care who can read
the information.

The Private privacy setting prevents anyone but the creator of the data type from actually
interacting with the data. This is the preferred security setting for data types.

Understanding Bubble's data structure 163

The following screenshot shows Bubble private permissions with API access:

Figure 8.5 – Bubble private permissions with API access

To access secured data via the API, you need to do a few things, as follows:

1.	 Enable access to the data type in the Settings API tab for the application.
2.	 Select at least one of the API settings (Modify by API, Delete via API, and Create

via API) in the Privacy tab for the data type in the Data section of the application.
3.	 Authenticate using the API key from the Settings API tab for the application.

164 Utilizing the Bubble API in n8n

Understanding Bubble's data structure is a crucial step to enabling automation. While n8n
is our preferred tool for automation, Bubble has its own workflow engine built into the
system, which we will summarize next.

Understanding Bubble's workflow engine
Bubble has its own version of automation built into the system. It is not as robust or
functional as n8n, as it is designed to automate and communicate with itself and excels
at this. Each workflow executes one or more steps to perform actions supported by the
Bubble application.

There are two different kinds of workflows in the Bubble environment. The first kind
is frontend workflows. These are workflows designed to interact with users when they
perform an action on one of Bubble's application pages. For example, when you click on
the Submit button in Bubble, this executes a frontend workflow.

Similarly, there are also backend workflows. These workflows are designed to be
non-interactive with the user and perform automated tasks based on various triggers such
as time of day, changes to data, or input/requests from an API.

When interacting with Bubble's workflow engine, n8n specifically talks with backend API
workflows.

Depending on how the API workflow is configured, you can send data to the API, which
will be used in the workflow. For example, the send-email workflow will accept the
following inputs from the API:

•	 to

•	 subject

•	 body

Understanding Bubble's workflow engine 165

This is illustrated in the following screenshot:

Figure 8.6 – Sample backend API workflow configuration screen

So, now that we have a general understanding of the workflow engine, let's begin using the
actual Bubble APIs, starting with the Data API.

166 Utilizing the Bubble API in n8n

Using Bubble's Data API
Accessing Bubble's data with n8n is relatively trivial using the Data API. Depending upon
the endpoint accessed and the HTTP method used, you can manipulate the data in the
Bubble application in any way that you want.

To load some sample n8n nodes to work with the Data API, please see the Bubble_API.
json workflow at https://github.com/PacktPublishing/Rapid-Product-
Development-with-n8n/blob/main/Chapter%208/Bubble_Data_API.json.

Authentication
Before you can work with the Bubble Data API in n8n, you will need to create proper
credentials. We will be using the HTTP Request node for all of our API interactions, so
we need to create a Header Auth credential, as illustrated in the following screenshot:

Figure 8.7 – Header Auth credential for accessing Bubble APIs

It is important that the Name field under Credential Data be populated with
Authorization, and the Value field must be populated with Bearer, followed by your API
private key, which can be found in the Settings section under the API tab.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Data_API.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Data_API.json

Using Bubble's Data API 167

You must also make certain that you provide access to the HTTP Request node.

Data manipulation
Once you have created your credentials, you can now use them to work with Bubble data.

Here is a list of the different ways in which you can retrieve and manipulate data in Bubble
using the Data API:

In each of the endpoints, two special words represent actual unique values from your
Bubble application, as follows:

•	 typename—This is the actual name of the data type in Bubble. This is generally the
name of the data type in lowercase with all spaces removed.

•	 id—The unique identifier (UID) number for the record in Bubble.

For example, if you had a data type of Newsletter and the record ID was 1626
690254917x279129440443256930, you would be able to retrieve this
record using the https://appname.bubbleapps.io/api/1.1/obj/
newsletter/1626690254917x279129440443256930 endpoint.

We now have all the information we need to start working with the data in the Bubble
application.

168 Utilizing the Bubble API in n8n

n8n uses the HTTP Request node to perform all data manipulation, as illustrated in the
following screenshot:

Figure 8.8 – Using the n8n HTTP Request node to manipulate Bubble data

Using the information provided in the previous table, we can configure the HTTP
Request node to work with the data however we wish. In the following screenshot, you
can see the general settings for the HTTP Request node:

Figure 8.9 – General HTTP Request node settings

In general, all of the HTTP Request nodes will have the following settings in common:

•	 Header Auth—Select the Bubble API credentials that you created earlier.

•	 Authentication—Header Auth.

•	 Ignore SSL Issues—False.

•	 Response Format—JSON.

•	 JSON/RAW Parameters—False.

Once these are set, you can now go on to the custom settings for each action.

Using Bubble's Data API 169

To read all data from the API, set the Request Method field to GET and the URL to
the endpoint of the data type (for example, https://appname.bubbleapps.io/
api/1.1/obj/typename). This will generate a JSON object containing an array of all
the records in the data type. The output will look something like this:

[

 {

 "response": {

 "cursor": 0,

 "results": [

 {

 "content_text": "Welcome to the n8n Newsletter!",

 "Modified Date": "2021-07-25T13:00:35.174Z",

 "title_text": "First n8n Newsletter",

 "_id": "1627217777235x670007482175516000"

 }

],

 "remaining": 0,

 "count": 1

 }

 }

]

This will return up to 100 records at a time.

If you want to just get the information from a specific record, you can specify the ID by
appending it to the end of the URL (for example, https://appname.bubbleapps.
io/api/1.1/obj/typename/1627217777235x670007482175516000). This
will only return a single record.

170 Utilizing the Bubble API in n8n

To create a new record, set the Request Method field to POST and the URL to the
endpoint of the data type (for example, https://appname.bubbleapps.io/
api/1.1/obj/typename). Then, create a body parameter for each custom field
along with the value you would like the field value to be. The process is illustrated in the
following screenshot:

Figure 8.10 – Body parameters for creating, updating, or replacing record data

The API will return a status value and the ID of the new record in JSON format.

You can also update a specific record in the data type by setting the Request Method
field to PATCH and then submitting the request to the record's endpoint (for example,
https://appname.bubbleapps.io/api/1.1/obj/typename/1627217777
235x670007482175516000), along with one or more body parameters with the field
information that needs to be updated. If this update is successful, it will not return any
data and will respond with a 204 status code.

Replacing an entire record is similar to updating a record with two exceptions. First, the
value in the Request Method field is PUT, and second, the body must contain all custom
field values. It also returns no data and a 204 reply code when successful.

The last action that you can do with the API is delete a record. Much as with
returning a single record, you use the record's endpoint (for example, https://
appname.bubbleapps.io/api/1.1/obj/typename/16272177772
35x670007482175516000) and set the Request Method field to DELETE.

Using Bubble's Data API 171

Searching for data
Sometimes, there are too many records to work through when requesting data using the
GET request method when you don't know the record ID. Fortunately, there are a number
of additional search options that will allow you to reduce the number of records returned
in each API request.

The search criteria are entered as query parameters in the HTTP Request node as name-
value pairs, as illustrated in the following screenshot:

Figure 8.11 – Setting search limits using query parameters

The first way of reducing the number of records returned is to use the limit parameter.
For example, setting the limit parameter to 2 will only return one record at a time.

This is all fine and good if the record you want is in the first set of records (referred to as
a page), but what if it is on a different page? This is where the cursor parameter comes
into play. The cursor is the record index that you are presently accessing. By adding the
cursor parameter, you can start your search from a specific record. The record index
counts up by one and starts at zero.

Setting the cursor parameter can be useful when you determine its value by using the
three key/value pairs returned by a previous GET query. These three pairs are described here:

•	 cursor—The record index of the first item in the results

•	 remaining—The number of records that are remaining after this page

•	 count—The number of items returned

You can also control the order in which the data is returned by using the sort_field
parameter and setting it to the name of one of the data fields. Adding the descending
parameter and setting it to either true or false will also control whether the data is
sorted in descending or ascending order.

172 Utilizing the Bubble API in n8n

If you set the sort_field parameter to _random_sorting, it will return the records
in random order. So, to receive a single random record, you can set the limit parameter
to 1 and the sort_field parameter to _random_sorting!

Another way to limit the number of records that are returned from the API is to use the
contraints parameter. This contains an array of one or more JSON objects that tells the
API how to limit the incoming data. Each JSON object has three key-value pairs, as follows:

•	 key—The name of the field to use for the constraint. You can use the _all
keyword to check all fields.

•	 constraint_type—The type of constraint to apply, which can be one of the
following:

	� equals

	� not equal

	� is_empty

	� is_not_empty

	� text contains

	� not text contains

	� greater than

	� less than

	� in

	� not in

	� contains

	� not contains

	� empty

	� not empty

	� geographic_search

•	 value—The value that is used to constrain the search.

Using Bubble's Workflow API 173

For example, if we wanted to only return records where the title_text field has the
word Newsletter in it, we would set the constraints parameter to the following:

[

 {

 "key": "title_text",

 "constraint_type": "text contains",

 "value": "Newsletter"

 }

]

You can have as many JSON records as you wish in this array.

By now, you should have a good understanding of how the Bubble Data API works, so let's
take a closer look at the Workflow API.

Using Bubble's Workflow API
The Workflow API is generally used to activate a Bubble workflow and sometimes to pass
information to the Bubble app. You will use the same credentials and the HTTP Request
node to activate workflows and send data.

Activating a workflow
The HTTP Request node uses the POST request method to activate the workflow and will
receive a "status": "success" response if it runs correctly.

The URL field for the HTTP Request node will be made up of the following two parts:

•	 Base URL—This is typically https://<appname>.bubbleapps.io/
api/1.1/wf, where <appname> is the name of your Bubble application.

•	 Workflow name—This is the name of your workflow.

So, for example, to activate the send-email workflow in my n8n-book app, I would
use https://n8n-book.bubbleapps.io/version-test/api/1.1/wf/send-
email for the URL.

174 Utilizing the Bubble API in n8n

Sending data to a workflow
In order to send data to a workflow, the workflow needs to have the parameters defined
in the API workflow (see Figure 8.6), and then the parameters need to be defined in the
action as dynamic data.

In our example, the three parameters that can be sent to the send-email workflow via
the API are these:

•	 to

•	 subject

•	 body

This is illustrated in the following screenshot:

Figure 8.12 – Sample workflow action with dynamic data

Using Bubble's Workflow API 175

To send this information to the workflow via the Workflow API using the n8n HTTP
Request node, add a body parameter for each of the values, as illustrated in the
following screenshot:

Figure 8.13 – Body parameters to send to the Workflow API

When the HTTP Request node is executed, it will send the information to the workflow
and use it as inputs to be processed accordingly, as follows:

Figure 8.14 – Email sent using Bubble Workflow API and submitted data

You can get a copy of this sample workflow from the GitHub repository at https://
github.com/PacktPublishing/Rapid-Product-Development-with-n8n/
blob/main/Chapter%208/Bubble_Workflow_API.json.

Now that we know how to activate workflows and send data to Bubble, let's flip things
around and get Bubble to activate workflows and send data to n8n.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Workflow_API.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Workflow_API.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Workflow_API.json

176 Utilizing the Bubble API in n8n

Receiving events and data from Bubble
Bubble can send events to n8n and even send data. By designing n8n to receive this
information, Bubble can directly execute n8n workflows and extend its capabilities.

Configuring n8n
To do this, first create a simple Webhook node with the following settings:

•	 Authentication—None

•	 HTTP Method—POST

•	 Path—bubble

•	 Response Code—200

•	 Response Mode—Last Node

•	 Response Data—First Entry JSON

You can also copy the test Webhook URL as you will need this information when
configuring Bubble.

Next, add a Set node after the Webhook node and add a string value named Response
with a value set to the following expression: n8n received the following
data on {{new Date().toDateString()}} at {{new Date().
toTimeString()}}: {{$json["body"]["data"]}}.

Now, save the workflow so that the Webhook initializes.

You can get a copy of this workflow on GitHub from https://github.com/
PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/
Chapter%208/Bubble_Events.json.

Configuring Bubble
Now that n8n is ready to go, it's time to prepare Bubble.

First, make sure that the API Connector plugin is installed in your Bubble application.
If it isn't, install it now. You can read more about the API Connector plugin at
https://manual.bubble.io/core-resources/bubble-made-plugins/
api-connector.

https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Events.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Events.json
https://github.com/PacktPublishing/Rapid-Product-Development-with-n8n/blob/main/Chapter%208/Bubble_Events.json
https://manual.bubble.io/core-resources/bubble-made-plugins/api-connector
https://manual.bubble.io/core-resources/bubble-made-plugins/api-connector

Receiving events and data from Bubble 177

Next, we are going to configure the API Connector plugin. On the API Connector plugin
page, click on the Add another API button. Set the API Name field to n8n Workflow.

To configure the API call, click on expand to open up the API call and rename the API
Call field Send n8n Data. Set Use as to Action. Change the HTTP method from GET to
POST and then pass the test Webhook URL into the field next to it.

Add a parameter to send to n8n by clicking on the Add parameter button. Then, for the
Key value, enter data, and for Value, enter Running Sloth Festival.

The plugin should now be ready to initialize by sending information to n8n and looking
at the response that it sends back. To initialize the plugin, first, go back to your n8n
workflow and click the Execute Workflow button to start the Webhook listening for input.
You should then see a screen like this:

Figure 8.15 – Initializing a response from n8n

178 Utilizing the Bubble API in n8n

Next, return to the Bubble plugin and click the Initialize call button. A pop-up window
should appear with the response sent by n8n. Click the Show raw data text to see the
exact response sent by n8n. This should match the information shown in the n8n Set
node, as illustrated in the following screenshot:

Figure 8.16 – Completed Bubble API Connector plugin

Summary 179

Now, whenever you are working on a workflow in Bubble, you can use the n8n Workflow
- Send n8n Data action in the Plugins section, as illustrated in the following screenshot:

Figure 8.17 – New n8n action in the Bubble workflow editor

Now that you have configured both n8n and Bubble to work in harmony, you can extend
Bubble however you wish with all the power of n8n, its nodes, and any of the services that
n8n can access. This opens up your Bubble application to do almost anything that you can
dream of.

Summary
In this chapter, we learned about the Bubble API. We worked with the Data API to
manipulate information in Bubble and the Workflow API to execute workflows. We also
learned how to do all of this using n8n, primarily with the HTTP Request node.

We also learned how to use Bubble to activate Webhooks in n8n and pass information
between the two systems.

In the next chapter, using Bubble, we are going to be learning how to build the frontend of
an application that will use n8n on the backend to process information.

Section 3 – Building
the User Interface

and Connecting
the API

In this section, you will build the user interface for the application and bring all of the
parts together into one complete application.

In this section, there are the following chapters:

•	 Chapter 9, Building the User Interface of the Application

•	 Chapter 10, We’ve Only Just Begun

9
Building the User

Interface of the
Application

While the main focus of this book is to teach you how to use n8n to build application
workflows and connect various tools together, it is extremely important that your
applications have a proper user interface (UI). This is the primary way that people
interact with your product and is the biggest aspect of the user experience (UX).

Having spent time learning about how the Bubble application programming interface
(API) works in the previous chapter, we have a good understanding of what happens with
Bubble "under the hood." Now, we will be using Bubble to build a UI and a design model
that will allow you to create your own UI.

This chapter covers the following topics:

•	 Implementing responsive design for your web app

•	 Working with events in Bubble

•	 Validating data in Bubble

184 Building the User Interface of the Application

•	 Designing the application structure

•	 Dealing with errors in Bubble

Once you have completed this chapter, you will know how to do the following:

•	 Design responsive applications using the Bubble graphical UI (GUI).

•	 Learn how the look and feel of an application can change the UX.

•	 Understand underlying data structures.

•	 Guide users in entering appropriate data to fit into data structures.

•	 Identify errors in applications and workflows.

•	 Proactively handle how errors are presented to users.

•	 Design a logging system to capture events and errors.

•	 Analyze data captured in logs for application improvement.

Let's start this chapter by looking at responsive design and implementing it into your
Bubble web application.

Implementing responsive design for your
web app
Responsive design is a methodology for building web-based applications that display
information correctly, regardless of the device or screen/window size. The ability to view
information on various devices and screen sizes has become increasingly important over
the last decade. The following screenshot reflects this trend:

Implementing responsive design for your web app 185

Figure 9.1 – Desktop versus mobile usage over the last decade

According to StatCounter (https://gs.statcounter.com/platform-market-
share/desktop-mobile/worldwide/#monthly-201111-202111), 10 years
ago, over 93% of people were accessing the internet using their computer. Today, that
number has dropped to around 44%. More people have gone from large computer screens
to smaller mobile devices to interact with web-based UIs. Because of this, it is critical that
your web app looks good and is easy to use, regardless of whether you are using it on your
30-inch computer monitor or your 4-inch phone screen.

Responsive design factors
For your application to work responsively, here are some factors to consider when
building your application.

Using the Responsive Viewer
In the Design tab of the Bubble application interface, you find the Responsive tab located
to the right of the UI Builder tab. The Responsive Viewer allows you to see what your
page looks like on different-sized devices.

https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-201111-202111
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-201111-202111

186 Building the User Interface of the Application

Minimum width
Increase the minimum width of elements to use more of the page margins. Larger
minimum widths make your design look better on smaller screens.

Fixed width
Some elements, such as icons, should have their width fixed. This prevents the elements
from becoming too small or large as the screen size changes.

Maximum width
Buttons and inputs may look strange if they are too large. Correct this issue by setting the
control maximum width side.

Margins
Consistent margin size is an integral part of the design aesthetic. Whenever possible, keep
margin sizes consistent.

Collapsing margins
Remove the left and right margins around specific elements (for example, graphics;
embedded elements) when the screen size gets smaller. This more efficiently uses valuable
screen real estate.

Alignment
Align elements to either the left or right margin so that it "sticks" to one side. This makes
your design more predictable as the screen size changes.

Hiding elements
When a parent element's (for example, a page) width drops below a specified size, do not
show the element. With smaller screens, this provides a much better experience for the user.

Implementing responsive design for your web app 187

Wrapping to the previous line
If a page size becomes large enough to accommodate the element on the previous line,
it moves it to the previous line. This prevents large areas of white space along the right
margin for larger screens.

Text element options
When working with text elements, there are a couple of other options that should be
considered, as follows:

•	 Cut off content if too tall—Rather than making a text element taller as the screen
shrinks, keep the text element height, hide unviewable text, and replace it with ….

•	 Shrink if text gets shorter—Reduces the height of a text element if there is white
space.

Image/Google Map/shape element proportions
Use the Keep element proportions option to maintain the width and height ratio
regardless of screen size.

Repeating group cell width
The Current cell minimum width option allows you to "stack" cells differently rather
than just shrinking cells to a point where they become unreadable. You accomplish this by
increasing the Current cell minimum width value.

188 Building the User Interface of the Application

Using the Responsive Viewer
By default, the Responsive Viewer is in large-screen mode, which shows you how your
page will look with a screen that is 1,200 pixels (px) wide, as illustrated in the following
screenshot:

Figure 9.2 – Responsive Viewer in large-screen mode

You can change this view to see, for example, how the page will look when viewed from a
mobile device such as a cell phone, as illustrated in the following screenshot:

Implementing responsive design for your web app 189

Figure 9.3 – Responsive Viewer viewed from a mobile

Throughout the design process when you are building your application, it is a good idea to
come back to the Responsive Viewer frequently to ensure that your application continues
to look good, regardless of the device that is being used.

Learning more
This has just been an overview of responsive design and there is a lot more you can learn
about Bubble and how responsive design is implemented. If you wish to dig deeper into
Bubble responsive design, see the Building Responsive Pages web page in the Bubble
documentation (https://manual.bubble.io/help-guides/building-a-
user-interface/building-responsive-pages).

Responsive pages are very important to the modern web application user and can make
or break the usefulness of an application, but even the best responsive web application is
completely useless if it is not designed to work with events properly. Fortunately, this is the
next topic that we are covering!

https://manual.bubble.io/help-guides/building-a-user-interface/building-responsive-pages
https://manual.bubble.io/help-guides/building-a-user-interface/building-responsive-pages

190 Building the User Interface of the Application

Working with events in Bubble
An event is an action that occurs within the Bubble app to trigger workflows. Actions
within the Bubble interface often trigger events, but systems can also trigger events
outside of Bubble, such as n8n.

Event types
While there are a number of different types of events that exist in Bubble, most of them
are designed to be used internally with Bubble and do not interact with systems outside
of the Bubble environment. These internal events are important to understand when
working with Bubble and we highly recommend that you familiarize yourself with them.

General events
These events are common to most areas of Bubble and are accessible accordingly. They are
outlined here:

•	 User Logged In—This event fires whenever a user logs in to your Bubble
application.

•	 User Logged Out—Actions associated with this event will be executed when the
user logs out of the Bubble application.

•	 Page Loaded—A page load occurs when a person opens up a web page on their
computer. This event is fired whenever this happens.

•	 Do Every X Seconds—It can be useful to perform an action repeatedly based on
how much time has elapsed since the last time the event occurred. This event is filed
every X seconds, where X represents the number of seconds between events.

•	 When Condition True—This event compares some parameter of the system (for
example, day of the week) with a value (for example, Tuesday) and then performs an
action only if the comparison is true (for example, the action will only be executed
if the day of the week is Tuesday).

Working with events in Bubble 191

Element events
Element events are related to the actual UI itself and are designed to interact with the user
via the web UI. These events generally respond to something the user has done while in
the application. They are outlined here:

•	 Element Clicked—This event is fired when a user clicks on a specific element in the
web UI.

•	 Input Value Changed—If a field in a form has a value that is then changed by the
user, this event fires.

•	 Map Marker Clicked—Map elements in Bubble can have markers placed on them.
This event fires when the user clicks on one of these elements.

•	 Popup Opened—Bubble enables you to display messages to the user in the form of
popups. This event fires when one of these popups opens.

•	 Popup Closed—You can also fire an event when the user closes the popup that was
displayed to the user.

Trigger events
Trigger events are special events in the Bubble system that occur when changes are made
in the database. These events can reference data values before a change in the database
occurred or they can reference the values after a change in the database.

A couple of things to remember about trigger events. First, these events run with full
privileges and have access to all data in the system, not just the data of the user who
triggered the event. Second, trigger events can only trigger a single action, and that action
cannot be used to trigger other actions.

192 Building the User Interface of the Application

Setting up events
In Bubble, events are managed in the Workflow editor tab. You configure actions that occur
when a specific event is fired from this page, as illustrated in the following screenshot:

Figure 9.4 – Event in Workflow editor

For example, Figure 9.4 is displaying how an individual can run the n8n Workflows -
Send n8n Data plugin action when a user logs in to the Bubble app.

Validating data in Bubble 193

You can also run multiple actions when one event occurs, chaining the actions to execute
one after the other. This allows you to perform complex actions while still keeping
individual actions simple. This process is illustrated in the following screenshot:

Figure 9.5 – Chaining actions to an event

Going deeper
This has just been a brief introduction to Bubble events, and you can dig a lot deeper into
this topic. If you are looking to get a stronger understanding of events within the Bubble
environment, I would suggest you start with Building Workflows (https://manual.
bubble.io/help-guides/building-workflows) and Events (https://
manual.bubble.io/core-resources/events) from the Bubble documentation.

Events are an important aspect of the Bubble architecture and are a critical part of proper
data manipulation. But, if the data being entered into your Bubble app is faulty or the
system confuses the different types of data, then suddenly the app becomes useless.

The next section helps to avoid some of these issues by showing us how to validate that the
data being entered or analyzed is the correct data.

Validating data in Bubble
At the core of many applications is data. These applications rely on consistent, accurate,
and structured data to provide analysis and insightful information. They also use the data
to control different aspects of the application itself.

For these reasons, it is important that the data you are gathering and saving is as accurate
as possible, especially when gathering that data from users.

https://manual.bubble.io/help-guides/building-workflows
https://manual.bubble.io/help-guides/building-workflows
https://manual.bubble.io/core-resources/events
https://manual.bubble.io/core-resources/events

194 Building the User Interface of the Application

Field types
The first way to control your data is through field types. Field types describe the data that
can be entered into a specific field and restrict the information that can be entered into
that field to that type of data. If you have a database background, these can be equated to
data types within a database.

There are nine built-in field types in Bubble, as follows:

•	 Text—Any type of American Standard Code for Information Interchange
(ASCII)-based text. Similar to a variable character field (VARCHAR).

•	 Number—Any numeric value, with or without a decimal. Similar to FLOAT or
DECIMAL, but without the precision requirements.

•	 Numeric Range—Any numeric value between a lower and upper numeric value.
This is similar to creating a database table and adding a CHECK range to an INT
field value.

•	 Date—A calendar date and time. Similar to a database DATETIME data type.

•	 Date Range—Restrict the date value to a lower and upper date and time. Much like
the Numeric Range field type, this is similar to creating a table with a CHECK range
for a DATETIME data type column.

•	 Yes/No—A binary state that can be either Yes (TRUE) or No (FALSE). Similar to a
BOOLEAN data type in a database. There is no NULL value for this field, as an empty
field translates to a No (FALSE) value.

•	 File—A text value representing a Uniform Resource Indicator (URI) to a file. This
is the equivalent of a database VARCHAR value that references the location of a file
in a filesystem.

•	 Image—Similar to the File field type, this is a text value representing a URI to an
image file. It also is the equivalent of a database VARCHAR value that references the
location of a file in a filesystem.

•	 Geographic address—This is a unique field type that stores geographic information
as text that has been validated by the Google Maps API. It appears as a street
address, much like what you would find when mailing a letter.

Custom data types
You can also create custom data types. These are typically groups of field or other custom
data types that work together. For example, a meeting type might be made up of a date, a
location, and a subject.

Validating data in Bubble 195

Using the fields
Once you have field and data types defined, this can control the type of data that is
required for data input. Depending on the type of data that is being stored in the database,
you will have different options available to you for restricting the type of data that is
acceptable to the field, as illustrated in the following screenshot:

Figure 9.6 – Date & Time field restrictions

For example, Figure 9.6 shows some of the restrictions that are available in the Date &
Time input type. You can control the minimum and maximum values for the date and
hour and require that the field not be empty.

More data validation
This is just the tip of the iceberg when it comes to data validation. There can be some
very complex rules around the type of data that is permittable for an application, and it is
worth your time to truly understand what these data rules should be and how to ensure
your application is following those rules.

196 Building the User Interface of the Application

To get a deeper understanding of how to better manage your applications' data, I would
suggest starting with Working with Data in the Bubble documentation (https://
manual.bubble.io/help-guides/working-with-data) and use what you
learn to maintain your data's integrity.

Now that we know we have the right types of data in the system, it is important that this
data moves throughout the application properly and is stored predictably in the right
places. Just like driving your car down the main hallway of your home and parking it in
the living room, a poorly designed application structure can lead to unpredictable (and
often disastrous) results. The next section covers how to plan and build the application
structure.

Designing the application structure
An application does not just come out of thin air. A lot of planning and thinking goes into
properly structuring an application so that it is both simple and useful. Some factors to
consider when designing the application structure include the following:

•	 How many activities will the user need to perform?

•	 What type of data will be gathered?

•	 Does the user require authentication?

•	 Is the UX simple and logical?

It is extremely important that you think about how these (and other) factors affect your
application and how your users interact with it. This helps to make your application easy
to manage and maintain.

One of the first tasks that you should complete, even before you start coding a single page,
is to create a flowchart that shows how a user moves through the application for each action
that they will perform. This should show not only how the user interacts with the application
but also how both the user and the application interact with the data in the application.

The following screenshot demonstrates such a workflow. This shows which data is being
displayed/the user for each page, along with the path that the user must follow to get to
each page:

https://manual.bubble.io/help-guides/working-with-data
https://manual.bubble.io/help-guides/working-with-data

Designing the application structure 197

Figure 9.7 – Simple application workflow

This is an extremely valuable asset to have, especially if your team is large and different
people are developing different parts of the application separately. It ensures that everyone
understands how the application will work and how data will be managed.

It is also useful to ensure that the scope of the application does not change or expand. It
makes it very clear what should and should not be designed.

198 Building the User Interface of the Application

Reviewing the design
Once you have completed the overall design, it is well worth having someone else on your
team (or review it yourself if you are a team of one) to ensure that the design meets the
goals and requirements of the application.

One excellent way is to create user stories that describe an activity from the perspective
of the user. These stories are often in the form of As a <user type>, I want to <goal to
accomplish> so that <reason for activity>.

For example, you may have the following user story:

As an author, I want to be able to edit newsletters that have already been published so that
I can update information that may no longer be valid.

You can now take this user story and see whether there is a path in your workflow that will
enable this to happen. If it turns out that there is no way for this to happen (which is the case
for our diagram in Figure 9.7), you may need to go back and update your application design.

Once you are satisfied with the design of your application, ensure that it is marked as a
final design and share it with your development team so that everyone is using the same
design and aiming for the same goal.

But even with a really good design, things can still go wrong. This is where error handling
and troubleshooting come into play.

Dealing with errors in Bubble
Applications are inherently complicated systems. There are events occurring behind the
scenes, users behaving in unexpected ways, and unexpected platform upgrades that break
previously usable code. Sometimes, it's a wonder that any applications work at all.

Because of this complexity, it is critical that applications be designed to anticipate ways
that users can misuse the system while also dealing with errors that occur despite the best
efforts of the application designers and developers.

Bubble has several tools available to help deal with errors that can crop up in the
application, and several best practices will assist you if something goes wrong and you
need to get things working correctly again.

Dealing with errors in Bubble 199

Planning for user error
It is not uncommon for users to be a significant source of errors in your application.
Either by simply not understanding what your application is attempting to accomplish or
by maliciously attempting to bypass security and restrictions put in place, users can and
will break your application. But you can minimize the impact that users have on your
application by following a few best practices.

One of the best ways is to think like a user. Have someone test the application who is just a
standard user and knows nothing about how your application works prior to rolling it out
to the rest of the world. Carefully document how the user got themselves into the situation
where they generated errors and how the error was handled. Then, update the workflow,
deal with the error, and test again.

Locking down the application
There are a lot of different areas within the application that can cause problems if the user
is allowed into them. For example, if the user can get into the user management portion of
the system, they can add or delete users at random, causing all types of chaos.

Because of this, it is critical that the application be locked down to prevent random users
from accessing parts of the application that they should not be able to access. This not
only applies to the application itself but also to any management consoles, admin panels,
and data management portals.

Detailed logging
If an error does occur, it is important that you have a way of determining what led up to
the error. Building in a detailed logging service will allow you to trace what happened
before the error occurred so that you can troubleshoot the problem and hopefully resolve
what caused it.

Debugging tools
Bubble has two excellent tools that will help you to resolve problems that come up while
developing your application.

The first tool is the Issue Checker. This appears as a red warning icon with red text,
indicating the number of issues that exist in your application.

You can get more information about issues by clicking on the Issue Checker. This will pop
up a list of all the issues. Clicking on any one of the items in the issue list will open up the
screen where the issue exists.

200 Building the User Interface of the Application

The second debugging tool is the Debugger. The Debugger allows you to walk through
your application step by step and see issues happening behind the scenes that the
application user does not see.

To initiate the Debugger, simply open up any page of your application and then add
&debug_mode=true at the end of the Uniform Resource Locator (URL). This will
reopen your application page with the Debugger toolbar at the bottom, as illustrated in
the following screenshot:

Figure 9.8 – Application with Debugger toolbar

This allows you to get a lot more detail about what the application is doing and provides
you with clues for how issues may be corrected.

Summary 201

Summary
Designing and building a suitable web-based UI is one of the most critical aspects of your
application build. It is the primary way that your users interact with you and your brand,
and it is the ambassador for your organization. Thus, it is critical that it is as user-friendly,
easily accessible, simple to understand, and error-free as possible. Hopefully, after having
now completed this chapter, you are confident in the steps that you need to take in order
to build this UI.

But what happens when you have your UI completed, all the workflows have been
optimized, and the application still does not do what you need it to do? How do you
extend the capabilities beyond what the Bubble development environment will allow you
to do?

This is where n8n plays a major role in expanding these capabilities. We will be covering
how to do exactly that in the next chapter.

10
We’ve Only Just

Begun
It is sometimes hard to believe how much you’ve accomplished in the course of just
reading a book. Sometimes, finishing a book can be both exciting because of the
accomplishment as well as sad because the journey is over.

It’s really exciting to see how far we have come in such a short period of time! Let’s look at
what we’ve learned from this book and help you find and start that next n8n project!

We’ve come a long way
Learning a new skill can be a daunting task. We look at where we are presently and
calculate in our heads how far we have to go to reach our goal. It seems so far away. It
seems almost too big to imagine what it will take to get to that finish line.

But sometimes, we spend too much time focusing on the finish line that we forget that it is
the journey, not the finish line, that teaches us, molds us, and takes us to the next level.
It is the journey that makes us better, stronger, faster.

This is why it is important for us to take a look back at what we have accomplished along
the way and feel a sense of pride in how far we have come. Let’s review what we have
learned as we made our way through this book.

204 We’ve Only Just Begun

Introducing no-code tools
In section 1, we were introduced to a new way of developing code called no code.
The concept behind no code is to move the building of applications away from software
development teams and closer to the people who will actually use the applications, such as
office workers or business analysts.

We also learned about the star of the show – n8n! We discovered how this automation
tool can be used to connect different systems together, even if they were never designed
to talk to each other. We learned how nodes in n8n are connected together in infinite
combinations to manipulate data, connect systems, and create applications.

In the last chapter of this section, we built three different applications to demonstrate
the power of n8n. These applications demonstrated the possibilities that are out there to
connect and automate with n8n.

APIs and data
In the second section, we put a focus on APIs. An API, as you will remember, is an
application programming interface, which allows different systems to communicate with
each other without having to rely on people to perform manual tasks.

The first chapter taught us how to build our own API endpoints using n8n. This enables
remote systems to activate n8n workflows on demand and allows n8n to create APIs for
systems that may not have an API.

We then looked more closely at how n8n worked with data inside of its workflows. Data
manipulation is a critical part of the flexibility inherent in n8n that makes it so powerful.
The ability to transform data turns n8n into a “universal translator," allowing different
systems to store information as needed.

Storing data can be as important as transforming data. So, we learned how to use no-code
database solutions to store data for both short- and long-term use. These databases allow
us to work with data at rest so that information is not lost between workflow executions.

Finally, we introduced how to use the Bubble no-code tool’s API to access Bubble
data and interact with workflows. This was the beginning of using Bubble as the web
frontend for n8n.

Building the user interface
Up until now, the focus has been on using n8n behind the scenes to perform actions that
most people do not see. In this final section, we focused on building out a way for users to
interact with an application that uses n8n behind the scenes.

Where to next? 205

We showed you how to design an interface that will work well, regardless of the type of
device it runs on. We also learned how to design the structure of an application and the
data behind it to ensure that the application is easy to use and troubleshoot.

Finally, we connected the Bubble application to n8n in order to automate and process the
information provided by the application.

Where to next?
Have you ever walked into a new restaurant for the first time and found it nearly
impossible to decide what to order? There are so many combinations of entrées, sides, and
desserts that it is impossible to land on one single selection to request from the waiter.

This is the problem that new n8n users are faced with. One of n8n’s biggest assets, its
flexibility, can also be one of the biggest roadblocks for new users who want to start
creating with n8n. How do you choose?

Here are some tips for figuring out what you should do for your next n8n project.

Look for a problem to solve
n8n was designed to allow the user to solve everyday problems. It is very demoralizing
when we build “a solution looking for a problem." So, look for those little daily annoyances
that can be automated with n8n.

Does your hard drive keep filling up with old files? Build a workflow that examines all of
the user files on your computer daily and then pushes any file that hasn’t been modified in
2 years into cloud storage and removes it from your hard drive.

Do you keep forgetting to respond to emails in your inbox? Design an n8n app that will
scan your email inbox and send you a message asking you what to do with the email and
then deal with it appropriately.

Not sure what to make for supper each day? Have n8n pull a random recipe from your
recipe list and create a shopping list for you.

Once you start looking at your everyday tasks as opportunities to make them more
efficient or easier, you will soon find that there’s no end to your ideas for n8n projects.

206 We’ve Only Just Begun

Dream big and start small
As we mentioned earlier, it is often the journey and not the destination that is important.
The lessons that you learn along the way are often applicable to other challenges that you
are experiencing.

So, think up some really big, wild project and just start! Break the project down into
smaller subprojects and continue to break it down until it is something that you can do!

Here are some of the over-the-top ideas that I’m working on right now:

•	 Turning my truck into my own version of a cyber truck with n8n controlling
out-of-this-world add-ons such as a rear projector and a pop-up video screen for
instant drive-in movies, computer-controlled lasers, and individually addressed
LED light upgrades

•	 Creating a bulk LEGO manager machine that will identify, sort, and catalog each
part, determine what sets can be created from the LEGO in the inventory, and
then put together all the parts for a set on demand along with a printout of the
build instructions

•	 Designing a way to take a picture of books on a shelf, identify those books visually,
then look up the value of each book second-hand, and upload the information to a
website to put the books up for sale

Will I ever finish these projects? Who knows!

Will I learn some interesting skills and figure out how to use n8n in new and interesting
ways? Absolutely!

Start an automation journal
Sometimes, ideas come to us at the strangest of times: in the shower, on a walk, when
commuting to work, on a tour bus. It is important to get these ideas down as quickly as
possible so that they don’t get lost or forgotten.

But because the timing of these epiphanies is often not always conducive to standard good
old-fashioned pen and paper, I purchased a waterproof notebook and keep it with me
wherever I go. It is always within reach in the event that I come up with the next big idea!

Get ideas from others
Often, inspiration will come from what others have done (why do you think I listed my
wild ideas earlier?). Take a look through some of the projects on the n8n websites or
review some of the workflows created by other n8n users.

Starting your next project 207

Starting your next project
Now that you have your new idea, how do you get started? This is usually the next roadblock
that new n8n users run into. Getting past this can be difficult at it is easy to get overwhelmed
by the potential immensity of the actual project (especially if it is a big, wild project).

In order to get you going, here are a few tips to get that new project launched!

Break it down
Sometimes, when looking at the whole project, it is just too much. How in the world can
you expect someone to design that whole solution?

But if you break it down into smaller pieces then look at each piece, those pieces may be
doable. If not, break each piece down even further until you recognize a piece that can
be done!

Keep doing this until the entire project is complete!

Write it down
Trying to keep everything in your head for a project can be really difficult, especially
if there are large gaps of time between when you can work on the project. By writing it
down, you get the plans and ideas out of your head and down on paper.

Review n8n nodes
It can be really difficult to know what you can do if you don’t know the tools that you have
at your disposal. Since n8n upgrades frequently, it is good to upgrade your version of n8n
frequently and look through not only the new nodes but also the changes that have been
made to existing nodes.

Steal others’ code
There is no sense in reinventing the wheel if someone has already built it. Take a look at
workflows that others have already created and see whether you can use it or a part of it to
complete a piece of your project.

Conclusion
We really hope that you have found reading this book as informative and educational as
we did writing it. Feel free to reach out to us through the n8n community website if you
have any questions or ideas for interesting projects.

Thanks for joining us on this journey!

Index

Symbols
$items method

using 50, 51

A
Airtable

reasons, for selecting 123
URL 128
used, for reading data 125-132
used, for writing data 125-132

Airtable node 23
American Standard Code for Information

Interchange (ASCII) 194
API, building in n8n

credentials, creating 115
project specifications 114
Webhooks, creating 116
workflow 116, 117

API Connector
reference link 176

API endpoints
benefits 117
metadata, providing in API

responses 118
number of requests, limiting 118

proxying 117
securing 117
security tokens, rotating 118
SSL/TLS security, using 117
users, limiting 117

API key, using
reference link 127

API, optimizing for production
API calls, minimizing 136
API data, encrypting on wire 137
API requests, tracking 137
API users, obtain to IP addresses 137
authentication, requiring 136
database calls, reducing 136
data, caching 136
documentation 138
number of API calls per user

per second, limiting 138
API responses

metadata, providing 119
API URL, anatomy

about 54
base URL 55
endpoint 55
protocol 55
query parameters 55

210 Index

application
locking down 199

application programming interface (API)
about 136, 204
building, in n8n 114
capabilities 100
data, submitting 102
documenting 103
GET methods, using 99, 100
HEAD methods, using 99, 100
noun/verb architecture, using 102
OpenAPI Specification 104-106
output data, in JSON 99
planning 99
POST HTTP methods, using 99, 100
response codes, using 100-102
secured data, accessing via 163
testing 119, 120
versioning 103

application structure
designing 196, 197

arrays
combining 67, 68
working with 65, 66

Authentication parameter
about 109, 110
options 109

B
binary object 45, 46
Bubble

about 16
configuring 176-179
data, receiving from 176
data structure 161, 164
data type 161, 162
data, validating 193

errors, dealing with 198
events, receiving from 176
events, working with 190
features 16
privacy/data security settings 162
Workflow API, using 173
workflow engine 164, 165

Bubble API
about 156
endpoint 157
settings 160

Bubble API endpoint
API version 158
base URL 157
building 159
data 158
development version 158
factors 157
live version 158
name 159
workflow 158

Bubble API settings
about 160
API tokens 160, 161
enabling/disabling API access 160

Bubble Data API
authentication 166
data manipulation 167-170
data, searching 171-173
using 166

Bubble node 23

C
create, read, update, and delete

(CRUD) 23, 123
Cron node 9, 24, 25
cursor 171

Index 211

cursor parameter
setting, with three key-value pairs 171

custom data types 194
customer relationship management

(CRM) system 15

D
data

manipulation 167-170
receiving, from Bubble 176
searching 171-173
sending, to workflow 174, 175
sharing, between workflows

140, 141, 143
validating, in Bubble 193

database
selecting, for project 123, 124

database, best practices
API calls, minimizing 133
bandwidth, minimizing 132
calculations, performing 135
database, backing up 134
database, load testing 135
database queries, minimizing 133
database, securing 135
database writes, minimizing 133
data caching, enabling 133
data, compressing 132
record references, using 134
table views, using 134
transactions, recording 134

datasets
merging 144-147

data structure, in n8n
about 40, 41
JSON syntax 41
n8n JSON structure 43

data validation 195, 196
data, working with

reference link 196
DELETE method 56
denial-of-service (DoS) attack 138
design

reviewing 198
detailed logging 199
domain name 55
Domain Name System (DNS) name 55
dot notation 48
dynamic data

using 28, 29

E
Editor UI

in n8n 20-27
element events 191
errors

dealing with, in Bubble 198
events

receiving, from Bubble 176
reference link 193
setting up 192, 193
working with, in Bubble 190

event types
about 190
element events 191
general events 190
trigger events 191

Execute Workflow node 140
expressions 30, 31

212 Index

F
fields

using 195
field types 194
Function node

about 23, 24, 46, 47
data, splitting with IF node 67

G
general events 190
GET method

about 56
using 99, 100

H
Hacker News node 140
handle requests

Webhook node, configuring to 106
HEAD method

about 57
using 99, 100

Hello World workflow
creating 33-38

hostname 55
HTTP methods

about 110
additional POST option 111
general options 110, 111

HTTP Request node
about 25, 53
API call 58, 59
API URL, anatomy 54
basic authentication, using 60, 61
methods 56

parameters 55
response codes 57
settings 168
web API 101 53, 54

HTTP Request node, methods
DELETE method 56
GET method 56
HEAD method 57
PATCH method 57
POST method 56
PUT method 57

HTTP Request node, parameters
body parameters 56
headers 56

HTTP Request node, response codes
1xx (informational) 57
2xx (success) 57
3xx (redirection) 57
4xx (client error) 57
5xx (server error) 58

HyperText Markup Language (HTML) 65
HyperText Transfer Protocol

(HTTP) 61, 156
HyperText Transfer Protocol

Secure (HTTPS) 135, 156

I
identifier (ID) 130
IF node

used, for splitting data from
Function node 67

Insomnia
URL 119

Internet Assigned Numbers
Authority (IANA) 111

Internet Protocol (IP) 135

Index 213

items array
about 48
data, from other nodes 50, 51
data, manipulating 51
data, outputting 50
dot notation 48

items array, data
mathematical 52, 53
strings 52

J
JavaScript Object Notation (JSON)

about 133, 161
output data 99
three key-value pairs 172

json object 43-45
JSON objects

value, adding to 68
working with 65, 66

JSON syntax
about 41
categories 41

JSON syntax, categories
arrays 43
key-value pairs 42
object 42
value 42

M
Math

reference link 152
metrics dashboard

building 82-91
minimum viable product (MVP) 72

N
n8n

about 7
allowing, users to solve issues 205
API, building 114
automation journal, working 206
calculations and analytics,

performing 147-152
capabilities 14
challenges 206
configuring 176
features 205
information, sending to 64
installing 10, 12
prerequisites 10
project, launching 207
reference link 10
running as service, with PM2 13
used, for building product 72
used, for connecting systems 16
used, for CRM call recording access 15
used, for Goomer pivots

during COVID-19 15
used, for solving problems 14
workflows, reviewing 206

n8n community
used, for discovering workflows 92, 93
used, for sharing workflows 92, 93

n8n Editor UI
opening 13, 14

n8n JSON structure
about 43
binary object 45, 46
json object 43, 45

214 Index

n8n no-code tools
APIs and data 204
user interface, building 204, 205

n8n prerequisites
installing 11
Node.js environment, configuring 12
Node.js, installing 11
operating system, updating 10

n8n products
building with 72

n8n workflows
automated executions 22
manual executions 22

no-code databases 122, 123
no code tool

about 4, 5, 204
features 5-7

Node.js
environment, configuring 12
installing 11

nodes
about 8, 22
input 8
output 8
regular nodes 23
trigger node 24

O
OpenAPI Specification

about 104-106
reference link 104

P
page 171
PATCH method 57
PM2 application

installing 13
used, for running n8n as service 13

POST HTTP methods
using 99, 100

POST method 56
PUT method 57

R
Raw Body 111
real-time events

handling 61
regular nodes

about 23
Airtable node 23
Bubble node 23
Function node 23

Response Content-Type 110
responsive design

implementing, for web app 184, 185
responsive design, factors

about 185
alignment 186
elements, hiding 186
fixed width 186
group cell width, repeating 187
image/Google Map/shape

element proportions 187

Index 215

margins 186
margins, collapsing 186
maximum width 186
minimum width 186
previous line, wrapping 187
Responsive Viewer, using 185
text elements options 187

Responsive Pages, building
reference link 189

Responsive Viewer
using 188, 189

REST API 10

S
secured data

accessing, via API 163
Secure Sockets Layer (SSL) 137
Structured Query Language

(SQL) databases 122

T
Telegram bot

building 72-82
Telegram trigger node 24
tools

debugging 199, 200
trigger events 191
trigger nodes

about 9, 24
Cron node 24
Telegram trigger node 24

U
Uniform Resource Indicator (URI) 194
Uniform Resource Locator

(URL) 54, 157, 200
unique identifier (UID) 167
Universal Product Code (UPC) 60
user error

planning for 199

V
variable character field (VARCHAR) 194

W
web API 101 53, 54
web app

responsive design, implementing
for 184, 185

Webhook node
about 24, 61
basic test, creating 62, 64
configuring, to handle requests 106
information, sending to n8n 64
parameters 107
responding, to client 64, 65
Response Code parameter 112
Response Data options 112, 113
Response Mode option 112

Webhook node, parameters
Authentication parameter 109, 110
HTTP methods 110
Webhook URLs 107, 108

216 Index

Webhooks
creating 116

Webhook URLs 107, 108
Workflow API

data, sending to workflow 174, 175
using 173
workflow, activating 173

workflows
about 8, 31-33
data, sharing between 140-143
discovering with n8n community 92, 93
sharing, with n8n community 92, 93

workflows, building
reference link 193

 217

Share Your Thoughts
Hi!

We're Jason and Tanay, authors of Rapid Product Development with n8n. We really hope
you enjoyed reading this book and found it useful for increasing your productivity and
efficiency in n8n.

It would really help us (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on Rapid Product Development with n8n.

Go to the link below to leave your review:

https://packt.link/r/1801817367

Your review will help us to understand what's worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best wishes,

Jason McFeetors Tanay Pant

https://packt.link/r/1801817367

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1 –
An Introduction to Your Toolkit
	Chapter 1: Introduction to No Code, n8n, and Bubble
	Technical requirements
	What is no code?
	Why does no code matter?
	An introduction to n8n
	Installing n8n

	How do people use n8n to solve problems?
	CRM call recording access
	Goomer pivots during COVID-19
	n8n sails the seven seas

	An introduction to Bubble
	Summary

	Chapter 2: Using the Editor UI to Create Workflows
	Technical requirements
	Introduction to the Editor UI
	Exploring the regular and trigger nodes
	Expressions – using dynamic data
	Workflows – putting it all together
	Creating your first workflow – Hello World
	Summary

	Chapter 3: Diving into Core Nodes and Data in n8n
	Technical requirements
	Introduction to the data structure in n8n
	JSON syntax
	n8n JSON structure

	Function node – Custom JavaScript in workflows
	The items array
	Dot notation
	Outputting data
	Data from other nodes (the $items method)
	Manipulating data

	HTTP Request node – Talk to any API
	Web API 101
	Anatomy of an API URL
	Other parameters
	HTTP methods
	Response codes
	Basic API call
	Using basic authentication

	Webhook node – Handling real-time events
	Creating a basic test Webhook
	Sending information to n8n
	Responding to the client

	Working with arrays and JSON objects
	Separating the cats from the dogs
	Combining two arrays
	Adding the same value to all JSON objects

	Summary

	Chapter 4: Learn by Doing: Building Two
n8n Apps
	Technical requirements
	Building products with n8n
	Building a Telegram bot
	Building a metrics dashboard
	Sharing and discovering workflows
	Summary

	Section 2 – Building an API to Power Your Application
	Chapter 5: Building Your First API Endpoints
	Technical requirements
	Planning your project's API
	Easy to understand
	Output data in JSON
	Using the GET, HEAD, and POST HTTP methods
	Knowing what your API will do
	Having meaningful and consistent response codes
	Consistent noun/verb design
	Submitting data
	Versioning your API
	Documenting your API

	Configuring the Webhook node to handle requests
	Parameters
	Response Code
	Response Mode

	Building the API in n8n
	API project specifications
	Creating credentials
	Creating Webhooks
	The rest of the workflow

	Securing your API endpoints
	Using SSL/TLS security
	Limiting where users come from
	Proxying your API
	Rotating security tokens
	Tracking and limiting the number of requests
	Providing metadata in your API responses

	Testing your API
	Use a testing platform
	Follow the documentation
	Try to break it
	Confirm the data
	Ongoing testing

	Summary

	Chapter 6: Powering Your API with a No Code Database
	Technical requirements
	Learning about no code databases
	Selecting a database for your project
	Using Airtable for reading and writing data
	Best practices for working with databases
	Minimizing bandwidth
	Compressing data
	Minimizing API calls
	Minimizing database queries
	Minimizing database writes
	Enabling data caching
	Backing up the database
	Recording transactions
	Using record references and table views
	Securing your database
	Performing calculations on the database
	Load testing the database

	Optimizing your API for production
	Reducing database calls
	Caching data before the API
	Minimizing API calls
	Requiring authentication
	Encrypting API data on the wire
	Tracking API requests
	Tying API users to IP addresses
	Limiting the number of API calls per user per second
	Properly documenting the API

	Summary

	Chapter 7: Transforming Your Data inside a Workflow
	Technical requirements
	Sharing data between workflows
	Merging datasets
	Performing calculations and analytics
	Summary

	Chapter 8: Utilizing the Bubble API in n8n
	Technical requirements
	Introducing the Bubble API
	Bubble API endpoints
	Bubble API settings

	Understanding Bubble's data structure
	Data types
	Data security (privacy)

	Understanding Bubble's workflow engine
	Using Bubble's Data API
	Authentication
	Data manipulation
	Searching for data

	Using Bubble's Workflow API
	Activating a workflow
	Sending data to a workflow

	Receiving events and data from Bubble
	Configuring n8n
	Configuring Bubble

	Summary

	Section 3 – Building the User Interface and Connecting
the API
	Chapter 9: Building the User Interface of the Application
	Implementing responsive design for your web app
	Responsive design factors
	Using the Responsive Viewer
	Learning more

	Working with events in Bubble
	Event types
	Setting up events
	Going deeper

	Validating data in Bubble
	Field types
	Custom data types
	Using the fields
	More data validation

	Designing the application structure
	Reviewing the design

	Dealing with errors in Bubble
	Planning for user error
	Locking down the application
	Detailed logging
	Debugging tools

	Summary

	Chapter 10: We’ve Only Just Begun
	We’ve come a long way
	Introducing no-code tools
	APIs and data
	Building the user interface

	Where to next?
	Look for a problem to solve
	Dream big and start small
	Start an automation journal
	Get ideas from others

	Starting your next project
	Break it down
	Write it down
	Review n8n nodes
	Steal others’ code

	Conclusion

	Index

