
Fund
a

m
enta

ls of Enterp
rise

Fund
a

m
enta

ls of Enterp
rise A

rchitecture
A

rchitecture

Tanusree McCabe

Fundamentals
of Enterprise
Architecture
Proven Frameworks
for Effective
Architecture
Decisions

SOF T WARE ARCHITEC TURE

“If you’re an enterprise
architect, you should
read this book. It
outlines the patterns
and practices required
to enable successful
architectures in any
organization.”

—Doug Holland
Software Architect,

formerly of Microsoft and Intel

“Excellent real-life
examples make this
book relatable for
any skill level, not
just tech gurus.”

—Doron Beit-Halahmi
System Administrator

Fundamentals
of Enterprise Architecture

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

With the increasing complexity of modern cloud-based
systems, an effective enterprise architecture program is
more critical than ever. In this practical book, author Tanusree
(Tanu) McCabe provides proven frameworks and practices to
define an effective enterprise architecture strategy—one that
will enable software and enterprise architects to create and
implement great architecture strategies.

You’ll learn how to create shared alignment across business
and technology, embed architecture practices into processes
and tooling, incorporate technology and business trends, and
instill contextual understanding over siloed decision-making.
Complete with examples of patterns and antipatterns, this
book provides reusable templates, assessment tools, and
practical advice.

With this book, you will:

• Understand exactly what enterprise architecture is,
and why it’s important to build an effective enterprise
architecture practice

• Learn who needs to be involved to define and implement
architecture strategies

• Examine common pitfalls that inhibit effective
architecture strategies

• Assess the current state of your organization’s architecture
practice to identify opportunities for improvement

• Define your own architecture strategy by applying
the book’s frameworks

• Enhance your ability to make great architecture decisions
using the frameworks and lessons provided

Tanusree (Tanu) McCabe is a
Distinguished Engineer who
leads public cloud strategy at
CVS Health. She formerly led
enterprise architecture strategy
at Capital One as an Executive
Distinguished Engineer.

US $59.99 CAN $74.99
ISBN: 978-1-098-15937-5

Tanusree McCabe

Fundamentals of Enterprise
Architecture

Proven Frameworks for
Effective Architecture Decisions

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-15937-5

[LSI]

Fundamentals of Enterprise Architecture
by Tanusree McCabe

Copyright © 2024 Tanusree McCabe. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Louise Corrigan
Development Editor: Corbin Collins
Production Editor: Gregory Hyman
Copyeditor: nSight, Inc.
Proofreader: Helena Stirling

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2024: First Edition

Revision History for the First Edition
2024-09-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098159375 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fundamentals of Enterprise Architec‐
ture, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

https://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098159375

Table of Contents

Preface. ix

1. Key Enterprise Architecture Concepts. 1
Why Enterprise Architecture? 2

Avoiding Silos 2
Avoiding Chaos 3
Avoiding Technical Debt 5
Summarizing the Benefits 5

What Is the Practice of Enterprise Architecture? 7
The Vision 7
The Mission 8
What Are the Functions of Enterprise Architecture? 8
Enterprise Architecture Strategy 9
Enterprise Architecture Enablement 9
Enterprise Architecture Oversight 10

What Are Typical Architecture Roles? 11
Enterprise Architect Role 11
Solution Architect Role 12
Application Architect Role 12
Comparing Typical Architect Roles 13
Specialized Functions 15

Organizational Model 17
Centralized Architecture 17
Federated Architecture 18
Hybrid Architecture 19

What Are Typical Architecture Deliverables? 21
Architecture Decision Deliverable 21
Architecture Pattern Deliverable 21

iii

Capability Target Architecture Deliverable 22
Application Target Architecture Deliverable 22

What Is an Architecture Decision? 23
Overview 23
Sample Template 24

Summary 26

2. Key Strategy Objectives. 29
Overview 29
The Shared Alignment OKR 32
Principles to Create Shared Alignment 37

Disagree and Commit 37
Command and Control 38
Consensus-Driven and Consensus-Seeking 39

The Embedded and Accessible OKR 40
What Is Architecture Information? 43

Architecture Principles 43
Architecture Standards 44
Architecture Frameworks 44
Architecture Best Practices 44
Architecture Diagrams 45
Architecture Metrics 45
Architecture Information Powers Architecture Decisions 46

The Enable and Enforce OKR 48
Architecture Standard KPIs 50
Principles for Enablement 52
Principles for Enforcement 54

The Proactive and Reactive OKR 56
Summary 57

3. Shared Alignment. 59
Align on Who 60

What Is a Stakeholder? 61
What Is Stakeholder Engagement? 63
How Do You Scale Stakeholder Engagement? 65
How Does “Align on Who” Relate to Your Effective Enterprise Architecture

Strategy? 66
Align on the Why 67

Sell the Why 67
Align on Priority 70
How Does “Align on the Why” Relate to Your Effective Enterprise

Architecture Strategy? 71

iv | Table of Contents

Align on the Decision 71
Consider Differing Perspectives 72
Foster Positive Conflict in Conversation 73
Resolve the Positive Conflict 74
Get Commitment as a Result of Alignment 75
How Does “Align on the Decision” Relate to Your Effective Enterprise

Architecture Strategy? 75
Case Studies 76

The Mandate 76
The Relitigation 77
The Silo 78
The Never-Ending Debate 79

Summary 80

4. Embedded and Accessible. 83
Knowledge Management in Embedded and Accessible Architecture 83

What Is the Goal of Knowledge Management? 84
What Is the Knowledge Management Lifecycle? 85
What Are the Types of Knowledge Relative to Architecture Information? 87
Summarizing the Benefits of Knowledge Management 90

UI/UX Design in Embedded and Accessible Architecture 91
What Is UI and UX Design? 91
Summarizing Benefits of UI and UX 93

Knowledge Management and UI/UX Principles 94
Create: Champion Knowledge Sharing 94
Approve: Many Over Few 95
Distribute: Just in Time 95
Distribute: Transparent to Find 96
Distribute: Single Source of Truth 97
Consume: Easy and Enjoyable 97
Consume: Flag It or Fix It 99
Consume: Measure to Improve 99

Embedded and Accessible Architecture Information Framework 100
Define 101
Do 104
Dare 104

Case Studies 105
New Enterprise Architecture Standard 105
Best Practices 106
The Static Artifact 107

Summary 108

Table of Contents | v

5. Enable and Enforce. 111
What Is an Enterprise Architecture Standard? 113

Stability NFRs 113
Release NFRs 117
Operational Efficiency NFRs 119
Interoperability NFRs 121
Security NFRs 122
Summarizing NFRs 123
Architecture Technology Standards 124
Architecture Metamodel Standard 124

When Should a Standard Be Declared? 125
What Is Enable? 127

Principles of Enablement Mechanisms 128
The Enablement Framework 128

What Is Enforce? 130
Principles of Enforcement Mechanisms 131
The Enforcement Framework 131

Case Studies 133
The Free-for-All 134
The Suffocation 135
The Reporter 136

Summary 137

6. Proactive and Reactive. 139
Principles of Strategic Thinking 141

Understand the Right Problem 141
Initiate Innovation 142
Be a Change Agent 144

The 4 Cs Framework 144
Curiosity 145
Challenge 148
Credibility 149
Communication 151

Case Studies 155
The Cloud Migration 155
The AI Inflection Point 156
The Tactical Load 157

Summary 158

vi | Table of Contents

7. A Very Short Manifesto for Effective Enterprise Architecture. 161

8. Contextual Understanding over Siloed Decision Making. 165
Architectural Domain Model 167

What Are Capabilities? 167
How Capabilities Fit in an Architecture Domain Model 168
Considerations for Defining the Architectural Domain Model 170

Other Contextual Inputs 171
Case Studies 172

The Aloof Architect 172
The Aware Architect 173

Summary 174

9. Tangible Direction over Stale Documentation. 177
The Importance of Experimentation 178
Documentation Standards 179
Documentation as Code 181
Case Studies 182

The Archaeological Architect 182
The Ambitious Architect 183

Summary 184

10. Driving Behavior over Enforcing Standards. 185
Driving Desired Behavior 186

Conditioning Behavior 187
Understanding Motivation 188
Using Conditioning and Motivation Together 189

Case Studies 190
The Administrative Architect 190
The Ambassador Architect 191

Summary 192

11. Evolution over Frameworks. 195
Evolutionary Trends 197

From Theory to Data 197
From Outsider to Insider 198
From Blocker to Enabler 199

Case Studies 200
The Adamant Architect 200
The Audacious Architect 201

Summary 203

Table of Contents | vii

12. Assessment Framework. 205
Conducting an Enterprise Architecture Assessment 207

Define Business Outcomes 207
Identify Capabilities 209
Map Capability Gaps 210

Summary 212

13. Framework to Define Enterprise Architecture Strategy. 215
Defining Enterprise Architecture Strategy 215

Contextualize Enterprise Architecture 216
Continuously Improve 217
Create Excitement 219

Summary 221

14. Framework for Architecture Decision Making. 223
Building a Foundation for Architecture Decision Making 223

Providing an Architecture Decision Registry 224
Managing the Architecture Decision Lifecycle 225
Defining the Architecture Decision Workflow 226
Offering Architecture Decision Training 229

Framework for Architecture Decision Making 230
Monitor Execution 231
Evolve and Enhance 232

Summary 232

Index. 235

viii | Table of Contents

Preface

Once upon a time, a respected colleague declared that enterprise architecture, as we
knew it, was dead. With unprecedented transformations such as cloud and artificial
intelligence, it did appear that enterprise architecture in its original form was too
archaic to add value. How could a function formalized in the 1980s hope to not only
keep up with such rapid technological changes, but also to ensure that such changes
would lead to positive business outcomes?

Yet having witnessed reboots and resets, and having driven changes to architecture
myself, I have come to the conclusion that enterprise architecture, when delivered
effectively, is still undoubtedly essential to any organization seeking to deliver tech‐
nology solutions better, faster, and cheaper.

Enterprise architecture aligns business’s strategies, processes, and technologies to
achieve business goals. As if that weren’t enough, enterprise architecture also defines
the structure and operation of an organization’s technology. Enterprise architecture
establishes architecture principles and practices to guide organizations through the
business, information, process, and technology changes necessary to execute their
strategies, and ensures that systems and processes are efficient, effective, and cohesive
while allowing scalability and flexibility in changing business needs.

Organizations that try to fulfill business needs without first defining their enterprise
architecture strategy are at risk of experiencing siloed delivery and arbitrary unique‐
ness. Without an effective enterprise architecture practice, investments are made
without a defined purpose, and problems are solved without understanding the full
implications of the solution. The best architects and engineers can only get so far on
their own without an effective enterprise architecture practice.

This book is a defense of enterprise architecture, and a guide to establishing enter‐
prise architecture so that it operates effectively. Throughout this book, I cover proven
frameworks from my experiences that you can tailor to meet your own needs.

ix

Who Should Read This Book?
This book is for anyone involved in delivering software products. Architects, engi‐
neers, product managers, executives, data scientists—all are necessary in effective
enterprise architecture.

This book is especially relevant for those undertaking the challenge of leading or per‐
forming enterprise architecture. By the end of this book, you will understand what
enterprise architecture is and why it is important to have an effective enterprise archi‐
tecture practice, and who needs to be involved to make enterprise architecture suc‐
cessful. You will learn about common pitfalls through my presentation of case studies
that inhibit effective enterprise architecture. You will be able to assess the current
state of your organization’s enterprise architecture practice to identify opportunities
for improvement, establish your own enterprise architecture strategy, and strengthen
your ability to help yourself and others make great architecture decisions.

Any organization seeking to use modern technology with a cogent strategy can bene‐
fit from adapting the frameworks and applying the concepts presented in this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

x | Preface

https://oreilly.com

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
For updates and information on this book and the topics it covers, please visit the
author’s website at https://www.funeabook.com.

You can also address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/fundamentals-enterprise-
architecture.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
I’d like to thank my daughter, Ashley, for inspiring me to take a chance and my son,
Ryan, and husband, David, for their love, support, and confidence in me. Similarly,
thank you to my sister, Mamani, my parents, Kalpana and Dipankar, and my in-laws,
Susan and Michael, for being my biggest champions.

I’d also like to extend my gratitude to Aaron Rinehart, who opened up doors.

This book is a culmination of many years of experience, and I appreciate all the peo‐
ple that I learned from, and worked with, to shape my views and perspectives. I
extend my gratitude to Brandee Pierce, David Geen, Allison Boulais, Arjun Dugal,

Preface | xi

https://oreilly.com
https://www.funeabook.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/fundamentals-enterprise-architecture
https://oreil.ly/fundamentals-enterprise-architecture
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Mark Pender, Zach Blizzard, John Andrukonis, Pete Davies, Kiran Ramineni, Joe
Reunthirisak, Keith Gasser, Tony Reynolds, Kathleen Devalk, Lakshmi Seetharaman,
Vince Gutosky, Tariq Shaikh, Todd Safford, Parvez Naqvi, Liz Ashton, Alejandra
Rios, Jeanine McGinniss, Michael Arroyo-Young, Anantha Bangalore, Keith McClos‐
key, John Hughes, Dan Katz, Prashant Sarambale, and Alok Awasthi.

Thanks to Doron Beit-Halahmi, Doug Holland, Naveen Krishnaraj, and Sivakumar
Ponnusamy for giving the manuscript a read for technical accuracy. Also, thank you
to the O’Reilly publishing and editing team for all your hard work and constructive
feedback.

Thank you to all the architects who work so hard to make a difference and to all of
their partners who are allies in the quest to achieve value through architecture. Last
but not least, thank you to readers who have taken the time to learn more about effec‐
tive enterprise architecture.

xii | Preface

CHAPTER 1

Key Enterprise Architecture Concepts

What does the word architecture mean to you? Perhaps it brings to mind visions of
Renaissance art and Gothic cathedrals, or if you’ve ever done a home remodel, blue‐
prints of houses and rooms. Perhaps you’re civically oriented and you start thinking
about maps of cities and designs of buildings.

Whatever comes to mind, I have a strong hunch that design was part of it. So, we can
then say that architecture definitely has something to do with designing something
new. In the context of modern information technology (IT) organizations, the some‐
thing is typically a software-based system.

How well does architecture help you and your organization deliver software? Perhaps
you’ve had bad experiences with ineffective architecture, and the first words that
come to mind are things like ivory tower, out of touch, or behind the times. Perhaps
architecture seems like an archaic relic of the past, something that’s no longer needed
in a modern organization as it attempts to keep pace with rapidly changing technol‐
ogy and business demands.

On the other hand, maybe you’ve had great experiences with architecture, and the
first words that come to mind are things like clarity, strategy, and shared. Architecture
may have provided the clarity needed to set forth a shared strategy with clear goals
and blueprints to achieve them. Perhaps architecture allowed for great decisions that
met business goals, kept customers happy, and also allowed for innovative technol‐
ogy, or maybe architecture provided the way to connect business to technology
strategy.

This book aims to set you up for great experiences with architecture. Specifically, it
aims to provide you with a path to successfully establish a strong enterprise architec‐
ture practice, where enterprise means across the entire company.

1

To do that, let’s first look at the value proposition of enterprise architecture. Why
should you, or anyone in your organization, care to invest in enterprise architecture?

Why Enterprise Architecture?
Enterprise architecture is critical to an organization’s ability to operate effectively with
a clear technology strategy that fulfills business objectives. Where architecture as a
general function solves problems, enterprise architecture solves complex problems
that impact the enterprise and changes the enterprise as a whole. Where architecture
in general seeks to deliver well-designed software, enterprise architecture provides
the principles, standards, and best practices that enable all software engineering
teams to deliver reusable, cost-effective, secure, scalable software that meets business
needs.

It may be easier to understand the value proposition of enterprise architecture if I
first talk about what happens to organizations that don’t have strong enterprise archi‐
tecture.

Organizations without a strong enterprise architecture practice typically fall victim to
the development of silos, chaos, and technical debt.

Avoiding Silos
You may be in a siloed organization if Figure 1-1 looks familiar. In Figure 1-1, each
organizational unit makes decisions independently of others. There are only vertical
decisions, no horizontal decisions.

Figure 1-1. Decisions made within each vertical organizational unit, illustrating siloed
decision making

2 | Chapter 1: Key Enterprise Architecture Concepts

Organizational units race to meet their specific business objectives, each thinking that
they have unique problems to solve. While they do deliver results in the form of soft‐
ware products, these results are optimized for each organizational unit rather than
the enterprise as a whole. This means that the company ends up needing to maintain
several similar yet slightly different solutions, and/or outright duplication of solu‐
tions, and/or solutions that are unable to effectively integrate with each other. This is
both a waste of the company’s resources and an impediment to connected
experiences.

You see, typically customers don’t want to know the complexity of all of the organiza‐
tional units behind a product or service that they use; they want a seamless experi‐
ence across them, and it takes an enterprise perspective to stitch that together. For
example, suppose there is a company made of multiple business units. Both business
unit A and business unit B need to reach customers with mobile devices. Business
unit A decides to build a new mobile app. Since the company is siloed, so does busi‐
ness unit B. Each business unit accomplishes its specific goal of reaching customers
via mobile apps. However, given that the units share a customer base, customers are
quite perplexed about why the same company was offering two mobile apps with two
experiences. Customer loyalty declines as customers decide to try out competition C,
which has a much more integrated, seamless mobile app experience.

Siloed decisions made with myopic vision lead to shortsighted
focus on tactics to resolve near-term fires, rather than strategic
investment in the end game. An enterprise perspective allows for
making decisions across silos.

Avoiding Chaos
The second symptom of a weak enterprise architecture practice is chaos. Chaos is a
consequence of lacking a clear set of technology standards, as shown in Figure 1-2.
Chaos in this context means that each software delivery team makes their own
choices, and while there is some benefit in allowing for innovation and competition,
there are often significant issues that occur in such an environment.

Why Enterprise Architecture? | 3

Figure 1-2. The fewer standards there are, the more technology sprawl occurs to increase
complexity

One issue is in impeding the ability to scale talent. You need to hire and train talent
that understands how to use the various technologies that the teams decided to build
with, whether that’s a mainstream industry-leading contender or an esoteric niche
product. It can also be difficult to build fungible skill sets and engage in team mobi‐
lity. This is because teams that use different technology choices cannot easily transfer
their knowledge of one technology to another. It can also make it difficult to attract
new talent, if there isn’t enough new modern technology in use.

Another issue is with sustaining and scaling cybersecurity and governance support
and oversight. For each technology in use, typically there are requirements around
securing it, and that can be technology specific. For example, the ability to scan soft‐
ware for cybersecurity vulnerabilities: for every software language in use, that’s one
more capability needed. There is a cost to maintaining cybersecurity and governance
oversight and assurance for each technology choice.

A third issue is in inhibiting operational gains or reducing an organization’s agility in
terms of adapting and interoperating technology. When standards are introduced
after disparate technology is already in use, organizations often have a tough time
adapting and adhering to those standards, and in many cases have to invest in refac‐
toring and rearchitecting their software applications.

As an example, imagine a company that falls in love with DevOps. Enamored with
the idea of automated continuous integration (CI) and continuous delivery (CD),
each of the company’s 5,000 teams decides to invest in its own DevOps solutions. Six
months later, the company has not one, not two, not even a hundred CI/CD pipelines,
but at least one pipeline per team. Five thousand teams had to design, develop, debug,
troubleshoot, and maintain 5,000 pipelines. Each team had to go through the learning
and change curve to manage its own pipeline, from start to finish. The company ret‐
roactively declares a standard to centralize the pipeline instead. Adding standards
after 5,000 slight deviations had already been made proves to be quite painful.

4 | Chapter 1: Key Enterprise Architecture Concepts

Proactive standards accelerate development efforts. Reactive or no
standards cause chaos.

Avoiding Technical Debt
The third symptom of an ineffective enterprise architecture practice is burgeoning
technical debt that stifles true innovation and inhibits business agility. While, gener‐
ally speaking, architecture decisions require the acceptance of trade-offs and risks,
technical debt refers to the cost to remediate or refactor technical issues in the future
that are caused by shortsighted decisions. Without clear architecture principles and
decisioning practices or criteria, architecture decisions are at risk of being made only
to fulfill an immediate need. Applications are then bogged down with technical debt
that inhibits them from adapting to changing technology and/or evolving business
needs.

A classic example of technical debt is in cloud migrations. Let’s say a company decides
to migrate their applications to the cloud. Their applications were originally designed
for data centers, not for the cloud. As a result, they do not horizontally scale, and they
do not use technology that has parity with managed services in the cloud. They may
even hardcode IP addresses. The company is under a tight timeline, though, so it
decides to lift and shift its applications rather than refactoring or rearchitecting them.
Lift and shift refers to migrating an application as is, without changes. Since the appli‐
cations are not optimized to operate in the cloud, costs increase and they are still
unable to scale to peak demands. The company is surprised when its newly cloud-
hosted applications can’t actually reap the rewards of the cloud.

If you have to live with technical debt, understand the implications
of it. Better yet, don’t introduce technical debt.

Summarizing the Benefits
Just as you wouldn’t build a house without a blueprint, you wouldn’t want to stake
your company’s technology future on whims, without a technology strategy. An effec‐
tive enterprise architecture practice enables the definition of that technology strategy,
at every level of the enterprise organization, to deliver the right, unique solutions. It
creates shared vision across all impacted stakeholders, across business, technology,
product, engineering, cybersecurity, and so on. When everyone has the same objec‐
tive and marches toward that objective together, it becomes easy to reconcile priori‐
ties and deliver effectively. Products are delivered for the common good of the

Why Enterprise Architecture? | 5

company, and here’s the key business benefit: delivery is better, faster, and cheaper
since people are working together in an optimal way.

Effective enterprise architecture defines standards that provide guardrails for safe,
secure, and scalable innovation. When standards are defined proactively, and teams
understand what needs to be true, it becomes easy to deliver against these standards
and enable reuse of common solutions. Instead of solving the same problem many
times over, teams can adhere to standards to accelerate their development. From a
business perspective, this is critical because it enables agility and prevents duplicative
cost.

It results in modern applications that are future-proofed. Technology advances at a
blistering pace, and applications that are constrained with yesterday’s technology can
drag down an organization’s ability to innovate and excel with tomorrow’s technol‐
ogy. This allows for competitive advantage—key to any business.

A Note on “Effective”
You may have noticed that I keep qualifying enterprise architecture with the key word
effective. This is because there are many times when operationalizing enterprise archi‐
tecture in an organization does not deliver the intended business value. Organizations
that try to overcome silos, chaos, and technical debt must be aware of the pitfalls of
failed or ineffective enterprise architecture implementations.

Given that a primary aim of an effective enterprise architecture practice is to avoid
silos, it is both ironic and detrimental when enterprise architecture itself becomes a
siloed operation. This scenario is often referred to as ivory tower architecture, a term
that implies that the enterprise architecture decisions made to establish strategy,
standards, and processes, and to recommend solutions for complex enterprise prob‐
lems, are made without adequate context. They are lofty and abstract, without align‐
ment or a feasible way to achieve the recommended solution, and so separated from
the reality of execution that they end up being ineffective and adding no business
value. You must deliberately ensure that the enterprise architecture practice is groun‐
ded in real technology and business needs and is solving actual business problems.

As discussed, another aim of an effective enterprise architecture practice is to avoid
chaos. The cautionary note here is to also avoid the other extreme—so much stand‐
ardization and prescription that innovation itself is stifled. Hubristic organizations
have so little trust and confidence in their engineering and development talent that
they restrict too many choices, and force all teams, all use cases and solutions, to con‐
form to the standards. Enterprise architecture in this type of organization becomes a
hated foe, a dictator that tells you what to do, that is just asking for talent to rebel
against it. As soon as teams believe that architecture is against them—a bottleneck
instead of an enabler of delivering great solutions—it is time to seek a transformative
change to overcome this perception. Ineffective enterprise architecture strangles

6 | Chapter 1: Key Enterprise Architecture Concepts

teams’ creativity and innovation through heavy-handed standards and the need to ask
for permission for every decision. You must promote enterprise architecture as an
enabler: one that accelerates teams through rightsized standards.

Last but not least, let’s revisit the goal around reducing technical debt. While in an
ideal world, there is no technical debt, in the real world, there is always a trade-off
and a risk-based decision to consider. Ineffective enterprise architecture struggles to
guide risk-based decisions and with the ability to define good enough or imperfect
recommendations in such a way that the implications are clear enough to understand
what risks are being accepted. You must advocate enterprise architecture as a vehicle
to solve complex problems in such a way as to avoid the most impactful rework yet
balance business value with business acceptance of technology risk.

Now that you see why we pursue enterprise architecture, let’s dive into what enter‐
prise architecture means.

What Is the Practice of Enterprise Architecture?
Let’s first differentiate between practice and roles. The practice of enterprise architec‐
ture refers to enabling both the ability to solve complex enterprise-wide problems
and the ability to deliver reusable, cost-effective, secure, scalable software that meets
business needs. The roles are elaborated in a later section and refer to the people who
perform the practice of architecture.

To understand what the practice of enterprise architecture is, or rather, what it should
be, let me take you through its vision and mission.

The Vision
A vision statement typically declares what you want to achieve in the future. To put it
simply, enterprise architecture defines the north star for an organization. The north
star is the strategic direction that guides all technology investment in a way that con‐
nects business to technology. Creating a shared destination state across business,
technology, and architecture for a given set of capabilities and the technology solu‐
tions that provide them consistently is the ultimate goal of enterprise architecture.

Knowing that ultimately we want to define that north star throughout the enterprise
organization, here’s an example vision statement for an effective enterprise architec‐
ture practice:

Define technology strategy that transcends organizational differences to connect dif‐
ferent aims into common business goals.

If a vision is what you want to achieve, then how do you go about achieving it? Enter
the mission statement.

What Is the Practice of Enterprise Architecture? | 7

The Mission
A mission statement typically declares how a vision is to be achieved. To achieve the
vision above, where enterprise architecture as a practice can effectively output a clear
north star that aligns stakeholders across the company, it is necessary to establish a
foundation of trust-based decision making. It is through great architecture decisions
that organizations decide on their business and technology strategy, break through
siloed decision making to find commonalities, and do what is right not for any given
team or organizational unit, but for the company itself.

Here’s an example mission statement for an effective enterprise architecture practice:

Enable great architecture decisions to deliver great solutions as one team.

Word choice in a mission statement matters, and different words may resonate differ‐
ently in your organization. For this example mission statement, I want to emphasize a
few key word choices:

Enable
Provide the ability to make architecture decisions—not actually make all of the
architecture decisions.

Great
Great meaning sustainable, solves the problem, and meets business needs, yet not
necessarily perfect because architecture decisions require identifying, under‐
standing, and accepting trade-offs.

One team
An objective enterprise perspective is unique to enterprise architecture and is
what enables enterprise architecture as a function to bring teams together across
silos to accomplish common aims.

Later chapters do a deep dive on why these things are key. For now, let’s look at the
functions of enterprise architecture.

What Are the Functions of Enterprise Architecture?
To establish the practice of enterprise architecture, it is necessary to have some sort of
an enterprise architecture organization. The exact nature of this organization can
vary company to company but should at minimum include the functions illustrated
in Figure 1-3, as these allow for executing the mission and achieving the vision.

8 | Chapter 1: Key Enterprise Architecture Concepts

Figure 1-3. Enterprise architecture functions

Let’s start by expanding on the enterprise architecture strategy function.

Enterprise Architecture Strategy
Strategy in general refers to planning or directing actions to achieve a major business
goal. Enterprise architecture strategy applies this concept to providing the guidance
and direction necessary to achieve the goals of an effective enterprise architecture
practice. It does so by defining all of the strategies, standards, policies, principles, and
processes necessary to operationalize and perform architecture across the company.

This function requires senior technology leaders who are experts in technology,
deeply understand business needs, and are capable of influencing alignment at senior
levels across the enterprise organization. In short, enterprise architecture strategy
defines what to do for an effective enterprise architecture practice.

Knowing what to do is but the first step. Next, you need to know how to do it! That
brings us to the enterprise architecture enablement function.

Enterprise Architecture Enablement
The standards and processes that are defined by the enterprise architecture strategy
function need to be operationalized for usage by architecture roles (defined in a later
section). To operationalize effectively, an enterprise architecture enablement function
should be established to provide tools and training, independent albeit integrated
with the enterprise’s software delivery tools and training. The reason for independ‐
ence here is because the customers of these tools and training cater to different per‐
sonas (as described in the following roles section) and different needs. The reason for
integration is because there is overlap in how these tools and training are used to

What Is the Practice of Enterprise Architecture? | 9

deliver software. See Chapter 4 about embedded and accessible architecture for elabo‐
ration on this reasoning.

This enterprise architecture enablement function requires product and engineering
talent to deliver tooling, and learning and development talent to deliver training. It
must be both customer and results focused to deliver effective tooling and training.
As sophisticated and successful as enterprise architecture enablement can be to
enable the architecture practice, it’s still necessary to provide assurance and verifica‐
tion that the architecture practice as implemented actually met the requirements and
goals defined by the enterprise architecture strategy function. This assurance and ver‐
ification is the purview of the next function, the enterprise architecture oversight
function.

Enterprise Architecture Oversight
The standards and processes that are defined by the enterprise architecture strategy
function also need to be enforced to ensure that they are adequately followed, and
that opportunities for improvement can be identified and implemented. While the
details of technical enforcement may vary, from a functional perspective, the enter‐
prise architecture oversight function retains accountability for the effectiveness of all
of its standards, policies, procedures, processes, and controls. A control refers to a pro‐
cess or technical policy that provides assurance that a requirement is met in a compli‐
ant manner.

This oversight carries three parts:

Governance
Architecture governance ensures that processes and oversight are in place to
align with architecture standards.

Risk
Architecture risk identifies, mitigates, and manages all risks associated with prac‐
ticing architecture in accordance with the architecture standards.

Compliance
Architecture compliance manages and monitors all activities and controls neces‐
sary to adhere to architecture requirements as defined in architecture standards.

The degree, complexity, and human labor needed to perform oversight depends
greatly on an organization’s maturity and automation levels for defining, implement‐
ing, and monitoring controls. Controls can be centrally executed or federated down
to an organizational unit or even a team. It is up to the enterprise architecture over‐
sight function to work in partnership across the enterprise organization’s risk and
audit functions to ensure a highly performant and efficient suite of effective architec‐
ture controls. It is also necessary for the enterprise architecture oversight function to
work hand in hand with the enterprise architecture enablement function as directed

10 | Chapter 1: Key Enterprise Architecture Concepts

by the enterprise architecture strategy function to rightsize the rigor of the oversight
with the need for engineering teams to deliver software solutions better, faster, and
cheaper.

By now, you may be wondering “What about the enterprise architects themselves?
Aren’t they part of the enterprise architecture organization? And what about design?
You said architecture was about design!” And so it is. The functions of enterprise
architecture enable architecture roles to do what they do best: make good design deci‐
sions that clarify the target state. Enterprise architect is a role, and the placement of
enterprise architects in an organizational structure is a key decision that has to be
made. So, let’s now look into typical architecture roles.

What Are Typical Architecture Roles?
In the IT industry there are a wide variety of architecture roles. In practice, I have
found that the minimum set of roles discussed in the following subsections work well.
The enterprise architecture strategy function should partner with senior leaders to
define and tailor the architecture roles that are needed at an organization.

The first role that I’ll mention is the enterprise architect role.

Enterprise Architect Role
The enterprise architect role is focused on strategic enterprise-impactful decisions
such as technology standards and architecture patterns that are directly tied to busi‐
ness outcomes. This is typically a senior-level person who has strong communication,
influence, and impact skills, and a broad understanding across several areas.

Successful enterprise architects are technology leaders who are also strategic thinkers
who operate at the enterprise level. This combination is hard to find, because you
need both someone who can lead and influence change, where that change can span
across technology, process, and culture, and someone who has the technical expertise
and strategic ability to figure out what the change is supposed to be, when looking at
a strategic time horizon three to five years out. They can define that strategy as well as
the tactics and trade-offs necessary to achieve it, and they can communicate that
vision in simple terms.

Also, successful enterprise architects are able to provide an objective, holistic perspec‐
tive into decision making, such that they deeply understand the needs of the overall
corporation’s business and how technology can be used to satisfy it across the entire
enterprise. They can solve problems that transcend domains or divisions. They can
establish trust based on technical credibility and communication skills, and use that
to influence both business and technology leaders, typically at an executive level, to
align on making a change.

What Are Typical Architecture Roles? | 11

Enterprise architects solve problems such as:

• How do we converge identity solutions across the enterprise?
• What should our modernization strategy be?
• What should our approved software languages technology standard be?

Next, let’s look at the solution architect role.

Solution Architect Role
The solution architect role brings both a business and technology focus, in that they
marry capabilities to technology solutions while evolving both toward business out‐
comes. This is typically a senior-level person with strong communication, influence,
and impact skills and a deep understanding in a particular subject. Often, subjects are
represented as architectural domains, which are groups of capabilities that are pro‐
vided by solutions in support of business processes. Check out Chapter 8 for more
elaboration on domains.

Successful solution architects straddle both business and technology. They under‐
stand business objectives and business needs, and moreover what business capabili‐
ties are necessary to fulfill those needs. They may be adept in domain-driven design
(DDD) to define logical boundaries and contexts to bring clarity and understanding
to those capabilities. They also understand technology, and they know how to think
through trade-offs and perform analysis of alternatives to recommend technology
usage to provide a given capability. They are well versed with architecture principles
and standards to inform architecture decisions. They collaborate well with others,
both business and technology leaders. They can mine solutions to identify new pat‐
terns. They become experts for a given domain, knowing both the business and tech‐
nology of that domain inside out.

Solution architects solve problems such as:

• Would this capability be better serviced by a product, a platform, or a service?
• Where do we need to invest in new capabilities or deprecate existing capabilities?
• How should solutions integrate to support a new business use case?

Now, let’s look at the application architect role.

Application Architect Role
The application architect role is focused on technology with an understanding of
business. Application architects provide technical expertise to design systems, appli‐
cations, and platforms. The level of this person ranges depending on the complexity
and criticality of the application or system that they are supporting. A mission-critical

12 | Chapter 1: Key Enterprise Architecture Concepts

system should have a more senior-level application architect, whereas a noncritical
system can have a more junior-level application architect. These architects typically
have strong problem-solving and technical backgrounds, with a deep understanding
of patterns and analysis.

It is worth noting that there is currently an industry trend to merge this role with that
of a tech lead or senior engineer on an engineering team. This tech lead or senior
engineer essentially expands responsibilities to cover application architecture scope
in addition to their responsibilities around executing the engineering delivery for
their software product.

A successful application architect is an expert with the technologies used by the engi‐
neering delivery team. They are also able to understand architecture standards and
patterns and how to apply them or adapt them to a particular application. They view
themselves as part of the engineering team, and work with them throughout the
design and delivery process, rather than being a hands-off consultant.

Application architects solve problems such as:

• How can this application be highly available to provide four nines (99.99%)?
• Should this application use a microservices architecture or not?
• What is the best method of integration between this application and another?
• Where does this application have a critical dependency on another, and how can

that dependency be mitigated?

Now that you’ve learned about the three typical roles, let’s look at how they compare
and contrast.

Comparing Typical Architect Roles
To better understand how these roles are differentiated and where they overlap, let’s
take a look at a few key characteristics and how they compare. The first characteristic
is described in Figure 1-4 to show the type of architecture that the architect role con‐
centrates on delivering. Conceptual architecture refers to the most abstract level of
architecture, where concepts and business capabilities are used to describe an archi‐
tecture solution. Logical architecture is primarily concerned with the functional units
and boundaries of solutions. Physical architecture focuses on the technical implemen‐
tation details of an architecture solution.

What Are Typical Architecture Roles? | 13

Figure 1-4. Typical architecture roles spanning types of architecture

The next characteristics are described in Figure 1-5 to illustrate the scope and volume
of architecture decisions that these roles make. Scope means both the breadth of con‐
text that must be considered in making the decision as well as the impact of the
changes caused by the decision. Volume refers to the amount and frequency of deci‐
sion making. As shown in Figure 1-5, the enterprise architect role operates at the
enterprise level to influence enterprise-impactful changes; these are infrequent in
number compared with other types of architecture decisions. The solution architect
role operates at a domain level; while some domains are themselves enterprise
impactful, others are not. The application architect role operates at the most granular
level of a given application or solution; some solutions are themselves enterprise
impactful, others are not.

Figure 1-5. Typical architecture roles in terms of scope and volume of decision making

14 | Chapter 1: Key Enterprise Architecture Concepts

Thus, given the level of seniority and breadth needed for an enterprise architect, they
tend to be the fewest in number in any given organization. Next in terms of numbers
are solution architects, and then the greatest number is application architects. The
exact number of each depends on an organization’s needs.

All of these architect roles have common traits, as follows:

Trust
The ability of an architect to establish trust with business and technology leader
counterparts is paramount to their success in being able to influence decisions
from inception through execution to realize tangible business outcomes.

Expertise
The technical acumen of the architect is unquestionable. What is truly unique,
though, is the ability to understand business needs and know how technology
can be used in service of those.

Problem-solving
As mentioned in the beginning, effective enterprise architecture solves complex
problems. The architect roles are the performers of the functions of architecture
to solve problems in objective, meaningful, lasting, and substantive ways.

Leaders
Architects have to be able to influence outcomes, more so than with positional
authority. As a result, they must be perceived as technology leaders and inspire
others to drive an agenda of changes.

So far, I’ve discussed these roles generically. Next, let’s look at how to apply them in a
specific context.

Specialized Functions
Enterprise architects, solution architects, and application architects may be required
in a particular subject matter area to fulfill business needs. There are several special‐
ized functions that can be coupled with each of these roles, and following is a nonex‐
haustive list:

Security
Brings a deep understanding of cybersecurity and threat analysis to problem-
solving. A security-focused enterprise architect may lead a data protection strat‐
egy. A security-focused solution architect may solve a domain-specific problem,
such as endpoint protection. A security-focused application architect may use
threat modeling techniques to define the security architecture of an application.

What Are Typical Architecture Roles? | 15

Network
Brings a deep understanding of network design and constraints to problem-
solving. A network-focused enterprise architect may define a zero trust strategy.
A network-focused solution architect may solve a domain-specific problem, such
as establishing routing patterns. A network-focused application architect may
solve specific network problems, such as fixing virtual private networks.

Cloud
Brings a deep understanding of cloud architecture and patterns to their problem-
solving. A cloud-focused enterprise architect may define a multicloud strategy. A
cloud-focused solution architect may solve a domain-specific problem, such as
defining the cloud execution environment for all applications. A cloud-focused
application architect may use cloud architecture frameworks to design a highly
available cloud native application.

Site reliability
Brings a deep understanding of operational automation to enable teams to swiftly
recover from incidents. A site reliability–focused enterprise architect may define
an observability strategy. A site reliability–focused solution architect may define
standard tooling to use for monitoring, alerting, and logging. A site reliability–
focused application architect may understand business needs to define service-
level objectives (SLOs) and service-level indicators (SLIs) for a specific
application.

Data
Brings a deep understanding of data structures, data modeling, and data manage‐
ment, as well as knowledge of different types of databases to their problem-
solving. A data-focused enterprise architect may define data management
standards. A data-focused solution architect may define a domain-specific prob‐
lem, such as establishing a data lake or lakehouse. A data-focused application
architect may define the right data stores and data replication strategy to meet
the business needs of eventual consistency for a specific application.

Additionally, there are specific instantiations of the enterprise architect roles:

Enterprise chief architect (ECA)
This is the head of enterprise architecture, with approval authority to make
enterprise architecture decisions. This is usually a senior-level executive who
reports to the CIO or CTO.

Divisional chief architect (DCA)
This is the head of an organizational unit’s architecture team. They are accounta‐
ble for all the architects consistently delivering high-quality architecture deci‐
sions in their organizational unit. They are also responsible for approving
divisional decisions, escalating enterprise-impactful divisional decisions for

16 | Chapter 1: Key Enterprise Architecture Concepts

enterprise review, and providing input into enterprise architecture decisions
from a divisional impact, feasibility, and adoption perspective.

Now that we’ve reviewed what the typical architect roles are, let’s take a look at how
they can be operationalized in your organization.

Organizational Model
Organizational design needs to be carefully considered to meet the needs and abide
by the culture, engagement model, size, and complexity of an organization. Let’s look
at the most common models that are implemented for architecture organizations,
starting with centralized.

Centralized Architecture
Centralized architecture refers to an organizational design in which there is a team of
architects, typically fully dedicated in their role, that is consolidated or central to the
organization, and/or to an organization unit. This consolidated team concentrates
decision-making powers. Figure 1-6 illustrates this concept further to show architec‐
ture teams centralized at the enterprise level, and at the divisional or organizational
unit levels. These central teams support their particular layer; meaning the enterprise
architecture team supports the enterprise, and the organizational unit’s architecture
team supports that organizational unit.

Figure 1-6. Centralized architecture organization

As with any architecture decision, there are trade-offs to consider. Pros of a central‐
ized architecture organizational design include the following:

• Preserves objective viewpoints necessary to advise decisions that weigh the com‐
mon good more highly than individual benefit. This objectivity is retained
because the centralized architect is independent and therefore neutral from the
chain of command of the delivery team.

Organizational Model | 17

• Facilitates efficient, consistent decision making against a clear vision, because the
centralized team shares the same vision and can easily collaborate with one
another to ensure consistency.

• Fosters more efficient collaboration across business units and stakeholder groups
and overcomes siloed decision making by design. A centralized team is in an
optimized position to collaborate with other centralized teams.

On the other hand, here are some cons of a centralized architecture organizational
design:

• Further from the customer/business, therefore architects need extra effort to be
perceived as valued partners of the engineering teams that they are guiding
rather than bottlenecks that cause delays in delivering work.

• Not as scalable in terms of number of people since typically the centralized team
follows a matrixed support model.

The opposite of centralized architecture is federated or decentralized architecture.

Federated Architecture
Federated architecture refers to an organizational design in which the architect role is
completely decentralized and embedded into the delivery teams, typically as part-
time in their role. The teams themselves are empowered to make the architecture
decisions. Figure 1-7 illustrates this concept further, where the architect roles are
embedded into the teams themselves and there is no central architecture team at
either the organizational unit or enterprise level.

Figure 1-7. Federated architecture organization

18 | Chapter 1: Key Enterprise Architecture Concepts

The following are pros of the federated architecture organization design:

• Able to scale in terms of decision making since there are more teams with more
people to scale with.

• Ability to upskill teams to empower them to make decisions since the decision-
making power rests with the team themselves.

Whereas the cons of the federated architecture organization design include the
following:

• Can lose objectivity due to being motivated to decide in the team’s favor based on
incentivization structure, rather than the greater good.

• Can be detrimental for performance management unless architecture outcomes
are well understood to be adding tangible business value, since the architect’s
deliverables are different and not as easily measurable as the engineer’s.

• Can duplicate efforts and be more prone to siloed decision making, since each
team is deciding independently of one another.

In practice, though, neither centralized nor federated organizational designs are the
full answer when it comes to the question of what works best for an effective enter‐
prise architecture practice. Usually, what works best is the combination of both—
hybrid architecture.

Hybrid Architecture
Hybrid architecture refers to an organizational design where some architect roles are
centralized, and some architect roles are federated. Figure 1-8 illustrates this concept.

Hybrid is usually the model that works the best in a given organization, though again,
the organization’s size and scale, specific business needs and strategy, and company
culture need to be weighed in the decision of organizational design. The enterprise
architecture organization that provides the functions of enterprise architecture strat‐
egy, enablement, and oversight is typically centralized. The solution architecture
organization may be centralized, federated, or both depending on the company. For
example, one implementation could be to centralize the enterprise solution architects
and federate the domain or divisional-specific solution architects. Another could be
to federate all of the solution architects but centralize at the divisional level. The
application architect is the most decentralized, usually being federated into the deliv‐
ery teams. The risk of siloed decision making at the application architect level is miti‐
gated by the presence of strong standards and processes defined by the centralized
enterprise architecture organization to yield consistent quality of decisions.

Organizational Model | 19

Figure 1-8. Hybrid organization, a mixture of centralized and federated

For an architect to be successful in any organizational model, they require a strong
partnership with the following roles:

Technology lead
At senior levels, this would be an accountable executive. This is the role that has
approval authority to align technology development with architecture decisions.

Business lead
At senior levels, this would be an accountable executive. This is the role that has
approval authority to align business goals with architecture decisions.

Product lead
At senior levels, this would be an accountable executive. This is the role that has
approval authority to align product priority and roadmaps with architecture
decisions.

It is essential that these three roles agree that they, too, are part of the architecture
process and work hand in hand with their counterpart architecture role to define and
deliver the shared destination state. Without this partnership, an architecture deliver‐
able is nothing more than a piece of paper. It is this partnership among business,
technology, product, and architecture that takes the ideas and decisions documented
on that piece of paper into reality.

Speaking of deliverables, let’s now take a look at a few essential ones.

20 | Chapter 1: Key Enterprise Architecture Concepts

What Are Typical Architecture Deliverables?
While there is a wide variety of standard architecture deliverables, and a number of
different standards that can guide their creation, this section outlines what I’ve found
to work well in practice. The enterprise architecture strategy function is accountable
to create the templates, principles, and standards that guide the formation of these
deliverables. I recommend taking a look at industry frameworks like The Open
Group Architecture Framework (TOGAF) and the C4 (Context, Containers, Compo‐
nents, and Code) model to reuse industry best practices.

Let’s start with the architecture decision deliverable.

Architecture Decision Deliverable
Architecture decisions document a recommendation; the context, goals, and con‐
straints to inform that recommendation; the analysis of alternatives conducted to
make the decision; and who made the decision and when.

This deliverable provides a documented rationale for why a decision was made that
can be reviewed for posterity and inform future decisions to avoid rework. It serves as
a mechanism for collaboration among all stakeholders that are impacted by a deci‐
sion to help create alignment on that decision. This deliverable supports governance
processes where decisions must be documented to record the rationale for deviation
from a standard.

Architecture decisions are so essential to every architecture role that we’ll deep dive
on them in just a little while. But first, let’s turn our attention to another common
deliverable, the architecture pattern.

Architecture Pattern Deliverable
Architecture patterns document a solution to a problem and typically come in two
forms: design, which is technology agnostic, and implementation recommendation,
which is technology specific. They include documentation of issues and considera‐
tions for using the pattern.

This deliverable provides a reusable blueprint to follow to implement a solution. It
defines best practices that provide a standard way to do something. To define best
practices, it must be proven through implementation and not just theoretical.

Ideally, an architecture pattern can be codified in a form that makes it reusable. For
instance, a reference architecture may be created as a documented blueprint to provide
an example of how several patterns can be used together to design a particular type of
application solution. This reference architecture can then be codified as a reference
implementation that is running software that implements the reference architecture.

What Are Typical Architecture Deliverables? | 21

https://oreil.ly/8lsJb
https://oreil.ly/8lsJb
https://c4model.com
https://c4model.com

Another example is patterns as code, where software templates, snippets, modules,
and/or libraries are used to codify the pattern.

Architecture patterns are typically output by an enterprise architect role. Next, let’s
look at a common deliverable for the solution architect role: the capability target
architecture.

Capability Target Architecture Deliverable
Capability target architectures document a shared destination state for a group of
capabilities and the solutions that provide them. This group is often called an archi‐
tecture domain, as elaborated in Chapter 8.

This deliverable includes analysis and documentation of solution architecture deci‐
sions at this domain level, such as what to invest in versus what to deprecate, where
emerging technologies are needed, and where there is opportunity for convergence
and consolidation. It is a strategic document that provides a documented target state
for how domains will evolve over time. It can include one or more views that illus‐
trate the capability target, such as the following:

Conceptual architecture
Domain broken down into conceptual business capabilities.

Logical architecture
Domain broken down into logical units, mapped to the conceptual architecture.

Physical architecture
Logical architecture mapped to the physical architecture of the solutions that
provide the logical functions.

Sequence diagrams
Views written in industry standards such as PlantUML to describe how logical or
physical units interact with one another in a specific workflow.

Architecture decisions
Yes, this is the same deliverable mentioned above, but in this context, it refers to
decisions made at the domain level.

Next, let’s look at a common deliverable for the application architect role: the applica‐
tion target architecture.

Application Target Architecture Deliverable
The application target architecture documents the description and various diagrams
of an application, that at minimum includes the following:

22 | Chapter 1: Key Enterprise Architecture Concepts

Context view
This describes how the application interacts with others.

Component view
This describes the logical breakdown of the application into functions and how
they interact with one another.

Deployment view
This describes how the application will be deployed and the resilience and secu‐
rity characteristics therein.

The application target architecture includes analysis and documentation of architec‐
ture decisions at the application level. It provides documented design for the applica‐
tion’s target state, enabling decisions around changes from current to future state. It
also provides visuals that are easy to understand to review the application’s architec‐
ture and determine any risks.

You may have noticed that architecture decisions were mentioned both as an output
of the mission of enterprise architecture, and as a deliverable. As promised, let’s deep
dive on them a bit.

What Is an Architecture Decision?
An architecture decision is simply a decision that is created as a result of an architec‐
ture process. These decisions are made by an architecture role in partnership with
technology, business, and product counterparts.

Overview
Although formats vary, through experience I have learned that the anatomy of an
architecture decision record should include the following elements:

Identifier
A unique naming convention is necessary to distinguish decisions.

Description
A human-readable description of what problem the decision is solving is helpful
to search for relevant decisions.

Metadata
The taxonomy of metadata tags or labels can vary from organization to organiza‐
tion, but it is helpful to establish a consistent one up front to enable transparency,
visibility, and searchability across an organization, both top to bottom and
across.

What Is an Architecture Decision? | 23

Stakeholders
Explicitly stating who is accountable, responsible, consulted, or informed by the
decision is helpful to ensure that all relevant stakeholders were included in the
decision making.

Status
Knowing the status of the decision makes it clear whether it is in effect or not.

Date
Knowing the date of the decision allows for refresh.

Problem statement
Explicitly documenting the problem that this decision solves avoids ambiguity.

Alternatives
This shows what options were considered for the decision, and the pros and
cons, or trade-offs, of those options.

Rationale
This describes why a certain option was selected. And if the decision changes
over time, this provides the reasoning for that, too.

Implications
This describes the results of implementing the decision, and it should also high‐
light any technical debt and risk that is accrued.

Sample Template
Templates can differ depending on your desired format. Here is a simple format that
I’ve found to work well:

Decision ID: Unique identifier for the decision record
Title: Brief title, used for search and filtering
Status: Status of decision record, such as draft, in progress, approved
Approval date: Date decision was approved
Approver: Role and name of accountable approver
Contributors: Roles and names of consulted stakeholders
Informed: Roles and names of informed stakeholders
Problem statement: Describe the problem that this decision addresses
Context: Provide background information, define assumptions and constraints,
and identify factors considered in options analysis
For each factor considered in the option analysis, add a row to define associated
pros and cons. For each solution option, add a column. You can also switch the

24 | Chapter 1: Key Enterprise Architecture Concepts

table to have options listed horizontally and factors listed vertically, depending
on your view preference.

Factor Option 1
(describe option 1)

Option 2
(describe option 2)

Factor 1 + Pro

– Con

+ Pro

– Con

Factor N + Pro

– Con

+ Pro

– Con

Recommendation: Describe the option chosen and the rationale for choosing it
Implications: Describe implications of the decision, including technical debt,
trade-offs, and impacts

Example Architecture Decision
Decision ID: 001

Title: My Application’s Compute

Status: Approved

Approval date: 06/10/24

Approver: Public Cloud Enterprise Architect—Tanusree McCabe

Contributors:

• Security—Betty McCormick
• Engineering Lead—Linda Patterson
• Product Manager—Sanjay Gupta

Informed: Finance—Watson Lamb

Problem statement: What compute choice works best for my application?

Context: My application is migrating to the public cloud and needs to modernize to
optimize its cloud usage. Approved compute choices include:

• Virtual machines (VMs)
• Containers

Note: functions are not an approved service at this time.

My application uses a microservices architecture that can scale horizontally.

What Is an Architecture Decision? | 25

Factors considered in the options analysis include:

Cost
The total cost of ownership, inclusive of labor and resources, implied by the
option

Scalability
The ability of the option to scale up or down in response to changing demands

Sustainability
The ability of the option to be maintained

Factor Option 1
VMs

Option 2
Containers

Cost – Rightsizing VMs can be difficult. VMs generally
cost more than containers.

+ Only pay as you go for cost of container task if
using a container management service.

Scalability + Can automatically scale with cloud native
configurations.

– Limited by IP (Internet Protocol) space
available in subnet.

+ Can automatically scale based on cluster
manager.

+ Less risk of IP space constraints.

Sustainability + Team skilled in support and can patch.
+ DevOps toolchain supports
– VM is less portable to other clouds.

+ Team skilled in support and can patch.
+ DevOps toolchain supports.
+ Container artifact is portable (note: cloud native

integrations are not).

Recommendation: Option 2, containers, is recommended due to its ability to scale
better and be cloud agnostic.

Implications: My application’s support team will need to be upskilled in monitoring
and maintaining container-based applications.

Summary
When you build a house, you expect it to be built upon a high-quality architecture
that meets both regulations and your needs. Similarly, when you deliver technology,
you need an effective enterprise architecture practice to lead the way and define the
north star. This north star manifests as a cogent technology strategy that permeates
every level of your organization. This north star is created by a series of shared,
aligned, high-quality architecture decisions that lay the groundwork for the sustaina‐
ble design and implementation of technology to meet business aims.

To yield optimized results, whether it be for an enterprise technology strategy, a par‐
ticular set of capabilities, or a specific solution or application, having the right archi‐
tecture standards, practices, and disciplines in place, along with the right talent in the
right roles, is necessary. An effective enterprise architecture is what defines and

26 | Chapter 1: Key Enterprise Architecture Concepts

manages those architecture practices in such a way as to overcome siloed decision
making, chaos from technology sprawl, and technical debt from shortsighted
decisions:

• Effective enterprise architecture provides a clear vision for an organization to
create and clarify a shared destination state, a clear mission to enable great archi‐
tecture decisions, and powers the productivity of all architecture functions and
roles.

• Enterprise architecture functions span strategy, governance, risk, compliance,
tooling, and training.

• Enterprise architecture is what defines all the standards, processes, and tools nec‐
essary to perform architecture across an organization.

• Architecture roles perform the practices of architecture, which include business-
minded roles that make decisions across the enterprise (enterprise architect), an
architectural domain (solution architect), or a particular solution (application
architect).

• A key decision for any organization is whether to centralize, federate, or do some
combination thereof for architecture roles.

• For architecture roles to be successful, it is essential to engage and partner with
roles across technology, business, and product.

• Architecture decisions and solutions are the key byproducts of an effective enter‐
prise architecture practice.

Now that you’ve seen why enterprise architecture is necessary, what it is, and what it
drives, in the next chapter we’ll turn our attention to how you can establish a strategy
to actually implement a strong, effective enterprise architecture practice in your
organization.

Summary | 27

CHAPTER 2

Key Strategy Objectives

So far, you’ve read that a strong, effective enterprise architecture practice provides the
north star, or strategic direction, to define an organization’s technology roadmap
through a series of architecture decisions. It may not come as a surprise, then, that a
strategy is also needed to guide and establish an effective enterprise architecture prac‐
tice itself.

If you’re asking, “How do I get started?” you’re in luck, because that’s precisely the
question this chapter answers. All strategies start by defining their objectives, so this
chapter discusses the objectives of an effective enterprise architecture strategy.
Although details of implementation may vary and will be tailored based on unique
characteristics of your organization, the objectives will, I hope, resonate with you.

Overview
To share the key objectives of an effective enterprise architecture strategy, I have
found that the objectives and key results (OKR) framework—which was defined in the
1970s and popularized by Google—is very helpful. What I find special about the OKR
framework is that rather than just defining transparent and aspirational goals, the
OKR framework includes measurement as a key characteristic.

It is measurement that is novel to architecture. Traditionally, architectural outcomes
are perceived in terms of artifacts or deliverables, such as those described in Chap‐
ter 1. As a result, it is difficult to qualitatively (let alone quantitatively) tie architecture
work to business value. This, in my opinion, is the number one reason it can be so
hard to answer the question of what is the value of architecture. And this is why it can
be so difficult for architects to be valued by an organization. When all you see is a
deliverable, likely to be in document form, but not the business results that the

29

deliverable is driving, then it is very easy to dismiss that deliverable’s value and all the
work that it took to create that deliverable.

For example, let’s say a software engineering team was able to significantly reduce
cloud storage costs by implementing an architecture pattern. By following this pat‐
tern, the team changed the storage class of less frequently accessed objects and imple‐
mented a hygiene policy that deleted unused data after a period of time. Who gets
credit for the cost savings result? The software engineering team? The architect who
contributed the pattern? Ideally, it would be both: the team for making the engineer‐
ing choice and the architect for providing a reusable solution that benefited the busi‐
ness with cost reductions. Thus, it is necessary to place a business value on the
architecture pattern itself—both for what it could save and for what it does save. To
measure what it does save requires having a mechanism to track pattern adoption.

Here’s another example. Let’s say it took a solution architect six months to get all rele‐
vant stakeholders to agree on a strategy that combines their efforts to build a com‐
mon platform to provide an enterprise-level service. Now, let’s say it takes a couple of
years to build this common platform. What happens? Does the architect get rewarded
for delivering the strategy before the platform is built, because it was their leadership
that allowed for an agreed-upon impactful outcome? Does the architect get no credit
at all, or have to wait to get recognized, because strategy isn’t as tangible a deliverable
as the platform itself? Ideally, the strategy is recognized as a key technical deliverable,
and furthermore, all stakeholders adhere to the strategic decisions to implement the
solution to realize the projected business outcomes. Thus, it is necessary to quantify
the benefits and impacts of the strategy itself. What were the benefits of converging
on a platform solution, and what were the milestones that demonstrate incremental
progress, and therefore incremental business value, for getting to that final destina‐
tion? These need to be defined as part of the strategy.

So, starting with the effective enterprise architecture strategy itself, bringing in meas‐
urability from the onset is key to success. Understanding that the value of architec‐
ture is the business outcomes that the architecture drives, and articulating that in a
measurable way, are the first key steps to establishing an effective enterprise architec‐
ture strategy.

Measurements are intrinsic to OKRs, since they include two types of key results
(KRs):

Outcome-based
Measures quantifiable outcomes of a process, task, or activity

Effort-based
Measures the success of a particular initiative or effort

Outcome-based KRs also tend to be key performance indicators (KPIs). KPIs are met‐
rics that a company can use to measure the success of its objectives. Moreover, KPIs

30 | Chapter 2: Key Strategy Objectives

drive behaviors, so they must be carefully thought through to incentivize the right
behaviors. Leading indicator KPIs are metrics that indicate future behavior or impact.
Lagging indicator KPIs are metrics based on events that have occurred in the past.

To complete the definition of a KPI and measure KRs, you must also establish the
following:

Clear data sources
Explicitly stating the measurement’s data source(s) and transformation logic
ensures that there is no ambiguity on the logic used to measure. This exercise
may also identify opportunities to create the data source or extract from an exist‐
ing source.

Clear ownership
Explicitly stating the owner of the measurement clarifies who is accountable and
responsible within your organization to ensure that the KPI is delivered.

Frequency
Establishing the frequency of the measurement allows an organization to also
react to the KPI results on a periodic basis. While many operational KPIs use
monthly as a best practice, given that architecture is a more elongated activity,
quarterly tends to be sufficient.

Metrics drive behavior. So don’t measure things like this:

Number of architecture standards
If you measure this, the behavior that is incentivized is the number of standards
that exist, not the quality or efficacy of those standards. So you may very well see
an increase in the number of standards, but they may not add true business
value.

Number of architecture artifacts
If you measure this, you may increase coverage and get more artifacts. However,
this doesn’t cover the true objective of why there was effort put into those
artifacts.

Number of compliant applications
If you only measure this, you may increase the amount of applications that are
compliant, which is good, but not good enough, because you don’t see the busi‐
ness benefit of that compliance. You will get compliance for compliance’s sake,
rather than the true goal, which is likely around risk mitigation.

Instead, measure outcome-based indicators to incentivize the behaviors that will
drive your organization to the business outcomes achieved with an effective enter‐
prise architecture strategy. The following sections provide examples of such indica‐
tors while elaborating on each objective recommended for an effective enterprise
architecture strategy.

Overview | 31

The first objective focuses on the keyword shared.

The Shared Alignment OKR
The first objective of an effective enterprise architecture strategy is to create shared
alignment, where all relevant stakeholders not only agree with the architecture deci‐
sions, but also really believe in adhering to them. Regardless of corporate culture, it is
human nature that if a human has buy-in to a decision, they will be more motivated
to willingly adhere to it. Without buy-in, a human with less authority can still abide
by the decision but may not do so with as much aplomb or diligence.

Here’s a real-life example. If I make a decision that it’s time for homework, my kids, if
in the middle of an exciting game, will pause the game and do their homework. How‐
ever, they may do it grudgingly, and rush things, and not really get any joy out of the
learning that occurs. Homework will get completed, but not with high quality. On the
other hand, if I make learning fun and allow my kids some input on exactly when the
homework gets completed, then they have more buy-in to do it. They will more likely
complete it calmly and with focus, and the outcome will likely be better than just hav‐
ing the homework done. You see, the true objective wasn’t actually to complete the
homework. It was to ensure that learning occurred.

I have seen this behavior a thousand times over in my career, if not more. When deci‐
sions are made, and mandates are handed down, professionals will abide by them,
especially if there are also mechanisms to enforce the mandates. But the true quality
of the outcome depends on how much buy-in they have. Hence, the more shared the
decision is, the better.

With that in mind, it is critical that the first objective of an effective enterprise archi‐
tecture strategy is creating shared alignment across all major stakeholders, inclusive
of business and technology leaders. Shared alignment means that all of these major
stakeholders are aligned to adhere to the decision, even if they did not fully agree
with it. The scope and degree of shared alignment depends on the impact of the deci‐
sion. An enterprise-impactful decision ideally has shared alignment across the leader‐
ship team and throughout the organization. An application-specific decision, on the
other hand, only needs local alignment for the affected application team. The specific
details of which stakeholders are necessary to include in decision making are elabora‐
ted upon in Chapter 3.

A culture of trust accelerates shared alignment. Transparency and
clear engagement in the architecture decisioning process are key to
establishing such a culture.

32 | Chapter 2: Key Strategy Objectives

To scale shared decision making across an entire organization, it is necessary to have
a very transparent decision-making process. That way, individuals who are impacted
by the decision but were not a part of the initial decision-making process can review
how the decision was made and feel comfortable with that decision. The level of com‐
fort is dependent on the level of trust embedded into an organization’s culture. If
there is high trust in decision makers, then organizations generally find it easier to
socialize and adhere to those decisions.

A Culture of Trust
Company culture is a powerful aid or detractor to the success of an effective enter‐
prise architecture strategy. For enterprise architecture to thrive, there must be a foun‐
dational culture of trust to build upon. What does a culture of trust look like?

Trust is a loaded term. You may be thinking about relationships in your life when you
read the word trust. In relationships where there is a high degree of trust, you have
probably found smooth sailing, where it is easy to have conversations, even difficult
ones. You can take comfort in being able to rely on a trusted relationship to come
through for you. As you think about trust in your personal life, you can see how
much trust can impact your professional life, at both the micro team level and the
macro enterprise organization level. High-performing teams typically have a high
degree of trust in one another. In a professional capacity, you may already have come
across various trust models.

A culture of trust can be summarized into three key questions:

• Can you do it?
• Do you do it?
• Do you care about me?

The first question, can you do it, speaks to competency. Competency in this context
means people are able to do the things that are expected of them—they have the skill
set, the time, the ability, and the means to achieve the results. They have demon‐
strated behaviors in the past that allow for trusting that they can deliver in future.
They set expectations and meet them.

The second question, do you do it, speaks to credibility. Credibility means believable,
and this trait goes both ways, where employees see their leaders as credible decision
makers and vice versa. Credibility means that people can be relied upon to achieve
results consistently. Consistently is also key; it takes time to build trust through con‐
sistent successful results. Note, trust can be easily lost with one misstep. Credibility
usually goes hand in hand with some degree of autonomy and empowerment, where
employees have some degree of freedom to provide input into decisions and can
make their own decisions.

The Shared Alignment OKR | 33

The third question, do you care about me, speaks to cooperative collaboration.
Employees feel respected by peers and management and therefore feel valued as indi‐
viduals and as teams. There’s no gossip, no underlying tensions or undermining
actions. People are honest and both speak and act with integrity. They say what they
do, and do as they say. Employees are incentivized to work together because they trust
in collaboration and in teamwork. People willingly share knowledge and skills with
others.

How does this apply to architecture? Here’s an example. Imagine a scenario where a
solution architect is tasked to deliver a capability target architecture. Without trust,
many things can go wrong. If the solution architect is not trusted as competent and
adding value in their subject matter area, the business and technology partners are
not likely to engage and use the capability target architecture. If the organization does
not view architecture as a value-added credible practice, again, it is difficult for the
solution architect’s recommendations to be taken seriously and make an impact. If the
business or technology partner does not care about or value the architect’s role and
their contribution, it is nearly impossible for an individual architect to overcome this
challenge to successfully deliver a capability target architecture in partnership with
them.

There are some trust-inducing behaviors that a solution architect can exhibit regard‐
less of company culture, such as active listening and keeping their word. Active listen‐
ing allows the solution architect to understand the business and technology partners’
needs, and build trust by providing solutions that meet those needs. Keeping their
word around setting delivery expectations and doing as they say not only builds a
personal brand around integrity but also builds trust through a consistent track
record of results. While these behaviors are in an individual’s control, ultimately the
corporate culture is what dictates the value of and trust in the architect’s role.

An effective enterprise architecture strategy must emphasize a culture of trust. It can
instill mechanisms such as clarifying architecture roles and establishing standard
architecture processes and engagement models that foster cooperation. Ultimately, it
is the culture that will make or break an effective enterprise architecture practice.

KRs need to be measurable and should focus on the outcomes more so than defining
a tactical to-do list. Hence, the specific set of KRs will vary by company. Here are
some sample KRs for this first objective; see Chapter 3 for a framework to help you
come up with your own:

• Increase culture of trust as measured by satisfaction surveys by 20%.
• Improve communication skills of architecture talent by 20%.
• Enable transparency of 100% of enterprise-impactful decisions.
• Decrease the number of decisions that are relitigated by 50%.

34 | Chapter 2: Key Strategy Objectives

The outcome of the “create shared alignment” objective is that key stakeholders agree
on an architecture decision. So what? What’s the business benefit of this agreement?

The business benefits are that this preexisting agreement causes acceleration in deliv‐
ery processes by precluding churn and also reduces duplication among the solutions
being delivered.

With this in mind, here are some examples of leading KPIs focusing on the business
benefits:

Duration of delivery process
If this plateaus or seems high due to churn, that’s an indication that there isn’t
enough shared alignment. Ideally, your trend line goes down over time, as illus‐
trated in Figure 2-1.

Figure 2-1. Example of a duration of delivery process KPI

Uniqueness
Compares the number of unique solutions to duplicate solutions. If this decrea‐
ses or plateaus, that’s an indication that there isn’t enough shared alignment to
converge and deprecate. Ideally, your trend line shows an increase in unique sol‐
utions over time, as illustrated in Figure 2-2.

The Shared Alignment OKR | 35

Figure 2-2. Example of a uniqueness KPI

Employee satisfaction
Tailored toward architecture practitioners and their partners, this can indicate a
healthy culture or signs of an unhealthy one that impact the ability to make,
align, and adhere with architecture decisions. Ideally, your satisfaction scores pla‐
teau at an acceptable threshold or trend upward, as shown in Figure 2-3.

Figure 2-3. Example of an employee satisfaction KPI

36 | Chapter 2: Key Strategy Objectives

Here’s an example of a lagging KPI:

Number of decisions made that were revisited in a six-month span
If this seems high, it indicates that too many decisions are being litigated too
often, which could mean that the right stakeholders aren’t involved and/or there
is a lack of cultural trust.

To achieve the objective of creating shared alignment, let’s turn our attention to prin‐
ciples that you can introduce or amplify in your company culture.

Principles to Create Shared Alignment
The degree of shared in shared alignment that is necessary for a given architecture
decision depends in part on your organizational culture. Organizations that have a
well-ingrained ability to disagree and commit and command and control may need less
consensus than those that are focused on achieving consensus.

Disagree and Commit
Disagree and commit refers to the management principle that you can disagree with a
decision yet stay committed to adhering to that decision. Diversity of thought is usu‐
ally encouraged such that anyone can disagree with a proposal prior to that proposal
being approved as a decision. Once approved as a decision, though, anyone who still
disagrees with it needs to commit to following through with the decision. This pro‐
cess is illustrated in Figure 2-4.

Figure 2-4. Disagree-and-commit management principle illustrated in making a decision

The advantage of the disagree-and-commit principle is that decisions can occur even
with gridlock. The cycle time for decision making is sped up, because there is a clear
decision maker that is empowered to make the decision without needing full consen‐
sus. Moreover, decisions are not revisited with endless churn, and therefore they are
upheld efficiently. The disadvantage of this principle is that it is quite difficult in prac‐
tice to execute correctly; it’s really hard for people to support a decision enthusiasti‐
cally that they may fundamentally disagree with.

Principles to Create Shared Alignment | 37

That is why the first objective for an effective enterprise architecture strategy is to cre‐
ate shared alignment. Even when there is a disagreement of opinions or perspectives,
it is essential that the culture allows for dissent and healthy debate and then promotes
active united support to overcome the initial position. The disagree-and-commit prin‐
ciple can be very helpful to apply to architecture decision making since the more
complex and nuanced a problem is, the more possible ways there are to solve that
problem, and the more trade-offs there are to consider in the decision. It is highly
likely that there will always be disagreeing opinions in such complex, contentious
architecture decisions and so a disagree-and-commit approach can help to move
decisions forward with the support necessary to implement them.

Next, let’s look at the command-and-control principle.

Command and Control
Command and control refers to the management principle where a person with posi‐
tional authority tells subordinates what to do, and they must obey. The leader with
positional authority is given great power and responsibility to understand what needs
to be done and to direct actions accordingly. Typically, the leader makes the decision
themselves with little to no input. This process is illustrated in Figure 2-5.

Figure 2-5. Command-and-control management principle illustrated in making a
decision

The advantage of command and control is that it tends to be the most optimal in risky
situations that require decisive action. It ensures consistent decision making and dis‐
cipline to follow through on those decisions without any operational inefficiencies
due to pushback. The disadvantages are that this style can miss opportunities to
strengthen the solution and lead to miscommunication and feelings of disempower‐
ment from employees.

38 | Chapter 2: Key Strategy Objectives

This principle can be very helpful to apply in creating shared alignment as a result of
an effective enterprise architecture practice because there are times when enterprise
architecture needs to declare standards and/or apply constraints due to regulations.
Protecting customer data and ensuring privacy regulations are met, for example, are
paramount, and no discussion is entertained to fight that this is in fact a requirement
for software delivery. Rather, the discussion can constructively be turned toward how
best to meet these requirements.

Next, let’s look at the consensus-driven and consensus-seeking principles.

Consensus-Driven and Consensus-Seeking
Consensus-driven refers to the management principle where all relevant stakeholders
are solicited for input, and their agreement is necessary to move a decision forward.
The goal is truly to have agreement and acceptance of the decision unanimously.
Stakeholders are empowered to debate and engage in healthy dialogue until they
come to an agreement. Figure 2-6 illustrates this process.

Figure 2-6. Consensus-driven management principle illustrated in making a decision

The advantages of the consensus-driven principle are that the act of building consen‐
sus increases cooperation, is very inclusive and empowers stakeholders to take own‐
ership of the final decision, and overcomes differences to create better, stronger
solutions. The disadvantages are that consensus building can take a lot of time and
can seem endless if there is no common goal or purpose or clear arbiter or if there is
lack of trust to make a decision. Also, there is a risk that decisions are reopened and
relitigated when there is a change in stakeholders, because the new stakeholders also
need to get to consensus.

To overcome these disadvantages, it is helpful to tailor the consensus-driven principle
to the consensus-seeking principle. Consensus-seeking refers to the management prin‐
ciple where the wisdom of the crowd is sought to provide diverse perspectives into
making a decision, but there is one clear arbiter that is empowered to make that deci‐
sion and a simple majority suffices to represent consensus. Generally speaking, the
US Congress is an example of where a simple majority is used to achieve consensus.

Principles to Create Shared Alignment | 39

This consensus-seeking principle can be very helpful to apply to decision making in an
effective enterprise architecture practice because there are so many opportunities to
do creative problem-solving, where there are a number of stakeholders that need to
come together and figure out the best path forward. For example, in the scenario
where stakeholders need to lay aside differences to deprecate one solution and con‐
verge on another, it is very helpful for all stakeholders to agree to work together with
trust that any advantages of the deprecated solution will be built into the converged
solution.

So if we use these principles to achieve the first objective, to create shared alignment,
then we have alignment to adhere to the architecture decisions that result from effec‐
tive enterprise architecture practices. That is wonderful, but how do people actually
make the decisions?

For that, we turn our attention to the next objective and associated KRs.

The Embedded and Accessible OKR
To support making great architecture decisions, it is necessary to empower architec‐
ture practitioners by providing architecture information at the right time, through
the right process, and using the right tools. In other words, making architecture
information embedded and accessible is key to effective usage of that information in
architecture decision making. Embedded means that following an architecture stan‐
dard or process, and using an architecture deliverable, is intrinsically part of normal
software delivery processes used by the organization. They are not separate, distinct
processes that require extra effort to find and follow. Accessible means that architec‐
ture information is easily intuitive, usable, and consumable by the desired audience—
typically architects, engineers, and product leaders.

Specific KRs will vary based on your organization’s maturity in processes and tools.
Here are some sample ones around embedded and accessible architecture
information:

• Integrate 100% architecture standards into software delivery processes.
• Increase library of architecture patterns by 20%.
• Ensure 100% of all architecture practitioners complete annual architecture

training.
• Improve usability of architecture patterns and standards by 20% as measured by

surveys.

40 | Chapter 2: Key Strategy Objectives

The outcome of the embedded and accessible objective is that architecture informa‐
tion is readily available and consumable through software delivery processes. So
what? What does this outcome really lead to?

The business benefit is that architecture decisions will be more consistent and sus‐
tainable, since the practitioners of architecture and their key partners are empowered
by the architecture information to inform great architecture decisions.

With this in mind, here are some example leading indicators focusing on the business
benefits:

Architecture knowledge gained
This should increase over time as processes and training materials improve, as
illustrated in Figure 2-7.

Figure 2-7. Example of an architecture knowledge KPI

Net promoter scores (NPS) of architecture tooling
This should improve over time to indicate a high degree of usability and satisfac‐
tion, as illustrated in Figure 2-8.

The Embedded and Accessible OKR | 41

Figure 2-8. Example of an NPS KPI

Hours spent finding architecture information
This should decrease over time as processes and training materials improve, as
shown in Figure 2-9.

Figure 2-9. Example of an “hours spent finding architecture information” KPI

Here’s an example lagging indicator:

Number of architecture decisions changed
A high number or rate could indicate that the right information wasn’t available,
leading to a high degree of change.

42 | Chapter 2: Key Strategy Objectives

Chapter 1 referred to architecture patterns as a typical architectural deliverable. In
these sample KRs, I’ve also included a mention of architecture standards. That is just
one more type of architecture information. The next section elaborates on architec‐
ture information.

What Is Architecture Information?
Architecture information refers to any type of architectural content that is used to
inform an architecture decision. In addition to the architectural deliverables
described in Chapter 1, which included architecture patterns, architecture decisions,
capability target architectures, and application target architecture, architecture infor‐
mation is more generic and also typically includes principles, standards, frameworks,
best practices, architecture diagrams, and metrics.

Architecture Principles
A principle is a rule or idea that guides you. An architecture principle, then, is simply
the rules or ideas that guide consistent architecture decision making. The enterprise
architecture strategy function should define architecture principles that are aligned
with senior leadership’s beliefs.

For example, an organization may define principles stemming from risk tolerance of
vendor lock-in to make consistent build-versus-buy decisions when using cloud serv‐
ices. Some organizations may define cloud native as their principle, having decided
that the benefits of using cloud native services outweigh the risks of lock-in. Others
may define cloud agnostic as their principle, having decided that the benefits of being
free from lock-in outweigh the risks of abstraction.

In this scenario, let’s say an engineering team is trying to make an application archi‐
tecture decision on whether or not to use a cloud native serverless functions service.
In the organization that has the cloud native principle, they are likely to use it assum‐
ing the service meets all of their technical requirements. In the organization that has
the cloud-agnostic principle, they are likely not to use it, and to stick with container‐
ized services instead as the more portable option.

Either way, this principle will guide the organization’s technical architecture decisions
for its solutions, capabilities, and strategies—but only if the decision makers know
about and understand what the principles are. Hence, the architecture principles
must be transparently embedded and accessible to the decision makers.

Next, let’s look at architecture standards.

What Is Architecture Information? | 43

Architecture Standards
An architecture standard defines the requirements that guide consistent architecture
decision making to produce well-architected solutions and strategies. A requirement
is something that must be true, and results in governance actions if violated. The
enterprise architecture strategy function defines standards that the enterprise archi‐
tecture enablement function empowers end users to meet, and that the enterprise
architecture oversight function enforces is met.

Architecture standards can encompass any kind of technology requirement that an
organization needs to support the business, and they are effective when that require‐
ment can be both enabled and enforced. For example, an organization may define a
standard as granular as what software languages are approved to build applications,
or as broad as what makes an application modern. Enabling such standards is what
the embedded and accessible objective helps with.

In addition to what must be true, architecture can also define what should be true.
Let’s first look at architecture frameworks as a type of architecture information that
helps define what should be true.

Architecture Frameworks
Architecture frameworks define guidance—structure and methods—that can be used
in architecture decision making. The enterprise architecture strategy function and all
architecture roles can define reusable frameworks. It is usually not necessary to
enforce the use of a specific framework, as they are usually meant to provide a base‐
line of helpful guidance.

For example, there are well-known enterprise architecture frameworks like TOGAF.
Many organizations also establish their own tailored architecture frameworks, such as
a build-versus-buy assessment framework to guide architecture decisions around
whether or not to develop or purchase software to fulfill a business need. In fact, this
book is filled with frameworks in upcoming chapters for you to adapt and use as you
see fit.

In addition to an architecture framework, the other kind of architecture information
that helps define what should be true, and how it should be true, is architecture best
practices. Let’s look at them next.

Architecture Best Practices
A best practice in general is a proven way to do something better than alternative
ways. An architecture best practice is a proven way to solve a problem that is usually
defined in an architecture pattern. Best practices are typically not enforced with the
same rigor as a requirement that is defined in an architecture standard.

44 | Chapter 2: Key Strategy Objectives

https://oreil.ly/8lsJb

An organization should define whatever architecture best practices are most relevant
to the solutions it needs to deliver. For example, perhaps an organization is trying to
modernize by using cloud technology. In that scenario, it would be beneficial to
define best practices for migrating applications from on premises to the cloud, and
for operating those applications in the cloud, rather than defining best practices for
maintaining on-premises fleets. Again, these best practices only return the invest‐
ment made in defining them when they are used—thus, making sure that these best
practices are embedded and accessible to end users is essential.

Architecture Diagrams
An architecture diagram is a visualization that explains characteristics of a solution or
process. The enterprise architecture strategy function should define standards around
diagramming for consistency and easy understanding across multiple diagrams.
These standards should include types of diagrams, any industry standards used to
model the diagram, the tools used for the diagram, and the legend of colors, shapes,
and lines used in the diagram.

Architecture diagrams can be very helpful visual aids to illustrate logical boundaries,
concepts, workflows, and sequences, to name a few things. However, they risk
becoming stale quickly, where the information is out of date. Thus, freshness and
dynamism are important elements of embedded and accessible architecture diagrams.
How do I keep an architecture diagram living? How do I codify an architecture dia‐
gram so that it is in code, generatable, and queryable rather than a static drawing?
These are questions that you should answer as part of your KRs in the embedded and
accessible objective.

Architecture Metrics
A metric is a quantifiable measurement or evaluation of something. An architecture
metric is therefore a quantifiable measurement in the context of an architectural con‐
cern. If you recall, I started this chapter with an emphasis on measuring business out‐
comes as a result of architecture deliverables.

Architecture metrics are another architecture information type because they help
inform architectural decisions. For example, metrics around total cost of ownership
and return on investment can make a compelling business case for investing in one
technology over another. As another example, metrics around enterprise architecture
standard adoption and requirement adherence can tell a factual story around what is
working well and what needs improvement in enabling and enforcing those
standards.

Now that we’ve reviewed typical architecture information types that can inform
architecture decisions, let’s go into the relationship between them a bit more.

What Is Architecture Information? | 45

Architecture Information Powers Architecture Decisions
I mentioned earlier that architecture information needs to be embedded and accessi‐
ble to inform architecture decisions. Figure 2-10 shows the relationship between
architecture information content types and the architecture decisions that are
strengthened by using them at a high level.

Figure 2-10. Architecture decisions powered by architecture information

For example, let’s say an application architecture decision needs to be made around
high availability design, where the business states they need high availability. The fol‐
lowing inputs would apply to the decision makers:

Principles
Guidelines such as what constitutes a fault domain, cloud native versus not

Standards
Requirements such as recovery time objective and recovery point objective

Patterns
Best practices around highly available application architectures

Decisions
Previous decisions around scaling, monitoring and alerting, database type

Diagrams
Visualizations of the application’s deployment architecture

Another example in the solution architecture space could be around an architecture
decision for investing in a new capability. The following inputs would apply to the
decision makers:

46 | Chapter 2: Key Strategy Objectives

Principles
Principles such as modernization

Standards
Requirements such as technology standards for capabilities—is there already an
existing technology solution that meets the new capability need?

Frameworks
Build versus buy, domain-driven design

Decisions
Previous decisions on related capabilities

Last but not least, an example in the enterprise architecture space could be around an
architecture decision such as a new technology standard, like standardizing on a
database type:

Principles
Principles such as vendor stickiness, modernization

Frameworks
Frameworks such as analysis of alternatives

Decisions
Previous decisions on related standards

Thus, you can see how there are various types of architecture information that need
to be available to a given architecture role, and to all the partners that they have in
making a decision, at the time that the decision needs to be made.

Chapter 4 discusses common mechanisms for making such information available.

The more embedded, accessible, and just-in-time available archi‐
tecture information is, the more reuse and efficiency you get from
it being able to inform architecture decisions.

With this embedded and accessible objective and KRs, architecture information will
be more effectively used in both making architecture decisions and adhering to archi‐
tecture standards. Speaking of adhering to architecture standards, let’s look at an
objective that ensures they are effective.

What Is Architecture Information? | 47

The Enable and Enforce OKR
Architecture standards and their requirements can be much maligned if they are
enforced with a heavy hand when teams are not enabled to easily adhere to them. By
enabled, I mean that the process or activity to conform to the standard is well defined,
highly automated, and limits necessary friction.

If the opposite is true, meaning the process or activity to conform to the standard is
ill defined and highly manual, and it has undue friction, be prepared for negative
feedback and the perception of architecture as a bottleneck. For example, let’s say an
enterprise architecture standard requires applications to log using a specific schema
and sending those logs to a centralized log analysis tool. If applications are flagged as
noncompliant because they did not log or logged incorrectly, yet there is no automa‐
tion, documentation, or support on what to log, how to log, and how to use the log
analysis tool, software releases will get bogged down while engineers deal with this
issue, and there will be several complaints to deal with.

Similarly, if there is enablement without enforcement, then the organization carries
the risk that the standard will not be met in full. In such an opt-in model, some teams
will opt in, but enforcement is what verifies that all teams did. Let’s go back to the
logging example above. This time, let’s say there is automation, documentation, and
support available on what to log, how to log, and how to use that log analysis tool.
However, in this example, there’s no enforcement check, meaning applications do not
get flagged as noncompliant. Because there is still a level of effort involved in adher‐
ing to the logging requirement, and getting the logs right, some teams end up skip‐
ping this requirement as a trade-off to release software ever faster. As a result, the risk
that this requirement was trying to mitigate, pertaining to operational troubleshoot‐
ing and mean time to repair for issues, is still a prevalent risk.

Thus, this objective is centered around both the enablement and enforcement of
architecture standards. Chapter 5 discusses mechanisms and a framework to decide
how to enable and enforce, and the trade-offs inherent in the degrees of enablement
and enforcement.

Just enabling, or just enforcing, an architecture standard isn’t
enough. You need to do both to ensure the standard is effectively
adopted.

48 | Chapter 2: Key Strategy Objectives

Specific KRs will vary based on the sophistication of your organization’s enablement
and enforcement mechanisms. Here are some sample KRs:

• 100% of architecture standards are adopted by new technology development.
• Increased convergence to standard solutions by 20% (meaning alternatives are

deprecated).
• Reduced level of effort by 20% to adhere to a given architecture standard.
• Improved satisfaction scores of architecture standards by 20%.
• Increased enablement automation of architecture standards by 20%.
• Increased enforcement automation of architecture standards by 20%.

The outcome of the enable and enforce objective is that the activity to adhere to an
architecture standard or requirement is clear, well understood, and easily doable, and
that the output of those activities is enforced in such a way to determine compliance.
Again, so what? What is the business benefit of compliance?

Depending on the standard, the business benefit will differ. For example, a standard
around highly resilient and reliable architecture would claim the business benefit of
high availability, thereby helping maintain high customer satisfaction and protecting
brand and reputation.

With this in mind, leading indicators should be framed around the business benefit
of the standard and will vary based on the standard.

Examples of lagging indicators include the following:

Number or % of violations
This should trend down lower over time, else it indicates a flawed enablement or
standard.

Number or % of overrides
This should trend down lower over time, else it indicates that perhaps the stan‐
dard itself should be revisited.

Number or % of preventive controls
This ideally trends higher over time, because preventing a compliance issue as
early as possible is generally better.

The Enable and Enforce OKR | 49

Number or % of detective controls
This ideally plateaus over time, as controls shift toward preventive.

Number or % of automated controls
This ideally increases over time toward 100% coverage, since automation is gen‐
erally more sustainable than manual enforcement.

Number or % of automated enablement activities
This ideally increases over time toward 100% coverage, since automation is gen‐
erally more scalable than manual.

While the enable and enforce objective has to do with architecture standards, it is also
worth thinking through KPIs for the effectiveness of the architecture standards
themselves.

Architecture Standard KPIs
The objective of an efficient set of architecture standards is that they create high-
quality target architectures. This applies whether the scope of that architecture is a
single component of an application, the application itself, a group of applications, or a
group of capabilities.

What does high-quality target architecture mean to you? There are various ways to
define high quality. What I recommend considering is that it results in well-
architected applications that meet the following criteria:

Scalable
The application can expand or compress based on demands in an automated
manner.

Resilient
The application is able to recover swiftly from failure, usually through automated
means.

Reliable
The application mitigated risks of critical failures caused by dependencies and its
own deployment architecture such that it can withstand failures without loss of
data or available critical transactions.

Cost-optimized
The application has traded off on cost levers in its deployment architecture for a
cost-optimal design.

Functional
The application meets business requirements.

50 | Chapter 2: Key Strategy Objectives

Future-proof
The application has an optimized amount of technical debt, allowing it to easily
adapt to changes.

Aligned
The application has alignment across all of its impacted stakeholders to build or
buy in accordance with the defined architecture.

Secure
The application protects data and aligns with cybersecurity principles.

Modular
The application is able to be independently deployed into an ecosystem and
reused in that ecosystem without adverse impact to other solutions.

Extensible
The application has well-defined interfaces, allowing for growth and interoper‐
ability.

Compliant
The application is compliant or has approved exceptions to all policies, stand‐
ards, and procedures that apply to it.

With this framing, leading indicators focused on high-quality application architecture
include these examples:

Cost to deliver application
If this is higher than expected, it may indicate that the application isn’t cost opti‐
mized and can adversely impact net profits.

Incidents caused by application
If this is higher than expected, it may indicate that the application isn’t built to be
scalable, resilient, and/or reliable and needs corrective action or it can adversely
impact the company’s brand and reputation.

Lagging indicators focused on high-quality application architecture include this
example:

Number of approved architecture exceptions associated with application
If this is higher than expected, it may indicate that a level of risk has been
accepted for this application that can cause adverse impact in its compliance and
operational postures.

To deliver the enable and enforce objective, let’s review some principles that you can
establish in your organization.

The Enable and Enforce OKR | 51

Principles for Enablement
The principles illustrated in Figure 2-11 help guide investment in the work necessary
to enable software engineering teams to adopt and adhere to architecture standards.

Figure 2-11. Architecture standard enablement principles

The first principle, think like an engineer, is first and foremost because the engineer
role is, after all, the target audience of an architecture standard. They are the ones
who need to understand the standard and be enabled to adopt it. What do they need
to know about the standard? When do they need to know it? What is different for
them now that they need to follow a standard? How are they going to use the pro‐
vided tools and process in their day-to-day work? The more you think like an engi‐
neer when determining the best method of enablement, the more optimal your
enablement solution will be.

The second principle, lead with why, builds on the same theme as mentioned earlier
in the section “The Shared Alignment OKR” on page 32, which is that it is important
to get human buy-in on a standard. Clearly and transparently communicating the
context of the standard and requirement in terms of why it is a requirement, what
risks it mitigates, and how to meet it, avoids confusion and increases the chances that
the requirement will be adequately fulfilled. In addition, it is helpful to clarify roles
and responsibilities for compliance—who does what, when, and how during the
activities necessary to be compliant to the requirement. Last but not least, it is also
helpful to be transparent about any constraints or known pain points to set expecta‐
tions and reduce extemporaneous efforts. Excellent, well-maintained documentation
is a helpful mechanism to provide such communication.

52 | Chapter 2: Key Strategy Objectives

The third principle, make it easy to do the right thing, may appear self-explanatory.
Software engineering teams have a lot of demands on their time. As a result, the sim‐
pler that you can make enablement, through reduced process and increased automa‐
tion, the more you will incentivize the right behaviors for compliance. Also, make it
easy for engineers to scale enabling automation with a contribution model and incor‐
porate a feedback loop so that the enablement mechanism continuously improves
and encourages more adoption. In addition, ensure that there are sufficient support
and resources—both for training and for troubleshooting help.

The last principle, respect innovation, is something that I personally believe in
strongly. While the premise of the enable and enforce objective is around supporting
standards, enablement is generally about how to meet a requirement in a compliant
way. Often, flexibility is needed given that there is generally more than one way to
solve for a how. This principle speaks to understanding when to force uniformity and
when to allow for deviations, as well as when to include a feedback loop in the ena‐
blement mechanism such that deviations can become new valid conformance
options. This can manifest as decisions around when to abstract versus when to give
choice, such as in a configuration option.

I’ve used these principles in real life to enable and enforce personal standards too. For
example, one standard rule that we have in my household is to take off shoes and put
them away when entering our home. Along with my children, I even had to change
my behavior and build a better habit of putting away shoes (you see, I originally was
in the habit of just kicking them off by the door). So we thought about the end user—
in this case, the kids and me—to figure out what would be easiest for them, which
turned out to be individualized shelves in a cubby. We lead with why by explaining
and reiterating why we were a shoeless household, and why cluttering the front door
was a bad idea. We made the right behavior easy by keeping the shoe cubby close to
the door. We respected innovation by using the kids’ suggestion to keep rain boots
separate and my husband’s suggestion to get shoe organizers to maximize the cubby
space.

Now that we’ve looked at principles for enablement, let’s elaborate on principles to
guide enforcement of architecture standards.

The Enable and Enforce OKR | 53

Principles for Enforcement
The principles illustrated in Figure 2-12 help guide investment in the work necessary
to enforce that software engineering teams adopt and adhere to architecture stand‐
ards in a compliant manner.

Figure 2-12. Architecture standard enforcement principles

The first principle, fair proportionality, refers to ensuring that the consequence of the
compliance violation is reasonably commensurate with the risk or threat posed by
that offense. If the risk or threat is considered to be critical, then and only then is the
most severe consequence taken—for example, an alert that summons on-call support,
or termination of the violating resources, or blocking the deployment of the noncom‐
pliant software. Whereas if the risk or threat is low, then a less severe consequence
occurs, such as a notification with a time period in which to rectify the error. Instil‐
ling a fair and proportional system of enforcement will reduce backlash and drive
human behavior to pay attention to the most risky violations, therefore optimizing
the usage of human judgment and time to rectify the error.

The next principle, predictable consistency, complements the first one. It means that
the software engineer can expect the same behavior for a pass or fail of an enforce‐
ment policy. It doesn’t matter if the policy is run in different environments, or at dif‐
ferent enforcement points; the same outcome occurs. Furthermore, when coupled
with fair proportionality, the same type of consequences occur for similarly assessed
risk violations. This consistency in defining the risk level of the requirement and con‐
sistency in resulting compliance actions allows for humans to learn the right behav‐
iors more quickly than when faced with inconsistent enforcement.

For example, a simple schema that supports fair proportionality and predictable con‐
sistency to assess the risk of a standard requirement violation could be as follows:

54 | Chapter 2: Key Strategy Objectives

Critical
Immediate corrective action needed. If enforced during deployment, deployment
is blocked until the issue is corrected. If enforced post-deployment, then a high
severity incident is created and incident management is used to correct the issue
and/or resources are terminated/quarantined.

High
Near-term corrective action is needed, where “near term” is a specific consistent
period of days. If not corrected within that near-term period, then the issue is
escalated to critical. If enforced during deployment, deployment is blocked but
allows for escalation approval to override blocking behavior. If enforced post-
deployment, then a low severity incident is created and incident management is
used to correct the issue.

Moderate
Mid-term corrective action is needed, where “mid term” is a specific consistent
period of days. If not corrected within that mid-term period, then the issue is
escalated to high. If enforced during deployment, deployment can proceed with a
warning. If enforced post-deployment, an alert is generated.

Low
Long-term corrective action is needed, where “long term” is a specific consistent
period of days. If not corrected within that long-term period, then the issue is
escalated to moderate. If enforced during deployment, deployment can proceed
with a warning. If enforced post-deployment, an alert is generated.

The third principle, distributed accountability, refers to that right behavior. This prin‐
ciple is all about ensuring that the software engineer understands and cares about
what actions they are accountable for (and in many cases, also responsible for).
Empathize with the plight of the software engineer and the demands of their time to
drive automation as a high priority in enforcement. Automation should reduce the
amount of human decision making and limit what requires human judgment, thereby
saving the engineer time. Automation can encompass a range of things associated
with enforcement, such as checking for the violation (the earlier the better), correct‐
ing the violation, and providing a self-service dashboard. Note, the engineer still
needs to understand what the automation did and why to fully support their software
application. While it is ideal to never have a compliance issue, if in fact there is one, it
is best to allow for failing fast and failing early, to correct as early as possible and
reduce duplicative issues or entirely deter future violations. It is also helpful to pro‐
vide a feedback loop for the scenario in which the enforcement policy is incorrect or
does not recognize a valid exclusion from the compliance requirement.

The fourth principle, optimize for immutability, recognizes that enforcement capabili‐
ties themselves require investment, especially given the ever-changing landscape of
risks and threats as technology and standards rapidly evolve. To optimize this

The Enable and Enforce OKR | 55

investment, it is best practice to enforce or check for a compliance violation only at
the times or points of the software development lifecycle that it is possible to make a
change that affects that compliance posture. Also, in the spirit of distributed account‐
ability, it may be helpful to have a testing period or early warning period for new or
changed enforcement policies to ensure they are working as expected prior to releas‐
ing them with full enforcement powers.

Applying these principles should help to provide a positive, scalable enforcement
experience that aims for willing cooperation over compulsion yet verifies for assur‐
ance in a consistent, reasonable, and proportional way.

So far, you’ve learned about three OKRs: creating shared alignment, making architec‐
ture information embedded and accessible, and, most recently, enabling and enforc‐
ing standards. What’s left? Glad you asked! Next up: the proactive and reactive OKR.

The Proactive and Reactive OKR
The nature of the decision itself is missing—is the architecture decision proactive or
reactive? Proactive means trying to control the future situation, considerations, and
trade-offs by predicting what the future holds. Proactive architecture decisions are
strategic, and high-quality proactive architecture decisions are future-proofed and
sustainable. Reactive means using already occurring information and considerations
to make a more tactical decision. Reactive generally means that there is some sort of
trigger, stimulus, or constraint causing a problem that needs to be solved.

If you think of a set of weighing scales measuring the number of proactive and reac‐
tive decisions, one extreme or the other is not where you see the most benefit. Proac‐
tive strategy without reactive tactics isn’t helpful because then the strategy is rendered
infeasible and therefore indefensible. Similarly, reactive tactics without proactive
strategy isn’t enough—it will ultimately take longer to get to where you want to go,
since you’re only ever solving the problems of today rather than the big picture prob‐
lems of tomorrow.

Can you think of a real-life example where this applies? For me, my kids’ wardrobe
comes to mind. My children are still growing, and every year they need a different
clothing size. If I am only reactive, then the day comes where they are dressed in too-
small clothes, with no other recourse. If I am proactive, then I buy the next size up in
advance so that on that day, they can change into the next size. I can’t be overly enthu‐
siastic in my proactiveness, though, and buy a whole set of clothes in the next size,
because their tastes may change, or buy clothes two or three sizes up, because my
storage is limited. So I balance the proactive and reactive decision making to future-
proof their clothing enough that they will always have something that fits, and then
react to the information that they need new clothes to buy more when needed.

56 | Chapter 2: Key Strategy Objectives

Thus, the final objective of an effective enterprise architecture strategy is around pro‐
moting a balance of proactive and reactive architecture decisions. By being proactive
and reactive to technology and business trends in the industry and within the organi‐
zation, architecture can be more effective at defining the future direction. This future
direction can then be based on a well-formed proactive strategy with well-defined
reactive tactics to achieve it.

Specific KRs will vary based on your organization’s tolerance for change. A sample
KR would be a 20% increase in the number of approved architecture strategies.

The outcome of the proactive and reactive objective is that architecture decisions are
made in anticipation of future problems and outcomes, and they also solve current
relevant problems. The business benefit is that the architecture actually is defining
strategic intent, that north star that we discussed in Chapter 1, in an aspirational yet
achievable way.

An example of a lagging indicator could include the number of approved architecture
strategies. Assuming these are good-quality strategies, the more strategy the more
direction has been clarified.

Summary
To establish a strong, effective enterprise architecture practice, you need a strategy to
guide and establish that effective enterprise architecture practice itself. This chapter
covered key objectives in such a strategy aided by the OKR framework to define clear,
measurable OKRs. Measurement is key, to tie architecture work to business out‐
comes. Outcome-based KRs are also known as key performance indicators (KPIs).
KPIs are used to indicate progress toward an objective and to incentivize behavior.

The objectives include:

Shared alignment
This relies heavily on a culture of trust throughout the organization to bring rele‐
vant stakeholders together and align on an architecture decision for implementa‐
tion. This section covered management principles such as disagree and commit,
command and control, and consensus based or consensus driven to achieve
alignment.

Embedded and accessible
This refers to ensuring that various types of architecture information, including
but not limited to principles, standards, patterns, best practices, frameworks, and
previous decisions, are embedded in everyday processes and tooling and accessi‐
ble or usable by the end users that are meant to use the information in making
architecture decisions.

Summary | 57

Enable and enforce
This reviewed the need to both enable and enforce architecture standards, or
rather the requirements associated with those standards. This section also cov‐
ered relevant principles for guiding enablement activities as well as for guiding
enforcement solutions.

Proactive and reactive
This discussed the need to both make and balance strategic and tactical architec‐
ture decisions.

Achieving these objectives should yield efficient architecture practices that create
shared alignment, are embedded and accessible through familiar processes and tool‐
ing, are enabled and enforced transparently and intuitively, and support both proac‐
tive and reactive problem-solving.

The next four chapters dive deep into each objective so that you can tailor the OKRs
and KPIs to what your organization needs to establish an effective enterprise archi‐
tecture strategy.

58 | Chapter 2: Key Strategy Objectives

CHAPTER 3

Shared Alignment

The heart of an effective enterprise architecture strategy is creating shared alignment
for architecture decisions. In Chapter 2, you learned that creating shared alignment
means that all impacted stakeholders are aligned to adhere with an architecture deci‐
sion, even if they don’t necessarily agree with that decision or would have preferred
an alternative. You also learned that a culture of trust is foundational to achieve align‐
ment. In this chapter, you’ll go deeper to better understand mechanisms that you can
use to create shared alignment and the culture of trust that is a prerequisite for it.

Did you know that enterprise architecture as a function is uniquely positioned to
bring a group of individual stakeholders together with a common goal? It is unique
because enterprise architecture is concerned with a holistic perspective and solving
problems with the whole company in mind. This is different from organizational
functions like engineering, business development, and cybersecurity. Whereas these
functions do work toward the company’s common goal, such as increasing business
revenue, each function tends to focus on solving its own problems first. For example,
cybersecurity may seek additional protections and risk mitigations, while engineering
may seek to modernize, and business development may seek to penetrate new mar‐
kets. Only enterprise architecture is positioned to look across all of these functional
areas to define the north star as a modernization strategy with security built in to
allow for new market growth.

To establish an effective enterprise architecture practice, you must transform teams of
individuals to teams of a collective whole, and you need to do that at scale. While
enterprise architecture as a function enables architect roles (enterprise, solution, and
application) to chart paths into the unknown and define the north star of technology
strategy and technology solutions, the paths need to be implemented by the efforts of
partners such as engineering, product, and cybersecurity. This is necessary whether
the north star guidance is as broad as an enterprise strategy or as narrow as a single

59

application. At the broadest level the partners are at senior leadership level, whereas
at the most granular level the partners are specific to a single application team.

A real-life example is the construction of a house. I’m sure you would agree that it
does no good for an architect to create great blueprints if the construction manager
can’t find the building materials to build them or the electrician is nowhere to be
found to do the wiring because they’re too busy with other jobs and priorities.
Whereas, if the architect, construction manager, and electrician worked together
from the beginning, they could have come up with a feasible blueprint and aligned
schedules to make the delivery work—for them, and for their customer.

Effective enterprise architecture as an organizational function can set the course for
bringing stakeholders together to work collectively. The first step to creating shared
alignment for an architecture decision begins with knowing who needs to align.

Align on Who
Knowing who needs to be engaged and aligning them on the problem statement
along with, and prior to, aligning them on the solution, is essential to the success of
architecture work. If the wrong stakeholders are included, then the credibility of the
decision is likely to be undermined, the decision is likely to be ignored and not get
implemented, and the decision is likely to be relitigated once the right stakeholders
get involved.

Have you ever gone through a long, arduous collaboration process to get to a decision
only to find out, after the decision was approved, that some key stakeholders had
been missed in the impact analysis or that you had the wrong approver? I have, and it
is exceedingly frustrating to be in this circumstance. It took me some time to under‐
stand that it didn’t matter how good of a job I did in thinking through my analysis
and recommendations if I didn’t bring the right stakeholders along with me on that
decision-making journey.

Fortunately for me, I have the benefit of project management and consulting experi‐
ence to draw from, and I learned several techniques around stakeholder management
that I can now share with you to help prevent such frustrating scenarios from
occurring.

So, what exactly do I mean by a stakeholder? Let’s find out.

60 | Chapter 3: Shared Alignment

What Is a Stakeholder?
A stakeholder refers to a person or group that is impacted by the decision, has author‐
ity over the decision, and/or is a subject matter expert in the decision’s problem space.

Impact refers to any positive or adverse change that occurs as a result of implement‐
ing the decision’s solution. Going back to my real-life house example, the homeowner
is positively impacted, and the neighbors are also impacted, potentially in an adverse
way during construction.

Authority refers to positional or designated ability to approve changes recommended
by the decision. In the real-life house example, the construction manager has appro‐
val authority over his team to oversee the implementation work. It may also be neces‐
sary to attain a permit to do the construction work. The permit approver has
authority over issuing that permit.

Subject matter expert (SME) refers to having the expertise necessary to vet the deci‐
sion in terms of completeness, feasibility, and/or impact. For example, when consid‐
ering a house, a housing inspector is the SME on housing regulations and can tell
whether or not the house is compliant.

Now, when you think about all of the stakeholders that meet one or more of these
criteria for your architecture decision, you may end up with a very long list. To filter
or prioritize this list, you also need to consider the influence level of the stakeholder
and the importance of the decision to that stakeholder.

Influence refers to the ability of the stakeholder to impact the outcome of the decision
itself. High influence means that their dissent is a roadblock or impediment. For
example, let’s say a decision requires implementing a change to query logic of a
reporting dashboard. The engineering and product owners of that reporting dash‐
board would be highly influential in that decision.

Importance means that the stakeholder has an internal or external motivation to be
engaged in the decision-making process. An example of internal motivation is when
the decision impacts an area that aligns with their interest or passion, and therefore
they consider it important. Personally, my love for cloud technology drives my will‐
ingness to participate in strategic cloud-related decisions. An example of an external
motivation is an organizational incentive; perhaps there’s a reward or recognition for
someone to be involved or the decision is important because it impacts the success of
an initiative or solution that they own or the decision-making process requires their
approval.

Figure 3-1 illustrates the dimensions of influence and importance in a quadrant chart.

Align on Who | 61

Figure 3-1. Stakeholder mapping to influence versus importance

The top right quadrant contains your key target stakeholders, those with high influ‐
ence and high importance. These are the ones that need regular engagement in your
decision-making process and need to be kept mollified. They should be engaged from
the very beginning and throughout the decision-making process, and their engage‐
ment is quite active. For instance, they are invited to meetings, they review documen‐
tation, they are provided frequent updates, and they can provide comments. In the
real-life house example, the homeowner and the construction manager are stakehold‐
ers in this quadrant.

The top left quadrant of stakeholders is important to consider and keep aligned
because of the high influence that they wield. However, because they would consider
this decision to be less important and therefore of less relevance to them, you likely
only need to monitor them and reach out sporadically. For example, you could set up
infrequent check-ins to ascertain their needs and provide briefings, or disseminate
documentation as milestones in the decision making process are hit. Note, you may
even need to convince them that they are key stakeholders by making a case for why
this decision should be important to them. In the real-life house example, the permit
approver is in this quadrant because construction cannot proceed without them yet
they don’t have a specific tie to any given construction project.

Stakeholders in the bottom right quadrant, low influence and high importance, are
likely to be noisy if not engaged in some fashion, so it is best to keep them informed
and abreast of updates, even if they are not actively part of the decision-making pro‐
cess. For example, let’s say there is a decision that changes a key reporting metric and
there are some power users that heavily use the metric in multiple downstream
reports. The change is of high importance to the power users, but they could be
deemed as low influence in that the change has to happen with or without their sup‐
port. As it is usually better to have support, it would be good to give them a chance to
be informed and react to the change early and provide feedback, even if they can’t
actually change the outcome of the decision. In the real-life house example, the
neighbors fit this criteria.

62 | Chapter 3: Shared Alignment

The bottom left quadrant, low influence and low importance, means that these stake‐
holders are not needed in the decision-making process. Only if the decision actually
impacts them would there need to be an effort to communicate essential relevant
information once the decision is finalized. For instance, taking the same example
above, of a decision that changes a key reporting metric, let’s say this time there are
only end users that sometimes use that metric. They would need to be notified to
understand the change, but they would not necessarily be included in the decision-
making process of the details of the change if they are mapped as low influence and
low importance. In the real-life house example, the housing inspector fits in this
quadrant; they need to know the house was built to do the inspection, but they are
not directly involved in the decisions made to build the house.

To perform a stakeholder mapping, first brainstorm all the possible stakeholders
against the criteria and then map them against the quadrant chart. You could use a
table format like Table 3-1.

Table 3-1. Stakeholder mapping template

Name Impact Authority SME Influence Importance
Person/Group Yes/No Yes/No Yes/No High/Low High/Low

Table 3-2 shows using this mapping for the real-life example of the house.

Table 3-2. Stakeholder mapping example for building a house

Name Impact Authority SME Influence Importance
Homeowner Yes Yes No High High
Construction manager Yes Yes Yes High High
Permit Approver Yes Yes No High Low
Neighbors No No No Low High
Housing Inspector Yes Yes Yes Low Low

Your stakeholder mapping for a given architecture decision will tell you who needs to
be engaged in making that architecture decision. But what exactly does engaged
mean? The next section explains.

What Is Stakeholder Engagement?
Stakeholder engagement defines how to include a stakeholder and for what activity.
Engaged means that a stakeholder is one or more of the following:

Responsible (R)
This stakeholder ensures that all necessary decision-making process steps are fol‐
lowed, and they may also need to implement next steps.

Align on Who | 63

Accountable (A)
This stakeholder ensures that the outcome of the architecture decision is realized.

Consulted (C)
This stakeholder provides inputs that help shape and strengthen the architecture
decision.

Informed (I)
This stakeholder needs to be told about the decision, typically with respect to the
result of the decision and transparency into who made the decision and with
what considerations.

A common depiction of engagement is a RACI chart as shown in Table 3-3.

Table 3-3. RACI chart template

 Stakeholder 1 Stakeholder 2 Stakeholder 3 Stakeholder 4
Activity A R C I

There must only be one accountable stakeholder for each defined activity. Shared
accountability doesn’t work very well in practice since it diffuses and weakens
accountable authority. That’s very different from responsibility. While there must be
at least one responsible stakeholder to ensure that someone does the activity, there
can be more than one. The accountable stakeholder can also be responsible, though
does not have to be. Overall, for an architecture decision-making process, for every
activity, you need one accountable and at least one responsible stakeholder. Depend‐
ing on the specific architecture decision, there may be none, one, or multiple consul‐
ted or informed stakeholders.

Table 3-4 provides an example RACI chart filled out for an architecture decision.

Table 3-4. Generic example of RACI chart applied to an architecture decision

 Architect Engineering lead Product lead SME
Conduct analysis of alternatives A/R C C C
Complete proof of concept A I I R
Approve decision from business perspective I I A/R C/I
Approve decision from engineering perspective I A/R I C/I

In this example, the architect role is accountable and responsible for providing the
analysis that goes into the decision. They actively collaborate with other stakeholders
to vet and document the architecture decision. They also work with an SME to per‐
form a proof of concept to validate their recommendation. (Note: as this is a generic
decision, I’ve used the generic architect role rather than the more specific application

64 | Chapter 3: Shared Alignment

architect, solution architect, or enterprise architect role. The type of architect, and
seniority of architect, vary based on the scope of decision.)

The engineering lead is accountable and takes responsibility for the results of the
decision from a technology perspective. They actively review and approve the deci‐
sion from an engineering implementation perspective. The seniority of the engineer‐
ing lead varies based on the scope of the decision and organizational structure.

Similarly, the product lead is accountable and takes responsibility for the results of
the decision from a product perspective. They actively review and approve the deci‐
sion from a product need and prioritization perspective. The seniority of the product
lead varies based on the scope of the decision and organizational structure.

The SME is consulted to provide input and vet the alternatives and analysis conduc‐
ted in the decision. They bring relevant subject matter expertise in the business
and/or technology referenced by the decision to strengthen the decision.

Your RACI should be a transparent artifact that sets the expectations of the stake‐
holders that you engage with. That transparency up front also allows them the ability
to confirm whether or not they are in fact the right stakeholder for that specific level
of involvement. For instance, you may end up with an accountable stakeholder pro‐
viding you with delegates that are responsible, such that the responsible stakeholders
are engaged in day-to-day collaboration and the accountable stakeholder just needs
to be debriefed periodically. You may find out that you need a higher level of seniority
to be your accountable lead.

It is very important to complete this confirmation step as part of your stakeholder
mapping process. Otherwise, you may risk making false assumptions of who is your
stakeholder, and how they should be engaged.

What if your stakeholder map ends up with an unmanageable number of stakehold‐
ers with whom to engage? For that, let’s look at scaling stakeholder engagement.

How Do You Scale Stakeholder Engagement?
Especially for transformational decisions that impact the entire enterprise or organi‐
zational units, it is impossible to directly include every stakeholder that will be impac‐
ted by that decision. Rather, the organization should have a culture of trust such that
there is a trusted individual that can serve as the authoritative representative of a
group, an organizational unit, or a functional area in the enterprise and can voice the
larger group’s opinion.

In an organization in which consensus is deeply rooted, it may be beneficial to
include a request for comment (RFC) period as part of the transparent decision-
making process. RFC allows for a large group to be invited to consult on the proposal
beyond the SMEs that are directly involved in collaborative meetings. It can also be

Align on Who | 65

helpful to timebox a decision, meaning give a deadline. That way, there is a finite time
period in which to debate and then come to a conclusion, rather than perpetually
bring in more and more stakeholders for input and/or drag on the discussions.

In addition, for all types of organizations, the decision-making process should be
very transparent and well documented. That way, the reasoning for the decision, the
alternatives considered, the implications identified—all of that is available for people
who were not directly involved in making the decision to better understand the deci‐
sion. This transparency is also helpful if you need to include new stakeholders along
the way because of organizational changes or because new impacts are identified as
part of the decision-making process.

How Does “Align on Who” Relate to Your Effective Enterprise
Architecture Strategy?
Knowing who to include, and how exactly to engage them, is essential to creating
shared alignment. How does knowing this help you in your organization? Well, as
part of establishing the objective of creating shared alignment, consider the maturity
of your organization. Are there processes or organizational elements that need to be
improved to do the following?

Clarify stakeholder role definitions
Do definitions exist? Are people aligned with them? Is there training to confirm
that understanding?

Clarify stakeholder engagement for activities relating to architecture decisions
Do RACI charts exist? Do people understand them? Do people use them? Is there
an authorization hierarchy that is well understood?

Provide mechanisms for stakeholder mapping
Are templates available? Do architects understand how to do a stakeholder map‐
ping? Is there a baseline defined for the enterprise that enterprise leadership
aligns to, which can be tailored as needed for a given architecture decision? Are
stakeholders included consistently in decision-making workflows?

Increase trust between stakeholders
Are stakeholders incentivized to work as a team? Is leadership advocating for col‐
lective goals?

Increase transparency in architecture decision-making process
Does such a process exist? Does tooling exist to support that process? Is it easy to
find decision documentation? Is an RFC process needed, and if so, is it opera‐
tional? Is there consistent execution of these processes?

Any gaps or improvement opportunities become inputs into your specific key results
(KR) for this strategic objective. For example, maybe your organization doesn’t have

66 | Chapter 3: Shared Alignment

shared alignment on architecture roles and how to engage them. In that situation,
that could be the first KR that your enterprise architecture strategy function goes
after, to define a baseline stakeholder role definition and stakeholder engagement
RACI that your senior leadership agrees with. Maybe the enterprise architecture ena‐
blement function provides templates and tooling. Perhaps the enterprise architecture
enforcement function comes up with requirements around engagement at key points
of the software delivery lifecycle. The details of the KRs will vary by organization, but
if you assess your organization and figure out where the highest-leverage opportuni‐
ties are, you can turn those opportunities into specific KRs that are relevant to your
organization.

To identify who is engaged in an architecture decision, I mentioned earlier that you’ll
want to consider who is impacted by the decision. To understand who is impacted, it
is necessary to have a well-grounded understanding of the decision’s problem state‐
ment to identify those impacts. Let’s look at this in detail in the next section.

Align on the Why
If the stakeholder doesn’t care about the problem, understand the benefit of solving
that problem, and/or understand the need to solve it now, then there is very little
prospect that they will engage in problem-solving in the desired timeline and align
with the recommended solution that is documented in an architecture decision.

The first act of engaging the stakeholder is to review the problem statement and
ensure that you and the stakeholder are interpreting the problem statement the same
way. It is very easy to assume that stakeholders understand the problem, but I found
from my experience that people often talk past each other instead of to each other to
define a shared understanding.

So, methodically state the problem statement, but do so in a way that sells its value
and makes it clear that solving the problem will provide a collective gain.

Sell the Why
When defining a problem statement, ensure that you sell the why, which means that
you are able to clarify the following to avoid conflicting goals:

• Why this problem? What is the context for it?
• Why now? Why not later?
• What’s the impact in business terms of this problem?

The mistake that I have made and often see is stopping with stating what the problem
is, rather than emphasizing why that problem is impactful.

Align on the Why | 67

To make this less abstract, here are two real-life problems that I experienced while
writing this paragraph today:

1. My car doesn’t have enough gas to get very far.
2. We are missing a main ingredient for our dinner.

Which of these problems do I tackle first? Do I get gas or go grocery shopping?

To answer that, I need to first understand the impact. Problem number 2 is impactful
because without that main ingredient, we will have no dinner, and we need to eat. It
definitely needs to be solved. Problem number 1 is only impactful if I need to use my
car to drive somewhere. Thus, most likely I will table problem number 1 until I need
to drive, and solve problem number 2 by walking to the grocery store. On the other
hand, if I was dealing with time pressure, I would get gas on the way to the grocery
store, thereby solving both problems together. There’s no right or wrong answer here;
it’s more that thinking through impact is more helpful for problem-solving than just
stating what the problem is.

Along with articulating impact, you also need to state the benefits of solving the prob‐
lem. By benefits, I am referring to tangible, positive business outcomes that help
attain business objectives. The reason I stress business outcomes here is because
effective architecture marries the usage of technology to business needs; it is only in
delivering business value that the architecture work delivers value. Ask yourself these
questions:

• What business objective is achieved or what progress is made toward that
objective?

• Who benefits if the problem is solved?
• Are there ways to expand the benefits, either to more stakeholders or to more

reuse?

Business benefits are often stated in terms of the following:

Financial benefits
Include cost reduction, increased cost efficiency, improved return on investment,
avoidance of future costs, and increased profits or revenue

Risk benefits
Include risk reduction or mitigation

Productivity benefits
Include reducing level of effort, increasing human productivity rates, faster time
to market, improved employee satisfaction, increased employee retention, and
increased operational efficiency

68 | Chapter 3: Shared Alignment

Branding or reputation benefits
Include increased quality of service, reliability of service, improved customer sat‐
isfaction, and increased loyalty

I highly recommend quantifying as much as you can. It is much more compelling to
have quantitative data for the problem statement’s impact and benefits than it is to
have qualitative assertions. For example, a 20% productivity improvement is more
compelling and easier to understand than stating that solving the problem would help
increase productivity. Be sure to ground your qualitative output in a credible basis,
such as historical precedent, assumptions, and/or anecdotal evidence that is then
extrapolated.

Get into the habit of sizing the problem, sizing its impacts, and siz‐
ing its benefits.

Let’s review an example:

Attempt #1: “This problem causes challenges for our developers.”

This problem statement is very weak. So what if it causes challenges? Developers face
tons of challenges.

Attempt #2: “This problem causes challenges that waste developers’ time.”

Better, but still not getting a sense of scale. Is this a papercut or a true blocker?

Attempt #3: “This problem causes challenges that waste 20% of the average
developer’s capacity every release cycle. Fixing this problem will enable 1.5x new
business features to be developed every quarter.”

If I’m a business stakeholder, I now care. I want more features! If I’m a technology
stakeholder, I care. I want to free up my most precious resource, human developers!
If I’m a cybersecurity stakeholder, I don’t care yet.

Attempt #4: “This problem causes challenges that waste 20% of the average
developer’s capacity every release cycle. Fixing this problem while incorporating
security controls will enable 1.5x new business features to be developed every
quarter safely.”

Boom! Now, as a cybersecurity stakeholder, I can tell that my expertise will be needed
in a consultative manner. As a business and technology stakeholder, I know that I will
be accountable and responsible for this decision for my particular areas of

Align on the Why | 69

responsibility. As a developer, I am excited to see this decision get made, because it
benefits me.

Always ask yourself “So what?” when you review a problem state‐
ment, to help you define the why.

Now that you have a compelling problem statement that clearly articulates impact
and benefit, you are one step further on your journey to get shared alignment. How‐
ever, sometimes, you may find that even with the best-written problem statement,
your stakeholders still don’t agree that the problem has to be solved right now. What
happened? Most likely, a priority mismatch.

Align on Priority
I’ve been in situations where stakeholders agree that there is a problem, and that it
would in fact be good to solve it, but, because there were higher-priority fires burning
that absolutely had to be solved right now, that this one would have to wait. The
capacity of human resources, after all, is a finite resource.

What’s a passionate architect to do in this situation?

1. Get really frustrated and quit.
2. Try again to build a more compelling business case.
3. Disagree and commit to helping with the burning fire, so that you can come back

to the problem that you really care about later.

If I thought I had misunderstood the importance factor and did not make the argu‐
ment as relevant or compelling as it could have been based on the stakeholder’s moti‐
vations, I would probably put some effort into number 2. If I thought that the return
on investment (ROI) really wasn’t there for the problem as compared with others,
then I would likely do number 3, but I would still get commitment from the stake‐
holders that they would revisit and evaluate at a later time.

To prevent getting to this frustrating point, get familiar with that stakeholder’s priori‐
tization framework. This would be the criteria that they use to prioritize what work
must be done versus what work should be done versus what work needs to wait or
not be done. Common criteria include impact and benefits, which were discussed
earlier in this chapter. The others tend to be effort, investment, and risk. Effort refers
to level of effort, or human labor. How many stakeholders need to be involved and for

70 | Chapter 3: Shared Alignment

how long? What kind of capacity is required? Investment refers to a material stake; for
example, will a proof of concept be needed that requires infrastructure or third-party
resources? Risk refers to all types of risk—technology, cybersecurity, business—is any
new risk incurred by deviating resources to work on this?

Ultimately, you’re trying to make the business case that there is more value to be
gained than there is effort needed, whether you’re trying to get alignment just to exe‐
cute the decision-making process or you’re trying to get alignment to execute on
implementation after an approved decision.

How Does “Align on the Why” Relate to Your Effective Enterprise
Architecture Strategy?
Knowing how to align stakeholders on the problem statement, and why it is impor‐
tant to solve that problem now, is essential to creating shared alignment. How does
knowing this help you in your organization? As part of establishing the objective of
creating shared alignment, assess if there are processes or organizational elements
that need to be improved for the following:

Clear strategic business objectives
Are there high-level enterprise objectives that new work can be aligned against?

Problem statement communication
Does your organization run on slideware? Whitepapers? Something else? What‐
ever it is, is there a template available for architects to use in this style to explain
problem statements with quantitative benefits? Are there forums where leaders
can be engaged to discuss problems and priorities?

Prioritization framework
Is there a consistent prioritization framework across the organization? Or at least
within organizational units? Do those prioritization frameworks include refer‐
encing architecture decisions?

Now that the stakeholders have been identified and aligned with the why, it’s time to
discuss how to get alignment on the decision itself.

Align on the Decision
To gain shared alignment from your various stakeholders on the decision itself, you
need to become adept at conflict resolution. Conflict during the decision-making
process can actually be very positive, as this allows for diverse perspectives to be con‐
sidered. Concerns can be transparently aired and addressed to strengthen the solu‐
tion recommendation in the final decision.

Align on the Decision | 71

There are many methods for conflict resolution. What follows is what I have seen
work well from experience. The first part of my conflict resolution approach is to
consider different perspectives.

Consider Differing Perspectives
Put yourself in a stakeholder’s position. What are their motivations based on their
role and responsibilities, historical record of actions, and goals? What concerns could
they raise? What are they worried about, and what is their most pressing priority?
How much context do they already have, and what information do they need? See
Figure 3-2 for visualization.

Figure 3-2. Typical stakeholder motivation drivers

You’ve actually done some amount of motivational analysis previously in your stake‐
holder mapping, when you determined how important the problem statement and
solving it are to the stakeholder. If you have direct access to a stakeholder, a preexist‐
ing relationship, and/or experience with them, it is of course much easier to ascertain
their motives. If you do not, though, which very well may be the case if you’re work‐
ing in a new area or if you are at a more junior level than the stakeholders that you
need buy-in from, then you may need to do some detective work via networking first.
Find peers who can get you information about their organizational purpose, and
about them. Find a manager who might have better access than you do to make some
introductions to people who can get you the insight that you seek.

To preclude relationship-based conflict where people don’t get along, it is very impor‐
tant not to judge motivations and the concerns that stem from them. Rather, it is
much more beneficial to review concerns with curiosity to truly understand them.
This can be difficult, since people typically have predefined beliefs, biases, and
assumptions that color concerns. Sometimes, emotions get involved, too. Even still, it
is better to really listen to the stakeholder rather than to try and validate your own
assumptions of how the stakeholder should be thinking.

72 | Chapter 3: Shared Alignment

For example, there were times in my career where I thought that a particular architec‐
ture decision was a no-brainer. The solution was based on thorough analysis, and it
seemed to be a no-regrets move to go forward with it. However, sometimes I would
get surprised when a stakeholder in a different area, like legal or cybersecurity, would
balk at the solution. In those situations, I needed to take a step back and get rid of my
preconceived notions to ask them what they were concerned about and why.

Seek to understand other points of view with curiosity rather than
defending your position. Invest in listening.

Getting concerns aired transparently is key to identifying the source of conflict. Your
conversation skills can help do this, and that brings me to the second part of my con‐
flict resolution approach, which is to foster positive conflict in conversation.

Foster Positive Conflict in Conversation
In conversations where the goal is to align stakeholders, I recommend the following:

Demeanor
Be positive, open, approachable, and engaged. Be clear and concise. Acknowl‐
edge concerns and varying perspectives, even if you don’t agree with them.
Everyone wants to be respected, heard, and understood.

Be factual
Separate facts from fiction. Sometimes people have firm beliefs that are not
actually true.

Neutralize
Beware of emotions. Diffusing tense situations typically requires a person to con‐
trol their own emotions before they can diffuse others’.

Be humble
Doing the right thing is more important than being right. And that could mean
compromising, admitting when you were wrong, and/or changing your point of
view of the right path forward.

Be confident
Add value to the conversation by offering your point of view and your opinions.

Table 3-5 provides some prompts and revisions that you could use to help listen and
align the stakeholder’s views.

Align on the Decision | 73

Table 3-5. Communication optimizations

Instead of… Try to…
Being open-ended to solicit input,
with statements such as “What do
you think?”

Be more specific. For example, “What concerns do you have about this solution?”

Saying only “Great, thanks” to show
you appreciate their input.

Play back what you heard:
“Thanks! It sounds like…about…”
Example: “Thanks! It sounds like you’re concerned about introducing new risks with
this solution.”
If you don’t understand enough of what they said to play back, ask:
“Thanks for sharing. Please tell me more. When you say new risk, what do you
mean?”

Providing your point of view without
acknowledging theirs, by saying, “I
think this solution works well
because…”

Share your point of view while acknowledging that you understand theirs:
“I understand that this solution introduces a new risk, and here’s my point of view on
how we can mitigate that.”
Include them in problem-solving if you don’t have an answer:
“I understand how important it is to address new risks. What are some mitigation
measures that we could take?”

Closing the conversation without
gratitude. For example, “OK, we’ll
get back to you.”

Manners and gratitude go a long way. Human connection is an essential basis of
establishing trust. Remind the stakeholder that this is an “us” issue for the greater
good:
“I appreciate you sharing your concerns openly; thanks for taking the time to work
through them together.”

With these communication aids, your positive conflict conversations should be pro‐
ductive in that they raise the true concerns. Next, you have to deal with them produc‐
tively. That brings me to the third and final part of my conflict resolution approach,
which is to resolve the positive conflict.

Resolve the Positive Conflict
Document concerns as part of the trade-off analysis of the architecture decision to (a)
show that you listened and (b) provide a tangible artifact for them to review and vali‐
date that you heard correctly. This is especially necessary if the concern needs to be
accepted as a risk and cannot be ameliorated by changing the decision.

Speaking of documentation, make sure you also get alignment documented, in the
form of concurrence or formal approval, either in meeting minutes or as part of the
decision record. This documentation for posterity can be very helpful to avoid future
rehashes of the same topic, and it also shows that the stakeholders really were on the
same page and not just assumed to have been aligned.

Remember that you can timebox if you need to curtail chatter and bring about a reso‐
lution—whether that is a consensus-based resolution or a disagree-and-commit reso‐
lution. Timebox means putting a timeline against how long a decision will be debated
before it is finalized.

74 | Chapter 3: Shared Alignment

Escalation is another mechanism, but it should be used sparingly. Escalation means
going to someone with higher authority than the stakeholder expressing concerns to
see if they can bring about alignment using their positional authority. Escalation is
usually only necessary if the stakeholder refuses to disagree and commit, but it can
also backfire if the root cause of the concern is not actually addressed, since the esca‐
lation authority may in fact have the same issue.

Get Commitment as a Result of Alignment
Just agreeing with a decision isn’t enough. You also need commitment from stake‐
holders that the decision will be implemented. Commitment means that the stake‐
holders also feel that they have an obligation to ensure that the outcomes sought by
the decision are actually achieved. The stakeholder clearly understands what part they
play, and what value they bring, in getting to the overall collective goal.

Commitment means that there is follow-through on an implementation plan relating
to the decision. The work required to implement the decision should be formally
tracked and absorbed into however work is managed at your organization. It’s a good
idea to revisit the decision and celebrate joint successes when the outcome is
achieved, or if the decision is for something complicated and long-lived, for the mile‐
stones as well. Also, if the people in a stakeholder’s role change over time, then also
make sure that they know about the previous commitments to be able to honor them.

Now that we’ve covered conflict resolution and commitment, let’s see how they relate
to your effective enterprise architecture strategy.

How Does “Align on the Decision” Relate to Your Effective Enterprise
Architecture Strategy?
Knowing how to align stakeholders on the decision itself is essential to creating
shared alignment. How does knowing this help you in your organization? As part of
establishing the objective of creating shared alignment, assess if there are processes or
organizational elements that need to be improved in the following areas:

Communication skills
Is there training available for your talent? Are there preferred communication
styles?

Cultural values
Is positive conflict part of the cultural mindset? Is positive conflict embraced as
part of collaboration, or is there conflict avoidance?

Accountability
Do stakeholders understand accountability? Is there a culture of holding each
other accountable for commitments?

Align on the Decision | 75

With this basis of aligning on who, aligning them on the why, and aligning them on
the decision, you should be in good shape to create shared alignment to a greater
degree than what exists today.

Case Studies
Let’s review a few case studies related to creating shared alignment and examine some
thematic dos and don’ts that they reveal. Let’s pretend that we’re reviewing a software
company called EA Example Company.

Let’s look at the first scenario, the mandate.

The Mandate
EA Example Company had a problem. Software release after software release went to
production rife with bugs and issues. Engineering teams were constantly in the mode
of fixing incidents caused by changes. New features were being delayed.

The senior engineering executive—let’s call him Tom—needed to solve this problem.
He turned to his enterprise architecture team for help. The enterprise architecture
team reviewed recent incident history and talked with some of the engineering teams
involved in those incidents. They quickly determined that the root cause of this
vicious cycle of bugs and issues was a lack of effective testing. If there was good-
quality testing, then the bug or issue would have been caught earlier in the software
delivery lifecycle, prior to the production release. The engineering team would still
have to fix the bug or issue, but much earlier and under much less time pressure than
when the issue became an incident. Further, if the testing was automated, then the
volume of tests could scale more quickly to match the pace of desired releases.

Tom was excited to get this insight. He promptly issued a mandate that no code was
to go to production without automated unit testing coverage of 90%.

Tom’s engineering teams grumbled a bit, but because they were under a mandate, and
that mandate was enforced by their deployment tooling, they complied. They spent
side of desk time learning how to automate unit tests. They spent time developing
unit tests, and changes that went to production did pass those unit tests.

However, EA Example Company noticed that there was still a trend of production
incidents caused by changes, particularly those dealing with dependencies or integra‐
tions with other systems. In addition, employee satisfaction was declining.

What happened here? Let’s take it point by point.

The enterprise architecture team engaged stakeholders—the engineering teams—to
figure out the root cause of the problem. But they did not dig hard enough. Why was
there a lack of testing efforts? Was testing incentivized by the organization? There are

76 | Chapter 3: Shared Alignment

multiple types of testing; why focus only on the bare minimum of unit testing? Auto‐
mated testing is easier said than done; where was the feasibility analysis for
enablement?

The leadership gave a mandate to solve what they thought was the problem, but it
wasn’t quite the right problem, and there was a lack of stakeholder buy-in and enable‐
ment to conform to that mandate. There was no explanation provided to the engi‐
neering teams having to do the work. The engineering teams didn’t have proper tools
and processes to be successful. There was no priority trade-off allowing engineering
teams to upskill in the automated testing needs. There was no trusted representative
of the engineering teams to engage in the decision-making process.

So, to summarize, key takeaways from this tale are as follows.

Do:

• Engage stakeholders to validate assumptions and come up with a recommenda‐
tion.

• Use mandates to enforce requirements if needed, but provide transparency into
the mandate’s rationale and benefits.

Don’t:

• Blindly mandate metrics. Metrics drive behavior. In this case, the mandate incen‐
tivized greater unit testing code coverage without emphasizing the quality of the
tests. Therefore, the outcome of improving incidents was not realized.

• Issue mandates without an explanation or without an understanding of the feasi‐
bility of adhering to that mandate.

• Ignore impacted stakeholders as part of the decision-making process.

Let’s now take a look at another scenario, the relitigation.

The Relitigation
Jane spends a lot of time making architecture decisions. She does a stakeholder analy‐
sis and includes the right stakeholders to be accountable, responsible, consulted, and
informed. She makes sure to document the decision, along with the decision’s
approval.

Over time, there are changes at EA Example Company, and as a result, there are new
people in the roles of the former approvers. The new people aren’t aware of the previ‐
ous decisions, and they start directing contradictory work. Jane finds out and reviews
the decisions with them. They decide that the decisions made by their predecessors
are invalid, and therefore, new decisions need to be made. The decision-making pro‐
cess starts all over again.

Case Studies | 77

What happened here?

Jane did all the right things in getting alignment to the original decision, but the deci‐
sion was not lasting due to factors outside of her control. Apparently, there’s an
underlying issue of a lack of trust between the new set of stakeholders and the origi‐
nal set, and/or the stakeholders thought their way was better than the old way.

Key takeaways from this tale are summarized below.

Do:

• Consider the right stakeholders and follow a transparent decision-making
process.

• Establish a culture of trust in the organization. It is always possible that decisions
need to be refined if there is new information that changes an assumption or
constraint that was considered in making the decision, but changing people
should not invalidate a former decision.

• Define principles for consistent decision making.

Don’t:

• Assume that new leaders understand why and how a previous decision was
made. Recommunicate as needed, and keep documentation records.

Next, let’s look at a scenario called the silo.

The Silo
EA Example Company needed to solve problems with data management and data
privacy. The data management team included their solution architect, product lead,
and engineering lead to come up with an architecture and solution for registering
data and managing data lineage. Similarly, the data privacy team included their solu‐
tion architect, product lead, and engineering lead to come up with a great architec‐
ture and solution for classifying data and filtering data access based on privacy rules.
However, neither solution worked well with each other. Thus, engineering teams had
to provide data classification information as part of the data management solution
and as part of the data privacy solution. There were no cross-checks between them to
gather insights into the data or scale the efforts around the data.

What happened here?

While each decision at a local level seemed like the right decision, when looked at
together, it is clear that they were made in silo. Either the data management and data
privacy architects should have engaged one another, or an overarching enterprise
data architect should have been engaged to bring their efforts together. The

78 | Chapter 3: Shared Alignment

stakeholder analysis was not done or missed the fact that the data management and
data privacy solutions would impact one another.

Let’s summarize the key takeaways from this tale.

Do:

• Ensure that all impacted stakeholders are identified and included.
• Share decisions.
• Promote collaboration between silos.

Don’t:

• Assume limited impact from a given decision.

Now, let’s look at another situation, called the never-ending debate.

The Never-Ending Debate
EA Example Company once experienced a conflict between two application archi‐
tects, Jane and John. The compute layer of an application was already containerized
but was running on a self-managed compute service that came with an infrastructure
management tail. Tom, the engineering manager, thought it would be good to get out
of the infrastructure management overhead, and he asked them for a decision on
what cloud service technology to use for the compute layer of their application.

Jane had good experience with serverless compute and thought that was best. John,
however, was adamant that containers were already a great compute option and they
should just stick with that, but in a managed container service form. They both stuck
to their convictions and could not come to an agreement. As a result, the engineering
team did neither and stuck with their self-managed option.

What happened here?

It doesn’t matter if Jane was right or if John was right. Because they could not agree
on a direction, the engineering team ended up not doing anything differently and
therefore did not get any benefit. Tom’s problem was not solved, and he probably lost
some trust in the role of application architects.

Ideally, either Jane or John could have taken the lead on conflict resolution. They
could have set aside their differences to learn from one another on why they had such
firm convictions on their solution outcome. They could have taken a step back to fac‐
tually review the needs of the compute layer and compare that with the service capa‐
bilities to figure out the best option. They could have timeboxed their debate time,
and, if all else failed, agreed to disagree and commit, to make progress. Any decision
is usually better than no decision, assuming that the culture is OK with taking some

Case Studies | 79

amount of risk. Last but not least, they could have invested in taking some time to
connect with one another to strengthen their own relationship.

Key takeaways from this tale are summarized below.

Do:

• Timebox decisions.
• Promote a culture of collective gain.
• Invest in relationships and human connection.

Don’t:

• Refuse to compromise.

Summary
To achieve the shared alignment objective and tailor KRs for your own organization,
consider any weak points in your organizational structure and/or processes that may
hinder creating shared alignment across varied stakeholders. What can you
strengthen to support stakeholder management?

First, you need to institute the mechanisms necessary to clearly identify who needs to
be engaged in making the architecture decision and how they should be engaged:

• Are there techniques for stakeholder mapping, to identify who is impacted by
this architecture decision, who wields the right level of influence, and who con‐
siders the impact important to them?

• Are there mechanisms for defining stakeholder engagement plans, where it is
clear who needs to be accountable, who is responsible, who needs to be consul‐
ted, and who needs to be informed for all relevant activities?

Second, you need to establish mechanisms that allow for gaining alignment on the
problem statement, and the priority of that problem statement:

• Is there any methodology, frameworks, or templates available to support defining
problem statements in terms of impacts and business benefits, in quantifiable
terms?

80 | Chapter 3: Shared Alignment

Third, you need a foundation to get alignment and commitment on the decisions
themselves:

• What are the challenges that the organization faces in creating shared alignment?
Are there cultural issues, such as a lack of trust? Are there pace issues, such as
mismatched priorities? Are there talent issues, such as a lack of skill to provide
the level of conversation needed to agree?

• Is there transparency in the architecture decision-making process? At every level
of the organization? Are decisions well understood? By leadership? By teams?

Use this framework to diagnose weaknesses in your organization that you can
strengthen through your enterprise architecture strategy objective and KRs for creat‐
ing shared alignment. Next up, we’ll go in detail on embedded and accessible archi‐
tecture information.

Summary | 81

CHAPTER 4

Embedded and Accessible

Chapter 2 shared that the second key strategic objective for an effective enterprise
architecture strategy is to make architecture information embedded and accessible to
all practitioners of architecture and their partners. It’s important to be deliberate and
thoughtful on what architecture information needs to exist, and how to make it easy
for end users to understand and use it.

Have you ever felt overwhelmed with the amount of information that you’re expected
to consume and act on in a single day? Between emails, messaging applications, and
websites, just a few ways that you see digital information on a daily basis, it is difficult
to know what information to retain and when to use it. Do this, do that, know this,
look up that, remember to tell that person something…the digital age of information
is relentless.

Thus, when it comes to enabling great architecture decisions, it is necessary to be
very deliberate in figuring out how to make architecture information available to all
those involved in making an architecture decision. Solving this problem brings best
practices together from knowledge management and user interface (UI)/user experi‐
ence (UX) design.

This chapter reviews these concepts and also dives into common mechanisms, princi‐
ples, and a framework that you can use to define key results (KRs) for the objective of
making architecture information embedded and accessible.

Knowledge Management in Embedded
and Accessible Architecture
Knowledge management is the processes and tooling around creating and using
knowledge across an organization. An enterprise architecture organization is well

83

positioned to establish knowledge management processes and tools around architec‐
ture information.

What Is the Goal of Knowledge Management?
The goal of knowledge management in an architecture context is to teach the users of
the architecture information—architects, product managers, engineers—how to apply
the knowledge gained from architecture information to solve similar or new prob‐
lems. For example, it should be possible to understand a pattern about event-driven
architecture and another pattern about extract, transform, and load (ETL) processes
to apply them together in an application to process real-time data events.

It probably comes as no surprise to learn that I am a big believer and advocate of edu‐
cation and the power of knowledge. The reason that the second objective of an effec‐
tive enterprise architecture strategy centers around making architecture information
embedded and accessible is that it puts the power of architecture knowledge into the
hands of those who most need to learn that knowledge to apply it to solving prob‐
lems. And solving problems effectively and consistently needs to be done at scale—by
all architects.

Chapter 3 established a culture of trust as a prerequisite for creating shared align‐
ment. A culture of trust also applies to this objective. Only a culture that promotes
knowledge sharing and the value of learning can support establishing an effective
enterprise architecture strategy. The opposite of this culture is a competitive culture
that actively inhibits transparency, openness, and sharing. Of course, a culture of
trust doesn’t mean ignoring data protections—confidential and sensitive data should
not be as open as other kinds of information.

A culture of trust—with values of transparency, openness, and
knowledge sharing—is a prerequisite to making architecture infor‐
mation embedded and accessible.

Now, that doesn’t mean that there aren’t differing levels of knowledge and expertise.
Such differentiation may be necessary to consider in managing the architecture infor‐
mation. For a real-life example, take mathematics. To do calculus, you first need to
learn precalculus, which in turn requires trigonometry, and so on and so forth, as
illustrated by Figure 4-1.

Figure 4-1. Example of knowledge progression using mathematics

84 | Chapter 4: Embedded and Accessible

Generally speaking, more people will need to know the simpler knowledge on the left
than the more complex knowledge on the right. Similarly, with architecture informa‐
tion, everyone may need to understand architecture principles to apply them to deci‐
sion making, but fewer people may need to understand complex architecture patterns
like solving for eventual consistency in a multiregion system.

Although architecture information comes in different types, and has variances in the
levels of comprehension needed, there is a common need to establish a knowledge
management lifecycle to create, disseminate, and maintain that information.

What Is the Knowledge Management Lifecycle?
The enterprise architecture strategy function would define lifecycle management
stages as shown in Figure 4-2 in detail for each architecture information type.

Figure 4-2. Knowledge management lifecycle applied to architecture information

Create refers to the initial stage of ideation and drafting the architecture information
content. Consider who should create what architecture information type, how they
should collaborate, and how to incentivize them to contribute information. There
should always be an owner of architecture information that takes accountability and
responsibility to keep the information fresh and accurate.

After the creation stage, it is possible to have an approval stage. Not all architecture
information types need approval—only those that need to be curated, like standards.
The desired level of veracity and quality of the architecture information type dictates
the amount of rigor and layers of approval. For instance, more review and approval
may be needed for a new architecture standard than for a new architecture pattern.
As a result, you could end up with tailored approval workflows such as the example
illustrated in Figure 4-3.

Knowledge Management in Embedded and Accessible Architecture | 85

Figure 4-3. Example approval workflows demonstrating differentiation in approval
layers

The distribute stage refers to disseminating the information out to the end users. The
most common mechanisms for making architecture information available in this
stage are push and pull, as described in Figure 4-4.

Figure 4-4. Pull versus push mechanism

Push means that the source of the information provides the information to the
human user. This is generally a passive way for the human user to consume informa‐
tion. For example, an organization may use email newsletters to publish information.
The email may be full of good information, but the human user may not remember to
use the information when it becomes relevant to an architecture decision or may not
even read it to absorb the information. I know that as a human user I am not alone in
skimming my emails.

Pull means that the user triggers the action of receiving the information, and is there‐
fore typically motivated to consume the information. An example of a pull mecha‐
nism is self-service search. The effectiveness of search varies depending on the user’s
ability to understand and describe what they are looking for, as well as the richness of
the metadata provided with the information being searched. Ever do a keyword
search or converse with an artificially intelligent chatbot? If so, you know exactly
what I am talking about.

Table 4-1 compares push and pull.

86 | Chapter 4: Embedded and Accessible

Table 4-1. Comparing push and pull

Mechanism Pros Cons
Push Scales to large audiences of

consumers easily.
Does not ensure active engagement by the human user.
If the time at which the information is consumed is disconnected from the time
that it is needed to make an architecture decision, there is a risk of lacking
effectiveness.

Pull Ensures active engagement
by the human user.

The effectiveness of targeted results depends on the information architecture,
coverage, and experience available for the information.

All of the architecture information types defined in Chapter 2 (for example, architec‐
ture principles, standards, frameworks, patterns, best practices, diagrams, and deci‐
sions) can be provided with either a push mechanism, a pull mechanism, or both.
However, given the trade-offs explained in Table 4-1, it is of the utmost importance to
consider usability and effectiveness.

For example, providing a common documentation knowledge management reposi‐
tory is a fairly straightforward and common way to provide architecture information.
However, just having a repository that stores information isn’t enough. Even enabling
a robust taxonomy and search pull mechanism isn’t enough. Coupling this repository
with push mechanisms to pick up specific, relevant bits of information can work very
well, particularly when that push mechanism is embedded into a process.

It is more effective to build push and pull mechanisms into the pro‐
cesses, tools, and experiences that result in architecture decisions,
rather than siloing architecture information into an independent
standalone solution.

Finally, the consume stage refers to the act of end users using the information to gain
knowledge and to potentially improve it. It’s important to consider continuous
improvement as part of this knowledge management lifecycle.

Knowledge that is gained comes in different forms, as described in the next subsec‐
tion.

What Are the Types of Knowledge Relative to
Architecture Information?
Knowledge gained from architecture information is both concrete and abstract. Con‐
crete knowledge is predominantly topical and explicit, whereas abstract knowledge is
implicit and absorbed through experience. Figure 4-5 illustrates these concepts fur‐
ther, to show at a high level how concrete knowledge is used to clarify what needs to
be known while abstract knowledge guides how and why people use knowledge a cer‐
tain way. Concrete knowledge is what you see, and it is proportionally less in volume

Knowledge Management in Embedded and Accessible Architecture | 87

than the abstract knowledge that you cannot see, yet the usage of the concrete knowl‐
edge heavily depends on the abstract knowledge.

Figure 4-5. Knowledge management types

Topical refers to knowledge specific to a subject matter area. For architecture, this
relates to information types like best practices, patterns, principles, and standards
associated with a specific business area or technology domain. Chapter 1 discussed
specializations within the architecture field, like security or cloud, which are exam‐
ples of topical areas.

Explicit refers to knowledge that can be clearly stated and is easy to document and
share. In architecture, all information types need to be explicit to be shared, from
architecture diagrams and decisions to patterns and standards.

Implicit refers to knowledge that is the opposite of explicit; it is knowledge that is not
clearly stated or easy to document and share. For example, unwritten rules, ways to
navigate in an organization, understanding motivations, intuition-based decisions,
undocumented historical knowledge, anecdotal experiences—all of these can be val‐
uable when shared to support more effective architecture decision making. However,
implicit knowledge is typically shared organically through conversations rather than
with deliberate strategic intent. An enterprise architecture organization could con‐
sider what implicit knowledge should become explicit and provide the mechanisms
necessary to do so—for instance, mining existing solutions for patterns through a
community of practice, which is a group of like-minded people exchanging ideas. (See
Chapter 5 for more in-depth discussion of the community of practice.)

Experience refers to knowledge gained from personal experience. The adage that
experience is the best teacher comes to mind. From an architecture perspective, this
applies to learning by doing and is inclusive of learning from mistakes. You have to
prove architecture theory through implementation experience. This could mean that

88 | Chapter 4: Embedded and Accessible

if you are the architect, you implement the proposed solution yourself or by influenc‐
ing an engineering team to do the implementation for you. You observe what works
well and what doesn’t and apply those lessons learned to the next problem. You could
then share those lessons learned and how the proposed solution works in the form of
an architecture pattern. If you are in the enterprise architecture organization, this
experience principle could translate into not approving an architecture pattern for
reuse until the pattern has been proven by at least one implementation.

I’m reminded of a simple real-life example to describe this point. When my kids were
little, they didn’t like to wear hats and gloves. Although I could tell them to do so
when the weather was cold and hope that they learned from listening, or I could lead
by example and hope they learned from observing, neither of these mechanisms were
effective. What actually sustained their learning was having them go outside, experi‐
ence being cold, and realize that they preferred to be warm through the use of hats
and gloves.

There Is No Shortcut for Experience
When it comes to developing the skills, talent, and knowledge necessary to be a suc‐
cessful architect, there really is no shortcut for experience. People in architecture roles
tend to be seasoned technology leaders. As leaders, they are visionaries who are able
to clearly communicate their vision and collaborate with others to both create and
implement that vision. They tend to have years of experience in solving problems
with an architectural mindset.

An architectural mindset consists of having a holistic, objective, big-picture perspec‐
tive. It considers not just how to solve a problem to fulfill a given requirement, but
also the holistic view of how the solution fits into the business and technology ecosys‐
tem, how it will be robust, scalable, and sustainable, and how it will meet nonfunc‐
tional requirements (see Chapter 5 for more in-depth discussion of nonfunctional
requirements). The focus on longevity and sustainability allows for identifying and
mitigating potential design risks and requires deep technical expertise with the tech‐
nologies being considered in the solution. It is this holistic perspective, this big-
picture thinking, this deep understanding of both technology and business, that
separates the architect from other roles.

Developing such a holistic, objective, big-picture perspective, along with leadership
and communication skills, as well as technical expertise, takes time and experience in
working with technology and other people to solve business and technical problems.
It’s a progression of learning how to design solutions, as shown in Figure 4-6, where
each experience to solve a larger problem relies on the ability to solve the problems of
smaller scope.

Knowledge Management in Embedded and Accessible Architecture | 89

Figure 4-6. Progression of problem-solving spheres

My own career follows this example. From each experience, I learned something. My
earliest software engineering experiences gave me a deep appreciation of what it
means to code and deliver software, and what it takes to maintain operational pro‐
duction systems. I solved little problems first, like a script to deliver a feature that
automated a single business process step. From that small solution, I learned about
behavior-driven development, automated testing, and logging. That helped me years
later when I was the architect for a logging solution, where I could better advise on
logging format, logging collection and analysis, and logging at scale. Similarly, my
consulting and management experience strengthened my communication and empa‐
thy skills, both of which were essential to being able to influence change at scale.

In summary, be open to new experiences, and gain knowledge through experience.

By strategically supporting knowledge management of architecture information as
part of the objective to make architecture information embedded and accessible, the
enterprise architecture strategy should result in several benefits described in the next
subsection.

Summarizing the Benefits of Knowledge Management
Ever hear the saying, “If a tree falls in a forest with no one to hear it, does it make a
sound?” Similarly, if architecture information is produced with no one to reuse it,
does it add value?

If you do knowledge management in the context of architecture information right,
you can get the right information to the right users at the right time to solve their
problems. This requires both an optimized knowledge management lifecycle and the
ability to extract implicit and experience-based knowledge to make it shareable and
explicit. This is usually a significant optimization because it does the following:

90 | Chapter 4: Embedded and Accessible

Prevents duplication
It leverages lessons learned from previous mistakes to allow learning from fail‐
ures without having to repeat those mistakes.

Enables reuse
It reduces time to market by enabling reuse of knowledge and solutions.

Increases productivity
It avoids knowledge hoarding, silos, and bottlenecks where knowledge is trapped
only in the heads of a few people. It empowers the masses by sharing that knowl‐
edge freely and making it available and retainable for everyone who needs to
know it.

Increases efficiency
Better communication, transparency, and quick access ensure that users always
have the latest and greatest information and are never operating with stale infor‐
mation.

Ultimately, you will avoid frustration and increase human satisfaction by enabling
users to be successful with the right knowledge at the right time. Speaking of humans,
in addition to knowledge management, it is also useful to be familiar with UI/UX
design, the topic of the next section.

UI/UX Design in Embedded and Accessible Architecture
Given that humans are the key recipients of gaining architecture information knowl‐
edge, it is necessary to consider human needs in the forefront of the embedded and
accessible architecture information objective. That is what UI and UX design helps
with.

What Is UI and UX Design?
UI design emphasizes look and feel to interfaces or access points used by humans.
Good UI design seeks to create easy-to-use, satisfying, and delightful interfaces. These
interfaces include graphical user interfaces (GUI), like web or mobile where users
interact with graphical elements, and voice-controlled interfaces (VCI), like smart
assistants where users interact through voice commands. For example, the knowledge
repository website that human users interact with to find architecture information is
a GUI.

Chapter 1 stated that an effective enterprise architecture practice overcomes siloed
decision making; UX design breaks down silos in the human experience. It is more
holistic than UI design in that it considers the entire user experience across a spec‐
trum of interfaces and beyond.

UI/UX Design in Embedded and Accessible Architecture | 91

The use of architecture information is necessary in a variety of experiences that
require outputting architecture decisions. For example, perhaps one experience is
around understanding what solutions already exist to provide a capability before
building or buying a new one. Another experience could be around designing a soft‐
ware application prior to building out its code, and deciding on key architectural ele‐
ments, like what technologies it uses, how to deploy it, and how to make it highly
available. It is highly probable that each of these experiences leverages multiple UIs
that need to work together to construct a seamless experience.

The enterprise architecture enablement function should partner with whomever is
necessary in the organization to ensure that architecture information is leveraged as
part of software delivery experiences. It should be a natural consequence of building
software to use embedded and accessible architecture information, rather than a one-
off, siloed experience to have to go and find it, as shown in Figure 4-7.

Figure 4-7. Example of how to think about answering questions that apply during the
software development lifecycle (SDLC) with embedded and accessible architecture
information

As you can see in Figure 4-7, many questions can and should be asked by a software
delivery team that pertain to architecture during software development.

For instance, while planning new software investment, it is necessary to be deliber‐
ately aligned with the solution architecture work conducted to define a capability tar‐
get architecture. If this new work is not aligned with that capability target
architecture, why not? Does that capability architecture need to be updated? Or is this
new work in fact duplicative or not needed from a business perspective? The archi‐
tecture information that needs to be presented here to inform this decision is

92 | Chapter 4: Embedded and Accessible

associated with the capability target architecture and what capability this new plan‐
ned investment provides. The ability to compare and contrast is also helpful.

UX would consider the plan experience to figure out the most optimum way to
present this information. UI would consider the interfaces themselves; perhaps there
is a catalog that indexes existing capabilities and solutions, and perhaps there is a GUI
that shows approved capability target architectures that are easily understandable.

Thus, both UI and UX focus on keeping the human user’s needs and goals in mind, to
create products that are simple and enjoyable to use. UX solves for the overall human
user experience, and UI solves for the interactive elements that the human user uses
inside that experience. Together, these provide benefits as shared in the next
subsection.

Summarizing Benefits of UI and UX
While there are many benefits of a high-quality UI and UX design, I emphasize the
top three benefits when it comes to using UI and UX with architecture information:

Promotes optimal usage and satisfaction
Humans are the consumer of architecture information, and as such, they must be
able to optimally use the information. UI/UX design emphasizes this and designs
for usability first, avoiding costly rework later.

Reduces support needs
As a consequence of optimal design, humans can be self-serviced with fresh,
accurate, and easily understandable architecture information. This reduces
churn, questions, and the need for a handful of experts to be available to explain
the architecture information, which in turn also reduces bottlenecks in the over‐
all UX process.

Promotes brand
I mentioned earlier how important it is for architecture to be seen as an enabler,
as part of building software as one team. UI/UX design can help promote this
brand identity by ensuring that architecture information is easy to use and
embedded and accessible directly within the software development process and
tools.

The enterprise architecture enablement function is best positioned to figure out what
the experiences are and to advise the strategy and governance functions on how to
best simplify and deliver delightful experiences. It can do so by applying a number of
principles that stem from knowledge management and UI/UX design. Let’s look at
these principles next.

UI/UX Design in Embedded and Accessible Architecture | 93

Knowledge Management and UI/UX Principles
Knowledge management and UI/UX design together provide a core set of principles
with which to guide achieving your embedded and accessible architecture informa‐
tion objective. These are principles that you can work to establish for your organiza‐
tion when operationalizing the roles, processes, and tools for creating, organizing,
and using architecture information.

This section covers principles to apply throughout the knowledge management life‐
cycle stages:

Create
Champion knowledge sharing.

Approve
Many over few.

Distribute
Just in time, transparent to find, single source of truth.

Consume
Easy and enjoyable, flag it or fix it, measure to improve.

Let’s start with championing knowledge sharing.

Create: Champion Knowledge Sharing
This principle is helpful to instill a culture of trust around knowledge management.
The act of sharing knowledge should be recognized and rewarded, preferably pub‐
licly. There should be incentives, such as public praise, gamification rewards, and/or
performance management acknowledgement.

Applying this principle could lead to a culture where the following occurs:

Leaders lead by example
Leaders explain how knowledge management of architecture information is a
part of everyone’s role and responsibilities. They partner with the enterprise
architecture enablement function to establish the mechanisms used to create,
update, and disseminate architecture information. They publicly recognize and
reward behaviors around architecture information knowledge sharing and
encourage reuse.

Knowledge champions exist
Perhaps there is a role called knowledge champion, whose duties are to encourage
people to follow all of the knowledge management practices and contribute their
architecture information knowledge. Sometimes the knowledge champions take

94 | Chapter 4: Embedded and Accessible

ownership of certain topical areas. Other times, they primarily collaborate with
other people to encourage them to contribute and use architecture information.

The champion knowledge sharing principle helps create a culture that promotes
knowledge sharing. How do you then encourage and scale knowledge contribution?
The next principle, many over few, helps do that.

Approve: Many Over Few
Another key principle to enable accessibility of embedded architecture information is
many over few. This means that the knowledge of many is often better than the cura‐
ted knowledge from the few. In other words, architecture information should be pro‐
vided by the audiences that are meant to use them, not just curated by a select few
trusted sources.

A wiki is a good example where information is managed by many people, for many
people to easily consume. The great thing about wikis is that information evolves
quickly and grows based on what information is perceived to be most useful. On the
other hand, the information is not always trusted or accurate.

The encyclopedia is a good example of a source of truth that is curated by a few
experts, for many people to consume. The great thing here is that the information is
definitely trusted and accurate. However, it takes more time to scale and grow the
information, and it is not always focused on what people most need to consume.

Architecture information is typically somewhere in between the wiki and the ency‐
clopedia approach. For example, many people in many roles should consume and
contribute to architecture patterns. It may still be necessary to have a lightweight gov‐
ernance process to ensure the accuracy and integrity of an architecture pattern, but
there is no need to restrict contribution to a few trusted sources.

So, with the first two principles of champion knowledge sharing and many over few,
you have a culture that both promotes knowledge sharing and is inclusive of a large
audience to engage in knowledge sharing. Now, you need to make sure that the archi‐
tecture information that is created from these efforts gets to the right users at the
right time.

Distribute: Just in Time
To embed architecture information into the processes, tools, and experiences that
result in architecture decisions, a key principle is just in time. Just in time in this con‐
text refers to having the architecture information needed to inform the architecture
decision at the time that the decision is being made.

A real-life example that occurs frequently for me is getting dressed. The getting
dressed decision is informed by a number of factors:

Knowledge Management and UI/UX Principles | 95

Principles
For instance, wearing clean clothes is a good thing.

Standards
For example, there is a dress code for professional attire.

Patterns
Patterns can include how the clothes coordinate with each other in terms of col‐
ors, shapes, and types.

Situational factors
Includes the weather and the destination.

It is therefore helpful for me, when I am getting dressed, to know just in time what
the weather is like today and what clean clothing is available that meets the standards
for where I am going. I use pull mechanisms to check my weather app for today’s
weather, and my closet for clean clothes. I use a push mechanism to then broadcast
the weather to my kids so that they can also dress accordingly.

Going back to Figure 4-7, let’s look at that planning decision again. Is it more helpful
to have capability information available when I need to decide on investing in new
technology or when I’m already building new software? According to the figure, it’s
better to have that information available just in time when I am about to make that
decision. So, you would need to determine what process and tooling humans are
using when they make that decision, and how you can make this information avail‐
able there, at that exact point. Is it as simple as a deep link to your capability target
architectures and capability catalogs? Or is it more sophisticated, with machine learn‐
ing prompts that bring similar capabilities to the human user’s attention? Or maybe
something in between?

With just in time, architecture information is available at exactly the right time. The
next principle complements just in time to make sure that the information is trans‐
parent and available at any time.

Distribute: Transparent to Find
Recall that transparency is key to building trust, especially in an architecture decision
process. Knowledge in general should be easy to create, find, and search, which
means that architecture information by extension should be easy to create, find, and
search. It should be very transparent and ideally intuitive to human users on how to
create, and where to find, architecture information. If someone has to go hunting for
a bit of architecture information, that’s a tell-tale sign that the information is not
transparent enough.

96 | Chapter 4: Embedded and Accessible

I once had a chief architect tell me that my application target archi‐
tecture didn’t exist if it wasn’t linked correctly in the configuration
management database that cataloged applications. It didn’t matter
that I’d produced the deliverable in collaboration with the engi‐
neering team and could produce a link when asked. It needed to be
transparent for anyone to find it where they would be looking for
it. I’ve taken that feedback to heart ever since, to ensure that my
architectural outputs are transparent and easy to find.

Both just in time and transparent to find allude to an authoritative source of informa‐
tion. The next principle, single source of truth, covers that notion explicitly.

Distribute: Single Source of Truth
The single source of truth principle ensures that there is only one authoritative source
to find a particular bit of architecture information. This principle avoids prolifera‐
tion, or having multiple places to find the same information, which can cause confu‐
sion and increase maintenance headaches around maintaining duplicative
information.

Based on the preceding transparency principle, it should be very clear what the
source of truth for the architecture information is. For example, if someone writes a
blog post that includes an architecture pattern, that should not be trusted with the
same level of authority as the architecture pattern catalog that acts as the source of
truth for approved architecture patterns in the organization. The author of the blog
post should be commended for taking the time to share their knowledge and encour‐
aged to contribute their pattern to the official source of truth and link to it for
broader impact and wider reuse.

We’ve now looked at principles that can be applied for architecture information to be
created, approved, and distributed. Next up, and just as important, are principles
around using that architecture information, starting with easy and enjoyable.

Consume: Easy and Enjoyable
Earlier, I alluded to easy understanding. This is the last key principle—architecture
information needs to be usable, meaning easily understood by its intended audience.
The information should be very simple to understand, very clear in its main points,
and very relevant to the audience. Simple often means short—clear and concise.
These concepts apply to both visual types of architecture information, like diagrams,
and written types, like documents.

Knowledge Management and UI/UX Principles | 97

Brevity and simplicity are key to usability.

In UI/UX, there is a concept of invisibility and intuitiveness. This means that humans
don’t care about the design per se, they care about getting their job done, and there‐
fore the design should strive to be invisible and intuitive such that users can do the
right thing without much effort. I emphasize this for architecture information. End
users don’t care about the beauty and elegance of a pattern or diagram so much as
they care about whether or not that artifact applies to the problem that they are trying
to solve.

Also in UI/UX, there is an emphasis on enjoyment and delight, or evoking good feel‐
ings through good design. This is important because humans are the end users, and it
is human feelings that get associated with the brand they are using, which leads to
their satisfaction to make them want to come back and helps them retain the infor‐
mation and gain knowledge. Delight can be attained by anticipating what humans
might do with the information and ensuring that the design helps them do it as fric‐
tionlessly as possible, with reduced cognitive load. This could entail ensuring famili‐
arity, meaning understanding what humans already expect when they see an element
or hear a term. This also could encompass consistent and predictable elements like
fonts, colors, and icons, which in turn promotes brand.

In architecture, speaking in universal terms is very important.
Don’t redefine well-known industry terms for your own purposes.

The easy and enjoyable principle also includes efficiency. Efficiency in this context
refers to understanding that new users may need more guidance, whereas experi‐
enced users may bypass certain workflows to speed up their experience. Similarly,
efficiency relates to flexibility, which allows users to customize their experiences as
needed.

Last but certainly not least, this principle always includes accessibility, meaning the
information can be available to any user, including those with disabilities. See Section
508 for US federal government guidelines on accessibility.

98 | Chapter 4: Embedded and Accessible

https://www.section508.gov
https://www.section508.gov

So now architecture information has been created and distributed and is easy and
enjoyable to use. That’s great, but it needs to be sustainable as information changes.
How to keep information up to date? The next principle, flag it or fix it, addresses this
question.

Consume: Flag It or Fix It
Flag it or fix it is a mechanism that complements the principle of many over few. For
instance, if an architecture pattern is out of date, it is good for a consumer of that
information to be able to fix that information or, if unable to directly fix it, to flag it to
the author for review to fix.

Enabling consumers to fix it inspires contribution. Being able to flag it allows for pro‐
active continuous improvement. Maintaining the freshness and accuracy of architec‐
ture information in the face of change—changing requirements, changing
organizations, changing technology—is a daunting challenge to overcome. Putting
the power of identifying changes and updating information accordingly in the hands
of the users is a scalable mechanism to provide such assurance.

Feedback is an intrinsic part of both knowledge management and UI/UX. Flag it or
fix it is a great way to get feedback directly from human users. Another way to get
feedback is to measure to improve.

Consume: Measure to Improve
As with any architecture standard, you will want to understand the efficacy of your
architecture information. What is being used? What is not? More to the point, what is
effectively being used? What is not?

To answer these questions, it is necessary to figure out how to measure what is work‐
ing and what isn’t. Is there a way to understand how often architecture information is
being read and how often it is being used in the software delivery process? Are there
too many clicks to find architecture information? These are some examples of ques‐
tions you can ask to figure out what to measure, how to measure, and what to do with
the metrics that you attain.

The principle here is to make architecture information creation and usage measura‐
ble, so that you have data points to base improvement on.

How do you use all of these principles as part of your effective enterprise architecture
strategy? The next section puts them into a framework that you can use to assess your
organization and identify opportunities for your KRs that support the objective of
making architecture information embedded and accessible.

Knowledge Management and UI/UX Principles | 99

Embedded and Accessible Architecture
Information Framework
The embedded and accessible architecture information framework focuses on usabil‐
ity rather than on any one specific architecture information type. Working backward
from the outcome of easy and enjoyable usability, the framework follows the
sequence of define, do, and dare in a continuous feedback loop across both the prod‐
uct management lifecycle (PMLC) and software development lifecycle (SDLC), as
illustrated in Figure 4-8.

Figure 4-8. Define, do, dare framework overlaid on PMLC and SDLC

The reason that the PMLC is included is because architecture starts with business
intent. Long before a technology is ever chosen, or the software created, there is first
an architecture decision as part of the initial product concept and design phase that
determines whether investment in a new capability is even needed as part of a capa‐
bility target architecture. The next three phases of the PMLC overlap with the SDLC.
Finally, there’s a retire stage when the solution providing the capability is no longer
needed, either because an alternative replaces it or the capability itself is deprecated.

100 | Chapter 4: Embedded and Accessible

The define, do, dare framework covers making architecture information embedded
and accessible at all architecture decision points throughout this PMLC and SDLC.
Let’s start with the first stage, define.

Define
The first stage, define, establishes specific details of what architecture information is
used by whom during specific interactions in those lifecycles, as shown in Figure 4-9.

Figure 4-9. Embedded and accessible framework, define step

The define stage is predicated on first defining what the interaction points are. At
what points in the product lifecycle and software lifecycle are architecture decisions
needed? A few examples are listed by lifecycle stage as follows:

Concept and design
Evaluate new product intent and determine the strategic technology direction to
fulfill that intent.

Development-plan
Confirm the bounded context of the new software solution and ensure that the
new software fulfills a unique business need and that it should be built or bought.
Confirm alignment such that the new software aligns with the capability target
architecture for the architectural domain that the new software supports.

Development-design
Provide a high-level application architecture design that decides on technology
choices, pattern choices, interactions between this new application and existing
ones in the technology landscape, and any related architectural decisions based
on application characteristics like data protection or availability needs.

Embedded and Accessible Architecture Information Framework | 101

Development-implement
Decide the details of tuning implementation patterns and determine whether any
learnings require revisiting application architecture decisions.

Development-test
Evaluate whether or not architectural requirements were met.

Production and launch-deploy
Make architecture decisions with regard to deploy considerations such as deploy‐
ment strategy, resiliency, reliability, and observability.

Services and support-maintain
Review any change that impacts the application architecture, whether that change
is instigated by new capability needs or by new requirements.

Retire
Update capability target architectures to reflect the retirement of an existing soft‐
ware solution. Determine whether to transfer assets owned by this software solu‐
tion to an active software solution or to deprecate them entirely.

In what processes are these points hit? What tools are humans working with when
they hit these points? Answering these questions will round out your definition of
each interaction point in which an architecture decision is made.

In addition, you need to define what user persona or role is engaged in each interac‐
tion point. For each interaction point, who are the personas or roles that need to
interact with architecture information? Let’s review the examples again, this time with
example roles added:

Concept and design
Solution architect partners with product lead to evaluate new intent.

Development-plan
Application architect confirms bounded context, unique capability, and build
versus buy decision in partnership with product and engineering leads. Solution
architect confirms capability target architecture alignment.

Development-design
Application architect provides high-level application architecture design and pat‐
terns in partnership with product and engineering leads.

Development-implement
Application architect in partnership with engineering lead reviews implementa‐
tion.

Development-test
Engineering lead consults with application architect on remediation.

102 | Chapter 4: Embedded and Accessible

Production and launch-deploy
Application architect in partnership with engineering lead determines deploy‐
ment architecture.

Services and support-maintain
Application architect partners with product lead on new intents and with engi‐
neering lead on new requirements.

Retire
Solution architect updates capability target architectures after consulting with
product and engineering lead. Application architect may be engaged around
transfer or deprecation decisions of assets, as those decisions may affect the
bounded context of existing software solutions.

By methodically defining each architecture decision’s interaction point and the roles
involved, you will determine what architecture information types are necessary to
support that interaction point. Here are the examples one more time with the archi‐
tecture information types:

Concept and design
Capability target architectures, architecture principles

Development-plan
Existing capabilities and the solutions that provide them, capability target archi‐
tectures, architectural domain mapping, build versus buy assessment framework

Development-design
Application architecture templates, architecture principles, architecture stand‐
ards, requirements, patterns and best practices, relevant decisions

Development-implement
Architecture patterns and best practices, relevant decisions

Development-test
Architecture standards and requirements, and associated patterns

Production and launch-deploy
Architecture standards, requirements, patterns and best practices

Services and support-maintain
Capability target architectures, architecture standards and requirements

Retire
Capability target architectures

Now that you know what architecture information types are necessary for each inter‐
action point, it’s time to figure out how that information will be used by the roles
involved. The next stage, called do, goes into this step in depth.

Embedded and Accessible Architecture Information Framework | 103

Do
The second stage, do, determines how the architecture information type will be used
in each interaction point by each role.

How should consumption occur by the specified role in the interaction point? Should
the information be passively consumed, where the onus is on the end user to apply
choice, or dynamically consumed via a guided experience?

For instance, let’s look into the details of making an application architecture design
decision around high availability in the development-design stage. If there is a pro‐
cess to draft and review application design, and tooling to support that process, then
a guided experience could inform the product and business leads of any relevant
standards, intake their availability requirements, and pass that context along with rel‐
evant principles, standards, patterns, diagrams, and decisions that apply for this spe‐
cific application to the application’s engineers, developers, and architects.

If there is no such tooling, then manual steps can be taken to guide users to the same
outcomes; for example, establishing templates for this kind of decision that links out
to the relevant architecture information material. Or using a push mechanism from
the process to alert the end user to pay attention to a specific piece of architecture
information.

The exact details and possibilities will differ based on the maturity of your organiza‐
tion’s processes and toolings. By the end of this stage, though, you will have deter‐
mined the best consumption mechanisms and any changes needed to get to that end
state for each interaction point that supports making an architecture decision in the
PMLC and SDLC. But you’re not done yet! The last stage of the framework, dare,
explains why.

Dare
The last stage of the embedded and accessible information framework is dare. Dare to
challenge to ensure that the architecture information is truly effective—effectively
created, effectively distributed, effectively consumed. Continuous learning and
improvement are how you make things better and more optimal.

Use the flag it or fix it and measure to improve principles to ensure that a usability
feedback loop is built into the interaction such that you can measure effectiveness; for
example, user satisfaction, number of clicks, or duration on a page.

Similar to the do stage, the exact details of feedback loops and measurement will dif‐
fer based on your organization’s tooling and processes.

104 | Chapter 4: Embedded and Accessible

Case Studies
Let’s review a few case studies and examine some thematic dos and don’ts that they
reveal, using the EA Example Company. The first scenario is the new enterprise archi‐
tecture standard.

New Enterprise Architecture Standard
EA Example Company’s enterprise architecture team diligently followed the compa‐
ny’s processes to define a new standard around software languages, to narrow what
software languages were approved for usage. This standard impacted all software
engineers. In accordance with their processes, the enterprise architecture team social‐
ized the standard to subject matter experts and senior leadership with direct brief‐
ings. They also published the standard on their website and announced the new
standard in a newsletter that reached senior engineering leadership.

Software engineer Sasha stumbled onto the standard when she came across the enter‐
prise architecture website, while searching for a different piece of information. Sasha
told her teammates and was sure to use an approved language for the next piece of
software they developed.

Software engineer Tony learned about the standard when his manager forwarded the
newsletter to him. Tony realized that his application was written in a language that
was not on the approved software list. He alerted his manager, and his manager, Tom,
said that there was no sense in refactoring to convert to the approved software lan‐
guage. So, Tony continued development with his original software language.

Software engineer Mike didn’t get the newsletter, or see the website. He used an
approved software language purely by coincidence.

Software engineer Gina started a new job with EA Example Company and did not
know about the standard; she recommended using a software language that she was
familiar with to her team that was not actually on the approved software list.

Over time, the enterprise architecture team realized that their standard was not par‐
ticularly effective.

What happened here?

A one-time push campaign was used, which was not a sustainable mechanism to
ensure that the roles that needed to know about the standard were educated about the
standard and could abide by that standard. In addition to the communication mecha‐
nisms employed, there should also have been effort around training, perhaps in soft‐
ware engineer onboarding, and/or just-in-time information about standards in
software development processes. There should have been an enforcement mechanism

Case Studies | 105

as well in the software development processes to check that an approved software lan‐
guage was being used.

Key takeaways from this tale are summarized below.

Do:

• Follow established processes to define and approve new standards.
• Embark on communication campaigns.

Don’t:

• Assume that one-time campaigns are enough.
• Stop at educating the current user base; be mindful that users change.
• Stop at simply publishing a standard and assume that users will seek it out;

instead, work to incorporate the standard into the process and controls that the
user will execute.

The next scenario is called the best practices.

Best Practices
EA Example Company’s senior engineering leader, Tom, noticed that his software
engineers were spending a lot of time duplicating work in solving the same or similar
problems such as application logging. They tended to rely on searching the internet
and asking each other for clarifications and answers.

Tom asked his enterprise architecture team for guidance. The enterprise architects
decided that if they defined best practices in architecture patterns, they could share
knowledge and have all software engineers reuse that knowledge. They set up a
knowledge base and published several documents about best practices that they
reviewed among themselves. They linked this knowledge base from the company’s
internal engineering portal.

Tom was happy to see the knowledge base form. However, as time passed, his soft‐
ware engineers still spent time duplicating problem-solving and still preferred to use
the internet and each other rather than the knowledge base.

What happened here?

Patterns were documented, intended for reuse, but were not effectively reused. The
knowledge portal was set up with good intent, but it didn’t adhere to the principles
mined from knowledge management and UI/UX design that specifically target reuse
and many over few. Since the information was not as consumable or as usable as it
could have been, the behavior of the software engineers did not change.

106 | Chapter 4: Embedded and Accessible

In summary, the following are the key takeaways.

Do:

• Define architecture patterns tailored for your company.
• Incentivize patterns contribution and reuse as part of engineering excellence, for

example through gamification and/or as part of performance management.
• Make patterns relevant by including them in the processes and tooling that engi‐

neers use for solving specific architecture decisions.

Don’t:

• Duplicate information widely available in other sources.
• Assume the audience knows when or how to use your pattern.
• Keep patterns in the curated hands of the few.

The last scenario to examine is called the static artifact.

The Static Artifact
EA Example Company’s enterprise architecture standard required an application
architecture artifact that described how that application interacted with other applica‐
tions as part of approving that application to launch into production.

Application architect Annie wanted to be a good citizen and comply with this
requirement. She asked for a template but did not receive one. She then asked for
examples, and received some, but they were quite inconsistent with one another. So
she documented a static diagram to fulfill the requirement based on her own experi‐
ence. The application was approved for launch in production.

Over time, as the application ran in production, there were incidents, and new mem‐
bers of the application team wanted to understand how the application was architec‐
ted. However, Annie had no reason to update the diagram, having fulfilled the initial
requirement.

What happened here?

The architecture artifact was documented as required for the initial system launch,
but it was not kept up to date since there was no refresh requirement and it was a
highly manual effort to keep up with changes. Also, there was no template with pre‐
scribed guidance for consistency across applications.

Case Studies | 107

Do:

• Use diagrams to describe systems.
• Use standards to keep diagrams consistent. For example, ArchiMate is available

for enterprise architecture modeling, C4 model is available for software architec‐
ture modeling, and Unified Modeling Language (UML) is available for general
modeling.

Don’t:

• Make diagrams as static, one-time diagrams:
— Think of diagrams as living documents that are updated frequently as part of

change management. Ideally, updates can even be prompted by automated
events.

— Think of ways to make diagrams queryable. If architecture intent is queryable,
then it can be compared with reality to diagnose gaps in implementation and
can also have rules run against the queryable diagrams to forecast compliance
to requirements.

• Make diagrams convoluted. Simple diagrams with clean lines, a clear legend, and
bounded context are most easily understood.

Summary
To achieve the embedded and accessible objective and tailor KRs for your own orga‐
nization, consider any weak points in your organizational structure and/or processes
that may hinder creating usable, effective architecture information across various
stakeholders.

Does your culture support knowledge sharing? Leverage knowledge management and
UI/UX principles in this quest to make architecture information effectively created,
distributed, and consumed across PMLC and SDLC.

Use the define, do, dare framework to uncover opportunities for your organization to
make architecture information embedded and accessible during architecture decision
making. These opportunities become your specific KRs for the embedded and acces‐
sible objective. The framework is summarized as follows:

1. For each type of architecture decision, first define when the decision is made, in
what process and tools, by whom, and what architecture information they need
to know as inputs to make a great architecture decision. This part of the frame‐
work yields a consistent understanding of interaction points, roles, and the archi‐
tecture information types needed for each interaction point.

108 | Chapter 4: Embedded and Accessible

2. Do the hard work of figuring out how exactly that architecture information is
consumed at that interaction point. What is the best way to embed that informa‐
tion and make it accessible, just in time, at that interaction point?

3. Dare to continuously improve. As architecture information is made available, is
it achieving its purpose? What feedback loop and what measurements can you
make that provide indications of effectiveness? How can you use this data point
to refine your approach?

In the next chapter, we’ll deep dive into the next objective: enable and enforce.

Summary | 109

CHAPTER 5

Enable and Enforce

Chapter 2 shared that the third key strategic objective for an effective enterprise
architecture strategy is to enable and enforce architecture standards.

What first comes to mind, when you think about standards? Chances are, you think
about standards that are rules, such as laws and regulations, that must be followed or
else there are consequences. Love them or hate them, speed limits are one such exam‐
ple; drivers who speed past traffic cameras get fined indiscriminately.

Look around and you’ll see evidence of standards all around you. That door nearby?
It was built to building code specifications. The stop sign or traffic light on the street
that you cross every day? It is part of a standardized system designed to instruct driv‐
ers and pedestrians.

So far, I’ve talked about standards that tell you what to do. What about how to do it
effectively? That is typically what best practices define.

Best practices are proven ways to achieve a standard. Violations of best practices still
carry consequences, but potentially not as immediate or severe as violating a legal
rule does. For example, paying off credit cards monthly is a best practice to manage
finances. If a month’s payment is missed, nothing dire may happen immediately, but
after a while, credit card debt can affect the ability to make major financial
transactions.

Similarly, look at the example of brushing teeth. It’s a standard rule in my household
that you have to brush your teeth twice a day. We’ve also been instructed by our den‐
tist on the best way to brush teeth—brushing with circular motions rather than up
and down, taking adequate time to brush rather than rushing, and brushing after
meals instead of before. These techniques are best practices that help meet the stan‐
dard for brushing teeth.

111

We’re surrounded by standards. But why? What’s the benefit?

The benefits of standards tend to fall into three categories:

Operational efficiency
This involves optimized processes and efforts to reduce costs and increase pro‐
ductivity—particularly when it comes to making informed decisions that align
with your organization’s business needs, and with regard to simplifying complex
technology landscapes by reducing duplicative solutions.

Risk management
Risk management serves to mitigate the chances and/or impact of issues as
related to operational risk, security risk, and data management risks.

Innovation
Chapter 1 discussed how a key benefit of effective enterprise architecture is to
break down silos. Enterprise architecture standards are a great way to promote
interoperability among systems, thereby allowing for innovative solutions using
new technologies that can still work together and be compatible with one
another. Such interoperability also allows for being resilient to change.

Formats are a great example of a standard that aims for operational efficiency
through reuse and interoperability. Standardization of plugs and voltages allows for a
common way to provide electricity to devices. Manufacturers don’t have to worry
about creating custom solutions for how devices draw power from the grid, allowing
them to focus on innovating more value-added business choices. Standards can have
limits, though. For example, the standard voltage and plugs differ across regions,
such as between the United States and Europe, and adaptors are necessary to work
across them.

Another example that outputs operational efficiency is common terminology. For
example, there is a common symbology used to inform pedestrians of when to cross
streets. It doesn’t matter if that street is in Washington, D.C., where I live, or in New
York, where I grew up; the red hand and the white person outline both mean the
same thing. Thus, pedestrians experience reduced cognitive load and a streamlined
approach to manage traffic.

Pharmaceutical quality standards are a good example of a standard that aims to miti‐
gate risk. My parents worked in the pharmaceutical industry, where they managed
quality for medicines. It was essential that every dose of medicine met the high-
quality standards that prescribed every detail including strength, formulation, shape,
and size to avoid adverse effects.

Now that we have a common understanding of what standards are and how they are
used in general, let’s apply this knowledge to architectural standards and learn why it’s
so important to enable and enforce them.

112 | Chapter 5: Enable and Enforce

What Is an Enterprise Architecture Standard?
As you may have guessed, an enterprise architecture standard is a standard that
defines the requirements for, and applies to, the architecture of a technology solution.
These requirements are typically codified in approved corporate governance docu‐
ments, as illustrated in Figure 5-1.

Figure 5-1. Typical governance document ontology

An enterprise architecture policy document defines the why behind needing enter‐
prise architecture standards. It covers the overall business objectives and risks that are
mitigated by the standards, and it defines key roles and their accountabilities and
responsibilities, such as an enterprise chief architect.

An enterprise architecture procedure document is essentially a standard operating
procedure (SOP) that details the process that needs to be executed to adhere to the
standard’s requirements. Enterprise architecture patterns, as detailed in Chapter 1,
define best practices and elaborate on proven ways to solve problems in adherence to
the requirements defined by the standard.

An enterprise architecture standard document defines requirements that support and
guide decision making to acquire, create, deploy, and manage technology solutions in
alignment to business objectives.

The next several subsections talk about the first major type of architecture standards,
which are those that span several architectural concerns known as nonfunctional
requirements (NFRs). A nonfunctional requirement defines what must be true for a
specific solution quality.

Stability NFRs
The risk of technology failing is a prevailing concern with regard to business continu‐
ity and disaster recovery. Enterprise architecture can help mitigate the risk of

What Is an Enterprise Architecture Standard? | 113

experiencing adverse impacts from failures by defining standards that guide decision
making to make sure that the technology works as intended and consistently, even in
the face of failures. Note that the objective here isn’t to prevent all failures, because
that is an impossible feat, and failures will occur. The objective is to respond swiftly
and mitigate the impact of any given failure. The following set of NFRs are defined to
do just that:

Resiliency
Resiliency is the ability to tolerate failure, where failure is caused by a change to
the technology solution or to its surrounding environment. Tolerate means that
there may be acceptable degradation or, even more ideally, the failure is detected
and resolved before escalating into adverse impacts. A typical resiliency measure‐
ment is mean time to repair (MTTR), which is the average time to resolve a fail‐
ure and return to normal operations. The lower MTTR is, the better your
system’s resilience.

Recoverability
Recoverability is the ability to recover capabilities upon a failure. This is neces‐
sary to support resilience since this is what allows for tolerating failure. Recover‐
ability is typically measured by recovery time objective (RTO) and recovery point
objective (RPO). RTO is the amount of time that a system takes to restore capabil‐
ities after experiencing a failure. RPO is the maximum amount of data measured
in time that can be lost without unacceptable adverse impacts upon experiencing
a failure. For example, a 10-minute RPO means that the system can withstand up
to 10 minutes of data loss in the event of a failure. Systems that automate their
recovery capabilities are often called self-healing. Self-healing means that they do
not require any outside intervention, let alone manual intervention, to recover
from a failure.

Availability
Availability is the ability to provide expected transactions or capabilities with
expected level of service. Availability is typically measured as the ratio of available
time to total operational time, and provided as service-level agreements (SLAs) to
end users by contract or service-level objectives (SLOs) to end users without a
contract. Fault tolerance builds on availability to ensure zero downtime, meaning
that RTO and RPO are zero.

Reliability
Reliability is the ability to provide consistent levels of quality service. A highly
resilient application is not by itself reliable; for example, if it fails and recovers
within a 10-minute RTO, that’s great resiliency. But if it fails every day for 10
minutes, that’s poor reliability. Reliability is typically measured with SLOs.

114 | Chapter 5: Enable and Enforce

Durability
Durability is the ability to protect data from loss or corruption.

Observability
Observability is the ability to provide transparency and visibility into a system’s
behavior in support of troubleshooting and root cause detection. Related capabil‐
ities include logging, monitoring, and alerting on the system’s performance.
Observability supports mean time to detect (MTTD), which is the average
amount of time that it takes to identify the root cause of a failure. To achieve
minimal RTOs and swift MTTR, MTTD needs to be as small as possible.

Let’s look at an example illustrated by Figures 5-2 and 5-3 of how applying these
NFRs to a simple application changes the architecture of that application.

Figure 5-2. Simple application without stability NFRs considered in design

Figure 5-3. Simple application with stability NFRs considered in design

What Is an Enterprise Architecture Standard? | 115

As Figures 5-2 and 5-3 illustrate, designing and building an application with stability
NFRs in mind leads to making key application architecture decisions:

1. Routing
With needing to build for redundancy, if user driven, what kind of traffic routing
policy makes the most sense—geographically pinned, latency-based, weighted
policy? Does load balancing apply based on the selection of compute service? Do
scaling groups apply, and if so, with what kind of scaling policy? Is redundancy
employed in an active/active, active/passive, or active/standby manner? Does the
redundancy support the ability to failover, such that you can reroute traffic to an
operational stack (compute plus data) in the event of failure detected in one stack
instantiation? How long do you keep this redundant stack around for, to support
the ability to failover? Has capacity planning occurred to rightsize the redundant
instances from a cost-efficiency perspective? What is the fault domain that deter‐
mines the level of redundancy? Meaning, if the fault domain is a single availabil‐
ity zone, then you would employ redundancy across multiple zones. If the fault
domain is a single region, then you would employ redundancy across multiple
regions. In either case, you also introduce affinity concerns with the trade-off of
performance and latency for any transaction that crosses zones or especially
regions. How does the application deal with these concerns?

2. Compute to data interaction
Is the interaction from the compute layer to the data layer active/active, active/
passive, or active/standby? What kind of consistency is necessary for the data,
strong or immediate or eventual? Do consistency requirements differ based on
data writes or data reads? Is a data caching layer required to buffer demands?

3. Data management
What kind of replication is needed to meet the consistency and availability
requirements? How many replicas are needed; is a quorum needed? How about
backups: what are the durability requirements? How often are backups needed,
and are they full backups or incremental? Do you need backups or snapshots or
both? Do you have to support point-in-time restore?

4. Observability
What kind of monitors, logs, traces, and alerts are needed to support observabil‐
ity? Are thresholds tuned based on testing? Do alerts trigger self-healing automa‐
tion? What kind of failures can be self-healed?

Although not visualized, another key decision is dependency management:

Dependencies
What is the application dependent on, both inside the application and beyond
the application, to provide design-time and runtime capabilities? Design time
refers to building and deploying the application. Runtime refers to when the

116 | Chapter 5: Enable and Enforce

application is operating. Out of these, what are critical dependencies, where criti‐
cal means that if the dependency goes down, this application will also go down?
A failure mode effects analysis (FMEA) is a helpful mechanism to identify and
diagnose critical dependencies, thereby allowing for decisions to be made on how
to mitigate the risk of a critical dependency failing (see Table 5-1).

Table 5-1. FMEA example template

Cause of
failure

Probability Impact Criticality Mitigation

Root cause A number on a 1 to 5 scale,
where 1 means failure is unlikely
to occur, and 5 means failure will
definitely occur.

A number on a 1 to 5 scale,
where 1 means minimal
impact due to failure, and 5
means severe impact due to
failure.

Multiply probability by
impact. The higher the
number, the more
critical the failure.

Method to reduce
the criticality of
failure

Keeping applications up and stable is a key benefit of defining architecture standards
for stability NFRs. The next subsection shifts focus to optimally building, testing, and
deploying applications, still with intertwined stability concerns.

Release NFRs
A typical business objective is to release new capabilities often. That is often acceler‐
ated by the ability to continuously build, test, and deploy software releases:

Testability
The ability to be testable, preferably in an automated way, to ensure output of
code execution matches intent. There are many kinds of testing. Figure 5-4 shows
my take on what kinds of tests to consider for a testability NFR.

Figure 5-4. Example testing NFR areas

What Is an Enterprise Architecture Standard? | 117

Deployability
The ability to build and deploy software to output a usable customer product.
There are many deployment strategies to consider. Figure 5-5 shows a few exam‐
ples, where all in one refers to immediately shifting all traffic to a new version,
blue/green refers to deploying a blue stack for the original version and a green
stack for the new version and only switching to the green stack after testing it,
and canary is similar to blue/green in that it has two stacks, but traffic is shifted
to the new stack over predefined intervals of time. The example shows three, but
this can be as many or as few as you want to get to 100%. The idea is that you test
with increased load to find adverse impacts prior to the full load experiencing an
issue. The all-in-one deploy window is shortest and only requires the duration of
deploying the change. Blue/green is next longest as it requires testing time. Can‐
ary can be the same or longer than blue/green depending upon the periodic
interval of time chosen to complete the testing.

Figure 5-5. Example deployment strategies

Agility
The ability to make changes frequently.

Designing and building an application with release NFRs in mind leads to making
key application architecture decisions:

Testing
The degree of modularity and composability of the application affects its testabil‐
ity. In addition, you may decide to do behavior-driven development and test-
driven development to ensure testability. Resiliency testing might require you to
get familiar with chaos engineering and run experiments to tune monitors, logs,
and alerts.

118 | Chapter 5: Enable and Enforce

Deployment strategy
Using strategies like blue/green and canary allow you to test before fully commit‐
ting to the change. They also imply running more than one version of software at
a time in production, which means backward-compatible changes. How will you
get feedback that your new version is performing adequately? Do you have the
right monitors and alerts in place? You’ll also need to decide on whether you do a
rollback or a rollforward strategy in the case an issue is detected. In blue/green or
canary, you have the original stack available until the traffic is fully switched to
the new stack, but do you need to keep it around even longer to have something
to roll back to? Or do you rely on roll forward once the deployment is
completed?

Quantum of deployment
In relation to agility, the unit of change is your quantum of deployment. Is your
change a simple and small change, easy to deploy, troubleshoot, and roll back? Or
is your change a larger, more complex, bundled change? Is there a lot of overhead
to manage for changes, and how does that factor into your change size?

Keeping applications agile and able to release high-quality code frequently is an out‐
put of the release NFRs. The next subsection looks into another aspect of high qual‐
ity: building highly performant and efficient software applications.

Operational Efficiency NFRs
Characteristics of well-architected applications include being able to use resources
efficiently—both in terms of performance and cost—even when demands change.
The qualities that operational efficiency NFRs aim to output include the following:

Performance
The ability to respond to a demand. Typically measured by latency and through‐
put. The lower the latency and the higher the throughput, the more performant
the application is and the better the end-user experience.

Scalability
The ability to increase in performance and capacity as demands increase.
Figure 5-6 shows typical scaling strategies. Scale up or vertical scaling strategy
means to increase capacity by adding more resources such as memory or pro‐
cessing power to existing compute instances to handle increased demand. Scale
out or horizontal scaling strategy means to add more identical compute instances
to increase overall capacity; this strategy relies on the ability to load balance to
distribute demand among the instances.

What Is an Enterprise Architecture Standard? | 119

Figure 5-6. Scaling strategies

Elasticity
The ability to automatically increase or decrease capacity as demands fluctuate.
Can complement the use of automation with a scaling strategy.

Flexibility
The ability to accommodate changes over time.

Simplicity
The ability to be uncomplicated and easy to understand and maintain.

Practicality
The ability to be sensibly implemented.

Cost efficiency
The ability to optimize total cost of labor to build and operate the solution. Total
cost of labor includes not only infrastructure cost but also the cost to operate and
maintain the infrastructure and application.

Feasibility
The ability to be implemented within the operating constraints.

Usability
The ability to be used by end users easily and delightfully.

120 | Chapter 5: Enable and Enforce

Designing and building an application with operational efficiency NFRs in mind
leads to making key application architecture decisions:

Resource utilization
What are choices that reflect in your memory, disk I/O, storage, and CPU usages
and selections? How about container image dependencies, software dependen‐
cies, the size of your binaries? Do you use asynchronous or synchronous interac‐
tions, and what is your tolerance for latency? What choice of compute and
storage meets your performance requirements?

Capacity
Do you reserve capacity and pre-allocate capacity to handle your peak demand,
thereby trading off cost for the assurance of availability? Or do you invest in elas‐
ticity and automate scaling, assuming the time it takes to scale is tolerable? Can
you scale out horizontally, and if so, what would your minimum and maximum
number of scaled units be, and your load-balancing strategy?

Management
From a total cost of ownership and feasibility perspective, is there more benefit
to going with a serverless offering or a managed service offering over self-
managed? Or how about a vendor software as a service offering?

Cost levers
Are you monitoring spend? Is your spend efficient? Are your workloads sized
and utilized effectively? Is your traffic bursty or steady, and are you using cost-
effective compute and databases based on those access patterns?

Making applications highly performant, able to respond to changes, and cost-effective
is a result of the operational efficiency NFRs. The next subsection looks into another
set of NFRs for a key architectural consideration essential to breaking down silos.

Interoperability NFRs
An essential architectural ingredient in optimizing systems for local purposes while
enabling the integration necessary to compose seamless experiences is interoperabil‐
ity. These NFRs help to mitigate the risk of silos, promote innovation, and use proper
levels of abstraction:

Extensibility
The ability to easily add new capabilities.

Interoperability
The ability to work with other systems.

Portability
The ability to transfer capability from one system to another.

What Is an Enterprise Architecture Standard? | 121

Reusability
The ability to be used again in another system.

Adaptability
The ability to be future-proofed and withstand changes without major rework.

Designing and building an application with interoperability NFRs in mind leads to
making key application architecture decisions:

Interfaces
What are the interfaces such as APIs through which this application will
exchange information with other applications? What are the standardized con‐
tracts for this exchange? Will the information exchange be real time or batch?

Modularity
What is the modular structure of the application? How are components defined,
and specifically how are their boundaries defined to specify interfaces to
exchange data across them?

Making applications interoperable allows for a high degree of loose coupling, which
enables agility and adaptability and mitigates dependency risk, as shown in
Figure 5-7, since each application can independently change from one another and
communicate through well-defined and well-managed interfaces.

Figure 5-7. Comparison of tight versus loose coupling

Last but not least, let’s wrap up our discussion of NFRs with a quick look at security.

Security NFRs
An essential characteristic of a modern application is its security posture, the ability
to protect data. At the highest level, there are at minimum these NFRs:

Security
Protect applications, data, and infrastructure from threats and attacks.

122 | Chapter 5: Enable and Enforce

Verifiability
Inspect that what was intended in the architecture is implemented.

Designing and building an application with security NFRs in mind leads to making
key application architecture decisions:

Data protection
What kind of data is being processed and stored, and what is necessary to protect
it, such as encryption at rest, encryption in transit, at field level, or overall? Are
the right kinds of keys being used? The right certificates? Is data isolated
appropriately?

Access
Are there appropriate authentication and authorization mechanisms? How does
least-privileged access affect the design of the application? Are both human and
system access well controlled? Is every transaction authorized? Is the identity
boundary well defined? Is the network boundary well defined? Is network seg‐
mentation adhered to appropriately?

Audit
Are logs available to support security analysis in the event of a security issue? Is
history available and are actions repeatable?

As you can see, architecture standards in terms of NFRs encompass a great number
of areas across application design.

Summarizing NFRs
We just reviewed a lot of words ending in ity. Check out the ISO 25000 software and
data quality standards for more. Each organization’s enterprise architecture enforce‐
ment function should define the NFRs that matter the most to their business needs.
To define an NFR, consider what must be true for each quality. Using availability as
an example, an organization may choose to define an NFR that all of their applica‐
tions must be available 99.99% of the time.

Since each NFR also acts as a constraint on solution design, it’s important to under‐
stand the prioritized trade-offs between them. In the preceding example, if 99.99% is
so highly prioritized, then the inherent redundancy required to support that NFR
becomes part of cost efficiency.

Architecture patterns are typically used to describe how to implement a design or sol‐
ution that will meet certain NFRs. Patterns, generally speaking, are best practices.
Only if there is truly one way to solve a problem, to answer the question how, should
a pattern itself be a rule/requirement. This scenario is somewhat rare.

What Is an Enterprise Architecture Standard? | 123

https://oreil.ly/dDYkK

While NFRs are a large portion of enterprise architecture standards, they are not the
only ones. The next subsection talks about another type of enterprise architecture
standard, which I call architecture technology standards.

Architecture Technology Standards
Sometimes called a technology reference model (TRM), architecture technology stand‐
ards define what is an approved technology service, product, or software for the orga‐
nization. For example, take software languages. Perhaps one organization is a Java
shop, and another is all about Rust. The enterprise architecture strategy function
should define principles that help guide decisioning in this space.

Also, I recommend instituting a champion/challenger model to prevent approved
standards from getting stale and missing out on using advances in technology. Cham‐
pion/challenger refers to having an approved standard as the champion but enabling
challengers to that approved standard to be raised and evaluated as potential replace‐
ments of that standard, based upon whatever criteria was decided upon as the basis
for the standard.

So far, we’ve looked at two kinds of architecture standards: NFRs that serve as the
requirements and constraints guiding an application’s design, and architecture tech‐
nology standards that serve to streamline the technology choices made to implement
the application. The next subsection looks at the type of standard that answers the
question: “What is an application anyway?”

Architecture Metamodel Standard
The enterprise architecture strategy function should define the enterprise architecture
metamodel, which is intrinsically intertwined with everything that any team does to
deliver technology solutions. The reason that the architecture metamodel is so essen‐
tial is because it does the following:

Common definitions
The metamodel defines terms to provide a common lexicon with which to con‐
verse and collaborate. Words like solution, product, service, capability, process,
component, application, platform—what do they mean in your organization’s
context?

Common structure
The metamodel defines the foundational underlying structure for your technol‐
ogy landscape—from each type of component and application and asset, to the
relationships among them, to the attributes that describe them.

The metamodel must strive to achieve these outputs in an easily understandable way,
without oversimplifying so much that business questions cannot be answered. A
good metamodel will clearly organize all of the necessary components relating to

124 | Chapter 5: Enable and Enforce

people, processes, and technology into an efficient end-to-end picture that shows
how they are interrelated. Figure 5-8 is a very simple generic example.

Figure 5-8. Illustrative example of an architecture metamodel

While not shown in Figure 5-8, you can extend the metamodel to define the
attributes or metadata for each box. This is key because it anchors governance pro‐
cesses. For example, there are many reasons why you need to know who owns an
application, such as understanding who is paying for it, who is building it, who is
accountable for its compliance, and who can fix any issues with it. Being clear with
the definition of such an attribute—the purpose of how it will be used, the lifecycle of
how its value will be managed, the data quality rules with which it will be governed—
will be very helpful to streamline operational efficiency of the processes that use this
metadata while increasing risk assurance of comprehensive and accurate metadata. In
other words, if you are looking for an owner to fix a high-priority compliance issue, it
doesn’t help if the value is out of date!

The metamodel must be tailored for your organization to add business value. It is
helpful to consider what questions need to be answered. For instance, in my recent
experience, I was trying to answer questions such as “What is a platform? What is the
tenant boundary within a platform?” This helped me figure out what information I
needed to capture in my metamodel.

Now that you know what the different types of enterprise architecture standards are,
it’s time to look at when you need them.

When Should a Standard Be Declared?
Now, before we get too excited about standards and declare a standard for everything,
remember that standards also act as constraints. Having so much prescription that
human ingenuity is stifled is probably not going to be in an organization’s best inter‐
ests. Rather, look for the high-leverage opportunities to standardize, where the bene‐
fits of reuse, operational efficiency, and risk reduction outweigh the need for

When Should a Standard Be Declared? | 125

developers and engineers to make their own choices. See Figure 5-9 for a visualiza‐
tion of this trade-off.

Figure 5-9. Quadrant chart of standardization

The difference between probably and possibly in this chart is that probably means that
standardization is likely worth it in terms of benefit outweighing investment to stand‐
ardize, and possibly means that there may be low-hanging fruit to standardize but the
return on investment may not be compelling.

Architecture standards still need to promote creative freedom and
innovation.

Recall that standards typically mitigate a risk of some kind. Yet, when risk is not per‐
ceived as a threat, standards are likely to be flouted. For example, consider a rolling
stop at a stop sign. If the risk of noncompliance is not perceived as a true threat, it is
easy to overlook the standard, and the standard is rendered ineffective.

But should we only ever operate under the weight of a threat? Do what you’re sup‐
posed to do or bad things happen? While fear can be a powerful motivator, I find it to
be an utterly exhausting one.

If architecture standards are only viewed as a have to do it as a compliance activity—a
check-in-the-box bottleneck to move past to get real work done—then architecture as
a function has failed. It’s too easy to dismiss architecture as a bureaucratic nightmare
in this perception.

If it’s too hard to adhere to a standard, then people are less motiva‐
ted to follow the standard, let alone to follow it well.

126 | Chapter 5: Enable and Enforce

And that brings me to my main point of the third objective of our enterprise architec‐
ture strategy: you need to both enable and enforce architecture standards to realize
their benefits.

What Is Enable?
To enable means to make it easy for developers and engineers to follow the standard,
with training, processes, and tools.

Training material can be delivered in a variety of ways:

Computer-based training (CBT)
Self-service, self-paced training using a computer, whose completion is measured
and recorded.

Classes
Instructor-led training.

Just-in-time process
An informal method, where the material is offered directly in the process that the
user is following just in time. See Chapter 4 for more.

In addition, another mechanism that serves to promote training and knowledge shar‐
ing is centers of excellence or communities of practice. A center of excellence (CoE) is
a formal group with an established charter, mission, and set of stakeholders—typi‐
cally funded. The CoE is seen as a beacon of knowledge for a particular subject matter
area, and it provides both deliverables and support for other teams to gain knowl‐
edge. A community of practice (CoP) is a more informal structure. CoPs bring
together groups of people interested in the same topic, typically unfunded and held
on a voluntary basis. A CoP can also grow knowledge by sharing lessons learned and
creating informational materials but does not typically have the consulting arm that a
CoE has to support outreach to other teams. Table 5-2 highlights the key differentia‐
tors between a CoE and a CoP.

Table 5-2. Key differences between a CoE and a CoP

 CoE CoP
Organization Formal, funded Self-organized, voluntary
Outputs Defined deliverables, supports the deployment of

technology in the subject matter area with migration
and consulting support

Self-defined, supports improvements in the use of
the technology in the subject matter area

The enterprise architecture organization may sponsor one or more CoEs and CoPs
based on the technology subject matter areas that are new to help bridge skill gaps in
an organization’s talent.

What Is Enable? | 127

Processes and tools are also key for enablement. Chapter 4, for instance, covered
making architecture information embedded and accessible, which is a form of ena‐
blement. Chapter 2 covered general principles to use and apply in making enable‐
ment possible. To further help to decide how to use training, processes, and tools in
enablement, the next subsection discusses recommended principles.

Principles of Enablement Mechanisms
The following principles can be used to guide decisions around making enablement
possible:

Be specific
Be as specific and explicit as possible in the intent or purpose of enablement and
about who needs to be enabled. For example, if your architecture technology
standard includes containers, it’s helpful to be specific on standards for building
containers such as hardening and logging configuration that can be enabled.

Automate
Automating enablement processes and tools helps to scale to all of the developers
and engineers who need to adhere to the standard. For example, an automated
container build process could readily take care of the hardening and logging con‐
figuration specified in the previous principle.

Shift left
Focus enablement efforts as early in the software development lifecycle as possi‐
ble to avoid rework later. For example, the container build process from the pre‐
vious principle could result in golden images that are used as the basis of all
container development, thereby shifting the specific standard as far left as
possible.

These principles are applied in the enablement framework, elaborated in the next
section.

The Enablement Framework
The enablement framework can be used to assess your current state and identify
opportunities to make adhering to the standard so simple and so easy that it is effort‐
less. The framework is illustrated in Figure 5-10.

The first step of the enablement framework is specify. In this stage, you identify all of
the activities that are necessary to perform to adhere to the standard. For each activ‐
ity, you also determine when they need to be done and whether any of them repeat.
You also enumerate the options that may exist to complete them.

128 | Chapter 5: Enable and Enforce

Figure 5-10. Enablement framework

The next step is the size of each of the required activities. In the size stage, you will
estimate how long and how much effort it takes to complete the activity. These esti‐
mates should be grounded in data gleaned from performing these activities. This is
also a good way to figure out what the bottlenecks are—what specific actions in each
activity take the longest and/or the most amount of effort.

The final step is to simplify and determine the best way to make these activities fric‐
tionless and efficient. How do you alleviate the bottlenecks? The solution’s approach
may require several aspects, from better process to better tooling and automation,
and it involves analyzing trade-offs. The trade-off of making enablement frictionless
is that doing so requires investment in establishing and maintaining the enablement
processes and tools.

As a real-life example, let’s look at my coffee routine. Coffee, for me, is a necessity to
go about my day. To make coffee, I need to have coffee beans available, a functional
grinder, clean water, and an operational coffee maker. Further, I can either make it
myself, wait for my husband to make it since he’s up before me, or use a timer and
load the coffee maker the night before. This example illustrates the degrees of
enablement:

None (make yourself)
The onus is on the developer or engineer to make decisions, problem-solve, and
figure out how to adhere to the standard.

Partial (reuse husband’s coffee)
Some information and/or tooling is provided, most often in a self-service way,
for the developer or engineer to reuse a solution that will adhere to the standard.

What Is Enable? | 129

Automated (using a timer)
The cognitive load on the developer or engineer is fully reduced such that they
don’t need to expend any effort to figure out how to adhere to the standard; a
guided experience or automated process/tool does it for them.

Let’s go back to the high availability NFR mentioned earlier. What can be done to
enable teams to achieve high availability?

Specify activities
One activity would be around designing a high availability architecture. The
application architect should do this activity, and it should be a one-time activity
unless there are significant changes to the application architecture.

Size activities
If the application architect has to design the architecture from scratch, this may
take a significant amount of time to work through details such as load balancing,
scaling strategies, and traffic routing, not to mention all the data layer concerns
around trade-offs among availability, consistency, and performance.

Simplify activities
The application architect’s job could be eased if design patterns around high
availability architectures are easily available. This could be further streamlined if
in addition to being available as a documented blueprint or reference architec‐
ture, it was also available as a running reference implementation and/or an infra‐
structure as code template for a starter application.

Now that we’ve reviewed enable, let’s move on to enforce.

What Is Enforce?
To enforce means to ensure that the standard has been effectively adopted or adhered
to. Mechanisms include preventive controls and detective controls, as shown in
Figure 5-11. These control points are often delivered via policy enforcement points
integrated into processes and/or tools. Preventive means that the enforcement point is
constructed in such a way that a noncompliant result can never occur. For example, a
standard continuous delivery (CD) pipeline could act as a preventive control by pre‐
venting deployment of software that doesn’t pass required checks. Detective means
that there is a risk of noncompliance, but if it does occur, it can be detected and then
remediated. Reporting is a common mechanism for detective controls.

Figure 5-11. Preventive versus detective controls

130 | Chapter 5: Enable and Enforce

To construct specific enforcement points, the next subsection describes principles
that will help. These are different from and additional to the high-level principles
described in Chapter 2 around determining your approach to enforcement.

Principles of Enforcement Mechanisms
The following principles can be used to guide decisions around making enforcement
possible:

Reuse
Centralize enforcement as much as possible rather than redoing the compliance
choice at the local team level. For example, centralizing checks into standard
CI/CD pipelines rather than every team redoing a check in their own pipeline.

Automate
Automating enforcement processes and tools is the best way to reduce level of
effort and improve assurance. For example, automating a check for hardening
configuration in a standard CI build process rather than expecting teams to
review hardening as part of code reviews.

Prevent
Focusing enforcement efforts as early in the software development lifecycle as
possible to avoid noncompliance results in significant savings. For example, auto‐
mating network security checks like using private endpoints to run against infra‐
structure as code rather than waiting to inspect after deploying resources
whenever possible.

These principles are applied in the enforcement framework discussed in the next
section.

The Enforcement Framework
The north star of enforcement is to prevent the wrong result, rather than only detect‐
ing and reacting to it with corrective action. For example, preventing the association
of a public IP address to a cloud compute instance through automated checks of
infrastructure as code is better to prevent risk than monitoring and notifying for cor‐
rective action after that public IP address is already associated.

To achieve this north star, the first step is to figure out where all the policy enforce‐
ment points are in which enablement activities occur and their outcome can be meas‐
ured for compliance. The second step is to deduplicate enforcement points to
determine which ones to use and how often enforcement should take place. The last
step is to educate, because empowering developers and engineers with knowledge of
compliance allows them to succeed. Figure 5-12 illustrates this enforcement
framework.

What Is Enforce? | 131

Figure 5-12. Enforcement framework

The first step of this enforcement framework is identify, which means to review the
compliance activities output from the enablement framework and determine if com‐
pliance can be embedded directly into that activity. For example, let’s say you had a
security requirement to keep your network traffic private. When deploying cloud-
hosted resources, there are configuration settings that support private networking.
The compliance activity associated with this requirement is to apply that configura‐
tion setting. The preventive control for this activity would be to ensure only the right
configuration is possible by controlling the infrastructure as code used. The detective
control for this activity would be to monitor the configuration setting after the
resource is deployed and to prompt corrective action if the setting was incorrect.

The next step of the enforcement framework is integrate, which means to incorporate
the compliance controls as seamlessly as possible into the developer’s workflow. In the
same example of private networking, let’s say you decide to go with preventive con‐
trol. In that scenario, there are several options to make that work, including the
following:

1. You could provide a template with the right configuration setting and expect the
developer to use that as a starting point and, further, not override that setting.

2. You could provide a custom resource definition that the developer is required to
import and cannot override for this particular configuration setting.

3. You could provide a separate compliance test process that they can run their
infrastructure as code files through.

132 | Chapter 5: Enable and Enforce

There are probably other options available, too, but just looking at these three, what is
the least disruptive option to the developer’s workflow? What is the most natural
action for them to take? What makes it easy for them to adopt? Out of these three
options, I’d recommend option 2.

The last step is to infer, meaning to monitor the enforcement mechanism or control
and understand if any refinement needs to occur to make it more effective.

Here’s a real-life example with a stop sign. I’ve observed that on certain streets in my
neighborhood, where there are stop signs on every block, drivers tend to do the roll‐
ing stop. However, if that intersection is coupled with a school sign, and it is during
school hours, drivers tend to make a full stop. Or, if there is a pedestrian or cyclist at
the intersection, drivers tend to stop and make way for them. Moreover, if there is
also a crossing guard or cop at a school intersection, drivers not only make a full stop,
they also pay attention and wait to cross the intersection when directed. This example
illustrates the degrees of enforcement:

Opt in
No mechanism of enforcement, just knowledge of the rule. Some people will fol‐
low the standard, some will not.

Encourage
A mechanism that prefers enforcement. More people will follow the standard.

Mandate
A mechanism that requires enforcement. All will follow the standard.

Refer to Chapter 2 for related discussion of consistent severity schema to apply to tak‐
ing corrective actions.

Use data from monitoring the control in the infer stage to under‐
stand whether you have the optimal degree of enforcement or if
you need to make changes.

Now that you know more about architecture standards and frameworks to enable
and enforce them, let’s review some case studies and study the lessons learned.

Case Studies
Let’s review a few case studies and examine some thematic dos and don’ts that they
reveal.

The first scenario is the free-for-all.

Case Studies | 133

The Free-for-All
EA Example Company wanted to attract top software engineering talent. To do so,
one of the things their recruiters touted was technical growth in software languages.
Over time, the organization ended up with hundreds of applications built with doz‐
ens of different languages such as Java, Ruby, Python, Go, Rust, JavaScript, Scala, Elm,
R, and C#.

Initially, software engineers appreciated the variety and the flexibility to work with a
language of their choosing. Over time, though, they started to hit roadblocks. Some‐
times they spent time developing only to find that they couldn’t release what they had
developed to production because cybersecurity couldn’t actually scan their software,
and scanning was a non-negotiable requirement. Cybersecurity had a terribly difficult
time keeping up with the different languages to ensure they were scannable and that
vulnerabilities could be found and managed.

Sometimes they found that they could not easily get the software libraries that they
needed in their software language. Multiple methods of building and deploying soft‐
ware artifacts and binaries for each language had to be supported and maintained,
and the central tooling teams could not keep up with the variety of demand.

Sometimes, some software engineers wanted to change teams to grow with new
opportunities. However, they faced an uphill knowledge curve when trying to take
advantage of organizational mobility due to having to learn whole new languages to
support the software. The organization’s business leadership was displeased to learn
that features were delayed because software engineers had to first spend time learning
the software languages of that particular product.

What happened here?

EA Example Company had good intent, but without standards on software languages,
they created an environment of chaos as first mentioned by Chapter 1. EA Example
Company did not consider the operational and cybersecurity maintenance needs, nor
the fungibility inhibitors, of supporting disparate software languages.

In summary, do:

• Carefully consider the cost versus benefit of a given developer or engineering
choice in the context of the business need or outcome.

Don’t:

• Go to the extreme of chaos without any guidance whatsoever.

The next scenario is called the suffocation.

134 | Chapter 5: Enable and Enforce

The Suffocation
EA Example Company wanted to focus software engineering on business logic only.
As a result, they decided to get rid of the need to expend engineering labor on other
parts of the software application. To do that, they prescribed and dictated every detail
of the technology stack that the engineers worked with, from infrastructure to the
application itself, encompassing both requirements and best practices. Now the engi‐
neers didn’t have to make so many choices and could presumably focus on business
logic.

Indeed, this strategy helped with fungibility of talent and streamlining of cybersecur‐
ity and operational processes and tooling to support this technology stack. However,
over time, the technology stack became outdated. Engineers pointed out that new
technology was emerging that could not be used. Talent attrition started to occur, in
part because software engineers felt that the technology was antiquated and that there
was no path to evolve, so they could learn more elsewhere.

In addition, the prescribed technology stack did not foresee every possible use case,
every possible permutation of business need. Thus, it did not work cleanly for every
use case. Engineers with more complex use cases that didn’t fit cleanly still expended
a significant amount of effort either trying to conform without avail or trying to
explain their noncompliance to the enforcement processes. Both of these paths were
unduly frustrating, and engineers began to leave to seek greener pastures elsewhere,
with less bureaucracy.

What happened here?

EA Example Company mistakenly viewed standardization as a one-time activity and
resisted updating the standard because the standard was working to streamline oper‐
ations, and migrating to new standards was hard. Thus, while they did benefit in the
near term from their standardization, in the long term, their method of standardiza‐
tion proved to be brittle.

Moreover, by attempting to overprescribe every detail, they did not allow for any flex‐
ibility or innovation. This was a mistake because it is impossible to foresee every‐
thing, and by dictating best practices in addition to requirements, they essentially
closed the door to discovering more best practices and enabling more use cases.
Innovation itself was slowly suffocated over time.

The takeaway here is that you do:

• Declare standards where appropriate.

Case Studies | 135

Don’t:

• Forget to include an approach to evolving standards as part of declaring stand‐
ards. For example, the champion/challenger model where a challenger is incuba‐
ted and evaluated to take over a champion.

• Overprescribe, especially when it comes to best practices.

The last scenario is called the reporter.

The Reporter
EA Example Company mandated certain standards. In trying to figure out how to
ensure that those standards were met, they found that the easiest compliance mecha‐
nism was a reporting solution. At first, this reporting solution was highly manual and
prone to human error. So they invested in measuring compliance against those stand‐
ards with a robust automated reporting solution. This reporting solution could detect
noncompliance and trigger a corrective action process to remediate the noncompli‐
ance at scale. This remediation process did serve to correct the noncompliance issues,
but was still costly and disruptive to teams trying to develop new features. Over time,
EA Example Company noticed a sustained pattern of detection and remediation,
sometimes multiple times within the same team and same product.

What happened here?

EA Example Company emphasized detective enforcement, without any consideration
given to preventive enforcement. Although they did try to improve the solution
through automation, and the automation allowed measurement to scale, the reliance
on detective enforcement caused issues to be caught very late in the development
cycle, which caused more rework to fix. Additionally, teams did not learn how to pre‐
vent issues; instead, their learned behavior was to get caught and fix after the fact.
They were essentially not enabled to be successful.

To summarize, do:

• Automate enforcement.
• Provide a feedback loop via enforcement that educates developers and engineers

on how to comply in the first place.

Don’t:

• Overlook preventive enforcement.
• Overlook the value of enablement.

136 | Chapter 5: Enable and Enforce

Summary
To achieve the enable and enforce objective and tailor key results for your own orga‐
nization, consider balancing risk mitigation and operational efficiency benefits with
the creative freedom needed to inspire innovation. Declare standards where there is
the most to gain and the constraints are acceptable friction for teams to adhere
against. Typical enterprise architecture standards include NFRs spanning areas such
as stability, release, operational efficiency, interoperability, security, technology stand‐
ards, and the metamodel.

For every standard, be sure to enable and enforce that standard. Use the enablement-
and-enforcement frameworks to figure out your specific enablement-and-
enforcement mechanisms.

With the enablement framework, you can:

• Specify the activities that engineering teams need to perform to comply with a
standard.

• Size these activities in terms of level of effort.
• Simplify these activities to reduce that level of effort and make it easy to comply.

With the enforcement framework, you can:

• Identify the possible policy enforcement points for controls to ensure that the
compliance activities output by the enablement framework do in fact comply
with the standard.

• Integrate the policy enforcement points as seamlessly as possible into the software
delivery processes and tools.

• Infer the behavior of humans and efficacy of the policy enforcement points over
time to see if any improvements are needed.

Use these frameworks to diagnose weaknesses that you can strengthen through your
enterprise architecture strategy objectives and key results centered on standards.

Summary | 137

CHAPTER 6

Proactive and Reactive

You’ve now learned the three main objectives of an effective enterprise architecture
strategy in considerable depth. You know more about creating shared alignment
across all stakeholders and making architecture information embedded and accessi‐
ble to all roles that need it to make a decision. And you’ve seen the importance of
both enabling and enforcing architecture standards. Putting that all together, you
have a foundation for defining objectives that result in architecture decisions that will
have alignment and be well informed, and architecture standards that will be
thoughtful and well adopted.

You can do all that, though, and discover that it’s still not enough. You may learn that
those architecture decisions weren’t quite the right kind of decisions. Maybe they
weren’t proactive or aspirational enough, or they didn’t lead the way enough. The
decisions were solving the problems of today, perhaps, which is good and necessary,
but that’s not where architecture shines, and it’s not where architecture is uniquely
positioned to add value.

Architecture shines in making great decisions where, if the decision is changed, the
change causes a significant amount of rework. I’ve heard these called one-way door
decisions, because there’s a finality about them. You only want to go one way.
Whereas two-way door decisions have more flexibility. You still want to put in a good
effort, but there is not as much of a consequence in getting it wrong or having to
adjust.

For example, take cloud account design decisions’ impact of where to place workloads
in the cloud. If, for some reason, there’s a significant change to that cloud account
design, whereas the implementation of the change to the cloud accounts themselves
might be fairly minor, the impact to the workloads will be enormous, because it will
require a full migration from one account to another. Cloud account design is there‐
fore ideally a one-way door decision. By contrast, the design decision to use a

139

managed container service or a serverless managed container service is a two-way
decision. Yes, there may be some rework if you have to change your deploy target, but
it is less significant compared with one-way door decisions.

Given that architectural capacity is a finite resource, it makes sense to prioritize one-
way door decisions highly, and to address these proactively. Proactive means to
address something before it happens. Proactive architecture is about defining and
addressing a target state vision, which is the picture of the destination—the future.

The opposite of proactive is reactive. Reactive means to address something after it has
already occurred. Reactive architecture is about solving a problem, or making a deci‐
sion, after a stimulus has already occurred. Examples of stimuli include a new or
changed requirement, a new or changed intent, or an incident.

Speaking of incidents, let’s look into that example a little more closely. Proactive
architects will define a target state vision to be where customers do not experience
adverse impacts due to an application or infrastructure failure. To achieve this target
state vision, proactive architects will conduct failure mode analysis and design the
solution to mitigate failures and self-heal when failures do occur, such that an inci‐
dent is prevented.

Reactive architects, when an incident does occur, will jump in to help the engineering
team diagnose the root cause and recover operations. In the heat of the moment of
reacting to an incident, reactive architecture is helpful. But isn’t it better to be proac‐
tive architecturally and prevent the incident in the first place?

If you answered yes, I’m inclined to agree with you. On the other hand, it is also quite
reasonable to expect that you may not be able to predict every possible potential sit‐
uation. For example, maybe you made what seemed like a perfectly valid assumption
on how your system would behave under a stress condition. You might be con‐
strained by timeline pressures to have to accept that risk and wait and see what hap‐
pens. If you are unconstrained, though, you could instead be proactive to perform
testing to output predictable system behavior.

This balancing of aspiration (for example, preventing incidents) with constraints
(such as limited time and/or ability to test) is essential to effective architecture.
Developing effective vision and strategy, where vision is your destination and strategy
is your plan to get to that destination, requires getting very good at this balancing act.
You need to be proactive to anticipate and aspire, yet you also need to be reactive to
respond to all the stimuli that impact feasibility.

Proactive architecture strategy is not simply about optimizing the present. It’s about
imagining and exploring what could be, being aspirational rather than just optimal.
This aspiration must be grounded in customer needs. You don’t want to be aspira‐
tional in terms of random proclamations. Rather, you want to start with your custom‐
ers and focus on business needs. Customers and the business ecosystem in which

140 | Chapter 6: Proactive and Reactive

your technology solutions operate are challenging and complex to understand; but
the proactive architect will identify patterns that determine the basis of a strategy. It is
important to distinguish the ability to identify these patterns from simply extrapolat‐
ing the past into the future in a linear fashion to optimize. The reason this is such a
pitfall is because the future is decidedly not linear. Optimizations can be somewhat
beneficial, but customer-centric aspirations can be revolutionary.

Effective strategists understand that the future is shaped by aspira‐
tional disruption that relates to customer needs.

To deliver proactive architecture strategy, you need to become a strategic thinker if
you aren’t already. The rest of the chapter will dive into principles and a framework to
support the strategic thinking necessary to output an architecture vision that is ach‐
ievable through a strategy outlined in proactive and reactive architecture decisions.

Principles of Strategic Thinking
Strategic thinking means being able to predict and plan for the future. How do you
become adept at predicting the future, when the future is filled with unknowns and
uncertainty?

While there’s no guaranteed way to predict the future accurately, I’ve found several
principles, shared in the next few subsections, to be helpful.

Understand the Right Problem
Understanding the right problem is what defines the strategic purpose of a vision. The
right problem must be clearly associated with business outcomes and with customer
needs. Otherwise, you are at risk of providing a proactive architecture vision, strategy,
and decisions that don’t add business value.

Here’s a quick checklist:

• Did you spend enough time to deeply understand customer needs?
• Is your understanding of customer needs indicative of a pattern?
• Can you quantify or size the problem statement in a way that illustrates the busi‐

ness impact of solving the problem?
• Can you trace the problem to business outcomes?

A no response to any of these questions means you need to spend some more time
understanding the right problem.

Principles of Strategic Thinking | 141

For example, let’s say your organization has a strategy to migrate workloads to the
cloud. What was the customer need that that strategy is based on? It is doubtful that
customers asked for the cloud. Rather, it is more probable that customers asked for
greater agility, more features, lower cost, more self-service, more great experiences, or
perhaps all of the above. Being grounded in customer needs will help shape that
cloud strategy to deliver business outcomes around better, faster, and cheaper serv‐
ices. Otherwise, the cloud strategy is at risk of using cloud technology lift and shift
style only, without customer-focused goals. Lift and shift refers to moving a workload
as is, without refactoring.

Initiate Innovation
Initiating innovation is all about employing a combination of critical thinking, logical
thinking, and creative thinking skills to generate a strategic vision:

Logical thinking
The ability to reason about a problem and come up with possible answers. Logi‐
cal thinkers use reason to analyze a situation. Reason is often categorized as
either inductive or deductive. Inductive reasoning, as shown in Figure 6-1, is
about forming a general conclusion from a specific premise or observation.
Deductive reasoning, as shown in Figure 6-2, is about forming a specific conclu‐
sion from general premises or observations.

Figure 6-1. Inductive reasoning as part of logical thinking

Figure 6-2. Deductive reasoning as part of logical thinking

Critical thinking
Often used with logical thinking, critical thinking is the ability to analyze data,
facts, and connections across multiple areas with an objective point of view to
infer or formulate a clear conclusion. Critical thinkers are adept at analysis and
can glean insights that are beyond the obvious. They don’t blindly accept other
people’s opinions; instead, they question them and align with them after using
their own judgment.

142 | Chapter 6: Proactive and Reactive

Creative thinking
Creative thinking is the ability to brainstorm new and unique ideas. Creative
thinkers are able to look at things through different perspectives to figure out
new ways of doing things or unique ways of solving problems.

Let’s take a hypothetical situation where the problem is that the operating costs of
running applications in the cloud are too high. A logical thinker with inductive rea‐
soning may do the following:

1. Make a specific observation that a mission-critical application spends a lot of
money on redundant cloud infrastructure.

2. Extrapolate this observation into a pattern that all mission-critical applications
have several degrees of redundancy built in.

3. As a result, form a general conclusion that all mission-critical applications incur
cost due to redundant infrastructure.

A logical thinker with deductive reasoning may think about the problem as follows:

1. Start with the general theory that redundant infrastructure adds cost.
2. Make a hypothesis that redundant infrastructure is a key characteristic of highly

available architectures.
3. Test that hypothesis by evaluating mission-critical applications to determine the

specific conclusion that mission-critical applications have more redundancy than
less critical applications, and therefore incur more cost.

If you stopped here, you might have a knee-jerk reaction that you simply need to
reduce redundancy of these applications to reduce cost. However, a critical thinker
would use logical thinking to ascertain that redundancy adds cost and would also
realize that redundancy is necessary in highly available architectures. The critical
thinker would go a step farther than the logical thinker and ask when the redundancy
is most effective; is it necessary to be fully redundant at all times or is it possible to
operate with less redundancy at some times? Such critical reasoning would give rise
to the notion of spend efficiency, which in this context would optimize redundancy
against cost.

A creative thinker would then brainstorm ways to achieve spend efficiency. They
would brainstorm capacity planning and scaling strategies that could be used to opti‐
mize redundancy against cost and performance.

Rather than simply reacting to high cost to shut down redundancy, thereby incurring
operational risk, in this scenario the combination of logical, critical, and creative
thinking allowed for initiating innovation around spend efficiency, which made
acceptable trade-offs between cost and availability.

Principles of Strategic Thinking | 143

Be a Change Agent
The future is different from the past. As a result—and this may seem obvious—
changes are needed to achieve the future. That is why effective strategists are also
effective change agents, leaders who are able to lead humans through change.

Architecture strategies aren’t successful simply because they can
output new or modified technology and/or processes. They are
successful because they can get people in the organization to
embrace the changes necessary to achieve the target vision.

You may have come across the change curve in a leadership course, which starts with
the natural reaction of shock or denial when a person is faced with a change. Then
people move to anger or fear, an escalation of the previous shock or denial to confront
the change. If a change gets stuck here, it will be hard-pressed to be successful. The
leader has to be able to move people along to the next stage, acceptance, where people
finally stop resenting the change and come to accept it. The final stage is commitment,
where people embrace the change and are willing to adhere to the change as their
new normal.

Communicating changes with empathy and providing the knowledge, skills, and
training necessary for people to manage the change successfully go a long way to
accelerating the change curve to acceptance and commitment. In fact, getting align‐
ment along the way while forming the strategy is even better than having to sell the
strategy at the end to get that buy-in.

For example, let’s look at a hypothetical organization in the throes of a migration
from data center to the public cloud. The network engineers who operate the data
center could very well feel shock or denial that their entire scope of work is changing.
They might swiftly fear for their job security and be angry that they had no choice in
this change. Over time, if leaders are empathetic and provide them a clear path for
reskilling as cloud network engineers, these engineers may find themselves more
accepting of the change, and eventually they will be committed to being excellent
cloud network engineers.

To help you and your organization get better at strategic thinking to define an archi‐
tecture vision and the strategy to achieve it, the next section lays out a framework that
applies these principles.

The 4 Cs Framework
As illustrated by Figure 6-3, the 4 Cs framework is about establishing proactive strate‐
gic architecture visions and decisions through the stages of curiosity, challenge, credi‐
bility, and communication.

144 | Chapter 6: Proactive and Reactive

Figure 6-3. The 4 Cs framework of proactive strategic architecture decisioning

The next few subsections dive into each stage of this framework.

Curiosity
The first part of this 4 Cs framework promotes your curiosity. The outcome of the
curiosity stage applies the first principle of strategic thinking—to understand the
right problem.

Curiosity is essential in identifying the right problem to solve as the foundational
strategic purpose that is clearly associated with a business outcome. This requires ask‐
ing strategic questions to better understand the big picture problem, desired business
outcomes, and any potential solutions. Big picture is another important concept.
Zoom out from the day-to-day issues that you face to figure out the bigger, impactful
issues. Remember, a great strategy doesn’t merely optimize the present day; it calls for
a disruptive change to rewrite the future.

Being curious is what enables you to ask questions that uncover big-picture concerns.
Asking a diverse population of stakeholders will get you different perspectives.

Examples of strategic questions for an organization’s stakeholders include the follow‐
ing:

• What are the major technology trends for software development, and how is the
organization positioned to take advantage of them?

• What is the competition doing better or differently, and how should we respond?
• Where will growth originate in the next five years, and how will technology sup‐

port that?
• What are the high-leverage pain points across the enterprise organization that are

inhibiting business development?

The 4 Cs Framework | 145

And make certain that you get the customer perspective, too. Review any assump‐
tions critically and try to get below the surface. Strategic questions could include
these:

• What do you wish could go better with the current solution? Why is it a
problem?

• What feelings come to mind when you use the current solution? What would it
take to bring about feelings of delight?

• What takes the most time for you to complete when using the current solution?
• What is stopping you from doing what you want to do with the current solution?

Why?

For instance, take a real-world situation where a company attempts to gain market
share with their software. This software is built on cloud technology and is optimized
for the mobile space, but it is prone to bugs, which is garnering it negative customer
feedback. Without curiosity to fully understand the right problem, it is possible that a
strategy would be formed that tries to prevent bugs through better testing and/or
resolve bugs through better detection.

While such a strategy could help, being curious with the above questions could solicit
insights like the following:

• Major technology trends include GitOps workflows and integrated artificial intel‐
ligence (AI) for guided experiences.

• High-leverage pain points include too many shortcuts taken to develop software,
leading to risk and poor quality, because cycle time is the main measure of
success.

• Current software is optimized for mobile experiences, but many users are using
laptops.

Together, these insights may form a strategy that emphasizes parity across digital
channels, as well as GitOps workflows to provide the guardrails necessary to improve
software releases, an update to metrics to include quality measures, and even some
strategic research and development on incorporating AI. The guardrails could still
include the testing improvements from the earlier strategic conclusion, but the strat‐
egy stemming from curiosity is now more holistic.

Being curious and inquisitive with an open mind and truly listening will help you
detect big-picture customer concerns directly associated with business outcomes.

146 | Chapter 6: Proactive and Reactive

On Deep Listening
I recall being amazed when I learned that there was more than one way to listen,
though I knew that listening was an essential skill of communication. I learned that
there are multiple types of listening:

Discriminative listening
This uses other aspects of communication rather than words, such as tone, verbal
cues, and nonverbal cues. It is helpful to use this type of listening to understand
body language. For example, if you’re looking for alignment, and you ask some‐
one if they are aligned and they say yes but their body language makes it seem
like they are not fully behind that answer, you can dig deeper and make sure they
are truly comfortable and aligned.

Informational listening
This requires a high level of engagement to absorb information. For example, if
you’re taking training or listening to a lecture, you would use informational lis‐
tening when you focus on what you’re hearing to absorb the content. If you are
the presenter of such material, take a moment to make sure your audience is
actually engaged.

Selective listening
This is when all the words are heard, but only a select few are paid attention to
and recalled. For example, let’s say you’re giving a briefing on an architecture
decision, and your audience is fixated on one detail. You’re not going to be able
to effectively deliver your message until they are ready to listen to the whole
story.

Sympathetic listening
This is when you make the effort to focus on the emotions of the speaker, and
you validate their feelings first in your response. For example, let’s say someone is
vehemently arguing with you to make their point because they feel trapped. You
could diffuse the tension by sympathizing with their emotion of feeling trapped,
before trying to progress the conversation.

Empathetic listening
This is when you try to relate to someone, which is different from sympathetic
listening. Using the preceding example, if someone is vehemently arguing, you
could diffuse the tension by imagining yourself in their shoes and validating that
they are coming from a place of passion and good intent. So instead of getting
upset in return, you respond from a place of calmness and empathy.

Comprehensive listening
This is what usually comes to mind when the word listen is used; it is the ability
to understand what you’re listening to.

The 4 Cs Framework | 147

Critical listening
This is similar to critical thinking in that you listen to what is being said but also
use your own judgment and experience to evaluate what is being said. For exam‐
ple, let’s say a team presents an architecture decision to you. Instead of taking it at
face value, you can question some of the assumptions they made and ensure that
they considered a variety of factors to make that decision.

Successfully completing the curious stage requires using all forms of listening. Avoid
distractions, interruptions, and talking too much.

Challenge
Based on the strategic purpose and problem statement defined in the previous part of
the framework, the next part of this framework relies on your critical thinking skills.
Applying the principle to initiate innovation requires analyzing various inputs, brain‐
storming possible solutions, considering challenges, and predicting what could go
wrong if potential solutions were realized.

Inputs include market research to validate assumptions and to identify and under‐
stand trends. Market research could include interviewing customers; using conferen‐
ces, news articles, and technology research services; and/or reviewing public
literature from competition. Review historical trends related to your problem area to
identify patterns of what worked well and what did not. This type of insight, coupled
with market research insights, is what allows you to anticipate future trends and
challenges.

To strengthen your proactive strategic architecture vision and decisions such that
they can stay the course in the face of changes and challenges, consider contrary ideas
and naysayer points of view from other people. Poke holes in the problem statement
and the solution options. Be aware of and challenge any assumptions. Consider what
could go wrong in implementing the solution. This due diligence will enable you to
bolster your strategic recommendation such that it can withstand these challenges.
This challenge process is essential to navigating the unknown future effectively.

Here are some examples of questions that you can use to challenge assumptions and
the proposed solution options:

• Why do I expect this to work?
• Is there anything else that could be true?
• How could this go wrong?
• Where can I find evidence to support this conclusion?

148 | Chapter 6: Proactive and Reactive

For example, there’s that quote from the movie Field of Dreams: “If you build it, they
will come.” But why? This assumes that just because you build something, customers
will flock to it. What if they don’t? What if it doesn’t solve something that they
actually need or want?

It may be uncomfortable to contemplate failure and to probe solu‐
tions to see where there are risks. It is, however, extremely impor‐
tant to do a risk assessment to evaluate the probability and impact
of possible risks that, if materialized into issues, can cause failure.
Challenging your initial thinking allows you to formulate better
conclusions overall.

Let’s review the previous example about a company attempting to gain market share
from their software. The strategy included using GitOps workflows to incorporate
guardrails to improve quality and reduce risk of buggy software. The key assumption
to challenge here is that GitOps workflow alone is what will improve quality. Examin‐
ing this assumption, particularly around what else could be true and what could go
wrong, would also add additional context such as:

• The mechanisms that need to be strengthened to ensure that all development fol‐
lows the workflow and that the workflow cannot be bypassed

• The talent gaps that need to be overcome when it comes to automated testing to
ensure that skill sets are able to pass the checks included in the workflow

Credibility
This part of the framework focuses on defining a credible strategy, which is the
approach to achieve the proposed target state vision.

It is in this stage that you will make one or more reactive architecture decisions in
collaboration with stakeholders to drive progress toward your strategic vision. These
reactive decisions respond to current constraints and gaps and are guided by your
architecture principles, organizational priorities, and constraints (as shown in
Figure 6-4) to determine the best path forward. This is the part of the framework that
turns the aspirational strategic vision into a feasible, achievable, and measurable ser‐
ies of decisions to get there.

The 4 Cs Framework | 149

Figure 6-4. Various factors that a reactive architecture decision reacts to

For each milestone that your strategy defines, be sure to define a measurable incre‐
mental value that is achieved by that milestone. That will help buffer the propensity
to change course by helping stakeholders see demonstrable progress and the value of
the original strategic direction.

It is also helpful in general to be able to show a series of quick wins when undergoing
a significant change for a long-term outcome. It can be very difficult for people to
make the leap into a long-term change; a series of “quick win” milestones builds cred‐
ibility and trust to make the long term eventually achievable.

Proactive, strategic architecture decisions are at risk of being per‐
ceived as too aspirational and therefore unattainable. Be sure to
define a credible approach using reactive architecture decisions to
demonstrate a series of quick wins that allow you to pursue the
long-term strategic intent.

One mechanism that you can use in the credibility stage is a feasibility study. This is a
method of detailed analysis that determines the probability of success by considering
the practicality of implementation aspects, including the following ones:

Technical
Evaluation of both the technologies required and the expertise or skills of avail‐
able talent to implement those technologies.

Financial
Evaluation of the total cost needed to invest in the solution against projected
returns or savings. This is often referred to as a cost/benefit analysis.

150 | Chapter 6: Proactive and Reactive

Operational
Readiness determination of the organizational structure and operating model to
handle and support the changes described by the strategy. This part also reviews
the proposed timeline and roadmap for critical path dependencies to determine
viability.

Market
Evaluation of the competitive marketplace for the strategic solution’s impact.

Regulatory
This depends on the industry, but some industries have regulatory requirements
that need to be assessed for adherence in the proposed strategy.

For example, let’s say you are championing a serverless strategy for your organization
because your customers need more business logic, and one constraint inhibiting the
release of more business logic is infrastructure maintenance. A feasibility study could
provide an analysis and emphasize the need for training to upskill your talent and the
need to update cybersecurity tooling to work with serverless technologies, while
assuaging any doubts on financial return, market trend, and regulatory concerns.

The feasibility study goes hand in hand with the risk assessment that was conducted
in the previous challenge stage. By the end of the credibility stage, you will know
whether or not you have the people, processes, and tools necessary to create and/or
use technology to achieve your strategic aim. You will also know whether your strat‐
egy is positioned to get you the return on investment (ROI) that is expected when the
problem is solved.

Communication
The ability to communicate is essential to success. Being able to make people care
about a vision and be motivated to achieve it is powerful. Being able to distill a strat‐
egy from complex ideas into simple terms that resonate with an audience, and getting
them to understand and buy into the journey that arrived at the conclusion, are criti‐
cally important to getting the strategy agreed upon and implemented. You can use
simple, written materials as an aid to your speaking style. Expect to do several revi‐
sions before you complete your simplification efforts.

Don’t underestimate the amount of time and thought that it takes
to simplify a message.

The 4 Cs Framework | 151

Here are some tips to provide simple, written materials:

• Identify the outcome you’re seeking, and understand your audience in terms of
how they communicate and what they care about. Use that to focus your
communication.

• Simplify language to use plain terms that everyone can understand. I try to pre‐
tend that I know nothing about the topic, so that I can explain it in the most
basic terms and avoid jargon.

• When discussing abstract ideas, use commonplace examples, analogies, and/or
metaphors to make them relevant.

• Get to the main point as quickly as possible, both when using words and when
using visuals.

• If using slides, stick to only one point per slide, with as few words as possible.

Storytelling is a popular way to communicate a message. Rather than relying only on
logic and facts to make a compelling argument, storytelling couples that with compel‐
ling conflicts and solutions to make an emotional connection with the audience.

For example, let’s say you have a system that is experiencing some availability issues,
and you’ve developed an architecture decision that recommends resolving the root
cause. A factual, conventional way to present this architecture decision might be
something like this:

Problem statement
Systems are unavailable x% of time.

Solution approach
We will improve the system availability while keeping in mind our SLAs and bal‐
ancing cost.

Solution options
We explored different ways to improve, and here are the pros and cons of each.

Solution recommendation
Based on our analysis, we recommend this particular option.

Next steps
We need your approval to implement this option.

A storytelling way might be something like this:

Conflict
Our customers weren’t able to do what we promised they could do because our
system was not available x% of time.

152 | Chapter 6: Proactive and Reactive

Journey to resolution
We care about our customers and understand there are requirements and con‐
straints to trade off against. We thought through three options.

Solution
We recommend this option as the best path forward and need your help to
implement it.

Which version do you think will get a better response in your organization?

Improving Communication
Communication is a competency and skill set that can always be improved further.
My background in history gave me a great foundation of written skills, and my pro‐
fessional consulting background gave me a great foundation of verbal skills. Yet still,
year after year, I have worked on refining these skills further.

I have often been asked for advice in my mentoring and coaching relationships on
communication. Here is what I have shared:

Become a good listener.
Think of communication as a two-way interaction that yields a connection, not
just the dissemination of a point. Thus, you have to listen first, and truly under‐
stand your audience to connect with them.

Keep it simple.
It doesn’t matter how much you know if others don’t understand you. Simplifica‐
tion is hard work, but it’s worth it to bring others along.

Practice makes you better.
I don’t like to say practice makes perfect, because that is an unrealistic expectation.
Practice does, however, help refine technique, calm nerves, and help you learn
from experience. It can be helpful to have allies in a room who observe you and
give you feedback on your communication, so you can learn from constructive
criticism.

Take your time.
Sometimes people feel the need to speak and come across as dominating or inco‐
herent or generate some other negative perception. I’ve found that this often hap‐
pens when people are insecure in their standing and feel that they need to say
something to be considered an active participant. Or they may feel rushed and
compelled to say something without fully thinking through their points. Try not
to rush. Take your time. And if you are facilitating the discussion, create ground
rules and a culture that allows people to take their time and that is considerate of
hearing each person’s point of view.

The 4 Cs Framework | 153

Use emotion wisely.
Passion, excitement, caring, kindness—all of these emotions can positively
impact communication. To wield them wisely such that they add to your message
and do not detract from your overall point, you need to first become self-aware
enough that you understand and acknowledge that you are in fact feeling an
emotion. For example, I have gotten better at recognizing when something frus‐
trates me in a conversation. I do not allow that frustration to show in my man‐
nerisms. Rather, I take a breath and remind myself of my purpose and why I am
in that conversation.

There are many communication resources and courses out there. I highly recom‐
mend investing in your communication skills, because communication is such an
essential competency for you to be a leader, and effective architects are excellent
leaders.

There are many different communication styles. A visionary leader is able to use the
strength of their convictions to motivate and inspire an audience to achieve an aspi‐
ration. A conventional leader dictates what must be done, why, and how, relying on
the strength of their own authority to get things done. A collaborative leader estab‐
lishes trust and shows how diverse perspectives were considered to reach a
conclusion.

In practice, I’ve found myself sliding among all of these styles depending upon the
circumstance. Visionary communication suits me well when I am passionate and
believe in an idea and I want other people to join me in proactively solving a prob‐
lem. I tend to use this style when briefing partners and executives. I try to paint a
vivid, compelling picture of the future and ensure that they understand what I am
saying to get buy-in on the conflict, the destination or resolution, and the journey to
get there.

Conventional is helpful when I need to state that a standard is non-negotiable; this
was the most uncomfortable style for me to adopt because I had to learn to be OK
with not always being liked. Collaborative is probably my most-used style, leveraged
during all of the discussions that lead up to formulating an architecture decision or
strategy.

Regardless of your communication style, here are some tips for giving effective pre‐
sentations:

• Speak with confidence and poise, with a respectful tone to instill credibility and
trust in your position.

• Speak at a volume and cadence that allows for people to follow along easily. It’s
OK to let some of your passion through, but don’t let excitement make you too
loud or rush your words.

154 | Chapter 6: Proactive and Reactive

• Practice making pauses seem natural so that you don’t use filler words like “um.”
• Practice in front of a mirror so that you understand your nonverbal cues. For

example, sitting straight conveys more confidence than slumping over does.
Make eye contact.

• Use your active listening skills to read the audience’s reactions and tailor your
communication accordingly.

• Pretend you’re having a conversation, so that you don’t come across too
rehearsed.

In addition to using communication to align others, you should also define and exe‐
cute a communication plan as part of your strategy. This communication plan serves
to ensure alignment throughout implementation. Repetition is key; in a wildly chang‐
ing landscape, reminding people why you are doing what you are doing, and celebrat‐
ing the wins, is important to sustaining momentum toward your long-term vision.

Now that we’ve reviewed the 4 Cs framework, let’s go back to defining objectives for
your enterprise architecture strategy. What kind of goals can your organization set to
balance proactiveness and reactiveness? Does your organization tend to operate in
firefighter mode, without thinking about the long-term future? If so, a culture shift
may be needed to introduce strategic thinking and proactive architecture decisions.
What are the strategic problems to solve, and is it clear what roles solve them? If not,
you can craft objectives to clarify this.

The case studies in the next section may provide some inspiration for your own
objectives and key results.

Case Studies
Let’s review a few case studies and examine some thematic dos and don’ts that they
reveal. The first scenario is called the cloud migration.

The Cloud Migration
EA Example Company watched its competition get into the cloud and decided that
the time was right to make a strategic investment in migrating to the public cloud
themselves. They declared a vision that they would be a cloud-based company and
defined an ambitious timeframe. At the end of the timeframe, EA Example Company
was successful in migrating many workloads, predominantly using a lift and shift
technique, but experienced major delays in getting new business features delivered,
unexpectedly had significantly increased operational costs, and did not fully complete
their migration, especially of complex mission-critical workloads.

What happened here?

Case Studies | 155

EA Example Company defined a vision to get into the cloud because they saw the
problem as this: they weren’t in the cloud when their competition was. However, this
wasn’t actually solving the right problem. What was the business driver of using a
new technology? Perhaps the business driver should have been something around
developing more stable solutions in a more cost-effective, scalable, highly perform‐
ant, agile way. When phrased that way, getting to the cloud would have been part of
the solution, rather than the solution itself. In addition, they only declared a time‐
frame, not an actual strategy that defined the plan to achieve the vision. A strategy
would have included tactical aspects such as workload dependency management, cost
optimization, workload deprecation, and/or rearchitecture.

Key takeaways from this tale include the following.

Do:

• Use industry trends, market research, and competitive analysis to formulate a
proactive architecture strategic direction.

Don’t:

• Solve the wrong problem, or solve a problem without considering the business
purpose.

• Provide a strategy of proactive architecture without tactics and reactive architec‐
ture decisions.

The next scenario is the AI inflection point.

The AI Inflection Point
EA Example Company came up with a strategy to unleash potential from their data
by making data as usable as possible, and they put an emphasis on machine learning.
Thus, when AI came along in the form of large language models, they were well posi‐
tioned to get onboard with this newest technology trend. However, they assumed that
everyone already knew about and was excited about AI, and therefore they had very
vague messaging around AI. The one sound byte that developers started to hear was
that AI was going to replace menial tasks for developers. Morale and productivity
decreased as developers started to fear job insecurity. In reality, EA Example Com‐
pany was trying to reduce menial work as a way to increase developer productivity—
not to replace the developers themselves.

What happened here?

EA Example Company defined a proactive strategy to invest in machine learning and
was well positioned to take advantage of the next technology wave of AI. However,

156 | Chapter 6: Proactive and Reactive

their lack of clear, concise, and transparent communication confused developers on
what the company was trying to do with AI.

What are the key takeaways?

Do:

• Use industry trends, market research, and competitive analysis to formulate a
proactive architecture strategic direction that can withstand changes in the mar‐
ketplace.

Don’t:

• Underestimate the value of good communication. A simple, storytelling narrative
that can share strategic intent and a well-thought-out approach—that lets people
buy in and assuage doubts—goes a long way.

The last scenario is called the tactical load.

The Tactical Load
EA Example Company incentivized and valued short-term wins. As a result, teams
solved problems day in and day out, without ever making time to consider the big
picture. Architects were incentivized to perform hands-on coding themselves, rather
than spend time debating and getting alignment on shared architecture decisions. As
a result, the company was able to make progress in delivering features, but it found
itself unable to stitch the features together into a cohesive experience for its end users
and wound up repeating issues. In addition, as time went by, their competition sped
ahead in anticipating consumer demands that changed based on technology advances
like AI, while EA Example Company lagged behind, trying to optimize its original
offerings.

What happened here?

EA Example Company embraced a culture of fighting fires and focused on being very
reactive and tactical only. As a result, the tactical nature of their solutions proved to
be too shortsighted to make headway in the changing technological landscape.

What are the key takeaways?

Do:

• Solve problems.

Case Studies | 157

Don’t:

• Overemphasize reactive, tactical architecture decisions. A well-thought-out long-
term strategy adds inherent value by providing unified direction that can reduce
duplicative efforts and bring competitive advantage. Both strategy and tactics are
needed.

• Confuse strategy with tactics. For example, although an architect needs to be
technically grounded to ensure that their strategic decisions are feasible, empha‐
sizing that they themselves must unilaterally code is missing the point. Architects
can code, and sometimes do code to prove out ideas. But to scale, they can also
work with other teams to prove out the ideas, while they personally tackle the
big-picture thinking and provide the overall strategic guidance as their technical
contribution.

Summary
To define and achieve an objective that balances proactive and reactive architecture
decisions, and that therefore balances strategy and tactics for your own organization,
consider where your organization falls on the proactive/reactive spectrum, and
whether or not you would benefit from a change. Consider your talent and whether
or not training is needed to increase and improve the number of strategic thinkers.

Establish or promote principles of strategic thinking to help architects understand the
right problem, initiate innovation, and be change agents. To further teach strategic
thinking, use the 4 Cs framework:

Curiosity
Ask strategic questions to formulate the right business-minded strategic purpose
and problem statement. This allows for learning and anticipating the future.

Challenge
Critically analyze inputs such as market research and industry trends to come up
with solution options, and then challenge these options to figure out what could
go wrong and what can be done to mitigate those risks. This allows for interpret‐
ing information to figure out how to navigate the unknown future.

Credibility
Use reactive architecture decisions to define a credible approach to achieving
your proposed solution, with clear incremental milestones defined that are
designed to build confidence in the strategy through quick wins. This allows for
alignment.

158 | Chapter 6: Proactive and Reactive

Communication
Communicate a compelling narrative to get buy-in on the strategy, and define a
communication plan to reiterate the strategy throughout implementation. Deter‐
mine what communication styles work best in your organizational culture, and
coach your strategic thinkers to embody these styles and simplify their messages.
This allows for sustained alignment.

Diagnose weaknesses in proactive and reactive architecture decision making that you
can strengthen through your enterprise architecture strategy objectives and key
results.

Now that I’ve covered possible enterprise architecture strategy objectives in depth, I’ll
turn our attention toward understanding key enterprise architecture principles that
will guide achieving those objectives for the next five chapters.

Summary | 159

CHAPTER 7

A Very Short Manifesto for Effective
Enterprise Architecture

The first manifesto that I encountered in my career was the Agile Manifesto, when I
was working in an organization that was undergoing an Agile transformation. The
Agile Manifesto provided several principles that were helpful to guide the numerous
decisions that were made to transition from the old way of doing things to the new,
Agile way.

Similarly, I believe that the practice of enterprise architecture is also transforming,
out of necessity. It is transitioning from the old way of doing things—which was
marked by heavy process, governance, and potentially too much theory—to the new
way of doing things, which is all about driving business outcomes through holistic
problem-solving, value-added standards, and relevant strategic thinking.

In my 20+ years of working, I have experienced all sorts of architecture paradigms
and seen firsthand what happens when architecture is perceived to be ineffective.

I have witnessed disdain: “I don’t know what those architects do all day.” This was
from when I was on an engineering team that was lamenting about being hamstrung
from being able to use newer technologies that weren’t yet approved. The team didn’t
even know that there were enterprise architecture standards that were supposed to be
followed, let alone an extensive approval process to add or change standards, until it
ran into a brick wall trying to procure the new technology.

I have witnessed ignorance: “We didn’t have architects where I’m from, and we did
just fine.” This was from when a new leader was hired into my organization, and I had
the opportunity to point out that perhaps our definitions of “fine” were different.
Although their previous organization did make revenue, it was clear that they lacked
architecture direction, given the amount of duplication in their products and

161

https://agilemanifesto.org

services, the lack of interoperability between them, and the disjointed experience
across them.

I have also witnessed appreciation: “My architect is essential to my team’s ability to
operate.” This was from a leader who was an experienced architect and who under‐
stood the value of delivering technology solutions in accordance with a well-thought-
out architectural direction.

I have had the honor and privilege to meet and work with many great architects.
When I reflect on what made these architects effective, I realized that they all had a
few values in common:

They believed firmly in the collective whole over the individual good.
This is an especially difficult thing to balance when doing the right thing for the
collective good is contrary to doing what may be desired for a team’s or an indi‐
vidual’s benefit. For example, a team may want to skirt standards to get things
done and over with, and the architect is in the precarious position of convincing
them to do what is right, not just what is quick. Such architects greatly value
integrity, and they have learned how to influence others without coming across as
bottlenecks themselves.

They were perceived as proactive technology leaders first, and architects second.
This is an important mindset shift because the branding of technology leader res‐
onates well, whereas not everyone immediately understands the value of archi‐
tecture, as discussed in Chapter 1. Also, being a technology leader is important to
being an effective architect since that allows the architect to influence changes.

They valued a deep understanding of business needs.
It was this focus on customers and business outcomes that was valued by their
organization.

They valued continuous learning.
They were curious and inquisitive, always increasing their knowledge, and were
open-minded. They made an effort to keep their technical skills up to date.

They valued collaboration.
They were humble and secure in their knowledge and welcomed diverse points of
view. They understood that providing a solution was only half of their work, and
that the other half required the ability to build coalitions and manage changes.

There were times when I saw organizations embrace architecture and bring in the
right architects with the right mindset to lead effective change. There were times
where I saw organizations stumble, confused about the purpose of architecture, much
to the detriment of the people performing architecture work. I have seen enthusiasm
for the practice of architecture, but without the appreciation for the people that per‐
formed the architecture work.

162 | Chapter 7: A Very Short Manifesto for Effective Enterprise Architecture

As a result, I have developed a perspective on what makes architecture, and the peo‐
ple performing architecture functions, effective and valuable to an organization. I am
sharing that perspective with you now in the condensed form of four principles for
effective enterprise architecture. As stated in the Agile Manifesto, “while there is
value in the items on the right, we value the items on the left more.” Similarly, the
following principles, which constitute my very short manifesto here, emphasize the
items on the left as more valuable than the items on the right:

• Contextual understanding over siloed decision making
• Tangible direction over stale documentation
• Driving behavior over enforcing standards
• Evolution over frameworks

Enterprise architecture as a practice needs to be effective if it’s going to be invested in
by an organization. It is therefore helpful to be guided by principles, born from expe‐
rience, of what works well, and what doesn’t, when establishing an architecture prac‐
tice and performing architecture work.

The next four chapters dive into each principle in depth.

A Very Short Manifesto for Effective Enterprise Architecture | 163

CHAPTER 8

Contextual Understanding over
Siloed Decision Making

Enterprise architecture principles help ensure that architecture decisions are made
consistently. The first enterprise architecture principle in the very short manifesto for
effective enterprise architecture is contextual understanding over siloed decision
making.

Ever make a perfect architecture decision? If so, kudos on an extremely rare achieve‐
ment. In my experience, architecture decisions require trade-offs, and therefore tend
to be merely good enough rather than perfect.

The good enough result depends on what considerations are made during the analysis
of what to trade off against. Often, the quality of an architecture decision is directly
impacted by the experience and knowledge of the person who made it, and what they
considered as trade-offs and implications. If trade-offs are improperly considered, the
decision is at risk of being shortsighted.

Contextual understanding refers to understanding all the factors that form the prob‐
lem statement and rationale of the decision, to include background, usage scenarios,
assumptions, constraints, solution alternatives, and implications pertaining to the
decision. Siloed decision making refers to making decisions based solely on one’s own
experiences and point of view.

Here’s a real-world example. My husband and I decided to treat ourselves by not
cooking for dinner. Now, if we were to make that decision in a silo, we would con‐
sider only what we like to eat, the cost of the meal, and our memories of what restau‐
rants we enjoyed. Ultimately, we would likely go out to a nearby restaurant. However,
with the context that our children also needed to eat and have different tastes, that it
was a weeknight and therefore we were shorter on time than a weekend, and that we

165

needed leftovers, this resulted in a different decision—ordering in from a restaurant
that mostly pleased everyone. As mentioned earlier, decisions tend to be good enough
rather than perfect, so the one person who didn’t like the food made do with a tried
and true alternative found at home.

You’ll notice that the word over is included in the principle that gives its name to this
chapter. This is deliberate, to emphasize the item on the left, contextual understand‐
ing, as more valuable than the item on the right, siloed decision making. Thus, the
item on the right does have some value, just comparatively less.

You see, being able to make decisions in silo is actually quite important to avoid para‐
lysis by analysis. Paralysis by analysis means waiting on analyzing so many factors,
and being so concerned with the unknown or unpredictable factors, that no decision
is made. Siloed decision making can help with this scenario to build confidence
through one’s experiences to provide a well-formed opinion even if all desired con‐
textual information isn’t available. One mechanism that can help shore up this well-
formed opinion is to document all assumptions that are made, such that if any factor
does change or turn out differently, it is easier to go back and review the decision and
make changes. This helps the decision maker take calculated risks and make forward
progress by still making a decision even when not all context is available.

Imagine crossing the street at a crosswalk in an intersection with a stop sign and see‐
ing a car bearing down on you. Without waiting for the context of whether it will stop
or not, you will use your experience to get out of its way because you know that in
human versus car scenarios, car wins. Time-sensitive decisions tend to timebox how
much context can be gathered. As a result, it is also an important skill to be able to
prioritize sources of context, such that the most impactful contextual factors are
considered.

Decisions made with contextual understanding are likely to be less brittle and more
sustainable than those made without it. This is key in architectural decision making
since, although architectures do evolve over time, changing certain architectural deci‐
sions after implementation can be very painful and very difficult. Enabling flexibility
as an outcome is key to evolutionary architecture.

A good example of this concept is in application interface design. Designing this con‐
tract between applications to exchange data is an architectural matter that needs to be
made with context of usage, performance, and security requirements. Using the inter‐
face as an abstraction allows the application to change behind the scenes as it needs,
such as adopting a more modern technology stack.

166 | Chapter 8: Contextual Understanding over Siloed Decision Making

The more painful it will be to change a decision, the more impor‐
tant it is to gather context to make that decision.

Now that I’ve shared my perspective on the value of contextualized decision making
over siloed decision making, I’ll spend the next section discussing where context
comes from and how these factors can be prioritized.

Architectural Domain Model
To apply the principle of contextual understanding over siloed decision making, it is
helpful to define a capability classification model that groups capabilities into archi‐
tecture domains. This model allows for decisions about those capabilities, and the
technological solutions that provide them, to be made in context of the overall
domain and any other dependent domains. The domain context itself is defined in
relation to the business processes and outcomes that it supports.

Capabilities are enduring in a way that organizational structures that define owner‐
ship of technology solutions are not. Capabilities for a core business function typi‐
cally stay the same, even as technology evolves to provide those capabilities.
Capabilities themselves evolve based on business needs or business practices evolv‐
ing. This is all well and good, but what exactly are capabilities? The next section will
clarify.

What Are Capabilities?
Are you wondering if I mean business capabilities or technical capabilities when I say
capabilities? Business capabilities describe the abilities of the business, the organiza‐
tion, to do things. Business capabilities are not tied to any given solution, part of the
organization, role, or function. As mentioned earlier in terms of endurance, business
capabilities do not change even if the organization splits or changes, or a new tech‐
nology is used to implement the capability. Technical capabilities describe using tech‐
nology to result in business outcomes. Similar to business capabilities, technical
capabilities are also enduring and do not change even when an organization or a spe‐
cific tool changes. Technical capabilities map to business capabilities. Technical solu‐
tions map to technical capabilities. Together, these mappings provide a lineage from
technology to business outcomes. Thus, to summarize, I mean both business and
technical capabilities.

Architectural Domain Model | 167

Figure 8-1 illustrates an example using capability mapping lineage in the context of
resiliency.

Figure 8-1. Example of mapped business and technical capabilities resulting in a business
outcome

One thing you may notice from the example in Figure 8-1 is that a capability defines
what the ability is, not how the ability is implemented. The capabilities are agnostic of
the choice of technology solution or tooling.

How Capabilities Fit in an Architecture Domain Model
The architectural domain model should have two levels, a business capability model
and a technical capability model, which are tied together. The business capability
model typically helps an enterprise better understand its own business functions and
abilities, which provides the context necessary to make important strategic decisions
such as where to invest. Similarly, the technical capability model typically helps an
enterprise better understand its technology solution landscape and how technologies
are being applied. It provides the context to make various decisions, including deci‐
sions to:

168 | Chapter 8: Contextual Understanding over Siloed Decision Making

• Overcome gaps and technical weaknesses.
• Overcome arbitrary uniqueness and reduce duplication or converge develop‐

ment efforts.
• Invest in more sustainable solutions rather than bespoke, niche projects.
• Make underlying technology changes and be able to identify implications to the

organization or business as a result of the change.

Figure 8-2 illustrates such a layered architectural domain model, using the traditional
three-tier application architecture of presentation, logic, and data layers as
inspiration.

Figure 8-2. Example of layered architectural domain model, where each white box is an
architectural domain, a group of business and technical capabilities

Unlike the traditional three-tier model—where the presentation tier at the top and
the data tier at the bottom do not directly communicate with one another—in this
architectural domain model, the domains and their capabilities can interact with one
another to map to a business process. The value of the layer is simply in nesting or
categorizing domains for human readability and discoverability.

Figure 8-3 builds on the layered architecture domain model to illustrate emailing a
customer as the mapped business process.

Architectural Domain Model | 169

Figure 8-3. Example of a layered architectural domain model

Considerations for Defining the Architectural Domain Model
Defining capabilities—whether business or technical—and defining the domains that
group them is more of an art than a science. Here are some considerations for defin‐
ing capabilities:

Focus on what, not how
For business capabilities, what is the business doing? What can the business do?
For technical capabilities, what can the technology do? In the previous section’s
example, the business is trying to contact customers, and the corresponding tech‐
nical capability is to email the customers.

Level of detail
Typically, you will find that you end up with a hierarchy of multiple levels. You
can have as many levels as make sense for your organization to understand what
the capabilities mean, and how they drill down and map to one another. In the
previous section’s example, the email capability stems from reusable infrastruc‐
ture services, rather than being a bespoke capability that only services the mar‐
keting domain to contact customers.

Common language
Decide on whether you will use verbs or nouns to define your capabilities, and
their order. For example, is it data management or manage data? The goal is to
make the domain model self-service so that users of the model who make archi‐
tecture decisions, be they an architect themselves or a person in a product or

170 | Chapter 8: Contextual Understanding over Siloed Decision Making

engineering role, can understand the capability definition. This common lan‐
guage will also help to create shared alignment across an organization, which is
of the utmost importance to establish the architecture decisions related to a
domain. In the previous section’s example, the “verb first, noun second” order is
used.

Here are some considerations for defining architectural domains:

Logical boundary
The capabilities in a group should be related in some logical way to support a
given business purpose. In the previous section’s example, customer management
is distinct from marketing, although marketing is a way to manage customer
expectations.

Domain hierarchy
Similar to the level of detail consideration mentioned earlier, groupings can get as
detailed as needed to use the domain and their child domains in decision mak‐
ing. Rather than create these domain definitions in the abstract for the sake of
having a model, do so with the aim of clarifying ambiguity with the right level of
detail. In the previous section’s example, customer management implies manag‐
ing any kind of customer—both prospective and existing—that are used by the
marketing campaigns. But perhaps this is a differentiator for your organization,
and you would have different domains for capabilities that target prospective
customers versus capabilities that target existing ones.

Distributed accountability
The architectural domain model needs to be an effective tool to aid architecture
decision making. As a result, it should be very clear what roles are accountable
for what responsibilities as related to an architecture domain. For example,
someone needs to be accountable for defining the capabilities (usually a business
architect), for mapping the technical solutions (usually a domain architect), for
the architecture decision (usually the domain architect), for implementing the
architecture decision (usually the technology lead of the impacted technical solu‐
tion), and for prioritizing the architecture decision for implementation (usually
the product lead of the impacted technical solution).

Although the architectural domain model is an important mechanism to provide
context for a number of architecture decisions, it is not the only one.

Other Contextual Inputs
Context for all architecture decisions includes a well-defined problem statement.
Depending on the kind of decision that needs to be made, additional factors are help‐
ful to provide more context, such as principles and constraints.

Other Contextual Inputs | 171

For example, the architectural domain model should help determine that a decision is
needed to invest in a new technical capability. To proceed with this decision may in
turn require a build-versus-buy decision. To make a build-versus-buy decision, con‐
text typically also includes capturing all identified solution options, architecture prin‐
ciples, and NFRs to assess the solution options against. See Chapter 5 for examples of
NFRs; you’ll want to define a standard baseline of NFRs to use in architecture deci‐
sion making.

Some of these solution options may be discovered from what already exists in the
architectural domain model, whereas others may come from industry and market
research. Context may also include things like whether or not there is budget and
capacity to support a new solution or whether or not it is feasible to extend an exist‐
ing solution.

Timebox the time spent gathering context to accelerate decision-
making progress and avoid analysis paralysis. Capture all trade-offs
and implications as the context in which the decision was made.

In summary, contextual understanding includes a well-defined problem statement
and all of the inputs that were taken into consideration to make the decision.

Case Studies
Let’s examine a few anecdotal case studies and study the themes that they present.

The Aloof Architect
EA Example Company promoted a fast-paced culture where speed and time to mar‐
ket were of the essence. It needed to deliver a critical service, which, because it was
critical, needed to be highly available. A seasoned architect, Alice, was asked to design
the critical service’s high availability (HA) architecture.

Alice had several years of experience in designing technical systems with HA archi‐
tectures. As a result, Alice assumed the level of HA needed and included proven
architectural elements such as redundancy, scaling, and failover for the new critical
service to overcome well-known failure modes. The engineering team conducted sev‐
eral performance tests and, sure enough, the critical service was able to horizontally
scale to outpace demand, and failover as needed. Alice was proud of herself and did
not think to consider how the new critical service would interact in an ecosystem of
other services. The critical service went into production only to experience a severe
incident a few days later when a downstream dependency failed and impacted the
availability of this critical service.

172 | Chapter 8: Contextual Understanding over Siloed Decision Making

What happened here?

This was an example of the aloof architect, who is not interested or involved in collab‐
orating to contextualize decisions, because they are overly confident and certain in
their instincts and experiences to make decisions. An aloof architect typically has
good intentions, but their self-reliance can lead to missing important considerations
that inevitably lead to flawed, shortsighted decision making. In this scenario, the aloof
architect, Alice, did design a proven, highly available architecture for this critical ser‐
vice based on her own experiences, but she missed the architectural domain–level
context of how this application fit into the ecosystem and failed to consider depen‐
dencies as a factor.

Key takeaways include the following.

Do:

• Reuse proven architecture patterns.
• Prioritize the need for more context to make impactful decisions.

Don’t:

• Solve the wrong problem, or solve an incomplete problem without considering
necessary context.

The Aware Architect
EA Example Company learned from experience and decided that, in addition to time
to market, valuing operational excellence was also important. To deliver a critical ser‐
vice, the company relied on another experienced architect, Amanda, to design the
critical service’s HA architecture. Amanda decided to first confirm the business
requirements of what level of HA was needed for this critical service. Amanda first
mapped the critical service to EA Example Company’s architectural domain model
and mapped that in turn to critical business processes. Based on that mapping,
Amanda was able to better understand what this critical service was dependent on
and what the overall level of service available to customers needed to be.

Amanda asked questions of the architects and engineers of the dependent services to
find out what kind of telemetry was available if they failed. She recognized that she
was not a monitoring expert, and so she brought in a monitoring subject matter
expert to figure out whether the telemetry was sufficient or not. She conducted a fail‐
ure mode analysis to understand the probability and impact of such failures, as well
as failures within the critical service’s components. Based on all this context, along
with her own experiences, Amanda designed a highly available architecture, which
included a caching layer to support acceptable stale data in the case of the loss of the
dependency.

Case Studies | 173

Amanda reviewed this architecture with peers and senior engineers, who asked ques‐
tions and uncovered additional weaknesses that could be strengthened. As a result,
she iterated a couple of times before finalizing the architecture. She collaborated with
the engineering team to implement and test the architecture, and to tune key pieces
such as the monitoring and alerting telemetry used for automation capabilities. It
took a bit longer to get to production with their critical service, but the service was
performant and highly available and gracefully degraded performance when faced
with the failure of the dependent service rather than a full outage.

What happened here?

This example details the aware architect, who is consistently able to bring contextual
understanding into their architecture decision making. An aware architect provides
context from many different perspectives, ranging from business to technical, across
different disciplines and subject matter domains. An aware architect is always learn‐
ing and can bring in their context to inform the decision-making process. An aware
architect is also self-aware in understanding their own limits and will bring in addi‐
tional expertise as needed to supplement their own contextual understanding.

Key takeaways are summarized as follows.

Do:

• Seek diverse perspectives and voices of dissent to bring in varied context and
strengthen decision making.

Don’t:

• Ignore the value of accepting trade-offs and their implications. In this scenario,
the caching layer was an acceptable mitigation for the failure of the dependency,
resulting in performance degradation rather than no adverse impact whatsoever.

As demonstrated by these anecdotal case studies, it is better to be an aware architect
—aware of your own limitations and seeking to learn context—rather than an aloof
architect who relies only on themselves.

Summary
Context is essential for making a high-quality, sustainable architecture decision. This
chapter covered the first recommended enterprise architecture principle, contextual
understanding over siloed decision making, for organizations to output great architec‐
ture decisions consistently.

One way to bring context into architecture decision making is through the architec‐
tural domain model. The architectural domain model for an organization is a key
artifact output of an effective enterprise architecture function. It is a capability

174 | Chapter 8: Contextual Understanding over Siloed Decision Making

classification model that provides a common language for understanding what the
business does. It provides traceability across business and technical capabilities to
technology solutions in the context of business outcomes. That understanding pro‐
vides a great deal of necessary context for architecture decisions, including the
following:

• Investment in new capabilities or new solutions
• Deprecation of existing solutions
• Build-versus-buy decisions regarding technology
• Decisions on reuse of existing solutions
• Investment into overcoming technical weaknesses or gaps

Aware architects are those who are adept at considering contextual understanding to
make architecture decisions. They understand the limitations of their own experien‐
ces and point of view, and they actively seek out other points of view and frames of
reference for a more holistic context from which to make decisions. Aloof architects
are a cautionary tale; they rely only on themselves, their own experiences, and their
own point of view to make decisions. They tend to have good intentions but are at
risk of delivering shortsighted decisions.

The ability to perform siloed decision making, especially in times of duress or time
sensitivity, is still an important skill. The risk of shortsighted decisions can be mitiga‐
ted in part by understanding how to prioritize contextual factors to gather just what is
needed to make a good enough architecture decision that takes calculated, docu‐
mented, and accepted risks.

In other words, this architecture principle values contextual understanding more
highly than siloed decision making, yet understands the need to make decisions in
silo as well.

Summary | 175

CHAPTER 9

Tangible Direction over
Stale Documentation

The second enterprise architecture principle in the very short manifesto for effective
enterprise architecture is tangible direction over stale documentation.

Tangible in the context of this principle is referring to the metaphorical meaning of
having a measurable value rather than the literal meaning of being perceptible by
touch. Measurable value in the context of architecture output is synonymous with
business value. The architectural direction must have a clear association with busi‐
ness value to be effective. This association is what transforms documentation, a typi‐
cal vehicle of delivering architectural direction, into tangible direction.

Documentation done well can provide several benefits:

Enable collaboration and communication
Documents and diagrams help focus conversations and accelerate getting people
on the same page to talk through problem-solving. In addition, documentation
preserves a historical record that can help teams avoid rehashing the same topic
over and over again. It is typically easier to react to something tangible that is
written down and/or visualized than talked about in the abstract.

Provide clarity
Clear documentation and diagrams facilitate efficient and effective understand‐
ing of a technology solution, an architecture domain, or interactions across
domains. Clarity reduces operational inefficiency that occurs from misunder‐
standing or misalignment.

Identify risk-based insights
Clear documents allow for identifying areas of risk to mitigate them and enable
comparison to established patterns. For example, examining a deployment

177

architecture allows the reviewer to discover whether or not horizontal scaling is
possible, and whether or not there are single points of failure that introduce resil‐
iency and reliability risk.

Every architecture document described in Chapter 2 should have an associated busi‐
ness value, as shown in Table 9-1.

Table 9-1. Example of associating business value with an architecture document

Architecture document Possible business value
Architecture principles X% increased productivity due to consistent and sustainable decision making

Architecture standards X% reduction in arbitrary uniqueness, thereby enabling Y% cost savings
Z% increased productivity due to conformance and avoidance of compliance issues

Architecture frameworks X% increased productivity due to clear guidelines

Architecture patterns /
best practices

X% increased productivity due to reuse
Y% cost savings due to avoiding compliance issues

Architecture diagrams Depends on the problem being solved as depicted in the diagram—for example, X% cost savings
or Y% improvement in risk and compliance posture

Architecture metrics X% increase in operational efficiency based on data insights

As Chapter 6 discussed, architecture strategy is another key architectural output that
uses documentation. It can be very difficult to quantify the impact of an architecture
strategy, especially when it can take years to deliver against the direction set out in the
strategy. To help overcome this challenge, I recommend getting into the habit of siz‐
ing the problem that is being solved by the strategy. If you can size the problem—by
understanding who or what is impacted, to what degree, and what is being impeded
or lost—then you can say that the strategy will provide quantifiable benefits for solv‐
ing it.

For example, an architectural serverless strategy could solve a problem around main‐
taining nonserverless infrastructure and frequent disruptions from needing to patch
vulnerabilities, which relates to total cost of ownership and productivity. There could
be a one-time trade-off of migration or conversion cost to reach a serverless state for
existing systems, but overall the strategic benefit adds up over time. Incremental
milestones could be defined to show progress against achieving these benefits.

The rest of this chapter is devoted to concepts that allow for tangible direction to be
defined and accepted.

The Importance of Experimentation
One pitfall of architecture is being too theoretical or abstract to be understandable,
and therefore being unable to provide tangible direction. Architecture assertions

178 | Chapter 9: Tangible Direction over Stale Documentation

need to be grounded in technical fact for many reasons, including getting alignment
based on trust and confidence that the architecture direction is correct.

One popular method to yield technical facts is experimentation. Experimentation can
take the form of proof of concepts or pilots to prove out the ideas in the architecture.
For example, if the architecture direction is to use serverless technology because it
will save labor and time, then conduct an experiment to prove that that is in fact the
outcome of using serverless technology, and that it is in fact possible to use serverless
technology in the current systems. It is likely that there will be lessons learned from
such experiments that will strengthen the overall strategy for how to achieve server‐
less at scale.

Another method is to review proven industry case studies and demonstrations and
use these as proof for an architecture recommendation. This method is not necessar‐
ily enough on its own. Experimentation in your own organization’s environment is
more definitive proof that an architectural direction is correct.

It is not always possible to experiment to prove out every architecture decision. While
it is advisable to experiment with significantly impactful decisions, where experimen‐
tation is not possible due to constraints such as time, progress can still be made as
long as calculated risks are accepted and potential failure is tolerated as an opportu‐
nity to learn and course correct. This ability to accept risk and tolerate failure is a cul‐
tural trait.

Documentation Standards
You’ll notice that I qualified the benefits of documentation with the statement of doc‐
umentation done well. Chapter 4 already elaborated on the knowledge management
and usability aspects of documentation done well. This section elaborates on docu‐
mentation standards, which define guidelines that allow for common and consistent
communications through diagrams.

Such standards or guidelines should cover the following elements of a diagram:

Symbology
What do all the symbols used in a diagram represent? For example, an arrow: is
the arrow documenting a data flow, a network interaction, an ontology, or some‐
thing else? Is there any meaningful difference between a solid or dashed line used
for the arrow? Or how about the type of arrowhead? Is there a specific iconogra‐
phy used? For example, cloud providers such as Amazon Web Services (AWS)
provide their own iconography for architecture diagrams.

Colors
Keeping accessibility in mind, define consistent aesthetics and purposes. Try not
to deviate from societal norms to avoid cognitive dissonance. For example, red

Documentation Standards | 179

usually means bad or high risk, yellow indicates medium bad or medium risk,
and green means good or low risk.

Granularity
Decide on the level of detail for each diagram type and be consistent. For
instance, if a diagram gets too cluttered and is hard to follow, it is likely trying to
cram too much information into one visual and should be decomposed. A dia‐
gram should be intuitive and speak for itself.

See examples such as the C4 model for already defined standards. Let’s look at exam‐
ples of common architectural views. Figure 9-1 illustrates a generic layered hierarchy
view, used to show how capabilities or systems are composable. Figure 9-2 illustrates
an ontology or interaction view, used to show how systems relate to one other. Rela‐
tionships can represent flows including but not limited to data, network, or depen‐
dencies. Figure 9-3 is a generic example of a deployment view, which ideally would
use the industry standard iconography. Figure 9-4 illustrates sequence views, which
show step-by-step interactions between systems and/or users.

Figure 9-1. Example of a layered hierarchy view

Figure 9-2. Example of an ontology or an interaction view

180 | Chapter 9: Tangible Direction over Stale Documentation

https://c4model.com

Figure 9-3. Example of a deployment view

Figure 9-4. Example of a sequence view

Documentation as Code
There are modeling languages for architecture diagrams such as Unified Modeling
Language (UML), PlantUML, ArchiMate, Systems Modeling Language (SysML), and
Business Process Model and Notation (BPMN). These modeling languages provide a
common, and usually simple, way to describe architectural characteristics of technol‐
ogy solutions and software. In addition, modeling languages are essentially ways to
output a diagram through code. As a result, this code can be managed similarly to
traditional software code, supporting updates and enabling workflows as needed
based on updates and reviews.

To overcome stale documentation, establishing update and maintenance mechanisms
that are low effort and responsive to proactive triggers is key. Otherwise, the use of

Documentation as Code | 181

https://uml.org
https://uml.org
https://plantuml.com
https://oreil.ly/9R6FZ
https://sysml.org
http://www.bpmn.org

the diagrams in business processes such as architecture decisioning and incident
management is suspect.

For example, let’s say an architect defined a sequence diagram that described the inte‐
gration between two systems to support a workflow. Wouldn’t it be great if as soon as
any elements in that diagram change in real-life implementation, the diagram was
also updated? One way to ensure that this happens is to include diagrams as part of
release packages, such that when change impact analysis occurs naturally as part of
release management, any impacted diagrams are also updated. Essentially, diagrams
need to be considered as living documents.

Another practical way that works well to keep diagrams up to date is to autogenerate
them. This is not possible for every diagram, but it is possible for diagrams such as
interaction views and deployment architectures. This method may still require some
human oversight and judgment, but it reduces the manual effort that it takes to create
and maintain the diagram.

A more novel idea is to make architecture diagrams queryable through code such that
you can add a rules engine to glean insights. For example, let’s say you have a depend‐
ency diagram that is queryable. Queries can be built that allow you to identify the
blast radius of any given dependency and therefore measure the risk and impact of
that dependency failing. As another example, imagine that a context view that
describes how a system interacts with other systems is queryable. A rules engine
could identify whether or not integration patterns are being followed by querying
those interactions.

Case Studies
This section examines a few anecdotal case studies and studies the themes that they
present.

The Archaeological Architect
Archie was an architect who worked at EA Example Company. Archie worked closely
with a software engineering delivery team to understand their software products. He
documented the current state of the software product using diagrams such as interac‐
tion views and sequence views with lengthy explanations. EA Example Company had
a culture of frequent releases, and this team was no exception, releasing nearly every
single week. Archie found that much of his time was consumed just keeping the
current-state documentation up to date. The software engineering team did not
include Archie in any decision making for new capabilities.

What happened here?

182 | Chapter 9: Tangible Direction over Stale Documentation

Archie is an example of the archaeological architect, someone stuck in documenting
the current state and who spends more time updating the current state than they do
in figuring out the future or target state. Although understanding the current state is
important, architecture needs to be future facing and proactive. By only documenting
what was or had already happened, Archie was adding limited value.

Key takeaways are summarized as follows.

Do:

• Be selective in what is documented.
• Maintain documentation so that it doesn’t get stale.

Don’t:

• Only document the current state.
• Rely on manual effort to keep documentation up to date.

The Ambitious Architect
Amber was another architect who worked for EA Example Company. Amber also
worked closely with a software engineering team, and she took the time to build a
relationship with the product and engineering leads to understand what problems
they were facing with their software. She then worked with the team to document
their current system architecture and coupled that with the understanding of their
problems to put together another diagram with a couple of key changes as a proposal
for an aspirational future system architecture. She reviewed the proposal with the
team, and they discussed the recommended changes and identified constraints. They
deliberated about the constraints to figure out which ones were truly constraints and
which ones could be lifted, and then they settled on implementing the changes. She
also gained consensus from the product lead to include documentation review as part
of their definition of done for both feature delivery and product planning. This
allowed for the whole team to feel a sense of ownership of their documentation, and
for frequent review and incorporation of documentation into product decision
making.

What happened here?

This example details the ambitious architect, someone who focuses documentation on
problem-solving, particularly to define the future. Doing so allows for architecture to
be proactive and strategic, to determine what is feasible and what is a constraint, and
to define a tangible plan of action to overcome any challenges standing in the way of
achieving the future state. The ambitious architect has ambitions to help the team use
technology to solve future needs, not just the current-state deliberations.

Case Studies | 183

Key takeaways are summarized as follows.

Do:

• Build a coalition of relationships with product and engineering teams to define
value in documentation.

• Use documentation to define future state based on current-state understanding.
• Associate future-state architecture with business value.

Don’t:

• Limit the future to today’s constraints.

As demonstrated by these anecdotal case studies, it is better to be an ambitious archi‐
tect, seeking tangible direction for an aspirational future, than an archaeological
architect who limits themselves to the current state.

Summary
Documentation is necessary and critical to providing a clear understanding of an
architecture. This chapter discussed the second recommended enterprise architecture
principle, tangible direction over stale documentation, to highlight the need to make
documentation as effective as possible.

Tangible direction means that the architecture decision and strategy have a clear asso‐
ciated business value and are grounded in technical fact versus theory. In addition, it
is helpful for documentation to adhere to standards for consistent understanding and
reduced cognitive load such as symbology, colors, and granularity.

Keeping documentation up to date so that it is not stale is a challenge that can be
overcome in a variety of ways, such as defining and executing an update process,
using automation to generate diagrams, and making diagrams queryable to allow for
rules to prompt an update.

Ambitious architects understand how to use documentation to further their aspira‐
tions to achieve future-state architecture. Archaeological architects, on the other
hand, spend too much time and effort on the current state without providing direc‐
tion on the future.

Thus, documentation is extremely important and adds value, but not if it is allowed
to get stale, and not if it doesn’t provide tangible direction to achieve a business-
beneficial future state.

A business-beneficial future state is also characterized by being secure and compliant.
The next chapter dives into the third principle of the very short manifesto for effec‐
tive enterprise architecture to achieve this characteristic.

184 | Chapter 9: Tangible Direction over Stale Documentation

CHAPTER 10

Driving Behavior over Enforcing Standards

The third enterprise architecture principle in the very short manifesto for effective
enterprise architecture is driving behavior over enforcing standards.

Chapters 2 and 5 talked about standards and requirements and the importance of
both enabling and enforcing them. The principle of driving behavior over enforcing
standards emphasizes this idea to say that while enforcement is important and neces‐
sary, especially in a well-managed, regulated environment, defining standards and
requirements in terms of human behavior is even more valuable. This is because the
quality of compliance depends on human behavior.

There are two broad categories for the quality of compliance:

Minimum
The minimum level of compliance is a pass or fail type of compliance against the
minimum level of satisfaction to the standard or requirement.

Optimum
The optimum level of compliance is satisfying the minimum level and also doing
more to get the most benefit out of the standard or requirement. This can get
nuanced pretty quickly.

For example, let’s say there is an enterprise architecture standard to use a certain soft‐
ware programming language. The minimum level of compliance might be that the
programming language is used. A more optimum level of usage might also consider
the version used, best practices for managing memory and compute, using the right
package manager, and using well-known, highly performant, vulnerability-free
libraries.

Both the minimum and optimum levels are accelerated by incentivizing desired
behavior.

185

Driving Desired Behavior
For driving the right behavior, Figure 10-1 provides a simple framework to use.

Figure 10-1. Framework to drive desired human behavior

You first have to define what good looks like. Is the minimum enough? Or is doing
more, the optimal level, necessary?

From the example above, it could be that enforcement focuses on the minimum level
to ensure that all software is developed using the standard programming language.
While sufficient from a compliance perspective, from a human behavior perspective,
it is likely better to go beyond the minimum and use the correct version without
vulnerabilities.

After defining what good looks like, you then have to identify the barriers that pre‐
vent getting to that good outcome. For instance, why wouldn’t a software engineer
use the standard software language? There could be many reasons, including but not
limited to the following:

• They didn’t know they were supposed to use that language.
• They were more familiar with a different language and were more comfortable

using what they knew.
• The software application was already written in a different language, and using

the standard language would require a refactoring and migration that they didn’t
have time or priority for.

• It is too hard to use the standard language; the development ecosystem isn’t set
up to support using it.

• They believe that a different language is better suited for their specific problem.

Last but not least, depending on the barrier, there are different ways to solve for driv‐
ing the right behavior, as shown by Table 10-1.

186 | Chapter 10: Driving Behavior over Enforcing Standards

Table 10-1. Examples of driving behavior to adhere to standard software language

Potential barrier Potential solutions
The software engineer doesn’t know the requirement. Implement training.

Conduct a communications campaign.
Only allow for the required language to be used in software delivery
processes.

The software engineer is more familiar with other
languages.

Implement a training program to upskill talent.

The software application is already using a different
language.

Prioritize refactoring or grant an exception.

The development ecosystem is not set up to support
the standard language.

Do not require the standard until the development ecosystem is
enabled.

The software engineer prefers a different language for
the specific problem.

Allow for a champion/challenger model to allow for differentiated
use cases and/or prove that the standard works fine.

Human behavior is a complex topic. In my experience, behavior can be learned and
conditioned.

Conditioning Behavior
Humans learn behaviors based on experiences. There are typically two kinds of
learning:

Conscious learning
This refers to increasing knowledge through explicit, deliberate choice. For
example, a software engineer taking a training course.

Unconscious learning
This refers to implicit learning. For example, if a leader talks about the value of
well-managed software and the importance of risk mitigation, the software engi‐
neer learns to value these things as well.

These types of learning, when coupled with conditioning, are what enable humans to
develop habits. Conditioning refers to associating consequences to a given behavior:

Positive
Positive conditioning is often perceived as a reward. For example, if it is easy to
complete a task, the human is likely to repeat that task. Positive conditioning
could also involve recognition in the form of public appreciation for a job well
done.

Negative
Negative conditioning is often perceived as punishments or friction. For exam‐
ple, if it is difficult to complete a task, the human is likely to look for a

Driving Desired Behavior | 187

workaround or a way to bypass that difficulty in the future. Or, if credit is mis‐
placed, the human is likely to not want to do the same work again.

Sometimes, friction is used as a tactic to drive the right behavior. Let’s reuse the soft‐
ware language example. An organization may focus on enabling the standard soft‐
ware language such that the software engineer does not have to take any extra steps to
use that language. They can just write their software, build it, test it, and deploy it.
Whereas because the organization does not invest in enabling other languages, using
an alternative language may cause friction, such as needing to get exception appro‐
vals, needing to follow a custom path to get software library dependencies from the
right repository, or needing to work with cybersecurity to make sure their software is
scanned. The use of the alternative language may not be outright blocked due to leg‐
acy workloads that require it, but the friction induced by using it would help dissuade
new software from being built with it.

Humans tend to be motivated to avoid friction when possible, so
use friction with deliberate intent.

The next section looks more closely into motivation.

Understanding Motivation
Human motivation is a key part of human behavior. There are two categories of sour‐
ces of motivation that inspire humans to take action:

External
This refers to a source outside of the individual that appeals to pride, sense of
accomplishment, and level of effort. For example, external motivation can come
in the form of social approval such as rewards or recognition, ease of experience
in simplifying effort, and organizational goals.

Internal
This refers to a source from within the individual that aligns to their values,
interests, and sense of purpose. For example, internal motivation can come in the
form of wanting to do the right thing, wanting to do fun things, and wanting to
make a difference or an impact.

In the previous example, friction was used as an external source of motivation to
drive the desired behavior. This is because when a compliance task is intrinsically
rewarding or interesting, humans tend to complete it with joy rather than fear. The
easier it is to comply, the better off you are in driving the right behavior.

188 | Chapter 10: Driving Behavior over Enforcing Standards

Using Conditioning and Motivation Together
Putting conditioning and motivation together leads to the framework illustrated by
Figure 10-2.

Figure 10-2. Framework using conditioning and motivation to figure out ways to drive
desired human behavior

While the framework in Figure 10-2 includes four quadrants for completeness, I have
crossed out the quadrant in which internal motivation and negative conditioning
intersect. This is because I do not recommend any tactics that land there. I believe
that all humans have innate worth and deserve respect, and actions taken in this
quadrant are counter to that belief.

Let’s review an example of applying this framework. Let’s say an organization is con‐
cerned about the costs of operating applications in the cloud. In the pay-as-you-go
model, the cost of using cloud services is very transparent and can get expensive
pretty quickly. Using the concepts of conditioning and motivation, an architectural
strategy to improve efficiency could include the following to drive desired behavior:

Positive conditioning and internal motivation
Establish a training program to appeal to internal motivation for increasing
knowledge, and positive conditioning for providing training.

Positive conditioning and external motivation
Establish and sustain public rewards and recognition for bringing down expen‐
ses. Such positive conditioning appeals to external motivation for accomplish‐
ment and social awareness. Another tactic would be to heighten awareness of
cost efficiency through leadership presentations, which appeals to external moti‐
vation for aligning with organizational goals. A third tactic could be to enable

Driving Desired Behavior | 189

easy access to cost projections and reporting. This appeals to external motivation
for simplifying effort and to positive conditioning for making cost management
part of business-as-usual activities.

Negative conditioning and external motivation
Define and enforce an automated control that restricts and prevents high-cost
instance types from being used. Engineers would experience this consequence
during their software build and deploy process, and the negative conditioning
teaches them not to repeat this behavior.

Although these are not usually perceived as architecture, they are part of what would
drive the desired human behavior to adhere to the architecture standard. As a result,
considering human behavior and motivation is quite relevant and beneficial to deliv‐
ering effective architecture standards and requirements.

Case Studies
Let’s examine a few anecdotal case studies and study the themes that they present.

The Administrative Architect
Once upon a time, there was a company that had an enterprise architecture standard
around cloud server instance types. With cost in mind, certain instance types were
not allowed. For the most part, this worked fine—except for one day, when a machine
learning (ML) team came along. They found that their ML workloads were failing.
They consulted their architect, Addison, for help, and recommended looking into
GPUs.

Addison quickly realized that GPUs were a proven industry recommendation for
highly complex ML workloads. However, the standard did not allow for GPUs, and
Addison wanted to comply with that standard. As a result, Addison ended up sug‐
gesting that the team reduce the complexity of their workload and deal with the
lower-cost instance type. Frustrated, the team decided to eschew this guidance alto‐
gether and pursue an exception path, but Addison would not approve it. They escala‐
ted beyond Addison to their senior leadership, who, when told that the business
could not meet their ML aims without this capability, decided to override Addison’s
objections and grant the exception. The team ended up being able to use GPUs, and
not necessarily in the most cost-conscious way.

What happened here?

Addison is an example of the administrative architect, someone so focused on compli‐
ance to rules, standards, and regulations that they end up not solving problems and
business needs. As a result, their guidance is ineffective, and the perception of archi‐
tecture becomes a negative one. If Addison had instead focused on the desired

190 | Chapter 10: Driving Behavior over Enforcing Standards

behavior (spend efficiency) and coupled that with the business need (highly complex
ML workloads), she could have perhaps figured out a solution that utilized GPUs in a
cost-effective way.

Key takeaways are summarized as follows.

Do:

• Understand the intent of the standard or requirement in terms of the desired
benefit, and the desired human behavior necessary to achieve that benefit.

• Understand the business need.

Don’t:

• Be afraid to challenge the standard if the standard needs to evolve.
• Enforce the standard to the detriment of satisfying the business need.

The Ambassador Architect
There was another company that was trying to increase the stability of its applications
to improve its customer satisfaction levels. As part of this agenda, the company’s
enterprise architecture defined a resiliency standard that included a declaration that
all new cloud-based applications would be active/active, meaning that they would be
configured in a redundant deployment that could handle loads from either deployed
stack.

This company also had data scientists who were supported by an enterprise architect
named Ambrose. Ambrose listened when the data science teams came forward to say
that active/active didn’t work for them. He asked several questions to better under‐
stand what the barriers were and determined that the issue was that the active/active
pattern was written without understanding the data processing use case. Handling
scheduled batch jobs or streaming data processing was a different scenario than a
stateless web application, which was where the active/active pattern shined. When it
came to these other scenarios, active/active did not make sense due to the risk of data
duplication and the complexity of handling data processing events.

Ambrose explained to the team that achieving high resilience was very important,
even in these scenarios, but he was open to figuring out a different way to achieve the
outcome of swift recovery from failure. He worked with the team to figure out the
best way to recover from failures in these scenarios, and he had them prove this
method out with one of their batch-processing applications.

He then went back to the rest of the enterprise architecture team with a proposal to
both modify the current active/active pattern such that it was clear that it only applied
to web applications, and with a new resiliency pattern that was feasible for the

Case Studies | 191

batch-processing workloads. Both were approved, which allowed the data science
teams to proceed and also achieve greater resiliency.

What happened here?

This example illustrates the ambassador architect, someone who brings a deep under‐
standing of the standards and requirements that can guide teams on the expectations
of adherence. As an ambassador, the architect understands that their job is to guide
the team and drive right behaviors with the flexibility needed to allow for changes—
whether that change is to effectively challenge the standard or requirement itself, or
to change the team’s behaviors, or both. The ambassador architect is willing to take a
stance but will also listen to feedback and act on that feedback to evolve and improve
the architecture guidance.

Key takeaways are summarized as follows.

Do:

• Allow for negotiation and flexibility to evolve standards as needed.
• View architecture as a way to guide and problem-solve.

Don’t:

• Be a pushover.
• Be too rigid.

As demonstrated by these anecdotal case studies, it is better to be an ambassador
architect—able to objectively represent standards and solve for business needs—than
an administrative architect who can only enforce standards by rote.

Summary
Architecture standards and requirements are a key deliverable of an effective enter‐
prise architecture practice. Enforcement of these standards and requirements is
therefore a key piece of architecture governance. This chapter discussed the third rec‐
ommended enterprise architecture principle—driving behavior over enforcing stand‐
ards—to emphasize the benefits of defining compliance activities in terms of desired
behavior.

Driving behavior refers to identifying what good looks like for humans to comply with
the standard or requirement, and then determining the barriers in the way of per‐
forming that good behavior. Overcoming these barriers is possible, and a framework
offered in this chapter combines the concepts of conditioning behavior with sources
of motivation.

192 | Chapter 10: Driving Behavior over Enforcing Standards

Positive conditioning means associating good consequences with a behavior, whereas
negative conditioning is the opposite, associating bad consequences instead. External
sources of motivation are those found outside an individual, and internal sources are
from within an individual.

Ambassador architects are those who understand how to negotiate between the stan‐
dard and the business problem at hand. They are unafraid to evolve the standard if
that is necessary to solve the problem. On the opposite end of the spectrum are
administrative architects, those who try to rigidly enforce the standard as a pass-or-fail
construct and are unwilling to consider adaptation either by the team trying to com‐
ply or by the standard itself.

Thus, enforcement is an essential component of enterprise architecture, as elaborated
in Chapters 2 and 5. Enforcement done in the context of driving behavior is what will
achieve an optimum level of compliance to standards rather than just the minimum
level or no level at all.

This chapter offered a few frameworks to help achieve this optimum level of compli‐
ance. As great as frameworks are, the next chapter dives into the fourth and last prin‐
ciple of the very short manifesto of effective enterprise architecture to discuss the
power of evolution over frameworks.

Summary | 193

CHAPTER 11

Evolution over Frameworks

The fourth and final enterprise architecture principle in the very short manifesto for
effective enterprise architecture is evolution over frameworks.

It should not be a surprise that in a book full of frameworks that I consider frame‐
works to be very useful tools. Software development frameworks are typically great
starting points that accelerate development through reuse of common elements and
reduction of errors. Architecture frameworks help streamline processes, enable con‐
sistent output, and provide efficient reuse.

There are well-known enterprise architecture frameworks such as the Zachman
Framework, TOGAF, and Open Agile Architecture, and specialized ones like the
Department of Defense Architecture Framework (DoDAF) that define foundational
processes, templates, and tools such as reference models. In general, there is typically
much more advantage in reusing frameworks than there is in recreating them. Why,
then, do I state that evolution is more valuable than frameworks? There are two rea‐
sons.

The first has to do with responding effectively to change. In biology, evolution is how
species of animals and plants change over time based on natural selection. Environ‐
ments change, and natural selection is the process by which organisms that adapt to
their environment are the ones that survive.

Similar to natural environments, technology is constantly changing. As a result, any
enterprise architecture function needs to be able to adapt and stay relevant to busi‐
ness needs. In a world of ruthless prioritization—where businesses are highly con‐
cerned with the need to deliver better, faster, and cheaper—the practices of
architecture must adapt and evolve, to survive and deliver business value.

The second reason I say evolution is more valuable than frameworks has to do with
recognizing diversification. In biology, one output of evolution is diversity. Similarly,

195

https://oreil.ly/qBq54
https://oreil.ly/qBq54
https://oreil.ly/8lsJb
https://oreil.ly/jfzpi
https://oreil.ly/leFrO

in the business world, while there may be similar characteristics across businesses, no
two organizations are exactly the same. As a result, using frameworks requires being
able to apply them effectively in a specific organizational context. In other words, tai‐
loring frameworks to make them most effective and usable is important. You need to
know how to use any framework in the context of your organization to be productive.

Take architecture review boards (ARBs) as an example. Early enterprise architecture
frameworks had a clear methodology for instituting a governance process that
included architecture review as a checkpoint or a gate. Getting architecture review
approval was a necessary step in being able to deliver new technology. Over time,
though, as organizations underwent digital transformations, and changed again to
use revolutionary technologies such as the cloud, the pace of technological change far
surpassed the ability of a manual process based on ARBs to keep up. As a result, more
modern implementations no longer have a formal ARB; instead, the architecture gov‐
ernance steps themselves are embedded into software delivery processes.

A Short History of Enterprise Architecture
Enterprise architecture began in the 1980s with the goal of aligning information tech‐
nology (IT) systems with business strategy. John Zachman is credited with establish‐
ing enterprise architecture by articulating a structured approach to achieve this aim
with his Zachman Framework.

Then digital IT systems gained traction and swung the pendulum from IT being in a
support role to being a critical business enabler. That influenced enterprise architec‐
ture frameworks to evolve from being IT-centric to business-centric. And that meant
taking a more holistic approach to align technology investment across the whole
organization to business goals. The Open Group published TOGAF in the mid-1990s
as a standard for enterprise architecture under these circumstances. Enterprise archi‐
tecture became a strategic way to break silos and integrate across the entire business
organization.

Another trend that hit in the early 21st century was the rise of Agile and DevOps for
digital-powered organizations. These were quite complementary of enterprise archi‐
tecture, since they embraced the paradigm of breaking silos to improve collaboration
and communication. The Scaled Agile Framework still includes enterprise architec‐
ture today as a prominent role and function.

The next inflection point came in the form of cloud computing. Cloud computing
disrupted the ways of doing IT by providing a more flexible paradigm to innovate
with new technology. No longer was there a need to separate infrastructure from
application, to have separate functions of compute, storage, and so on. The cloud
enabled unprecedented self-service and full-stack engineering to flexibly innovate.
And for enterprise architecture, this meant tackling the complex challenge of

196 | Chapter 11: Evolution over Frameworks

https://oreil.ly/IFR5x

dynamic technology across the full stack along with the opportunity to integrate
emerging technologies.

The most recent inflection point is the rise of machine learning (ML) and artificial
intelligence (AI). Talk about data-powered insights! This new revolution has the
potential to provide unprecedented insights based on real-time intelligence to enable
better decision making. For enterprise architecture, this means intrinsically under‐
standing the power of data and using that to fuel strategy—a strategy that also has an
emphasis on cybersecurity and data privacy to protect that data.

Thus, in addition to the original and sustained goal of aligning IT strategy with busi‐
ness goals, enterprise architecture has evolved as a discipline to do so across complex
organizational and technology landscapes, while also incorporating the flexibility and
agility needed to innovate with emerging technologies, and simultaneously judi‐
ciously balancing risk, governance, and compliance concerns. As long as enterprise
architecture can be dynamic and evolve in response to such transformative changes,
it will continue to be an essential strategic enabler of the enterprise.

Let’s now take a look into evolutionary trends that help to operationalize the principle
of evolution over frameworks.

Evolutionary Trends
Just as businesses rise and fall based on their ability to evolve with the times, so too
does enterprise architecture as a function. This section elaborates on evolutionary
trends to embrace in establishing effective enterprise architecture practices for your
organization.

From Theory to Data
Chapter 9 discussed the importance of fostering a culture of experimentation, of
being receptive to learning from fast failure, and of using data to prove out the right
path forward. In addition to this paradigm, it is also necessary to be able to commu‐
nicate the business implications of the recommended architecture decision based on
data-driven empirical evidence.

For instance, let’s say that the business is interested in acquiring another company.
Enterprise architecture recommends an interoperability standard to ensure that exist‐
ing and acquired systems integrate, but meeting that standard will require several
existing systems to upgrade their interfaces. Use experimentation to output data of
the average level of effort (LOE) to perform such an upgrade and to show the differ‐
ence between integration efforts before and after that upgrade. Then use these results
to discuss the standard in practical business terms—the return on investment (ROI),

Evolutionary Trends | 197

the effect on mergers and acquisitions (M&A), and the kind of profit and loss (P&L)
that is incurred.

Using this technique, enterprise architecture is able to translate business needs into
IT standards that are then tangibly associated with practical business benefits. The
standards may have been initiated by a theory, but they are driven into reality by data.

From Outsider to Insider
As technology changes, one risk to architecture is to become outdated. For instance,
let’s say an organization is transitioning from a data center posture to a cloud-based
platform. Enterprise architecture standards that worked well in the data center may
be wholly unsuited for the cloud. An enterprise architect needs to think like the engi‐
neers who have to use and operate the technology to help evolve the standard. For
example, a standard around centralized backups using software-defined storage may
not make as much sense in a cloud environment where storage and backups are fed‐
erated commodities.

Architects must be able to establish trust to successfully influence business outcomes
and have their standards and guidance be adopted by engineers. Thus, the more the
architect proactively learns the technologies that the engineers use, with practical
hands-on means rather than just research or theory, the better off they will be in
making credible recommendations. This requires a significant investment in continu‐
ous learning, and the humility to recognize when one’s expertise is stale and in need
of refreshment.

Besides obsolescence, another risk is being perceived as too detached from stake‐
holder needs. Chapter 2 covered the importance of understanding stakeholders and
of close collaboration to understand and appeal to their specific needs. The best
framework in the world is meaningless if the stakeholder finds it irrelevant. Getting
stakeholders involved makes enterprise architecture’s value and worth more readily
apparent.

For example, enterprise architecture should have inside knowledge of stakeholder
needs and solve for them to answer relevant questions like the following:

Product manager
What applications support their product’s capabilities? What technical debt
should they be aware of that needs to be remediated?

Senior executive
What is the technology strategy for their vertical? How does it align with busi‐
ness strategy?

198 | Chapter 11: Evolution over Frameworks

Engineer
What is the modern tech stack? What tools are supposed to be used to support
monitoring and logging? What’s the standard way to build and deploy software?

Rather than an outsider parachuting in with little to no relevant
guidance, enterprise architecture must seek to be an insider, a
member of the same team, adding value through relevancy.

From Blocker to Enabler
Since enterprise architecture defines standards, which are essentially requirements,
and there is a strong governance component to the function, sometimes enterprise
architecture is perceived as a blocker. Rather than having architecture governance be
a blocker, Chapter 5 discussed the enterprise architecture strategy objective to both
enable and enforce, and Chapter 10 covered the principle around driving behavior
over enforcing standards. Ultimately, the standards, requirements, rules, guidelines,
and best practices that are defined by enterprise architecture need to be integrated
with and automated by software delivery tools that can provide developers with
rapid, consistent feedback in a helpful way.

In short, an enterprise architect has to think like an engineer to create an effective
architecture function. But this isn’t the whole story. Standards, if you recall from
Chapter 1, are only one (albeit large) piece of what enterprise architecture does. The
other is around setting technology direction. For that, an enterprise architect has to
think like a product leader and a technology leader to create an effective architecture
function. Enterprise architecture has to be able to create new value streams, use new
technology, and make the hard decisions around technology portfolio rationalization.
It’s an extremely delicate balance between blocking new work or investment and
guiding the new work or investment toward an aligned direction.

For instance, let’s say an application team wants to build a new feature. The architect
realizes that that feature is very similar to another feature that is planned to be built
on an enterprise platform. The team is not particularly supportive of waiting on the
platform to deliver the feature, since the team knows that if they control the feature,
they will get exactly what they want, when they want it. Yet, in service of the greater
good and technology rationalization, the architect knows that waiting on the plat‐
form would be the best thing to do.

A traditional architect might use the power of architecture governance to block the
new feature. While this could force the usage of the platform, it is likely to heighten
the perception of architecture as a blocker. An architect who embraces the trend to

Evolutionary Trends | 199

transform from blocker to enabler might instead figure out how the team can develop
their feature and then contribute that feature to the platform as a win-win scenario.
Or they could work with both the team and the platform team to prioritize the plat‐
form’s work so that the team gets their feature when they wanted it or maybe only has
to compromise a little bit.

The enterprise architect must lead with enablement to serve both
the enterprise and the software delivery application team and sat‐
isfy each, especially when one’s need is greater than the other’s.

Case Studies
Let’s examine a few anecdotal case studies and study the themes they present.

The Adamant Architect
Adam was an architect who worked for an organization that was starting its journey
to the cloud. As he embarked on the first application migration, he researched the
organization’s preferred cloud service provider’s architecture framework. From that
framework, he learned several important and foundational design considerations for
performance, reliability, cost, and security. He worked with the application team to
apply these considerations to rearchitect their application to perform more optimally
in the cloud environment.

The team migrated to the cloud with their rearchitected application based on the
framework’s recommendations rather than lifting and shifting the original applica‐
tion. Initially, this was successful because the application functioned in the cloud as
intended. However, two major issues materialized after the migration. The first was
that the application no longer adhered to the organization’s regulations for protecting
data and created risk for the organization. The second issue was that the application
team was ill prepared to sustainably operate the application in the cloud—for
instance, managing backups by themselves.

What happened here?

A good framework can provide a clear, reusable methodology to solve problems. The
cloud service provider’s framework did just that, enabling a solid architecture for the
given application. However, Adam was an adamant architect. An adamant architect is
someone who sticks rigidly to the framework without considering tailoring or trying
to change strategy when needed. In this scenario, Adam neglected to consider two
major factors:

200 | Chapter 11: Evolution over Frameworks

• The team was used to operating in a data center environment that used an oper‐
ating model whereby central teams managed infrastructure components such as
storage, database, and backups. In the cloud, these became commodities that
were self-service; however, this change was not identified by the framework.
Adam should have used his contextual knowledge of the organization and his
ability to think like an engineer to include this change as part of the architecture
plan to ensure sustainable operations.

• The organization was regulated, which meant that there were regulations that
applied specifically to data protection. Since the cloud framework was generic,
although some protections were implemented, not all of the ones that were nec‐
essary for the regulation were considered. Adam should have tailored the frame‐
work to his organization’s needs.

Key takeaways are summarized as follows.

Do:

• Identify and apply proven frameworks that can help solve a problem.
• Actively learn about new technologies to incorporate them into an architecture.

Don’t:

• Be too rigid to tailor the framework to your organization’s needs.
• Be too stubborn to raise the need for overall strategic changes.

The Audacious Architect
Audrey was an architect who worked for a software company. The company used the
software development lifecycle (SDLC) methodology heavily as a framework to
develop its software products. The company wanted to glean insights from data ana‐
lytics about the usage of the software and also wanted to explore opportunities to
incorporate ML into its software products. As a result, a new discipline around data
science and ML was born.

Audrey recognized that all software needed to meet the same basic standards from an
enterprise architecture and cybersecurity perspective; for instance, the software
needed to be developed using approved languages that were within end of life and
vulnerability free. However, Audrey quickly realized that the SDLC as defined and
practiced by her company was based on assumptions around the type of software
being developed—namely, web applications and microservices. It was not purpose-
built for software developed by data scientists and ML engineers, which meant issues
arose, such as the following:

Case Studies | 201

• SDLC release management processes did not include the right checks for data
science and model approval.

• SDLC notions around the stages of development, staging, and production did not
fit. For instance, data science and ML had to use production business data
instead of test data.

Audrey validated her conclusions by working with the new data science and ML
teams. She then took it upon herself to advocate for them by presenting their needs as
part of a strategic shift in how the company developed software. At first, these efforts
were in vain because there was a lack of understanding about why there were such
differences in software development, and a lack of recognition of the severity and
urgency of the gaps. Audrey did not give up. She took these challenges head-on to
define a business case and built new relationships to gain allies and supporters for
this cause. Eventually, her persistence paid off, and an initiative was established to
update the SDLC to enable data science– and ML-based software to be developed
simply and securely.

What happened here?

Audrey is an example of an audacious architect, who understands the framework well
enough to focus on the value that it is driving and who can evolve the framework
itself as needed to still achieve that value under catalytic circumstances. Audrey took
risks to drive the strategic changes she foresaw as necessary. The audacious architect
drives bold changes and is courageous enough to do so in the face of resistance.

Key takeaways are summarized as follows.

Do:

• Evolve frameworks as needed.
• Take calculated risks.

Don’t:

• Try to lead bold, transformational changes by yourself.
• Accept the status quo when you don’t have to.

As demonstrated by these anecdotal case studies, it is clearly better to be an audacious
architect, able to boldly evolve frameworks for specific business needs, than an ada‐
mant architect who never unleashes the full potential of a framework.

202 | Chapter 11: Evolution over Frameworks

Summary
Architecture frameworks are a cornerstone of an effective enterprise architecture
practice. They define reusable methods, processes, and tools to solve common prob‐
lems. Defining and/or following a framework is, however, not enough for a fully
effective enterprise architecture practice. This chapter discussed the fourth recom‐
mended enterprise architecture principle, evolution over frameworks, to highlight the
acute need to evolve so you stay relevant and add value.

Evolving the usage of frameworks with organizational context allows for optimal
usage of that framework. Evolving the practice of enterprise architecture itself is nec‐
essary to adapt effectively to the ever-present changes in the business and technology
landscape.

Enterprise architecture cannot cling to archaic processes and paint theoretical pic‐
tures of the future and expect to survive, let alone thrive. Adamant architects are
those who resist or are slow to recognize the changes needed—to themselves, to the
frameworks they use, and to the practices that they are supposed to embrace.

Enterprise architecture can and should be the strategic problem-solver that guides the
organization to a bright future that incorporates new technology, rationalizes the
existing technology portfolio, and delivers innovative products and services founded
on proven standards. Audacious architects are the bold drivers of the changes neces‐
sary to achieve this aim.

Summary | 203

CHAPTER 12

Assessment Framework

So far, this book has covered effective enterprise architecture, including key concepts,
key objectives, and key principles. To apply this knowledge to your own organization,
you first need to know where your organization currently is on its journey to estab‐
lishing effective enterprise architecture, and for that you will conduct an assessment.

Maturity models are a fairly common type of assessment tool, made popular by capa‐
bility maturity models (CMMs). Typically defining five levels—from initial to optimal
—CMMs help simplify complex topics into a series of linear steps and benchmarks to
assess performance. This process can help organizations understand the level that
they are currently at, and what remains to get to where they want to be.

I have used maturity models to assess the current state of an organization, with an
emphasis on process maturity and quality. In this experience, I did see some benefit
to identifying the level that the organization was at and creating a roadmap to
increase that level. I have even developed my own maturity models for things like
platforms and have found benefit in determining what nonfunctional requirements
(NFRs) needed to be in place for what level. In a similar vein, Figure 12-1 shows a
high-level example of what an effective enterprise architecture maturity model could
look like.

Using a step-like progression, this maturity model shows the clear difference from
starting with nothing to ending with something quite optimal. However, I have come
to realize that maturity models as assessment tools all too often fall short.

205

Figure 12-1. Example enterprise architecture maturity model

Wait, what? Yes, you read that right. Here’s why I have come to this, perhaps startling,
conclusion:

They are static.
Maturity models are static things, a snapshot of the time during which they were
defined. As technology and business needs change, they may not go far enough
to address the real gaps, the true competencies the organization needs to estab‐
lish. They also imply that there is an end stage when you are done. This is a mis‐
nomer, because as technology changes and businesses evolve, so too should
enterprise architecture.

They lack context.
With the diversity of organizations across industries and their usage of technol‐
ogy, it is highly improbable that a single maturity model could have enough con‐
text to be useful for all of them. In fact, interpreting the maturity model can lead
to inconsistent results depending on the specific organizational context used for
the interpretation.

206 | Chapter 12: Assessment Framework

They are linear.
Maturity models assume linear growth for all phases, yet reality is never a straight
line. What happens when the assessment results are scattered across multiple
levels?

They have a terminology problem.
Intended or not, they impart a negative connotation to the areas that are assessed
as immature. Negative connotations can lead to defensive reactions rather than
to constructive behaviors to fix the gaps.

So, what do you get instead of a fully baked maturity model? You get an assessment
framework that relies on an outcome-based capability model.

Conducting an Enterprise Architecture Assessment
Unlike a maturity model, an outcome-based capability model doesn’t define the bar
for all of the practices that you should seek to achieve in striated levels. Instead, it is
meant to be used as a dynamic aid to identify capability areas for continuous
improvement. The enterprise architecture assessment framework adds to this concept
by including a prioritization schema to focus on improving capabilities that will bring
the most benefit. Figure 12-2 visualizes this assessment framework.

Figure 12-2. Enterprise architecture assessment framework

The first step of the enterprise architecture assessment framework is to figure out
what business outcomes need to drive the capability model.

Define Business Outcomes
The first step is to define business outcomes as quantitatively as possible. Since enter‐
prise architecture needs to have alignment across the enterprise to be successful, I
highly recommend defining your business outcomes in collaboration with your key
stakeholders to ensure a shared understanding of what enterprise architecture will
seek to support and achieve. Thus, the business outcomes should be traceable to the
results of an effective enterprise architecture function and practice.

Conducting an Enterprise Architecture Assessment | 207

Chapter 1 hit on a few general business outcomes of effective enterprise architecture:

Improved efficiency and optimize investments by avoiding silos
Providing collective goals in the form of a shared destination state that crosses
organizational boundaries will reduce duplication and align and focus priorities.

Increased customer satisfaction and improve brand and reputation by avoiding chaos
Providing clear standards with requisite enablement and enforcement allows for
accelerated delivery of consistent, cost-effective, well-architected software prod‐
ucts and services that are more stable and provide better experiences.

Improved agility and enable innovation by avoiding technical debt
Making better architecture decisions enables responding to changes in a cost-
effective way.

Although these could apply to your organization, there may be some specific other
outcomes for your particular organization. For example, perhaps your organization is
considering a merger or acquisition; that would be a key initiative for enterprise
architecture to bolster. Or perhaps it is undergoing a major technology transforma‐
tion, such as moving to the cloud. The major transformation would yield business
outcomes that should be directly supported by enterprise architecture.

For example, an organization transitioning to the cloud could define business out‐
comes around migrating application workloads to the cloud, accelerating agility of
application development, improving scale and resilience of applications, and improv‐
ing spend efficiency. In this scenario, enterprise architecture can provide the holistic
strategic thinking necessary to provide a data-driven approach to cloud migration. In
more tangible terms, enterprise architecture can provide the cloud strategy to do the
following:

• Develop a powerfully secure, scalable, and resilient cloud platform.
• Create reusable reference architectures and patterns to accelerate and streamline

migration.
• Identify interdependencies to determine the sequencing of migrations.
• Define strategic roadmaps for new or enhanced technology capabilities needed to

support the cloud and migrations.

By concentrating on the shared business outcomes, you can then figure out what
needs to be true to get there, which brings us to the next step of the enterprise archi‐
tecture assessment framework.

208 | Chapter 12: Assessment Framework

Identify Capabilities
The next step of the enterprise architecture assessment framework is called identify
capabilities. Just as Chapter 8 discussed capabilities in an architectural domain model
providing key context, this step of the assessment framework is considering enter‐
prise architecture itself as a domain. So, now you’re defining all the capabilities neces‐
sary to achieve the desired business outcomes that pertain to an enterprise
architecture function and architecture practices.

Figure 12-3 shows an example of such a capability model. Using people (culture),
process, and tools as broad categories, this capability model can be used to figure out
the specific capabilities that an organization needs to strengthen to establish an effec‐
tive enterprise architecture function and practice.

Figure 12-3. Starting point of an enterprise architecture capability model

This capability model can and should be expanded and tailored to your organization
based on analyzing people, process, and tools.

Conducting an Enterprise Architecture Assessment | 209

For example, let’s go back to the scenario of an organization going through a transfor‐
mation to cloud technology. A major business outcome is to migrate applications to
the cloud, as quickly and cost-efficiently as possible. As a result, enterprise architec‐
ture functions as defined in Chapter 1, of strategy, enablement, and oversight, may
need the following tailored capabilities:

People
Cloud architecture skills

Process
Cloud governance, cloud application standards, and cloud application moderni‐
zation disposition framework

Tools
Cloud migration

Effective architecture practices in the context of operating and using the cloud could
include the following nonexhaustive list of tailored capabilities:

People
Cloud application architecture, cloud engineering, and cloud certification

Process
Cloud standards for FinOps, cloud standards for resiliency, cloud configuration
management using enterprise architecture metamodel, cloud network manage‐
ment, cloud monitoring, and cloud security

Tools
Cost management, cloud billing, cloud service discovery, software-defined net‐
working, cloud provisioning, cloud automation, and cloud policy controls

Once you have your tailored capability model, you can move on to the next step.

Map Capability Gaps
The next and final step of the enterprise architecture assessment framework is to per‐
form a gap analysis using the capability model developed in the previous step. You
may have to conduct research and interview several stakeholders to find out where
there are capability gaps, with questions like the following:

• What is challenging across the dimensions of people, process, and tools that
makes it hard to achieve the desired business outcomes?

• Do all the capabilities that you identified in the previous step have solutions?
• Are any solutions suboptimal and, if so, why?

210 | Chapter 12: Assessment Framework

For example, for the enterprise architecture functions as defined in Chapter 1 of strat‐
egy, enablement, and oversight, questions might be similar to these:

People
Are they staffed with the right talent, which has the right skill sets to lead tech‐
nology changes? Is the organization structured to use that talent effectively?

Processes
Are there well-defined and clear architecture standards? Are there well-
established and easy-to-follow architecture processes? Is architecture informa‐
tion readily available? Are architecture templates reusable?

Tools
Are there easy and automated tools to support the architecture standards and
processes? Is architecture governance automated?

For assessing enterprise architecture practices, an analysis could take a form like this:

People
Are roles and responsibilities in architecture decision processes clear and well
understood? Is your talent equipped with the skills they need to be successful in
fulfilling the role that they play in the enterprise architecture ecosystem? Do you
have an organizational culture that is founded on trust and receptive to collabo‐
ration and reuse? Do stakeholders understand the roles of architects and the
value that they bring? Do stakeholders adequately use architecture information?

Processes
Are there clear processes around making architecture decisions? Are architecture
standards incorporated into software delivery processes? Is architecture
ingrained into the fabric of the software delivery processes?

Tools
Are there tools that make it easy to perform architecture work? Are standards
automated in terms of adhering to them and measuring compliance?

Once you have identified capability areas across people, processes, and tools that are
weak and hinder the success of enterprise architecture, you then need to map these
gaps to the following to prioritize them:

Impact
Determine which capability gaps, if remediated, provide the greatest benefit.

Effort
Determine the work necessary to solve for the gap.

Conducting an Enterprise Architecture Assessment | 211

Impact and effort can be quantified with the scoring scale defined in Table 12-1.

Table 12-1. Scoring scale

Score Description Impact (benefit) Effort (duration + labor)
1 Low Negligible (e.g., benefits are hardly felt and are not

sustainable)
Minimal (e.g., within a few days, one person)

2 Medium-Low Limited (e.g., benefits affect only a small population
or are small improvements)

Small (e.g., within a few weeks, a few
people)

3 Medium Moderate (e.g., benefits are broader and are more
noticeable)

Moderate (e.g., within a month or so, a team
or so)

4 Medium-High Broad (e.g., benefits affect a wide population and are
sustainable)

Trending toward higher (e.g., within a
quarter, a few or more teams)

5 High Game changer (e.g., benefits are transformative, with
huge return on investment)

High (e.g., several months, several teams)

Applying this scoring scale to the identified capabilities results in the capability gap
analysis. Using the earlier cloud example, this analysis could produce something like
Table 12-2.

Table 12-2. Example capability gap analysis

Dimension Capability Gap Impact Effort
People Cloud architecture Talent lacks skills in developing cloud applications. 5 - High 3 - Medium
Process Cloud governance Governance processes exist for security and data, but not

for how they apply to the cloud.
5 - High 4 - Medium-High

Architecture
reviews

Architecture reviews currently do not look for cloud-
specific elements and lack reference patterns.

3 - Medium 4 - Medium-High

As this brief example shows, a quick scoring based on estimated impact and effort
allows for priorities to take shape. It is likely that the skill deficiency would be the first
capability area to be tackled, followed by the governance process.

Summary
Evaluating the state of your organization in the context of effective enterprise archi‐
tecture is necessary to determine an enterprise architecture strategy. Maturity models
are one form of assessment tool, but they are static, lack context, and can be oversim‐
plified and prone to misinterpretation. Thus, instead of relying on a maturity model
as an assessment tool, this chapter presented an assessment framework that relies on
an outcome-based capability model.

By starting with defining shared business outcomes and tracing that directly to enter‐
prise architecture efforts, you have begun to articulate the business case of how enter‐
prise architecture will provide value to your organization. Next, by focusing on these

212 | Chapter 12: Assessment Framework

outcomes to identify the capabilities needed to achieve them, and then performing a
gap analysis, you will have produced a clear, holistic view of the capabilities that make
the most sense in your organizational context to invest in.

Assessment durations can vary depending on the level of detail, engagement, and col‐
laboration necessary. Typically, assessments of this nature should be timeboxed
within one month, and done as part of an annual strategy cycle. Speaking of strategy,
the next chapter discusses how you can build on your assessment to establish your
own enterprise architecture strategy.

Summary | 213

CHAPTER 13

Framework to Define Enterprise
Architecture Strategy

Chapter 1 shared how enterprise architecture is supposed to define the strategic north
star that guides solving enterprise-wide complex problems and transformations.
Enterprise architecture also defines the principles, standards, and best practices that
enable all software engineering teams to deliver high-quality, resilient, cost-effective,
and secure software.

Just as enterprise architecture defines the strategic north star for business and tech‐
nology initiatives, enterprise architecture needs its own strategic north star to estab‐
lish itself as an effective function. Dogfooding is the practice of using your own
products and services to see how well they work and identify opportunities. This
chapter discusses how to dogfood strategy by pulling together everything this book
has covered so far into a framework to define your own enterprise architecture
strategy.

Defining Enterprise Architecture Strategy
Defining the strategy for a strategic function may sound a bit meta but is really quite
essential to provide enterprise architecture’s value proposition and focus efforts.
Figure 13-1 illustrates a framework for defining such a strategy.

215

Figure 13-1. Enterprise architecture strategy framework

The enterprise architecture strategy framework has three steps:

1. Contextualize enterprise architecture.
2. Continuously improve.
3. Create excitement.

Let’s now look deeper into the first step.

Contextualize Enterprise Architecture
It is important to recall that enterprise architecture is broader than information tech‐
nology (IT). Enterprise architecture is effective and successful when it can provide a
holistic, feasible strategy for delivering business outcomes through the usage of tech‐
nology. That holistic strategy has to cover all the aspects of the enterprise, from oper‐
ations to delivery and compliance, in terms of alignment and evolution of people,
processes, and tools.

This strategy must occur in the context of your own business needs. Chapter 8 dis‐
cussed the principle of contextualized understanding. Hence, the first step in defining
your own enterprise architecture strategy is to deeply understand your business strat‐
egy, business growth opportunities, and business capabilities.

216 | Chapter 13: Framework to Define Enterprise Architecture Strategy

How do you go about understanding your business growth strategies? Well, it’s likely
that there is a corporate business strategy that is well defined and iteratively changing
each year in response to new information. First, you need to comprehend what that is
by partnering with your corporate strategy group and/or discussing with your senior
leadership.

Generally, corporate strategy includes a business model. A business model describes
how the business delivers products to the market and drives profit and growth. It
defines the customer base and unique business characteristics for competitive edge,
and it determines what products and services make up the core business revenue
streams. Enterprise architecture doesn’t usually own the business model, but if a busi‐
ness model is lacking, enterprise architecture can drive the need and collaboration to
define it.

Enterprise architecture can further contribute to the business model by staying on
top of technology trends to figure out how they should be incorporated into business
growth. Ways to do that include learning from industry research firms like Forrester
and Gartner, and from industry conferences that pertain to your technology areas.
For example, in the cloud industry, major public cloud service providers such as
Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)
hold their own conferences.

Enterprise architecture does own the business capability model, which describes the
capabilities necessary to support delivering the products and services to the custom‐
ers defined by the business model. Business capabilities were covered in Chapters 8
and 12. Speaking of Chapter 12, based on the enterprise architecture assessment
framework described there, you would have zeroed in on the desired business out‐
comes and capability gaps that need to be overcome to achieve those outcomes,
which brings us to step 2 in the enterprise architecture strategy framework.

Continuously Improve
The understanding of business growth strategy, business outcomes, and capability
gaps is key to informing your enterprise architecture strategy, as defined by objectives
and measurable objective key results (OKRs). These objectives are twofold:

• One set focuses on what enterprise architecture as a function and enterprise
architects as a role need to do to drive strategy.

• One set focuses on architecture practices to enable software delivery and includes
all the necessary components of architecture decisioning, such as standards, tem‐
plates, processes, and tools.

Chapters 2 through 6 described a set of sample OKRs based on similar analysis to
establish an effective enterprise architecture strategy. These OKRs related to the

Defining Enterprise Architecture Strategy | 217

principles established by the very short manifesto defined in Chapter 7 and explored
in Chapters 8 through 11:

Create shared alignment.
This OKR is all about establishing a culture of trust, identifying and working
with stakeholders to get them to agree with—and implement toward—a stated
direction. It relates to the principle of contextual understanding over siloed deci‐
sion making described in Chapter 8.

Make architecture information embedded and accessible.
This OKR covers the importance of integrating intuitive and usable architecture
information with software delivery processes. It relates to the principle of tangi‐
ble direction over stale documentation described in Chapter 9.

Enable and enforce standards.
This OKR emphasizes the duality of effective standards in needing to be both
easy to adhere to and governed to ensure adherence. It relates to the principle of
driving behavior over enforcing standards described in Chapter 10.

Instill proactive and reactive architecture decisions.
This OKR addresses the nature of architecture decisions and the need to balance
strategic and tactical decisions. It relates to the principle of evolution over frame‐
works described in Chapter 11.

An additional tool that you can use to inform your OKRs is a strength, weakness,
opportunity, and threat (SWOT) analysis, as illustrated by Figure 13-2.

Figure 13-2. Enterprise architecture SWOT analysis template

The SWOT analysis should also be conducted in collaboration with enterprise archi‐
tecture’s key stakeholders across the enterprise, inclusive of business, technology,
operations, and compliance organizational units. To perform a thorough SWOT anal‐
ysis, consider both internal and external factors. For instance, when brainstorming
strengths and weaknesses, consider not just what enterprise architecture would say

218 | Chapter 13: Framework to Define Enterprise Architecture Strategy

about itself, but what others say about enterprise architecture. Also, keep in mind that
strengths are what provide advantages or benefits, whereas weaknesses result in risks.

For opportunities, consider changes to policy, regulations, and trends in technology
and industry to identify opportunities that enterprise architecture can exploit in a
positive way. Some opportunities can also be threats, such as technology trends that
aren’t capitalized upon. For instance, are there new technologies that could be used?
How about your competitors—are they using new technologies that give them an
edge on their products and services? Are you at an inflection point, with disruptors
on the horizon?

Limit your SWOT analysis to the top 5–10 specific ideas in each
quadrant. A lengthy analysis can become unwieldy.

Any OKRs that you define should demonstrate progress toward your desired business
outcomes. While any given key result may make only an incremental improvement,
the combined results should drive transformative changes. You can revisit KRs year
to year, and even the objectives themselves, to select the specific capabilities to focus
on improving.

As a result, your OKRs become your three-to-five-year roadmap. Showing the top
items that did not make the prioritization cut can also be compelling. It can be eye-
opening for stakeholders to realize what you’re not going to be able to do due to con‐
straints in resources and dependencies. OKRs also help set their expectations for what
is achievable and where stakeholders are a dependency to make an OKR successful.
That brings us to step 3 in the enterprise architecture strategy framework—creating
excitement.

Create Excitement
Much of what enterprise architecture does depends on others, and a strategy for
effective enterprise architecture is no different. Thus, keep in mind that a strategy that
stakeholders rally around is a strategy that will deliver results.

Communication and marketing therefore make up the last step of the framework to
define enterprise architecture strategy, and they must be done deliberately and con‐
tinuously in the lifecycle of both defining and executing the strategy. Chapter 6 dis‐
cussed communication in the context of gaining alignment; this step in the enterprise
architecture strategy framework goes further to say that you also need to create
excitement. Genuine excitement and caring about the outcomes are key to enabling
sustained stakeholder engagement through the long haul of multiyear execution.

Defining Enterprise Architecture Strategy | 219

What gets people excited? Relevance and incentives are what come to my mind. If you
can show that your strategy is relevant to stakeholders’ desired outcomes, their needs,
and their specific pain points, you will be in a good position to appeal to them.
Answer the question, “What’s in it for them?” Why should they care, when there are a
thousand other things for them to take care of?

Reiterate that you are making stakeholders’ lives easier.

In this step, you should establish a communication and marketing strategy. Go on a
roadshow to socialize the enterprise architecture strategy with your key stakeholders,
at both senior and junior levels. Identify or establish common forums where you can
return to provide updates.

Determine the brand identity that you want to associate with enterprise architecture.
If you personified enterprise architecture, what values or adjectives would you use?
Trustworthy, friendly, and productive come to my mind. Starting with values is impor‐
tant because you want to appeal to people’s sense of why enterprise architecture exists,
along with the enterprise architecture value proposition, rather than what or how
enterprise architecture fulfills it.

You want to preempt the notion that you are adding bureaucracy
or unnecessary complexity as part of your what and how. Rather,
you want to sell your brand and showcase that you are adding
value for stakeholders and are ultimately making their lives better.
As a bonus, it happens to be true: enterprise architecture’s value is
in enabling everyone to build better software as one team, for the
good of the enterprise as a whole.

Your branding will come through as part of your communication and marketing
strategy and will help to create excitement around enterprise architecture and what
enterprise architecture is doing to help. It may be odd to think about branding a func‐
tion rather than a software product or service, but it is in fact the same technique.
And in a function that depends on humans to align and engage, branding is a power‐
ful way to instill trust and build excitement.

If your enterprise architecture is associated with a negative brand, declare a reset as
part of your strategy. Resetting and reinventing your brand are very possible and just
need consistency and repetition to change people’s perception.

220 | Chapter 13: Framework to Define Enterprise Architecture Strategy

In branding, appeal to people’s sense of why enterprise architecture
does what it does, not what or how it does it.

Share wins periodically to demonstrate tangible progress and to prove that the needle
is moving in the direction of forward progress. This part of the story is easier if you
can quantify gains with metrics that people care about.

In addition to the specific metrics tied to your OKRs, are there any additional metrics
that tell the story of enterprise architecture’s value that you can share? For instance,
consider the functions of enterprise architecture:

Strategy
Are strategies being produced and operationalized? For example, if enterprise
architecture has driven a resiliency strategy, can you show with data that applica‐
tions are improving their resilience? Maybe applications are recovering from fail‐
ures faster, or maybe they aren’t even experiencing failures as often.

Enablement and enforcement
Can you show that more applications are meeting architecture standards? Better
yet, can you show progress in the business benefits of those standards, such as
reduction in labor, improvement in cost efficiency, and/or reduction in risk?

By taking a deliberate stance on enterprise architecture’s branding, quantifying out‐
comes and making them relevant, your communication and marketing of your enter‐
prise architecture strategy will help to make it successful.

Summary
Just as enterprise architecture delivers strategy for the enterprise, so too does enter‐
prise architecture need a strategy for itself in order to be an effective function of the
enterprise, for the enterprise.

The enterprise architecture strategy framework is comprised of three main steps:

1. Contextualize enterprise architecture.
As mentioned in Chapter 12, context in the form of understanding business
needs, business outcomes, business strategy—and the business capabilities that
power that strategy to achieve those outcomes and solve for those needs—is
essential to ground the enterprise architecture strategy. In fact, Chapter 12’s
framework to assess enterprise architecture’s current state would be an input into
this step.

Summary | 221

2. Continuously improve.
In a modern organization, business needs are fluid and technology is dynamic.
Therefore, enterprise architecture itself must also be continuously improving to
thrive as the strategic leader of an organization. The OKR framework provides a
structure to define a strategic roadmap with measurable outcomes demonstrating
incremental improvement. The specific OKRs are informed by the context
defined in step 1.

3. Create excitement.
Given that enterprise architecture cannot operate in a silo—and in fact is char‐
tered in part to break silos—it is essential that stakeholders are aligned and more‐
over truly motivated to engage in helping enterprise architecture’s strategy be
successful. By developing a strong brand for enterprise architecture, and ensur‐
ing that communication and marketing emphasizes the relevancy of enterprise
architecture to stakeholder needs, the enterprise architecture strategy is likely to
gain support.

You can use the enterprise architecture strategy framework to establish your own tail‐
ored strategy for establishing an effective enterprise architecture function and effec‐
tive architecture practices for your organization. A key output of effective
architecture practices is high-quality decisions. The next and final chapter provides a
framework to enable high-quality architecture decisions.

222 | Chapter 13: Framework to Define Enterprise Architecture Strategy

CHAPTER 14

Framework for Architecture
Decision Making

Effective architecture decisions are the heart and center of everything that enterprise
architecture does. After all, what is a strategy or an architecture if not the culmination
of several architecture decisions?

It is one thing for one team to make good architecture decisions. It is entirely another
thing to accomplish this feat at scale—every team, across every organizational unit,
making high-quality, consistent architecture decisions. Check out industry guidance
from AWS and GCP for more perspectives on why architecture decision records are
so important for an enterprise.

To help solve the scaling challenge, this chapter covers a framework that equips deci‐
sion making with clarity and transparency.

Let’s start with the prerequisites required to apply this framework effectively.

Building a Foundation for Architecture Decision Making
Architecture decision making is a process. A very important process, but nonetheless,
a process. A process’s efficiency depends on the tools that support it, the sequence
and content of process steps, and the people executing it.

Thus, first let’s take a look at the primary tool needed to support the framework for
architecture decision making: the architecture decision registry.

223

https://oreil.ly/RcWHX
https://oreil.ly/8hsGx

Providing an Architecture Decision Registry
While making the best choice under the circumstances is front and center in architec‐
ture decision making, architecture decisions also provide a historical record of the
rationale behind them. This record enables any team member or stakeholder, includ‐
ing new ones, to understand what decisions were made and why. To get the most
value out of this record, it is important for enterprise architecture to determine what
repository solution fits their user needs the best.

For instance, an organization that is used to software practices may prefer to main‐
tain architecture decision records as markup files stored in the source code reposito‐
ries, accessible from a developer portal. An organization that is used to more
traditional documentation may look for a knowledge base or wiki type solution.

The key considerations that factor into the decision of solution selection for a reposi‐
tory include a few that were elaborated in Chapters 2 and 4 as being necessary for any
architecture information:

Accessibility
The repository must be easily available to all the end users that need to interact
with the architecture decision record.

Usability
The repository must be easily searchable for end users to find the specific records
that are relevant to them.

Auditability
As a historical record, the repository must preserve record immutability and pro‐
vide an auditable record of approvals and timestamps.

Regardless of the specific solution used for the repository, architecture decision
records should be immutable once approved to preserve an accurate historical
record. That means that in the scenario that something changed and an architecture
decision needs to be revisited, a new record should be created with the original one
being preserved and deprecated.

Speaking of creation and deprecation, that brings us to the next prerequisite: the pro‐
cess around lifecycle management.

224 | Chapter 14: Framework for Architecture Decision Making

Managing the Architecture Decision Lifecycle
All architecture information has some sort of lifecycle applied from cradle to grave.
Figure 14-1 shows the typical lifecycle of an architecture decision record.

Figure 14-1. Lifecycle of an architecture decision record

The first step is simply to start the architecture decision record as a draft, preferably
using a standard template such as the one provided in Chapter 1. This is the shortest
step, unless there is contention over who owns the decision to begin with.

The second step is to move the record to in progress, which means adding to the
architecture decision documentation with research, data, and feedback.

There is a feedback loop between this step and the next one of review, due to the need
to collaborate and iterate on the record based on input from others. This feedback
loop can repeat as often as needed to cycle through all the stakeholders that are
needed to consult on the decision.

It is during this feedback loop that I recommend finding the stake‐
holders that are most likely to disagree with your recommendation.
They are the ones that ultimately strengthen the decision because
they allow you to understand their concerns and proactively
assuage them or document the concerns as a risk. Getting align‐
ment may require compromise and remembering that no decision
is perfect, it just needs to be good enough based on the information
that is known at the time that is captured as assumptions and
implications. See Chapters 2 and 3 for more on stakeholder
alignment.

The final review is conducted by whomever has the authority to approve the decision.
After approval, the decision is completed, until the time that something has changed
that either invalidates it or requires a new decision. Either way, this decision’s last step

Building a Foundation for Architecture Decision Making | 225

is to deprecate in favor of a new decision; in fact, the link to the new one should be
documented as well, in order to allow for traceability.

The specific nature of who has approval authority and steps of approval depend on
the architecture decision workflow, discussed in the next subsection.

Defining the Architecture Decision Workflow
The architecture decision workflow is what governs the architecture decision-making
process.

Since this process shows what leadership roles were involved, it directly affects how
they are perceived and impacts perceptions around autonomy.

For instance, an autocratic culture would retain decision-making autonomy only at
the most senior levels, resulting in teams needing to wait on others’ directions and
acting as directed. In contrast, a culture that is based on empowerment would distrib‐
ute decision-making autonomy.

Can you guess which cultural philosophy I would prescribe? If you guessed the sec‐
ond one, you are right. I have found that autonomy coupled with right-sized gover‐
nance works well to encourage the right decisions.

The architecture decision-making process shines the light of truth
on empowerment and autonomy; so, consider carefully what state‐
ment your decision workflow makes in terms of who is allowed to
decide what.

To determine that right-sized governance, it is first necessary to consider that archi‐
tecture decisions are not homogenous. Figure 14-2 illustrates the degrees of architec‐
ture decisions and how they differ.

Figure 14-2. Degrees of architecture decision making based on volume and impact

226 | Chapter 14: Framework for Architecture Decision Making

As shown in Figure 14-2, there are three broad categories of decision makers:

Team
This is a single project, product, platform, or application team.

Org unit
This is an organizational unit, which may contain many teams.

Enterprise
This is the whole organization, which contains all of the organizational units and
all of the teams.

The volume of decisions, indicating frequency and number, is highest at the team
level and lowest at the enterprise level. Yet the impact of the decisions made greatly
differs. Each decision maker can make a decision that impacts at any broader level.

Teams typically make decisions that only impact themselves. These decisions usually
pertain to specific application architecture details such as their high availability
deployment architecture or choice of software language. Sometimes, though, their
decisions can be more far-reaching. For instance, a team that decided to use an enter‐
prise data warehouse service that pumps it full of data beyond initial projections may
very quickly exceed the cost and performance that enterprise service was expecting to
deliver. A team that decided to improve their own code quality may influence their
org unit to define quality standards for their whole unit.

It is the potential impact of the decision that significantly influences the governance
process and approval workflow. Figure 14-3 illustrates an architecture decision-
making hierarchy that allows for decisions to be made at different levels based on dif‐
fering impact.

Figure 14-3. Hierarchy to support architecture decision making

As shown in Figure 14-3, the team represents the local level. The team is the smallest
atomic unit of decision making. Dynamic, ad hoc, cross-functional working groups
are a common structure to support multiple kinds of decision-making forums, and
they are shown as well.

Building a Foundation for Architecture Decision Making | 227

The middle level is the most nebulous and depends on the specific organizational
details. Essentially, this is where in the simplest form it is the main organizational
units, such as lines of business. There may be horizontals at this level that stretch
across the organizational unit, such as an architecture team or a somewhat central‐
ized site reliability engineering function.

The enterprise-level forum is accountable and responsible for enterprise-impactful
decisions, such as a whole new enterprise technology standard. These can also be
viewed as horizontals that stretch across all organizational units in terms of their
impacts, such as cybersecurity. Figure 14-4 expands on this notion to show how the
enterprise architecture governance model needs to include multiple horizontals.

Figure 14-4. Enterprise architecture governance model with horizontals

The Other label in Figure 14-4 is a placeholder for whatever other governance forums
an organization may have that would need to provide transparency to the enterprise
architecture decision-making forums, such as Procurement or Legal.

Each entity in Figure 14-3’s hierarchy has autonomy to make the decisions that are
within their scope and impact. Entities on the left have broader scope and impact
than entities on the right. Transparency must occur at all levels such that those on the
left understand what decisions are made on the right, and vice versa.

Once impact goes beyond a single entity’s impact, the decision is escalated to the
broader entity for decision-making power. For example, say a team or horizontal
made a decision to use a new third-party vendor that required a whole new connec‐
tivity pattern. That decision would get escalated all the way to the enterprise level to
ensure that the pattern is valid. On the other hand, if an organizational unit defined
greater rigor around technology standards than the enterprise, that would not need
any further escalation.

All of these entities are made up of people who are conducting the architecture
decision-making process. These people should be trained, which brings us to the last
prerequisite: architecture decision training.

228 | Chapter 14: Framework for Architecture Decision Making

Avoid prolonged stalemate by ensuring that each forum has a clear
charter with an explicit purpose and chair. That allows the forum
to be results-driven in making decisions rather than just having a
lot of conversations.

Offering Architecture Decision Training
Education is a great aid to empowerment and efficiency. Targeted training is recom‐
mended for roles like enterprise chief architect (ECA), divisional chief architect
(DCA), solution architect (SA), and application architect (AA). These roles are regu‐
larly accountable and responsible for making architecture decisions and may also
chair the decision-making forums, as shown in Figure 14-5.

Figure 14-5. Architecture decision-making hierarchy overlaid with specific architecture
roles

In Figure 14-5’s example, the ECA chairs the enterprise-level architecture forum,
which includes representation from DCAs and also should include representation
from other horizontal groups as illustrated in Figure 14-4. Each DCA chairs a forum
for their own organizational unit. SAs could then chair forums as needed for hori‐
zontals related to their architecture domain. Although a team doesn’t formally have a
chair, Figure 14-5 shows the AA in that role to note that the AA is accountable for
architecture decisions at this level, working in partnership with the team.

Depending on the nature of the forum, partners from business/product and technol‐
ogy groups would be included as stakeholders. The charter for the forum can further
elaborate on the roles and responsibilities supporting that forum. In addition, there
should be targeted training for partners who need to be involved both in making the
decision and in executing against that decision. This training should be part of
onboarding for those roles, or if there is no role-based training, part of general
onboarding.

Building a Foundation for Architecture Decision Making | 229

Consider tailoring terms from architecture decisions to the broader
technology decisions to appeal to business/product and technology
partners in the training.

The enterprise architecture function should provide targeted training for all roles to
effectively use these forums to identify impactful decisions that need escalation and to
make decisions within their own purview. Training should also cover how to use the
architecture decision template and repository, along with best practices to include
considering nonfunctional requirements (NFRs) for a given decision type. (See Chap‐
ter 5 for more details regarding NFRs in decision making.)

With the prerequisites of tooling (accessible and usable repository), process (light‐
weight lifecycle and governance), and people (training) realized to build a solid foun‐
dation for architecture decision making, we are now ready to discuss the actual
framework.

Framework for Architecture Decision Making
The desired outcome of this framework is to scale throughout the entire enterprise to
produce consistent, high-quality, transparent decisions.

As illustrated in Figure 14-6, this framework includes three phases that overlap and
relate to each other in a continuous, integrated feedback loop:

1. Satisfy prerequisites
2. Monitor execution
3. Evolve and enhance

Figure 14-6. Architecture decision-making framework

230 | Chapter 14: Framework for Architecture Decision Making

The first step, satisfying prerequisites, was elaborated upon earlier in this chapter. So
let’s move on to the second step: monitor execution.

Monitor Execution
Each of the prerequisites needs to be monitored to ensure it’s effective. For instance:

Architecture decision repository
Is the repository being used as intended, or are there grassroots alternatives being
used to store decision records? Are users happy to use it?

Architecture decision lifecycle and workflow
What is the duration of each stage—are there any bottlenecks? Are the feedback
loops working as intended?

Architecture decision training
Is there coverage for all roles involved in the decision-making processes? Are any
refreshers needed?

In addition to monitoring the processes of making architecture decisions, you also
need to monitor the effect of those architecture decisions once implemented.
Figure 14-7 pictures the process associated with monitoring implementation.

Figure 14-7. Monitoring implementation of architecture decisions

As shown in Figure 14-7, once a decision is made, a change or many changes are
implemented as a result of that decision. Once these changes are completed, align‐
ment to the original decision needs to be validated, and a quick postmortem should
be conducted to review the efficacy of the decision. Was it spot on? If not, why not?

Celebrate successes and treat failures as learning or growth oppor‐
tunities.

Framework for Architecture Decision Making | 231

Architecture fitness functions, defined by Building Evolutionary Architectures by Neal
Ford et al. (O’Reilly, 2017), have gained traction in recent years as a way to measure
and validate alignment. For instance, say you’re looking at an application architecture
decision on solution selection for the database, because you were solving for specific
data access, consistency, availability, and performance requirements. Once that data‐
base is implemented, over time you should be able to get measurements on its usage
to validate whether or not it is meeting the requirements as intended.

All of the insights gleaned from monitoring execution are input into the overarching
phase of evolve and enhance, discussed next.

Evolve and Enhance
Having devoted Chapter 11 to evolution, it should come as no surprise that I have
found the ability to evolve and enhance to be crucial to effective scaling in architec‐
ture decision-making practices. It takes time, repetition, and incentives to create new
habits, and instilling architecture decision-making practices is no different.

Any insights gleaned from monitoring execution should be fed right back into con‐
tinuous improvement and the strategic OKRs that become a blueprint for effective
enterprise architecture in your organization. In addition, these insights can be lever‐
aged into the communication and marketing arm of enterprise architecture to pro‐
vide customer-centric transparency.

For instance, enterprise architecture tends to walk a fine line between bureaucracy
and value-add. Despite best intentions at establishing lightweight governance, imag‐
ine that the monitoring reveals that there are bottlenecks based on how a certain
decision-making process is being run. Control the message and perception around
this pain point to either acknowledge the pain point and show that it will be resolved,
or explain why the pain point is necessary due to the risks involved that require such
rigor.

Summary
When enterprise architecture flourishes, it enables great architecture decisions to be
made. This means great architecture decisions that clear the way toward a grand
future, a future that is defined by a clear and cogent architecture strategy that marries
business goals with technology. And great decisions that meet business goals, make
customers happy, reduce risk, proactively drive innovation, and bring people together
to work toward shared outcomes.

Architecture decision-making practices get better over time through practice and
refinement. Do it, and do it again, and do it better than the time before. This chapter
covered the prerequisites needed to build a solid foundation for architecture decision
making through proper tools such as an architecture decision repository, streamlined

232 | Chapter 14: Framework for Architecture Decision Making

https://oreil.ly/EhLQA

processes around decision lifecycle management and right-sized governance, and
strengthening people through training.

Satisfying prerequisites was the first step in the framework for architecture decision
making covered in this chapter. The second step was to monitor execution, both of
the prerequisites and of the decisions themselves, as they undergo implementation.
The third and final step was to evolve and enhance, in the spirit of continuous
improvement, using the data-driven insights gleaned from monitoring execution.

This was the last framework in this book. This book has aimed to provide you with
the ability to establish an effective enterprise architecture practice, which is essential
for a modern organization to thrive using technology to meet business outcomes.
While it is my sincere hope that this book has provided helpful frameworks and guid‐
ance, effective enterprise architecture is not possible without strong enterprise archi‐
tecture leadership and unyielding commitment from the senior leadership team to
support enterprise architecture.

I can’t say this enough: enterprise architecture, being an enterprise-wide phenom‐
enon, needs the backing of the enterprise, and an influential leader, to be successful.
Apathy to enterprise architecture is destructive and must be countered with demon‐
strated value. Value is both tangible and intangible.

The tangible piece is measurement and relevancy, which is why Chapter 1 started
with the value proposition using business terms, and Chapter 2 emphasized metrics.
Know your why to inform your what and how, which takes the form of the strategy to
establish enterprise architecture, first introduced in Chapter 2, expanded in Chapters
3 through 6, and presented as a framework in Chapter 13. Inform your strategy
through an assessment, as covered in Chapter 12.

The intangible pieces of value in this context are perception and caring. Use the prin‐
ciples first introduced in Chapter 7 and elaborated upon in Chapters 8 through 11 to
establish a culture that values architecture and the architects who perform
architecture.

It is this value that I prize so highly that I now leave you with. Value architecture.
Value the practice, and more importantly, value the people.

Summary | 233

Index

A
AAs (see application architects)
abstract knowledge, 87
access control, 123
accessibility

of architecture decision repository, 224
in knowledge sharing and UI/UX design, 98

accessible (embedded and accessible OKR), 40
active/active, 191
adamant architect case study, 200
adaptability, 122
administrative architect case study, 190
Agile, 196
Agile Manifesto, 161
agility, 118, 142

improved with better architecture decisions,
208

inhibited by technical debt, 5
needed to innovate with emerging technolo‐

gies in enterprise architecture, 197
quantum of deployment and, 119
reduction of through lack of technology

standards, 4
AI (artificial intelligence), 146

AI inflection point case study, 156
rise of, 197

alignment, 59
(see also shared alignment)
in high-quality targeted architecture, 51

all-in-one deployments, 118
aloof architect case study, 172
ambassador architect case study, 191
ambitious architect case study, 183
application architects, 229

role of, 12
application target architecture deliverable, 22
approval stage (architecture information), 85

knowledge of many over knowledge of few,
95

approved (architecture decision records), 225
archaeological architect case study, 182
ArchiMate, 181
architects

comparing typical roles, 13-17
effective, common values of, 162
proactive and reactive, 140
typical architecture roles, 11-13

architectural domains, 12
architectural domain model, 167-171

capabilities, business and technical, 167
considerations for defining, 170
how capabilities fit in, 168

architectural mindset, 89
architectural views, 180
architecture

about, 1
conceptual, logical, and physical, 13

architecture decision making, framework for,
223-233
building a foundation, 223-230

defining architecture decision workflow,
226

managing architecture decision lifecycle,
225

offering architecture decision training,
229

providing architecture decision registry,
224

235

evolve and enhance, 232
monitoring execution, 231
phases in the framework, 230

architecture decisions, 23-26
elements of, overview, 23
example of, 25
framework, 223-233
necessary context for, 175
proactive and reactive, 56, 218
sample template, 24

architecture deliverables, 21-23
application target, 22
architecture decision deliverable, 21
architecture pattern, 21
capability target, 22

architecture fitness functions, 232
architecture information, 43-47

architecture best practices, 44
architecture diagrams, 45
architecture frameworks, 44
architecture metrics, 45
architecture principles, 43
architecture standards, 44
making it embedded and accessible, 83

(see also embedded and accessible)
powering architecture decisions, 46
types necessary to support interaction

points in define stage, 103
architecture knowledge KPI, 41
architecture metamodel standard, 124
architecture review boards (ARBs), 196
architecture technology standards, 124

(see also standards)
artificial intelligence (see AI)
aspiration and constraints, balancing, 140
assessment framework, 205-213

conducting enterprise architecture assess‐
ment, 207-212

example enterprise architecture maturity
model, 205

audacious architect case study, 201
auditability, architecture decision repository,

224
audits, 123
authority, 61
autocratic culture, 226
automation, 199

automated scaling, 50, 121
automated testing, 117

automating enforcement processes and
tools, 131

cloud, 210
controls an enablement activities, 50
for controls, 10
of diagram updates, 108
elasticity, 120
enablement and enforcement of architecture

standards, 49
of enablement processes and tools, 128
enabling compliance with standards, 48
high priority in enforcement, 55
of logging, 48
recovery in resilient applications, 50
self-healing and recovery, 114
simplifying activities, 129
using to generate diagrams, 184

autonomy and empowerment, 33
decision-making autonomy, 226

availability, 114
high availability NFR, 130
issues with, presenting architectural deci‐

sion to resolve root cause, 152
aware architect case study, 173

B
batch jobs, 191
behavior, driving over enforcing standards,

185-193
case studies, 190-192
conditioning behavior, 187
driving desired behavior, 186-190

examples of, 186
framework for, 186
identifying barriers preventing good

outcome, 186
understanding motivation, 188
using conditioning and motivation, 189

levels of compliance with standards, 185
benefits of solving a problem, 68
best practices, 44, 111, 123

case study, 106
blocker, perception of enterprise architecture

as, 199
blue/green deployments, 118
BPMN (Business Process Model and Notation),

181
brand identity for enterprise architecture, 220
build-versus-buy decisions, 172

236 | Index

for cloud services, 43
bureaucracy and value-add, enterprise architec‐

ture walking fine line between, 232
business benefits of solving a problem, 68
business capabilities, 167

in layered architectural domain model, 168
model of, 217

business lead, 20
business model, 217
business needs

discussing standard in terms of, 197
enterprise architecture strategy in context

of, 216
business objectives, 71, 162

of solving a problem, 68
business outcomes

defining in enterprise architecture assess‐
ment, 207

mapped business and technical capabilities
resulting in, 167

understanding the right problem, 141
Business Process Model and Notation (BPMN),

181
business value

associating with architecture documents,
178

tying architecture work to, 29

C
C4 (Context, Containers, Components, and

Code) model, 21
canary deployments, 118
capabilities

business and technical capabilities, 167
capability target architecture, 34
how they fit in architectural domain model,

168
identifying in enterprise architecture assess‐

ment, 209
mapping gaps in capabilities

example capability gap analysis, 212
impact and effort to resolve, 211

mapping in enterprise architecture assess‐
ment, 210

model grouping them into architecture
domains, 167

new capability, architecture decision for
investing in, 46

capability maturity models (CMMs), 205

capability target architecture deliverable, 22
capacity, 121
case studies

in contextual understanding over siloed
decision making, 172-174
aloof architect, 172
aware architect, 173

in driving behavior over enforcing stand‐
ards, 190-192
administrative architect, 190
ambassador architect, 191

in embedded and accessible architecture,
105-108
best practices, 106
new enterprise architecture standard,

105
static artifact, 107

in enable and enforce, 133-137
the free-for-all, 134
the reporter, 136
the suffocation, 135

in evolution over frameworks, 200-202
adamant architect, 200

in proactive and reactive architecture deci‐
sions, 155-158
AI inflection point, 156
cloud migration, 155
tactical load, 157

in shared alignment, 76-80
mandate, 76
never-ending debate, 79
relitigation, 77
silo, 78

in tangible direction over stale documenta‐
tion, 182-184
ambitious architect, 183
archaeological architect, 182

proven industry case studies, using as proof
for architecture recommendation, 179

center of excellence (CoE), 127
versus community of practice, 127

centralized architecture organizations, 17
centralization in hybrid architecture, 19

challenge, 148, 158
questions to challenge assumptions and

proposed solution, 148
champion/challenger model, 124
change agents, 144
change, evolution responding to, 195

Index | 237

chaos, avoiding with enterprise architecture, 3,
208

CI/CD (continuous integration / continuous
delivery) pipelines, chaos through lack of
standards, 4

cloud
account design, one-way door decision, 139
advent of, 196
functions in architect roles, 16
major providers holding conferences, 217

cloud migrations, 142
case study, 155
from data center to public cloud, 144
defining business outcomes around, 208
identifying capabilities in enterprise archi‐

tecture assessment, 210
technical debt in, 5

CMMs (capability maturity models), 205
CoE (see center of excellence)
collaboration, 162

aloof architect and, 173
enabled by good documentation, 177

colors in diagrams, 179
command and control principle, 38
commitment, getting as result of alignment, 75
common definitions, 124
common structure, 124
common terminology, 112
communication, 151-155, 159, 219

defining and executing communication
plan, 155

distilling strategy from complex ideas to
simple terms, 151

enabled by good documentation, 177
improving, methods for, 153
listening skills, 147
optimizations to help align stakeholders, 73
presenting architectural decision to resolve

availability issues, 152
problem statement, 71
styles of, 154
tips for giving effective presentations, 154
tips for providing simple, written materials,

152
community of practice (CoP), 88, 127
competency, 33
complexity

increased, from technology sprawl and
fewer standards, 4

compliance with standards, 10
broad categories of, 185
business benefits of, 49
in high-quality targeted architecture, 51
lagging indicators, examples of, 49

component view, 23
comprehensive listening, 147
compute to data interaction, 116
conceptual architecture, 13, 22
concrete knowledge, 87
conditioning, 187

using with motivation to drive behavior, 189
conflict

fostering positive conflict in conversations,
73

never-ending debate case study, 79
conflict resolution

conflict during decision-making process, 71
considering differing perspectives, 72
resolving positive conflict, 74

conscious learning, 187
consensus-driven principle, 39
consensus-seeking principle, 39
constraints and aspiration, balancing, 140
consumption stage (architecture information),

87
easy and enjoyable, 97
flag it or fix it, 99
measuring to improve, 99

context view, 23
Context, Containers, Components, and Code

(C4) model, 21
contextual factors, prioritizing, 166
contextual understanding over siloed decision

making, 165-175
case studies, 172-174
where context comes from

architectural domain model, 167-171
other contextual inputs, 171

contextual understanding, defined, 165
contextualizing enterprise architecture, 216,

221
continuous delivery (CD) pipelines, acting as

preventive control, 130
continuous integration / continuous delivery

(CI/CD) pipelines, chaos through lack of
standards, 4

continuously improving, 217, 222
controls, 10

238 | Index

conventional communication style, 154
CoP (community of practice), 88, 127
cost efficiency, 68, 120

capacity planning to rightsize redundant
instances, 116

cost levers, 121
cost optimization

in high-quality targeted architecture, 50
strategy in cloud migration, 156

costs
cost to deliver application, 51
cost/benefit analysis, 150
high operating costs running applications in

the cloud, logical and critical analysis of,
143

creation stage (architecture information), 85
championing knowledge sharing, 94

creative thinking, 143
credibility, 33, 149, 158, 198

feasibility study, 150
quick-win milestones, defining, 150

critical listening, 148
critical thinking, 142
cultural capabilities, 209
culture of trust, 33, 78

promoting knowledge sharing and learning,
84

curiosity, 145, 158
deep listening, 147

customer needs
customer-centric aspirations, 140
strategic questions for customers, 146
understanding, 141

cybersecurity, 59, 201, 228
artificial intelligence and, 197
difficulties of sustaining with different tech‐

nology choices, 4
secure applications, 51
selling the why to cybersecurity stakeholder,

69
and use of different programming lan‐

guages, 134, 188

D
dare (define, do, and dare framework), 104
data management, 116
data protection, 123, 200
data science, 201
data, functions in architect roles, 16

DCA (divisional chief architect), 16, 229
DDD (domain-driven design), 12
decision makers, categories of, 227
decision making

decisions made and revisited in six-month
span, 37

number of architecture decisions changed
lagging KPI, 42

shared, 32
siloed, 3
typical architecture roles in terms of scope

and volume of, 15
decisions, 5

(see also architecture decisions)
aligning on the decision, 71-76

considering different perspectives, 72
fostering positive conflict in conversa‐

tion, 73
getting commitment as result of, 75
relation to effective enterprise architec‐

ture strategy, 75
resolving positive conflict, 74

architecture information powering architec‐
ture decisions, 46

context provided for in layered architecture
domain model, 168

getting alignment and commitment on, 81
deductive reasoning, 142

logical thinking with, 143
deep listening, 147
define, do, and dare framework, 100-104, 108

dare stage, 104
define stage, 101
do stage, 104

definitions, common, of terms, 124
deliverables (see architecture deliverables)
Department of Defense Architecture Frame‐

work (DoDAF), 195
dependencies, 116

loss of, in high availability architecture, 172,
173

mitigating risk with loose coupling, 122
deployability, 118
deployment strategies, 119
deployments, 102

deployment view, 23, 180
quantum of deployment, 119

deprecated (architecture decision records), 226
design, 1

Index | 239

domain-driven, 12
design-time capabilities, 116
detective controls, 130
DevOps, 196

lack of standards producing chaos in, 4
diagrams (architecture), 45

of an application, 22
documentation standards for, 179
updating and maintaining, 182

diagrams of architecture artifacts, 107
disagree and commit principle, 37
discriminative listening, 147
distributed accountability, 55

in architectural domain model, 171
distribution stage (architecture information),

86
just in time, 95
single source of truth, 97
transparent to find, 96

diversification, 195
divisional chief architect (DCA), 16, 229
do (define, do, and dare framework), 104
documentation

architecture strategy using, 178
associating business value with architecture

documents, 178
as code, 181
done well, benefits of, 177
focused on problem-solving, 183
keeping up to date, 184
overcoming stale documentation, 181
standards for, 179

dogfooding, 215
domain-driven design (DDD), 12
domains, 12

(see also architectural domains)
enterprise architecture as domain, 209

drafts (architecture decision records), 225
driving behavior over enforcing standards,

185-193
case studies, 190-192
driving desired behavior, 186-190

durability, 115
duration of delivery process KPI, 35

E
easy and enjoyable consumption of architecture

information, 97
ECA (enterprise chief architect), 16, 229

effective enterprise architecture, 6
manifesto for, 161-163

efficiency
architectural strategy to improve, using con‐

ditioning and motivation, 189
architecture information and, 47
education as great aid to, 229
improved, business outcome of enterprise

architecture, 208
improved, by avoiding silos, 208
increased, benefit of knowledge manage‐

ment, 91
in knowledge sharing and UI/UX design, 98
operational, 68, 112
operational efficiency NFRs, 119-121
process of architecture decision making, 223
spend efficiency, 143

effort
level of effort, 197
necessary to solve capability gaps, 211
in standardization, 125

elasticity, 120
embedded and accessible, 83-109

architecture information framework, define,
do, and dare, 100-104

case studies, 105-108
knowledge management, 83-91
UI/UX design in, 91-93

embedded and accessible OKR, 40-43, 57, 218
empathetic listening, 147
employee satisfaction KPI, 36
empowerment, 33

education as great aid to, 229
enable and enforce, 111-137, 221

case studies, 133-137
enable, 127-130

enablement framework, 128-130, 137
principles of enablement mechanisms,

128
enforce, 130-133

enforcement framework, 131-133, 137
principles of enforcement mechanisms,

131
enterprise architecture enablement, 9
enterprise architecture evolving from

blocker to enabler, 199
enable and enforce OKR, 48-56, 58, 218

architecture standard KPIs and effectiveness
of standards, 50

240 | Index

examples of lagging indicator KPIs for, 49
principles for enablement, 52
principles for enforcement, 54
sample KRs for, 49

enjoyment and delight (in UI/UX), 98
enterprise architects

driving enterprise architecture strategy, 217
leading with enablement, 200
role of, 11

enterprise architecture
benefits of, 2-7

avoiding chaos, 3
avoiding silos, 2
avoiding technical debt, 5
summary of, 5

effective, 6
four principles on what makes it valuable,

163
framework to define strategy for, 215-222
practice of, 7-11
roles in, 11-17
short history of, 196

enterprise architecture assessment, 205-213
conducting, 207-212

defining business outcomes, 207
identifying capabilities, 209
mapping capability gaps, 210

maturity models
example of, 205
shortcomings as assessment tools, 205

enterprise architecture frameworks, 195
enterprise chief architect (ECA), 16, 229
enterprise, volume and impact of decisions

made by, 227
enterprise-level forum, 228
escalation, 75
evolution over frameworks, 195-203

case studies, 200-202
evolutionary trends, 197-200

evolutionary architecture
flexibility as key to, 166

evolutionary trends, 197-200
from blocker to enabler, 199
from outsider to insider, 198
from theory to data, 197

evolve and enhance (architecture decision-
making framework), 232

excitement, creating, 219, 222
experience

knowledge absorbed through, 87, 88
no shortcut for, 89

experimentation, importance of, 178
expertise, 15
explicit knowledge, 88
extensibility, 121

in high-quality targeted architecture, 51
external motivation, 188

negative conditioning and, 190
positive conditioning and, 189

F
failover, 116
failure mode effects analysis (FMEA), 117
fair proportionality, 54
familiarity, ensuring in UI/UX design, 98
feasibility, 120
feasibility study, 150
federated architecture organizations, 18

federated aspects of hybrid architecture, 19
flag it or fix it, 99, 104
flexibility, 120

enabling as outcome of architectural deci‐
sions, 166

FMEA (failure mode effects analysis), 117
4 Cs framework, 144-155, 158

challenge, 148
communication, 151-155
credibility, 149
curiosity, 145

frameworks, 195
(see also evolution over frameworks)
architecture frameworks, 44
disadvantages of following rigidly, 200
enterprise architecture, evolving from IT-

centric to business-centric, 196
evolving as needed, 202

free-for-all (case study), 134
friction as tactic to drive right behavior, 188
functional applications, 50
functions of enterprise architecture, 8-11, 217

enablement, 9
enablement and enforcement, 221
oversight, 10
strategy, 9, 221

future, not limiting to present constraints, 183
future-proof applications, 51, 122

Index | 241

G
gap analysis for capabilities, 210
GitOps workflows, 146

use to improve quality, 149
good enough architecture decisions, 165, 175
governance, 10

architecture review boards and, 196
from blocker to enabler, 199
difficulties of with different technology

choices, 4
enterprise architecture governance model

with horizontals, 228
typical governance document ontology, 113

GPUs, 190
granularity of diagrams, 180

H
HA (see high availability)
hierarchy supporting architecture decision

making, 227
high availability

designing architecture for, 172, 173
enabling teams to achieve, 130

high availability design, application architec‐
ture decision made around, 46

high-quality target architecture, 50
lagging indicators for, 51

horizontal scaling, 119
hours spent finding architecture information

(KPI), 42
human behavior, driving (see driving behavior

over enforcing standards)
hybrid architecture organizations, 19

I
identifying, integrating, and inferring policy

enforcement points, 132
immutability, optimize for immutability princi‐

ple, 55
impact of architecture decisions, 226, 227

going beyond single entity, escalation of
decision, 228

impact of capability gaps if remediated, 211
implicit knowledge, 88
in progress (architecture decision records), 225
incentives, creating excitement with, 220
incidents caused by application, 51
inductive reasoning, 142

logical thinking with, 143
industry research firms and industry conferen‐

ces, learning from, 217
ineffective enterprise architecture, pitfalls of, 6
informational listening, 147
innovation, 112

initiating, 142
respecting, 53
stifled through excess standardization, 6

interaction points, in define stage, 101
user personas or roles engaged in, 102

interfaces, 122
application interface design, evolutionary,

166
internal motivation, 188

positive conditioning and, 189
interoperability, 121
interoperability NFRs, 121

goals of, 121
key application architecture decisions for,

122
loose coupling versus tight coupling in

applications, 122
summary of, 123

invisibility and intuitiveness (in UI/UX), 98
IT systems, aligning with business strategy, 196
ivory tower architecture, 6

J
just in time (architecture information), 95

K
key performance indicators (see KPIs)
key results (see KRs)
knowledge management, 83-91

benefits of, 90
goal of, 84
lifecycle of, 85
types of knowledge relative to architecture

information, 87
and UI/UX design principles, 94

KPIs (key performance indicators), 30, 57
architecture standard KPIs, 50
defining and measuring, necessary informa‐

tion, 31
KRs (key results)

sample KRs for embedded and accessible
OKR, 40

sample KRs for enable and enforce OKR, 49

242 | Index

shared alignment OKR, sample KRs for, 34
types in OKRs, 30

L
lagging indicator KPIs, 31

example for embedded and accessible OKR,
42

example for high-quality application archi‐
tecture, 51

example of, 37
examples for enable and enforce OKR, 49

layered hierarchy view, 180
lead with why principle, 52
leaders (enterprise architects), 15
leading indicator KPIs, 31

examples for embedded and accessible
OKR, 41

focusing on business benefits, examples of,
35

learning, 162
conscious and unconscious learning, 187

level of effort (LOE), 197
lifecycle of architecture decision records, 225

monitoring execution of, 231
lift and shift, 5, 142
listening, 73, 146

active, 34, 155
types of, 147

load balancing, 116
logical architecture, 13, 22
logical thinking, 142

with inductive and deductive reasoning, 143
loose coupling, 122

M
machine learning (see ML)
make it easy to do the right thing (principle), 53
management decisions for applications, 121
mandate (case study in shared alignment), 76
manifesto for effective enterprise architecture,

161-163
marketing, 219
maturity models, 205

example of effective enterprise architecture
maturity model, 205

shortcomings as assessment tools, 205
mean time to detect (MTTD), 115
mean time to repair (MTTR), 114
measurements

key characteristic in OKR framework, 29
measuring to improve, 104
outcome-based and effort-based in OKRs,

30
using to improve consumption of architec‐

ture information, 99
metamodel (enterprise architecture), 124

illustrative example of, 124
metrics

architecture, 45
blindly mandating, avoiding, 77
quantifying gains with, 221
things not to measure, 31

milestones, 150
minimum level of compliance, 185
mission statement, 8
ML (machine learning), 190

incorporation into software products, 201
rise of, 197

modularity, 122
in high-quality targeted architecture, 51

motivation
understanding human motivation, 188
using with conditioning to drive behavior,

189
MTTD (mean time to detect), 115
MTTR (mean time to repair), 114

N
negative conditioning, 187

using with external motivation, 190
net promoter scores (NPS) KPI, 41
network functions in architect roles, 16
new enterprise architecture standard (case

study), 105
nonfunctional requirements (NFRs), 113, 172,

205
for architecture decisions, 230
interoperability, 121
operational efficiency, 119
release, 117
security, 122
stability, 113

north star, 7
NPS (net promoter scores) KPI, 41

O
observability, 115, 116
OKR (objectives and key results) framework, 29

Index | 243

OKRs (objectives and key results)
case studies in, 155-158
embedded and accessible OKR, 40-43
enable and enforce OKR, 48-56
to establish effective enterprise architecture

strategy, 217
informing with SWOT analysis, 218
objectives for defining enterprise architec‐

ture strategy, 217
proactive and reactive OKR, 56
shared alignment OKR, 32-37

principles for creation of, 37-40
one-way door decisions, 139
ontology or interaction view, 180
Open Agile Architecture, 195
operational efficiency, 112
operational efficiency NFRs, 119

goals of, 119
key application architecture decisions for,

121
operational gains, reduction with lack of tech‐

nology standards, 4
opportunities, 219
optimize for immutability principle, 55
optimum level of compliance, 185
option analysis, factors considered in (architec‐

ture decision), 24
organizational models, 17-20

centralized architecture, 17
federated architecture, 18
hybrid architecture, 19

organizational unit forum, 228
organizational units

siloed decision making, 3
volume and impact of decisions made by,

227
outdated enterprise architecture, 198
outsider to insider (enterprise architecture),

198
oversight (enterprise architecture), 10

P
paralysis by analysis, 166
patterns, 21, 123

best practices case study on, 106
enterprise architecture, 113

patterns as code, 21
people (cultural) capabilities, 209

assessing for gaps, 211

performance, 119
personas engaged in each interaction point in

define stage, 102
perspectives (differing), considering, 72
physical architecture, 13, 22
pilots, 179
PlantUML, 181
portability, 121
positive conditioning, 187

and external motivation, 189
and internal motivation, 189

positive conflict
cultural values and, 75
fostering in conversation, 73
resolving, 74

practicality, 120
practice of enterprise architecture, 217

functions, 8-11
mission, 8
roles versus, 7
vision, 7

predictable consistency, 54
prerequisites, satisfying in architecture

decision-making framework, 230
presentations, effective, tips for, 154
prevention, focusing enforcement efforts early

SDLC, 131
preventive controls, 130
principles (architecture), 43, 172
principles for effective enterprise architecture,

163
contextual understanding over siloed deci‐

sion making, 165-175
driving behavior over enforcing standards,

185-193
evolution over frameworks, 195-203
tangible direction over stale documentation,

177-184
priority

aligning on, 70
prioritization framework for the organiza‐

tion, 71
proactive and reactive, 139-159

balancing, goals for organization, 155
case studies, 155-158
4 Cs framework, 144-155
proactive technology leaders, 162
reactive architecture decisions, factor reac‐

ted to, 149

244 | Index

strategic thinking, 141-144
proactive and reactive OKR, 58, 218
proactive architecture decisions, 56
problem solving

in architect roles, 15
documentation focused on, 183
progression of problem-solving spheres, 90

problem statement, 67
communicating to stakeholders, 71
example of, 69
gaining alignment on and prioritization of,

80
selling the why, 67

understanding the impact, 68
problems

sizing, 178
understanding the right problem, 141

process capabilities, 209
assessing for gaps, 211

processes, key to enablement, 127
product lead, 20
product management lifecycle (PMLC)

define, do, and dare framework in, 100
programming languages

free-for-all case study, 134
standard to use certain language, 185

proof of concept, 179
push and pull mechanisms for knowledge dis‐

tribution, 86
comparison of, 86

Q
quality, defining high quality in target architec‐

ture, 50
quantifying outcomes, 221
quantum of deployment, 119
queryable architecture diagrams, 182
quick wins, 150

R
RACI (responsible, accountable, consulted,

informed), 63
RACI charts

depiction of shareholder engagement in, 64
example chart applied to architecture deci‐

sion, 64
reactive architecture decisions, 56
reasoning, 142
recoverability, 114

recovery point objective (RPO), 114
recovery time objective (RTO), 114
redundancy, 116

logical and critical thinking about, 143
reference architectures, 21
registry of architecture decisions, 224
regulations, 201
relationship-based conflict, 72
release NFRs, 117

key application architecture decisions for,
118

relevance and incentives, creating excitement
with, 220

reliability, 114
in high-quality targeted architecture, 50

relitigation (case study in shared alignment), 77
replication, 116
reporter (case study), 136
repository for architecture decisions, 224

monitoring execution of, 231
request for comment (RFC) period, 65
requirements, 44, 199
resilience in high-quality targeted architecture,

50
resiliency, 114

standard that cloud-based applications be
active/active, 191

resource utilization, 121
respect innovation principle, 53
responsible, accountable, consulted, informed

(RACI), 63
(see also RACI charts)

return on investment (ROI), 70
reusability, 122
reuse, 195

principle of enforcement, 131
review (architecture decision record), 225
risk management, 112
risk-based decisions, 7
risks

in architecture decisions, 5
architecture risk, 10
good documentation identifying, 177
probing solutions that have risks, 149
risk tolerance of vendor lock-in, 43

ROI (return on investment), 70
roles (enterprise architecture), 11-17

accountability and responsibilities in archi‐
tectural domains, 171

Index | 245

application architect, 12
architecture decision-making hierarchy

overlaid with, 229
comparison of typical architect roles, 13

common traits in architect roles, 15
roles in terms of scope and volume of

decision making, 14
roles spanning types of architecture, 13

engaged in each interaction point in define
stage, 102

enterprise architect, 11
practice versus, 7
solution architect, 12
specialized functions, 15
technology, business, and product leads, 20

routing, 116
RPO (recovery point objective), 114
RTO (recovery time objective), 114
runtime capabilities, 116

S
SAs (see solution architects)
scalability, 119

in high-quality targeted architecture, 50
Scaled Agile Framework, 196
scaling, 116

scaling out, 119
scaling up, 119

scope of architecture decisions, 14
SDLC (see software development lifecycle)
security, 122

(see also cybersecurity)
functions in architect roles, 15
in high-quality targeted architecture, 51

security NFRs, 122
key application architecture decisions for,

123
selective listening, 147
self-healing systems, 114
sequence diagrams, 22
sequence view, 180
service-level agreements (SLAs), 114
service-level objectives (SLOs), 114
shared alignment, 59-81, 218

aligning on the decision, 71-76
aligning on who, 60-67
aligning on why, 67-71
case studies in creating, 76-80

shared alignment OKR, 32-37, 57

culture of trust, 33
example of lagging KPI, 37
examples of leading KPIs focusing on busi‐

ness benefits, 35
principles to create shared alignment, 37-40

command and control, 38
consensus-driven and consensus-

seeking, 39
disagree and commit, 37

sample KRs for, 34
siloed decision making

defined, 165
helping with paralysis by analysis, 166
performing in times of duress or time sensi‐

tivity, 175
siloed decision making, contextual understand‐

ing over, 165-175
silos, 196

avoiding with effective enterprise architec‐
ture, 208

avoiding with enterprise architecture, 2
enterprise architecture becoming siloed, 6
silo case study, 78

simplicity, 120
simple to understand architecture informa‐

tion, 97
simplifying a message, 151
simplifying activities (enablement frame‐

work), 129
single source of truth, 97
site reliability, 16
sizing activities (enablement framework), 129
SLAs (service-level agreements), 114
SLOs (service-level objectives), 114
SMEs (subject matter experts), 61, 65
software development lifecycle (SDLC)

adapting for ML and data science, 201
define, do, and dare framework in, 100
embedded and accessible architecture infor‐

mation in, 92
software, customer attempting to gain market

share with, insights and strategy for, 146
solution architects, 229

role of, 12
trust-inducing behaviors, 34

solution options, 172
source code repositories, storing architecture

decisions in, 224
specialized functions of architect roles, 15

246 | Index

specifying activities (enablement framework),
128

spend efficiency, 143, 190
stability NFRs, 113

application with and without stability NFRs
considered in design, 115

application with, key architecture decisions,
116

stakeholders, 61-67
aligning on, relation to effective enterprise

architecture strategy, 66
commitment that decision will be imple‐

mented, getting from, 75
defined, 61
identifying and engaging in architecture

decision, 80
included in architecture decision forums,

229
influence level of and importance of deci‐

sion to, 61
mapping example for building a house, 63
motivation drivers, 72
needs of, architects having inside knowledge

of, 198
prioritization framework for problems, 70
reviewing problem statement with, 67
scaling stakeholder engagement, 65
showing relevance of strategy to desired

outcomes, 220
stakeholder engagement, 63

example RACI chart applied to architec‐
ture decision, 64

RACI, 63
RACI chart template, 64

strategic questions for, examples, 145
writing effective problem statement for, 69

standard operating procedure (SOP), 113
standards

architecture, 44
metrics on, 45
principles for enablement of, 52

architecture decision made around, 47
benefits of, 111
declaring once and not updating, problems

caused by, 135
enabling and enforcing, 111

(see also enable and enforce)
enforcing, 185

(see also driving behavior over enforcing
standards)

enterprise architecture, 113-125
architecture metamodel standard, 124
architecture technology standards, 124
operational efficiency NFRs, 119
release NRFs, 117
security NFRs, 122
stability NFRs, 113
when to declare, 125-127

evolving from blocker to enabler, 199
fewer standards leading to technology

sprawl and increased complexity, 4
new enterprise architecture standard case

study, 105
stifling of innovation through too much

standardization, 6
static artifact (case study), 107
storytelling, 152
strategic thinking, 141-144

being a change agent, 144
initiating innovation, 142
understanding the right problem, 141

strategy (enterprise architecture), 9, 21
framework for defining, 215-222

contextualizing enterprise architecture,
216

continuously improving, 217
creating excitement, 219
steps in, 215-216

key objectives, 29-58
architecture information, 43-47
embedded and accessible OKR, 40-43
enable and enforce OKR, 48-56
principles to create shared alignment,

37-40
proactive and reactive OKR, 56
shared alignment OKR, 32-37
summary of, 57

maturity models and capability maturity
models, 205

proactive and reactive strategy, 140
relation of aligning on the decision to effec‐

tive strategy, 75
relation of aligning on the why to effective

strategy, 71
relation of aligning on who to effective strat‐

egy, 66
use of documentation, 178

Index | 247

streaming data processing, 191
strength, weakness, opportunity, and threat

(SWOT) analysis, 218
strengths, 218
structure, common, of technology landscape,

124
subject matter experts (see SMEs)
suffocation (case study), 135
SWOT (strength, weakness, opportunity, and

threat) analysis, 218
symbols in diagrams, 179
sympathetic listening, 147
Systems Modeling Language (SysML), 181

T
tactical load case study, 157
talent

relied on by enterprise architecture enable‐
ment, 10

right talent in the right roles, 26
scaling, 4
stifling through too much standardization, 6

tangible direction over stale documentation,
177-184
case studies, 182-184
documentation as code, 181
documentation standards, 179
importance of experimentation, 178

tangible direction, defined, 184
teams, volume and impact of decisions made

by, 227
technical capabilities, 167

build-versus-buy decision, 172
in enterprise architecture assessment, 209
in layered architectural domain model, 168

technical debt
avoiding with enterprise architecture, 5
avoiding, improved agility and innovation

enabled by, 208
trade-offs and risk-based decisions to con‐

sider, 7
technology

architecture technology standards, 124
constant change in, 195

technology lead, 20
technology reference model (TRM), 124
technology sprawl, 4
technology trends, enterprise architecture stay‐

ing on top of, 217

template (sample) for architecture decisions, 24
terminology

common, 112
common definitions of, 124

testability, 117
testing, 118
The Open Group Architecture Framework

(TOGAF), 21, 195, 196
from theory to data (evolutionary trend), 197
think like an engineer (principle), 52
threats, 219
tight coupling, 122
timebox, 74

time spent gathering context for decision
making, 172

tools
assessing for gaps, 211
in enterprise architecture assessment, 210
key to enablement, 127

topical knowledge, 88
trade-offs in architecture decisions, 5, 165, 172
training, 127

offering for architecture decisions, 229
monitoring execution of, 231

transparency
in decision-making process, 33
transparent to find architecture informa‐

tion, 96
trust

in architect roles, 15
culture of trust accelerating shared align‐

ment, 32
culture of trust, characteristics of, 33

two-way door decisions, 139

U
UI/UX (user interface/user experience) design

in embedded and accessible architecture,
91-93
about UI and UX design, 91
benefits of, 93
combining with knowledge management,

94-99
unconscious learning, 187
Unified Modeling Language (UML), 181
uniqueness KPI, 35
usability, 120

of architecture decision repository, 224
of architecture information, 97

248 | Index

V
value of architecture, 29
value of enterprise architecture, 233
verifiability, 123
vertical scaling, 119
views (architecture), 180
vision and strategy, 140
vision statement, 7
visionary communication, 154
volume and impact, degrees of architecture

decision making based on, 226

volume of architecture decisions, 14

W
weaknesses, 218
whole over individual good, 162
workflow (architecture decisions), 226

Z
Zachman Framework, 195
Zachman, John, 196

Index | 249

About the Author
Tanusree (Tanu) McCabe is an executive distinguished engineer (EDE) who leads
enterprise architecture strategy at Capital One, positioning the company to take stra‐
tegic advantage of modern technologies such as cloud. Her experience with
enterprise-wide transformations such as moving to the cloud and adopting Agile, and
her technical expertise with modern architecture styles such as microservices and ser‐
verless, gave her firsthand insight into what is necessary for an effective enterprise
architecture practice. Tanu has presented at conferences such as AWS Re:Invent and
ServerlessConf, covering topics such as architecting for resiliency and serverless
applications.

Tanu is driven to inspire positive innovation to allow creative freedom to flourish,
and this book is a way to do just that—it provides knowledge to empower others to
practice enterprise architecture effectively to yield business outcomes and unleash
technical innovation. This knowledge has been gained through her own trials and
tribulations leading enterprise architecture strategy.

Colophon
The animal on the cover of Fundamentals of Enterprise Architecture is the crested oro‐
pendola (Psarocolius decumanus), or crested oriole.

An icterid, or New World blackbird, the crested oropendola is a common sight in its
native South America, where it may be spotted alone or in small flocks foraging in
trees for insects, fruit, seeds, and nectar.

Crested oropendolas are colonial nesters, building their large, woven, hanging nests
in close proximity to one another. Each colony typically has one dominant male,
whose distinctive songs include a descending call reminiscent of sliding one’s hand
down a piano keyboard. Females of the species lay two blotched blue-gray eggs that
hatch in 15–19 days, with another 24–36 days to fledging.

The crested oropendola has been listed by IUCN as of least concern from a conserva‐
tion standpoint. Many of the animals on O’Reilly covers are endangered; all of them
are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Wood’s Animate Creation. The series design is by Edie Freedman, Ellie Volck‐
hausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://oreil.ly/d9p2x
https://oreil.ly/d9p2x

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book?
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Key Enterprise Architecture Concepts
	Why Enterprise Architecture?
	Avoiding Silos
	Avoiding Chaos
	Avoiding Technical Debt
	Summarizing the Benefits

	What Is the Practice of Enterprise Architecture?
	The Vision
	The Mission
	What Are the Functions of Enterprise Architecture?
	Enterprise Architecture Strategy
	Enterprise Architecture Enablement
	Enterprise Architecture Oversight

	What Are Typical Architecture Roles?
	Enterprise Architect Role
	Solution Architect Role
	Application Architect Role
	Comparing Typical Architect Roles
	Specialized Functions

	Organizational Model
	Centralized Architecture
	Federated Architecture
	Hybrid Architecture

	What Are Typical Architecture Deliverables?
	Architecture Decision Deliverable
	Architecture Pattern Deliverable
	Capability Target Architecture Deliverable
	Application Target Architecture Deliverable

	What Is an Architecture Decision?
	Overview
	Sample Template

	Summary

	Chapter 2. Key Strategy Objectives
	Overview
	The Shared Alignment OKR
	Principles to Create Shared Alignment
	Disagree and Commit
	Command and Control
	Consensus-Driven and Consensus-Seeking

	The Embedded and Accessible OKR
	What Is Architecture Information?
	Architecture Principles
	Architecture Standards
	Architecture Frameworks
	Architecture Best Practices
	Architecture Diagrams
	Architecture Metrics
	Architecture Information Powers Architecture Decisions

	The Enable and Enforce OKR
	Architecture Standard KPIs
	Principles for Enablement
	Principles for Enforcement

	The Proactive and Reactive OKR
	Summary

	Chapter 3. Shared Alignment
	Align on Who
	What Is a Stakeholder?
	What Is Stakeholder Engagement?
	How Do You Scale Stakeholder Engagement?
	How Does “Align on Who” Relate to Your Effective Enterprise Architecture Strategy?

	Align on the Why
	Sell the Why
	Align on Priority
	How Does “Align on the Why” Relate to Your Effective Enterprise Architecture Strategy?

	Align on the Decision
	Consider Differing Perspectives
	Foster Positive Conflict in Conversation
	Resolve the Positive Conflict
	Get Commitment as a Result of Alignment
	How Does “Align on the Decision” Relate to Your Effective Enterprise Architecture Strategy?

	Case Studies
	The Mandate
	The Relitigation
	The Silo
	The Never-Ending Debate

	Summary

	Chapter 4. Embedded and Accessible
	Knowledge Management in Embedded and Accessible Architecture
	What Is the Goal of Knowledge Management?
	What Is the Knowledge Management Lifecycle?
	What Are the Types of Knowledge Relative to Architecture Information?
	Summarizing the Benefits of Knowledge Management

	UI/UX Design in Embedded and Accessible Architecture
	What Is UI and UX Design?
	Summarizing Benefits of UI and UX

	Knowledge Management and UI/UX Principles
	Create: Champion Knowledge Sharing
	Approve: Many Over Few
	Distribute: Just in Time
	Distribute: Transparent to Find
	Distribute: Single Source of Truth
	Consume: Easy and Enjoyable
	Consume: Flag It or Fix It
	Consume: Measure to Improve

	Embedded and Accessible Architecture Information Framework
	Define
	Do
	Dare

	Case Studies
	New Enterprise Architecture Standard
	Best Practices
	The Static Artifact

	Summary

	Chapter 5. Enable and Enforce
	What Is an Enterprise Architecture Standard?
	Stability NFRs
	Release NFRs
	Operational Efficiency NFRs
	Interoperability NFRs
	Security NFRs
	Summarizing NFRs
	Architecture Technology Standards
	Architecture Metamodel Standard

	When Should a Standard Be Declared?
	What Is Enable?
	Principles of Enablement Mechanisms
	The Enablement Framework

	What Is Enforce?
	Principles of Enforcement Mechanisms
	The Enforcement Framework

	Case Studies
	The Free-for-All
	The Suffocation
	The Reporter

	Summary

	Chapter 6. Proactive and Reactive
	Principles of Strategic Thinking
	Understand the Right Problem
	Initiate Innovation
	Be a Change Agent

	The 4 Cs Framework
	Curiosity
	Challenge
	Credibility
	Communication

	Case Studies
	The Cloud Migration
	The AI Inflection Point
	The Tactical Load

	Summary

	Chapter 7. A Very Short Manifesto for Effective Enterprise Architecture
	Chapter 8. Contextual Understanding over Siloed Decision Making
	Architectural Domain Model
	What Are Capabilities?
	How Capabilities Fit in an Architecture Domain Model
	Considerations for Defining the Architectural Domain Model

	Other Contextual Inputs
	Case Studies
	The Aloof Architect
	The Aware Architect

	Summary

	Chapter 9. Tangible Direction over Stale Documentation
	The Importance of Experimentation
	Documentation Standards
	Documentation as Code
	Case Studies
	The Archaeological Architect
	The Ambitious Architect

	Summary

	Chapter 10. Driving Behavior over Enforcing Standards
	Driving Desired Behavior
	Conditioning Behavior
	Understanding Motivation
	Using Conditioning and Motivation Together

	Case Studies
	The Administrative Architect
	The Ambassador Architect

	Summary

	Chapter 11. Evolution over Frameworks
	Evolutionary Trends
	From Theory to Data
	From Outsider to Insider
	From Blocker to Enabler

	Case Studies
	The Adamant Architect
	The Audacious Architect

	Summary

	Chapter 12. Assessment Framework
	Conducting an Enterprise Architecture Assessment
	Define Business Outcomes
	Identify Capabilities
	Map Capability Gaps

	Summary

	Chapter 13. Framework to Define Enterprise Architecture Strategy
	Defining Enterprise Architecture Strategy
	Contextualize Enterprise Architecture
	Continuously Improve
	Create Excitement

	Summary

	Chapter 14. Framework for Architecture Decision Making
	Building a Foundation for Architecture Decision Making
	Providing an Architecture Decision Registry
	Managing the Architecture Decision Lifecycle
	Defining the Architecture Decision Workflow
	Offering Architecture Decision Training

	Framework for Architecture Decision Making
	Monitor Execution
	Evolve and Enhance

	Summary

	Index
	About the Author
	Colophon

