

Coding with AI

Chris Minnick

Coding with AI For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2024 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2024931771

ISBN: 978-1-394-24913-8 (pbk); 978-1-394-24915-2 (ebk); 978-1-394-24914-5 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://Dummies.com
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Techniques and Technologies . 7
CHAPTER 1:	 How	Coding	Benefits	from	AI . 9
CHAPTER 2:	 Parsing	Machine	Learning	and	Deep Learning . 37
CHAPTER 3:	 AI	Coding	Tools . 57
CHAPTER 4:	 Coding	with	Chatbots . 79

Part 2: Using AI to Write Code . 109
CHAPTER 5:	 Progressing	from	Plan	to Prototype . 111
CHAPTER 6:	 Formatting	and	Improving	Your	Code . 139
CHAPTER 7:	 Finding	and	Eliminating	Bugs . 167
CHAPTER 8:	 Translating	and	Optimizing	Code . 195

Part 3: Testing, Documenting, and Maintaining
Your Code . 211
CHAPTER 9:	 Testing	Your	Code . 213
CHAPTER 10:	Documenting	Your	Code . 239
CHAPTER 11:	Maintaining	Your	Code . 267

Part 4: The Part of Tens . 285
CHAPTER 12:	Ten	More	Tools	to	Try . 287
CHAPTER 13:	Ten	AI	Coding	Resources . 299

Index . 311

Table of Contents v

Table of Contents
INTRODUCTION . 1

About	This	Book .2
Foolish	Assumptions .3
Icons	Used	in	This	Book .4
Beyond	the	Book .5
Where	to	Go	from	Here .5

PART 1: TECHNIQUES AND TECHNOLOGIES 7

CHAPTER 1:	 How	Coding	Benefits	from	AI . 9
Banishing	Boring	Tasks .9

Spotting	boring	tasks .10
Letting	AI	write	the	template .10
Crafting	CRUD	with	AI .14

Helping	with	Syntax .20
Stop	remembering	trivial	details .20
Hinting	at	code	mastery .21
Adapting	to	new	syntax .22

Linting	with	AI .24
Detecting	bad	code	with	static	code	analysis 25
Integrating	AI	with	static	code	analysis .26

Using	AI	as	a	Tutor .26
Studying	AI’s	potential	in	education .26
Avoiding	potential	pitfalls .27

Pairing	Up	with	AI .27
Overview	of	pair	programming	styles .28
Understanding	the	pros	and	cons	of	pair	programming	
with	AI .28
AI	pair	programming	session .29

CHAPTER 2:	 Parsing	Machine	Learning	and	Deep Learning 37
Decoding	Machine	and	Deep	Learning .38

Defining	key	concepts .38
Thinking	about	neural	networks .39
Training	and	testing	models .41

Demystifying	Natural-Language	Processing .43
History	of	NLP .44
Overcoming	the	challenges	of	NLP .45

Understanding	Transformers .48
Learning	to	pay	attention .48
Getting	tokens .49

vi Coding with AI For Dummies

Illuminating	Generative	AI	Models .53
Recognizing	AI’s	Limitations .54

Language	models	are	bad	at	math .54
Language	models	are	wordy .54
AI	has	limited	knowledge .55
AI	lacks	common	sense .55
AI	has	accuracy	issues .56
AI	has	the	potential	to	be	biased . .56

CHAPTER 3: AI Coding Tools . 57
Navigating	GitHub	Copilot .57

Installing	the	Copilot	plug-in .58
Working	efficiently	with	Copilot .59
Using	keyboard	shortcuts .63

Exploring	Tabnine .64
Installing	Tabnine .65
Setting	up	Tabnine .66
Understanding	Tabnine’s	AI-driven	code	completion 67

Reviewing	Replit .68
Starting	a	website	with	Replit .70
Exploring	the	Replit	workspace .71
Pairing	up	with	Replit	AI .73

CHAPTER 4: Coding with Chatbots . 79
Improving	Your	Prompts .79

Adjusting	the	temperature .80
Deciphering	the	elements	of	a	prompt .82
Open-ended	versus	closed-ended	prompts 83
Using	different	types	of	prompts .83
Prompting	like	a	pro .86

Chatting	with	Copilot .87
Understanding	slash	commands .87
Knowing	Copilot’s	agents .88
Getting	the	most	out	of	Copilot	Chat .88

Chatting	with	ChatGPT .91
Signing	up	and	setting	up .91
Setting	custom	instructions .92

Diving	into	the	OpenAI	Platform .96
Checking	your	credits .97
Messing	around	in	the	playground .98
Running	examples .99
Playing	the	roles .100
Adjusting	the	model’s	settings .101
Getting	an	API	key .102

Developing	a	Chatbot	with	OpenAI .103

Table of Contents vii

PART 2: USING AI TO WRITE CODE . 109

CHAPTER 5:	 Progressing	from	Plan	to Prototype 111
Understanding	Project	Requirements .111

Determining	the	software	requirements .112
Domain	requirements .112
Functional	requirements .113
Non-functional	requirements .114
Writing	an	SRS .115

Generating	Code	from	an	SRS .118
Using	a	zero-shot	approach .118
Breaking	down	the	problem .120

Blending	Manually	Written	and AI-Generated	Code 121
Writing	the	prompt .121
Writing	the	server .122
Submitting	follow-up	prompts .125
Testing	the	server .125
Implementing	few-shot	prompting	on the server 127
Improving	the	client .130
Moving	logic	from	AI	to	the	client .133

Tips	and	Tricks	for	Code	Generation .136
Don’t	stop	coding .137
Be	specific .137
Think	in	steps .137
Ask	follow-up	questions .137
Check	the	official	documentation .137
Use	examples	and	context .138
Prioritize	security .138
Keep	learning .138
Keep	your	tools	updated .138
Be	mindful	of	AI’s	limitations .138

CHAPTER 6: Formatting and Improving Your Code 139
Using	AI	Tools	for	Code	Formatting .139

Setting	up	your	formatting	tools .140
Using	Prettier	to	automate	code	formatting 142

Refactoring	with	AI .147
Recognizing	code	smells .147
Detecting	code	smells	with	Copilot .151
Refactoring	safely .153

Generating	Refactoring	Suggestions .154
Setting	event	listeners	correctly .154
Removing	the	magic	number .155
Reducing	global	data .156

viii Coding with AI For Dummies

Fixing	long	functions .157
Fixing	inconsistent	naming .158
Lack	of	comments .159
Making	AI	play	tic-tac-toe	better .160

CHAPTER 7: Finding and Eliminating Bugs . 167
Knowing	Your	Bugs .168

Strategies	for	detecting	bugs .168
Identifying	common	types	of	bugs .168
AI-assisted	bug	reporting	with	Jam .170

Preventing	Bugs	with	Linting .173
Installing	a	linter .173
Installing	the	ESLint	extension .174
Fixing	your	code	with	a	linter .176
Combining	linting	with	AI .177
Changing	the	rules .180

Detecting	Bugs	with	AI .182
Automating	Bug	Fixes	with	AI .185

Introducing	Snyk .185
Executing	automated	bug	fixes .188
Verifying	automated	bug	fixes .190
Knowing	when	to	automate .191

CHAPTER 8: Translating and Optimizing Code . 195
Translating	Code	to	Other	Languages .195

Preparing	your	code	for	translation .196
Exploring	translation	strategies . .197
Translating	a	complete	program	using GPT-4 201
Verifying	translated	code .203

Optimizing	Your	Code	with	AI .204
Getting	code	optimization	suggestions .205
Avoiding	premature	optimization .209

PART 3: TESTING, DOCUMENTING,
AND MAINTAINING YOUR CODE . 211

CHAPTER 9: Testing Your Code . 213
Writing	a	Test	Plan .214

Deciding	between	formal	and	agile .214
Stepping	through	the	test	planning	process 214
Understanding	the	role	of	AI	in test planning 215
Identifying	core	functionalities .216
Generating	test	scenarios .217

Table of Contents ix

Working	with	a	Testing	Framework .219
Installing	Jest .219
Running	Jest .222
Generating	test	cases .222
Reading	a	coverage	report .226
Analyzing	test	results .226

Test-Driven	Development	with	AI .231

CHAPTER 10: Documenting Your Code . 239
Working	with	Documentation	Bots .240

Building	your	own	documentation	bot .240
Testing	your	documentation	assistant .243

Generating	Code	Comments	and Annotations 245
Installing	and	testing	Mintlify	Doc	Writer .245
Commenting	on	Underscore .247

Creating	Visual	Documentation .250
Generating	a	sequence	diagram .251
Generating	a	requirements	diagram .252

Automating	API	Documentation	with	AI .255
Documenting	a	REST	API .256
Creating	an	API	documentation	chatbot .260

CHAPTER 11: Maintaining Your Code . 267
Knowing	the	Four	Types	of	Maintenance .267

Corrective	software	maintenance .268
Adaptive	software	maintenance .269
Perfective	software	maintenance .269
Preventative	software	maintenance .269

Utilizing	AI	for	Code	Maintenance .270
Enhancing	Code	Quality	with	AI .271

Understanding	technical	debt .272
Getting	started	with	Code	Climate .273
Enabling	the	text	coverage	report .276
Analyzing	code	quality	metrics .276
Making	AI-assisted	code	quality	improvements 277

PART 4: THE PART OF TENS . 285

CHAPTER 12:	Ten	More	Tools	to	Try . 287
Amazon	CodeWhisperer .287
Sourcegraph	Cody .288
DeepMind	AlphaCode .289
Google	Bard .290
Codeium .291

x Coding with AI For Dummies

Claude .292
Microsoft	IntelliCode .293
Sourcery .294
Bugasura .295
UserWay .296

CHAPTER 13: Ten AI Coding Resources . 299
Code.org’s	AI	Resources .299
Kaggle .300
Google’s	Dataset	Search .301
edX .302
Edabit .303
StatQuest .304
AI4All	Open	Learning .305
Gymnasium .306
fast.ai .307
Microsoft	Learn .308

INDEX . 311

Introduction 1

Introduction

I started writing this book almost a year after OpenAI launched ChatGPT. That
launch and the subsequent releases of generative AI tools by Microsoft, Google,
Facebook, and others have begun to change how we think about creating con-

tent. At the same time, we’re facing important questions about what the future of
work will look like — especially for those of us whose job primarily involves the
things that tools such as ChatGPT are pretty good at.

My own feelings about generative AI are mixed. On one hand, I worry that the
skills in writing and programming that I’ve spent more than half my life working
on will no longer be useful. On the other hand, I see that AI has the potential to
take on some of the most boring and least rewarding work I do, saving me time
and effort that I can devote to the more creative parts of writing and
programming.

I also worry that when I do write things using old-fashioned methods (aka
“I think of them and write them”), people will assume that I used AI. This
 happened with a book I wrote last year on a relatively current topic. People who
didn’t bother to read the book commented that “it was probably written by AI.” As
a result of this experience, I announced that I’d livestream the process of writing
my next book. I had no idea at the time that my next book would be about AI. So,
here I am, writing a book about coding with AI while live-streaming my writing
processes in an attempt to prove to future readers that the book wasn’t generated
by AI. If you have any doubt that I wrote this book the old-fashioned way, or if you
have a few hundred hours to spare, you can see the entire book being written by
going to https://bit.ly/codingwithai.

Even though I refuse to use AI to write my books, and I’m generally against other
people using AI to write books, I feel differently about using AI tools to generate
computer code. The history of computer programming has been about people
inventing better tools that make coding easier. When I worked at Software Develop-
ment Magazine in the 1990s, the technical editor was Roger Smith. One day, while
we were talking about a new programming tool, Roger told me that he believed
that in the future we’d be able to use natural language to write software. I was
skeptical. Almost 30 years later, it turns out that Roger was right.

The pace of change in AI is fast. Technologies and tools that are new and interest-
ing this month will be replaced by better ones next month. Because I write about

https://bit.ly/codingwithai

2 Coding with AI For Dummies

technology and programming, there’s always the risk that something I write
today will be outdated when the book is released. However, even though AI and AI
software development tools will certainly have improved, the techniques I write
about here will be just as applicable — unless, of course, AI has made the profes-
sion of software developer obsolete and everyone who used to be a software devel-
oper now gets paid to hang out on the beach (or whatever your idea of relaxation
and fun is).

Whether you embrace this new era of AI-assisted coding or resist it, there’s no
denying that it’s here. In this book, I show you how these tools work and how you
can use them to not only make writing code easier and faster but to help you write
better code.

I hope you enjoy reading this book and that you find it useful. If you have any
questions or comments, please reach out to me at chris@minnick.com.

About This Book
When it comes to coding with generative AI, we’re all dummies at this point.
Whether you’re a new programmer or a veteran, this book will teach you what you
need to know to benefit from the new tools that are rapidly becoming available.

I cover these topics:

 » Understanding foundational principles of machine learning (ML), deep
learning (DL), and generative AI (GenAI)

 » Working with AI responsibly, safely, and ethically

 » Using some of the latest tools for coding with AI

 » Using AI to help with

• Automating monotonous coding tasks

• Learning new skills

• Improving your code

• Testing your code

• Documenting your code

• Maintaining your code

mailto:chris@minnick.com

Introduction 3

As you go through the book, keep the following in mind:

 » You can read the book from beginning to end, but feel free to skip around if
you like. If a topic interests you, start there. You can always return to previous
chapters, if necessary.

 » At some point, you will get stuck, and something you try will not work as
intended. Do not fear! There are many resources to help you, including
support forums, others on the internet, AI chatbots, and me! You can contact
me via email at chris@minnick.com or through my website (https://www.
chrisminnick.com). Additionally, you can sign up for my Substack (https://
chrisminnick.substack.com) to receive occasional updates from me about
AI, programming, and learning.

 » Code in the book appears in a monospaced font like this: <h1>Hi there!</h1>.

Some web addresses break across two lines of text. If you’re reading this book in
print and want to visit one of these web pages, simply key in the web address
exactly as it’s noted in the text, pretending as though the line break doesn’t exist.
If you’re reading this as an e-book, you have it easy — just click the web address
to be taken directly to the web page.

Foolish Assumptions
I do not make many assumptions about you, the reader, but I do make a few.

I assume you have some experience or familiarity with programming in a com-
puter language. It doesn’t matter which language you code in, just that you know
what programming is and you’ve done it before. If you’re new to computer pro-
gramming, many excellent books and tutorials are available that can give you the
background you need for this book in a few days. I recommend Coding All-in-One
For Dummies, 2nd Edition (written by me and an awesome team of other coding
experts), which contains an introduction to all the languages and techniques you
use in this book. In particular, read the chapters about Python and JavaScript.

Most of the examples in this book are JavaScript code, because that’s the pro-
gramming language I know the best. However, this is not a JavaScript-specific
book and the techniques and tools I use to help write or improve my JavaScript
code work with any language. The code examples are generally simple enough to
be understood without a specific knowledge of JavaScript.

mailto:chris@minnick.com
https://www.chrisminnick.com/
https://www.chrisminnick.com/
https://chrisminnick.substack.com/
https://chrisminnick.substack.com/

4 Coding with AI For Dummies

I assume you have a computer running a modern web browser. You will do most
of the exercises in this book by using web-based resources. Although it may be
possible to complete these exercises using a smartphone or tablet, I don’t
recommend it.

I assume you have access to an internet connection. Because the language models
we’ll be working with are far too large to install on your computer, an internet
connection will be essential to completing the hands-on element.

I assume you can download and install free software to your computer. Often-
times, the computer you use at work will have restrictions on what can be installed
by the user. Using your own computer to develop and run the applications in this
book should work without a problem.

Icons Used in This Book
Here are the icons used in the book to flag text that should be given extra attention
or can be skipped.

This icon flags useful information or explains a shortcut to help you understand a
concept.

This icon explains technical details about the concept being explained. The details
might be informative or interesting but are not essential to your understanding of
the concept.

Try not to forget the material marked with this icon. It signals an important con-
cept or process that you should keep in mind.

Watch out! This icon flags common mistakes and problems that can be avoided if
you heed the warning.

Introduction 5

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.dummies.
com. Go online to find the following:

 » The source code for the examples in this book: Go to www.dummies.com/
go/codingwithaifd. The source code is organized by chapter. The best way
to work with a chapter is to download all the source code for it at one time.

 » The cheat sheet: Go to www.dummies.com and, in the search field, typing
Coding with AI for Dummies. You’ll find helpful prompting tips for coding
with AI, a list of dangers when using AI-generated code, and a tongue-in-cheek
look at what AI coding assistants can’t do.

 » Updates: AI is changing rapidly, and I don’t expect it to stop doing so after this
book is published, so the commands and syntax that work today may not work
tomorrow. You can find any updates or corrections by visiting www.dummies.
com/go/codingwithaifd or https://github.com/chrisminnick/
coding-with-ai.

Where to Go from Here
As you embark on your journey of learning to code with AI, keep an open mind but
also a large dose of skepticism and patience. In spite of how impressive the cur-
rent generation of GenAI tools is (and they’re surely much better by the time you
read this), we’re still in the infancy of this stuff.

If you want to get a basic understanding of AI-assisted coding, go to Chapter 1. If
you want to find out more about how these tools work and about machine learning
in general, read Chapter 2. If you want to learn about some of the tools that are
available today for coding with AI, see Chapters 3 and 4. If you want to get right
into experimenting with the combination of coding and AI, skip to Chapter 5.

Congratulations on taking your first step towards AI-assisted coding, and thank
you for trusting me as your guide.

http://www.dummies.com
http://www.dummies.com
https://www.dummies.com/go/codingwithaifd
https://www.dummies.com/go/codingwithaifd
https://www.dummies.com/
https://www.dummies.com/go/codingwithaifd
https://www.dummies.com/go/codingwithaifd
https://github.com/chrisminnick/coding-with-ai
https://github.com/chrisminnick/coding-with-ai

1Techniques and
Technologies

IN THIS PART . . .

Discover how AI-enhanced tools can help make you a
better and more efficient programmer.

Dig into the fundamental concepts behind machine
learning and deep learning.

Explore AI pair programming tools.

Converse with the latest generative models to assist
with coding tasks.

CHAPTER 1 How Coding Benefits from AI 9

Chapter 1
How Coding Benefits
from AI

If you’re a programmer or learning to program, generative artificial intelligence
(also known as GenAI) can help you be more productive, make fewer mistakes,
and learn new skills and languages faster, as you discover in this chapter. In the

process, you work with some tools to get a taste of what’s available. All the topics
in this chapter are described in detail in later chapters.

Although you might be able to use AI to generate working computer programs
without knowing how to code, I strongly discourage you from doing this —
especially if you plan to deploy anything you generate. Generative AI doesn’t know
how to program. If you don’t know how to code either, there’s a good chance
that code you create with AI will have serious security problems, functionality
problems, or worse.

Banishing Boring Tasks
One of the most basic and useful things you can do with the current crop of
generative AI models is to use them to generate the types of code programmers
lovingly refer to as boilerplate code.

IN THIS CHAPTER

 » Automating repetitive tasks

 » Getting help with syntax

 » Testing your programs

 » Enhance your learning with AI

 » Pair programming with AI

10 PART 1 Techniques and Technologies

The term boilerplate dates to the 19th century, when steel plates were used as tem-
plates for making steam boilers.

Boilerplate code is the stuff that’s the same or nearly the same in every file or
every project. No one likes to write boilerplate code, but we have to do it because
the code we want to write (the fun stuff) won’t work without the boilerplate.

Spotting boring tasks
To identify tasks that can be automated with AI, think about the tasks that you do
repeatedly in multiple projects. JavaScript developers might select an element in
the browser window, such as a button, and attach to it an event listener to do some
action when a user interacts with that element. Or they might do something more
complex, such as writing the code for a database-driven application that handles
creating, reading, updating, and deleting (CRUD) tasks.

For web developers and designers, a simple example of boilerplate code that can
be automated is the basic structure of an HTML page. Every valid HTML page
starts with a document type declaration followed by an HTML element, and then
a head element (including several internal elements, such as the title and meta
tags), and then a body element.

Letting AI write the template
You can minimize the work required to generate a simple HTML template in many
ways, such as by using a code snippet or searching the web for an example. How-
ever, if you want to create a custom boilerplate that includes some structure and
gives you a good start on the design of a future website, you could simply ask your
AI. For example, I gave ChatGPT the following request:

Please generate an HTML template with a style element that
uses flexbox to create a three column layout with a sample
top navigation bar and a footer.

And here is the code that ChatGPT generated:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,

initial-scale=1.0">

CHAPTER 1 How Coding Benefits from AI 11

 <title>Three Column Layout</title>
 <style>
 body {
 margin: 0;
 padding: 0;
 font-family: Arial, sans-serif;
 }

 .container {
 display: flex;
 flex-direction: column;
 min-height: 100vh;
 }

 header {
 background-color: #333;
 color: #fff;
 padding: 10px 0;
 text-align: center;
 }

 nav {
 background-color: #444;
 color: #fff;
 padding: 10px 0;
 text-align: center;
 }

 .main-content {
 flex: 1;
 display: flex;
 justify-content: space-between;
 padding: 20px;
 }

 .sidebar {
 flex-basis: 20%;
 background-color: #f0f0f0;
 padding: 20px;
 }

 .content {
 flex-basis: 60%;
 background-color: #fff;

12 PART 1 Techniques and Technologies

 padding: 20px;
 }

 .aside {
 flex-basis: 20%;
 background-color: #f0f0f0;
 padding: 20px;
 }

 footer {
 background-color: #333;
 color: #fff;
 padding: 10px 0;
 text-align: center;
 }
 </style>
</head>
<body>
 <div class="container">
 <header>
 <h1>Top Navigation Bar</h1>
 </header>
 <nav>

 Home
 About
 Services
 Contact

 </nav>
 <div class="main-content">
 <div class="sidebar">
 <h2>Sidebar</h2>
 <p>This is the sidebar content.</p>
 </div>
 <div class="content">
 <h2>Main Content</h2>
 <p>This is the main content area.</p>
 </div>
 <div class="aside">
 <h2>Aside</h2>
 <p>This is the aside content.</p>
 </div>
 </div>

CHAPTER 1 How Coding Benefits from AI 13

 <footer>
 <p>Footer</p>
 </footer>
 </div>
</body>
</html>

The resulting HTML generated by my request (also known as a prompt) matched
fairly well with what I would have done if I’d written it by hand. Figure 1-1 shows
the resulting web page when I save the generated HTML markup in a file and open
it in a browser without modifying it.

You can find all the code used in this book, including the HTML template shown
in Figure 1-1, at www.dummies.com/go/codingwithaifd.

FIGURE 1-1:
A ChatGPT-
generated

HTML template.
ChatGPT

https://www.dummies.com/go/codingwithaifd

14 PART 1 Techniques and Technologies

Crafting CRUD with AI
One of the most common tasks in any computer program is accessing a data
source and writing functions for performing operations with the data source. The
basic operations you can do with any data source are creating a record, reading a
record, updating a record, and deleting a record. The collective name for the code
that makes these operations possible is the wonderfully evocative acronym
CRUD. Most people don’t enjoy writing CRUD.

In this section, you use generative AI to reduce the amount of work it takes to
generate some CRUD. To get started with this exercise, you need to have access to
an interface for chatting with a generative AI model such as ChatGPT, Google
Bard, or Microsoft Bing. If you don’t have an account with any of these services
yet, follow the instructions in Chapter 4 to sign up for ChatGPT.

Then, once you have a chat window in front of you, start with a short request to
the generative model to see what it will do. If the service you’re using won’t or
can’t fulfill your request, you won’t have wasted much time crafting a detailed
prompt. For example, when I asked Bing to generate CRUD, it started to, but then
told me to ask something else, as shown in Figure 1-2.

FIGURE 1-2:
Bing refused to

generate CRUD.
 Microsoft Corporation

CHAPTER 1 How Coding Benefits from AI 15

Now determine whether the response shows any promise. If you didn’t get a
response, try using a different generative AI model.

Here is the beginning of the response I got to my initial prompt (“Write JavaScript
functions for performing CRUD operations for a database table named todo-list.”)
from ChatGPT using the GPT-3.5 model:

// Simulated in-memory database for the todo-list
const todoListDB = [];

// Function to Create a new todo item
function createTodoItem(title, description) {
 const newItem = {
 id: todoListDB.length + 1,
 title,
 description,
 completed: false,
 };

 todoListDB.push(newItem);
 return newItem;
}

The response is adequate, but because I failed to provide enough information
about my desired application, ChatGPT used an array as if it were a database,
which is unlikely to be what is needed here.

If you get a promising response to your initial prompt, give the model additional
details. For example, my next step would be to tell ChatGPT that this is a Node.js
application that will be working with a MongoDB database and that it should use
Mongoose.

The process of refining your instructions to a GenAI model and providing context
and examples is called prompt engineering. Chapter 4 covers the process of prompt
engineering in detail. Figure 1-3 shows my second prompt.

This time, ChatGPT responded with a complete Node.js application that connects
to a local database and can perform CRUD operations. Listing 1-1 shows the regen-
erated code.

16 PART 1 Techniques and Technologies

LISTING 1-1: ChatGPT’s second attempt

const mongoose = require('mongoose');

// Connect to MongoDB
mongoose.connect('mongodb://localhost/todo-list', {
 useNewUrlParser: true,
 useUnifiedTopology: true,
});

// Define a TodoItem schema
const todoItemSchema = new mongoose.Schema({
 title: String,
 description: String,
 completed: Boolean,
});

// Create a TodoItem model
const TodoItem = mongoose.model('TodoItem', todoItemSchema);

// Function to Create a new todo item
async function createTodoItem(title, description) {
 const newItem = new TodoItem({
 title,
 description,
 completed: false,
 });

 try {
 await newItem.save();
 return newItem;
 } catch (error) {
 throw error;
 }
}

FIGURE 1-3:
Adding context to

get a better
response.

ChatGPT

CHAPTER 1 How Coding Benefits from AI 17

// Function to Read all todo items
async function getAllTodoItems() {
 try {
 const todoItems = await TodoItem.find();
 return todoItems;
 } catch (error) {
 throw error;
 }
}

// Function to Read a specific todo item by ID
async function getTodoItemById(id) {
 try {
 const todoItem = await TodoItem.findById(id);
 return todoItem || null;
 } catch (error) {
 throw error;
 }
}

// Function to Update a todo item by ID
async function updateTodoItem(id, updatedData) {
 try {
 const updatedItem = await TodoItem.findByIdAndUpdate(id,

updatedData, { new: true });
 return updatedItem;
 } catch (error) {
 throw error;
 }
}

// Function to Delete a todo item by ID
async function deleteTodoItem(id) {
 try {
 const deletedItem = await TodoItem.findByIdAndRemove(id);
 return deletedItem || null;
 } catch (error) {
 throw error;
 }
}

18 PART 1 Techniques and Technologies

This isn’t bad at all. I like that ChatGPT (mostly) used the latest JavaScript syntax,
properly handled errors that may happen, and wrote good comments. I’ve seen
human-written code that’s much worse.

The real test, however, is whether the code runs. After it generated the CRUD
functions, ChatGPT provided some examples of how they can be used. These
examples are shown in Listing 1-2.

LISTING 1-2: Examples usage code from ChatGPT

// Example usage:
(async () => {
 try {
 const newItem = await createTodoItem("Buy groceries", "Milk,

eggs, and bread");
 console.log("Created item:", newItem);

 const allItems = await getAllTodoItems();
 console.log("All items:", allItems);

 const itemToUpdate = await getTodoItemById(newItem._id);
 if (itemToUpdate) {
 const updatedItem = await updateTodoItem(itemToUpdate._id,

{ completed: true });
 console.log("Updated item:", updatedItem);
 }

 const deletedItem = await deleteTodoItem(newItem._id);
 console.log("Deleted item:", deletedItem);

 } catch (error) {
 console.error("Error:", error);
 } finally {
 mongoose.disconnect();
 }
})();

If Node.js and MongoDB are installed on your development machine, you can try
out this code by copying Listings 1-1 and 1-2 into a file and saving it with the .js
extension.

CHAPTER 1 How Coding Benefits from AI 19

Before you run the application, you need to initialize the directory containing the .js
file as a Node package by entering the following in a terminal window:

npm init -y

Then install Mongoose by entering the following:

npm install mongoose

Next, run the program by entering node followed by the file name, like this:

node listing0102.js

Figure 1-4 shows what happened when I ran this program.

To verify that ChatGPT’s code worked, I commented out the code that deletes the
created record, ran the Node.js application again, and then started the Mongo
shell and looked at the contents of the todo-list collection, as shown in
Figure 1-5.

FIGURE 1-4:
Running my

Node.js
application.

20 PART 1 Techniques and Technologies

Helping with Syntax
A large part of the work involved in computer programming is simply remember-
ing or looking up the rules that define the structure of a programming language,
also known as its syntax. Each language or code library has its own way of doing
things. Once you know the basics of how a programming language works (such as
how to create a function, use basic operators, and write loops), you need to know
what built-in functions are available in your environment (whether it’s a browser
or a mobile operating system) and what parameters and types of data they expect
to receive. That’s a lot to remember, and no programmer I’ve ever met can
remember everything there is to remember about one programming language,
much less several programming languages. With the help of GenAI tools, you can
have instant access to the collected knowledge of millions of coders.

You may be asking yourself at this point, “But is it ethical for AI to harvest
everyone’s code like that?” This topic is hotly debated and the subject of at least
one lawsuit. I explore legal and ethical issues having to do with GenAI throughout
this book.

Stop remembering trivial details
When I teach programming, my students often ask me questions about syntax and
application programming interfaces (APIs) rather than how something works.
When I get a question about syntax, I answer the question if I can without looking
it up; otherwise, I encourage students to “Google it.” With time and experience,
remembering syntax just starts to happen.

When writing software, one of the best skills is knowing how and where to look
for answers. And most of the time, the best place is through a search engine.
Because search engines employ machine learning to determine the best results to
show in response to queries, we’ve been using AI for coding for some time now.

FIGURE 1-5:
Viewing the
collection’s
contents in
MongoDB.

CHAPTER 1 How Coding Benefits from AI 21

Hinting at code mastery
One of the oldest forms of computer-assisted coding is code completion. Microsoft
introduced its implementation of code completion, IntelliSense, in Visual Studio in
1996. These types of tools work by suggesting functions and methods that partially
match something you’ve started typing, as shown in Figure 1-6. Traditional code
completion functionality doesn’t employ GenAI, and its suggestions can often be
frustratingly incorrect. However, if you need help with the syntax or spelling (or
don’t want to type the full names of functions), code completion is useful.

Generative AI takes code completion to the next level by offering suggestions
based on its training. When integrated into your IDE, tools such as GitHub’s
Copilot or Amazon’s CodeWhisperer can suggest entire statements or functions,
rather than just single function calls.

GenAI models trained on large datasets of code can offer multiple suggestions
based on what other programmers have written; libraries, classes, and functions
you’ve imported into the current file; and even other files that are open in your
IDE or in your code repository.

Figure 1-7 shows a suggestion from Copilot based on the fact that I named my file
validatePhoneNumber.js.

Unfortunately, in this instance, the suggested function is worse than useless to
most people because it returns true only when provided with a phone number
starting with 98, which is the country code for Iran.

FIGURE 1-6:
Code completion

is often helpful.
 Microsoft Corporation

FIGURE 1-7:
Copilot’s

suggested phone
number

validation
function.

 Microsoft Corporation

22 PART 1 Techniques and Technologies

However, more context can coax the model into returning a better response. When
I provided a comment describing what I was trying to do, the model returned a
much better suggestion, as shown in Figure 1-8. While not perfect and far too
wordy, at least this suggestion gets me closer to what I’m looking for.

In Part 2, you learn much more about how to use GenAI tools to write, format,
translate, and optimize your code.

Adapting to new syntax
Like code hint features in IDEs, GenAI can help you learn or remember the syntax
for functions or methods. For example, Copilot will give you hints as you type; you
can ignore these by continuing to type or accept them by pressing tab.

For example, I have trouble remembering the order of the arguments to pass to
the Array.reduce method. Figure 1-9 shows a Copilot hint for starting the
method.

FIGURE 1-9:
Getting syntax
support from

Copilot.

FIGURE 1-8:
GenAI models

do better when
given context.

 Microsoft Corporation

CHAPTER 1 How Coding Benefits from AI 23

You can also use GenAI chat interfaces to learn about new syntax. However, keep
in mind that the model you’re using may have been trained on data that predates
the existence of the function or method you’re seeking help with. For example,
GPT-3’s training data cutoff date is September 2021, so the model has no knowl-
edge of events or technologies developed after that date. Figure 1-10 shows what
happened when I asked GPT-3 about a feature of JavaScript introduced in 2022.

GPT-4, on the other hand, has a more recent training data cutoff and can also
search the web. Figure 1-11 shows ChatGPT’s response to the same question but
with the model set to GPT-4.

Also remember that, in response to a query, a GenAI model may just invent some-
thing that sounds plausible but is incorrect. ChatGPT’s tendency to make up facts
and people is legendary. However, in cases where something is as rule-based as a
computer language, it usually gets the facts right. As a rule, have a certain amount
of distrust of any AI-generated code. Always verify.

Figure 1-12 shows ChatGPT 3.5’s response to my question about a non-existent
JavaScript method.

FIGURE 1-10:
GPT-3 doesn’t

know about
recent additions

to JavaScript.
ChatGPT

24 PART 1 Techniques and Technologies

Linting with AI
Linters are tools that flag programming errors, bugs, and style issues. The techni-
cal name for the job that linters do is static code analysis. The static part of static
code analysis refers to the fact that these tools check the code without compiling or
running it. Using a linter can help you improve the quality of your code.

FIGURE 1-11:
GPT-4 generates
a correct answer

when asked
about new

syntax.
ChatGPT

FIGURE 1-12:
ChatGPT
is usually

correct about
 programming

language
syntax basics.

ChatGPT

CHAPTER 1 How Coding Benefits from AI 25

Since most GenAI tools are (at the time of this writing) incapable of compiling and
running the code you write, anytime you prompt a machine learning model to look
for errors or bad style in your code, you’re using it as a linter.

Detecting bad code with
static code analysis
To use an AI chatbot as a linter, you can prompt the model with your code and ask
it what’s wrong with it. Since GenAI models have been trained on a large quantity
of working code, they’re generally pretty good at finding typos, inconsistencies,
and code that doesn’t look right.

Simply write something like “What’s wrong with this code?” and then paste in the
code that’s not working. Figure 1-13 shows Google Bard’s response to my question
about a function with several typos and examples of bad coding style.

FIGURE 1-13:
Using Bard
as a linter.

 Microsoft Corporation

26 PART 1 Techniques and Technologies

Integrating AI with static code analysis
Because programming languages have strict rules, linters don’t necessarily need
to use AI to detect bad code. However, linting tools that make use of AI can provide
functionality that’s not possible with standard code linters, such as

 » Detailed natural language explanations of what’s wrong with your code

 » Defining new rules using natural language

 » Fixing problematic code or refactoring problematic code or both

Many linters that aren’t AI-enhanced can automatically fix certain kinds of prob-
lems with your code, and defining new rules generally isn’t difficult. The potential
for providing detailed descriptions as well as improving your code is promising.

Several tools add AI to existing linters. For example, eslint-ai (available at
https://github.com/iamando/eslint-ai) is an open-source project that uses
GPT-3 to enhance the errors returned by the most popular JavaScript linter,
ESLint.

Using eslint-ai requires you to have an account and an API key from OpenAI, and
using the tool may result in OpenAI charges. However, GitHub Copilot and other
tools include features for cleaning, fixing, and improving your code as part of
their standard subscriptions. Chapter 7 covers linting and debugging with AI in
detail.

Using AI as a Tutor
The question of whether generative AI should be used in education is hotly
debated. On the one hand, AI chatbots and AI-enhanced search engines can often
provide customized and accurate answers to questions that traditional search
engines can’t. On the other hand, it may be tempting for a new coder to rely on
code generated by AI rather than on gaining experience through struggling with
coding for endless hours, which is the traditional way people learn to program (or
to write, or anything else for that matter). In this section, I touch on some of the
pros and cons of using AI to learn to code.

Studying AI’s potential in education
AI can be a useful tool for someone who is learning to code. Just as search engines,
online tutorials, and coding books are used today by both new and experienced

https://github.com/iamando/eslint-ai

CHAPTER 1 How Coding Benefits from AI 27

programmers, AI chatbots and coding assistants will soon be seen as normal and
essential tools.

Whether you’re learning from older technologies (such as books or a human
instructor) or the latest GenAI model, there’s no substitute for gaining experience
through writing code or from interacting with more experienced programmers.

When using an AI chatbot to learn to code, ask the right questions and be skeptical
of its answers.

Avoiding potential pitfalls
GenAI models and the chatbots that make use of them don’t know how to code. All
they do is crunch the numbers, based on their training, and tell you the next most
likely word. Even with this seemingly simple functionality, large language models
such as GPT-4 are often surprisingly accurate and human-sounding.

Although efforts are underway to make GenAI models properly express them-
selves when they have doubts about their answers, today’s models are supremely
confident in their answers, even when what they say is completely wrong. Never
fully trust a GenAI model. You should always test and verify any code output you
get, especially before using it in a production environment.

Pairing Up with AI
Pair programming is a software development technique in which two programmers
team up at one computer. In pair programming, one person acts as the driver and
handles all the typing, while the other acts as the navigator. Ideally, both pro-
grammers are equally skilled and switch roles between navigator and driver as
needed to take advantage of each person’s strengths. However, pair programming
also works well when one of the programmers is more experienced (known as
expert-novice) or where both programmers are inexperienced (novice-novice).

Pair programming helps team members share knowledge and learn to work
together, and it leads to fewer mistakes and better code.

28 PART 1 Techniques and Technologies

Overview of pair programming styles
Depending on the skill levels of the programmers, several different variations of
pair programming might be used:

 » Driver-navigator: This style of pair programming is the most common. In
driver-navigator, the driver handles the typing while the navigator looks at the
big picture and keeps an eye out for mistakes being made by the driver.

 » Backseat navigator: In this style, the driver still does the typing, and the
navigator takes a more active role and dictates instructions, such as when to
create a file or method, or what to name a variable. This style works best
when the navigator is a more experienced programmer.

 » Tour guide: In the tour guide style, the driver is the expert programmer.
They handle the typing and explain to the navigator at every step what
they’re doing and why.

 » Ping-pong: The ping-pong style is designed for test-driven development as a
pair. The first person writes a piece of code designed to verify that a feature
works as expected (a test). The second programmer writes the code to make
the test pass. Then the second programmer writes a new test and the first
programmer writes the code to make it work. This style usually requires two
expert developers.

Understanding the pros and cons
of pair programming with AI
In AI pair programming, you’re the navigator who sets the direction and does the
strategic thinking. You communicate the project’s goal to the AI through com-
ments and code that you write. As you type, the AI navigator suggests snippets
and code blocks. With each suggestion, you have to decide whether to accept the
suggestion, write your own solution, or ask your AI assistant to try again.

Following are some of the benefits of pair programming with an AI partner:

 » You (the coder) can spend less time looking up syntax and typing repetitive or
boilerplate code.

 » The AI assistant is available whenever you are.

 » The AI assistant is fast.

 » The GenAI model behind the assistant is trained on many different program-
ming languages and programming styles, potentially giving you access to
solutions you might not have otherwise considered.

CHAPTER 1 How Coding Benefits from AI 29

The cons of pair programming with AI may include the following:

 » Team members each working individually with an AI partner don’t get the
knowledge-sharing benefits of traditional pair programming.

 » AI-suggested code may not be accurate or up-to-date with the latest syntax
or coding styles.

 » AI-suggested code may contain security flaws or other types of issues that
a human coding partner would easily spot.

Pair programming with AI works best for coders who know their language and
have experience writing code without the use of AI. As you’re coding, remember
that your partner (the GenAI model) speaks confidently but doesn’t know any-
thing about programming.

AI pair programming session
In this section, you work with an AI pair programmer to develop an interactive
web-based trivia game. For this exercise, you need access to GitHub Copilot.

Installing Copilot
If the Copilot extension isn’t installed in your code editor, follow these steps to
install it and sign up for a Copilot free trial:

1. Open Visual Studio Code.

If Visual Studio Code isn’t installed, you can download it at https://code.
visualstudio.com.

2. Click the extensions icon in the left sidebar of Visual Studio Code and
search for Copilot, as shown in Figure 1-14.

3. Install the Copilot extension.

Note that the Copilot Chat extension is installed automatically when you install
Copilot.

4. In your browser, go to https://github.com and sign in.

If you don’t have an account, create one and then sign in. To use Copilot, you
need a GitHub account.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/

30 PART 1 Techniques and Technologies

5. In the window that appears in Visual Studio Code after you installed
Copilot, click Sign In to GitHub.

If the window isn’t open, click the Copilot icon in the lower-right corner of Visual
Studio Code.

6. Walk through the dialog boxes that appear to give Visual Studio Code
access to your GitHub account.

When you’ve linked GitHub and Visual Studio Code, Copilot displays a message
saying that you don’t have access to Copilot.

7. Click the link to go to GitHub and sign up for a 30-day free trial of Copilot.

You must have a Copilot subscription to use Copilot. A free trial is available at
https://github.com/features/copilot#pricing. Educators and students have
free access to Copilot through GitHub Global Campus at https://education.
github.com/.

Signing up for a Copilot trial requires you to enter payment information, and the
trial converts to a paid subscription automatically after 30 days unless you cancel it.

Once you’ve signed up with Copilot, the Copilot icon in the lower-right corner of
Visual Studio Code is active. If you click the icon several options appear at the top
of VS Code, including Deactivate Copilot, which turns off suggestions from the
model until you click the icon again and reactivate it.

Congratulations! You’ve signed up with Copilot and are ready to create a
trivia game.

FIGURE 1-14:
Searching for the

Copilot extension.
 Microsoft Corporation

https://github.com/features/copilot#pricing
https://education.github.com/
https://education.github.com/

CHAPTER 1 How Coding Benefits from AI 31

Using prompting to create a trivia game
In this section, you use Copilot to help you build a trivia game that displays one
multiple-choice question at a time, and then randomly picks a new question when
the user selects an answer. Think about the structure of the application you want
to build. What other details can you imagine will be important to make sure that
Copilot offers usable selections?

In the following steps, you see how the exercise went for me. Your experience will
be different:

1. Create a file named index.html and type an HTML comment.

Here’s the comment I wrote:

<!-- Homepage for a trivia game about machine learning -->

In response to this prompt, Copilot suggests a DOCTYPE declaration for an
HTML5 file, which is correct.

2. Press the tab key to accept Copilot’s suggestion, and then press Enter to
go to the next line and evaluate the next suggestion.

3. Continue accepting Copilot’s suggestions until it provides one you
don’t want.

Copilot suggested a basic HTML template containing a form that submits to a
PHP script. This isn’t what I envisioned, so I need to provide additional informa-
tion for my initial prompt. I revised my prompt as follows:

<!--
Homepage for trivia game about Machine Learning.
This game will display one multiple-choice question at
a time, using JavaScript that gets data
from data/trivia.js.
Possible answers will be displayed with radio buttons
to their left. When a radio button is clicked, the
user will be shown a new random question.

-->

With the additional context, Copilot was able to create something that much
more closely resembling what I envisioned:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Machine Learning Trivia</title>
 <link rel="stylesheet" href="css/style.css">

32 PART 1 Techniques and Technologies

</head>
<body>
 <div class="container">
 <header>
 <h1>Machine Learning Trivia</h1>
 </header>
 <main>
 <div id="question"></div>
 <div id="answers"></div>
 <div id="score"></div>
 </main>
 <footer>
 <p>© Chris Minnick</p>
 </footer>
 </div>
 <script src="js/trivia.js"></script>

</html>

4. Add type="module" to the <script> tag to tell Copilot that you’ll be using
an import statement inside the trivia.js file.

5. Create three folders named js, css, and data.

6. Inside the data folder, create a file named triviaQuestions.js.

7. Write a comment at the beginning of triviaQuestions.js that describes
what the file should contain.

This is what I wrote:

// A module containing an array of 10 objects

// containing quiz questions and answers.

8. If your prompt, like mine, didn’t generate the content you expected,
do the following:

a. Click the Chat icon in the left panel of Visual Studio code to open the Copilot Chat
interface.

You can also use ChatGPT for this step.

b. In the Chat interface, enter the following prompt:

Give me a JavaScript array containing 10 multiple-choice
trivia questions about machine learning.

CHAPTER 1 How Coding Benefits from AI 33

In response to this prompt, Copilot Chat gave me a properly formatted and
appropriate array of questions and answers. The first few questions follow:

const triviaQuestions = [
 {
 question: "What is the name of the algorithm that is

commonly used for supervised learning?",
 choices: ["Decision Tree", "K-Means", "Naive Bayes",

"Random Forest"],
 answer: "Decision Tree"
 },
 {
 question: "What is the name of the algorithm that is

commonly used for unsupervised learning?",
 choices: ["K-Means", "Decision Tree", "Naive Bayes",

"Random Forest"],
 answer: "K-Means"
 },
 {
 question: "What is the name of the algorithm that is

commonly used for reinforcement learning?",
 choices: ["Q-Learning", "K-Means", "Naive Bayes",

"Random Forest"],
 answer: "Q-Learning"
 },

...

];

9. Copy the generated array and paste it into your data file.

10. You’ll be importing the array into your JavaScript file, so add the export
keyword before const, like this:

export const triviaQuestions = [

11. Create a new file in the js folder named trivia.js.

Make sure that you keep triviaQuestions.js and index.html open while you’re
working on trivia.js. Copilot uses files you have open as context for the one
you’re working on.

12. Write a comment at the beginning of trivia.js describing what it
should do.

Here’s the comment I wrote:

/* JavaScript for the Trivia Game.
This script is loaded by the index.html file

34 PART 1 Techniques and Technologies

and will display questions and possible answers
that users can select from. The game will display
a new random question when the user clicks a radio
button to choose an answer and keep track of the

user's score. */

13. Immediately following the comment, start a JavaScript import statement
to import the question data.

Whether Copilot figures out what you’re doing and helps you or not, the import
statement should look like this:

import {triviaQuestions} from '../data/triviaQuestions.js';

14. Press Enter, and accept the variables that Copilot suggests.

Eventually, Copilot will suggest a function.

Don’t accept the suggested function right away. If Copilot isn’t making any
suggestions, try inserting a blank line. After that, look at the Copilot icon in the
lower-right corner. It should start spinning, and after a few seconds you’ll see a
suggestion for how to start writing the code.

15. Hover your mouse pointer over the function suggestion to display the
Copilot menu, which might list multiple possible suggestions, as shown
in Figure 1-15.

FIGURE 1-15:
Viewing the

Copilot menu and
multiple

suggestion
options.

 Microsoft Corporation

CHAPTER 1 How Coding Benefits from AI 35

16. If you like one of the suggestions, accept it. If not, try refining your
comment to provide more information about what you want.

17. Continue this process of accepting suggestions, writing code, and using
comments to provide context until you have something that might work.

Now it’s time to preview your application:

1. Click the extensions icon to the left of VSCode (labeled in Figure 1-14) and
use the Search box to find the Live Server extension.

2. Click the Install button under the Live Server extension.

This extension opens HTML files using a development server.

3. In Visual Studio Code’s File Explorer, right-click index.html and select
Open with Live Server.

Your application opens in your default web browser.

Figure 1-16 shows the (rough and unready) game that I created with Copilot’s
help. The process took me around 20 minutes on my second attempt.

FIGURE 1-16:
A somewhat

functional
trivia game.

36 PART 1 Techniques and Technologies

If your application doesn’t work, try debugging with the help of Copilot Chat.

Whether or not you ended up with a usable — or even good — application, ask
yourself the following questions:

 » Was pair programming with AI easier or more difficult than pair programming
with another coder?

 » Were you surprised (positively or negatively) by the suggestions offered by
Copilot?

 » How would you change your approach to pair programming with AI if you
were to repeat this exercise?

In Part 2, you learn much more about how to get better results from GenAI.

CHAPTER 2 Parsing Machine Learning and Deep Learning 37

Chapter 2
Parsing Machine
Learning and
Deep Learning

In this chapter, I cover some of the basics of AI and machine learning. Although
it’s fully possible to use AI-assisted software development tools without under-
standing the science and math behind them, a basic understanding of how AI

and machine learning work will help you use these tools more effectively.

If you want to skip right into learning how to use AI coding assistants, feel free to
use this chapter as a reference when you encounter an unfamiliar term or concept
elsewhere in the book.

If you want to learn more about machine learning or how to write code that
enables machine learning, check out some of the resources in Chapter 13.

IN THIS CHAPTER

 » Defining AI terms

 » Processing natural language

 » Interpreting transformers and tokens

 » Knowing the limitations of AI

 » Practicing responsible AI

38 PART 1 Techniques and Technologies

Decoding Machine and Deep Learning
When you first encounter a generative AI tool such as ChatGPT, it can seem like
magic. Some people even speculate that generative AI tools are conscious and
capable of thinking and having emotions. Knowing how these tools were created
and how they work will quickly dispel that notion — or make you think differently
about consciousness, but that’s a subject for a philosophy book, not a coding book.

Defining key concepts
Before you can dip your toes into understanding how the latest AI systems are
capable of writing code and generating complex responses to natural-language
input, I need to present some vocabulary. People working with or writing about
the systems I talk about in this book often use the terms AI, machine learning, deep
learning, and generative AI interchangeably, but these fundamental terms are dif-
ferent (see Figure 2-1):

 » Artificial intelligence (AI) is the use of computer science and data to solve
problems. AI encompasses everything from expert systems and decision
trees, which simulate the judgment and behavior of humans using a complex
series of if-then statements, to machine learning, computer vision, and
natural-language processing.

 » Machine learning is a type of AI that focuses on developing and using
computer systems that can learn and adapt without following explicit
instructions. Machine learning can solve problems that would be prohibitively
expensive to solve by programmers writing the algorithms by hand.

 » Deep learning is a type of machine learning based on artificial neural
networks. The word deep in deep learning doesn’t indicate that it produces
inherently more profound or mysterious AI. Rather, it refers to the use of
multiple layers of algorithms (artificial neurons) in the neural network. I
explain artificial neural networks and layers in the next section.

 » Generative AI (GenAI) are AI systems that can generate new content based
on the data used to train them. Some form of GenAI has been around since
the 1960s. In recent years, the content created by GenAI is of a high enough
quality to be more than a novelty, thanks to the use of deep learning.

CHAPTER 2 Parsing Machine Learning and Deep Learning 39

Thinking about neural networks
The idea behind deep learning is to teach computers to process data based on how
we think our brains work. In a human brain, cells called neurons form a complex
and massive interconnected network. Using chemical reactions and electrical cur-
rents, neurons send signals to each other to enable us to learn and process
information.

Neural networks in deep learning, also known as simulated neural networks (SNNs) or
artificial neural networks (ANNs), consist of artificial neurons called nodes that form
layers, as shown in Figure 2-2.

FIGURE 2-1:
The relationship

between
fields in AI.

FIGURE 2-2:
Nodes are

arranged in
layers.

40 PART 1 Techniques and Technologies

Each node is a software module that processes some input and determines whether
to pass it on to the next layer of neurons for further processing. A simple neural
network consists of three layers: the input layer, the hidden layer, and the output
layer.

Input layer
The input layer receives data and puts it in a format that can be used by the hidden
layers. For example, in a neural network for analyzing images, the images are first
converted to the same size and dimensions. Next, the input layer takes in the pixel
values (the amount of red, green, and blue) for each image and passes them along
to the hidden layer.

In the preceding example, the number of neurons in the input layer is determined
by the number of pixels in the image. If the neural network will be processing
color images, the number of pixels is multiplied by 3 for each of the pixel values
(red, green, and blue) to get the number of neurons. For example, the image
shown in Figure 2-3 has a width of 56 pixels and a height of 56 pixels. I’ve magni-
fied the image so you can see the individual pixels. An input layer for working with
this image would have 56 x 56 x 3, or 9,408, neurons.

Hidden layer
A hidden layer receives data from the input layer or other hidden layers and pro-
cesses it further to extract features from the image, such as color, shape, and tex-
ture. More complex tasks require more neurons in the hidden layers. A neural
network can have many hidden layers.

Output layer
Neural networks must have at least one output layer, which provides the final
result of the calculations from the hidden layers.

FIGURE 2-3:
A color image

containing 3,136
pixels requires a

9,408-neuron
input layer.

Czar / Wikimedia Commons / CC0 1.0

CHAPTER 2 Parsing Machine Learning and Deep Learning 41

Figure 2-4 shows a simple artificial neural network that determines whether or
not a photo contains a hot dog. This type of problem is known as a binary classi-
fication because the output from this neural network is either 1 (hot dog) or 0 (not
hot dog).

But how does the neural network determine whether the photo contains a hot
dog? That’s where its training comes in.

Training and testing models
Before a neural network can perform a task, it must be trained. In the case of the
hot dog classifier, the neural network can be trained by analyzing thousands of
pictures of hot dogs as well as an equal number of things that aren’t hot dogs.
Each photo must be labeled (“hot dog” or “not hot dog”). From these pictures, the
neural network can make certain conclusions about what a picture of a hot dog
contains. For example, a picture of a hot dog generally will contain a lighter-
colored area (the bun) surrounding a darker-colored cylindrical shape (the hot
dog), as shown in Figure 2-5.

As the layers of the neural network analyze pictures, values called weights and
biases are assigned to each neuron in the network. The weight determines the
strength of the connection between two nodes in the network. The bias determines
the threshold at which a node is activated. Weights and biases adjust how much a
neuron will contribute to the final result.

The weights and biases that the model learns from the training data are called
parameters. The complexity of a model can be described by how many parameters
it has. More complex models have more parameters because they’re able to learn
more complex patterns in data. You can think of parameters as similar to the syn-
apses that connect neurons in a human brain.

FIGURE 2-4:
Is it a hot dog?

Czar / Wikimedia Commons / CC0 1.0

42 PART 1 Techniques and Technologies

In machine learning, a model is a mathematical representation of a real-world
system or phenomenon. Some examples of models follow:

 » Scientific models make predictions involving the atmosphere, diseases, and
the universe.

 » Engineering models design and test new products.

 » Demand models predict how many units of a product a business will sell.

 » Financial models predict the performance of stocks and other financial
instruments.

How accurately a model can make predictions (whether or not a new picture con-
tains a hot dog, for example) is based on the quality and quantity of data that was
used to train it.

Small models that make relatively simple predictions, such as whether or not a
photograph contains a hot dog, can be created quickly, and the risks of messing up
such a model are unlikely to be catastrophic.

FIGURE 2-5:
Many pictures

of hot dogs
have similar

characteristics.

CHAPTER 2 Parsing Machine Learning and Deep Learning 43

The most time-consuming part of creating a model is usually the gathering and
labeling of the datasets. Many publicly available free datasets exist. You can find a
list of them at https://openml.org.

Complex models, such as climate models and models of systems of the human
body, can take months or years to train, and getting it wrong can have expensive
or life-threatening consequences. Some of the challenges of training neural net-
works include the following:

 » Complex neural networks can involve terabytes of training data and billions of
parameters. Training a large neural network is computationally expensive.

 » Neural networks can learn their training data too well, which is called overfit-
ting. When overfitting occurs, the model will be able to ace tests about the
data it was trained on but will have a hard time generalizing to new data
(which is the point of a model).

 » Because of the number of parameters in a model, it can be difficult for people
to figure out how a neural network is making predictions. Being able to
understand how a model makes predictions is called interpretability.

Demystifying Natural-Language
Processing

Natural-language processing (NLP) is the branch of AI concerned with giving
computers the capability to understand human language in written and spoken
form. NLP can be further divided into two subsets:

 » Natural-language understanding (NLU) is the analyzing of text and speech
to figure out the meaning of sentences.

 » Natural-language generation (NLG) is concerned with giving computers the
capability to write.

NLP is used for a wide variety of purposes, including the following:

 » Machine translation: Translating text from one language to another

 » Speech recognition: Understanding spoken language and translating it
into text

https://openml.org

44 PART 1 Techniques and Technologies

 » Text summarization: Generating summaries of longer texts, such as books,
articles, or briefs

 » Question answering: Answering questions asked in natural language

 » Sentiment analysis: Identifying the sentiment of text, for example, whether
it’s positive, negative, or neutral

 » Computer programming: Writing or assisting with the writing of computer
programs

Human language includes not only the languages we use for communicating with
each other (such as English, French, and Greek) but also the languages we use for
communicating with computers (such as C++, JavaScript, and Haskell).

History of NLP
Natural-language processing has been around since the first experiments in
automatic translation in the 1950s. The creators of the first automatic translation
machine predicted that the problem of machine translation would be solved within
a few years. However, it ended up taking much longer, and we still haven’t
perfected it.

Early natural-language processing systems relied on a list of handwritten rules
that the computer applied to the data it received. The ELIZA chatbot, created in the
1960s, could have a somewhat convincing conversation with a human by follow-
ing rules and responding as a non-directional psychotherapist. Although ELIZA
was created as a joke, it successfully demonstrated that natural-language conver-
sations between people and computers were possible. Figure 2-6 shows a typical
conversation with ELIZA.

FIGURE 2-6:
Early NLP was

based on rules.

CHAPTER 2 Parsing Machine Learning and Deep Learning 45

Machine learning algorithms and increased computing power led to advances and
new techniques for natural-language processing starting in the late 1980s.

In the 1990s, Richard Wallace created the ALICE chatbot. ALICE is similar to ELIZA
in that it uses pattern-matching rules. The operator of an ALICE chatbot could add
rules, which made it useful for customer service applications such as answering
questions about a company’s products. Figure 2-7 shows an example conversation
with ALICE.

The growth of the internet made large collections of text readily available for
training models. As a result of all this data, new techniques were created in the
1990s and 2000s that depended on statistical analysis of large datasets.

Machine learning models made it possible for natural-language processing
systems to be trained without having to hand-code rules. Further advances in
machine learning, including neural networks, made virtual assistants such as
Apple’s Siri and Amazon’s Alexa possible in the 2010s and eventually enabled the
remarkable advances in natural-language processing that made tools such as
ChatGPT possible.

Overcoming the challenges of NLP
In the past, creators of NLP systems focused on breaking down human languages
into rules. The idea was that if you could give a computer access to a language’s
dictionary and a grammar book, it would know that language.

In the case of programming languages, this approach was somewhat successful. If
you know the rules of a programming language and the right keywords to use, you
can at least write statements.

FIGURE 2-7:
An example of

an Alice chatbot.

46 PART 1 Techniques and Technologies

But human language is more complex. Here are just a few of the things that a
computer can’t understand by memorizing a dictionary and grammar:

 » Dialects

 » Accents

 » Sarcasm

 » Metaphors

 » Humor

 » Grammar and usage exceptions

 » Homophones

The fact that a box of chips and wires can understand any of what we say is incred-
ible. Until recently, it seemed that computers were doomed to understand only a
formal and limited subset of human languages, and that chatting with an AI
assistant would always be a frustrating and disappointing experience.

So what changed? The biggest breakthrough in NLP was when researchers decided
to throw out the rules and start teaching computers to talk the way we teach
babies to talk: namely, by exposing them to language and letting them figure
things out.

Understanding supervised and
unsupervised learning
Supervised learning relies on labeled data, which is data annotated with tags that
describe what the data is. For example, if you want to train a model to recognize
spam email messages, you could create a dataset containing millions of email
messages, each labeled either “spam” or “not spam.” However, the process of
labeling data can be costly and time consuming.

Unsupervised learning is the finding of patterns in unlabeled data. With unsuper-
vised learning, algorithms sort through unlabeled data looking for patterns.
Unsupervised language-learning models can be trained on very large datasets to
create large language models (LLMs). Unlike supervised learning, unsupervised
learning can be done inexpensively and quickly.

Language generation techniques
Natural-language processing techniques can be divided into traditional machine
learning methods and deep learning methods. Traditional machine learning tech-
niques include the following:

CHAPTER 2 Parsing Machine Learning and Deep Learning 47

 » Logistic regression is a classification algorithm that aims to predict the
probability that an event will occur based on some input.

 » Naïve Bayes classifiers are a collection of statistical classification algorithms
based on Bayes’ theorem, which describes the probability of an event based
on prior knowledge of conditions. The naïve part of the name refers to the
assumption these algorithms make that individual words are not dependent
on each other.

 » Decision trees work by splitting a dataset based on different inputs. For
example, if you wanted to find out whether it’s likely to rain, you might start by
asking whether it’s cloudy. If so, you might ask then about the humidity, and
then the temperature. After several splits, you can come up with a prediction.

 » Latent Dirichlet allocation (LDA) is used for topic modeling. Topic modeling
techniques scan a set of documents to detect patterns and cluster together
word groups that best characterize the set.

 » Hidden Markov models (HMMs) decide the next state of a system based
on the previously observed state. The hidden part of the name refers to data
properties that aren’t directly observed. In natural-language processing, the
hidden state is the parts of speech, and the observed state is the words in a
sentence.

Some of the techniques used in machine learning are named after the people
who formulated the theorems the techniques rely on. Thomas Bayes was an
eighteenth-century English statistician, philosopher, and minister. Peter Gustav
Lejeune Dirichlet was a nineteenth-century German mathematician. Andrey
Markov was a Russian mathematician who lived at the end of the nineteenth
century and the beginning of the twentieth century.

While traditional NLP methods are often able to do a good job, it wasn’t until deep
learning techniques were applied to NLP that things got interesting. Following are
some deep learning NLP techniques:

 » Convolutional neural networks (CNNs) were designed to be used for
working with images but can also be used with documents. In NLP, CNNs treat
documents as images made up of sentences instead of pixels.

 » Recurrent neural networks (RNNs) use hidden states to remember
previous information. Because of this, they can learn how every word in a
sentence is dependent on previous words or words in the previous sentence.

 » Transformer models learn context by tracking relationships in sequential
data (such as the words in a sentence). Transformer models are the break-
through that has revolutionized NLP in recent years. I tell you more about
how transformers work in the next section.

48 PART 1 Techniques and Technologies

Understanding Transformers
Transformer models use a self-attention mechanism to find dependencies between
inputs and outputs. To understand what that means, you first need to know what
attention and self-attention are in machine learning. Read on!

Learning to pay attention
The mathematical technique that transformer models use is called attention. The
goal of attention is to allow the model to focus on important parts of the input
while generating its output. As people, we do this naturally. When you read a sen-
tence or look at an image, you can easily see which parts of the sentence or image
are the most important in terms of understanding it.

When the idea of attention first became popular, it was combined with recurrent
neural networks (RNNs). But RNN models have to consider words in sequence one
at a time, which is a slow process. Even worse, RNNs tend to assign more impor-
tance to recent words and the ends of sentences.

Another side effect of considering words one at a time is that you lose important
context. Consider this sentence:

The player swung his bat, and he ran to first base.

Anyone with a passing familiarity with baseball will know that bat refers to a
baseball bat and that he refers to the player. Considered one word at a time, how-
ever, a language model can’t make the same connections.

This is where the idea of self-attention comes in. Self-attention allows a model to
learn information about an input sequence from the input sequence itself. With
self-attention, a transformer model finds relationships between the words player
and bat as well as between player and he.

Figure 2-8 shows a visualization of the connections a transformer model makes
between the word he in the example sentence and the other words in the sentence.
Darker lines indicate a stronger connection.

The visualization in Figure 2-8 was created using a tool called BertViz. You can
learn more about how BertViz works and try it out yourself at https://github.
com/jessevig/bertviz.

https://github.com/jessevig/bertviz
https://github.com/jessevig/bertviz

CHAPTER 2 Parsing Machine Learning and Deep Learning 49

Self-attention was first proposed as a solution for improving large language mod-
els in the paper “Attention Is All You Need.” This paper, published in 2017, led to
the giant leaps forward in transformer models that we’ve seen in recent years.

Getting tokens
You may be surprised to learn that language models can understand only num-
bers; they don’t read or understand words as we do. When you ask an NLP system
a question, your input must first be converted into a sequence of numbers called
tokens. You can think of tokens as the language equivalent of pixels in an image.

These tokens are read by a model’s input layer and then processed through the
hidden layers to predict and output responses to your prompts.

Hidden layers are the layers between the input and output layers that process data
and learn features of it.

Text can be converted to tokens in a variety of ways. One common method is word
tokenization, which simply creates a token for each word in the text. Transformer
models use sub-word tokenization, which converts text into common sequences of
characters, such as token and ize. Using smaller units improves the model’s
performance.

FIGURE 2-8:
Visualizing

self-attention.

50 PART 1 Techniques and Technologies

To see how OpenAI converts text to tokens, go to OpenAI’s Tokenizer at https://
platform.openai.com/tokenizer. Figure 2-9 shows the list of tokens that were
generated when I entered the sentence Transformer models use sub-word
tokenization.

After the text is tokenized, it’s encoded into token IDs. The token IDs created from
the text in Figure 2-9 are shown in Figure 2-10.

FIGURE 2-9:
Tokenizing
a prompt.

ChatGPT

FIGURE 2-10:
Tokens are

represented as
token IDs.

ChatGPT

https://platform.openai.com/tokenizer
https://platform.openai.com/tokenizer

CHAPTER 2 Parsing Machine Learning and Deep Learning 51

Token IDs are input into a neural network as a sequence of numbers called a
numerical vector.

Being aware of tokens and the tokenization of your input is important. If you’re
using a model through OpenAI’s API, the combined number of tokens in your
input and the model’s response determines how much you pay for the service.

In addition, the NLP system you’re using may have a token limit, which is the
maximum number of tokens the model will consider while generating its response.
Your input and the model’s responses contribute to the number of tokens used by
a conversation. In a long conversation with ChatGPT, or if you input an exces-
sively long prompt, the token limit may be exceeded. In this case, the model will
“forget” earlier prompts in the conversation, and you’ll need to repeat any
instructions you included at the beginning.

Token limits are imposed on a model to prevent it from running out of memory,
to shorten the model’s response time, and to reduce the amount of computation
required to train and deploy the model.

Table 2-1 lists the token limits of standard versions of several models. Many mod-
els also have extended versions with larger token limits.

TABLE 2-1:	 Token Limits
Model Creator Token limit

GPT-2 OpenAI 1024

GPT-3 OpenAI 2048

GPT-4 OpenAI 8000

BERT (base) Google 512

RoBERTa (base) Facebook 512

T5 (base) Google 512

XLNet (base) Google/CMU 512

Electra (base) Google 512

DistilBERT Hugging Face 512

52 PART 1 Techniques and Technologies

ETHICAL CONSIDERATIONS
AND RESPONSIBLE AI
AI has enormous potential to improve people’s lives — and to cause harm. Laws regard-
ing the development and use of AI are still being argued over and drafted. Guidelines
have been and are being developed by companies and organizations concerned about
the negative potential of AI.

Both developers and users of AI models and systems that use those models have a
responsibility to use these new technologies in a way that follows best practices. One
guide to best practices for developers of AI models is Google’s Responsible AI Practices
document, which is available at https://ai.google/responsibility/responsible-
ai-practices. Google recommends four best practices for AI: fairness, interpretability,
privacy, and safety and security.

Fairness: Because computer programs have access to much more information than a
person, AI systems used for making decisions or for generating content can be more
fair and inclusive than decision-making tools based on human judgment. However,
because they’re trained on data created by humans, AI models have a tendency to learn
and sometimes amplify the biases of their training data. Furthermore, there’s no stan-
dard definition of fairness. Making a model fair in every language, culture, and situation
is a difficult, and perhaps impossible, task. The fairness best practice encourages those
working with AI to aim for continuous improvement towards “fairer” systems.

Interpretability: Interpretability refers to the level to which we can question, understand,
and trust an AI system. When people make decisions, they use their experience, intuition,
and logic. Often, it’s impossible for a person to say exactly what inputs went into their
final decision. AI, on the other hand, theoretically has the capability to list the information
that went into a prediction. Because a generative AI model may be based on billions of
parameters, debugging and understanding the decisions it makes isn’t always possible.
However, the interpretability best practice demands and provides specific recommenda-
tions for how to incorporate interpretability into AI systems.

Privacy: The training data and prompts we give AI models can sometimes be sensitive.
For example, training data may contain personally identifying data, medical data, private
financial information, or photos of people taken without permission. AI models, and
generative AI models in particular, can reveal aspects of data they’ve been exposed to.
AI developers, as well as people who use these models, have a responsibility to protect
people’s privacy and to provide users with the ability to control their data, even absent
laws that require it. Privacy best practices include collecting and handling training data
responsibly, processing data locally (rather than on a server) when appropriate, and
considering how a model’s construction and access can affect privacy.

https://ai.google/responsibility/responsible-ai-practices
https://ai.google/responsibility/responsible-ai-practices

CHAPTER 2 Parsing Machine Learning and Deep Learning 53

Illuminating Generative AI Models
A generative AI model is a model that is trained on content (such as images or text)
and can use that content to make predictions to generate new content. OpenAI’s
GPT-3, the model behind the first public version of ChatGPT, is a generative model
for natural-language processing. By leveraging what it’s learned about how peo-
ple talk and write, it can accurately predict what the next word or sentence should
be in response to input.

For example, if you provide the words peanut butter and to GPT-3, it will most
likely predict that the next words should be jelly sandwich. GPT-3 doesn’t have any
experience with eating or making peanut butter and jelly sandwiches, but it has
analyzed a lot of text, and the most common way to finish the phrase peanut butter
and is with jelly sandwich.

Like our hot dog photo classifier, a generative AI model is only as good as its
training data. GPT-3 was trained with over 45 terabytes of text data, so it has
amazing capabilities, such as taking context into consideration when responding
to input.

Generative AI models have been steadily getting better as a result of being trained
on more and higher-quality data. Table 2-2 compares the size of some recent
generative models.

As I mention earlier in the chapter, parameters are the values that the model has
learned from its training.

Safety and security: Safety and security best practices make sure that AI systems behave
as they’re supposed to regardless of what prompts or inputs a person with bad inten-
tions gives them. For example, ChatGPT has proactive restrictions regarding hate speech
and generating content that may be harmful to people. Attackers are constantly looking
for new ways to get GenAI systems to produce restricted output. Developers must bal-
ance necessary restrictions for safety and security with the flexibility to handle unusual
inputs and generate useful responses.

54 PART 1 Techniques and Technologies

Recognizing AI’s Limitations
As impressive as they are, transformer models don’t know how to code — they
know only how to look for patterns in sequential data (such as sentences, state-
ments, or functions). When you train a generative model on enough data, it becomes
very good at finding patterns and making predictions, but it does have limitations,
and you should never trust the output of a chatbot (or any AI system) entirely.

Language models are bad at math
AI chatbots are language models tuned for conversation. If you ask a language
model for the answer to a basic math problem, it will usually respond confidently
with some answer. However, upon checking that answer using a calculator, you
may be surprised that it’s often just plain wrong. Currently, generative models are
able to make predictions based only on content they’ve previously seen. If you give
them a math problem they’ve never seen before (no matter how trivial), they’ll
respond based on the answers to similar math questions in their training data
rather than by doing the math the way a calculator would.

For example, Figure 2-11 shows a conversation I had with ChatGPT when I was
planning the outline for this book.

Language models are wordy
AI chatbots often respond to prompts with paragraphs when a one-word answer
will do. The standard ChatGPT response to even a simple question reads like a

TABLE 2-2:	 Parameters in Generative AI Models
Model Developer Parameters

Gato DeepMind 1.18 billion

ESMFold Meta AI 15 billion

LaMDA Google 137 billion

GPT-3 OpenAI 175 billion

Bloom Hugging Face and BigScience 176 billion

MT-NLG Nvidia and Microsoft 530 billion

WuDao 2.0 Beijing Academy of Artificial Intelligence 1.75 trillion

GPT-4 OpenAI 1.76 trillion

CHAPTER 2 Parsing Machine Learning and Deep Learning 55

high school book report, containing an introduction, an analysis of an issue from
multiple viewpoints, and a summary.

Figure 2-12 shows ChatGPT’s nearly 200-word response to a question that any
JavaScript programmer could answer with two words.

AI has limited knowledge
Although it’s now possible for ChatGPT to access data on the internet, the model
behind ChatGPT is finite. As a result, ChatGPT doesn’t know everything. When
prompted with questions about less popular programming languages or new syn-
tax, the answer the model returns may be wrong.

AI lacks common sense
No machine learning model has had the experience of being human. As a result,
the responses generated by the model lack common sense. For example, if you ask
ChatGPT how to swim to the moon, it will provide an answer without questioning
the absurdity of the question. Any human would first question the value of such a
strange question.

FIGURE 2-11:
GPT-4 gets

an addition
problem wrong.

ChatGPT

56 PART 1 Techniques and Technologies

AI has accuracy issues
The accuracy of responses generated by a model depends on many factors, includ-
ing the training data, context, user input, complexity of the prompt and language,
and bias. As the user of a model, you have control over only some of these factors.
Where possible, however, you can help the model provide better responses by
knowing how best to prompt it and by challenging the model’s output in
follow-up prompts.

AI has the potential to be biased
Because they’re trained largely on text written by people, machine learning
models will pick up the biases and preferences that exist in the training data.
Creators of models put a lot of effort into eliminating bias — which is a worthy
goal but an impossible task.

Unintended consequences and even dangerous situations may result from bias in
models. The classic example is when Microsoft released its Tay chatbot to the
internet in 2016. Within one day of talking to people, the chatbot went from saying
things like “Humans are cool” to making racist and sexist comments.

FIGURE 2-12:
ChatGPT uses

200 words
where 2 will do.

ChatGPT

CHAPTER 3 AI Coding Tools 57

Chapter 3
AI Coding Tools

Generative AI has made new types of tools available to coders and has
enabled many legacy tools to integrate AI functionality. In this chapter,
you look at three of the most popular GenAI coding tools — GitHub Copilot,

Tabnine, and Replit — gaining hands-on experience setting up and using the
basic features of each.

Navigating GitHub Copilot
GitHub Copilot is a cloud-based AI coding tool developed by GitHub (which is part
of Microsoft) and OpenAI (the creators of the GPT-x models behind ChatGPT and
many other tools). Copilot was launched in June 2021 and currently integrates
with several code editors and IDEs, including Visual Studio Code, Visual Studio,
Neovim, and JetBrains’s IDEs.

The GenAI model behind Copilot is named OpenAI Codex. Codex is based on
 OpenAI’s GPT-3 and is also trained on source code from millions of public GitHub
repositories and other publicly available source code.

Although Copilot works best with Python, JavaScript, TypeScript, Ruby, and Go, it
has been trained on source code from over a dozen programming languages and
will continue to become more fluent in additional languages over time.

IN THIS CHAPTER

 » Flying with Copilot

 » Coding with Tabnine

 » Working together with Replit

58 PART 1 Techniques and Technologies

Installing the Copilot plug-in
The first step in using Copilot is to install the GitHub plug-in (or extension as it’s
called in VS Code). The process for installing the extension differs based on
your IDE. You can find detailed installation instructions for every IDE supported
by Copilot at https://docs.github.com/en/copilot/getting-started-with-
github-copilot. In Chapter 1, I provide details on installing and enabling the
Copilot extension for VS Code.

To follow along with the examples in this chapter, you should use VS Code or
GitHub’s in-browser code editor, CodeSpaces (https://github.com/codespaces).
CodeSpaces is based on VS Code and therefore very similar to the installable
version of VS Code.

When you install the Copilot extension in VS Code, the Copilot Chat extension is
installed automatically. After you install Copilot, the Copilot status icon will
appear in the lower-right corner of VS Code (see Figure 3-1, top). If you’re not
currently logged into a GitHub account with access to Copilot, the Copilot status
icon appears with an exclamation point (see Figure 3-1, bottom).

Although you can install the plugin without having a Copilot account, you must
have a GitHub account and either an individual subscription ($10 per month) or a
business subscription ($19 per user per month) to use Copilot. A free 30-day trial
is available, as well as free accounts for students and educators.

You can click the Accounts icon in VS Code to create a GitHub account, if neces-
sary. Then log into GitHub and grant the Copilot extension access, as shown in
Figure 3-2.

The Copilot extensions don’t have many adjustable settings. Perhaps the most
important setting you can control is whether or not Copilot is actively giving you
suggestions. To disable Copilot so you can think, click the Copilot status icon. In the
menu that appears at the top of the VS Code interface, select Disable Completions.
(When completions are disabled, an Enable Completions link appears in the menu.)

To access other settings, click the Extensions icon in the left panel of VS Code.
Then click the gear icon next to an extension and select Extension Settings from
the menu that appears. Figure 3-3 shows the Extension Settings screen for the
Copilot extension.

FIGURE 3-1:
The Copilot status
icon in connected
and disconnected

mode.
Microsoft Corporation

https://docs.github.com/en/copilot/getting-started-with-github-copilot
https://docs.github.com/en/copilot/getting-started-with-github-copilot
https://github.com/codespaces

CHAPTER 3 AI Coding Tools 59

Working efficiently with Copilot
After you have installed and enabled Copilot, using it is just a matter of starting to
type some code. However, just as with any GenAI tool, context is everything. The
first piece of context you should provide to Copilot is the type of code you intend
to write. You can do this by starting a new file with the file extension of the pro-
gramming language you’ll be using, such as .js for JavaScript or .py for Python.

Choose your filename carefully because it determines the types of suggestions
Copilot gives you.

Copilot generates suggestions using context from the file you’re currently work-
ing on and neighboring tabs — the other files open in your editor. So if your cur-
rent project contains other files that will be related to the new one you’re starting,
open those as well so that Copilot can glean information from them.

FIGURE 3-2:
Click the Accounts

icon to grant
Copilot access to

your GitHub
account.

Microsoft Corporation

FIGURE 3-3:
The Extension

Settings screen
for Copilot.

Microsoft Corporation

60 PART 1 Techniques and Technologies

The goal of learning how to provide good context to Copilot is to increase its accu-
racy. The longer you use Copilot on a project, the more its accuracy will improve
on its own. You can further improve the accuracy of suggestions through better
prompting and providing better context.

According to research published by GitHub, developers accepted an average of
30 percent of Copilot’s suggestions immediately. After six months of using
Copilot, the average suggestion acceptance rate increased to 34 percent. Reading
this book may help you to beat the average!

Following are some best practices for getting the most accurate suggestions from
Copilot:

 » Specify your goal up front.

 » Break things down into small steps.

 » Give Copilot examples.

 » Open related files.

You see examples of each of these best practices next.

Specify your goal
Especially if you’re starting with a blank file or an empty repository, you’ll want
to begin to code by describing, in detail, what you want to create. Most often, you
do this by writing code comments at the beginning of the file.

A vague comment is not going to result in Copilot being helpful. Here is the initial
code generated by Copilot in response to the prompt a to-do app:

// a to-do app
var todoList = {
 todos: [],
 displayTodos: function () {
 console.log('My Todos:', this.todos);
 }
};

Instead, try starting out with at least the amount of detail you would give to
another coder:

/* A to-do app. Users can check a box to mark a task
complete, and completed tasks will be shown in a separate

CHAPTER 3 AI Coding Tools 61

list below the uncompleted tasks. */

var todoList = {
 todos: [],
 displayTodos: function () {
 console.log('My Todos:', this.todos);
 },
 addTodo: function (todoText) {
 this.todos.push({
 todoText: todoText,
 completed: false,
 });
 this.displayTodos();
 },
 changeTodo: function (position, todoText) {
 this.todos[position].todoText = todoText;
 this.displayTodos();
 },
 deleteTodo: function (position) {
 this.todos.splice(position, 1);
 this.displayTodos();
 },
 toggleCompleted: function (position) {
 var todo = this.todos[position];
 todo.completed = !todo.completed;
 this.displayTodos();
 },
};

With additional details, Copilot still didn’t get it right, but at least it took into
account some of the pieces of my prompt, such as that users can mark tasks as
completed.

Break things down
GenAI models have a limited attention span. To improve results, give Copilot infor-
mation as a series of steps, rather than as a request for a large block of code all at
once. After each step, let Copilot generate some code, and then write the next step.

For example, in the following, I broke down the to-do app I want to write into areas
of functionality, and I accepted the first suggestion Copilot made for each step.

/*
1. Create a constant called toDoItems
containing an array of objects. Each object

62 PART 1 Techniques and Technologies

should have a todoText property and a completed property.
*/

const toDoItems = [
 {
 todoText: 'item1',
 completed: false,
 },
 {
 todoText: 'item2',
 completed: false,
 },
 {
 todoText: 'item3',
 completed: false,
 },
];

/*
2. Create a function that displays a list of to-do
items in an element with an id attribute set to "to-dos"

in the browser.
*/

function displayTodos() {
 const todosUl = document.querySelector('#to-dos');
 todosUl.innerHTML = '';
 toDoItems.forEach((item) => {
 const todoLi = document.createElement('li');
 todoLi.textContent = item.todoText;
 todosUl.appendChild(todoLi);
 });
}

This code is much closer to what I was looking for and is a decent starting point
for my app.

Give examples
If you already have an idea of what you want Copilot to generate, start by giving it
an example or two. For example, if you want it to generate an array of objects, tell
it what an object should look like. In the following, I refined my first step from the
preceding example to specify what I’m looking for:

CHAPTER 3 AI Coding Tools 63

/*
1. Create an array of to-do items with the following shape:
[{todoTitle:'', todoDesc:'', date:'', completed:false}]
*/
const toDoItems = [
 {
 todoTitle: 'item1',
 todoDesc: 'item1 description',
 date: '2024-07-01',
 completed: false,
 },
 {
 todoTitle: 'item2',
 todoDesc: 'item2 description',
 date: '2024-07-02',
 completed: false,
 },
 {
 todoTitle: 'item3',
 todoDesc: 'item3 description',
 date: '2024-07-03',
 completed: false,
 },
];

Open related files
Copilot gets context for the file you’re working on from other files you have open
in your editor. If you’re working on a JavaScript file that will affect an HTML page
or that imports code from other JavaScript files, open those files in separate tabs.

In my to-do app example, the JavaScript will affect the display of the HTML page,
so creating the HTML page and opening it in another tab will help Copilot gener-
ate more accurate JavaScript code.

Using keyboard shortcuts
Although you can successfully use Copilot by just coding as you normally would
and using the tab key to accept suggestions, knowing a few more keyboard short-
cuts will make your coding sessions more productive. The keyboard shortcuts
you’ll want to remember are shown in Table 3-1.

64 PART 1 Techniques and Technologies

The Ctrl+Enter shortcut is particularly useful. When Copilot gives you a suggestion
and you want to find out if it might be able to suggest something better, press
Ctrl+Enter. A new pane will open in your code editor and (after a minute or so)
display up to 10 other suggestions, as shown in Figure 3-4.

Exploring Tabnine
Tabnine is an AI coding assistant and the name of the company that created it. The
company was formed in 2012 and released the first version of their coding assistant
in 2018, making Tabnine one of the longest-established AI-powered coding tools.

Tabnine is available in three versions: starter, pro, and enterprise. The starter
version offers basic code completion. The pro plan offers AI code features similar
to those of Copilot: whole-line and function code completions, natural-language-
to-code completions, and a chat interface. The enterprise version allows a com-
pany to locate the model in the corporate firewall and provide access to every
developer in the company.

TABLE 3-1:	 Copilot Keyboard Shortcuts
Shortcut What It Does

Tab Accepts inline code suggestions

Esc Dismisses inline code suggestions

Alt +] (or Option +]) Shows the next suggestion

Alt + [(or Option + [) Shows the previous suggestion

Alt + \ (or Option + \) Triggers a suggestion

Ctrl + Enter Generates up to 10 suggestions in a separate pane

FIGURE 3-4:
Getting more
suggestions.

Microsoft Corporation

CHAPTER 3 AI Coding Tools 65

A 7-day free trial (which for me turned out to be a 14-day trial) of the pro plan is
available. I show you features from both the starter plan and the pro plan in this
chapter.

One of the biggest differences between Tabnine and other AI coding assistant tools
is that Tabnine runs on its own model, which they’ve trained on publicly available
open-source code with permissive licenses. So coders and organizations should be
able to use Tabnine-generated code without facing legal issues regarding intel-
lectual property violations. This added assurance has made Tabnine popular with
large organizations.

You can view the entire list of repositories that Tabnine is trained on by going to
https://trust.tabnine.com/.

Be aware of the risk of violating the licenses of the code a model was trained on. In
2022, a class action lawsuit was filed against Microsoft (the owner of GitHub and
GitHub Copilot) and OpenAI claiming that the companies violated the open-source
licenses of programmers whose code was used to train the model Copilot uses.

Tabnine takes code privacy seriously. Their privacy policy (available at https://
tabnine.com/code-privacy) states that they never store or share any of your
code. This point is important for businesses concerned that AI coding assistants
may inadvertently leak their intellectual property.

Businesses that use Tabnine can create their own model, which can live on the
business’s premises or in the cloud. To create a private code model, Tabnine trains
their public model with the client’s codebase. When customers with a private model
submit a query, it’s sent to Tabnine’s public model and the private model and picks
the most relevant code suggestion from the two options returned. The private
model is continuously trained from the code and decisions made by its users.

Installing Tabnine
Tabnine is available as a plug-in, or extension, for many of the most popular code
editors, including VS Code, Eclipse, Android Studio, WebStorm (as well as all
JetBrains code editors), and Sublime.

Follow these steps to install Tabnine:

1. Go to https://www.tabnine.com and click the Get Tabnine link at the top
of the page.

A page with a Search box and a list of IDEs appears, as shown in Figure 3-5.

2. Select your IDE and follow the steps to install the extension.

https://trust.tabnine.com/
https://tabnine.com/code-privacy
https://tabnine.com/code-privacy
https://www.tabnine.com/

66 PART 1 Techniques and Technologies

Before you can use the Tabnine extension, you need to create a Tabnine account
by going to https://app.tabnine.com/signup. After you’ve installed the
Tabnine extension, you may need to restart your IDE.

Setting up Tabnine
After you’ve installed the extension and logged in, you’ll see a link at the bottom
of your IDE (in the case of VS Code) that says what plan you’re subscribed to. Click
this link to open Tabnine Hub.

Tabnine Hub is where you can adjust settings and read about the latest features. If
you’re using the starter plan, as I am in Figure 3-6, you’ll also see links for a lot
of features that you won’t have access to and links to upgrade to a paid plan. The
starter plan is quite capable, however, and you may want to stick with it while you
learn about Tabnine’s capabilities.

FIGURE 3-5:
Choosing the

IDE where
you want to

install the
Tabnine

extension.
Tabnine

https://app.tabnine.com/signup

CHAPTER 3 AI Coding Tools 67

Tabnine allows you to choose from one of three model-serving modes: local
machine, cloud, or hybrid. Which of these you choose will affect the quality of
responses you get:

 » Local machine: When you choose the local machine mode, Tabnine stores a
smaller copy of the model on your local machine and allows you to work
offline without any of your code being sent to Tabnine’s servers. The local
model is not as powerful as the cloud model, however, and it will increase
your local machine’s CPU and memory usage.

 » Cloud: The cloud model uses Tabnine’s servers, so it requires a connection to
the internet. Because it processes your completions on the server, however,
the results you get from the cloud model will be more accurate and longer.

 » Hybrid: The hybrid model, which is the default mode, combines the benefits
of both the cloud and local machine models. You can get suggestions while
offline but also take advantage of the computing power of the cloud.

None of the three models stores any of your code. The cloud modes use a tech-
nique Tabnine calls ephemeral processing, in which your code is processed by the
model and then immediately discarded after the model returns a completion.

Understanding Tabnine’s AI-driven
code completion
To get started coding with Tabnine, you work in much the same way as you would
if you were using Copilot. As you enter code in your editor, Tabnine makes sug-
gestions. You accept the suggestions by pressing the tab key.

FIGURE 3-6:
Tabnine Hub.

Tabnine

68 PART 1 Techniques and Technologies

To help the local model learn about your coding style, you can rate Tabnine’s sug-
gestions. Open Tabnine Hub and click Magic Moments in the left navigation, as
shown in Figure 3-7. Magic Moments is available only in the Pro version (or the
free trial). On the Magic Moments screen, give a thumbs up or thumbs down to
individual suggestions. Tabnine uses this feedback to help the local model learn
about your coding style.

Like other AI code assistant tools, Tabnine requires context to be able to give good
suggestions. Here are some tips for improving the suggestions you get from
Tabnine:

 » Write more comments in your code than you normally would.

 » When you start working with Tabnine, act as if it’s a junior developer who’s
new to the project. Don’t assume that Tabnine can guess what you want it to
do, even if it seems obvious to you.

 » Be patient. Since Tabnine learns from previous code of yours that it’s seen,
it may take time for the model to learn your preferences.

Reviewing Replit
Replit is a browser-based IDE with AI assistance features, collaboration features,
and a large and active community of developers. Replit has support for every pop-
ular programming language and framework. Because it’s an in-browser environ-
ment, using it doesn’t require any setup beyond creating a free account.

FIGURE 3-7:
Viewing

previous “magic
moments.”

Tabnine

CHAPTER 3 AI Coding Tools 69

After you’ve created a program using Replit, you can then use it for deploying the
program. If you prefer to work offline or be free from the distractions of the Replit
website, download and install the Replit desktop or mobile app.

To get started with Replit, go to https://replit.com and create an account using
your email address, a Google account, or your GitHub account. The default home
page is shown in Figure 3-8.

Although the core feature of Replit.com is the IDE, the site also has a Learn
section where you can view video tutorials and interactive coding lessons.

In the Bounties section of Replit, shown in Figure 3-9, people and companies post
programming jobs and coders advertise their services, along with a price for each.

The fastest way to get started on a project in Replit is by using one of the prebuilt
templates, which are available by clicking the Templates link in the left navigation
bar. On the Templates page, shown in Figure 3-10, you can find a template by
searching or browsing.

If you prefer to start from scratch, you can create a project without using a tem-
plate by clicking the Create Repl button on the home page or in the left naviga-
tion bar.

FIGURE 3-8:
The Replit

home page.
Replit, Inc.

https://replit.com
http://Replit.com

70 PART 1 Techniques and Technologies

Starting a website with Replit
It’s time to experiment with Replit and its AI features. Follow these steps to build
a website using HTML, CSS, and JavaScript:

1. While logged in to Replit, click the Templates link in the left navigation.

2. Click the Websites link and then locate the HTML, CSS, JS template.

You can find the template also by using the search bar.

FIGURE 3-9:
Coders can

advertise and find
gigs through

Replit Bounties.
Replit, Inc.

FIGURE 3-10:
Get started

quickly with a
template.

Replit, Inc.

CHAPTER 3 AI Coding Tools 71

When you’re searching for a template and several are available, choose the
most popular one by looking at the icons that indicate the number of likes
and runs, as shown in Figure 3-11.

3. Click in the box for the HTML, CSS, JS template, but don’t click the Use
Template option yet.

The template appears, as shown in Figure 3-12.

4. Read through the description of the template and click each of the files in
the left panel (index.html, script.js, and style.css) to see what they do.

In the case of the HTML, CSS, JS template, there’s not much to see except that it
displays the text Hello World.

5. Click Use Template and give your website a name and description in the
pop-up box that appears.

6. Still in the pop-up window, click Use Template again.

The template opens in the Replit workspace, as shown in Figure 3-13.

Exploring the Replit workspace
The Replit workspace is an in-browser IDE that includes features for creating,
debugging, and collaborating on software. The workspace is split into two areas:
the sidebar area and the tabs and panes area.

FIGURE 3-11:
A template’s
popularity is
often a good

indicator of its
quality and
usefulness.

Replit, Inc.

72 PART 1 Techniques and Technologies

The sidebar
The sidebar is the left column of the workspace. At the top of the sidebar is the file
explorer. Here is where you can organize and create files and folders in your proj-
ect. The file explorer works the same way as most file browsers. Clicking a file in
the list opens that file for editing.

Below the file explorer are the tools, including a debugger, a command shell, a
web browser (called Webview), and an AI assistant tool (which you learn about in
the next section). To see all the tools, you may need to resize the Tools panel.
Figure 3-14 shows all the tools that are currently part of the workspace.

FIGURE 3-12:
Viewing more

information
about a template.

Replit, Inc.

FIGURE 3-13:
Your copy of the

template in the
Replit workspace.

Replit, Inc.

CHAPTER 3 AI Coding Tools 73

Clicking a tool opens it in a new tab to the right of any open code files.

Tabs and panes
To the right of the sidebar are panes. In each pane, there may be multiple open
tabs. When you first open the workspace, you’ll see two panes. The first displays
a code editor, and the second contains two tabs: Webview and Shell.

The Webview tool displays a live preview of your project as it appears in a web
browser. The shell tool provides access to a Linux command shell.

You can rearrange tabs and panes in the workspace by clicking and dragging their
headers. For example, in Figure 3-15, I moved the pane containing the Webview
and Shell tabs to the bottom of the browser window.

Pairing up with Replit AI
Replit’s AI assistant is called Replit AI. With the Workspace open, you’ll see a link
to AI in the Tools panel in the lower left of the screen (refer to Figure 3-15).
Clicking the AI icon opens a new tab to the right of the code editor, as shown in
Figure 3-16.

FIGURE 3-14:
Viewing the
workspace

tools panel.
Replit, Inc.

74 PART 1 Techniques and Technologies

FIGURE 3-15:
Rearranging

panes.
Replit, Inc.

FIGURE 3-16:
The AI tab opens

in the right panel.
Replit, Inc.

CHAPTER 3 AI Coding Tools 75

Replit AI is available to all Replit members. However, paid Replit members can
access a more advanced version of the AI by going to https://replit.com/
cycles, where you can also see your balance of Cycles (Replit’s virtual tokens) and
buy Cycles.

You can earn Cycles by completing Bounties.

Replit AI has four tools: Generate, Debug, Explain, and Modify, in addition to
Copilot-style code completion as you code. To access the Generate, Debug, and
Explain tools, right-click in the code editor. The Modify and Explain tools, which
change and explain code, respectively, are available only when you’ve selected
code you want the AI to modify or explain.

All of the tools can be used through the Chat interface as well. At the bottom of the
AI pane is the text box for prompting the model. Follow these steps to begin using
Replit to build a website for a fictitious punk rock band called Grapefruit Pulp:

1. Give AI the following prompt:

Act as a professional web designer. Use HTML and CSS to
design the homepage for my punk rock band, "Grapefruit
Pulp." Include a placeholder for a photo of the band. The
navigation for the site should have links for Tour Dates,
Contact Info, and a photo gallery.

After a moment, the model returns some HTML and CSS code. My results are
shown in Figure 3-17.

2. Select everything in index.html and delete the sample template code.

3. Click the Insert link at the top of the HTML response to insert the
generated HTML into index.html.

The chat interface can’t interact with your files directly, so you need to copy any
suggestions that you like from the chat window to your files yourself (using
copy and paste or the insert link).

4. Open style.css and delete its contents.

5. Use the Insert link at the top of the CSS response to insert the CSS into
style.css.

6. Click the Run button at the top of the IDE to open your website in Replit’s
web view.

Figure 3-18 shows my site. It isn’t spectacular, but it’s a decent start.

https://replit.com/cycles
https://replit.com/cycles

76 PART 1 Techniques and Technologies

FIGURE 3-18:
The start of my

website for
Grapefruit Pulp.

Replit, Inc.

FIGURE 3-17:
Generated

HTML and CSS
from Replit AI.

Replit, Inc.

CHAPTER 3 AI Coding Tools 77

Replit AI has two different models: basic and advanced. The basic model is faster
but more limited. The advanced model is larger and slower but much more likely
to give a better response to a vague or creative prompt. The advanced model is
available only with a paid Replit account.

If you have a paid account, you can retry the prompt with the advanced model by
toggling the Basic/Advanced selection at the bottom of the AI window (labeled in
Figure 3-16). Or if you’re a paid member, you can use the advanced model by
default by clicking the Advanced button at the top of the AI chat interface (refer to
Figure 3-17).

To see how good Replit AI’s advanced model is with more difficult tasks, I gave it
the following prompt:

Use SVG and CSS to draw a grapefruit wearing a leather
jacket. It should be inserted in place of the placeholder
image.

The result is shown in Figure 3-19. This prompt seemed to push the limits of the
model’s creativity, although this might be a start for an awesome logo.

FIGURE 3-19:
Replit AI’s SVG

punk grapefruit.
Replit, Inc.

78 PART 1 Techniques and Technologies

Next, I switched to working in the photo gallery. I gave the model the prompt
shown in Figure 3-20.

Once I uploaded some images, the result was decent and close to what I had imag-
ined. Figure 3-21 shows the photo gallery after I clicked a photo to open it in a
lightbox.

Used correctly, coding assistant tools such as the ones you learned about in this
chapter can make you a more productive coder. In the next chapter, you discover
how to talk to AI chat tools to generate ideas and code.

FIGURE 3-21:
My Replit

AI-generated
lightbox.

From Yannis Papanastasopoulos

FIGURE 3-20:
Prompting for

a JavaScript
photo gallery.

Replit, Inc.

CHAPTER 4 Coding with Chatbots 79

Chapter 4
Coding with Chatbots

Large language models (LLMs) enable computers to understand and generate
human languages with astonishing accuracy. Chatbots are easy-to-use inter-
faces to LLMs that enable conversations with a generative AI model. Using a

chatbot, anyone can converse with an LLM in a way that’s similar to how you
would message a friend or coworker. (To learn about how machine learning and
LLMs work, check out Chapter 2.)

Because the generative AI models that underlie AI chatbots have been trained
on an enormous amount of text, it can sometimes seem like the chatbots are
omniscient. However, after some time working with chatbots and sometimes get-
ting responses that are incoherent or plainly wrong, you’ll realize that they’re not.

In this chapter, you learn how to use several popular AI chatbots to generate pro-
gramming code. You also learn how to get better results by improving the inputs,
or prompts, that you give an LLM.

Improving Your Prompts
Prompt engineering is the art and science of developing and optimizing prompts to
use LLMs more effectively. By learning about prompt engineering, you’ll not only
become better at getting what you want out of LLMs but also gain a greater appre-
ciation for what LLMs can and can’t do.

IN THIS CHAPTER

 » Engineering prompts

 » Chatting with Copilot

 » Talking code with ChatGPT

 » Getting schooled on the OpenAI
playground

80 PART 1 Techniques and Technologies

Adjusting the temperature
The results you get from an LLM are greatly influenced by a setting called
temperature, which directly determines how creative or factual the model will be.
When set to a lower temperature, the LLM will always return the most probable
responses. When set to a higher temperature, the LLM will be more creative and
random.

In most language models, the temperature scale goes from 0 to 1. For ChatGPT,
the default setting is 0.7. Depending on the type of response you want, you may
want to set this value lower or higher.

It’s possible to set the temperature to as high as 2.0 with OpenAI’s models, but
temperature settings above 1.0 are more likely to be gibberish.

To illustrate what a difference the temperature makes, I asked ChatGPT for a list
of words that rhyme with Python. I didn’t specify a temperature, so ChatGPT used
its default value. The response is shown in Figure 4-1. It told me that Python isn’t
a common word in English and gave me four words that all sort of rhyme with
Python and repeated bison as the fifth word — presumably because it figured that
four items wasn’t enough for a “list of words” but it couldn’t come up with any-
thing else.

Next, I asked ChatGPT the same question but told it to set the temperature to 1.0.
The response is shown in Figure 4-2.

FIGURE 4-1:
Asking ChatGPT
to rhyme at 0.7

temperature.
ChatGPT

CHAPTER 4 Coding with Chatbots 81

This time, it returned ten words or phrases, and eight of them were rhymes. Next,
I asked ChatGPT to set the temperature to 2.0. The response is shown in Figure 4-3.
It returned 19 suggestions for words that rhyme with Python, including my favor-
ite suggestion: Thai cuisine.

FIGURE 4-2:
Asking ChatGPT

to get more
creative.

ChatGPT

FIGURE 4-3:
Setting the

temperature to
2.0 in ChatGPT.

ChatGPT

82 PART 1 Techniques and Technologies

Because ChatGPT is tuned to always generate something sensible (even when it’s
being creative), adjusting the temperature doesn’t have as great an effect on the
output as adjusting it when working with OpenAI’s models directly. To illustrate
what it looks like when you crank up the heat on the model, Figure 4-4 shows the
output for the same prompt with the temperature set to 2.0 but doing it through
the API directly rather than through ChatGPT.

I cover how to work with the OpenAI models through the API later in this chapter.

Some AI assistants may allow you to set the temperature even higher than 2 if you
ask nicely. However, be aware that higher temperatures will almost certainly gen-
erate garbage.

Deciphering the elements of a prompt
Prompts can be simple, such as the completion request bread and, or complex and
multi-part. Prompts may include all or just some of the following elements:

 » Instruction: A task you want the model to do. For example, Translate the
following text into Spanish.

 » Context: Additional information or files that the model should consider while
generating the response. The files you have open in neighboring tabs while
using Copilot are examples of context.

FIGURE 4-4:
What it looks like
when the model

gets too creative.
ChatGPT

CHAPTER 4 Coding with Chatbots 83

 » Input data: The input or question you want the AI to answer or respond to. If
your instruction is to translate some text to Spanish, the input data would be
the text you want translated.

 » Output format: The type or format in which the model should provide the
output. Examples of output format are JSON data, tab-delimited data, and
markdown format.

Open-ended versus closed-ended prompts
Prompts may be either open-ended or closed-ended. Closed-ended prompts ask for
a specific and targeted response, such as

 » Write a function to validate an email address input.

 » Check this function for bugs.

 » What is the tallest building in Indianapolis?

Open-ended prompts are designed to generate expansive responses, such as

 » Write an email to my landlord telling him that I’m moving out if he doesn’t
fix the leak.

 » Draft an outline for an article about nutrition and school lunches.

 » Write a story about a magician squirrel in the style of Dr. Seuss.

Using different types of prompts
A chatbot will do its best to return an accurate completion for any prompt that you
give it. However, there are types of prompts that can be used for different pur-
poses, as you explore in this section.

Zero-shot prompting
In a zero-shot prompt, you don’t give the model context or examples of what you’re
looking for, but instead rely entirely on its training. An example of a zero-shot
prompt is

What is the capital of Maine?

84 PART 1 Techniques and Technologies

For simple questions or tasks, many LLMs can do zero-shot prompting. As your
requests become more complex, however, you’ll need to move on to other forms
of prompts.

As models have become larger, an increasing number of tasks can be accom-
plished using simple zero-shot prompts. However, if you want an LLM to do a
task involving math or complex reasoning, you may have better success with one
of the prompt types described in the following sections.

Few-shot prompting
In few-shot prompting, you start by explaining the parameters of a correct response
and giving at least one example. Here’s an example of a few-shot prompt to gen-
erate fake data for an API:

Give me 20 made-up records for customers,
in JSON format, with the following shape:
[
 {
 "Title": "Ms.",
 "GivenName": "Geneva",
 "MiddleInitial": "W",
 "Surname": "Cole",
 "StreetAddress": "3447 Reeves Street",
 "City": "Mill Center",
 "State": "WI",
 "ZipCode": 54301,
 "Birthday": "1/5/1978"
 },

A common technique in few-shot prompting is to provide examples of correct
answers using Q&A format, as in this example:

Q: I drove for 30 minutes and drove 30 miles.
 How fast was I driving?
A: 60MPH
Q: I drove for 10 minutes and drove 5 miles.
 How fast was I driving?
A: 30MPH
Q: I drove for 120 minutes and drove 100 miles.
 How fast was I driving?
A:

The model will respond in the same format as in your examples, as shown in
Figure 4-5.

CHAPTER 4 Coding with Chatbots 85

Chain-of-thought prompting
In a chain-of-thought prompt, a series of intermediate reasoning steps is provided
to improve the model’s capability to perform complex tasks. For example, you
could improve the accuracy and speed of the AI’s response to the few-shot prompt
in the preceding section by explaining how you came up with your answers:

Q: I drove for 30 minutes and drove 30 miles.
 How fast was I driving?
A: If you drove 30 miles in 30 minutes, that's 1 mile
 per minute (30 miles / 30 minutes), or 60MPH
 60MPH = (30 miles / 30 minutes) * (60 minutes / 1 hour)
Q: I drove for 10 minutes and drove 5 miles.
 How fast was I driving?
A: If you drove 5 miles in 10 minutes, that's .5 miles
 per minute (5 miles / 10 minutes), or 30MPH
 30MPH = (5 miles / 10 minutes) * (60 minutes / 1 hour)
Q: I drove for 120 minutes and drove 100 miles.
 How fast was I driving?
A:

Once again, the model will work through the problem in a step-by-step way that
more or less follows the same format as the examples you provided. According to
a 2022 study from Google Research ("Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models"), chain-of-thought prompting can
dramatically improve an AI’s capability to complete arithmetic, commonsense,
and symbolic reasoning tasks accurately.

FIGURE 4-5:
Few-shot

programming
gives examples

and specifies the
expected format.

ChatGPT

86 PART 1 Techniques and Technologies

Prompting like a pro
Although prompting a language model often involves trial and error, you can
improve your prompts by remembering the following tips:

 » Keep prompts short and precise. Rather than stuffing every bit of informa-
tion the model will need into one prompt, split complicated prompts into
shorter ones that build on the previous ones in the conversation.

 » Use continue. This tip is especially useful when generating large code blocks.
A chat interface will limit the amount of output it gives for each prompt, so
you may get only part of a function at once. Prompting with continue will cause
the model to return additional content.

 » Use Act as a or You are a: Follow the phrase with a description of the ideal
personality or person for a task (such as professional software developer,
experienced database administrator, or helpful AI assistant who responds in
pirate-speak). This phrasing can result in higher quality output.

 » Tell the model to follow current industry best practices. This tip will lead
to fewer usages of obsolete techniques or deprecated syntax.

 » Provide cues. Indicate where and how the model should provide its comple-
tion when possible. For example, when asking a model to summarize an
article, you might write the following to get the model to respond with a
bulleted list:

The key points of this article are: *.

 » Label the prompt elements. Specify the parts of your prompt that are
instruction, input, context, or an output format. For example:

Input: text of an email.
Instruction: Write a response to this email with a list of

action items.
Output format: Professional email with a bulleted list of

next steps I'll take in response to the email.

Context: The sender is my boss.

 » Evaluate the output, and ask for improvements if needed. Always
remember that you’re the expert, and never simply accept a response
you’re not sure about.

CHAPTER 4 Coding with Chatbots 87

Chatting with Copilot
Copilot provides a direct interface to prompting its model through the Chat exten-
sion. The Chat extension is installed automatically when you install Copilot, and
you can access it by clicking the Chat icon in the left panel of VS Code.

The first time you access Chat, you’ll see some basic instructions for using it, as
shown in Figure 4-6.

Understanding slash commands
Copilot chat has several built-in slash commands, which are shortcuts you can use
to accomplish certain tasks or find out something. To see a list of slash com-
mands, enter a forward slash character (/) into the chat input text box, as shown
in Figure 4-7.

To get more information about the slash commands and other things you can do
with Copilot Chat, type /help in the text box.

FIGURE 4-6:
The Copilot

Chat plug-in.
Microsoft Corporation

88 PART 1 Techniques and Technologies

Knowing Copilot’s agents
Agents are a feature of Copilot when it’s used with VS Code. Agents allow you to
further specify and expand the context that you want Copilot Chat to consider in
its response. You invoke an agent by using @ followed by the name of the agent in
your prompt. The following agents are available:

 » @workspace: This agent makes Copilot Chat consider all the files in your
current VS Code project when generating a response.

 » @vscode: You can use this agent to ask questions specifically about how to
use VS Code.

 » @terminal: Use this agent to ask Copilot Chat how to do something in
VS Code’s integrated terminal.

The @workspace agent is a powerful tool. The best use for it is when you need
Copilot to think holistically about your project, rather than just about the file or
files you’re currently viewing.

Getting the most out of Copilot Chat
Copilot chat works best when you treat it like it’s a human coder — perhaps the
most talkative human coder you’ve ever met but one who seems to know a lot so
you’ll put up with it. For example, suppose you wanted help fixing a bug in your
code. Your interaction with a more knowledgeable human colleague might go
something like this:

FIGURE 4-7:
The slash

commands in
Copilot.

Microsoft Corporation

CHAPTER 4 Coding with Chatbots 89

You: Hey, Linda, do you have time to help me fix something in my code?

Linda: Sure. What’s the problem?

You: Do you see any potential security problems with the way I’ve written the
signup and login endpoints in this server?

Linda: Let me see. Nope. Looks pretty standard.

You: How would you test it?

Linda: Probably with Jest and Supertest.

You: Yeah, okay. I don’t know how to use those.

Linda: Read the docs.

You: Okay, thanks.

If you were to have the same conversation with Copilot Chat, your questions might
be exactly the same (at least to start). Let’s see how it goes. The following is my
actual conversation with Copilot.

Me: Hey, Copilot, do you have time to help me fix something
in my code?

Copilot Chat: Of course! I'd be happy to help. What seems to be
the issue?

Me: Do you see any potential security problems with the way I've
written the signup and login endpoints in this
server?

Copilot Chat: I'm not sure, could you show me the code for those
endpoints?

At this point, I opened the file containing the code I was referring to.

Me: Here they are.
Copilot Chat: I see that you're using JWTs to authenticate

users. That's a good start. However, I don't see any
validation on the user input. You should always
validate user input to prevent attacks like SQL
injection or cross-site scripting (XSS). Additionally,
it's important to hash passwords before storing them
in the database to prevent them from being exposed
in case of a data breach.

Me: I am validating the input, and I'm hashing the password
using bcrypt. Can you look again?

90 PART 1 Techniques and Technologies

Copilot Chat: I see that you're using the bcrypt library to hash
the password before storing it in the database, which
is great. However, I don't see any validation on the
user input. You should always validate user input
to prevent attacks like SQL injection or cross-site
scripting (XSS). One way to do this is by using a
library like express-validator to validate the input
before processing it.

Here, Copilot was right. It turned out that I wasn’t validating the input. Copilot
also provided me with a suggested next prompt, as shown in Figure 4-8.

I asked the follow-up question and implemented the suggested solution, but I still
wasn’t convinced. I asked the same question I had asked my coworker Linda:

Me: How would you test it?
Copilot Chat: To test the validation, you can send a POST

request to the /signup endpoint with invalid input
and check if the server returns the correct error
response. Here's an example of how you can test it
using supertest and jest:

Not only did Copilot give me basically the same answer as my coworker, but it was
much more patient and even wrote a sample test for me.

FIGURE 4-8:
Copilot correctly

identifies the
problem with my

code and offers
to help.

Microsoft Corporation

CHAPTER 4 Coding with Chatbots 91

Chatting with ChatGPT
ChatGPT, which I introduced earlier in the chapter, stands for Chat Generative
Pre-trained Transformer. This chatbot was developed by OpenAI to serve as a
friendly front-end to the OpenAI GPT models. After its release on November 30,
2022, ChatGPT quickly became the fastest-growing consumer software applica-
tion in history. ChatGPT converses with users and generates remarkably human-
like responses while considering context and previous prompts.

Unlike GitHub Copilot, ChatGPT isn’t specifically trained to understand or gener-
ate code. Instead, it’s tuned to be good at conversation. However, the enormous
models it uses include programming code. Depending on the model you use with
ChatGPT, it often handles prompts related to coding at least as well as Copilot.

ChatGPT is (currently) based on GPT-3.5 and GPT-4. The models have been fur-
ther tuned through a process OpenAI calls reinforcement learning from human
feedback (RLHF). Human trainers ranked responses from the model and created
reward models to be able to converse with humans while using a safety system to
avoid generating harmful content.

Because it’s fine-tuned for conversation, ChatGPT can help with more creative
tasks involving more than just a few lines of code. For example, I’ve used ChatGPT
to generate sample data for an application I’m developing. I’ve used it also to help
brainstorm ideas for new features to add to an app.

Signing up and setting up
You can sign up for a ChatGPT account by going to https://chat.openai.com.
Click the Sign Up link to get to the screen shown in Figure 4-9.

Once you’ve finished the signup and phone number verification process, you’ll see
the ChatGPT user interface, as shown in Figure 4-10.

With a free account, you’ll have access to an older language model, which is cur-
rently GPT-3.5. However, don’t rush to sign up for a paid account just yet. The
older model is faster than the newer one and is perfectly capable for our
purposes.

https://chat.openai.com/

92 PART 1 Techniques and Technologies

Setting custom instructions
Once you have a ChatGPT account, the first thing you’ll want to do is to give
ChatGPT some overall context about you and how you’d like the model to respond.
You can do this by clicking your name in the lower left of the ChatGPT interface
and selecting Custom Instructions, as shown in Figure 4-11.

FIGURE 4-9:
Signing up for a

ChatGPT account.
ChatGPT

FIGURE 4-10:
The ChatGPT UI.

ChatGPT

CHAPTER 4 Coding with Chatbots 93

In the Custom Instructions window, which is shown in Figure 4-12, you can pro-
vide up to 1,500 characters about yourself and 1,500 characters describing how
you’d like ChatGPT to behave and provide answers.

Earlier in this chapter, we discussed the four elements of a prompt: instruction,
context, input, and output format. Here you’re providing some context and output
format information.

Telling ChatGPT about you
The first box, labeled “What would you like ChatGPT to know about you to provide
better responses?” is where you can provide context that will be applied to every
conversation you have with ChatGPT. In the same way that you’re able to have

FIGURE 4-11:
Opening the

Custom
Instructions

window.
ChatGPT

FIGURE 4-12:
The Custom

Instruction
window.

ChatGPT

94 PART 1 Techniques and Technologies

more meaningful interactions with your doctor, employee, or friends than you are
with a stranger who knows nothing about you, this is the model’s way of estab-
lishing some baseline understanding of what you may know already and who
you are.

To see what ChatGPT suggests you include here, click the text area, and the help
window shown in Figure 4-13 appears.

The tips provided are a great start. Don’t worry about the structure or style of
what you write. The important thing is to communicate any general information
that the model should know to assist you better.

If you’re using ChatGPT to help you with writing code, mention whether you’re a
student or a professional software developer and include programming languages
you know and your level of experience with each.

Figure 4-14 shows my current “about me” custom instruction.

You don’t have to use all 1,500 characters for either custom instruction. However,
there’s no reason not to.

FIGURE 4-13:
Viewing

ChatGPT’s
suggestions for

the context
custom

instructions.
ChatGPT

FIGURE 4-14:
Example text for
the first custom

instruction.
ChatGPT

CHAPTER 4 Coding with Chatbots 95

Telling ChatGPT your expectations
In the second text area, you can give ChatGPT some general guidelines for how
you’d like it to respond to your prompts. Just as with the first text area, if you click
into the text area, you’ll see a pop-up window that gives you some ideas about
what to include in this section, as shown in Figure 4-15.

To make ChatGPT more helpful as a coding assistant, you might want to provide
the following instructions in this text area:

 » You are an experienced professional software developer.

 » Provide accurate responses to coding questions and flag uncertainties.

 » Since I’m an expert in AI, skip explanations about your limitations.

 » Examples of programming code should use the latest syntax and best
practices.

 » When I ask for programming code, always just respond with the code and no
explanations unless I specifically ask you to explain it.

You can modify your custom instructions any time you want, and you should do so
whenever you have a new idea for how ChatGPT might be more helpful or pleasant
to work with. Here are some additional ideas for things you may want to try add-
ing to the second custom instruction:

 » I always appreciate new ideas for ways to ask questions or form prompts that
will help you be a better assistant to me.

 » I like to be complimented. Sometimes you should offer enthusiastic praise for
a prompt or idea I give you.

 » If I start my prompt with Pirate, you should respond in pirate-speak.

FIGURE 4-15:
Viewing

ChatGPT’s
suggestions

for the output
format custom

instructions.
ChatGPT

96 PART 1 Techniques and Technologies

Below the two text input boxes is the Enable for New Chats switch, which is
enabled by default. If you want to turn off your custom instructions temporarily
(without deleting them), turn off this switch.

When you’ve finished editing your custom instructions, click the Save button.

New instructions will apply only to new conversations, so if you do modify your
instructions and want to try them out, remember to start a new chat.

Figure 4-16 shows the beginning of a new conversation that takes into account my
new custom instructions.

Diving into the OpenAI Platform
Now that you’re an expert at using ChatGPT, it’s time to dive deeper into using the
OpenAI models. In this section, you learn how to access OpenAI’s developer
platform, get an OpenAI API key, and build an application that makes use of the
OpenAI API.

You can get more direct access to the OpenAI models by accessing the OpenAI
developer platform site. Follow these steps to get started:

FIGURE 4-16:
Custom

instructions apply
to all new chats.

ChatGPT

CHAPTER 4 Coding with Chatbots 97

1. Go to https://platform.openai.com in your web browser.

2. If you already have an account with OpenAI (which you do, if you’ve
been using ChatGPT), click the Login button in the upper-right corner
and log in.

Otherwise, sign up for a new account.

3. Click the Playground link in the left navigation strip.

The icon for the Playground is the top one. The Playground interface opens, as
shown in Figure 4-17.

Checking your credits
Using the OpenAI API and the playground requires you to set up a payment method
separate from your subscription to ChatGPT and to purchase credits. You can view
the current rates for using different models by going to https://openai.com/
pricing. Depending on the model you select for a prompt, the price may range
anywhere from $0.0015 per 1,000 tokens (about 750 words) for input data you
provide to GPT-3.5 Turbo to $.12 per 1,000 tokens for output from the most
advanced GPT-4 model.

FIGURE 4-17:
The OpenAI
playground.

ChatGPT

https://platform.openai.com/
https://openai.com/pricing
https://openai.com/pricing

98 PART 1 Techniques and Technologies

While you’re experimenting with the OpenAI API, you’re unlikely to accrue more
than a few dollars in charges. If you build an application with the OpenAI API that
becomes popular, you’ll want to watch out that your costs don’t get out of control.

If you just signed up for an OpenAI account, you may have been given free trial
credits. To check whether you have credits in your account, go to https://
platform.openai.com/account/billing/overview. If you don’t have a free trial
or if you have used all your free trial credits, you’ll need to create a paid account,
which you can do from this page as well.

Once you have some credit in your account or you’ve set up a paid account, you’re
ready to use the OpenAI models in the Playground.

Messing around in the playground
The OpenAI playground (https://platform.openai.com/playground) gives you
an interface for experimenting with the OpenAI API. The first time you access the
playground (refer to Figure 4-17), you’ll see the Assistants interface, which pro-
vides an easy way to create an AI assistant.

To see how to customize the settings of a GPT model, you need to be in Chat mode.
Select Chat from the drop-down menu to the right of the Playground title at the
top of the screen (see Figure 4-18).

FIGURE 4-18:
Chat mode in

the OpenAI
playground.

ChatGPT

https://platform.openai.com/account/billing/overview
https://platform.openai.com/account/billing/overview
https://platform.openai.com/playground

CHAPTER 4 Coding with Chatbots 99

Before you use Chat mode, however, you should know the following:

 » You can enter instructions or choose a preset to get completions from
the model.

 » You can change the model to which your request will be sent.

 » Use good judgment when sharing completions; you’re free to attribute them
to yourself or your company.

 » Requests you send to the API aren’t used to train the models.

 » Currently, the cutoff for the default model is April 2023.

There isn’t much obvious onscreen help for using the playground. However, if you
hover your cursor over the labels for the settings on the right, you’ll see informa-
tion about each setting. Additional help for both the playground and the
OpenAI platform in general is available through the documentation and help links
in the left navigation strip.

Running examples
Open AI provides examples of prompts to try, which you can access by clicking the
Your Presets drop-down menu at the top right of the page (refer to Figure 4-18)
and selecting Browse Examples. The Examples page, shown in Figure 4-19,
displays samples of prompts. You can also search for prompts by using the Search
box and the category drop-down menu.

FIGURE 4-19:
The OpenAI

Examples page.
ChatGPT

100 PART 1 Techniques and Technologies

When you click one of the example prompt descriptions, a pop-up window will
appear that contains the instruction (which the playground calls system) and sam-
ple input (which the playground calls user), as shown in Figure 4-20. Below the
sample input, you’ll see sample output from the application.

Once you’ve looked through the sample input and output, click the green Open in
Playground button at the top of the pop-up window to open the prompt in the
playground. The system and user parts of the prompts will be filled out for you,
and the settings on the right side of the screen will also be preset to good values
for the task at hand. If you open a coding-related example, note that the tempera-
ture setting will be set very low so that the model will return the most accurate
response it can. If you open an example that requires creativity, such as the
Product Name Generator example, the temperature will be set to a higher level.

Playing the roles
OpenAI Playground’s Chat mode has two large areas where you can input data to
prompt the model. Within these two areas, you can enter text to play three differ-
ent characters: system, user, and assistant.

FIGURE 4-20:
Viewing one of

OpenAI’s example
prompts.

ChatGPT

CHAPTER 4 Coding with Chatbots 101

The left text area is the system text area. Use this area to specify who or what
you’d like the model to act like, and what the model should do with input that will
be forthcoming (in the other text area). The default system message is You are a
helpful assistant.

The text area to the right of the system input box is the user or assistant area. You
can switch between the user and assistant roles by toggling the User or Assistant
label in the message input field. Anything you label as user input will be given to
the model after the system input. The assistant role is used by the model to
respond to messages from the user role. You can also act as the assistant to give
the AI model examples of what its output should look like.

Adjusting the model’s settings
On the right of the playground’s Chat mode interface, choose the model you want
to use. The default model is currently gpt-3.5-turbo, but you can select any model
that’s available.

Some models cost more than others to use. You can check the pricing for OpenAI’s
different models at https://openai.com/pricing.

Below the model selection drop-down menu, you have access to the following
additional settings:

 » Temperature controls the randomness of responses.

 » Maximum Length sets the maximum number of tokens that will be used
when you submit your prompt. The tokens are shared between your prompt
and the model’s response.

 » Stop sequences are combinations of characters that will cause the model
to stop generating content. For example, if you want the model to return a
numbered list containing ten items, you could set the stop sequence to 11,
or if you want the model to return only a single line of text, you can set a
carriage return as a stop sequence.

 » Top P is another way to control the creativity and diversity of responses.
Top-P can be set to a value between 0 and 1. (The P in Top P stands for
probability.) With a low Top P setting, the model considers only the most
probable responses and will tend to generate predictable responses. The
higher the Top P, the larger the pool of possible responses that the model
will randomly select from when generating responses, and the more diverse
and creative the output will be.

https://openai.com/pricing

102 PART 1 Techniques and Technologies

 » Frequency penalty determines how much new tokens will be penalized based
on how many times they appear in the previously generated tokens. The value
of the frequency penalty can be set to a value between 0 and 2. A higher
frequency penalty will cause the model to generate more unique words.

 » Presence penalty determines how much to penalize tokens based on their
appearance in the previous text. The presence penalty can be set to a value between
0 and 2. A higher presence penalty will make the model have more diverse ideas.

When generating code, the frequency penalty and the presence penalty should
both be set to 0 or a low value. You should set the frequency penalty to 0 because
it’s common and necessary for the same keywords (such as def in Python or
function in JavaScript) to appear many times in a program. The presence penalty
should be a low value to indicate that you prefer accuracy and consistency over
seeing multiple ways of doing the same thing.

Getting an API key
Before you can write your own programs that make use of the OpenAI models, you
have to have an API key. Follow these steps to get your key:

1. Log in to the OpenAI Playground at https://platform.openai.com/
playground.

2. Expand the left navigation strip to display and click API Keys.

3. Select the View API Keys menu item, as shown in Figure 4-21.

FIGURE 4-21:
The View API

Keys link.
ChatGPT

https://platform.openai.com/playground
https://platform.openai.com/playground

CHAPTER 4 Coding with Chatbots 103

4. Click the Create New Secret Key button and give your key a name that
relates to what you’re going to use it for, as shown in Figure 4-22.

5. Click Create Secret Key.

Your new API key appears.

6. Copy your API key and save it where you won’t lose it.

This is the only time OpenAI will show you your new secret key, so make sure
not to rush through this step. However, if you do lose your secret key, it’s easy
enough to generate a new one.

Don’t commit any files containing your API key into your code repository.

Developing a Chatbot with OpenAI
Let’s make a chatbot! We’ll be using the OpenAI API and Gradio, a Python tool for
quickly creating a web interface for machine learning models. Don’t worry if
you’ve never used Gradio before (or Python, even). ChatGPT will generate some
code, and then I walk you through the process of running it. (Or you can try asking
ChatGPT how to run it.)

FIGURE 4-22:
Naming your

secret key.
ChatGPT

104 PART 1 Techniques and Technologies

Submit the following prompt (or something similar) to ChatGPT or the OpenAI
Playground:

Write a custom chatbot that uses the OpenAI API and
Gradio. The chatbot should first ask the user what kind
of bot they'd like to talk to (such as 'coding assistant'
or 'therapist') and then present them with input and
output areas.

Note that this prompt is vague. With the first prompt, my goal is just to get some-
thing that works. Once I see what ChatGPT generates, I can refine my prompt or
start working with the code myself.

Listing 4-1 shows the Python code that ChatGPT returned (using the GPT 3.5
model).

LISTING 4-1: A GPT-Generated Chatbot

import openai
import gradio as gr

Set your OpenAI API key
openai.api_key = "YOUR_OPENAI_API_KEY"

def chatbot_response(input_text):
 response = openai.Completion.create(
 engine="davinci",
 prompt=f"I'd like to talk to a {input_text}.",
 max_tokens=50 # You can adjust this for longer responses
)
 return response.choices[0].text

Create the Gradio interface
iface = gr.Interface(
 fn=chatbot_response,
 inputs=gr.inputs.Textbox("text", label="Enter the type of

bot you want to talk to (e.g., 'coding assistant'
or 'therapist')"),

 outputs="text",
 live=True,

CHAPTER 4 Coding with Chatbots 105

 title="Custom Chatbot",
 description="Select the type of bot you'd like to talk to and

start the conversation."
)

iface.launch()

At this point, I don’t yet know whether the code will work, but I can see that it’s
not what I meant. But, I see a problem I’d like to fix right away: The API key is
hard-coded in the file, which would result in me checking my API key into my Git
repository, which I just said you should never do.

I could fix this problem myself, but I decided to let ChatGPT do it. Here’s my next
prompt:

I don't want to hard code my API key into this file.
How can I avoid doing that?

In response to this prompt, ChatGPT suggested setting an environment variable
containing the API key, which wasn’t what I was looking for. I responded that I
wanted to have a config file for the API key, and it gave me what I was looking for
and correctly instructed me to add the config file to .gitignore. Listing 4-2 shows
the revised code.

LISTING 4-2: My revised Chatbot

import openai
import gradio as gr
from config import OPENAI_API_KEY

Set the API key from the configuration file
openai.api_key = OPENAI_API_KEY

def chatbot_response(input_text):
 response = openai.Completion.create(
 engine="davinci",
 prompt=f"I'd like to talk to a {input_text}.",
 max_tokens=50 # You can adjust this for longer responses
)
 return response.choices[0].text

Create the Gradio interface

(continued)

106 PART 1 Techniques and Technologies

iface = gr.Interface(
 fn=chatbot_response,
 inputs=gr.inputs.Textbox("text", label="Enter the type of

bot you want to talk to (e.g., 'coding assistant'
or 'therapist')"),

 outputs="text",
 live=True,
 title="Custom Chatbot",
 description="Select the type of bot you'd like to talk to and

start the conversation."
)

iface.launch()

To test this script, copy the code into a file named chatbot_demo.py and open it
in VS Code. At this point, VS Code may prompt you to install a Python interpreter
if you don’t already have one, or you may need to install Python on your computer
(which you can do by going to https://www.python.org/downloads/).

Create a second file named config.py for your API key. The config.py file should
look like Listing 4-3, with your API key inserted at the appropriate place, of
course.

LISTING 4-3: The config.py File

OPENAI_API_KEY = "YOUR_API_KEY_HERE"

Before you can run the chatbot, you’ll need to install Gradio and the OpenAI
library. Run the following two commands in your terminal:

pip install openai
pip install gradio

Once those are installed, you can run the program by typing python chatbot_
demo.py into your terminal.

This code technically works in that it sends the text I enter into the textbox to the
OpenAI API and displays a result. But it’s not what I had in mind, and the comple-
tion it returns is gibberish, as shown in Figure 4-23.

LISTING 4-2: (continued)

https://www.python.org/downloads/

CHAPTER 4 Coding with Chatbots 107

The biggest issue is that the program is sending every keystroke to the API, rather
than waiting for me to finish my input and click a button. Checking my OpenAI
platform account, I see that my quick test of this program cost me 3 cents. It’s not
much, but I suspect changing the code so it waits to send prompts all at once
rather than sending one letter at a time would save me a lot of money and result
in better output.

Simply changing the value of the live property from True to False solves this
problem.

The next problem is that the model is using the GPT-3 model. I suspect the results
I get will be much better if I switch to using GPT-3.5. To fix this, I changed
model="davinci" to model="gpt-3.5-turbo" and then stopped and restarted the
Python program. This time, when I tried to submit my input, I got an error in the
console that the endpoint didn’t support chat completions.

I consulted the Python OpenAI docs and found that I needed to change openai.
Completion to openai.ChatCompletion and change the parameters I was passing
to the OpenAI. I tested it again, and the result is shown in Figure 4-24.

FIGURE 4-23:
My first attempt

at creating a
chatbot with

ChatGPT was
a failure.

ChatGPT

108 PART 1 Techniques and Technologies

The process I went through to get a working demo involved browsing the docs in
the Python OpenAI library and the Gradio library more than getting helpful tips
from AI models. In the end, although I got my chatbot working, I was left feeling
like it would have been much faster to code the app from scratch without the
help of AI.

Starting with the next chapter, I show you a better approach to working with
generative AI that is more likely to result in working code that does what it’s
supposed to do.

FIGURE 4-24:
Testing my fixes.

ChatGPT

2Using AI to
Write Code

IN THIS PART . . .

Collaborate with an AI pair programmer.

Restructure and improve your code’s readability.

Squash bugs with the help of AI.

Learn to expand to new languages and improve
software performance.

CHAPTER 5 Progressing from Plan to Prototype 111

Chapter 5
Progressing from Plan
to Prototype

Although it’s possible to work with an AI coding assistant to generate
working code and even entire programs, acceptable results are far from
guaranteed. The quality of the results you’ll get depends on several factors,

including the LLM you use, the input you give the model, your own coding skills,
and how clearly you’ve defined the project’s requirements.

Chapter 4 provides an example of using AI to do something most programmers
could do faster and better without AI. In this chapter, you start to learn processes
and tips for getting consistent and higher-quality results.

Understanding Project Requirements
If you’ve ever been thrown into working on a new project that you don’t fully
understand, you can identify with what a coding assistant would feel like all the
time — if a coding assistant could feel anything. Although coding assistants have
seen a lot of code, the only way they can be helpful to you is if they have context
about the particular requirements of the code you’re writing.

IN THIS CHAPTER

 » Understanding your project’s
requirements

 » Coding a prototype with prompts

 » Blending your code with
AI-generated code

 » Tips for generating better code

112 PART 2 Using AI to Write Code

Determining the software requirements
When starting to work with a coding assistant, think about what you need to know
before working on a project. Specifically, you need to know the following:

 » What will the software do?

 » Who are you building the software for?

 » Who will use the software?

 » Where and how will the software do what it does?

 » How will the user interact with the software?

 » What languages and technologies will you use to build the software?

 » What are the goals of the software?

 » Are there any legal or regulatory standards that the software must
comply with?

In the world of software development, we call the answers to these questions the
software requirements. You can specify your project’s software requirements by
using a software requirements specification (SRS), which is a document that describes,
in detail, what the planned software will do and how it will be expected to per-
form. For small projects, a full SRS is usually not necessary. However, some sort
of documentation of requirements is essential to any project, and figuring out the
requirements for yourself is essential to being able to communicate them to
another developer or to an AI coding assistant.

Software requirements can be divided into three broad categories: domain require-
ments, functional requirements, and non-functional requirements.

Domain requirements
Domain requirements are particular to the category, purpose, or industry in which
the software will be used. It’s possible for a piece of software to be functional and
user-friendly without being acceptable for use because it doesn’t meet domain
requirements. For example, if you develop an online banking app that doesn’t
meet the legal and regulatory requirements that apply to online banking apps, it
doesn’t fulfill its requirements.

CHAPTER 5 Progressing from Plan to Prototype 113

Functional requirements
Functional requirements define how the software system behaves and are generally
defined using specific responses to inputs or conditions. These statements of
functional requirements are called use cases or user stories.

A use case is a detailed description of a functional requirement. It defines, using
natural language, the ways in which a user can interact with a system (such as a
piece of software or a website) and how the system will respond.

The details specified in a use case include the following:

 » The goal

 » Whether the user (called the actor in use cases) is human or another system

 » Preconditions that must be present for the use case (for example, the user
must be logged in)

 » The series of steps the system will take

 » Alternative steps (for example, what happens when the user isn’t logged in)

 » What happens after the steps are complete (also known as postconditions)

Use cases are no longer common in modern software development due to the
popularity of agile software development, in which functional requirements are
specified with user stories.

User stories are generally informal one-sentence statements, written from the
user’s point of view. They contain the who, what, and why of an outcome that
the users wants to accomplish with the system. User stories are often written
using the following format:

As a [persona], I [want to], [so that].

For example:

As a user, I want to be able to reset my password if I forget it, so I can regain access
to my account.

This format, however, is not required when writing user stories. It’s also common,
especially during the initial process of documenting functional requirements, to
see less structured statements that may eventually be turned into user stories.

114 PART 2 Using AI to Write Code

Whether you decide to write use cases or user stories, following are examples of
functional requirements:

 » The system must allow users to create an account.

 » The system must allow users to log in with a username and password.

 » The system must allow users to click a forgot password link to reset their
password.

 » After a user signs up for an account, they’ll see a login page where they can
enter their username and password to log in.

 » When a user successfully signs in, they’ll see the newsfeed page.

 » The newsfeed page presents the user with a list of the latest posts made by
other users.

 » At the bottom of the newsfeed page, users can enter text into an input field
and click a submit button to create a new post.

You don’t need to capture every detail of the functional requirements for the
SRS. However, stating who will be using the system, what needs to be built, and
why it needs to be built will give you more clarity as you’re writing code and will
give your AI assistant more context.

Non-functional requirements
Non-functional requirements relate to the quality of the software system, including
security, maintainability, reliability, scalability, and reusability. Prioritizing non-
functional requirements often involves considering the different assumptions and
constraints that apply to the project.

Assumptions are factors that are believed to be true but aren’t confirmed. Following
are the categories of assumptions:

 » Technical assumptions relate to technology, such as hardware, operating
systems, and infrastructure. For example, a technical assumption may be that
the user’s computer will have a certain amount of RAM.

 » Operational assumptions have to do with user or organizational behavior
and factors. For example, an operational assumption for this book is that the
reader is a computer programmer (or wants to be one).

 » Business assumptions focus on the business context in which the project will
be used, such as business policies and market conditions that may affect the
design or functionality of the software.

CHAPTER 5 Progressing from Plan to Prototype 115

 » Environmental assumptions are external factors that may affect the
software, such as cultural, social, or geographical factors or availability
of a stable internet connection.

Constraints restrict the options available to developers of a system. Types of con-
straints include the following:

 » Interface constraints define the limitations that the software’s user interface
puts on the project. If you’re developing a mobile app, the size of the mobile
device screens places limits on the functionality and design of the app.

 » Performance constraints define specific performance criteria that the
software must meet. For example, you might define a percentage of uptime
or a maximum time for the website to finish loading.

 » Operating constraints relate to existing organizational processes, policies, or
practices. Examples include whether the company where the software will be
deployed allows the use of certain software libraries or the organization’s
policies regarding the use of AI coding assistants.

 » Life cycle constraints have to do with maintainability, portability, and the
ongoing life of the software after it’s built.

 » Economic constraints involve the budget for building and operating the
software. Finances are a major limitation of any project.

Specifying software requirements is an important part of any project and, with the
emergence of AI coding assistants, a skill that every software developer should
have. Many books have been written about software requirements, but the most
essential one is Software Requirements, 3rd Edition (Microsoft Press) by Karl Wieg-
ers and Joy Beatty.

Writing an SRS
I’ve decided I want to create a tic-tac-toe game. To help me and my AI coding
assistant understand the project, I formulated the following prompt for ChatGPT:

Act as an experienced software project manager. Ask me
questions and use my responses to write a software
requirements specification for a tic-tac-toe game.

I’m looking for a more creative response, so I’m using the GPT-4 model rather
than the standard (at this time) GPT-3.5 model.

ChatGPT’s response is shown in Figure 5-1.

116 PART 2 Using AI to Write Code

My next task is to compose responses to ChatGPT’s questions. Because ChatGPT
has its questions as context in my current conversation, I prefaced each of
my responses with the number and letter of the specific question, as shown in
Figure 5-2.

FIGURE 5-1:
Asking ChatGPT

to help write
an SRS.

ChatGPT

FIGURE 5-2:
My answers to

ChatGPT’s
questions.

ChatGPT

CHAPTER 5 Progressing from Plan to Prototype 117

To avoid using unnecessary tokens, I entered my response to the questions in a
single message by pressing Shift+Enter after each line of my response. This allows
ChatGPT to get the entire response at once and avoids making the model respond
to each answer individually.

After submitting my answers, ChatGPT responded with the SRS shown in
Figure 5-3.

The SRS looks good enough, but if I want to keep it in a file outside a ChatGPT
window, I’ll need it in a more usable format. I prompted ChatGPT to convert the
SRS to Markdown syntax. (Markdown is a simple markup language for adding
formatting to plain-text documents.) The result is shown in Figure 5-4.

I copied the markdown code and saved it in a file with the .md extension in a new
Git repository for the project.

FIGURE 5-3:
A ChatGPT-

generated SRS.
ChatGPT

118 PART 2 Using AI to Write Code

Generating Code from an SRS
Once you have an SRS (whether you wrote it or had your AI assistant’s help),
you’re in a good position to begin coding. You might take a couple of different
approaches. The first way is to just ask ChatGPT to code the program described in
the SRS. At the very least, this will result in some ideas that you can use to begin
coding it yourself.

Using a zero-shot approach
If you’re feeling lucky, you can try a simple prompt asking the chatbot to generate
the entire program based on the SRS. This approach is called a zero-shot prompt
and is described in more detail in Chapter 4.

A zero-shot prompt is one where you don’t give examples or code and instead just
rely on the data the model has been trained on.

In the same conversation as the one where I asked ChatGPT to write an SRS,
I entered the following prompt:

FIGURE 5-4:
Converting to

Markdown makes
documents

more usable.
ChatGPT

CHAPTER 5 Progressing from Plan to Prototype 119

You are a professional software developer. Write the tic-
tac-toe game described in the above SRS.

After a few seconds, ChatGPT returned HTML, CSS, and JavaScript for what it
described as a simplified version of the application, as shown in Figure 5-5.

You can find the full source code for this application on the website for this
book at, www.dummies.com/go/codingwithaifd, or in my GitHub repository, at
https://github.com/chrisminnick/coding-with-ai.

Before examining the code, I copied it into index.html, styles.css, and script.js
files in my code editor and opened the HTML file in a browser. The user interface
resembles a tic-tac-toe game, and it uses what might be considered kid-friendly
colors and text. Upon trying to play the game, however, I discovered that it fails to
meet the most critical requirement. Take a look at Figure 5-6 and see if you can
identify the problem here.

In this first attempt at a tic-tac-toe game, the AI has written a game that doesn’t
properly alternate between X and O, resulting in O getting more turns and thus
always winning the game. AI cheats.

FIGURE 5-5:
The ChatGPT-

generated
tic-tac-toe

game code.
ChatGPT

https://www.dummies.com/go/codingwithaifd
https://github.com/chrisminnick/coding-with-ai

120 PART 2 Using AI to Write Code

Breaking down the problem
With a request as complicated as generating software from an SRS, you’re much
more likely to get acceptable results by breaking down the problem into steps.
However, pieces of the output from the zero-shot prompt response can be helpful
in figuring out how to break apart the problem.

Since ChatGPT is tuned to be creative (it has a high default temperature), it was
the perfect tool for helping with writing an SRS. However, it’s not usually the best
option for generating working code. For my second attempt at building a working
tic-tac-toe game, I turned to GitHub Copilot.

Before asking Copilot to help with my app, I used the built-in debugger in the
Chrome browser to figure out what was wrong with the code ChatGPT provided. It
turns out that the function that places the user’s X on the board has the following
line of code to alternate the user’s symbol between X and O:

currentPlayer = currentPlayer === 'X' ? 'O' : 'X';

In this statement, the currentPlayer variable holds the symbol (X or O) that will
be played on the board when the human user makes a move. The conditional (or
ternary) operator in this statement checks whether the value of currentPlayer is
X and changes it to O if it is. Otherwise (if currentPlayer is not equal to X) it
changes its value to O. The problem, however, is that the value of currentPlayer
is used in the program only to represent the human player. As a result, switching
the value of currentPlayer to O makes the human play every other move with the
AI’s symbol.

FIGURE 5-6:
A frustratingly

difficult game of
tic-tac-toe.

ChatGPT

CHAPTER 5 Progressing from Plan to Prototype 121

After commenting out that line, I was able to play tic-tac-toe and win every time
(because the computer player is just randomly picking from the available squares
at this point). With a smarter opponent, the game should be a draw every time, so
I decided to implement the levels of difficulty feature from the SRS.

Blending Manually Written
and AI-Generated Code

Once you have AI-generated code that fulfills at least some of the requirements of
the software, it’s time to start writing code manually. A good strategy for getting
from a basic app, such as the one the AI generated in the preceding section, to
something that works correctly is to start by developing the back end.

The back end defines the business logic and data in the app, as well as how the user
interface will interact with the logic and data. In the case of an AI tic-tac-toe
game, writing the back end will start with crafting the prompt that I’ll use to get
an AI model to play tic-tac-toe with me.

Writing the prompt
After thinking about the problem of how to make an AI tic-tac-toe player, I decided
to try using the OpenAI API and the GPT-4 model. I experimented for a while with
the OpenAI playground and ended up with the following system prompt:

You are an AI tic-tac-toe player. You are always 'O'
and I'm always 'X'.

I'll provide you with my move as a number on this grid:

0 | 1 | 2
3 | 4 | 5
6 | 7 | 8

You'll respond with only an array with an X in the
position of my move, followed by your move, followed by
an array with an O in the position of your move.

If one of us wins or it's a draw, tell me 'you win',
'I win', or 'draw'.

122 PART 2 Using AI to Write Code

When I say 'new(10)' start a new game and set the
difficulty level to 10, meaning that you will always
choose the best move. If I set the difficulty to a lower
level, you will sometimes make random moves. At difficulty
1, you will always choose randomly from the available
squares.

Using this system prompt and the temperature set to 0.5 (so the model would be
creative but not too creative), I was able to enter my moves and get responses that
I should be able to use in my program, as shown in Figure 5-7.

Writing the server
I decided to write a Node.js server to talk to the OpenAI API, so as not to have to
store the API key in my client application. I created a new directory for my server,
initialized the directory as a Node.js package (using npm init), and created a file
named server.js.

To start writing server.js, I clicked the View Code button in the upper-right corner
of the playground and selected Node.js as my library. The View Code window
opened with the necessary code for sending the current settings and prompts to
the API and getting the next completion.

FIGURE 5-7:
An AI tic-tac-toe

bot in the OpenAI
playground.

ChatGPT

CHAPTER 5 Progressing from Plan to Prototype 123

I copied this code from the playground and pasted it into server.js. I also added
code to import the API key from a .env file. A .env file is used in Node.js to store
environment variables outside the main program. Environment variables hold
information that is particular to an installation of the software (such as API keys)
and shouldn’t be distributed with the software (since you don’t want other people
using your API key). The beginning of my server is shown in Figure 5-8.

The next step was to create my own API server that gets results from OpenAI and
returns them to my client application. Since writing an API server is a fairly stan-
dard task, I decided to use Copilot Chat to generate it.

I started with the following prompt:

I want to turn the code in server.js into an API server
that I can send a new message to and have it appended to
the messages array before submitting it to the OpenAI API.
The server should return the response from the OpenAI API.

The code generated by Copilot was a good start. The complete code is shown in
Listing 5-1.

FIGURE 5-8:
Node.js code to

get the next
completion from
the OpenAI API.

ChatGPT

124 PART 2 Using AI to Write Code

LISTING 5-1: The First Version of the Tic-Tac-Toe Server

import express from 'express';
import OpenAI from 'openai';
import 'dotenv/config';

const app = express();
const openai = new OpenAI({
 apiKey: process.env.OPENAI_API_KEY,
});

app.use(express.json());

app.post('/chat', async (req, res) => {
 const { message } = req.body;
 const response = await openai.chat.completions.create({
 model: 'gpt-4',
 messages: [
 {
 role: 'system',
 content:
 "You are an AI tic-tac-toe player. You are always 'O' and

I'm always 'X'.\n\nI'll provide you with my move as a number
on this grid:\n\n0 | 1 | 2\n3 | 4 | 5\n6 | 7 | 8\n\nYou'll
respond with only an array with an X in the position of my
move, followed by your move, followed by an array with an O
in the position of your move.\n\nIf one of us wins or it's a
draw, tell me 'you win', 'I win', or 'draw'.\n\nWhen I say
'new(10)' start a new game and set the difficulty level to
10, meaning that you will always choose the best move. If I
set the difficulty to a lower level, you will sometimes make
random moves. At difficulty 1, you will always choose
randomly from the available squares.",

 },
 {
 role: 'user',
 content: message,
 },
],
 });
 res.json({ response });
});

app.listen(3000, () => {
 console.log('Server listening on port 3000');
});

CHAPTER 5 Progressing from Plan to Prototype 125

Submitting follow-up prompts
At the bottom of Copilot’s response, it explained the code it generated and sug-
gested a follow-up prompt:

How can I test the API server?

This was going to be my next prompt anyway, so I clicked the suggested prompt
and Copilot (correctly) suggested using curl or Postman to test it and gave instruc-
tions for using both, as shown in Figure 5-9, left.

The model also suggested another follow-up prompt, which seemed like an excel-
lent idea to me, so I clicked that to ask for code for handling errors returned by the
API server. The response to that prompt is shown in Figure 5-9, right.

Testing the server
Armed with Copilot’s suggestions for testing and error handling, I had several
tasks to work on before I could make the server work with the client app. First,
I had to figure out whether the server works at all. From browsing the code, it
looks like a standard Node.js API server that should be able to receive a message,
pass it along to the OpenAI server, and return a response in JSON format.

FIGURE 5-9:
Suggestions for
testing the API

server (left) and
for handling API

server errors.
ChatGPT

126 PART 2 Using AI to Write Code

Using the testing suggestions from Copilot, I started the server (using node
server.js) and entered the following curl command into a new terminal window
(all on one line):

curl -X POST -H "Content-Type: application/json" -d '
{"message": "new(5)"}' http://localhost:3000/chat

This command should tell the AI tic-tac-toe game to start a new game with a dif-
ficulty level of 5. And the response I got from the server shows that was what it did:

"message":{"role":"assistant","content":"Understood.
We start a new game with a difficulty level of 5, which
means a mix of optimal and random moves. Your
move!"},"finish_reason":"stop"}],"usage":{"prompt_tokens":
199,"completion_tokens":29,"total_tokens":228}}}%

Next, I tried submitting my first move, and the AI responded appropriately.
However, after a few moves, my AI opponent seemed to lose track of the game and
responses were taking far too long. My first attempt at playing tic-tac-toe against
the AI using my API server is shown in Figure 5-10.

The problem is that, although this code works, it doesn’t have any way to keep
track of the state of the game. Each request will only send the latest move from the
client to OpenAI. Also, the AI would benefit from some examples of the response
format that I’m looking for.

FIGURE 5-10:
My AI opponent
loses track of its

instructions.
Microsoft Corporation

CHAPTER 5 Progressing from Plan to Prototype 127

Giving the AI examples of correct responses is called few-shot prompting. For
details on this type of prompting, see Chapter 4.

Implementing few-shot prompting
on the server
To give the AI more context, I wrote a series of messages (using the OpenAI
playground) to simulate a correctly played game between the AI assistant and a
human user. I then hard-coded those into the server, as shown in Figure 5-11.

I then restarted the server and attempted to play a new game using the curl com-
mand. The new game started correctly, but on my first move, the AI responded
that I should start a new game to continue playing, as shown in Figure 5-12.

This happened because the previous prompts in the conversation are not being
sent to the server. Since the server has no way of tracking sessions between
an individual user and the AI, the best place to implement session state is on
the client.

FIGURE 5-11:
Giving more

context to the AI.

128 PART 2 Using AI to Write Code

Before working on the client, however, I have to set up the server to combine the
prompts that are hard-coded on the server with the prompts that come from the
client. I stored the system prompt and the example game in a variable, and then
prepended that to the messages that the client app sends to the server.

I also simplified the example game so the AI is returning only the number of the
square where it wants to place a O. This change makes the client app easier to code
and has the additional benefit of greatly reducing the number of tokens necessary
for playing a game.

The finished server app is shown in Listing 5-2.

LISTING 5-2: My Finished API Server

import express from 'express';
import OpenAI from 'openai';
import 'dotenv/config';
import cors from 'cors';

const app = express();
const openai = new OpenAI({
 apiKey: process.env.OPENAI_API_KEY,
});

app.use(express.json());
app.use(cors());

FIGURE 5-12:
The AI doesn’t
remember the
last command.

Microsoft Corporation

CHAPTER 5 Progressing from Plan to Prototype 129

app.post('/chat', async (req, res) => {
 const context = [
 {
 role: 'system',
 content:
 "You are an AI tic-tac-toe player. You are always 'O' and

I'm always 'X'.\n\nI'll provide you with my move as a number
on this grid:\n\n0 | 1 | 2\n3 | 4 | 5\n6 | 7 | 8\n\nYou'll
respond with only your move, which must not be a number that
has already been played in the current game.\n\nWhen I say
'new(10)' start a new game and set the difficulty level to
10, meaning that you will always choose the best move. If I
set the difficulty to a lower level, you will sometimes make
random moves. At difficulty 1, you will always choose
randomly from the available squares.",

 },
 {
 role: 'user',
 content: 'new(10)',
 },
 {
 role: 'assistant',
 content: 'new game, level 10',
 },
 {
 role: 'user',
 content: '0',
 },
 {
 role: 'assistant',
 content: '4',
 },
 {
 role: 'user',
 content: '1',
 },
 {
 role: 'assistant',
 content: '2',
 },
 {
 role: 'user',
 content: '6',
 },

(continued)

130 PART 2 Using AI to Write Code

 {
 role: 'assistant',
 content: '8',
 },
 {
 role: 'user',
 content: '5',
 },
 {
 role: 'assistant',
 content: '3',
 },
 {
 role: 'user',
 content: '7',
 },
];
 const newMessage = req.body.messages;
 const messages = [...context, ...newMessage];
 const response = await openai.chat.completions.create({
 model: 'gpt-4',
 messages: messages,
 temperature: 0.5,
 max_tokens: 255,
 top_p: 1,
 frequency_penalty: 0,
 presence_penalty: 0,
 });
 res.json({ response });
});

app.listen(3000, () => {
 console.log('Server listening on port 3000');
});

Improving the client
To make the client application send my moves to the server and get the AI’s
moves back from the server, I wrote a new function named getAIMove(). This
function sends the API server all the moves in the current game and gets back the
AI’s new move.

LISTING 5-2: (continued)

CHAPTER 5 Progressing from Plan to Prototype 131

I also created a function named startNewGame() that takes the level of difficulty
and passes the command to the server to start a new game. The complete code for
the client-side script is shown in Listing 5-3.

LISTING 5-3: The Client-Side JavaScript

let board = ['', '', '', '', '', '', '', '', ''];
let currentPlayer = 'X';
let isGameOver = false;
let messageHistory = [];

function startNewGame(levelOfDifficulty) {
 board = ['', '', '', '', '', '', '', '', ''];
 currentPlayer = 'X';
 isGameOver = false;
 messageHistory = [];
 messageHistory.push({
 role: 'user',
 content: 'new(' + levelOfDifficulty + ')',
 });
 document.querySelectorAll('.cell').forEach((cell) => (cell.

 innerHTML = ''));
 const response = getAIMove(messageHistory);
 return response;
}

function makeMove(index) {
 if (board[index] === '' && !isGameOver) {
 board[index] = currentPlayer;
 document.getElementsByClassName('cell')[index].innerHTML =

 currentPlayer;
 messageHistory.push({
 role: 'user',
 content: index.toString(),
 });

 if (checkWin()) {
 alert(currentPlayer + ' Wins!');
 isGameOver = true;
 return;
 }
 if (checkDraw()) {
 alert('Draw!');

(continued)

132 PART 2 Using AI to Write Code

 isGameOver = true;
 return;
 }
 aiMove(messageHistory); // Player is X, AI is O
 }
}

async function getAIMove(message) {
 // This function will send a message to the API server
 // The message will contain each previous move and the user's

 latest move
 // The API server will return the AI's next move
 const response = await fetch('http://localhost:3000/chat', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 messages: message,
 }),
 });
 const data = await response.json();
 document.getElementById('message').innerHTML =
 data.response.choices[0].message.content;
 return data.response.choices[0].message.content;
}

async function aiMove(messageHistory) {
 let move = await getAIMove(messageHistory);
 messageHistory.push({
 role: 'assistant',
 content: move.toString(),
 });
 board[move] = 'O';
 document.getElementsByClassName('cell')[move].innerHTML = 'O';
 if (checkWin()) {
 alert('O Wins!');
 isGameOver = true;
 }
}

function checkWin() {
 let winCombos = [

LISTING 5-3: (continued)

CHAPTER 5 Progressing from Plan to Prototype 133

 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 3, 6],
 [1, 4, 7],
 [2, 5, 8],
 [0, 4, 8],
 [2, 4, 6],
];
 for (let i = 0; i < winCombos.length; i++) {
 if (
 board[winCombos[i][0]] &&;
 board[winCombos[i][0]] === board[winCombos[i][1]] &&;
 board[winCombos[i][0]] === board[winCombos[i][2]]
) {
 return true;
 }
 }
 return false;
}

function checkDraw() {
 return board.every((cell) => cell !== '');
}

Once I finished writing the client-side script and updating the HTML page to add
the Start Game button, I tested the game. After a little debugging, the game
worked and I could play tic-tac-toe with GPT-4 through my web browser.

However, after several games, it became apparent that although GPT-4 knows the
rules of tic-tac-toe, it is terrible at strategy. I won every game, even when I set the
level of difficulty to 10 and I played wrong, as shown in Figure 5-13.

The GPT models are language models and are not well-equipped to handle
reasoning.

Moving logic from AI to the client
When integrating responses from an AI into an app, consider whether parts of the
response from the AI can be done in your client- or server-side code. If so, you can
reduce the complexity of the instructions to the AI as well as the number of inter-
actions between your application and the AI. This will have multiple benefits,
including reduced costs for AI usage, improved performance, and allowing the AI
to focus on fewer tasks, which may improve its accuracy.

134 PART 2 Using AI to Write Code

Because the level of difficulty simply adjusts the number of random responses,
making random moves seems like a natural thing to take off the AI’s plate. My
idea was to handle the level of difficulty on the client side, and not even prompt
the AI for random moves.

To accomplish this, I went back to the completely random tic-tac-toe move code
that ChatGPT generated and modified it so that the selected level of difficulty
would determine how frequently moves are generated randomly.

First, I revised the system prompt to eliminate the description of the levels of dif-
ficulty. Here’s my new prompt:

{
 role: 'system',
 content:
 "You are an AI tic-tac-toe player. You are always
 'O' and I'm always 'X'.\n\nI'll provide you with
 my move as a number on this grid:\n\n0 | 1 | 2\n3
 | 4 | 5\n6 | 7 | 8\n\nYou'll respond with only
 your move, which must not be a number that has
 already been played in the current game.\n\nWhen I say

 'new()' start a new game.",
}

FIGURE 5-13:
GPT-4 is no good

at tic-tac-toe.
ChatGPT

CHAPTER 5 Progressing from Plan to Prototype 135

Then, to start writing the random move functionality, I entered the following
comment at the beginning of the getAIMove() function:

/*
 Use the value of difficulty to decide whether to
 query the API for a move or use a random move.
 If difficulty is 10, always query the API
 If difficulty is 0, always use a random move
 If difficulty is between 0 and 10, use a random move
 10 - difficulty percent of the time
 and use the best move difficulty percent of the time
*/

The modified function I wrote with the help of Copilot is shown in Listing 5-4.

LISTING 5-4: The new getAIMove() Function

async function getAIMove(message) {
 /*
 Use the value of difficulty to decide whether to
 query the API for a move or use a random move.
 If difficulty is 10, always query the API
 If difficulty is 0, always use a random move
 If difficulty is between 0 and 10, use a random move
 10 - difficulty percent of the time
 and use the best move difficulty percent of the time
*/
 let random = Math.random();
 if (random < difficulty / 10) {
 const response = await fetch('http://localhost:3000/chat', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 messages: message,
 }),
 });
 const data = await response.json();
 document.getElementById('message').innerHTML =
 data.response.choices[0].message.content;
 return data.response.choices[0].message.content;
 }

(continued)

136 PART 2 Using AI to Write Code

 let move = Math.floor(Math.random() * 8);
 while (board[move] !== '') {
 move = Math.floor(Math.random() * 8);
 }
 document.getElementById('message').innerHTML = move.toString();
 return move.toString();
}

With this new prompt and function, I could set the difficulty (in the script at first,
and then through the use of a slider input in the HTML) and adjust the percentage
of moves made by GPT-4 versus moves randomly generated in the client
application.

The AI still couldn’t play tic-tac-toe worth a darn, however, even with the diffi-
culty level set to 10.

It may be possible, though better prompting, to get GPT-4 to be good at tic-tac-
toe. Email me at chris@minnick.com if you figure it out!

You can find the complete code for the tic-tac-toe game on this book’s website at
www.dummies.com/go/codingwithaifd.

Tips and Tricks for Code Generation
The results you get from a generative AI model will vary widely, based on your
prompts, the context and input you provide to the model, the specific LLM you
use, the temperature and other settings provided to the model, and more.

As you become more comfortable working with an AI coding assistant, you’ll start
to become more familiar with what it can and can’t do. If you follow certain prac-
tices, however, you can get the LLM to generate good code more reliably. In this
section, I tell you some of the tips and tricks that I’ve found to be most helpful, as
well as a few practices that will end up costing you more time than it’s worth to
use the AI.

I mention and use many of these best practices elsewhere in this book, so consider
this section your handy reference as you’re getting started with AI-assisted
coding.

LISTING 5-4: (continued)

mailto:chris@minnick.com
https://www.dummies.com/go/codingwithaifd

CHAPTER 5 Progressing from Plan to Prototype 137

Don’t stop coding
While AI can generate complete functions, or even working programs, it works
best when you take the lead. Keep your skills up-to-date and use AI as a tool to
help you write more code, rather than as a tool that will write your code for you.
Not only will the AI learn from you and write better code, but you’ll also be able
to fully understand the code you’re writing, which is essential to creating high-
quality software.

Be specific
When prompting a coding assistant to generate code, or when asking a question
about how to do something, be as specific as possible. When you’re exploring an
idea that you don’t yet know how to code, it can be helpful to start with a vague
prompt to generate ideas. But once you understand the problem and the domain,
ask for details.

Think in steps
Complex requests are much more likely to result in unacceptable responses.
Instead, break down every problem into its smallest units. Instead of saying, “How
do I write an Instagram clone?” start with a plan (which you should consider
writing as an SRS) and then with a small piece, such as the new user signup page.

Ask follow-up questions
If you’re unsure about how a piece of generated code works or if a response is
unexpected, ask the AI assistant to clarify, explain, or try again. For example, if a
function generated by the AI doesn’t look quite right to you, but you don’t know
exactly what’s wrong with it, ask the AI to provide several other ways that the
function might be written. Just as you might watch several YouTube videos before
finding the best solution to a problem, having your AI assistant generate options
can be a great way to figure out what will work best. If you don’t like the responses
one AI assistant gives you, try another AI assistant. Or try feeding the code gener-
ated by one AI assistant to another one, asking it to improve the code.

Check the official documentation
Remember that coding assistants are trained on publicly available code, and the
LLM behind the assistant may have a training data cutoff date. As a result, code
generated by an LLM may use deprecated syntax, an older version of a library, or
libraries that are no longer recommended. If a code assistant uses syntax or a

138 PART 2 Using AI to Write Code

library that you’re not familiar with, check the official documentation to make
sure you’re using it correctly.

Use examples and context
Although the latest LLMs have amazing capabilities, they aren’t mind readers. If
you want the output from a request to be in a specific format, give the AI an exam-
ple of that format. If the code you ask the AI to generate will integrate with some
other function or service, provide the relevant information to the AI as context.

Prioritize security
Chatbots and coding assistants may use your input to train the underlying model.
To be certain that no sensitive or personally identifying information will show up
in suggestions given to other users of the LLM, always anonymize sensitive data.
For example, if you ask the AI to summarize a long email, remove or change the
email addresses and names from the email before submitting it as input to an LLM.

Keep learning
Working with a chatbot or a coding assistant is a great way to get answers to cod-
ing questions, but it’s no substitute for staying up-to-date the same way pro-
grammers always have — by talking with other programmers, engaging in online
forums on StackOverflow, Reddit, and Hacker News, watching videos, taking
classes, and reading high-quality books like the one you have in front of you!

Keep your tools updated
AI coding tools are evolving quickly. Make sure that you have the latest version
of whatever tools you’re using. If you learn about a new tool that seems promis-
ing (through any of the sources mentioned in the preceding tip), try it out. If a
new tool or IDE works better for you than the one you’ve been using, consider
switching to it.

Be mindful of AI’s limitations
As you see repeatedly in this book, LLMs aren’t perfect or omniscient. They were
trained on a lot of data and can make predictions based on patterns they find. If
you’re writing code that’s unlike anything the AI has seen before, it will be of little
help to you.

CHAPTER 6 Formatting and Improving Your Code 139

Chapter 6
Formatting and
Improving Your Code

No software developer or team of software developers gets it right the first
time. The software may function perfectly now, but often decisions made
during the writing of the software or in the gradual process of upgrading

the software that will cause problems later on.

In this chapter, you learn how to use AI coding assistants to help clean up
your code.

Using AI Tools for Code Formatting
How your code is formatted and the decisions you make in the design of software
directly affect how maintainable it is and how easy it will be to improve it in the
future. Having good and consistent design and formatting also means that you
don’t need to think as hard to figure out what’s going on in a program. An expe-
rienced programmer can look at blocks of well-written code, even if they’ve never
seen it before, and quickly start to figure out what it does.

IN THIS CHAPTER

 » Using AI for code formatting

 » Refactoring with AI

 » Making your code more readable

 » Making your code more
understandable

140 PART 2 Using AI to Write Code

The first step in making your code more readable is to properly and consistently
indent and format your lines of code and functions. To automate this step, we’ll
be using a simple form of rule-based AI, rather than a language model. Using a
rule-based tool will always be more predictable than using a machine learning
model, and that’s exactly what’s needed for this task.

Rule-based AI systems are the original form of AI. They operate using a list
of conditions (or if-then statements) rather than by making predictions (as
models do).

Setting up your formatting tools
Using a code formatter extension, you can have VS Code format your code as you
work. Many good automated code formatters are available. One popular code for-
matter is Prettier.

Prettier calls itself an opinionated code formatter, which means you’ll have little
control over how Prettier formats your code but it will do it consistently. The ben-
efit to using an opinionated code formatter like Prettier versus one that you must
configure is that anyone who uses Prettier has their code formatted using the
same style, which eliminates the need for standardizing the details of formatting
among the members of a team.

Follow these steps to install and enable the Prettier extension in VS Code:

1. Open the Extensions panel in VS Code and use it to search for and select
Prettier.

Several extensions in the Extensions marketplace have names that start with
prettier. Choose the official one (which should come up first in the results),
which is published by Prettier, as shown in Figure 6-1.

2. Press Ctrl+plus (+), (Command++ in macOS) to open the VS Code Settings
screen.

You can open Settings also by choosing File ➪  Preferences (Code ➪  Settings
in macOS).

3. In the Settings search box, type formatter.

Settings related to code formatting will appear on the Settings page.

4. Under the Default Formatter setting, select Prettier.

5. Scroll down the list of settings and select the boxes next to Editor: Format
on Paste and Editor: Format on Save, as shown in Figure 6-2.

CHAPTER 6 Formatting and Improving Your Code 141

6. Choose File ➪  Auto Save to turn on automatic saving.

Enabling autosave makes VS Code automatically save your files whenever you
navigate to a different tab or when the focus moves away from the current file
(such as when you type in Terminal or switch to a browser window to test
your code).

7. Close the Settings screen.

Congratulations! You now have a code formatter installed. You’ll never need to
worry about whether you use tabs or spaces to indent your code again — a huge
timesaver. Let’s try it out.

FIGURE 6-1:
Installing Prettier.

Prettier

FIGURE 6-2:
Enabling Prettier

and automatic
formatting.

Prettier

142 PART 2 Using AI to Write Code

Using Prettier to automate code formatting
As mentioned, Prettier is opinionated, so you don’t have to do anything to make
use of it except to start coding. When you save a file, Prettier will automatically
and magically format it correctly for you. If the file isn’t automatically formatted,
you’ve made a mistake with not properly closing a function or statement. At that
point, you might want to use your AI coding assistant to locate and fix the problem
rather than manually count and match up braces and parentheses.

One particularly difficult type of code to format correctly is a nested callback func-
tion. Writing server-side JavaScript with Node.js used to require extensive use of
functions passed to other functions, and so on and so on, which creates a nearly
undecipherable mess of code often referred to as “callback hell.” Fortunately,
Node.js developers no longer have to write these nested callbacks (due to abstracted
ways of writing them, such as promises and async functions). However, if you’re
a Node.js developer, there’s no getting around having to work with legacy code
that includes nested callbacks.

To test out Prettier and Copilot for formatting and fixing nested callbacks, you
need to download the code for Chapter 6 from this book’s website (www.dummies.
com/go/codingwithaifd) if you haven’t done so already. Next, open the nested.js
file in the Chapter 6 folder. This code includes a few missing parentheses and
curly braces, which will prevent Prettier from being able to format it correctly.

Figure 6-3 shows the unformatted and invalid code.

Surely no one would ever purposefully write something like this, right? However,
you might need to debug code that’s been minified, which is the process of

FIGURE 6-3:
A mess of

unformatted
code containing

syntax errors.
Prettier

https://www.dummies.com/go/codingwithaifd
https://www.dummies.com/go/codingwithaifd

CHAPTER 6 Formatting and Improving Your Code 143

removing unnecessary characters (such as comments and whitespace) so that the
code takes up less space. If minified code contains an error, your code formatter
won’t be able to properly parse it.

Prettier does attempt to give you a clue as to the problem. Click Prettier in the
bottom-right corner of VS Code. A window opens and displays a list of problems
encountered while trying to format the code, as shown in Figure 6-4. If you don’t
see the Prettier link in the bottom toolbar, right-click the toolbar and select Pret-
tier from the list of status bar links.

The errors reported by Prettier are usually not immediately helpful, however. For
example, Prettier indicates that there’s an unexpected token. This could mean
that the code has an extra character or a missing character, but you still need to
search through the code and figure out exactly what “token” is the problem.

A better way to find the problem that’s preventing this code from working and
being formatted is to ask an AI assistant to do it for you. Follow these steps:

1. Open the incorrectly formatted and invalid code in VS Code.

2. Make a backup of your code by copying it to another file.

It’s impossible to know what an AI tool will do before trying it, so it’s essential to
have a way to get back to how the code was before you applied the brush.

You could also commit the code to your source code repository immediately
before using any tools in the Brushes panel. Alternatively, you can simply undo
the changes made by Copilot by pressing Ctrl+Z.

3. Select the entire code block, and then right-click inside it and choose
Copilot ➪  Fix This, as shown in Figure 6-5.

FIGURE 6-4:
Viewing

problems Prettier
discovered.

Prettier

144 PART 2 Using AI to Write Code

Copilot lists the errors it found and shows you the changes it proposes making,
as shown in Figure 6-6. In my case, Copilot indicates that parentheses are
missing and two variables are unused. It also shows the prompt that it
wrote to fix the code.

4. Since we’re concerned only with syntax errors (the missing parentheses)
at this point, delete the parts of the prompt that deal with the unused
variables and click the regenerate icon (circular arrow).

This time, Copilot fixes just the syntax errors, as shown in Figure 6-7.

5. To apply the changes to your code, click Accept.

FIGURE 6-5:
Asking Copilot to

fix your code.
Microsoft Corporation

FIGURE 6-6:
Copilot

suggests fixes.
Microsoft Corporation

CHAPTER 6 Formatting and Improving Your Code 145

The next thing we need to find out is whether Copilot changed anything else in the
code while it was fixing the issue. In the files you downloaded from the book’s
website, the nested-clean.js file is a known good version of the code. I fixed the
issues in this file by hand and verified that the code works. To find out if Copilot
changed anything in the code while fixing the bugs, you can compare the code
Copilot fixed with this known good file.

To automate comparing the files, you can use the file comparison tool built into
VS Code. File comparison tools are commonly known as diff tools, because they
check for differences. Follow these steps to use VS Code’s diff tool:

1. In File Explorer in VS Code, click nested-clean.js and then hold down the
Ctrl key (Windows) or the Command key (on macOS) and click nested.js.

Both files are selected.

2. Right-click the selected files and choose Compare Selected from the
menu, as shown in Figure 6-8.

The diff panel appears, as shown in Figure 6-9.

If the diff panel doesn’t show any differences between the two files, you know that
Copilot solved the problems with the code and didn’t change the code in any other
way. If the two files are different, look at the differences and determine whether
you need to fix them. It’s possible that the two files differ in unimportant ways,
such as line breaks. If the differences are significant, fix them manually or revert
to your copy of the code and try using Copilot to fix the errors again.

FIGURE 6-7:
Copilot fixed the

syntax errors.
Microsoft Corporation

146 PART 2 Using AI to Write Code

FIGURE 6-8:
Selecting files

to compare.
Microsoft Corporation

FIGURE 6-9:
The diff panel

in VS Code.
Microsoft Corporation

CHAPTER 6 Formatting and Improving Your Code 147

Knowing when to use AI tools versus a traditional rule-based tool is just as impor-
tant as knowing how to use AI tools. Because you can’t ever fully trust the output
from a machine learning model, if you want certainty (as in the case of checking
for differences between files), use a rule-based tool.

Refactoring with AI
Programmers call the process of going back into a program to make changes
that improve the structure of the program without changing the functionality
refactoring. Refactoring is an essential process in the lifecycle of software. In this
section, you learn how AI tools can help to identify potential issues in your
programs that can benefit from refactoring and then how to use AI to help fix
those issues.

Recognizing code smells
A code smell, as defined by software development gurus Kent Beck and Martin
Fowler, is “a surface indication that usually corresponds to a deeper problem in
the system.” No one wants smelly code.

Most code smells are the result of novice programmers or rushed coding. As men-
tioned, you should think of your AI coding assistants as interns. Your coding
intern will make many mistakes due to their inexperience and their lack of knowl-
edge about your expectations. AI is no different. In fact, it’s likely that AI coding
assistants will write more bad code more consistently than a junior programmer
because all it knows or can know is the open-source software it was trained on,
which may not always be of the highest quality.

Many of the code smells listed in this section are described in more detail in
Martin Fowler’s classic book Refactoring, 2nd Edition (Addison-Wesley).

A bad smell in your code, like a bad smell in the bottom drawer of the refrigerator
from vegetables left too long, can quickly lead to rot. Code rot is the process
whereby your code degrades over time, and small problems in the design or
implementation of previously written code start to affect how productive you and
your team can be moving forward.

148 PART 2 Using AI to Write Code

Code smells don’t necessarily have to be fixed immediately, but they can be indi-
cators that something larger is wrong that does need fixing. Code smells are
grouped into the following categories:

 » Dispensables

 » Bloaters

 » Abusers

 » Couplers

 » Change preventers

I explain each of these categories in the following sections.

Dispensables
Dispensable code smells are unnecessary code that should be removed from your
source code. Examples of dispensables include the following:

 » Comment: Comments are necessary in any source code, but they should be
necessary and useful. Specifically, comments should explain why your code is
the way it is, rather than how the code works. The code itself should be easy
enough to read to explain the how.

 » Duplicate code: Duplicate code often makes its way into code because you
(or another programmer working on the code) were in a hurry or as a result
of a lack of communication.

 » Lazy class: Functions or classes that don’t do much in a program may be
better off being combined into other code. For example, if you have a function
that formats a date string in a particular format and is used by only one other
function, it’s better to combine the date string function with the function
where it’s used.

 » Dead code: Dead code may have had a purpose at one point but not now.

 » Oddball solution: When you have two solutions to the same problem in your
code, one of those solutions is an oddball solution and should be eliminated.

Bloaters
Bloaters are places in your code where the size of a function or other unit of
code is much bigger than it should be. Bloaters generally happen over time as
requirements are added and a program ages. Examples of bloaters include the
following:

CHAPTER 6 Formatting and Improving Your Code 149

 » Large class or method: A single class or function in a program should do
only one thing. When a class starts having more than one purpose, it’s a
good indicator that it should be broken apart into multiple classes.

 » Long parameter list: A function that takes a large number of parameters
is difficult to read and may be unnecessarily complex. A large number of
parameters may indicate that the function is trying to do too many things.

 » Primitive obsession: Primitive variables hold single values rather than
references to multiple values (as in the case of objects or arrays). A large
number of primitive variables in a function may indicate that they can be
combined into an object. For example, if you have primitives for firstName,
lastName, streetAddress, state, and so forth, consider whether they should
be combined into a single object (perhaps named user or customer).

Abusers
Abusers (often referred to as object-orientation abusers) are situations where
solutions don’t take full advantage of the possibilities of good software design
practices. For example:

 » Switch statement: A switch statement is often preferred over a complex
if/else statement. However, overdependence on the use of switch statements
may indicate that a developer is relying on less-than-optimal coding practices.

 » Temporary field: A temporary field is a variable in a class or function used
only under certain circumstances. It may be better to extract the variable into
a separate class.

 » Conditional complexity: This code smell is similar to the switch statement
one. A large block of conditional code, such as a large chain of if/else state-
ments, indicates that the code may be unnecessarily complex.

Couplers
Couplers are code smells that happen when code is too tightly interdependent.
Coupling software too tightly makes it more difficult to change it in the future.
Examples of couplers include the following:

 » Inappropriate intimacy: In this coupler, a method depends too much on the
implementation details of another method or class.

 » Indecent exposure: Indecent exposure occurs when a class exposes its
internal details, violating the principle of encapsulation.

150 PART 2 Using AI to Write Code

 » Feature envy: A method that accesses the data of another object more than
its own is said to have feature envy.

 » Message chain: A message chain occurs when one object requests another
object which requests another, and so on. Message chains may create
unnecessary dependencies between objects.

 » Middleman: A middleman is a class that exists only to delegate work to
another class. When this is the case, consider eliminating the middleman.

Change preventers
Change preventers are smells that hinder change. Examples of change preven-
ters are

 » Divergent change: This smell occurs when a class requires many changes in
response to changes outside itself.

 » Shotgun surgery: This one occurs when multiple classes require small
changes in response to a change.

Additional categories of code smells
In addition to the code smells just described, there are many other categories of
code smells that you should be aware of, including the following:

 » Global data: While it’s a myth that all global data is a code smell, the presence
of a large amount of data in the global scope may indicate a larger problem.
Global variables are a cause of other code smells.

 » Magic number: A magic number is hard-coded into a program and difficult
for anyone except the creator of the software to decipher.

 » Inconsistent name: You should have conventions regarding how to name
things such as functions, classes, and variables. The conventions you use don’t
matter as much as being consistent.

 » Uncommunicative name: Meaningless variable names are an easy code
smell to prevent if you take your time when defining the variables. A good
practice is to always name variables using multiple words. For example, name
is a smelly variable name, but firstName is much more communicative.

 » Type embedded in name: Examples of variable names that exhibit this type
of smell include quantityInt and priceInt. This bad practice can lead to code
that’s difficult to change. For example, if you use these variable names in an
app for a sandwich store, what happens when the owner of the store decides

CHAPTER 6 Formatting and Improving Your Code 151

to start selling half sandwiches or increases the price by 25 cents? You can
simply update the variable’s type to allow for decimals, but updating every
instance of the variable name in your program may require changes in many
different places.

Detecting code smells with Copilot
Code smells are typically identified during a process called a code review. In this
section, you use AI to do a quick code review.

It’s common for AI-generated code to contain bad coding practices and code
smells. Because AI code assistants don’t really know how to code, every mistake
made in their training data may show up in response to your prompts about cod-
ing. On the positive side, however, large language models also have information
about how to code correctly, even if they don’t always do it themselves.

One way to use AI to check for code smells is to use the GitHub Copilot Chat fea-
ture. Follow these steps:

1. Open the code you want to check in VS Code, along with any related files
(and the SRS if you have one).

I’m going to use the tic-tac-toe game from Chapter 5.

2. Clicking the Chat icon in the left panel of VS Code.

The Copilot chat window appears.

3. Enter the following prompt into Copilot Chat:

Does this program contain any code smells?

List and explain them.

In response to my prompt, Copilot returns a list of three code smells it said may
be present in the tic-tac-toe game:

 » Magic number: The program sets an initial value for the level of difficulty
using the following statement:

let difficulty = 10;

Copilot is correct in saying that this is a magic number.

 » Long function: Copilot suggests that the startNewGame() function may be a
long function because it’s doing several things. Again, Copilot is correct.

152 PART 2 Using AI to Write Code

 » Global data: At the beginning of the program, several global variables are
declared. The program might be made more robust by declaring these inside
a function or a class instead.

Copilot’s full initial response is shown in Figure 6-10.

Any language model’s responses contain a certain amount of randomness, so it’s
often helpful to ask the same question more than once. Before asking Copilot to
review my code again, I cleared the preceding prompt and response by clicking the
Clear button at the top of the Copilot chat window, as shown in Figure 6-11.

The second time I prompted Copilot, it came back with the same three code smells
it had detected previously, plus a new one. The fourth problem it detected, cor-
rectly, is a lack of comments. Copilot’s explanation of the comments code smell is
shown in Figure 6-12.

FIGURE 6-10:
Using Copilot

Chat to
review code.

GitHub, Inc.

FIGURE 6-11:
Clearing the

previous chat.
GitHub, Inc.

CHAPTER 6 Formatting and Improving Your Code 153

Just to see what would happen, I asked Copilot one more time. This time, it came
back with five code smells, four of which it said the code didn’t have. It did pro-
duce one new issue worth looking into: inconsistent naming. Figure 6-13 shows
Copilot’s response about the inconsistent naming issue.

Refactoring safely
Refactoring your code has the potential to cause new problems. For this reason,
it’s important to proceed slowly and carefully and to keep proper backups at every
point in the process so that you can undo your work.

The best way to keep a history of changes you make is to use a version control
system, to make changes to the code in a new branch of the repository, and to fully
test your code after making changes and before merging it back into the main
branch of your repository.

FIGURE 6-12:
Copilot detected

that my code
lacks comments.

GitHub, Inc.

FIGURE 6-13:
Copilot pointed

out the
inconsistent

naming in the
program.

GitHub, Inc.

154 PART 2 Using AI to Write Code

The most common version control system among programmers is Git. Using Git is
beyond the scope of this book, but you can find an excellent (and free) book about
Git at https://git-scm.com/book/en/v2.

Generating Refactoring Suggestions
Once you’ve found issues in your code that are in need of refactoring, the next step
is to figure out what to do about them. Here is the current list of potential issues
that Copilot detected in the tic-tac-toe game:

 » Long function

 » Magic numbers

 » Inconsistent naming

 » Lack of comments

 » Global data

In addition to these problems, another issue I want to deal with that wasn’t
flagged by Copilot is that the event listeners are set using inline event listeners in
the HTML file. While this approach works, it’s a best practice to set event listeners
in JavaScript by using the addEventListener() function.

Several of these issues overlap. For example, the magic number issue (where
difficulty is set to 10 at the beginning of the code) is linked to the lack of com-
ments (a comment could indicate what I mean by difficulty and 10). However, I will
address each issue independently and see what suggestions Copilot Chat has for
fixing them.

Setting event listeners correctly
Asking AI for help with correctly setting event listeners presents a problem, which
I suspect is the same reason why the AI didn’t flag this as an issue in the first
place. The problem is that this refactor will involve changes to more than one file.
Copilot takes other files into consideration when generating suggestions for the
file you’re currently working on, but it might not suggest changes to other files to
fix a problem in the current file.

I know how I would approach fixing this issue, but I want to see how Copilot
would approach the problem. With index.html open in VS Code and the JavaScript
file open in another tab, I prompt Copilot Chat with the following:

https://git-scm.com/book/en/v2

CHAPTER 6 Formatting and Improving Your Code 155

How can I set the event listeners inside script.js
rather than inside the HTML?

The code portion of the response, shown in Figure 6-14, was exactly what
I needed.

I implemented the suggestion. My program still works as expected, so I check my
code into the repository and am ready to move on to the next problem.

Just as it can be beneficial to ask another coder how they would approach a prob-
lem that you already have an answer to, prompting AI can sometimes give you a
different perspective or bring something new to your attention.

Removing the magic number
After its response regarding the event listeners, Copilot generated the following
follow-up question:

How can I refactor my code to remove the magic number?

FIGURE 6-14:
Copilot’s

suggestion for
refactoring the
event listeners.

GitHub, Inc.

156 PART 2 Using AI to Write Code

I agree with Copilot that fixing this issue next would be a good idea. To see
what solution Copilot would generate, I clicked the suggested prompt. Copilot’s
response seems reasonable, as shown in Figure 6-15.

I implemented the solution and can now move on to the next issue.

Reducing global data
Copilot’s suggestion for eliminating the global data is to encapsulate the data and
functionality of the game into a class. It even provides the necessary code for me
to start to implement this solution myself, as shown in Figure 6-16.

Copilot’s suggestion wasn’t quite right, however, because it didn’t include the fact
that the startNewGame() function needs to be an async function. But during the
implementation of the solution, it did start out by suggesting the correct code for
the startNewGame() function, as shown in Figure 6-17.

After seeing Copilot’s initial code, I got too confident in it and ended up trusting
and accepting each of Copilot’s suggestions to see if it would rewrite the program
as a class correctly. It didn’t.

I restored my last known working code and tried it again, but this time I disabled
Copilot and did the conversion to a class myself.

FIGURE 6-15:
Copilot’s

suggestion for
fixing the magic

number.
GitHub, Inc.

CHAPTER 6 Formatting and Improving Your Code 157

I’m purposefully making mistakes here so you don’t have to! Check every sugges-
tion from GenAI carefully, and don’t accept a suggestion blindly without under-
standing and approving it.

Fixing long functions
The startNewGame() function has more than one purpose. It currently resets the
global variables, resets the tic-tac-toe grid, sends a message to the OpenAI API to

FIGURE 6-16:
The start of the
solution to the

global data.
GitHub, Inc.

FIGURE 6-17:
Copilot seemed
to write most of

the code
correctly.

158 PART 2 Using AI to Write Code

tell it to start a new game, and writes the server’s response to the screen before
returning the response.

I asked Copilot chat to fix the startNewGame() function so that it didn’t have too
many tasks. The solution it came back with was to break up startNewGame() into
three functions, but its solution discarded the most important part of the func-
tionality of startNewGame(), which is the starting of a new game.

I then posed the same question to GPT-4, which gave me a much better
suggestion for how to break apart the function. The code GPT-4 generated for
startNewGame() simply invokes three other functions, like this:

async startNewGame() {
 this.resetGameState();
 this.clearBoardDisplay();
 await this.postNewGameMessage();
}

If one language model isn’t giving you the results you want, try another. If neither
one is of any help, you may need to change your prompt or break the task into
smaller pieces.

Fixing inconsistent naming
I had high hopes for how a language model might improve my naming of variables
and functions. I prompted Copilot with the following:

How can I refactor this program to make the
naming consistent?

The AI responded with several general tips and best practices and three concrete
suggestions, as shown in Figure 6-18. I agreed with two of the three suggestions
and implemented them, and then I asked the question again.

The second time I asked, it returned two different suggestions. I agreed with one
of them and implemented it, and then asked the question again. The third time, it
returned the same advice regarding best practices but then suggested that I
rename two variables that it had already given suggestions for (but with different
and, in my opinion, worse suggestions). It seemed I had hit the point of diminish-
ing returns with my repeated questioning.

My next action was to look through the code and see if there were any additional
names that I thought could be improved. I decided that the remaining names were
all adequate.

CHAPTER 6 Formatting and Improving Your Code 159

If you ask a leading question, such as “What’s wrong with my code?” or “How can
I fix my code?” a language model will often respond with an answer that assumes
something is wrong with your code rather than telling you that there isn’t any-
thing wrong with it. It doesn’t hurt to ask, but trust your own judgment in the end.

Lack of comments
The final thing I wanted Copilot’s help with was the documentation and
comments in my program. Since I already knew that the program needed more
documentation, I decided to try Copilot’s generate docs tool.

I selected the first method in my class, right-clicked it, and chose Copilot ➪
Generate Docs. Copilot wrote a description of the method, but it used an incorrect
symbol to mark it as a comment and was wordy and repetitive, as shown in
Figure 6-19.

FIGURE 6-19:
Copilot Labs

failed at its first
documentation

attempt.

FIGURE 6-18:
Generating tips

for making
names consistent

in the program.
GitHub, Inc.

160 PART 2 Using AI to Write Code

On my second attempt, Copilot did a better job but still didn’t correctly mark the
text as a comment. I switched to Copilot Chat and asked the following:

Write JSDoc comments for this program.

The sample code it came back with was in JSDoc format, but it wasn’t what
I would consider adequate.

For my third attempt, I went through my program and started a code block before
each of the functions and started typing my own comments to see what sugges-
tions Copilot would give me. This approach gave me the best results of the three
approaches by far.

The more help you give the AI, the more it can help you.

Making AI play tic-tac-toe better
The last issue I wanted to deal with in the program was to see if Copilot could give
me suggestions for how to make GPT-4 better at playing tic-tac-toe. I opened the
file containing the Node.js program that interacts with GPT-4 and prompted
Copilot with the following:

How can I modify my prompt to GPT-4 to make it be
better at playing tic-tac-toe?

Copilot suggested using the following prompt:

You are a highly skilled AI trained to play tic-tac-toe.
You are playing against a human opponent. Your goal is
to win or draw the game. You are expected to make
optimal moves based on the current state of the game
board. The board positions are numbered from 0 to 8,
starting from the top left corner and going to the
right and then down. The board is represented as a list
of nine elements, each of which can be "X", "O", or ""
(for an empty space).

Excited to finally play to a draw against the AI, I implemented the suggestion and
started the server and the client.

My AI opponent still wasn’t any good at playing tic-tac-toe, and I won every game
no matter how hard I tried to lose. Darn.

CHAPTER 6 Formatting and Improving Your Code 161

At this point, I felt good about the refactoring that I’d been able to do, if not
about AI’s capability to play tic-tac-toe. The complete program is shown in
Listing 6-1.

LISTING 6-1: The Refactored Tic-Tac-Toe Game

class TicTacToeGame {

 constructor(difficulty = 10) {

 this.DEFAULT_DIFFICULTY = difficulty;

 this.board = ['', '', '', '', '', '', '', '', ''];

 this.currentPlayer = 'X';

 this.isGameOver = false;

 this.messageHistory = [];

 this.difficulty = this.DEFAULT_DIFFICULTY;

 this.init();

 }

 /**

 * Initialize the game by adding event listeners

 to the DOM

 */

 init() {

 document.addEventListener('DOMContentLoaded', (event) => {

 let cells = document.querySelectorAll('.cell');

 cells.forEach((cell, i) => {

 cell.addEventListener('click', () => this.makeMove(i));

 });

 document

 .getElementById('start')

 .addEventListener('click', () => this.startNewGame());

 });

 let slider = document.getElementById('slider');

 document.getElementById('difficulty').innerHTML =

 'Level of difficulty: ' + slider.value;
 slider.addEventListener('change', (e) => {

 document.getElementById('difficulty').innerHTML =

 'Level of difficulty: ' + e.target.value;
 this.difficulty = e.target.value;

 });

 }

 /**

 * Start a new game by resetting the game state

 and clearing the board

 * Then post a new game message to the server

 */

(continued)

162 PART 2 Using AI to Write Code

 async startNewGame() {

 this.resetGameState();

 this.clearBoardDisplay();

 await this.postNewGameMessage();

 }

 /**

 * Reset the game state

 */

 resetGameState() {

 this.board = ['', '', '', '', '', '', '', '', ''];

 this.currentPlayer = 'X';

 this.isGameOver = false;

 this.messageHistory = [{ role: 'user', content: 'new' }];

 }

 /**

 * Clear the board display

 */

 clearBoardDisplay() {

 document.querySelectorAll('.cell').forEach((cell) => (cell.innerHTML = ''));

 }

 /**

 * Post a new game message to the server

 */

 async postNewGameMessage() {

 try {

 const response = await fetch('http://localhost:3000/chat', {

 method: 'POST',

 headers: { 'Content-Type': 'application/json' },

 body: JSON.stringify({ messages: this.messageHistory }),

 });

 const data = await response.json();

 this.updateMessageDisplay(data.response.choices[0].message.content);

 } catch (error) {

 console.error('Failed to post new game message:', error);

 this.updateMessageDisplay('Error starting a new game. Please try again.');

 }

 }

 /**

 * Update the message display

 * @param {string} message

 */

 updateMessageDisplay(message) {

 document.getElementById('message').innerHTML = message;

 }

LISTING 6-1: (continued)

CHAPTER 6 Formatting and Improving Your Code 163

 /**

 * Make a move on the board

 * @param {number} index

 */

 makeMove(index) {

 if (this.board[index] === '' &&; !this.isGameOver) {

 this.board[index] = this.currentPlayer;

 document.getElementsByClassName('cell')[index].innerHTML =

 this.currentPlayer;

 this.messageHistory.push({ role: 'user', content: index.toString() });

 if (this.checkWin()) {

 alert(this.currentPlayer + ' Wins!');
 this.isGameOver = true;

 return;

 }

 if (this.checkDraw()) {

 alert('Draw!');

 this.isGameOver = true;

 return;

 }

 this.aiMove(); // Player is X, AI is O

 }

 }

 /**

 * Check whether someone has won the game

 * @returns {boolean}

 */

 checkWin() {

 const winCombos = [

 [0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [0, 3, 6],

 [1, 4, 7],

 [2, 5, 8],

 [0, 4, 8],

 [2, 4, 6],

];

 return winCombos.some((combo) => {

 return (

 this.board[combo[0]] &&;

 this.board[combo[0]] === this.board[combo[1]] &&;

 this.board[combo[0]] === this.board[combo[2]]

);

(continued)

164 PART 2 Using AI to Write Code

 });

 }

 /**

 * Check whether the game is a draw

 * @returns {boolean}

 */

 checkDraw() {

 return this.board.every((cell) => cell !== '');

 }

 /**

 * Make a move for the AI

 */

 async aiMove() {

 let move = await this.getAIMove(this.messageHistory);

 this.messageHistory.push({ role: 'assistant', content: move.toString() });

 console.log(move);

 this.board[move] = 'O';

 document.getElementsByClassName('cell')[move].innerHTML = 'O';

 if (this.checkWin()) {

 alert('O Wins!');

 this.isGameOver = true;

 }

 }

 /**

 * Get a move from the AI

 * @param {array} message

 * @returns {string}

 */

 async getAIMove(message) {

 /*

 Use the value of difficulty to decide whether to

 query the API for a move or use a random move.

 If difficulty is 10, always query the API

 If difficulty is 0, always use a random move

 If difficulty is between 0 and 10, use a random move

 10 - difficulty percent of the time

 and use the best move difficulty percent of the time

 */

 let randomNumber = Math.random();

 if (randomNumber < this.difficulty / 10) {

 const response = await fetch('http://localhost:3000/chat', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 },

LISTING 6-1: (continued)

CHAPTER 6 Formatting and Improving Your Code 165

 body: JSON.stringify({

 messages: message,

 }),

 });

 const data = await response.json();

 let messageElement = document.getElementById('message');

 messageElement.innerHTML = data.response.choices[0].message.content;

 return data.response.choices[0].message.content;

 }

 let randomMove = Math.floor(Math.random() * 8);

 while (this.board[move] !== '') {

 randomMove = Math.floor(Math.random() * 8);

 }

 document.getElementById('message').innerHTML = move.toString();

 return randomMove.toString();

 }

}

// Create a new game

new TicTacToeGame();

CHAPTER 7 Finding and Eliminating Bugs 167

Chapter 7
Finding and
Eliminating Bugs

The term debugging as it relates to computers dates back to Admiral Grace
Hopper, who worked at Harvard University in the 1940s. A colleague of
hers found a moth stuck in a computer that was keeping it from working

correctly, and she remarked that they were “debugging” the system.

Although glitches in mechanical systems were called bugs as early as 1887, when
Thomas Edison used the term, Grace Hopper is attributed with introducing the
term as it relates to computers and computer programming.

Today, you’re much less likely to encounter physical bugs that will keep your pro-
grams from working correctly, but these defects in your code are still just as pesky
and sometimes as difficult to spot.

In this chapter, you learn how to use AI tools to assist you with the process of
debugging your code.

IN THIS CHAPTER

 » Finding, identifying, and
reporting bugs

 » Using Lint to prevent bugs

 » Using AI to find bugs

 » Verifying automated bug fixes

168 PART 2 Using AI to Write Code

Knowing Your Bugs
Before you can remove bugs from code, you need to locate them, identify them,
and document them. In this section, you discover how to perform all three tasks.

Strategies for detecting bugs
Many different methods are used to detect bugs in software. The most effective
strategies for detecting bugs are

 » Code reviews: Reviewing code with peers on a regular basis often catches
problems that a single developer working alone can’t. Performing code
reviews with an AI assistant is covered in Chapter 6.

 » Automated testing: Automated testing makes sure that new functionality
doesn’t break existing code. This type of testing helps detect software errors
early in the development cycle. Automated testing with AI assistance is
covered in Chapter 9.

 » Static code analysis: Static code analysis analyzes your code as you write it.
I cover static code analysis in the “Preventing Bugs with Linting” section in this
chapter.

 » Debugging tools: Debugging tools allow developers to step through and
inspect code and variables while a program is running. They’re essential to
figuring out the root causes of a bug. AI-assisted debugging is covered in the
“Detecting Bugs with AI” section of this chapter.

 » Logging and monitoring: Logging of errors and performance monitoring
provide software developers with detailed information about how well the
software runs after it’s deployed to a production environment.

Identifying common types of bugs
Earth contains an estimated 6 to 10 million different types of bugs, which make up
90 percent of animal forms. Fortunately, software bugs don’t come in nearly as
many different varieties and, in most cases, aren’t as omnipresent.

The most commonly occurring types of software bugs follow:

 » Syntax errors are incorrect or missing characters in the code that prevent the
program from compiling or running.

 » Runtime errors don’t prevent the program from compiling but will cause it
to crash.

CHAPTER 7 Finding and Eliminating Bugs 169

 » Functional bugs happen when something in the software doesn’t operate as
intended, such as a search box that doesn’t search.

 » Logical bugs are issues related to the business logic and are generally the
result of poorly written code, such as a value assigned to the wrong variable.

 » Workflow bugs have to do with the user’s navigation of the software
application. One example of a workflow bug is a link that doesn’t bring a user
to the correct page on a website.

 » Unit-level bugs are simple, easy-to-fix bugs contained in a single unit of code.
An example of a unit-level bug is a problem with the input validation for an
email address field.

 » System-level integration bugs are more complex bugs in which individual
units of code each function correctly but behave unexpectedly when working
together. This type of bug can be difficult and time-consuming to track down
and fix. For example, if two software components expect different data
formats, they might not be able to exchange data correctly.

 » Out-of-bound bugs are issues that happen as a result of a user interacting
with the software’s user interface in an unintended way, such as a user
entering in an input field a larger value than the system expects.

 » Security bugs are problems that make the software vulnerable to mali-
cious attacks or to another type of risk, such as exposing user data to
unauthorized users.

Although security bugs might not prevent normal usage of the software, they’re
the highest priority bugs and should be fixed immediately.

CAN YOU WRITE BUG-FREE SOFTWARE?
Most coding bugs result from what we used to refer to as human error. With the advent
of AI-assisted coding, AI assistants might be just as likely to be the cause of bugs. All
software of any complexity has bugs. The aim to create bug-free software is unrealistic
and will lead to missed deadlines and cost overruns.

Some of the most famous projects failed because of impossible quality requirements. For
example, the Federal Aviation Administration’s project to write new air traffic control soft-
ware in the 1980s and 1990s was originally proposed as a project that would start in 1982
and be completed in 1996 at a cost of $2.5 billion. By the time the project was canceled in
1994, the cost estimate had risen to $7 billion and segments of the project were behind
schedule by as much as 8 years. One of the many causes for the project’s failure was that
the FAA demanded 99.99999% reliability, which was considered by many to be unrealistic.

170 PART 2 Using AI to Write Code

AI-assisted bug reporting with Jam
Bug reporting is how software developers and software development teams
document and track bugs and potential bugs with software. Bug reports typically
describe the current functioning of some aspect of the software and how it should
perform.

Following are some characteristics of a good bug report:

 » Contains visual evidence of the defect

 » Has sufficient detail for a developer to be able to reproduce the conditions
that led to the bug report

 » Describes only one bug, rather than lumping several issues together

 » Is filed in a standard and defined way (such as through a bug tracker)

The quality of a bug report often depends on the reporter’s level of experience
with the software, how much time they take to accurately describe the issue, and
their writing ability. AI-assisted debugging tools can help users and testers
accurately describe an issue and can help developers to reproduce and even fix
reported bugs.

Jam (https://jam.dev) is a Chrome browser extension that simplifies the process
of reporting a bug on websites and web applications. It integrates with an AI
chatbot to provide developers with additional information about how to resolve
the bug.

To start using Jam, go to https://jam.dev/jamgpt and install the browser
plug-in. Next, click the Jam icon that appears in your browser to display the screen
shown in Figure 7-1.

To start reporting a bug on any website you visit, you can capture a screenshot,
record a video of the active browser tab or your desktop, and use the instant replay
feature, which attaches a screen capture of your most recent interactions with the
active browser tab.

Bug reports created using Jam can be shared in several ways, including using a
link, via email, or as an issue in a GitHub repository. In Figure 7-2, I am creating
a bug report in the repository for one of my websites.

Once you have used the Jam extension to create a bug report, you can open the
report on the Jam website or send the bug report to one of the platforms Jam
integrates with, such as GitHub, Asana, Jira, or Slack.

https://jam.dev/
https://jam.dev/jamgpt

CHAPTER 7 Finding and Eliminating Bugs 171

Jam provides several types of data about the conditions in the browser when the
bug was reported, including what actions the user took, what network requests led
to the screen where the bug was reported, and information about the user’s web
browser and operating system, as shown in Figure 7-3.

The JamGPT tab, on the right side of the screen, gives you access to a chatbot that
can access all the information about the bug report. When you open the JamGPT
tab, the chatbot asks if you’d like it to analyze the bug report and make recom-
mendations, as shown in Figure 7-4.

FIGURE 7-1:
Reporting a bug

with Jam.
JamGPT

FIGURE 7-2:
Creating a bug

report and
opening a

GitHub issue.
JamGPT

172 PART 2 Using AI to Write Code

After you ask JamGPT to help, it analyzes the bug report and suggests a possible
fix. JamGPT can’t make the fix for you, but its suggestions may be helpful in locat-
ing the problem, as shown in Figure 7-5.

FIGURE 7-3:
Debugging

with Jam.
JamGPT

FIGURE 7-4:
JamGPT offers

to help you.
JamGPT

CHAPTER 7 Finding and Eliminating Bugs 173

Preventing Bugs with Linting
Since debugging can be a frustrating and time-consuming process, it’s a good idea
to do everything you can do to eliminate the need for debugging in the first place.

In Chapter 6, you use Prettier to automatically format your code. Formatting your
code in a consistent way is an important step in writing quality code, but it’s far
from the only thing you can do to reduce the need for debugging.

In Chapter 1, you learn about static code analysis tools, which are also known as
linters. Most linters work in a similar way to code formatter tools. They use a list
of rules to check your code before you compile or run it. Whereas code formatters are
concerned with the tabs, spaces, and line breaks in your code, linters are concerned
with the syntax of your code and your adherence to good coding conventions.

Debugging fixes problems that occur while your code is running. Linting fixes
problems in your code that exist when the code isn’t running (which is why linters
are a static code analysis tool). Ideally, linting can eliminate the need for debugging.

Installing a linter
The most popular linter for JavaScript code is ESLint. Follow these steps to install
and try out ESLint.

FIGURE 7-5:
JamGPT suggests

possible
solutions.

JamGPT

174 PART 2 Using AI to Write Code

1. If you haven’t done so already, download the code for Chapter 7 from this
book’s website at www.dummies.com/go/codingwithaifd.

2. Start VS Code and then open the chapter07 folder.

3. Open a new terminal window in VS Code by choosing Terminal  ➪   New
Terminal.

4. Enter cd chapter07/react-linting-demo to change the working directory to
the react-linting-demo folder.

The react-linting-demo folder contains a project written in React that already
has ESLint installed.

5. Enter npm install in the terminal window to install the dependencies of
the React project, including ESLint.

6. Enter npm run lint in the terminal window.

ESLint analyzes all the JavaScript files in your project and displays a report of
the errors it found, as shown in Figure 7-6.

If you don’t know JavaScript or React, some of the errors reported by ESLint won’t
make much sense. But fear not! Understanding React and JavaScript isn’t impor-
tant to understanding how to use a linter and how to extend the capabilities of a
linter with AI.

Installing the ESLint extension
To make VS Code highlight errors in your code reported by ESLint, you need to
install the ESLint extension. Follow these steps:

1. In VS Code, click the Extensions icon on the left to open the Extensions
panel.

2. In the search field at the top of the Extensions panel, search for ESLint.

FIGURE 7-6:
ESLint reports on

errors it found
in your code.

Microsoft Corporation

https://www.dummies.com/go/codingwithaifd

CHAPTER 7 Finding and Eliminating Bugs 175

The first result when you enter ESLint should be the official ESLint extension
from Microsoft, as shown in Figure 7-7.

3. Click the Install button for the ESLint extension.

4. Return to the tab for the App.js file.

Now that the ESLint extension is installed, the errors reported by ESLint will be
underlined with red squiggly lines, as shown in Figure 7-8.

FIGURE 7-7:
The ESLint VS

Code extension.
Microsoft Corporation

FIGURE 7-8:
The ESLint
extension
highlights

linting errors.
Microsoft Corporation

176 PART 2 Using AI to Write Code

As far as I know, the technical term for red squiggly lines is red squiggly lines. I’ve
never heard anyone refer to them by any other name.

Fixing your code with a linter
After ESLint reports the errors it finds, it includes a message saying that some of
the errors are potentially fixable by using the --fix option. Follow these steps to
use the --fix option to see what ESLint can do about these errors.

1. Open the package.json file from the react-linting-demo folder.

The package.json file contains meta information, a list of dependencies, and
scripts that can be run in the package.

2. Find the scripts object in package.json. It looks like this:

 "scripts": {
 "dev": "vite",
 "build": "vite build",
 "lint": "eslint . --ext js,jsx",
 "preview": "vite preview"

 },

3. Add a new script to the scripts object that will run ESLint with the --fix
option, as shown in bold:

 "scripts": {
 "dev": "vite",
 "build": "vite build",
 "lint": "eslint . --ext js,jsx",
 "lintfix": "eslint . --ext js,jsx --fix",
 "preview": "vite preview"

 },

4. Save package.json.

5. Run ESLint with the --fix option by entering npm run lintfix in the
terminal window.

After you run the lintfix script, the number of issues with your code may go down,
as shown in Figure 7-9. ESLint is conservative with the changes it automatically
makes to your code, so using the --fix option generally won’t cause anything to
break.

In the next section, you learn how to use AI to correct the remaining issues in
the code.

CHAPTER 7 Finding and Eliminating Bugs 177

Combining linting with AI
If you hover your mouse pointer over any code with a red squiggly line, you’ll see
a Quick Fix link in the pop-up window, as shown in Figure 7-10.

Click the Quick Fix link to reveal your options for automatically fixing the prob-
lem, as shown in Figure 7-11.

If you have GitHub Copilot installed, you’ll see options to fix or explain the error
using Copilot. To find out more information about the error and to see how Copilot
would go about fixing it, click the Explain Using Copilot option. The Copilot Chat
pane appears, with an explanation (sometimes in far more detail than is neces-
sary) of the problem and a proposed solution, as shown in Figure 7-12.

If you agree with Copilot’s suggestion, you can either implement the fix yourself
or use the Fix Using Copilot feature in the Quick Fix pop-up menu to have Copilot
implement the fix itself.

FIGURE 7-10:
Viewing the

Quick Fix link.
Microsoft Corporation

FIGURE 7-9:
Some problems

were fixable
using --fix.

Microsoft Corporation

178 PART 2 Using AI to Write Code

If you click the Fix Using Copilot option, a window opens above the code in ques-
tion with the change that Copilot wants to make to your code. You can either
Accept or Discard the change. Figure 7-13 shows what appeared when I asked
Copilot to fix the unused variable problem in my code.

Your original code is shown on the left and the proposed new code is shown on the
right. Red highlighted code on the left will be removed if you apply the changes.
Green highlighted code on the right will be added to your file if you apply the
change. The areas on the right marked with diagonal lines represent blank
space that won’t be in the code when you accept it. (Copilot adds these lines to
make the changed code align with the original code.)

FIGURE 7-11:
The Quick Fix

options.
Microsoft Corporation

FIGURE 7-12:
Copilot describes
the problem and

suggests a fix.
Microsoft Corporation

CHAPTER 7 Finding and Eliminating Bugs 179

As you can see from Figure 7-13, Copilot may try to make much bigger changes to
your code than just fixing the single error you requested. In the case of the unused
variable, the correct fix would have been to simply remove the single line of code
containing the unused variable.

When I reviewed the proposed changes, I saw that Copilot was fixing several
issues with the code at once. I was curious as to whether my number of linting
errors would decrease by more than just one if I applied the fixes, so I accepted the
proposed changes.

After Copilot made its “fixes,” I ran ESLint again to see how many errors Copilot
fixed. However, ESLint reported that my code now had seven more errors than it
did before Copilot tried to fix things, as shown in Figure 7-14.

FIGURE 7-13:
Copilot prompts
you to accept or

decline a change.
Microsoft Corporation

FIGURE 7-14:
That’s the last

time I ask Copilot
to fix something.

Microsoft Corporation

180 PART 2 Using AI to Write Code

I pressed Ctrl+Z to undo Copilot’s suggestion and applied the obvious (and
correct) fix that the Explain tool originally suggested. This time, when I ran ESLint
again, my number of linting errors had gone down by one.

Changing the rules
Many of the remaining errors reported by ESLint were related to style rules. For
example, ESLint reported in several instances that lines of code should be indented
by eight spaces, not six.

In this case, the formatting styles enforced by the Prettier code formatter conflict
with those checked by ESLint. Rather than continually try to make peace between
the two, I’ll change the rules.

Star Trek fans will recognize this as a Kobayashi Maru situation. When faced with
a no-win scenario, be like Captain Kirk and change the rules.

In matters of code formatting, if your linter and your code formatter disagree,
adjust the rules of the linter.

To make ESLint ignore code indentation, you can modify its configuration file.
The project-wide settings for ESLint are in a file named .eslintrc, which is at the
root of your project directory. Depending on how you set up your project, .eslintrc
may have an extension, such as .cjs or .mjs.

The .eslintrc file contains a configuration object with various properties. You can
read about all the properties in .eslintrc by going to https://eslint.org/docs/
latest/use/configure/. The property that you can use to adjust what ESLint
reports as an error is the rules property. In this React project, the rules property
currently contains only one rule, as shown in Figure 7-15.

FIGURE 7-15:
The rules

property in
.eslintrc.

Microsoft Corporation

https://eslint.org/docs/latest/use/configure/
https://eslint.org/docs/latest/use/configure/

CHAPTER 7 Finding and Eliminating Bugs 181

ESLint rules modify the default behavior of ESLint and ESLint plugins. A rule
starts with the name of a rule, followed by the severity level of that rule. ESLint
has three levels of severity for rules:

 » Off or 0 disables a rule.

 » Warn or 1 turns the rule on, but only as a warning, meaning that it won’t stop
your code from compiling but it should be addressed.

 » Error or 2 turns the rule on as an error that will prevent your code from compiling.

When you run ESLint, the name of each rule that your code violates is displayed
on the right side of the linting report and the severity of the rule violation is on the
left, as shown in Figure 7-16.

When your linting report shows something as an error but you consider it a non-
critical problem or not an error, copy the name of the rule from your lint report
and add it to the rules object. For example, Figure 7-17 shows how to disable the
jsx-indent rule that’s currently conflicting with Prettier.

FIGURE 7-17:
Adjusting a

rule’s severity.
Microsoft Corporation

FIGURE 7-16:
Viewing the name

and default
severity of rules.

Microsoft Corporation

182 PART 2 Using AI to Write Code

To fix the remaining issues, I disabled several other rules that conflicted with
Prettier or that I don’t consider to be a problem, deleted an unused function, and
corrected my use of React’s useState() function.

Detecting Bugs with AI
Although using a code linter and a code formatter can help you write better code
and avoid many common bugs, problems that aren’t caught during development
will be found in the process of testing or by the end users of the software.

Non-AI debugging tools take many different forms, but they generally all work
the same way. When something isn’t working as you expect in your code, you can
use a debugging tool to interrupt the running of the program at the point where
the problem occurs and use the debugging tool to view what’s going on with your
variables, event listeners, and other types of code.

By pausing the program or simply outputting values from the code, you can start
to figure out what might be going wrong. Two of the most important tools in
debugging are logging and breakpoints.

Logging is the process of writing messages containing information about the run-
ning program and errors that occur. In JavaScript, the console module and its
log() method are frequently used for logging. In Python, you can use the print()
statement or the logging module.

Breakpoints are spots in your code where you indicate (with the debugger) that
you want the execution of the program to pause while you inspect the program’s
variables. Web browsers have a debugging tool you can use when debugging
JavaScript code running in a browser. Figure 7-18 shows the debugging tool built
into Google Chrome.

Even with a debugging tool, figuring out what’s going wrong in a program and
how to fix it can involve a lot of frustrating work. And nine times out of ten, the
problem turns out to be a typo.

AI chatbots such as Copilot Chat or ChatGPT can often relieve you of some of the
manual work of debugging by tracking down the causes of problems and suggest-
ing fixes. As with everything you do with generative AI models, the key to getting
good results is to provide enough context to the model and prompt the AI
correctly.

CHAPTER 7 Finding and Eliminating Bugs 183

The following listing shows a Python function containing at least two simple
unit-level bugs:

def calculate_average(numbers):
 total = 0
 for number in numbers:
 if not isinstance(number, (int, float)):
 raise TypeError("Invalid data type. All values must

 be numbers.")
 total += number
 average = total / len(numbers)
 return average

In terms of syntax, calculate_average() is fine. However, the problem here
is that the function expects to receive a list of numbers, but it doesn’t check
whether the argument passed to it is a list. As written, if you pass a value to this
function that isn’t a list, it will raise a TypeError, indicating that the values must
be numbers, which isn’t actually the problem. Also, if you pass an empty list to the
function, it will raise a ZeroDivisionError.

Figure 7-19 shows how to run the function and cause the TypeError.

For my first attempt to get an AI chatbot to fix the bug, I opened a file containing
the function in VS Code and typed /fix in Copilot Chat. Copilot Chat identified the
ZeroDivisionError problem, as shown in Figure 7-20, but it didn’t address the
issue of what happens when you pass the function a value that isn’t a list.

FIGURE 7-18:
Chrome’s
JavaScript
debugger.

184 PART 2 Using AI to Write Code

I updated my code with Copilot’s suggestion, as well as with an example of calling
the function with a string, and asked Copilot to fix it again. This time, Copilot cor-
rectly pointed out that I was calling the function incorrectly and showed me how
to call it with a list of numbers, but it didn’t address the issue with the function.

FIGURE 7-19:
Causing the
calculate_
average()

function to raise
an error.

FIGURE 7-20:
Copilot fixed

one issue.
Microsoft Corporation

CHAPTER 7 Finding and Eliminating Bugs 185

I followed up with the following prompt:

How can I fix the function so it doesn't raise an
error when it doesn't get a list?

With this direct question, Copilot responded with code that fixes the problem
I wanted to fix. The corrected code follows:

def calculate_average(numbers):
 if not isinstance(numbers, list):
 return "Error: Input should be a list of numbers."
 if len(numbers) == 0:
 return None
 total = 0
 for number in numbers:
 if not isinstance(number, (int, float)):
 raise TypeError("Invalid data type. All values must

be numbers.")
 total += number
 average = total / len(numbers)
 return average

print(calculate_ave rage('a'))

Automating Bug Fixes with AI
In a perfect world, it would be possible for an AI assistant to automatically scan
your code and suggest fixes, instead of relying on manual bug detection or pasting
code into a chatbot. By integrating AI-powered bug detection and fixes into your
software development lifecycle, you can find and correct many types of bugs and
security problems that can’t be detected by linters and that you never would have
thought to ask your AI coding assistant about.

Introducing Snyk
Snyk (https://snyk.io/) is a platform that integrates with many popular soft-
ware development tools and version control systems to scan, prioritize, and fix
security vulnerabilities and certain other kinds of bugs. The tools and platforms
Snyk integrates with include the following:

https://snyk.io/

186 PART 2 Using AI to Write Code

 » Popular IDEs, such as VS Code, WebStorm, Android Studio, and Eclipse

 » Source control systems, including GitHub, Bitbucket, and GitLab

 » Container registries, including Amazon ECR, Docker Hub, and Azure ACR

 » Kubernetes

 » Continuous integration platforms, including AWS CodePipeline, Azure
Pipelines, Bitbucket Pipelines, and GitHub Actions

 » Notification and ticketing systems, such as AWS CloudTrail Lake, Jira, and Slack

Because Snyk integrates with so many tools, it’s possible to customize how you
use it so it becomes an integral part of your workflow.

Follow these steps to sign up for Snyk and use it to detect bugs and vulnerabilities
in a code repository:

1. Go to https://app.snyk.io/login.

You see a button for signing up with GitHub and several alternative ways to
sign up below it, as shown in Figure 7-21.

2. Click the GitHub link (or the signup method of your choice).

Whichever method you choose, make sure you have code on the platform that
you want to check for bugs and vulnerabilities.

FIGURE 7-21:
The Snyk

signup page.
Snyk Limited

https://app.snyk.io/login

CHAPTER 7 Finding and Eliminating Bugs 187

3. Step through the process of signing up for Snyk and giving it access to the
service you chose for signing up.

Once you’ve giving Snyk permission to read from your repositories, you’ll
see the page where you can import and scan your first project, as shown
in Figure 7-22.

4. Select a repository you want to import, and then click the Import and
Scan button.

You’ll be taken to your project list.

5. Click the name of your imported project to expand it.

After a short time, any issues that Snyk detects will appear, along with a
severity ranking, as shown in Figure 7-23.

6. Click the filename of the first file with detected issues to see more
information about the bugs.

In the case of my repository, the problem was the package.json file, which had
some out-of-date dependencies containing security vulnerabilities.

FIGURE 7-22:
Snyk’s import

and scan a
project page.

Snyk Limited

188 PART 2 Using AI to Write Code

Executing automated bug fixes
Snyk can correct some of the problems it finds in your code or dependencies.
Follow these steps to apply automatic fixes to your code repository:

1. On the left, click the Dashboard link.

The dashboard displays a list of your projects and a Fix Vulnerabilities link for
each issue that Snyk can fix automatically.

2. Click the Fix Vulnerabilities link next your project or one of your files.

Snyk displays the issues it can automatically fix and offers to open a pull
request, as shown in Figure 7-24. A pull request (PR) suggests and explains
a specific change to a code repository; it doesn’t change anything in your
repository until the owner of the repository approves the PR.

3. Select or deselect issues you want Snyk to fix, and then click the Open a
Fix PR button.

GitHub displays the pull request Snyk generated, as shown in Figure 7-25.

4. Read through the information provided by Snyk about the bugs and
vulnerabilities, and look at its proposed changes carefully before scroll-
ing to the bottom of the PR and clicking the Merge Pull Request button.

After the bug fixes are merged into your repository, you can pull the changed code
into your local code and run tests to verify that it still works as expected.

FIGURE 7-23:
Snyk shows bugs

and prioritizes
them by severity.

Snyk Limited

CHAPTER 7 Finding and Eliminating Bugs 189

FIGURE 7-24:
Snyk offers to

open a PR.
Snyk Limited

FIGURE 7-25:
Snyk opens a pull

request for its
recommended

fixes.
Snyk Limited

190 PART 2 Using AI to Write Code

Verifying automated bug fixes
The following fixes were applied to my project in the preceding section:

 » The jsonwebtoken package was upgraded from version 8.5.1 to 9.0.0.

 » The mongoose package was upgraded from 6.7.1 to 6.12.0.

In most cases, upgrading to the version of a dependency that doesn’t have a secu-
rity vulnerability won’t break your code or cause additional bugs. However, it’s
still important to fully understand and test any automated bug fixes. Because the
upgrade of jsonwebtoken was a major upgrade (the number on the far left changed
from 8 to 9), it’s much more likely to require me to fix something else in my code.

To find out whether the new version of a package will break your code, start by
looking at the new version’s changelog, which is a list of the versions the package
has gone through, with each item in the list indicating what was changed. For
major changes, packages might also provide migration notes, which explain the
changes you need to make to your code to support the new version.

Figure 7-26 shows the migration notes for migrating from version 8 to version 9
of jsonwebtoken.

UNDERSTANDING SEMANTIC VERSIONING
Node packages use a system of numbering versions called semantic versioning (semver
for short), which has three components in the format X.Y.Z. When the maintainer of a
Node package releases a new version, they’ll change one or more of the components
of the semver version number to indicate the nature of the changes in the new version.

The first digit (X) represents a major version change: a change to the way you use the
package. This type of change is called a breaking change because upgrading to a new
major version has the potential to break software that depends on the package.

The second digit (Y) represents a minor version change: new functionality has been
added to the package, but the old functionality still works the same. Upgrading from
one minor version to another won’t break your program.

The third digit (Z) stands for a patch version: a bug has been fixed, but no new function-
ality has been added to the package. You should always upgrade to the latest patch
version.

CHAPTER 7 Finding and Eliminating Bugs 191

Once you’ve made any necessary upgrades to your code specified in the migration
notes or the changelog, you should rerun your tests to make sure they still pass.
(Testing and getting AI’s help with writing tests is covered in Chapter 9.)

Knowing when to automate
Upgrading an out-of-date dependency with a security problem is a natural fit for
automation. (Other types of bugs can’t be automated quite as easily.)

In addition to checking your project’s dependencies, Snyk also checks your code to
find common problems that may represent security bugs. In the list of issues in
the Projects view in Snyk, you may see an item labeled Code Analysis, as shown in
Figure 7-27. If there are issues related to the code analysis, practices were found
in your code that may be security vulnerabilities.

You can click Code Analysis and then click through the list it displays to see more
information. For example, Figure 7-28 shows a detected code issue in the AI tic-
tac-toe game described in Chapter 5.

To find out more information about the bug and get a potential solution, click
the Fix Analysis button in the top-right corner of the screen. The Fix Analysis
screen explains how to fix the bug and shows you a similar solution to the issue
implemented in a different repository from Snyk’s training data, as shown in
Figure 7-29.

FIGURE 7-26:
The migration

notes for
version 9 of

jsonwebtoken.
Snyk Limited

192 PART 2 Using AI to Write Code

Unlike AI chatbots, Snyk doesn’t provide the solution to your problem. However,
by looking at how the problem was fixed in another project, you can figure out
how to fix it in your code. In this case, the problem was that the use of the DOM
innerHTML property to set data in the browser that comes directly from a remote
source could potentially expose the client application to a cross-site scripting
(XSS) attack.

To fix the problem, I changed the property to set the text in the browser to
innerText, which causes the browser to display any code that’s part of the
server’s response as plain text, without trying to interpret it.

FIGURE 7-27:
Snyk analyzes the

code you wrote
and reports

issues.
Snyk Limited

FIGURE 7-28:
A bug was

detected in the
tic-tac-toe game.

Snyk Limited

CHAPTER 7 Finding and Eliminating Bugs 193

FIGURE 7-29:
Snyk provides a

potential fix.
Snyk Limited

CHAPTER 8 Translating and Optimizing Code 195

Chapter 8
Translating and
Optimizing Code

After you have a working program, you might want to translate it to another
programming language or improve the code’s quality or efficiency. Both
tasks should be done carefully, if at all.

Code translation and code optimization are related topics because both seek to
change the code in some way without changing its functionality and purpose.
In this chapter, you discover how AI tools can help.

Translating Code to Other Languages
The most common form of code translation is compilation, in which native code
written by programmers is translated into machine code that can be run by the
CPU. Compilation is a necessary and reliable process.

Translating code from one high-level programming language to another, how-
ever, is a process fraught with danger. If you do it for the wrong reason (such as
thinking the new language is cooler than the old language), you could end up with
a time-consuming project that doesn’t provide any benefit to the users of the

IN THIS CHAPTER

 » Translating your code with AI

 » Verifying translated code

 » Exploring code optimization

 » Using AI to optimize your code

 » Improving the performance of
your code

196 PART 2 Using AI to Write Code

software or, worse, provides fewer functions than the original code. (Does it sound
as though I have experience with these scenarios?)

Good reasons exist for translating code between high-level languages. The most
common reason is that the hardware or operating system the software requires
doesn’t have a compiler for the current programming language. For example, if
you want a web app (written in HTML, CSS, and JavaScript) to run natively on a
mobile device, you need to translate it. Or, if you have a legacy application built
using an obsolete programming language that you want to use on modern hard-
ware, you’ll likely need to translate the app.

Preparing your code for translation
If you’re translating code between two libraries or frameworks but using the same
underlying language (such as translating a web app written using Angular to one
that uses React), your chances of getting good results are much higher than if
you’re translating between programming languages. In either case, however, you
can do several things prior to the translation to help the process go more smoothly.

Most of the steps for preparing your code for translation are simply good coding
practices:

 » Back up your original code. The most essential step is to make sure you can
always revert to the original language — either to modify your AI-assisted
translation approach or to handle at least part of it manually.

 » Comment and document your code thoroughly. The AI assistant may be
able to use your comments and documentation to interpret the purpose of
the code.

 » Clean and refactor the code. Remove any unnecessary or redundant code
and simplify complex parts of the code as much as possible.

 » Ensure a consistent coding style. Use a linter and a code formatter to
ensure that your code has consistent naming conventions, indentation, and
bracket placement.

 » Use descriptive variable and function names. Descriptive names can help
the AI to better understand the structure and purpose of your code.

 » Address language-specific features. When translating between program-
ming languages, a common big problem occurs when features and conven-
tions used in one language aren’t present in the other language. Reducing the
use of these features or simply being aware of the program’s use of them will
help you identify and fix issues with the translated code.

CHAPTER 8 Translating and Optimizing Code 197

 » Modularize your code. By breaking your code into small and modular
components, you help the AI to translate your code more efficiently. If your
code is written as a collection of independent modules, it also allows you to
translate the source code in smaller chunks, which may improve accuracy and
simplify troubleshooting.

Exploring translation strategies
To see how well large language models handle translation between programming
languages, let’s start with a simple JavaScript function:

// converts an array to an HTML unordered list
function makeUnorderedList(array) {
 let listItems = array.map(element => {
 return `${element}`;
 });
 return `${listItems.join(")}`;
}

There’s nothing tricky about this function. When you give it an array, it converts
the array into an HTML bulleted list. Figure 8-1 shows the makeUnorderedList()
function in action.

FIGURE 8-1:
The JavaScript

version of
makeUnor-

deredList()
running in the

browser console.
Microsoft Corporation

198 PART 2 Using AI to Write Code

You can use Copilot Chat to translate code from one language to another. With a
file containing just the makeUnorderedList() function open in VS Code, give
Copilot Chat the following prompt:

translate this function to python.

Copilot’s translation follows:

def make_unordered_list(array):
 list_items = [f"{element}" for element in array]
 return f"{".join(list_items)}"

This solution seems fine. To test it out, enter it into Google Colab and run the
function. The result, which is shown in Figure 8-2, is what I expected.

Copilot did a fine job with converting a simple function between two common
programming languages. Now let’s see how it will perform translating to a less
common language, converting the Python version of the function to the Nim pro-
gramming language.

Nim is a statically typed compiled programming language that combines the best
features of other programming languages such as Python, Lisp, and Ada.

The translated function follows:

import strutils

proc makeUnorderedList(array: seq[string]): string =
 var listItems = ""
 for element in array:

FIGURE 8-2:
Testing the
translated

function.
Microsoft Corporation

CHAPTER 8 Translating and Optimizing Code 199

 listItems = listItems & "" & element & ""
 return "" & listItems & ""

I don’t know Nim (yet), but at first glance, this result looks reasonable. I asked
Copilot for an example of how to use the function, and it produced an example and
said what the output would be, as shown in Figure 8-3.

To verify whether Copilot’s Nim code works and produces the expected output,
copy the example code into the Nim Playground at https://play.nim-lang.
org/. The output was exactly what Copilot said it would be, as shown in
Figure 8-4.

Although this simple example produces correct results, I don’t know whether this
is the best way to write this function in Nim. Unless you’re just experimenting,
don’t ask an AI assistant to convert code to a language you don’t know.

The leap from JavaScript to Nim seemed to be a success. Now I want to find out
whether Copilot can help with something I have a daily use for: converting Java-
Script to TypeScript. Unfortunately, on the first attempt, Copilot only had partial
success:

converts an array to an HTML unordered list
function makeUnorderedList(array: any[]) {
 let listItems = array.map((element) => {

FIGURE 8-3:
Copilot’s example

code and the
predicted result

of running it.
Microsoft Corporation

https://play.nim-lang.org/
https://play.nim-lang.org/

200 PART 2 Using AI to Write Code

 return `${element}`;
 });
 return `${listItems.join(")}`;
}

I see two issues with this code:

 » The comment isn’t marked as a comment.

 » The parameter accepted by makeUnorderedList() is annotated as being of
type any[].

Because the original function doesn’t specify what data type the elements of the
array should be, this translation is technically correct. However, a human pro-
grammer would have used a more specific type.

I asked Copilot to do the translation again, and the result this time was better but
still not right:

converts an array to an HTML unordered list
function makeUnorderedList(array: string[]): string {
 let listItems: string[] = array.map((element) => {
 return `${element}`;
 });
 return `${listItems.join(")}`;
}

FIGURE 8-4:
Our first

Nim program
works great!

GitHub, Inc.

CHAPTER 8 Translating and Optimizing Code 201

In this translation, the comment still isn’t marked as a comment, and the type
annotations for the return value from the function and for listItems are unnec-
essary. I tried the translation again and got a nearly perfect result, except that the
comment was stripped out:

function makeUnorderedList(array: string[]) {
 let listItems = array.map((element) => {
 return `${element}`;
 });
 return `${listItems.join(")}`;
}

It’s likely that Copilot will handle simple translations much better by the time you
read this, especially if the model it uses is upgraded. However, this experiment
demonstrates that it’s not possible or wise to trust an AI translation unless you
know the target language.

Translating a complete program
using GPT-4
GPT-4 is much larger and more capable of difficult tasks than the model behind
Copilot. To see how GPT-4 would perform with a complex translation, I used the
OpenAI Playground to create a code translation assistant. I gave the model the
following system prompt:

You are an expert JavaScript programmer. Translate my
code from a web app to a mobile app written in React
Native.

The web app I wrote to test my new translation assistant uses a single React com-
ponent that gives the user an input field where they can type a GitHub username,
as shown in Figure 8-5. When the user clicks the Get Repositories link, the app
uses the GitHub API to fetch and display a list of the user’s GitHub repositories.

In the OpenAI Playground, I pasted the code for the app’s single component, plus
the code for rendering it into a user prompt. I selected the GPT-4 model and set
the temperature to 0.5 so the model would favor more accurate predictions over
creativity. To make sure the response didn’t get cut off, I set the maximum length
to a far higher value than I expected would be necessary. My prompt and settings
are shown in Figure 8-6.

202 PART 2 Using AI to Write Code

I submitted the prompt and got back the converted component, which I copied
and pasted into a React Native template and ran. Except for a minor styling issue
on iOS, it worked perfectly on both iOS and Android devices, as shown in
Figure 8-7.

FIGURE 8-5:
A web app for

fetching GitHub
repository

names.
GitHub, Inc.

FIGURE 8-6:
Setting up a
translation
request in

OpenAI
Playground.

ChatGPT

CHAPTER 8 Translating and Optimizing Code 203

Verifying translated code
Translating code from one language to another and verifying that the translated
code runs is just the beginning of the process of ensuring that the translation is
accurate. Especially if you translated the code with the help of an AI assistant, the
new code has to go through many more steps before you can deploy it.

You should treat translated code the same as freshly written code. The process for
verifying your translated app involves the following steps:

 » Understand the source code: Take the time to fully understand the source
code of the translated app as well as the original code before moving on to
the next steps. AI chatbot tools may be able to help you better understand
the code. (Chatbots are covered in Chapters 3 and 4.)

 » Test: The translation might have introduced new bugs to your program.
Take the tests you wrote for the original code and adapt them to the new
code. AI may be helpful with translating the tests for the new code. (Testing
is covered in Chapter 9.)

FIGURE 8-7:
The GitHub
Repository

Fetcher mobile
app on iOS (left)

and Android
(right) devices.

GitHub, Inc.

204 PART 2 Using AI to Write Code

 » Conduct code reviews: Conduct code reviews, ideally with the help of
another human programmer as well as with an AI assistant. (Conducting
a code review with AI is covered in Chapter 11.)

 » Do a static code analysis: Use a linter with your new code to check for
potential syntax, formatting, and style issues. (Static code analysis is covered
in Chapter 7.)

 » Cross-reference output: Provide both versions of the app with the same
input and check that they produce identical output for data processing or
calculation tasks. (Testing tools and techniques that can help with this task
are covered in Chapter 9.)

 » Document: Check the documentation and comments in the new code
to verify that they’re still accurate, and update them as needed. (Creating
documentation with AI assistance is covered in Chapter 10.)

 » Conduct a security review: Different languages and runtime environments
have different security vulnerabilities. For example, the security concerns
associated with a web app are very different from those of an Android or iOS
app. For this reason, you need to conduct a security review of the translated
code. A tool such as Snyk (which is covered in Chapter 7) can be helpful with
conducting this review.

The tools and processes used for verifying translated code are the same as those
used to write and optimize original code.

Optimizing Your Code with AI
Poorly optimized code works correctly but isn’t efficient or functioning well or as
expected. Almost all code can be improved. You might want to optimize code to
make it run faster, to improve its quality, or to make it work within the limitations
of the hardware or other environmental factors.

Python is one of the most commonly used programming languages and is partic-
ularly popular and useful when working with machine learning. However, Python
is notoriously slow when compared to other programming languages. When you
combine Python’s slowness with the processing and memory requirements of
machine learning tasks, the result can be a program that takes a very long time to
run and monopolizes the resources of your computer while running.

However, slowness in the running of a program isn’t just the fault of the lan-
guage, compiler, and underlying hardware. The decisions you make during coding
can affect a program’s performance to a greater extent.

CHAPTER 8 Translating and Optimizing Code 205

Identifying opportunities for improving performance takes time and experience.
Code optimization starts with profiling, which is a technique that detects how long
each function in your program takes to run and how often it’s executed. Profiling
will tell you what areas of your program are in need of optimization. A tool that
does profiling is called a profiler.

By combining the job of a traditional profiler with suggestions from an AI chat-
bot, you can find out what code runs slowly and get suggestions for possible
improvements.

Getting code optimization suggestions
Scalene is a CPU, GPU, and memory profiler for Python that profiles code and
offers AI-powered proposed optimizations.

I installed and ran Scalene on macOS. The Windows version of Scalene doesn’t
support all the same features as the Linux or macOS version at the time of this
writing.

Before you can install Scalene, you need to have Python installed and configured.
Because Scalene makes use of OpenAI’s models, you also need to have an OpenAI
account with a positive balance to use the AI features. To find out how to get an
OpenAI account and an API key, see Chapter 4.

Then follow these steps to install Scalene and test it out:

1. Visit the GitHub repository for Scalene at https://github.com/plasma-
umass/scalene to read more about it.

2. On macOS, Linux, or Windows Subsystem for Linux (WSL2), use the
following pip command to install the Scalene package:

pip install -U scalene

3. Clone the Scalene GitHub repository to a convenient place on your
computer by entering the following command in a terminal window:

git clone https://github.com/plasma-umass/scalene

The GitHub repository contains a directory of Python files which we’ll use to
test Scalene.

4. Open the Scalene GitHub repository in VS Code.

5. In the Extensions panel in VS Code, find and install the Scalene VS Code
extension, as shown in Figure 8-8.

https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene
https://github.com/plasma-umass/scalene

206 PART 2 Using AI to Write Code

6. Open test/testme.py in VS Code.

This program doesn’t do anything useful, but we can use it to demonstrate
what Scalene can do.

7. Press Command+Shift+P (macOS) or Ctrl+Shift+P (Windows) to open the
VS Code command palette.

8. Type Scalene in the command palette until you see the Scalene:
AI-Powered Profiling. . . command. Click that command to run it.

A message appears in VS Code telling you that Scalene is profiling your code.
When it finishes, a report opens in VS Code, as shown in Figure 8-9.

9. Look through the report.

On my computer, the program took 10.646 seconds to run and used a
maximum of 20.536 MB of memory.

Note the lines of code with a lightning or fireworks icon to the left. The
fireworks icon indicates that Scalene has proposed optimizations for that line
or region of code; click the icon to view the optimizations. The lightning icon
causes Scalene to propose optimizations for the lines of code that it didn’t find
optimizations for originally, or to attempt to generate different code for lines
for which it did propose an optimization.

10. To enter your OpenAI API key into Scalene, click the Advanced Options
link (under the Scalene logo at the top of the Scalene report), as shown
in Figure 8-10.

FIGURE 8-8:
Installing the

Scalene VS Code
extension.

Microsoft Corporation

CHAPTER 8 Translating and Optimizing Code 207

11. In the input field in the advanced options area, paste your OpenAI API key, and
then close the advanced options by clicking the Advanced Options link again.

12. Click a fireworks icon in Scalene’s report.

After a short time, a proposed optimization appears below the line marked
with the fireworks icon, as shown in Figure 8-11.

13. Review the proposed optimization.

If you want to see a different proposal, click the fireworks icon again.

FIGURE 8-9:
Scalene’s report

for testme.py.
Microsoft Corporation

FIGURE 8-10:
Opening the

advanced options
to input an

API key.
Microsoft Corporation

208 PART 2 Using AI to Write Code

14. Once you find an optimization that makes sense to you, implement it in
your code and run Scalene again.

A new report appears in a new tab in VS Code, as shown in Figure 8-12.
Leave the tab containing the original report open so you can compare it
to the new report.

15. If your first report is still open, compare the two reports to find out
whether implementing the optimization improved the program’s
performance.

FIGURE 8-11:
Scalene’s

proposed
optimization.

Microsoft Corporation

FIGURE 8-12:
Profiling your

optimized code.
Microsoft Corporation

CHAPTER 8 Translating and Optimizing Code 209

The testme.py file was designed to be as inefficient as possible to demonstrate
Scalene. But, by optimizing just the first function, I was able to reduce the memory
to 0 MB and the execution time by about 4.5 seconds.

Avoiding premature optimization
The best time to optimize your code is when you’re first writing it. However, this
isn’t always possible. As software is written and requirements change, inefficien-
cies and bad code have a way of creeping in. See Chapter 6 to learn about the types
of problems (also known as code smells) that can exist in source code, many of
which can negatively affect performance.

Before you optimize your code for performance, decide whether optimization is
worthwhile. If a program is working correctly and you identify a refactoring that
could make it run faster, proceed with caution to avoid what programmers call
“premature optimization.” The preeminent computer scientist Donald Knuth,
author of The Art of Computer Programming, famously declared that “Premature
optimization is the root of all evil.” (Someone else said, “Absolute statements are
the root of all evil.”)

What Knuth meant is that programmers should be careful that they’re not worry-
ing about efficiency more than necessary. Shaving a few microseconds from a
process at the cost of multiple hours of work and potentially introducing new bugs
isn’t worth the effort — especially because faster CPUs will likely result in a more
significant performance improvement in a short time and without additional
programming work.

However, if the users of your application report slow performance or other defi-
ciencies in the software, making optimizations to address this feedback should be
your top priority.

3Testing,
Documenting,
and Maintaining
Your Code

IN THIS PART . . .

Generate tests and verify your code’s functionality.

Learn to write high-quality documentation with the help
of AI assistants.

Uncover ways to use AI to make your code more
maintainable.

CHAPTER 9 Testing Your Code 213

Chapter 9
Testing Your Code

Of all the programming tasks that AI can help with, testing is perhaps
the safest. That’s because running a test doesn’t affect your code or the
software design— it merely checks whether the software operates how it

was designed.

Writing tests with AI assistance, however, is not always reliable. As you learn in
this chapter, the quality of the tests and testing advice that you get from AI
depends on your prompts to the AI model and how well you know which tasks are
better handled by people.

Test automation is the process of using software separate from the software being
tested to control the running of tests. Prior to the 1980s, most software testing
was done by testers, people who would use the software to confirm that it worked.
In the late 1980s, testers used tools to record their interactions with the software
and replay a test at any time. This process was known as record and playback testing.

The third major change to testing happened in the 1990s, when much of testing
became script-driven. Rather than testing software by using it, testers began
automating testing tasks by writing scripts using programming languages. As a
result, testing became more flexible but also more technical, requiring the skills
of software developers rather than software testers. Starting in the 2010s, AI tools
to assist with testing software began to emerge. Testing with AI-assistance can
make testing and the writing of tests easier, which will once again allow non-
programmers to participate in the process (as well as programmers, of course).

IN THIS CHAPTER

 » Making a test plan

 » Automating your tests

 » Balancing AI and human testing

 » Generating tests

 » Practicing test-driven development
with AI

214 PART 3 Testing, Documenting, and Maintaining Your Code

Writing a Test Plan
A test plan describes what you’re planning to test, how it will be tested, and a
schedule for testing. You can use a test plan also to list the risks anticipated in the
project so testing can be prioritized accordingly.

Deciding between formal and agile
Traditional methods of testing, in which testing is a discrete phase of the software
development lifecycle that involves predefined steps, are best used when the
requirements are precise, such as writing software for airplanes, spaceships, or
the IRS. For such mission-critical software applications, a formal test plan that
specifies the who, what, where, when, and how of the testing phase should be
created and followed.

Most software development today follows an agile methodology, in which
software development and testing are done iteratively, rather than as a linear
step-by-step process.

In agile software development, a test plan focuses on continuous testing.
Recognizing that requirements change and that no plan is perfect, agile testing
emphasizes flexibility and adaptability in the testing process. The goal of an agile
test plan is to test the software to ensure that it meets the needs of the end users,
as specified in the user stories and acceptance criteria. (User stories are covered
in Chapter 5.)

Whether a test plan is a formal document or an agile plan will depend on the type
of software you’re building and the software development methodology used by
your employer.

Stepping through the test planning process
Although testing is increasingly an integral part of the software development
process, additional testing also needs to be done when the software is fully func-
tional. For the purposes of creating a plan, it’s helpful to think of testing as a
project that’s separate from software development, whether or not it actually is.

On small projects and personal projects, you’ll do all the development and testing
yourself. On large projects, developers are still involved in testing, but the job of
creating a test plan and formally declaring the product “tested” falls to the quality
assurance (QA) team.

CHAPTER 9 Testing Your Code 215

Creating a test plan usually involves the following steps:

 » Analyze the software. Review the software’s documentation, speak with the
developers, and gain a thorough understanding of the software to be tested.

 » Define your testing strategy. Specify the goals and objectives of the
testing project.

 » Determine the testing scope. Define what is to be tested and what method-
ologies you will use to test it. Examples of methodologies include unit testing,
system testing, performance testing, and security testing.

 » Define the test criteria. Define the exit criteria, which are the conditions
under which the testing will be deemed successful or failed, and the
suspension criteria, which are the conditions under which testing should
be suspended.

 » Prepare the test environment. Figure out the resources you need (such as
software, hardware, and operating systems) to conduct the testing.

 » Create a test schedule. Divide the testing process into tasks and activities
and create a series of deadlines.

 » Identify the test deliverables. Determine the deliverables of the testing
process: the test plan, the test creation, and finally the test report.

You can jump-start the test plan process with the help of an AI assistant. Although
you’ll need to revise and expand on the AI-generated plan, the AI model might
provide ideas you hadn’t considered.

Figuring out how to fully test a program requires a developer to understand not
only the functions being tested but also the testing framework used to write the
tests. Although creating tests should be an integral part of the software develop-
ment process, it’s often so difficult and time-consuming to write good tests that
testing becomes an afterthought.

Most developers I know would happily outsource testing to AI so they could focus
more on the fun part of software development — namely, writing code.

Understanding the role of AI
in test planning
You can use AI in several ways during the test planning process. Some of the tasks
that AI can perform include the following:

 » Simulate user behavior to identify failure or success patterns.

216 PART 3 Testing, Documenting, and Maintaining Your Code

 » Analyze the software’s requirements to generate test steps to validate them.

 » Explain the code and identify functionality that needs to be tested.

 » Write test cases.

Following are the benefits of using AI to create a test plan:

 » Automated analysis: An AI system can quickly analyze vast amounts of data,
including complex codebases and test results.

 » Subtle pattern detection: AI is capable of detecting patterns and anomalies
that might be overlooked by humans.

 » Future issues prediction: By using historical data, AI can predict future
failures and allow for proactive test planning.

 » Risk assessment: AI can identify high-risk areas of code and help to prioritize
testing efforts.

 » Scenario simulations: AI can simulate various testing scenarios to identify
the most effective approaches.

Identifying core functionalities
Before you can test software, you need to understand what the software does.
For complex software or software you didn’t write, it’s helpful to document the
core functionalities that will be tested before you start to make a plan for how to
test them.

A software requirements specification (SRS), if available, can give you a good start
for identifying what the software was originally designed to do. However, it’s
likely that the requirements changed during the software development process.
Having an AI assistant explain the functionality of the software can also serve as
a guide for documenting functionality.

In Chapter 5, I create a tic-tac-toe game with the help of AI. As it stands now, the
game only partially meets the requirements specified in the SRS. To start figuring
out how to test the game, the first step is to identify the areas of functionality in
the game.

I opened the JavaScript file for the client app and prompted Copilot Chat with the
following:

@workspace What are the core functionalities in this
tic-tac-toe game?

CHAPTER 9 Testing Your Code 217

Copilot responded with an accurate list and descriptions of each of the function-
alities in the tic-tac-toe game, as shown in Figure 9-1.

Generating test scenarios
Next I gave Copilot the following prompt:

@workspace Tell me how I should test this program.

Copilot responded with a list of proposed tests for each of the functions in the
program, as shown in Figure 9-2.

The last piece of advice Copilot gave in response to my prompt was

You can use the integrated unit test support
in Visual Studio Code to write and run these tests.

FIGURE 9-1:
Copilot identified

the functionalities
of the tic-tac-

toe game.
Microsoft Corporation

218 PART 3 Testing, Documenting, and Maintaining Your Code

I’ve never seen or used integrated unit test support in VS Code, but this sounds
like a good plan to me. Feeling optimistic about Copilot’s capability, I ask it the
following question:

How can I use the integrated unit test support for
Visual Studio Code to write and run these tests?

In its response, Copilot gave me some incomplete instructions for installing a
testing framework but didn’t make any further mention of integrated test sup-
port in VS Code. After searching the VS Code documentation, I discovered that VS
Code doesn’t have integrated unit test support. This advice was just Copilot
improvising!

In the following sections, I show you how to set up unit test support in your
project, write your first tests, and make the best use of AI for testing.

FIGURE 9-2:
Copilot creates a
list of test cases.

Microsoft Corporation

CHAPTER 9 Testing Your Code 219

Working with a Testing Framework
A testing automation framework is a piece of software that provides tools for writ-
ing tests and an environment for running tests. Many testing frameworks are
available, and a software project may need to use several different frameworks to
perform various kinds of testing.

Developers are most likely to be involved with unit testing, a software testing
method in which individual modules of a software application are tested to deter-
mine whether they’re fit for use. In unit testing, developers create tests (also
known as specs) that describe and test the output of functions by comparing the
expected output of the function with the actual output of the function. This com-
parison between expected output and actual output is known as an assertion.

Fully testing an individual function in a program usually requires multiple asser-
tions, with each assertion testing an aspect or possible output of the function. The
collection of tests for a single function or module is called a test suite.

The most popular testing framework for writing and running unit tests for
JavaScript code is Jest (https://jestjs.io). Jest runs in the Node.js runtime
environment. If you don’t have Node.js installed, go to https://nodejs.org/ to
download and install it before moving on to the next section.

Installing Jest
In this section, you install the Jest testing framework. But first, if you haven’t
done so already, download the code for this book from www.dummies.com/go/
codingwithaifd and open the chapter09 folder in VS Code.

If you want to skip the process of setting up Jest and get straight to learning how
to write tests, open the tic-tac-toe-client-final folder in a terminal window and
run npm install. I’ve already done the hard parts of setting up Jest for you in that
folder, so you can skip the remaining steps in this section and go straight to the
section titled “Running Jest.”

To install Jest, follow these steps:

1. Open a new terminal window, and enter the following to switch to the
proper folder:

cd tic-tac-toe-client

https://jestjs.io/
https://nodejs.org/
https://www.dummies.com/go/codingwithaifd
https://www.dummies.com/go/codingwithaifd

220 PART 3 Testing, Documenting, and Maintaining Your Code

Make sure to use the version of the game in the Chapter 9 folder. This version
contains additional bug fixes and optimizations that aren’t in the version in the
Chapter 6 folder.

2. Enter the following command in the terminal to initialize a Node project
in your client directory:

npm init

3. Answer the questions posed by the npm init script. (You can accept the
default answer to each question.)

Your answers are used to configure the Node.js package. Note that you can
come back later and change your responses by editing the package.json file.

4. Install Jest by entering the following command in the terminal window:

npm install jest --save-dev

5. Install the JSDom environment:

npm install jest-environment-jsdom --save-dev

JSDom is a browser-like environment in which Jest will run your tests to
simulate running them in an actual web browser.

6. Create a base config for Jest:

npx jest --init

The Jest init script will ask you a few questions. The questions, along with the
settings I chose, are:

Would you like to use Jest when running "test" script in
"package.json"? yes

Would you like to use Typescript for the configuration
file? no

Choose the test environment that will be used for testing
jsdom (browser-like)

Do you want Jest to add coverage reports? yes
Which provider should be used to instrument code for

coverage? v8
Automatically clear mock calls, instances, contexts and

results before every test? yes

Once you’ve answered the questions, Jest will create a file named jest.config.js
in your project.

CHAPTER 9 Testing Your Code 221

Because Jest runs in Node, it’s possible that your project will contain syntax
that’s not supported by Node. To account for that, you have to install a few
more packages.

7. Enter the following in your terminal window:

npm install babel-jest @babel/preset-env @babel/core
--save-dev

Babel is a JavaScript transpiler, which converts code from one version of a
language to another. In this case, you’ll be using Babel to convert the code
designed to run in the browser to code that will run in Node.

8. Configure the babel-jest plug-in:

a. Open jest.config.js. You’ll see a lot of commented-out instructions.

b. Find the commented-out instruction that starts with transform: and uncomment it.
The transform instruction is where you can specify filename patterns to match
and then change those files before testing. In our case, we’ll be transpiling
JavaScript files using the babel-jest plug-in.

c. Change the transform instruction to the following:

transform: {
 '\\.[jt]sx?$': 'babel-jest',

}

9. Configure Babel by creating a file in your project named babel.config.json
and adding the following content to it:

{
 "env": {
 "test": {
 "presets": [
 "@babel/preset-env"
]
 }
 }

}

Whew! That wasn’t so bad, was it? Move on to the next section to learn how to run
Jest and how to write your first tests.

222 PART 3 Testing, Documenting, and Maintaining Your Code

Running Jest
Now that the Jest test framework is installed and configured, the next step is to
run it. To run Jest, enter npm test in the terminal window.

Jest looks through your project (everything in the current Node.js package) for test
suites to run. Right now, this project doesn’t have any tests, so Jest responds with
a “No tests found” message, as shown in Figure 9-3.

In addition to pointing out that there aren’t any tests in the project, the report
also indicates the folder it checked, the number of files in the project, and the
filenames in which it’s looking for tests. By default, Jest looks for tests in the
following files:

 » JavaScript or TypeScript files in a folder named __tests__ (that’s two under-
scores, followed by the word tests followed by two more underscores).

 » JavaScript or TypeScript files with .spec. in their name before the file exten-
sion, such as MyComponent.spec.js.

 » JavaScript of TypeScript files with .test. in their name before the file extension,
such as MyComponent.test.js.

Generating test cases
In Copilot Chat, the /tests command generates tests for the code you’ve selected
in the code editor. Follow these steps to use /tests:

1. Make sure that both script.test.js and script.js are open in VS Code.

2. In script.js, select the checkWin() function.

The checkWin() function checks whether either player has won the game.

FIGURE 9-3:
Jest responds that

it couldn’t find
any tests.

Microsoft Corporation

CHAPTER 9 Testing Your Code 223

3. Enter /tests in Copilot Chat.

Copilot automatically prefaces the /tests command with @workspace,
and then attempts to generate tests for the checkWin() function, as shown
in Figure 9-4.

The @workspace command is a Copilot agent that instructs Copilot to consider all
the files in the current VS Code workspace while generating a response. You learn
about agents in Chapter 4.

Copilot suggested three tests for the checkWin() function:

 » Test that checkWin() returns false when the board is empty.

 » Test that checkWin() returns false when the board does not have a winning
combination.

 » Test that checkWin() returns true when the board has a winning
combination.

These tests seem to cover every condition possible with the function, so let’s cre-
ate a test suite and add them to it. To start setting up a test suite for the script.js
file in the tic-tac-toe game, I created a file named script.test.js and added the
following import statement to it:

import { TicTacToeGame } from './script';

FIGURE 9-4:
Copilot generated

tests for the
checkWin()

function.
Microsoft Corporation

224 PART 3 Testing, Documenting, and Maintaining Your Code

I copied the tests generated by Copilot and pasted them into script.test.js after the
import statement and ran npm test. The result is shown in Figure 9-5.

Copilot successfully wrote three tests, and the tic-tac-toe game passed all three!
The checkWin() function doesn’t interact with the browser, so it’s a perfect can-
didate for creating simple tests. The checkDraw() function checks whether all the
squares are filled without either player winning. It’s also very simple, and you can
use the same approach to generate tests for that function. Follow these steps:

1. Making sure that script.test.js is still open in the neighboring tab, select
the checkDraw() function in script.js.

2. In Copilot Chat, enter /tests and press Enter.

The first time I ran /tests, I had selected checkDraw() and its comment.
Copilot returned tests for other functions in the program in addition to
checkDraw(). Next, I selected just the checkDraw() function (without its
documentation) and entered /tests again. This time it gave me the response
I wanted.

Copilot suggested the following tests for the checkDraw() function:

 » Test that checkDraw() returns false when the board is empty.

 » Test that checkDraw() returns false when the board is partially filled.

 » Test that checkDraw() returns true when the board is fully filled and there is
no winner.

FIGURE 9-5:
Running the tests

generated by
Copilot.

CHAPTER 9 Testing Your Code 225

Again, this seems like a good plan. After providing a plan for testing checkDraw(),
Copilot wrote tests for each suggested test case, as shown in Figure 9-6.

I copied the tests, pasted them in script.test.js, and ran the tests again. The result
is shown in Figure 9-7.

FIGURE 9-7:
The result of
running the

tests for both
checkDraw()

and checkWin().

FIGURE 9-6:
The tests Copilot

suggests for
checkDraw().

Microsoft Corporation

226 PART 3 Testing, Documenting, and Maintaining Your Code

Reading a coverage report
Testing frameworks, such as Jest, can look at the tests you’ve written to generate
a coverage report, which helps you understand how much of your source code has
been tested. Coverage reports generated by Jest also provide information about the
parts of the code that aren’t currently being tested, as shown in Figure 9-8.

So far, Copilot is doing a great job of generating tests, and the test coverage report
indicates that nearly a third of the functions are covered by tests now. However,
we’ve tested only the functions that are the most straightforward to test. Other
functions in the program have external dependencies (such as the browser and the
server) and will be more complex to test.

For example, the clearBoardDiplay() function, which resets the game board
to its default state, interacts with the browser and requires a test that correctly
queries the state of the board in the browser. To see whether Copilot was up to the
task, I selected the function and ran the /tests command.

Copilot generated a test that looked similar to what I would have written. It
created a copy of the game board elements populated with Xs and Os, and then ran
the clearBoardDisplay() function and checked whether the board was restored
to its default state. When I copied the test suite to my script.test.js file and ran the
tests, the new test passed, as shown in Figure 9-9.

All tests written by Copilot so far have passed, but are the tests valid? In the next
section, you learn how to analyze the tests written by the AI model.

Analyzing test results
The fact that all the tests generated by Copilot pass at this point doesn’t mean that
the code is working correctly. If there are bugs in your tests, they may pass even
if the code they’re testing is incorrect. In this section, you analyze the tests and
the results from running the tests.

FIGURE 9-8:
A coverage report

shows you how
much of your

code has
been tested.

CHAPTER 9 Testing Your Code 227

If you write buggy code and ask a generative AI model to write a unit test for the
buggy code, the model may give you a test that verifies the behavior of the code as
it is — bugs and all. For example, consider the following function:

sumNumbers(num1, num2) {
 return `${num1} + ${num2}`;
}

As indicated by the name of the function, the intended purpose of this function is
to add two numbers. However, it was written in such a way that will result in it
returning a string.

I selected the sumNumbers() function and asked Copilot to write tests for it. Copilot
provided the following tests:

describe('sumNumbers', () => {
 test('returns correct string for positive numbers', () => {
 expect(game.sumNumbers(1, 2)).toBe('1 + 2');
 });

FIGURE 9-9:
The test for

clearBoard-
Diplay()

passed.
Microsoft Corporation

228 PART 3 Testing, Documenting, and Maintaining Your Code

 test('returns correct string for negative numbers', () => {
 expect(game.sumNumbers(-1, -2)).toBe('-1 + -2');
 });

 test('returns correct string for zero', () => {
 expect(game.sumNumbers(0, 0)).toBe('0 + 0');
 });

 test('returns correct string for mixed positive and negative

 numbers', () => {
 expect(game.sumNumbers(-1, 2)).toBe('-1 + 2');
 expect(game.sumNumbers(1, -2)).toBe('1 + -2');
 });
});

These tests correctly test the functionality of the sumNumbers() function as it’s
written, and they all pass. However, the function as written is wrong, and a human
developer who knew the intended purpose of sumNumbers() would never have
written these tests.

The sumNumbers() function is simplified and contrived, but it points to a potential
failing when AI generates tests: It writes tests to verify the function you have, not
to verify that the function produces the results you want.

One strategy for solving this problem may be to properly document your functions
before you generate tests. I added a comment describing the function, like this:

 /**
 * Adds two numbers together.
 * @returns {number}
 */
 sumNumbers(num1, num2) {
 return `${num1} + ${num2}`;
 }

However, even with this comment, when I ran the /tests command Copilot still
generated tests for the function as it was written rather than for what I intended
the function to do.

For my next attempt, I specifically asked Copilot to generate a test that would
check whether the function does what the description of the function specifies:

Write a test to verify that the sumNumbers function
does what it's supposed to do, as specified in its
JSDoc comment.

CHAPTER 9 Testing Your Code 229

Even with this specific comment, Copilot still generated tests to verify that the
function returns a string rather than a number, as shown in Figure 9-10.

I decided to give it one more try. This time, I asked for exactly what I wanted,
like this:

The sumNumbers function should take two numbers as
its arguments and return the sum of the two numbers.
Write tests to check whether this is what it does.

This time, Copilot wrote the tests I wanted, as shown in Figure 9-11.

I copied the tests to a file named sumNumbers.test.js and ran them. As expected,
all three tests that Copilot generated failed, as shown in Figure 9-12.

FIGURE 9-10:
Copilot can’t
seem to get

it right.
Microsoft Corporation

230 PART 3 Testing, Documenting, and Maintaining Your Code

FIGURE 9-11:
Including a

description in the
prompt resulted

in better tests!
Microsoft Corporation

FIGURE 9-12:
The new tests

failed, as
expected.

Microsoft Corporation

CHAPTER 9 Testing Your Code 231

I modified the sumNumbers() function to produce the correct output, then re-ran
the tests. With the function fixed, the tests all passed, as shown in Figure 9-13.

Generative AI won’t always write the tests you want. To understand why, it’s
important to always keep in mind that generative models can only make predic-
tions that have a high likelihood of being correct.

It’s tempting to accuse a GenAI model of being bad at its job when it repeatedly
gives the same wrong answer to a seemingly simple prompt. However, the prob-
lem is often that it’s providing perfectly fine responses to the question you asked,
and that asking the question correctly will result in the output you expect.

Test-Driven Development with AI
Because generative AI relies on context, getting AI to generate tests for functions
that have bugs can be challenging. However, what if we turned the process on its
head and asked AI to generate working code based on failing tests? This is the idea
behind test-driven development, and it may be the best way to get an AI assistant
to write exactly the code you need.

Test-driven development (TDD) is a software development practice that focuses on
creating tests for functionality that doesn’t yet exist. In test-driven develop-
ment, the developer writes a test for a single unit of code, and then writes the
code to make the test pass. No piece of code is written without a test being writ-
ten first, so TDD (done correctly) results in 100 percent code coverage and
higher-quality code.

FIGURE 9-13:
With the

function fixed,
the tests pass.

232 PART 3 Testing, Documenting, and Maintaining Your Code

The TDD process involves three steps, called the TDD cycle, which are repeated as
often as necessary to build the desired software:

 » Write a test. Write a test that accurately describes a single piece of functional-
ity, and then run the test to confirm that it fails (because the feature doesn’t
yet exist.) Also known as the red stage.

 » Write code to pass the test. Write the minimum code necessary to make the
test pass. Also known as the green stage.

 » Refactor. Restructure both the code and the test to improve them.

After refactoring step, the cycle starts over with another test.

The developer’s goal while practicing TDD is to build tests and software in small
and tested pieces of code. Rather than focusing on writing the code correctly and
then testing that it works, TDD emphasizes writing good tests and then writing
the minimum amount of code to pass the tests, even if the code you write isn’t
ideal. After the code passes the test, you improve the code in the refactor stage.

Because AI is good at writing small amounts of code when given good instruc-
tions, TDD seems like a perfect match for working with an AI assistant. But there’s
a catch — you need to write the tests yourself. If you have AI write both the tests
and the code, it’s highly likely that both will be wrong. Writing tests in TDD is how
you design the software, so it’s important to get the tests right.

Technically, you don’t need to write the tests entirely without AI assistance. Using
Copilot’s completion feature as you code is generally safe, as long as you verify
and approve each autocompletion.

To find a feature that would be a good candidate to develop with TDD, I looked at
the unfinished features in the tic-tac-toe game’s SRS, which I generated using
ChatGPT in Chapter 5. The biggest feature that I haven’t yet created is specified
under the heading Game History and Stats:

- The game will keep track of player stats such as:
 - Total games played.
 - Number of games won.
 - Number of games lost.

To start, I wrote a test to check whether the totalGamesPlayed variable incre-
ments after a game is played. Here’s what I came up with:

describe('Game stats', () => {
 let game;

CHAPTER 9 Testing Your Code 233

 beforeEach(() => {
 game = new TicTacToeGame();
 });
 test('increments total games played after a game ends',

 () => {
 expect(game.totalGamesPlayed).toBe(0);
 game.isGameOver = true;
 game.updateGameStats();
 expect(game.totalGamesPlayed).toBe(1);
 });
});

After writing the test, I ran Jest to confirm that this test failed. And it did, of
course, as shown in Figure 9-14.

Next, I opened my script.js, script.test.js, and srs.md files and prompted Copilot
Chat with the following:

@workspace Write the code to pass this test:

After the prompt, I pasted my test in the chat window. Note that I used the
@workspace command to tell Copilot to consider all the files in my project as
references for its response, which is shown in Figure 9-15.

I implemented the suggested solution and ran my tests again. Everything passed,
so I was ready to move on to refactoring.

One way to improve the test would be to simulate the ending of a game, rather
than setting isGameOver to true manually. This improvement would make the test
more representative of the actual usage of the class.

FIGURE 9-14:
As expected, my
first tests failed.

234 PART 3 Testing, Documenting, and Maintaining Your Code

I changed the test to the following:

test('increments total games played after a game ends', () => {
 expect(game.totalGamesPlayed).toBe(0);
 game.endGame()
 expect(game.totalGamesPlayed).toBe(1);
});

I ran the test again and it failed. I asked Copilot how to change the program to pass
the test and it responded as shown in Figure 9-16.

This suggestion worked and my test passed. I felt pretty good about the test and
the solution, so I moved on to refactoring. I checked everything carefully, and
then wrote my next test.

After you modify a test and implement the code to pass it, check for extraneous
code. As you learn in Chapter 6, code that may have had a purpose at one time but
is no longer used by the program is known as dead code. You should remove dead
code during the refactoring stage of TDD.

FIGURE 9-15:
Copilot told me
how to get the

test to pass.
Microsoft Corporation

CHAPTER 9 Testing Your Code 235

At this point, the endGame() method is never called in the normal playing of the
game, so I decided to make ending the game the next bit of functionality to write.
To see how Copilot would write the test, I prompted it with the following:

@workspace How can I write a unit test to check whether
the endGame method runs when a player wins?

For some unknown reason, Copilot responded that it can help with only
programming-related questions, as shown in Figure 9-17.

I’m sure that I could refine my prompt to make Copilot understand what I was
talking about, but I felt like my point about not asking AI to generate tests while
doing TDD was proven, so I wrote the following test suite:

describe('Game end', () => {
 let game;
 beforeEach(() => {
 game = new TicTacToeGame();

FIGURE 9-16:
Updating the

game to pass the
refactored test.

Microsoft Corporation

236 PART 3 Testing, Documenting, and Maintaining Your Code

 });
 test('sets isGameOver to true after a player wins', () => {
 expect(game.isGameOver).toBe(false);
 game.board = ['X', 'X', 'X', 'O', 'O', '', '', '', ''];
 game.checkWin();
 expect(game.isGameOver).toBe(true);
 });
});

I tried several times to get Copilot Chat to generate the code I wanted. I prefaced
my prompt with @workspace to have it analyze all the files in my project. I gave it
just script.js for reference, and then I gave it just script.test.js. Each time, it stub-
bornly refused to provide what I considered an acceptable response. Rather than
continuing to argue with Copilot Chat, I decided it would be faster to just write this
code myself.

The correct answer is to call the endGame() function when one player wins.
Here’s the revised checkWin() function, with the code I wrote to pass this test
shown in bold:

 /**
 * Check whether someone has won the game
 * @returns {boolean}
 */
 checkWin() {
 const winCombos = [
 [0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 3, 6],
 [1, 4, 7],
 [2, 5, 8],

FIGURE 9-17:
Copilot seems to

be confused.
Microsoft Corporation

CHAPTER 9 Testing Your Code 237

 [0, 4, 8],
 [2, 4, 6],
];
 const win = winCombos.some((combo) => {
 return (
 this.board[combo[0]] &&
 this.board[combo[0]] === this.board[combo[1]] &&
 this.board[combo[0]] === this.board[combo[2]]
);
 });
 win ? this.endGame() : null;
 return win;
 }

I implemented my solution, and the test passed. This leads to the most important
lesson of this chapter: In AI-assisted TDD, if you know the right way (or even just
an easy way) to get your test to pass, don’t ask for AI assistance. Trust yourself.

Much more needs to be done to finish the functionality described in the Game
History and Stats section of the SRS. If you want to experiment with AI-assisted
TDD, you can find the complete code for the tic-tac-toe game as it stands now in
the tic-tac-toe-final folder in the chapter09 folder of the code you downloaded
for this book.

CHAPTER 10 Documenting Your Code 239

Chapter 10
Documenting Your Code

In every other chapter, you learn about using AI to translate natural language to
code. In this chapter, you learn about using AI to translate code to natural
language. Whether you’re writing comments to describe a function or creating

a manual for the users of your software, documenting your code (or the results of
running your code) is the process of explaining what code does, or should do, in a
language that can more easily be understood by your target audience (people).

Software documentation can be divided into two broad categories: internal docu-
mentation and external documentation. Every software project needs both types.

Internal documentation is generally created by software developers and project
managers to help guide the development process. It may include administra-
tive documentation, such as status reports and meeting notes, as well as devel-
oper documentation, such as requirements, comments, and software architecture
diagrams.

External documentation includes everything end users of the software will need to
deploy and use it. Examples of end-user documentation include README files,
release notes, tutorials, FAQs, troubleshooting guides, system documentation, API
documentation, and blog posts.

In this chapter, you learn how to use AI to create both internal and external
documentation for software.

IN THIS CHAPTER

 » Getting AI help with documentation

 » Commenting your code

 » Creating diagrams

 » Documenting APIs with AI

240 PART 3 Testing, Documenting, and Maintaining Your Code

Working with Documentation Bots
Although you could use any of the GenAI tools you learned about in other chapters
to create documentation, there are better options. Many software packages have
been created specifically for creating and maintaining documentation, and most
now feature an AI option.

Popular software documentation tools include the following:

 » Bit.ai (https://bit.ai) is a platform for teams and individuals to create,
collaborate, and organize both internal and external documentation. Its AI
chatbot, AI Genius, can be added to any paid plan.

 » Document360 (https://document360.com) offers a drag-and-drop interface
for creating both internal and external documentation. It includes a genera-
tive AI chatbot, called Eddy, that provides answers from your documentation.

 » GitBook (https://gitbook.com) emphasizes collaboration and generates
documentation in Markdown format. Markdown is a lightweight markdown
format often used for writing documentation for projects that are primarily
distributed as Git repositories (hosted on sites like GitHub, BitBucket, and
GitLab). Markdown files have the .md extension. GitBook has an AI assistant
that uses a chatbot to generate new content.

 » Notion (https://notion.so) is an all-in-one workspace tool that combines
note-taking, project management, and documentation. It has an AI add-on
that can generate content based on your documentation.

 » Nuclino (https://nuclino.com) focuses on simplicity and ease of use.
It features an AI chatbot, called Sidekick, that can draft emails, translate
content, craft marketing copy, and more.

 » Swimm (https://swimm.io) is designed for creating internal documentation.
Its AI assistant, Swimm AI, can generate explanations of your code and help
create code documentation.

Most of the software documentation tools that have added AI do so by fine-tuning
a pretrained model using your code and making this fine-tuned model available
through a chat interface. Rather than getting into the details of the non-AI fea-
tures of a software documentation tool, let’s explore how you can fine-tune a
model yourself to create your own AI assistant.

Building your own documentation bot
In this section, you learn how to use the OpenAI platform site to build your own
documentation-writing assistant. This assistant will be trained on the code

https://bit.ai/
https://document360.com/
https://gitbook.com/
https://notion.so/
https://nuclino.com/
https://swimm.io/

CHAPTER 10 Documenting Your Code 241

you upload and will interpret your code to generate both internal and external
documentation.

To get started, log into the OpenAI platform at https://platform.openai.com.
Then go to the assistants interface by clicking the Assistants icon (robot) in the
left navigation. (You can also go directly to https://platform.openai.com/
assistants.) Follow these steps to set up and train a new assistant:

1. Click the Create button on the Assistants page.

The window shown in Figure 10-1 appears, where you can specify some
options and upload files.

2. Give your assistant a name, such as My Helpful Documentation Assistant.

3. In the Instructions text area, enter some instructions.

Here’s what I started with:

You are an experienced technical writer who is also proficient
in many different programming languages. You can interpret code
and use your knowledge of programming and technical writing to
create both internal and external software documentation.

FIGURE 10-1:
Starting the

new assistant
creation process.

ChatGPT

https://platform.openai.com/
https://platform.openai.com/assistants
https://platform.openai.com/assistants

242 PART 3 Testing, Documenting, and Maintaining Your Code

I will probably need to refine these instructions once I test the assistant, but
this is a good start.

4. Select a model.

At this point, the most recent GPT model is gpt-4-1106-preview, which is what
I selected.

5. In the Tools options, enable the Code Interpreter and Retrieval tools.

The Code Interpreter tool enables the assistant to write and run code.
The Retrieval tool enables the assistant to retrieve content from the files
you upload.

6. Upload your project’s files.

For my first test of the assistant, I deleted the node_modules folders from
both the tic-tac-toe game’s server and client, and I deleted the .env file from
the server folder before making a .zip file and clicking the Add button in the
Files area of the New Assistant window to upload it.

7. Save your assistant, then click the Test button in the upper-right corner
of the New Assistant window.

A new session will open in the Playground, as shown in Figure 10-2.

FIGURE 10-2:
Starting a

documentation
assistant session.

ChatGPT

CHAPTER 10 Documenting Your Code 243

Testing your documentation assistant
Congratulations, you have a new assistant. Let’s see if it’s any good. For my first
test of my helpful documentation assistant, I asked it to create a README file for
my project. Here’s the prompt I used:

Create a README.md file for my tic-tac-toe game.

My goal with this prompt is to get the assistant to retrieve my code from the files
I uploaded and generate a file containing external documentation in Markdown
format. You may want to provide additional information to indicate what you
expect to be in the README file, but for my first attempt I wanted to see what it
would do.

I clicked the Add and Run button, and OpenAI responded by saying it would need
information about my project to be able to create a README. The full response is
shown in Figure 10-3.

The prompt input box has a file attachment feature, so I attached the .zip file to a
new message and typed the following prompt:

Please consult with the attached files to get the answers
to your questions.

The assistant wasn’t able to open the .zip file, which may explain why it didn’t use
the files it was trained on in the first place.

FIGURE 10-3:
My assistant

didn’t consult
with the

code files.

244 PART 3 Testing, Documenting, and Maintaining Your Code

For my next attempt, I gave the assistant the URL to the game’s GitHub reposi-
tory, but it responded that it couldn’t access the internet. It did, however, give me
a basic template for a README file.

For my next attempt, I uploaded the JavaScript, HTML, CSS, and package.json files
for the client individually.

I cleared out the current conversation and tried again from the start with this
prompt:

Please use the files I uploaded to create a README.md file
for my tic-tac-toe game.

This time, it worked! The assistant looked at each file I uploaded and determined
what type of data they were. Once it figured out that they were code, it parsed the
code to figure out what it did. Finally, it generated a README file that describes
the game fairly accurately, except for one major problem — the instructions it
provided described how to install and run a Python script, which my tic-tac-toe
game isn’t.

The process of generating the README took around 3 minutes (once I figured out
the correct way to provide my files and an adequate prompt). The result is shown
in Figure 10-4.

FIGURE 10-4:
I’d give my

assistant’s first
README a C+.

ChatGPT

CHAPTER 10 Documenting Your Code 245

Generating Code Comments
and Annotations

Mintlify Doc Writer is a VS Code plug-in that generates comments for code. It
uses machine learning to write comments for code written in every popular
programming language and can currently write comments in nine spoken
languages.

Having an AI tool that can instantly understand a piece of code and write an accu-
rate comment for that code is a great time-saver, not only when you’re writing
code but also when you’re trying to figure out what code written by another pro-
grammer does.

Unfortunately, it’s all too common for a programmer starting a new job to be
faced with trying to understand poorly commented code written by someone who
has long since left the company. A good first step for getting a handle on such a
mess is to start writing the comments that should have been there from the start.

Installing and testing Mintlify Doc Writer
Follow these steps to install and try out the Mintlify Doc Writer plug-in:

1. Open the Extensions panel in VS Code and search for Mintlify.

The Mintlify Doc Writer extension page in the Extensions marketplace is shown
in Figure 10-5.

FIGURE 10-5:
The Mintlify
Doc Writer

extension page.
Microsoft Corporation

246 PART 3 Testing, Documenting, and Maintaining Your Code

2. Click the Install button.

3. Open the code you want to document in VS Code.

For this experiment, I’m using the AI tic-tac-toe game that I started writing in
previous chapters.

4. Find a function you want to document and select it in the code window.

5. Click the Mintlify Doc Writer icon on the left of VS Code.

A panel appears, as shown in Figure 10-6.

6. With a function selected in the code window, click the Generate docs
button in the Mintlify Doc Writer tool.

After a moment, a comment is added above the selected function that
describes the purpose of the function, as shown in Figure 10-7.

The code comment added in my first test of Mintlify Doc Writer was accurate and
would be helpful for future programmers (or my future self). But how does
it compare with human-written code comments? To find out, let’s look at a
heavily commented open-source project and see what Mintlify Doc Writer does
differently.

FIGURE 10-6:
The Mintlify Doc

Writer panel.
Microsoft Corporation

CHAPTER 10 Documenting Your Code 247

Commenting on Underscore
Underscore (https://underscorejs.org) is an open-source library of utility
functions for common JavaScript programming tasks. Created by Jeremy Ashkenas
in 2009, it’s been included in thousands (perhaps millions) of JavaScript projects
and was the starting point for the (currently) even more popular library of utility
functions called Lodash. Underscore is distributed under the MIT license, which
allows any use of the software as long as the copyright notice is included.

I’ve included two copies of Underscore in the chapter10 folder of the code you can
download for this book. One copy (named underscore-esm.js) is the original
uncompressed version of the Underscore library, complete with the developer’s
comments. The other copy (named underscore-esm-no-comments.js) is a copy of
the code, but I’ve stripped out all the comments (except for the copyright notice).

As it says on the Underscore library’s website, the uncompressed version has
“plentiful comments,” as you can see in Figure 10-8.

To see how Mintlify stacks up, I opened the original file and my no comments
version side-by-side in VS Code, with the original file on the left and the no com-
ments version on the right. I selected a function in the no comments version and
used Mintlify Doc Writer to generate a comment, as shown in Figure 10-9.

This first test went really well! The generated comment accurately describes the
purpose of the code I highlighted. However, it is unnecessarily verbose and could
use some editing. Also, the generated comment includes only a description of
what the code does, whereas the human-written comment also describes why it is
the way it is.

FIGURE 10-7:
Mintlify adds a

code comment.
Microsoft Corporation

https://underscorejs.org/

248 PART 3 Testing, Documenting, and Maintaining Your Code

FIGURE 10-8:
Each function

of Underscore
includes

comments.
Microsoft Corporation

FIGURE 10-9:
Generating a
comment for

Underscore (in
the code window

on the right.)
Microsoft Corporation

CHAPTER 10 Documenting Your Code 249

Here’s the original (human-written) comment:

// Establish the root object, `window` (`self`) in the browser, `global`

// on the server, or `this` in some virtual machines. We use `self`

// instead of `window` for `WebWorker` support.

And here’s the comment that was generated by Mintlify Doc Writer:

/* The above code is checking for the global object in different

environments (browser, Node.js, etc.) and assigning it to the variable "root".

It first checks if the "self" object exists and is equal to itself, then

checks if the "global" object exists and is equal to itself, and finally uses

a fallback to create a new function and execute it, returning the result.

The purpose of this code is to ensure that the "root" variable references

the global object in any environment. */

In this example, I declare the human writer the winner. The comment is only as
long as it needs to be, and it provides additional context that may be important for
anyone seeking to understand the functioning of the code.

For the second round of my man versus machine showdown, I selected one of
Underscore’s simpler function, isNull(). The isNull() function takes an object
as its argument and returns true or false based on whether the object has a value
of Null.

The original comment for the isNull() function is

// Is a given value equal to null?

Mintlify’s model returned the following comment:

/**
 * The function checks if an object is null.
 * @param obj - The parameter "obj" is a variable that
 * represents any object or value that we want to
 * check if it is null.
 * @returns The function isNull returns true if the obj
 * parameter is null, and false otherwise.
 */

Once again, this description of the comment is accurate but uses nearly ten times
as many words to describe a function that, honestly, doesn’t require any docu-
mentation to be clearly understood.

250 PART 3 Testing, Documenting, and Maintaining Your Code

For the third round of my battle of brains versus bits, I selected one of
Underscore’s more complex functions, restArguments(). Here’s the official
comment from Underscore describing what restArguments() does:

// Some functions take a variable number of arguments, or a few expected

// arguments at the beginning and then a variable number of values to operate

// on. This helper accumulates all remaining arguments past the function's

// argument length (or an explicit 'startIndex'), into an array that becomes

// the last argument. Similar to ES6’s "rest parameter".

This is a clear and easy-to-understand comment that ends with a key piece of
information that will be helpful to anyone who knows JavaScript — namely, that
the purpose of this function is to do something similar to what the rest parameter
does in JavaScript.

Here’s the comment created by Mintlify Doc Writer:

/**

 * The restArguments function allows a function to accept a variable number

 * of arguments and treats the remaining arguments as an array.

 * @param func - The `func' parameter is the function that you want to modify

 * to accept rest arguments.

 * @param startIndex - The `startIndex' parameter is the index at which the

 * rest arguments should start. It determines how many initial arguments

 * should be passed to the `func' function before the rest arguments are passed.

 * If `startIndex' is not provided or is `null', it defaults to `func.length

 * - 1',

 * @returns The function `restArguments’ returns a new function.

 */

The generated comment is in proper JSDoc format and includes the @param and
@returns tags. In addition, the generated comment provides details about using
the function that aren’t provided by the original comment. In this case, I give the
edge to the AI-generated comment. I would trim it substantially before including
it in my code, however.

Creating Visual Documentation
Diagrams, charts, mock-ups, and other types of visual documentation are
essential to creating effective and engaging internal and external documentation.
During the planning phase of a project, creating software architecture diagrams
and requirements diagrams can help everyone on the team see the big picture.

CHAPTER 10 Documenting Your Code 251

Mock-ups and wireframes are used during the user interface design process.
When creating documentation for external users of the software, you might make
use of screen captures, workflow diagrams, animation, and video.

Generative AI shouldn’t create some types of visual documentation, such as those
that require accuracy. For example, Figure 10-10 shows the result when I asked
GPT-4 to create an illustration pointing out the main features of the AI tic-tac-
toe game. Other types of visual documentation, such as diagrams, can be created
by GenAI systems by combining the text generation capabilities of an AI system
with the capabilities of a drawing or diagramming program.

Generating a sequence diagram
In this section, I use a free diagramming tool called draw.io, available at
https://diagrams.net, to generate a diagram. Draw.io has many built-in
templates for creating different types of diagrams. To get started with building a
diagram, choose from one of the built-in templates and start populating it with
content.

Draw.io also has a smart template feature, where you select from a list of tem-
plates (see Figure 10-11) and provide a description. The tool then pre-populates
the diagram with generated content based on the information you provide.

FIGURE 10-10:
GPT-4 failed at
annotating my

screenshot.
ChatGPT

https://diagrams.net/

252 PART 3 Testing, Documenting, and Maintaining Your Code

After you choose a smart template, provide a description of the diagram and
then click the Generate button. The generative AI model will create content for the
diagram and you can save it to your computer and edit it further.

Figure 10-12 shows a sequence diagram created by Draw.io based on the
following prompt:

Make an apple pie.

Generating a requirements diagram
A software requirements diagram visualizes the requirements in a system as well as
the relationships between requirements. It can be a useful tool for gaining a better
understanding of the requirements as well as for prioritizing the work. Getting
started with writing a requirements diagram can be difficult, however, and gen-
erative AI may be helpful.

It may seem counterintuitive at first to have a generative AI model make up
requirements since (at least ideally) requirements are specified by the client,
product owner, and business analyst. However, most software projects share
similar characteristics and features. Some pieces of a web app are so common that
a client or product owner may forget that they must be built prior to the parts of
the app that make it unique. Examples of such functionality include user authen-
tication and search features.

FIGURE 10-11:
The list of smart

templates.

CHAPTER 10 Documenting Your Code 253

To find out whether a generative model can write the basic requirements and
present them as a requirements document, I thought of a project and came up
with a short description:

A web app for writers to use to manage all aspects of a
book-writing project.

I opened Draw.io, selected the Requirement Diagram Smart Template, typed my
description in the prompt text box, and clicked Generate. The resulting diagram,
shown in Figure 10-13, was a failure.

FIGURE 10-12:
How to make an

apple pie.

254 PART 3 Testing, Documenting, and Maintaining Your Code

For my second attempt, I used the following prompt:

Create requirements, specified as user stories, for a
web app for writers that helps them manage writing
projects.

The result, shown in Figure 10-14 was far worse than the preceding one and had
nothing at all to do with my request.

For my third attempt, I tried the following prompt:

Requirements for web app to help writers organize and
track writing projects.

By using the words organize and track, I gave the model enough of a hint that it
could relate what I wanted to the requirements for any project management tool.
It finally gave me something I could work with.

FIGURE 10-14:
What happened

here?

FIGURE 10-13:
A first draft

requirements
diagram.

CHAPTER 10 Documenting Your Code 255

Figure 10-15 shows a closeup of part of the diagram. Note that the model wrote the
requirements as user stories, and that it’s successfully written requirements that
might be part of any project management tool.

Automating API Documentation with AI
One of the most common forms of both internal and external software documen-
tation is API documentation. API documentation specifies the ways in which devel-
opers can write software to interact with your software.

Web apps that interact with a server usually use a RESTful, or just REST (repre-
sentational state transfer) API, which is an architectural style that uses HTTP
requests to create, update, read, and delete data. You can access REST APIs by
using simple URLs that describe the purpose of the API. The URLs used by a REST
API are called endpoints.

For example, a server that uses the REST architecture may have an endpoint called
/user. To create a user record, a client application can perform an HTTP POST
request to the /user endpoint with the required data. To retrieve a specific user
record from the server, a client application can perform an HTTP GET request to
the endpoint. To update an existing record, a client application can perform an
HTTP PUT request, and to delete a record, a client application can perform an
HTTP DELETE request.

FIGURE 10-15:
A close-up
of several

requirements in
the diagram.

256 PART 3 Testing, Documenting, and Maintaining Your Code

Documenting a REST API
REST APIs can be documented by using the OpenAPI Specification (OAS), a
programming-language-agnostic format for describing, producing, consuming,
and visualizing APIs. Tools for documenting APIs and creating an OAS file
include Postman (https://www.postman.com), Swagger (https://swagger.io),
and ReadMe (https://readme.com).

Ideally, API documentation should be created before or during the development of
the server that defines the API. However, this is not always the way it works. In
this case, documentation for the API needs to be created by reverse-engineering
the code. This task is often done manually by entering information about the API
in an online tool or by writing the OAS file by hand.

Generative AI tools that have access to your code may be helpful in this process.
Follow these steps to create an OAS file for a server using GitHub Copilot:

1. In VS Code, open the folder named /soliloquy in the /chapter10 folder of
the code you downloaded from this book’s website (at www.dummies.com/
go/codingwithaifd).

This folder contains the server and client applications for a simple social media
application called Soliloquy. I gave it that name because it currently allows you
to talk only to yourself.

2. Open the two files from the server/routes folder (user.js and posts.js).

These files define the API endpoints.

3. With the two route files open, enter the following prompt in GitHub
Copilot (or another chatbot of your choice):

@workspace Generate an OAS file for this rest server.

When I tried this prompt with Copilot, it generated what appears (at first
glance) to be a valid and accurate OAS file in the YAML language, as shown in
Figure 10-16.

YAML stands for YAML Ain’t Markup Language. It’s commonly used for configu-
ration files with any programming language.

To find out if this file is valid and accurate, I could read the entire file closely and
compare it to my program code. Or I could try importing it into a tool for testing
and visualizing APIs and see what happens. The second option sounds easier and
more fun, so that’s what I did.

https://www.postman.com/
https://swagger.io/
https://readme.com/
https://www.dummies.com/go/codingwithaifd
https://www.dummies.com/go/codingwithaifd

CHAPTER 10 Documenting Your Code 257

One tool for creating API documentation is ReadMe. The free version of ReadMe
can be used to create an interactive API reference. Follow these steps to import the
generated YAML OAS file into ReadMe:

1. Sign up for an account at https://www.readme.com.

2. Click the New Project button.

3. Click Quickstart in the left sidebar (see Figure 10-17) to start creating
your API reference.

You see a page where you can upload an OAS file, as shown in Figure 10-18.

FIGURE 10-16:
A Copilot-
generated

OAS file.
Microsoft Corporation

FIGURE 10-17:
The ReadMe
home page.

ReadMe

https://www.readme.com/

258 PART 3 Testing, Documenting, and Maintaining Your Code

4. Click OAS Upload.

A Describe Your API pop-up window appears. This window provides options for
uploading your OAS file, including using the command line, uploading from
GitHub, or uploading a file manually.

5. Choose an upload option.

Using the command line or GitHub upload method is the best option, because
they keep your documentation in sync with changes you make. However, for
this first experiment, I decided to select the file upload method for simplicity,
as shown in Figure 10-19.

6. Save the OAS code that Copilot generated in a file named soliloquy.yaml
and upload it to ReadMe.

After a moment, ReadMe displays a Next Steps window, as shown in
Figure 10-20. This window contains a link to preview my API reference.

7. Click the Preview API Reference link, and navigate to the Get All Posts
endpoint documentation, which is shown in Figure 10-21.

FIGURE 10-18:
The Quickstart
page with the

OAS upload
button.

ReadMe

CHAPTER 10 Documenting Your Code 259

I’ll need to write and run tests before I can say whether the API documentation
Copilot generated is completely accurate, but so far it looks great and was much
faster to create than I could have done manually.

FIGURE 10-19:
The file upload

screen in the
Describe Your API

window.
ReadMe

FIGURE 10-20:
The Next Steps

window.
ReadMe

260 PART 3 Testing, Documenting, and Maintaining Your Code

Creating an API documentation chatbot
ReadMe’s Owlbot AI add-on uses AI to give readers of your documentation a chat
interface where they can ask questions about your documentation. However, you
can also build your own by using OpenAI’s Assistants API or by creating your own
GPT in ChatGPT Plus.

For the following demonstration, I use ChatGPT Plus, but if you want to use the
Assistants API, you can access it using the instructions in the “Building your own
documentation bot” section.

If you’re a ChatGPT Plus subscriber, you can access your custom GPT’s configura-
tion screen by clicking your user icon in the lower left and selecting My GPTs, as
shown in Figure 10-22.

Follow these steps to create an API documentation chatbot.

1. On the My GPTs screen (https://chat.openai.com/gpts/mine) click
Create a GPT.

The New GPT screen appears.

2. Click the Configure button to access the GPT configuration form.

3. Fill in a name and description of your GPT.

The name and description I used are shown in Figure 10-23.

FIGURE 10-21:
The Get All Posts

endpoint
documentation.

ReadMe

https://chat.openai.com/gpts/mine

CHAPTER 10 Documenting Your Code 261

4. Enter instructions for the GPT.

Here are the instructions I used:

You are a helpful and expert technical support bot who is
fluent in many programming languages and is available to
help anyone with questions about the REST API for a social
media server called “Soliloquy.” By consulting the OpenAPI
file in your knowledge, you can provide answers about how
to perform tasks such as signing up users, logging users in,
creating new posts, editing posts, deleting posts, and
retrieving posts. You can also answer questions about how
to write programs that make use of the API.

FIGURE 10-23:
Filling out the

form to configure
a GPT.

ChatGPT

FIGURE 10-22:
Accessing

your GPTs.
ChatGPT

262 PART 3 Testing, Documenting, and Maintaining Your Code

5. In the Knowledge section of the form, select and upload your OAS file.

This is the YAML file you created in the “Documenting a REST API” section.

6. In the Capabilities section of the form, select Web Browsing and Code
Interpreter.

You can also select additional options if you like (such as DALL-E Image
Generation).

7. Save your GPT by clicking Save in the upper-right corner and selecting an
option in the Publish To menu.

In Figure 10-24, I selected Anyone with a Link.

Once you’ve finished configuring your GPT, you’re ready to test it! For my first
test, I gave it the following prompt:

How can I create a new user?

The chatbot thought about it for a moment, and then came back with a perfect
response, as shown in Figure 10-25.

FIGURE 10-24:
Completing

the GPT
configuration.

ChatGPT

CHAPTER 10 Documenting Your Code 263

For my second test, I decided to push my luck. I asked my chatbot to write a
JavaScript program and an HTML page that could be used to create a user. Here’s
the prompt I used:

Can you write a web page and JavaScript program to create
a new user?

Its response was a great start. However, it made a few errors and less-than-ideal
decisions. For example, it added an extra field (username) to the sign-up form
that the server doesn’t support, and a few things in the code (such as the use of
the var keyword instead of the more modern let or const keyword) could be
improved. Here’s the full program that the chatbot created:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Create New User</title>

 <script>

 function signupUser() {

 var xhr = new XMLHttpRequest();

 var url = "https://api.soliloquy.com/user/signup"; // Replace with

your API's URL

 xhr.open("POST", url, true);

 xhr.setRequestHeader("Content-Type", "application/json");

FIGURE 10-25:
The Chatbot

accurately
explained how to

use the /user/
signup endpoint.

ChatGPT

264 PART 3 Testing, Documenting, and Maintaining Your Code

 xhr.onreadystatechange = function () {

 if (xhr.readyState === 4 && xhr.status === 200) {

 var jsonResponse = JSON.parse(xhr.responseText);

 console.log("User created: ", jsonResponse);

 alert("User successfully created!");

 }

 };

 var username = document.getElementById("username").value;

 var password = document.getElementById("password").value;

 var email = document.getElementById("email").value;

 var userData = JSON.stringify({

 "username": username,

 "password": password,

 "email": email

 });

 xhr.send(userData);

 }

 </script>

</head>

<body>

 <h2>Create New User</h2>

 <form onsubmit="event.preventDefault(); signupUser();">

 <label for="username">Username:</label>

 <input type="text" id="username" name="username" required>

 <label for="password">Password:</label>

 <input type="password" id="password" name="password" required>

 <label for="email">Email:</label>

 <input type="email" id="email" name="email" required>

 <input type="submit" value="Create User">

 </form>

</body>

</html>

I tested the program with my server, and it attempted to make an HTTP POST
request. The request was blocked due to the browser’s cross-origin resource
sharing (CORS) policy. Once I configured the server to allow a POST request from
my development machine and made a few more tweaks, the program worked!

CHAPTER 10 Documenting Your Code 265

If Soliloquy were a real product and I was creating an API chatbot, I would refine
Soliloquy’s instructions and upload a sample of a client application that uses the
API. I expect that would greatly increase the assistant’s accuracy.

Overall, at this point, generative AI systems do a fair job of creating documentation
for software and can be a huge timesaver when generating API documentation.
However, as with any use of generative AI, it’s important not to assume that
any generated content is accurate or as good as what you could have created
manually.

CHAPTER 11 Maintaining Your Code 267

Chapter 11
Maintaining Your Code

Software is never finished. Once you’ve gone through the processes of
planning, coding, testing, documenting, and deploying an application, the
process of maintenance begins. Maintenance is a large part of the job of a

software developer. In one study conducted by Stripe, developers reported spend-
ing almost half of their day doing maintenance (https://stripe.com/files/
reports/the-developer-coefficient.pdf).

Maintenance is not a popular task, either. A survey conducted by Rollbar
(www.businesswire.com/news/home/20210216005484/en/Rollbar-Research-
Shows-That-Traditional-Error-Monitoring-Is-Missing-the-Mark) found
that 21 percent of developers would rather go to the dentist than fix errors.

In this chapter, you learn what is involved in software maintenance and how AI
tools can help to make the process less time consuming and (I hope) more
enjoyable.

Knowing the Four Types of Maintenance
The predictable result of not performing routine maintenance on your car is that
things will start to degrade until you have a major problem. The predictable result
of not performing maintenance on software is that it will eventually fail. Types of
failure for software applications include bugs, errors, security issues, and user
dissatisfaction.

IN THIS CHAPTER

 » Sweeping through the types of
maintenance

 » Using AI tools for code maintenance

 » Enhancing code quality

https://stripe.com/files/reports/the-developer-coefficient.pdf
https://stripe.com/files/reports/the-developer-coefficient.pdf
https://www.businesswire.com/news/home/20210216005484/en/Rollbar-Research-Shows-That-Traditional-Error-Monitoring-Is-Missing-the-Mark
https://www.businesswire.com/news/home/20210216005484/en/Rollbar-Research-Shows-That-Traditional-Error-Monitoring-Is-Missing-the-Mark

268 PART 3 Testing, Documenting, and Maintaining Your Code

There are four types of software maintenance:

 » Corrective software maintenance

 » Adaptive software maintenance

 » Perfective software maintenance

 » Preventative software maintenance

Done correctly and in combination, the four types of maintenance will help to
keep your software healthy and constantly improving. The approximate percentage
of time developers spend on each of the four types of software maintenance is
shown in Figure 11-1.

Corrective software maintenance
No matter how thoroughly you test software, it will have bugs and errors that
aren’t found until after it’s deployed and starts being used. Corrective software
maintenance, commonly known as software repair, is the process of fixing these
bugs and errors so that they no longer affect the user experience, the security, or
the logic of the application.

Corrective maintenance is always done in response to an issue reported by either
in-house testers or end users. Examples of issues that may come up once software
is deployed include login failures, typos, broken links, and incompatibilities with
other software or hardware.

FIGURE 11-1:
How much time

developers spend
doing each type
of maintenance.

CHAPTER 11 Maintaining Your Code 269

Corrective software maintenance is often triggered by bug reports. However,
many bug reports submitted by users are actually suggestions for enhancement
rather than bugs.

Adaptive software maintenance
Adaptive software maintenance is the process of modifying software in response to
changes to the environment it lives in. A software application’s environment
includes the hardware, operating system, software dependencies, and business
rules and policies that the application depends on.

In a modern web application, thousands of dependencies may change and neces-
sitate some kind of adaptive software maintenance. For example, software librar-
ies used in your application might need to be upgraded, third-party services such
as payment processors or web APIs may change, and the hardware and software
used by your application will continue to improve after you launch your product.
Adaptive maintenance is done to ensure that your software doesn’t become
outdated.

Oftentimes, adaptive maintenance will have a side effect of fixing bugs and errors
that have been reported. For example, an error that appears in your program after
it’s deployed may be the result of something outside your control, such as a change
to an external API that your program depends on.

Perfective software maintenance
Once your software is exposed to users, they will have all kinds of ideas for how it
could be better or more helpful. These suggestions will often come in the form of
bug reports. If a bug report or suggestion describes functionality that’s outside
the software’s requirements, however, implementing it falls into the category of
perfective maintenance.

While perfective software maintenance is often the process of enhancing an existing
system, it also includes the process of removing code or features that aren’t useful
or that have become obsolete.

Preventative software maintenance
Preventative software maintenance is the process of looking for issues in your
software and fixing them before they become bugs or errors. Whereas corrective
maintenance is reactive, preventative maintenance is proactive.

270 PART 3 Testing, Documenting, and Maintaining Your Code

The great thing about preventative maintenance is that, unlike corrective
maintenance, it can be scheduled ahead of time. Examples of tasks that can be
done during preventative maintenance include updating documentation, refac-
toring code, and optimizing code performance.

Utilizing AI for Code Maintenance
AI systems can be helpful for each of the four types of software maintenance.
Many of the specific processes involved in software maintenance are the same as
the processes and best practices used during development and are covered in
previous chapters of this book.

Some specific ways that AI tools can help you maintain code include the
following:

 » Automated error detection and correction: AI tools can automatically
scan your code repository for bugs when new code is committed to the code
repository and assist with resolving issues. The section in Chapter 7 on
automating bug fixes shows various ways to automate bug detection and
bug fixing with AI tools.

 » Predictive maintenance: Machine learning can be used to predict potential
system failures and to identify parts of the code that may cause problems.

 » Code refactoring: The larger and more complex software is, the more likely
it is to eventually require refactoring. In Chapter 6, you learn to use AI tools
to detect potential problems in your code (known as code smells) and get
suggestions for fixing them.

 » Dependency management: AI tools can tell you not only what dependencies of
your software require upgrading but also the effect (if any) of that upgrading.

 » Automated testing: AI can be used for generating a test plan and test cases,
as you see in Chapter 9. It can be used also for analyzing the results of tests
to help developers focus on the parts of the application that are more prone
to errors.

 » Documentation and knowledge management: As you learn in Chapter 10,
generative AI systems can help with writing, updating, and translating
documentation. AI can be helpful also with making documentation available
through chatbots.

 » Performance optimization: In Chapter 8, you learn how to use AI in combi-
nation with profiling tools to analyze and improve the speed and efficiency of
your software.

CHAPTER 11 Maintaining Your Code 271

 » User feedback analysis: AI can be used to analyze user feedback and usage
logs to identify common issues and areas for improvement.

 » Security vulnerability detection: Tools such as Snyk, which is covered in
Chapter 7, can scan your code to find security vulnerabilities as well as
unusual usage patterns that may indicate a security breach.

Enhancing Code Quality with AI
Once you’ve written some code, how do you know whether it’s any good? This is
where the idea of software quality comes in. Software quality, which is also known
as code quality, refers to two different ideas:

 » Functional quality is the measure of how well the software conforms to its
requirements or specifications.

 » Structural quality is the measure of how well code meets non-functional
requirements, such as robustness or maintainability.

In this chapter, I focus mostly on structural quality. High-quality code is clean,
simple, efficient, and reliable. The goal of writing high-quality code is to make
your code easy to understand and edit.

Code quality can be measured in many ways using various code quality metrics.
These metrics help you to see your code’s overall health, uncover code quality
issues, and then take action to remediate problems. Metrics are categorized into
two groups: quantitative metrics and qualitative metrics.

Quantitative metrics are determined by using algorithms designed to measure the
complexity of the code. One example of a quantitative metric is weighted micro
function points (WMFP). The WMFP algorithm parses source code and breaks it
into units called micro functions. It analyzes these micro functions to calculate a
single rating.

Qualitative metrics deal with best practices and coding standards such as efficiency,
how variables are named, how code is formatted, whether the code is well docu-
mented. Qualitative metrics can’t be fully expressed in numbers.

One key qualitative metric is maintainability. Maintainability measures how easy it
is to make changes to the code while minimizing the risks of making changes.
Maintainability can be measured in terms of the number of lines of code in the
application, whether the code has proper documentation, and whether the code is

272 PART 3 Testing, Documenting, and Maintaining Your Code

well designed. One simple way to measure a software program’s maintainability
is to count the number of lines of code in the program’s modules. If a piece of the
source code has more than the average number of lines of code, it’s likely that the
function is too complex and should be broken into multiple parts.

Maintainability can be improved through refactoring. (For more on refactoring,
see Chapter 6.) To fully understand maintainability, however, you need to under-
stand the concept of technical debt, the topic of the next section.

Understanding technical debt
In software development, the term technical debt describes the cost of future refac-
toring required when choosing easy but limited solutions instead of better
approaches that could take more time. Accumulating technical debt is inevitable,
especially during the early phases of a project when it’s often necessary to move
the project forward and deliver a proof of concept.

When I was just getting started with my web development business, one of my
mentors told me that the key to success as a consultant was to remember the fol-
lowing rule: “Fast, cheap, or good. Pick any two.” Unfortunately, most clients will
choose fast and cheap over good. What happens when you pick fast and cheap is
that you begin to accumulate technical debt that will, sooner or later, need to be
paid back.

If ignored, technical debt will accumulate interest and make it harder to change
the software in the future. Causes of technical debt include the following:

 » Starting development before fully defining the requirements.

 » Business pressures to deliver a product quickly.

 » Developing an application through a long series of changes over time, often
making older decisions become less optimal.

 » Lack of a full test suite. Not writing proper tests encourages developers to
make quick fixes that will add to the technical debt.

 » Lack of knowledge. Inexperienced developers will often write bad code. As
developers get better, they realize the error of their ways as that bad code
impedes their capability to move forward until the old code is rewritten.

 » Lack of documentation. Poor or insufficient code documentation leads to a
faulty understanding of the source code as well as a backlog of documenta-
tion that needs to be written at some point in the future.

CHAPTER 11 Maintaining Your Code 273

 » Putting off required refactoring. Most product owners would much rather
have developers focus on delivering new features than fixing bad code that’s
already written and seems to work. The problem, of course, is that the more
low-quality code you have, the more difficult it becomes to implement
new features.

Getting started with Code Climate
Code Climate (https://codeclimate.com/quality) is a tool for automating code
reviews. Once you link it to a GitHub repository, it scans your source code each
time you make a change and creates a report showing test coverage, maintain-
ability, and estimated technical debt.

Code Climate is free to use for open-source projects and teams with under four
developers. Follow these steps to sign up and link a repository:

1. Go to https://codeclimate.com/quality/pricing in your browser and
click the Sign up with GitHub button under either Open Source or
Startup, as shown in Figure 11-2.

FIGURE 11-2:
Code Climate’s

pricing page.
Code Climate

https://codeclimate.com/quality
https://codeclimate.com/quality/pricing

274 PART 3 Testing, Documenting, and Maintaining Your Code

2. Step through the process of authorizing Code Climate to access your
GitHub repositories.

At the end of the process, you’ll have the option to either join an existing
organization or add your own repository, as shown in Figure 11-3.

3. Click the Add a Repository button.

Code Climate displays a list of your repositories. The repository I’ll be using
to demonstrate Code Climate is at https://github.com/chrisminnick/
soliloquy. I made this repository public and released it using the MIT license.
You’re free to copy it to your own GitHub account and to do whatever you like
with it.

Although you’re free to use and modify Soliloquy, I don’t recommend using it
for anything but educational purposes because it’s purposefully unfinished
and untested, and it employs some questionable coding practices. That said, if
you do expand it, send me an email (chris@minnick.com) and let me know!

4. Choose a repository to scan with Code Climate.

Code Climate clones your repository, run a series of tests on it, and then pops
up a modal window when its report is finished, as shown in Figure 11-4.

5. Click the See the Results button to view your report.

My initial report is shown in Figure 11-5.

FIGURE 11-3:
Join an

organization or
add a repository.

Code Climate

https://github.com/chrisminnick/soliloquy
https://github.com/chrisminnick/soliloquy
mailto:chris@minnick.com

CHAPTER 11 Maintaining Your Code 275

FIGURE 11-4:
Code Climate

has finished its
initial report.

Code Climate

FIGURE 11-5:
Code Climate’s

report on
Soliloquy.

Code Climate

276 PART 3 Testing, Documenting, and Maintaining Your Code

In the following sections, we dig into the report to understand it, and then
see whether I can eliminate any technical debt and make my program more
maintainable.

Enabling the text coverage report
Under the Codebase summary portion of Code Climate’s report is a Test Coverage
button with an umbrella graphic. The button is surrounded by a dashed line and
appears grayed out, indicating that it’s not active.

Enabling the Test Coverage report requires the use of a continuous integration/
continuous delivery (CI/CD) tool, such as GitHub Actions or Jenkins. Setting up a
CI/CD pipeline is a best practice for agile teams, but it’s beyond the scope of
this book. You can read more about how to configure the test coverage report
in Code Climate at https://docs.codeclimate.com/docs/configuring-test-
coverage.

If you want to learn about CI/CD, I recommend starting with reading Continuous
Delivery (Addison-Wesley Professional) by Jez Humble and David Farley.

Analyzing code quality metrics
Code Climate gave my repository a maintainability score of C and estimated that it
will take me two days to resolve the technical debt issues. I’m hoping to beat that
estimate with the help of my AI assistants.

But, first, what does it mean that the repository got a C? Code Climate uses a
10-point assessment, along with the total size of the repository, to calculate a
technical debt ratio. Using this technical debt ratio, it assigns a grade from A to F
based on its estimate of how long it will take to fix all the issues. A grade of C
equates to a technical debt ratio of between 10 and 20 percent.

You can view the ten checks that Code Climate performs by clicking the Repo
Settings in the top menu and then clicking Maintainability on the left. The
Maintainability Checks page appears, as shown in Figure 11-6.

Each maintainability check can be enabled or disabled. In addition, they all have
default values that you can adjust. To get started, however, I recommend sticking
with the default values.

After looking through the maintainability checks and leaving them all enabled,
I clicked the Overview link to return to the Code Climate home page so I could start
looking at the issues found in my repository.

https://docs.codeclimate.com/docs/configuring-test-coverage
https://docs.codeclimate.com/docs/configuring-test-coverage

CHAPTER 11 Maintaining Your Code 277

Making AI-assisted code quality
improvements
To look at the issues found in your repository, you can click Issues in the top navi-
gation. My repository has nine issues, as shown in Figure 11-7.

FIGURE 11-6:
Code Climate’s
maintainability

checks.
Code Climate

FIGURE 11-7:
Code Climate

says my
repository has

nine issues.
Code Climate

278 PART 3 Testing, Documenting, and Maintaining Your Code

In this section, I resolve each issue and use AI wherever possible to see if I can
beat Code Climate’s estimated time to get my code from a C to an A.

Code Climate estimates that fixing all nine issues will take nearly 16 hours.
Looking through the list, I’m pretty sure I can easily beat that estimate even with-
out using AI, but I’m curious to see whether using AI will help or hinder me with
these tasks. I’ll also be writing about the process of fixing the issues and using a
stopwatch to keep track of my progress.

Of course, blindly accepting recommendations from an AI tool is not the process
I’d recommend for fixing most of the issues Code Climate found. Trust yourself. If
you know an obvious and good solution to a coding problem, don’t worry about
what an AI assistant would recommend.

Let’s start the timer and get busy.

Code Climate

The first issue, shown in Figure 11-8, is that my SignupPage component has
too many lines of code. Code Climate estimates that it will take three hours to
fix this issue.

Looking through the component, I think this is a valid issue, so I create a ticket for
it by clicking the ticket icon to the right of the issue, as shown in Figure 11-9.

FIGURE 11-8:
SignupPage.js is

too long.
Code Climate

CHAPTER 11 Maintaining Your Code 279

Code Climate prompts me set up my ticketing system, so I select GitHub Issues.
To integrate Code Climate with GitHub Issues, I have to go to https://github.
com/settings/tokens/new to generate a new personal access token. Then I return
to the Issues page in Code Climate and click the ticket icon next to the first issue
again. This time, Code Climate creates a new GitHub issue and fills in the details
about the issue, as shown in Figure 11-10.

At this point, I could go through the entire list of issues in Code Climate and gen-
erated GitHub issues, but I decide to just work on this one issue in case my fix for
it corrects any other issues (or creates new ones).

I start by creating a new branch in my GitHub repository for refactoring the
SignupPage function. Then I give Copilot Chat the following prompt:

@workspace SignupPage.js has too many lines of code.
How can I refactor so that it has 25 lines or fewer?

FIGURE 11-9:
Clicking the
ticket icon.

Code Climate

FIGURE 11-10:
Code Climate

creates a
new issue.

Code Climate

https://github.com/settings/tokens/new
https://github.com/settings/tokens/new

280 PART 3 Testing, Documenting, and Maintaining Your Code

Copilot Chat starts out strong, but then gets caught up trying to read my test cov-
erage report and returns an error, as shown in Figure 11-11.

I ask Copilot to try again:

Please try that again.

This time, it generates some great ideas for how to extract functionality out of the
SignupPage component and into external files. As I begin implementing Copilot’s
recommendations, I realize they were far from perfect, but some of the sugges-
tions are helpful in crafting my solution.

I finish the refactoring, test my changes, and merge my branches. My SignupPage
is still not under 25 lines of code, and I’m about an hour into fixing this issue.

Code Climate

FIGURE 11-11:
Copilot has the

right idea but
goes down the

wrong path.
Microsoft Corporation

CHAPTER 11 Maintaining Your Code 281

When I check back with Code Climate, my grade has risen to a B, as shown in
Figure 11-12.

Back in the Issues page, Code Climate reports that the SignupPage component
now has 66 lines of code. It’s still far more than the threshold of 25 lines, but I’ve
managed to shave 18 lines from it. Looking again at the code, nearly all the lines
are due to the template code in the React component’s return statement, so
I decide that I know better than Code Climate and change the status of the issue to
Invalid, as shown in Figure 11-13.

The next issue is that the LoginPage has too many lines of code. The LoginPage
component suffers from the same root cause as SignupPage: It has internal
functions that should be extracted into their own modules.

FIGURE 11-12:
Soliloquy is

getting more
maintainable!

Code Climate

FIGURE 11-13:
Template

code doesn’t
count, imho.

Code Climate

282 PART 3 Testing, Documenting, and Maintaining Your Code

As before, I create a new issue in GitHub and create a new branch in the repository.
I ask Copilot Chat how to extract the inner function into an external module. It
replies with a good but not quite complete suggestion. I let Copilot’s suggestion
guide me as I refactor the component, and then commit the code to my GitHub
repository and merge the changes into the main branch of my repository.

I still have a B, but LoginPage is now 12 lines shorter. Excluding the HTML tem-
plate, however, it’s only 9 lines of JavaScript, so I call this done and mark the new
issue Invalid. At this point, I’m up to an hour and a half of work and I’ve resolved
two of my original nine issues.

Code Climate

The next four issues have to do with similar code. Code Climate has flagged my
input fields on the login and signup pages as being virtually identical, which they
are, except one is an email field and the other is a password field. This isn’t some-
thing that I’d normally change, but Code Climate has marked it as a major issue,
so I think I’ll see what Copilot has to say about it.

I prompt Copilot Chat with the following:

The password input and the email input have virtually
the same code. How would you refactor this to eliminate
duplication?

Copilot’s suggestion, shown in Figure 11-14, are what I thought it would be: Create
a reusable component for the input field.

The suggestion seems like overoptimization to me at first, but it reduces both
duplication and the number of lines of boilerplate code, so I make a few improve-
ments to it and implement it in both the LoginPage and SignupPage components.
In the end, I like the solution Copilot and I come up with, so I push it to the
repository.

Checking back with Code Climate, I now have an A grade and five problems remain.
My stopwatch says I’ve been working for two hours.

CHAPTER 11 Maintaining Your Code 283

The next issue is another one of duplicate code. The function that posts the data
from the login page and the function that posts the data from the signup page
are similar.

Returning to Copilot, I open the file containing both functions and give the
following prompt:

How can I remove duplicate code in this file?

Copilot responds (correctly) that the file doesn’t have duplicate code but does have
similar code. It then suggests creating a generic function to handle all HTTP
requests. This seems like a good plan, so I start implementing the solution.

Unfortunately, while I am implementing this solution, I discover several more
bugs that would require refactoring, and my new solution creates some bugs too.
I log all these issues in GitHub. When I finish fixing the initial issue, I go back and
start fixing the other bugs. Eventually, I have everything in working order, so
I merge and push my code into the repository. My timer is at three hours and
47 minutes.

Code Climate

FIGURE 11-14:
Copilot suggests

creating an
InputField
component.

Microsoft Corporation

284 PART 3 Testing, Documenting, and Maintaining Your Code

Proud of myself for beating Code Climate’s time estimate by 12 hours (and for
writing the end of the last long chapter in the book), I return to Code Climate and
see a glorious sight: I now have an A, and I’m technical-debt-free (according to
Code Climate), as shown in Figure 11-15.

FIGURE 11-15:
It feels good to

be debt-free.
Code Climate

4The Part of Tens

IN THIS PART . . .

Explore additional AI-powered tools for coders.

Continue your AI learning journey.

CHAPTER 12 Ten More Tools to Try 287

Chapter 12
Ten More Tools to Try

This book focuses on the most useful and widely used tools currently availa-
ble for coding with AI. Many more tools are available, and new ones are
coming out all the time. In this chapter, I introduce ten more tools to help

you with coding. To give you some idea of the pace of change, some of these tools
weren’t released when I started writing this book, and some may no longer be
available when this book is released. The best way to stay up to date is to try out
as many different tools as you can. And you find something you like, continue to
try out new tools regularly, because there’s a good chance that something will
come along that’s even better than what you’re using today.

Amazon CodeWhisperer
Amazon CodeWhisperer (https://aws.amazon.com/codewhisperer), shown in
Figure 12-1, is an AI extension that’s available for many popular IDEs, including
VS Code, Visual Studio, JetBrains, and SageMaker Studio. Once installed and con-
figured, CodeWhisperer gives you suggestions as you code, similar to Copilot.

IN THIS CHAPTER

 » Coding with CodeWhisperer,
Cody, and AlphaCode

 » Checking out Bard, Codeium,
and Claude

 » Using Microsoft IntelliCode,
Sourcery, Bugasura, and UserWay

https://aws.amazon.com/codewhisperer

288 PART 4 The Part of Tens

What sets CodeWhisperer apart for those working with AWS is that it has knowl-
edge of AWS APIs and can provide code for working with AWS. CodeWhisperer
also features a security scanning feature that can scan your code and can make
suggestions to fix vulnerabilities. CodeWhisperer is free for individuals and
$19/month for professionals.

Sourcegraph Cody
Like other coding assistants, Sourcegraph Cody (https://about.sourcegraph.
com/cody) is available as an IDE plug-in. It can generate code suggestions as you
code, and it features a chatbot interface as well. See Figure 12-2. For organizations
that use Sourcegraph’s code search and analysis tools, Cody can take context from
multiple codebases into consideration while generating suggestions.

A free version of Cody is available as well as a Pro version (for $9/month) and an
enterprise version.

FIGURE 12-1:
Speak softly to

CodeWhisperer.
Amazon Web Services, Inc.

https://about.sourcegraph.com/cody
https://about.sourcegraph.com/cody

CHAPTER 12 Ten More Tools to Try 289

DeepMind AlphaCode
At this time, AlphaCode (https://alphacode.deepmind.com), shown in
Figure 12-3, isn’t directly available for use by developers. However, that might
change by the time you read this. AlphaCode is an AI system that specializes in
competitive programming. What, you may ask, is competitive programming?
Great question!

Competitive programming is a mind sport where people compete by programming
according to specifications provided to them. If this sounds like just about the
most geeky and fun thing in the world, you’d better start practicing! DeepMind
estimates that AlphaCode2, which was announced in December 2023, can solve
competitive programming problems better than 85 percent of human competitive
programmers.

FIGURE 12-2:
Coding with Cody.

Sourcegraph, Inc.

https://alphacode.deepmind.com/

290 PART 4 The Part of Tens

Google Bard
Google’s AI chatbot, Bard (https://bard.google.com), shown in Figure 12-4,
can generate code in more than 20 languages, help with debugging, and explain
code. Bard can also help with creating functions for Google’s spreadsheet app,
Google Sheets. One feature of Bard that many other chatbots don’t have (yet) is
its capability to cite the source of code if it quotes it extensively. Bard also
has access to Google Search, so its knowledge about the current versions of librar-
ies and tools it recommends may be more up-to-date than other chatbots. Bard
is currently free.

FIGURE 12-3:
Solve puzzles

with AlphaCode.
AlphaCode

https://bard.google.com/

CHAPTER 12 Ten More Tools to Try 291

Codeium
Codeium is a coding assistant and chatbot that can write, explain, refactor, and
translate code. See Figure 12-5. Codeium is available as a browser extension or
through the Codeium Playground at https://codeium.com/playground. Codeium
is free for individuals or $12 per person per month for teams. An enterprise license
with the option to self-host Codeium is also available.

FIGURE 12-4:
Make Bard sing

your tune.
Google LLC

https://codeium.com/playground

292 PART 4 The Part of Tens

Claude
Claude (https://claude.ai), shown in Figure 12-6, is another AI chatbot. Its
creator, Anthropic, is an AI safety and research company dedicated to building
safer AI systems, so Claude protects your privacy by not using your data. Another
part of Anthropic’s approach to AI safety is something it calls constitutional AI, in
which the AI system is given a set of principles (a constitution) that it can evaluate
its own outputs against.

Claude has a higher token limit than other generative models, which allows it to
handle large amounts of content and complex instructions. In my testing of
Claude’s coding capability, it performed at least as well as Copilot Chat. Claude is
currently an open beta and is available to use for free by using the web interface
and through Anthropic’s API for a limited number of customers.

FIGURE 12-5:
Craft code with

Codeium.
Codeium

https://claude.ai/

CHAPTER 12 Ten More Tools to Try 293

Microsoft IntelliCode
Microsoft IntelliCode is part of Microsoft Visual Studio (https://visualstudio.
microsoft.com). It adds generative AI capabilities to Intellisense, Microsoft’s
code completion tool. IntelliCode integrates with GitHub Copilot and Copilot Chat
to generate context-aware code completion suggestions. See Figure 12-7.

IntelliCode currently supports completions in a limited number of languages: C#,
XAML, C++, JavaScript and TypeScript, and Visual Basic. Using IntelliCode requires
you to use Visual Studio version 16.4 or newer.

FIGURE 12-6:
Chat with Claude.

Claude

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

294 PART 4 The Part of Tens

Sourcery
Sourcery (https://sourcery.ai), shown in Figure 12-8, is an AI pair program-
mer chatbot that is available as an extension for VS Code and JetBrains IDEs. You
can ask Sourcery questions about your code or to write new code, tests, or docu-
mentation. Sourcery can also perform code reviews and help you improve the
readability and maintainability of your Python or JavaScript code by making inline
suggestions while you work.

Sourcery is free for open-source projects and students, $10 per month for individ-
ual professionals, and $30 per month per team member for teams.

FIGURE 12-7:
Tailor solutions
with Microsoft

IntelliCode.
Microsoft Corporation

https://sourcery.ai/

CHAPTER 12 Ten More Tools to Try 295

Bugasura
Bugasura (https://bugasura.io) is an AI-power bug tracker. See Figure 12-9.
When you create a new project in Bugasura, you can upload requirements docu-
ments or knowledge bases to give the AI assistant information about your prod-
uct, which is then used to help you write new bug reports.

Bugasura can integrate with a performance monitoring tool, as well as with Slack,
Jira, GitHub, Asana, and Zendesk. The free plan can have up to five users, and the
paid plan is $5 per user per month for up to 100 users.

FIGURE 12-8:
Cast spells with

Sourcery.
Sourcery

https://bugasura.io/

296 PART 4 The Part of Tens

UserWay
UserWay (https://userway.org/), shown in Figure 12-10, is an AI-powered
accessibility widget for making websites compliant with ADA (Americans with
Disabilities Act) and WCAG (Web Content Accessibility Guidelines) accessibility
standards. When users access your website, UserWay analyzes your site and auto-
matically fixes violations of accessibility standards. The AI widget also gives users
the ability to customize their user experience. Options for user-triggered custom-
ization include speaking the content of the site, changing the font size and text
spacing, changing the contrast, and highlighting links. UserWay has a free 7-day
trial and monthly or annual paid plans.

FIGURE 12-9:
Squash bugs with

Bugasura.
Bugasura

https://userway.org/

CHAPTER 12 Ten More Tools to Try 297

FIGURE 12-10:
Unravel

accessibility with
UserWay.

UserWay

CHAPTER 13 Ten AI Coding Resources 299

Chapter 13
Ten AI Coding Resources

Each chapter of this book could easily be expanded to an entire book. As cod-
ing with AI becomes a more mature field and further revolutionizes how we
write code, many more books (as well as classes, college degrees, and the

like) will go into great depth explaining how each phase of software development
is affected or helped by AI tools.

In this chapter, I share ten of my favorite resources for learning about coding and
AI and for staying up-to-date on the latest developments in coding with AI.

Code.org’s AI Resources
Code.org (https://code.org), shown in Figure 13-1, is a fantastic nonprofit
organization with a commitment to making computer science accessible to a
wider audience, particularly younger students. Resources available at Code.org
include engaging videos and interactive lessons covering a variety of AI topics,
such as how chatbots and large language models work, the basics of machine
learning, and the role of AI in creativity and imagination.

I recommend, in particular, that teachers and parents check out Code.org’s
courses and videos about AI ethics, privacy, and the societal impact of
Generative AI.

IN THIS CHAPTER

 » Discovering Code.org, Kaggle, and
Google Dataset Search

 » Learning about edX, Edabit,
StatQuest, and AI4All Open Learning

 » Finding out about Gymnasium, fast.
ai, and Microsoft Learn

https://Code.org
http://Code.org
https://code.org/
http://Code.org
http://Code.org
http://Code.org

300 PART 4 The Part of Tens

Kaggle
Kaggle (https://kaggle.com), shown in Figure 13-2, is a platform that enables
data scientists and machine-learning enthusiasts to test their skills, share
insights, and collaborate on problems. Companies and organizations can submit
challenges to the Kaggle community, which people can compete to solve. Some
challenges offer monetary rewards to winners, and all offer a great opportunity
for discovering more about machine learning.

Kaggle has extensive resources for learning about machine learning, and offers a
multitude of public dataset, making it an essential website for both experienced
and novice data professionals.

FIGURE 13-1:
Dive into AI with
Code.org’s AI

resources.
Code.org

https://kaggle.com/
http://Code.org

CHAPTER 13 Ten AI Coding Resources 301

Google’s Dataset Search
Google Dataset Search (https://datasetsearch.research.google.com) is a
specialized search tool for scientists, data journalists, data enthusiasts, and any-
one looking for datasets. Users can find datasets related to just about anything by
using a simple keyword search, as shown in Figure 13-3. Google Dataset Search
indexes thousands of datasets, ranging from extremely large ones to more niche
datasets using metadata made available by dataset publishers.

FIGURE 13-2:
Compete

intelligently
with Kaggle.

Kaggle Inc.

https://datasetsearch.research.google.com/

302 PART 4 The Part of Tens

edX
edX (https://edx.org), shown in Figure 13-4, is an online learning platform
created by Harvard University and MIT. It offers a wide range of university-level
courses across different fields, including computer science, engineering, data sci-
ence, humanities, and much more.

Users of edX can access individual courses, professional certificate programs, and
even full degree programs. Many of the courses on edX are available for free,
although a fee is required for certification.

FIGURE 13-3:
Discover

treasures with
Google’s Dataset

Search.

https://edx.org/

CHAPTER 13 Ten AI Coding Resources 303

Edabit
Edabit (https://edabit.com) is a platform for learning and improving your cod-
ing skills through gamification. It offers over 10,000 interactive coding challenges
that are both educational and entertaining. See Figure 13-5. Challenges are avail-
able for a variety of programming languages and range from very easy (for exam-
ple, returning the sum of two numbers) to difficult (for example, creating a Roman
numeral converter).

FIGURE 13-4:
Learn limitlessly

with edX.
edX LLC.

https://edabit.com/

304 PART 4 The Part of Tens

StatQuest
StatQuest (https://youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw), shown
in Figure 13-6, is a popular and accessible YouTube channel that demystifies com-
plex statistical concepts and machine learning algorithms through engaging and
simplified explanations. Founded by geneticist Josh Starmer, each video features
graphics, cartoons, animations, humor, and even really bad singing to explain
how data science works.

FIGURE 13-5:
Solve puzzles

with Edabit.

https://youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw

CHAPTER 13 Ten AI Coding Resources 305

AI4All Open Learning
AI4All (https://ai-4-all.org) is a nonprofit dedicated to increasing diversity
and inclusion in AI education, research, development, and policy. See Figure 13-7.
AI4All provides a range of educational resources and modules for introducing stu-
dents to the fundamentals of AI, its applications, and the ethical considerations
surrounding it.

FIGURE 13-6:
Demystify data
with StatQuest.

https://ai-4-all.org/

306 PART 4 The Part of Tens

Gymnasium
Gymnasium (https://gymnasium.farama.org) is a toolkit for developing and
comparing reinforcement learning algorithms, as shown in Figure 13-8. Devel-
oped by OpenAI and named OpenAI Gym, OpenAI released the code as open-source
software. OpenAI has since stopped maintaining the original Gym code.

Gymnasium provides a suite of environments that range from simple to complex
simulations. An environment in AI is a framework or setting that models the real-
world or a system. Examples of environments in Gymnasium include text-based
games, simulated robotics, and Atari 2600 games.

FIGURE 13-7:
Explore frontiers
with AI4All Open

Learning.
AI4ALL

https://gymnasium.farama.org/

CHAPTER 13 Ten AI Coding Resources 307

fast.ai
The fast.ai site (https://fast.ai), shown in Figure 13-9, creates courses and
software for learning about deep learning. The motto at fast.ai is “Making neural
nets uncool again.” What they mean by this is that if being exclusive is cool, that’s
the opposite of what the field of AI needs. Even if you didn’t go to Stanford and
you use an uncool programming language, fast.ai aims to make deep learning
easier to learn and to use.

FIGURE 13-8:
Exercise

intelligence at
Gymnasium.

Farama Foundation

https://fast.ai/

308 PART 4 The Part of Tens

Microsoft Learn
Microsoft Learn (https://learn.microsoft.com) offers both self-paced and
instructor-led training on a wide variety of computer programming and AI-
related topics. Courses are organized by career path, as shown in Figure 13-10.
Once you select a path, Microsoft Learn gives you a list of courses and tracks your
progress as you complete them. Best of all, once you complete an instructor-led
or self-paced course, you qualify to take an exam and earn a certification that can
help you in your career.

FIGURE 13-9:
Navigate neural

networks with
fast.ai.

fast.ai

https://learn.microsoft.com/

CHAPTER 13 Ten AI Coding Resources 309

FIGURE 13-10:
Get certified with
Microsoft Learn.

Index 311

Index
A
abusers, 149
accessibility widget, 296–297
accuracy of AI, 23–24, 27, 54–56
act as a, prompting with, 86
adapting to new syntax, 22–24
adaptive software

maintenance, 269
addEventListener()

function, 154
advanced model, Replit AI, 77–78
agents, Copilot Chat, 88, 223
agile test plans, 214
AI (artificial intelligence). See also

generative AI
accuracy of, 23–24, 27, 54–56
defined, 38
ethical considerations, 52–53
limitations of, 54–56, 138
natural-language processing,

43–47
transformer models, 48–51

AI tic-tac-toe player app
blending manually written and

AI-generated code
client, improving, 130–133
few-shot prompting on server,

127–130
moving logic from AI to client,

133–136
overview, 121
testing and error handling, 125
testing server, 125–127
writing prompt, 121–122
writing server, 122–124

code review, 151–153
core functionalities, identifying,

216–217
debugging, 191–193

generating test cases, 222–225
README file, creating, 243–244
refactoring

event listeners, setting
correctly, 154–155

global data, reducing, 156–157
improving, 160–165
inconsistent naming, fixing,

158–159
lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154

SRS, generating code from
breaking down the problem,

120–121
overview, 118
zero-shot approach, 118–120

SRS, writing, 115–118
test scenarios, generating,

217–218
testing, 232–237

AI4All Open Learning, 305–306
ALICE chatbot, 45
AlphaCode, DeepMind, 289–290
Amazon CodeWhisperer, 287–288
ANNs (artificial neural networks)

hidden layer, 40
input layer, 40
output layer, 40–41
overview, 39–40
training and testing models, 41–43

APIs (application programming
interfaces)

API documentation, automating
chatbot, creating, 260–265
overview, 255
REST APIs, 256–260

key
developing chatbot, 105–107
getting, 102–103

server
few-shot prompting on,

127–130
testing, 125–126
writing, 123–124

Array.reduce method, 22
artificial intelligence (AI). See also

generative AI
accuracy of, 23–24, 27, 54–56
defined, 38
ethical considerations,

52–53
limitations of, 54–56, 138
natural-language processing,

43–47
transformer models, 48–51

artificial neural networks (ANNs)
hidden layer, 40
input layer, 40
output layer, 40–41
overview, 39–40
training and testing models,

41–43
Ashkenas, Jeremy, 247
assertion, 219
assistant role, OpenAI Playground,

100–101
assumptions, 114–115
attention, 48
automated bug fixes

detecting bugs, 168
executing fixes, 188–189
overview, 185, 270
Snyk for, 185–188
verifying fixes, 190–191
when to use, 191–193

312 Coding with AI For Dummies

automated code formatting
fixing nested callbacks, 142–147
setting up Prettier, 142–147

automating API documentation
chatbot, creating, 260–265
overview, 255
REST APIs, 256–260

B
Babel, 221
back end, 121
backing up code before

translation, 196
backseat navigator pair

programming, 28
bad code, detecting, 25
Bard, Google, 25, 290–291
Bayes, Thomas, 47
Beck, Kent, 147
BertViz, 48
best practices, 52–53
bias, 41, 56
binary classification, 41
Bit.ai, 240
blending manually written and

AI-generated code
client, improving, 130–133
few-shot prompting on server,

127–130
moving logic from AI to client,

133–136
overview, 121
submitting follow-up

prompts, 125
testing server, 125–127
writing prompt, 121–122
writing server, 122–124

bloaters, 148–149
boilerplate code, generating

CRUD
examples usage code, 18
initial prompt, 14–15
refined prompt, 15–18
running application, 18–20

HTML template, 10–13
overview, 9–10
spotting tasks, 10

breaking down code, in Copilot,
61–62

breakpoints, 182
bug reporting, 170–173
Bugasura, 295–296
bug-free software, 169
bugs

automated fixes with AI
executing fixes, 188–189
overview, 185
Snyk for, 185–188
verifying fixes, 190–191
when to use, 191–193

Bugasura, 295–296
bug-free software, 169
common types of, 168–169
detecting with AI, 182–185
fixing with Copilot Chat, 88–90
linting

changing rules for, 180–182
combining with AI, 177–180
detecting bad code, 25
fixing code with linter, 176–177
installing ESLint, 173–174
installing ESLint extension,

174–176
integrating AI with, 26
overview, 24–25, 173

overview, 167
reporting with Jam, 170–173
strategies for detecting, 168

business assumptions, 114

C
calculate_average() function,

183–185
callback hell, 142
chain-of-thought prompting, 85
change preventers, 150
changelog, reviewing, 190–191

Chat mode in OpenAI playground,
98–99

Chat plugin, Copilot
agents, 88
code review, 151–153
core functionalities, identifying,

216–217
debugging with, 183–185
generating test cases, 222–225
getting the most out of, 88–90
overview, 87
refactoring

event listeners, setting
correctly, 154–155

global data, reducing, 156–157
inconsistent naming, fixing,

158–159
lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154
suggestions for improving,

160–165
slash commands, 87–88
test results, analyzing, 226–231
test scenarios, generating,

217–218
writing API server, 123–124

chatbots. See also Copilot Chat
API documentation, creating,

260–265
ChatGPT

API documentation chatbot,
creating, 260–265

CRUD, generating, 15–20
custom instructions, 92–96
developing chatbot with,

103–108
HTML template, generating,

10–13
limitations of, 54–56
overview, 91
signing up and setting up,

91–92
SRS, generating code from,

118–120

Index 313

SRS, writing, 115–118
syntax support from, 23–24
temperature, adjusting, 80–82
trivia game, building, 32

Claude, 292–293
Codeium, 291–292
developing with OpenAI,

103–108
Google Bard, 290–291
JamGPT, 171–173
OpenAI Playground

accessing, 96–97
API key, getting, 102–103
Chat mode in, 98–99
checking credits, 97–98
Examples page, 99–100
model settings, adjusting,

101–102
playing roles, 100–101

overview, 79
prompt engineering

chain-of-thought prompting, 85
elements of prompts, 82–83
few-shot prompting, 84–85
open-ended versus closed-

ended prompts, 83
overview, 79
temperature, adjusting, 80–82
tips for improving prompts, 86
zero-shot prompting, 83–84

Sourcery, 294–295
tips and tricks for code

generation, 136–138
ChatGPT

API documentation chatbot,
creating, 260–265

CRUD, generating
examples usage code, 18
refined prompt, 15–18
running application, 18–20

custom instructions, 92–96
developing chatbot with,

103–108
HTML template, generating,

10–13

limitations of, 54–56
overview, 91
signing up and setting up, 91–92
SRS, generating code from,

118–120
SRS, writing, 115–118
syntax support from, 23–24
temperature, adjusting, 80–82
trivia game, building, 32

checkDraw() function, 224–225
checkWin() function, 222–224,

236–237
Chrome debugger, 182–183
CI/CD (continuous integration/

continuous delivery) tool, 276
Claude, 292–293
clearBoardDiplay() function,

226, 227
client for tic-tac-toe game

improving, 130–133
moving logic from AI to, 133–136

closed-ended prompts, 83
cloud model mode, Tabnine, 67
CNNs (convolutional neural

networks), 47
Code Climate

AI-assisted improvements,
277–284

code quality metrics, 276–277
introduction to, 273–276
test coverage reports, 276

code comments, in Copilot, 60–61
code completion

general discussion, 21–22
Microsoft IntelliCode, 293–294
with Tabnine, 67–68

code formatting
automating with Prettier,

142–147
overview, 139–140
setting up tools for, 140–141

code indentation rules, 180
code maintenance

adaptive, 269
corrective, 268–269

perfective, 269
preventative, 269–270
software quality, enhancing

AI-assisted improvements,
277–284

Code Climate, using, 273–276
code quality metrics, 276–277
general discussion, 271–272
technical debt, 272–273
test coverage reports, 276

types of, 267–268
utilizing AI for, 270–271

code optimization
avoiding premature, 209
overview, 204–205
with Scalene, 205–209

code quality metrics, Code
Climate, 276–277

code reviews
Code Climate

AI-assisted improvements,
277–284

code quality metrics, 276–277
introduction to, 273–276
test coverage reports, 276

with Copilot, 151–153
detecting bugs with, 168
verifying translated code, 204

code rot, 147
code smells

abusers, 149
bloaters, 148–149
change preventers, 150
couplers, 149–150
detecting with Copilot, 151–153
dispensables, 148
recognizing, 147–151
tic-tac-toe game

event listeners, setting
correctly, 154–155

global data, reducing, 156–157
improving, 160–165
inconsistent naming, fixing,

158–159
lack of comments, 159–160

314 Coding with AI For Dummies

code smells (continued)

long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154

code translation
overview, 195–196
preparing code for, 196–197
translation strategies, 197–201
using GPT-4, 201–203
verifying translated code,

203–204
Codeium, 291–292
Code.org, 299–300
CodeSpaces, 58
CodeWhisperer, Amazon, 287–288
coding assistant tool, Replit, 73,

75–78
coding resources

AI4All Open Learning, 305–306
Code.org, 299–300
Edabit, 303–304
edX, 302–303
fast.ai site, 307–308
Google Dataset Search, 301–302
Gymnasium, 306–307
Kaggle, 300–301
Microsoft Learn, 308–309
overview, 299
StatQuest, 304–305

coding tools. See also GitHub
Copilot

Amazon CodeWhisperer,
287–288

Bugasura, 295–296
Claude, 292–293
Codeium, 291–292
DeepMind AlphaCode,

289–290
Google Bard, 290–291
Microsoft IntelliCode, 293–294
overview, 57, 287
Replit

general discussion, 68–70
Replit AI, 73–78

starting websites with, 70–71
workspace, exploring,

71–73, 74
Sourcegraph Cody, 288–289
Sourcery, 294–295
Tabnine

code completion with, 67–68
general discussion, 64–65
installing, 65–66
setting up, 66–67

updating, 138
UserWay, 296–297

Cody, Sourcegraph, 288–289
comments

code smell, 148, 152–153, 159–160
for code translation, 196
commenting on Underscore,

247–250
installing and testing Mintlify

Doc Writer, 245–247
overview, 245
refactoring, 159–160

common sense, 55
competitive programming, 289
compilation, 195
conditional complexity, 149
constraints, 115
context of prompt, 82, 86,

93–94, 138
continue, prompting with, 86
continuous integration/

continuous delivery (CI/CD)
tool, 276

convolutional neural networks
(CNNs), 47

Copilot, GitHub. See also
Copilot Chat

breaking code into steps, 61–62
code completion, 21
comments, writing, 60–61
Copilot menu, 34
fixing bugs with ESLint and,

180–182
giving examples, 62–63
installing, 29–30
installing plug-in, 58–59

invalid code, fixing, 143–144
keyboard shortcuts, 63–64
OAS file, creating, 256–260
opening related files, 63
overview, 57
refactoring

event listeners, setting
correctly, 154–155

global data, reducing, 156–157
inconsistent naming, fixing,

158–159
lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154
suggestions for improving,

160–165
signing up for, 30
SRS, generating code from,

120–121
syntax support from, 22
trivia game, building, 31–36
working efficiently with, 59–63

Copilot Chat
agents, 88
code review, 151–153
core functionalities, identifying,

216–217
debugging with, 183–185
generating test cases, 222–225
getting the most out of, 88–90
overview, 87
refactoring

event listeners, setting
correctly, 154–155

global data, reducing, 156–157
inconsistent naming, fixing,

158–159
lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154
suggestions for improving,

160–165

Index 315

slash commands, 87–88
test results, analyzing, 226–231
test scenarios, generating,

217–218
writing API server, 123–124

core functionalities of software,
identifying, 216–217

corrective software maintenance,
268–269

couplers, 149–150
coverage reports, reading, 226
credits, OpenAI platform, 97–98
cross-reference output, 204
cross-site scripting (XSS), 191–193
CRUD (creating, reading, updating,

and deleting) tasks
examples usage code, 18
initial prompt, 14–15
overview, 10
refined prompt, 15–18
running application, 18–20

cues, prompting with, 86
custom instructions, ChatGPT,

92–96
Cycles, Replit, 75

D
Dataset Search, Google, 301–302
dead code, 148, 234
debugging

automated fixes with AI
executing fixes, 188–189
overview, 185
Snyk for, 185–188
verifying fixes, 190–191
when to use, 191–193

Bugasura, 295–296
bug-free software, 169
common types of bugs, 168–169
detecting bugs with AI, 182–185
linting

changing rules for, 180–182
combining with AI, 177–180
detecting bad code, 25

fixing code with linter, 176–177
installing ESLint, 173–174
installing ESLint extension,

174–176
integrating AI with, 26
overview, 24–25, 173

overview, 167
reporting bugs with Jam,

170–173
strategies for detecting

bugs, 168
debugging tools, 168, 182–185
decision trees, 47
deep learning

neural networks, 39–43
NLP techniques, 47
overview, 38

DeepMind AlphaCode, 289–290
demand models, 42
dependency management, 270
detecting bad code, 25
detecting bugs

with AI, 182–185
strategies for, 168

diagrams, generating
requirements, 252–255
sequence, 251–252

diff tools, 145–146
Dirichlet, Peter Gustav Lejeune, 47
dispensables, 148
divergent change, 150
Document360, 240
documentation

after translation, 204
API, automating

chatbot for, creating, 260–265
overview, 255
REST APIs, 256–260

code maintenance, 270
code translation, 196
comments

code smell, 148, 152–153,
159–160

commenting on Underscore,
247–250

installing and testing Mintlify
Doc Writer, 245–247

overview, 245
refactoring, 159–160

documentation bots
building, 240–242
popular, 240
testing, 243–244

official, 137–138
overview, 239
technical debt, 272
visual

overview, 250–251
requirements diagram,

generating, 252–255
sequence diagram, generating,

251–252
documentation-writing assistants

building, 240–242
popular, 240
testing, 243–244

domain requirements, 112
draw.io

requirements diagram,
generating, 252–255

sequence diagram, generating,
251–252

driver-navigator pair
programming, 28

duplicate code, 148, 283

E
economic constraints, 115
Edabit, 303–304
edX, 302–303
ELIZA chatbot, 44
email input code, refactoring, 282
endGame() function, 235–236
endpoints, 255
engineering models, 42
enterprise version of Tabnine, 64
environmental assumptions, 114
ephemeral processing, 67
error detection and

correction, 270

316 Coding with AI For Dummies

ESLint
changing rules for, 180–182
combining with AI, 177–180
fixing code with, 176–177
installing, 173–174
installing extension, 174–176

eslint-ai, 26
.eslintrc file, 180
ethical considerations, 52–53
event listeners, setting correctly,

154–155
examples, giving, 62–63, 138
Examples page, OpenAI platform,

99–100
examples usage code, for CRUD

tasks, 18
executing automated bug fixes,

188–189
exit criteria, 215
expert-novice pair

programming, 27
Extension Settings screen, Copilot,

58, 59
external documentation

API documentation, automating
chatbot, creating, 260–265
overview, 255
REST APIs, 256–260

documentation bots
building, 240–242
popular, 240
testing, 243–244

overview, 239
visual documentation

overview, 250–251
requirements diagram,

generating, 252–255
sequence diagram, generating,

251–252

F
fairness best practice, 52
fast.ai site, 307–308
feature envy, 150
Federal Aviation

Administration, 169

few-shot prompting
general discussion, 84–85
on server for tic-tac-toe game,

127–130
file comparison tools, 145–146
financial models, 42
--fix option, ESLint, 176–177
Fix Vulnerabilities link, Snyk,

188–189
follow-up prompts, 125
formal test plans, 214
formatting code

automating with Prettier,
142–147

overview, 139–140
setting up Prettier, 140–141

Fowler, Martin, 147
frequency penalty, OpenAI

models, 102
functional bugs, 169
functional quality, 271
functional requirements, 113–114
future issues prediction, 216

G
generate docs tool, Copilot, 159
generative AI (GenAI). See also

coding tools
boilerplate code, generating

HTML template, 10–13
overview, 9–10
spotting tasks, 10

CRUD, generating
examples usage code, 18
initial prompt, 14–15
refined prompt, 15–18
running application, 18–20

defined, 38
general discussion, 53–54
overview, 9
pair programming with

building trivia game, 31–36
installing Copilot, 29–30
overview, 27
overview of styles, 28

pros and cons of, 28–29
static code analysis

detecting bad code, 25
integrating AI with, 26
overview, 24–25

syntax
adapting to new, 22–24
code completion, 21–22
overview, 20
trivial details of, 20

as tutor, 26–27
getAIMove() function, 130–133,

135–136
Git, 154
GitBook, 240
GitHub Copilot

breaking code into steps, 61–62
Chat plugin

agents, 88
code review with, 151–153
core functionalities, identifying,

216–217
debugging with, 183–185
getting the most out of, 88–90
overview, 87–88
test cases, generating, 222–225
test results, analyzing, 226–231
test scenarios, generating,

217–218
translating code, 198–201
writing API server, 123–124

code comments, writing, 60–61
code completion, 21
Copilot menu, 34
fixing bugs with ESLint and,

180–182
giving examples, 62–63
installing, 29–30
installing plug-in, 58–59
invalid code, fixing, 143–144
keyboard shortcuts, 63–64
OAS file, creating, 256–260
opening related files, 63
overview, 57
refactoring

Index 317

event listeners, setting
correctly, 154–155

global data, reducing, 156–157
inconsistent naming, fixing,

158–159
lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154
suggestions for improving,

160–165
signing up for, 30
SRS, generating code from,

120–121
syntax support from, 22
trivia game, building, 31–36
working efficiently with, 59–63

GitHub Repository Fetcher app,
201–203

global data, 150, 152, 156–157
Google Bard, 25, 290–291
Google Dataset Search, 301–302
Google Responsible AI Practices

document, 52–53
GPT-3 model, OpenAI, 53
GPT-4 model, OpenAI

long functions, fixing, 158
refactored tic-tac-toe game,

160–165
translating program with,

201–203
visual documentation,

generating, 251
Gradio, 103–108
Gymnasium, 306–307

H
hidden layers, in neural networks,

40, 49
hidden Markov models

(HMMs), 47
Hopper, Grace, 167
HTML template, generating,

10–13
hybrid model mode, Tabnine, 67

I
icons, used in book, 4
inappropriate intimacy, 149
inconsistent naming, 150, 153,

158–159
indecent exposure, 149
indentation rules, 180
input data for prompt, 83, 86
input layers, in neural

networks, 40
installing

Copilot, 29–30, 58–59
ESLint, 173–174
ESLint extension, 174–176
Mintlify Doc Writer, 245–247
Mongoose, 19
Node.js, 219
Prettier, 140–141
Scalene, 205–209
Tabnine, 65–66

instruction of prompt, 82, 86
IntelliCode, Microsoft, 21, 293–294
interface constraints, 115
internal documentation

API documentation, automating
chatbot, creating, 260–265
overview, 255
REST APIs, 256–260

comments
code smell, 148, 152–153,

159–160
for code translation, 196
commenting on Underscore,

247–250
installing and testing Mintlify

Doc Writer, 245–247
overview, 245
refactoring, 159–160

documentation bots
building, 240–242
popular, 240
testing, 243–244

overview, 239
visual documentation

overview, 250–251
requirements diagram,

generating, 252–255
sequence diagram, generating,

251–252
interpretability, 43, 52
isNull() function, 249

J
Jam extension, 170–173
JavaScript, translating, 197–201
Jest test framework

analyzing test results, 226–231
coverage reports, reading, 226
generating test cases, 222–225
installing, 219–221
running, 222

K
Kaggle, 300–301
keyboard shortcuts, in GitHub

Copilot, 63–64
Knuth, Donald, 209

L
labeled data, 46
language generation techniques,

46–47
language translation, 43
large classes/methods, 149
large language models (LLMs)

overview, 79
prompt engineering

chain-of-thought prompting, 85
elements of prompts, 82–83
few-shot prompting, 84–85
open-ended versus closed-

ended prompts, 83
overview, 79
temperature, adjusting, 80–82
tips for improving prompts, 86
zero-shot prompting, 83–84

latent Dirichlet allocation (LDA), 47

318 Coding with AI For Dummies

lazy class, 148
learning, supervised versus

unsupervised, 46
learning to code with AI, 26–27
life cycle constraints, 115
linting

changing rules for, 180–182
combining with AI, 177–180
detecting bad code, 25
fixing code with linter, 176–177
installing ESLint, 173–174
installing ESLint extension,

174–176
integrating AI with, 26
overview, 24–25, 173

Live Server extension, 35
livestream of writing process, 1
LLMs (large language models)

overview, 79
prompt engineering

chain-of-thought prompting, 85
elements of prompts, 82–83
few-shot prompting, 84–85
open-ended versus closed-

ended prompts, 83
overview, 79
temperature, adjusting, 80–82
tips for improving prompts, 86
zero-shot prompting, 83–84

local machine mode, Tabnine, 67
logging of errors, 168, 182
logical bugs, 169
LoginPage function, refactoring,

281–282
logistic regression, 47
long functions, 151, 157–158
long parameter list, 149

M
machine learning

defined, 38
natural-language processing,

43–47
neural networks, 39–43

machine translation, 43
Magic Moments, in Tabnine, 68
magic number, 150, 151, 155–156
maintainability, 271–272
maintenance, software

adaptive, 269
corrective, 268–269
overview, 267
perfective, 269
preventative, 269–270
software quality, enhancing

AI-assisted improvements,
277–284

Code Climate, using, 273–276
code quality metrics, 276–277
general discussion, 271–272
technical debt, 272–273
test coverage reports, 276

types of, 267–268
utilizing AI for, 270–271

makeUnorderedList() function,
197–201

manually written code, blending
with AI-generated

client, improving, 130–133
few-shot prompting,

implementing on server,
127–130

moving logic from AI to client,
133–136

overview, 121
testing and error handling, 125
testing server, 125–127
writing prompt, 121–122
writing server, 122–124

markdown code, 117–118, 240
math calculations, 54, 55
maximum length, OpenAI

models, 101
message chain, 150
Microsoft Bing, 14–15
Microsoft IntelliCode, 21, 293–294
Microsoft Learn, 308–309
middleman, 150
minified code, 142–143

Mintlify Doc Writer plug-in
installing, 245–247
Underscore comments and,

247–250
model settings, adjusting in

OpenAI platform, 101–102
models, 42–43
modularizing code, 197
MongoDB database, 15–20
Mongoose

CRUD, generating
examples usage code, 18
refined prompt, 15–18
running application, 18–20

installing, 19

N
naïve Bayes classifiers, 47
naming, inconsistent, 150, 153,

158–159
natural-language generation

(NLG), 43
natural-language processing (NLP)

history of, 44–45
language generation techniques,

46–47
overcoming challenges of, 45–47
overview, 43–44
supervised versus unsupervised

learning, 46
natural-language understanding

(NLU), 43
nested callback function,

142–147
neural networks

hidden layer, 40
input layer, 40
interpretability, 43
output layer, 40–41
overfitting, 43
overview, 39–40
training and testing models,

41–43
Nim programming language,

198–199, 200

Index 319

NLG (natural-language
generation), 43

NLP (natural-language processing)
history of, 44–45
language generation techniques,

46–47
overcoming challenges of, 45–47
overview, 43–44
supervised versus unsupervised

learning, 46
NLU (natural-language

understanding), 43
Node.js

application for CRUD operations
examples usage code, 18
refined prompt, 15–18
running application, 18–20

installing, 219
server

few-shot prompting on,
127–130

testing, 125–126
writing, 122–123

nodes, in neural networks, 39–40
non-functional requirements,

114–115
Notion, 240
novice-novice pair

programming, 27
Nuclino, 240
numerical vector, 51

O
OAS (OpenAPI Specification),

256–260
object-orientation abusers, 149
oddball solution, 148
official documentation, 137–138
OpenAI. See also ChatGPT

API key, 102–103, 206–207
developing chatbot with OpenAI

API, 103–108
documentation-writing assistant,

building, 240–244
GPT-3 model, 53

GPT-4 model
long functions, fixing, 158
refactored tic-tac-toe game,

160–165
translating program with,

201–203
visual documentation,

generating, 251
Playground

accessing, 96–97
Chat mode in, 98–99
checking credits, 97–98
code translation assistant,

creating, 201–203
Examples page, 99–100
model settings, adjusting,

101–102
playing roles, 100–101
tic-tac-toe game, 121–123

OpenAI Codex, 57
OpenAI Tokenizer, 50
OpenAPI Specification (OAS),

256–260
open-ended prompts, 83
opening related files, in Copilot, 63
operating constraints, 115
operational assumptions, 114
optimizing code

avoiding premature
optimization, 209

overview, 204–205
with Scalene, 205–209

out-of-bound bugs, 169
output format of prompt, 83, 86,

93, 95
output layers, in neural networks,

40–41
overfitting, 43
Owlbot AI add-on, ReadMe, 260

P
pair programming with AI

building trivia game, 31–36
installing Copilot, 29–30
overview, 27

pros and cons of, 28–29
styles of, 28

panes, Replit workspace, 73, 74
parameters

in generative AI models, 54
in neural networks, 41

password input code,
refactoring, 282

pattern detection with AI, 216
perfective software

maintenance, 269
performance constraints, 115
performance monitoring, 168
performance optimization, 270
ping-pong pair programming, 28
Playground, OpenAI

accessing, 96–97
API key, getting, 102–103
Chat mode in, 98–99
checking credits, 97–98
code translation assistant,

creating, 201–203
Examples page, 99–100
model settings, adjusting,

101–102
playing roles, 100–101
tic-tac-toe game, 121–123

playing roles, OpenAI platform,
100–101

PR (pull request), 188–189
predictive maintenance, 270
premature optimization,

avoiding, 209
presence penalty, OpenAI

models, 102
Prettier

automating code formatting
with, 142–147

ESLint rules conflicting with,
180–182

installing and enabling, 140–141
preventative software

maintenance, 269–270
primitive variables, 149
privacy best practices, 52
pro version of Tabnine, 64–65, 68

320 Coding with AI For Dummies

profilers, 205–209
profiling, 205–209
programming languages

syntax
adapting to new, 22–24
code completion, 21–22
overview, 20
trivial details of, 20

translating code
overview, 195–196
preparing code for, 196–197
translation strategies, 197–201
using GPT-4, 201–203
verifying translated code,

203–204
project requirements

domain requirements, 112
functional requirements,

113–114
non-functional requirements,

114–115
overview, 111–112
software requirements, 112

prompt engineering
chain-of-thought prompting, 85
CRUD, generating, 15
elements of prompts, 82–83
few-shot prompting, 84–85
open-ended versus closed-

ended prompts, 83
overview, 79
temperature, adjusting, 80–82
tips for improving prompts, 86
zero-shot prompting, 83–84

prompts
for CRUD tasks, 14–18
HTML template, generating, 10
for tic-tac-toe game

testing and error handling, 125
writing, 121–122

tokenizing, 50
pull request (PR), 188–189
Python, 197–198, 204

Q
qualitative metrics, 271
quality metrics, Code Climate,

276–277
quality of software, enhancing

AI-assisted improvements,
277–284

Code Climate, using, 273–276
code quality metrics, 276–277
general discussion, 271–272
technical debt, 272–273
test coverage reports, 276

quantitative metrics, 271
question answering, 44
Quick Fix link, ESLint, 177–178

R
ReadMe, 257–260
README file, creating, 243–244
record and playback testing, 213
recurrent neural networks (RNNs),

47, 48
refactoring

code maintenance, 270
before code translation, 196
detecting code smells with

Copilot, 151–153
overview, 147
recognizing code smells,

147–151
safely, 153–154
in TDD, 232, 234
technical debt, 273
tic-tac-toe game

event listeners, correctly
setting, 154–155

global data, reducing, 156–157
inconsistent naming, fixing,

158–159
lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156

overview, 154
suggestions for improving,

160–165
reinforcement learning from

human feedback (RLHF), 91
Remember icon, 4
repetitive code, generating with AI

CRUD
examples usage code, 18
initial prompt, 14–15
refined prompt, 15–18
running application, 18–20

HTML template, 10–13
overview, 9–10
spotting tasks, 10

Replit
building website with, 70–71
general discussion, 68–70
home page, 69
Replit AI

advanced model, 77–78
building website with, 75–76
opening, 73–74
tools, 75

templates, using, 69, 70–71, 72
workspace, exploring, 71–73, 74

reporting bugs with Jam, 170–173
requirements diagram,

generating, 252–255
resources, coding

AI4All Open Learning, 305–306
Code.org, 299–300
Edabit, 303–304
edX, 302–303
fast.ai site, 307–308
Google Dataset Search, 301–302
Gymnasium, 306–307
Kaggle, 300–301
Microsoft Learn, 308–309
overview, 299
StatQuest, 304–305

Responsible AI Practices
document, Google, 52–53

Index 321

REST APIs, 255, 256–260
restArguments() function, 250
risk assessment, 216
RLHF (reinforcement learning

from human feedback), 91
RNNs (recurrent neural networks),

47, 48
Rollbar, 267
rule-based AI, 140, 147
running application, for CRUD

tasks, 18–20
runtime errors, 168

S
safety and security best

practices, 53
Scalene, optimizing code with,

205–209
scientific models, 42
security

best practices, 53
prioritizing, 138
security bugs, 169, 191–193
vulnerability detection, 204, 271

self-attention, 48–49
semantic versioning (semver), 190
sentiment analysis, 44
sequence diagram, generating,

251–252
server for tic-tac-toe game

few-shot prompting,
implementing on, 127–130

testing, 125–127
writing, 122–124

Shell tool, Replit, 73
shotgun surgery, 150
sidebar, Replit workspace, 72–73
SignupPage function, refactoring,

276–281
slash commands, Copilot Chat

plugin, 87–88
Smith, Roger, 1
SNNs (simulated neural networks)

hidden layer, 40
input layer, 40

output layer, 40–41
overview, 39–40
training and testing models,

41–43
Snyk

executing fixes, 188–189
security review of translated

code, 204
security vulnerability

detection, 271
signing up, 185–188
verifying fixes, 190–191

software bugs
automated fixes with AI

executing fixes, 188–189
overview, 185
Snyk for, 185–188
verifying fixes, 190–191
when to use, 191–193

Bugasura, 295–296
bug-free software, 169
common types of, 168–169
detecting with AI, 182–185
fixing with Copilot Chat, 88–90
linting

changing rules for, 180–182
combining with AI, 177–180
detecting bad code, 25
fixing code with linter, 176–177
installing ESLint, 173–174
installing ESLint extension,

174–176
integrating AI with, 26
overview, 24–25, 173

overview, 167
reporting with Jam, 170–173
strategies for detecting, 168

software documentation
API documentation, automating

chatbot, creating, 260–265
overview, 255
REST APIs, 256–260

comments
code smell, 148, 152–153,

159–160

commenting on Underscore,
247–250

installing and testing Mintlify
Doc Writer, 245–247

overview, 245
refactoring, 159–160

documentation bots
building, 240–242
popular, 240
testing, 243–244

overview, 239
visual

overview, 250–251
requirements diagram,

generating, 252–255
sequence diagram, generating,

251–252
software maintenance

adaptive, 269
corrective, 268–269
perfective, 269
preventative, 269–270
software quality, enhancing

AI-assisted improvements,
277–284

Code Climate, using,
273–276

code quality metrics,
276–277

general discussion, 271–272
technical debt, 272–273
test coverage reports, 276

types of, 267–268
utilizing AI for, 270–271

software quality, enhancing
AI-assisted improvements,

277–284
Code Climate, using, 273–276
code quality metrics, 276–277
general discussion, 271–272
technical debt, 272–273
test coverage reports, 276

software repair, 268–269
software requirements, 112–115
software requirements diagram,

251–252

322 Coding with AI For Dummies

software requirements
specification (SRS)

core functionalities,
identifying, 216

overview, 112
for tic-tac-toe game

generating code from, 118–121
writing, 115–118

Soliloquy
AI-assisted improvements,

256–260
OAS file, creating, 256–260
test coverage report from Code

Climate, 273–277
Sourcegraph Cody, 288–289
Sourcery, 294–295
speech recognition, 43
SRS (software requirements

specification)
core functionalities,

identifying, 216
overview, 112
for tic-tac-toe game

generating code from, 118–121
writing, 115–118

Starmer, Josh, 304
starter version of Tabnine,

64–65, 66
startNewGame() function,

131–133, 156–158
static code analysis

after translation, 204
changing rules for, 180–182
combining with AI, 177–180
detecting bad code, 25
detecting bugs, 168
fixing code with linter, 176–177
installing ESLint, 173–174
installing ESLint extension,

174–176
integrating AI with, 26
overview, 24–25, 173

StatQuest, 304–305
stop sequences, OpenAI

models, 101
stories, user, 113–114

Stripe, 267
structural quality, 271
sub-word tokenization, 49–50
summarization of text, 44
sumNumbers() function, 227–231
supervised learning, 46
suspension criteria, 215
Swimm, 240
switch statement, 149
syntax

adapting to new, 22–24
code completion, 21–22
formatting code

fixing nested callbacks,
142–147

overview, 139–140
setting up Prettier, 140–141

linting
changing rules for, 180–182
combining with AI, 177–180
fixing code with linter, 176–177
installing ESLint, 173–174
installing ESLint extension,

174–176
overview, 173

overview, 20
trivial details of, 20

syntax errors, 168
system-level integration bugs, 169

T
Tabnine

code completion with, 67–68
general discussion, 64–65
installing, 65–66
model-serving modes, 67
privacy policy, 65
setting up, 66–67

tabs, Replit workspace, 73
Tay chatbot, 56
TDD (test-driven development)

overview, 231
TDD cycle, 232
testing tic-tac-toe game, 232–237

technical assumptions, 114
technical debt, 272–273
Technical Stuff icon, 4
temperature, adjusting,

80–82, 101
templates, Replit, 69, 70–71, 72
temporary field, 149
@terminal agent, 88
test automation, 213
test coverage reports, Code

Climate, 276
test plans

core functionalities, identifying,
216–217

creating, 214–215
formal versus agile, 214
generating test scenarios,

217–218
overview, 214
role of AI in, 215–216

test scenarios, generating, 216,
217–218

test-driven development (TDD)
overview, 231
TDD cycle, 232
testing tic-tac-toe game,

232–237
testing automation framework

analyzing test results, 226–231
coverage reports, reading, 226
generating test cases, 222–225
installing Jest, 219–221
overview, 219
running Jest, 222

testing code
after translation, 203
API server, 123–124
code maintenance, 270
documentation bots, 243–244
Mintlify Doc Writer, 245–247
overview, 213
server for tic-tac-toe game,

125–127
test plans

core functionalities, identifying,
216–217

Index 323

creating, 214–215
formal versus agile, 214
generating test scenarios,

217–218
overview, 214
role of AI in, 215–216

test-driven development
overview, 231
TDD cycle, 232
testing tic-tac-toe game,

232–237
testing automation framework

analyzing test results, 226–231
coverage reports, reading, 226
generating test cases, 222–225
installing Jest, 219–221
overview, 219
running Jest, 222

testing models, 41–43
text summarization, 44
tic-tac-toe game

blending manually written and
AI-generated code

client, improving, 130–133
few-shot prompting,

implementing on server,
127–130

moving logic from AI to client,
133–136

overview, 121
testing and error handling, 125
testing server, 125–127
writing prompt, 121–122
writing server, 122–124

code review, 151–153
core functionalities, identifying,

216–217
debugging, 191–193
generating test cases, 222–225
README file, creating, 243–244
refactoring

event listeners, setting
correctly, 154–155

global data, reducing,
156–157

improving, 160–165

inconsistent naming, fixing,
158–159

lack of comments, 159–160
long functions, fixing, 157–158
magic number, removing,

155–156
overview, 154

SRS, generating code from
breaking down the problem,

120–121
overview, 118
zero-shot approach, 118–120

SRS, writing, 115–118
test scenarios, generating,

217–218
testing, 232–237

Tip icon, 4
tips for improving prompts, 86
to-do app, 59–63
token limits, 51
Tokenizer, OpenAI, 50
tokens, 49–51
tools, coding. See also GitHub

Copilot
Amazon CodeWhisperer,

287–288
Bugasura, 295–296
Claude, 292–293
Codeium, 291–292
DeepMind AlphaCode, 289–290
Google Bard, 290–291
Microsoft IntelliCode, 293–294
overview, 57, 287
Replit

general discussion, 68–70
Replit AI, 73–78
starting websites with, 70–71
workspace, exploring, 71–73, 74

Sourcegraph Cody, 288–289
Sourcery, 294–295
Tabnine

code completion with, 67–68
general discussion, 64–65
installing, 65–66
setting up, 66–67

updating, 138
UserWay, 296–297

tools panel, Replit workspace,
72–73

Top P setting, OpenAI models, 101
tour guide pair programming, 28
training models, 41–43
transformer models

accuracy of, 54–56
attention, 48
overview, 47, 48
self-attention, 48–49
tokens, 49–51

translating code
overview, 195–196
preparing code for, 196–197
translation strategies, 197–201
using GPT-4, 201–203
verifying translated code,

203–204
transpiler, 221
trivia game, building, 31–36
tutor, AI as, 26–27
type embedded in name, 150–151
TypeScript, 199–201

U
uncommunicative name, 150
Underscore, 247–250
unit testing

analyzing test results, 226–231
coverage reports, reading, 226
generating test cases, 222–225
installing Jest, 219–221
overview, 219
running Jest, 222
support for, 218

unit-level bugs, 169, 183–184
unsupervised learning, 46
updating tools, 138
use cases, 113–114
user feedback analysis, 271
user role, OpenAI Playground,

100–101

324 Coding with AI For Dummies

user stories, 113–114
UserWay, 296–297

V
verifying

AI-generated code, 23–24, 27
automated bug fixes, 190–191
translated code, 203–204

version control system, 153–154
visual documentation

overview, 250–251
requirements diagram,

generating, 252–255
sequence diagram, generating,

251–252
VS Code

Copilot Chat agents, 88
diff tool, 145–146
installing Copilot extension in, 58
installing Prettier, 140–141
Mintlify Doc Writer plug-in,

245–247, 249
@vscode agent, 88

W
Wallace, Richard, 45
Warning icon, 4
websites, building with Replit,

70–71, 75–76
Webview tool, Replit, 73
weight, 41
weighted micro function points

(WMFP), 271
word tokenization, 49
wordiness of language models,

54–55, 56
workflow bugs, 169
workspace, Replit, 71–73, 74
@workspace agent, 88, 223, 233
writing of book, livestream of, 1
writing test plans

core functionalities, identifying,
216–217

creating, 214–215
formal versus agile, 214
generating test scenarios,

217–218

overview, 214
role of AI in, 215–216

X
XSS (cross-site scripting), 191–193

Y
you are a, prompting with, 86

Z
zero-shot prompting

general discussion, 83–84
generating SRS, 118–120

About the Author
Chris Minnick is a multifaceted professional with a passion for teaching, writing,
and creative arts. As an experienced educator, he teaches computer programming
and AI to professionals globally. He has written over 20 books, including JavaScript
All-in-One For Dummies, Beginning ReactJS Foundations, and JavaScript for Kids For
Dummies. Beyond his technical expertise, Chris is a passionate life-long learner
and an amateur musician, novelist, painter, and farmer.

Dedication
To my best friends, Jill, Chauncey, and Murray, who know better than anyone how
I really feel about this stuff.

Author’s Acknowledgments
Thank you to everyone who helped, encouraged, and questioned my sanity as
I was writing this book. The AI-generated code in this book was made possible by
everyone who has ever put code on the web, and I hope our AI overloads find a fair
way to compensate us for all that work.

Thank you to Steve Hayes, who was instrumental in shaping this book and push-
ing for its publication. Thank you to my agent, Carole Jelen, who has never steered
me wrong. Thank you to my favorite editor ever, Susan Pink, and to the technical
editor, Guy Hart-Davis, whose keen eye and good sense helped me improve the
content and coverage. Thank you also to the proofreader, Debbye Butler, the
 production editor, Tamilmani Varadharaj, and everyone at Wiley who worked on
this book with me.

Thank you, most of all, to you, the reader, for putting your trust in me to teach you
about this exciting (and, I admit, frightening) new world.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Project Editor: Susan Pink

Copy Editor: Susan Pink

Technical Editor: Guy Hart-Davis

Proofreader: Debbye Butler

Production Editor: Tamilmani Varadharaj

Cover Image: © Blue Planet Studio/Shutterstock

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Techniques and Technologies
	Chapter 1 How Coding Benefits from AI
	Banishing Boring Tasks
	Spotting boring tasks
	Letting AI write the template
	Crafting CRUD with AI

	Helping with Syntax
	Stop remembering trivial details
	Hinting at code mastery
	Adapting to new syntax

	Linting with AI
	Detecting bad code with static code analysis
	Integrating AI with static code analysis

	Using AI as a Tutor
	Studying AI’s potential in education
	Avoiding potential pitfalls

	Pairing Up with AI
	Overview of pair programming styles
	Understanding the pros and cons of pair programming with AI
	AI pair programming session
	Installing Copilot
	Using prompting to create a trivia game

	Chapter 2 Parsing Machine Learning and Deep Learning
	Decoding Machine and Deep Learning
	Defining key concepts
	Thinking about neural networks
	Input layer
	Hidden layer
	Output layer

	Training and testing models

	Demystifying Natural-Language Processing
	History of NLP
	Overcoming the challenges of NLP
	Understanding supervised and unsupervised learning
	Language generation techniques

	Understanding Transformers
	Learning to pay attention
	Getting tokens

	Illuminating Generative AI Models
	Recognizing AI’s Limitations
	Language models are bad at math
	Language models are wordy
	AI has limited knowledge
	AI lacks common sense
	AI has accuracy issues
	AI has the potential to be biased

	Chapter 3 AI Coding Tools
	Navigating GitHub Copilot
	Installing the Copilot plug-in
	Working efficiently with Copilot
	Specify your goal
	Break things down
	Give examples
	Open related files

	Using keyboard shortcuts

	Exploring Tabnine
	Installing Tabnine
	Setting up Tabnine
	Understanding Tabnine’s AI-driven code completion

	Reviewing Replit
	Starting a website with Replit
	Exploring the Replit workspace
	The sidebar
	Tabs and panes

	Pairing up with Replit AI

	Chapter 4 Coding with Chatbots
	Improving Your Prompts
	Adjusting the temperature
	Deciphering the elements of a prompt
	Open-ended versus closed-ended prompts
	Using different types of prompts
	Zero-shot prompting
	Few-shot prompting
	Chain-of-thought prompting

	Prompting like a pro

	Chatting with Copilot
	Understanding slash commands
	Knowing Copilot’s agents
	Getting the most out of Copilot Chat

	Chatting with ChatGPT
	Signing up and setting up
	Setting custom instructions
	Telling ChatGPT about you
	Telling ChatGPT your expectations

	Diving into the OpenAI Platform
	Checking your credits
	Messing around in the playground
	Running examples
	Playing the roles
	Adjusting the model’s settings
	Getting an API key

	Developing a Chatbot with OpenAI

	Part 2 Using AI to Write Code
	Chapter 5 Progressing from Plan to Prototype
	Understanding Project Requirements
	Determining the software requirements
	Domain requirements
	Functional requirements
	Non-functional requirements
	Writing an SRS

	Generating Code from an SRS
	Using a zero-shot approach
	Breaking down the problem

	Blending Manually Written and AI-Generated Code
	Writing the prompt
	Writing the server
	Submitting follow-up prompts
	Testing the server
	Implementing few-shot prompting on the server
	Improving the client
	Moving logic from AI to the client

	Tips and Tricks for Code Generation
	Don’t stop coding
	Be specific
	Think in steps
	Ask follow-up questions
	Check the official documentation
	Use examples and context
	Prioritize security
	Keep learning
	Keep your tools updated
	Be mindful of AI’s limitations

	Chapter 6 Formatting and Improving Your Code
	Using AI Tools for Code Formatting
	Setting up your formatting tools
	Using Prettier to automate code formatting

	Refactoring with AI
	Recognizing code smells
	Dispensables
	Bloaters
	Abusers
	Couplers
	Change preventers
	Additional categories of code smells

	Detecting code smells with Copilot
	Refactoring safely

	Generating Refactoring Suggestions
	Setting event listeners correctly
	Removing the magic number
	Reducing global data
	Fixing long functions
	Fixing inconsistent naming
	Lack of comments
	Making AI play tic-tac-toe better

	Chapter 7 Finding and Eliminating Bugs
	Knowing Your Bugs
	Strategies for detecting bugs
	Identifying common types of bugs
	AI-assisted bug reporting with Jam

	Preventing Bugs with Linting
	Installing a linter
	Installing the ESLint extension
	Fixing your code with a linter
	Combining linting with AI
	Changing the rules

	Detecting Bugs with AI
	Automating Bug Fixes with AI
	Introducing Snyk
	Executing automated bug fixes
	Verifying automated bug fixes
	Knowing when to automate

	Chapter 8 Translating and Optimizing Code
	Translating Code to Other Languages
	Preparing your code for translation
	Exploring translation strategies
	Translating a complete program using GPT-4
	Verifying translated code

	Optimizing Your Code with AI
	Getting code optimization suggestions
	Avoiding premature optimization

	Part 3 Testing, Documenting, and Maintaining Your Code
	Chapter 9 Testing Your Code
	Writing a Test Plan
	Deciding between formal and agile
	Stepping through the test planning process
	Understanding the role of AI in test planning
	Identifying core functionalities
	Generating test scenarios

	Working with a Testing Framework
	Installing Jest
	Running Jest
	Generating test cases
	Reading a coverage report
	Analyzing test results

	Test-Driven Development with AI

	Chapter 10 Documenting Your Code
	Working with Documentation Bots
	Building your own documentation bot
	Testing your documentation assistant

	Generating Code Comments and Annotations
	Installing and testing Mintlify Doc Writer
	Commenting on Underscore

	Creating Visual Documentation
	Generating a sequence diagram
	Generating a requirements diagram

	Automating API Documentation with AI
	Documenting a REST API
	Creating an API documentation chatbot

	Chapter 11 Maintaining Your Code
	Knowing the Four Types of Maintenance
	Corrective software maintenance
	Adaptive software maintenance
	Perfective software maintenance
	Preventative software maintenance

	Utilizing AI for Code Maintenance
	Enhancing Code Quality with AI
	Understanding technical debt
	Getting started with Code Climate
	Enabling the text coverage report
	Analyzing code quality metrics
	Making AI-assisted code quality improvements

	Part 4 The Part of Tens
	Chapter 12 Ten More Tools to Try
	Amazon CodeWhisperer
	Sourcegraph Cody
	DeepMind AlphaCode
	Google Bard
	Codeium
	Claude
	Microsoft IntelliCode
	Sourcery
	Bugasura
	UserWay

	Chapter 13 Ten AI Coding Resources
	Code.org’s AI Resources
	Kaggle
	Google’s Dataset Search
	edX
	Edabit
	StatQuest
	AI4All Open Learning
	Gymnasium
	fast.ai
	Microsoft Learn

	Index
	EULA

Coding with Al

&

