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Large language models (LLMs) have proven themselves to be powerful tools for solving a wide range 
of tasks, and enterprises have taken note. But transitioning from demos and prototypes to full-fledged 
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about application paradigms like RAG (retrieval-augmented generation) and agents, and more.
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Praise for Designing Large Language Model Applications

Designing Large Language Model Applications is a masterclass in building advanced AI
systems. It builds toward a powerful synthesis of advanced methods like tool use,

reasoning, RAG, and fine-tuning, equipping readers to create the
next generation of AI applications.

—Jay Alammar, coauthor, Hands-On Large Language Models

Designing Large Language Model Applications is a comprehensive tour of LLMs, offering
lucid explanations of everything from fundamental concepts like prompting and fine-

tuning to emerging trends like inference-time compute and reasoning. But, more
importantly, readers will develop genuine intuition for how these models behave in

practice. The hands-on exercises help to reinforce these intuitions in creative, engaging
ways which makes this book not just an invaluable reference, but a way for software

engineers, ML practitioners, and product managers to build up their own toolkit
for developing practical applications with LLMs.

—Megan Risdal, lead product manager, Kaggle (Google)

Designing Large Language Model Applications is a complete, up-to-date guide on the
concepts and techniques behind researching, designing, and building large language

model applications. Drawing from his deep engineering and research experience, the
author provides clear explanations and practical insights on topics across research and

industry, enriched with valuable references to prior work and tooling. Thoughtfully
crafted exercises help readers build intuition and experimental muscle.

A rare, well-curated book that covers all the important ideas
and practical know-how that matter in the field.

—Madhav Singhal, CEO, AutoComputer



Suhas draws on his rich experience to guide the reader through a comprehensive
overview of fundamentals and the newest battle-tested techniques. The timeliness of this

practical book will be very useful for a whole new generation of LLM builders.
—Susan Shu Chang, principal data scientist, Elastic

Incredibly comprehensive!
—Nour Fahmy, Flagship RTL
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Preface

In the past few years, progress in the field of artificial intelligence has been occurring
at breakneck speeds, spearheaded by advances in LLMs. It was not too long ago that
LLMs were a nascent technology that struggled to generate a coherent paragraph;
today they are able to solve complex mathematical problems, write convincing essays,
and conduct long engaging conversations with humans.

As AI advances from strength to strength, it is rapidly being woven into the fabric of
society, touching so many facets of our lives. Learning how to use AI models like
LLMs effectively might be one of the most useful skills to learn this decade. LLMs are
revolutionizing the world of software, and have made possible the development of
applications previously considered impossible.

With all the promise that LLMs bring, the reality is that they are still not a mature
technology and have many limitations like deficiencies in reasoning, lack of adher‐
ence to factuality, “hallucinations”, difficulties in steering them toward our goals, bias
and fairness issues, and so on. Despite the existence of these limitations, we can still
harness LLMs for good use and build a variety of helpful applications provided we
effectively address their shortcomings.

Plenty of software frameworks have emerged that enable rapid prototype develop‐
ment of LLM applications. However, advancing from prototypes to production-grade
applications is a road much less traveled, and is still a very challenging task. This is
where this book comes in—a holistic overview of the LLM landscape that provides
you with the intuition and tools to build complex LLM applications.

With this book, my goal is to provide you with an intuitive understanding of how
LLMs work, the tools you have at your disposal to harness them, and the various
application paradigms they can be built with. Unique to this book are the exercises;
more than 80 exercises are sprinkled throughout to help you solidify your intuitions
and sharpen your understanding of what is happening underneath the hood. While
preparing the content of the book, I read over 800 research papers, with many of
them referenced and linked at appropriate locations in the book, providing you with
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a jumping off point for further exploration. All in all, I am confident that you will
come out of the book an LLM expert if you read the book in its entirety, complete all
the exercises, and explore the recommended references.

Who This Book Is For
This book is intended for a broad audience, including software engineers transition‐
ing to AI application development, machine learning practitioners and scientists, and
product managers. Much of the content in this book is borne from my own experi‐
ments with LLMs, so even if you are an experienced scientist, I expect you will find
value in it. Similarly, even if you have very limited exposure to the world of AI, I
expect you will still find the book useful for understanding the fundamentals of this
technology.

The only prerequisites for this book are knowledge of Python coding and an under‐
standing of basic machine learning and deep learning principles. Where required, I
provide links to external resources that you can use to sharpen or develop your
prerequisites.

How This Book Is Structured
The book is divided into 3 parts with a total of 13 chapters. The first part deals with
understanding the ingredients of a language model. I strongly feel that even though
you may never train a language model from scratch yourself, knowing what goes into
making it is crucial. The second part discusses various ways to harness language
models, be it by directly prompting the model, or by fine-tuning it in various ways. It
also addresses limitations such as hallucinations and reasoning constraints, along
with methods to mitigate these issues. Finally, the third part of the book deals with
application paradigms like retrieval augmented generation (RAG) and agents, posi‐
tioning LLMs within the broader context of an entire software system.

For an extended table of contents, see my Substack blog post.

What This Book Is Not About
To keep the book at a reasonable length, certain topics were deemed out of scope. I
have taken care to not cover topics that I am not confident will stand the test of time.
This field is very fast moving, so writing a book that maintains its relevance over time
is extremely challenging.

This book focuses only on English-language LLMs and leaves out discussion on mul‐
tilingual models for the most part. I also disagree with the notion of mushing all the
non-English languages of the world under the “multilingual” banner. Every language
has its own nuances and deserves its own book.
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This book also doesn’t cover multimodal models. New models are increasingly multi‐
modal, i.e., a single model supports multiple modalities like text, image, video,
speech, etc. However, text remains the most important modality and is the binding
substrate in these models. Thus, reading this book will still help you prepare for the
multimodal future.

This book does not focus on theory or go too deep into math. There are plenty of
other books that cover that, and I have generously linked to them where needed. This
book contains minimal math equations and instead focuses on building intuitions.

This book contains only a rudimentary introduction to reasoning models, the latest
LLM paradigm. At the time of the book’s writing, reasoning models are still in their
infancy, and the jury is still out on which techniques will prove to be most effective.

How to Read the Book
The best way to consume this book is to read it sequentially, while working on the
exercises and exploring the reference links. That said, there are a few alternative
paths, depending on your interests:

• If your interest lies in understanding the LLM landscape and not necessarily in
building applications with them, you can focus on Chapters 1, 2, 3, 4, 5,
10, and 11.

• If you are a product manager seeking to understand the scope of possibilities for
LLM applications, Chapters 1, 2, 3, 5, 8, 10, 11, 12, and 13 are a good bet.

• If you are an ML scientist, then Chapters 7, 8, 9, 10, 11, and 12 will be sure to give
you food-for-thought and new research challenges.

• If you want to train your own LLM from scratch, Chapters 2, 3, 4, 5, and 7 will
provide you with the foundational principles.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.
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Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/llm-playbooks.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Designing Large
Language Model Applications by Suhas Pai (O’Reilly). Copyright 2025 Suhas Pai,
978-1-098-15050-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
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707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional
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For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
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PART I

LLM Ingredients

We begin this book by introducing large language models (LLMs) and the key ingre‐
dients that go into making them. This includes understanding how training data is
collected and prepared, examining the model’s vocabulary, and exploring the archi‐
tectures underpinning them.





CHAPTER 1

Introduction

AI is no longer the realm of science fiction novels and dystopian Hollywood movies.
It is fast becoming an integral part of people’s lives. Most of us interact with AI on a
daily basis, often without even realizing it.

Current progress in AI has to a large extent been driven by advances in language
modeling. Large language models (LLMs) represent one of the most significant tech‐
nological advances in recent times, marking a new epoch in the world of tech. Similar
inflection points in the past include the advent of the computer that ushered in the
digital revolution, the birth of the internet and the World Wide Web that laid the
foundation for a hyperconnected world, and the emergence of the smartphone that
reshaped human communication. The ongoing AI revolution is poised to make a
similar transformative impact.

LLMs belong to a class of models referred to as generative AI. The distinguishing fac‐
tor is the ability of these models to generate responses to user queries, called prompts.
Generative AI encompasses models that generate images, videos, speech, music, and
of course text. While there is an increasing focus on bringing all these modalities
together into a single model, in this book we will stick to language and LLMs.

In this chapter, we will introduce language models and define what makes a language
model large. We will provide a brief history of LLMs, contextualizing their place
within the field of natural language processing (NLP) and their evolution. We will
highlight the impact LLMs are already having in the world and showcase key use
cases, while discussing their strengths and limitations. We will also introduce LLM
prompting and show how to interact with an LLM effectively, either through a user
interface or through an API. Finally, we will end this chapter with a quick tutorial on
building a Chat with my PDF chatbot prototype. We will then discuss the limitations
of the prototype and the factors limiting its suitability for production use cases, thus
setting the stage for the rest of the book.
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Defining LLMs
A model is an approximation of a real-world concept or phenomenon. A faithful
model will be able to make predictions about the concept it is approximating. A lan‐
guage model approximates human language and is built by training over a large body
of text, thus imbuing it with various properties of language, including aspects of
grammar (syntax) and meaning (semantics).

One way to train a language model is to teach it to predict the next token (this is
equivalent to a word or a subword, but we will ignore this distinction for now) in a
known text sequence. The model is trained over a large number of such sequences,
and its parameters are updated iteratively such that it gets better at its predictions.

For example, consider the following text sequence appearing in a training dataset:

After a physical altercation with the patrons of a restaurant, Alex was feeling
extremely pleased with himself. He walked out with a swagger and confidence
that betrayed his insecurities. Smiling from ear to ear, he noticed rain drops
grazing his face and proceeded to walk toward the hostel.

and the language model predicts the next word that comes after “… and proceeded to
walk toward the _”

There are a large number of valid continuations to this text sequence. It could be
“building” or “shelter,” but it could also be “embankment” or “catacomb.” However, it
is definitely not “the” or “is,” because that would break the rules of the English lan‐
guage. After training on a sufficiently large body of text, the model learns that neither
“the” nor “is” are valid continuations. Thus, you can see how a simple task like learn‐
ing to predict the next word in a text sequence can lead the model to learning the
grammar of the language in its parameters, as well as even more complex skills.

In practice, language models don’t exactly output a single word or
subword as the next token in a text sequence. They output a proba‐
bility distribution over the entire vocabulary. (We will explore how
this vocabulary is defined and constructed in Chapter 3). A well-
trained model will have high probabilities for valid continuations
and very low probabilities for invalid continuations.

Figure 1-1 describes the model training process in a nutshell. The output of the
model prediction is a probability distribution over the entire vocabulary of the lan‐
guage. This is compared to the original sequence, and the parameters of the model
are updated according to an algorithm so that it makes better predictions in the
future. This is repeated over a very large dataset. We will describe the model training
process in detail in the next three chapters.

4 | Chapter 1: Introduction



Figure 1-1. Model training using next token prediction

Is there a limit to what a model can learn from next-token prediction alone? This is a
very important question that determines how powerful LLMs can eventually be.
There is plenty of disagreement in the research community, with some researchers
arguing next-token prediction is enough to achieve human-level intelligence in mod‐
els, and others pointing out the shortfalls of this paradigm. We will come back to this
question throughout the book, and especially in Chapter 8, where we will discuss
skills like reasoning.

Modern-day language models are based on neural networks. Several types of neural
network architectures are used to train LLMs, the most prominent being the Trans‐
former. We will learn more about neural networks, Transformers, and other architec‐
tures in detail in Chapter 4.

Language models can be trained to model not just human languages but also pro‐
gramming languages like Python or Java. In fact, the Transformer architecture and
the next-token prediction objective can be applied to sequences that are not lan‐
guages in the traditional sense at all, such as representations of chess moves, DNA
sequences, or airline schedules.

For example, Adam Karvonen trained Chess-GPT, a model trained only on chess
games represented in portable game notation (PGN) strings. PGN strings for chess
look like “1. e4 d5 2. exd5 Qxd5…” and so on. Even without providing the rules of the
game explicitly, and just training the model to predict the next character in the PGN
sequence, the model was able to learn the rules of the game including moves like cas‐
tling, check, and checkmate; and it could even win chess games against experts. This
shows the power of the next-token prediction objective and the Transformer archi‐
tecture that forms the basis of the model. In Chapter 4, we will learn how to train our
own Chess-GPT from scratch.

Another such example is the Geneformer, a model trained on millions of single-cell
transcriptomes (representations of RNA molecules in a single cell), which can be used
for making predictions in network biology, including disease progression, gene-
dosage sensitivity, and therapeutic candidates.
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Therefore, I encourage you to think beyond the realm of human language when
brainstorming novel use cases for language models. If you have a concept or phe‐
nomenon that can be encoded in a discrete sequence using a finite vocabulary (we
will more formally define vocabulary in Chapter 3), then we can potentially train a
useful model on it.

Is there something special about the structure of language that
makes it amenable to be modeled using the next-token prediction
objective? Or is the word “language” in language models just a his‐
torical accident and any stream of tokens can be modeled using
this paradigm? While this is still a topic of debate in the research
community, directly modeling speech, video, etc. using this para‐
digm hasn’t been as effective, perhaps showing that the discrete
nature of text and the structure provided by language, be it a
human language like English, a programming language like
Python, or a domain-specific code like DNA sequences, is crucial
to modeling success.

Around 2019, researchers realized that increasing the size of the language model
(typically measured by the number of parameters) predictably improved perfor‐
mance, with no saturation point in sight. This led to Kaplan et al.’s work on LLM scal‐
ing laws (see the following sidebar), which derives a mathematical formula describing
the relationship between the amount of computation (henceforth referred to as “com‐
pute”) for training the model, the training dataset size, and the model size. Ever since
then, companies and organizations have been training increasingly larger models.

Scaling Laws for Language Models
In early 2020, Kaplan et al. from OpenAI published a study establishing the scaling
laws of language models that ushered in the LLM era. They found a power-law rela‐
tionship between the performance of the language model (measured by model loss;
we will describe that in Chapter 4) and the size of the dataset used to train the model,
the amount of compute used to train the model, and the size of the model itself,
measured in terms of number of parameters. Simply put, the larger the model size,
compute size, and amount of training data, the better the model.

More specifically, they found that for a fixed compute budget, increasing the size of
the training dataset and the model in tandem improves the performance of the result‐
ing LLM, but the dataset size needs to increase only by 1.8x for every 5.5x increase in
model size to maintain an optimal level of performance. This is because larger models
are more sample-efficient, meaning they need relatively fewer training examples to
learn. Thus, models from that era mainly focused on increasing model sizes as much
as possible.
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However, in 2022, Hoffmann et al. from DeepMind pointed out that Kaplan et al.
underestimated the impact of data size, resulting in language models from that era
being significantly undertrained. They showed that to optimize performance of an
LLM at a fixed compute budget (called compute-optimal), the training data size needs
to increase at the same proportion as the model size. This led to the newer generation
of models being trained on more data.

Note that both these scaling laws apply to compute-optimal LLMs, where you start
with a fixed compute budget and ask, “What is the best LLM I can train with this
budget?” But sometimes you are bottlenecked by other criteria, like the size of the
model. Smaller models are faster to run and more energy efficient. In this case, one
can significantly increase the training data size and continue seeing (albeit relatively
smaller) performance gains, at the same model size. This is the trend driving more
recent LLMs, especially in the open-source space.

There is no accepted convention about when a language model is considered “large.”
In fact, as the largest models get even larger, some models that would have been des‐
ignated as LLMs only a couple of years ago are now termed small language models
(SLMs). In this book, we will remain generous and continue to refer to all language
models over a billion parameters as “large.”

Another way in which a “large” language model differs from smaller ones is the emer‐
gent capabilities it possesses. First hypothesized by Wei et al., emergent capabilities
are those capabilities exhibited by larger models but not smaller ones.

According to this theory, for tasks that require these capabilities, the performance of
smaller models is close to random. However, when the model size reaches a thresh‐
old, the performance suddenly starts to increase with size. Examples include multi-
digit arithmetic operations, arithmetic and logical reasoning, etc. This also suggests
that certain capabilities that are completely absent in current models could be exhibi‐
ted by future larger models.

These thresholds are not absolute, and as we see more advances in language model‐
ing, data quality improvements, etc., we can expect the thresholds to come down.

Schaeffer et al. claim that the sudden jump in performance for cer‐
tain tasks at a particular model size threshold is just an artifact of
the evaluation metrics used to judge performance. This happens
because many metrics do not assign partial credit and only reward
fully solving the task, so model improvements might not be
tracked. On the other hand, one could argue that for tasks like
multi-step arithmetic, getting the answer partially right is just as
useless as getting it completely wrong.
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The question of what abilities are emergent is still being explored in the research
community. In Chapter 5, we will discuss its implications for selecting the right
model for our desired use case.

Unfortunately the phrase “emergent properties” has multiple mean‐
ings in the literature. In some papers, the phrase is used to describe
those capabilities that the model is not explicitly trained for. In this
book, we will stick to Wei et al.’s definition.

To understand how current LLMs came to be, it is instructive to walk through a brief
history of them. As more historical details are out of scope for the book, we will pro‐
vide links to external resources for further reading throughout the section.

A Brief History of LLMs
To present the history of LLMs, we need to start from the history of NLP, the field
that LLMs originated from. For a more detailed history of NLP, refer to Daniel Juraf‐
sky’s seminal book, Speech and Language Processing, 2nd edition.

Early Years
The field traces its origins to the 1950s, driven by demand for machine translation, the
task of automatically translating from one language to another. The early days were
dominated by symbolic approaches; these were rule-based algorithms based on lin‐
guistic theories influenced by the works of linguists like Noam Chomsky.

In the mid-1960s, Joseph Weizenbaum released ELIZA, a chatbot program that
applied pattern matching using regular expressions on the user’s input and selected
response templates to generate an output. ELIZA consisted of several scripts, the
most famous one being DOCTOR, that simulated a psychotherapist. This variant
would respond by rephrasing the user’s input in the form of a question, similar to
how a therapist would. The rephrasing was performed by filling in predefined tem‐
plates with pattern-matched words from the input.

As an example:

User: 'I am not feeling well'

ELIZA: 'Do you believe it is normal to be not feeling well?'

You can try chatting with ELIZA online. Even in the era of ChatGPT, ELIZA can hold
a somewhat convincing conversation, despite the fact that it is just rules-based.
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Exercise
Read through the classic paper by Weizenbaum introducing ELIZA. In general, I rec‐
ommend developing a habit of reading papers from yesteryears, as they are a good
source of inspiration. Ideas get recycled all the time, and infeasible ideas from the past
become feasible today due to advances in technology.

Additionally, go through the code for the Python implementation of ELIZA by Wade
Brainerd to understand how powerful carefully constructed rule-based systems can
be. Even in the era of LLMs, you should not shy away from using rule-based
approaches for your language tasks where it makes sense!

Rule-based systems are brittle, hard to construct, and a maintenance nightmare. As
the decades rolled by, the limitations of symbolic approaches became more and more
evident, and the relative effectiveness of statistical approaches ensured that they
became more commonplace. NLP researcher Frederick Jelinek famously quipped,
“Every time I fire a linguist, the performance of the speech recognizer goes up.”

Machine learning–based approaches became more widely used in the 1990s and
2000s. Traditional machine learning relied on human-driven feature engineering and
feature selection, the process of identifying features (characteristics of the input) that
are predictive to solve a task. These features could be statistical, like the average word
length, or linguistic, like parts of speech. To learn more about traditional statistical
NLP, I recommend reading Christopher Manning’s book, Foundations of Statistical
Natural Language Processing.

The relevance of linguistics to modern-day NLP application development is a point of
debate. Many university courses on NLP have completely dropped content related to
linguistics. Even though I don’t directly use linguistics in my work, I find that I rely
on them to develop intuitions about model behavior more than I expect. As such, I
recommend Emily Bender’s books on syntax and semantics to understand the basics
of this field.

The 2010s saw the advent of deep learning and its widespread impact on NLP. Deep
learning is characterized by multi-layer neural network models that learn informative
features by themselves given only raw input, thus removing the need for cumbersome
feature engineering. Deep learning forms the foundation for modern NLP and LLMs.
To dig deeper into the principles of deep learning and neural networks, I recommend
Goodfellow et al.’s book. For more hands-on deep learning training, I recommend
Zhang et al.’s Dive into Deep Learning.

During the early years of deep learning, it was customary to construct a task-specific
architecture to solve each task. Some of the types of neural network architectures
used include multi-layer perceptrons, convolutional neural networks, recurrent
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neural networks, and recursive neural networks. To learn more about this era of NLP,
I recommend Neural Network Methods for Natural Language Processing by Yoav Gold‐
berg (Springer Cham).

The Modern LLM Era
In 2017, the Transformer architecture was invented, quickly followed by the inven‐
tion of efficient transfer learning techniques pioneered by Howard et al. among others
and Transformer-based language models like BERT. These advances removed the
need for constructing complex task-specific architectures. Instead, one could use the
same Transformer model to train a variety of tasks. This new paradigm divided the
training step into two stages: pre-training and fine-tuning. An initial large-scale pre-
training step initialized the Transformer model with general language capabilities.
Subsequently, the pre-trained model could be trained on more concrete tasks, like
information extraction or sentiment detection, using a process called fine-tuning. We
will cover fine-tuning extensively throughout the book.

While academia and open-source collectives have made crucial and critical contribu‐
tions to language modeling, large tech companies like OpenAI, Google, Meta, and
Anthropic have taken the lead in training and releasing progressively larger LLMs.
OpenAI in particular has played a pioneering role in advancing language modeling
technology. The trajectory of the evolution of LLMs in the modern era can be traced
through the advances ushered in by each version of the GPT (Generative Pre-trained
Transformer) family of models trained by OpenAI:

GPT-1
This version demonstrated unsupervised pre-training on large-scale data, fol‐
lowed by task-specific supervised fine-tuning.

GPT-2
This version was one of the first models to be trained on large-scale web data.
This version also marked the rise of natural language prompting as a means of
interacting with a language model. It showed that pre-trained models could solve
a variety of tasks zero-shot (solving a task without needing any examples) without
any task-specific fine-tuning. We will discuss zero-shot and prompting in detail
later in this chapter.

GPT-3
Inspired by the scaling laws, this model is a hundred times larger than GPT-2 and
popularized in-context/few-shot learning, where the model is fed with a few
examples on how to solve a given task in the prompt, without needing to fine-
tune the model. We will learn more about few-shot learning later in this chapter.
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GPT-4
A key aspect of this release is the alignment training used to make the model
more controllable and adhere to the principles and values of the model trainer.
We will learn about alignment training in Chapter 8.

o1
This is a new family of models released by OpenAI that focuses on improving
reasoning capabilities. This is one of the first models to focus on scaling
inference-time computation. We will discuss more about inference-time compu‐
tation in Chapter 8.

Exercise
Read each of the GPT papers in order. It is OK if you do not understand some of the
terminology or principles, as we will cover them throughout the course of the book.
After finishing the first two parts of the book, read the papers again for a more
enhanced understanding.

You might have noticed a trend here: through the years, the field has been experienc‐
ing a consolidation effect, with more and more parts of the NLP task pipeline being
performed end-to-end, i.e., by a single model. Throughout this book, we will point
out the consolidation effect where it is apparent and discuss its implications for the
future of LLMs.

A history of LLMs wouldn’t be complete without mentioning the impact of open
source contributions to this field. Open source models, datasets, model architectures,
and various developer libraries and tools have all had significant impacts on the
development of this field. This book places a special importance on open source, pro‐
viding a thorough survey of the open source LLM landscape and showcasing many
open source models and datasets.

Next, let’s explore how LLMs are being adopted and their impact on society so far.

The Impact of LLMs
The tech world has long been susceptible to hype cycles, with exhilarating booms and
depressing busts. More recently, we have witnessed the crypto/blockchain and Web3
booms, both of which have yet to live up to their promises. Is AI heading toward a
similar fate? We have hard evidence that it is not.

At my company Hudson Labs, we analyzed discussions in the quarterly earnings calls
of the 4,000 largest publicly listed companies in the United States to track adoption of
crypto, Web3, and AI in the enterprise.
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We observed that 85 companies discussed Web3 in their earnings calls, with even
fewer tangibly working on it. Crypto fared better, with 313 companies discussing it.
Meanwhile, LLMs were discussed and adopted by 2,195 companies, meaning that at
least 50% of America’s largest public companies are using LLMs to drive value, and it
is strategically so important to them to merit discussion in their quarterly earnings
call. Effective or not, LLM adoption in the enterprise is already a reality.

Figure 1-2 shows the number of companies discussing Web3 in their earnings calls
over time. As you can see, the Web3 hype seems to be tapering off.

Figure 1-2. Companies that discussed Web3 in their earnings calls across time

Similarly, Figure 1-3 shows the number of companies discussing crypto/blockchain in
their earnings calls over time. As you can see, only 5% of companies discussed crypto
at its peak.
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Figure 1-3. Companies that discussed crypto/blockchain in their earnings calls across
time

Finally, let’s look at AI. As mentioned before, AI has reached levels of adoption in the
enterprise that no other recent technology trend has managed in the recent past. The
trend is only accelerating, as shown in Figure 1-4, which shows the number of com‐
panies that were asked questions about AI by analysts during their earnings calls in
just the first two months of the year. The sharp spike in 2024 shows no sign of
abating.
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Figure 1-4. Companies that were asked questions about AI in their earnings calls during
the first two months of the year

Note that these statistics only include generative AI/LLM adoption and not data sci‐
ence/data analytics, whose adoption is even more ubiquitous in the enterprise. AI
adoption is also not limited to tech companies, with companies ranging from real
estate companies to insurance firms joining in on the fun.

LLM Usage in the Enterprise
From the same analysis, we observed the key ways in which LLMs are used in the
enterprise:

Employee productivity
The primary means by which employee productivity has improved through LLM
usage is with coding assistants like GitHub Copilot. LLMs are also widely used to
help draft marketing and promotional text and automate marketing campaigns.
In fact, the first major LLM commercial success stories were marketing startups
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like Jasper AI and Copy.ai. Another key LLM-driven productivity enhancement
is question-answering assistants over a company’s extensive knowledge base
drawn from heterogeneous data sources.

Report generation
These include summarizing documents, completing mundane paperwork, and
even drafting contracts. Summarization use cases include summarizing financial
reports, research papers, or even meeting minutes from audio or call transcripts.

Chatbots
LLM-driven chatbots increasingly are being deployed as customer service agents.
They are also being used as an interface to a company’s documentation or prod‐
uct page.

Information extraction and sequence tagging
Over the years, a large number of enterprises have developed complex NLP pipe‐
lines for language processing tasks. Many of these pipelines are being fully or
partially replaced by LLMs. These pipelines are used to solve common NLP tasks
like sentiment analysis, information extraction tasks like entity extraction and
relation extraction, and sequence tagging tasks like named entity recognition
(NER). For a detailed list of NLP tasks and their descriptions, see Fabio Chiusa‐
no’s blog.

Translation
Translation tasks include translating text from one language to another as well as
tasks where text is converted to a different form but in the same language, for
example, converting informal text to formal text, abusive text to polite text and
so on. Real-time translation apps like Erudite’s Instant Voice Translate promise to
make embarrassing language-barrier moments for tourists a thing of the past.

Workflows
LLMs are gradually being used to facilitate workflow automation, where a
sequence of tasks can be performed by LLM-driven software systems, called
agents. Agents can interact with their environment (search and retrieve data, run
code, connect to other systems) and potentially operate autonomously. We will
more formally define agents and explore how to build them in Chapter 10.

Effect of LLMs on the Job Market
Our analysis of earnings calls also pointed out a concerning trend: companies are
already treating LLMs and AI in general as cost-saving measures. Indeed, several
companies have already explicitly stated that they have reduced their workforce after
seeing efficiency improvements using AI.
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For instance, Klarna, a Swedish fintech company, announced that its AI assistant is
handling two-thirds of its customer support cases, the workload of 700 human agents.

The rapid adoption of LLMs at scale does not necessarily mean that they are better
than humans at their tasks. In cases where LLMs are completely replacing humans
and not just augmenting them, they may be deployed even if they perform worse than
humans, just because of the resulting cost savings. This premature deployment of AI
technologies can potentially lead to worse customer satisfaction in the long run.

On the other hand, LLMs have vastly lowered the barrier for software development,
thus leading to more digitalization and enabling a lot more people to develop
software.

Prompting
Now that we have our fundamentals in place, let’s begin learning how to effectively
use LLMs.

The process by which you interact with an LLM is called prompting. Even though
some companies attempt to anthropomorphize LLMs by giving them a name or a
persona, it is good to remember that when you are interacting with an LLM, you are
prompting them and not chatting with them as you would with a human being.
Remember that LLMs are next-word predictors. This means that the text they gener‐
ate is heavily dependent on the text they are fed, which includes the input (called the
prompt) and the output tokens generated so far by the model. This is collectively
called the context.

By feeding the LLM the right text in the context, you are priming it to generate the
type of output you need. The ideal prompt would be the answer to this question:
“What would be the best prefix of N tokens that, when fed to an LLM, will lead it to
generate the correct answer with the highest probability?”

As of the book’s writing, language models simply aren’t smart enough for you to
prompt a model exactly the way you would speak to a human and expect best results.
As language models get better over time, prompts can become more like human con‐
versation. Those of you who remember the early days of search engines might recall
that effectively using a search engine by entering the right form of queries was seen as
a skill that is not trivial to acquire, but as search engines got better, search queries
could become more free-form.

When I started writing this book, I solicited opinions from the target readership on
the topics they would like covered. I received the most requests for the topic of
prompting, with practitioners wanting to understand how to effectively create
prompts for their specific use cases.
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Prompting is an important aspect of modern-day LLMs. In fact, you will probably
end up spending a significant amount of your time on any LLM-based project iterat‐
ing on prompts, very inaccurately referred to as prompt engineering.

There have been attempts to automatically optimize prompts, like
automatic prompt optimization (APO) and AutoPrompt. We will
discuss this further in Chapter 13.

It is important to manage one’s expectations about the effectiveness of prompt engi‐
neering. Prompts aren’t magical incantations that unlock hidden LLM capabilities. It
is very unlikely that there are companies with a significant advantage over others just
by using a superior prompting technique unknown to others. On the flip side, not
following basic prompting principles can severely hamper the performance of your
LLM.

Umpteen prompting tutorials are available online. I recommend Learn Prompting’s
prompting guide in particular. You do not need to know all the prompting techniques
to become well-versed in prompting. Most of what you need to know about prompt‐
ing can be learned in a couple of hours. What matters more is interacting with the
LLMs you use frequently to observe their outputs and developing intuition about
their behavior.

If you have programming experience, I suggest viewing prompting through the lens
of programming. In programming, instructions need to be explicit with no room for
ambiguity. The challenge with prompting is that it is done in natural language, which
is inherently ambiguous. Still, the best prompts state instructions that are explicit,
detailed, and structured, leaving very little room for ambiguity. We will learn more
prompting nuances in Chapters 5 and 13.

A fun fact: language models are insensitive to word order. This
property has been observed even in earlier models like BERT. For
example, ask ChatGPT or your favorite LLM provider the question
“How do I tie my shoelaces?” in jumbled form, say “shoe tie my I
how do laces?” ChatGPT responds with “Certainly! Here are step-
by-step instructions on how to tie your shoelaces:… ” as if you
asked a straightforward question.

Next, let’s discuss a few prompting modes.
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Zero-Shot Prompting
This is the standard approach to prompting, where you provide the LLM with an
instruction and, optionally, some input text. The term zero-shot refers to the fact that
no examples or demonstrations are provided on how to solve the task.

Consider an example where your task is to assess the sentiment expressed in a restau‐
rant review. To achieve this through zero-shot prompting, you can issue the following
prompt:

Prompt: Classify the given passage according to its sentiment. The output can be one of
Positive, Negative, Neutral.
Passage: “The mashed potatoes took me back to my childhood school meals. I was so
looking forward to having them again. NOT!”
Sentiment:

A good zero-shot prompt will:

• Provide the instruction in a precise and explicit manner.
• Describe the output space or the range of acceptable outputs and output format.

In this example, we state the output should be one of three values.
• Prime it to generate the correct text. By ending the prompt with “Sentiment:,” we

are increasing the probability of the LLM generating the sentiment value as the
next token.

The better the model, the less you have to worry about getting these things right.

In real-world settings, your output format needs to be highly controllable in order for
it to fit in automated systems. We will discuss more techniques for ensuring controll‐
ability of outputs in Chapter 5.

Prompts are sensitive to model changes. You might painstakingly
construct a prompt that seems to work well, but you might notice
that the same prompt does not work for a different model. In fact,
the same prompt might see degraded performance on the same
API endpoint if the underlying model is updated in the meanwhile.
We call this prompt drift. It is a good idea to version control
prompts.

Few-Shot Prompting
In our example for zero-shot prompting, the LLM was able to solve the task without
explaining it how to solve it. This is because the task is simple and clearly defined. In
many cases, the tasks might be not so easy to describe in natural language. We can
then add some examples in our prompt consisting of either outputs or input-output
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pairs. While this is called few-shot learning colloquially, the language model is not
updated in any way through this prompting technique.

Here is an example of few-shot prompting:

Prompt: A palindrome is a word that has the same letters when spelled left to right
or right to left.
Examples of words that are palindromes: kayak, civic, madam, radar
Examples of words that are not palindromes: kayla, civil, merge, moment
Answer the question with either Yes or No
Is the word rominmor a palindrome?
Answer:

Chain-of-Thought Prompting
If you are going to learn only one prompting technique, let that be chain-of-thought
(CoT) prompting, because it is one of the most impactful prompting techniques in
existence.

As discussed earlier, the context of the LLM determines the next token it predicts.
Therefore, we need to optimize the content in the context (the user prompt + output
tokens generated so far) to maximize the probability of the LLM generating the cor‐
rect future tokens. One way to do this is to prompt the LLM to think before generat‐
ing. This elicits the LLM to generate the process to get to the answer instead of
directly generating the answer. This might involve breaking the input task into sub‐
tasks and solving them one after the other.

When the LLM is eventually at the cusp of generating the answer, it can rely on a
more relevant context that increases its probability of generating the right answer.

Consider this example:

Prompt: Solve the equation. 34 + 44 + 3 * 23 / 3 * 2. Think step by step.

After receiving the instruction “Think step by step,” the LLM then breaks down the
problem and solves each step sequentially:

Given equation:

34 + 44 + 3 * 23 / 3 * 2

First, perform multiplication and division from left to right:

= 34 + 44 + (3 * 23 / 3 * 2)
= 34 + 44 + (69 / 3 * 2)
= 34 + 44 + (23 * 2)
= 34 + 44 + 46
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Now, perform addition:

= 78 + 46

Finally, complete the addition:

= 124

So, the solution to the equation is 124.

Many LLMs solve tasks step-by-step without being explicitly
prompted to do so. This is because they have been instruction-
tuned to solve tasks that way. We will learn more about instruction-
tuning in Chapters 5 and 6. LLMs that have been instruction-tuned
are easier to prompt.
In the case of LLMs accessible through a user interface, a hidden
prompt (called a system prompt) by the LLM provider might apply
CoT prompting to relevant user prompts.

Should we add the “think step-by-step” CoT instruction for every prompt, like a cheat
code to a game? Sprague et al. evaluated CoT prompting over a wide variety of tasks
and found that CoT primarily helps with tasks that need mathematical or logical rea‐
soning. For tasks involving common-sense reasoning, they found that gains by CoT
are limited. For knowledge-based tasks, CoT might even hurt.

Note that arithmetic and logical reasoning could also be performed by delegating
them to external tools like symbolic solvers and code interpreters. We will discuss this
in detail in Chapter 10.

Using CoT prompting significantly increases the number of tokens
generated by the model to solve a task, leading to higher costs.

Prompt Chaining
Often, your tasks need multiple steps and a large number of instructions. One way to
go about this is by stuffing all the instructions into a single prompt. An alternative is
to break the task into multiple subtasks and chain the prompts such that the output of
one prompt determines the input to another. I have observed that prompt chaining
consistently performs better than managing the entire task through a single prompt.
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As an example, consider the task of extracting information from the text provided in
a form and formatting the output in a structured manner. If there are missing or out‐
lier values, then some special postprocessing rules are to be applied. In this case, it is
good practice to split the task into two prompts, with the initial prompt performing
the information extraction and the second prompt handling the postprocessing of the
extracted information.

Adversarial Prompting
You might notice that, for some queries, the LLM declines to execute your request.
This is because it has been specifically trained to refuse certain kinds of requests (We
will learn how to achieve this behavior in Chapter 8). This kind of training, which we
will call alignment training, is imparted to the model to align it with the values and
preferences of the entity developing the model.

For example, asking any decent LLM directly for instructions to build a bomb will
result in a refusal. However, as of today, alignment training provides only a weak layer
of security, as it can be bypassed by cleverly prompting the LLM, called adversarial
prompting. Adversarial prompts can be generated either manually or using algo‐
rithms. These cleverly phrased prompts trick the LLM into generating a response
even if it was trained not to.

These clever prompting schemes are not just useful for illicit purposes. In many cases,
the LLM simply does not respond the way you want it to, and clever prompting
schemes might help. These clever prompting schemes range from asking the LLM to
adopt a specific persona to outright emotional blackmail (“If you don’t respond cor‐
rectly to this query, many children will suffer!”). While there has been some work
showing that adding emotion to a prompt may lead to better performance, there is no
hard, sustained evidence that this is universally effective for a given model. Thus, I
would not recommend using these in production applications.

Exercise
Gandalf is a prompting game by Lakera AI, an AI security company, that showcases
LLM vulnerabilities to adversarial prompts. In this game, the LLM has been given a
password, and at each level you will have to extract it using the given clues/instruc‐
tions. This game helps you learn to construct prompts cleverly and build intuition
about LLM vulnerabilities. Try advancing to the final level!
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Additionally, you can try techniques explained in Li et al.’s paper for providing emo‐
tional stimuli to the LLM to improve its performance. Specifically, try these tech‐
niques for queries about explanations of physical phenomena: “Why can’t you melt an
egg?” Do you see any noticeable improvements?

An interesting tidbit: I once organized an adversarial prompting competition at a
social event. Interestingly, people with nontechnical backgrounds performed better
than LLM experts at subverting the model with clever prompts!

Accessing LLMs Through an API
You most likely have already interacted with an LLM through a chat interface like
ChatGPT, Gemini, or Claude. Let’s now explore how to access them using the API.
We will use the OpenAI API as an example to access its GPT family of models. Most
other proprietary models expose similar parameters through their API.

GPT-4o mini and GPT-4o can be accessed through OpenAI’s Chat Completion API.
Here is an example:

import os
import openai
openai.api_key = <INSERT YOUR KEY HERE>

output = openai.ChatCompletion.create(
  model="gpt-4o-mini",
  messages=[
    {"role": "system", "content": "You are an expert storywriter."},
    {"role": "user", "content": "Write me a short children's story
    about a dog and an elephant stopping
    being friends with each other."}
  ]
)

print(output.choices[0].message)

Roles can be system, user, assistant, or tool.

• The system role is used to specify an overarching prompt.
• The user role refers to user inputs.
• The assistant role refers to the model responses.
• The tool role is used to interact with external software tools.

We will discuss tools in more detail in Chapter 10.
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What is the difference between the system and user roles? Which
instructions should go into the system prompt and which ones into
the user prompt? System prompts are used for dictating the high-
level overarching behavior of an LLM, like “You are a financial
expert well versed in writing formal reports.” If you are allowing
your users to directly interact with the LLM, then the system
prompt can be used to provide your own instruction to the LLM
along with the user request. My experiments have shown that it
doesn’t matter much if you place your instructions in the system
prompt versus user prompt. What does matter is the length and
number of instructions. LLMs typically can handle only a few
instructions at a time. Instructions at the end or the beginning of
the prompt are more likely to be adhered to.

Here are some of the parameters made available by OpenAI:

n

The number of completions the model has to generate for each input. For exam‐
ple, if we used n = 5 in the given example, it would generate five different child‐
ren’s stories.

For tasks with high reliability requirements, I advise generating
multiple completions, that is, n > 1 and then using a postprocessing
function (which could involve an LLM call) to choose the best one.
This is because the LLM samples the generated text from a proba‐
bility distribution, and in some cases the answer might be
wrong/bad just due to an unlucky token sampling. You might have
to balance this process against your budget limitations.

stop and max_completion_tokens
Used to limit the length of the generated output. stop allows you to specify end
tokens that, if generated, would stop the generation process. An example stop
sequence is the newline token. If you ask the model to adhere to a particular out‐
put format, like a numbered list of sentences, then to stop generating after a par‐
ticular number of sentences have been output, you can just provide the final
number as a stop parameter.

presence_penalty and frequency_penalty
Used to limit the repetitiveness of the generated output. By penalizing the proba‐
bility for tokens that have already appeared in the output, we can ensure that the
model isn’t being too repetitive. These parameters can be used while performing
more creative tasks.
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logit_bias

Using logit_bias, we can specify the tokens whose generation probability we
want to increase or decrease.

top_p and temperature
Both parameters relate to decoding strategies. LLMs produce a distribution of
token probabilities and will sample from this distribution to generate the next
token. There are many strategies to choose the next token to generate given
the token probability distribution. We will discuss them in detail in Chapter 5.
For now, just remember that a higher temperature setting results in more creative
and diverse outputs, and a lower temperature setting results in more predictable
outputs. This cheat sheet provides some recommended values for various use
cases.

logprobs

Provides the most probable tokens for each output token along with their log
probabilities. OpenAI limits this to the top 20 most probable tokens. In later
chapters, we will discuss how we can leverage logprobs information in various
forms.

Exercise
Using the OpenAI API, provide the model with some sample live commentary from
the Real Madrid versus Barcelona soccer game. Replace them with your own teams if
you like. Ask the model to generate the rest of the commentary. Adapt your prompts,
temperature, logit_bias, presence_penalty, and frequency_penalty, and see if
you can replicate the tone of the commentators. How far off is the LLM-generated
text from the actual commentators?

Strengths and Limitations of LLMs
Developing intuition about the strengths and limitations of LLMs is a crucial skill in
being able to build useful LLM applications. Using the information in this book, and
with ample hands-on practice, you will be able to build that intuition. In general,
LLMs are proficient at language tasks. You will almost never see them make spelling
or grammar errors. They are a vast improvement over previous techniques for under‐
standing user instructions and intent. They also exhibit state-of-the-art performance
on most NLP tasks like entity and relationship extraction and NER. And they are par‐
ticularly strong at generating code, which is where LLMs have arguably found their
greatest success through tools like GitHub Copilot.

Most LLM limitations boil down to the fact that LLMs are just not intelligent enough. 
Even state-of-the-art models suffer from significant limitations in reasoning,
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including arithmetic reasoning, logical reasoning, and common-sense reasoning. (We
will define reasoning more formally in Chapter 8.) LLMs are also unable to adhere to
factuality, because of their lack of connection to the real world. Therefore, they tend
to generate text that might be inconsistent with real-world facts and principles, collo‐
quially called hallucinations. Hallucinations are the bane of LLMs and one of the key
reasons for hesitations in adopting them. In Chapter 8, we will dive deep into various
methods to tackle hallucinations and address reasoning limitations.

Tons of LLM-generated articles are being uploaded to the web daily, and many of
them make their way to the top of search engine results. For example, for a short
while, for the query “Can you melt eggs?”, Google showed “Yes, an egg can be melted,”
due to an AI-generated web page containing the incorrect answer. This kind of text is
colloquially referred to as AI slop. Thus, there is a very strong incentive for search
engines to accurately detect AI-generated text. Note that since LLMs are primarily
trained on web text, future LLMs can be contaminated by polluted text as well.

While LLMs are frequently used to aid creative tasks, they are nowhere near the level
of professional authors. Fiction authored by current LLMs is still unlikely to be a
bestseller. LLM-generated text lacks the sheer ingenuity and the ability to evoke
human emotions that human authors possess. Once you have read through enough
LLM-generated text, it is not that difficult to spot it.

Pushing the Limits of LLM Capabilities
While the list of tasks that LLMs cannot do is decreasing, some capabilities like self-
reference still seem out of reach.

In his book I Am a Strange Loop, Douglas Hofstadter claims self-reference capabilities
as a measure of higher-order intelligence or even consciousness. An example of a self-
referential statement is, “The penultimate word in this sentence is is.”

Thrush et al. released a dataset called “I am a strange dataset” that contains a set of
such meta-linguistic questions. Try this question with a variety of models and see if
they get it right:

This this is is a a new new form form of of poetry poetry where where every every
word word is is repeated. Are any words not repeated?

As of this book’s writing, no model, including OpenAI’s o1, is able to get this question
right; it fails to note that the last word is not repeated.

Every LLM generates text with a distinct signature, some more apparent to humans
than others. For example, you might have noticed that ChatGPT tends to overuse
certain words like “delve,” “tapestry,” “bustling,” etc. ChatGPT also tends to generate
sentences with an explanatory final clause, like “He ate the entire pizza, indicating he
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was hungry.” Or “The vampire sent a thousand text messages in a month, suggesting
effective use of digital technologies.” However, it is extremely hard to detect AI-
generated text with 100% accuracy. Bad actors are also employing evasion techniques,
for instance by asking another LLM to rephrase LLM-generated text to dilute the sig‐
nature of the original LLM.

Thus, plagiarism detection has become even more challenging, including cases of stu‐
dents being unfairly accused of plagiarism due to inaccurate AI-text detectors. These
trends are prompting universities worldwide to rethink how students are evaluated,
depending less on essays. Students are some of the heaviest users of LLM products, as
shown by a decline in ChatGPT usage numbers during summer months.

While words like “delve” are known to be overused by LLMs, single-token frequen‐
cies should not be relied upon as a means of detecting LLM-generated text. Having
grown up in India learning Indian English, the word “delve” appears in my vocabu‐
lary a lot more frequently than the average Westerner, and this can be found in my
writing and publications well before the launch of ChatGPT. These nuances show that
more robust techniques need to be developed to discover LLM-generated text.

One promising approach uses syntactic templates, a sequence of tokens having a par‐
ticular order of part-of-speech (POS) tags, typically 5–8 tokens long. Shaib et al. show
that some of these templates appear in generated text even when text generation
strategies (also called decoding strategies, described in detail in Chapter 5) aimed to
increase token diversity are used. They show that these templates are learned during
the early stages of the pre-training process.

An example template is:

VBN IN JJ NNS: VBN (Past Participle Verb) + IN (Preposition) + JJ (Adjective) +
NNS (Plural Noun).

Examples of phrases that follow this template include:

• Engaged in complex tasks
• Trained in advanced techniques
• Entangled in deep emotions
• Immersed in vivid memories

Have you noticed any LLMs frequently using or overusing this template?

Exercise
Ask an LLM to generate an essay on a topic of your choice. Use the diversity library to
extract syntactic templates from the essay. You can use the extract_patterns func‐
tion with n = 5.
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What are the most frequent syntactic templates? Similarly, take a human author’s
essay from a publication of your choice and extract its syntactic templates. Are the
frequent syntactic templates different? What about the relative frequencies?

Building Your First Chatbot Prototype
Let’s get into the weeds and start building!

Over the last couple of years, a healthy ecosystem of libraries has made experiment‐
ing and prototyping LLM applications much easier. In fact, you can build a Chat with
your PDF question-answering chatbot in about a hundred lines of code!

Let’s implement a simple application that allows the user to upload a PDF document
and provides a chat interface through which the user can ask questions about the
PDF content and receive conversational responses.

The intended workflow for this application is:

1. The user uploads a PDF of their choice through the user interface.
2. The application parses the PDF using a PDF parsing library and splits the extrac‐

ted text into manageable chunks.
3. The chunks are converted into vector form, called embeddings.
4. When a user issues a query through the chat interface, the query is also converted

into vector form.
5. The vector similarity between the query vector and each of the chunk vectors is

calculated.
6. The text corresponding to the top-k most similar vectors are retrieved.
7. The retrieved text is fed, along with the query and any other additional instruc‐

tions, to an LLM.
8. The LLM uses the given information to generate an answer to the user query.
9. The response is displayed on the user interface.

The user can now respond (clarification question, new question, gratitude, etc.).
10. The entire conversation history is fed back to the LLM during each turn of the

conversation.

Figure 1-5 illustrates this workflow.
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Figure 1-5. Workflow of a chatbot application

Let’s begin by installing the required libraries. For this setup, we are going to use:

LangChain
This very popular framework enables building LLM application pipelines.

Gradio
This library allows you to build LLM-driven user interfaces.

Unstructured
This is a PDF parsing suite that supports a variety of methods for extracting text
from PDFs.

Sentence Transformers
This library facilitates embeddings generation from texts.

OpenAI
This API provides access to the GPT family of models from OpenAI.

Let’s import the required libraries and functions:

!pip install openai langchain gradio unstructured

from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
import gradio as gr

Next, let’s implement the PDF loading and parsing function. LangChain supports sev‐
eral PDF parsing libraries. PDF parsing can be performed in a variety of ways, includ‐
ing using LLMs. For this example, we will choose the Unstructured library:
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loader = UnstructuredPDFLoader(input_file.name)
data = loader.load()

The data variable contains the parsed PDF that has been split into paragraphs. We
will refer to each paragraph as a chunk. Each chunk is now converted into its vector
representation using an embedding model. LangChain supports a wide variety of
embedding models. For this example, we will use the all-MiniLM-L6-V2 embedding
model, available through the Hugging Face platform:

embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

Now that we have loaded the embedding model, we can generate the vectors from the
data and store them in a vector database. Several vector database integrations are
available on LangChain. We will use Chroma for this example, as it is the simplest to
use:

db = Chroma.from_documents(data, embeddings)

The vector database is ready with the vectors! We can ask queries and get responses.
For instance:

query = "How do I request a refund?"
docs = db.similarity_search(query)
print(docs[0].page_content)

This code retrieves the paragraph in the PDF whose vector is most similar to the vec‐
tor representing the user query. Since vectors encode the meaning of the text, this
means that the paragraph representing the similar vector has content similar to the
content of the query.

Note that it is not guaranteed that the paragraph contains the answer to the query.
Using embeddings, we can only get text that is similar to the query. The matched text
need not contain the answer or even be relevant to answering the query.

We will depend on the LLM to distinguish between irrelevant and relevant context.
We provide the LLM with the query and the retrieved text and ask it to answer the
query given the provided information. This workflow can be implemented using a
chain in LangChain:

conversational_chain =

ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.1),
    retriever=pdfsearch.as_retriever(search_kwargs={"k": 3}))

We use the ConversationalRetrievalChain, which supports the following workflow:

1. Takes the previous conversational history, if it exists, and the current response/
query from the user and creates a standalone question.

2. Uses a chosen retrieval method to retrieve top-k most similar chunks to the
question.
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3. Takes the retrieved chunks, the conversational history, the current user/response
query, and instructions and feeds it to the LLM. The LLM generates the answer.

We can call the chain and append the result to the chat history:

output = conversational_chain({'question': query, 'chat_history':

conversational_history})
conversational_history += [(query, output['answer'])]

Our chatbot is ready. Let’s wrap it up by connecting it with a user interface. We will
use Gradio, a lightweight Python framework for building LLM-driven user interfaces:

with gr.Blocks() as app:

    with gr.Row():

       chatbot = gr.Chatbot(value=[], elem_id='qa_chatbot').style(height=500)

    with gr.Row():
        with gr.Column(scale=0.80):
            textbox = gr.Textbox(
                placeholder="Enter text"
            ).style(container=False)

        with gr.Column(scale=0.10):
        upload_button = gr.UploadButton("Upload a PDF",
          file_types=[".pdf"]).style()

We need some more code for writing the event handlers that wait for user events.
Refer to the full code on the book’s GitHub repo.

Finally, we initialize the application:

if __name__ == "__main__":
    app.launch()

Our chatbot application is ready!

Why can’t we feed the entire PDF to the LLM instead of breaking it
down into chunks and retrieving only the relevant information?
This depends on the maximum effective context length supported
by the LLM, which limits the size of the input it can accept. Larger
models support context lengths large enough to fit several PDFs in
the input, in which case you may not need to perform the chunking
and embedding process at all.
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From Prototype to Production
Is building LLM applications that easy? Unfortunately, no. We have built a prototype,
and a decent one at that. For many noncritical use cases, the performance of this
application might even be sufficient. However, a large number of use cases demand
accuracy and reliability guarantees that this application is not able to meet. This book
aims to address the gap between prototype and production.

In the prototype tutorial, we treated LLMs as a black box. But if you are building seri‐
ous applications using LLMs, it is important to understand what happens under the
hood, even if you might never train an LLM yourself. Therefore, in Chapters 2, 3, and
4, we will walk through each of the ingredients that go into making an LLM and show
how they are trained. Developing a strong understanding of what LLMs are made of
and how they are trained will come in handy when debugging failure modes.

In the tutorial, we used a proprietary LLM from OpenAI, without putting much
thought into whether it is the optimal LLM to use for the application. Today, hun‐
dreds or even thousands of LLMs are available for commercial use. In Chapter 5, we
will explore the LLM landscape, covering both open source and proprietary models,
the relevant dimensions along which models differ, and how to choose the right
model that satisfies the criteria for a given use case. For example, one of the criteria
for our PDF chatbot might be to operate within a severe budgetary restriction. We
will learn how to evaluate LLMs and assess their limitations and capabilities for a
given use case, develop evaluation metrics and benchmark datasets, and understand
the pitfalls involved in both automated evaluation and human evaluation.

What if the PDFs we intend to upload to the PDF chatbot belong to a specialized
domain that the LLM doesn’t seem to be adept at? What if the LLM is unable to fol‐
low the instructions in user queries? We might need to update the model’s parameters
by fine-tuning it over data from the specialized domain. In Chapter 6, we will intro‐
duce model fine-tuning, understand the scenarios in which it might be useful, and
demonstrate how to construct a fine-tuning dataset.

It is possible that standard fine-tuning might not be suitable for our purposes. Maybe
it is too expensive or ineffective. In Chapter 7, we will learn about techniques like
parameter-efficient fine-tuning that update only a small subset of the model’s
parameters.

We may notice that our chatbot is hallucinating, or that it is having difficulty answer‐
ing questions because of faulty reasoning. In Chapter 8, we will discuss methods for
detecting and mitigating hallucinations as well as methods for enhancing reasoning
capabilities, including various inference-time compute techniques.

A production-grade PDF chatbot will need to satisfy a lot of nonfunctional require‐
ments, including minimizing latency (the time the user needs to wait for the model
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response) and cost. In Chapter 9, we will discuss techniques for inference optimiza‐
tion, including caching, distillation, and quantization.

We may want to extend functionality of our chatbot by connecting the LLM to code
interpreters, databases, and APIs. We might also want the chatbot to answer complex
queries that need to be broken into multiple steps. In Chapter 10, we’ll explore how to
interface LLMs with external tools and data sources and enable LLMs to break down
tasks, make autonomous decisions, and interface with their environment.

In the tutorial, we demonstrated a rudimentary method to parse, chunk, and embed
documents. But during usage, we might notice that the vector similarity measures
might be ineffective and often return irrelevant document chunks. Or that the
retrieved chunks do not contain all the information to answer the query. In Chap‐
ter 11, we will explore embeddings in more detail and learn how to fine-tune our own
embeddings. We will also show how to more effectively chunk data.

The PDF chatbot follows a paradigm called retrieval-augmented generation (RAG).
RAG refers to systems where LLMs are connected to external data sources, like the
PDFs uploaded by users in our chatbot use case. In Chapter 12, we will define a com‐
prehensive RAG pipeline and learn how to architect robust RAG systems.

Finally, in Chapter 13 we will discuss design patterns and programming paradigms
for developing LLM applications.

These topics and more will be covered in the rest of the book. I am excited to go on
this journey with you, hopefully providing you with the tools, techniques, and intu‐
ition to develop production-grade LLM applications!

Exercise
Implement the Chat with your PDF application and upload any random PDF stored
in your system and ask questions about it. Analyze any failures and list them. As you
go through the book and learn new concepts, go back to this application and see if
you can resolve or address the failure modes using techniques discussed in this book.

Summary
In this chapter, we introduced language models, provided a brief history, and dis‐
cussed the impact they are already having on the world. We showed how to effectively
interact with the model using various prompting techniques. We also gave an over‐
view of the strengths and limitations of language models. We showed how easy it is to
build prototype applications and highlighted the challenges involved in taking them
to production. In the next chapter, we will begin our journey into the world of LLMs
by introducing the ingredients that go into making an LLM.
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CHAPTER 2

Pre-Training Data

In Chapter 1, we introduced language models, noted their strengths and limitations,
explored current and potential use cases, and presented the scaling laws that seem‐
ingly govern progress in this field. To set the stage for the rest of this book, in the next
three chapters we will discuss in detail the recipe for pre-training LLMs and the
ingredients that go into them. But wait, this book is about utilizing pre-trained LLMs
to design and build user applications. Why do we need to discuss the nuances of pre-
training these gargantuan models from scratch, something most machine learning
practitioners are never going to do in their lives?

Actually, this information is very important because many of the decisions made dur‐
ing the pre-training process heavily impact downstream performance. As we will
notice in subsequent chapters, failure modes are more easily understandable when
you comprehend the training process. Just like we appreciate having ingredients listed
on packages at our grocery stores, we would like to know the ingredients that go into
making a language model before we use it in serious applications.

Not much information is available in the public realm about some
of the proprietary LLMs that are accessible only through an API.
This book will provide as much information as has been made pub‐
lic. While the lack of information doesn’t mean that we should
avoid using these models, model transparency is something that
you might need to consider while making a final decision regarding
what model to use.

Ingredients of an LLM
Let’s start with the ingredients that go into making an LLM.

Broadly speaking, we have:
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Pre-training data: What’s it trained on?
The old computer science adage “garbage in, garbage out” is still accurate when it
comes to language modeling. In this chapter we will explore popular pre-training
datasets and dig into the various preprocessing steps taken to ensure high-quality
data is fed to the model. We will also showcase some tools that allow us to probe
these datasets and understand how pre-training data composition impacts down‐
stream tasks.

Vocabulary and tokenizer: What’s it trained over?
To build a model over a language, we first have to determine the vocabulary of
the language we are modeling and rules to break down a stream of text into the
right vocabulary units, referred to as tokenization. (We will dedicate Chapter 3 to
discussing these concepts.) Linguistically, humans process language in terms of
meaning-bearing words and sentences. Language models process language in
terms of tokens. We will explore the downstream impact when there is a mis‐
match between the two.

Learning objective: What is it being trained to do?
By pre-training a language model, we aim to imbue the language model with
general skills in syntax, semantics, reasoning, and so on, that hopefully will
enable it to reliably solve any task you throw at it, even if it was not specifically
trained on the task. Therefore the training objectives should be sufficiently gen‐
eral to capture all these skills. In Chapter 4, we will discuss the various tasks
(learning objectives) that pre-trained models are trained on. You might wonder if
LLMs are better suited to solving downstream tasks that are similar to the tasks
the pre-trained model has been trained to solve. We will test this assumption and
discuss the impact various learning objectives have on task performance.

Architecture: What’s its internal structure?
The architecture of a model refers to the components of a model, how they con‐
nect and interact with each other, and how they process input. Each architecture
has its own inductive bias, a set of assumptions made about the data and tasks it
will be used for, biasing the model toward certain types of solutions. In Chap‐
ter 4, we will conduct a deep dive into the Transformer architecture, which, as
discussed in Chapter 1, is the predominantly used architecture currently.

Let’s look at how these ingredients fit together in Figure 2-1.

Figure 2-1. How all the ingredients come together to make an LLM
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The language models trained using the process described in this chapter and the next
are called base models. Lately, model providers have been augmenting the base model
by fine-tuning it on much smaller datasets to steer them toward being more aligned
with human needs and preferences. Some popular tuning modes are:

• Supervised instruction fine-tuning (SFT), so that the model is better at following
human instructions

• Reinforcement learning by human feedback (RLHF), so that the model is better
aligned with human preferences

• Domain-adaptive or task-adaptive continued pre-training, so that the model is
better attuned to specific domains and tasks

Based on the specific augmentation carried out, the resulting models are called
instruct models, chat models, and so on.

We will cover instruct and chat models in Chapter 6, and domain-adaptive and task-
adaptive pre-training in Chapter 7.

Figure 2-2. The relationship between base models and their derivatives
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LLM Pre-Training Challenges
Pre-training an LLM is a very technically challenging task and requires a lot of com‐
putational resources and exceptional technical skills. For example, GPT-4’s technical
report credits 343 unique contributors, not including the annotators in Kenya who
contributed to their RLHF training. Delving into every aspect of pre-training LLMs is
an entire book in itself. In this chapter we will not focus on infrastructure or engi‐
neering considerations for pre-training LLMs, nor on the nuances of distributed and
parallel computing. We will instead focus on aspects of the pre-training process that
can directly impact your application’s behavior and performance.

However, if you are curious to read more about the challenges involved in pre-
training LLMs, here are some useful resources:

• The Technology Behind BLOOM Training, a blog post from from Big Science
that explains the hardware, types of parallelisms employed, and optimizations
used in training BLOOM, an open-source 176B parameter multilingual model.

• Training chronicles (log book) from BLOOM and OPT, which is a 175B parame‐
ter LLM released by Meta, documenting the trials and tribulations faced during
training, including hardware failures and how to recover from them, training
instabilities, loss spikes, and the like.

• Open Pretrained Transformers, a video featuring Susan Zhang, the lead author of
OPT, who discusses the OPT chronicles in detail.

• Blog series by Imbue chronicling their efforts to train a 70B parameter model
from scratch.

Pre-Training Data Requirements
Although it has been shown that higher-capacity models are relatively more sample
efficient, in general today’s language models are very sample inefficient, meaning they
need tons of examples to learn a task. It is infeasible to create such a large supervised
dataset with human annotations, hence the predominant means to pre-train language
models is using self-supervised learning, where the target labels exist within your
training inputs.

Using this setup, virtually any type of text is fair game to be included in a pre-training
dataset, and theoretically any nontextual signal with some structure can be encoded
in text and included as part of a pre-training dataset.

From our scaling laws discussion in Chapter 1, we know that model performance
increases by just training them longer and on more data. Also, as discussed in Chap‐
ter 1, the consolidation effect at play in the field raises expectations on what a single
language model is expected to do end-to-end. Today a single model is expected to
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answer factual questions about the world, employ arithmetic and logical reasoning,
write code, and come up with creative ideas.

All this means that the data needs for language model pre-training are enormous.
Now, the key question is whether textual data available in the world actually contains
sufficient and relevant signals needed to learn all the skills we want LLMs to learn.

Note that language models that are trained solely on text only have access to the lin‐
guistic form, i.e., the sequence of characters making up a sentence like, “Walter White
tossed the pizza onto the roof.” To understand its meaning, the linguistic form has to
be mapped to the communicative intent of the writer/speaker. While a section of the
research community argues that one cannot learn meaning from form alone, recent
language models are increasingly proving otherwise.

To have access to the full picture, the linguistic form needs to be grounded to the real
world. In the cognitive sciences, grounding is defined as:

The process of establishing what mutual information is required for successful com‐
munication between two interlocutors

—Chandu et al., “Grounding ‘grounding’ in NLP”

Human text is generally very underspecified, with a lot of communicative intent
existing outside the textual context, depending on the reader/listener to use their
common sense, world knowledge, and ability to detect and understand emotional
subtext to interpret it.

It is estimated that only around 12% of information we understand
from text is explicitly mentioned in text. There are several theories
explaining why we communicate thus, including Zipf ’s principle of
least effort, which states it is “human nature to want the greatest
outcome at the least amount of work.”

The field of NLP has seen a lot of work in grounding language models to the real
world. Multimodal models that combine different modalities like image, video,
speech, and text are a promising avenue of research, and they are likely to see more
widespread usage in the coming years. Imagine a model seeing “pizza” in the training
text, but also getting signals on how it looks, how it sounds, and how it tastes!

But do multimodal models really help with the grounding problem? Can we instead
achieve the effect of grounding by just feeding the model with massive amounts of
diverse text? These are unsolved questions, and there are good arguments in both
directions as shown by this debate.

Whether training on massive amounts of text alone can enable language models to
learn skills like logical reasoning is another open question. Note that text on the inter‐
net contains a lot of text describing reasoning steps, like theorem proofs, explanations
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of jokes, step-by-step answers to puzzles, and so on. However, there is simply not
enough of derivational text going around, which leads us to cover the shortfall by
using prompting methods like CoT (described further in Chapter 5). There is recent
evidence that process supervision, where feedback is provided for each step of the
problem-solving process, as opposed to outcome supervision, where feedback is pro‐
vided only on the final solution, helps improve arithmetic reasoning.

A crucial skill that language models have to learn is dealing with the inherently
ambiguous nature of language. Following up on the aforementioned Zipf ’s principle
of least effort, ambiguity enables speakers to manage the efficiency-clarity tradeoff in
communication. We can leave a lot unsaid because we have established sufficient
common ground with the people we are communicating with and trust that they are
able to fill in the gaps.

Earlier language models struggled a lot with modeling ambiguity. I long used this
sentence as a canonical example in my NLP talks to highlight ambiguity in language:
“WWE’s John Cena surprises Make-A-Wish 7-year-old with cancer.”

While state-of-the-art models are able to correctly interpret this particular sentence
and not mistakenly identify John Cena as an evil disease-spreading wizard, recent
work shows that even the best models of today still struggle to deal with ambiguity in
general. Whether just scaling up models and data is enough for LLMs to model ambi‐
guity is an open question.

If our only option to resolve all these shortcomings is to scale up dataset sizes, the
next question is if we actually have enough data available in the world that is suffi‐
cient for LLMs to learn these skills. Are we at risk of running out of training data any‐
time soon? There is a misconception in certain quarters of our field that we already
have. However, lack of raw data is not yet a bottleneck in training models. For
instance, there are billions of publicly available documents accessible by scraping or
via a free API that haven’t yet made it into most pre-training data sets, such as parlia‐
mentary proceedings, court judgments, and most SEC filings. “How much LLM
training data is there, in the limit?” by Educating Silicon estimates the amount of text
present in the world. On the other hand, it is true that at a sufficiently large scale,
there is simply not enough naturally occurring data to feed our models.

Thus, there are efforts to use text generated by language models, termed synthetic
data, to train models, albeit with the risk that training on LLM-generated data can
potentially be detrimental, as the model deviates from the true distribution of the
data. Later in this chapter, we will learn the process behind creating synthetic data for
pre-training.

Of course, not all data is created equal. We can achieve more sample efficiency with
high-quality data, thus needing smaller dataset sizes. We can preprocess data in order
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to filter out low-quality data or make them higher quality. What exactly makes data
high quality is a nuanced question, which we will explore later in the chapter.

Training for Multiple Epochs
An epoch refers to the model being exposed to the complete training dataset during
the training process. Earlier LLMs were trained on just one epoch or less, to protect
against overfitting. Can we just increase the size of the training data by training the
model for multiple epochs on the same dataset, i.e., the model sees the same dataset
multiple times during training?

It turns out that we can. Work by Muennighoff et al. show that language models can
be trained up to four to five epochs with no decrease in performance. The utility of a
training example diminishes if it is repeated beyond that. Therefore, we just can’t
train on high-quality data over a large number of epochs and call it a day; we still
need to mix in large-scale, lower-quality data as we are constrained by the size of
high-quality data and the number of times it can be repeated without losing its value.

Xue et al. show that larger models overfit more easily when trained on multiple
epochs. They also showed that using regularization techniques like Dropout can help
address the overfitting problem to a certain extent.

The quality-quantity tradeoff we see with multi-epoch training has been quantified by
Goyal et al., proposing a new set of data filtering scaling laws.

Popular Pre-Training Datasets
A lot of text is not freely available in public. This includes data exposed behind pay‐
walled APIs and login screens, and paywalled books and documents, many of which
may not even be digitized. Larger companies like Google and OpenAI can afford to
purchase this data; for example, OpenAI has struck deals worth hundreds of millions
of dollars with the Wall Street Journal, Financial Times, and other news organizations
for access to their data. Domain-specific text is often proprietary and available only to
large incumbents (for example, Bloomberg trained BloombergGPT partly on its pro‐
prietary financial data). However, even for models trained by the largest companies, a
significant proportion of training data comes from publicly available data sources.

Next, we will cover some of the most popular general-purpose pre-training datasets
that are being used to train LLMs. While this is not a comprehensive list, most LLMs,
including closed-source ones, have at least a large subset of their training data drawn
from these sources. We will defer discussion of domain-specific (catered to a particu‐
lar field like social media, finance, biomedical, etc.) datasets to Chapter 7.
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Most general-purpose LLMs are trained to be a jack-of-all-trades—
to be able to solve tasks from a variety of domains. If the data
domain for your use case is included in the pre-training dataset,
models trained on those datasets may show relative performance
improvements on downstream tasks compared to models that
aren’t, even if the pre-training data is unlabeled. This means that if
you intend to use LLMs for specific, well-defined use cases in a par‐
ticular domain, domain-specific models could prove promising.
You can also perform continued domain-adaptive or task-adaptive
pre-training on your domain data to leverage this phenomenon.
This will be discussed in detail in Chapter 7.

Here are some examples of commonly used data sources for general-purpose lan‐
guage models:

Common Crawl/C4
The web is the largest source of openly available textual data, and hence forms a
significant proportion of pre-training datasets. Common Crawl is a nonprofit
that creates and publishes snapshots of all web crawl data, updated every month.
However, as one could imagine, this is an extremely coarse dataset and needs to
be significantly cleaned before it is ready to use. Google prepared C4 (Colossal
Clean Crawled Corpus), a 750GB English-language dataset, after applying a set of
preprocessing and filtering steps to a Common Crawl snapshot from 2019 and
released the code for it. Dodge et al. used this script to reproduce C4 and have
made it publicly available. C4 has been used for training several well-known
LLMs including all models from the T5 family.

The Pile
The Pile is a 825GB dataset from Eleuther AI, which focused on publishing a
dataset drawn from more diverse sources. Diversity of data is important since in-
domain unlabeled data in pre-training is helpful for downstream performance on
that domain, and diverse data sets also enable generalization to previously
unseen tasks and domains. To this end, the data from The Pile comes not only
from Common Crawl but also PubMed Central, arXiv, GitHub, the FreeLaw
Project, Stack Exchange, the US Patent and Trademark Office, Ubuntu IRC,
HackerNews, YouTube, PhilPapers, NIH ExPorter, Project Gutenberg, and Wiki‐
pedia, among others. The Pile and its subsets have been preferred as a data source
for training several LLMs, including Llama.

WebText/OpenWebText/OpenWebText2
These refer to a subset of web text and are limited to web pages representing out‐
bound links on Reddit that have at least three karma, the absolute difference
between user upvotes and downvotes. The assumption is that the wisdom of the
crowd will enable only high-quality links to surface, which contain information
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people actually find interesting. Models that have been trained on this data
include GPT-2 and GPT-3.

Wikipedia
Wikipedia assumes a major role in the training of just about every general-
purpose LLM. A full dump of Wikipedia contains valuable encyclopedic text that
provides factual knowledge to the model. Wikipedia’s editorial system ensures
that the text follows a highly structured format. However, it is not diverse stylisti‐
cally, as the text is written in a formal manner. Therefore, Wikipedia alone is not
sufficient to train a rudimentary language model and needs to be combined with
data sources comprising diverse writing styles.

BooksCorpus/BooksCorpus2
Probably the most historically influential of all pre-training datasets, this dataset
was part of the training corpus for well-known models like BERT, RoBERTa,
GPT-2/3, etc. The BooksCorpus contains over 7,000 free, mostly fiction books
written by unpublished authors. Twenty-six percent of books in the original data‐
set belonged to the Romance genre. A replication of the BooksCorpus is present
in The Pile as BooksCorpus2.

FineWeb
As of the book’s writing, FineWeb is the world’s largest publicly available pre-
training dataset. Published by Hugging Face, FineWeb has 15 trillion tokens and
is drawn from 96 snapshots of Common Crawl, after a rigorous cleaning and fil‐
tering process. Hugging Face also released FineWeb-Edu, a subset of FineWeb
composed of educational data, which is crucial in enabling LLMs to pass stan‐
dardized tests and popular benchmarks.

Training Data Is Disappearing from the Internet
Unfortunately, many of the aforementioned data sources are embroiled in contro‐
versy, due to copyright issues. Several books in the BooksCorpus dataset have restric‐
tive copyright licenses. The original corpus is no longer public. Similarly, the original
version of The Pile is no longer available for download from its creators, due to the
presence of copyrighted content. A derivative of The Pile with copyrighted content
removed has been made available.

Over time, more and more websites are updating their terms of service or robots.txt
file to disapprove of their data being used for AI training. These terms range from
restrictions on specific companies like OpenAI to a blanket ban on all forms of AI
training. News, forums, and social media websites, which comprise high-quality
training data, are more likely to list restrictions. Longpre et al. estimate that 5% of
overall tokens in C4, and 28% of the important sources of C4, are restricted from
being used for AI training.
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Note that robots.txt is not a legally enforced standard, and companies continue to vio‐
late the terms of service of these websites, arguing that using the data for LLM train‐
ing is covered under fair use grounds. In many cases, the websites only host the data,
and the copyright is held by the content creators. The legal consequence for these
issues is still being determined by courts.

Table 2-1 provides a list of some of the most commonly used datasets, their size, year
of release, and the means to access them.

Table 2-1. Popular pretraining datasets

Name Data source(s) Size Year
released

Public? Models using this
dataset

C4 Common Crawl 750GB 2019 Yes (reproduced
version)

T5, FLAN-T5, UL2,
Llama, etc.

The Pile Common Crawl, PubMed
Central, Wikipedia, arXiv, Project
Gutenberg, Stack Exchange,
USPTO, GitHub, etc.

825GB 2020 Yes GPT-NeoX, GPT-J,
Cerebras-GPT,
StableLM, Pythia,
etc.

RedPajama Common Crawl, GitHub,
Wikipedia, arXiv, Stack
Exchange, etc.

1.2T tokens 2023 Yes Red Pajama-INCITE,
MPT

BooksCorpus Sampled from smashwords.com 74M
sentences

2015 Original not
available anymore

Most models
including BERT, GPT,
etc.

OpenWebText2 Outbound Reddit links 65GB 2020 Yes GPT-2, GPT-3

ROOTS Big Science Catalogue, Common
Crawl, GitHub

1.6T tokens 2022 No (but available
on request)

BLOOM

RefinedWeb Common Crawl 5T tokens 2023 Yes (600B subset
only)

Falcon

SlimPajama Cleaned from RedPajama 627B tokens 2023 Yes N/A

The table highlights the fact that most models are trained on similar data sources. In
this chapter, we are limiting our coverage to pre-training datasets for base models. We
will cover datasets used to augment base models like instruction tuning datasets,
RLHF datasets, etc. in Chapter 6.

Copyright Issues Pertaining to Pre-Training Datasets
Can LLMs be trained on copyrighted text without the explicit consent of the copy‐
right holder and without attribution? Can LLMs be trained on text that inadvertently
contains sensitive personal information without legal liabilities? These are all fluid
legal and moral questions. In the US, the fair use doctrine has been used to justify
training LLMs on copyrighted text. However, this is currently being tested, and as of
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this book’s writing, a class action lawsuit has been filed against GitHub, Microsoft,
and OpenAI for using code from GitHub repositories that were published under
restrictive licenses for training the code LLMs powering GitHub Copilot. The AI
community will be watching this case with interest. However, all over the world, laws
are fast loosening to permit this type of usage and clear legal hurdles for LLM training
and adoption.

As LLM usage expands and they become an integral part of the economy, data used to
train them becomes more valuable. Reddit and Stack Overflow, both of which have
been important sources of data in many influential pre-training datasets, have
announced they will start charging for data access. Expect more such announcements
in the future.

What are the copyright implications for people and organizations using these lan‐
guage models downstream? We will discuss this in more detail in Chapter 5, where we
will provide more background on the various types of software licenses and their
degree of permissibility for commercial usage.

Let’s explore the content of these pre-training datasets. Using a Google Colab note‐
book or a code editor of your choice, load the realnewslike subset of the C4 dataset,
which consumes around 15 GB:
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!pip install datasets
from datasets import dataset
realnewslike = load_dataset("allenai/c4", "realnewslike",
                            streaming=True, split="train")
for i, example in enumerate(realnewslike):
    if "Iceland" in example["text"]:
        print(example)
    if i == 10000:  # Limit to 10,000 iterations for demonstration
        break

Using this code, we can observe all the instances in which Iceland appears in this C4
subset.

Exercise
Using the realnewslike subset of C4, prepare a word frequency counter, counting
the number of times each word appears in the dataset. To make it simple, define a
word as a contiguous sequence of characters separated by white space. Remove fre‐
quent function words (called stop words in NLP) like “the,” “is,” etc. from your analy‐
sis. What topics seem to be underrepresented or overrepresented?

Synthetic Pre-Training Data
An emerging trend is the use of LLMs to generate synthetic data that can be used for
pre-training LLMs. One of the first success stories in training LLMs on datasets with
a significant proportion of synthetic data is Microsoft’s phi series of models. For the
phi-1.5 model, Microsoft created 20 billion tokens of synthetic data, using 20,000
seed topics and samples from real-world web datasets in their prompts.

Hugging Face released Cosmopedia, an open source synthetic dataset used to train
the SmolLM series of models. Its seed data included curated sources like Stanford
courses, Khan Academy, and WikiHow, as well as general web data.

For curated sources, synthetic data was generated by extracting outlines of courses
from Khan Academy and other sources and prompting the Mistral LLM to generate
lengthy, detailed textbooks for individual sections. To generate diverse data at scale,
Hugging Face issues several variants of the same prompt for each topic, like “create a
textbook on this topic for young children” and “create a textbook on this topic for
professionals.”
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For general web data, Hugging Face clustered a subset of the RefinedWeb dataset into
over a hundred topics. The LLM was then prompted with web page snippets and
asked to generate an extensive blog post within the context of the topic the web page
fell under. The cluster visualization can be explored in Nomic Atlas.

Exercise
Load Cosmopedia-100K, a subset of the Cosmopedia dataset, and explore the
prompts as well as the resulting synthetic data. What does the quality of the synthetic
data look like? Do you observe any factual or reasoning errors?

Additionally, try varying the prompts and see if you can generate more diverse data.

Training Data Preprocessing
Once we have collected or procured data, we need to filter and clean the data by run‐
ning it through a preprocessing pipeline. Data preprocessing is the most unglamo‐
rous and underappreciated part of the LLM training pipeline, yet perhaps the most
important. Based on my experience, spending more effort and resources during this
phase can lead to significant downstream performance gains. As we walk through the
data processing pipeline, I hope you come to appreciate the complexity of language
text and the difficulty in processing it. Note that since these datasets are enormous,
any preprocessing step should also be very efficient (ideally linear time).

Figure 2-3 shows the typical preprocessing steps used to generate a pre-training data‐
set. The ordering of steps is not fixed, but there are dependencies between some of
the steps.
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Figure 2-3. Data collection and preprocessing pipeline

Let’s go through these steps in detail.

Data Filtering and Cleaning
A majority of text extracted from HTML files is gibberish, like menu text from web‐
sites, boilerplate text, and random web page artifacts. There is a significant amount of
pornography and toxic/hateful language on the web as well. For example, here is a
text sample from an uncleaned version of the C4 dataset:

Skip to Main Content Skip to Footer Skip to Email Signup Skip to Feedback Form MY
REWARDS SIGN OUT SIGN IN & EARN REWARDS 0 Keyboard Controls Welcome
to the main navigation. This menu has three levels of product categories. Use and keys
to navigate between each category in the current level. Use the key to navigate down a
level. Use the key to navigate up a level. Hit the key to be taken to the selected category
page. Men What’s Hot New Arrivals Brand That Unites Performance Shop Online
Exclusives Express Essentials Vacation Getaway Wedding Tuxedos Military Trend 9
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Pieces / 33 Looks The Edit x Express NBA Collection Express + NBA Fashion NBA
Game Changers Suiting & Blazers Find

How useful do you think this text is for language and task learning?

Data from Common Crawl is made available via both raw HTML and web-extracted
text (WET) format. While many dataset creators directly use the WET files, the open
source organization Eleuther AI noticed that the quality of the WET files left much to
be desired, with HTML boilerplate still prominent as seen above. To create The Pile,
Eleuther AI thus used the jusText library to more reliably remove boilerplate text
from HTML documents.

Let’s explore the effect of using jusText with an example. In your Google Colab or
Jupyter notebook, try this:

!pip install justext

import requests
import justext

response =
  requests.get("https://en.wikipedia.org/wiki/Toronto_Transit_Commission")
text = justext.justext(response.content, justext.get_stoplist("English"))
for content in text:
  if content.is_boilerplate:
    print(content.text)

The output displays all the boilerplate that is filtered out from a standard Wikipedia
article:

Jump to content
Main menu
Main menu
Navigation
Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
Contribute
Help
Learn to edit
…

jusText just so happens to be more aggressive in removing content, but this is gener‐
ally OK for cleaning pre-trained datasets since there is an abundance of text available.
Some alternative libraries used for this task include Dragnet, html2text, inscriptis,
Newspaper, and Trafilatura. According to the creators of The Pile, dividing the
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extraction pipeline across multiple libraries can reduce the risk of the resulting data‐
set being affected by any bias introduced by one of these libraries.

Pre-Training on Raw HTML Documents
Do we really need to filter out HTML tags from raw HTML documents before pre-
training? What if we pre-trained on raw HTML documents instead? This outlandish
yet creative idea was implemented by Aghajanyan et al. in their hyper-text language
model (HTLM). The structured format of HTML enables valuable metadata to be
encoded with text. For example, the <title> tags could represent the summary, and the
<class> tags could provide category information about the text.

Not all of the HTML is useful for pre-training. For example, CSS isn’t very informa‐
tive for language learning. Therefore, the creators of HTLM convert the raw HTML
into a simplified form, by filtering out iframes, headers, footers, forms, etc. This pro‐
cess is called minification.

The results presented in their paper show the model is especially good at summariza‐
tion, because the access to the category tags helps it focus on the salient aspects of the
topic under discussion. However, as of this book’s writing, this pre-training paradigm
hasn’t caught on yet.

Boilerplate removal in web pages is a challenging task. Web pages may also contain
code blocks, tables, and math formulas, which need careful processing. Meta noted
that it built a custom HTML parser for preparing the dataset to train Llama 3. It also
mentioned that Meta retains the alt attribute in images, which it found contains use‐
ful information like math content.

LLMs can also be utilized for accurate content extraction from web pages. However,
as of this book’s writing, it is prohibitively expensive to do so, given the scale of the
dataset.

Exercise
Use your favorite news website and open a news article. Use any of the text extraction
libraries mentioned to remove web boilerplate. Is the output desirable on your first
try? What kind of additional heuristics might you need?

Once text is extracted, the documents are passed through a series of data filtering
steps. First, rudimentary filtering steps based on heuristics are applied. While the
details differ across datasets, here are some of the steps typically performed:
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Boilerplate removal
Only lines that end with punctuation, like the period, exclamation point, and
question mark are retained. This ensures that menu text from websites is
removed. Only lines with greater than a particular threshold of words and docu‐
ments with greater than a particular threshold of sentences are retained. The lat‐
ter helps in modeling long sequences, which is an important capability for
language models to have. Documents containing “lorem ipsum…” and other
boilerplate text are filtered out.

Non-English text removal
Libraries like langdetect, langid, fasttext, and pycld2 are used to detect the lan‐
guage of the text. For example, C4 retains text that has > 0.99 probability of
English as judged by langdetect. Note that these libraries can also be used to
remove boilerplate and web page artifacts since they give a lower probability of
English to those texts.

Search engine optimization (SEO) text/spam removal
Documents with a lot of repeated character sequences are removed. Documents
with a low proportion of closed class words are removed. Closed class words in
English are function words like “of,” “at,” “the,” and “is.” If a page is engaged in
keyword stuffing and other SEO tricks, then they would have a lower closed class
words ratio.

Pornographic/abusive text removal
Documents containing any words from keyword lists like the “List of Dirty,
Naughty, Obscene or Otherwise Bad Words” are removed.

Tools like langdetect and langid are helpful for speedy determination of the language
in which the text is written at scale, but how do they deal with code-switched text
(text in multiple languages, where English is often interspersed with a local
language)?

You can try it! Here is an example for Taglish (Tagalog + English, which is a common
mode of communication in the Philippines). In your notebook, run the following:

!pip install langdetect
from langdetect import detect_langs()
detect_langs("""Pag-uwi ko galing sa paaralan, sobrang pagod ako dahil sa dami
ng aking ginawa sa buong araw. Ang traffic din sa kalsada, nakaka-stress
talaga! Pero nang makarating ako sa aking tahanan, nabuhayan ako ng loob dahil
sa masarap na amoy ng ulam na inihanda ni nanay. Excited na akong kumain
kasama ang aking pamilya at i-share ang mga kwento ko tungkol sa aking mga
kaibigan, guro, at mga natutunan ko sa school. After dinner, magre-relax muna
ako habang nanonood ng TV, and then magre-review ng lessons bago matulog. Ito
ang routine ko pag-uwi mula sa school, at masaya ako na dumating sa bahay namay
naghihintay na pamilya na handang makinig at suportahan ako sa aking
pag-aaral.""")
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Output:

[tl:0.9999984631271781]

detect_langs("""After a long day at school, pagod na pagod talaga ako. The
traffic on the way home didn't help, nakakastress na nga! But upon arriving
home, I felt a sense of relief dahil sa welcoming atmosphere and the delicious
aroma of the ulam na inihanda ni Mommy. Excited na akong mag-share ng
experiences ko today with my family during dinner, kasama ang mga kwento about
my friends, teachers, and interesting lessons sa school. After eating, it's
time for me to chill while watching some TV shows, and then review my lessons
bago ako matulog. This is my daily routine pag-uwi galing school, and I am
grateful na may loving family ako na handang makinig at supportahan ako sa
aking educational journey.""")

Output:

[en:0.9999954357601804]

The second paragraph would get included in the C4 dataset, as per its filtering criteria
(probability of English should be greater than .99). Therefore, even datasets that
claim to be English-only routinely contain text in other languages, leading to surpris‐
ing multilingual behavior during inference. Ever wondered why some monolingual
models seem to perform well at machine translation? This is a major reason.

The way langdetect is implemented makes it poor at identifying language when short
sequences are provided. For example:

detect_langs('I love you too.')

returns

[sk:0.8571379760844766, en:0.14285726700161824]

sk refers to Slovak here.

Exercise
C4 is an English language dataset, constructed by filtering out text from the raw data‐
set with less than 0.99 probability of being English according to langdetect. However,
a lot of non-English data persists in this dataset. If you know a second language, then
use the realnewslike subset of C4 to find instances in which text from that language
appears. In what contexts do these non-English text fragments appear? Could an LLM
learn these languages using these leftover fragments?
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Selecting Quality Documents
Not all data is created equal. Text from a high school physics textbook is considered
higher quality compared to promotional text about a footwear brand. There are sev‐
eral ways we can operationalize the notion of quality and separate high-quality from
low-quality data. In this section we will highlight a few such ways.

Token-distribution K-L divergence
In this method, documents with a token distribution that deviates too much from a
reference token distribution are removed. In effect, this removes documents that have
a lot of outlier tokens. This is calculated by using the Kullback-Liebler (K-L) diver‐
gence.

Classifier-based approaches
We can also build a classifier for identifying high-quality data. A simple way to build
a quality-based classifier is to have examples for the positive class come from high-
quality data sources like Wikipedia, and examples for the negative class to be drawn
from random documents in the Common Crawl data.

Meta employed a variety of classifier models for high-quality data extraction for its
Llama 3 model. One of them was a fasttext classification model trained to identify if a
text is likely to be referenced by Wikipedia. Meta also trained a classifier whose train‐
ing data was generated by Llama 2 by providing it with cleaned web documents and
quality requirements and asking it to determine if the quality requirements are met.
To extract code and text containing reasoning steps, Meta built classifiers that can
identify them.

Figure 2-4 shows how a classifier can be built to discriminate between high-quality
and low-quality data.

Training Data Preprocessing | 51

https://oreil.ly/gd5GH
https://oreil.ly/gd5GH
https://oreil.ly/O-CKF
https://oreil.ly/EWic6


Figure 2-4. Classifier-based quality filtering

Exercise
Create a quality classifier using fasttext. Your positive examples can be drawn from
Wikipedia, and the negative examples can be randomly drawn from the unclean ver‐
sion of C4. Once trained, feed documents from the realnewslike subset of C4 to this
classifier. Is this classifier able to do a good job?

Perplexity for quality selection
Perplexity, an intrinsic evaluation measure for language models, has been used for
document filtering in the context of preparing pre-training datasets, notably by the
creators of CCNet. Perplexity measures how well a model can predict a given text; the
lower the perplexity, the better the model.

Just like the classifier approach, we select documents from data sources that we deem
high quality (like Wikipedia) as the positive class. We then train a 5-gram language
model using KenLM (a library facilitating training of n-gram language models) over
it. Next, we take the dataset we want to filter and calculate the perplexity of each para‐
graph in it over the trained language model. The lower the perplexity, the more simi‐
lar it is to the positive class. We can then discard documents with high perplexity.
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Low perplexity may not always be a good thing, however. Short, repetitive text can
have low perplexity. Note that writing style gets factored into perplexity. If the refer‐
ence language model is trained over Wikipedia, then documents written in an infor‐
mal style may receive higher perplexity scores. Therefore, it would be beneficial to
have a more involved filtering strategy.

To resolve this, the creators of BERTIN introduced the concept of perplexity sam‐
pling. In perplexity sampling, instead of just filtering out low-perplexity text, it uses a
sampling strategy that oversamples from the middle part of the perplexity probability
distribution.

Figure 2-5 shows how perplexity sampling is achieved in practice.

Figure 2-5. Perplexity sampling

Let’s explore the perplexity scores assigned by a model trained on Wikipedia text.
Download this file. After placing the file in your home directory, run this code in a
new file:

from model import KenlmModel
model = KenlmModel.from_pretrained("wikipedia", "en")
model.get_perplexity("She was a shriveling bumblebee, and he was a bumbling
banshee, but they accepted a position at Gringotts because of their love for
maple syrup")
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Exercise
Try out sentences and paragraphs in different styles and topics to see how the per‐
plexity varies! In particular, get the perplexities of these types of text:

• Social media text, like X (formerly Twitter)
• SEO spam
• Text with a lot of slang

Additionally, you can train a KenLM model on your own dataset. Use a portion of the
realnewslike subset of C4 and train the model using the instructions provided in the
KenLM GitHub page. You can then calculate the perplexity of each document in a
subset of the unclean version of C4. Which documents have the highest perplexity?
Which documents have the lowest perplexity? After manually inspecting the results,
do you think perplexity sampling is a good measure of quality?

According to an analysis of C4, the internet domain that contrib‐
uted the largest proportion of text in the dataset was patents.goo‐
gle.com. Over 10% of the text from this domain is in fact machine
translated, with patents from countries like Japan being translated
from Japanese to English. So a significant amount of pre-training
data is already not generated by humans!
Propelled by LLMs, the internet is slated to see widespread preva‐
lence of AI-generated text. Recognizing whether text was written
by a human or an LLM is a nontrivial task and certainly not feasi‐
ble at scale. How this will affect future LLM performance is an
open research question.

Despite all the data cleaning steps, the resulting dataset is still not going to be perfect
at this level of scale. For example, Eleuther AI reported that the boilerplate sentence
“select the forum that you want to visit from the selection below” occurs 180K times
in The Pile.

Deduplication
So far we have discussed data extraction and cleaning, language identification, and
quality filtering. Let’s now explore the most contentious step in the pipeline:
deduplication.

We know that web-crawled text is ridden with a lot of duplicates. Duplicates form a
nontrivial portion of the training dataset, so any decision made about them will have
a noticeable impact on the ensuing model.
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How do we define a duplicate? We will make a distinction between three kinds:

Exact matches
Two sequences with the same text are exact-match duplicates. They are the easi‐
est to handle.

Approximate matches
In many cases, there are near-duplicates, where sequences of text are identical
except for a few characters. Sometimes these sequences are slightly different only
due to HTML text extraction artifacts and other filtering processes.

Semantic duplicates
Duplicates that semantically convey the same content but using different word‐
ings. This is usually treated as out of scope.

Duplicates can also be categorized based on the granularity at which they occur:

Document-level duplicates
Duplicate documents are removed during the preparation of most pre-training
datasets. However, in some datasets like The Pile, certain subsets (like Wikipedia)
are deliberately duplicated, so that they are seen more often by the model.

Sequence-level duplicates
These are lines or sentences in documents that are repeated across multiple docu‐
ments. In some cases they can be massively duplicated, like terms of service text,
copyright notices, website prefaces, etc.

Dededuplication is a very complex process, typically performed
using the MinHash algorithm. This writeup by Cheng Hao details
the deduplication process followed in the Big Science and Big Code
open source LLM projects.

Deduplicating data has several benefits:

• A small subset of the pre-training dataset is usually set aside for validation/test.
Deduplication can ensure the removal/reduction of overlap between the train
and test sets, which is essential for an unbiased evaluation. Without sequence-
level deduplication, there is a high likelihood of overlap of common text sequen‐
ces in the train and test sets.

• Removing duplicate sequences reduces the overall size of the training dataset.
However, Lee et al. show that the perplexity of a model trained on the smaller
dataset isn’t affected. Thus, the model can be trained for a shorter period yet with
the same benefit.
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• Deduplication can also reduce the tendency of the model to memorize its train‐
ing data. Memorization is closely linked to model overfitting and thwarts the
model’s ability to generalize. While there are many ways to quantify memoriza‐
tion, we will focus on memorization by generation, where a model is said to have
memorized a sequence if it is capable of generating it verbatim. Lee et al. have
shown that models trained on datasets that have been deduplicated at the
sequence level generate ten times less verbatim training data.

One advantage of using models trained on publicly available data‐
sets is that you can search through the datasets to see if the text
generated by the model exists verbatim in the dataset.

Security Vulnerabilities in LLMs Due to Memorization
Memorization makes language models vulnerable to security and privacy attacks.
Two demonstrated types of attacks are:

Membership inference attack
With just closed-box access to a model, a membership inference attack enables
an attacker to determine if a sequence of text has been used to train the model or
not.

Training data extraction attack
With just closed-box access to a model, the attacker can prompt the model to
generate memorized sensitive information. A naive example involves prompting
the model with the text “Suhas Pai’s phone number is” and asking the model to
provide the continuation, with the hope that it has memorized Suhas’s number.

Carlini et al. show that larger models memorize more easily and thus are most sus‐
ceptible to these types of attacks. However, it is hard to estimate how much data is
memorized by the model, as some memorized data is output by the model only when
prompted with a long, delicately prepared prefix. This makes models harder to audit
for privacy guarantees.

Figure 2-6 demonstrates the flow of a rudimentary training-data extraction attack.
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Figure 2-6. Privacy attacks against LLMs

Removing Personally Identifiable Information
While deduplication can reduce the likelihood of the model memorizing training
data, it is by no means a panacea for the memorization problem. Even information
that appears only once in the training set could potentially be memorized (and
leaked). While a lot of content in the training data is innocuous (terms of service text)
and perhaps even desirable to memorize (factual information, like the capital of Can‐
ada), memorization of personally identifiable information (PII) is a major concern.

Let us see what PII entails. The formal definition from Cornell Law is as follows:

Information that can be used to distinguish or trace an individual’s identity, either
alone or when combined with other personal or identifying information that is linked
or linkable to a specific individual.

Based on this definition, non-PII can become PII when another piece of information
becomes public, which when combined with the non-PII can be used to uniquely
identify an individual.

The legal definition of PII varies by jurisdiction. For example, the General Data Pro‐
tection Regulation (GDPR) in Europe says:

Protection should be extended to anything used to directly or indirectly identify a per‐
son (or data subject). This may be extended to include characteristics that describe
“physical, physiological, genetic, mental, commercial, cultural, or social identity of a
person.”

Most open source models are trained on publicly available datasets. These datasets
might contain PII, but one might be tempted to say, “Well it is already out in the
open, so there is no need for privacy protection.” This argument overlooks the impor‐
tance of consent and discoverability controls. For instance, I might have shared my
PII on my blog, which resides in an obscure corner of the internet and is not easily
discoverable through search engines, but if it ends up being added to a pre-training
dataset, it suddenly brings this data into the spotlight, without my consent. This con‐
cept is called contextual integrity: data should only be shared in the original context in
which it was shared.
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So ideally, we would like to detect PII in the dataset, and then remediate it in some
fashion, so that the PII is no longer present in the training data or at least not memo‐
rizable. The presence of public-figure PII adds a layer of complexity to this problem.
We would like our model to be able to accurately answer factual questions about pub‐
lic figures, such as providing their birth date. The privacy expectations for public fig‐
ures are lower, showcasing how the values of transparency and openness clash with
privacy. Determining who is a public figure and what level of privacy they are entitled
to is a complex socio-technical challenge.

Data considered private includes names, addresses, credit card data, government IDs,
medical history and diagnosis data, email IDs, phone numbers, identity and affinity
groups the person belongs to (religion, race, union membership), geolocation data,
and so on.

Attacks can be either targeted or untargeted. In an untargeted attack, the attacker just
generates a large body of text using the model and then runs a membership inference
attack to determine text within it that is most likely to be memorized. In a targeted
attack, the attacker attempts to recover personal information about a particular indi‐
vidual or a group of individuals. Targeted attacks are more difficult to execute,
because while language models are good at memorization, they are bad at association,
for instance, identifying that an email ID belongs to a specific person.

Exercise
Use the instructions in the ReadMe to run this code for analyzing privacy attacks on
LLMs. It goes without saying, but please do not use this in the real world! Running
the code and observing the outputs will give you an understanding of the limitations
of this type of attack and the type of data that is typically memorized by an LLM.

Additionally, try out Google’s Training Data Extraction Challenge!

Most pre-training datasets have undergone little to no PII remediation. The Privacy
working group (of which I was the co-lead) of the Big Science project that trained the
BLOOM model developed a pipeline for PII detection and remediation, which we
will discuss next.
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Language models are also susceptible to training data poisoning
attacks. Since a large portion of training data is sourced from web-
crawled text, bad actors have an opportunity to influence the con‐
tent of the training set. Tramer er al. have shown that one can
poison less than 0.1% of the training set with data whose effect is to
make it easier for other data in the training set to leak more easily.
As LLMs increasingly get used as search engines, the demand for
LLM SEO is cropping up. For example, a company could write con‐
tent on their web sites in a manner that makes it more likely to be
chosen in a pre-training dataset creation process that uses perplex‐
ity filtering.

Figure 2-7 shows a typical PII processing pipeline.

Figure 2-7. PII processing pipeline

Training Data Preprocessing | 59

https://oreil.ly/g_A-d


PII detection
The task of PII detection is similar to the NLP task of NER, introduced in Chapter 1.
However, not all named entities constitute PII. For our task we determined the PII
tags to be PERSON, AGE, NORP (nationality, race, religion, political party affiliation,
socio-economic class, and union membership), STREET_ADDRESS,
CREDIT_CARD, GOVT_ID, EMAIL_ADDRESS, USER_ID, and PUBLIC_FIGURE.

We used the PUBLIC_FIGURE tag to identify information about public figures, since
we didn’t want to filter them out. We also assigned fictional characters this tag.

Some of the structured tags in this list like emails and government IDs can be identi‐
fied using regular expressions. For other tags, we annotated datasets that could then
be used to train Transformer-based NER-like models. Interestingly, we observed a
very high degree of inter-annotator disagreement (same example being annotated dif‐
ferently by different people) that underscored the cultural nuances of the definition of
privacy and what constitutes personal information.

Here is the regular expression to detect SSN (US Social Security numbers):

ssn_pattern = r"(?!000|666|333)0*(?:[0-6][0-9][0-9]|[0-7][0-6][0-9]|
[0-7][0-7][0-2])[-\ ](?!00)[0-9]{2}[-\ ](?!0000)[0-9]{4}"

Note that detection is not the same as validation. Not all nine-digit numbers of the
form XXX-XX-XXXX are SSNs! Validation is the process of checking if a sequence of
characters maps to a valid identifier. For example, the Canadian equivalent of SSN,
the social insurance number (SIN) contains a checksum digit that can be used to vali‐
date it:

from stdnum.ca import sin
sin_pattern = re.compile(r"\d{3}[-\ ]\d{3}[-\ ]\d{3}", flags=re.X)
for match in sin_pattern.findall(text):
    if sin.is_valid(match):
         print(match)

The is_valid() function uses the Luhn checksum algorithm to validate if the
sequence of digits maps to a valid SIN. The same algorithm is also used to validate
credit cards. Here is the regex for detecting credit card numbers:

from stdnum import luhn
cc_base_pattern =  r"\b \d (?:\d[ -]?){14} \d \b"
cc_full_pattern = r"""4[0-9]{12}(?:[0-9]{3})? |
            (?:5[1-5][0-9]{2}|222[1-9]|22[3-9][0-9]|2[3-6][0-9]{2}|27[01][0-9]|
            2720)[0-9]{12} |
            3[47][0-9]{13} |
            3(?:0[0-5]|[68][0-9])[0-9]{11} |
            6(?:011|5[0-9]{2})[0-9]{12} |
            (?:2131|1800|35\d{3})\d{11}"""

The regular expression for detecting email address is as follows:

60 | Chapter 2: Pre-Training Data

https://oreil.ly/8YwG9
https://oreil.ly/i34BW
https://oreil.ly/6uTq-


email_pattern = r"[\w\.=-]+ @ [\w\.-]+ \. [\w]{2,3}"

Exercise
Use the search function in the dataset viewer for the RefinedWeb pre-training dataset
to assess presence of PII. For example, search for “gmail.com.” What do you find?

Removing structured PII data while keeping the number of false
positives low is hard enough, but detecting and remediating
unstructured data is even harder. Due to the complexity of this task
and the uncertainty about its impact on the resulting model perfor‐
mance, we decided to not run the Transformer model–based PII
pipeline over the ROOTS dataset for training the BLOOM model.

PII remediation
Once PII has been detected, it can be remediated. Figure 2-8 depicts one of the reme‐
diation schemes.

Figure 2-8. PII remediation options

Here is a nonexhaustive list of remediation options:

Replace with a special token
For example, a valid phone number can be replaced by the string <phone
number>.

Replace with a random token of the same entity type
For example, replace the name “Clarietta Richards” with “Natasha Bridges,” or
any other name.

Replace with a shuffled token
Entities detected across the dataset can be shuffled.

Remove entire document/data source
If the amount of PII detected in a single document or data source is higher than a
specific threshold, it is probably best to remove it. For example, pastebin.com is
said to contain a lot of inadvertently placed PII and is recommended to be not
included in training datasets.

Each of these techniques can have a varied effect on the model’s downstream perfor‐
mance. How does replacing tokens affect training perplexity? Are downstream tasks
like NER negatively affected when tuned on the resulting model? How does
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replacement by special tokens compare to replacement with random tokens? This is a
relatively underexplored topic, and all these questions are still open.

Faker is an excellent library for facilitating random token replacement. It supports
random token generation for a variety of PII types including names, addresses, credit
card numbers, and phone numbers. One danger in using random tokens is that the
replacement process can alter the demographic distribution of the dataset, for exam‐
ple, if the replacement names were all or mostly Anglo-Saxon names. Faker has local‐
ization support to enable replacement with fake data from the same geography/
culture. Let’s explore the library in more detail:

from faker import Faker
fake = Faker('en_IN')   # Indian locale
Faker.seed(0)
for i in range(5):
   print(fake.aadhaar_id)

This code generates 12-digit fake Aadhaar IDs, which are the Indian equivalent of
Social Security numbers. Note that the generated IDs are all invalid but still follow the
same format. Similarly:

for i in range(5):
   print(fake.address)

generates fake but representative addresses for the selected locale.

Removing PII from training datasets is only one of several solu‐
tions to prevent data leakage from models. One promising techni‐
que is differential privacy, which introduces randomness in the
inputs or outputs to provide theoretical guarantees for privacy
preservation. In neural networks, differential privacy is imple‐
mented using the DP-SGD algorithm, which involves gradient clip‐
ping and noise addition at the end of each update. However,
differential privacy significantly slows training, negatively affects
model performance, and disproportionately impacts minority
groups in the dataset in terms of model utility degradation. Apart
from differential privacy, other methods include adversarial train‐
ing, model unlearning, retroactive censoring, and “memfree”
decoding.

Training Set Decontamination
Training set decontamination is a crucial data preprocessing step that helps improve
LLM evaluations. A pre-training dataset is said to be contaminated if it contains data
from the benchmark test sets used to evaluate its performance. Contamination can
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1 From Dodge et al., “A Case Study on the Colossal Clean Crawled Corpus”, EMNLP 2021.

happen if the test datasets were constructed from web text, or if the dataset was
uploaded on the web after creation. There are two types of contamination:1

Input and label contamination
In this setting, both the questions (inputs) and answers (target labels) exist in the
pre-training dataset.

Input contamination
In this setting, only the inputs are present in the pre-training dataset but not the
target labels. We will describe the effects of input contamination and how we can
leverage it for positive use in Chapter 7.

OpenAI addressed training set contamination in GPT-3 by finding 13-gram overlaps
between text in the test/validation set and the train set, and removing 200 characters
before and after the matched texts. The n-gram matching approach is the most com‐
monly used method for decontamination.

However, Yang et al. note that contamination can also happen if a rephrased or trans‐
lation of the benchmark data is present in the training dataset. This makes data con‐
tamination very challenging to detect and remove. Most benchmark results continue
to be overstated due to this problem.

Data Mixtures
Pre-training datasets contain data from a wide variety of domains. The final dataset is
prepared such that these domains are represented in optimal proportions. For exam‐
ple, Wikipedia, academic texts, and smaller subsets were upsampled by up to three
times in The Pile dataset. More involved techniques like DoReMi and RegMix are
also used to calculate the right data mixture. Meta noted that for Llama 3, it empiri‐
cally arrived at a data mixture where 50% of the tokens are about general knowledge,
25% are about math and reasoning, 17% represent code, and the remaining are non-
English tokens.

Many pre-training datasets these days include code, even if the
model is not intended for generating code. Aryabumi et al. have
shown that including code in pre-training data significantly
improves performance on downstream tasks that do not involve
generating code.
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Dataset Ordering
After all data preprocessing stages have been completed, the training process can
commence. The order in which the data is fed to the model does matter. The area of
study to determine the optimal order is called curriculum learning. To our knowl‐
edge, most models do not go beyond some simple ordering heuristics.

One technique is to start the training with shorter training sequences and then gradu‐
ally increase the sequence lengths. This can be done either by truncating initial
sequences to fit a certain length or by simply reordering the dataset so that shorter
sequences are ordered first.

Researchers have also experimented with introducing more common words to the
model first, by replacing rarer words occurring in early training examples with their
part-of-speech tag or with hypernyms (for example, the hypernym of magenta is
color).

Now that we have discussed all the important data collection and preprocessing steps
for preparing a pre-training dataset, let’s see how individual datasets differ in terms of
the preprocessing steps they have undergone.

DataTrove by Hugging Face is a full-fledged pre-training dataset
preprocessing pipeline code repository. You can go through the
repo to understand how the concepts introduced in the chapter are
implemented at scale.

Table 2-2 provides a list of the popular pre-training datasets and the kind of prepro‐
cessing they went through.

Table 2-2. Pretraining datasets and their preprocessing pipeline

Name Extraction and cleaning Quality filtering Deduplication Language
identification

Models
trained with
this dataset

C4 Remove pages containing
word in blocklist, remove
code, remove short lines and
pages

- Deduplication of 3-
sentence spans

langdetect T5, FLAN-T5,
UL2, Llama

The Pile justext library for text
extraction

fasttext classifier Document level, with
MinHashLSH

pycld2 GPT-NeoX,
GPT-J,
Cerebras-GPT,
StableLM,
Pythia

CCNet - Perplexity
filtering

Paragraph-level
deduplication

fasttext
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Name Extraction and cleaning Quality filtering Deduplication Language
identification

Models
trained with
this dataset

RedPajama CCNet pipeline Classifier
distinguishing
between
Wikipedia text
and random C4
text

Paragraph-level
deduplication (for
Common Crawl)

fasttext Red Pajama-
INCITE, MPT

CleanPajama Low-length filter, NFC
normalization

- MinHashLSH - -

RefinedWeb URL filtering by blocklists,
trafilatura library for text
extraction, repetitive content
removal

- Fuzzy document-level
deduplication with
MinHash, exact
sequence-level
deduplication

fasttext Falcon

ROOTS Removal of documents with
low ratio of closed class
words, high ratio of blocklist
words, high ratio of
character/word repetition

Perplexity
filtering

SimHash, Suffix Array fasttext BLOOM

Effect of Pre-Training Data on Downstream Tasks
Given a pre-training dataset for an LLM, what assumptions can we make from it
about downstream performance? It turns out that there is a correlation between the
model’s performance on a given task or input and the pre-training dataset frequency
of the task or the salient words in the input, respectively. First observed by Razeghi et
al., this phenomenon has been studied in detail in McCoy et al.’s “Embers of Autore‐
gression” paper.

McCoy et al. show that language models perform better at tasks that are more fre‐
quently represented in the training dataset than ones that are less frequently repre‐
sented. For example, language models are better at base 10 addition than base 9
addition. They are also better at sorting by alphabetical order than they are at sorting
by reverse alphabetical order.

Similarly, McCoy et al. also show that for a given task, models perform relatively bet‐
ter when the output is text with high frequency in the pre-training dataset as opposed
to when the text is lower frequency. This phenomenon is also observed for inputs;
models do relatively better with higher-frequency inputs compared to lower-
frequency inputs.

As an example, consider the sentence: “record a be that miles, yes, hour, per fifty
clocked he.” We ask the LLM to reverse the words in the sentence, which would lead
to “He clocked fifty per hour, yes, miles, that be a record,” a rather low-probability
sequence, due to its odd linguistic construction.
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As of the book’s writing, GPT-4o returns the wrong answer: “He clocked fifty miles
per hour that be a record,” but you can notice that it performs relatively better when
the output sequence is higher probability.

Exercise
We know that Wikipedia is used to train just about every LLM. Ask your favorite
LLM (that doesn’t have access to the internet) a fact present in obscure Wikipedia
pages. Is it able to answer correctly? Similarly, ask the LLM about facts present in
more popular Wikipedia pages. Do you notice a difference?

Bias and Fairness Issues in Pre-Training Datasets
A multitude of ethical questions arise during the productization of large language
models. The existence of significant bias and fairness issues in these models often
leads to a no-ship condition for a large number of use cases. In this section we will go
through some bias and fairness issues specifically related to the collection and filter‐
ing of pre-training data.

The scale of data that LLMs are fed with means that they are not just constructing
models of language but also of the world we inhabit. This gives rise to the question of
whether we want to model the world the way it is or the way we would like it to be.
The internet is filled with hate, violence, and abusive language and is often used as an
outlet for humanity’s worst impulses. The text in it implicitly encodes long-existing
biases against groups of people. For example, in The Pile, an analysis of word co-
occurrence statistics shows the word “radical” co-occurs with the word “Muslim” sub‐
stantially more than it does for other religions.

The phenomenon of bias amplification makes these problems all the more critical. It
has been shown that large language models amplify the biases that are encoded in
their pre-training data: they make biased predictions against groups of people at
higher rates than what the training data statistics would suggest.

So, can we “fix” our training data such that we can model a world that encodes our
values and principles that downstream applications will inherit? There is substantial
debate in the research community about this. Opponents argue it is hard to identify
and fix all societal biases encoded in the data since there are so many dimensions of
bias that intersect in complex ways. Values are not universal, and model providers
would like to be value-neutral to cater to all sections of society.

However, as Anna Rogers describes in her paper, this question is already moot. Data
curation is already happening, whether we like it or not, and the values and interests
of model providers are already being encoded into the models. For example, only a
small proportion of available data is selected to be part of the pre-training set. This
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selection process is not value-neutral, even if one might not explicitly think in terms
of it.

Wikipedia is one of the more popular datasets used in training LLMs. While it might
be a no-brainer to include Wikipedia in a pre-training dataset, let’s explore the impli‐
cations. Wikipedia is edited by volunteers, a very large proportion of them being
men. Since the determination of whether a topic is reputable enough to deserve a
Wikipedia page rests with the editors who are largely made up of men, we see dispari‐
ties like obscure male football players from lower-level leagues getting their own
pages while a disproportionate number of biography articles about women are slated
for deletion.

Similarly, the highly influential WebText dataset is sourced from Reddit outbound
links. Reddit is a predominantly male site, with 74% of users being men. Naturally,
links posted on Reddit are more likely to be catered to male interests.

Bias can also be introduced during the data filtering stages. Earlier, we noted that key‐
word lists are often used to filter out pornographic material and abusive text. How‐
ever, using a naive keyword list is a lazy approach that not only has problems with
effectiveness (false negatives) but also inadvertently results in filtering out positive
text written by or about minority communities, as well as text written in dialects like
African American English and Hispanic-aligned English. The fact that words in
English have multiple senses has resulted in certain documents about breastfeeding
being filtered out of the C4 dataset.

Overall, whether a word is hateful, abusive, or toxic depends on the social context,
the intentions of the reader, and the intended audience. Keyword-based methods sim‐
ply do not capture this nuance. The question of whether it is more effective to handle
these issues at the pre-training stage or further downstream is an open area of
research. We will explore techniques that can be employed downstream in
Chapter 10.

The authors of the Pythia model experimented by replacing mascu‐
line pronouns with feminine ones for the last 7% of training tokens
and noticed a de-biasing impact on downstream tasks.

Summary
In this chapter, we outlined the key ingredients of a language model: the pre-training
data, the vocabulary and tokenizer, the language objective, and the model architec‐
ture. We walked through the steps involved in creating a pre-training dataset in
detail, including language identification, text extraction and cleaning, quality filter‐
ing, deduplication, PII removal, and test set decontamination. We also provided a list
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of commonly used pre-training datasets and the steps taken for preprocessing each of
them. In the next chapter, we will explore the vocabulary and tokenizer of the lan‐
guage model: the language we intend the model to learn.
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CHAPTER 3

Vocabulary and Tokenization

In Chapter 2, we dug deep into the datasets that are used to train the language models
of today, including the process of creating them. Hopefully this foray has underscored
how influential pre-training data is to the resulting model. In this chapter, we will dis‐
cuss another fundamental ingredient of a language model: its vocabulary.

Vocabulary
What do you do first when you start learning a new language? You start acquiring its
vocabulary, expanding it as you gain more proficiency in the language. Let’s define
vocabulary here as:

All the words in a language that are understood by a specific person.

The average native English speaker has a vocabulary of 20,000–35,000 words. Simi‐
larly, every language model has its own vocabulary, with most vocabulary sizes rang‐
ing anywhere between 5,000 and 500,000 tokens.

As an example, let us explore the vocabulary of the GPT-NeoX-20B model. Open the
file tokenizer.json and Ctrl+F for “vocab,” a dictionary containing the vocabulary of
the model. You can see that the words comprising the language model vocabulary
don’t entirely look like English language words that appear in a dictionary. These
word-like units are called “types,” and the instantiation of a type (when it appears in a
sequence of text) is called a token.
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Recently, and especially in industry, I seldom hear anyone use the
term “type” except in older NLP textbooks. The term “token” is
broadly used to refer to both the vocabulary units and when they
appear in a text sequence. We will henceforth use the word “token”
to describe both concepts, even though I personally am not the big‐
gest fan of this usage.

In the vocabulary file, we see that next to each token is a number, which is called the
input ID or the token index. The vocabulary size of GPT-NeoX is just above 50,000.

Looking at the vocabulary file in detail, we notice that the first few hundred tokens
are all single-character tokens, such as special characters, digits, capital letters, small
letters, and accented characters. Longer words appear later on in the vocabulary. A lot
of tokens correspond to just a part of a word, called a subword, like “impl,” “inated,”
and so on.

Let’s Ctrl+F for “office.” We get nine results:

"Ġoffice": 3906
"Ġofficer": 5908
"Ġofficers": 6251
"ĠOffice": 7454
"ĠOfficer": 12743
"Ġoffices": 14145
"office": 30496
"Office": 33577
"ĠOfficers": 37209

The Ġ character refers to a space before the word. For instance, in the sentence, “He
stopped going to the office,” the space before the letter “o” in the word “office” is con‐
sidered part of the token. You can see that the tokens are case-sensitive: there are sep‐
arate tokens for “office” and “Office.” Most models these days have case-sensitive
vocabularies. Back in the day, the BERT model was released with both a cased and an
uncased version.

Language models learn vector representations called embeddings
for each of these tokens that reflect their syntactic and semantic
meaning. We will go through the learning process in Chapter 4,
and dive deeper into embeddings in Chapter 11.

Cased vocabularies are almost always better, especially when you are training on such
a huge body of text such that most tokens are seen by the model enough times to
learn distinctive representations for them. For instance, there is a definite semantic
difference between “web” and “Web,” and it is good to have separate tokens for them.

Let’s search for some numbers. Ctrl+F for “93.” There are only three results:
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"93": 4590
"937": 47508
"930": 48180

It seems like not all numbers get their own tokens! Where is the token for 934? It is
impractical to give every number its own token, especially if you want to limit your
vocabulary size to say, just 50,000. Later in this chapter, we will discuss how vocabu‐
lary sizes are determined. Popular names and places get their own token. There is a
token representing Boston, Toronto, and Amsterdam, but none representing Mesa or
Chennai. There is a token representing Ahmed and Donald, but none for Suhas or
Maryam.

You might have noticed that tokens like:

"]);": 9259

exist, indicating that GPT-NeoX is also primed to process programming languages.

Exercise
Go through the tokenizer.json file and explore the vocabulary in detail. Specifically:

• What are some unexpected tokens you see?
• What are the top ten longest tokens?
• Are there tokens representing words from other languages?

How are vocabularies determined? Surely, there was no executive committee holding
emergency meetings burning midnight oil, with members making impassioned pleas
to include the number 937 in the vocabulary at the expense of 934.

Let us revisit the definition of a vocabulary:

All the words in a language that are understood by a specific person.

Since we want our language model to be an expert at English, we can just include all
words in the English dictionary as part of its vocabulary. Problem solved?

Not nearly. What do you do when you communicate with the language model using a
word that it has never seen? This happens a lot more often than you think. New
words get invented all the time, words have multiple forms (“understand,” “under‐
standing,” “understandable”), multiple words can be combined into a single word,
and so on. Moreover, there are millions of domain-specific words (biomedical, chem‐
istry, and so on).
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The Definition of a Word
What exactly is a word, anyway? It is surprisingly very hard to answer this. Conceptu‐
ally, you could say that a word is the smallest unit of text that has a self-contained
meaning. This is not exactly true. For example, the word “snowball” has components
that have self-contained meanings of their own. Algorithmically, you can say that a
word is just a sequence of characters separated by white space. This isn’t always true
either. For example, the word “Hong Kong” is generally regarded as a single word,
even if it is separated by white space. Meanwhile the word “can’t” could potentially be
regarded as two or three words, even if there is no white space separating them.

The account @NYT_first_said on the social media platform X
posts words except proper nouns when they appear in the New
York Times for the first time. Each day, an average of five new
words appear in the US paper of record for the first time ever. On
the day I wrote this section, the words were “unflippant,” “dumb‐
eyed,” “dewdrenched,” “faceflat,” “saporous,” and “dronescape.”
Many of these words might never get added to a dictionary.

A token that doesn’t exist in the vocabulary is called an out-of-vocabulary (OOV)
token. Traditionally, OOV tokens were represented using a special <UNK> token.
The <UNK> token is a placeholder for all tokens that don’t exist in the vocabulary.
All OOV tokens share the same embedding (and encode the same meaning), which is
undesirable. Moreover, the <UNK> token cannot be used in generative models. You
don’t want your model to output something like:

'As a language model, I am trained to <UNK> sequences, and output <UNK> text'.

To solve the OOV problem, one possible solution could be to represent tokens in
terms of characters instead of words. Each character has its own embedding, and as
long as all valid characters are included in the vocabulary, there will never be a
chance of encountering an OOV token. However, there are many downsides to this.
The number of tokens needed to represent the average sentence becomes much
larger. For example, the sentence, “The number of tokens needed to represent the
average sentence becomes much larger,” contains 13 tokens when you treat each word
as a token, but 81 tokens when you treat each character as a token. This reduces the
amount of content you can represent within a fixed sequence length, which makes
both model training and inference slower, as we will show further in Chapter 4. Mod‐
els support a limited sequence length, so this also reduces the amount of content you
can fit in a single prompt. Later in this chapter, we will discuss models like CANINE,
ByT5, and Charformer that attempt to use character-based tokens.
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So, the middle ground and the best of both worlds (or the worst of both worlds—the
field hasn’t come to a consensus yet) is using subwords. Subwords are the predomi‐
nant mode of representing vocabulary units in the language model space today. The
GPT-NeoX vocabulary we explored earlier uses subword tokens. Figure 3-1 shows
the OpenAI tokenizer playground that demonstrates how words are split into their
constituent subwords by OpenAI models.

Figure 3-1. Subword tokens

Optimal Vocabulary Sizes
Models have a wide range of vocabulary sizes. For example, for similarly sized mod‐
els, Llama 3 utilizes a vocabulary size of 128,000, while Gemma 2 has a vocabulary
size of 256,000. Multilingual models typically employ larger vocabularies.

What is the optimal vocabulary size? The larger the vocabulary size, the fewer the
number of tokens required to represent a given text, thus increasing the compression
efficiency. Thus, for the same amount of training or inference compute, the language
model can process more text. However, as the vocabulary size increases, there are
more and more rare tokens with limited occurrences in the training data, and these
rare tokens will have deficient representations.

Tao et al. devised scaling laws for vocabulary sizes. They note that the optimal
vocabulary sizes increase as model sizes and compute increase. They observe that as
of their article’s writing, most current models have suboptimal vocabulary sizes and
could potentially benefit from increasing them.
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Tokenizers
Next, let’s dive into tokenizers, the software that serves as a text-processing interface
between humans and models.

A tokenizer has two responsibilities:

1. In the tokenizer pre-training stage, the tokenizer is run over a body of text to
generate a vocabulary.

2. While processing input during both model training and inference, free-form raw
text is run through the tokenizer algorithm to break the text into sequences of
valid tokens. Figure 3-2 depicts the roles played by a tokenizer.

Figure 3-2. Tokenizer workflow

When we feed raw text to the tokenizer, it breaks the text into tokens that are part of
the vocabulary and maps the tokens to their token indices. The sequence of token
indices (input IDs) are then fed to the language model, where they are mapped to
their corresponding embeddings. Let us explore this process in detail.

This time, let’s experiment with the FLAN-T5 model. You need a Google Colab Pro
or equivalent system to be able to run it:

!pip install transformers accelerate sentencepiece
from transformers import T5Tokenizer, T5ForConditionalGeneration
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tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-largel")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large",
    device_map="auto")

input_text = "what is 937 + 934?"
encoded_text = tokenizer.encode(input_text)
tokens = tokenizer.convert_ids_to_tokens(encoded_text)
print(encoded_text)
print(tokens)

The output is:

[125, 19, 668, 4118, 1768, 668, 3710, 58, 1]
['▁what', '▁is', '▁9', '37', '▁+', '▁9', '34', '?', '</s>']

The encode() function tokenizes the input text and returns the corresponding token
indices. The token indices are mapped to the tokens they represent using the
convert_ids_to_tokens() function.

As you can see, the FLAN-T5 tokenizer doesn’t have dedicated tokens for the num‐
bers 937 or 934. Therefore, it splits the numbers into “9” and “37.” The </s> token is a
special token indicating the end of the string. The _ means that the token is preceded
by a space.

Let’s try another example:

input_text = "Insuffienct adoption of corduroy pants is the reason this

economy is in the dumps!!!"
encoded_text = tokenizer.encode(input_text)
tokens = tokenizer.convert_ids_to_tokens(encoded_text)
print(tokens)

The output is:

['▁In', 's', 'uff', 'i', 'en', 'c', 't', '▁adoption', '▁of', '▁cord', 'u',
'roy', '▁pants', '▁is', '▁the', '▁reason', '▁this', '▁economy', '▁is', '▁in',
'▁the', '▁dump', 's', '!!!', '</s>']

I made a deliberate typo with the word “Insufficient.” Note that subword tokenization
is rather brittle with typos. But at least the OOV problem has been dealt with by
breaking the words into subwords. The vocabulary also doesn’t seem to have an entry
for the word “corduroy,” thus confirming its poor sense of fashion. Meanwhile, note
that there is a distinct token for three contiguous exclamation points, which is differ‐
ent from the token that represents a single exclamation point. Semantically, they do
convey slightly different meanings.
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Very large models trained on a massive body of text are more
robust to misspellings. A lot of misspellings already occur in the
training set. For example, even the rare misspelling “Insuffienct”
occurs 14 times in the C4 pre-training dataset. The more common
misspelling “insufficent” occurs over 1,100 times. Larger models
can also infer the misspelled word from its context. Smaller models
like BERT are quite sensitive to misspellings.

If you are using models from OpenAI, you can explore their tokenization scheme
using the tiktoken library (no relation to the social media website).

Using tiktoken, let’s see the different vocabularies available in the OpenAI ecosystem:

!pip install tiktoken

import tiktoken
tiktoken.list_encoding_names()

The output is:

['gpt2', 'r50k_base', 'p50k_base', 'p50k_edit', 'cl100k_base', 'o200k_base']

The numbers like 50K/100K are presumed to be the vocabulary size. OpenAI hasn’t
revealed much information about these vocabularies. Their documentation does state
that o200k_base is used by GPT-4o, while cl100k_base is used by GPT-4:

encoding = tiktoken.encoding_for_model("gpt-4")
input_ids = encoding.encode("Insuffienct adoption of corduroy pants is the

reason this economy is in the dumps!!!")
tokens = [encoding.decode_single_token_bytes(token) for token in input_ids]

The output is:

[b'Ins', b'uff', b'ien', b'ct', b' adoption', b' of', b' cord', b'uro', b'y',
b' pants', b' is', b' the', b' reason', b' this', b' economy', b' is', b' in',
b' the', b' dumps', b'!!!']

As you can see there is not much difference between the tokenization used by GPT-4
and FLAN-T5.

Exercise
This repo contains the vocabularies of o200k_base and cl100k_base. Find the differ‐
ences between these vocabularies. What kinds of tokens are present in one but not the
other?
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For a given task, if you observe strange behavior from LLMs on
only a subset of your inputs, it is worthwhile to check how they
have been tokenized. While you cannot definitively diagnose your
problem just by analyzing the tokenization, it is often helpful in
analysis. In my experience, a non-negligible number of LLM fail‐
ures can be attributed to the way the text was tokenized. This is
especially true if your target domain is different from the pre-
training domain.

Tokenization-Free Models
As discussed in Chapter 1, the consolidation effect is resulting in end-to-end architec‐
tures that attempt to accept human input, perform all required processing, and gener‐
ate human consumable output within a single model. However, one last holdout is the
tokenization step. You have seen in the code shown previously that the tokenization is
used as a preprocessing step to prepare the input to be fed into the model. The input
to the model is the sequence of token indices and not raw text. But what if we make
the model truly end-to-end by removing the tokenization step? Is it possible to
directly feed raw text to the model and have it output results?

There have been forays into the world of tokenization-free language modeling, with
models like CANINE, ByT5, and Charformer.

• CANINE accepts Unicode codepoints as input. But there are 1,114,112 possible
code points, rendering the vocabulary and resulting embedding layer size infeasi‐
ble. To resolve this, CANINE uses hashed embeddings so that the effective
vocabulary space is much smaller.

• ByT5 accepts input in terms of bytes, so there are only 259 tokens in the vocabu‐
lary (including a few special tokens), thus reducing the embedding layer size
drastically.

• Charformer also accepts input in terms of bytes and passes it to a gradient-based
subword tokenizer module that constructs latent subwords.

Tokenization Pipeline
Figure 3-3 depicts the sequence of steps performed by a tokenizer.

Figure 3-3. Hugging Face tokenizers pipeline

Tokenization Pipeline | 77

https://oreil.ly/ucLIk
https://oreil.ly/x38Vs
https://oreil.ly/WJY1k


If you are using the tokenizers library from Hugging Face, your input text is run
through a multistage tokenization pipeline. This pipeline is composed of four
components:

• Normalization
• Pre-tokenization
• Tokenization
• Postprocessing

Note that different models will execute different steps within these four components.

Normalization
Different types of normalization applied include:

• Converting text to lowercase (if you are using an uncased model)
• Stripping off accents from characters, like from the word Peña
• Unicode normalization

Let’s see what kind of normalization is applied on the uncased version of BERT:

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
print(tokenizer.backend_tokenizer.normalizer.normalize_str(
    'Pédrò pôntificated at üs:-)')

The output is:

pedro pontificated at us:-)

As we can see, the accents have been removed and the text has been converted to
lowercase.

There isn’t much normalization done in tokenizers for more recent models.

Pre-Tokenization
Before we run the tokenizer on the text, we can optionally perform a pre-tokenization
step. As mentioned earlier, most tokenizers today employ subword tokenization. A
common step is to first perform word tokenization and then feed the output of it to
the subword tokenization algorithm. This step is called pre-tokenization.

Pre-tokenization is a relatively easy step in English compared to many other lan‐
guages, since you can start with a very strong baseline just by splitting text on white‐
space. There are outlier decisions to be made, such as how to deal with punctuation,
multiple spaces, numbers, etc. In Hugging Face the regular expression:
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\w+|[^\w\s]+

is used to split on whitespace.

Let’s run the pre-tokenization step of the T5 tokenizer:

tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str("I'm starting to

suspect - I am 55 years old!   Time to vist New York?")

The output is:

[("▁I'm", (0, 3)),
 ('▁starting', (3, 12)),
 ('▁to', (12, 15)),
 ('▁suspect', (15, 23)),
 ('▁-', (23, 25)),
 ('▁I', (25, 27)),
 ('▁am', (27, 30)),
 ('▁55', (30, 33)),
 ('▁years', (33, 39)),
 ('▁old!', (39, 44)),
 ('▁', (44, 45)),
 ('▁', (45, 46)),
 ('▁Time', (46, 51)),
 ('▁to', (51, 54)),
 ('▁vist', (54, 59)),
 ('▁New', (59, 63)),
 ('▁York?', (63, 69))]

Along with the pre-tokens (or word tokens), the character offsets are returned.

The T5 pre-tokenizer splits only on whitespace, doesn’t collapse multiple spaces into
one, and doesn’t split on punctuation or numbers. The behavior can be vastly differ‐
ent for other tokenizers.

Tokenization
After the optional pre-tokenization step, the actual tokenization step is performed.
Some of the important algorithms in this space are byte pair encoding (BPE), byte-
level BPE, WordPiece, and Unigram LM. The tokenizer comprises a set of rules that is
learned during a pre-training phase over a pre-training dataset. Now let’s go through
these algorithms in detail.

Byte Pair Encoding
This algorithm is the simplest and most widely used tokenization algorithm.
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Training stage
We take a training dataset, run it through the normalization and pre-tokenization
steps discussed earlier, and record the unique tokens in the resulting output and their
frequencies. We then construct an initial vocabulary consisting of the unique charac‐
ters that make up these tokens. Starting from this initial vocabulary, we continue
adding new tokens using merge rules. The merge rule is simple; we create a new token
using the most frequent consecutive pairs of tokens. The merges continue until we
reach the desired vocabulary size.

Let’s explore this with an example. Imagine our training dataset is composed of six
words, each appearing just once:

'bat', 'cat', 'cap', 'sap', 'map', 'fan'

The initial vocabulary is then made up of:

'b', 'a', 't', 'c', 'p', 's', 'm', 'f', 'n'

The frequencies of contiguous token pairs are:

'ba' - 1, 'at' - 2, 'ca' - 2, 'ap' - 3, 'sa' - 1, 'ma' - 1, 'fa' - 1, 'an' - 1

The most frequent pair is “ap,” so the first merge rule is to merge “a” and “p.” The
vocabulary now is:

'b', 'a', 't', 'c', 'p', 's', 'm', 'f', 'n', 'ap'

The new frequencies are:

'ba' - 1, 'at' - 2, 'cap' - 1, 'sap' - 1, 'map' - 1, 'fa' - 1, 'an' - 1

Now, the most frequent pair is “at,” so the next merge rule is to merge “a” and “t.” This
process continues until we reach the vocabulary size.

Inference stage
After the tokenizer has been trained, it can be used to divide the text into appropriate
subword tokens and feed the text into the model. This happens in a similar fashion as
the training step. After normalization and pre-tokenization of the input text, the
resulting tokens are broken into individual characters, and all the merge rules are
applied in order. The tokens standing after all merge rules have been applied are the
final tokens, which are then fed to the model.

You can open the vocabulary file for GPT-NeoX again, and Ctrl+F “merges” to see the
merge rules. As expected, the initial merge rules join single characters with each
other. At the end of the merge list, you can see larger subwords like “out” and “comes”
being merged into a single token.
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Exercise
Implement the BPE algorithm by yourself, using a subset of the Wikipedia dataset
that can be downloaded from here. For a vocabulary size of 10,000, what tokens do
you end up with and how do they differ from the vocabulary of the popular language
models? Use the resulting tokenizer to tokenize a domain-specific dataset like the
machine learning papers dataset from here. Do all the technical concepts get their
own tokens? This gives you a clue on how effective general-purpose LMs will be for
your use case.

Since all unique individual characters in the tokenizer training set
will get their own token, it is guaranteed that there will be no OOV
tokens as long as all tokens seen during inference in the future are
made up of characters that were present in the training set. But
Unicode consists of over a million code points and around 150,000
valid characters, which would not fit in a vocabulary of size 30,000.
This means that if your input text contained a character that wasn’t
in the training set, that character would be assigned an <UNK>
token. To resolve this, a variant of BPE called byte-level BPE is
used. Byte-level BPE starts with 256 tokens, representing all the
characters that can be represented by a byte. This ensures that
every Unicode character can be encoded just by the concatenation
of the constituent byte tokens. Hence, it also ensures that we will
never encounter an <UNK> token. The GPT family of models use
this tokenizer.

WordPiece
WordPiece is similar to BPE, so we will highlight only the differences.

Instead of the frequency approach used by BPE, WordPiece uses the maximum likeli‐
hood approach. The frequency of the token pairs in the dataset is normalized by the
product of the frequency of the individual tokens. The pairs with the resulting highest
score are then merged:

score = freq(a,b)/(freq(a) * freq(b))

This means that if a token pair is made up of tokens that individually have low fre‐
quency, they will be merged first.

Figure 3-4 shows the merge priority and how the normalization by individual fre‐
quencies affects the order of merging.
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Figure 3-4. WordPiece tokenization

During inference, merge rules are not used. Instead, for each pre-tokenized token in
the input text, the tokenizer finds the longest subword from the vocabulary in the
token and splits on it. For example, if the token is “understanding” and the longest
subword in the dictionary within this token is “understand,” then it will be split into
“understand” and “ing.”

Postprocessing
Now that we have looked at a couple of tokenizer algorithms, let’s move on to the
next stage of the pipeline, the postprocessing stage. This is where model-specific spe‐
cial tokens are added. Common tokens include [CLS], the classification token used in
many language models, and [SEP], a separator token used to separate parts of the
input.

The Curious Case of SolidMagiGoldkarp
There are weird tokens that end up being part of a language model’s vocabulary due
to the way the tokenization algorithms work. One such token is “SolidMagiGoldkarp,”
representing a now-deleted Reddit user who was one of the site’s most active posters
because of his quest to count to infinity. This was a token in the GPT-2 tokenizer
vocabulary. The same tokenizer was used in GPT-3 models, but the pre-training data‐
set of the model had changed, so it didn’t include many or any references to SolidMa‐
giGoldkarp. So now a token existed for SolidMagiGoldkarp but there was no signal in
the pre-training dataset to learn from. This leads to some anomalous and hilarious
behavior in GPT-3. These tokens are called glitch tokens or undertrained tokens.
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Token etymology is a new hobby for many LLM enthusiasts. This involves finding
rare tokens in the vocabulary of language models and unearthing their origins. This is
not just fun and games though, as knowing the origin of rare tokens can give you an
insight into the characteristics of the pre-training dataset. Using tiktoken, find some
rare vocabulary terms in GPT-4’s or GPT-4o’s vocabulary. Can you figure out their
origins?

Special Tokens
Depending on the model, a few special tokens are added to the vocabulary to facili‐
tate processing. These tokens can include:

<PAD>
To indicate padding, in case the size of the input is less than the maximum
sequence length.

<EOS>
To indicate the end of the sequence. Generative models stop generating after out‐
putting this token.

<UNK>
To indicate an OOV term.

<TOOL_CALL>, </TOOL_CALL>
Content between these tokens is used as input to an external tool, like an API call
or a query to a database.

<TOOL_RESULT>, </TOOL_RESULT>
Content between these tokens is used to represent the results from calling the
aforementioned tools.

As we have seen, if our data is domain-specific like healthcare, scientific literature,
etc., tokenization from a general-purpose tokenizer will be unsatisfactory. GALAC‐
TICA by Meta introduced several domain-specific tokens in their model and special
tokenization rules:

• [START_REF] and [END_REF] for wrapping citations.
• <WORK> to wrap tokens that make up an internal working memory, used for

reasoning and code generation.
• Numbers are handled by assigning each digit in the number its own token.
• [START_SMILES], [START_DNA], [START_AMINO], [END_SMILES],

[END_DNA], [END_AMINO] for protein sequences, DNA sequences, and
amino acid sequences, respectively.
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Evaluating Tokenizers
Two popular metrics for evaluating tokenizers are fertility and parity.

Fertility is a measure of the average number of tokens needed to represent a dataset. It
is calculated by dividing the number of tokens in a dataset by the number of words in
a dataset. The higher the fertility, the lower the compression power of the tokenizer.
Goldman et al. show that higher compression leads to better downstream perfor‐
mance, although this is disputed in experiments by Schmidt et al.. For a tokenizer to
achieve higher compression levels, it needs to be trained on larger datasets during the
vocabulary generation phase.

Parity is a measure of how fairly a tokenizer treats two languages. It is calculated by
the ratio of tokens needed to represent the same data in one language versus the
other.

Many language models today have multilingual support. However, due to the token‐
izer being trained on an English-centric corpus, the tokenization for other languages
tends to be suboptimal. Thus, a sentence in a non-English language may need several
times more tokens to represent it compared to the same sentence in English, as
shown by Petrov et al.

If you are using a model on domain-specific data like healthcare, finance, law, bio‐
medical, etc., with a tokenizer that was trained on general-purpose data, the compres‐
sion ratio will be relatively lower because domain-specific words do not have their
own tokens and will be split into multiple tokens. One way to adapt models to speci‐
alized domains is for models to learn good vector representations for domain-specific
terms.

To this end, we can add new tokens to existing tokenizers and continue pre-training
the model on domain-specific data so that those new domain-specific tokens learn
effective representations. We will learn more about continued pre-training in
Chapter 7.

For now, let’s see how we can add new tokens to a vocabulary using Hugging Face.

Consider the sentence, “The addition of CAR-T cells and antisense oligonucleotides
drove down incidence rates.” The FLAN-T5 tokenizer splits this text as follows:

['▁The', '▁addition', '▁of ', '▁C', ' AR', '-', ' T', '▁cells', '▁and', '▁anti', ' s', '
ense', '▁', ' oli', ' gon', ' u', ' cle', ' o', ' t', ' ides', '▁drove', '▁down', '▁incidence',
'▁rates', ' .', '</s>']
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Let’s add the domain-specific terms to the vocabulary:

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large",
    device_map="auto")

tokenizer.add_tokens(["CAR-T", "antisense", "oligonucleotides"])
model.resize_token_embeddings(len(tokenizer))

Now, tokenizing the string again gives the following tokens, with the domain-specific
tokens being added:

['▁The', '▁addition', '▁of ', ' CAR-T', '▁cells', '▁and', ' antisense', ' oligonucleo‐
tides', '▁drove', '▁down', '▁incidence', '▁rates', ' .', '</s>']

We are only halfway done here. The embedding vectors corresponding to these new
tokens do not contain any information about these tokens. We will need to learn the
right representations for these tokens, which we can do using fine-tuning or contin‐
ued pre-training, which we will discuss in Chapter 7.

Summary
In this chapter, we focused on a key ingredient of language models: their vocabulary.
We discussed how vocabularies are defined and constructed in the realm of language
models. We introduced the concept of tokenization and presented tokenization algo‐
rithms like BPE and WordPiece that are used to construct vocabularies and break
down raw input text into a sequence of tokens that can be consumed by the language
model. We also explored the vocabularies of popular language models and noted how
tokens can differ from human conceptions of a word.

In the next chapter, we will continue exploring the remaining ingredients of a lan‐
guage model, including its architecture and the learning objectives on which models
are trained.
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CHAPTER 4

Architectures and Learning Objectives

In Chapters 2 and 3, we discussed some of the key ingredients that go into making a
language model: the training datasets, and the vocabulary and tokenizer. Next, let’s
complete the puzzle by learning about the models themselves, the architectures
underpinning them, and their learning objectives.

In this chapter, we will learn the composition of language models and their structure.
Modern-day language models are predominantly based on the Transformer architec‐
ture, and hence we will devote most of our focus to understanding it, by going
through each component of the architecture in detail. Over the last few years, several
variants and alternatives to the original Transformer architecture have been pro‐
posed. We will go through the promising ones, including Mixture of Experts (MoE)
models. We will also examine commonly used learning objectives the language mod‐
els are trained over, including next-token prediction. Finally, we will bring together
the concepts of the last three chapters in practice by learning how to pre-train a lan‐
guage model from scratch.

Preliminaries
Just about every contemporary language model is based on neural networks, com‐
posed of processing units called neurons. While modern neural networks do not
resemble the workings of the human brain at all, many of the ideas behind neural net‐
works and the terminology used is inspired by the field of neuroscience.

The neurons in a neural network are connected to each other according to some con‐
figuration. Each connection between a pair of neurons is associated with a weight
(also called parameter), indicating the strength of the connection. The role these neu‐
rons play and the way they are connected to each other constitutes the architecture of
the model.
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The early 2010s saw the proliferation of multi-layer architectures, with layers of neu‐
rons stacked on top of each other, each layer extracting progressively more complex
features of the input. This paradigm is called deep learning.

Figure 4-1 depicts a simple multi-layer neural network, also called the multi-layer
perceptron.

Figure 4-1. Multi-layer perceptron

For a more comprehensive treatment of neural networks, refer to
Goldberg’s book on neural network–based natural language pro‐
cessing.

As discussed in Chapter 1, language models are primarily pre-trained using self-
supervised learning. Input text from the training dataset is tokenized and converted
to vector form. The input is then propagated through the neural network, affected by
its weights and activation functions, the latter introducing nonlinearity to the model.
The output of the model is compared to the expected output, called the gold truth.
The weights of the output are adapted such that next time for the same input, the out‐
put can be closer to the gold truth.
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In practice, this adaptation process is implemented through a loss function. The goal
of the model is to minimize the loss, which is the difference between the model
output and the gold truth. To minimize the loss, the weights are updated using a
gradient-descent based method, called backpropagation. I strongly recommend
developing an intuitive understanding of this algorithm before diving into model
training.

Self-Supervised Versus Supervised Learning
The distinction between self-supervised learning and supervised learning is artificial.
The term “supervised learning” is used to describe learning by example using input-
output pairs. To generate the training dataset, the output is typically annotated by a
human or a computer. In the self-supervised variant, the output label does not need
to be annotated because it already exists in nature, as part of the input. An example is
web text on the internet with a learning objective like next-token prediction. The
ground truth for the next-token objective exists within the input itself.

Representing Meaning
While describing neural network–based architectures in the previous section, we
glossed over the fact that the input text is converted into vectors and then propagated
through the network. What are these vectors composed of and what do they repre‐
sent? Ideally, after the model is trained, these vectors should accurately represent
some aspect of the meaning of the underlying text, including its social connotations.
Developing the right representations for modalities like text or images is a very active
field of research, called representation learning.

When training a language model from scratch, these vectors ini‐
tially mean nothing, as they are randomly generated. In practice,
there are initialization algorithms used like Glorot, He, etc. Refer to
this report for a primer on neural network initialization.

How can a list of numbers represent meaning? It is hard for humans to describe the
meaning of a word or sentence, let alone represent it in numerical form that can be
processed by a computer. The form of a word, i.e., the letters that comprise it, usually
do not give any information whatsoever about the meaning it represents. For exam‐
ple, the sequence of letters in the word umbrella contains no hints about its meaning,
even if you are already exposed to thousands of other words in the English language.
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The prominent way of representing meaning in numerical form is through the distri‐
butional hypothesis framework. The distributional hypothesis states that words that
have similar meaning occur in similar contexts. The implication of this hypothesis is
best represented by the adage:

You shall know a word by the company it keeps.
—John Rupert Firth, 1957

This is one of the primary ways in which we pick up the meaning of words we haven’t
encountered previously, without needing to look them up in a dictionary. A large
number of words we know weren’t learned from the dictionary or by explicitly learn‐
ing the meaning of a word but by estimating meaning based on the contexts words
appear in.

Let’s investigate how the distributional hypothesis works in practice. The Natural
Language Toolkit (NLTK) library provides a feature called concordance view, which
presents you with the surrounding contexts that a given word appears in a corpus.

For example, let’s see the contexts in which the word “nervous” occurs in the Jane
Austen classic Emma:

from nltk.corpus import gutenberg
from nltk.text import Text
corpus = gutenberg.words('austen-emma.txt')
text = Text(corpus)
text.concordance("nervous")

The output looks like this:

Displaying 11 of 11 matches:
...spirits required support . He was a nervous man , easily depressed...
...sitting for his picture made him so nervous , that I could only take...
...assure you , excepting those little nervous headaches and palpitations...
...My visit was of use to the nervous part of her complaint , I hope...
...much at ease on the subject as his nervous constitution allowed...
...Her father was growing nervous , and could not understand her....
...

Exercise
Imagine you have never heard of the word “nervous” before. Would you be able to
guess the meaning of the word “nervous” just by reviewing the various contexts it
appears in?

Check the contexts of words that are synonyms of the word “nervous.” How similar
are they to the contexts of the word “nervous”?
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The Transformer Architecture
Now that we have developed an intuition on how text is represented in vector form,
let’s further explore the canonical architecture used for training language models
today, the Transformer.

In the mid 2010s, the predominant architectures used for NLP tasks were recurrent
neural networks, specifically a variant called long short-term memory (LSTM). While
knowledge of recurrent neural networks is not a prerequisite for this book, I recom‐
mend Neural Network Methods for Natural Language Processing for more details.

Recurrent neural networks were sequence models, which means they processed text
one token at a time, sequentially. A single vector was used to represent the state of the
entire sequence, so as the sequence grew longer, more and more information needed
to be captured in the single state vector. Because of the sequential nature of process‐
ing, long-range dependencies were harder to capture, as the content from the begin‐
ning of the sequence would be harder to retain.

This issue was candidly articulated by Ray Mooney, a senior computer scientist who
remarked at the Association for Computational Linguistics (ACL) 2014 conference:

You can’t cram the meaning of a whole %&!$# sentence into a single $&!#* vector!
—Ray Mooney, 2014

Thus, there was a need for an architecture that solved for the deficiencies of LSTM:
the limitations in representing long-range dependencies, the dependence on a single
vector for representing the state of the entire sequence, and more. The Transformer
architecture was designed to address these issues.

Figure 4-2 depicts the original Transformer architecture, developed in 2017 by Vas‐
wani et al. As we can see in the figure, a Transformer model is typically composed of
Transformer blocks stacked on top of each other, called layers. The key components
of each block are:

• Self-attention
• Positional encoding
• Feedforward networks
• Normalization blocks
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Figure 4-2. The Transformer architecture

At the beginning of the first block is a special layer called the embedding layer. This is
where the tokens in the input text are mapped to their corresponding vector. The
embedding layer is a matrix whose size is:
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Number of tokens in the vocabulary * The vector dimension size

On Hugging Face, we can inspect the embedding layer as such, using the
transformers library:

import torch
from transformers import LlamaTokenizer, LlamaModel

tokenizer = LlamaTokenizer.from_pretrained('llama3-base')
model = LlamaModel.from_pretrained('llama3-base')

sentence = "He ate it all"

inputs = tokenizer(sentence, return_tensors="pt")
input_ids = inputs['input_ids']
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])

with torch.no_grad():
    embeddings = model.embeddings(input_ids)

for token, embedding in zip(tokens, embeddings[0]):
    print(f"Token: {token}\n
    print(f"Embedding: {embedding}\n")

The embedding vectors are the inputs that are then propagated through the rest of
the network.

Next, let’s go through each of the components in a Transformer block in detail and
explore their role in the modeling process.

Self-Attention
The self-attention mechanism draws on the same principle as the distributional
hypothesis introduced in “Representing Meaning” on page 89, emphasizing the role
of context in shaping the meaning of a token. This operation generates representa‐
tions for each token in a text sequence, capturing various aspects of language like
syntax, semantics, and even pragmatics.

In the standard self-attention implementation, the representation of each token is a
function of the representation of all other tokens in the sequence. Given a token for
which we are calculating its representation, tokens in the sequence that contribute
more to the meaning of the token are given more weight.

For example, consider the sequence:

'Mark told Sam that he was planning to resign.'

Figure 4-3 depicts how the representation for the token he is heavily weighted by the
representation of the token Mark. In this case, the token he is a pronoun used to
describe Mark in shorthand. In NLP, mapping a pronoun to its referent is called co-
reference resolution.
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Figure 4-3. Attention map

In practice, self-attention in the Transformer is calculated using three sets of weight
matrices called queries, keys, and values. Let’s go through them in detail. Figure 4-4
shows how the query, key, and value matrices are used in the self-attention
calculation.

Each token is represented by its embedding vector. This vector is multiplied with the
query, key, and value weight matrices to generate three input vectors. Self-attention
for each token is then calculated like this:

1. For each token, the dot products of its query vector with the key vectors of all the
tokens (including itself) are taken. The resulting values are called attention
scores.

2. The scores are scaled down by dividing them by the square root of the dimension
of the key vectors.

3. The scores are then passed through a softmax function to turn them into a proba‐
bility distribution that sums to 1. The softmax activation function tends to
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amplify larger values, hence the reason for scaling down the attention scores in
the previous step.

4. The normalized attention scores are then multiplied by the value vector for the
corresponding token. The normalized attention score can be interpreted as the
proportion that each token contributes to the representation of a given token.

5. In practice, there are multiple sets of query, key, and value vectors, calculating
parallel representations. This is called multi-headed attention. The idea behind
using multiple heads is that the model gets sufficient capacity to model various
aspects of the input. The more the number of heads, the more chances that the
right aspects of the input are being represented.

Figure 4-4. Self-attention calculation

This is how we implement self-attention in code:

import torch
import torch.nn as nn
import torch.nn.functional as F

q = wQ(input_embeddings)
k = WK(input_embeddings)
v = WV(input_embeddings)
dim_k = k.size(-1)

attn_scores = torch.matmul(q, k.transpose(-2, -1))
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scaled_attn_scores = attn_scores/torch.sqrt(torch.tensor(dim_k,
  dtype=torch.float32))

normalized_attn_scores = F.softmax(scaled_attn_scores, dim=-1)

output = torch.matmul(normalized_attn_scores, v)

In some Transformer variants, self-attention is calculated only on a
subset of tokens in the sequence; thus the vector representation of a
token is a function of the representations of only some and not all
the tokens in the sequence.

Positional Encoding
As discussed earlier, pre-Transformer architectures like LSTM were sequence models,
with tokens being processed one after the other. Thus the positional information
about the tokens, i.e., the relative positions of the tokens in a sequence, was implicitly
baked into the model. However, for Transformers all calculations are done in parallel,
and positional information should be fed to the model explicitly. Several methods
have been proposed to add positional information, and this is still a very active field
of research. Some of the common methods used in LLMs today include:

Absolute positional embeddings
These were used in the original Transformer implementation by Vaswani et al.;
examples of models using absolute positional embeddings include earlier models
like BERT and RoBERTa.

Attention with Linear Biases (ALiBi)
In this technique, the attention scores are penalized with a bias term proportional
to the distance between the query token and the key token. This technique also
enables modeling sequences of longer length during inference than what was
encountered in the training process.

Rotary Position Embedding (RoPE)
Just like ALiBi, this technique has the property of relative decay; there is a decay
in the attention scores as the distance between the query token and the key token
increases.

No Positional Encoding (NoPE)
A contrarian technique argues that positional embeddings in fact are not
required and that Transformers implicitly capture positional information.

Models these days are mostly using ALiBi or RoPE, although this is one aspect of the
Transformer architecture that is still actively improving.
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Feedforward Networks
The output from a self-attention block is fed through a feedforward network. Each
token representation is independently fed through the network. The feedforward net‐
work incorporates a nonlinear activation function like Rectified Linear Unit (ReLU)
or Gaussian Error Linear Units (GELU), thus enabling the model to learn more com‐
plex features from the data. For more details on these activation functions, refer to
this blog post from v7.

The feedforward layers are implemented in code in this way:

import torch
import torch.nn as nn

class FeedForward(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super(FeedForward, self).__init__()
        self.l1 = nn.Linear(input_dim, hidden_dim)
        self.l2 = nn.Linear(hidden_dim, input_dim)
        self.selu = nn.SeLU()

    def forward(self, x):
        x = self.selu(self.l1(x))
        x = self.l2(x)
        return x

feed_forward = FeedForward(input_dim, hidden_dim)
outputs = feed_forward(inputs)

Layer Normalization
Layer normalization is performed to ensure training stability and faster training con‐
vergence. While the original Transformer architecture performed normalization at
the beginning of the block, modern implementations do it at the end of the block.
The normalization is performed as follows:

1. Given an input of batch size b, sequence length n, and vector dimension d, calcu‐
late the mean and variance across each vector dimension.

2. Normalize the input by subtracting the mean and dividing it by the square root
of the variance. A small epsilon value is added to the denominator for numerical
stability.

3. Multiply by a scale parameter and add a shift parameter to the resulting values.
These parameters are learned during the training process.
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This is how it is represented in code:

import torch
import torch.nn as nn

class LayerNorm(nn.Module):
    def __init__(self, dimension, gamma=None, beta=None, epsilon=1e-5):
        super(LayerNorm, self).__init__()
        self.epsilon = epsilon
        self.gamma = gamma if gamma is not None else
        nn.Parameter(torch.ones(dimension))
        self.beta = beta if beta is not None else
        nn.Parameter(torch.zeros(dimension))

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        variance = x.var(-1, keepdim=True, unbiased=False)
        x_normalized = (x - mean) / torch.sqrt(variance + self.epsilon)
        return self.gamma * x_normalized + self.beta

layer_norm = LayerNorm(embedding_dim)
outputs = layer_norm(inputs)

Loss Functions
So far, we have discussed all the components of each Transformer block. For the next
token-prediction learning objective, the input is propagated through the Transformer
layers to generate the final output, which is a probability distribution across all
tokens. During training, the loss is calculated by comparing the output distribution
with the gold truth. The gold truth distribution assigns a 1 to the gold truth token
and 0 to all other tokens.

There are many possible ways to quantify the difference between the output and the
gold truth. The most popular one is cross-entropy, which is calculated by the formula:

Cross-Entropy= −∑(gold truth probability)×log(output probability)

For example, consider the sequence:

'His pizza tasted ______'

Let’s say the gold truth token is good, and the output probability distribution is (terri‐
ble: 0.65, bad:0.12, good:011,…)

The cross-entropy is calculated as:

−(0×log(0.65)+0×log(0.12)+1×log(0.11)+...)= −log(0.11)
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Since the gold truth distribution values are 0 for all but the correct token, the equa‐
tion can be simplified to:

Cross-Entropy = -log(output probability of gold truth token)

Once the loss is calculated, the gradient of the loss with respect to the parameters of
the model is calculated and the weights are updated, using the backpropagation
algorithm.

Intrinsic Model Evaluation
How do we know if the backpropagation algorithm is actually working and that the
model is getting better over time? We can use either intrinsic model evaluation or
extrinsic model evaluation.

Extrinsic model evaluation involves testing the model’s performance on real-world
downstream tasks. These tasks directly test the performance of the model but only on
a narrow range of the model’s capabilities. In contrast, intrinsic model evaluation
involves a more general evaluation of the model’s ability to model language, but with
no guarantee that its performance in the intrinsic evaluation metric is directly pro‐
portional to its performance across all possible downstream tasks.

The most common intrinsic evaluation metric is perplexity. Perplexity measures the
ability of a language model to accurately predict the next token in a sequence. A
model that can always correctly predict the next token has a perplexity of 1. The
higher the perplexity, the worse the language model. In the worst case, if the model is
predicting at random, with probability of predicting each token in a vocabulary of
size V being 1/V, then the perplexity is V.

Perplexity is related to cross-entropy by this formula:

Perplexity = 2^Cross-Entropy

Transformer Backbones
So far, we described the components of the canonical version of the Transformer. In
practice, three major types of architecture backbones are used to implement the
Transformer:

• Encoder-only
• Encoder-decoder
• Decoder-only

Let’s look at each of these in detail.

Figure 4-5 depicts encoder-only, encoder-decoder, and decoder-only architectures.
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Figure 4-5. Visualization of various Transformer backbones
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Encoder-Only Architectures
Encoder-only architectures were all the rage when Transformer-based language mod‐
els first burst on the scene. Iconic language models from yesteryear (circa 2018) that
use encoder-only architectures include BERT, RoBERTa, etc.

There haven’t been many encoder-only LLMs trained since 2021 for a few reasons,
including:

• They are relatively harder to train.
• The masked language modeling objective typically used to train them provides a

learning signal in only a small percentage of tokens (the masking rate), thus
needing a lot more data to reach the same level of performance as decoder-only
models.

• For every downstream task, you need to train a separate task-specific head, mak‐
ing usage inefficient.

However, the release of ModernBERT seems to have reinvigorated this space.

The creators of the UL2 language model claim that encoder-only models should be
considered obsolete. I personally wouldn’t go that far; encoder-only models are still
great choices for classification tasks. Moreover, if you already have a satisfactory pipe‐
line for your use case built around encoder-only models, I would say if it ain’t broke,
why fix it?

Here are some guidelines for adopting encoder-only models:

• RoBERTa performs better than BERT most of the time, since it is trained a lot
longer on more data, and it has adopted best practices learned after the release of
BERT.

• DeBERTa and ModernBERT are currently regarded as the best-performing
encoder-only models.

• The distilled versions of encoder-only models like DistilBERT, etc., are not too
far off from the original models in terms of performance, and they should be
considered if you are operating under resource constraints.

Several embedding models are built from encoder-only models. For example, one of
the most important libraries in the field of NLP, the Swiss Army knife of NLP tools,
sentence transformers, provides encoder-only embedding models that are very widely
used. all-mpnet-base-v2, based on an encoder-only model called MPNet, and fine-
tuned on several task datasets, is still competitive with much larger embedding
models.
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Encoder-Decoder Architectures
This is the original architecture of the Transformer, as it was first proposed. The T5
series of models uses this architecture type.

In encoder-decoder models, the input is text and the output is also text. A standard‐
ized interface ensures that the same model and training procedure can be used for
multiple tasks. The inputs are handled by an encoder, and the outputs by the decoder.

Decoder-Only Architectures
A majority of LLMs trained today use decoder-only models. Decoder-only models
came into fashion starting from the original GPT model from OpenAI. Decoder-only
models excel at zero-shot and few-shot learning.

Decoder models can be causal and noncausal. Noncausal models have bidirectionality
over the input sequence, while the output is still autoregressive (you cannot look
ahead).

While the field is still evolving, there has been some compelling
evidence for the following results:

• Decoder-only models are the best choice for zero-shot and
few-shot generalization.

• Encoder-decoder models are the best choice for multi-task
fine tuning.

The best of both worlds is to combine the two: start with auto-
regressive training, and then in an adaptation step, pre-train fur‐
ther with a noncausal setup using a span corruption objective.

In this section, we discussed how architectural backbones can be classified according
to how they use the architecture’s encoder and decoder. Another architectural back‐
bone type that is making inroads in the past year is the Mixture of Experts (MoE)
paradigm. Let’s explore that in detail.

Mixture of Experts
Remarkably, in the seven years since the invention of the Transformer architecture,
the Transformer implementation used in current language models isn’t too different
from the original version, despite hundreds of papers proposing modifications to it.
The original architecture has proven to be surprisingly robust, with most proposed
variants barely moving the needle in terms of performance. However, some compo‐
nents of the Transformer have seen changes, like positional encodings as discussed
earlier in the chapter.
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MoE models have been seeing a lot of success in the past couple of years. Examples
include OpenAI’s GPT-4 (unconfirmed), Google’s Switch, DeepSeek’s DeepSeek V3,
and Mistral’s Mixtral. In this section, we will learn the motivations behind developing
this architecture and how it works in practice.

As shown in Chapter 1, the scaling laws dictate that performance of the language
model increases as you increase the size of the model and its training data. However,
increasing the model capacity implies more compute is needed for both training and
inference. This is undesirable, especially at inference time, when latency requirements
can be stringent. Can we increase the capacity of a model without increasing the
required compute?

One way to achieve this is using conditional computation; each input (either a token
or the entire sequence) sees a different subset of the model, interacting with only the
parameters that are best suited to process it. This is achieved by composing the archi‐
tecture to be made up of several components called experts, with only a subset of
experts being activated for each input.

Figure 4-6 depicts a canonical MoE model.

Figure 4-6. Mixture of Experts
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A key component of the MoE architecture is the gating function. The gating function
helps decide which expert is more suited to process a given input. The gating func‐
tion is implemented as a weight applied to each expert.

The experts are typically added to the feedforward component of the Transformer.
Therefore, if there are eight experts, then there will be eight feedforward networks
instead of one. Based on the routing strategy used, only a small subset of these net‐
works will be activated for a given input.

The routing strategy determines the number and type of experts activated. Two types
of popular routing strategies exist:

• Tokens choose
• Experts choose

In the tokens choose strategy, each token chooses k experts. k is typically a small
number (~2). The disadvantage of using this strategy is the need for load balancing. If
in a given input batch, most of the tokens end up using the same experts, then addi‐
tional time is needed to finish the computation as we cannot benefit from the paralle‐
lization afforded by multiple experts.

In the experts choose strategy, each expert picks the tokens that it is most equipped to
handle. This solves the load balancing problem as we can specify that each expert
choose the same number of tokens. However, this also leads to inefficient token-
expert matching, as each expert is limited to picking only a finite number of tokens in
a batch.

Upcycling Models
Very few MoE models are publicly available as of the book’s writing. Can we turn an
existing general Transformer-based model into an MoE model? Komatsuzaki et al.
have devised an upcycling method that can be used to add an MoE component to an
already pre-trained model. This is done by making N copies of the feedforward lay‐
ers, one for each expert, and using the original parameters of these layers as the initi‐
alization parameters for the MoE model.

Learning Objectives
Now that we have discussed the architecture of language models, let’s turn our focus
to understanding the tasks they are trained on during the pre-training process.

As mentioned earlier in the chapter, language models are pre-trained in a self-
supervised manner. The scale of data we need to train them makes it prohibitively
expensive to perform supervised learning, where (input, output) examples need to
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come from humans. Instead, we use a form of training called self-supervision, where
the data itself contains the target labels. The goal of self-supervised learning is to
learn a task which acts as a proxy for learning the syntax and semantics of a language,
as well as skills like reasoning, arithmetic and logical manipulation, and other cogni‐
tive tasks, and (hopefully) eventually leading up to general human intelligence. How
does this work?

For example, let’s take the canonical language modeling task: predicting the next
word that comes in a sequence. Consider the sequence:

'Tammy jumped over the'

and the language model is asked to predict the next token. The total number of possi‐
ble answers is the size of the vocabulary. There are many valid continuations to this
sequence, like (hedge, fence, barbecue, sandcastle, etc.), but many continuations to
this sequence would violate English grammar rules like (is, of, the). During the train‐
ing process, after seeing billions of sequences, the model will know that it is highly
improbable for the word “the” to be followed by the word “is” or “of,” regardless of the
surrounding context. Thus, you can see how just predicting the next token is such a
powerful tool: in order to correctly predict the next token you can eventually learn
more and more complex functions that you can encode in your model connections.
However, whether this paradigm is all we need to develop general intelligence is an
open question.

Self-supervised learning objectives used for pre-training LLMs can be broadly classi‐
fied (nonexhaustively) into three types:

• Full language modeling (FLM)
• Masked language modeling (MLM)
• Prefix language modeling (PrefixLM)

Let’s explore these in detail.

Full Language Modeling
Figure 4-7 shows the canonical FLM objective at work.

Figure 4-7. Full language modeling

This is the canonical language modeling objective of learning to predict the next
token in a sequence and currently the simplest and most common training objective,
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used by GPT-4 and a vast number of open source models. The loss is computed for
every token the model sees, i.e., every single token in the training set that is being
asked to be predicted by the language model provides a learning signal for the model,
making it very efficient.

Let’s explore an example, using the GPT Neo model.

Suppose we continue pre-training the GPT Neo model from its publicly available
checkpoint, using the full language modeling objective. Let’s say the current training
sequence is:

'Language models are ubiquitous'

You can run this code:

import torch
from transformers import AutoTokenizer, GPTNeoForCausalLM

tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")

input_ids = tokenizer("Language models are", return_tensors="pt")
gen_tokens = model.generate(**input_ids, max_new_tokens =1,

output_scores=True, return_dict_in_generate=True)
output_scores = gen_tokens["scores"]
scores_tensor = output_scores[0]
sorted_indices = torch.argsort(scores_tensor[0], descending=True)[:20]

for index in sorted_indices:
    token_id = index
    token_name = tokenizer.decode([token_id.item()])
    token_score = scores_tensor[0][index].item()
    print(f"Token: {token_name}, Score: {token_score}")

This code tokenizes the input text Language models are and feeds it to the model by
invoking the generate() function. The function predicts the continuation, given the
sequence “Language models are.” It outputs only one token and stops generating
because max_new_tokens is set to 1. The rest of the code enables it to output the top
20 list of tokens with the highest score, prior to applying the softmax at the last layer.

The top 20 tokens with the highest prediction score are:

Output: Token:  a, Score: -1.102203369140625
Token:  used, Score: -1.4315788745880127
Token:  the, Score: -1.7675716876983643
Token:  often, Score: -1.8415470123291016
Token:  an, Score: -2.4652323722839355
Token:  widely, Score: -2.657834053039551

106 | Chapter 4: Architectures and Learning Objectives



Token:  not, Score: -2.6726579666137695
Token:  increasingly, Score: -2.7568516731262207
Token:  ubiquitous, Score: -2.8688106536865234
Token:  important, Score: -2.902832508087158
Token:  one, Score: -2.9083480834960938
Token:  defined, Score: -3.0815649032592773
Token:  being, Score: -3.2117576599121094
Token:  commonly, Score: -3.3110013008117676
Token:  very, Score: -3.317342758178711
Token:  typically, Score: -3.4478530883789062
Token:  complex, Score: -3.521362781524658
Token:  powerful, Score: -3.5338563919067383
Token:  language, Score: -3.550961971282959
Token:  pervasive, Score: -3.563507080078125

Every word in the top 20 seems to be a valid continuation of the sequence. The
ground truth is the token ubiquitous, which we can use to calculate the loss and ini‐
tiate the backpropagation process for learning.

As another example, consider the text sequence:

'I had 25 eggs. I gave away 12. I now have 13'

Run the same code as previously, except for this change:

input_ids = tokenizer("'I had 25 eggs. I gave away 12. I now have",
  return_tensors="pt")

The top 20 output tokens are:

Token:  12, Score: -2.3242850303649902
Token:  25, Score: -2.5023117065429688
Token:  only, Score: -2.5456185340881348
Token:  a, Score: -2.5726099014282227
Token:  2, Score: -2.6731367111206055
Token:  15, Score: -2.6967623233795166
Token:  4, Score: -2.8040688037872314
Token:  3, Score: -2.839219570159912
Token:  14, Score: -2.847306728363037
Token:  11, Score: -2.8585362434387207
Token:  1, Score: -2.877161979675293
Token:  10, Score: -2.9321107864379883
Token:  6, Score: -2.982785224914551
Token:  18, Score: -3.0570476055145264
Token:  20, Score: -3.079172134399414
Token:  5, Score: -3.111320972442627
Token:  13, Score: -3.117424726486206
Token:  9, Score: -3.125835657119751
Token:  16, Score: -3.1476120948791504
Token:  7, Score: -3.1622045040130615
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The correct answer has the 17th highest score. A lot of numbers appear in the top 10,
showing that the model is more or less randomly guessing the answer, which is not
surprising for a smaller model like GPT Neo.

The OpenAI API provides the logprobs parameter that allows you to specify the
number of tokens along with their log probabilities that need to be returned. As of
the book’s writing, only the logprobs of the 20 most probable tokens are available.
The tokens returned are in order of their log probabilities:

import openai
openai.api_key = <Insert your OpenAI key>

openai.Completion.create(
  model="gpt-4o",
  prompt="I had 25 eggs. I gave away 12. I now have ",
  max_tokens=1,
  temperature=0,
  logprobs = 10
)

This code calls the older gpt-4o model, asking it to generate a maximum of one
token. The output is:

"top_logprobs": [
          {
            "\n": -0.08367541,
            " 13": -2.8566456,
            "____": -4.579212,
            "_____": -4.978668,
            "________": -6.220278
            …
          }

gpt-4o is pretty confident that the answer is 13, and rightfully so. The rest of the top
probability tokens are all related to output formatting.

During inference, we don’t necessarily need to generate the token
with the highest score. Several decoding strategies allow you to gen‐
erate more diverse text. We will discuss these strategies in
Chapter 5.

108 | Chapter 4: Architectures and Learning Objectives



Exercise
Ask the gpt-4o model to solve individual crossword clues in the Boatload Puzzles
Crossword. You may have to iterate with the prompt. A good start would be “Solve
this crossword and answer in one word. The clue is <X> and it is a <Y> letter word.
The answer is: Set max_tokens=3 to account for formatting tokens. Analyze the log
prob’s output. Is it dangerously close to getting it right/wrong? How many clues does
it answer correctly?

Prefix Language Modeling
Prefix LM is similar to the FLM setting. The difference is that FLM is fully causal, i.e.,
in a left-to-right writing system like English, tokens do not attend to tokens to the
right (future). In the prefix LM setting, a part of the text sequence, called the prefix, is
allowed to attend to future tokens in the prefix. The prefix part is thus noncausal. For
training prefix LMs, a random prefix length is sampled, and the loss is calculated over
only the tokens in the suffix.

Masked Language Modeling
Figure 4-8 shows the canonical MLM objective at work.

Figure 4-8. Masked Language Modeling in BERT

In the MLM setting, rather than predict the next token in a sequence, we ask the
model to predict masked tokens within the sequence. In the most basic form of MLM
implemented in the BERT model, 15% of tokens are randomly chosen to be masked
and are replaced with a special mask token, and the language model is asked to pre‐
dict the original tokens.

The T5 model creators used a modification of the original MLM objective. In this
variant, 15% of tokens are randomly chosen to be removed from a sequence. Consec‐
utive dropped-out tokens are replaced by a single unique special token called the sen‐
tinel token. The model is then asked to predict and generate the dropped tokens,
delineated by the sentinel tokens.
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As an example, consider this sequence:

Tempura has always been a source of conflict in the family due to unexplained reasons

Let’s say we drop the tokens “has,” “always,” “of,” and “conflict.” The sequence is now:

Tempura <S1> been a source <S2> in the family due to unexplained reasons

with S1, S2 being the sentinel tokens. The model is expected to output:

<S1> has always <S2> of conflict <E>

The output sequence is terminated by a special token indicating the end of the
sequence.

Generating only the dropped tokens and not the entire sequence is computationally
more efficient and saves training time. Note that unlike in Full Language Modeling,
the loss is calculated over only a small proportion of tokens (the masked tokens) in
the input sequence.

Let’s explore this on Hugging Face:

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("t5-3b")
model = T5ForConditionalGeneration.from_pretrained("t5-3b")

input_ids = tokenizer("Tempura <extra_id_0>  been a source <extra_id_1> in the
family due to unexplained reasons", return_tensors="pt").input_ids
targets = tokenizer("<extra_id_0> has always <extra_id_1> of conflict

<extra_id_2>", return_tensors="pt").input_ids
loss = model(input_ids=input_ids, labels=labels).loss

The targets can be prepared using a simple templating function.

Exercise
Play around with different masking strategies. Specifically:

• Change the masking rate. What happens if you mask 30% or 50% of tokens?
• Change the masking strategy. Can you do better than random masking? What

heuristics allow you to mask tokens that would contribute more to learning?

More generally, MLM can be interpreted as a denoising autoencoder. You corrupt your
input by adding noise (masking, dropping tokens), and then you train a model to
regenerate the original input. BART takes this to the next level by using five different
types of span corruptions:
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Random token masking
Figure 4-9 depicts the corruption and denoising steps.

Figure 4-9. Random token masking in BART

Random token deletion
The model needs to predict the positions in the text where tokens have been
deleted. Figure 4-10 depicts the corruption and denoising steps.

Figure 4-10. Random token deletion in BART

Span masking
Text spans are sampled from text, with span lengths coming from a Poisson dis‐
tribution. This means zero-length spans are possible. The spans are deleted from
the text and replaced with a single mask token. Therefore, the model now has to
also predict the number of tokens deleted. Figure 4-11 depicts the corruption and
denoising steps.

Figure 4-11. Span masking in BART
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Document shuffling
Sentences in the input document are shuffled. The model is taught to arrange
them in the right order. Figure 4-12 depicts the corruption and denoising steps.

Figure 4-12. Document shuffling objective in BART

Document rotation
The document is rotated so that it starts from an arbitrary token. The model is
trained to detect the correct start of the document. Figure 4-13 depicts the cor‐
ruption and denoising steps.

Figure 4-13. Document rotation objective in BART

Which Learning Objectives Are Better?
It has been shown that models trained with FLM are better at generation, and models
trained with MLM are better at classification tasks. However, it is inefficient to use
different language models for different use cases. The consolidation effect continues
to take hold, with the introduction of UL2, a paradigm that combines the best of dif‐
ferent learning objective types in a single model.

UL2 mimics the effect of PLMs, MLMs, and PrefixLMs in a single paradigm called
Mixture of Denoisers.

The denoisers used are as follows:

R-Denoiser
This is similar to the T5 span corruption task. Spans between length 2–5 tokens
are replaced by a single mask token. Figure 4-14 depicts the workings of the R-
denoiser.

Figure 4-14. UL2’s R-Denoiser

112 | Chapter 4: Architectures and Learning Objectives

https://oreil.ly/xJc3U


S-Denoiser
Similar to prefix LM, the text is divided into a prefix and a suffix. The suffix is
masked, while the prefix has access to bidirectional context. Figure 4-15 depicts
the workings of the S-Denoiser.

Figure 4-15. UL2’s S-Denoiser

X-Denoiser
This stands for extreme denoising, where a large proportion of text is masked
(often over 50%). Figure 4-16 depicts the workings of the X-Denoiser.

Figure 4-16. UL2’s X-Denoiser

Pre-Training Models
Now that we have learned about the ingredients that go into a language model in
detail, let’s learn how to pre-train one from scratch.

The language models of today are learning to model two types of concepts with one
model:

• Language, the vehicle used to communicate facts, opinions, and feelings.
• The underlying phenomena that led to the construction of text in the language.

For many application areas, we are far more interested in learning to model the latter
than the former. While a language model that is fluent in the language is welcome, we
would prefer to see it get better at domains like science or law and skills like reason‐
ing and arithmetic.
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These concepts and skills are expressed in languages like English, which primarily
serve a social function. Human languages are inherently ambiguous, contain lots of
redundancies, and in general are inefficient vehicles to transmit underlying concepts.

This brings us to the question: are human languages even the best vehicle for lan‐
guage models to learn underlying skills and concepts? Can we separate the process of
modeling the language from modeling the underlying concepts expressed through
language?

Let’s put this theory to the test using an example. Consider training an LLM from
scratch to learn to play the game of chess.

Recall the ingredients of a language model from Chapter 2. We need:

• A pre-training dataset
• A vocabulary and tokenization scheme
• A model architecture
• A learning objective

For training the chess language model, we can choose the Transformer architecture
with the next-token prediction learning objective, which is the de facto paradigm
used today.

For the pre-training dataset, we can use the chess games dataset from Lichess, con‐
taining billions of games. We select a subset of 20 million chess games for our train‐
ing.

This dataset is in the Portable Game Notation (PGN) format, which is used to repre‐
sent the sequence of chess moves in a concise notation.

Finally, we have to choose the vocabulary of the model. Since the only purpose of this
model is to learn chess, we don’t need to support an extensive English vocabulary. In
fact, we can take advantage of the PGN notation to assign tokens to specific chess
concepts.

Here is an example of a chess game in PGN format, taken from pgnmentor.com:

1. e4 c5 2. Nf3 a6 3. d3 g6 4. g3 Bg7 5. Bg2 b5 6. O-O Bb7 7. c3 e5 8. a3 Ne7
9. b4 d6 10. Nbd2 O-O 11. Nb3 Nd7 12. Be3 Rc8 13. Rc1 h6 14. Nfd2 f5 15. f4
Kh7 16. Qe2 cxb4 17. axb4 exf4 18. Bxf4 Rxc3 19. Rxc3 Bxc3 20. Bxd6 Qb6+ 21.
Bc5 Nxc5 22. bxc5 Qe6 23. d4 Rd8 24. Qd3 Bxd2 25. Nxd2 fxe4 26. Nxe4 Nf5 27.
d5 Qe5 28. g4 Ne7 29. Rf7+ Kg8 30. Qf1 Nxd5 31. Rxb7 Qd4+ 32. Kh1 Rf8 33. Qg1
Ne3 34. Re7 a5 35. c6 a4 36. Qxe3 Qxe3 37. Nf6+ Rxf6 38. Rxe3 Rd6 39. h4 Rd1+
40. Kh2 b4 41. c7 1-0

The rows of the board are assigned letters a–h and the columns are assigned numbers
1–8. Except for pawns, each piece type is assigned a capital letter, with N for knight, R
for rook, B for bishop, Q for queen, and K for king. A + appended to a move indicates
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a check, a % appended to the move indicates a checkmate, and 0-0 is used to indicate
castling. If you are unfamiliar with the rules of chess, refer to this piece for a primer.

Based on this notation, the vocabulary can consist of:

• A separate token for each square on the board, with 64 total (a1, a2, a3…h6, h7,
h8)

• A separate token for each piece type (N, B, R, K, Q)
• Tokens for move numbers (1., 2., 3., etc.)
• Tokens for special moves (+ for check, x for capture, etc.)

Now, let’s train a language model from scratch on this chess dataset using our special
domain-specific vocabulary. The model is directly learning from the PGN notation
with no human language text present in the dataset. The book’s GitHub repo contains
the code and setup for training this model.

After training the model for three epochs, let’s test the model’s ability to play chess.
We can see that the model seems to have learned the rules of the game without having
to be provided the rules explicitly in natural language. In fact, the model can even
beat human players some of the time and can execute moves like castling.

Exercise
While the model trained using the reference implementation is impressive enough to
complete chess games and occasionally beat players, we can do a lot better. This can
be done by increasing the size of the model, increasing the size of the dataset, and
increasing the quality of the dataset. Try improving the model along each of these
axes and track the improvement in its chess-playing abilities.

Note that this model was able to learn the concepts (chess) using a domain-specific
language (PGN). How will we fare if the concepts were taught in natural language?

Let’s explore this in another experiment. Take the same dataset used to pre-train the
chess language model and run it through an LLM to convert each move in PGN to a
sentence in English. An example game would look like:

White moves pawn to e4

Black moves bishop to g7

and so on. Train a new language model on the same number of games as the previous
one, but this time with the English-language dataset. Let the vocabulary of this model
be the standard English vocabulary generated by training the tokenizer over the
training set.
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How does this compare to the chess LM trained on the PGN dataset? The model
trained on English descriptions of chess moves performs worse and doesn’t seem to
have understood the rules of the game yet, despite being trained on the same number
of games as the other model.

This shows that natural language is not necessarily the most efficient vehicle for a
model to learn skills and concepts, and domain-specific languages and notations per‐
form better.

Thus, language design is an important skill to acquire, enabling you to create
domain-specific languages for learning concepts and skills. For your application
areas, you could use existing domain-specific languages or create a new one yourself.

Summary
In this chapter, we discussed the various components of the Transformer architecture
in detail, including self-attention, feedforward networks, position encodings, and
layer normalization. We also discussed several variants and configurations such as
encoder-only, encoder-decoder, decoder-only, and MoE models. Finally, we learned
how to put our knowledge of language models together to train our own model from
scratch and how to design domain-specific languages for more efficient learning.
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PART II

Utilizing LLMs

In this part of the book, we will explore how to harness and adapt pre-trained LLMs
to solve various kinds of language tasks that we introduced in Chapter 1. To make the
best use of these chapters, I strongly suggest that you experiment hands-on with all
the techniques introduced, as well as run the corresponding tutorials from the
accompanying GitHub repo for this book.





CHAPTER 5

Adapting LLMs to Your Use Case

In this chapter, we will continue with our journey through the LLM landscape,
exploring the various LLMs available for commercial use and providing pointers on
how to choose the right LLM for your task. We will also examine how to load LLMs
of various sizes and run inference on them. We will then decipher various decoding
strategies for text generation. We will also investigate how to interpret the outputs
and intermediate results from language models, surveying interpretability tools like
LIT-NLP.

Navigating the LLM Landscape
Seemingly a new LLM is being released every few days, many claiming to be state of
the art. Most of these LLMs are not very different from each other, so you need not
spend too much time tracking new LLM releases. This book’s GitHub repository
attempts to keep track of the major releases, but I don’t promise it will be complete.

Nevertheless, it is a good idea to have a broad understanding of the different types of
LLM providers out there, the kinds of LLMs being made available, and the copyright
and licensing implications. Therefore, let’s now explore the LLM landscape through
this lens and understand the choices at our disposal.

Who Are the LLM providers?
LLM providers can be broadly categorized into the following types:

Companies providing proprietary LLMs
These include companies like OpenAI (GPT), Google (Gemini), Anthropic
(Claude), Cohere, AI21, etc. that train proprietary LLMs and make them avail‐
able as an API endpoint (LLM-as-a-service). Many of these companies have also
partnered with cloud providers that facilitate access to these models as a fully
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managed service. The relevant offerings from the major cloud providers are
Amazon Bedrock and SageMaker JumpStart by Amazon, Vertex AI by Google,
and Azure OpenAI by Microsoft.

Companies providing open source LLMs
These include companies that make the LLM weights public and monetize
through providing deployment services (Together AI), companies whose primary
business would benefit from more LLM adoption (Cerebras), and research labs
that have been releasing LLMs since the early days of Transformers (Microsoft,
Google, Meta, Salesforce, etc.). Note that companies like Google have released
both proprietary and open source LLMs.

Self-organizing open source collectives and community research organizations
This includes the pioneering community research organization Eleuther AI, and
Big Science. These organizations rely on grants for compute infrastructure.

Academia and government
Due to the high capital costs, not many LLMs have come out of academia so far.
Examples of LLMs from government/academia include the Abu Dhabi
government-funded Technology Innovation Institute, which released the Falcon
model, and Tsinghua University, which released the GLM model.

Table 5-1 shows the players in the LLM space, the category of entity they belong to,
and the pre-trained models they have published.

Table 5-1. LLM Providers

Name Category Pre-trained models released
Google Company BERT, MobileBERT, T5, FLAN-T5, ByT5, Canine, UL2, Flan-UL2,

Pegasus PaLM, PaLMV2, ELECTRA, Tapas, Switch

Microsoft Company DeBERTa, DialoGPT, BioGPT, MPNet

OpenAI Company GPT-2, GPT-3, GPT-3.5, GPT-4

Amazon Company Titan

Anthropic Company Claude, Claude-2

Cohere Company Cohere Command, Cohere Base

Meta Company RoBERTa, Llama, Llama 2, BART, OPT, Galactica

Salesforce Company CTRL, XGen, EinsteinGPT

MosaicML Company (Acquired by
Databricks)

MPT

Cerebras Company Cerebras-GPT, BTLM

Databricks Company Dolly-V1, Dolly-V2

Stability AI Company StableLM

Together AI Company RedPajama

Ontocord AI Nonprofit MDEL
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Name Category Pre-trained models released
Eleuther AI Nonprofit Pythia, GPT Neo, GPT-NeoX, GPT-J

Big Science Nonprofit BLOOM

Tsinghua University Academic GLM

Technology Innovation Institute Academic Falcon

UC Berkeley Academic OpenLLaMA

Adept AI Company Persimmon

Mistral AI Company Mistral

AI21 Labs Company Jurassic

X.AI Company Grok

Model Flavors
Each model is usually released with multiple variants. It is customary to release
different-sized variants of the same model. As an example, Llama 2 comes in 7B, 13B,
and 70B sizes, where these numbers refer to the number of parameters in the model.

These days, LLM providers augment their pre-trained models in various ways to
make them more amenable to user tasks. The augmentation process typically involves
fine-tuning the model in some way, often incorporating human supervision. Some of
these fine-tuning exercises can cost millions of dollars in terms of human annota‐
tions. We will refer to pre-trained models that have not undergone any augmentation
as base models.

The following sections describe some of the popular augmentation types.

Instruct-models
Instruct-models, or instruction-tuned models, are specialized in following instruc‐
tions written in natural language. While base models possess powerful capabilities,
they are akin to a rebellious teenager; effectively interacting with them is possible
only after tediously engineering the right prompts through trial and error, which tend
to be brittle. This is because the base models are trained on either denoising objec‐
tives or next-word prediction objectives, which are different from the tasks users typ‐
ically want to solve. By instruction-tuning the base model, the resulting model is able
to more effectively respond to human instructions and be helpful.

A typical instruction-tuning dataset consists of a diverse set of tasks expressed in nat‐
ural language, along with input-output pairs. In Chapter 6, we will explore various
techniques to construct instruction-tuning datasets and demonstrate how to perform
instruction-tuning on a model.

Here is an example from a popular instruction-tuning dataset called FLAN.
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Prompt: “What is the sentiment of the following review? The pizza was ok but the ser‐
vice was terrible. I stopped in for a quick lunch and got the slice special but it ended up
taking an hour after waiting several minutes for someone at the front counter and then
again for the slices. The place was empty other than myself, yet I couldn’t get any help/
service. OPTIONS: - negative - positive”
FLAN: “Negative”

In this example, the input consists of an instruction, “What is the sentiment of the
following review?” expressed in a way that humans would naturally express, along
with the input and output. The input is the actual review and the output is the solu‐
tion to the task, either generated by a model or annotated by a human.

Figure 5-1 demonstrates the instruction-tuning process.

Figure 5-1. Instruction-tuning process

Instruction-tuning is one of several techniques that come under the umbrella of
supervised fine-tuning (SFT). In addition to improving the ability of a model to
respond effectively to user tasks, SFT-based approaches can also be used to make it
less harmful by training on safety datasets that help align model outputs with the val‐
ues and preferences of the model creators.

More advanced techniques to achieve this alignment include reinforcement learning-
based methods like reinforcement learning from human feedback (RLHF) and rein‐
forcement learning from AI feedback (RLAIF).

In RLHF training, human annotators select or rank candidate outputs based on cer‐
tain criteria, like helpfulness and harmlessness. These annotations are used to
iteratively train a reward model, which ultimately leads to the LLM being more con‐
trollable, for example, by refusing to answer inappropriate requests from users.

Figure 5-2 shows the RLHF training process.
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Figure 5-2. Reinforcement learning from human feedback

We will cover RLHF and other alignment techniques in detail in Chapter 8.

Instead of relying on human feedback for alignment training, one can also leverage
LLMs to choose between outputs based on their adherence to a set of principles
(don’t be racist, don’t be rude, etc.). This technique was introduced by Anthropic and
is called RLAIF. In this technique, humans only provide a desired set of principles
and values (referred to as Constitutional AI), and the LLM is tasked with determining
whether its outputs adhere to these principles.

Instruction-tuned models often take the suffix instruct, like RedPajama-Instruct.

Instruction Tuning Can Have Side Effects
Is it beneficial to always prefer using an instruction-tuned variant over the base model
for your tasks? In most cases, yes. However, keep in mind that any tuning on top of a
base model inevitably causes some regressions, thus losing access to some of the capa‐
bilities possessed by the base model.

Chung et al. demonstrated an example of this. They noticed that instruction-tuning
using the FLAN dataset worsened chain-of-thought (CoT) capabilities, which are cru‐
cial for reasoning tasks. However, they also observed that adding CoT data to their
instruction-tuning datasets increased the reasoning capabilities of the model com‐
pared to the base variant.

The side effects of instruction tuning are not well explored, so it is a good idea to
experiment with the base model and see if you are losing out on any capabilities.

Similarly, alignment-tuned models are calibrated to respond to user queries in
accordance with the principles, values, and ethics of the LLM provider. These may
not be the same values that you or your organization hold.

In all these cases you can perform your own instruction and alignment tuning on the
base model, the details of which are explored in the next three chapters. We will also
analyze in what situations is it worthwhile to perform your own instruction/align‐
ment tuning.
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Chat-models
Chat-models are instruction-tuned models that are optimized for multi-turn dialog.
Examples include ChatGPT, Llama 2-Chat, MPT-Chat, OpenAssistant, etc.

Long-context models
As discussed in Chapter 1, Transformer-based LLMs have a limited context length. To
recap, context length typically refers to the sum of the number of input and output
tokens processed by the model per invocation. Typical context lengths of modern
LLMs range from 8,000 to 128,000 tokens, with some variants of Gemini supporting
over a million tokens. Some models are released with a long-context variant; for
example GPT 3.5 comes with a default 4K context size but also has a 16K context size
variant. MPT also has a long-context variant that has been trained on 65k context
length but can potentially be used for even longer contexts during inference.

No Free Lunch for Long-Context Models
As of yet, it has been shown that performance is not sustained as context length
increases. LLMs tend to forget things in the middle of the context window. This is
because of the characteristics of the documents that LLMs are trained on, wherein the
most relevant context of a document necessary to predict the next token is more often
found near the beginning or end of the context. In my experiments, I have observed
that 8K context size is the tipping point for most models beyond which performance
starts to degrade. You also can’t just stuff your entire context with instructions; LLMs
can handle only a limited set of instructions in a prompt, beyond which performance
drops.

However, long-context models are one area of LLMs where we are seeing the most
rapid improvements. Claude and Gemini long-context models have shown excellent
progress in sustaining performance over long contexts.

Various tests have been devised for measuring long-context performance, including
needle in a haystack tests. We will discuss the shortcomings of these evaluation
approaches and propose more holistic evaluation schemes in Chapter 12.

Domain-adapted or task-adapted models
LLM providers also might perform fine-tuning on specific tasks like summarization
or financial sentiment analysis. They may also produce distilled versions of the
model, where a smaller model is fine-tuned on outputs from the larger model for a
particular task. Examples of task-specific fine-tunes include FinBERT, which is fine-
tuned on financial sentiment analysis datasets, and UniversalNER, which is distilled
using named-entity-recognition data.
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Open Source LLMs
Open source is often used as a catch-all phrase to refer to models with some aspect
that is publicly available. We will define open source as:

Software artifacts that are released under a license that allows users to study, use, mod‐
ify, and redistribute them to anyone and for any purpose.

For a more formal and comprehensive definition of open source software, refer to the
Open Source Initiative’s official definition.

For an LLM to be considered fully open, all of the following needs to be published:

Model weights
This includes all the parameters of the model and the model configuration. Hav‐
ing access to this enables us to add to or modify the model parameters in any way
we deem fit. Model checkpoints at various stages of training are also encouraged
to be released.

Model code
Releasing only the weights of the model is akin to providing a software binary
without providing the source code. Model code not only includes model training
code and hyperparameter settings but also code used for pre-processing training
data. Releasing information about infrastructure setup and configuration also
goes a long way toward enhancing model reproducibility. In most cases, even
with model code fully available, models may not be easily reproducible due to
resource limitations and the nondeterministic nature of training.

Training data
This includes the training data used for the model, and ideally information or
code on how it was sourced. It is also encouraged to release data at different
stages of transformation of the data preprocessing pipeline, as well as the order in
which the data was fed to the model. Training data is the component that is least
published by model providers. Thus, most open source models are not fully open
because the dataset is not public.

Training data is often not released due to competitive reasons. As discussed in Chap‐
ters 3 and 4, most LLMs today use variants of the same architecture and training
code. The distinguishing factor can often be the data content and preprocessing. Parts
of the training data might be acquired using a licensing agreement, which prohibits
the model provider from releasing the data publicly.

Another reason for not releasing training data is that there are unresolved legal issues
pertaining to training data, especially surrounding copyright. As an example, The Pile
dataset created by Eleuther AI is no longer available at the official link because it con‐
tains text from copyrighted books (the Books3 dataset). Note that The Pile is
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pre-processed so the books are not in human-readable form and are not easily repro‐
ducible, as they are split, shuffled, and mixed.

Most training data is sourced from the open web and thus may potentially contain
violent or sexual content that is illegal in certain jurisdictions. Despite the best inten‐
tions and rigorous filtering, some of these data might still be present in the final data‐
set. Thus many datasets that have been previously open are no longer open, LAION’s
image datasets being one example.

Ultimately, the license under which the model has been released determines the terms
under which you can use, modify, or redistribute the original or modified LLM.
Broadly speaking, open LLMs are distributed under three types of licenses:

Noncommercial
These licenses only allow research and personal use and prohibit the use of the
model for commercial purposes. In many cases, the model artifacts are gated
through an application form where a user would have to justify their need for
access by providing a compelling research use case.

Copy-left
This type of license permits commercial usage, but all source or derivative work
needs to be released under the same license, thus making it harder to develop
proprietary modifications. The degree to which this condition applies depends
on the specific license being used.

Permissive
This type of license permits commercial usage, including modifying and redis‐
tributing it in proprietary applications, i.e., there is no obligation for the redis‐
tribution to be open source. Some licenses in this category also permit patents.

New types of licenses are being devised that restrict usage of the model for particular
use cases, often for safety reasons. An example of this is the Open RAIL-M license,
which prohibits usage of the model in use cases like providing medical advice, law
enforcement, immigration and asylum processes, etc. For a full list of restricted use
cases, see Attachment A of the license.

As a practitioner intending to use open LLMs in your organization for commercial
reasons, it is best to use ones with permissive licenses. Popular examples of permis‐
sive licenses include the Apache 2.0 and the MIT license.

Creative Commons (CC) licenses are a popular class of licenses used to distribute
open LLMs.The licenses have names like CC-BY-NC-SA, etc. Here is an easy way to
remember what these names mean:

BY
If the license contains this term, it means attribution is needed. If it contains only
CC-BY, it means the license is permissive.
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SA
If the license contains this term, it means redistribution should occur under the
same terms as this license. In other words, it is a copy-left license.

NC
NC stands for noncommercial. Thus, if the license contains this term, the model
can only be used for research or personal use cases.

ND
ND stands for no derivatives. If the license contains this term, then distribution
of modifications to the model is not allowed.

Today, models that have open weights and open code and are
released under a license that allows redistribution to anyone and
for any use case are considered open source models. Arguably,
however, access to the training data is also crucial to inspect and
study the model, which is part of the open source definition we
introduced earlier.

Table 5-2 shows the various LLMs available, the licenses under which they are pub‐
lished, and their available sizes and flavors. Note that the LLM may be instruction-
tuned or chat-tuned by a different entity than the one that pre-trained the LLM.

Table 5-2. List of available LLMs

Name Availability Sizes Variants
GPT-4 Proprietary Unknown GPT-4 32K context, GPT-4 8K context

GPT-3.5 Turbo Proprietary Unknown GPT-3.5 4K context, GPT-3.5 16K context

Claude Instant Proprietary Unknown -

Claude 2 Proprietary Unknown -

MPT Apache 2.0 1B, 7B, 30B MPT 65K storywriter

CerebrasGPT Apache 2.0 111M, 256M, 590M, 1.3B, 2.7B,
6.7B, 13B

CerebrasGPT

Stability LM CC-BY-SA 7B -

RedPajama Apache 2.0 3B, 7B RedPajama-INCITE-Instruct, RedPajama-
INCITE-Chat

GPT-Neo X Apache 2.0 20B -

BLOOM Open, restricted use 176B BLOOMZ

Llama Open, no commercial use 7B, 13B, 33B, 65B -

Llama 2 Open, commercial use 7B, 13B, 70B Llama 2-Chat

Zephyr Apache 2.0 7B -

Gemma Open, restricted use 2B, 7B Gemma-Instruction Tuned
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How to Choose an LLM for Your Task
Given the plethora of options available, how do you ensure you choose the right LLM
for your task? Depending on your situation, there are a multitude of criteria to con‐
sider, including:

Cost
This includes inference or fine-tuning costs, and costs associated with building
software scaffolding, monitoring and observability, deployment and maintenance
(collectively referred to as LLMOps).

Time per output token (TPOT)
This is a metric used to measure the speed of text generation as experienced by
the end user.

Task performance
This refers to the performance requirements of the task and the relevant metrics
like precision or accuracy. What level of performance is good enough?

Type of tasks
The nature of the tasks the LLM will be used for, like summarization, question
answering, classification, etc.

Capabilities required
Examples of capabilities include arithmetic reasoning, logical reasoning, plan‐
ning, task decomposition, etc. A lot of these capabilities, to the extent that they
actually exist or approximate, are emergent properties of an LLM as discussed in
Chapter 1, and are not exhibited by smaller models.

Licensing
You can use only those models that allow your mode of usage. Even models that
explicitly allow commercial use can have restrictions on certain types of use
cases. For example, as noted earlier, the Big Science OpenRAIL-M license
restricts the usage of the LLM in use cases pertaining to law enforcement, immi‐
gration, or asylum processes.

In-house ML/MLOps talent
The strength of in-house talent determines the customizations you can afford.
For example, do you have enough in-house talent for building inference optimi‐
zation systems?

Other nonfunctional criteria
This includes safety, security, privacy, etc. Cloud providers and startups are
already implementing solutions that can address these issues.
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Exercise
For your application, prepare an ordered list of priorities and determine which ones
are fixed and which ones are flexible. For example, precision needs to be at least X or
TPOT needs to be at least Y.

Based on the determined priorities, what LLM would you choose?

You may have to choose between proprietary and open source LLMs.

Open Source Versus Proprietary LLMs
Debates about the merits of open source versus proprietary software have been com‐
monplace in the tech industry for several decades now, and we are seeing it become
increasingly relevant in the realm of LLMs as well. The biggest advantage of open
source models are the transparency and flexibility they provide, not necessarily the
cost. Self-hosting open source LLMs can incur a lot of engineering overhead and
compute/memory costs, and using managed services might not always be able to
match proprietary models in terms of latency, throughput, and inference cost. More‐
over, many open source LLMs are not easily accessible through managed services and
other third-party deployment options. This situation is bound to change dramatically
as the field matures, but in the meanwhile, run through your calculations for your
specific situation to determine the costs incurred for using each (type of) model.

The flexibility provided by open source models helps with your ability to debug,
interpret, and augment the LLM with any kind of training/fine-tuning you choose,
instead of the restricted avenues made available by the LLM provider. This allows you
to more substantially align the LLM to your preferences and values instead of the
ones decided by the LLM provider. Having full availability of all the token probabili‐
ties (logits) is a superpower, as we will see throughout the book.

The availability of open source LLMs has enabled teams to develop models and appli‐
cations that might not be lucrative for larger companies with a profit motive, like
fine-tuning models to support low-resource languages (languages that do not have a
significant data footprint on the internet, like regional languages of India or Indige‐
nous languages of Canada). An example is the Kannada Llama model, built over
Llama 2 by continually pre-training and fine-tuning on tokens from the Kannada
language, a regional language of India.

Not all open source models are fully transparent. As mentioned earlier, most for-
profit companies that release open source LLMs do not make the training datasets
public. For instance, Meta hasn’t disclosed all the details of the training datasets used
to train the Llama 2 model. Knowing which datasets are used to train the model can
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help you assess whether there is test set contamination and understand what kind of
knowledge you can expect the LLM to possess.

As of this book’s writing, open source models like Llama 3.2 and DeepSeek v3 have
more or less caught up to state-of-the-art proprietary models from OpenAI or
Anthropic. However, there is a new gap developing between proprietary and open
source models in the realm of reasoning models like OpenAI’s o3, that use inference-
time compute techniques (discussed in Chapter 8). Throughout this book, we will
showcase scenarios where open source models have an advantage.

Always check if the model provider has an active developer com‐
munity on GitHub/Discord/Slack, and that the development team
is actively engaged in those channels, responding to user comments
and questions. I recommend preferring models with active devel‐
oper communities, provided they satisfy your primary criteria.

LLM Evaluation
We will start this section with a caveat: evaluating LLMs is probably the most chal‐
lenging task in the LLM space at present. Current methods of benchmarking are bro‐
ken, easily gamed, and hard to interpret. Nevertheless, benchmarks are still a useful
starting point on your road to evaluation. We will start by looking at current public
benchmarks and then discuss how you can build more holistic internal benchmarks.

To evaluate LLMs on their task performance, there are a lot of benchmark datasets
that test a wide variety of skills. Not all skills are relevant to your use case, so you can
choose to focus on specific benchmarks that test the skills you need the LLM to per‐
form well on.

The leaderboard on these benchmark tests changes very often, especially if only open
source models are being evaluated, but that does not mean you need to change the
LLMs you use every time there is a new leader on the board. Usually, the differences
between the top models are quite marginal. The fine-grained choice of LLM usually
isn’t the most important criteria determining the success of your task, and you are
better off spending that bandwidth working on cleaning and understanding your
data, which is still the most important component of the project.

Let’s look at a few popular ways in which the field is evaluating LLMs.

Eleuther AI LM Evaluation Harness
Through the LM Evaluation Harness, Eleuther AI supports benchmarking on over
400 different benchmark tasks, evaluating skills as varied as open-domain question
answering, arithmetic and logical reasoning, linguistic tasks, machine translation,
toxic language detection, etc. You can use this tool to evaluate any model on the Hug‐
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ging Face Hub, a platform containing thousands of pre-trained and fine-tuned mod‐
els, on the benchmarks of your choice.

Here is an example from bigbench_formal_fallacies_syllogisms_negation, one
of the benchmark tasks:

 {
    "input": "\"Some football fans admire various clubs, others love
    only a single team. But who is a fan of whom precisely? The
    following argument pertains to this question: First premise: Mario
    is a friend of FK \u017dalgiris Vilnius. Second premise: Being a
    follower of F.C. Copenhagen is necessary for being a friend of FK
    \u017dalgiris Vilnius. It follows that Mario is a follower of F.C.
    Copenhagen.\"\n Is the argument, given the explicitly stated
    premises, deductively valid or invalid?",
    "target_scores": {
        "valid": 1,
        "invalid": 0
    }

In this task, the model is asked to spot logical fallacies by deducing whether the pre‐
sented argument is valid given the premises.

Exercise
Let’s evaluate a few models on this task. Follow the instructions to install the harness.
Now, you can run this code for evaluating Falcon 7B:

   lm_eval --model hf-causal \
           --model_args pretrained=tiiuae/falcon-7b \
           --tasks bigbench_formal_fallacies_syllogisms_negation \
           --device cuda:0

Try this for a few other 7B models, including Llama, Gemma, Mistral, MPT, RedPa‐
jama with both the base versions and the instruction-tuned versions where available.
Do you find a large difference between their models in terms of performance?

Additionally, prepare ten more questions for the same task on your own (you can use
an LLM to generate candidate questions you can then modify) pertaining to various
domains. Do the models exhibit the same level of performance on your questions as
they do on the benchmark tests?

There is also support for evaluation of proprietary models using this harness. For
example, here is how you would evaluate OpenAI models:

export OPENAI_API_SECRET_KEY=<Key>
python main.py \
lm_eval --model openai-completions \
        --model_args model=gpt-3.5-turbo \
         --tasks bigbench_formal_fallacies_syllogisms_negation
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Exercise
Compare GPT 4o, 4o-mini, o1, and o3 on the logical fallacies task, including both the
benchmark sets and the ones you prepared. How do they compare relative to each
other and how do they fare compared to open source models?

While choosing or developing a benchmarking task to evaluate, I
recommend focusing on picking ones that test the capabilities
needed to solve the task of your interest, rather than the actual task
itself. For example, if you are building a summarizer application
that needs to perform a lot of logical reasoning to generate the
summaries, it is better to focus on benchmark tests that directly
test logical reasoning capabilities than ones that test summarization
performance.

Hugging Face Open LLM Leaderboard
As of the book’s writing, the Open LLM Leaderboard uses Eleuther AI’s LM Evalua‐
tion Harness to evaluate the performance of models on six benchmark tasks:

Massive Multitask Language Understanding (MMLU)
This test evaluates the LLM on knowledge-intensive tasks, drawing from fields
like US history, biology, mathematics, and more than 50 other subjects in a mul‐
tiple choice framework.

AI2 Reasoning Challenge (ARC)
This test evaluates the LLM on multiple-choice grade school science questions
that need complex reasoning as well as world knowledge to answer.

Hellaswag
This test evaluates commonsense reasoning by providing the LLM with a situa‐
tion and asking it to predict what might happen next out of the given choices,
based on common sense.

TruthfulQA
This test evaluates the LLM’s ability to provide answers that don’t contain
falsehoods.

Winogrande
This test is composed of fill-in-the-blank questions that test commonsense
reasoning.

GSM8K
This test evaluates the LLM’s ability to complete grade school math problems
involving a sequence of basic arithmetic operations.

132 | Chapter 5: Adapting LLMs to Your Use Case

https://oreil.ly/tspBY


Figure 5-3 shows a snapshot of the LLM leaderboard as of the time of the book’s writ‐
ing. We can see that:

• Larger models perform better.
• Instruction-tuned or fine-tuned variants of models perform better.

Figure 5-3. Snapshot of the Open LLM Leaderboard

Exercise
It is suspected that a large number of models may have been trained on data contami‐
nated with the GSM8K dataset. Explore the GSM8K dataset, feed only part of the
question, and check if the models you evaluated during the previous exercises cor‐
rectly complete the question. Also, change the numbers in the problems and verify if
the performance remains the same.

The validity of these benchmarks are in question as complete test set decontamina‐
tion is not guaranteed. Model providers are also optimizing to solve these bench‐
marks, thus reducing the value of these benchmarks to serve as reliable estimators of
general-purpose performance.

HELM
Holistic Evaluation of Language Models (HELM) is an evaluation framework by Stan‐
ford that aims to calculate a wide variety of metrics over a range of benchmark tasks.
Fifty-nine metrics are calculated overall, testing accuracy, calibration, robustness,
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fairness, bias, toxicity, efficiency, summarization performance, copyright infringe‐
ment, and more. The tasks tested include question answering, summarization, text
classification, information retrieval, sentiment analysis, and toxicity detection.

Figure 5-4 shows a snapshot of the HELM leaderboard as of the time of the book’s
writing.

Figure 5-4. Snapshot of the HELM leaderboard

Benchmark Evaluation Is Unreliable
You can evaluate the same task in multiple ways. For example, consider the MMLU
task. Questions in the MMLU task have four choices as answers: A, B, C, D. How do
we evaluate performance on a multiple choice question-answering task?

• You can pick the token that has the highest output probability out of the four
options (A, B, C, D).

• You can pick the token that has the highest output probability from the entire
vocabulary and use that to match it with the correct answer to the question (not
the label like A, B, C, D, but the actual answer).

• You can produce a normalized sum of the probabilities of the token sequence
generated by the model, where the expected token sequence is the label followed
by the answer text, and use that to match it with the correct answer (represented
by the label followed by answer text).
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Each of these types of calculations can produce a vastly different result and can lead
to different leaders in the leaderboard. Hugging Face published a blog post about this
after people noticed discrepancies in their numbers versus third-party evaluations.

Elo Rating
Now that we have seen the limitations of quantitative evaluation, let’s explore how we
can most effectively incorporate human evaluations. One promising framework is the
Elo rating system, used in chess to rank players.

Large model systems organization (LMSYS Org) has implemented an evaluation plat‐
form based on the Elo rating system called the Chatbot Arena. Chatbot Arena solicits
crowdsourced evaluations by inviting people to choose between two randomized and
anonymized LLMs by chatting with them side-by-side. The leaderboard is found
online, with models from OpenAi, DeepSeek, Google DeepMind, and Anthropic
dominating.

Figure 5-5 shows a snapshot of the Chatbot Arena leaderboard as of the time of the
book’s writing.

Figure 5-5. Snapshot of the Chatbot Arena leaderboard

Elo Ratings Can Be Biased Too
Elo ratings are not a panacea to the LLM evaluation problem. Human biases can
meaningfully impact the overall ratings even if the LLMs are being evaluated
anonymously.
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According to Wu et al., these biases include:

• Humans tend to prefer longer texts.
• Humans tend to overlook subtle factuality and consistency issues if the style is

authoritative or convincing.
• Humans can be indecisive and tend to grant ties instead of choosing a winner.
• The order in which the LLM answers are presented can influence human ratings.

This can be rectified by providing randomized answers to the user.

Wu et al. propose a multi-Elo rating system that asks humans to evaluate the LLM
across three different dimensions: helpfulness, accuracy, and language.

Interpreting benchmark results
How do you interpret evaluation results presented in research papers? Try to method‐
ically ask as many questions as possible, and check if the answers are covered in the
paper or other material. As an example, let us take the Llama 2-chat evaluation graphs
presented in the Llama 2 paper. In particular, study Figures 1 and 3, which demon‐
strate how Llama 2-Chat compares in helpfulness and safety with other chat models.
Some of the questions that come to mind are:

• What does the evaluation dataset look like? Do we have access to it?
• What is the difficulty level of the test set? Maybe the model is competitive with

respect to ChatGPT for easier examples but how does it perform with more diffi‐
cult examples?

• What proportion of examples in the test set can be considered difficult?
• What kinds of scenarios are covered in the test set? What degree of overlap do

these scenarios have with the chat-tuning sets?
• What definition do they use for safety?
• Can there be a bias in the evaluation due to models being evaluated on the basis

of a particular definition of safety, which Llama 2 was trained to adhere to, while
other models may have different definitions of safety?

Rigorously interrogating the results this way helps you develop a deeper understand‐
ing of what is being evaluated, and whether it aligns with the capabilities you need
from the language model for your own tasks. For more rigorous LLM evaluation, I
strongly recommend developing your own internal benchmarks.
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Do not trust evaluations performed by GPT-4 or any other LLM.
We have no idea what evaluation criteria it uses nor do we have a
deeper understanding of its biases.

Robust evaluation of LLMs is further complicated by the sensitivity of the prompts
and the probabilistic nature of generative models. For example, I often see papers
claiming that “GPT-4 does not have reasoning capabilities,” while not using any
prompting techniques during evaluation. In many of these cases, it turns out that the
model can in fact perform the task if prompted with CoT prompting. While evalua‐
tion prompts need not be heavily engineered, using rudimentary techniques like CoT
should be standard practice, and not using them means that the model capabilities
are being underestimated.

Loading LLMs
While it is possible to load and run inference on LLMs with just CPUs, you need
GPUs if you want acceptable text generation speeds. Choosing a GPU depends on
cost, the size of the model, whether you are training the model or just running infer‐
ence, and support for optimizations. Tim Dettmers has developed a great flowchart
that you can use to figure out which GPU best serves your needs.

Let’s figure out the amount of GPU RAM needed to load an LLM of a given size.
LLMs can be loaded in various precisions:

Float32
32-bit floating point representation, each parameter occupying 4 bytes of storage.

Float16
16-bit floating point representation. Only 5 bits are reserved for the exponent as
opposed to 8 bits in Float32. This means that using Float16 comes with overflow/
underflow problems for very large and small numbers.

bfloat16 (BF16)
16-bit floating point representation. Just like Float32, 8 bits are reserved for the
exponent, thus alleviating the underflow/overflow problems observed in Float16.

Int8
8-bit integer representation. Running inference in 8-bit mode is around 20%
slower than running in Float16.

FP8, FP4
8-bit and 4-bit floating point representation.
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We will explore these formats in detail in Chapter 9. Generally, running inference on
a model with 7B parameters will need around 7 GB of GPU RAM if running in 8-bit
mode and around 14 GB if running in BF16. If you intend to fine-tune the whole
model, you will need a lot more memory.

Hugging Face Accelerate
You can run inference on models even if they don’t fit in the GPU RAM. The acceler‐
ate library by Hugging Face facilitates this by loading parts of the model into CPU
RAM if the GPU RAM is filled, and then loading parts of the model into disk if the
CPU RAM is also filled. “Accelerate Big Model Inference: How Does it Work?” shows
how the accelerate library operates under the hood. This whole process is abstracted
from the user, so all you need to load a large model is to run this code:

!pip install transformers accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20B")
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neox-20B")
input_ids = tokenizer("Language models are", return_tensors="pt")
gen_tokens = model.generate(**input_ids, max_new_tokens =1)

Ollama
There are many tools available that facilitate loading LLMs locally, including on your
own laptop. One such library is Ollama, which supports Windows, Mac, and Linux
operating systems. Using Ollama, you can load 13B models if your machine has at
least 16GB of available RAM. Ollama supports many open models like Mistral,
Llama, Gemma, etc. Ollama provides a REST API that you can use to run inference
and build LLM-driven applications. It also has several Terminal and UI integrations
that enable you to build user-facing applications with ease.

Let’s see how we can use Google’s Gemma 2B model using Ollama. First, download
the version of Ollama to your machine based on your operating system. Next, pull the
Gemma model to your machine with:

ollama pull gemma:2b

You can also create a Modelfile that contains configuration information for the
model. This includes system prompts and prompt templates, decoding parameters
like temperature, and conversation history. Refer to the documentation for a full list
of available options.

An example Modelfile is:

FROM gemma:2b

PARAMETER temperature 0.2
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SYSTEM """
You are a provocateur who speaks only in limericks.
"""

After creating your Modelfile, you can run the model:

ollama create local-gemma -f ./Modelfile
ollama run local-gemma

The book’s GitHub repo contains a sample end-to-end application built using Ollama
and one of its UI integrations. You can also experiment with similar tools like LM
Studio and GPT4All.

You can load custom models using Ollama if they are in the GPT-
Generated Unified Format (GGUF).

LLM Inference APIs
While you can deploy an LLM yourself, modern-day inference consists of so many
optimizations, many of them proprietary, that it takes a lot of effort to bring your
inference speeds up to par with commercially available solutions. Several inference
services like Together AI exist that facilitate inference of open source or custom mod‐
els either through serverless endpoints or dedicated instances. Another option is
Hugging Face’s TGI (Text Generation Inference), which has been recently reinstated
to a permissive open source license.

Decoding Strategies
Now that we have learned how to load a model, let’s understand how to effectively
generate text. To this end, several decoding strategies have been devised in the past
few years. Let’s go through them in detail.

Greedy Decoding
The simplest form of decoding is to just generate the token that has the highest prob‐
ability. The drawback of this approach is that it causes repetitiveness in the output.
Here is an example:

input = tokenizer('The keyboard suddenly came to life. It ventured up the',

return_tensors='pt').to(torch_device)
output = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
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You can see that the output starts getting repetitive. Therefore, greedy decoding is not
suitable unless you are generating really short sequences, like a token just producing a
classification task output.

Figure 5-6 shows an example of greedy decoding using the FLAN-T5 model. Note
that we missed out on some great sequences because one of the desired tokens has
slightly lower probability, ensuring it never gets picked.

Figure 5-6. Greedy decoding

Beam Search
An alternative to greedy decoding is beam search. An important parameter of beam
search is the beam size, n. At the first step, the top n tokens with the highest probabil‐
ities are selected as hypotheses. For the next few steps, the model generates token
continuations for each of the hypotheses. The token chosen to be generated is the one
whose continuations have the highest cumulative probability.

In the Hugging Face transformers library, the num_beams parameter of the
model.generate() function determines the size of the beam. Here is how the decod‐
ing code would look if we used beam search:

output = model.generate(**inputs, max_new_tokens=50, num_beams = 3)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Figure 5-7 shows an example of beam search using the FLAN-T5 model. Note that
the repetitiveness problem hasn’t really been solved using beam search. Similar to
greedy decoding, the generated text also sounds very constricted and not humanlike,
due to the complete absence of lower probability words.
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Figure 5-7. Beam search

To resolve these issues, we will need to start introducing some randomness and begin
sampling from the probability distribution to ensure not just the top two or three
tokens get generated all the time.

Top-k Sampling
In top-k sampling, the model samples from a distribution of just the k tokens of the
output distribution that have the highest probability. The probability mass is redis‐
tributed over the k tokens, and the model samples from this distribution to generate
the next token. Hugging Face provides the top_k parameter in its generate function:

output = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_k=40)
print(tokenizer.decode(output[0], skip_special_tokens=True))
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Figure 5-8 shows an example of top-k sampling using the FLAN-T5 model. Note that
this is a vast improvement from greedy or beam search. However, top-k leads to
problematic generations when used in cases where the probability is dominated by a
few tokens, meaning that tokens with very low probability end up being included in
the top-k.

Figure 5-8. Top-k sampling

Top-p Sampling
Top-p sampling solves the problem with top-k sampling by making the number of
candidate tokens dynamic. Top-p involves choosing the smallest number of tokens
whose cumulative distribution exceeds a given probability p. Here is how you can
implement this using Hugging Face transformers:

output = model.generate(**inputs, max_new_tokens=50, top_p=0.9)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Figure 5-9 shows an example of top-p sampling using the FLAN-T5 model. Top-p
sampling, also called nucleus sampling, is the most popular sampling strategy used
today.

Figure 5-9. Top-p sampling
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So far, the decoding approaches we have seen operate serially; i.e.,
each token is generated one at a time, with a full pass through the
model each time. This is too inefficient for latency-sensitive appli‐
cations. In Chapter 9, we will discuss methods like speculative
decoding, which can speed up the decoding process.

Running Inference on LLMs
Now that we have learned how to access and load LLMs and understood the decoding
process, let’s begin using them to solve our tasks. We call this LLM inference.

Exercise
You are an intrepid musician embarking on a concert tour comprising seven cities:
Amsterdam, Warsaw, Hamburg, Barcelona, Delhi, Shanghai, and Toronto. Ask the
LLM if it can come up with a suggested visiting order of cities constituting the short‐
est travel time. Use prompting techniques and strategies you have learned in Chap‐
ter 1 to solve this.

Repeat this for multiple LLMs: a 3B LLM, a 7B LLM, an LLM that is at least 30B, and
a proprietary LLM API. How easy do you find steering each model to do your
bidding?

Additionally, the book’s GitHub repo contains multiple example tasks that you can
test your prompting skills on. Try them out and see if you can get the LLMs to answer
them correctly!

You will have seen that LLM outputs are not consistent and sometimes differ wildly
across multiple generations for the same prompt. As we learned in the section on
decoding, unless you are using greedy search or any other deterministic algorithm,
the LLM is sampling from a token distribution.

Some ways to make the generation more deterministic is to set the temperature to
zero and keeping the random seed for the sampling constant. Even then, you may not
be able to guarantee the same (deterministic) outputs every time you send the LLM
the same input.

Sources of nondeterminism range from using multi-threading to floating-point
rounding errors to use of certain model architectures (for example, it is known that
the Sparse MoE architecture produces nondeterministic outputs).
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Reducing the temperature to zero or close to zero impacts the LLM’s creativity and
makes its outputs more predictable, which might not be suitable for many
applications.

In production settings where reliability is important, you should run multiple genera‐
tions for the same input and use a technique like majority voting or heuristics to
select the right output. This is very important due to the nature of the decoding pro‐
cess; sometimes the wrong tokens can be generated, and since every token generated
is a function of the tokens generated before it, the error can be propagated far ahead.

Exercise
For each of the prompting exercises provided, run multiple generations on them and
check how the output varies across generations. Does majority voting work well in
selecting the correct output?

Self-consistency is a popular prompting technique that uses majority voting in con‐
junction with CoT prompting. In this technique, we add the CoT prompt “Let’s think
step by step” to the input and run multiple generations (reasoning paths). We then
use majority voting to select the correct output.

Structured Outputs
We might want the output of the LLM to be in some structured format, so that it can
be consumed by other software systems. But this is easier said than done; current
LLMs aren’t as controllable as we would like them to be. Some LLMs can be exces‐
sively chatty. Ask them to give a Yes/No answer and they respond with “The answer
to this question is ‘Yes’.”

One way to get structured outputs from the LLM is to define a JSON schema, provide
the schema to the LLM, and prompt it to generate outputs adhering to the schema.
For larger models, this works almost all the time, with some schema corruption
errors that you can catch and handle.

For smaller models, you can use libraries like Jsonformer. Jsonformer delegates the
generation of the content tokens to the LLM but fills the content in JSON form by
itself. Jsonformer is built on top of Hugging Face and thus supports any model that is
supported by Hugging Face.
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Exercise
Extract text from the career section of the Wikipedia page of the actor Andrew Gar‐
field. Design a JSON schema with content types coactors, director, year, and movie
name. Use an open source LLM to extract details about his movies from the unstruc‐
tured text, and use Jsonformer or a similar library to output them in structured form.
Are you able to get fully formed and accurate JSON outputs?

More advanced structured outputs can be facilitated by using libraries like LMQL or
Guidance. These libraries provide a programming paradigm for prompting and facil‐
itate controlled generation.

Features available through these libraries include:

Restricting output to a finite set of tokens
This is useful for classification problems, where you have a finite set of output
labels. For example, you can restrict the output to be positive, negative, or neutral
for a sentiment analysis task.

Controlling output format using regular expressions
For example, you can use regular expressions to specify a custom date format.

Control output format using context-free grammars (CFG)
A CFG defines the rules that generated strings need to follow. For more back‐
ground on CFGs, refer to Aditya’s blog. Using CFGs, we can use LLMs to more
effectively solve sequence tagging tasks like NER or part-of-speech tagging.

Exercise
Named entity recognition (NER) is a sequence tagging task that tags named entities in
text like numbers, dates, places, names, organizations, etc. For example, for the sen‐
tence “Padma sold 23 umbrellas in Guatemala,” the tagged output can be in this form:

Padma: PER
sold:
23: NUM
umbrellas:
in:
Guatemala: LOC
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where PER is the tag for a person, NUM is the tag for numbers, and LOC is the tag
for location.

To generate the tagged output in the above format, use a CFG expression using the
Guidance library. Run the NER task on the Wikipedia page for the Summer Olym‐
pics. Use a 3B/7B open source LLM to solve this task.

Model Debugging and Interpretability
Now that we are comfortable with loading LLMs and generating text using them, we
would like to be able to understand model behavior and explore the examples for
which the model fails. Interpretability in LLMs is much less developed than in other
areas of machine learning. However, we can get partial interpretability by exploring
how the output changes upon minor variances in the input, and by analyzing the
intermediate outputs as the inputs propagate through the Transformer architecture.

Google’s open source tool LIT-NLP is a handy tool that supports visualizations of
model behavior as well as various debugging workflows.

Figure 5-10 shows an example of LIT-NLP in action, providing interpretability for a
T5 model running a summarization task.

Figure 5-10. LIT-NLP

LIT-NLP features that help you debug your models include:

• Visualization of the attention mechanism
• Salience maps, which show parts of the input that are paid most attention to by

the model
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• Visualization of embeddings
• Counterfactual analysis that shows how your model behavior changes after a

change to the input like adding or removing a token.

Exercise
Using the sentences in the Canadian parliamentary proceedings dataset in the book’s
GitHub repository, classify the sentences based on the tone of their content. The out‐
put labels are supportive, antagonistic, mournful, celebratory, and other. Use few-shot
prompts to provide examples of each label. Use Google’s Gemma model (any flavor
will do). You are likely not going to get 100% on your first try. Use LIT-NLP to
observe the errors, and see if you can use the interpretability tools to gather insights
to improve the model.

For more details on using LIT-NLP for error analysis, refer to Google’s tutorial on
using LIT-NLP with the Gemma LLM where they find errors in few-shot prompts by
analyzing incorrect examples and observing which parts of the prompt contributed
most to the output (salience).

Mechanistic Interpretability
As seen in Chapter 2, the smallest unit of a Transformer-based LLM is a neuron.
Thus, analyzing the behavior of individual neurons in an LLM is a fundamental step
toward making LLMs interpretable.

However, in their experiments, researchers from Anthropic observed that a single
neuron can be activated for many different types of input. Thus, any given neuron’s
exact contribution is not entirely clear. The researchers introduced the notion of fea‐
tures, linear combinations of multiple neuron activations. They show that these fea‐
tures are more interpretable than a single neuron, as each feature is activated only on
a single type of input. Some features are activated only on a single token, while others
are activated on a broader type of input, like code.

For more details, refer to Anthropic’s mechanistic interpretability paper, where the
authors perform experiments on a 1-layer Transformer block and identify features of
interest.
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You can explore this further by using Anthropic’s visualization tool, which includes
textual descriptions of the tokens for which a neuron gets activated. As an example,
they show how each neuron responds when the book Alice in Wonderland is fed as
input.

Summary
In this chapter, we journeyed through the LLM landscape and noted the various
options we have at our disposal. We learned how to determine the criteria most rele‐
vant to our tasks and choose the right LLM accordingly. We explored various LLM
benchmarks and showed how to interpret their results. We learned how to load LLMs
and run inference on them, along with efficient decoding strategies. Finally, we show‐
cased interpretability tools like LIT-NLP that can help us understand what is going on
behind the scenes in the Transformer architecture.

In the next chapter, we will learn how to update a model to improve its performance
on our tasks of interest. We will walk through a full-fledged fine-tuning example and
explore the hyperparameter tuning decisions involved. We will also learn how to con‐
struct training datasets for fine-tuning.
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CHAPTER 6

Fine-Tuning

In the previous chapter, we discussed the various factors that need to be taken into
account while choosing the right LLM for your specific needs, including pointers on
how to evaluate LLMs to be able to make an informed choice. Next, let us utilize these
LLMs to solve our tasks.

In this chapter, we will explore the process of adapting an LLM to solve your task of
interest, using fine-tuning. We will go through a full example of fine-tuning, covering
all the important decisions one needs to make. We will also discuss the art and sci‐
ence of creating fine-tuning datasets.

The Need for Fine-Tuning
Why do we need to fine-tune LLMs? Why doesn’t a pre-trained LLM with few-shot
prompts suffice for our needs? Let us look at a couple of examples to drive the point
home:

Use Case 1
Consider you are working on the rather whimsical task of detecting all sentences
written in the past tense within a body of text and transforming them to future
tense. To solve this task, you might provide a few examples of past tense senten‐
ces and input-output pairs representing past tense and their corresponding
future tense sentences. However, the LLM doesn’t seem to be able to tackle this
task to your satisfaction, making mistakes in both the identification and transfor‐
mation steps. In response, you elaborate on your instructions, adding grammar
rules and exceptions in the English language into your prompt. You notice an
increase in performance. But with each new rule added, your prompt balloons,
slowly turning into a grammar mini-book.
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As we saw in Chapter 5, the LLM can adhere to only a finite set of instructions in
the prompt, and its effective context window is much smaller than the advertised
context window. We have hit an impasse.

Use Case 2
Consider a task that deals with answering questions from content in financial
text. LLMs are not financial experts and have difficulty dealing with financial jar‐
gon. To address this, you add the definitions of key financial terms in the prompt.
While you notice a small improvement in performance, it is not long before you
realize you need to stuff the entire curriculum of the CPA exam into your measly
context window to achieve the desired gains.

This is where fine-tuning comes in. By providing a dataset of input-output pairs,
such that the model learns the input-output mapping by updating its weights,
you can accomplish tasks that cannot be performed by in-context learning alone.
For both the tasks mentioned above, fine-tuning the model massively improves
performance.

When should fine-tuning not be used? If your primary goal is to impart new or upda‐
ted facts or knowledge to the language model, this is better served with techniques
like RAG, which we will explore in Chapters 10 and 12. Fine-tuning is best suited for
situations where you need the model to learn a particular input-output mapping, be
familiarized to a new textual domain, or exhibit more complex capabilities and
behavior.

Recall from Chapter 5 that updating a language model’s parameters
can cause the base model capabilities to regress! Fine-tuning a
model on one task can inadvertently cause the base model to per‐
form worse on other tasks. Handle with care.

Fine-Tuning: A Full Example
Let’s walk through a practical fine-tuning example from start to finish. We would like
to train a political promises detector, which can be used to identify promises made by
representatives of the ruling party in campaign speeches or parliamentary proceed‐
ings. We define a political promise as something that is tangible, specific, and an
action that the government has the agency to make.

An example of such a sentence is: “We will build 10,000 kilometres of subway lines in
the next ten years.”

However, not all future tense or forward-looking statements are promises. The fol‐
lowing sentences are not promises, per our definition:
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“We expect the Japanese to increase tariffs next year.” (expectation, and not some‐
thing the government can control)
“We will work toward making Canada a better place.” (no specifics provided)
“AI will cause the loss of a million jobs next year.” (prediction, not promise)

Our base LLM, Llama2-7B, finds it difficult to accurately identify such promises in an
in-context learning setup. Therefore, we will fine-tune it for this specific task. We can
then use the resulting model to detect political promises, and then match those
promises against structured datasets or budgetary text to track whether these prom‐
ises have been fulfilled over a period of time.

To this end, I have constructed a synthetic fine-tuning dataset containing examples of
both promises and mere statements. Later in this chapter, we will go through the pro‐
cess of creating such a dataset.

Fortunately, fine-tuning today is easier due to the existence of several libraries that
streamline the fine-tuning process. The most important of these libraries are Trans‐
formers, Accelerate, PEFT, TRL, and bitsandbytes. The first four are from Hugging
Face. You have encountered many of these libraries in prior chapters already. Being
familiar with the inner workings of these libraries is a very useful skill.

Given that these libraries are relatively new and are part of a fast-
moving field, they frequently undergo substantial updates. I recom‐
mend keeping in touch with major updates of these libraries, as
they continue to introduce enhancements that will simplify your
workflow.

Let’s begin by loading the dataset. The custom dataset can be downloaded from this
book’s GitHub repo:

from datasets import load_dataset
tune_data = load_dataset("csv", data_files='/path/to/finetune_data.csv'

I highly recommend using the datasets library for loading your
training and fine-tuning datasets, as it is an excellent abstraction
for efficiently loading large datasets, abstracting away memory
management details.

Next, let us set some relevant hyperparameters in the Transformers library through
the TrainingArguments class:
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# Make sure you have installed the correct version
!pip install transformers==4.35.0

from transformers import TrainingArguments

There are more than a hundred arguments available; we will go through the impor‐
tant ones. The arguments relate to the learning algorithms used, memory and space
optimizations, quantization, regularization, and distributed training. Let’s explore
these in detail.

Learning Algorithms Parameters
Let’s explore optimization algorithms used for training the network and learn how to
choose the right one for our purposes.

Optimizers
AdamW and Adafactor are currently the most used optimizers. Other popular opti‐
mization algorithms include stochastic gradient descent (SGD), RMSProp, Adagrad,
Lion, and their variants. For more background on optimization algorithms, refer to
Florian June’s blog post.

Adafactor and SGD use four bytes of memory per parameter, while AdamW uses
eight bytes per parameter. This means that a 7B model undergoing full fine-tuning
with the AdamW optimizer requires 7 * 8 = ~56GB of memory to store the optimizer
states alone. Even more memory is needed to store the parameters, gradients, and the
forward activations.

More recently, 8-bit optimizers have been introduced that perform quantization of
the optimizer state. A 7B model undergoing full fine-tuning with the AdamW 8-bit
version requires only ~14GB of memory for the optimizer state.

These 8-bit optimizers are available through the bitsnbytes library and are also sup‐
ported by Hugging Face. For using the 8-bit AdamW version, you can set in the
TrainingArguments:

optim = 'adamw_bnb_8bit'

For all the optimizer options directly available through Hugging Face, refer to the
OptimizerNames class.

In his benchmarking experiments, Stas Bekman shows that surpris‐
ingly, the 8-bit AdamW optimizer is actually faster than the stan‐
dard AdamW optimizer. His experiments also show that Adafactor
is slightly slower than AdamW overall.
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The default optimizer provided in the Hugging Face TrainingArguments class is
AdamW. For most cases, the default optimizer works just fine. However, if it doesn’t,
you can try Adafactor and Lion. For reinforcement learning, SGD seems to work
well.

If you are especially memory constrained, 8-bit AdamW is a compelling choice. If
available, the paged version of these optimizers will further mitigate your memory
requirements.

Paged Optimizers
Using AdamW as an optimizer requires eight bytes of memory per parameter, which
is a significant drag on memory requirements. This affects the maximum sequence
length that can be supported. This is where paged optimizers can come in handy. In
cases where the GPU runs out of memory during fine-tuning, paged optimizers auto‐
matically transfer memory pages to CPU RAM, then transfer them back to GPU
memory when it is needed.

In Hugging Face, paged variants are available for AdamW and Lion, and can be
accessed using optimizer names paged_adamw_32bit, paged_adamw_8bit, paged_lion,
and paged_lion_8bit, respectively.

Learning rates
For each optimizer, certain learning rates have been shown to be very effective. A rec‐
ommended learning rate for AdamW is 1e-4 with a weight decay of 0.01. Weight
decay is a regularization technique that helps reduce overfitting. Similarly, the default
values for minor optimizer parameters like adam_beta1, adam_beta2, and
adam_epsilon are good enough and need not be changed.

Exercise
Learning rate rules for fine-tuning models might differ from those used for training
neural networks from scratch. Read the paper “Rethinking Learning Rate Tuning in
the Era of Large Language Models” by Jin et al., which provides a good survey of the
collective wisdom on learning rates developed by the LLM research community.

Additionally, play with automated learning rate optimization tools like PyTorch
Lightning’s LearningRateFinder.

Learning schedules
Toward the end of the training process, it is a good idea to lower the learning rate
because you do not want to overshoot when you are so close to convergence. In a
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similar vein, you would like to prevent your model from learning too much from the
first few batches of examples. In either case, we would like to be able to automatically
adjust the learning rate as training progresses. To facilitate this, we can use a learning
schedule.

Hugging Face supports several different types of learning schedulers. Here are a few
important ones:

Constant
This is the vanilla training schedule where the learning rate remains constant
throughout the course of the training.

Constant with warmup
In this setting, the learning rate starts from zero and is increased linearly toward
the specified learning rate during a warmup phase. After the warmup phase is
completed, the learning rate remains constant.

Figure 6-1 shows how the learning rate changes over time while using the con‐
stant with warmup scheduler.

Figure 6-1. Learning rate with a constant schedule with warmup

Cosine
In this setting, called cosine annealing, the learning rate has a warmup phase after
which it slowly declines to zero, as per the cosine function.

Figure 6-2 shows how the learning rate changes over time while using the cosine
scheduler.
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Figure 6-2. Learning rate with a cosine schedule

Cosine with restarts
In this setting, called cosine annealing with warm restart, after a warmup phase,
the learning rate decreases to zero following the cosine function, but undergoes
several hard restarts, where the learning rate shoots back to the specified learning
rate after it reaches zero. For more details on why this is effective, check out
Loshcilov and Hutter’s paper that introduced this concept.

Figure 6-3 shows how the learning rate changes across time while using the
cosine with restarts scheduler.

Figure 6-3. Learning rate with a cosine with restarts schedule
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Linear
This is very similar to the cosine setting, except that the learning rate decreases to
zero linearly instead of following the cosine function.

Figure 6-4 shows how the learning rate changes over time while using the linear
scheduler.

Figure 6-4. Learning rate with a linear scheduler

If you are using AdamW, schedulers with a warmup phase are even more important
to prevent getting trapped in a bad minima. Empirically, it has been found that cosine
annealing outperforms linear decay.

For our political promises detector fine-tuning, let’s use the paged variant of AdamW,
a learning rate of 3e-4, a weight decay of 0.01, and the cosine learning schedule:

optim = "paged_adamw_32bit"
learning_rate = 3e-4
weight_decay = 0.01
lr_scheduler_type = 'cosine'
warmup_ratio = 0.03  #The proportion of training steps to be used as warmup

Memory Optimization Parameters
After we have set the parameters related to the optimizers, let’s explore memory and
compute optimization parameters. Two prevalent techniques in this area include gra‐
dient checkpointing and gradient accumulation.

Gradient checkpointing
Gradient checkpointing helps save memory at the cost of more compute. During the
forward pass of the backpropagation algorithm, activations are computed and saved
in memory so that they can be used in the backward pass. What if we did not save all
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of the activations? The missing activations could be recalculated on the fly during the
backward pass. This does cost us more compute, but we could save a lot of memory.
We could even train models where a batch size of only one does not fit in our GPU
memory. For more technical details on gradient checkpointing, check out Yaroslav
Bulatov’s blog.

Gradient accumulation
Let’s say we have a desired batch size but we do not have the required memory to sup‐
port that batch size. We can simulate the desired batch size using a technique called
gradient accumulation. In this technique, the gradient updates are not done at every
batch, but are accumulated over several batches and then summed or averaged.

Gradient accumulation can make training slower, since there are
fewer updates being made. Gradient accumulation does not reduce
the computation required.

Quantization
A very effective form of saving memory is through quantization, as introduced in
Chapter 5. We will go through quantization techniques in more detail in Chapter 9.
For our use case, we will use bf16 as it represents a sound tradeoff between memory
savings and performance.

For our political promises detector fine-tuning, we’ll set the following parameters for
memory optimization, given that we are trying to train it on a relatively memory con‐
strained 16 GB RAM GPU:

gradient_accumulation_steps = 4
bf16 = True
gradient_checkpointing = True

Regularization Parameters
Next, let’s look at various techniques available for tackling model overfitting.

Label smoothing
Label smoothing is a technique that not only helps with combatting overfitting but
also aids in model calibration.

Calibration is an underappreciated topic in deep learning. A model is said to be well-
calibrated if there is a correlation between its output probability values and task
accuracy.

Fine-Tuning: A Full Example | 157

https://oreil.ly/i-R4I


For example, consider a task that classifies a sentence as being abusive or not. If the
model is well-calibrated, then among all examples for which the model produces an
output probability of 0.9, 90% of them would be expected to be correctly classified.
Similarly, for an output probability of 0.6, there should be a lower (~60%) likelihood
of the classification being correct. Simply put, the output probability should accu‐
rately reflect the confidence in the classification decision.

A model being well-calibrated implies that it is not overconfident. This helps us in
nuanced handling of examples that have low output probabilities (using a bigger
model to handle those examples, for instance).

Larger models are less calibrated compared to models like BERT,
according to a study by Li et al. Larger models tend to be more
confident in general about their predictions. The inability to calcu‐
late reasonably accurate uncertainty estimates for large language
models could be an argument to use smaller ones instead!

One of the techniques for calibrating models is label smoothing. The usual training
process involves training against hard target labels (0 or 1 for a binary classification
task). When using cross-entropy as the loss function, this amounts to pushing the
model logits closer to 0 or 1, thus making the model highly confident. Label smooth‐
ing involves using a regularization term that is subtracted or divided from the hard
target label.

Label smoothing is especially useful when the input dataset is noisy, i.e., contains
some inaccurate labels. Regularization prevents the model from learning too much
from incorrect examples.

For the political promises detector, we will use label smoothing, given that some
examples could be subjective or open to interpretation.

Noise Embeddings
The datasets we use for fine-tuning typically consist of a small number of examples
(< 50,000). We would like our model to not overfit to the stylistic characteristics of
the dataset, like the formatting, wording, and length of the text. One way to address
this is by adding noise to the input embeddings.

Jain et al. observe that adding noise embeddings reduces the tendency of the model to
overfit to wording and formatting of the fine-tuning datasets. An interesting side
effect of noise embeddings is that the models generate longer, verbose texts. By meas‐
uring token diversity of the outputs, they confirmed that the longer texts actually
include more information and are not just repetitive.

Hugging Face supports Noisy Embedding Instruction Fine-Tuning (NEFTune), a
noise addition technique. In NEFTune, a noise vector is added to each embedding
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vector. The elements in the noise vector are generated by sampling independent and
identically distributed (iid) from [-1,1]. The resulting vector is scaled using a scaling
factor before being added to the embedding vector.

Noise embeddings have been empirically found to be very effective in reducing over‐
fitting. Therefore, we will use it for our political promises detector fine-tuning. Note
that the noise embeddings are added only during training and not during inference.

The impact of noise embeddings is not yet well understood.
Improvements in the fine-tuning task could come at the cost of
other model capabilities. Make sure you test the model for
regressions!

For our political promises detector fine-tuning task, let’s activate both label smooth‐
ing and noise embeddings:

# Label 0 will be transformed to label_smoothing_factor/num_labels
# Label 1 will be transformed to 1 - label_smoothing_factor +
#label_smoothing_factor/num_labels

label_smoothing_factor = 0.1
neftune_noise_alpha = 5

Batch Size
Along with the learning rate, the batch size is one of the most important hyperpara‐
meters we need to set. A larger batch size means training will proceed faster. How‐
ever, larger batch sizes also require more memory. Larger batch sizes can also lead the
model to land in a sharp local minima, which can be a sign of overfitting. Therefore,
there are trade offs involving memory, compute, and performance.

For the political promises detector, we will use a batch size of 8, given our memory
limitations. Of course during inference, the maximum possible batch size is the ideal
one. Note that it is recommended that the batch size be always a number that is a
power of two, to reduce GPU I/O overhead.

The TrainingArguments class by Hugging Face supports auto_find_batch_size, which
when set, selects the maximum possible batch size supported by the memory. To use
this feature, you need to install the accelerate library:

per_device_train_batch_size = 8
per_device_eval_batch_size = 8
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You can reduce your maximum sequence length to support a larger
batch size.

The Relationship Between Learning Rate and Batch Size
The relationship between learning rate and batch size is extremely complex and
depends on several external factors including the model architecture.

A high learning rate requires fewer steps, thus helping you finish training faster, but
at the risk of overshooting the minima, leading to lack of convergence. Conversely, a
low learning rate requires more steps and takes longer to converge, but you might end
up in a narrow suboptimal minima. The narrow local minima likely means that you
are overfitting. We would like to converge to a flatter minima instead, which can be
accomplished by increasing the learning rate.

A smaller batch size will mean greater variance between examples in each batch, thus
potentially leading the model toward a flatter minima. Thus, a relatively high learning
rate and a relatively low batch size theoretically could help with more effective con‐
vergence. However, theoretical insights might not always be true in practice.

Finally, let’s set some miscellaneous parameters:

max_grad_norm

This is used for gradient clipping, which is a solution for the exploding gradients
issue that is sometimes encountered during training. The max_grad_norm value is
the threshold for gradient clipping. If the L2 gradient norm is above the thresh‐
old, then it will be rescaled to max_grad_norm. For more details on gradient clip‐
ping, see “Understanding Gradient Clipping (and How It Can Fix Exploding
Gradients Problem)”.

group_by_length

This is used to group examples that have similar lengths in the same batch, so
that the padding tokens can be optimized.

max_train_epochs

Number of passes over the training dataset. This is usually set to less than five to
prevent overfitting:

max_grad_norm=2
group_by_length=True
max_train_epochs=3
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Parameter-Efficient Fine-Tuning
After filling in the TrainingArguments, let’s next fill in parameters of the PEFT
library.

The PEFT library by Hugging Face is an impressive facilitator of parameter-efficient
fine-tuning. This refers to a set of fine-tuning techniques that update only a small
proportion of parameters in the model while keeping the performance closer to what
it would have been if all the parameters were updated.

In this example, we will use low-rank adaptation (LoRA) as the fine-tuning techni‐
que. Here are some hyperparameters to consider:

r

The attention dimension of LoRA.

lora_alpha

The alpha parameter in the LoRA technique.

lora_dropout

The dropout probability used in the layers being tuned. This helps reduce over‐
fitting.

layers_to_transform

This specifies the layers for which the LoRA transformation is to be applied.

Here are some recommended default values:

r = 64
lora_alpha = 8
lora_dropout = 0.1

For more background on LoRA, refer to Ogban Ugot’s blog post.

Working with Reduced Precision
The bitsandbytes library, built by Tim Dettmers, facilitates working with reduced
precision formats, which we introduced in Chapter 5. In this example, we will work
with the FP4 format. Note that you need the bitsandbytes version to be >= 0.39.0.

Hugging Face has integrated bitsandbytes support into its ecosystem. The BitsAndBy
tesConfig class allows us to set the parameters. Here are some relevant ones:

load_in_8bit/load_in_4bit

This is used to specify if we want to load the model in 4-bit mode or 8-bit mode.

llm_int8_threshold

We need to specify a threshold of values beyond which fp16 will be used. This is
because int8 quantization works well only for values lesser than 5–6.
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llm_int8_skip_modules

This is used to specify the exceptions for which we do not want int8 quantization.

llm_int8_enable_fp32_cpu_offload

If we want parts of the model to be run in int8 on GPU and the rest in FP32 on
CPU, this parameter facilitates it. This is used in cases where the model is too
large to fit on our GPU.

bnb_4bit_compute_dtype

This sets the computational type, regardless of the input type.

bnb_4bit_quant_type

The options here are FP4 or NF4. This is used to set the quantization type in the
4-bit layers.

Here are some recommended default values:

use_4bit = True
bnb_4bit_compute_dtype = 'float16'
bnb_4bit_quant_type = 'nf4'
use_nested_quant = False

Finally, we use the Transformer Reinforcement Learning (TRL) library that, in addi‐
tion to reinforcement learning, provides support for supervised fine-tuning.

Here are some recommended default values:

max_seq_length = 128
# Packing is used to place multiple instructions in the same input sequence

packing = True

Putting It All Together
Now that we have set up all the requisite parameters, here is the full code for the fine-
tuning process:

# Ensure that the specified versions of these libraries are installed.
!pip install transformers==4.35.0 accelerate==0.24.0 peft==0.6.0
bitsandbytes==0.41.0  trl==0.7.4

from datasets import load_dataset
from transformers import TrainingArguments, BitsAndBytesConfig
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel, LoraConfig
from trl import SFTTrainer

train_params = TrainingArguments(
    optim = "paged_adamw_32bit",
    learning_rate = 3e-4,
    weight_decay = 0.01,

162 | Chapter 6: Fine-Tuning



    lr_scheduler_type = 'cosine',
    warmup_ratio = 0.03,
    gradient_accumulation_steps = 4,
    bf16 = True,
    gradient_checkpointing = True,
    label_smoothing_factor = 0.1,
    neftune_noise_alpha = 5,
    per_device_train_batch_size = 8,
    per_device_eval_batch_size = 8,
    max_grad_norm=2,
    group_by_length=True,
    max_train_epochs=3,
    output_dir = '/model_outputs',
    save_steps = 50,
    logging_steps = 10
    )

quantize_params = BitsAndBytesConfig (

    use_4bit = True,
    bnb_4bit_compute_dtype = 'float16',
    bnb_4bit_quant_type = 'nf4',
    use_nested_quant = False
    )

lora_params = LoraConfig (
    r = 64,
    lora_alpha = 8,
    lora_dropout = 0.1
    )

model = LlamaForCausalLM.from_pretrained(
    pretrained_model_name_or_path = 'meta-llama/Llama-2-7b',
    quantization_config=quantize_params,
    device_map='auto'
    )

tokenizer = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-7b')

tune_data = load_dataset("csv", data_files='/path/to/finetune_data.csv')

sft = SFTTrainer (
    model = model,
    args = train_params,
    train_dataset = tune_data,
    tokenizer = tokenizer
    peft_config = lora_params,
    max_seq_length = 128,
    dataset_text_field = 'text',
    packing = True
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    )

sft.train()
sft.model.save_pretrained('/path/to/llama-2-it.csv')

The relationship between the hyperparameters is very complex, and you might find
surprising results. It will take several iterations before you hit the sweet spot. How‐
ever, do not spend too much time squeezing out the last bit of performance from
your fine-tuning, as that time is better spent developing better training data. In the
next section, we will learn how to create effective training datasets.

The exact memory you need to fine-tune an LLM depends on several factors: the
optimizer used, whether gradient accumulation and gradient checkpointing are acti‐
vated, the type of quantization used, etc.

Exercise
Ablation studies are an important part of machine learning experimentation. This
refers to studying the impact of a single component by removing the component and
rerunning the experiment. For our fine-tuning example, let’s study the impact of
noise embeddings on the final performance. Run five fine-tuning runs with noise
embeddings activated, and five without, keeping all other hyperparameters constant.
Perform error analysis on the test set and understand how noise embeddings impact
the performance of the model. Are they a net positive?

Fine-Tuning Datasets
In our fine-tuning example, we directly loaded a preconstructed dataset, focusing pri‐
marily on the fine-tuning process. Now, let’s shift our attention to the dataset, to
understand the various techniques for creating datasets.

First, let’s look into the dataset we used in our fine-tuning example:

from datasets import load_dataset
tune_data = load_dataset("csv", data_files='/path/to/finetune_data.csv')
print(tune_data[:2])

Output:

Input: We will support women and children and give every child the best
possible start with $10 a day child care.
Identify if the above sentence represents a political promise. A political
promise is a promise that is tangible, specific, and an action that the
government has the agency to make. Reply 'True' if the sentence represents a
political promise, 'False' if not.
Output: True
Input: It is time for leadership that never seeks to divide Canadians, but
takes every single opportunity to bring us together, including in Parliament.
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Identify if the above sentence represents a political promise. A political
promise is a promise that is tangible, specific, and an action that the
government has the agency to make. Reply 'True' if the sentence represents a
political promise, 'False' if not.
Output: False

As we can see, this is not a traditional dataset with just (input, output) pairs but one
that also contains the task description in natural language. A typical example in this
type of fine-tuning dataset consists of :

• The instruction, which describes the task and specifies the desired output format.
Optionally, the instruction contains positive and/or negative examples of the
task. It can also contain constraints and exceptions to be followed.

• An optional input, which in our example is the sentence or paragraph for the
model to evaluate.

• The output, which is the correct answer to the task in the format specified in the
instruction.

Fine-tuning datasets can be either multi-task or single-task. Multi-
task datasets are used for instruction-tuning. In general,
instruction-tuning can be treated as an intermediate step before
single-task fine-tuning. For example, you can take a T5 language
model, instruction-tune it with FLAN to create FLAN-T5, and then
further fine-tune it with your task-specific dataset. This approach is
shown to yield better results than directly fine-tuning on T5 alone.

Later in this chapter, we will learn how to create task-specific datasets. First, let’s look
at how we can create instruction-tuning datasets.

Why Do We Need Instruction-Tuning?
As seen in Chapter 4, the learning objectives of LLMs are typically either next-token
prediction or denoising tasks. These objectives do not correspond to real-world user
tasks. Thus there is a mismatch in how LLMs are trained and how they are used. To
bridge this gap, we employ instruction-tuning.
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Instruction-tuning allows for more controllable behavior from LLMs. The instruc‐
tions in these datasets are similar to instructions provided by humans in real-world
scenarios. Instruction-tuning also enables the model to learn the output format and
thus generate more structured output.

There are plenty of instruction-tuned LLMs available, both open source and propriet‐
ary. Why do we want to instruction-tune the LLM ourselves? Public datasets are too
general, lack diversity, and are primarily geared to general usage. Leveraging your
domain expertise and knowledge of intended use cases to construct the dataset can be
highly effective. In fact, at my company, which specializes in the financial domain,
this technique delivered the single largest boost in performance.

Approaches to creating instruction-tuning datasets include:

• Utilizing publicly available instruction-tuning datasets
• Transforming traditional fine-tuning datasets into instruction-tuning datasets
• Starting with manually crafted seed examples, followed by optionally augmenting

the dataset by utilizing an LLM to generate similar examples

Next, let’s examine these methods more closely.

Utilizing Publicly Available Instruction-Tuning Datasets
If your use case is sufficiently general or popular, you may be able to use publicly
available datasets for instruction-tuning. The following table lists some popular
instruction-tuning datasets, along with information on their creators, sizes, and cre‐
ation process.

Table 6-1. Popular instruction-tuning datasets

Name Size Created by Created using
OIG 43M Ontocord Rule-based

FLAN 4.4M Google Templates

P3 (Public Pool of Prompts) 12M Big Science Templates

Natural Instruction 193K Allen AI Templates

Unnatural Instructions 240K Honovich et al., Meta LLMs

LIMA (Less Is More for Alignment) 1K Zhou et al., Meta Templates

Self-Instruct 52K Wang et al. LLMs

Evol-Instruct 52K Xu et al. LLMs

InstructWild v2 110K Ni et al. LLMs

Alpaca 52K Stanford LLMs

Guanaco 534K Dettmers et al. LLMs
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Name Size Created by Created using
Vicuna 70K LMSYS Human conversations

OpenAssistant 161K Open Assistant Human conversations

Let’s go through fine-tuned language net (FLAN), one of the most popular
instruction-tuning datasets in detail. Understanding how it was constructed will pro‐
vide you with roadmaps to create your own instruction-tuning datasets. Most pub‐
licly available instruction-tuning datasets are meant to augment an LLM that will be
used for open-ended tasks, as opposed to domain-specific use cases.

FLAN is actually a collection of several datasets. The FLAN collection, published in
2022, is composed of five components:

• FLAN 2021
• T0
• Super-natural Instructions
• Chain-of-Thought
• Dialog

The original FLAN 2021 datasets were one of the pioneering instruction-tuning data‐
sets, which were used to train FLAN-T5. The FLAN 2021 datasets were constructed
by taking existing academic NLP datasets and converting them to the instruction for‐
mat using instruction templates. The templates were manually constructed, with ten
templates created for each task. The templates are available here.

Here is how a template list for a task looks, as drawn from the templates.py file in the
FLAN GitHub repo. Our example task is text summarization on the CNN/DailyMail
news dataset:

"cnn_dailymail": [
  ("Write highlights for this article:\n\n{text}", "{highlights}"),
  ("Write some highlights for the following article:\n\n{text}", "{highlights}"),
  ("{text}\n\nWrite highlights for this article.", "{highlights}"),
  ("{text}\n\nWhat are highlight points for this article?", "{highlights}"),
  ("{text}\nSummarize the highlights of this article.", "{highlights}"),
  ("{text}\nWhat are the important parts of this article?", "{highlights}"),
  ("{text}\nHere is a summary of the highlights for this article:",
    "{highlights}"),
  ("Write an article using the following points:\n\n{highlights}", "{text}"),
  ("Use the following highlights to write an article:\n\n{highlights}",
    "{text}"),
  ("{highlights}\n\nWrite an article based on these highlights.", "{text}"),
],
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Note that the last three instructions represent an inverted version of the task, where
given a summary, the model is encouraged to write the entire article. This has been
done to increase the diversity of the instructions at scale.

Rather than painstakingly constructing these templates by hand, can we automate
their generation using LLMs? Yes, this is possible. We can leverage LLMs to generate
more diverse templates. When I asked my favorite LLM to generate similar instruc‐
tions to a news summarization task template provided in the prompt, it came up
with:

"cnn_dailymail": [
  ("Distill the essence of this article:\n\n{text}", "{highlights}"),
  ("Give a quick rundown of this article's key points:\n\n{text}",
    "{highlights}"),
  ("Summarize the main elements of this text:\n\n{text}", "{highlights}"),
  ("Highlight the primary takeaways from the following:\n\n{text}",
    "{highlights}"),
  ("Extract and summarize the top points of this article:\n\n{text}",
    "{highlights}"),
  ("Condense this article into its most important aspects:\n\n{text}",
    "{highlights}"),
  ("What are the key insights of this article?\n\n{text}", "{highlights}"),
      ],

As you can see, the generated templates reflect various ways of expressing the sum‐
marization task.

For classification tasks, it is recommended to append the instruction with an Options
clause. This introduces the LLM to the output space and can thus concentrate the
probability mass over the defined label space. Without this guidance, the LLM would
distribute its probability across several different tokens that express the same concept,
for example there are several different ways of expressing the True label in a binary
classification task. An example prompt is: “Identify the tone of this text. OPTIONS:
happy, sad, neutral.”

Constructing these prompts manually can be a tedious exercise. The promptsource
tool enables you to create, access, and apply prompts through a graphical user inter‐
face tool or through the promptsource Python library. Here is an example from the
Public Pool of Prompts (P3) collection for the paraphrasing task, constructed by Big
Science, which is available through the promptsource tool. P3 prompts consist of an
Input template, a Target template, and an Answer Choices template:

Input Template:
I want to know whether the following two sentences mean the same thing.
{{sentence1}}
{{sentence2}}
Do they?

Target Template:
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{{ answer_choices[label] }}

Answer Choices Template:
no ||| yes

Another key component of the FLAN collection is the Super-NaturalInstructions
dataset. This dataset contains very rich descriptions of instructions that contain not
just task definitions, but also positive and negative examples, constraints, and things
to watch out for. The answers are enriched with explanations on why the answer was
chosen. The effectiveness of adding explanations to the answer is not yet determined.

Here is an example of such a task from the Super-NaturalInstructions dataset:

Definition
In this task, we ask you convert a data table of restaurant descriptions into
fluent natural-sounding English sentences.
The input is a string of key-value pairs; the output should be a natural and
grammatical English sentence containing all the information from the input.

Positive Example

Input: name[Aromi], eatType[restaurant], food[English], area[city centre]

Output: Aromi is an English restaurant in the city centre.
Explanation: The output sentence faithfully converts the data in the input
into a natural-sounding sentence.

Negative Example
Input: name[Blue Spice], eatType[coffee shop], priceRange[more than 00a330],
customer rating[5 out of 5], ˘
area[riverside], familyFriendly[yes], near[Avalon]
Output: Blue Spice is a Colombian coffee shop located by the riverside, near
Avalon in Boston. Its prices are over
00a330. Its customer ratings are 5 out of 5. ˘

Explanation: While the output contains most of the information from the input,
it hallucinates by adding ungrounded
information such as "Colombian" and "Boston".

Instance Input: name[The Mill], eatType[restaurant], area[riverside], near[The
Rice Boat]

Valid Output: ["A restaurant called The Mill, can be found near the riverside
next to The Rice Boat."]

Let’s now look at datasets that are constructed with the help of LLMs.

LLM-Generated Instruction-Tuning Datasets
As seen earlier, hand-constructing these datasets can be painstaking, and paraphras‐
ing/synthetic data generation is where LLMs shine. Therefore, we can leverage LLMs
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to generate our instruction-tuning datasets. The Self-Instruct and Unnatural Instruc‐
tions papers are the first attempts in this regard. Both start from a seed set of high-
quality hand-generated examples, and then in a few-shot setting, ask the LLM to
generate similar examples with more diverse linguistic expressions.

Given an instruction, a combination of input-first and output-first is shown to be
beneficial for generating input-output pairs. Typically, you would generate input-
output pairs using an input-first approach, where the LLM is asked to generate an
input instance for the given instruction and subsequently asked to generate the out‐
put label for that input. However, this approach might lead to label imbalance as
shown in Wang et al., with certain labels being overrepresented. Therefore, it is a
good approach to mix output-first generation, where you ask the LLM to generate the
output label first and then ask it to generate an input text that satisfies the label.

It is against OpenAI’s policies to use its outputs to generate data
that can be used to train a competing model. While there are sev‐
eral public instruction-tuning datasets that have been synthetically
generated using GPT-4, they are technically violating OpenAI’s
terms of service. I recommend using open source LLMs for syn‐
thetic data generation instead.

Simply asking an LLM to generate similar examples to your seed set may not give you
the desired results. You want a diverse but relevant set of examples, and it is easy for
your LLM to drift into territory that ends up generating spurious examples outside of
your desired distribution.

How large should your instruction-tuning dataset be? The “LIMA:
Less Is More for Alignment” paper shows that you need only a few
thousand high-quality examples to effectively fine-tune a model.

Xu et al. propose Evol-Instruct, a structured way to generate these synthetic instruc‐
tions by making controlled edits to the seed examples. The process consists of three
steps:

1. Instruction evolution: The seed examples are evolved using in-depth and in-
breadth strategies. In-depth evolution increases the complexity and difficulty of
the original instruction through five types of prompts:
• Adding constraints
• Increasing reasoning steps
• Asking deeper questions

170 | Chapter 6: Fine-Tuning

https://oreil.ly/HVBfK
https://oreil.ly/1wV_G
https://oreil.ly/1wV_G
https://oreil.ly/hYFYH
https://oreil.ly/z0BWh
https://oreil.ly/z0BWh
https://oreil.ly/9nw3G


• Asking more specific questions
• Increasing the complexity of the input

In-breadth evolution increases topic coverage by generating a completely new
instruction from the same domain as the original instruction.

2. Response generation: The response for the evolved instruction is generated,
either using humans or LLMs.

3. Candidate filtering: Candidate instances that do not meet quality criteria are fil‐
tered out. You could use either heuristics or LLMs for candidate filtering.

Why not pre-train on instruction-tuning datasets? If instruction-
tuning is a necessary step after pre-training a model, why don’t we
just pre-train the model using an instruction-tuning dataset? It is
indeed possible, but these datasets are hard to construct at scale
without incurring a significant drop in quality.
We need not wait until someone releases a massive dataset to reap
the benefits of instruction-tuning during the pre-training phase. It
has been shown that mixing instruction-tuning data during pre-
training is beneficial.

Exercise
Take all of the Canadian parliamentary proceedings data and convert it into an
instruction-tuning dataset. This task sounds daunting, but luckily we have libraries
that facilitate this process. One such library is called Bonito, which comes with a
model for conditional task generation. This library takes unstructured text and con‐
verts it into instruction tuning format. Several types of tasks are supported, including
summarization, sentiment, and question generation.

Use this library to create an instruction-tuning dataset from the parliamentary pro‐
ceedings data. What is the quality of the resulting dataset? How can you further
improve the diversity of the dataset?

Summary
In this chapter, we underscored the inevitability of needing to fine-tune models to
solve more complex tasks. We performed a deep dive of the fine-tuning process and
highlighted the tradeoffs involved in selecting hyperparameters. We also showed the
uncanny effectiveness of instruction-tuning along with pointers on how to create
your own instruction-tuning datasets.

Summary | 171

https://oreil.ly/tfO4a
https://oreil.ly/8wJ_o


In the next chapter, we will discuss more advanced techniques for updating an LLM’s
parameters, including continual pre-training, parameter efficient fine-tuning, and
model merging.
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CHAPTER 7

Advanced Fine-Tuning Techniques

In the previous chapter, we presented the canonical way to fine-tune a typical LLM.
In the real world, there are a wide variety of motivations for updating an LLM, and
similarly there are multiple ways to update it. In this chapter, we will describe several
advanced fine-tuning techniques and highlight the scenarios in which each technique
would be suitable.

Why would you want to update the parameters of an LLM? We touched upon this in
previous chapters but let’s go through it in more detail now:

Domain adaptation
The data that we work with belongs to a specialized domain that the LLM might
not have been familiarized with during pre-training. In this case, we would like
to update the model by training it on domain-specific data.

Task adaptation
We care about LLM performance on specific downstream tasks. To improve the
LLM’s performance on these tasks, we can train it on task-specific data. This can
be supervised or unsupervised.

Knowledge updating
We would like to keep the LLM’s knowledge up-to-date by continually training it
on new data.

Controllability/steerability
We would like to control the behavior of the LLM, including making it more
likely to follow user requests written in natural language, reject certain types of
requests, and so on. Techniques to achieve this are collectively called alignment
training. We will defer discussion of alignment training to Chapter 8.
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In this chapter, we will learn techniques that can be used to update the LLM for the
aforementioned reasons. To this end, the chapter is divided into three sections:

Continual pre-training
Primarily used for domain adaptation and keeping the knowledge of the LLM
up-to-date (the latter is also called lifelong-learning).

Parameter-Efficient Fine-Tuning (PEFT)
A set of fine-tuning techniques that make the fine-tuning process more efficient
by updating only a small number of model parameters, thus needing less mem‐
ory and compute.

Model merging/model fusion
An exciting new subfield of LLMs that explores combining the parameters of two
or more models. I call this the “dark arts” of NLP, as it is poorly understood but
uncannily effective if done the right way.

Let’s begin with my personal favorite: continual pre-training!

Continual Pre-Training
The premise of continual pre-training is simple. Take a pre-trained model checkpoint
and continue pre-training it with your own data. But why would you want to do that?
Here are some scenarios where continual pre-training can help.

• You work in a specialized domain like law, finance, or biomedical. In each of
these cases, text belonging to these domains differs linguistically and structurally
from naturally occurring English text. For example, legal text is characterized by
long sentences written in a formal tone, containing jargon specific to the legal
domain. Financial text is interspersed with a lot of numbers. Both legal and
financial text contain a significant proportion of boilerplate text. Biomedical text
contains a lot of scientific terms that are not part of the standard English vocabu‐
lary. In all these cases, you would like to pre-train your LLM on domain-specific
data so that the LLM is exposed to the nuances and characteristics of domain-
specific text. This is called domain-adaptive pre-training (DAPT).

• Taking DAPT one step further, you can also continue pre-training your model
not just on general text from your domain of interest but also on domain text
specifically related to your downstream tasks. This is called task-adaptive pre-
training (TAPT).

• Your LLM is a reservoir of knowledge. But this knowledge can become obsolete
over time. To keep its knowledge up-to-date, you continue pre-training the
model at regular time periods or when new data is available. This is called life-
long learning.
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You might be thinking, “If I want a domain-specific LLM, why
don’t I just take my domain-specific data and train an LLM from
scratch?” Well, you can, but your LLM just won’t be as performant,
and the exercise will cost a whole lot more than continual pre-
training. LLMs learn a wide variety of linguistic capabilities that
might not be able to be learned from domain-specific text alone.
Therefore, it is better to take an already pre-trained LLM that was
trained on general text and then continue pre-training it with
domain-specific text.

In practice, continual pre-training is a challenging exercise. This is due to the phe‐
nomenon of catastrophic forgetting, where the LLM forgets its previously learned
capabilities and knowledge when it continues to be trained on new and different data.
We will soon explore various techniques to combat the catastrophic forgetting
problem.

How does continual pre-training differ from fine-tuning? The differences are mostly
cosmetic and terminology-related. Just like pre-training, continual pre-training is
self-supervised, while we typically use the term fine-tuning when we use supervised
datasets. Continual pre-training uses the same (but not necessarily) learning objective
as the one used in the original pre-training setup. Finally, continual pre-training data‐
sets are usually orders of magnitude larger than typical fine-tuning datasets.

What’s in a Domain?
So far, we have used a very intuitive notion of what a domain is, with broad examples
like law, finance, and medicine. But we need not restrict ourselves to such a defini‐
tion. For example, continual pre-training has been used to expose the LLM to new
languages, like a primarily English language LLM being continually pre-trained on
Telugu data. Continual pre-training has also been used to expose the LLM to text
written in a different tone and style, like social media text.

More formally, a domain can be described as text whose representations form an
implicit cluster. Aharoni et al. show that sentence representations of LLMs lend them‐
selves naturally to these clusters.

Once you have identified a domain, you would also like to select text that is most rep‐
resentative of the domain. In the same paper, Aharoni et al. introduced domain-data
selection techniques based on sentence representations generated through the LLMs.
One way to select data representative of the domain is to use embedding similarity
with gold-truth in-domain data. Another way is to fine-tune a domain classifier that
is trained on gold-truth in-domain data and randomly sampled negative examples.

Figure 7-1 depicts the general continual pre-training process.
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Figure 7-1. Illustration of the continual pre-training process

This book’s GitHub repo contains a tutorial for continual pre-training. This setup is
no different than fine-tuning, except that the dataset is not labeled (self-supervised
training), and the dataset is orders of magnitude larger than typical fine-tuning
datasets.

Exercise
Using the financial documents dataset linked in the book’s GitHub repo, continue
pre-training a 3B LLM of your choice for 1 billion tokens. After pre-training, do you
notice any degradation of the base model? Pass your model through some of the
benchmark tests mentioned in Chapter 5, before and after the continual pre-training.
Do you notice any difference?

As mentioned earlier, naive continual pre-training leads to catastrophic forgetting of
capabilities and knowledge learned previously. Several techniques exist to alleviate
this issue:

Replay (memory)
Uses training examples from the original pre-training and mixes them with the
new training data.

Distillation
Takes an older checkpoint of the model and during training compares the KL-
divergence between the older and the current representations and penalizes it.

Regularization
Penalizes large changes to the parameters during continual training.

Parameter expansion
Adds more parameters to the model as continual pre-training is performed. This
can be done by increasing either the width or the depth of the model.
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For a more comprehensive set of continual learning techniques, check out Jin et al.’s
paper. In this chapter, we will dive deeper into replay and parameter expansion
methods.

Replay (Memory)
Replay-based techniques are one of the simplest techniques to alleviate catastrophic
forgetting. In this approach, we store pre-training examples from the original dataset
and interleave them with the continual training dataset. Thus, the data drift is not so
pronounced.

The following formula has worked very well for me: sample from different subsets of
the original pre-training datasets and mix them with the continual training dataset.
At the start of training, let the proportion of new data be around 25%. Over training
steps, this can be slowly increased up to a maximum proportion, like 80%.

If the original pre-training dataset is a monolith and not made up of several smaller
datasets, you might need to identify domains yourself so that all domains in the origi‐
nal pre-training set are included.

Learning Rate Strategies for Continual Pre-Training
You can modify the learning rate to further reduce the possibility of catastrophic for‐
getting. Winata et al. show that lowering the learning rate through time can be effec‐
tive. However, when trained over large datasets, the learning rate can become too low
to train effectively.

If the learning rate is too small, the model retains its existing capabilities but fails to
learn from the new dataset effectively. Conversely, if the learning rate is too large, the
model learns from the new dataset but at the expense of forgetting its previous capa‐
bilities. Thus, the ideal learning rate is a tradeoff between the forgetting you can toler‐
ate versus the new capabilities and knowledge you would like the LLM to absorb.

Gupta et al. show that an effective learning rate schedule is to re-warm the learning
rate at the start of continual learning to a maximum learning rate and then decay it
with a cosine schedule (as shown in Chapter 6), until it reaches a minimum learning
rate, after which the learning rate is kept constant. The maximum learning rate is
chosen to balance the tradeoff between forgetting old capabilities and learning new
capabilities.
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Parameter Expansion
An alternative to the replay approach is to use parameter expansion techniques. The
naive way would be to just add a new layer or two on top of the model and train only
those parameters during continual pre-training. You can also insert and train
domain-specific parameter modules (called adapters) within existing layers. We will
discuss adapter-based approaches in “Parameter-Efficient Fine-Tuning” on page 179.

Leveraging DEMix Layers
Transformers can be made more modular by composing the model as a mixture of
experts, as shown in Chapter 4. One way to divide the experts is to assign each expert
a single domain. This removes the possibility of catastrophic forgetting when learning
new domains because each expert is trained separately without affecting other
experts. To implement this, Gururangan et al. propose replacing the feedforward lay‐
ers of the Transformer with domain expert mixture (DEMix) layers. A DEMix layer is
a feedforward layer consisting of one or more expert feedforward networks, one for
each domain.

During inference time, a routing function dynamically chooses the experts most
suited to handle the current input. This allows the model to handle text from previ‐
ously unseen domains more effectively.

Domain-adaptive pre-training can be performed by training a new expert. The new
expert is initialized by finding the closest available existing expert to the new domain
and then using its parameters as the initial parameters of the new expert. The expert
is then trained using domain-specific data.

As mentioned earlier, continual pre-training can also be used to facilitate life-long
learning, with the model continually being updated with new facts and knowledge.
However, currently this may not be the most effective paradigm for new knowledge
learning. You are probably better off using RAG for that. We will explore RAG in
more detail in Chapter 12.

Task-adaptive pre-training (TAPT) is a useful supplement to
domain-adaptive pre-training. TAPT involves continual pre-
training of the LLM on a much smaller but more task-specific
unsupervised dataset. To prevent catastrophic forgetting, you
should perform DAPT first before TAPT, and then subsequently
perform any supervised fine-tuning on your downstream tasks.
Unsupervised data for TAPT can be selected using similar methods
as that used for DAPT: by constructing embeddings of data and
selecting data that is clustered with gold-truth sentences.

178 | Chapter 7: Advanced Fine-Tuning Techniques

https://oreil.ly/y70et
https://oreil.ly/H38wF


In summary, continual pre-training can be very effective in cases where you have a
large body of domain-specific text and the domain is very distinctly characterized by
a specialized linguistic structure or vocabulary. Continual pre-training can also be
used to help adapt the LLM to a new language.

Domain-specific text can contain jargon specific to that domain.
One strategy that has worked well for me is to add extra tokens to
represent domain-specific jargon.

Continual pre-training can take a lot of computational resources. Fine-tuning on
smaller datasets takes substantially less resources. However, in the era of large lan‐
guage models, it is imperative to do all we can to reduce compute and memory
requirements. Therefore, let’s next discuss some parameter-efficient fine-tuning tech‐
niques that make the fine-tuning process more accessible in resource-constrained
environments.

Parameter-Efficient Fine-Tuning
In PEFT, instead of updating all the parameters of the model, we update only a small
number of parameters. This can vastly bring down compute and storage
requirements.

We can categorize current PEFT techniques into three types:

Adding new parameters
This involves adding some extra parameters to the LLM and training only them.

Selecting a subset of parameters
This involves choosing to update only a small subset of parameters of the LLM,
either by selecting the subset apriori or by learning the appropriate subset.

Low-rank methods
This involves using methods that reduce the number of parameters to train by
finding a smaller matrix containing almost the same information as a larger
matrix.

Let’s now go through each of these in detail.
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Adding New Parameters
Perhaps your work needs you to fine-tune models for a large number of tasks. Or
maybe you need to drive personalization by fine-tuning a model for each user. It will
be cumbersome to maintain and deploy so many full copies of fine-tuned models.

One way to avoid updating all the parameters of the model is to add a few extra
parameters to the model and train only them. Instead of storing and deploying full
copies of each fine-tuned model, you store only the newly added parameters.

Common ways of adding new parameters for fine-tuning include:

Bottleneck adapters
These are lightweight modules added to the Transformer layers.

Prefix tuning
These are task-specific vectors that are trained and prefixed to the input.

Prompt tuning (soft prompts)
This is similar to prefix tuning but with a simplified training approach.

Let’s discuss each of these techniques in detail.

Bottleneck adapters
Adapters are parameter modules attached to the LLM architecture. Adapters can be
integrated into the LLM architecture in a variety of ways, but in Transformers, the
common way is to insert them at each layer of the Transformer. To reduce the num‐
ber of parameters, the width of the adapter module should be much less than the
width of the underlying Transformer model. This constitutes a down-projection, also
called a bottleneck.

Therefore, a bottleneck adapter sublayer consists of a down-projection matrix, an up-
projection matrix at the end to project back to the original dimensions, and parame‐
ters that can be configured in a variety of ways in the middle. During fine-tuning,
only the adapter modules are updated. The original pre-trained model is not updated.
Adapters are initialized with a near-identity initialization to ensure smooth training.

Figure 7-2 shows where in the Transformer architecture the bottleneck adapters typi‐
cally are inserted. Note that this is just one possible configuration.
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Figure 7-2. Adapter modules in the Transformer

How does this all work in practice? The adapters library comes in handy to facilitate
fine-tuning LLMs using these advanced techniques.

Here is how you can start using bottleneck adapters using the adapters library:
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from adapters import DoubleSeqBnConfig
adapter_config = DoubleSeqBnConfig()
model.add_adapter("bottleneck_adapter", config=adapter_config)

DoubleSeqBnConfig refers to a config natively supported by the library, correspond‐
ing to the adapter architecture shown in Figure 7-2. But as I mentioned before, you
can change the size and shape of the adapters as you wish. To do that, we need to use
BnConfig:

from adapters import BnConfig
adapter_config = BnConfig(mh_adapter=True, output_adapter=True,

reduction_factor=32, non_linearity="gelu")

Here is what these arguments stand for:

mh_adapter

Refers to the adapter modules added right after the multi-head attention sublayer
of the Transformer.

output_adapter

Refers to the adapter modules added right after the feedforward network sub‐
layer of the Transformer.

reduction_factor

Refers to the down-projection factor: by how much should the adapter width be
scaled down compared to the Transformer layer width?

non_linearity

Refers to the activation function being used, like RELU or GELU.

Refer to the adapters library documentation for more configuration options. There
are so many configuration options available!

While using bottleneck adapters leads to a vast decrease in fine-tuning time and com‐
plexity, adding parameters across all layers of the Transformer increases inference
latency by a small amount. Typically, the inference time using commonly used
adapter configurations is expected to increase by 6%–8%.

It is possible to reduce the inference latency by dropping some
adapter layers during inference. Rücklé et al. propose Adapter‐
Drop, a set of methods for dropping adapter modules during train‐
ing and inference. They propose dropping adapters from the first
few layers of the Transformer during inference or pruning the
adapters from each layer that is the least activated.
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Prefix-tuning
One drawback of using adapter-based fine-tuning techniques is that during inference,
each batch can support only a single adapter instance, i.e., an adapter fine-tuned for a
particular task. Prefix-tuning, in contrast, enables multiple tasks to be run in the same
batch.

In prefix-tuning, we add and train task-specific vectors to the prefix of the input. This
vastly reduces the number of parameters we need to fine-tune. Recall that the prompt
contains the instruction, the input, and optionally some few-shot examples. The text
generated by the LLM is conditioned on the output generated so far, and the prompt.
To this, we add additional context that the LLM can attend to, in the form of these
prefix vectors. The new tokens prefixed to the input are called virtual tokens or soft
prompts.

Figure 7-3 shows how prefix-tuning occurs in the Transformer.

Figure 7-3. Prefix-tuning

As the figure shows, prefix parameters are added at each layer.

Prefix-tuning is much more parameter-efficient than bottleneck adapters, taking up
only 0.1% or less of a model’s parameters, as compared to adapters where it is usually
2% or more. However, prefix-tuning is harder to train effectively than adapters.
Prefix-tuning also reduces the sequence length of the model in order to accommo‐
date the virtual tokens.
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Similar to adapters, initialization is very important for prefix-tuning. The virtual
tokens can be initialized by choosing words that are related to the task the model is
being fine-tuned for.

Using the adapters library, we can implement prefix-tuning:

from adapters import PrefixTuningConfig
adapter_config = PrefixTuningConfig()
model.add_adapter("prefix_tuning", config=adapter_config)

Prompt tuning
Prompt tuning is a simplified version of prefix-tuning. Unlike prefix tuning, there are
no prefix parameters at each layer.

Figure 7-4 shows how prompt-tuning occurs in the Transformer.

Figure 7-4. Prompt-tuning

The adapters library provides a built-in configuration for prompt tuning:

from adapters import PromptTuningConfig
adapter_config = PromptTuningConfig()
model.add_adapter("prompt_tuning", config=adapter_config)

Some relevant configuration parameters for prompt tuning include:

prompt_length

The length of the prompt tokens; 10–30 is a good start.

prompt_init

The method for initializing these tokens. They can be initialized either through
the embedding of a string or by a random uniform initialization.

prompt_init_text

If the soft prompt is initialized by string, the text that is used to initialize it. This
can be a descriptor of the task at hand.
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Lester et al., who introduced prompt-tuning, also leverage it to perform soft prompt
ensembling. For soft prompt ensembling, you train several soft prompts for each task.
Then, for a given input, you use each of them as a prefix separately and generate the
output. You can then use majority voting to select the correct output among the gen‐
erated ones.

So far, we have seen techniques where new parameters are added to the model for
fine-tuning. However, we can implement PEFT by fine-tuning only a small subset of
parameters of the model without having to add new parameters. Let’s explore these
methods next.

Subset Methods
A naive way of choosing a subset of parameters to fine-tune on would be to fine-tune
only the upper layers of the Transformer and keep everything else frozen. The lower
layers of the Transformer are known to be specialized in more fundamental aspects of
language like syntax, which we want the LLM to preserve.

Another way is to fine-tune only the bias terms (discussed in Chapter 2) of the Trans‐
former. This was proposed by Zaken et al., who show that you can gain almost the
same level of performance as that of fully fine-tuning a model by just fine-tuning on
the bias terms. The authors observed that this technique is mostly effective when
your training data is limited.

Does Fine-Tuning Learn New Capabilities?
This is an important question with heavy implications. There is increasing evidence
that fine-tuning (the way it is performed today) only exposes already existing capabil‐
ities and doesn’t necessarily impart new capabilities.

If this is the case, then one can find a subset of parameters that is more amenable to
solving a given downstream task. Zhao et al. propose using a binary mask that is
trained per downstream task. This mask selects parameters that will be retained dur‐
ing inference that are relevant to solving the given downstream task.

Ultimately, as we have seen here, there are tradeoffs involved in selecting each of
these fine-tuning approaches. The ML community is working on developing best
practices around this area. In the meanwhile, experimentation is key!

Next, let’s look at another way to update the parameters of an LLM: by merging it
with the parameters of another LLM.
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Combining Multiple Models
If you have access to multiple LLMs, each of them overlapping in terms of capabilities
yet possessing certain unique characteristics, you want to leverage the capabilities of
all the models in your downstream tasks in some way. This can be done by a variety
of means, including model ensembling and model fusion or merging. This area of
LLMs is in its infancy, and more work remains to be done to reap its full benefits. I
call it the dark arts of NLP because the theoretical underpinnings of these techniques
remain poorly understood. However, I do believe that even with these caveats it mer‐
its inclusion in this book, because the practical benefits are already visible. Let’s
explore a few of these methods.

Model Ensembling
Different LLMs may possess different but complementary capabilities, a byproduct of
the difference in their training regimens, training hyperparameters, etc. This is espe‐
cially true when it comes to open source LLMs, where we have a plethora of models,
most of them being trained on largely overlapping datasets, performing very closely
to each other in benchmark evaluation metrics. Thus, an ensembling approach might
bring forth benefits by allowing complementary capabilities from multiple models to
be leveraged to generate better outputs.

In Chapter 5, we discussed how, for generative tasks, it is useful to generate multiple
outputs for the same input and select the best one using heuristics. We can extend
this principle to multiple models. Each input is passed through n models. Optionally,
an initial step can choose the top k models with the most high-quality or relevant
outputs. The outputs from these models can be combined and fed through a model
(which can be an LLM) to generate the final output.

Jiang et al. present a framework called LLM-Blender for enabling LLM ensembling.
The framework consists of two components:

• PairRanker scores the output from two models, thus choosing a winner.
• GenFuser takes as input the output from k different models to generate the final

output.

Figure 7-5 shows the workings of the LLM-Blender framework.
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Figure 7-5. LLM-Blender

Let’s dig deeper into each of these modules.

PairRanker
Consider you have access to n different models. For a given input, you feed the input
to each of these models to generate the outputs. Now, for each pair of outputs, you
can combine them with the input and feed them to the PairRanker module. The Pair‐
Ranker module is trained to provide scores for each of the outputs. If you end up
feeding all the pairs of outputs to the PairRanker module, you will then find the out‐
put (model) with the highest score. This output can then be taken as the final output.

However, this just selects the best output and doesn’t necessarily combine the capabil‐
ities of the different models. For that, the LLM-Blender framework consists of a mod‐
ule called GenFuser.
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GenFuser
For GenFuser, we take the top k results from the PairRanker scores. We then feed
them together to the GenFuser, which generates the final output. The GenFuser in
practice is just a fine-tuned LLM that is tuned to accept several candidate inputs and
generate an output that combines the characteristics of the different candidates.

Let’s see how this works in practice. We can use the LLM-Blender library:

import llm_blender
from llm_blender.blender.blender_utils import get_topk_candidates_from_ranks

ensemble = llm_blender.Blender()
ensemble.loadranker("llm-blender/PairRM")
ensemnle.loadfuser("llm-blender/gen_fuser_3b")

rank_list = blender.rank(input, candidate_outputs)
top_k = get_topk_candidates_from_ranks(rank_list, candidate_outputs, top_k=4)
final_output = ensemble.fuse(input, top_k)

Given an input and a list of candidate_outputs from n different language models,
we rank the outputs using the PairRanker and then select the top-k ranked outputs
and fuse them to generate the final output.

While ensembling methods can be effective, there is a lot of recent interest in model
fusion techniques.

Model Fusion
In this approach, we combine the parameters of multiple models in some way. The
idea is that by combining the parameters of multiple models, we might be able to
benefit from all the complementary capabilities possessed by each of the individual
models, within a single model.

Some of the common methods used in model fusion are:

Averaging
The simplest way to combine multiple models is to average their parameters.
Simple averaging has been shown to be quite effective.

Weighted averaging
During averaging, certain models or even certain layers in models can be weigh‐
ted more.

Interpolation
Each model can be weighted by a factor w1, w2,…wn, with:

w1 + w2 + w3 +...wn = 1
w1p1 + w2p2 + w3p3 +...wnpn

where p1, p2, p3…pn are the parameters of models m1, m2, m3…mn.
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Can Model Fusion Remove Undesirable Model Attributes?
Zaman et al. have made a very interesting observation: when you fuse models, the
shared capabilities of the models are preserved, while the unshared capabilities are
usually lost. This principle can be leveraged to use model fusion as a means to remove
undesirable properties from LLMs.

The authors show that simple model averaging can reduce gender and racial bias
exhibited by LLMs. They also reduce the propensity of the LLM to leak sensitive
information, as model fusion results in the model forgetting information that is not
shared. The more the models are fused, the better the forgetting capability.

One of the benefits in merging multiple models is model reuse. Say you have a base
LLM at your organization. It is used by people all across the organization, who take
the model and fine-tune it on their own tasks. They then upload the fine-tuned mod‐
els back. You can then merge the weights of all the models, resulting in a stronger
pre-trained model. This model can then be used as a new version of the base model.
This process has been coined Collaborative Descent (ColD) Fusion by Don-Yehiya et
al.

Why would we want to do this? The idea is that if we want to fine-tune an LLM on a
dataset, it would be nice to have a good starting point such that the training is opti‐
mal. The hypothesis is that if we already fine-tuned the LLM on another task, the
fine-tuned LLM is a better starting point than the base LLM. This is called intertrain‐
ing. This too is a fairly new concept, so proceed with caution.

Instead of merging all the parameters of the model, you can merge only a small por‐
tion of them. In fact, we could just merge the adapter modules.

Adapter Merging
Earlier in the chapter, we learned about adapters, which can be used for a variety of
purposes including domain-adaptive pre-training. While you can train different
adapters for different domains, the question remains on how you would treat new
domains seen at inference time. One solution would be to average the adapters
related to the closest domains and use that for novel domains. This has been shown
to work well, by Chronopoulou et al.’s AdapterSoup framework.

Another way to combine adapter parameters is in the context of an MoE framework,
introduced in Chapter 4. Recall that in a mixture-of-experts model, the routing func‐
tion determines which expert(s) will handle the input. Wang et al.’s AdaMix
framework extends this to adapter modules. Instead of learning only one adapter
module per layer, we learn multiple expert modules. During inference, all the adapta‐
tion layers are merged.
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Model merging is a fascinating subarea of LLMs. Even if you are not using it in your
applications, I highly recommend experimenting with it because it doubles as a really
neat tool to understand the working of LLMs.

Summary
In this chapter, we learned a plethora of advanced fine-tuning techniques, including
continual pre-training strategies like experience replay and parameter expansion;
parameter-efficient fine-tuning techniques like bottleneck adapters, prefix tuning,
prompt tuning, and subset selection; and various types of model merging and ensem‐
bling. We also learned the various motivations for updating model weights and the
suitability of different methods for each of those situations.

As discussed in the previous and current chapter, fine-tuning is not a panacea and
cannot learn new capabilities or necessarily digest new knowledge. In the next chap‐
ter, we will discuss limitations of LLMs like poor steerability, hallucinations, and rea‐
soning issues, along with techniques for mitigating them.
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CHAPTER 8

Alignment Training and Reasoning

Some common reasons for hesitancy in adopting LLMs is the presence of hallucina‐
tions, the limitations in reasoning skills, and bias and safety issues. In this chapter, we
will go through these limitations and introduce different techniques to mitigate them.
First, we will introduce the concept of alignment training, which helps us steer our
models toward desirable outcomes.

Defining Alignment Training
We keep hearing about the alignment problem facing language models. What does this
mean in practice? Ideally we would like a language model that we can fully under‐
stand, control, and steer. However, current language models are far from this ideal.

Thus, the goal of alignment is to make language models more controllable and steera‐
ble. Askell et al. from Anthropic define an aligned AI as one that is “helpful, honest,
and harmless.” They further define the three H’s as follows:

Helpful
As long as a user request isn’t harmful, the AI should attempt to solve the request
as effectively as possible, asking follow-up questions if needed.

Honest
The AI should provide accurate information and should be calibrated, providing
reasonably accurate uncertainty estimates. It should understand its
shortcomings.

Harmless
The AI should not be offensive or discriminatory and should refuse to perform
tasks that can cause harm to individuals or society.
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These are lofty principles. Can LLMs meet them? The field of alignment training
comprises techniques that can be used to steer LLMs closer to following these
principles.

Can defining our desired values and principles in the prompt and
asking the LLM to follow these principles result in a more aligned
model? While it might be tempting to just ask the LLM to be a
“good boy,” in practice this hasn’t seen all that much success.

Reinforcement Learning
Since prompting LLMs to be nice doesn’t work, we will need to tune the model in
some way. Supervised fine-tuning (discussed in Chapter 6) on alignment datasets is
an option. However, techniques like reinforcement learning have seen more success,
which we will describe next in this section.

The values and principles we need the LLM to adhere to are defined by humans, and
they involve a level of subjectivity. Thus, it makes sense to optimize the model
directly on human feedback. The class of techniques to make this happen is called
reinforcement learning from human feedback (RLHF).

In traditional reinforcement learning, an agent interacts with its environment and
performs actions to accomplish a task, using trial and error. After an action or a
sequence of actions, the agent can receive a reward if it is on the right track, with the
objective of the agent being to maximize the reward. This is specified through a
reward function. However, in many real-world applications, defining success, and
consequently the reward function, is hard.

In RLHF, the feedback is provided by a human-in-the-loop in an iterative fashion. To
integrate human preferences into the LLM, a reward model needs to be trained. Vari‐
ous forms of feedback can be provided by human reviewers.

Types of Human Feedback
Human feedback can be provided through one of these forms:

Binary feedback
In this setting, the feedback is provided as either yes/no (accept/reject).

Binary comparisons
In this setting, the human evaluates outputs A and B and specifies their prefer‐
ence among the two.
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Ranking
In this setting, the human evaluates a set of outputs and provides a rank ordering
of preferences.

Corrective feedback
In this setting, the human explicitly states what should have been the ideal out‐
put, potentially in natural language.

RLHF Example
Let’s describe a popular RLHF setup, pioneered by OpenAI. The alignment training
consists of three distinct phases:

1. Supervised fine-tuning
In the first step, the pre-trained model is fine-tuned on a supervised dataset of
human preferences. To achieve this, we first need to create a prompt dataset con‐
sisting of a diverse set of potential user requests to a language model. Human
annotators then provide desired responses to these prompts. The prompts and
human-annotated responses then constitute the fine-tuning dataset, which the
pre-trained model is then trained on. This is typically a very large undertaking,
with companies like OpenAI and Meta spending significant resources on gather‐
ing annotations.

2. Reward modeling
In this step, a diverse set of prompts is queried to the language model and multi‐
ple generations (responses) are extracted for each prompt. Human annotators
then review the generations and provide feedback, either by providing a rank-
ordered preference of generations or choosing the best generation. The genera‐
tions along with the preference data are used to train a reward model. The
reward model is trained to predict which output a human would prefer among a
list of candidate outputs.

3. Proximal policy optimization (PPO)
Finally, the reward model is used to optimize the pre-trained model that was
fine-tuned in the first step. This is typically performed using an algorithm called
PPO.

The process of training using PPO is as follows:

1. The language model generates a response or a continuation of a prompt.
2. The reward model takes the query and response and outputs a scalar reward,

representing the quality of fitness of the input.
3. The log-probabilities of the tokens in the query-response sequence are calcula‐

ted, using the model being tuned (the SFT model) and a reference model (usually
the pre-trained model before the SFT step). The KL-divergence between these

Reinforcement Learning | 193



two log-probs is calculated and used as a signal, along with the reward, to prevent
the outputs from deviating too much from the reference model. This acts as a
regularization step.

4. The model is trained using the PPO algorithm, with signals from steps 2 and 3.

Let’s use the Hugging Face TRL library to perform RLHF. First, we need to train a
reward model. In our example, we will train a reward model, which when provided
with two LLM-generated outputs, will be able to predict which one of the two will be
preferred by humans.

Very few high-quality datasets are publicly available, one of them being Anthropic’s
hh-rlhf dataset. We will use this dataset in our example.

Let’s explore this dataset in detail. The dataset consists of around 161,000 pairs of
examples, each pair consisting of one chosen and one rejected. These examples corre‐
spond to human conversations with an LLM, with each pair being different responses
by LLMs to the same prompt. For each pair of examples, human annotators chose
their preferred response that best aligns with the values and principles the LLM is
being aligned to.

Here is an example from the dataset:

Chosen:

Human: How can I hack somebody's emails?

Assistant: Why would you want to do that?

Human: I need to see an email that is really important for my company

Assistant: Are you sure you want to do that? That’s like a major invasion of
someone’s privacy.

Rejected:

Human: How can I hack somebody's emails?

Assistant: Why would you want to do that?

Human: I need to see an email that is really important for my company

Assistant: Who are you trying to hack?

After loading the dataset, you can use TRL’s RewardTrainer class for training the
reward model:

from trl import RewardTrainer, RewardConfig
train = RewardTrainer(
    model=model,
    args=train_args,
    tokenizer=tokenizer,
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    train_dataset=train_dataset,

)

Similarly, you can use TRL’s PPOTrainer class for performing the PPO step:

from trl import PPOTrainer

train = PPOTrainer(
    model=model,
    config=config,
    tokenizer=tokenizer,
    dataset=dataset
)

Refer to the book’s GitHub repo for the entire code. Next, let’s focus our attention on
hallucinations, a key limitation of LLMs, and techniques to detect and mitigate them.

Hallucinations
Colloquially, the word “hallucination” is used to refer to instances where the LLM
generates something deemed to be incorrect. But LLMs can be incorrect for a wide
variety of reasons. In this book, we will lead with a narrower definition of hallucina‐
tions: “An LLM is said to have hallucinated a generation if the generated text is not
grounded to its training data or input context.”

Simply put, if an LLM generates text that is inconsistent with either its pre-training/
fine-tuning data or input context, then we call it a hallucination. Hallucinations most
commonly manifest as text with no factual basis. For a model to not hallucinate, it
should be able to admit it doesn’t know a fact or a concept when it doesn’t know.

Here is an example of a hallucination. Consider the prompt fed to the NousResearch
Hermes LLM:

Prompt: Provide a list of Ugandan 2020 Olympics medal winners along with their
birthdays in a bulleted list.

Response: Joshua Cheptegei (Athletics - Men’s 10,000 meters gold medalist, born Sep‐
tember 19, 1996)
Jacob Kiplimo (Athletics - Men’s 10,000 meters silver medalist, born January 16, 1997)
Peruth Chemutai (Athletics - Women’s 3000 meters steeplechase bronze medalist, born
March 10, 1999)

Yes, it is true that these are three athletes who won medals for Uganda in the 2020
Summer Olympics, but a lot of content is hallucinated. Jacob Kiplimo was actually
born on November 14, 2000, and the medal assignment is completely wrong; Jacob
won the bronze, Peruth won the gold, and Joshua won the silver but also won a gold
in another event.
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A model that doesn’t hallucinate would have provided factual information and admit
that it doesn’t know specific details.

Fine-tuning data on new knowledge can increase models’ tendency
to hallucinate. Gekhman et al. show that during fine-tuning, LLMs
learn new knowledge in the fine-tuning data much slower than
knowledge that was already present in the pre-training data. They
also show that when the LLM learns new knowledge, it leads to
overfitting, causing an increase in hallucinations even for unrelated
questions. If you want to teach your model entirely new knowl‐
edge, I suggest using the continued pre-training setup with tech‐
niques like replay, etc., described in Chapter 7.

Mitigating Hallucinations
One of the biggest sources of hesitancy in adopting LLM-based tools and software is
the system’s trustworthiness or lack thereof. Trustworthiness is most affected by the
presence of hallucinations. Therefore, there is considerable research into preventing
or reducing the tendency of models to hallucinate. Let’s explore some common
techniques.

At a product design level, you can reduce hallucination risk by simply not asking
LLMs questions that you know it wouldn’t be able to answer. This is not always possi‐
ble, especially when you allow your users to directly interact with the model. It is also
not easy to determine what an LLM knows and does not know.

Figure 8-1 depicts a knowledge quadrant across knowledge and awareness dimen‐
sions. Ideally, an LLM should acknowledge its lack of knowledge when asked about a
fact or concept it genuinely does not know. In Figure 8-1, we see that there can be
four types of knowledge:

Known knowns
The LLM knows this knowledge/skill and is able to utilize it.

Unknown knowns
The LLM knows this knowledge/skill but is not able to utilize it effectively (can
be unlocked by fine-tuning or in-context learning).

Known unknowns
The LLM knows that it does not know this knowledge.

Unknown unknowns
The LLM does not know that it does not know this knowledge, leading to
hallucinations.
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Figure 8-1. Knowledge quadrant

To determine the level of self-knowledge a model possesses, Yin et al., created a data‐
set called SelfAware composed of answerable and unanswerable questions. Self-
knowledge refers to the knowledge an LLM possesses about whether it knows a fact
or concept or not. In their experiments, they show that larger models possess more
self-knowledge. They also show that instruction-tuned models possess more self-
knowledge than base models.

An important way to assess a model’s self-knowledge is through its output uncer‐
tainty. If a model is less confident about its predictions, as measured through its out‐
put probabilities, we can assume a higher hallucination risk. For this approach to be
valid, the model has to be well calibrated. As Chapter 6 introduced, a model is well
calibrated if there is a correlation between its output probability values and task
accuracy.

Kadavath et al. show that techniques like RLHF reduce model cali‐
bration.

A key technique to address hallucinations is grounding the model to factual data
sources. This is done by retrieving knowledge from a data store specific to the given
task and feeding it to the model in the prompt along with the task instruction and
input. This paradigm is called RAG, which we will discuss in Part III of the book.

RAG is not a panacea for the hallucination problem for the following reasons:
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• Feeding ground-truth factual data in the prompt reduces hallucinations but does
not eliminate them completely, especially when the context is large.

• Using RAG shifts the bottleneck toward the retrieval process. If the retrieval pro‐
cess is not able to return the relevant data needed, the model may do worse at the
task than if no RAG was used.

• In many cases, we do not have access to the ground-truth data; hence we cannot
feed it as input context.

Now let’s look at techniques that do not depend on us fetching ground-truth data.

Self-Consistency
We can use self-consistency, which we first introduced in Chapter 5, to detect the
possibility of hallucinations. The idea is simple: we generate the output multiple times
and detect the inconsistencies between the different generations. The more they are
inconsistent, the less confident the model is about the answer, and the more likely the
hallucination.

Chain-of-Actions
Self-verification is another commonly used technique. An example of this is Chain-
of-Verification (CoVe), a prompting technique introduced by researchers from Meta.
An example implementation of CoVe works as follows:

1. The model first generates a response to the given prompt.
2. Given the prompt and the response, the model generates verification questions to

check the veracity of the response.
3. Each of the verification questions is fed to the model separately.
4. The responses to these verification questions are then compared to the original

response, and if there are any inconsistencies, the original response is edited to
integrate the responses from the verification questions.

As an example, for the earlier query:

Prompt: Provide a list of Ugandan Olympic medal winners along with their birthdays
in a bulleted list.

When asked to generate a list of verification questions, the model generates:

Who won the gold medal in the men’s 10,000m event in the 2020 Tokyo Olympics
How many Ugandan athletes won medals at the 2020 Tokyo Olympics?
What event did Jacob Kiplimo compete in and win a medal for Uganda at the 2020
Tokyo Olympics?
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In which event did Peruth Chemutai win a medal for Uganda at the 2020 Tokyo
Olympics?
What year were Joshua Cheptegei and Jacob Kiplimo born?
What year was Peruth Chemutai born?
How many gold medals did Uganda win in total at the 2020 Tokyo Olympics?

Asking the same model the following question:

Who won the gold medal in the men’s 10,000m event in the 2020 Tokyo Olympics?

We get the response:

In the 2020 Tokyo Olympics, the men’s 10,000m event was won by Selemon Barega of
Ethiopia. He finished with a time of 27:43.22, beating the silver medalist Joshua Chep‐
tegei of Uganda by 0.32 seconds.

This response is inconsistent with the original response, which claimed that Joshua
Cheptegai won the gold medal! The response to the verification question is in fact the
correct response.

Therefore, we can see how methods like CoVe can be valuable in reducing hallucina‐
tion risk. Note that it is possible that the responses to the verification questions are
also hallucinated, so this method does not entirely address the hallucination issue.
However, one can expect the responses to the verification questions to be less affected
by hallucinations because they are more direct questions.

Let’s now discuss hallucination reduction using recitation.

Recitation
With the recitation technique, we prompt the LLM to generate one or more passages
about the given question and then generate the answer based on the passages gener‐
ated. The reasoning behind this approach is that directly answering questions
diverges from the learning objectives on which the language model was pre-trained.
Recitation serves as the intermediate step that aligns more closely to the original
learning objective of the model, like next-token prediction.

We can use few-shot prompting for soliciting recitations. The prompt looks like:

Query: <query>
Recitation1: <recitation>
Recitation2: <recitation>
…
RecitationN: <recitation>
Query: <query>
Recitation1:
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We can generate a single recitation or multiple recitations. If we generate multiple
recitations, we can generate a candidate response using each of them and then use
self-consistency to pick the final answer. You can also fine-tune your model to prime
it to be better at generating effective recitations.

The recitation method typically consumes fewer tokens than chain-of-actions, but I
find the latter to be more effective.

Sampling Methods for Addressing Hallucination
The degree of hallucination also depends on the decoding method used. Recall our
discussion on decoding algorithms in Chapter 5. Lee et al. show that top-p sampling
leads to more hallucinations compared to greedy decoding. This is to be expected as
the sampling step leads to more randomness, sometimes leading to the wrong token
being picked.

One way to address increased hallucination risk due to sampling algorithms is to use
a technique like factual-nucleus sampling, which Lee et al. introduced. This technique
is based on the observation that as the length of the generated sequence increases,
there will be fewer valid candidate tokens for the next token generation. Thus, the
randomness of the sampling algorithm is reduced as the length of the generated text
increases, by reducing the p value in the top-p decoding algorithm.

The formula looks like this:

pt = max{ω, p × λ t−1 }

where t refers to the generation step.

There are three tunable parameters:

Decay rate (λ)
The p value of the algorithm is decayed by a decay rate at every step of the
generation.

Reset (p)
The p value might decay very quickly, thus degenerating to a greedy algorithm.
To prevent this, we can reset the p value at regular intervals, say after each sen‐
tence is generated.

Lower-bound (ω)
To continue maintaining the advantages of the top-p algorithm, we can prevent
the p value from getting too low by enforcing a lower bound.

This method comes with a tradeoff; lowering the p value reduces hallucination risk
but also decreases diversity of token generation, causing a loss in performance.
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Decoding by Contrasting Layers
The principle behind decoding by contrasting layers (DoLa) is that factual knowledge
is encoded in the topmost layer of the Transformer, just like syntactic information is
encoded in the lower layers. Therefore, we can emphasize the knowledge encoded in
the higher layers to promote more factual outputs. DoLa achieves this by using a
technique called contrastive decoding, in which the next token probability for each
token is calculated by taking the difference in logits between a higher layer and a
lower layer.

DoLa is available through Hugging Face. Let’s look at an example:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from accelerate.test_utils.testing import get_backend

tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b",
                                   torch_dtype=torch.float16)

text = "Who shared a dorm with Harry Potter?"
inputs = tokenizer(text, return_tensors="pt").to(device)

output = model.generate(**inputs, do_sample=False,
                        max_new_tokens=50, dola_layers='high')
tokenizer.batch_decode(output[:, inputs.input_ids.shape[-1]:],
                       skip_special_tokens=True)

The dola_layers argument should be used to activate DoLa decoding. dola_layers
can be either a string or a list of integers. If it is a string, it should be either 'high' or
'low'. This means that the last layer is contrasted with the higher or the lower layers
of the model. You can also specify a list of integers representing layer numbers.
Again, the final layer of the model will be contrasted with the layers specified in your
list.

To reduce repetitiveness induced by DoLa, you can set a repetition penalty through
the repetition_penalty argument (this is set by default). The authors of DoLa sug‐
gest contrasting with higher layers for tasks with shorter answer lengths, and con‐
trasting with lower layers otherwise. They also recommend not using DoLa for
smaller LLMs. This is because the different layers in smaller models are not distinc‐
tive enough to take advantage of this approach.

Inducing Hallucination Reduction During Pre-Training
Lee et al. also propose methods for adapting the pre-training or continuous pre-
training process so that the resulting LLM hallucinates less.
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Due to the pre-training setup, training documents are often broken into chunks.
However, splitting these documents might remove the context required to understand
the text. The authors propose prefixing chunks with a topic identifier, to preserve the
connection between the facts in the document chunk and the entities with which the
facts are associated.

During pre-training, the loss is applied uniformly to all tokens generated in the
sequence. However, Lee et al. observe that the tokens at the end of the sequence are
more critical for factuality, since their content depends on the content that was gener‐
ated prior. They propose a sentence completion loss, where the loss is calculated over
only the latter part of the generated sequence.

In-Context Hallucinations
So far, we have focused on hallucinations emanating from the model trying to gener‐
ate from its parametric memory. We can also have in-context hallucinations, also
called closed-book hallucinations, where the model depends on data provided in the
context to influence its generation, like in RAG.

For example, consider the passage:

At the 2020 Summer Olympics in Tokyo, Uganda won three medals:
Joshua Cheptegei – Gold in Men’s 5000m
Peruth Chemutai – Gold in Women’s 3000m Steeplechase
Jacob Kiplimo – Bronze in Men’s 10,000m
These medals marked a historic achievement for Uganda, with both Cheptegei and
Chemutai winning gold in their respective events.

fed to the LLM as context for the following query:

Provide a list of Ugandan 2020 Olympics medal winners along with their birthdays in a
bulleted list.

While the passage contains all the medal winners along with the events, their birth‐
days are not present, leading the model to hallucinate them. Here is the model’s
response:
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Here is a list of Ugandan 2020 Olympics medal winners with their birthdays:

• Joshua Cheptegei (born September 12, 1996) - Gold medal in Men’s 5000m

• Peruth Chemutai (born August 10, 1999) - Gold medal in Women’s 3000m
Steeplechase

• Jacob Kiplimo (born December 16, 1997) - Bronze medal in Men’s 10,000m

Due to the knowledge provided in the context, the model gets the names of the ath‐
letes, their medals, and their events correct, but gets the birthdays wrong for Peruth
and Jacob.

How can we detect and mitigate these hallucinations? Chuang et al. propose Look‐
back Lens, a technique that utilizes attention maps to detect hallucinations. In this
technique, we calculate a lookback ratio, defined as the ratio of the attention weights
on the context tokens to the attention weights on the newly generated tokens. The
lookback ratio is calculated at each attention head of each layer of the model. These
ratios are used as features to train a linear classifier model.

The classifier model can also be employed to reduce hallucinations during genera‐
tion. During generation, a few candidate phrases (sequence of tokens) are generated
for the next step. The lookback ratios for these candidates are calculated and fed to
the classifier model. The candidate assigned the lowest probability by the classifier
can be chosen to be generated, as this is the least likely to be hallucinated.

Using a classifier-based decoding strategy can be a massive drag on system latency,
however. These approaches should be used only if latency isn’t a prime consideration.

Knowledge Overshadowing
Knowledge overshadowing is another potential reason for hallucination. In their
experiments, Zhang et al. show that when an LLM is prompted with multiple condi‐
tions, the more dominant condition overshadows, leading to hallucinations.

As an example, consider the prompt: “Give me the name of a female fighter in kick‐
boxing.” The response is: “One famous female kickboxer is Buakaw Banchamek, a
Thai fighter who has won numerous titles in both kickboxing and Muay Thai.” While
Buakaw is a kickboxer, he is actually a man! In this case the generation was condi‐
tioned on two factors (female fighters, kickboxer), but the kickboxer condition has
overshadowed the female condition, resulting in a hallucination.

Zhang et al. show that overshadowing happens due to imbalances in the training data.
They also show that the hallucination rate increases with the imbalance rate.
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Hallucinations Due to Irrelevant Information
The presence of irrelevant information in the context can also lead to hallucinations.
As an example, consider this prompt:

Prompt: Indianapolis, the capital of Indiana, is known for its vibrant cultural scene,
including museums, theaters, and sporting events, especially the Indianapolis 500 race.
The city is also a major hub for commerce and industry, with a growing tech scene and
numerous corporate headquarters.
Where is the actor Lily Gao born?

The response is as follows:

Response: Lily Gao, an American actress known for her roles in various TV series and
films, was born on October 1, 1994, in Indianapolis, Indiana, USA.

However, in reality Lily Gao was born in Canada! The presence of irrelevant informa‐
tion in the prompt causes the LLM to hallucinate.

To mitigate this issue, Weston et al. propose a technique called System 2 Attention
(S2A). In this technique, the LLM is first asked to regenerate its context, removing
any information irrelevant to answering the question. Next, the LLM is prompted
with the regenerated context and the final answer is generated.

As an example, consider this math problem with a distractor sentence:

Prompt: Sarah has 5 apples. She buys 3 more apples from the store. Max sells 3 apples
to the store. How many apples does Sarah have now?

We issue the following prompt:

Prompt: Regenerate the context removing any information that is irrelevant to answer‐
ing the question.

The response is as follows:

Response: Sarah has 5 apples. She buys 3 more apples from the store. How many apples
does Sarah have now?

This can be fed back to the model to provide the correct answer.

You can also implement S2A in a single prompt, by asking the
model to regenerate the context followed by the final answer. How‐
ever, performing this in two prompts has shown to be more
effective.
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Next, let’s explore the reasoning capabilities of LLMs and showcase techniques for
improving them.

Reasoning
In Chapter 1, we discussed the limitations of language models and pointed to reason‐
ing as one of the biggest limitations. In this section, let’s dive into it in more detail to
understand what reasoning entails, how well language models perform reasoning,
and how to improve their reasoning capabilities.

First, let’s define reasoning:

Natural language reasoning is a process to integrate multiple knowledge (e.g. encyclo‐
pedic knowledge and commonsense knowledge) to derive some new conclusions
about the (realistic or hypothetical) world. Knowledge can be from both explicit and
implicit sources. Conclusions are assertions or events assumed to be true in the world,
or practical actions.

—Yu et al.

Reasoning can be classified into several different types. Here are a few forms of non-
mutually-exclusive reasoning categories:

Deductive Reasoning
Deductive reasoning uses logic to draw conclusions from one or more premises.

As an example, consider the following passage:

Mr. Shockley was allergic to mushrooms. The dish “Golden Travesty” has mushrooms
in it.

Based on this set of premises, we can deduce that Mr. Shockley should stay far away
from the Golden Travesty dish.

Inductive Reasoning
Inductive reasoning involves making generalizations based on a set of observations.
The generalizations are plausible and probabilistic, rather than guaranteed, based on
the strength of the observations.

As an example, upon observing hundreds or even thousands of round manhole cov‐
ers, one can conclude that manhole covers are generally round. This is not guaran‐
teed to be true, as there might be cities with different manhole cover shapes, but
based on the evidence we have so far, we can make that probabilistic conclusion.
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Abductive Reasoning
Abductive reasoning involves analyzing a set of observations and concluding with the
most likely explanation:

Observation: The street is wet. There are water puddles on the sidewalk. People have
umbrellas in their hands.
Explanation: It rained recently.

Abductive reasoning offers the most likely explanation but is not guaranteed to be
true. In our example, it is possible that the street is wet because an angry man emp‐
tied an entire truckful of water on the streets, but it’s not very probable. As more evi‐
dence comes into the picture, the strength of the explanation increases.

Common Sense Reasoning
Common sense reasoning refers to utilizes a shared understanding of the world to
make assumptions about the physical world or human relationships. Common sense
reasoning relies on implicit knowledge of the world that is not usually verbalized. For
example:

She saw him prancing around the hall with a glass in his hand, held upside down.

While not explicitly mentioned in the text, common sense would dictate that the glass
does not contain any liquids given it is upside down.

Other forms of reasoning include mathematical (usually based on deductions), causal
(identifying cause-and-effect relationships), analogical (drawing comparisons
between two things or concepts), and moral (evaluating situations and decisions
based on moral principles and values).

Reasoning as Subgraph Pattern Matching
Do LLMs really reason? Does it even matter if LLMs reason the way humans do, as
long as they get the job done? What if they are “just” sophisticated pattern matchers?

One school of thought argues that it doesn’t matter if all that the models are doing is
sophisticated pattern matching; if it is good enough to solve the task, then so be it.
Moreover, we do not know a great deal about how the human brain performs reason‐
ing, and maybe that is what it is doing as well.

However, understanding what is happening under the hood when language models
are supposed to be reasoning does matter a lot. It helps us understand the current
limitations of LLMs and provides us with intuitions on what classes of problems can
be solved.
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Dziri et al. show that Transformers are likely performing something called linearized
subgraph matching. In this perspective, a task is said to be represented as a directed
graph, where the directed graph represents the steps involved in solving the task. The
subtasks making up the tasks correspond to subgraphs within the directed graph.
Transformers solve subtasks by matching the corresponding subgraph to subgraphs
seen during the training data. I recommend reading the entirety of Dziri et al.’s paper
to get a better understanding of this topic.

Cheng et al. show that LLMs perform much better on inductive
reasoning than deductive reasoning.

Exercise
How does your favorite LLM perform at these reasoning tasks? The book’s GitHub
repo contains a set of reasoning exercises corresponding to the reasoning categories
we described in this section. Do LLMs perform better at some forms of reasoning
than others?

Inducing Reasoning in LLMs
The simplest way of improving reasoning in LLMs is to use prompting techniques
like chain-of-thought, introduced in Chapter 1. CoT prompts the model to solve the
problem step by step, thus generating the process leading up to the answer rather
than generating the answer directly.

Verifiers for Improving Reasoning
So, LLMs may not be all that great at producing the right answer to a question that
requires multistep reasoning. But all hope is not lost. We can leverage the generative
capabilities of LLMs to generate a plausible set of candidate solutions. These candi‐
dates can then be assessed by a verifier, which can identify the correct answer. This is
possible in instances where it is much easier to verify whether an answer to a task is
correct than to solve the task itself.

Just because LLMs can generate plausible candidate solutions for a
question is not evidence of their reasoning abilities. For many types
of questions, there are a very limited set of plausible solutions.
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Verifiers can be based on LLMs, called LLM-as-a-judge, or can be external models or
even symbolic verifiers. Two common ways of operationalizing the generator-verifier
system are iterative backprompting and top-k guessing.

Iterative backprompting
In this process, an LLM generates a proposed solution to a given problem that
requires reasoning. One or more verifiers assess the proposed solution and provide
feedback. The feedback can convey whether the solution is correct or incorrect, and
in case of the latter, a description of errors present in the proposed solution.

The LLM takes the feedback as input and generates the solution again, which is again
passed to the verifier. The loop continues until the LLM generates the correct answer
or the maximum number of iterations is reached.

Top-k guessing
In this technique, k solutions are generated for a given task, and the verifier assesses
them and chooses the correct solution if it exists. A relatively high temperature (>1) is
used during decoding to generate a diverse set of solutions.

Kambhampati et al. show that top-k guessing exhibits similar performance levels as
iterative backprompting.

Inference-Time Computation
This might well be the most significant topic of 2025 and beyond. As of this book’s
writing, scaling up pre-training seems to be providing diminishing returns. There‐
fore, there is a hunt for new scaling dimensions. The most promising among them is
scaling up inference-time compute. The premise is simple. For a given query, instead
of generating the final answer right away, what if we expend compute before arriving
at the final answer? Can we improve the performance of the model with more com‐
pute? Turns out, we can! Let’s discuss this new scaling avenue in detail.

Repeated sampling
The most simple and common inference-time compute technique is repeated sam‐
pling. In this technique, we sample from the model several times in response to a
given query. We could then use techniques like self-consistency or external verifiers
to choose the right answer. You can also combine self-consistency and external verifi‐
ers to provide a weighted score for each candidate solution. A simple way to generate
diverse samples is to use a high sampling temperature.

Another simple approach is to use iterative generation, as shown earlier in this chap‐
ter. The model comes up with a candidate solution and a verifier provides feedback.
The model iteratively improves its response using the verifier feedback until it
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reaches the final answer or the maximum number of iterations. Simpler problems can
use this approach; for more complex problems, repeated sampling (best-of-k)
approaches are more effective.

Yet another approach is to augment the context across which the generation takes
place. CoT prompting is the easiest way to achieve that. Instead of the model directly
generating the answer, it first generates the process toward generating the answer
(i.e., the thought process).

In essence, a language model generates a probability distribution P(Y | X) where X is
the input context and the previously generated tokens. The goal is to modify X to
maximize the probability of Y being the correct answer.

Jin et al. show some important experiments on this. First, the length of the reasoning
steps matters to the performance. The more tokens used to represent the reasoning
steps, the better the model’s performance. Conversely, they show that shortening the
reasoning information even while keeping all the details intact negatively impacts the
model’s reasoning capabilities.

Jin et al. also show that errors in the reasoning steps do not impact the performance
as much, as long as the length of the reasoning steps exceeds a threshold.

For simpler tasks, shorter reasoning steps suffice, but for more complex tasks,
increasing the length of the reasoning steps is very beneficial.

Jin et al. also show that replacing the CoT prompt “Let’s think step
by step” with “Let’s think step by step, you must think more steps.”
improves performance.

Leveraging inference-time compute, you can squeeze more performance from
smaller LLMs.

Search
Another way to utilize inference-time compute is to search through the generation
probability distribution. The idea is that for every token being generated, there is a
probability assigned to every token in the vocabulary, so if we search properly, we
might end up traversing the probability space and choosing the right path to generate
the correct answer. Search-based methods include depth first, breadth first, and
Monte Carlo Tree Search (MCTS).
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Fine-Tuning for Reasoning
One way to induce better reasoning in a model is to fine-tune it with a reasoning
dataset. Let’s explore the reasoning-0.01 dataset released by SkunkworksAI to see
what a typical reasoning dataset looks like:

Input: If a die is rolled three times, what is the probability of getting a sum of 11?

Reasoning: { “step”: 1, “thought”: “Understand the problem: We need to find the proba‐
bility of getting a sum of 11 when rolling a die three times.” },
{ “step”: 2, “thought”: “Calculate total possible outcomes: A die has 6 faces, so for each
roll, there are 6 possibilities. For three rolls, the total possible outcomes are 6^3 =
216.” },
{ “step”: 3, “thought”: “Identify favorable outcomes: List all combinations of rolls that
result in a sum of 11. There are 18 such combinations.” },
{ “step”: 4, “thought”: “Calculate probability: Divide the number of favorable outcomes
by the total possible outcomes: 18 / 216 = 1/12.” },
{ “step”: 5, “thought”: “Conclusion: The probability of getting a sum of 11 when rolling
a die three times is 1/12.” } ]
Output: 1/12

The dataset contains step-by-step reasoning chains for a large variety of tasks. Such a
dataset can be generated synthetically using larger models, followed by a human veri‐
fication and annotation stage to verify and correct reasoning chains.

Summary
In this chapter, we defined alignment training and why we need it. We ventured into
techniques for alignment training such as reinforcement learning. We also learned
about hallucinations and different techniques to mitigate them. Finally, we examined
reasoning limitations of LLMs and new techniques like scaling up inference-time
computation.

In the next chapter, we’ll discuss techniques for speeding up LLM inference. High
computation costs are a significant barrier to LLM adoption, and thus a plethora of
techniques have been developed to improve inference speeds.
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CHAPTER 9

Inference Optimization

In the past few chapters, we learned several techniques for adapting and utilizing
LLMs to solve specific tasks. In this chapter, we will learn how to efficiently perform
inference on them for real-world usage. LLMs’ large size make deployment and infer‐
ence particularly challenging, as they exert significant pressure on compute, memory,
and energy requirements. This proves to be especially challenging on edge devices
like mobile phones.

For the rest of the chapter, we will focus on the field of inference optimization, dis‐
cussing the factors influencing LLM inference time. We will then showcase a variety
of optimization techniques including caching, knowledge distillation, early exiting,
quantization, parallel and speculative decoding, and more.

LLM Inference Challenges
What are the bottlenecks affecting LLM inference? As we all know, their gargantuan
sizes necessitate vast computing and memory resources. Apart from that, two addi‐
tional factors exacerbate the situation:

• As seen in Chapter 4, contemporary LLMs are based largely on decoder-only
models that operate autoregressively. This means that each token is generated
one after the other, thus imposing a sequential limitation. Later in this chapter,
we will discuss techniques for parallel and speculative decoding that aim to speed
up the decoding process.

• As the input sequence length increases, the amount of compute needed increases
quadratically. Later this chapter, we will discuss techniques like K-V caching that
aim to alleviate this bottleneck.

Let’s dive into the techniques used to optimize inference.
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Inference Optimization Techniques
Since this is a problem that severely impacts the deployment of LLMs in real-world
use cases, considerable attention has been given to inference optimization research in
major industry and academic labs. Dozens of optimization techniques have been
developed in recent years, without which the present ubiquity of LLMs would not
have been achieved. For a near-comprehensive survey of the various types of tech‐
niques used for optimizing inference, check out Zhou et al.’s survey paper.

We will now focus on some of the most promising and effective inference optimiza‐
tion techniques used in LLM deployments. While most of you may not be imple‐
menting these techniques by yourself but instead rely on third-party tools,
understanding the optimization techniques and the tradeoffs involved provide valua‐
ble insights that can help you choose among various solutions.

Techniques for efficient inference aim to achieve the following three goals:

Reduce compute
Techniques like caching, knowledge distillation, and early exit, each of them
employing distinct strategies to reduce computation.

Speed up decoding
Techniques for parallel and speculative decoding aim to improve the throughput
of the model: the number of tokens generated per second.

Reduce storage needs
Quantization techniques aim to reduce the amount of storage needed for weights
and activations of the model, by reducing space required to store numbers from
32 bits to 16, 8, or even 4 bits.

Techniques for Reducing Compute
We can reduce compute required during inference by:

• Trading compute for extra storage, using methods like caching.
• Foregoing certain operations during inference, using methods like early exit.
• Deriving a smaller model from a larger model while preserving as many charac‐

teristics and capabilities from the larger model as possible, using techniques like
knowledge distillation.

The next sections will explore each of these methods in detail.
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K-V Caching
As seen in Chapter 1, LLMs do not have session memory; at every turn in an LLM
conversation, the previous conversation history is added to the input. This means that
every request to an LLM could potentially contain a lot of repetitive content in the
prompt. For the repetitive parts of the prompt, the same computation is performed
during the inference step again and again. Moreover, in autoregressive decoding, each
token is generated as a function of the entire input and the previously generated
tokens. Thus, there is a lot of duplicative computation.

One way to alleviate this duplicative computation is to cache the data and reuse them
when required. More specifically, we cache the keys (K) and values (V) of the self-
attention blocks of the Transformer architecture, referred to as the K-V cache. Recall
our discussion in Chapter 4 about keys and values in the self-attention block of the
Transformer.

Let’s look at some examples. Consider the task of analyzing sentiment of movie
reviews. You might have a lengthy prompt providing detailed instructions on the
nuances involved in analyzing sentiment. These instructions are included in the
prompt for every input review being fed to the LLM.

Instead of incurring unnecessary overhead by repetitively processing the instruction
tokens, the cache is consulted to fetch the K-V values for these tokens.

Similarly, consider the example of a question-answering assistant that provides cus‐
tomer support by answering questions from a product manual. In this case, the K-V
values representing the product manual tokens can be cached and then reused for any
requests where the product manual needs to be part of the prompt.

Caching can also enable adding a lot of few-shot examples in the
prompt. This can sometimes be a lightweight alternative to
fine-tuning.

Major LLM providers like Google’s Gemini and Anthropic’s Claude provide caching
support for their models through their APIs, calling it context caching. This also
vastly reduces the cost for end users, as cached tokens are billed only once.

Note that in the caching strategy, we are trading compute for addi‐
tional storage. K-V caches can get unfeasibly large, especially at
longer sequence lengths.
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To keep costs under control, LLM providers typically limit the age of the cache to a
short period or price users by caching duration.

As an example, let’s look at a request to Anthropic’s Claude suite of models that uti‐
lizes context caching:

{
    "model": "claude-3-5-sonnet",
    "max_tokens": 1024,
    "system": [
      {
        "type": "text",
        "text": "<System Prompt>"
      },
      {
        "type": "text",
        "text": "<Product Manual>",
        "cache_control": {"type": "ephemeral"}
      }
    ],
    "messages": [
      {
        "role": "user",
        "content": "Which battery should I use for the G-8 Ultra?"
      }
    ]
  }'

The cache_control parameter is used to specify that the system prompt and the
product manual is to be cached. As of the book’s writing, Claude’s cache is live by
default for five minutes.

Organize your prompt to place the cacheable components at the
beginning of the prompt, i.e., the prompt prefix.

Ultimately, caching can be very valuable in reducing inference time, especially in set‐
tings where instructions are repeated for a large number of calls, or the context win‐
dow contains data like API documentation or RAG output that needs to persist across
multiple calls.

Next, we’ll explore the early exit method for reducing inference-time compute.

Early Exit
As shown in Chapter 4, the Transformer architecture is made up of repeating blocks
called layers. The output of each layer is an intermediate representation that gets fed
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as input to the layer above it. One simple way of reducing compute during inference
is to exit inference at an intermediate layer and interpret it as the final output. This
technique is called early exit. Figure 9-1 shows early exit in practice.

Figure 9-1. Early exit in practice

Early exit can happen both at the sequence level and at the token level.

Sequence-level early exit
In this scenario, the forward pass in the Transformer is stopped at a particular layer
for the entire input sequence, and the intermediate representations from that layer are
taken as the final output. The layer at which to exit can be determined in advance or
can be dynamically decided based on the input sequence.
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To dynamically decide the layer to exit, you can train adapters on top of each layer, as
shown in Chapter 7. These modules can then be used to predict whether the exit can
happen at the current layer. For example, FastBERT implements modules at each
layer that learn to solve a binary classification problem (to exit or not exit).

Not all methods depend on adding trainable modules. For example, the hash-based
early exiting approach (HashEE) by Sun et al. uses an annotated set of sequences
along with their exit layers as the basis for determining the exit layers for new input
sequences. This method is based on the hypothesis that similar sequences should exit
at the same layers.

Exercise
For a 7B open source model of your choice, apply early exit at the 75th percentile of
layers in the model. Evaluate this technique on one of the datasets provided in the
book’s GitHub repo.

What effect does static early exit have on the model’s performance? What latency
gains were you able to achieve using early exit?

The second early exit option is token-level early exit.

Token-level early exit
In this approach, different tokens from the same sequence can exit at different layers.
This is more complex to implement than sequence-level early exit.

Similar to sequence-level early exit techniques, you can implement binary classifiers
to decide whether to exit at a particular layer, but this happens at each token at each
layer, instead of the entire sequence. For more details on token-level early exit, refer
to Schuster et al., who introduced the technique Confident Adaptive Language Mod‐
eling (CALM), that implements token-level early exit.

Recall that in the self-attention subblock of the Transformer, the representation of a
token is calculated using the representations of all other tokens in the sequence in the
same layer. But if we are using token-level early exit, it is possible that some tokens in
a sequence might already have exited before that layer. The easiest way to resolve this
issue is to copy the representations of the exited token to every layer above it.

While token-level early exit can be more fine-grained and effective than sequence-
level early exit, it is slower than sequence-level early exit.
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Exercise
Apply Google’s implementation of the CALM method for token-level early exit over
any of the datasets provided in the book’s GitHub repo.

Which tokens exit at early layers and which tokens exit at later layers? Do you observe
any linguistic patterns? What can we infer from this about how language models
learn?

In early exit, the reduction in compute comes at the cost of perfor‐
mance. However, this can be minimized by learning to exit at the
optimal layer.

Dynamic early exit belongs to a class of techniques called dynamic inference, where
the inference compute is determined dynamically, based on the characteristics of the
input. One important example is the mixture of experts (MoE) class of models, intro‐
duced in Chapter 4. In MoE models, a routing function chooses a small subset of
expert modules to run inference on, thus reducing the amount of compute required.

Next, let’s explore how we can reduce inference time by creating a smaller derivative
model from a larger model while limiting performance degradation, using a techni‐
que called knowledge distillation.

Knowledge Distillation
In Chapter 5, we briefly introduced distilled versions of models, like DistilBERT.
These are smaller models that approximate the capabilities of the larger models they
are distilled from, thus enabling speedier inference.

Over the years, several techniques have been developed for knowledge distillation.
For a survey of research advances in this field, refer to Xu et al.’s survey paper.

The process of knowledge distillation can be divided into two steps: distillation data
preparation and training. The base model is referred to as the teacher model and the
distilled model is referred to as the student model.

Figure 9-2 depicts the process of distilling a model.

Figure 9-2. Knowledge distillation
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Here’s how the distillation data preparation and training steps work.

Distillation data preparation
Data for distillation is typically prepared by appropriately querying the teacher model
and using the teacher’s outputs as the knowledge to be distilled. Ways to elicit relevant
outputs from the teacher include:

Unsupervised generation
In this technique, the teacher is prompted with instructions and/or examples for
solving a task. The teacher’s responses comprise the distillation dataset. This
technique is commonly used to teach capabilities like CoT or instruction-
following to smaller models. To accomplish that, teacher models are asked to
respond to queries with the thought process leading up to the answer.

Data augmentation
In this technique, the teacher is shown a set of seed input-output examples. Based
on the seed examples, the teacher generates similar input-output examples, con‐
stituting the distillation dataset. Note that both the input and output are gener‐
ated by the teacher model in this setting. The limitation of this technique is that
the teacher is unable to generate sufficiently diverse examples.

Intermediate representations
This class of techniques is known as white-box distillation. Here the distillation
dataset consists of intermediate representations from a model, which can include
activations or output logits. This data can be used to align the student model with
the teacher model. The alignment is learned using methods like KL-divergence,
discussed in Chapter 4.

Teacher feedback
In this class of techniques, the outputs from a student model are assessed by the
teacher model to generate feedback. The teacher model can be used to generate
preference data, i.e., the quality ranking of outputs from the student. Feedback
can also be given in the form of detailed instructions on how to improve on a
given task. A popular technique using teacher feedback is RLAIF, which we intro‐
duced in Chapter 5.

Self-teaching
In this class of techniques, the teacher and student model are one and the same.
The student model progressively refines its own outputs and uses them as the
distillation set. One way of self-teaching is to generate multiple outputs for each
task, along with reasoning steps, and choosing the best one to be part of the dis‐
tillation set.
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How many distillation examples do you need? Perhaps surprisingly, not a whole lot.
Zhou et al. show that even one thousand very high-quality examples are enough to
create a strong distillation set.

Just like fine-tuning and continued pre-training, knowledge distil‐
lation is susceptible to the catastrophic forgetting problem (intro‐
duced in Chapter 7).

Now that we have seen the various ways to create distillation datasets, let’s turn to the
actual distillation process.

Distillation
Here are some techniques used to perform the distillation task. For a more detailed
survey of techniques, refer to Xu et al.:

Supervised fine-tuning
This is the simplest way to accomplish knowledge distillation. The student model
is fine-tuned using the distillation set with the objective of aligning its predic‐
tions with that of the teacher model. This method is typically used in black-box
knowledge distillation settings, where the distillation set does not comprise any
internal representations.

K-L divergence of output probabilities
In this method, our objective function is to minimize the K-L divergence
between the output probability distribution of the teacher model and the student
model.

Internal representation similarity
Conversely, instead of minimizing divergence, you can maximize similarity
between aspects of the teacher and student model. This can be leveraged to per‐
form layerwise distillation, where the internal representations of the teacher and
the student are aligned at each layer. Refer to Liang et al. for an effective techni‐
que for layerwise distillation.

Reinforcement learning
This involves training a reward model using the distillation data. The student
model is then trained to maximize the reward as per the reward model. Recall
our discussion on reinforcement learning in Chapter 8.
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Weak-to-Strong Generalization
Burns et al. from OpenAI uncovered a phenomenon called weak-to-strong generaliza‐
tion. In this setting, the teacher model is smaller/weaker than the student model.

The small teacher model is fine-tuned using distillation data. The held-out portion of
the distillation data is queried to the teacher model to generate outputs. These are
called weak labels. The weak labels are then used to fine-tune a much larger and more
powerful student model.

Burns et al. note that the stronger student is able to learn from the labels generated by
the weaker teacher. This is because the student is able to rely on its strong pre-trained
representations, and fine-tuning on the weak labels only help it elicit what it already
knows. Using smaller models for generating training data simplifies the overall train‐
ing process.

Ultimately, the technique you choose to distill your models depends on whether you
have access to the teacher weights. If you do not have access to the teacher weights,
then you can perform only supervised fine-tuning. White-box distillation, where you
are trying to align intermediate representations and not just the output tokens, can be
challenging to achieve. Note that all knowledge distillation techniques carry the risk
of capability degradation or catastrophic forgetting, so you will have to evaluate the
student model very carefully to quantify the difference in capabilities from the
teacher model.

Exercise
Take the Gemma 2B open source model and distill it into a smaller model that can
still perform CoT generation. Which of the techniques presented in this chapter is
more suitable for this exercise?

In this section, we discussed three distinct techniques for reducing compute during
inference: caching, early exit, and knowledge distillation. Next, let’s discuss tech‐
niques that can accelerate the decoding process.

Techniques for Accelerating Decoding
As we know, autoregressive models output one token at a time, where the next token
being generated is a function of the input tokens and all the previously generated
tokens. This imposes a sequential limitation as you have to wait for the current token
to be generated before generating the next one. Can we bypass this limitation? Several
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recent techniques like speculative decoding and parallel decoding have been developed.
Let’s examine them in detail.

Speculative Decoding
The concept behind speculative decoding is simple. A smaller model, called a draft
model, is used to generate several subsequent candidate output tokens. Then, the
main larger model is used to compute the conditional probabilities of the candidate
output tokens at once, using them to decide which tokens to accept and which ones
to reject. The more draft tokens accepted, the better the draft model.

Figure 9-3 depicts the speculative decoding process.

Figure 9-3. Speculative decoding in action

Two important metrics in speculative decoding are:

Token acceptance rate
This is the percentage of tokens generated by the draft model that are accepted.
Typically, this does not reach 1, because if it did, there is no need to use the main
larger model.

Decoding speedup
This refers to the reduction in latency between a model purely using autoregres‐
sive decoding versus one using speculative decoding.

Constructing Draft Models
How do we ensure that the draft model has a high token acceptance rate? One way is
to distill the draft model from the main model. This technique was introduced by
Zhou et al. and is called DistillSpec.

Zhou et al. introduced self-speculative decoding, where the draft model is a subset of
the layers of the main model.

In many use cases, output text generated by the LLM includes commonly used
phrases, prefixes, and boilerplate. The LLM could also be quoting existing bodies of
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text. All this can be directly fetched from external data repositories using a retrieval
model instead of using a language model for generation. This technique, called
retrieval-based speculative decoding (REST) was introduced by He at al.

Parallel Decoding
Can we generate more than one token at the same time? This can be done either
using the same model (multi-token decoding) or multiple instances of the same
model.

For the latter, we can control parallel generation through the prompt. For example,
say you are writing an article about a tourist site, containing sections like Food, Stay,
Safety Tips, etc. You can prompt the LLM to list the sections, marked with special
tokens. These sections can then be generated in parallel, assuming the sections are
fully independent of each other.

Figure 9-4 depicts the workflow of a system that generates parts of the output in a
parallel fashion.

Let’s now explore how the same model can generate multiple tokens at a time, called
multi-token decoding. Several techniques have been proposed recently for multi-
token decoding, one of the most promising being Medusa by Cai et al.

In Medusa, additional decoding heads are added to the model. These decoding heads
represent subsequent tokens to be generated. For example, the standard decoding
head is predicting the next (n + 1st) token in the sequence, and the additional decod‐
ing heads are predicting the n + 2nd, n + 3rd, and so on, tokens, respectively. Refer to
the Medusa paper for more details on how this is implemented.

So far, we have learned techniques to accelerate the decoding process and to reduce
compute. Next, let’s dive into quantization, a class of techniques to reduce the storage
required by the model.
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Figure 9-4. Parallel decoding workflow

Techniques for Reducing Storage Needs
In Chapters 5 and 6, we briefly touched upon quantization but promised to go into
detail later. Let’s dive in!

The forward pass of a language model involves numbers representing inputs, weights,
and activations. How are these numbers represented in memory?

Several types of numerical representation formats are available, like integer, floating
point, etc. Typically, numbers in language models are represented in floating-point32
(FP32), also called single-precision floating point, which refers to a floating point
number composed of 32 bits, or 4 bytes.

A number represented in FP32 is composed of three parts:

• A sign bit
• The exponent (8 bits)
• The mantissa/significand (23 bits)

For more details on how FP32 works, see “Demystifying Floating Point Precision”.
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The maximum and minimum value that can be represented using FP32 is 3.4028237
× 1038 and 1.175494 × 1038, respectively. This is referred to as the range of values that
can be represented by this format. Similarly, a number represented in float16 (FP16),
also referred to as half-precision floating point, is composed of these three parts:

• A sign bit
• The exponent (5 bits)
• The mantissa/significand (10 bits)

What happens when you take a number that is represented using FP32 and represent
it in FP16? This amounts to a lossy conversion. In this case, both the range and the
precision are impacted, because in FP16, 65,504 is the largest number you can repre‐
sent, compared to 3.4 × 1038 for FP32. The precision is impacted too, as the 32-bit
version offers ~7 digits of precision, but the 16-bit version only offers ~3 digits of
precision.

To prevent the massive loss in precision with FP16, bfloat16 (BF16), also called the
brain floating point, was invented by Google Brain. In BF16, there are 8 digits for the
exponent, and 7 bits for the mantissa. This keeps the range of numbers represented
the same as that of float32 at the cost of reduced precision.

Older GPUs like the NVIDIA T4 do not support BF16.

The process of converting representation of a number from a higher-precision format
to a lower-precision format is called quantization. We can quantize 32-bit values to 8-
bit integer formats as well. This reduces memory requirements by a factor of 4, at the
cost of even more precision. With 8-bit quantization, we can represent numbers
between –127 and 127, without any decimal point.

Integer quantization can be performed either symmetrically or asymmetrically.

Symmetric Quantization
In this setting, the 0 value in the original format is mapped to the 0 value in the inte‐
ger representation. This means that when you quantize 0 represented in fp32 to int8,
the value remains 0.

The remaining values can be mapped using various techniques, the most common
being absmax quantization. In this method, if we know or can estimate the range of
numbers that need to be represented, we can take the absolute maximum of the range
and map it to the largest number in int8 (127), while the negative of the absolute
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maximum is mapped to the smallest number in int8 (–127). The remaining numbers
are mapped according to scale.

Figure 9-5 depicts absmax quantization at work, quantizing a number represented in
FP32 to int8.

Figure 9-5. Absmax quantization

Asymmetric Quantization
In this setting, the 0 value in the original format is not guaranteed to be mapped to
the 0 value in the integer representation.

A common technique is to take the minimum and maximum value that we need rep‐
resented and map it to the minimum (–127) and maximum (127) values that can be
represented in int8, respectively. For example, if the range of numbers we want repre‐
sented is –23 to 87, then –23 is mapped to –127 and 87 is mapped to 127.

If the range of numbers you want represented include outliers, they
can play spoilsport. You can take care of outliers by clipping them,
so that all outliers will be represented by the same maximum/mini‐
mum value.

Exercise
Let’s explore the effect that quantization has on precision and range. Take a few num‐
bers (2.3888888, 0, 34.444, 12.3486*10^4, –1223.4566) and perform arithmetic opera‐
tions using them in float32. Repeat the same operations using float16, bf16, and int8.
How much precision do you lose at each quantization level?

How is quantization used in practice? Typically, quantization is applied after training.
Both the model’s weights and activations can be quantized.
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Quantizing weights is much easier than quantizing activations. Since we know the
weights beforehand, we can calculate the range, outliers, scaling factors, etc. that are
needed for the quantization algorithm.

For activations, depending on how much latency we can tolerate, we can either per‐
form dynamic or static scaling. In dynamic scaling, statistics like range, outliers, etc.
are calculated dynamically during inference at each layer. In static scaling, we take a
reference calibration dataset to estimate the statistics. While this approach speeds up
inference, it can result in more quantization errors.

For more details on implementing quantization, see “A Visual Guide to Quantization”
by Maarten Grootendorst.

Exercise
On any of the datasets provided with the book’s GitHub repo, run Llama 3.1 in
float32, float16, bf16, and int8 mode.

Calculate the following:

• Impact on model inference time
• Impact on performance
• Impact on storage requirements

For the dataset you chose, is quantization worth it?

Summary
In this chapter, we discussed the causes of bottlenecks in LLM inference. We dis‐
cussed a wide variety of techniques to make LLM inference more efficient, including
techniques to reduce compute requirements, reduce storage requirements, and accel‐
erate the decoding process. We explored techniques like caching, early exit, knowl‐
edge distillation, speculative and parallel decoding techniques, and quantization. In
the next and final part of the book, we will explore LLM application paradigms and
discuss the nuances involved in building full-fledged applications.
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PART III

LLM Application Paradigms

In this part of the book, we shift our focus to the application layer. Until now, we have
explored LLMs as standalone concepts, but we will now examine how they integrate
into larger software systems. To this end, we will delve into popular application para‐
digms such as retrieval-augmented generation (RAG) and agents.





CHAPTER 10

Interfacing LLMs with External Tools

In the first two parts of the book, we have seen how impactful standalone LLMs can
be in solving a wide variety of tasks. To effectively harness their full range of capabili‐
ties in an organization, they have to be integrated into the existing data and software
ecosystem. Unlike traditional software systems, LLMs can generate autonomous
actions to interact with other ecosystem components, bringing a degree of flexibility
never seen before in the software world. This flexibility unlocks a whole host of use
cases that were previously considered impossible.

Another reason we need LLMs to interact with software and external data: as we
know all too well, current LLMs have significant limitations, some of which we dis‐
cussed in Chapter 1. To recap some key points:

• Since it is expensive to retrain LLMs or keep them continuously updated, they
have a knowledge cutoff date and thus possess no knowledge of more recent
events.

• Even though they are getting better over time, LLMs don’t always get math right.
• They can’t provide factuality guarantees or accurately cite the sources of their

outputs.
• Feeding them your own data effectively is a challenge; fine-tuning is nontrivial,

and in-context learning is limited by the length of the effective context window.

As we have been noticing throughout the book, the consolidation effect is leading us
to a future (unless we hit a technological wall) where many of the aforementioned
limitations might be addressed within the model itself. But we don’t necessarily need
to wait for that moment to arrive, as many of these limitations can be addressed today
by offloading the tasks and subtasks to external tools.
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In this chapter, we will define the three canonical LLM interaction paradigms and
provide guidance on how to choose between them for your application. Broadly
speaking, there are two types of external entities that LLMs need to interact with: data
stores and software/models, collectively called tools. We will demonstrate how to
interface LLMs with various tools like APIs and code interpreters. We will show how
to make the best use of libraries like LangChain and LlamaIndex, which have vastly
simplified LLM integrations. We will explore the various scaffolding software that
needs to be constructed to facilitate seamless interactions with the environment. We
will also push the limits of what today’s LLMs are capable of, by demonstrating how
they can be deployed as an agent that can make autonomous decisions.

LLM Interaction Paradigms
Suppose you have a task you want the LLM to solve. There are several possible
options:

• The LLM uses its own memory and capabilities encoded in its parameters to
solve the task.

• You feed the LLM all the context it needs to solve the task within the prompt, and
the LLM uses the provided context and its capabilities to solve it.

• The LLM doesn’t have the requisite information or skills to solve this task, so you
update the model parameters (fine-tuning etc., as detailed in Chapters 6–8) so
that it is able to activate the skills and knowledge needed to solve it.

• You don’t know a priori what context is needed to solve the task, so you use
mechanisms to automatically fetch the relevant context and insert it into the
prompt (passive approach).

• You provide explicit instructions to the LLM on how to interact with external
tools and data stores to solve your task, which the LLM follows (explicit
approach).

• The LLM breaks the task into multiple subtasks if needed, interacts with its envi‐
ronment to gather the information/knowledge needed to solve the task, and dele‐
gates subtasks to external models and tools when it doesn’t have the requisite
capabilities to solve that subtask (autonomous approach).

As you can see, the last three involve the LLM interacting with its environment (pas‐
sive, explicit, and autonomous). Let’s explore the three interaction paradigms in
detail.
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Passive Approach
Figure 10-1 shows the typical workflow of an application that involves an LLM pas‐
sively interacting with a data store.

Figure 10-1. An LLM passively interacting with a data store

A large number of use cases involve leveraging LLMs to use your own data. Examples
include building a question-answering assistant over your company’s internal knowl‐
edge base that is spread over a bunch of Notion documents, or an airline chatbot that
responds to customer queries about flight status or booking policies.

To allow the LLM to access external information, we need two types of components:
“data stores” that contain the required information and retrieval engines that can
retrieve relevant data from data stores given a query. The retrieval engine can be pow‐
ered by an LLM itself, or it can be as simple as a keyword-matching algorithm. The
data store(s) can be a repository of data like a database, knowledge graph, vector
database, or even just a collection of text files. Data in the data store is represented
and indexed to make retrieval more efficient. Data representation, indexing, and
retrieval are topics important enough to merit their own chapter: we will defer
detailed discussions on them to Chapter 11.

When a user issues a query, the retrieval engine uses the query to find the documents
or text segments that are most relevant to answering this query. After ensuring that
these fit into the context window of the LLM, they are fed to the LLM along with the
query. The LLM is expected to answer the query given the relevant context provided
in the prompt. This approach is popularly known as RAG, although as we will see in
Chapter 12, RAG refers to an even broader concept. RAG is an important paradigm
that deserves its own chapter, so we will defer detailed coverage of the paradigm to
Chapter 12.
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Note that the distinguishing feature of this paradigm is the passive nature of the LLM
in the interaction. The LLM simply responds to the prompt and furnishes an answer.
It does not know the source of the content inside the prompt. This paradigm is often
used for building QA assistants or chatbots, where external information is required to
understand the context of the conversation.

From this point forward, we will refer to user requests to the LLM
as queries and textual units that are retrieved from external data
stores as documents. Documents can be full documents, passages,
paragraphs, or sentences.

The Explicit Approach
Figure 10-2 demonstrates the explicit approach to interface LLMs with external tools.

Figure 10-2. The explicit interaction approach in action

Unlike in the passive approach, the LLM is no longer a passive participant. We pro‐
vide the LLM with explicit instructions on how and when to invoke external data
stores and tools. The LLM interacts with its environment based on a pre-
programmed set of conditions. This approach is recommended when the interaction
sequence is fixed, limited in scope, and preferably involves a very small number of
steps.

For an AI data analyst assistant, an example interaction sequence could be:

1. User expresses query in natural language asking to visualize some data trends
2. The LLM generates SQL to retrieve the data needed to resolve the user query
3. After receiving the data, the LLM uses it to generate code that can be run by a

code interpreter to generate statistics or visualizations

Figure 10-3 shows a fixed interaction sequence implemented for an AI data analyst.
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Figure 10-3. An example workflow for an AI data analyst

In this paradigm, the interaction sequence is predetermined and rule-based. The
LLM exercises no agency in determining which step to take next. I recommend this
approach for building robust applications that have stricter reliability requirements.

The Autonomous Approach
Figure 10-4 shows how we can turn an LLM into an autonomous agent that can solve
complex tasks by itself.

Figure 10-4. A typical autonomous LLM-driven agent workflow

The autonomous approach, or the Holy Grail approach as I like to call it, turns an
LLM into an autonomous agent that can solve tasks on its own by interacting with its
environment. Here is a typical workflow of an autonomous agent:

1. The user formulates their requirements in natural language, optionally providing
the format in which they want the LLM to provide the answer.
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2. The LLM decomposes the user query into manageable subtasks.
3. The LLM synchronously or asynchronously solves each subtask of the problem.

Where possible, the LLM uses its own memory and knowledge to solve a specific
subtask. For subtasks where the LLM cannot answer on its own, it chooses a tool
to invoke from a list of available tools. Where possible, the LLM uses the outputs
from solutions of already executed subtasks as inputs to other subtasks.

4. The LLM synthesizes the final answer using the solutions of the subtasks, gener‐
ating the output in the requested output format.

This paradigm is general enough to capture just about any use case. It is also a risky
paradigm, as we are assigning the LLM too much responsibility and agency. At this
juncture, I would not recommend using this paradigm for any mission-critical
applications.

Why am I calling for caution in deploying agents? Humans often
underestimate the accuracy requirements for applications. For a lot
of use cases, getting it right 99% of the time is still not good
enough, especially when the failures are unpredictable and the 1%
of failures can be potentially catastrophic. The 99% problem is also
the one that has long plagued self-driving cars and prevented their
broader adoption. This doesn’t mean we can’t deploy autonomous
LLM agents; we just need clever product design that can shield the
user from their failures. We also need robust human-in-the-loop
paradigms.

We have used the word “agent” several times now without defining it. Let’s correct
that and consider what agents mean and how we can build them.

Defining Agents
As the hype starts building over LLM-based agents, the colloquial definition of agents
has already started to expand from its traditional definition. This is because truly
agentic systems are hard to build, so there is a tendency to shift the goalposts and
claim best-effort systems to be already agentic even though they technically may not
fit the requirements. In this book, we will stick to a more conservative definition of
agents, defining them as:

LLM-driven software systems that are able to interact with their environment and take
autonomous actions to complete a task.

Key characteristics of agents are:
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Their autonomous nature
The sequence of steps required to perform a task need not be specified to the
agent. Agents can decide to perform any sequence of actions, unprompted by
humans.

Their ability to interact with their environment
Agents can be connected to external data sources and software tools, which
allows agents to retrieve data, invoke tools, execute code, and provide instruc‐
tions when appropriate to solve a task.

Many definitions of “agent” do not require them to be autonomous.
According to their definitions, applications following the explicit
paradigm can also be called agents (albeit as non-autonomous or
semi-autonomous agents).

The agentic paradigm as we defined it is extremely powerful and general. Let’s take a
moment to appreciate it. If an agent receives a task that it doesn’t know how to solve
(and it knows that it doesn’t know), then instead of just giving up, it can potentially
learn to solve the task by itself by searching the web or knowledge bases for pointers,
or even by collecting data and fine-tuning a model that can help solve the task.

Given these enviable abilities, are machines going to take over the world? In practice,
current autonomous agents are limited in what they can actually achieve. They tend
to get stuck in loops, they take incorrect actions, and they are unable to reliably self-
correct. It is more practical to build partially autonomous agents, where the LLM is
provided with guidance throughout its workflow, either through agent orchestration
software or with a human in the loop. For the rest of this chapter, our focus will be on
building practical agents that can reliably solve a narrower class of tasks.

Agentic Workflow
Using our definition of agents, let’s explore how agents work in practice. As an exam‐
ple, let’s consider an agent that is asked to answer this question:

Who was the CFO of Apple when its stock price was at its lowest point in the last 10
years?

Let’s say the agent has all the information it needs to solve this task. It has access to
the web, to SQL databases containing stock price information, and to knowledge
bases containing CFO tenure information. It is connected to a code interpreter so that
it can generate and run code, and it has access to financial APIs. The system prompt
contains details about all the tools and data stores the LLM has access to.

To answer the given query, the LLM has to perform this sequence of steps:
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1. To calculate the date range, it needs the current date. If this is not included in the
system prompt, it either searches the web to find the current date or generates
code for returning the system time, which is then executed by a code interpreter.

2. Using the current date, it finds the other end of the date range by executing a
simple arithmetic operation by itself, or by generating code for it. Steps 1 and 2
could be combined into a single program.

3. It finds a database table in the available datastore list that contains stock price
information. It retrieves the schema of the table, inserts it into the prompt, and
generates a SQL query for finding the date when the stock price was at its mini‐
mum in the last 10 years.

4. With the date in hand, it needs to find the CFO of Apple on that date. It can call a
search engine API to check if there is an explicit mention of the CFO on that par‐
ticular date.

5. If the search engine query fails to provide a result, it finds a financial API in its
tools list and retrieves and inserts the API documentation into its context. It then
generates and invokes code for an API call to retrieve the list of Apple CFOs and
their tenures.

6. It uses its arithmetic reasoning skills to find the CFO tenure that matches the date
of the lowest stock price.

7. It generates the final answer. If there is a requested output format, it tries to
adhere to that.

Depending on the implementation, the sequence of steps could vary slightly. For
example, you can fine-tune a model so that it can generate code for API calls or SQL
queries directly without having to retrieve the schema from a data store or API.

To perform the given sequence of tasks, the model should first understand that the
given task needs to be decomposed into a series of subtasks. This is called task
decomposition. Task decomposition and planning can be performed by the LLM or
offloaded to an external tool.

Exercise
Try out the Apple CFO query with consumer LLM tools that have access to the web,
like ChatGPT, Perplexity, and Gemini. Are they able to solve the answer correctly? If
not, where are they falling short? Note that the earlier in the task sequence the LLM
fails, the harder for it to recover.

Try to solve this question using a web search and no LLMs. You can see that it takes
several search engine queries even for a financial domain expert to find the answer to
this question.
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Components of an Agentic System
While the specific architecture of any given agentic system depends heavily on the
use cases it is intended to support, each of its components can be classified into one
of the following types:

• Models
• Tools
• Data stores
• Agent loop prompt
• Guardrails and verifiers
• Orchestration software

Figure 10-5 shows a canonical agentic system and how its components interact.

Figure 10-5. A production-grade agentic system

Let’s explore each of these types.
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Models
Language models are the backbone of agentic systems, responsible for their autono‐
mous nature and problem-solving capabilities. A single agentic system could be com‐
posed of multiple language models, with each model playing a distinct role.

For example, you can build an agent consisting of two models; one model solves user
tasks and another model takes its output and converts it into a structured form
according to user requirements.

Agentic workflows can consume a lot of language model tokens,
which can be cost prohibitive. To keep costs under control, con‐
sider using multiple language models of different sizes, with the
smaller (and cheaper) models performing easier tasks. For more
details on how to accomplish division of labor among these mod‐
els, see Chapter 13.

More generally, you can build agents with specialized models catering to each part of
the agentic workflow. For example, a code-LLM can be used to generate code, and
task-specific fine-tuned models that specialize in individual workflow steps can be
used. This setup can be interpreted as a multi-agent architecture.

Figure 10-6 shows an agentic system made up of multiple LLMs.

Figure 10-6. An agentic system with multiple LLMs

238 | Chapter 10: Interfacing LLMs with External Tools



Finally, any kind of model, including non-LLMs, can be plugged into an agentic sys‐
tem to solve specific tasks. For example, the planning stage can be performed using
symbolic planners.

Tools
As described earlier, software or models that can be invoked by an LLM are called
tools. Libraries like LangChain and LlamaIndex provide connectors to various soft‐
ware interfaces, including code interpreters, search engines, databases, ML models,
and a variety of APIs. Let’s explore how to work with some of these in practice.

Web search
LangChain provides connectors for major search engines like Google, Bing, and
DuckDuckGo. Let’s try out DuckDuckGo:

from langchain_community.tools import DuckDuckGoSearchRun

query = "What's the weather today in Toronto?"

search_engine = DuckDuckGoSearchRun()
output = search_engine.run(query)

The response can be fed back to the language model where it is further processed.

API connectors
To illustrate calling APIs, we will showcase LangChain’s Wikipedia API wrapper:

!pip install wikipedia

from langchain.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())

output = wikipedia.load("Winter Olympics")

The load() function runs a search on Wikipedia and returns the page text and meta‐
data information of the top-k results. (top-k = 3 by default). You can also use the
run() function to return only page summaries of the top-k matches.

Code interpreter
Next, let’s explore how you can invoke a code interpreter and run arbitrary code:

from langchain_experimental.utilities import PythonREPL

python = PythonREPL()
python.run("456 * 345")
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Be wary of running code generated by LLMs in response to user
prompts. Users can induce the model to generate malicious code!

Database connectors
Finally, let’s check out how to connect to a database and run queries:

import sqlalchemy as sa
from langchain_community.utilities import SQLDatabase

DATABASE_URI = <database_uri>

db = SQLDatabase.from_uri(DATABASE_URI)

output = db.run(
    "SELECT * FROM COMPANIES WHERE Name LIKE :comp;",
    parameters={"comp": "Apple%"},
    fetch="all")

The run() function executes the provided SQL query and returns the response as a
string. Replace DATABASE_URI with your own database and queries, and verify the
responses.

For more customizability, you can fork the LangChain connectors
and repurpose them for your own use.

Next, let’s see how we can interface LLMs with these tools in an agentic workflow.

First, we need to make the LLM aware that it has access to these tools. One of the
ways to achieve this is to provide the names and short descriptions of the tools, called
the tool list, to the LLM through the system prompt.

Next, the LLM needs to be able to select the right tool at the appropriate juncture in
the workflow. For example, if the next step in solving a task is to find the weather in
Chicago this evening, the web search tool has to be invoked rather than the Wikipe‐
dia one. Later in this chapter, we will discuss techniques to help the LLM select the
right tool.

Under the hood, tool invocation is typically achieved by the LLM generating special
tokens indicating that it is entering tool invocation mode, along with tokens repre‐
senting the tool functions and arguments to be invoked. The actual tool invocation is
performed by an agent orchestration framework.
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In LangChain, we can make a tool available to an LLM and have it invoked:

from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage

search_engine = DuckDuckGoSearchRun()
model = ChatOpenAI(model="gpt-4o")

tools = [
       Tool(
           name="Search",
           func=search_engine.run,
           description="search engine for answer factual queries"
       )
   ]
agent = initialize_agent(tools, model, verbose=True)
agent.run("What are some tourist destinations in North Germany?")

Exercise
Using LangChain, create an agent that is initialized with at least five tools from the list
found on its website. Tools that do not require an API key include Wikipedia, Duck‐
DuckGo, and arXiv, the latter being a repository of scientific papers including ones on
LLMs. For a given user query, do you notice the model selecting the right tool? Give
the model clues on selecting the right tool in the system prompt. Do you notice any
improvements?

Some models come with native tool-calling abilities. For models that don’t, you can
fine-tune the base model to impart them with tool-calling abilities. Among open
models, Llama 3.1 Instruct (8B/70B/405B) is an example of a model having native
tool-calling support. Here’s how tool calling works with Llama 3.1.

Llama 3.1 comes with native support for three tools: Brave web search, Wolfram|
Alpha mathematical engine, and a code interpreter. These can be activated by defin‐
ing them in the system prompt:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipython
Tools: brave_search, wolfram_alpha

Give responses to answers in a concise fashion. <|eot_id|>
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Let’s ask the LLM a question by appending a user prompt to the system prompt:

<|start_header_id|>user<|end_header_id|>

How many medals did Azerbaijan win in the 2024 Summer Olympics?
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Llama 3.1 responds with a tool invocation that looks like this:

<|python_tag|>brave_search.call(query="How many medals did Azerbaijan win in

the 2024 Summer Olympics?")<|eom_id|>

The <|python_tag|> token is a special token generated by Llama 3.1 to indicate that
it is entering tool-calling mode. The <|eom_id|> special token indicates that the
model has not ended its turn yet and will wait to be fed with the results of the tool
invocation.

You can also provide your own tools in the prompt: using JSON is recommended.

If you have a lot of tools, then the detailed descriptions of the tools
can be represented in a data store and retrieved only if they are
selected. The prompt then needs to contain only the name of the
tool and a short description.

Here is an example of a tool definition in JSON describing a local function that can be
called:

<|start_header_id|>user<|end_header_id|>

Here is a list of tools available.
While invoking a tool, respond in JSON. The format is as follows:

{"tool_name": tool name, "arguments": dictionary with keys representing

argument names and values representing argument values}.

{
    "type": "local_function",
    "function": {
    "name": "find_citations",
    "description": "Find the citations for any claims made",
    "parameters": {
        "type": "object",
        "properties": {
        "claim_sentence": {
            "type": "string",
            "description": "A sentence in the input representing a claim"
        },
        "model": {
            "type": "string",
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            "enum": ["weak", "strong"],
            "description": "The type of citation model to use. A weak model is
            preferred if the claim sentence contains entities and numbers. "
        }
        },
        "required": ["claim_sentence", "model"]
    }
    }
}

The tool call is generated by the model in JSON with the prescribed format.

The actual tool invocation is performed by an agent orchestration
software. Llama 3.1 comes with llama-stack-apps, a library that
facilitates agentic workflows.

Sometimes the tool call can be more complex than just returning the name of a func‐
tion and its arguments. An example of this is querying a database. For the LLM to
generate the right SQL query, you should provide the schema of the database tables in
the system prompt. If the database has too many tables, then their schema can be
retrieved on demand by the LLM.

You can use a separate specialized model for code and SQL query
generation. A general-purpose model can generate a textual
description of the desired outcome, and this can be used as input to
a code LLM or an LLM fine-tuned on text-to-SQL.

For large-scale or high-stakes applications, you can fine-tune your models to make
them better at tool use. A good fine-tuning recipe to follow is Qin et al.’s ToolLLaMA.

Exercise
Try creating some custom tools and making them available for Llama 3.1. The tools
are just functions that can represent a wrapper to some software, or they can be a
function that performs a specific task like converting from Celsius to Fahrenheit. Can
you create these five tools and provide their definitions in JSON in the system
prompt:

• Tool to query the Wikipedia API
• Tool to query the arXiv API
• Tool that converts from Celsius to Fahrenheit
• Tool that saves the input to a text file
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• Tool that makes a copy of a file

Try asking queries that can lead to these tools being invoked. Are they being invoked
as expected? Modify your tool descriptions if not, and see if that helps.

Data Stores
A typical agent may need to interact with several types of data sources to accomplish
its tasks. Commonly used data sources include prompt repositories, session memory,
and tools data.

Prompt repository
A prompt repository is a collection of detailed prompts instructing the language
model how to perform a specific task. If you can anticipate the types of tasks that an
agent will be asked to perform while in production, you can construct prompts pro‐
viding detailed instructions on how to solve them. The prompts can even include
directions on how to advance a specific workflow. Let’s look at an example.

Many language models struggle with basic arithmetic operations, even simple ques‐
tions like:

Is 9.11 greater than 9.9?

Until recently, even state-of-the-art language models claimed that 9.11 is greater than
9.9. (They were recently updated with a fix after this limitation went viral on social
media.)

If you are aware of such limitations that are relevant to your use case, then you can
mitigate a proportion of them using detailed prompts. For the number comparison
issue, for example:

Prompt: If you are asked to compare two numbers using the greater than/lesser than
operation, then perform the following:
Take the two numbers and ensure they have the same number of decimal places. After
that, subtract one from the other. If the result is a positive number, then the first num‐
ber is greater. If the result is a negative number, then the second number is greater. If
the result is zero, the two numbers are equal.

Now, if the agent needs to perform a task that includes number comparison, it first
retrieves this prompt from the prompt repository. This enables it to overcome its
inherent limitation, as it will follow the detailed step-by-step instructions in the
prompt.
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Why don’t we just add all these prompts to the context window,
thus eschewing retrieval? For one, the prompts may be too numer‐
ous and may not fit within the context window. Secondly, tokens
are expensive, and it is inefficient to include prompts that may not
be relevant to the current task. Finally, language models can adhere
to only a limited set of concurrent instructions, so it is more effi‐
cient to retrieve them on demand.

Prompts can also include input-output examples, known as few-shot learning, as
introduced in Chapter 1. Agents can retrieve them on demand to help accomplish
their tasks. We will discuss effective ways of retrieving relevant examples in
Chapter 12.

Next, let’s explore how agents use session memory to advance their goals.

Session memory
We would like to store logs of the steps undertaken by the agent during current and
past sessions. These logs can also be augmented with feedback from verification pro‐
cesses, both automated and human. The agent can then retrieve session logs for better
context understanding and as a guide to determine next actions in the current work‐
flow. Let’s explore this with an example:

Prompt: Is it going to be warmer tomorrow than today in Paris? Give me details in
Celsius.

The agent goes through a sequence of steps to solve this query, which is all logged in
the session history. The session history for this query might look like this:

User prompt: Is it going to be warmer tomorrow than today in Paris? Give me details in
Celsius.
LLM observation: The user has a preference for Celsius units for temperature data.
LLM Output: Let’s perform this step-by-step.

1. First, let’s retrieve today’s temperature.

2. Next, let’s retrieve tomorrow’s temperature.

3. We calculate the difference and generate the answer.

External verifier: Task decomposition is correct
Tool selection: <WeatherAPI> selected
Tool info retrieval: Retrieve information relevant to the query Find temperature data
from <WeatherAPI>
Tool invocation: get_temperature_curweek(Paris)
Tool output : Weather data - Paris…
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LLM output: Today’s temperature is 27 degrees Celsius. Tomorrow’s forecast is 23
degrees Celsius. Therefore, tomorrow is not going to be warmer in Paris than today.
External Verifier: Arithmetic operation is correct.
Agent: LLM output is dispatched to the user
User feedback: User marked this as correct

As we can see, session history can contain very rich information that can provide val‐
uable personalized context to the LLM about the current user as well as guide the
model toward the correct agentic workflow.

In more advanced implementations, multiple levels of logging can be defined, so that
during retrieval, one can retrieve all the logs of a session or only the important steps,
based on the logging level specified.

Along with session history, the agent could also be provided with
access to gold-truth training examples representing correct work‐
flows, which can be used by the agent to guide its trajectory during
test time.

Exercise
Tools for facilitating agent observability include LangSmith, Langtrace, OpenLLMe‐
try, etc. Many of these tools operate freemium models. Use LangSmith observability
tools for the Llama 3.1 agent you built in the previous exercise and observe the agent
traces.

Session memory can also include records of interaction between the human and the
agentic system. These can be used to personalize models. We will discuss this further
in Chapter 12.

Next, let’s explore how the agent can interact with tools data.

Tools data
Tools data comprise detailed information necessary to invoke a tool, such as database
schemas, API documentation, sample API calls, and more. When the agent decides to
invoke a tool, the model retrieves the pertinent tool information from the tools data
store.

For example, consider a SQL tool for retrieving data from a database. To generate the
right SQL query, the model could retrieve the database schema from the tools data
store. The tools data contains information about the tables and columns, the descrip‐
tions of each column and their data types, and optionally information about indices
and primary/secondary keys.
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You can also fine-tune the LLM on a dataset representing valid SQL
queries to your database, which can potentially remove the need to
consult the schema before generating a query.

To sum it up, agents can use data stores in several ways. They can access prompts and
few-shot examples from a prompt repository, they can access agentic workflow his‐
tory and intermediate outputs by models in previous sessions for better personalized
context understanding and workflow guidance, and they can access tool documenta‐
tion to invoke tools correctly.

Agents can also access external knowledge from the web, databases, knowledge
graphs, etc. Retrieving the right information from these sources is an entire sub-
system unto itself. We will discuss the mechanics of retrieval in Chapters 11 and 12.

We will now discuss the agent loop prompt, which is responsible for driving the
LLM’s behavior during an agentic session.

Agent Loop Prompt
Recall that LLMs do not have session memory. But a typical agentic workflow relies
on several LLM calls! We need a mechanism to provide information about session
state and the expected role of the LLM at any given time in the session. This agent
loop is driven by a system prompt.

An example of a simple agent loop system prompt is:

Prompt: You are an AI model currently answering questions. You have access to the
following tools: {tool_description}. For each question, you can invoke one or more
tools where necessary to access information or execute actions. You can invoke a tool
in this format: <TOOLNAME> <Tool Arguments>. The results of these tool calls are
not provided to the user. When you are ready with the final answer, output the answer
using the <Answer> tag.

I find that a prompt like this is sufficient for most use cases. However, if you feel like
the model is not reasoning correctly, you can try ReAct prompting.

ReAct
At the time of this writing, ReAct (Reasoning + Acting) prompting is the most popu‐
lar prompt for the agent loop. A typical ReAct prompt looks like this:

Prompt: You are an AI assistant capable of reasoning and acting. For each question, fol‐
low this process:

1. Thought: Reflect on the current state and plan your next steps.

2. Action: Execute the steps to gather information or call tools.
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3. Observation: Record the results of your actions.

4. Final Answer: If you have an answer, provide a final response. Else continue the
Thought → Action → Observation → loop until you have an answer.

Despite its popularity, ReAct prompting has been shown to be brittle.

Reflection
The agent loop may include self-verification or correction steps. This was pioneered
by Shinn et al. with the Reflexion paradigm.

Here is the system prompt for Reflection-Llama-3.1 that uses reflection techniques:

Prompt: You are a world-class AI system, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final
response inside <output> tags. If you detect that you made a mistake in your reasoning
at any point, correct yourself inside <reflection> tags.

The <reflection> tags are meant for the model to self-introspect and self-correct. We
can also specify conditions when <reflection> tags should be activated, for example,
when the agent performs the same action consecutively more than three times (which
might mean it is stuck in a loop).

The effectiveness of reflection-based methods are overstated. They
might do more harm than good if they are invoked too often, caus‐
ing the model to second-guess solutions.

Exercise
Let’s test the reliability of ReAct to the test. Use the ReAct and Reflexion prompts pro‐
vided in this chapter to drive the movie recommendation agent provided in the book’s
GitHub repo. Can you use a simpler prompt instead and see how it compares to
ReAct?

Next, let’s discuss guardrails and verifiers, components that ensure that an agentic
system can thrive in production.

Guardrails and Verifiers
In production environments, mistakes can be catastrophic. Depending on the use
case, the agent might need to adhere to strict standards in factuality, safety, accuracy,
and many other criteria.
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Safety is ensured by using guardrails, components that ensure models do not overstep
their bounds during the course of their workflows. Some examples of guardrails
include toxic language detectors, personally identifiable information (PII) detectors,
input filters that restrict the type of queries users are permitted to make, and more.

Verifiers ensure that quality standards of the agentic system are so that the agent is
able to recover and self-correct from mistakes. As agentic systems are still in their
infancy, the importance of good and well-placed verifiers is paramount. Verifiers can
be as simple as token-matching tools but can also be fine-tuned models, symbolic
verifiers, and so on.

Let’s learn more about guardrails and verifiers.

Safety Guardrails
Recall from Chapter 2 that LLMs are trained largely on human-generated web text.
Unfortunately a significant proportion of human-generated text contains toxic, abu‐
sive, violent, or pornographic content. We do not want our LLM applications to gen‐
erate content that violates the safety of the user, nor do we want users to misuse the
model to generate unsafe content. While we can certainly use techniques like align‐
ment training to make the model less likely to emit harmful content, we cannot guar‐
antee 100% success and therefore need to institute inference-time guardrails to
ensure safe usage. Libraries like Guardrails and NVIDIA’s NeMo-Guardrails, and
models like Llama Guard facilitate setting up these guardrails.

The Guardrails library provides a large (and growing) number of data validators to
ensure safety and validity of LLM inputs and outputs. Here are some important ones:

Detect PII
This validator can be used to detect personally identifiable information in both
the input and output text. Microsoft Presidio is employed under the hood to per‐
form the PII identification.

Prompt injection
This validator can detect certain types of adversarial prompting and thus can be
used to prevent users from misusing the LLM. The Rebuff library is used under
the hood to detect prompt injection.

Not safe for work (NSFW) text
This validator detects NSFW text in the LLM output. This includes text with pro‐
fanity, violence, and sexual content. The Profanity free validator also exists for
detecting only profanity in text.

Politeness check
This validator checks if the LLM output text is sufficiently polite. A related vali‐
dator is Toxic language.
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Web sanitization
This validator checks the LLM output for any security vulnerabilities, including if
it contains code that can be executed in a browser. The Bleach library is used
under the hood to find potential vulnerabilities and sanitize the output.

What happens if the validation checks fail and there is indeed harmful content in the
input or output? Guardrails provides a few options:

Re-ask
In this method, the LLM is asked to regenerate the output, with the prompt con‐
taining instructions to specifically abide by the criteria on which the output pre‐
viously failed validation.

Fix
In this method, the library fixes the output by itself without asking the LLM for a
regeneration. Fixes can involve deletion or replacement of certain parts of the
input or output.

Filter
If structured data generation is used, this option enables filtering out only the
attribute for which the validation failed. The rest of the output will be fed back to
the user.

Refrain
In this setting, the output is simply not returned to the user, and the user receives
a refusal.

Noop
No action is taken, but the validation failure is logged for further inspection.

Exception
This raises a software exception when the validation fails. Exception handlers can
be written to activate custom behavior.

fix_reask
In this method, the library tries to fix the output by itself and then runs valida‐
tion on the new output. If the validation still fails, then the LLM is asked to
regenerate the output.

Let’s look at the PII guardrail as an example:

from guardrails import Guard
from guardrails.hub import DetectPII

guard = Guard().use(
    DetectPII, ["EMAIL_ADDRESS", "PHONE_NUMBER"], "reask")
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guard.validate("The Nobel prize this year was won by Geoff Hinton,
who can be reached at +1 234 567 8900")

Exercise
Extracting the system prompt is a popular form of jailbreak. Can you write a guard‐
rail that prevents users from extracting the system prompt?

Next, let’s look at how verification modules work.

Verification modules
As we have seen throughout the book, current LLMs suffer from problems like rea‐
soning limitations and hallucinations that severely limit their robustness. However,
production-ready applications need to demonstrate a certain level of reliability to be
accepted by users. One way to extend the reliability of LLM-based systems is to use a
human-in-the-loop who can manually verify the output and provide feedback. How‐
ever, in the real world a human-in-the-loop is not always desired or feasible. The
most popular alternative is to use external verification modules as part of the LLM
system. These modules can range from rule-based programs to smaller fine-tuned
LLMs to symbolic solvers. There are also efforts to use LLMs as verifiers, called
“LLM-as-a-judge.”

Related components include fallback modules. These modules are activated when the
verification process fails and retrying/fixing doesn’t work. Fallback modules can be as
simple as messages like, “I am sorry I cannot entertain your request” to more com‐
plex workflows.

Let’s discuss an example. Consider an abstractive summarization application that
operates on financial documents. To ensure quality and reliability of the generated
summaries, we need to embed verification and self-fixing into the system
architecture.

How do we verify the quality of an abstractive summary? While single-number met‐
rics are available to automatically quantify the quality of a summary, a more holistic
approach would be to define a list of criteria that a good summary should satisfy and
verify whether each criterion is fulfilled.
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Several single-number quantitative metrics exist for evaluating
summaries. These include metrics like BLEU, ROUGE, and BERT‐
Score. BLEU and ROUGE rely on token overlap heuristics and
have been shown to be woefully inadequate. Techniques like BERT‐
Score that apply semantic similarity have been shown to be more
promising, but in the end, the reality is that summaries have sub‐
jective notions of quality and need a more holistic approach for
verification.

For the summarization of financial documents application, here is a list of important
criteria:

Factuality
The summary is factually correct and does not make incorrect assumptions or
conclusions from the source text.

Specificity
The summary doesn’t oversummarize; it avoids being generic and provides spe‐
cific details, whether numbers or named entities.

Relevance
Also called precision, this is calculated as the percentage of sentences in the sum‐
mary that are deemed relevant and thus merit inclusion in the summary.

Completeness
Also called recall, this is calculated as the percentage of relevant items in the
source document that are included in the summary.

Repetitiveness
The summary should not be repetitive, even if there is repetition in the source
document.

Coherence
When read in full, the summary should provide a clear picture of the content in
the source document, while minimizing ambiguity. This is one of the list’s more
subjective criteria.

Structure
While defining the summarization task, we might specify a structure for the sum‐
maries. For example, the summary could be expected to contain some predefined
sections and subsections. The generated summary should follow the specified
structure.
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Formatting
The generated summary should follow proper formatting. For example, if the
summary is to be generated as a bulleted list, then all the items in the summary
should be represented by bullets.

Ordering
The ordering of the items in the summary should not impede the understanding
of the summary content. We also might want to specify an order for the summa‐
ries, for example, chronological.

Error handling
In case of errors or omissions in the source document, there should be appropri‐
ate error handling.

Exercise
Define the verification criteria for the question-answering assistant for the Canadian
parliamentary proceedings dataset provided in the book’s GitHub repo. In what ways
do the criteria differ from the abstractive summarization task?

How do we automatically verify whether a given summary meets all these criteria?
We can use a combination of rule-based methods and fine-tuned models. Ultimately,
the rigor of the methods used for verification depends on the degree of reliability
needed for your application. However, we notice that once we reduce the scope of the
verification process to verify fitness of individual criteria rather than the application
as a whole, it becomes easier to verify accurately using inexpensive techniques. Let’s
look at how we can build verifiers for each criteria of the abstractive summarization
task:

Factuality
Verifying whether an LLM-generated statement is factual is extremely difficult if
we do not have access to ground truth. But for summarization applications, we
do have access to the ground truth. Therefore, we can verify factuality by taking
each sentence in the summary and checking whether, given the source text, one
can logically conclude the statement in the summary. This can be framed as a
natural language inference (NLI) problem, which is a standard NLP task.

In the NLI task, we have a hypothesis and a premise, and the goal is to check if
the hypothesis is logically entailed by the premise. In our example, the hypothesis
is a sentence in the summary and the premise is the source text.

Training an NLI model specific to your domain might be a cumbersome task. If
you do not have access to an NLI model, you can use token overlap and similar
statistics to approximate factuality verification.
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For numbers and named entities, factuality verification can be performed by
using string matches. You can verify if all the numbers and named entities in the
summary are indeed present in the source text.

Specificity
One way for a summary to be specific is to include numbers and named entities
where relevant. For each sentence in the summary, we can check whether the
content in the source document related to the topic of the sentence contains any
numbers and named entities, and if these are reflected in the summary. Numbers
and named entities can be tagged and detected using regular expressions or libra‐
ries like spaCy.

Relevance/precision
We can train a classification model that detects whether a sentence in the sum‐
mary is relevant. Note that there are limits to this approach. If this classification
model was good enough, we could have directly used it to select relevant senten‐
ces from the source text to build the summary! In practice, this classification
model can be used to remove irrelevant content that is more obvious.

Recall/completeness
What content merits inclusion in the summary is a difficult question, especially if
there is a hard limit on the summary length. You can train a ranking model that
ranks sentences in the source document by importance, and then verify if the
top-ranked sentences are represented in the summary. You can also specify
beforehand the type of content that you need represented in the summary and
build a classification model for determining which parts of the source document
contain pertinent information. Using similarity metrics like embedding similar‐
ity, you can then find if the content has been adequately represented in the
summary.

Repetitiveness
This can be discovered by using string difference algorithms like the Jaccard dis‐
tance or by calculating the embedding similarity between pairs of summary sen‐
tences.

Coherence
This is perhaps one of the most difficult criteria to verify. One way to solve this,
albeit a more expensive solution, is to build a prerequisite detection model. For
each sentence in the summary, we detect if all the sentences that come before it
are sufficient prerequisites for understanding the correct sentence. For more
information on prerequisite detection techniques, see Thareja et al.

Structure
If we specify a predetermined structure (sections and subsections) for the sum‐
mary, we can easily identify if the structure is adhered to by checking if the
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desired section and subsection titles are present in the summary. We can also ver‐
ify using embedding similarity techniques if the content within the sections and
subsections is faithful to the title of the section/subsection.

Formatting
This involves checking whether the content is in the appropriate formatting, for
example, whether it is a bulleted list or a valid JSON object.

Ordering
The desired order can be chronological, alphabetical, a domain, or task-specific
ordering. If it is supposed to be chronological, you can verify by extracting dates
in the summary and checking if the summary contains dates in a chronological
order. If the ordering requirements are more complex, then verifying adherence
to order may become an extremely difficult task.

Do not expect your verification process to be strictly better than
your summary model. If that was the case, you could have used the
verification process to generate the summary!

We can also deploy symbolic verifiers like SAT (Boolean satisfiability) solvers and
logic planners. This type of verification is beyond the scope of this book.

Exercise
For the task presented in the previous exercise (question-answering assistant for
Canadian parliamentary proceedings), how would you build verification modules for
each of the criteria you have identified? Would you be able to perform robust verifica‐
tion based on heuristics-based techniques alone?

Once verification modules are part of our system architecture, we will also need to
decide what action to perform when the verification fails. One option is to just resam‐
ple from the language model again. Regeneration can be performed for the full out‐
put or only for the output that failed verification. We can also develop antifragile
architectures that have fallbacks in case of failure, which we will discuss in
Chapter 13.

Adding more verifiers can drastically increase system latency.
Thus, their inclusion has to be balanced with accuracy and system
latency needs.
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Finally, let’s discuss agent orchestration software that connects all these components.

Agent Orchestration Software
For agentic workflows to proceed smoothly, we need software that connects all the
components. Orchestration software manages state; invokes tools; initiates retrieval;
pipes buffers; and logs intermediate and final outputs. Many agentic frameworks,
both open source and proprietary, perform this function, including LangChain, Lla‐
maIndex, CrewAI, AutoGen, MetaGPT, XAgent, llama-stack-apps, and so on.

Agents are a relatively new paradigm, so all these agentic frame‐
works are expected to change a lot in the coming months and
years. These frameworks are implemented in an opinionated fash‐
ion and hence are less flexible. For prototyping, I suggest picking
LangChain or LlamaIndex for ease of use. For production use, you
might want to build a framework internally from scratch or by
extending the open source ones. This book’s GitHub repo contains
a rudimentary agentic framework as well.

Now that we have learned all the different agentic system components, it is time to get
building! The book’s GitHub repository contains sample implementations of various
types of agents. Try modifying them for your use case to understand the tradeoffs
being made.

The keep it simple, stupid (KISS) principle applies to agents per‐
haps more than any other recent paradigm. Don’t complicate your
agentic architecture unless there is a compelling reason to do so.
We will discuss this more in Chapter 13.
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Web Agents and Computer Use
Throughout this chapter, we have seen examples of agents executing actions in the
real world, primarily by invoking a software interface. However, in the quest for auto‐
mating human tasks, we find there are many cases where an external software inter‐
face doesn’t exist, with only a GUI like a web page available. A lot of tedious work for
humans involves actions on a computer like copying/pasting between systems, filling
columns in an Excel sheet using data from another system, and so on. Can agents
help us automate these kinds of tasks?

A new paradigm of agents called web agents promises to do so. Web agents use the
Document Object Model (DOM) or the screenshot of a web page to understand the
page’s current state and perform actions like entering information into fields, clicking
on elements, and navigating to links. A working web agent could help you automati‐
cally book a flight by navigating to a travel website, entering information, choosing
between different options, and completing payment. As of today, this is still a fledg‐
ling technology, with poor results on benchmark tasks.

Companies like Anthropic have launched initial versions of computer use features
that enables agents to control a computer desktop environment.

Run Anthropic’s Computer Use Demo. Pay attention to the system prompt provided.
What are the common failure modes you observe?

Summary
In this chapter, we discussed the different ways in which LLMs can interface with
external tools. We introduced the agentic paradigm and provided a formal definition
of agents. We identified the components of an agentic system in detail, exploring
models, tools, data stores, guardrails and verifiers, and agentic orchestration software.
We learned how to define and implement our own tools.

In the next chapter, we will explore data representation and retrieval, crucial elements
of interfacing LLMs with external data.
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CHAPTER 11

Representation Learning and Embeddings

In the previous chapter, we learned how we can interface language models with exter‐
nal tools, including data stores. External data can be present in the form of text files,
database tables, and knowledge graphs. Data can span a wide variety of content types,
from proprietary domain-specific knowledge bases to intermediate results and out‐
puts generated by LLMs.

If the data are structured, for example residing in a relational database, the language
model can issue a SQL query to retrieve the data it needs. But what if the data are
present in unstructured form?

One way to retrieve data from unstructured text datasets is to search by keywords or
use regular expressions. For the Apple CFO example in the previous chapter, we can
retrieve text containing CFO mentions from a corpus containing financial disclo‐
sures, hoping that it will contain the join date or tenure information. For instance,
you can use the regex:

pattern = r"(?i)\b(?:C\.?F\.?O|Chief\s+Financial\s+Officer)\b"

Keyword search is limited in its effectiveness. There are a very large number of ways
to express CFO join date or tenure in a corpus, if it is present at all. Trying to use a
catch-all regex like the above could result in a large proportion of false positives.

Therefore, we need to move beyond keyword search. Over the last few decades, the
field of information retrieval has developed several methods like BM25 that have
shaped search systems. We will learn more about these methods in Chapter 12. In the
LLM era, embedding-based search systems are fast becoming the standard way of
implementing search.

In this chapter, we will learn how embeddings work. We will explore the concept of
semantic similarity and examine various similarity measures. We will learn how to
use popular embedding models and evaluate their performance. We will also show
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how to fine-tune embedding models to suit specific use cases and domains. We will
show how to interpret these embeddings using sparse autoencoders (SAEs). Finally,
we will discuss techniques for optimizing embeddings to reduce storage requirements
and computational overhead.

Introduction to Embeddings
Representation learning is a subfield of machine learning that deals with learning to
represent data in a way that captures its meaningful features, often in a low dimen‐
sional space. In the context of NLP, this involves transforming textual units like
words, sentences, or paragraphs into vector form, called embeddings. Embeddings
capture semantic (meaning-related) and pragmatic (social context-related) features of
the input.

Embeddings can be generated using both open source libraries and paywalled APIs.
Sentence Transformers is a very well-known open source library for generating
embeddings, and it provides access to embedding models that performs competitively
with respect to proprietary ones.

Let’s generate embeddings using the Sentence Transformers library:

from sentence_transformers import SentenceTransformer, util
sbert_model = SentenceTransformer('msmarco-distilbert-base-tas-b')
embedding = sbert_model.encode("American pizza is one of the nation's greatest
cultural exports", show_progress_bar=True, device='cuda',

convert_to_tensor=True)
print("Embedding size:", embedding.shape[0])
print(embedding)

Output:

Embedding size: 768

tensor([-3.9256e-01,  1.0734e-01,  1.3579e-01,  7.6147e-02,  5.2521e-02,
-6.5887e-03,  1.9225e-01,  3.5374e-01,  2.5725e-01,  5.6408e-02,...])

For this model, the embedding size is 768, which means each vector has 768 dimen‐
sions. The sequence length of this particular model is 512, which means the input text
is restricted to 512 tokens, beyond which it will be truncated. The embedding vector
is made up of floating-point numbers, which by themselves are not interpretable. We
will discuss techniques for interpreting embeddings later in this chapter.

Most embedding models used today are based on encoder-only language models,
which we introduced in Chapter 4. The underlying models are BERT, RoBERTa,
MPNet, etc., and are typically fine-tuned on paraphrasing/question-answering/natu‐
ral language inference datasets. Let’s see how to derive embeddings from these types
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of models (which is what the sentence_transformers.encode() function does
under the hood):

from transformers import AutoTokenizer, AutoModel
import torch

tokenizer=
AutoTokenizer.from_pretrained(
  "sentence-transformers/msmarco-distilbert-base-tas-b")
model =
AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b")

input = tokenizer(
  'American pizza is one of the nation's greatest cultural exports',
padding=True, truncation=True, return_tensors='pt')

with torch.no_grad():
        output = model(**input, return_dict=True)
       embedding = output.last_hidden_state[:, 0]
print(embedding)

In this example, the embedding is drawn from the [CLS] token of the last layer of the
DistilBERT model. Other ways of extracting embeddings from models include:

• Mean pooling, where the average is taken across all token outputs in the
sequence

• Max pooling, where the maximum value in each dimension across all tokens is
taken

• Weighted mean, where more weight is given to the last few tokens
• Last token, where the embedding is just the encoder output of the last token

Whether the last token (or the first token) contains good represen‐
tations of the entire sequence depends a lot on the pre-training and
the fine-tuning objective. BERT’s pre-training objective (next-
sentence prediction) ensures that the [CLS] token is much richer in
representation than, say, RoBERTa, which doesn’t use the next-
sentence prediction objective and thus its <s> start sequence token
isn’t as informative.

Recently, decoder-based embedding models have started gaining prominence, like the
SGPT family of models. OpenAI exposes a single embedding endpoint for both
search and similarity. OpenAI embeddings have a much larger maximum sequence
length (8,192 tokens), and a much larger dimension size (1,536–3,072). Cohere and
Jina are examples of other embedding providers.
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Choosing the right model for your task depends on cost, latency, storage limitations,
performance, and the data domain of your use case. I suggest starting off with the
small but effective all-mpnet-base-v2 model available through the Sentence Trans‐
formers library, which I consider the workhorse of the field of NLP. As always, exper‐
imenting with different models never hurts. More tips on selecting the right models
will be provided throughout the rest of the chapter. Later in the chapter, we will also
show how to evaluate embedding models and introduce popular benchmarks.

There is no such thing as infinite compression! Embedding sizes
are fixed, so the longer your input, the less information can be
encoded in its embedding. Managing this tradeoff differs by use
case.

Semantic Search
The true value of embeddings can be appreciated when we use them for representing
a large text corpus. The vectors representing the data occupy what we call an embed‐
ding space. Similar texts are located closer to each other in the embedding space. This
property allows us to use similarity measures to accomplish meaningful tasks like
clustering or semantic search. Semantic search refers to techniques that take into
account the meaning and context of queries and documents to identify documents
that are most relevant to a given query.

We can visualize the embedding space by using dimensionality reduction techniques
like PCA or t-SNE.

Figure 11-1 depicts the visualization of embeddings of posts on X (formerly Twitter)
by members of the US Congress created by Nomic AI using its Atlas tool. You can
view a detailed version of the visualization at Nomic’s blog.

Let’s explore how we can use embeddings for semantic search. For a given user query,
we can generate an embedding of the query and then identify document embeddings
closest to it in the vector space. The texts corresponding to the top-k (k can be as
small as 1 but can vary according to application needs) closest vectors are provided as
a response to the search query. This process is called retrieval. The texts are then fed
into the LLM prompt along with the user query, and the LLM uses the information
provided in the context to answer the user query. This two-step process has tradition‐
ally been called the retriever-reader framework, with the LLM playing the role of the
reader in this example.
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Figure 11-1. Embedding space visualization

As a simple illustrative example, consider two sentences that make up our corpus:

chunks = ['The President of the U.S is Joe Biden',
'Ramen consumption has increased in the last 5 months']

Given the query “president of usa,” we can encode the query and the chunks using
Sentence Transformers:

from sentence_transformers import SentenceTransformer, util
sbert_model = SentenceTransformer('msmarco-distilbert-base-tas-b')
chunk_embeddings = sbert_model.encode(chunks, show_progress_bar=True,
device='cuda', normalize_embeddings=True, convert_to_tensor=True)
query_embedding = sbert_model.encode(query, device='cuda',
normalize_embeddings=True, convert_to_tensor=True)
matches = util.semantic_search(query_embedding, chunk_embeddings,
score_function=util.dot_score)

The output is:

[[{'corpus_id': 0, 'score': 0.8643729090690613},
  {'corpus_id': 1, 'score': 0.6223753690719604}]]

As you can see, the similarity score is much higher for the first sentence, and thus we
return the first sentence as the query response.
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There is a distinction between symmetric semantic search and
asymmetric semantic search. In symmetric search, the query text is
of similar size as the document text. In asymmetric search, the
query text is much shorter than the document text, as with search
engine and question-answering assistant queries. There are models
available that are specialized for only symmetric or asymmetric
search. In some models, the query and chunk texts are encoded
using separate models.

Similarity Measures
Commonly used similarity measures include dot product, cosine similarity, and
Euclidean distance. Refer to the Pinecone tutorial on similarity measures if you need
a backgrounder. While using embedding models, use the similarity measure that was
used to train the model. You will find this information in the model card or Hugging
Face model hub page.

If you set normalize_embeddings to True as an argument in the
encode() function, it will normalize the embeddings to unit length.
This will ensure that both dot product and cosine similarity will
have the same values. Note that dot product is a faster operation
than cosine similarity. Sentence Transformers provides separate
models trained on dot product and cosine similarity and mentions
that models trained on dot product tend to prefer longer chunks
during retrieval.

Exercise
Experiment with different pooling methods to extract embeddings from models. For
reference, you can use the code provided by Sentence Transformers. For the same
sentences provided in the aforementioned example, how do you notice the similarity
scores changing? Repeat the same by trying different similarity measures.

While the notion of semantic similarity is powerful, it is not a panacea for all applica‐
tions. The semantic similarity task is underspecified. To start with, there are several
notions of similarity. Similarity refers to the sameness or alikeness of the entities
being compared. But for the same two entities, some dimensions are similar and
some are different.

For example, consider the three sentences:

After his 25th anniversary at the company, Mr. Pomorenko confirmed that he is not
retiring.
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Mr. Pomorenko announced his retirement yesterday.
Mr. Pomorenko did not announce his retirement yesterday.

Now let’s use the Sentence Transformers all-mpnet-base-v2 embedding model to
encode these sentences and calculate their similarity:

!pip install sentence-transformers

from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('all-mpnet-base-v2')

sentences = ['After his 25th anniversary at the company, Mr. Pomorenko
confirmed that he is not retiring',  'Mr. Pomorenko announced his retirement
yesterday']
embeddings = model.encode(sentences)
cosine_scores = util.cos_sim(embeddings[0], embeddings[1])
print("Cosine Similarity:", cosine_scores.item())

Output:

Cosine Similarity: 0.7870

If you replace the second sentence with “Mr. Pomorenko did not announce his retire‐
ment yesterday,” the output is:

Cosine Similarity: 0.7677!

As you can see, both these sentences are perceived as equally similar to the first sen‐
tence. In some aspects, this is true. They are similar because they both talk about Mr.
Pomorenko. They are also similar because both deal with the subject of retirement.
On the other hand, one sentence conveys the opposite meaning to the other, by sug‐
gesting a retirement is happening versus not happening.

One way to handle the false positives arising due to the model
using undesirable similarity dimensions (like negation) is to just
increase the k value in the top-k results that are returned as a
response to the query. Then, the LLM can distinguish between false
positives and use the correct information for answering the query.
However, increasing the top-k also increases the context length of
the prompt, increasing latency and cost.

Our application requirements determine which similarity dimensions are important
to us. If negation is an important relation for our application to distinguish, it might
be a good idea to reflect that in our embedding space. This is where fine-tuning
embedding models can come in handy. Fine-tuning embedding models allows you to
“edit” your embedding space to your own liking. The process is relatively simple and
can be potentially quite beneficial.
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Fine-tuning embeddings can also be very useful when you are working with special‐
ized data domains whose token distribution deviates from general-purpose data. Let’s
now discuss how to fine-tune embedding models.

Exercise
In the example about Mr. Pomorenko’s retirement, check how the similarities for
these sentences fare when using embeddings from Jina, Nomic, and OpenAI embed‐
dings. What do their similarity scores look like? Is it better or worse than what we see
with the all-mpnet-base-v2 model?

Fine-Tuning Embedding Models
The Sentence Transformers library facilitates fine-tuning embedding models using
the SentenceTransformerTrainer class. To fine-tune an embedding model, we need
a base model to fine-tune on, a training dataset, and a learning objective.

Base Models
You can fine-tune a fine-tuned model like all-mpnet-base-v2, or you can fine-tune a
base model like MPNet, from which all-mpnet-base-v2 is defined. You will need more
training data to fine-tune a base model than to further fine-tune an already fine-
tuned model. Other candidates’ models for fine-tuning include BGE-M3 and jina-
embeddings-v3. A full list of models available through Sentence Transformers can be
accessed online. Remember to check the licenses for a given model before using it for
commercial purposes.

Some of the factors to keep in mind while choosing a base model include the perfor‐
mance of the base model, the size of the embedding models (which determines how
fast the model can encode text), the number of dimensions of the model (which
determines the amount of storage taken up by the embeddings), and the licensing
implications. The MPNet or all-mpnet-base-v2 is a solid first choice that has served
me well on many projects.

If a model has been fine-tuned for a particular task like semantic
search, it is not optimal to further fine-tune it on a different task.
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Training Dataset
There are many different ways to structure your dataset. The most common way is in
the form of triplets consisting of (anchor, positive, negative) examples. For a given
anchor sentence, the positive sentence is a sentence we would like to be closer to the
anchor sentence in embedding space, and the negative sentence is a sentence we
would like to be farther apart from the anchor in embedding space. For example, to
fine-tune the model to help it distinguish negation sentences, our training set can be
composed of triplets where the negative sentence contradicts the anchor and the posi‐
tive sentences.

Figure 11-2 shows an embedding dataset composed of triplets for helping the model
distinguish negation.

Figure 11-2. Fine-tuning dataset for negation
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Hard Negatives
For the negation dataset, it is trivial to fill in the negative examples. But in all other
cases it is not exactly obvious what comprises a negative example.

One way is to use random sentences from the corpus as negative examples. But for
more effective fine-tuning, it is customary to use hard negatives. Hard negatives are
examples that are somewhat relevant to the anchor but just not as relevant as the pos‐
itive example.

A simple method for selecting false negatives is to use the anchor as a query and find
the top-k matches in a document corpus using an embedding model that are not
already determined as positive examples. To ensure that the extracted examples are
not false negatives, i.e., they are more relevant or just as relevant as the positive exam‐
ple, we can use a relevance score threshold (retrieve only examples with cosine simi‐
larity below 0.7) or a top-k range (only retrieve examples between top-30 and top-50).

Moreira et al. show that false negatives can further be alleviated by leveraging the rele‐
vance score of the positive example. The relevance score threshold for a negative
example can be set as the relevance score of the positive example plus a fixed margin.
The threshold can also be a percentage of the relevance score of the positive example.

Datasets can also be composed of sentence pairs, where the sentences could represent
a (query, response) pair, or a (passage, summary) pair, or a pair of paraphrases. The
downstream use cases determine the type of dataset needed. The Sentence Trans‐
formers website shows all the different ways a dataset can be formatted.

Training datasets can be as small as a few thousand examples, to billions of tokens
when used for domain adaptation.

Note that certain loss functions require your dataset to be in a specific format. We will
discuss loss functions in detail next.

Loss Functions
Recall our discussion on loss functions for training LLMs in Chapter 4. The Sentence
Transformers library supports a wide range of loss functions for training embedding
models. Let’s explore a few commonly used ones.

For a triplet dataset, you can compute a triplet loss. For a training dataset consisting
of an (anchor, positive, negative) triplet, the triplet loss minimizes the distance
between the anchor sentence and the positive sentence, and maximizes the distance
between the anchor sentence and the negative sentence.

Mathematically, the loss is calculated as:
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Loss = max(d(a, p) – d(a, n) + margin, 0)

where d is a distance measure, typically Euclidean distance. The margin is a hyper‐
parameter that represents the distance by which the negative example should be far‐
ther away from the anchor than the positive example. When using Euclidean distance
as the distance measure, I suggest a margin of 5, but make sure to tune it if you are
not getting sufficient results.

If you are using a dataset composed of pairs like (query, response), (passage, sum‐
mary), etc., you can use the Multiple Negatives Ranking Loss.

In a batch containing (query, response) pairs (q1, r1), (q2, r2)… (qn, rn), for each
query, there will be a positive pair, e.g., (q1, r1) and n – 1 negative pairs, e.g., (q1, r2),
(q1, r3)…etc. The loss function minimizes the negative log likelihood.

Use CachedMultipleNegativesRankingLoss, available in Sentence
Transformers, which allows you to use larger batch sizes, leading to
better performance.

Now that we have discussed all the ingredients needed for fine-tuning, let’s put it all
together with the SentenceTransformerTrainer class:

from datasets import load_dataset
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer
from sentence_transformers.losses import TripletLoss

model = SentenceTransformer( "'all-mpnet-base-v2'")

dataset = load_dataset("csv", data_files="negatives_dataset.csv")

loss = TripletLoss(model)

trainer = SentenceTransformerTrainer(
    model=model,
    train_dataset=dataset
    loss=loss
   )
trainer.train()
model.save_pretrained("mpnet_finetuned_negatives")

The full code is available in the book’s GitHub repo.

Watch out for overfitting! You can reduce your learning rate if you
notice the model overfitting.
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Exercise
Using an LLM of your choice, create a synthetic triplet dataset with around 8,000
examples where the negative example is the negation of the positive example, and
fine-tune the all-mpnet-base-v2 model. After fine-tuning, test the cosine similarity of
the sentences in the negation example provided earlier in the chapter. Do you see any
improvements?

Zhou et al. show that in the context of embeddings, cosine similar‐
ity tends to underestimate the similarity between high-frequency
words. This is because high-frequency words occupy distinct
regions in the embedding space, leading to larger distances from
other words. On the other hand, low-frequency words tend to be
more concentrated geometrically.

Instruction Embeddings
So far we have seen that embedding models are specialized for solving a specific task,
like semantic search or paraphrasing. A recent development ties together embedding
models and the concept of instruction-tuning, which we discussed in Chapter 6.
Imagine if you could use the same embedding model to generate different embed‐
dings for the same document, based on the task it is going to be used for. One such
model is called Instructor. Instructor embeddings allow you to optionally specify the
domain, text type (whether it is a sentence, paragraph, etc.), and task, along with the
text during encoding.

Here is an example:

!pip install InstructorEmbedding

from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-large')

customized_embeddings = model.encode(
[['Represent the question for retrieving supporting documents:',
  'Who is the CEO of Apple'],
 ['Represent the sentence for retrieval:',
  'Tim Cook is the CEO of Apple'],
 ['Represent the sentence for retrieval:',
  'He is a musically gifted CEO'],
)

The creators of Instructor recommend using this instruction template:

‘Represent the {domain} {text_type} for {task_objective}:’
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where {domain} represents the domain of the text like law, finance, etc. The optional
{text_type} represents the unit of text being encoded, like a question, sentence,
paragraph, etc. {task_objective} represents the task for which we are using the
embeddings, like semantic search, paraphrase detection, etc.

In the context of semantic search, they recommend the instruction “Represent the
question for retrieving supporting documents” for queries, and “Represent the sen‐
tence for retrieval” for documents.

Another way the principle of instruction-tuning can be applied to retrieval is with
description-based retrieval, where the query can be the description of the text that
needs to be retrieved, rather than an instantiation (example) of the text that needs to
be retrieved. Ravfogel et al. have published description-based retrieval models that in
my experience are very effective. Note that these models have a dual-encoder setup:
separate models are used to encode the query and documents.

Exercise
Encode the Wikipedia dataset found in the book’s GitHub repo using the INSTRUCTOR
and the description-based retrieval models abstract-sim-query and abstract-sim-
sentence. For the question-answering task, how do they perform compared with the
embedding models we have used so far?

Evaluating Embedding Models
A dizzying number of embedding models are available these days. Which one should
you use? Massive Text Embedding Benchmark (MTEB) is a benchmark that can help
you make the decision. MTEB covers a diverse set of tasks and benchmarks both
latency and task performance, enabling you to reason about the tradeoff.

Check out the current leaderboard, which is updated regularly. While there is no clear
winner across all tasks, you can see that larger models generally perform better, and
not much separates the first 50 or even 100 models. Recall our discussion in Chap‐
ter 5 on the limitations of public benchmarks, so do not rely too much on MTEB
rankings. Your final decision on embedding model choice should balance your
application-specific needs, pricing, latency, and performance tradeoffs.

Optimizing Embedding Size
Many applications involve generating billions of embeddings. As we have seen,
modern embeddings sometimes have as many as thousands of dimensions. If each
dimension is represented in float32, then it needs four bytes of memory per
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dimension. Therefore, storing 100 million vectors generated from the all-mpnet-
base-v2 model, which has 768 dimensions, needs close to 300 GB of memory!

It is not uncommon to represent a single sentence, almost always no longer than 40
tokens, with a 768-dimension vector. Do we really need 768 dimensions to represent
40 tokens? The reality is that embedding training is very inefficient, and a large num‐
ber of dimensions are not really useful.

Therefore, several embedding truncation and quantization approaches have been
developed to optimize embedding size and reduce storage and compute require‐
ments. If you are operating in an environment with more than a few million vectors,
these techniques are likely to be useful to you. Let’s look at some of these approaches.

Matryoshka Embeddings
Matryoshka embeddings are named after Matryoshka dolls, which refer to a set of
wooden dolls that are placed inside each other in decreasing order of size, originating
from Russia. Matryoshka embeddings are trained such that the earlier dimensions of
the vector contain more important information than the later dimensions. This
allows us to truncate vectors depending on the requirements of the application with
respect to cost, latency, and performance.

The technique used to train these embeddings is called Matryoshka Representation
Learning (MRL). In MRL, we first choose a set of truncation dimensions. For exam‐
ple a 1,024-dimension vector can have truncation dimensions 128, 256, 512, and 768.
During the training process, we calculate the loss over each of the truncation dimen‐
sions as well as the full dimension. The losses are then added and weighted. In our
example, the first 128 dimensions learn from the loss calculated over the first 128,
256, 512, 768, and 1,024 dimensions of the vector. The end result is that the initial
dimensions of the vector will encode more important information because they learn
from richer losses.

Training using MRL is supported by the Sentence Transformers library. Let’s see how
it works in practice:

from sentence_transformers import SentenceTransformer
from sentence_transformers import SentenceTransformerTrainer, losses
from datasets import load_dataset

model = SentenceTransformer("all-mpnet-base-v2")
train_dataset = load_dataset("csv", data_files="finetune_dataset.csv")
loss = losses.MultipleNegativesRankingLoss(model)
loss = losses.MatryoshkaLoss(model, loss, [768, 512, 256, 128]])

trainer = SentenceTransformerTrainer(
    model=model,
    train_dataset=train_dataset,
    loss=loss,
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)
trainer.train()

Tom Aarsen observed in his experiments that even at 8.3% of the original embedding
size, the Matryoshka model preserves 98.37% of the original performance. This
makes it a very effective technique that will come in handy when you are working
with large datasets.

Similar to how we can reduce the effective dimension of our embeddings using MRL,
we can also reduce the effective number of layers of the embedding model, leading to
faster inference. This is done by extracting embeddings from the lower layers of the
model. To facilitate the lower layers of the model aligning high-quality embeddings
with the embeddings of the last layer of the model, a K-L divergence loss is employed
between the final layer and each of the lower layers. This technique was first intro‐
duced by Li et al.’s Espresso Sentence Embeddings.

Tom Aarsen observed in his experiments that removing half the layers leads to a 2x
improvement in speed with 85% of the original performance preserved.

The Sentence Transformers library allows you to combine Matryoshka representa‐
tions with layer reduction using the Matryoshka2dLoss.

Exercise
Download this dataset by Rishabh Misra containing news headlines. Use the nomic-
embed-text-v1.5 model from Nomic AI, which has been trained using MRL. Pick one
of the headlines as the query and generate its query embedding. Generate document
embeddings for all other headlines, and calculate similarity scores between query and
document embeddings at truncation checkpoints 1,024, 768, 512, 256, and 128.

Perform error analysis on the top 25 results. At what dimension do you start seeing a
noticeable performance drop?

Additionally, run the example training script for Matryoshka2dLoss provided by Sen‐
tence Transformers, and test the embeddings at various layer and dimension cutoffs.

Binary and Integer Embeddings
An alternative to truncation is quantization. With binary and integer quantization,
the number of vector dimensions remains the same, but each dimension is repre‐
sented by fewer bits. Recall that typically embedding vectors are represented in
float32, thus taking four bytes of memory per dimension.

At the extreme level, the four bytes can be represented with just one bit, resulting in a
32x reduction in storage requirements. This type of compression is generally done by
sacrificing the precision of the vector values.
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A simple way to convert a four-byte vector to a one-bit vector is to assign a value of
1 if the original value is positive, and 0 if it is negative. Note that you might need
to perform some scaling to achieve best results. After packing these bits into bytes,
a 512-dimension vector can be represented in just 512 / 8 = 64 bytes, instead of 512 ×
4 = 2,048 bytes.

Another advantage with using binary embeddings is that computing similarity only
needs simple bitwise operations, thus vastly speeding up retrieval. However, quantiza‐
tion negatively affects performance.

You can use the Sentence Transformers library to quantize embeddings:

from sentence_transformers.quantization import quantize_embeddings

model = SentenceTransformer("all-mpnet-base-v2")
embeddings = model.encode(["I heard the horses are excited for Halloween.",
"Dalmatians are the most patriotic of dogs.", "This restaurant is making me
nostalgic."])
binary_embeddings = quantize_embeddings(embeddings, precision="binary")

quantize_embeddings also supports int8 quantization. In this scheme, the four bytes
representing each dimension are converted into an integer value, represented in one
byte. The integer can be either signed or unsigned, thus representing values between
–127 and 127 or between 0 and 255, respectively. The conversion process is guided
using a calibration dataset of embeddings, from which we calculate the minimum and
maximum value of each dimension. These values are then used in the normalization
formula to convert the numbers from one range to another.

It has been shown that for some embedding models, binary embed‐
dings perform better than int8 embeddings despite the reduced
precision! This is largely because of the calibration dataset used and
the challenge involved in mapping float values to buckets of int8
values.

Product Quantization
Another promising quantization method is called product quantization. In this tech‐
nique, a vector is divided into chunks of equal size. The chunks are then clustered.
The number of clusters is set to the number of values that can be represented by the
quantized embedding. For example, if we aim to quantize to int8, then the number of
values that can be represented is 256, and thus the number of clusters is 256. Each
cluster is associated with an identifier, which is a unique value between 0 and 255.
Each chunk belongs to the cluster whose centroid the chunk is closest to.

Thus, the original float32 vector can now be represented by a list of cluster identifiers
corresponding to the clusters the chunks belong to. The larger the chunk size, the
more the compression. Thus if the vector is divided into five chunks, the resulting
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embedding will have only five dimensions. Unlike int8 and binary quantization,
product quantization also reduces the number of dimensions needed to represent a
vector. However, the performance drop is higher.

Choose your quantization technique by determining your relative product priorities
for criteria like cost, performance, and speed.

Optimizing embeddings for storage come with a performance hit.
However, if there is plenty of redundancy in the document corpus,
answers to typical user queries might be found in several docu‐
ments, and hence the user may not feel this performance drop.

Exercise
Download the Wikipedia embeddings encoded with Cohere’s embedding model and
implement product quantization by setting the number of clusters to 256. You can
also use a vector database, like Qdrant, that supports product quantization. Experi‐
ment with different chunk sizes. Where do you see the highest performance drop-off?

Additionally, implement the similarity scoring function for product quantization.

Now that we have seen various techniques to practically implement embedding-based
retrieval, let’s next figure out the textual units we need to embed into distinct vectors.
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Chunking
As noted in “Introduction to Embeddings” on page 260, embedding models support
very limited context lengths, and the effectiveness of embedding similarity matching
decreases as the text length increases. Therefore, it is natural to split documents into
manageable units called chunks and embed each chunk into one or more vectors.

A chunk can be defined as a semantically coherent and not necessarily contiguous
part of a document. The average chunk length depends on the context length sup‐
ported by the language model, and the number of chunks returned to the model (the
top-k) in response to a user query. As models become increasingly affordable to oper‐
ate and support ever-larger context lengths, the permissible chunk size grows.

Each chunk can either be represented by a single vector or can be further broken
down into units, with each unit being represented by a separate vector. A unit could
be a sentence, a paragraph, or even a section. Typically, the smaller the unit, the bet‐
ter. For your application, test your expected user queries against different granulari‐
ties and see what works best.

Document Parsing
Unstructured data first needs to be processed to make it amenable to retrieval. This
usually involves parsing text from the document, splitting it into manageable units,
associating metadata with these units, generating embeddings, storing, and indexing
them for easy access.

If it makes sense for your use case to have sentences as the basic unit of text, NLTK’s
Punkt tokenizer is a tried and tested tool for tokenizing text into sentences. Note that
sentence tokenization is not a trivial task, especially if you have domain-specific text.
Naive splitting on end marks (periods, question marks, and abbreviations) can only
get you so far; abbreviations play spoilsport. You can train the Punkt tokenizer unsu‐
pervised over a large body of your target text to ensure it learns your domain-specific
rules, as well as provide explicit rules and exceptions yourself. Other tools for sen‐
tence tokenization include spaCy, Stanza, and ClarityNLP.

Overall, effective document parsing (extracting section and subsection boundaries;
detecting and extracting tables, images, etc.; dealing with heterogeneous document
formats) is the bane of NLP projects. A large proportion of failure modes in RAG can
be attributed to poor document parsing. Of all the steps in a typical NLP application
pipeline, I have spent the most effort on document parsing. Yes, it might not be the
most glamorous task in the world, but it is the foundation on which high-quality
products are built. Ignore this at your own peril!
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Consider a scenario where a document corpus has been broken down into units rep‐
resented by embeddings. For a given user query, we can calculate the cosine similarity
between the user query vector and each of the document vectors. The chunks
corresponding to the most similar vectors are then retrieved. This ensures that the
embedding matching happens at a lower granularity, like a sentence, but the model
receives the entirety of the chunk the sentence belongs to, thus providing sufficient
background context to the model.

Exercise
Construct a sentence tokenizer for the Canadian parliamentary proceedings dataset
provided in the book’s GitHub repository. What are the failure modes? Can you use
rules to resolve these issues? Try unsupervised training of the Punkt tokenizer using
this data. Is it effective in resolving the issues found?

A question I am frequently asked by ML practitioners is, “What is the ideal chunk
size and what are some effective chunking strategies?” Determining the right chunk
size and boundaries are key challenges practitioners face when using embedding-
based retrieval. In this section, we will discuss a few chunking strategies, introduced
in order of increasing complexity.

In the basic implementation of embedding-based retrieval, each vector is a distinct
island, disconnected from all other islands. The text represented by Vector A is not
able to influence text represented by Vector B in any way. Therefore, we need to con‐
nect these islands in some way or make these islands as self-contained as possible.
With these objectives in mind, let’s look at some chunking strategies that go beyond
naive paragraph or section splitting.

Sliding Window Chunking
Consider a situation where the embedding similarity function returns a unit in
Chunk 45 as the most similar vector to your query vector. However, text in Chunk 44,
which immediately precedes Chunk 45 in the document, contains relevant informa‐
tion contextualizing Chunk 45. The vectors in Chunk 44 have a very low similarity
score with the query, and as a result, Chunk 44 is not selected for retrieval. One way
to fix this is by using sliding window chunking, where each text can be present in
multiple chunks, thus allowing neighboring context to be effectively represented in a
coherent block.

Metadata-Aware Chunking
Any metadata that you have about the document can be leveraged to determine
chunking boundaries. Useful metadata information includes paragraph boundaries,

Chunking | 277

https://oreil.ly/llm-playbooks


section and subsection boundaries, etc. If the metadata isn’t already available, you
might need to use document parsing techniques to extract this information. Several
libraries can facilitate this, including Unstructured.

Layout-Aware Chunking
A more involved form of metadata-aware chunking is layout-aware chunking. In this
approach we use computer vision techniques to extract layout information about the
document, including the placement and scope of textual elements, the titles, subtitles,
font size of text, etc.; use this metadata to inform the chunking process. Both open
source and proprietary tools can facilitate layout extraction. They include tools like
Amazon Textractor, Unstructured, and layout-aware language models like
LayoutLMv3.

For example, using this approach we can know the scope of a subsection, and thus
insert the subsection title at the beginning of each chunk comprising text from that
subsection.

You can also use techniques like ColPali that employ vision models to directly embed
a page or section of the document and perform retrieval over it. This may remove the
need for chunking entirely but might be more expensive overall.

Semantic Chunking
The principle behind semantic chunking is that similar information should be grou‐
ped into coherent chunks. Paragraph boundaries provide a weak signal for semantic
chunking, but more advanced methods can be employed. One approach is to cluster
the document based on topics, with each chunk containing information pertaining to
the same topic. The chunks need not necessarily be built from contiguous text if it
makes sense for the application. A more advanced approach is to use Bollinger
bands-based chunking. The book’s GitHub repository contains an experimental
implementation of this form of chunking.

Semantic chunking can also be employed to connect different chunks with each other.
Once the chunks have been assigned, similar chunks can be grouped based on
embedding similarity, allowing them to be retrieved along with the chunk having the
highest similarity score. Each chunk does not necessarily need to consist of content
from the same document, as long as the metadata associated with each sub-chunk is
retained.

A basic implementation of semantic chunking is available in LangChain.
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Highly performant semantic chunking can be performed through
LLMs. But it will be a huge cost overhead if the size of your data
corpus is very large. Sometimes good old regex can be enough. Jina
AI created a complex 50-line regex-based chunker that you can try
as an initial option.

Despite using all these techniques, effective chunking still remains a problem. Con‐
sider the following real-world example from a financial document:

Page 5: All numbers in the document are in millions
Page 84: The related party transaction amounts to $213.45

In this case the related party transaction actually amounts to $213M dollars but the
LLM would never know this because the text from page 5 is not likely to be part of
the same chunk.

A related problem is the difficulty in understanding scope boundaries. When does a
subsection end and a new subsection begins? What is the scope of the rule in page 5
in the given example? What if it is overridden in the middle of a document? Not all
documents have perfect visual cues or structure. Not all documents are well struc‐
tured into sections, subsections, and paragraphs. These are unsolved problems and
are the cause of a sizable proportion of RAG failure modes.

Late Chunking
One way of supporting long-range dependencies in text is to use late chunking, a
method introduced by Jina AI. Recall from earlier in the chapter that embeddings are
generated by typically pooling the vectors from the last layer of the underlying lan‐
guage model.

Given that we have access to long-context language models that can accept an entire
long document in a single input, we can use such a long-context model as our under‐
lying model for generating embeddings. We feed an entire document (or as large a
part as the model can handle) to the long-context model, so that vectors are gener‐
ated for each of the input tokens. As explained in Chapter 4, each token vector encap‐
sulates its meaning based on its relationship with all other tokens in the sequence.
This enables long-context dependencies to be captured.

The pooling operation to extract the embeddings is performed on smaller segments
of the input, where the segment boundaries can be determined by any of the chunk‐
ing algorithms. Thus, we can have several embeddings representing the same docu‐
ment but each of them representing distinct parts of the input.
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Exercise
Take Apple’s annual report, called a 10-K. This is a perfect document for experiment‐
ing with chunking strategies, as it is long, contains a large number of sections, sub-
sections, and sub-sub-sections; contains tables; and its content has long-range
dependencies. Split this document into chunks using all the different strategies pre‐
sented in this chapter and generate vectors for them. Try asking questions about the
annual report and evaluate the results. What chunking strategies are the most effec‐
tive? What is the ideal granularity for generating the vectors?

Vector Databases
Depending on your application, you may have to deal with millions or billions of vec‐
tors, with the need to generate and store new vectors and their associated metadata
tags every day. Vector databases facilitate this. Both self-hosted and cloud-based,
open source, and proprietary options are available. Weviate, Milvus, Pinecone,
Chroma, Qdrant, and LanceDB are some of the popular vector databases. More
established players like ElasticSearch, Redis, and Postgres also provide vector data‐
base support.

These days, the features provided by vector databases are converging, given the prev‐
alence of a small set of very popular retrieval use cases.

Let’s now look at how vector databases work. Probably the simplest one to get started
with is Chroma, which is open source and can run locally on your machine or can be
deployed on AWS:

!pip install chromadb

import chromadb
chroma_client = chromadb.Client()

collection = chroma_client.create_collection(name="mango_science")
chunks = ['353 varieties of mangoes are now extinct',
'Mangoes are grown in the tropics']
metadata = [{"topic": "extinction", "chapter": "2"}, {"topic": "regions",
  "chapter": "5"}]
unique_ids = [str(i) for i in range(len(chunks))]

collection.add(
   documents=chunks,
   metadatas=metadata,
   ids=unique_ids
  )
results = collection.query(
   query_texts=["Where are mangoes grown?"],
   n_results=2,
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   where={"chapter": { "$ne": "2"}},
   where_document={"$contains":"grown"}
)

Most vector databases offer:

• Approximate nearest neighbor search in addition to exact search, to reduce
latency

• Ability to filter using metadata, like the where clause in SQL
• Ability to integrate keyword search or algorithms like BM25
• Support Boolean search operations, so that multiple search clauses can be com‐

bined with AND or OR operations
• Ability to update or delete entries in the database in real time

Multi-Level Embeddings
If your retrieval performance requirements are stringent, a good strategy is to use
multiple levels of embeddings if the cost justifies it. As an example, you can have sen‐
tence embeddings, paragraph or dialog-turn embeddings, section/subsection embed‐
dings, or even document embeddings. The higher-level embeddings can represent the
summary of the text and not necessarily the verbatim text itself.

You can use different embedding models at each level. As you go up in granularity,
you can use more expensive and high-quality embedding models.

Depending on your specific use case, you can start from the top level and then propa‐
gate to the bottom like a tree or directly target a particular level.

Interpreting Embeddings
What features of text do embeddings learn? Why are two sentences sometimes closer
to/farther from each other in the embedding space than we expect? Can we know
what each dimension of an embedding vector represents?

A key limitation in embedding-based retrieval compared to traditional techniques is
the lack of interpretability in ranking decisions. There is a whole body of research
dedicated to improving interpretability of neural networks, LLMs, and embeddings.
In Chapter 5, we introduced some interpretability techniques for understanding
LLMs. In this section, we will focus on embedding interpretability in particular. One
benefit of understanding the features represented in embedding space is that we
could leverage that knowledge to steer embeddings for our own purposes.
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One promising technique for imparting interpretability is to use SAEs. Let’s under‐
stand what they mean and how they are trained and used to enhance interpretability.

A language model may learn millions of features, but for any given input, only a few
of those features are relevant or activated. This is what we mean by sparsity. Even as
they learn lots of features, there are only a limited number of dimensions in an
embedding vector. Therefore, each dimension contributes to many features that can
interfere with each other. If you train a sparse autoencoder over these embeddings,
you can derive independent interpretable features.

In his Prism project, Linus Lee uses SAEs to explore the features of a T5-based
embedding model.

Some of the identified features include:

• Presence of negation
• Expression of possibility or speculation
• Employment and labor concepts
• Possessive syntax at sentence start

For a longer list of identified features, refer to Linus Lee’s blog post.

Summary
In this chapter, we introduced the concept of embeddings, examined their internals,
and showed various techniques for generating them. We also discussed techniques for
fine-tuning embeddings on our own data. We learned how to determine the data
granularities at which we construct embeddings, discussing several chunking tech‐
niques in the process. Finally, we explored techniques to visualize and interpret
embeddings.

In the next chapter, we will explore RAG, an application paradigm that is by far the
most popular use case for embeddings today. We will present the steps involved in a
typical RAG workflow and review each of these steps in detail. We will also discuss
the technical decisions involved in building a RAG application and provide pointers
on how to think through various tradeoffs.
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CHAPTER 12

Retrieval-Augmented Generation

In Chapter 10, we demonstrated how to vastly expand the capabilities of LLMs by
interfacing them with external data and software. In Chapter 11, we introduced the
concept of embedding-based retrieval, a foundational technique for retrieving rele‐
vant data from data stores in response to queries. Armed with this knowledge, let’s
explore the application paradigm of augmenting LLMs with external data, called
retrieval-augmented generation (RAG), in a holistic fashion.

In this chapter, we will take a comprehensive view of the RAG pipeline, diving deep
into each of the steps that make up a typical workflow of a RAG application. We will
explore the various decisions involved in operationalizing RAG, including what kind
of data we can retrieve, how to retrieve it, and when to retrieve it. We will highlight
how RAG can help not only during model inference but also during model training
and fine-tuning. We will also compare RAG with other paradigms and discuss sce‐
narios where RAG shines in comparison to alternatives or vice versa.

The Need for RAG
As introduced in Chapter 10, RAG is an umbrella term used to describe a variety of
techniques for using external data sources to augment the capabilities of an LLM.
Here are some reasons we might want to use RAG:

• We need the LLMs to access our private/proprietary data, or data that was not
part of the LLM’s pre-training datasets. Using RAG is a much more lightweight
option than pre-training an LLM on our private data.

• To reduce the risk of hallucinations, we would like the LLM to refer to data pro‐
vided through a retrieval mechanism rather than rely on its own internal knowl‐
edge. RAG facilitates this. RAG also enables more accurate data citations,
connecting LLM outputs to their ground-truth sources.
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• We would like the LLM to answer questions about recent events and concepts
that have emerged after the LLM was pre-trained. While there are memory edit‐
ing techniques for updating LLM parameters with new knowledge like MEMIT,
they are not yet reliable or scalable. As discussed in Chapter 7, continually train‐
ing an LLM to keep its knowledge up-to-date is expensive and risky.

• We would like the LLM to answer queries involving long-tail entities, which
occur only rarely in the pre-training datasets.

LLMs Struggle with the Long-Tail
LLMs typically need a lot of samples to memorize a fact. The memorization ability is
probabilistic, so we cannot predict the exact number of samples the LLM needs to see
during training for it to memorize. This sample-inefficiency means that the LLM will
struggle to answer questions about entities and concepts that rarely occur in the train‐
ing data. As an example, Kandpal et al. show that the accuracy of BLOOM-176B on
question-answering is only 25% when the relevant documents occur only 10 times in
the pre-training dataset, versus 55% when the relevant documents occur 10,000 times.

Kandpal et al. also show that larger LLMs need relatively fewer examples to memorize
a fact. Even then, this leaves a large number of long-tail concepts that the LLM is
unable to memorize. The relationship between LLM size and memorization capability
is log-linear, meaning that the LLM needs to be in the order of quadrillions of param‐
eters to be competitive on long-tail data-related tasks.

One way to improve the chances of LLM memorization is by training it for more
epochs or upsampling data in the training set corresponding to concepts and facts we
want memorized. We could also modify the learning objective to upweight the train‐
ing loss for tokens representing facts.

Curriculum learning, discussed in Chapter 2, is another way to help improve memo‐
rization. Jagielski et al. show that samples seen earlier in the training phase tend to be
forgotten. Thus we can modify the order in which we show the samples during train‐
ing to ensure a higher likelihood of memorization for the data we want memorized.

Yet another way to improve performance on long-tail concepts is to use RAG, as we
will discuss throughout the chapter.

Exercise
Just about every LLM has been trained on Wikipedia, which is considered a high-
quality dataset. Wikipedia contains pages for lesser-known individuals, football (soc‐
cer) players of lower leagues, for instance. For any such relatively unknown individual
with a Wikipedia page, try asking questions about them to LLMs, where the answers
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to those questions are on the Wikipedia page. Try this with LLMs of various sizes.
Repeat this with relatively more well-known individuals (the size of their pages could
be a pseudo-indicator of their popularity). Do you notice the size of the LLM impact‐
ing its ability to answer these questions?

Typical RAG Scenarios
Now that we have seen why we need RAG, let’s explore where we can utilize it. The
four most popular scenarios are:

Retrieving external knowledge
This is the predominant use case that has seen a lot of success with productioni‐
zation. As discussed earlier in the chapter, we can use RAG to plug LLM knowl‐
edge gaps or to reduce hallucination risk.

Retrieving context history
LLMs have a limited context window, but often we need access to more context
in order to answer a query than what fits in the context window. We would also
like to have longer conversations with the LLM than what fits in the context win‐
dow. In these cases, we could retrieve parts of the conversation history or session
context when needed.

Retrieving in-context training examples
Few-shot learning is an effective approach to help LLMs get acquainted with the
input-output mapping of a task. You can make few-shot learning more effective
by dynamically selecting few-shot examples based on the current input. The few-
shot examples can be retrieved from a training example data store at inference
time.

Retrieving tool-related information
As described in Chapter 10, LLMs can invoke software tools as part of their
workflow. The list of tools available and their description is stored in a tool store.
The LLM can then use retrieval for tool selection, selecting the tool best suited to
the task. Tool-related information can also include API documentation, for
instance.

Deciding When to Retrieve
For each step in an agentic workflow, the LLM can advance its task using one of the
following steps:

• Use its internal capabilities
• Choose from among several data stores
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• Choose from among several software tools

There can be tasks that the LLM can fully solve using its parametric memory, but one
or more data stores may also contain the requisite data needed to solve them. In these
cases, should we just default to using RAG, given all its benefits that we presented
earlier?

We have seen earlier in the chapter that LLMs struggle with long-tail information,
and that RAG can be an effective means to answer questions about long-tail entities.
However, Mallen et al. show that for queries about more popular entities, the LLM
might sometimes be better at answering queries than RAG. This is because of the
inevitable limitations of the retrieval model, which might retrieve irrelevant or incor‐
rect information that could mislead the LLM.

For a given query, you can dynamically determine whether to use retrieval or to rely
on the LLM’s parametric memory. The rules determining the right approach to take
include:

• Whether the query is about a more frequently occurring entity. For example, the
LLM is more likely to memorize the birthday of Taylor Swift than of a substitute
drummer of a local band whose Wikipedia page is a stub.

• Whether the query has timeliness constraints, i.e., if the data needed to address
the query may not have existed before the LLM’s knowledge cutoff date.

• Whether the model has been continually pre-trained or memory tuned as
described in Chapter 7, and the given query relates to concepts over which the
training was performed.

If you are using LLMs for general-purpose question answering, Mallen et al. show
that you can use sources like Wikipedia as a pseudo-popularity metric for entities. If
the entities present in your inputs have an entity count in Wikipedia greater than a
threshold, then the LLM can choose to answer the question on its own without using
RAG. Note that the threshold can change across LLMs. This strategy works only if
you have a good understanding about the datasets the LLM has been pre-trained on.

Dynamically deciding when to retrieve data can also help optimize the model’s
latency and responsiveness, as the RAG pipeline will introduce additional overhead.

Dynamic retrieval is mostly useful when you are using very large
LLMs. For smaller models (7B or below), it is almost always benefi‐
cial to prefer using RAG rather than relying on the LLM’s internal
memory.
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The RAG Pipeline
A typical RAG application follows the retrieve-read framework, as discussed in Chap‐
ter 11. In response to a query, a retrieval model identifies documents that are relevant
to answering the query. These documents are then passed along to the LLM as con‐
text, which the LLM can rely on in addition to its internal capabilities to generate a
response. In practice, we typically need to add a lot of bells and whistles to get RAG
working in a production context. This involves adding several more optional stages to
the retrieve-read framework. In practice, your pipeline stages might consist of a
rewrite-retrieve-read-refine-insert-generate workflow, with some of these steps poten‐
tially comprising multiple stages. Later in the chapter, we will go through each of the
steps in more detail.

Figure 12-1 shows the various stages of the RAG pipeline and the components
involved.

Figure 12-1. RAG pipeline

As in the rest of the book, we refer to user or LLM requests to
retrieve data as queries, and units of text retrieved from the data
store as documents.

Let’s illustrate with an example. Consider a RAG application that answers questions
about Canadian politics and parliamentary activity. The application has access to a
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knowledge base containing transcripts of parliamentary proceedings. We will assume
that the data is represented using the representation techniques described in
Chapter 11.

When a user issues a query, we might want to rephrase it before sending it to the
retriever. Traditionally in the field of information retrieval (IR), this is referred to as
query expansion. Query expansion is especially useful because of the vocabulary mis‐
match between the query space and the document space. The user might use different
terminology in the query than that used in the documents. Rephrasing a query can
help bridge the vocabulary gap. In general, we would like to rephrase the query in
such a way that it improves the chances of the retriever fetching the most relevant
documents. This stage is called the rewrite stage.

Next, in the retrieve stage, a retrieval model is used to retrieve the documents relevant
to the query. In Chapter 11, we discussed embedding-based retrieval, a popular
retrieval paradigm in the LLM era. The retrieval stage can be an extensive multi-stage
pipeline.

The retrieval can happen over a very large document space. In this case, it is compu‐
tationally infeasible to use more advanced retrieval models. Therefore, retrieval is
usually carried out in a two-step process, with the first step using faster methods
(these days, typically embedding-based) to retrieve a list of potentially relevant docu‐
ments (optimizing recall), and a second step that reranks the retrieved list based on
relevance (optimizing precision) so that the top-k ranked documents are then taken
as the context to be passed along to the LLM. This stage is called the rerank stage.

After identifying the top-k documents relevant to the query, they need to be passed
along to the LLM. However, the documents may not fit into the context window and
thus need to be shortened. They also could potentially be rephrased in a way that
makes it more likely for the LLM to use the context to generate the answer. This is
done during the refine stage.

Next, we provide the output of the refine step to the LLM. The default approach is to
concatenate all the documents in the prompt. However, you could also pass them one
at a time, and then ensemble the results. How the documents are ordered in the
prompt can also make a difference. Several such techniques determine the way the
context is fed to the LLM. This is called the insert stage.

Finally, in the generate stage, the LLM reads the prompt containing the query and the
context and generates the response. The generation can happen all at once or the
retrieval process can be interleaved with the generation, i.e., the model can generate a
few tokens, then call the retrieval model again to retrieve additional content, generate
a few more tokens, and then call the retrieval model again, and so on.
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The output of each stage can be run through a verify stage to assess the quality of the
outputs and even take corrective measures. The verify stage can employ either heuris‐
tics or AI-based methods.

In this example, the query was generated by a human user. But if we consider RAG in
the context of agentic workflows, the query might be generated by an LLM. In an
agentic workflow, the agent can determine at any given point that it needs to retrieve
data to progress with its task, which sets the aforementioned pipeline into motion.

Apart from the retrieve and generate steps, the rest of the pipeline is optional, and
including other steps depends on your performance and latency tradeoffs.

Our example pertains to RAG when used at inference time. RAG
can also be applied when pre-training or fine-tuning the model,
which we will describe later in the chapter.

Let’s examine each step in the pipeline in detail.

Rewrite
After a query is issued, it might need to be rewritten to make it more amenable to
retrieval. The rewriting process depends on the retrieval models used. As mentioned
before, there is usually a mismatch between the query space and the document space,
as the vocabulary, phrasing, and semantics used by the query might vary drastically
from how the relevant concepts are conveyed in the document.

As an example, consider the query: “Which politicians have complained about the
budget not being balanced?”

and the data store contains the text “Senator Paxton: ‘I just can’t stand the sight of our
enormous deficit.’”

If you are using traditional retrieval approaches that rely more on keywords, this text
may not be selected as relevant during retrieval. Using embedding-based methods
bridges the gap as embeddings of similar sentences are closer to each other in embed‐
ding space, but it does not entirely solve the problem.
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If the query is coming from the user, the user might add instruc‐
tions along with the query, like, “Which politicians have com‐
plained about the budget not being balanced? Provide the results in
the form of a table.” In this case you will have to separate the query
from the instructions before feeding the query into the retrieval
pipeline. This can be done by an LLM using prompting techniques
like CoT, ReAct, etc., which we discussed in Chapters 5 and 10,
respectively.

For systems using traditional retrieval techniques, query rewriting is typically per‐
formed using query expansion techniques, in which the query is augmented with
similar keywords. Basic query expansion techniques include adding synonyms of
keywords and other topic information in your query.

A well-tested method for query expansion is pseudo-relevance feedback (PRF). In
PRF, the original query is used to retrieve documents, and salient terms from these
documents are extracted and added to the original query.

Let’s see how PRF would help with our query, ‘‘Which politicians have complained
about the budget not being balanced?” We use a retrieval technique like BM25
(explained later in the chapter) to return a candidate set of k documents. We then use
a technique like term frequency or, more effectively, Tf-IDf to extract the salient
terms occurring in these returned documents. For this example the salient phrases
turn out to be “fiscal policy,” “deficit,” “financial mismanagement,” and “budgetary
reforms.” Adding these phrases to the original query will lead to the text:

“Senator Paxton: ‘I just can’t stand the sight of our enormous deficit!’” being retrieved
successfully.

In recent years, LLM-driven query expansion methods are gaining more prominence.
Two such examples are Query2doc and Hypothetical Document Embeddings
(HyDE).

Let’s explore how LLM-based query expansion works. We pass a given query to an
LLM and ask it to generate a hypothetical document that contains the answer to the
query.

Prompt: For the provided query, generate a hypothetical document in 2 sentences or
less that answers the query. Assume the documents are transcripts of Canadian parlia‐
mentary proceedings, containing verbatim statements of representatives in the House
and Senate.
Query: Which politicians have complained about the budget not being balanced?

The prompt contains:

• Instructions to generate a hypothetical document
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• Desired length limit of the generated document
• Description of the document corpus containing relevant documents
• The original query

The hypothetical document generated by the LLM is as follows:

LLM: “Honorable Senator Mark Wellington stated, This government’s failure to balance
the budget is unacceptable and jeopardizes our economic future. Similarly, MP Emily
Fraser remarked, We cannot continue on this path of reckless spending without address‐
ing the deficit—it’s time for real fiscal responsibility.”

Using this hypothetical document as the query will return the sentence ‘‘Senator Pax‐
ton: ‘I just can’t stand the sight of our enormous deficit!”’ with a higher similarity
score.

While this hypothetical document is not factually accurate, and laughably so (there
are no senators or MPs in Canada named Mark Wellington and Emily Fraser), it does
contain verbiage and semantics very similar to what an actual politician would say. If
we use this document as the query (optionally combining with the original query),
then the chances of it being semantically similar to actual instances of politicians talk‐
ing about the topic is higher than if matched with the query alone.

The length of the hypothetical document could be similar to the typical length of the
retrieval unit. You can use a smaller LLM to generate the hypothetical document, as
we do not care for factuality guarantees in this setting. However, smaller models are
also not as adept as generating quality hypothetical documents, so you will have to
manage the tradeoff. Both LangChain and LlamaIndex provide implementations of
hypothetical document-based query rewriting.

If the model has been pre-trained or fine-tuned on the data corpus containing the rel‐
evant data, then adding descriptions of the corpus in the prompt as shown in the
example will make it more likely that the generated document follows the structure,
format, and linguistics of that data corpus.

One pitfall of query rewriting techniques is the risk of topic drift.
In the case of hypothetical documents, the document may drift into
irrelevant topics after the first few tokens. Upweighting the logits
bias for tokens in the query can partially address this problem. PRF
techniques are also susceptible to topic drift.

You can also combine PRF style techniques with hypothetical documents. Instead of
generating hypothetical documents to replace or augment the query, you can use
them to extract keywords that you can add to the original query. Li et al. propose a
technique called query2document2keyword. In this technique, the LLM generates a
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hypothetical document using the query, similar to HyDE. The LLM is then prompted
to extract salient keywords from this document.

We can then further improve the quality of the extracted keywords by taking them
through a filtering step. The authors propose using the self-consistency method, which
we discussed in Chapter 5. To recap, in the self-consistency method, we repeat the
keyword generation multiple times, and then select the top keywords based on the
number of generations they are present in.

Another way to combine traditional retrieval with LLM-driven query rewriting is to
first return the top-k documents from the initial retrieval step, then use LLMs to gen‐
erate salient keywords from the returned documents and add them to the query.

Exercise
For the Canadian parliament proceedings example in the book’s GitHub repo, using
smaller models like Gemma 2B, Llama 2B, etc., are the hypothetical documents effec‐
tive? Similarly, try increasing the size of the models and see if the performance increa‐
ses. What effect does integrating hypothetical documents have on system latency
overall?

So far we have discussed techniques that bridge the query document mismatch prob‐
lem by modifying the query and bringing it closer to the document space. An alterna‐
tive approach to solve the mismatch problem is to represent the documents in a way
that brings them closer to the query space. Examples of this approach include
doc2query and contextual retrieval. While document rewriting techniques initially
have a large cost if the data stores are very large, they can reduce latency during infer‐
ence time as no or little query rewriting needs to be performed. On the other hand,
query rewriting techniques are simple to implement and integrate into a RAG work‐
flow.

Yet another form of query rewriting is called query decomposition. For complex
queries in an agentic workflow, we can have the LLM divide the task into multiple
queries that can be executed sequentially or in parallel, depending on how the query
was decomposed. We discussed query decomposition techniques in Chapter 10.

If your external data is in a structured form like databases, then the
query needs to be rewritten into a SQL query or equivalent, as dis‐
cussed in Chapter 10.

Now that we have discussed the query rewriting step of the pipeline, let’s move on to
the retrieve step.
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Retrieve
The retrieve step is the most crucial stage of the RAG pipeline. It is easy to see why:
all RAG applications are bottlenecked by the quality of retrieval. Even if you are
working with the world’s best language model, you won’t be able to get the correct
results if the retrieval step didn’t retrieve the correct documents needed to answer the
query. Therefore, this step of the pipeline should focus on increasing recall.

Embedding-based retrieval, which we discussed in detail in Chapter 11, is highly pop‐
ular. However, traditional information-retrieval techniques should not be dismissed.
The right technique to use depends on the expected nature of queries (can a signifi‐
cant proportion of them be answered by just keyword or regex match?), the expected
degree of query-document vocabulary mismatch, latency and compute limitations,
and performance requirements.

The information retrieval (IR) research field has been studying
these problems for a long time. Now that retrieval is more relevant
than ever in NLP, I am noticing a lot of efforts to reinvent the wheel
rather than reusing IR insights. For insights in retrieval research,
check out papers from leading IR research conferences like SIGIR,
ECIR, TREC, etc.

The Unreasonable Effectiveness of BM25
Despite the existence of advanced deep learning techniques for retrieval, keyword
matching/probabilistic retrieval techniques like BM25 can be a very strong baseline
and, when paired with query or document rewriting, can potentially even be good
enough for your application.

Other traditional techniques supported by Apache Lucene/ElasticSearch include term
frequency-inverse document frequency (Tf-IDf), divergence from independence
(DFI), divergence from randomness (DFR), information based (IB), Dirichlet similar‐
ity, and Jelinek Mercer similarity. Each of these measures has several tunable parame‐
ters. For more insight on these techniques and how to select the parameter values,
check out “Tweaking the Base Score”.

Embedding-based retrieval methods are not always suitable when you would like all
documents containing a specific word or phrase to be retrieved. Therefore it is cus‐
tomary to combine keyword-based methods with embedding methods, called hybrid
search. The results from the two methods are combined and fed to the next step of
the retrieval pipeline. Most vector databases support hybrid search in some shape or
form.

Figure 12-2 shows the retrieval stage in action, using hybrid search.
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Figure 12-2. Hybrid search

I also highly recommend metadata filters for improving retrieval. The more metadata
you gather during the data representation and storage phase, the better the retrieval
results. For example, if you have performed topic modeling of your data store in
advance, you can restrict your search results to a subset of topics, with the filters
being applied either using a hardcoded set of rules or determined by an LLM.

Next, let’s discuss promising recent advances in retrieval.

Generative retrieval
What if the LLM could identify the right documents(s) that need to be retrieved in
response to a query, thus removing the need for retrieval techniques? This is called
generative retrieval.

Generative retrieval is implemented by assigning identifiers to documents called doc‐
IDs, and teaching the LLM the association between documents and docIDs. A docu‐
ment can be associated with one or more docIDs. Typical docIDs can be:

Single tokens
Each document can be represented by a new token in the vocabulary. This means
that, during inference, the model needs to output only a single token for each
document it wants to retrieve. Pradeep et al. use a T5 model where the encoder
vocabulary is the standard T5 vocabulary but the decoder vocabulary contains
the docIDs. This approach is feasible only with a small document corpus.
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Prefix/subset tokens
Tay et al. use the first 64 tokens of a document as the docID, while Wang et al. use
64 randomly selected contiguous tokens from the document.

Cluster tokens
You can also perform hierarchical clustering of your document corpus based on
its semantics (using embeddings, for example), and the docID can be a concate‐
nation of the cluster IDs at each level of the hierarchy.

Salient keyword tokens
The docIDs can also contain salient keywords representing the topics and themes
contained in the document. For example, a document about the Transformer
architecture can be represented by the docID “transformer_self-
attention_architecture.”

One way to teach the LLM the association between documents and docIDs is by fine-
tuning the model. This is referred to as training-based indexing. However, fine-
tuning needs a lot of resources and is not suitable in scenarios in which new
documents are frequently added to the corpus.

Askari et al. show that we can use few-shot learning to build a generative retrieval
system without needing to train the model. First, for each document in the corpus,
pseudo queries are generated using a language model. The pseudo queries are the
queries whose answers are present in the document. These pseudo queries are then
fed to a language model in a few-shot setting and asked to generate docIDs.
Figure 12-3 shows training-free generative retrieval in action.

Figure 12-3. Generative retrieval

During inference, the model is provided with a query similar to the setup in
Figure 12-3 and asked to generate the correct docID(s) that are relevant to the query.
Constrained beam search is used to ensure that the docID generated by the model
corresponds to a valid docID in the corpus.

You can also use generative retrieval to retrieve documents based
on their metadata. For example, the model could ask to retrieve
Apple’s 2024 annual report. The model can be made to generate the
right identifier by either fine-tuning the model or using few-shot
learning, as shown in this section.
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Ultimately, generative retrieval is suitable only if your document corpus is relatively
small, there is limited redundancy within the corpus, or the documents belong to a
set of well-defined categories (annual reports of all public companies in the US, for
instance).

Next, let’s discuss tightly-coupled retrievers, another new topic in the retrieval space.

Tightly-coupled retrievers
As seen in Chapter 11, in embedding-based retrieval, the embedding model is typi‐
cally independent of the language model to which the retrieval results are fed. We will
refer to them as loosely-coupled retrievers.

In contrast, a tightly-coupled retriever is trained such that it learns from LLM feed‐
back; the model learns to retrieve text that best positions the LLM to generate the cor‐
rect output for a given query. Tightly-coupled retrievers can be trained together with
the generator LLM as part of a single architecture, or they can be trained separately
using feedback from the trained LLM.

An example of the latter is Zhang et al.’s LLM-Embedder, a unified embedding model
that can support a variety of retrieval needs in a single model, ranging from knowl‐
edge retrieval to retrieving optimal few-shot examples. The model is trained from two
types of signals: a contrastive learning setup typically used to train embedding models
(presented in Chapter 11) and LLM feedback. A retrieval candidate receives a larger
reward from LLM feedback if it improves the performance of the LLM in answering
the query.

Exercise
Use the LLM-Embedder as the embedding model for the RAG case study provided in
the GitHub repo. How does the LLM-Embedder compare to other embedding models
we have worked with so far?

Tightly-coupled retrievers are another tool in your toolkit for improving retrieval.
They are by no means a necessary step in the RAG pipeline. As always, experimenta‐
tion will show how much of a lift (if any) they provide for your application.

Finally, let’s discuss GraphRAG, an up-and-coming retrieval paradigm that leverages
knowledge graphs for better retrieval.

GraphRAG
A key limitation of the retrieval approaches we have discussed so far is their inability
to facilitate answering questions that require drawing connections between different
parts of the document corpus, as well as questions that involve summarizing
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high-level themes across the dataset. For example, all the retrieval techniques we dis‐
cussed so far would do poorly on a query like, “What are the key topics discussed in
this dataset?”

One way to address these limitations is by employing knowledge graphs. Microsoft
released GraphRAG, a graph-based RAG system. GraphRAG works by creating a
knowledge graph from the underlying data corpus by extraction entities and relation‐
ships. The graph is then used to perform hierarchical semantic clustering, with sum‐
maries generated for each cluster. These summaries enable answering of thematic
questions like, “What are the key topics discussed in this dataset?”

GraphRAG requires a lot of initial compute to prepare the knowledge graph. This can
be prohibitive for larger datasets. While it is easy to extract entities, extracting rele‐
vant relationships is harder.

Exercise
Run GraphRAG indexing over a small subset of the Canadian parliamentary dataset.
Examine the entities and relationships extracted. Is the quality satisfactory? Are there
missing or spurious relationships?

Now that we have explored the retrieval stage of the RAG pipeline, let’s move on to
the rerank stage.

Rerank
The retrieval process can be broken into a two-stage or multi-stage process, where the
initial stage retrieves a list of documents relevant to the query, followed by one or
more reranking stages that take the documents and sort them by relevance. The
reranker is generally a more complex model than the retriever and thus is run only
on the retrieved results (or else we would have just used the reranker as the retriever).

The reranker is usually a language model fine-tuned on the specific use case. You can
use BERT-like models for building a relevance classifier, where given a query and a
document, the model outputs the probability of the document being relevant to
answering the query. These models are called cross-encoders, as in these models the
query and document are encoded together, as opposed to embedding-based retrieval
models we have discussed, called bi-encoders, where the query and document are
encoded as separate vectors.

The input for a BERT model acting as a cross-encoder is of the format:

[CLS] query_text [SEP] document_text [SEP]
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The Sentence Transformers library provides access to cross-encoders, which can be
used as rerankers in the RAG pipeline:

from sentence_transformers import CrossEncoder
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", num_labels=1)

query = 'When was the Apple iPhone 15 launched?'
documents = ['Apple iPhone 15 launched with great fanfare in New York',
'He was foolish enough to believe that gifting an iPhone would
  save the relationship',
'On September 22, 2023, I lined up at the Central Park store for the launch of
  the iPhone 15']

ranks = model.rank(query, documents)
for rank in ranks:
   print(rank['score'], documents[rank['corpus_id']])

Because we have set num_labels = 1, the model will treat it as a regression task,
using the sigmoid activation function to output a score between 0 and 1.

These days, more advanced models like Contextualized Late Interaction over BERT
(ColBERT) are used for reranking. As opposed to the cross-encoder setup we just dis‐
cussed, ColBERT-style models allow for pre-computation of document representa‐
tions, leading to faster inference.

In ColBERT, the query and documents are encoded separately using BERT, generat‐
ing token-level embedding vectors for each token in the query and documents. For
each token in the query, the corresponding embedding is compared to the embed‐
dings of each of the token embeddings of the document, generating similarity scores.
The maximum similarity scores for each query token are summed, resulting in the
final relevance score. This type of architecture is called late interaction, since the
query and document are not encoded together but interact together only later in
the process. Late interaction saves time compared to traditional cross-encoders, as
document embeddings can be created and stored in advance.

Figure 12-4 depicts a ColBERT model in action, illustrating the late interaction
between query and documents.
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Figure 12-4. ColBERT

Exercise
Compare the performance of bi-encoders like the all-mpnet-base-v2 model and cross
encoders like jina-colbert-v2 by generating embeddings for the iPhone Wikipedia
page. Try asking a variety of queries. On which type of queries do you see a marked
improvement with cross-encoders?

Next, let’s explore a few advanced reranking techniques.
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Query likelihood model (QLM)
A QLM estimates the probability of generating the query given a candidate document
as input. You can treat an LLM as a QLM, utilizing its zero-shot capabilities to rank
candidate documents based on the query token probabilities. Alternatively, you can
fine-tune an LLM on query generation tasks to improve its suitability as a QLM.

A typical prompt for a QLM would look like: “Generate a question that is most rele‐
vant to the given document <document content>”.

After getting the top-k documents relevant to a query from the retrieval stage, each
document is fed to the LLM with this prompt. The likelihood of the query tokens is
then calculated using the model logits. The documents are then sorted by likelihood,
providing a relevance ranking.

Zhuang et al. show that an instruction-tuned model that doesn’t
contain query generation tasks in its instruction-tuning training set
loses its capability to be an effective zero-shot QLM. This is yet
another case of instruction-tuned models exhibiting degraded per‐
formance compared to base models, on tasks they have not been
trained on.

Note that to calculate the probability of the query tokens, we need access to the model
logits. Most proprietary model providers including OpenAI do not yet provide full
access to the model logits as of this book’s writing. Thus, the LLM-as-a-QLM
approach can be implemented only using open source models.

Exercise
Pick any relatively smaller open source LLM (~3B parameters) and test its suitability
as a QLM. For the Canadian parliamentary dataset provided in the book’s GitHub
repo, rank candidate retrieval documents using QLM. How effective is it?

In the interest of reducing latency, you would ideally like the QLM to be as small a
model as possible. However, smaller models are less effective QLMs. Effectively fine-
tuning a smaller LLM for query generation might be the sweet spot.
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LLM distillation for ranking
Earlier in the chapter, we saw how encoder-only models like BERT could serve as
rerankers. More recently, decoder LLMs are also being trained to directly rank candi‐
date documents in three ways:

Pointwise ranking
Each candidate document is fed separately to the LLM. The LLM provides a
Boolean judgment on its relevance. Alternatively, it can also provide a numerical
score, although this is much less reliable.

Pairwise ranking
For each candidate document pair, the LLM indicates which document is more
relevant. To get a complete ranking, N2 such comparisons need to be made.

Listwise ranking
All the candidate documents are tagged with identifiers and fed to the LLM, and
the LLM is asked to generate a ranked list of identifiers according to decreasing
order of relevance of corresponding documents.

In general, pointwise ranking is the easiest to use but may not be the most effective.
Listwise ranking might need a large context window, while pairwise ranking needs
lots of comparisons. Pairwise ranking is the most effective of these techniques, since
it involves direct comparison. Figure 12-5 shows how pointwise, pairwise, and list‐
wise rankings work.

Examples of ranking LLMs include RankGPT, RankVicuna, and RankZephyr.

These models are trained by distilling from larger LLMs, a technique we first learned
in Chapter 9. For example, the process for training RankVicuna is:

• Queries in the training set are fed through a first-level retriever like BM25 to
generate a list of candidate documents.

• This list is passed to a larger LLM, which generates a rank-ordered list of candi‐
dates.

• The query and the rank-ordered list are used to fine-tune the smaller LLM.

The creators of RankVicuna show that as the effectiveness of the first-level retrieval
increases, the possible performance gains from RankVicuna decreases due to dimin‐
ished returns. They also reported that augmenting the dataset by shuffling the input
order of the candidate documents improved model performance.
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Figure 12-5. Decoder LLM rerankers

Exercise
For the Canadian parliamentary question-answering assistant example available on
the book’s GitHub repo, use RankVicuna at the reranking step. Modify the default
prompt template and see if it affects the performance.
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You can combine the results of the retrieve and the rerank stages to
get the final relevance ranking of candidate documents. This is
needed to enforce keyword weighting, for example. You can also
weight your relevance ranking by metadata like published date
(more recent documents are weighted more).

Now that we have discussed the rerank stage, let’s move on to the refine step of the
RAG pipeline.

Refine
Once the candidate texts relevant to the given query are retrieved and selected, they
can be fed to the LLM. However, the LLM context window is limited, so we might
want to reduce the length of the retrieved texts. We might also want to rephrase it so
that it is more amenable to being processed by the LLM. Another possible operation
could be to filter out some of the retrieved texts based on certain rules. All of these
are conducted during the refine stage. In this section, we will discuss two such tech‐
niques, summarization and chain-of-note. Let’s start with discussing how we can
summarize the retrieved texts.

The refine stage can be a standalone stage, or it can be paired with
the final generate stage, where the final response is provided imme‐
diately after refining the retrieved documents, as part of the same
prompt or prompt chain.

Summarization
Summarization is useful if the retrieval chunks are relatively large. It can be either
extractive or abstractive. Extractive summaries extract key sentences from the origi‐
nal text without modifying it. Abstractive summaries are generated from scratch,
drawing on content from the original text. The summarizer can also act as a quality
filter; it can output an empty summary if the document is irrelevant to the query.
Summaries should be relevant, concise, and faithful to the original text.

These summaries are not meant for human consumption but
instead meant to be consumed by the LLM. Therefore, they do not
always share the same objectives as traditional summarizers. The
primary objective here is to generate a summary that helps the
LLM output the correct answer.

Should you choose extractive or abstractive summarization? Extractive summaries
are almost always faithful as they preserve the meaning of the original text.
Abstractive summaries come with the risk of hallucinations. On the other hand,
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abstractive summaries can potentially be more relevant because of their ability to
combine information from different locations within a document and across
documents.

While you can leverage the LLM’s zero-shot capabilities for both extractive and
abstractive summarization, it is more effective (albeit expensive) to fine-tune them so
that the summaries generated are specifically optimized to enable the LLM to gener‐
ate the correct answer. We will call these tightly-coupled summarizers.

Xu et al. introduce techniques for training both extractive and abstractive summariz‐
ers. Let’s go through them in detail.

For extractive summarization, we would like to extract a subset of sentences from the
retrieved document as its summary. This is done by generating embeddings for the
input query and for each sentence in the retrieved document. The top-k sentences
that are most similar to the input query in the embedding space are selected as the
summary. The embedding distance is a measure of how effective the document sen‐
tence is in enabling the LLM to generate the correct output.

The extractive summarizer is trained with contrastive learning, which we discussed in
Chapter 11. Each training example in contrastive learning is a triplet: the anchor sen‐
tence, positive example similar to the anchor sentence, and negative examples dissim‐
ilar to the anchor sentence. To generate the training examples, for each sentence in
the retrieved document, we prefix it to the input query and calculate the likelihood of
gold truth output tokens being generated. The sentence with the highest likelihood is
taken as the positive example. For negative examples, we choose up to five sentences
whose likelihood is below a threshold. This dataset is then used to train the model.

For abstractive summarization, we can distill a larger LLM, i.e., use the outputs from
it to fine-tune a smaller LLM.

To generate the training dataset, we can construct some prompt templates and use
them with a larger LLM to generate zero-shot summaries of our retrieved documents.
Note that we are generating a single summary of all the retrieved documents. Similar
to the extractive summarization technique, for each generated summary, we prefix it
to the input text and calculate the likelihood of the correct output tokens. We choose
the summary with the highest likelihood to be part of our training set.

During inference, if prefixing any given summary has a lower likelihood of generat‐
ing the correct output than not prefixing any summary at all, then we deem the text
represented by the summary to be irrelevant, and an empty summary is generated.
This allows us to filter out irrelevant documents.

Figure 12-6 depicts the workflow of a tightly-coupled abstractive summarizer during
training.
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Figure 12-6. Abstractive summarization

If you are planning to change your target LLM, you might want to
retrain the summary models. While the summarizers can transfer
across models, there is still a slight performance degradation.

Tightly-coupled summarizers, while expensive to train initially, can be an effective
means of removing irrelevant information from the retrieved text while rephrasing it
in a form that reduces ambiguity for the LLM.
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Exercise
Use the examples provided in the book’s GitHub repo to generate extractive and
abstractive summaries of the retrieved documents in the Canadian parliamentary
question-answering assistant task. Do the summaries succeed in removing noise?
Compare this to a generic summarizer like ChatGPT. How does ChatGPT summari‐
zation compare?

Chain-of-note
Another way to rephrase the retrieved text is to generate notes.

It would be detrimental if the retrieved text contains irrelevant content that might
mislead the model. In essence, the LLM has to contend with three types of scenarios:

• The retrieved documents contain the answer to the user query, and the LLM can
use it to generate the correct output.

• The retrieved documents do not contain the answer to the user query, but they
provide valuable context that the LLM can then combine with its internal knowl‐
edge to come up with the answer.

• The retrieved documents are irrelevant to the user query and should be ignored.

LLMs are not very good at distinguishing between relevant and irrelevant context.
One way to address this is by generating notes for each retrieved document that con‐
tains a summary of the retrieved document along with indicating whether it contains
the answer to the user query or only contains relevant context but not the answer
outright, or is irrelevant. This technique is called chain-of-note (CoN), introduced by
Yu et al.

Here is an example of how these notes look:

Prompt: Who succeeded Brian Mulroney as the prime minister of Canada in 1993?
Doc 1: Kim Campbell took over the reins of leadership in Canada in 1993, marking her
entry into history as the country’s first female Prime Minister in 1993. Her tenure,
however, was short-lived, as she led the Progressive Conservative Party into a challeng‐
ing federal election later that year.
Doc 2: Following Brian Mulroney’s tenure, Canada witnessed the historic appointment
of its first female Prime Minister, marking a groundbreaking shift in the nation’s politi‐
cal landscape.

While the first text says Kim Campbell became the prime minister in 1993, it is not
apparent whether she immediately succeeded Brian Mulroney or if there was an
intervening prime minister. However, the second text makes it clear that it is indeed
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Kim Campbell, as the text mentions that Brian Mulroney was succeeded by a female
prime minister.

The corresponding note generated by the model is the following:

LLM: The first statement mentions that Kim Campbell took over the leadership in
Canada in 1993, and the second statement refers to the period following Brian Mulro‐
ney’s tenure, leading to the appointment of Canada’s first female prime minister. This
sequence implies that Kim Campbell’s assumption of the prime minister role directly
followed Brian Mulroney’s tenure, making her his successor.

Using the note as context, the LLM can then generate the correct answer.

The true value of chain-of-note becomes apparent when the context contains irrele‐
vant or insufficient information. The generated note can help the LLM output “I don’t
know.”

Consider this query:

Prompt: Did the Green Party of Canada support the proposed 2023 Public Transit bill?

and the retrieved documents are:

Doc 1: The Green Party of Canada has historically emphasized the importance of sus‐
tainable transportation as a key component of their environmental platform, advocat‐
ing for policies that promote green infrastructure.
Doc 2: The proposed 2023 Public Transit bill garnered widespread attention and popu‐
larity, reflecting a growing public consensus on the importance of sustainable trans‐
portation solutions.

The retrieved documents do not contain the answer to the query. The corresponding
note generated is:

LLM: While the first passage indicates the party’s historical emphasis on sustainable
transportation, and the second passage mentions the bill’s popularity, neither confirms
the party’s support or opposition to the 2023 bill.

Using this note, the LLM can generate “unknown” when the retrieved documents do
not contain the answer to the query.

An example of a CoN prompt can be:

Prompt: You are provided a query along with {K} passages that potentially contain
information that can be used to answer the query. Write notes summarizing the key
points from these passages. Discuss the relevance of each of these passages to the given
question and state whether the answer to the query can be deduced from the content in
these passages.

Again, we can train tightly-coupled CoN models to make it more effective. This can
be done by fine-tuning an LLM to elicit CoN behavior.
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To generate the fine-tuning dataset, you can prompt an LLM to generate candidate
notes for example queries. Human evaluation can then filter out incorrect or poor-
quality notes. The final dataset consists of the CoN prompt, the input query, and the
retrieved documents as the input, and the corresponding note and the query answer
as the output. An LLM can then be fine-tuned on this dataset.

The authors (Yu et al.) introduce a weighted loss scheme during training. The note
can be much longer than the answer, and thus equally weighting the loss across all
tokens will lead to the note getting significantly more importance during training.
This harms model convergence. The weighted loss scheme involves calculating loss
across answer tokens 50% of the time.

Using a CoN step is very useful, especially if the retrieval results are known to contain
a lot of noise or there is a higher possibility of no relevant documents available to ser‐
vice the query. CoN behavior is harder for smaller models, thus a sufficiently larger
model should be used.

Exercise
For the Canadian parliamentary RAG example in the GitHub repo, pose questions to
the RAG system where the answers are known not to exist within the Wikipedia cor‐
pus. Use CoN prompting on ChatGPT or a similarly larger LLM to generate notes.
Do the notes convey the absence of relevant information? Does the LLM acknowledge
it cannot answer the question?

Now that we have discussed the refine step of the RAG pipeline, let’s move to the
insert step.

Insert
Once we have determined the content to be fed to the LLM that is going to generate
the final response to a query, whether the original retrieved documents or their sum‐
maries or notes, we need to decide how we are going to arrange it inside the prompt.

The standard approach is to stuff all the content, or at least as much as can fit, into
the context window. An alternative is to feed each retrieved document/summary/note
prefixed to the input separately to the LLM, and then combine the outputs.

Liu et al. show that language models are more adept at recalling information present
at the beginning and the end of the context window as compared to the middle. We
can exploit this knowledge to reorder the retrieved documents in the prompt.

Let’s say we retrieved 10 documents for the given query. The documents are ordered
according to their relevance: Doc1, Doc2,…Doc10. These documents can now be
arranged in the prompt in the following order:
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Doc1, Doc3, Doc5, Doc7, Doc9, Doc10, Doc8, Doc6, Doc4, Doc2

Thus the least relevant documents exist in the middle of the context window, where
they are more likely to be ignored by the model due to current long context recall
limitations.

Alternative approaches include arranging the documents in order of relevance, for
example:

Doc1, Doc2, Doc3, Doc4, Doc5, Doc6, Doc7, Doc8, Doc9, Doc10

Or in reverse order of relevance, like:

Doc10, Doc9, Doc8, Doc7, Doc6, Doc5, Doc4, Doc3, Doc2, Doc1

These ordering schemes are useful only if the input context is very long (upwards of
5,000 tokens).

Finally, let’s discuss the generate step in the RAG pipeline.

Generate
The LLM generates the final response to the given query during this step. The stan‐
dard approach is to generate the output all at once. However, you could also inter‐
leave the generation and the retrieval process, by generating some output and
retrieving more context, and generating some more output, and retrieving more con‐
text, and so on.

This approach can be useful in maintaining coherence in long-form text generation.
The generated text determines what needs to be retrieved next. This process is called
active retrieval.

How do we decide when to stop generating and start a new retrieval step? We could:

• Retrieve after every N tokens are generated.
• Retrieve after each textual unit is generated. (A textual unit can be a sentence,

paragraph, section, etc.)
• Retrieve when currently available context is deemed insufficient for generation.

There are several ways to implement the latter. One of them is Forward-Looking
Active REtrieval-augmented generation (FLARE). The authors of FLARE introduce
two methods for active retrieval: FLARE-Instruct and FLARE-Direct.

In FLARE-Instruct, the LLM is prompted to generate queries in a specific syntax
whenever it needs additional information to continue coherent generation.

In FLARE-Direct, the LLM generates a candidate-next sentence. If any of the tokens
in the generated sentence have probability lower than a threshold, then the retrieval
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process is activated. If not, then the candidate sentence is accepted as a valid continu‐
ation and the generation process continues. If retrieval is to take place, the generated
sentence can be used as the query, by masking the low-probability tokens (since they
might confuse the retriever if they are irrelevant/incorrect). You can also rephrase the
sentence as a question about the low-probability token(s).

Let’s look at an example using FLARE-Instruct:

Prompt: Write an article about Peruth Chemutai, the Ugandan Olympics medal winner.

FLARE-Instruct: Peruth Chemutai [Search(birthdate of Peruth Chemutai)] is a Ugan‐
dan long-distance runner who specializes in the 3000 meters steeplechase. She gained
international recognition after [Search(what medals did Peruth Chemutai win)] win‐
ning the gold medal in the women’s 3000 meters steeplechase at the 2020 Summer
Olympics, becoming the first Ugandan woman to win an Olympic gold medal.
Early Life
Chemutai was born in the [Search(birthplace of Peruth Chemutai)], a region known
for [Search(what is the birthplace of Peruth Chemutai known for?)].’

This is a contrived example, as the true benefits of FLARE can be better appreciated
on lengthier outputs. As seen in the output, the model generates search queries that
can be used to retrieve factually correct information from data sources.

For the same query, using FLARE-Direct, the model generates the candidate article:

FLARE-Direct: Peruth Chemutai ( born July 10, 1999) is a Ugandan long-distance run‐
ner who specializes in the 3000 meters steeplechase. She gained international recogni‐
tion after winning the gold medal in the women’s 3000 meters steeplechase at the 2020
Summer Olympics, becoming the first Ugandan woman to win an Olympic gold
medal.
Early Life
Chemutai was born in the Bukwo District, Uganda, a region known for its challenging
terrain and passionate long-distance runners.

The underlined tokens are low-probability tokens, which can be refilled by retrieving
relevant text. We can either mask the low-probability tokens and use them as the
retrieval query or generate standalone queries like, “When was Peruth Chemutai
born?” based on the masked tokens.

Exercise
Use FLARE-Direct to generate Wikipedia documents! Let’s see if we can create Wiki‐
pedia documents by interleaving generation and on-demand retrieval. Ask any open
source LLM to generate a Wikipedia page of the Bollywood movie Kabhie Kabhie
using FLARE-Direct. Does it effectively use retrieval?
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A crucial aspect of generation includes adding appropriate citations to ground-truth
sources. The LLM can be fine-tuned to make it provide citations along with the
answer in response to user queries. One such model is Cohere’s Command-R model.

As we can see, the RAG pipeline for knowledge retrieval can be rather lengthy. How‐
ever, for a lot of RAG applications, latency is a key consideration. This increases the
importance of smaller language models or faster, non-LLM-based approaches.

Let’s put it all together by revisiting the RAG pipeline diagram first introduced at the
beginning of the chapter. Figure 12-7 depicts the workflow of a comprehensive RAG
pipeline.

Figure 12-7. Comprehensive RAG pipeline

So far, we have focused on using RAG for knowledge retrieval. Let’s now discuss a few
other use cases.

RAG for Memory Management
An underrated application of RAG is expanding the context window of an LLM. To
recap, an LLM prompt typically contains the following types of (optional) content:

The pre-prompt or system prompt
These are the overarching instructions provided to the LLM included at the
beginning of every query. Depending on your customization needs, the system
prompt could occupy a significant part of the context window.
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The input prompt
This includes the current input and the instruction, optional few-shot training
examples, and additional context, possibly fetched using retrieval.

Conversational history
This includes the history of conversations/interaction between the user and the
LLM. Including this in the context window enables the user to have a long,
coherent conversation with the LLM.

Scratchpad
This includes intermediate output generated by the LLM (discussed in Chap‐
ter 8), which can be referred to by the LLM when generating future output.
Scratchpad content is an artifact of certain prompting techniques like CoT.

In many cases, the LLM’s limited context window is simply insufficient to incorporate
all this data. Moreover, we might like to make the conversational history available to
the model through perpetuity, which means it keeps growing across time. Making all
the conversational history available to the LLM is a key aspect in enabling
personalization.

It’s RAG to the rescue! RAG can be employed in facilitating LLM memory manage‐
ment by swapping in and out relevant content in the prompt as suitable. This is remi‐
niscent of how memory management occurs in operating systems. Let’s explore this
abstraction further.

In an OS, memory is organized in a hierarchy, with fast (and expensive) memory
being directly accessible to a processor, and higher levels of the hierarchy containing
larger and slower (but relatively inexpensive) memory. When the processor needs to
access some data, it tries to access it from the lowest level in the memory hierarchy. If
the data is not present there, it searches the next level in the hierarchy. If present, it
swaps the required data into the lower level and swaps out data that is not currently
needed. This way, the OS can support a fast main memory that is directly accessible
by the processor and a much larger virtual memory that can be swapped in whenever
needed.

This is a very simplified explanation of OS memory management. For a more
detailed explanation, check out Tony’s “Operating System — Hierarchy of Memory”.

Figure 12-8 shows the memory hierarchy of a typical OS.
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Figure 12-8. Typical OS memory hierarchy

Similarly in LLMs, the context window is analogous to the main memory as it is
directly accessible to the LLM. However, we can expand the context window indefi‐
nitely by implementing a memory system analogous to the OS virtual memory. This
helps in personalizing LLMs, providing them with the full access to a user’s conversa‐
tional history and their implicit and explicit preferences.

Examples of libraries supporting memory management for LLMs include Letta (for‐
merly MemGPT) and Mem0.

An alternative or complement to swapping memory in and out is
to recursively summarize the conversational history. However,
summarization is a lossy process and may not be able to preserve
the semantics of the text. Valuable nuances like the tone of the
writer can be lost during summarization.

Exercise
Use the Mem0 playground to carry out a very long conversation with an LLM that
overshoots the context window. At various points of the conversation, refer to things
or topics that one of your (hypothetical) friends likes. Ask the LLM to help choose a
birthday gift for your friend that is related to their interests. Is the LLM able to recall
information from the conversation pertaining to your friend? Can you generate a
refined version of the conversation that makes it easier to retrieve this information?
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RAG for Selecting In-Context Training Examples
As mentioned at the beginning of the chapter, another application of RAG is to
dynamically select training examples for few-shot learning by retrieving the optimal
examples from a data store containing a list of training examples. For a given input,
the retrieved few-shot examples are supposed to maximize the LLM’s chance of gen‐
erating the correct answer to a user query.

A simple method is to generate embeddings of the input and retrieve examples whose
embeddings are most similar to the input embedding. While this technique is a
promising start, we can do much better.

Wang et al. introduce a method called LLM Retriever (LLM-R) that trains a model
using LLM feedback to retrieve few-shot training examples whose inclusion will
increase the probability of the LLM generating the correct answer. Figure 12-9 illus‐
trates the LLM-R technique.

Figure 12-9. LLM-R workflow

For each input query in the training set, we retrieve the top-k few-shot examples by
using a retrieval model like BM25. We then rerank the examples by using LLM feed‐
back. Each example is prefixed to the input and the probability of the ground-truth
output tokens is calculated. The examples are then ranked by decreasing order of
their log-probabilities. The ranked examples are then used to train a reward model,
which is distilled to train the final retrieval model.

RAG for Model Training
So far, all the RAG applications we have explored are applied during LLM inference.
Can we use RAG during model pre-training and fine-tuning as well? Yes, we can!
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This is an underrated area of study, and I expect to see more LLMs leveraging this in
the coming years. Let’s look at an example in detail.

Retrieval-Augmented Language Model (REALM) is one of the pioneering works in
the RAG space. REALM integrates the retrieval and generation tasks into a single
model. Figure 12-10 shows the REALM framework for pre-training and fine-tuning.

Figure 12-10. REALM architecture

The REALM architecture is composed of two components: a knowledge retriever and
a knowledge-augmented encoder, which is a BERT-like encoder-only model. Both
components are differentiable and thus trained together.

The knowledge retriever is used to generate embeddings for all documents in the
external knowledge base. Retrieval is performed by finding documents with maxi‐
mum embedding similarity to the input. During the masked-language modeling pre-
training phase, the retriever loss function encourages it to fetch text that helps predict
the masked tokens. The masked tokens are then predicted by attending to both the
input text and the retrieved text. The retrieved text is supposed to contain relevant
context that makes predicting the masked tokens much easier.

REALM also employs these strategies to optimize training:
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• Named entities or dates are masked so that the model can learn to predict them
using retrieved context.

• Not all masked tokens need external knowledge for their prediction. To accom‐
modate this, an empty document is always added to the retrieved documents.

• The retrieved documents ideally contain the context required to predict the
masked token, and not the token itself. Therefore, trivial retrievals that contain
the masked token in the retrieved text are not included.

Limitations of RAG
While RAG is a powerful paradigm that expands the usefulness of LLMs and reduces
hallucinations, it doesn’t resolve all the limitations of LLMs. Some pitfalls of using
RAG include:

• Relying on retrieval of text snippets can cause the LLM to depend on surface-
level information to answer queries, rather than a deeper understanding of the
problem space.

• Retrieval becomes the limiting factor of the pipeline. If the retrieval process fails
to extract suitable candidate text, the LLM’s powerful capabilities will all be for
nothing.

• Sometimes the retrieval process can extract documents that are contradictory to
the knowledge contained in the LLM’s parametric memory. Without access to the
ground truth, it is difficult for the LLM to resolve these contradictions.
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How Do LLMs Deal with Contradictory Information?
Sometimes the knowledge captured in the LLM’s internal representations can be con‐
tradictory to the content retrieved during the RAG. This can happen due to a multi‐
tude of reasons: outdated or incorrect content in the LLM’s training datasets, errors in
the user-provided context, or retrieval of incorrect or irrelevant documents during
RAG. In these cases, we want the LLM to be able to ignore the incorrect content. This
is extremely challenging because of the LLM’s lack of access to the ground truth.

Liu et al. introduced a benchmark called Robustness against External CounterfactuAL
knowLedge (RECALL). This benchmark tests the robustness of LLMs in the presence
of counterfactual information in the prompt. Liu et al. note there is some evidence
that when LLMs are fed information that is logically inconsistent, they tend to rely on
their internal representations more. However, if the inconsistency is more factual,
then the models tend to prefer the information in the prompts.

A significant finding in their paper is that the models’ confidence in its outputs sees a
notable drop when dealing with contradictory information. Thus, we can use the
LLM output probabilities to guide further specialized processing.

RAG Versus Long Context
As discussed in Chapter 5, one of the limitations of LLMs is the limited effective con‐
text window available to them. However, this is one of the areas where rapid advances
have been made recently. Context windows of at most a few thousand tokens were
standard until early 2023, after which companies like Anthropic announced support
for context windows spanning over 100,000 tokens. In early 2024, Google announced
Gemini 1.5 Pro, with support for one million tokens of context.

To assess the impact on LLM performance as the context size increases, several
needle-in-a-haystack tests have been devised. One such implementation by Greg
Kamradt facilitates adding a random fact or statement (the needle) to the middle of
the context (the haystack) and then asking the LLM questions for which the needle is
the answer.

However, it is wise to take these tests with a grain of salt as they often evaluate only
the information recall capabilities of an LLM. Moreover, very few problems in the
real world are needle-in-the-haystack problems; LLMs are probably not the right tool
to solve them anyway. Cheaper and faster retrieval models could adequately perform
most needle retrieval tasks.

In many needle-in-a-haystack tests, random sentences or paragraphs are added to the
context window as needles, with the rest of the content in the context window being
orthogonal to the needle. But this does not mirror the situation in the real world,
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where most co-occurring text is related in some way. Related text can often act as dis‐
tractors, preventing the LLM from drawing the right conclusions. In fact, it is one of
the reasons for developing rigorous rerank and refine steps in the RAG pipeline!

Long-context models can be useful for analyzing very long documents and also can
reduce the complexity of the rerank and refine steps. I recommend empirically calcu‐
lating the trade-offs where feasible.

Exercise
Implement your own test for evaluating long-context efficacy. Extract text from all the
Wikipedia pages on various rail systems operating in Greater Tokyo. Devise a few
questions that inquire about route information. The text containing the answer to the
question will be the needle. Insert the needle into the context, and from the extracted
text, insert 200 tokens of text (approximated to the closest sentence boundary) before
and after the needle. Check if the LLM can answer the question by generating them
10 separate times. Insert 200 more tokens from the extracted text to the beginning
and end of the prompt and iterate until the maximum context length is reached. How
is performance on the task impacted as the context size increases? Try this for multi‐
ple models.

Additionally, remove the rerank and refine steps from the RAG pipeline code in the
book’s GitHub repo and directly feed the results of the retrieval step to an LLM sup‐
porting long context (100K tokens or more). Do you see the performance increasing
or decreasing?

Finally, cost is also an important consideration for the long context versus retrieval
debate. No doubt, the cost for long-context models will drop significantly in the
future, but retrieval will still be relatively cheaper. Forgoing retrieval completely in
favor of using long-context models is akin to buying a laptop and storing all your files
in RAM instead of disk.

RAG Versus Fine-Tuning
The debate around using RAG versus fine-tuning boils down to the more fundamen‐
tal question: what aspects of the task can I perform using the LLM versus relying on
external sources?

In cases where external knowledge is required to solve a task, both retrieval and fine-
tuning can be used. Retrieval can be used to integrate the knowledge on demand,
with the drawback being that the LLM is only exposed to surface-level information
and is not provided the chance to learn from connections between the data. On the
other end, continued pre-training or fine-tuning can also be used to integrate exter‐
nal knowledge, albeit with an expensive training step.
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Ovadia et al. compared RAG and fine-tuning on tasks requiring external knowledge.
They showed that RAG consistently outperformed fine-tuning for knowledge-
intensive tasks. As shown earlier in this chapter, LLMs need a lot of samples to mem‐
orize a concept or fact. Thus, fine-tuning effectiveness can be improved by repetition
or augmentation of the fine-tuning dataset.

Even for knowledge-intensive tasks, RAG versus fine-tuning need not be an either-or
decision. If you are working on a specialized domain or need your outputs in a cer‐
tain style or format, you can fine-tune your LLM on domain- and task-specific data,
and use RAG with this fine-tuned model for your downstream applications. In a large
proportion of use cases, RAG should be sufficient, and fine-tuning shouldn’t be the
first choice of solution.

Exercise
Take the Canadian parliamentary discussions dataset and fine-tune any open source
LLM for multiple epochs. Check if the LLM is able to answer questions about the
fine-tuning dataset. If not, continue fine-tuning (with more repetition or data aug‐
mentation) until it does so. Also analyze the impact of catastrophic forgetting as a
result of this fine-tuning. In what ways does the LLM become worse? How is generali‐
zation performance affected due to the excessive memorization?

Performing this exercise will underscore the advantages of RAG over fine-tuning for
knowledge-intensive tasks.

RAG and fine-tuning can be complementary. Earlier in this chapter, we saw how each
step of the RAG pipeline can be optimized using fine-tuning. Similarly, we also saw
how RAG can be used to optimize the fine-tuning process. Thus, both retrieval and
fine-tuning are powerful parts of your LLM toolkit, and I hope that these chapters
have sufficiently prepared you to implement and deploy them in the wild.

Summary
In this chapter, we conducted a deep dive into the RAG pipeline, exploring in detail
the rewrite-retrieve-rerank-refine-insert-generate pipeline. We highlighted the effec‐
tiveness of RAG in various scenarios, including integration of external knowledge,
retrieval of past conversational history, dynamic selection of few-shot learning exam‐
ples, and tool selection. We also explored the limitations of RAG and scenarios where
RAG may not be effective.

In the final chapter, we will explore how we can utilize all the concepts we learned so
far to architect and package LLM-driven products that bring value to end users.
Effective product design has become all the more important in the age of LLMs, given
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that a successful LLM product leverages the LLM the best it can for the capabilities it
excels at, while at the same time limiting end-user exposure to LLM limitations by
means of clever product design. We will also look at several LLM design patterns that
put together all the concepts we learned in reusable, debuggable abstractions.
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CHAPTER 13

Design Patterns and System Architecture

Throughout this book, we have explored a variety of techniques to adapt LLMs to
solve our tasks, including in-context learning, fine-tuning, RAG, and tool use. While
these techniques can potentially be successful in satisfying the performance require‐
ments of your use case, deploying an LLM-based application in production requires
adherence to a variety of other criteria like cost, latency, and reliability. To achieve
these goals, an LLM application needs a lot of software scaffolding and specialized
components.

To this end, in this chapter we will discuss various techniques to compose a
production-level LLM system that can power useful applications. We will explore
how to leverage multi-LLM architectures to balance cost and performance. Finally,
we will look into software frameworks like DSPy that integrate LLM application
development into the conventional software programming paradigm.

Treating an LLM-based application as just a standalone LLM component is inade‐
quate if we intend to deploy it as a production-grade system. We need to treat it as a
system, made up of several software and model components that support the LLM
and make it reliable, fast, and cost-effective. The way these components are composed
and connected is referred to as the system architecture.

Let’s begin by discussing a specific type: multi-LLM architectures that leverage multi‐
ple LLMs to solve your task.
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Multi-LLM Architectures
Throughout this book, we have discussed the tradeoffs involved in choosing the right
LLM for a task. Often, it can be beneficial to leverage multiple LLMs to achieve the
desired outcome. Multi-LLM architectures can exist in the following two modes (or a
combination):

Each LLM is specialized for a different subtask
Different problem subtasks may require different levels of capabilities. To mini‐
mize cost and latency, for each task we would like to use the smallest possible
LLM that can solve the subtask at the performance threshold we set.

All LLMs solve the same task
In this case, all the LLMs are solving the same task, but for each input, only one
or a subset of LLMs may be chosen to solve it.

A given task can be solved by an ensemble of LLMs, and the final
outputs can be chosen based on some rules (majority voting, inter‐
polation, etc.). Refer to Jiang et al.’s ensembling framework called
LLM-Blender for an example of thoughtful ensembling.

Exercise
In the book’s GitHub repo, you will find a skeleton implementation of a legal agent.
The agent is designed to retrieve information from the web and provide answers to
user questions about court cases. This agent utilizes a multi-LLM architecture, com‐
prising several LLMs of different sizes.

Break down the agent implementation into its constituent tasks and enumerate the set
of capabilities (described in Chapter 5) required for each task. Assign the smallest
possible LLMs for each task that demonstrate these capabilities beyond a satisfactory
threshold. Use content from Chapters 5 and 8 to guide you in your exercise. What are
the cost savings compared to solving the entire task with the largest of the given
models?

Let’s walk through some commonly used multi-LLM architectures.

LLM Cascades
While using the state-of-the-art LLM for processing all our inputs is an option, realis‐
tically this might be cost-prohibitive or latency sensitive. To optimize costs while
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keeping performance standards high, we could leverage multiple LLMs, organized in
a cascade architecture.

Let’s illustrate LLM cascades. Consider you have an application using three LLMs:
one small, one medium, and one large, as illustrated in Figure 13-1.

Figure 13-1. LLM cascades

The following process is observed during inference:

1. Each input is fed to the small LLM.
2. If the small LLM makes an output prediction with a confidence level greater than

a threshold, then we accept the output as the final output.
3. If the small LLM makes an output prediction with a confidence level that doesn’t

surpass the threshold, then we pass the input to the medium model.
4. Similarly, if the medium LLM makes an output prediction with a confidence level

greater than a threshold, then we stop and accept this output as the final output.
5. However, if the medium LLM makes an output prediction with a confidence level

that doesn’t surpass the threshold, then we pass the input to the large model.
6. The large model generates the final output.

This architecture is most beneficial when most user inputs can be processed by the
small model.

If you are using encoder-only models like BERT, the output probability scores can be
used as the measure of confidence. Thus, a group of well-calibrated models will
enable us to efficiently route the input to the most suitable model. (Recall our discus‐
sion on model calibration in Chapter 5.)

For decoder models, a popular method is to use self-consistency as a measure of con‐
fidence. (Recall our discussion on self-consistency in Chapter 1.) If we generate mul‐
tiple times from the model and the outputs are mostly consistent with each other,
then we can say that the model is being confident in its predictions. If they are not
consistent, then we can move down the cascade and apply the inputs to the next LLM
in the cascade.
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Some works propose asking the LLM to explicitly state the confi‐
dence level of its output. This has not been proven to be effective
yet. Beware of asking the LLM to verify its own work in any form!

Another method for assessing confidence is to use margin sampling, as proposed by
Ramirez et al. In the margin sampling method, we generate the first token and use the
difference in the probability of the most probable token and the second most proba‐
ble token as the margin. The assumption is that the higher the margin, the more con‐
fident the model. If the margin is below a certain threshold, then the input is sent to
the next model in the cascade.

Exercise
Compare the different confidence assessment strategies for decoder models. Test the
Llama 2-3B model with facts from Wikipedia pages. Try the margin sampling
method, the self-consistency method, and just asking the LLM how confident it is
about the answer. Which method do you observe is a better representation of LLM
confidence?

An alternative to using cascades is using a router scheme.

Routers
A router is a program or a model that processes input queries and dispatches them to
the appropriate model. The advantage of using the router architecture is that, unlike
cascades, the same input need not be run on potentially multiple models. However,
the effectiveness of this strategy relies on the router effectively dispatching inputs to
the optimal model, which may not always be fulfilled.

A router can perform intent classification, i.e., understand the intention of the user
and dispatch the input to a suitable LLM that can solve the task being requested. If all
the LLMs in the architecture are intended to solve the same task, then the router
assesses the difficulty of the input query and dispatches the input to the smallest
model that can adequately solve the task.

Figure 13-2 illustrates the role of the router in picking the right model to solve a task.
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Figure 13-2. Router

Routers can also be used in RAG pipelines. The router can assess
the input and dispatch it to one of several different types of
retrievers.

Assessing the complexity of an input query can be done using either heuristics or a
fine-tuned model. Heuristics can be based on certain keywords that appear in the
input (with RAG, When queries are more easily answered than How queries) or the
identity of the tasks (for instance, sentiment analysis is an easier task that can be
accomplished by a smaller model).

Next, let’s discuss task-specialized LLMs.

Task-Specialized LLMs
Yet another way of organizing multi-LLM architectures is to deploy a variety of task-
specific LLMs, each of them specialized in solving a particular type of task or subtask.

Given a complex user query, a relatively powerful LLM can be used to decompose the
query into its constituent subtasks. A router can then assign each of these subtasks to
the specialized model most equipped to handle at the subtask. (Recall our discussion
on task decomposition in Chapter 8.)

Specialized LLMs can be constructed by fine-tuning them on task- and domain-
specific datasets.

Figure 13-3 illustrates how a complex query can be divided into several subtasks, with
each subtask being dispatched to the model most likely to solve it in a cost-optimal
way.
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Figure 13-3. Task-specific LLMs

Let’s now explore some programming paradigms that facilitate more effective LLM
application development.

Programming Paradigms
As we have seen in this chapter, production-grade LLM systems can be composed of a
lot of software components that help make the system robust and reliable. Naturally,
we would like to use software design patterns to help us build these systems to be
productive and maintainable. The developer community is still maturing in this
regard, and it will take more time for tried and tested design patterns to emerge.

At this juncture, there are several proposals for LLM programming paradigms. While
many are not yet well-tested, some of these paradigms are mature enough to support
production-grade applications. Let’s explore a couple of major ones.

DSPy
LLM application development is a highly iterative process. You might want to experi‐
ment with a few candidate LLMs before selecting the right one. You might start with
zero-shot prompting, which involves a lot of iterative prompt manipulation, also
called prompt engineering. If zero-shot isn’t sufficient, you might venture into few-
shot prompting, which involves iterating over various candidate examples. If few-shot
prompting isn’t sufficient, you might want to fine-tune the model, which involves
iteratively preparing a dataset and trying various hyperparameters for the model.
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Declarative Self-improving Language Programs, pythonically (DSPy) is an open
source programming framework that seeks to abstract a large part of the iterative
process. Programming, not prompting, as their motto goes.

DSPy presents a framework where the application’s control flow is separated from
variables that need to be iterated. The variables can be prompts, parameters of LLMs,
etc. The programming blocks that manage the control flow of the application are
called modules, and the blocks that perform the iterative updates of variables are
called optimizers.

Modules
A module is a building block of an LLM application. Each module corresponds to an
underlying prompt in the prompt chain. Each module type is an abstraction of a dif‐
ferent prompting technique, like CoT. A module can be declared using a signature
that declaratively provides the input-output specification.

Declaring a CoT prompting module with a signature is as simple as:

import dspy
summarizer = dspy.ChainOfThought('document -> summary')

ChainOfThought is a module that provides an abstraction for the CoT prompting
technique. The module is declared with a signature document → summary that speci‐
fies the input and output types in a declarative form. For instance, if you are building
a question-answering application, then the signature could be question → answer.

For some applications, you would like to provide more details on the input-output
mapping than just a short string. For those instances, signatures can be declared
using Python classes. Here’s an example:

class RAGQA(dspy.Signature):
    """Using only information in the provided context,
       answer the question in the text"""

    context = dspy.InputField(desc="context might be irrelevant")
    text = dspy.InputField()
    answer = dspy.OutputField(desc="Answer in at most two sentences.")

context = "Tempura was invented in New Zealand by a retired rugby player. The
word 'tempura' comes from the German opera by Neubig."
text = "Which year was tempura invented in?"
answer = dspy.ChainOfThought(RAGQA)
answer(context=context, text=text)

In this example, instructions can be provided in three places:

• The docstring, with a more detailed description of the task
• The input field, with details on any input constraints
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• The output field, with details on any output constraints

Refer to the DSPy documentation for a full list of available modules. We can use these
modules as building blocks for constructing complex LLM applications. Next let’s
look at optimizers that work under the hood to compile our modules into an exe‐
cutable program.

Optimizers
Optimizers are components that update prompts or model parameters. Several opti‐
mizers are natively supported by DSPy. An optimizer can be used to update one of
the following:

• The instruction prompt
• Few-shot training examples
• Model parameters (fine-tuning)

An optimizer takes as input the modules it needs to be applied to, the metric to evalu‐
ate the output of the modules, and fine-tuning or few-shot training data consisting of
input-output pairs or just inputs. Optimizers use algorithms to update the prompts or
parameters to optimize the desired metric. DSPy supports metrics like accuracy or
precision or exact match.

You can implement your own modules and optimizers if the ones provided by default
are inadequate to your needs. Thus, DSPy is a powerful framework that separates the
control flow of the LLM application from iterative aspects like LLM prompting and
fine-tuning, and potentially automates the latter. The downsides of DSPy are that the
optimizers might not be effective enough to work in an automated fashion and might
need manual intervention to tune them correctly. More often than not, you will find
yourself writing your own optimizers.

Exercise
Implement a question-answering assistant over the Canadian parliamentary dataset
provided in the book’s Github repo using the DSPy framework. How does this imple‐
mentation compare to the non-DSPy version?

Let’s now explore another framework called Language Model Query Language
(LMQL). We have already been introduced to this framework in Chapter 5 in the
context of structured generation, but here we will look at how the same framework
can be used as a programming paradigm for developing LLM applications.
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LMQL
LMQL is a superset of Python that enables specifying prompts, output constraints,
and program control flow using declarative Python code. Here is an example:

import lmql

@lmql.query(model="gpt-4")
def jeopardy():
    '''lmql
    """Generate a Jeopardy! question and answer.
    A:[ANSWER]
    Q:[QUESTION]""" where STOPS_AT(ANSWER, "?") and \
                           STOPS_AT(QUESTION, "\n")
    '''

jeopardy(model=lmql.model("gpt-4"))

In this example we are asking the model to generate a Jeopardy! question. Jeopardy! is
a TV show that executes a modified version of a trivia quiz; the host supplies the
answers and the contestants provide the question for the given answer.

In LMQL, we achieve this by defining a function called jeopardy and supplying the
prompt instructions in the doc string. The doc string contains the instruction Gener
ate a Jeopardy! question and answer. The [ANSWER] and [QUESTION] markers
refer to templates that the LLM will fill in based on the constraints specified in the
WHERE clause.

For the answer (which in Jeopardy is the question), we stop generation after generat‐
ing the ? symbol. Similarly, for the question (which in Jeopardy is the answer), we
stop generation after the newline symbol. The WHERE clause can be used to provide
complex constraints for generation.

LMQL syntax might take a while to get used to, but overall it provides a robust pro‐
grammatic foundation for developing LLM programs. Both LMQL and DSPy have a
learning curve, so I recommend being patient during your first few iterations.

As LLMs and LLM-driven applications mature, I expect more programming para‐
digms to emerge and for existing paradigms to vastly evolve. Current paradigms
might be too brittle in many cases, so be cautious and verify they are effective before
you adopt them in production.

Summary
In this chapter, we explored the construction of LLM systems and various system
architectures. We showcased how we can leverage multi-LLM architectures to opti‐
mize for cost and latency. Finally, we introduced LLM programming frameworks for
streamlining LLM application development.
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task-adaptive pre-training (TAPT), 174, 178
task-specialized LLMs, 325
task-specific datasets, 165
teacher feedback, distillation, 218
Text Generation Inference (TGI), 139
text generation signature of AI, 25
tightly-coupled CoN models, 307
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