
this print for content only—size & color not accurate spine = 1.443" 768 page count

Books for professionals By professionals®

Pro ASP.NET 3.5 Server Controls
and AJAX Components
Dear Reader,

We wrote this book to help explain the development model behind ASP.NET and
its core server control technology. While ASP.NET includes many rich and useful
server controls, most developers have just begun to scratch the surface of extend-
ing ASP.NET web applications with custom server controls. The introduction of
ASP.NET AJAX brings even more opportunities to integrate client-side functionality
in JavaScript into the server control model. We cover advanced techniques for
working with .NET 3.5, such as building web parts and server controls that use the
ASP.NET AJAX architecture. These techniques, besides being just plain cool, allow
you to do the following:

• Enhance built-in controls when they don’t quite meet your needs
• Encapsulate hand-coded HTML into a server control that can be

manipulated on the Visual Studio Designer surface, as well as in code
• Integrate existing AJAX script into the server control development model

to increase reusability and improve the developer experience

In this book, we strive to provide you with a deep knowledge of how the ASP.
NET Framework works, as well as how to plug in to the architecture. We show
you how to integrate and, more importantly, encapsulate client-side script into
server-control technology directly or through the ASP.NET AJAX model using
straightforward code examples.

We believe that you will come away from this book with a greatly improved
understanding of how ASP.NET works.

Sincerely,

Rob Cameron and Dale Michalk

Rob Cameron, coauthor of

Building ASP.NET
Server Controls

Pro BizTalk 2006

US $59.99

Shelve in
.NET

User level:
Intermediate–Advanced

Cam
eron,

M
ichalk

ASP.NET 3.5 Server Controls
and AJAX Com

ponents

The eXperT’s Voice® in .neT

Pro
ASP.NET 3.5
Server Controls and
AJAX Components

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Rob Cameron and Dale Michalk

THE APRESS ROADMAP

Beginning
ASP.NET 3.5 in C# 2008

Beginning C# 2008

Pro XML with .NET 3.5

Pro ASP.NET 3.5
Server Controls

Pro ASP.NET 3.5
in C# 2008

Pro LINQ

Pro ASP.NET MVC

www.apress.com
SOURCE CODE ONLINE ISBN-13: 978-1-59059-865-8

ISBN-10: 1-59059-865-2

9 781590 598658

55999

Learn how to build ASP.NET server controls
including data-binding server controls, web parts,
ASP.NET AJAX server controls, and extenders.

Dale Michalk, coauthor of

Building ASP.NET
Server Controls

Pro

Pro ASP.NET 3.5
Server Controls and
AJAX Components

■ ■ ■

Rob Cameron and
Dale Michalk

Cameron_865-2FRONT.fm Page i Monday, February 25, 2008 3:19 PM

Pro ASP.NET 3.5 Server Controls and AJAX Components

Copyright © 2008 by Rob Cameron, Dale Michalk

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-865-8

ISBN-10 (pbk): 1-59059-865-2

ISBN-13 (electronic): 978-1-4302-0462-6

ISBN-10 (electronic): 1-4302-0462-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Heather Lang
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Susan Glinert
Proofreader: Liz Welch
Indexer: Brenda Miller
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Cameron_865-2FRONT.fm Page ii Monday, February 25, 2008 3:19 PM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To my beautiful wife, Ally, and daughters Amanda and Anna,

who bring so much happiness to my life

—Rob Cameron

Cameron_865-2FRONT.fm Page iii Monday, February 25, 2008 3:19 PM

Cameron_865-2FRONT.fm Page iv Monday, February 25, 2008 3:19 PM

v

Contents at a Glance

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Server Control Basics . 1

■CHAPTER 2 Encapsulating Functionality in ASP.NET . 43

■CHAPTER 3 ASP.NET State Management . 85

■CHAPTER 4 The WebControl Base Class and Control Styles 123

■CHAPTER 5 Server Control Events . 183

■CHAPTER 6 Server Control Templates . 253

■CHAPTER 7 Server Control Data Binding . 281

■CHAPTER 8 Integrating Client-Side Script . 347

■CHAPTER 9 ASP.NET AJAX Controls and Extenders . 413

■CHAPTER 10 Other Server Controls . 441

■CHAPTER 11 Design-Time Support . 523

■CHAPTER 12 Building a Complex Control . 577

■CHAPTER 13 Packaging and Deployment . 657

■INDEX . 713

Cameron_865-2FRONT.fm Page v Monday, February 25, 2008 3:19 PM

Cameron_865-2FRONT.fm Page vi Monday, February 25, 2008 3:19 PM

vii

Contents

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

■CHAPTER 1 Server Control Basics . 1

Source Code . 1

The Heart and Soul of ASP.NET . 1
A .NET Framework “Hello, World” Web Form . 2
Control Properties . 7

Control Methods . 9
Control Events . 9

The Web Page As a Control Tree . 11

The Root Controls . 13

The System.Web.UI Namespace . 14

System.Web.UI.HtmlControls Namespace . 14

The System.Web.UI.WebControls Namespace 20

Web Controls vs. HTML Controls . 40

Summary . 41

■CHAPTER 2 Encapsulating Functionality in ASP.NET 43

Packaging Content in ASP.NET . 43

Inheritance. 44

Encapsulation . 45

Comparing the Control-Building Techniques . 45

User Controls . 45

Custom Server Controls . 49

Building a User Control. 52

Building a Custom Control . 60

ASP.NET AJAX . 78

ASP.NET AJAX UpdatePanel Server Control. 78

ASP.NET AJAX UpdateProgress Server Control 79

Cameron_865-2FRONT.fm Page vii Monday, February 25, 2008 3:19 PM

viii ■CO N T E N T S

Using Design-Time Attributes . 82

What’s an Attribute? . 82

Common Design-Time Attributes . 83

Summary . 84

■CHAPTER 3 ASP.NET State Management . 85

ASP.NET Request-Processing Architecture . 85

HttpHandler . 87

ASP.NET and Server-Side State Management . 88

The Context Object . 88

Server-Side State Considerations . 89

ASP.NET and Client-Side State Management . 89

URL Strings . 90

Cookies . 90

HTML Hidden Variables . 91

ViewState . 93

A Client State Workshop . 96

Reading the Client State . 100

Getting the URL State . 101

ASP.NET Server Controls and State . 102

Form Post Data and ASP.NET Controls . 108

The IPostBackDataHandler Interface . 108

The Textbox Control . 109

Using the Textbox Control . 111

ASP.NET Control State . 115

ViewState Is Now Application User State . 115

New TextBox3d Demonstration Web Form 116

Adding Control State to TextBox3D. 118

Summary . 121

■CHAPTER 4 The WebControl Base Class and Control Styles 123

Customizing the Appearance of Controls . 123

HTML: Content and Appearance . 124

Styling Using Tags . 124

Styling Using Cascading Style Sheets . 124

Style Properties and Visual Studio . 127

Cameron_865-2FRONT.fm Page viii Monday, February 25, 2008 3:19 PM

■C ON TE N TS ix

WebControl and Control Styling . 130

WebControl’s ControlStyle Property . 131

WebControl Top-Level Style Properties . 132

The Style Property . 133

A New Rendering System . 134

A Styled Label Control . 134

The AddAttributesToRender() Method . 135

A Styled TextBox Control . 136

The Web Control Style Web Form . 139

Styles, HTML 3.2, and Down-Level Browsers 147

Down-Level Browser Style Rendering Behind the Scenes. 149

Custom Styling . 149

The Styled InputBox Control . 149

LabelStyle and TextBoxStyle . 152

Customizing ViewState. 153

Rendering the Output . 154

The InputBox Style Web Form . 158

Applying the LabelStyle and TextBoxStyle Settings 163

Creating a Custom Style Class . 166

The CursorStyle Enumeration . 166

The FancyLabel Control . 171

Rendering the FancyLabel Control . 172

The FancyLabel Style Web Form. 174

The StyleCollection Class. 178

Summary . 181

■CHAPTER 5 Server Control Events . 183

Events and ASP.NET Controls . 183

The Need for Events in ASP.NET . 183

The .NET Framework Event Model . 185

Delegates . 186

Events . 190

System.EventHandler Delegate . 190

Invoking an Event in a Control. 191

Adding an Event to the TextBox Control . 191

Enhancing the TextBox Control with a TextChanged Event 191

Using the TextBox Control on a Web Form 194

Cameron_865-2FRONT.fm Page ix Monday, February 25, 2008 3:19 PM

x ■CO N T E N T S

Creating a Custom Event . 198

Creating a TextChangedEventArgs Class . 198

Creating a TextChangedEventHandler Delegate 199

Adding an Event to the CustomEventTextBox Control 200

Using the CustomEventTextBox Control on a Web Form 203

Capturing Postback with the Button Control . 207

Rendering the Button . 207

Exposing a Click Event and the Events Collection 209

Command Events and Event Bubbling . 211

Exposing the Command Event . 211

Capturing the Postback via IPostBackEventHandler 213

Using the SuperButton Control on a Web Form 217

Composing the SuperButton Control into a Composite
Pager Control . 224

Building the Pager Child Control Hierarchy 224

Defining the PageCommand Event . 226

Exposing the PageCommand Event from the
Pager Control . 227

Capturing the Bubbles via OnBubbleEvent 228

The INamingContainer Interface . 229

Using the Pager Control on a Web Form . 233

Control Life Cycle . 237

Plugging Into the Life Cycle . 238

The Lifecycle Server Control . 239

Life Cycle and the HTTP Protocols GET and POST 239

HTTP POST Request via Postback . 247

Summary . 250

■CHAPTER 6 Server Control Templates . 253

Customized Control Content . 253

Using Control Templates . 254

The ParseChildren Attribute . 254

A Menu Control with Templates . 256

The Template Properties . 257

Creating the Header Section . 258

Creating the Footer Section . 260

Creating the Hyperlink Section . 260

Viewing the TemplateMenu Control . 266

Checking the Rendered HTML. 268

Cameron_865-2FRONT.fm Page x Monday, February 25, 2008 3:19 PM

■C ON TE N TS xi

Parsing Data from the Control Tags . 268

The TagDataMenu Control . 268

The BuilderMenuControl . 273

Viewing the Tag Parsing Menu Controls . 278

Summary . 280

■CHAPTER 7 Server Control Data Binding . 281

Customized Control Content . 282

Control Data Binding . 282

DataBinding Base Class Options . 282

The Repeater Control . 283

Data Binding with the Repeater Control . 312

Advanced Interaction with the Repeater Control 318

Using Dynamic Templates . 323

The Dynamic Templates Web Form . 323

Implementing the ITemplate Interface . 329

CompositeDataBoundControl. 334

Summary . 344

■CHAPTER 8 Integrating Client-Side Script . 347

Client-Side Script Server Control Scenarios . 347

Handling Client-Side Events . 348

The Click Web Form . 350

Handling Mouse Events for Image Rollovers 352

The RolloverImage Web Form . 362

Running a Client Script When a Form Is Submitted 366

The FormConfirmation Control . 366

The ConfirmedLinkButton Control . 367

The Confirm Web Form . 369

Integrating Client-Side and Server-Side Events 374

The UpDown Server Control . 374

The UpDown Web Form . 392

Client Callbacks . 395

Client Callbacks API . 396

The Callback Web Form . 396

The StockNews Callback Control . 404

Summary . 412

Cameron_865-2FRONT.fm Page xi Monday, February 25, 2008 3:19 PM

xii ■CO N T E N T S

■CHAPTER 9 ASP.NET AJAX Controls and Extenders 413

ASP.NET AJAX . 413

Partial Page Updates . 414

SimpleUserControlAJAX Demonstration . 414

ASP.NET AJAX Extensibility . 416

The GetScriptReferences Method . 417

The GetScriptDescriptors Method . 418

ASP.NET AJAX Client Script . 419

HoverButton Example . 419

ASP.NET AJAX Server Controls . 426

The TextCaseExtender Control . 426

The TextCaseBehavior Client-Side Component 428

The HighlightedHyperLink ASP.NET AJAX Server Control 432

The HighlightedHyperlink Client-Side Component 435

Summary . 440

■CHAPTER 10 Other Server Controls . 441

Web-Part-Based Web Site Development . 441

Web Part Development . 442

Web Part Infrastructure . 442

Creating Web Parts . 443

Web Part Development Tips . 476

Adaptive Control Behavior . 477

Nonmobile Adaptive Behavior . 477

Mobile Controls Overview . 482

Browsing Mobile Web Forms. 487

Customizing and Implementing Mobile Controls. 488

Templates and Device-Specific Choices . 491

The DeviceSpecific.aspx Mobile Web Page 491

Templates . 492

The DeviceSpecific and Choice Elements . 493

Filter Attribute and deviceFilters Configuration 494

MobileCapabilities, browserCaps, and Device Update 2 495

New Capabilities in MobileCapabilities. 497

User Controls . 502

Mobile User Controls . 503

Miniaturizing the Header and Footer . 503

Hosting the Header and Footer User Controls 504

Cameron_865-2FRONT.fm Page xii Monday, February 25, 2008 3:19 PM

■C ON TE N TS xiii

Custom Controls . 504

Rendering the Mobile Control . 505

The Mobile Control Life Cycle . 507

Inheritance. 511

Composition. 511

Inheriting from MobileControl . 511

Testing MCTextBox. 519

Summary . 521

■CHAPTER 11 Design-Time Support . 523

Professional Quality . 523

Design-Time Architecture . 523

Environment Services Overview . 524

Customizing Component Behavior . 526

Attributes . 527

The TitledThumbnail Control . 527

The TitledThumbnail Control at Design Time 532

Type Converters . 538

UI Type Editors . 545

The SimpleTextEditor Editor . 545

The Collection Editor. 548

Component Editors . 550

The Component Editor Dialog Box . 550

The Component Editor Class . 555

Custom Designers . 558

The Control Designer and Designer Verbs . 560

The Templated Control Designer . 564

The Data-Bound Control Designer . 568

Miscellaneous Design-Time Items . 573

The Toolbox Icon . 573

Debugging Design-Time Development. 573

Summary . 574

■CHAPTER 12 Building a Complex Control . 577

The Problem Domain . 577

The Live Search Web Service . 578

Web Services Description Language and .NET Web
Service Proxies . 579

Cameron_865-2FRONT.fm Page xiii Monday, February 25, 2008 3:19 PM

xiv ■CO N T E N T S

Creating the Control Library Project . 583

Strong-Named Assemblies and Versioning Attributes 584

Bin Directory or Global Assembly Cache Deployment 584

Additional Assembly Attributes . 585

Configuring the Search Settings . 586

Crafting the Configuration Section XML . 586

Registering the Configuration Section . 587

Building a Configuration Section Handler Class 589

Wrapping the Web Service Proxy in a Utility Method 591

Designing the Control Architecture . 593

The Search Control . 595

Handling the Search . 596

The Result Control . 604

The ResultItem Control . 605

Building the Result Control . 609

Creating a Control Hierarchy for Data Binding or Postback 611

Creating ResultItem Controls . 614

Creating the Child Pager Control . 616

Managing Paging . 617

Styling the Result Control . 618

The Pager Control . 643

Creating the Pager Results . 644

Creating the Pager’s Previous Button . 645

Creating the Pager’s Bar Pages . 646

Creating the Pager’s Next Button . 647

Ensuring Pager’s Style Rendering. 648

Summary . 655

■CHAPTER 13 Packaging and Deployment . 657

Designer Support . 657

Designers and Dummy Data Source. 657

Template Support in the Result Control . 666

Toolbox Image Icons. 670

Testing the Live Search Controls . 671

The Default Look and Feel . 671

Customizing the Live Search Controls’ Appearance 674

Cameron_865-2FRONT.fm Page xiv Monday, February 25, 2008 3:19 PM

■C ON TE N TS xv

Licensing Support . 677

The RsaLicense License . 678

License Cryptography. 681

Generating the License . 683

The RsaLicenseDataAttribute Custom Attribute 685

Adding Licensing to the Search and Result Controls 686

The RsaLicenseProvider Class . 688

Globalization and Localization . 696

The CultureInfo Class . 696

The ResourceManager Class . 697

Culture Types and Localizing Resource Files 700

Satellite Assemblies and Resource Fallback 702

Setting Thread Culture in the Global.asax File 704

Viewing a Localized Web Form . 705

Code Analysis for Managed Code . 709

Documentation . 711

Summary . 712

■INDEX . 713

Cameron_865-2FRONT.fm Page xv Monday, February 25, 2008 3:19 PM

Cameron_865-2FRONT.fm Page xvi Monday, February 25, 2008 3:19 PM

xvii

About the Authors

■ROB CAMERON is employed with Microsoft Corporation in Atlanta, GA. He
has been with Microsoft since 2001 assisting communications sector and
media and entertainment companies build solutions on the Microsoft
platform. Prior to employment at Microsoft, he worked as an independent
consultant developing software on the Microsoft platform for over five
years. He has a master’s degree in information technology management
and a bachelor’s degree in computer science. A former naval officer and
United States Naval Academy graduate, he enjoys spending his free time
with his wife and two daughters.

■DALE MICHALK is employed with Microsoft Corporation in Dallas, Texas.
He has been with Microsoft since 2001, where he helps promote .NET as
a development platform and assists companies interested in migrating to
new technologies such as ASP.NET. He is a former U.S. Army officer and
West Point graduate.

Cameron_865-2FRONT.fm Page xvii Monday, February 25, 2008 3:19 PM

98bed1a7be82c4ab97516c3da3c8c4e2

Cameron_865-2FRONT.fm Page xviii Monday, February 25, 2008 3:19 PM

xix

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (www.brainforce.com) in its Italian branch
(www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified
Application Developer for .NET, a Microsoft Certified Professional, and a prolific author and
technical reviewer. Over the past ten years, he’s written articles for Italian and international
magazines and coauthored more than ten books on a variety of computer topics. You can read
his LINQ blog at www.ferracchiati.com.

Cameron_865-2FRONT.fm Page xix Monday, February 25, 2008 3:19 PM

http://www.brainforce.com
http://www.brainforce.it
http://www.ferracchiati.com

Cameron_865-2FRONT.fm Page xx Monday, February 25, 2008 3:19 PM

xxi

Acknowledgments

Writing a book is a long and incredible journey that requires the support and care of a lot of
people. The first and foremost of those I would like to recognize are my family members. Without
their support and patience with all those long hours on the computer, this book would never
have come to pass. I would like to thank Dale Michalk for inviting me on this journey, starting
with our first book Building ASP.NET Server Controls. Dale’s contributions to the first book are
no doubt a significant part of this effort as well, and that is why Dale’s name appears on the front
cover of this book.

Apress is a fantastic company to work for as an author, as evidenced by their care and feeding
in getting this book into production. This is a publishing house run by those who actually write
for a living; they understand the balance in ensuring high quality versus meeting deadlines.
Thanks especially to Matthew and Kylie for all the patience in the slipped schedules and author
changes. Thanks to the editing folks from Apress—Kylie, Heather, and Ellie—as well as to those
who I don’t know by name but whose efforts helped to make this book possible. I would also
like to thank Fabio Claudio Ferracchiati, who reviewed the book and provided technical assistance
and support.

A final thanks is owed to the ASP.NET product team who provided the Microsoft web
development community with an awesome product and are busy at work on future versions
that will reach new heights.

Rob Cameron

Cameron_865-2FRONT.fm Page xxi Monday, February 25, 2008 3:19 PM

Cameron_865-2FRONT.fm Page xxii Monday, February 25, 2008 3:19 PM

xxiii

Introduction

With the explosion of the Internet, web development tools evolved as a combination of HTML
and a scripting language, such as ASP or Perl, to generate dynamic output. With the advent of
Microsoft’s .NET Framework, ASP.NET turned web development on its head by combining a
design-time interface similar to Visual Basic with an HTML and JavaScript output that requires
nothing more than a web browser for rending. With ASP.NET 3.5, HTML and JavaScript are
combined in powerful ways via ASP.NET AJAX technology that helps connect client-side and
server-side connection without losing point-and-click design-time support. We wrote this book
to document the major improvements since ASP.NET 1.1, while also covering the fundamentals for
those new to custom server control development.

At the core of ASP.NET is server control technology. From the Page class to the Label control to
web parts, all objects in ASP.NET are server controls. Server controls combine server-side execution
in a well defined life cycle with browser-friendly rendering that includes down-level browsers
as well as a plethora of mobile clients. Regardless of the target output, all server controls behave
in a similar manner. Understanding this technology and how to leverage it in your own develop-
ment efforts are the subjects of this book.

Who This Book Is For
The target audience for this book consists of developers with an intermediate to advanced
experience level looking to deepen their understanding of ASP.NET and its underlying server
control architecture. The example code in this book is written in C#. However, if you are a
VB. NET developer, the examples translate pretty easily, as ASP.NET development is language
agnostic. The .NET Framework and the ASP.NET object model are what’s important, not the
language.

If you are a developer in need of learning a particular technique, each major facet of control
development is presented with simple example code to highlight that particular topic. For example,
if you are looking for information on how to add events to your server controls, or how to under-
stand how events work in ASP.NET, you can drill into that chapter to get the details.

If you are a developer looking for full-featured example code, you’ll find that here too. One
example shows how to implement data binding and templates that can connect to a database
backend. The rich example in the last part of the book pulls techniques described throughout
this book into a holistic demonstration of how to build a rich, complex server control that is
fully localized and includes licensing support.

How This Book Is Structured
This book is about server control technology as the underlying foundation of ASP.NET. It will
provide you with a deep understanding of how server control technology works, as well as

Cameron_865-2FRONT.fm Page xxiii Monday, February 25, 2008 3:19 PM

xxiv ■IN TR O D U CT IO N

explaining how to build your own custom server controls as part of a web development project
or for resale in the component marketplace.

The first section of the book provides an introduction to server control technology. We also
discuss the different ways to build a server control including inheritance from a base control
(such as Control or WebControl) encapsulation, or composite controls, as well as inheritance
from an existing or rich control, like the TextBox server control.

The second section of the book dives into deep a discussion on critical topics such as
state management, server-side event handling, templates, data binding, and integrating
client-side script, as well as considering advanced base classes such as CompositeControl and
DataBoundControl. A common theme for all of these discussions is how the topic relates to the
control life cycle. Understanding the control life cycle is critical to server control development
as well as to ASP.NET development in general. Of course, there are copious amounts of code to
support our discussions as well.

The third section of the book covers advanced development techniques such as building
ASP.NET AJAX controls and extenders. We also cover web part development for ASP.NET or
SharePoint. We round out the section with a discussion of control adapters for modifying an
existing server control’s HTML output and device adapters for mobile control development.

The last section of the book covers design-time support in detail. Many of the controls built
in earlier chapters include design-time support; however, we centralize discussion of the design-
time support capabilities in ASP.NET and server controls to facilitate understanding without
cluttering up the earlier chapters. We finish up this last section of the book by walking through
how to create a professional-quality server control with a discussion on licensing, globalization,
and localization.

Prerequisites
The following applications would be helpful in working through the examples in this book, but
access to them isn’t required:

• Visual Studio 2008, Express edition

• SQL Server 2005 Express (for a couple of the database samples)

• Internet Information Services (for the mobile web project)

Downloading the Code
The source code for this book is available to readers at www.apress.com in the Source Code section
of this book’s home page. Please feel free to visit the Apress web site and download all the code
there. You can also check for errata and find related titles from Apress.

Contacting the Authors
You can contact Rob Cameron via http://blogs.msdn.com/robcamer; there is a contact link to
send Rob an e-mail there.

Cameron_865-2FRONT.fm Page xxiv Monday, February 25, 2008 3:19 PM

http://www.apress.com
http://blogs.msdn.com/robcamer

1

■ ■ ■

C H A P T E R 1

Server Control Basics

To create server controls, you need to understand how they work. This chapter provides a very
high-level run-through of the various server control namespaces to set the scene for the rest of
this book. To begin our journey, we’ll start by reviewing what a server control provides to clients
and taking a look at some of the prebuilt controls supplied by ASP.NET. We’ll study the controls’
inheritance bloodlines for the HTML and web controls, examining how the namespaces are
organized, so that you become familiar with what is available for immediate use in ASP.NET.
Because inheritance and composition of existing server controls are important timesaving
control-building techniques available in ASP.NET, this rapid journey through the object model
is well worth the effort.

To begin this chapter, we start out with a “Hello, World” form to demonstrate master pages.
The MasterPage class can trace its inheritance back to the user control functionality introduced
in ASP.NET 1.0. We next discuss the basic server control construction, as well as how server
controls are organized in an ASP.NET web form. Finally, we cover the root server control
namespaces with an example of the types of server controls found in the different namespaces.

Source Code
The source code for this book is available for download from the Apress web site for those who
want to follow along by running the code in Visual Studio 2008. The web site project is file
based, so having IIS installed and configured isn’t required. There is a main solution file titled
ControlsBook2Solution.sln that, when opened, will load all of the projects. Please refer to the
read-me file included with the source code download for detailed instructions on how to get
the code running. The full source code is also printed in this book, so those who want to read
while not in front of a computer can still enjoy reading the source code.

The Heart and Soul of ASP.NET
Each piece of HTML delivered by an ASP.NET page, whether a tag without server-side
interactivity, a complex list control such as the DataGrid that supports templates, or the web
form itself that hosts the HTML tags, is generated by an object that inherits from the System.
Web.UI.Control base class. These objects, or server controls, are the engine that drives the
ASP.NET page-rendering process. The fact that every snippet of rendered HTML exists as a
server control allows for a consistent page parsing process that permits easy control configura-
tion and manipulation to create dynamic and powerful content. The clean, consistent object

Cameron_865-2C01.fm Page 1 Tuesday, January 22, 2008 6:19 AM

2 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

model provided by ASP.NET also facilitates extension through custom server controls that
share a common object model.

A .NET Framework “Hello, World” Web Form
The first stop on our journey through the ASP.NET server controls is construction of a “Hello,
World” web form. Before actually creating the “Hello, World” web form, we need to create a
master page to provide a consistent UI for the book web site. A master page, one of the many
new features in ASP.NET 2.0 and later versions, has a @Master directive at the top of the code
instead of the @Page directive on a standard web form.

■Note ASP.NET 3.5 includes additional master page item templates to support AJAX functionality and
nested master pages called AJAX Master Page and Nested Master Page respectively.

The @Master directive takes most of the same options as the @Control directive. If you have not
migrated to ASP.NET 2.0 or later, master pages are a welcome addition in ASP.NET and should
often be used for page layout and template purposes in situations where ASP.NET user controls
were in ASP.NET 1.1 but came up short. Figure 1-1 shows the master page used in this book’s
sample web site.

Figure 1-1. The Controls Book 2 web site’s master page

Web forms added to the project can be configured to use the master page rendering at
design time, like Figure 1-2.

Notice in Figure 1-2 that the master page area is grayed out (and cannot be edited) at design
time in a web content form. The design-time view displays the master page HTML and the web
content form HTML, providing a more accurate view of the rendered web form. Listings 1-1
and 1-2 show the master page source page and code-behind file.

Cameron_865-2C01.fm Page 2 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 3

Figure 1-2. The Controls Book 2 web site’s master page displayed in a web content form

Listing 1-1. The ControlsBook2 Master Page File

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="ControlsBook2MasterPage.master.cs"
 Inherits="ControlsBook2Web.MasterPage.ControlsBook2MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Master Page</title>
 <link href="../css/ControlsBook2Master.css" rel="stylesheet" type="text/css" />
 <link href="../css/SkinnedControl.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="HeadSection" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div id="HeaderPanel">
 <asp:ScriptManager ID="ControlsBook2ScriptManager" runat="server">
 <Scripts>
 <asp:ScriptReference Path="../ch09/hoverbutton.js" />
 </Scripts>
 </asp:ScriptManager>
 <asp:Label ID="Label2" CssClass="TitleHeader" runat="server" Height="18px"
Width="604px">Pro ASP.NET 3.5 Server Controls and AJAX Components</asp:Label>

Cameron_865-2C01.fm Page 3 Tuesday, January 22, 2008 6:19 AM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

4 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

 <div id="ChapterInfo" class="Chapter">
 <asp:Label ID="label1" runat="server">Chapter</asp:Label>
 <asp:ContentPlaceHolder ID="ChapterNumAndTitle" runat="server">
 </asp:ContentPlaceHolder>
 <asp:HyperLink ID="DefaultPage" runat="server" NavigateUrl="~/Default.aspx">
 Back To Start Page</asp:HyperLink>

 <asp:Image ID="Image1" runat="server" ImageUrl="~/img/blueline.jpg" />

 </div>
 <asp:ContentPlaceHolder ID="PrimaryContent" runat="server">
 </asp:ContentPlaceHolder>
 <div id="FooterPanel">
 <asp:Image ID="Image2" runat="server" ImageUrl="~/img/blueline.jpg" />

 <asp:Label CssClass="TitleFooter" ID="Label5" runat="server">
 Pro ASP.NET 3.5 Server Controls and AJAX Components</asp:Label>

 <asp:Label CssClass="Author" ID="Label6" runat="server">
 By Rob Cameron and Dale Michalk</asp:Label>

 <asp:Label CssClass="Copyright" ID="Label7" runat="server">
 Copyright © 2007, Apress L.P.</asp:Label>
 </div>
 </div>
 </form>
</body>
</html>

Listing 1-2. The ControlsBook2MasterPage Master Page Code-Behind Class File

using System;

namespace ControlsBook2Web.MasterPage
{
 public partial class ControlsBook2MasterPage : System.Web.UI.MasterPage
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

In the master page for the Controls Book 2 web site, the chapter number and chapter title
have ContentPlaceHolder placeholder tags to allow content pages to update the chapter number
and title.

Each web form sets values for the chapter title and number by simply placing the value in
the corresponding Content tag in the content page. This is a simple example of providing a
consistent user interface in a web site, but still allowing customization.

Cameron_865-2C01.fm Page 4 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 5

■Tip ASP.NET User Controls are still present in ASP.NET 3.5. In fact the MasterPage class inherits from
the UserControl class.

The resulting arrangement is shown in Figure 1-3 with a DropDownList control, a TextBox
control, two Label controls, and a Button control. The resulting source code generated by Visual
Studio 2008 is shown in Listings 1-3 and 1-4.

Figure 1-3. The HelloWorld server control web form

Listing 1-3. The HelloWorld Demo Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="HelloWorld.aspx.cs"
Inherits="ControlsBook2Web.Ch01.HelloWorld"
 Title="Hello, World! Demo Web Form" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3><asp:Label ID="Label1" runat="server" Text=

Cameron_865-2C01.fm Page 5 Tuesday, January 22, 2008 6:19 AM

6 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

"Hello, World!"></asp:Label></h3>
 <asp:DropDownList ID="Greeting" runat="server" ToolTip="Select a greeting">
 </asp:DropDownList>
 <asp:TextBox ID="Name" runat="server" Font-Italic="True" ToolTip="Enter your name"
 OnTextChanged="Name_TextChanged"></asp:TextBox>

 <asp:Button ID="ClickMe" runat="server" Text="Click Me!"
OnClick="ClickMe_Click"></asp:Button>

 <asp:Label ID="ChangeLabel" runat="server">Change Label</asp:Label>

 <asp:Label ID="Resultlabel" runat="server">Result Label</asp:Label>

</asp:Content>

Listing 1-4. The HelloWorld Server Control Demo Code-Behind Class File

using System;
using System.Collections;

namespace ControlsBook2Web.Ch01
{
 public partial class HelloWorld : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 ArrayList list = new ArrayList();
 list.Add("Hello");
 list.Add("Goodbye");

 Greeting.DataSource = list;
 Greeting.DataBind();
 }

 protected void ClickMe_Click(object sender, EventArgs e)
 {
 Resultlabel.Text = "Your new message: " + Greeting.SelectedItem.Value +
 " " + Name.Text + "!";
 }

 protected void Name_TextChanged(object sender, EventArgs e)
 {
 ChangeLabel.Text = "Textbox changed to " + Name.Text;
 }
 }
}

Cameron_865-2C01.fm Page 6 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 7

The server controls on our “Hello, World” web form (specifically, the Label, TextBox, and
DropDownList objects) render as HTML and, for the TextBox control, remember what is typed in
the control between postback cycles. The HTML rendered to the browser is backed by powerful
objects that can be wired up to programming logic to perform useful work on the web server.
During server-side processing, the object-oriented nature of server controls provides us with
three main constructs to interact with controls as objects: properties, methods, and events. We
discuss these constructs in the sections that follow.

Control Properties
The most common means of working with a server control is through the properties it exposes.
Properties allow the control to take information from the web form to configure its output or
modify its behavior in the HTML-generation process.

■Note Properties are different and more powerful than public data members. Properties provide an addi-
tional layer of abstraction through the use of get and set methods; get and set methods or function calls
provide a convenient location for programming logic, such as displaying an error if a value is out of range or
otherwise invalid, enforcing read-only access (implementing a get method only), and so on. Properties can
be declared as public, protected, or private.

Properties are easily viewable in the Properties window available when you select a control
in the Visual Studio Design view of the .aspx page. Figure 1-4 shows the Properties window
when the Name TextBox is selected. Notice that the Font property has been configured to show
the TextBox’s Text property text in italics.

Figure 1-4. The Properties window for the TextBox control

Cameron_865-2C01.fm Page 7 Tuesday, January 22, 2008 6:19 AM

8 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

The Visual Studio Designer translates the entries in the Properties window into attribute
values on the HTML view of the .aspx page. To see this, set a property for a control in the Prop-
erties tool window and then switch to HTML view. Likewise, if you modify attribute values in
the HTML view of the .aspx page, these changes will be reflected in the Designer, assuming you
typed in the values correctly. This behavior can be very handy for quickly duplicating attributes
between controls. Simply copy the HTML version of the attributes and then paste the HTML
into the target control that you want to match the original. You can think of the Designer as a
code generator that allows you to declaratively work with the look and feel of the ASP.NET
application without having to write the code. As an example, the Font settings set in the Properties
window for the TextBox control described previously map directly to Font attributes:

<asp:TextBox id="Name" runat="server" Font-Italic="True"
 ToolTip="Enter your name" OnTextChanged="Name_TextChanged">
</asp:TextBox>

The Label and TextBox controls work a little differently than most, in that the content
between the opening and closing tags is controlled by the Text property:

<asp:Label id="Resultlabel" runat="server">Result Label</asp:Label>

You can also set a control’s properties programmatically in the code-behind class file. The
“Hello, World” demonstration sets the Text property for Label1 to a blank string each time the web
form is loaded, to overwrite the Label value that is declaratively set in the .aspx page. The activity
happens in a method named Page_Load that is mapped to the Page object’s Load event:

protected void Page_Load(object sender, EventArgs e)
{
 Resultlabel.Text = "";
 ChangeLabel.Text = "";

 if (!Page.IsPostBack)
 {
 UpdateMaster();
 LoadDropDownList();
 }
 DataBind();
}

You can also use the properties exposed by the control to read input from the client browser
during postback on the server side. The Button click event handling routine in the “Hello, World”
web form reads the Text property of the TextBox control and the Value property of the SelectedItem
property on the DropDownList control to display the greeting to the client of the web browser:

 protected void ClickMe_Click(object sender, EventArgs e)
{
 Resultlabel.Text =
 "Your new message: " + Greeting.SelectedItem.Value + " " + Name.Text + "!";
}

Cameron_865-2C01.fm Page 8 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 9

Control Methods
The second feature exposed by a server control is a collection of object methods. Functionality
implemented using methods typically goes beyond the features of a property’s set or get method;
they usually perform a more complex action against the control. One of the best examples in
ASP.NET of using methods for a server control is the data-binding process that links a control
with a data source.

In the “Hello, World” web form example, the Page_Load event checks to see if the page is
requested via a form postback or if it was called for the first time using HTTP GET so that the
page can generate the initial HTML for the browser, creating the option list. In the postback
scenario, the code to create the option list is not necessary for the DropDownList control via the
LoadDropDownList() method, because the server control DropDownList1 maintains its internal
option list via the web form ViewState mechanism for subsequent postback operations to the
server. We cover ViewState extensively in Chapter 3.

The page’s LoadDropDownList() method’s first task is to create an ArrayList collection and load
it with the string values “Hello” and “Goodbye”. It also links the ArrayList to the DropDownList by
setting the DataSource property to the ArrayList:

private void LoadDropDownList()
{
 ArrayList list = new ArrayList();
 list.Add("Hello");
 list.Add("Goodbye");

 Greeting.DataSource = list;
}

Note that we do not call the DataBind() method directly for DropDownList. Instead, we call
the DataBind() method on the Page_Load handler itself. The DataBind() method of the Page class
recursively calls the DataBind() methods for all its child controls that have references to a data
source. In this case, when the Page class’s DataBind() method is invoked, the DropDownList
control data binds to the ArrayList object as shown previously.

Control Events
Events are the final constructs used for interacting with controls that we discuss in this chapter.
Events provide a mechanism to notify clients of state changes inside the control. In ASP.NET,
events always coincide with an HTTP POST submission back to the web server. Through the
automatic postback mechanism, events in ASP.NET appear to behave very much like their
counterparts in a Windows Forms application.

■Note Events provide an object-oriented mechanism for a control to communicate with other controls that
care to know about state changes within that control. If events did not exist, objects would have to resort to
polling to know about state changes in other objects. The asynchronous nature of events provides an elegant
means for communicating between objects. Event handler methods are generally protected to the control
class (the event subscriber), as it would not make sense to call event handlers outside the consuming class.

Cameron_865-2C01.fm Page 9 Tuesday, January 22, 2008 6:19 AM

10 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

The Page class in the “Hello, World” example consumes the Click event raised by the
Button to read values and sets the first Label control. The Button Click event is easy to map in
the Designer by simply double-clicking the button. Double-clicking a control in Visual Studio
automatically generates the default event handler for the control. In the case of the Button, it is
the Click event. In addition, Visual Studio performs other housekeeping tasks, such as wiring
up the event delegate exposed by the Button control to the generated method (in this case,
Button1_Click) in the Page class.

■Note In the .NET Framework 2.0 and later, the concept of a partial class exists where a class can be split
across multiple files. This allows Visual Studio or similar non-Microsoft tools to provide better design-time
support.

Events in ASP.NET take advantage of delegates as the infrastructure for this communica-
tion among objects. In Chapter 5, we discuss how to work with events in detail.

The Properties window in the Design view of the Visual Studio Designer can help map the
events from a control that don’t result from double-clicking the control.

■Note Click the yellow lightning bolt icon at the top of the Properties window to filter the view to show only
events exposed by a particular control.

Each available event for a control is listed on a separate line, and creating a wired up event
handler is as simple as either double-clicking the blank area next to the event name to generate
an event with the default naming scheme (ControlName_EventName) or typing a name and
pressing the Enter key. Figure 1-5 illustrates creating the event handler for the TextBox control.

The end result of using the Properties window to add the protected event handler to the
Page class is a method named TextBox_TextChanged that is wired to the TextChanged event of
the TextBox control. You can add code to this handling routine to announce the state change
of the TextBox control by setting the Text property of the Label2 control on the web form:

protected void Name_TextChanged(object sender, EventArgs e)
{
 ChangeLabel.Text = "Textbox changed to " + Name.Text;
}

Visual Studio 2008 provides much cleaner code generation when compared to Visual Studio
.NET 2003. There is no longer a code region named “Web Form Designer generated code” present
in the code file. Much of the boilerplate code that existed in ASP.NET 1.1 is no longer present,
which makes developers’ lives a bit simpler.

The result of all the not-so-hard work to this point is the browser view in Figure 1-6, which
shows what happens when Rob enters his name and selects a polite greeting.

Cameron_865-2C01.fm Page 10 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 11

Figure 1-5. Adding an event handler to the TextChanged event of the TextBox control

Figure 1-6. The completed “Hello, World” demonstration web form

The Web Page As a Control Tree
ASP.NET provides full programmatic access to the tags on an HTML page in an object-oriented
way. The architecture in ASP.NET that provides this capability is the .aspx page control tree. In
this section, we discuss the control tree as it relates to the “Hello, World” example.

Cameron_865-2C01.fm Page 11 Tuesday, January 22, 2008 6:19 AM

12 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

At first glance, the “Hello, World” web form would seem to contain only a few visible server
controls that were explicitly placed on the form. The reality is that the entire display surface of
the .aspx page becomes a cornucopia of controls during processing. Any HTML content in the
web form that is not part of the server controls laid out in the Visual Studio Designer is packaged
into a server control that renders the HTML. The control structure of the web form can be seen
by turning on the trace features of ASP.NET through setting the Trace=True attribute on the
Page directive:

<%@ Page Language="C#" Trace="true"
 MasterPageFile="../Master Page/ControlsBook2MasterPage.master"
 AutoEventWireup="true" CodeFile="HelloWorld.aspx.cs"
 Inherits="Ch01_HelloWorld" Title="Ch01 Hello World!" %>

You no longer need to make sure that tracing is enabled in the <trace> XML element inside
of the web.config configuration file for the web application with .NET Framework 2.0 and later.
However, if you wish to enable and customize the trace functionality, you have to paste the
element within the <system.web> element of the web.config file for the application:

<trace
enabled="true"
requestLimit="10"
pageOutput="false"
traceMode="SortByTime"
localOnly="true"
/>

Figure 1-7 shows the portion of the trace output that displays the control tree for the
web form.

Figure 1-7. Tracing the control tree of the “Hello, World” web form

The X-ray vision into ASP.NET provided by the trace feature dissects the web form
in gory detail. At the top is the Page control that represents the web form of type ASP.
ch01_helloworld_aspx. Below it are the server controls that you would expect to be there:
DropDownList, TextBox, Button, and Label. What you might not expect to see are the HtmlForm,
DataBoundLiteralControl, and LiteralControl objects in the control tree trace.

Cameron_865-2C01.fm Page 12 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 13

HtmlForm is responsible for representing the <form> tag on the .aspx page and providing
the missing method and action properties to ensure the page is always sent back to the
original URL via an HTTP POST. The form server control looks like the following in the
ControlsBook2MasterPage.master master page at design time:

<form id="form1" runat="server">

There isn’t a form server control in HelloWorld.aspx, because it is a content page that
renders within a master page, which is where the HTML form exists. At runtime in the browser,
the generated HTML has this <form> tag:

<form name="aspnetForm" method="post" action="HelloWorld.aspx" id="aspnetForm">

The HtmlForm server control renders HTML with all the necessary information to post the
page back to itself, as shown in the preceding line of code. This allows each control on the page
to remember its previous state via the ViewState mechanism and raise the appropriate server
control event.

The literal controls have the responsibility for rendering the generic text and HTML tags in
the web form without much of a server-side presence. These are the flyweight classes of the
ASP.NET server control framework. The literal controls pick up text or tags in the master page
or .aspx page that do not have the runat="server" attribute identifying them as a server control.

The LiteralControl class is the simplest of the two shown in the control dump, because it
is a pure text-in and text-out operation. Notice how the control tree picks up the
 tags
between the other server controls as well as the closing <body> and <html> tags as LiteralControl
objects. The ResourceBasedLiteralControl that was present in ASP.NET 1.1 was removed in
ASP.NET 2.0. That is not a backward compatibility concern, because the class is an internally
implemented class in the ASP.NET 1.1 framework that is not creatable or accessible by the
programmer.

The DataBoundLiteralControl is the most complex of the literal controls, because it repre-
sents a data-binding expression like the one in the document that binds to the GetTitle()
method of the Page object. It has a DataBind() method that must be called by the Page class to
resolve its value, just like the DropDownList control had to read from the ArrayList data source
in its DataBind() operations.

The Root Controls
The previous demonstration highlighted the server-control-centric nature of the ASP.NET web
form page execution process. We now shift gears to briefly discuss where the various controls
exist inside the .NET Framework and what features they provide in rendering HTML. The controls
are factored into three primary namespaces in the .NET Framework: System.Web.UI, System.
eb.UI.HtmlControls, and System.Web.UI.WebControls (see Figure 1-8).

Cameron_865-2C01.fm Page 13 Tuesday, January 22, 2008 6:19 AM

14 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Figure 1-8. The major namespaces of ASP.NET under System.Web.UI

The System.Web.UI Namespace
At the top of the hierarchy is our first destination—the System.Web.UI namespace and its root
controls. It contains the Control class, which is the mandatory parent class for all objects that
want to call themselves controls. Directly inheriting from the Control class in this namespace
is a set of specialized classes that implement the web form through the Page class, the user control
through the UserControl class, and the literal controls. The Page class and the literal controls
are discussed in detail in the previous “Hello, World” web form demonstration. We focus in
more detail on the UserControl class in the next chapter when we cover control creation.

System.Web.UI.HtmlControls Namespace
The controls under System.Web.UI.HtmlControls have the capability to take existing HTML
content and make it available as a server control with the addition of a runat="server” attribute.
The canonical example of this type of control is turning an HTML text box into a server control:

<input type="text" id="name" runat="server"/>

The ASP.NET parsing engine is responsible for mapping the HTML tag to the correct control
type in System.Web.UI.HtmlControls when it sees this marker attribute. The preceding example
adds an instance of the HtmlInputText control to the web form’s control collection.

■Note If you want to modify or interact with any of the literal controls on the server side, you have two
options. One option is to walk the page’s control tree collection to find the desired control. The other option is
declare the control in the code-behind class file. In the previous input example, the declaration would look like
this: protected System.Web.UI.HtmlControls.HtmlInputText name;.

Cameron_865-2C01.fm Page 14 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 15

Although they may look like their HTML cousins, these controls set themselves apart by
remembering state, raising events, allowing themselves to be programmatically manipulated
in server-side code, and providing other value-add services such as file upload when the form
post has reached the Web. The full list of HTML controls available in the System.Web.UI.
HtmlControls namespace is depicted in Figure 1-9.

Figure 1-9. Controls in the System.Web.UI.HtmlControls namespace

Table 1-1 is useful for figuring out which of the HTML tags maps to a specific HTML control.
Note that some of controls (such as the HtmlInputText control) map to multiple HTML tags on
an .aspx page. For tags that do not have a specific control mapping, the HtmlGeneric control is used
to represent them as a server-side control object when they have a runat="server" attribute.

Table 1-1. HTML Tags and Their HTML Server Control Counterparts

HTML Tag HTML Server Control

<form> HtmlForm

<input type="text"> HtmlInputText

<input type="password"> HtmlInputText

<input type="radio"> HtmlInputRadioButton

Cameron_865-2C01.fm Page 15 Tuesday, January 22, 2008 6:19 AM

16 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

An HTML Controls Demonstration

To examine the System.Web.UI.HtmlControls namespace, we examine the execution of a demon-
stration showing the controls in action. This demonstration dynamically constructs an HTML
table from X and Y coordinates that are present on the web form using the code shown in
Listings 1-5 and 1-6. We discuss this code after the listings.

Listing 1-5. The HTMLControls Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="HtmlControls.aspx.cs"
Inherits="ControlsBook2Web.Ch01.HtmlControls"
 Title="HTML Controls Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>

<input type="checkbox"> HtmlInputCheckBox

<input type="submit"> HtmlInputButton

<input type="hidden"> HtmlInputHidden

<input type="button"> HtmlInputButton

<input type="reset"> HtmlInputButton

<input type="image"> HtmlInputImage

<input type="file"> HtmlInputFile

<button> HtmlButton

<select> HtmlSelect

<textarea> HtmlTextArea

 HtmlImage

<a> HtmlAnchor

<table> HtmlTable

<tr> HtmlTableRow

<td> HtmlTableCell

All other tags HtmlGenericControl

Table 1-1. HTML Tags and Their HTML Server Control Counterparts (Continued)

HTML Tag HTML Server Control

Cameron_865-2C01.fm Page 16 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 17

</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 HTML Controls</h3>
 X
 <input type="text" id="XTextBox" runat="server" />

 Y
 <input type="text" id="YTextBox" runat="server" />

 <input type="submit" id="BuildTableButton" runat="server"
value="Build Table" onserverclick="BuildTableButton_ServerClick" />

</asp:Content>

Listing 1-6. The HTMLControls Code-Behind Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace ControlsBook2Web.Ch01
{
 public partial class HtmlControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void BuildTableButton_ServerClick(object sender, EventArgs e)
 {
 int xDim = Convert.ToInt32(XTextBox.Value);
 int yDim = Convert.ToInt32(YTextBox.Value);
 BuildTable(xDim, yDim);
 }

 private void BuildTable(int xDim, int yDim)
 {
 HtmlTable table;
 HtmlTableRow row;
 HtmlTableCell cell;
 HtmlGenericControl content;

Cameron_865-2C01.fm Page 17 Tuesday, January 22, 2008 6:19 AM

18 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

 table = new HtmlTable();
 table.Border = 1;
 for (int y = 0; y < yDim; y++)
 {
 row = new HtmlTableRow();
 for (int x = 0; x < xDim; x++)
 {
 cell = new HtmlTableCell();
 cell.Style.Add("font", "16pt verdana bold italic");
 cell.Style.Add("background-color", "red");
 cell.Style.Add("color", "yellow");

 content = new HtmlGenericControl("SPAN");
 content.InnerHtml = "X:" + x.ToString() +
 "Y:" + y.ToString();
 cell.Controls.Add(content);
 row.Cells.Add(cell);
 }
 table.Rows.Add(row);
 }
 Span1.Controls.Add(table);
 }
 }
}

Dynamically adding controls to an existing control structure is a common way to implement
web forms that vary their content and structure according to the user’s input. The BuildTable()
method encapsulates this dynamic functionality in this HTML controls demonstration by
rendering the table when passed X and Y parameters. The variables passed in to BuildTable()
are retrieved using the Value property of the HtmlInputText controls:

int xDim = Convert.ToInt32(XTextBox.Value);
int yDim = Convert.ToInt32(YTextBox.Value);
BuildTable(xDim,yDim);

The bulk of the work in this HTML controls demonstration is located in the BuildTable()
method. This method starts by creating an HtmlTable control representing the outer <table>
tag and then jumps into nested For loops to add HtmlTableRow controls representing the <tr> tags
along with HtmlTableCell controls rendering <td> tags.

One of the more interesting sections of this routine is the cell creation and CSS styling
configuration code. Once the HtmlTableCell control is created, the CSS styles are set as strings
and then added to the Style property representing the cell’s CSS attributes. This is a manual,
string-based process that is not helped by any type or enumeration from the System.Web.UI.
HtmlControls namespace:

cell = new HtmlTableCell();
cell.Style.Add("font","16pt verdana bold italic");
cell.Style.Add("background-color","red");
cell.Style.Add("color","yellow");

Cameron_865-2C01.fm Page 18 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 19

After the styling is set, the cell adds an HtmlGenericControl representing a tag to its
control collection. The HtmlGenericControl’s InnerHtml, or content, is then set to the X and Y
values for the cell. The result is that the tag is nested in the table cell’s <td> tag. The final
step in the process is to add the cell to its parent row:

content = new HtmlGenericControl("SPAN");
content.InnerHtml = "X:" + x.ToString() +
 "Y:" + y.ToString();
cell.Controls.Add(content);
row.Cells.Add(cell);

The HTML rendered in the browser client shows the direct insertion of the CSS attributes
into the <td> tag and the HtmlGenericControl production of the content:

<td style="font:16pt verdana bold italic;
background-color:red;color:yellow;">
X:0Y:0
</td>

Figure 1-10 shows the output of all this work. When the page initially loads, the red and
yellow table is not present. Once values are entered for X and Y, in this case 3 and 3, clicking the
Build Table button results in the page shown in Figure 1-10.

Figure 1-10. Output from the HTML Controls web form

Cameron_865-2C01.fm Page 19 Tuesday, January 22, 2008 6:19 AM

20 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

The System.Web.UI.WebControls Namespace
Like the HTML controls in the previous section, the web controls occupy a separate namespace
in the .NET Framework—namely, System.Web.UI.WebControls. Figure 1-11 shows the graphical
breakdown of the namespace and the myriad server control objects available.

Figure 1-11. Controls in the System.Web.UI.WebControls namespace

The controls under the System.Web.UI.WebControls namespace are grouped into a few
primary categories:

• Simple

• List

• Rich

• Validation

The following sections cover each category.

Cameron_865-2C01.fm Page 20 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 21

Simple Controls

The simple controls are the web control cousins to the HTML controls in that they generally
map one-to-one to an HTML tag. Some good examples of this are the mappings of the Label
control to the tag and the TextBox control to the <input type="text"> tag.

Because simple controls map closely to a single HTML tag, we bring back the ever-popular
tag-to-control mapping table in a manner similar to our discussion in the last section on HTML
controls. Like the previous table, some controls in Table 1-2 handle more than one tag by property
settings. The LiteralControl from the System.Web.UI namespace is used for tags that are not
represented in System.Web.UI.WebControls as a control.

A Simple Controls Demonstration

The following simple controls demonstration is a port of the original HTML controls demon-
stration to show the same output using dynamically built controls from the System.Web.UI.
WebControls namespace. Listings 1-7 and 1-8 contain the code.

Table 1-2. HTML Tags and Their Web Control Counterparts

HTML Tag Simple Web Control

<input type="text"> TextBox with TextMode=Single

<input type="password"> TextBox with TextMode=Password

<textarea> TextBox with TextMode=MultiLine

<input type="checkbox"> CheckBox

<input type="radio"> RadioButton

<input type="submit"> Button

<input type="image"> ImageButton

<button> Button

<select> DropDownList

<select size=3> SelectList with Rows=3

<textarea> HtmlTextArea

 Image

<a> HyperLink, LinkButton

<table> Table

<tr> TableRow

<td> TableCell

<table> Panel

 Label

Cameron_865-2C01.fm Page 21 Tuesday, January 22, 2008 6:19 AM

22 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Listing 1-7. The SimpleControls Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="SimpleControls.aspx.cs"
Inherits="ControlsBook2Web.Ch01.SimpleControls"
 Title="Simple Controls Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label\
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Simple Controls</h3>
 X
 <asp:TextBox ID="XTextBox" runat="server"></asp:TextBox>

 Y
 <asp:TextBox ID="YTextBox" runat="server"></asp:TextBox>

 <asp:Button ID="BuildTableButton" runat="server"
Text="Build Table" OnClick="BuildTableButton_Click">
 </asp:Button>

 <asp:PlaceHolder ID="TablePlaceHolder" runat="server"></asp:PlaceHolder>
</asp:Content>

Listing 1-8. The SimpleControls Code-Behind Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Drawing;

namespace ControlsBook2Web.Ch01
{
 public partial class SimpleControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

Cameron_865-2C01.fm Page 22 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 23

 protected void BuildTableButton_Click(object sender, EventArgs e)
 {
 int xDim = Convert.ToInt32(XTextBox.Text);
 int yDim = Convert.ToInt32(YTextBox.Text);
 BuildTable(xDim, yDim);
 }

 private void BuildTable(int xDim, int yDim)
 {
 Table table;
 TableRow row;
 TableCell cell;
 Literal content;

 table = new Table();
 table.BorderWidth = 1;
 table.BorderStyle = BorderStyle.Ridge;
 for (int y = 0; y < yDim; y++)
 {
 row = new TableRow();
 for (int x = 0; x < xDim; x++)
 {
 cell = new TableCell();
 cell.BackColor = Color.Blue;
 cell.BorderWidth = 1;
 cell.ForeColor = Color.Yellow;
 cell.Font.Name = "Verdana";
 cell.Font.Size = 16;
 cell.Font.Bold = true;
 cell.Font.Italic = true;

 content = new Literal();
 content.Text = "X:" + x.ToString() +
 "Y:" + y.ToString() + "";
 cell.Controls.Add(content);
 row.Cells.Add(cell);
 }
 table.Rows.Add(row);
 }
 TablePlaceHolder.Controls.Add(table);
 }
 }
}

Cameron_865-2C01.fm Page 23 Tuesday, January 22, 2008 6:19 AM

24 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Comparing this simple controls demonstration to the HTML controls demonstration
shows little difference beyond changes to control names and namespaces. One minor difference
is the fact that in the simple controls demonstration, a PlaceHolder control (yes, there really is
a PlaceHolder class) acts as the container for holding the cell content. The PlaceHolder control
does not have a UI; instead, it renders only the UI of its child controls. This is in contrast to the
HTML controls demonstration, which used HtmlGenericControl representing a tag for
holding the cell content.

The bigger difference between the two examples is the Cascading Style Sheet (CSS) style
configuration. In the HTML controls demonstration, we had to use a more explicit syntax without
the benefit of help from the control object model or IntelliSense in Visual Studio. However, in
this simple controls demonstration, we have full access to the assistance provided by the Frame-
work and Visual Studio. The following code snippet shows how easy it is to set color and other
font styling in with simple controls:

cell = new TableCell();
cell.BackColor = Color.Blue;
cell.BorderWidth = 1;
cell.ForeColor = Color.Yellow;
cell.Font.Name = "Verdana";
cell.Font.Size = 16;
cell.Font.Bold = true;
cell.Font.Italic = true;

The content rendered in the browser demonstrates the nice abstraction of CSS styling
made available to controls by the System.Web.UI.WebControls namespace:

<td style="color:Yellow;background-color:Blue;border-width:1px;border-style:solid;
font-family:Verdana;font-size:16pt;font-weight:bold;font-style:italic;">
X:0Y:0
</td>

Figure 1-12 shows the output from this simple controls demonstration.

Cameron_865-2C01.fm Page 24 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 25

Figure 1-12. Output from the simple controls web form

List Controls

List controls provide enhanced capabilities beyond those of the simple controls by generating
their content using an external data source. They range from the simple CheckBoxList and
RadioButtonList controls, which build a group of simple HTML tags, to the more complex
DataGrid, DataList, and Repeater controls, which support a highly customizable UI. In
ASP.NET 2.0, the GridView was added to the arsenal, providing a very powerful list-based control,
and in Chapter 2, the simple user control demonstration includes a GridView control. List controls
are a key instrument in the toolkit of the ASP.NET developer, because they provide broad function-
ality when tasked with quickly getting a data-oriented web site up and running.

A List Controls Demonstration

The following list controls demonstration uses a Repeater control to build an HTML table
representing data from a simple Access database containing a Books table with information
from the Apress web site; the source code is provided in Listings 1-9 and 1-10. The previous
edition of this book used the SQL Northwind database Customer table, but in this edition, we’ve
made things a bit simpler by using an Access database. However, generally, you would want to
use an enterprise-quality database such as SQL Server for a real application. The demonstra-
tion illustrates two key features of ASP.NET UI development: templates and data binding, which
we cover in Chapter 7.

Cameron_865-2C01.fm Page 25 Tuesday, January 22, 2008 6:19 AM

26 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

With templates and data binding available, the programmer can focus on building the
data access class library in the n-tier model and hooking up the control to a data source via
data binding in the code-behind page, while the UI designer can tweak the HTML content and
templates on the .aspx page to ensure that it is displayed according to the requirements of the
web development project.

Listing 1-9. The ListControls Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="ListControls.aspx.cs"
Inherits="ControlsBook2Web.Ch01.ListControls"
 Title="List Controls Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 List Controls</h3>
 <asp:Repeater ID="Repeater1" runat="server" DataSourceID="ApressBooksds">
 <HeaderTemplate>
 <table>
 <th>
 Title</th>
 <th>
 Author</th>
 <th>
 ISBN</th>
 <th>
 Date Published</th>
 </HeaderTemplate>
 <ItemTemplate>
 <tr style="background-color: Silver">
 <td>
 <%# DataBinder.Eval(Container.DataItem,"Title") %></td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,"Author") %></td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,"ISBN") %></td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,"DatePublished") %></td>
 </tr>
 </ItemTemplate>

Cameron_865-2C01.fm Page 26 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 27

 <AlternatingItemTemplate>
 <tr style="background-color: White">
 <td>
 <%# DataBinder.Eval(Container.DataItem,"Title") %></td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,"Author") %></td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,"ISBN") %></td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,"DatePublished") %></td>
 </tr>
 </AlternatingItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:Repeater>
 <asp:AccessDataSource ID="ApressBooksds" runat="server"
DataFile="~/App_Data/ApressBooks.mdb"
 SelectCommand="SELECT [Title], [Author], [ISBN], [DatePublished]
FROM [Books]"></asp:AccessDataSource>

</asp:Content>

Listing 1-10. The ListControls Web Form Code-Behind Class File

using System;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch01
{
 public partial class ListControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

The data source in the list controls example is an AccessDataSource named ApressBooksds
that contains rows from a sample database of Apress books. The Repeater control is bound
directly to the ApressBooksds control.

The Repeater control is templated to produce an HTML table with HTML rows representing
each data row in the ApressBooksds data-source control. The HeaderTemplate and FooterTemplate
give us the table opening and closing tags, and the ItemTemplate and AlternatingItemTemplate
give us the structure for each row in the table.

Cameron_865-2C01.fm Page 27 Tuesday, January 22, 2008 6:19 AM

28 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

The data in each row of the DataSet is available via the Container.DataItem reference avail-
able for use inside the template content. A string index name something like “Title” is used
to grab a particular column for display. Although using code-behind over inline script as much
as possible is preferable, DataBinder.Eval() is a late-bound formatting method that we use to
keep from having to do ugly casts to satisfy the strongly typed nature of C# and ASP.NET. Inter-
estingly, the Repeater control is the only list-based control that allows HTML formatting to
span across the templates. Figure 1-13 shows the output from this list controls demonstration.

Figure 1-13. Output from the list controls web form

Rich Controls

The list controls are nice for working with data sources and building templated user interfaces,
but sometimes, a web project needs more help from a control when building dauntingly complex
pieces of HTML content. This is the domain of rich controls, such as the Calendar and AdRotator,
in System.Web.UI.WebControls. They make hard-to-generate HTML appear easy, as they require
little in the way of development to generate significant HTML output.

Cameron_865-2C01.fm Page 28 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 29

A Rich Controls Demonstration

This rich controls web form demonstration shows the Calendar control in action. The source
code is provided in Listings 1-11 and 1-12.

Listing 1-11. The RichControls Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="RichControls.aspx.cs"
Inherits="ControlsBook2Web.Ch01.RichControls"
 Title="Rich Controls Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Rich Controls</h3>
 <p>
 <asp:Calendar ID="Calendar1" runat="server" BackColor="White" Width="220px"
ForeColor="#003399"
 Height="200px" Font-Size="8pt" Font-Names="Verdana"
BorderColor="#3366CC" BorderWidth="1px"
 DayNameFormat="FirstLetter" CellPadding="1"
 OnSelectionChanged="Date_Selected">
 <TodayDayStyle ForeColor="White" BackColor="#99CCCC"></TodayDayStyle>
 <SelectorStyle ForeColor="#336666" BackColor="#99CCCC"></SelectorStyle>
 <NextPrevStyle Font-Size="8pt" ForeColor="#CCCCFF"></NextPrevStyle>
 <DayHeaderStyle Height="1px" ForeColor="#336666"
BackColor="#99CCCC"></DayHeaderStyle>
 <SelectedDayStyle Font-Bold="True" ForeColor="#CCFF99"
BackColor="#009999"></SelectedDayStyle>
 <TitleStyle Font-Size="10pt" Font-Bold="True" Height="25px"
BorderWidth="1px" ForeColor="#CCCCFF"
 BorderStyle="Solid" BorderColor="#3366CC" BackColor="#003399"></TitleStyle>
 <WeekendDayStyle BackColor="#CCCCFF"></WeekendDayStyle>
 <OtherMonthDayStyle ForeColor="#999999"></OtherMonthDayStyle>
 </asp:Calendar>
 </p>
 <p>
 <asp:Label ID="Label1" runat="server"></asp:Label></p>
</asp:Content>

Cameron_865-2C01.fm Page 29 Tuesday, January 22, 2008 6:19 AM

30 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Listing 1-12. The RichControls Web Form Code-Behind Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch01
{
 public partial class RichControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void Date_Selected(object sender, EventArgs e)
 {
 Label1.Text = "Selected: " + Calendar1.SelectedDate.ToLongDateString();
 }
 }
}

The rich controls demonstration has the least amount of code surface area of all the demon-
strations we’ve shown in this chapter. The .aspx page contains the Calendar control and all the
declarative settings to have the Calendar render in a manner pleasing to the eye, along with a
Label control to display the selected date. The code-behind has a Date_Selected() method
mapped to the SelectionChanged event of the Calendar control to set the value of the Label control
to the date we select (by clicking it). Figure 1-14 shows the output from this rich controls
demonstration.

Cameron_865-2C01.fm Page 30 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 31

Figure 1-14. Output from the rich controls web form

Rich Controls and XSLT

Another interesting control from the rich controls portion of the System.Web.UI.WebControls
namespace is the XML control. This control takes both an XML data source and an XML Style
Sheet Language Transformations (XSLT) style sheet to generate the final HTML output. An
XSLT style sheet can be brought to bear as an alternate UI generation paradigm that separates
the display of data from its source in a similar fashion to what we accomplished with templates
and data binding in the previous list controls demonstration.

An XML Control and XSLT Demonstration

The XML control web form generates an HTML table similar to the list controls demonstration,
using the same data source and the native XML support available in ADO.NET. Listings 1-13
and 1-14 provide the source code for our demonstration. Listing 1-13 presents the XML control
web form’s ApressBooks.xslt file, and Listing 1-14 shows the code-behind file.

Cameron_865-2C01.fm Page 31 Tuesday, January 22, 2008 6:19 AM

32 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Listing 1-13. The XMLControl Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="XMLControl.aspx.cs"
Inherits="ControlsBook2Web.Ch01.XMLControls"
 Title="XML Control Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 XML Control</h3>
 <asp:Xml ID="Xml1" runat="server"></asp:Xml>

 <asp:AccessDataSource ID="ApressBooksds" runat="server"
DataFile="~/App_Data/ApressBooks.mdb"
 SelectCommand="SELECT [ISBN], [Author], [DatePublished], [NumPages], [Price]
FROM [Books]">
 </asp:AccessDataSource>
</asp:Content>

Listing 1-14. The XMLControl Web Form Code-Behind Class File

using System;
using System.Data;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch01
{
 public partial class XMLControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 LoadXMLControl();
 }
 }

Cameron_865-2C01.fm Page 32 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 33

 private void LoadXMLControl()
 {
 //Create a DataView from the AccessDataSource control
 DataView dv = (DataView)ApressBooksds.Select(new DataSourceSelectArguments());
 try
 {
 dv.Table.TableName = "Books";
 DataSet ds = dv.Table.DataSet;
 ds.DataSetName = "ApressBooks";

 // give the XML control the XML and xslt
 Xml1.DocumentContent = ds.GetXml();
 Xml1.TransformSource = "ApressBooks.xslt";
 }
 finally
 {
 dv.Dispose();
 }
 }
 }
}

The code has a copy of the AccessDataSource ApressBooksds used in the list controls
demonstration to generate a DataSet from the AccessDataSource:

DataView dv = new DataView();
dv = (DataView)ApressBooksds.Select(new DataSourceSelectArguments());
 dv.Table.TableName = "Books";
 DataSet ds = dv.Table.DataSet;
 ds.DataSetName = "ApressBooks";

The code from the first version of this book uses now obsolete methods for ASP.NET 2.0.
This code no longer uses the XslTransform class or obsolete properties on the XML control.
Instead, the DocumentContent and TransformSource properties are set in the code-behind class:

Xml1.DocumentSource = ds.GetXml();
Xml1.TransformSource = "ApressBooks.xslt";

These changes in the ASP.NET 2.0 object model simplify the code required. Figure 1-15
shows the output from this XML and XSLT demonstration.

Cameron_865-2C01.fm Page 33 Tuesday, January 22, 2008 6:19 AM

34 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Figure 1-15. Output from the XML control Web Form

Although the XML control seems to be a great way to build UIs, we do not recommend the
XSLT technique as a way to take advantage of ASP.NET and its server control mechanism for
several reasons:

• All UI layout information must be specified declaratively inside the XSLT document, which
requires the programmer to take over the task of rendering the entire HTML document.

• It is not possible to leverage server controls, which have the capability to render condi-
tional UI based on browser capabilities in this model, nor is it possible to capture events
during postback on the server side that are connected to the HTML tags rendered by
the XSLT.

• Extra steps are required to debug the XSLT style sheet outside of Visual Studio. The
programmer must either manually look at the HTML output or buy a third-party XSLT
debugger, such as XML Spy, to be able to step through the XSLT code. Contrast this with
the ability to completely step through the page generation process with templates and
data binding.

Validation Controls

Checking user input on a web page is one of the least favorite tasks on a web developer’s to-do
list. It falls somewhere between maintenance of old code and sitting in another project planning
meeting. Fortunately, ASP.NET comes to the rescue with a set of controls that not only take
care of validation of input when it reaches the web server but also handle the task of generating

Cameron_865-2C01.fm Page 34 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 35

JavaScript validation routines to check the validity of input on the client side, minimizing addi-
tional round-trips to the server. This is accomplished by setting the EnableClientScript property
to true.

Table 1-3 shows the various validation controls that are available in the System.Web.UI.
WebControls namespaces and the input-checking features they provide.

A Validation Controls Demonstration

The following validation controls web form demonstrates all of the validation controls in action.
Full source code is provided in Listings 1-15 and 1-16. The web form has TextBox controls to test
input and a Label to display the success or failure of the web form postback according to the
validation process.

Listing 1-15. The ValidationControls Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="ValidationControls.aspx.cs"
Inherits="ControlsBook2Web.Ch01.ValidationControls"
 Title="Validation Controls Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">1</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Basics and What's new in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">

 <script type="text/javascript">
 function ValidateEvent(oSrc, args){
 args.IsValid = ((args.Value % 2) == 0);
 }
 </script>

Table 1-3. Validation Controls Available in ASP.NET

Validation Control Description

RequiredFieldValidator Checks for a null or empty value in a server control

CompareValidator Compares two server controls by various operators

RangeValidator Ensures the values of a server control fall in a specific range

RegularExpressionValidator Uses a regular expression to validate the input of a server control

CustomValidator Allows the programmer to specify client-side and server-side
validation routines to constrain a server control’s input

ValidationSummary Shows a summary of all the error messages generated by
validator controls on a web form

Cameron_865-2C01.fm Page 35 Tuesday, January 22, 2008 6:19 AM

36 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

 <asp:Label ID="Label1" runat="server"> RequiredField</asp:Label>

 <asp:TextBox ID="RequiredField" runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"
ErrorMessage="RequiredField needs an input value!"
 ControlToValidate="RequiredField"></asp:RequiredFieldValidator>

 <asp:Label ID="Label2" runat="server"> ComparedField</asp:Label>

 <asp:TextBox ID="ComparedField" runat="server"></asp:TextBox>
 <asp:CompareValidator ID="CompareValidator1" runat="server"
ErrorMessage="RequiredField and ComparedField are not equal!"
 ControlToValidate="ComparedField"
ControlToCompare="RequiredField"></asp:CompareValidator>

 <asp:Label ID="Label3" runat="server"> RangeField</asp:Label>

 <asp:TextBox ID="RangeField" runat="server"></asp:TextBox>
 <asp:RangeValidator ID="RangeValidator1" runat="server" ErrorMessage="RangeField
value must be between 1-10!"
 ControlToValidate="RangeField" MaximumValue="10" MinimumValue="1"
Type="Integer"></asp:RangeValidator>

 <asp:Label ID="Label4" runat="server"> RegexField (Phone)</asp:Label>

 <asp:TextBox ID="RegexField" runat="server"></asp:TextBox>
 <asp:RegularExpressionValidator ID="RegularExpressionValidator1" runat="server"
ErrorMessage="RegexField must be a valid US phone number!"
 ControlToValidate="RegexField" ValidationExpression=
"((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}"></asp:RegularExpressionValidator>

 <asp:Label ID="Label5" runat="server">CustomField (Even Number)</asp:Label>

 <asp:TextBox ID="CustomField" runat="server"></asp:TextBox>
 <asp:CustomValidator ID="CustomValidator1" runat="server" ErrorMessage=
"CustomField must be an even number!"
 ControlToValidate="CustomField" ClientValidationFunction="ValidateEvent"
OnServerValidate="ValidateEvent"></asp:CustomValidator>

 <asp:Button ID="ValidateButton" runat="server" Text="Submit"
OnClick="ValidateButton_Click">
 </asp:Button>

 <asp:Label ID="ResultsLabel" runat="server"></asp:Label>

 <asp:ValidationSummary ID="ValidationSummary1"
runat="server"></asp:ValidationSummary>
</asp:Content>

Cameron_865-2C01.fm Page 36 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 37

Listing 1-16. The ValidationControls Web Form Code-Behind Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch01
{
 public partial class ValidationControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void ValidateButton_Click(object sender, EventArgs e)
 {
 ResultsLabel.Text = "Page submitted at " + DateTime.Now + "
 IsValid: " + Page.IsValid;
 }

 protected void ValidateEvent(object source, ServerValidateEventArgs args)
 {
 if ((Convert.ToInt32(args.Value) % 2) == 0)
 args.IsValid = true;
 else
 args.IsValid = false;
 }
 }
}

The web form button that submits the .aspx page uses the IsValid property of the Page
class to determine if the form post was successful. It also displays the time.

Of course, this Label output won’t be displayed on the browser window, like in Figure 1-17,
unless the form post has successfully passed through the client-side validation that occurs when
the demonstration is executed using a JavaScript-capable browser, such as Internet Explorer 6.0.
Figure 1-16 shows the result of erroneous client-side input with the JavaScript features enabled.
You should also notice the display of the error messages by the input elements and the summary at
the bottom generated by the ValidationSummary control.

Cameron_865-2C01.fm Page 37 Tuesday, January 22, 2008 6:19 AM

38 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

Figure 1-16. Output from the validation controls web form with validation errors

If the posted data makes its way past the guard of client-side validation, it has a second
hurdle to overcome: validation on the server side. Each validation control is checked once
again for correctness of values. This prevents spoofing or tampering with the HTTP postback to
the web server in an attempt to get around the validation process.

The validation system in ASP.NET also provides the ability to customize the client-side
and server-side routines that verify input. The preceding example demonstrates this with the
CustomValidator control that is linked to the CustomField TextBox control. The first step is to
wire up custom client-side validation through the ClientValidationFunction property. We set
the value of this property to ValidateEvent and include a like-named JavaScript function in our
.aspx page in the <head> section of the HTML content:

<script type="text/javascript">
 function ValidateEvent(oSrc, args){
 args.IsValid = ((args.Value % 2) == 0);
 }
</script>

Cameron_865-2C01.fm Page 38 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 39

Figure 1-17. Successful output from the validation controls web form

The arguments passed to our routine provide us with the means to check the state of the
validated HTML element and communicate the results of our validation work. The second
argument is a structure with an IsValid property that is set to true or false to signal the results
as well as a Value property representing the input value. The ValidateEvent routine uses modulo
arithmetic to detect if a number is even or odd.

Configuring the server-side validation for the same control is done by wiring up the
ValidateEvent method in the code-behind file with the ServerValidate event of the
CustomValidator control. The parameters work in a similar fashion to their JavaScript counter-
parts with a Value and IsValid property.

private void ValidateEvent(object source,
 System.Web.UI.WebControls.ServerValidateEventArgs args)
{
 if ((Convert.ToInt32(args.Value) % 2) == 0)
 args.IsValid = true;
 else
 args.IsValid = false;
}

The next two sections provide a high-level overview of namespaces introduced in ASP.NET 2.0
or later.

Cameron_865-2C01.fm Page 39 Tuesday, January 22, 2008 6:19 AM

40 CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS

System.Web.UI.WebControls.Adapters Namespace

System.Web.UI.WebControls.Adapters was introduced in ASP.NET 2.0. It allows developers
to build control adapters. An ASP.NET 2.0 control adapter allows developers to plug into any
ASP.NET server control and override, modify, and/or tweak the rendering output logic of that
control. We provide an example adapter in Chapter 10.

System.Web.UI.WebControls.WebParts Namespace

System.Web.UI.WebControls.WebParts was introduced in ASP.NET 2.0 and allows developers to
build WebPart functionality into ASP.NET 2.0 or later applications. The WebParts namespace
was previously only available via the SharePoint SDK for use in a SharePoint portal application
but was mainstreamed in ASP.NET 2.0. In Chapter 10, we cover WebPart-based controls in more
detail.

Web Controls vs. HTML Controls
The controls discussed in this chapter span both the System.Web.UI.WebControls and System.
Web.UI.HtmlControls namespaces. On the surface, the functionality in these two namespaces
appears to overlap, particularly when generating content that maps to a single HTML tag such
as <input type="text"> or <textarea>. Both the HTML control HtmlInputText and web control
TextBox handle this with equal functionality when added to a web form as a server control.
Deciding which to use in this situation is a commonly asked question about ASP.NET.

The HTML controls have the advantage of looking similar to their HTML brethren, taking
on attributes that are familiar to web developers. This eases the porting process and helps keep
people comfortable with the changes to ASP.NET. This is both a blessing and a curse. It is easy
to overlook the runat="server" attribute and assume that the control is raw HTML. This is
especially a problem late at night, when things on the monitor don’t look as they should to
tired eyes.

The web controls provide a more consistent attribute model for specifying properties on
controls. The best example is the use of the more intuitive Text property on a Label and TextBox
control, contrasted with the Value or Name property that is used in the HtmlControls namespace.
The CSS styling support is also much better with web controls, as the web controls example
demonstrated in the CSS-related types added to the System.Web.UI.WebControls namespace.

Also, notice that web controls have an asp: tag prefix added to the HTML tag on the .aspx
page to identify the tag as a server control within a particular namespace. The classes in the
HtmlControls namespace do not have a tag prefix and cannot be used as a base class for a custom
server control.

We would have been remiss not to include a detailed discussion of what is available in the
HtmlControls namespace, as these controls can provide a potential interim step to help ease
the migration challenges to ASP.NET from ASP. However, it is our opinion that, outside the
necessary HtmlForm control for web form construction and the file upload functionality of the
HtmlInputFile control, programmers should stay away from using the HTML controls in
ASP.NET applications. We recommend that developers strive to fully migrate toward the web
control classes in application development to gain the benefits from the level of abstraction
web controls provide as well as the rich programming model available. This is especially true if
custom control development is planned or desired.

Cameron_865-2C01.fm Page 40 Tuesday, January 22, 2008 6:19 AM

CH AP T E R 1 ■ SE R V E R C ON TR O L B A S I CS 41

Summary
This chapter was devoted to the topic of server controls. Server controls are objects, and as such,
they provide the time-honored constructs of properties, methods, and events. The HTML
content rendered to the browser client is generated in its entirety by a tree of server controls
representing each item on the page.

Controls in ASP.NET are separated into three hierarchies: System.Web.UI, System.Web.
UI.HtmlControls, and System.Web.UI.WebControls. System.Web.UI contains the Page class,
which represents the web form, and the Control class, which is the root base class of all the
other server controls in ASP.NET.

System.Web.UI.HtmlControls contains controls that directly map to HTML tags and make
porting from HTML pages easier. HtmlInputText, HtmlForm, and HtmlInputHidden are examples
of HTML controls.

System.Web.UI.WebControls contains a full-featured set of controls, including simple, list,
rich, and validation controls. Simple controls are web controls that provide server-side mapping to
HTML tags. TextBox, Button, and DropDownList are examples of simple controls. List controls
support building HTML content through data binding and templates. The DataList, DataGrid,
and Repeater controls are some examples of list controls. Rich controls generate complex UI
from a minimal amount of input. The Calendar control is an example of a rich control.

Validation controls simplify the tedious nature of web form input validation. Validation
can occur on the client side for JavaScript-capable browsers. It is also possible to write custom
validation scripts using the CustomValidator control.

There is overlapping functionality between WebControls and HtmlControls. We recom-
mend using the System.Web.UI.WebControls namespace over System.Web.UI.HtmlControls due
to its rich control set, enhanced styling features, and powerful abstraction layer around HTML
rendering. Also, it is not possible to create a custom server control that derives from an
HtmlControl class.

Cameron_865-2C01.fm Page 41 Tuesday, January 22, 2008 6:19 AM

Cameron_865-2C01.fm Page 42 Tuesday, January 22, 2008 6:19 AM

43

■ ■ ■

C H A P T E R 2

Encapsulating Functionality
in ASP.NET

The previous chapter provided a high-level overview of the large number of prebuilt controls
available in ASP.NET, highlighting some of the powerful new controls available in ASP.NET 3.5.
These battle-tested components serve admirably in a variety of scenarios that web application
designers can dream up. The ASP.NET development team had a goal of reducing the amount
of code that developers must write and have done an admirable job in ASP.NET 2.0 through
ASP.NET 3.5. Of course, developers can always dream up new functionality for applications,
giving an opportunity for control builders to extend and enhance the capabilities of the compo-
nents delivered out of the box through inheritance and encapsulation as well as build brand-
new server controls.

In this chapter, we discuss the various methods available in ASP.NET to encapsulate function-
ality such as master pages, user controls, or of course, server controls that have the same amount
of modularity and reuse potential as the built-in controls. We provide a high-level overview
of ASP.NET AJAX 1.0, which was released after .NET Framework 2.0 and is enhanced in .NET
Framework 3.5, as an introduction to the new technology. Once we cover the basics, we dive
right in and encapsulate the same functionality using the different techniques available to help
drive the concepts.

Packaging Content in ASP.NET
The rich, object-oriented framework of ASP.NET 2.0 and later provides two control-building
options (which generally fall into four categories):

• User controls

• Custom server controls

User controls are a great option when you are packaging common UI layout for reuse
across a project or group of projects. In ASP.NET 1.1, user controls were often the method of
abstracting the areas, such as top and side banners, that are common to every page in a web
site, but this method met with varying success. In ASP.NET 2.0 and later, the MasterPage class,
which inherits from the UserControl class, along with the Content class provide a much more
powerful and flexible means to create a page template for a web site, as discussed in Chapter 1.
Custom server controls are more akin to what is traditionally considered a control or widget.

Cameron_865-2C02.fm Page 43 Wednesday, February 20, 2008 4:31 PM

44 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Web parts are custom server controls that were originally available as part of the SharePoint
Server 2003 software development kit (SDK) and worked only within the Windows SharePoint
Services 2.0 in ASP.NET 1.1. In ASP.NET 2.0 and later, support for web parts is baked directly
into ASP.NET and no longer requires Windows SharePoint Services to run. Before we discuss
these two methods of creating controls in ASP.NET, we first cover a couple of key concepts:
inheritance and encapsulation.

Inheritance
One way to package new functionality and take advantage of the rich, object-oriented frame-
work in ASP.NET is to use inheritance. This elegant, tried-and-true technique is the central
theme of this book and the topic on which we spend the most time.

Inheritance works because of the polymorphic behavior of objects. This capability permits
you to override methods defined as virtual in the base object class so that you can add or
customize the objects’ behavior, with the option of still leveraging the functionality available in
the original base class method. To put it another way, you don’t have to reinvent the wheel to
add new functionality. In terms of code, this will generally look something like the following:

//overide virtual method "Render"
protected override void Render(HtmlTextWriter output)
{
 //add some new style to output
 output.AddStyleAttribute("somestylename","somevalue");
 base.Render(output); //render the output using the base class Render method
}

In this code snippet, we override the virtual method Render(), which is defined in the base
class System.Web.UI.Control. This syntax may look a little strange at first. For example, where
is base defined? Like the this reference, the object that base actually references is context defined
and made available by the framework. As its name suggests, base is a convenient way to reference
the base class that the custom server control inherits from in its class definition. In our version
of the Render() method, we tack on some styling to the output class (of type HtmlTextWriter) and
then call the base class’s Render() method to display the control’s new styled output on the
ASP.NET page.

In the preceding example, if Render() were not defined as virtual in the base class, the ease
with which we perform this task would not have been possible. Without the virtual modifier,
the base class’s Render() method would have been hidden or redefined when we declared a
method named Render() in the derived server control class. We would not have been able to
make use of the base object’s Render() method in our new Render() method, and we would
have been forced to re-create all of the base class’s Render() functionality.

■Note Keep in mind the role that modifiers such as virtual play when you add new methods to your
custom server controls and would like to support polymorphic behavior.

Cameron_865-2C02.fm Page 44 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 45

All custom server controls inherit from an ASP.NET server control class to ensure that the
new control falls in line with the .NET Framework. There are several choices for a base class,
including System.Web.UI.Control, System.Web.UI.WebControl, or one of the full-featured server
controls such as TextBox. We discuss what factors affect this decision and provide several intro-
ductory examples of custom server controls later in this chapter.

Encapsulation
Another construct available to package functionality within an object-oriented framework,
such as .NET, is encapsulation. Encapsulation is also referred to as composition or building
composite controls. Composite controls can inherit from any ASP.NET server control, but
generally, they are inherited from System.Web.UI.Control or System.Web.UI.WebControls.
CompositeControl. This inheritance is necessary to gain access to the necessary ASP.NET
plumbing (rendering, state management, postback, and so on); however, composition does
not rely on inheritance or polymorphism to achieve reuse.

Composite controls package functionality by combining server controls as children controls,
but they are still treated as a single entity. This promotes information hiding and eases devel-
opment by allowing the composite control developer/user to focus on the combined functionality
of the parent control without worrying about setting individual properties or calling methods
on the children controls.

ASP.NET provides two different methods for building composite controls: composition
through custom server controls and composition through user controls. We discuss what
factors can go into choosing one method over the other and provide several introductory
examples later on in this chapter.

Comparing the Control-Building Techniques
As described earlier in this chapter, there are primarily two methods of packing content in
ASP.NET: user controls and custom server controls. We provide a high-level overview of these
methods in the following sections. To assist with this discussion, we’ll create user controls and
custom server controls that implement the same functionality to help us compare and contrast
the two construction methodologies.

User Controls
User controls are a form of composite control that you can use to package functionality such as
HTML and server controls like the TextBox within ASP.NET. Generally, the focus of user control
development is to encapsulate application-specific business logic that can be shared within a
single application or within a family of related applications.

Of the two primary means of building controls in ASP.NET, user controls are the simpler
control type to create. Constructing user controls is similar to building ASP.NET web forms, as
they support a declarative style of development through dragging and dropping controls from
the toolbox in Visual Studio onto the user control design surface.

A user control page has intermixed HTML tags and server controls like an .aspx page, except
they are stored in an .ascx file. Like web forms, user controls also support separation of the
HTML tags and UI from the page logic through the code-behind mechanism. The Design view
of a user control is almost identical to that of a web form, as shown in Figure 2-1.

Cameron_865-2C02.fm Page 45 Wednesday, February 20, 2008 4:31 PM

46 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Figure 2-1. The Visual Studio Design view of a user control

You will typically implement a user control when you want to build a control that requires
a fair number of declarative HTML tags with the least amount of effort. This option makes it
easier for the UI designer to go back in and modify the output of the control using the Visual
Studio 2008 web page designer WYSIWYG interface than the option to use custom server controls,
which are programmatically designed in code. In ASP.NET 1.1 or earlier, user controls were
often used to templatize web sites with varying success. In ASP.NET 2.0 and later, master pages
replace one of the most common reasons why developers implement user controls, but there
are still many places where user controls can be beneficial. Here is a list of other important
characteristics of user controls:

• User controls are a great way to package HTML and modularize web development for
application-specific logic. They are also a great way to replace the use of HTML include files.

• User controls support properties and methods that can be set either in the HTML as
attributes or in the code-behind page of the hosting .ascx page.

• User controls can be cached in the ASP.NET cache based on a number of different
parameters to speed web application performance (details on this are available in the
ASP.NET documentation).

• Certain tags are not permitted in a user control, because user controls are hosted in web
forms that will already have these tags—specifically, the <html>, <head>, <body>, and
<form> tags. Using these tags would interfere with the functioning of the hosting .aspx page.

• User control tag declarations should appear between the hosting .aspx page’s beginning
and ending <form> tags to ensure proper operation.

Cameron_865-2C02.fm Page 46 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 47

In the previous version of this book, the header and footer displayed in the example web
forms were user controls. With master pages in, the header and footer information has been
moved to a master page template, as discussed in Chapter 1. Instead of the header and footer,
we have the simple user control shown in Figure 2-1. Listing 2-1 shows the code for the
SimpleUserControl user control.

Listing 2-1. The SimpleUserControl User Control .ascx File

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="SimpleUserControl.ascx.cs"
 Inherits="ControlsBook2Web.Ch02.SimpleUserControl" %>
<asp:GridView ID="GridView1" runat="server" AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False" CellPadding="4" DataKeyNames="ID"
DataSourceID="ApressBooksds"
 EmptyDataText="There are no data records to display." Font-Names="Arial"
 Font-Size="X-Small"
 ForeColor="#333333" GridLines="None">
 <Columns>
 <asp:BoundField DataField="ID" HeaderText="ID" ReadOnly="True"
 SortExpression="ID"
 InsertVisible="False" />
 <asp:BoundField DataField="ISBN" HeaderText="ISBN" SortExpression="ISBN" />
 <asp:BoundField DataField="Author" HeaderText="Author" SortExpression=
 "Author" />
 <asp:BoundField DataField="Title" HeaderText="Title" SortExpression="Title" />
 <asp:BoundField DataField="Description" HeaderText="Description"
SortExpression="
 Description" />
 <asp:BoundField DataField="DatePublished" HeaderText="DatePublished"
SortExpression="DatePublished" />
 <asp:BoundField DataField="NumPages" HeaderText="NumPages"
 SortExpression="NumPages" />
 <asp:BoundField DataField="TOC" HeaderText="TOC" SortExpression="TOC" />
 <asp:BoundField DataField="Price" HeaderText="Price" SortExpression="Price" />
 </Columns>
 <FooterStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />
 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True" ForeColor="Navy" />
 <PagerStyle BackColor="#FFCC66" ForeColor="#333333" HorizontalAlign="Center" />
 <HeaderStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
</asp:GridView>
<asp:AccessDataSource ID="ApressBooksds" runat="server"
DataFile="~/App_Data/ApressBooks.mdb"
 SelectCommand="SELECT * FROM [Books]"></asp:AccessDataSource>

Cameron_865-2C02.fm Page 47 Wednesday, February 20, 2008 4:31 PM

48 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Listing 2-2 has the code-behind file for SimpleUserControl.

Listing 2-2. The SimpleUserControl User Control Code-Behind Class File

using System;
using System.Drawing;

namespace ControlsBook2Web.Ch02
{
 public partial class SimpleUserControl : System.Web.UI.UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 public Color HeaderColor
 {
 get { return GridView1.HeaderStyle.BackColor; }
 set { GridView1.HeaderStyle.BackColor = value; }
 }

 public int RecordsPerPage
 {
 get { return GridView1.PageSize; }
 set { GridView1.PageSize = value; }
 }
 }
}

SimpleUserControl.aspx provides a test container for our newly created user control
as well as exercises the two custom public properties HeaderColor and RecordsPerPage on
SimpleUserControl.ascx. Listing 2-3 has the source code for the SimpleUserControl demon-
stration web form.

Listing 2-3. The SimpleUserControlDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="SimpleUserControlDemo.aspx.cs"
 Inherits="ControlsBook2Web.Ch02.SimpleUserControlDemo"
 Title="Simple User Control Demo" %>

<%@ Register Src="SimpleUserControl.ascx" TagName="SimpleUserControl"]
 TagPrefix="apressuc" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"

Cameron_865-2C02.fm Page 48 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 49

 Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <apressuc:SimpleUserControl ID="SimpleUserControl1" runat="server" />
</asp:Content>

Listing 2-4 contains the code-behind file for the SimpleUserControl demonstration web form.

Listing 2-4. The SimpleUserControlDemo Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch02
{
 public partial class SimpleUserControlDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }

}
For the SimpleUserControl user control, properties such as HeaderColor and RecordsPerPage

can be set in the HTML through attributes or in the code-behind page, such as with
SimpleUserControl.aspx. In ASP.NET 1.1, to access the Header user control in the code-behind
page, we had to first add a declaration for the user control to the code-behind class as well as
add a runat="server" attribute to the declaration in the .aspx file. In ASP.NET 2.0 and later, we
can simply access the user control by name in the code-behind file:

SimpleUserControl1.RecordsPerPage = 5;
SimpleUserControl1.HeaderColor = Color.CadetBlue;

When compared to building custom server controls, user controls are easier on the devel-
opment staff in terms of the learning curve; any developer capable of building web forms can
build user controls.

Custom Server Controls
Custom server controls, the other option for control development in ASP.NET, package function-
ality through inheritance, composition, or both. Server controls do not support declarative, drag-
and-drop–style UI development as with a user control. Everything that is rendered by the
control is programmatically specified within a code class. In Chapter 6, we examine templates,
which allow UI designers to specify the UI of a custom control in a declarative fashion. These
compensate to some degree for the lack of a tag page that is edited in the Designer during

Cameron_865-2C02.fm Page 49 Wednesday, February 20, 2008 4:31 PM

50 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

server control development. The requirement to put everything (UI layout, functionality, and
so on) in code does provide server controls a superior packaging and deployment mechanism
over user controls, because they compile into an assembly. The resulting assembly can be
copied between web development projects and stored in the global assembly cache (GAC).

Custom controls are a fully programmatic way of packaging reusable content in ASP.NET.
They allow developers to tap into the underlying ASP.NET plumbing, replacing or adding core
functionality, such as how a control renders, in order to achieve the desired behavior. They tend to
implement richer functionality and exhibit greater reuse from project to project, as shown by
advanced controls such as the TextBox, DataGrid, and Calendar controls that exist in the ASP.NET
WebControls namespace.

■Note Building server controls in ASP.NET 2.0 or later is very similar to building server controls in ASP.NET
1.1. However, there are many new features, such as improved design-time support, the ability to create web
parts outside of SharePoint, easier client-side script integration, and so on, which can be fully leveraged in
ASP.NET 2.0 or later custom-built server controls.

In ASP.NET 1.1, a custom control had better support than user controls in the Design view
of the control when placed on a web form .aspx page by the developer/user. In the Design
view, a custom control renders the HTML output that it normally would when generating for
HTML browser consumption, while user controls are rendered as a gray box. In ASP.NET 2.0,
user controls also render the design-time HTML output just like custom server controls. Compare
Figure 2-1 and 2-2 to see the similarities between a user control as displayed at design time and
how the user control renders when hosted with an ASP.NET web form at design time.

Another major difference between user controls and custom controls that existed in
ASP.NET 1.1 is in their deployment model. Reusing a user control requires copying its .ascx
files along with code-behind assemblies, if necessary, in order to reuse it in different web appli-
cations in ASP.NET 1.1. In contrast to user controls in ASP.NET 1.1, user controls in ASP.NET 2.0
and later can compile down to an assembly. In ASP.NET 2.0 and later, we can take advantage of
precompilation features to compile a user control into an assembly that can be deployed to
other applications without source code.

■Note The user control should be as self-contained as possible, in much the same way as a custom-built
server control, meaning the user control should not have dependencies on images being located at a partic-
ular URL or be dependent on objects declared in Global.asax in order to render properly.

Cameron_865-2C02.fm Page 50 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 51

Figure 2-2. The Visual Studio Design view of the same user control hosted on a web form

It is possible in ASP.NET 2.0 and later to precompile a web site in its current location or
precompile a web site for deployment to another server. For our purposes with packaging a
user control in an assembly, we need to follow the steps to precompile a site for deployment.
The first step is to create the user control and test it. One item of note is to add a ClassName
attribute with the namespace to the @Control directive for the user control like this:

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="SimpleUserControl.ascx.cs"
Inherits="ControlsBook2Web.Ch02.SimpleUserControl" %>

Once the user control has been created and tested, use the publish functionality available
under the Visual Studio menu item Build ➤ Publish Web Site.

The Publish dialog requires a target location for the precompiled site. Also, it is recommended
that you check the “Use fixed naming and single page assemblies” box to allow the user control
to be published in a single assembly. Otherwise, the user control will be compiled with other
application code in a combined assembly with a randomly generated file name. Another poten-
tially useful option is to enable strong naming on precompiled assemblies.

After publishing is completed, go to the target location specified in the Publish dialog, and
look in the bin directory for an assembly named something like App_Web_simpleusercontrol.
ascx.5b4d926a.dll. This is the SimpleUserControl.ascx compiled to an assembly and is ready
to be used as a server control.

Cameron_865-2C02.fm Page 51 Wednesday, February 20, 2008 4:31 PM

52 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Next, add the assembly to a test web application by right-clicking the application, selecting
Add Reference, and browsing to the user control assembly. The next step is to make the server
control available on a web form by registering it:

<%@ Register TagPrefix="apressuc" Namespace="ControlsBook2"
 Assembly="App_Web_simpleusercontrol.ascx.5b4d926a.dll" %>

The final step is to add a tag to the .aspx page:

<apressUC:SimpleUserControl ID="SimpleUserControl1" runat="server" />

While it is possible to deploy a user control in a similar manner to a custom server control
as shown in the preceding example, deployment of a user control as an .ascx file is a bit more
straightforward and probably more applicable where user controls are of most interest, which
is for sharing code internal to an organization.

The design-time rendering of user controls and the ability to deploy a user control as an
assembly are welcome ASP.NET improvements; custom server controls provide superior design-
time capabilities, simpler deployment, and finer control over functionality. Naturally, all the
benefits of custom controls do not come for free. Generally, custom controls require a longer
development cycle and a higher skill level from the development staff. The focus of this book is
on custom server control development with the goal of easing the learning curve and developing
some useful server control samples to help you get started.

Building a User Control
So far, we’ve discussed user controls and custom server controls, and their benefits and differ-
ences. User controls and server controls have differing strengths and trade-offs that we highlight in
this section by building two families of controls:

• A static hyperlink menu control

• A dynamically generated HTML table control

The example controls we present may seem simple and somewhat removed from real-world
web projects, but we do this for a reason. We believe that you must start simple and build toward
more complexity to achieve a deep understanding of the process. In upcoming chapters, we
explore controls that leverage the complete functionality available to controls in ASP.NET as
well as provide interesting capabilities.

ASP.NET developers typically look to the user control as the first option for creating controls
due to its ease of construction and simplicity. Building a user control closely mirrors the construc-
tion techniques and technical details of a web form. User controls support drag-and-drop
development with the Visual Studio control toolbox, a fully editable design surface in the IDE,
and a code-behind class file structure to support a separation of UI and logic programming.
User controls are built in two ways:

• From scratch

• By taking out reusable content from an existing web form

The first method is used when enough planning and design work is done ahead of time to
figure out which portions of the UI are going to be reused on the web site. The second technique

Cameron_865-2C02.fm Page 52 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 53

results from refactoring the content of a site after it has been built to make it modular and
easier to maintain.

The MenuUserControl User Control

Our first example takes advantage of the declarative nature of the user control to encapsulate a
simple hyperlink menu as a control that we build from scratch. The control is pure, static HTML
without a single embedded server control. It consists of nothing more than a list of fixed hyper-
links to a variety of web sites.

The simplicity is shown in the tags present in the .ascx file in Listing 2-5. The code-behind
class in Listing 2-6 is left unchanged from the blank template Visual Studio produces when you
add a user control to a web application.

Listing 2-5. The MenuUserControl User Control .ascx File

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="MenuUserControl.ascx.cs"
 Inherits="ControlsBook2Web.Ch02.MenuUserControl" %>
<div>
 Apress |

 Microsoft | MSDN
 | ASP.NET
</div>

Listing 2-6. The MenuUserControl User Control Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch02
{
 public partial class MenuUserControl : System.Web.UI.UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

The Control directive at the top of the user control .ascx file shown in Listing 2-5 identifies
it as a user control to the ASP.NET parsing engine. The format is similar to that of the Page
directive in an .aspx page file.

The Control directive helps set up the code-behind system through its CodeFile and Inherits
properties. In ASP.NET 1.1, the attribute name was CodeBehind, but in ASP.NET 2.0 and later,
the attribute is CodeFile. The CodeFile attribute points to the location of the class file, and the
Inherits attribute specifies the class name the .ascx tag page inherits from. The CodeFile attribute
for the @Control (and the @Page) directive in conjunction with the partial class declaration in

Cameron_865-2C02.fm Page 53 Wednesday, February 20, 2008 4:31 PM

http://www.apress.com
http://www.microsoft.com
http://msdn.microsoft.com
http://asp.net

54 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

the code-behind file is part of the new code-behind model in ASP.NET 2.0 and later. The model
also removes the requirement to have protected declarations of all server controls used on a
web form or user control page in the code behind file, removing what was a fragile relationship
in ASP.NET 1.1 between the .aspx/.ascx page and the code-behind file, as well as generally
making the code-behind files cleaner and shorter.

■Note The partial class model applies only if the CodeFile attribute exists in the @Page or @Control
directive. If the Inherits or src attribute is used without the CodeFile attribute, ASP.NET 2.0 and later
resorts to ASP.NET 1.1 code-behind style and places the class as the sole base class for the .aspx or .ascx
file. If there isn’t a code-behind file, class generation is also similar to ASP.NET 1.1. Features like strongly
typed master page access and previous page access are dependent on the new partial class/code-behind
model in ASP.NET 2.0 and later.

Notice that the inheritance tree in an .ascx file uses the System.Web.UI.UserControl class
instead of the System.Web.UI.Page base class (as in an .aspx file).

Using the MenuUserControl User Control

To actually see the content of the user control, we must host the user control on a web form.
Doing so requires a registration step to give the web form enough information to find the user
control content and bring it into the scope of the page via a tag associated with the user control.
The menu user control demonstration web form accomplishes this task. Figure 2-3 shows the
final output of the web form in the browser.

Figure 2-3. The browser view of the HTML output from the menu user control demonstration
web form

Listing 2-7 shows the source code for the MenuUserControlDemo .aspx file.

Cameron_865-2C02.fm Page 54 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 55

Listing 2-7. The MenuUserControlDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="MenuUserControlDemo.aspx.cs"
Inherits="ControlsBook2Web.Ch02.MenuUserControlDemo"
 Title="Menu User Control Demo" %>

<%@ Register Src="MenuUserControl.ascx" TagName="MenuUserControl"
TagPrefix="apressuc" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <apressuc:MenuUserControl ID="MenuUserControl1" runat="server" />
</asp:Content>

The Register directive does its part by locating the .ascx file representing the user control
with its src attribute and determining its look on the page with the TagName and TagPrefix
attributes:

<%@ Register Src="MenuUserControl.ascx"
TagName="MenuUserControl" TagPrefix="apressuc" %>

As a common convention in this book, we use apressuc as the tag prefix for our user controls
and apress for custom controls. You are free to choose a prefix to suit your organizational or
company standards. In the example, we use MenuUserControl as the name of the tag and identify
our single instance with the id attribute menu1. The runat="server" attribute is also present to
signify that it is a server control and must be handled appropriately by the ASP.NET parsing system:

<apressuc:MenuUserControl id="menu1" runat="server" />

An interesting thing to note about this example is how the user control displays on the web
form when you view the hosting web form in Design view. It is shown as a gray box that provides
little feedback as to what the final output in the browser will be.

The TableUserControl User Control

Our second user control example raises the degree of difficulty by demonstrating how to use
the dynamic control-building features of ASP.NET inside a user control. Because the UserControl
class itself has an inheritance chain back to the root System.Web.UI.Control class and is a full-
blown control in its own right, we can add controls to its Controls collection at runtime to build
up its content structure. We can also manipulate the child controls on its surface programmatically.

This example has similar functionality to the examples in Chapter 1. Here, the action is
orchestrated according to the properties that the control exposes to the web form at runtime in
its declaration, specifically the X and Y properties. Listing 2-8 shows the source code for the
TableUserControlascx file. Listing 2-9 shows the source code for the TableUserControl code-
behind class file.

Cameron_865-2C02.fm Page 55 Wednesday, February 20, 2008 4:31 PM

56 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Listing 2-8. The TableUserControl User Control .ascx File

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind=
 "TableUserControl.ascx.cs"
 Inherits="ControlsBook2Web.Ch02.TableUserControl" %>
<h3>
 TableUserControl

 X:<asp:Label ID="XLabel" runat="server"></asp:Label>
 Y:<asp:Label ID="YLabel" runat="server"></asp:Label>
</h3>
<table id="Table1" border="1" runat="server">
</table>

Listing 2-9. The TableUserControl User Control Code-Behind Class File

using System;
using System.Web.UI.HtmlControls;

namespace ControlsBook2Web.Ch02
{
 public partial class TableUserControl : System.Web.UI.UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 XLabel.Text = X.ToString();
 YLabel.Text = Y.ToString();

 BuildTable(X, Y);
 }

 // properties to access dimensions of HTML table
 public int X {get; set;}

 public int Y {get; set;}

 // HTML table building routine
 private void BuildTable(int xDim, int yDim)
 {
 HtmlTableRow row;
 HtmlTableCell cell;
 HtmlGenericControl content;

 for (int y = 0; y < yDim; y++)
 {
 // create <TR>
 row = new HtmlTableRow();

Cameron_865-2C02.fm Page 56 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 57

 for (int x = 0; x < xDim; x++)
 {
 // create <TD cellspacing=1>
 cell = new HtmlTableCell();
 cell.Attributes.Add("border", "1");

 // create a
 content = new HtmlGenericControl("SPAN");
 content.InnerHtml = "X:" + x.ToString() +
 "Y:" + y.ToString();
 cell.Controls.Add(content);

 row.Cells.Add(cell);
 }
 Table1.Rows.Add(row);
 }
 }
 }
}

In this example, the .ascx page is a mix of HTML content and server controls. The two
Label controls come from the System.Web.UI.WebControls namespace. The labels display the X
and Y properties’ configuration of the user control:

X:<asp:label id="XLabel" Runat="server"></asp:label>;
Y:<asp:label id="YLabel" Runat="server"></asp:label>

The HtmlTable control comes from the System.Web.UI.HtmlControls namespace and is
declared as a table with a border size of 1 on the .ascx page.

The table control in the HtmlControl namespace was chosen over the table in the WebControl
namespace, because it does not automatically add styling information to the final output. This
is desirable at this point in the book; we defer the control styling discussion until Chapter 4.

The code-behind class file of the user control is much more interesting in this example,
because it contains the content-building code. The X and Y properties exposed by the user control
map to private variables in a demonstration of data encapsulation. These properties are exposed to
the containing web forms in their .aspx page file via attributes on the user control tag or program-
matically in the code-behind class file via a variable reference to an instance of the user control.
We could have exposed public methods, fields, and events from the user control as well.

The Page_Load() method that is mapped to the web form’s Page.Load event is responsible
for transferring the data from the dimension properties to build the table hierarchy via the
BuildTable() routine. It also configures the display of the Label controls on the user control to
indicate what data was passed in to build the table. We pass on examining the BuildTable()
routine in more detail here, because it is very similar to the HTML table building routine from
Chapter 1.

Using the TableUserControl User Control

Like the menu demonstration, the table user control demonstration web form hosts the user
control in order for us to realize its output. The table user control demonstration web form sets

Cameron_865-2C02.fm Page 57 Wednesday, February 20, 2008 4:31 PM

58 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

the X and Y properties of the TableUserControl control in both the .aspx tag page and the code-
behind class file. This demonstrates how you can work with the user control in a declarative
and a programmatic fashion on a web form. Figure 2-4 shows the table user control demon-
stration web form at design time, and Figure 2-5 shows our web form at runtime.

Figure 2-4. The Visual Studio Design view of the table user control demonstration web form

Figure 2-5. The browser view of the HTML output from the table user control demonstration
web form

Cameron_865-2C02.fm Page 58 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 59

Listings 2-10 and 2-11 show TableUserControlDemo’s .aspx page file and its code-behind
class file, respectively.

Listing 2-10. The TableUserControlDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TableUserControlDemo.aspx.cs"
Inherits="ControlsBook2Web.Ch02.TableUserControlDemo"
 Title="Table User Control Demo" %>

<%@ Register Src="TableUserControl.ascx" TagName="TableUserControl"
TagPrefix="apressuc" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Table User Control</h3>
 <p>
 <apressuc:TableUserControl ID="TableUserControl1" runat="server" X="1" Y="1" />
</asp:Content>

Listing 2-11. The TableUserControlDemo Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch02
{
 public partial class TableUserControlDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 TableUserControl1.X = 4;
 TableUserControl1.Y = 3;
 }
 }
}

The user control is registered at the top of the .aspx page and declared via an apressuc tag
prefix as before. Although we declare the HTML table structure to be a 1 × 1 grid declaratively
in the .aspx page file, the code-behind class file programmatically changes it to 4 × 3. The
Page_Load() method is executed after the ASP.NET system has set the value of the control
declaratively, so it wins the contest over the value of the X and Y parameters.

Cameron_865-2C02.fm Page 59 Wednesday, February 20, 2008 4:31 PM

60 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Unlike in ASP.NET 1.1, we did not need to declare a member variable with the name and
type of our user control to gain access to the user control in the code-behind class file and
programmatically set the parameters. In ASP.NET 1.1, we would have had to add a protected
member in the code behind page, like in the following code, but this additional typing is no
longer required in the ASP.NET 2.0 and later code-behind model:

protected ControlsBook2Web.Ch02.TableUserControl TableUserControl1;

After this chapter, we do not touch on building user controls, as this book focuses on building
custom server controls. For more information on building ASP.NET user controls, please refer
to the ASP.NET documentation.

Building a Custom Control
We now turn our attention to creating custom server controls. The first decision that we must
make when building a custom server control is what base class to inherit from. In the next
section, we cover the generic base classes that are available to inherit from in addition to some
decision-making guidelines on which base class to use.

Which Base Class?

The discussion of the control hierarchy in Chapter 1covered the various families of controls in
the three main namespaces: System.Web.UI, System.Web.UI.WebControls, and System.Web.UI.
HtmlControls. You have the option to inherit from any of the controls in these namespaces.

For those who prefer to start with a blank slate, which is the approach we take in this
section, three control classes stand out as a potential starting point:

• System.Web.UI.Control is the base class that all controls directly or indirectly inherit
from. It provides the bare minimum features required to call a class a server control.

• System.Web.UI.WebControls.WebControl adds CSS styling management to the rendering
process, which makes it easier to build a styled custom control.

• System.Web.UI.WebControls.WebParts adds web part functionality to ASP.NET 2.0 and
later, whereas with ASP.NET 1.1 web part functionality was only available within the
SharePoint runtime environment. It is still possible to create SharePoint-specific web
parts to take advantage of the features and capabilities available within the SharePoint
runtime environment, but it is no longer a requirement with ASP.NET 2.0 and later.

Still a blank state but a bit more specific are the following potential base classes that became
available in .NET Framework 2.0 and later:

• System.Web.UI.WebControls.CompositeControl can serve as a great starting point when
building composite controls. It also removes the need to create a custom designer
for composite controls to render correctly at design-time as was required in .NET
Framework 1.1.

• System.Web.UI.WebControls.DataBoundControl can serve as a great starting point when
building custom server controls that include data binding, since it takes care of much of
the data binding plumbing code. DataBoundControl also includes a custom designer that
can serve most needs when building a data-bound control.

Cameron_865-2C02.fm Page 60 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 61

• System.Web.UI.WebControls.CompositeDataBoundControl can serve as a great starting
point when building a custom composite server control that includes data binding,
since it also helps to manage the data binding and includes a designer.

Except for the composite control TableCompCustomControl, the examples in this chapter
inherit from System.Web.UI.Control to keep things as simple as possible and provide you with
a foundation in the features of the root control class. In later chapters, we examine the extra
features that make System.Web.UI.WebControls.WebControl the best starting point for most
projects as well as what is available when inheriting from the System.Web.UI.WebControls.WebParts
base class.

Another option for building controls is inheriting from existing controls that are available
in the framework. An example would be to inherit from the TextBox control and add validation
capabilities to ensure that only a phone number is entered into it. You could also take a more
complex control, such as the DataGrid, and customize it to your needs. Though we do provide
a simple example of inheriting from an existing control, this chapter concentrates on building
custom controls from scratch or, more accurately, from the base System.Web.UI.Control class.

Rendered or Composite Control?

The second major decision in building a custom control concerns the construction technique.
The two main options available relate to how a control generates its HTML:

• A server control that renders its own HTML

• A composite control that relies on its children controls to perform the HTML rendering

Figure 2-6 shows these two control options.

Figure 2-6. Rendered versus composite custom controls

Cameron_865-2C02.fm Page 61 Wednesday, February 20, 2008 4:31 PM

62 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Rendered controls tend to be simpler in nature and have a close relationship with indi-
vidual HTML tags. Examples of this type of control in the ASP.NET Framework are the TextBox
and Button controls that emit the <input> tag into the HTML stream. Nothing prevents a devel-
oper from putting more complex HTML rendering into these custom controls, but at some
point, maintaining large amounts of rendered HTML can present a code maintenance problem.

Composite controls are able to take on more complex UI rendering tasks, because they
follow good object-oriented principles of abstraction and encapsulation. Instead of trying to
generate all the output through direct HTML emission, they break down the content genera-
tion process into a hierarchy of child controls that are responsible for rendering the portion of
HTML that is their responsibility. A great example of this is the GridView control, which builds
a fairly complex hierarchy of controls to generate its HTML table output. In .NET Framework
2.0 and later, there is a new base class System.Web.UI.CompositeControl that includes a custom
designer to ensure proper rendering at design time. We inherit from CompositeControl when
building the TableCompCustomControl example.

Separating the Web Application and Control Library

The examples demonstrated so far in the book have all been built under the assumption that
they are part of the same ASP.NET web application. Custom ASP.NET server control develop-
ment should deviate from this method and be constructed in a separate library project to
generate an assembly independent of any web application code. The sample source code for
the book follows this advice, as it has a web application project and a control library project
holding the source code for all the custom controls.

The MenuCustomControl Server Control

The MenuCustomControl class is a clone of its user control cousin, rendering a simple HTML hyper-
link menu. Because custom controls do not have the luxury of declaratively specifying the HTML
output using drag and drop with the Visual Studio Toolbox and the Designer surface, we must use
the facilities of the HtmlTextWriter class to generate the HTML output programmatically.

HtmlTextWriter is passed as the only parameter to the all-important Render() method of
the System.Web.UI.Control base class. Render() is overridden by a custom control to inject the
appropriate HTML content into the output stream.

The Render() method in Listing 2-12 calls on the services of a helper method named
RenderMenuItem() that does the work for each item in the menu. Using helper methods is a
good habit, as it keeps the rendering code more manageable.

Listing 2-12. The MenuCustomControl Class File

using System;
using System.Web;
using System.Web.UI;

namespace ControlsBook2Lib.Ch02
{

Cameron_865-2C02.fm Page 62 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 63

 [ToolboxData("<{0}:menucustomcontrol runat=server></{0}:menucustomcontrol>")]
 public class MenuCustomControl : Control
 {
 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);

 writer.WriteLine("<div>");
 RenderMenuItem(writer, "Apress", "http://www.apress.com");
 writer.Write(" | ");
 RenderMenuItem(writer, "Microsoft", "http://www.microsoft.com");
 writer.Write(" | ");
 RenderMenuItem(writer, "MSDN", "http://msdn.microsoft.com");
 writer.Write(" | ");
 RenderMenuItem(writer, "ASP.NET", "http://asp.net");
 writer.WriteLine("</div>");
 }

 private void RenderMenuItem(HtmlTextWriter writer, string title, string url)
 {
 writer.Write("<a href=\"");
 writer.Write(url);
 writer.Write("\">");
 writer.Write(title);
 writer.WriteLine("");
 }
 }
}

HtmlTextWriter in this example is used in its basic mode by sticking to its Write() and
WriteLine() methods. These methods should be familiar to the ASP developer, as they are
analogous to the Response.Write() and Response.WriteLine() methods that take string input
and pass it directly to the output stream.

Using the MenuCustomControl Server Control

Like user controls, custom controls cannot stand alone without the hosting support of a web
form .aspx page. The registration process with custom controls is similar to that of user controls
except for describing the location of the control content. Instead of providing a path to an .ascx
file, we are looking for an assembly and namespace that contains the code of the custom control:

<%@ Register TagPrefix="apress" Namespace="ControlsBookLib.Ch02"
 Assembly="ControlsBookLib" %>

You have to remember to make the control assembly, like ControlsBookLib in this example,
available to the web application either through the GAC or the web application’s bin directory.
If things are set up properly, the MenuCustomControl provides an accurate representation in the
Design view of its HTML output, as shown in Figure 2-7.

Cameron_865-2C02.fm Page 63 Wednesday, February 20, 2008 4:31 PM

http://www.apress.com
http://www.microsoft.com
http://msdn.microsoft.com
http://asp.net

64 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Figure 2-7. The Visual Studio Design view of the MenuCustomControl on a web form

Figure 2-8 confirms that the HTML output from our MenuCustomControl custom server control
is the same as that of the user control in a browser. Listing 2-13 presents MenuCustomControlDemo’s
.aspx file.

Figure 2-8. Output from the menu custom control demonstration web form

Cameron_865-2C02.fm Page 64 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 65

Listing 2-13. The MenuCustomControlDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="MenuCustomControlDemo.aspx.cs"
Inherits="ControlsBook2Web.Ch02.MenuCustomControlDemo"
 Title="Menu Custom Control Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch02"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Menu Custom Control</h3>
 <apress:MenuCustomControl ID="menu1" runat="server" />

</asp:Content>

The TableCustomControl Server Control via Rendering

We continue our task of duplicating the user control examples via custom controls by imple-
menting the dynamic HTML table. To make things more interesting, we demonstrate some of
the more advanced techniques of the HtmlTextWriter class, and we use control composition to
build the HTML table content. The rendering version is on deck first. Listing 2-14 shows the
TableCustomControl class file.

Listing 2-14. The TableCustomControl Class File

using System;
using System.Web;
using System.Web.UI;

namespace ControlsBook2Lib.Ch02
{
 [ToolboxData("<{0}:tablecustomcontrol runat=server></{0}:tablecustomcontrol>")]
 public class TableCustomControl : Control
 {
 // Properties to access dimensions of HTML table
 // New property declaration syntax in C# 3.0
 public int X { get; set; }
 public int Y { get; set; }

Cameron_865-2C02.fm Page 65 Wednesday, February 20, 2008 4:31 PM

66 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);

 RenderHeader(writer);
 RenderTable(writer, X, Y);
 }

 private void RenderHeader(HtmlTextWriter writer)
 {
 // write just <H3
 writer.WriteBeginTag("h3");
 // write >
 writer.Write(HtmlTextWriter.TagRightChar);
 writer.Write("TableCustomControl");
 // write

 writer.WriteFullBeginTag("br");
 writer.Write("X:" + X.ToString() + " ");
 writer.WriteLine("Y:" + Y.ToString() + " ");
 // write </h3>
 writer.WriteEndTag("h3");
 }

 private void RenderTable(HtmlTextWriter writer, int xDim, int yDim)
 {
 // write <TABLE border="1">
 writer.AddAttribute(HtmlTextWriterAttribute.Border, "1");
 writer.RenderBeginTag(HtmlTextWriterTag.Table);

 for (int y = 0; y < yDim; y++)
 {
 // write <TR>
 writer.RenderBeginTag(HtmlTextWriterTag.Tr);

 for (int x = 0; x < xDim; x++)
 {
 // write <TD cellspacing="1">
 writer.AddAttribute(HtmlTextWriterAttribute.Cellspacing, "1");
 writer.RenderBeginTag(HtmlTextWriterTag.Td);

 // write
 writer.RenderBeginTag(HtmlTextWriterTag.Span);
 writer.Write("X:" + x.ToString());
 writer.Write("Y:" + y.ToString());
 // write
 writer.RenderEndTag();

Cameron_865-2C02.fm Page 66 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 67

 // write </TD>
 writer.RenderEndTag();
 }
 // write </TR>
 writer.RenderEndTag();
 }
 // write </TABLE>
 writer.RenderEndTag();
 }
 }

}

The property declarations for the X and Y dimensions of the HTML table demonstrate the
new C# 3.0 syntax available to declare simple properties in a compact manner. Instead of declaring
a private member variable and essentially empty getter and setter methods, this syntax will
create a private member variable automatically:

public int X { get; set; }
public int Y { get; set; }

 More interestingly, the Render() method drives the process of rendering the control output.

Rendering the Table Header

The RenderHeader() method is responsible for displaying information about the X and Y prop-
erties inside of an <h3> section. The code to build the <h3> tag demonstrates the ability to use
the special Write() methods of the HtmlTextWriter class.

WriteBeginTag() writes the starting portion of a tag, including the opening bracket and the
name of the tag, without closing it:

// write just <h3
writer.WriteBeginTag("h3");

At this point, you can manually add HTML attributes, such as borders and styles, using the
Write() method of HtmlTextWriter if necessary. You also have the responsibility of explicitly
closing the tag.

A handy way to write out special characters is to use the helper fields exposed by
HtmlTextWriter to produce the correct strings, which sure beats the escaping that has to occur
inside the C# string for special characters if you do all the work on your own. Table 2-1 shows
the fields that are available.

Table 2-1. String Fields Exposed by HtmlTextWriter

HtmlTextWriter Field String Output

DefaultTabString Single tab character

DoubleQuoteChar ""

EndTagLeftChars </

EqualsChar =

Cameron_865-2C02.fm Page 67 Wednesday, February 20, 2008 4:31 PM

68 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

The RenderHeader() code uses TagRightChar to generate the closing bracket for the <h3> tag:

// write >
writer.Write(HtmlTextWriter.TagRightChar);

An easier method to write a fully formed tag is to use the WriteFullBegin() tag method.
This is useful for HTML tags such as
 that are commonly used without attributes:

// write

writer.WriteFullBeginTag("br");

Closing the <h3> tag requires a tag that contains a closing slash before the name (e.g.,
</h3>). WriteEndTag() can be used to generate this content in one atomic action:

// write </h3>
writer.WriteEndTag("h3");

Rendering the Table

Once the control header content is rendered, we move on to building the HTML table in the
RenderTable() method. This portion of the control demonstrates a nifty feature of the
HtmlTextWriter in working with HTML attributes. The AddAttribute() method takes a key/value
string pair for each attribute you wish to render on an HTML tag. You can call this method
multiple times to build up as many attributes to the follow-on tag as necessary. Once you’ve
finished adding attributes, the next step is to use the RenderBeginTag() method. This method is
smart enough to look at the attributes that were added previously and render them into the
final output stream along with the tag name and brackets. The RenderTable() method uses this
functionality to build the <table> tag and add a Border attribute to it:

// write <table border="1">
writer.AddAttribute(HtmlTextWriterAttribute.Border,"1");
writer.RenderBeginTag(HtmlTextWriterTag.Table);

EqualsDoubleQuoteString =""

SelfClosingChars /

SelfClosingTagEnd />

SemicolonChar ;

SingleQuoteChar '

SlashChar /

SpaceChar Space

StyleEqualsChar :

TagLeftChar <

TagRightChar >

Table 2-1. String Fields Exposed by HtmlTextWriter (Continued)

HtmlTextWriter Field String Output

Cameron_865-2C02.fm Page 68 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 69

The HtmlTextWriterTag enumeration is used for the <table> tag and the Border attribute
strings as a simplified means of specifying the correct HTML name. Many of the HtmlTextWriter
methods are overloaded to accept this enumeration and return the appropriate string value.
See the ASP.NET documentation for full details on what names are supported.

If you use the RenderBeginTag() to build your opening tag, you must remember to pair it
with a RenderEndTag() call to generate the closing tag. Fortunately, the HtmlTextWriter class is
smart enough to remember the nesting and the order of the two routines to match them up
and generate the correct closing tags. Closing our table is a direct call to RenderEndTag() with
no parameters:

// write </table>
writer.RenderEndTag();

The rest of the RenderTable() routine uses RenderBeginTag() and RenderEndTag() in a two-
loop scenario to build the <tr> and <td> tags along with their content according to the size
specified in the X and Y dimension fields of the control.

The TableCustomControl Server Control via Control Composition

The second table custom control example accomplishes the same task as the first but does not
bother with getting its hands dirty with HTML rendering. It follows the lead of the table user
control and builds up its control content programmatically by adding child controls such as
the table and its cells.

■Note Because we are building a composite control, we inherit from System.UI.Web.CompositeControl,
which implements the INamingContainer interface, to ensure that unique names are generated for each
server control instance on the same page to prevent name conflicts. We discuss why this is necessary in
Chapter 5. CompositeControl also brings in a custom designer automatically via the base class to ensure
proper design-time rendering.

Listing 2-15 shows TableCompCustomControl’s class file.

Listing 2-15. The TableCompCustomControl Class File

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Text;

namespace ControlsBook2Lib.Ch02
{
 [ToolboxData("<{0}:tablecompcustomcontrol runat=server></{0}:
 tablecompcustomcontrol>")]

Cameron_865-2C02.fm Page 69 Wednesday, February 20, 2008 4:31 PM

70 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

 public class TableCompCustomControl : CompositeControl
 {
 private HtmlTable table;

 // properties to access dimensions of HTML table
 int xDim;
 public int X
 {
 get
 {
 return xDim;
 }
 set
 {
 xDim = value;
 }
 }

 int yDim;
 public int Y
 {
 get
 {
 return yDim;
 }
 set
 {
 yDim = value;
 }
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();
 BuildHeader();
 BuildTable(X, Y);
 }

 private void BuildHeader()
 {

Cameron_865-2C02.fm Page 70 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 71

 StringBuilder sb = new StringBuilder();
 sb.Append("TableCompCustomControl
");
 sb.Append("X:");
 sb.Append(X.ToString());
 sb.Append(" ");
 sb.Append("Y:");
 sb.Append(Y.ToString());
 sb.Append(" ");

 HtmlGenericControl header = new HtmlGenericControl("h3");
 header.InnerHtml = sb.ToString();
 Controls.Add(header);
 }

 private void BuildTable(int xDim, int yDim)
 {
 HtmlTableRow row;
 HtmlTableCell cell;
 HtmlGenericControl content;

 // create <table border=1>
 table = new HtmlTable();
 table.Border = 1;

 for (int y = 0; y < Y; y++)
 {
 // create <tr>
 row = new HtmlTableRow();

 for (int x = 0; x < X; x++)
 {
 // create <td cellspacing=1>
 cell = new HtmlTableCell();
 cell.Attributes.Add("border", "1");

 // create a
 content = new HtmlGenericControl("span");
 content.InnerHtml = "X:" + x.ToString() +
 "Y:" + y.ToString();
 cell.Controls.Add(content);

 row.Cells.Add(cell);
 }
 table.Rows.Add(row);
 }
 Controls.Add(table);
 }
 }
}

Cameron_865-2C02.fm Page 71 Wednesday, February 20, 2008 4:31 PM

72 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Composite custom controls typically do not override the Render() method. They rely on
the base class implementation of Render() provided by the System.Web.UI.Control class that
locates the Controls collection and calls Render() for each child control. This recursive call, in
turn, causes the child controls to either render or do the same with their children, recursively
walking through the render tree. In the end, we have a nice HTML output.

Although the composite control doesn’t override the Render() method, it needs to override the
CreateChildControls() method that is called by the ASP.NET Framework. This method is called
to give the custom server control the opportunity to create its Controls collection, populating
it with the appropriate child controls for rendering the desired output.

One extra task we need to perform is to override the Controls property exposed by the base
Control class. This ensures that when an outside client attempts to access our composite control,
the child control content will always be created and ready for access.

The EnsureChildControls() method does the work for us. Calling it will call
CreateChildControls() if the child controls have not been initialized. Overriding Controls is
always recommended in composite controls.

It is also recommended to call EnsureChildControls() for properties in a composite control
right at the beginning of the Get and Set methods. This prevents any chance of accessing a
child control before it is created. We deviate from this practice for the TableCompCustomControl
control, because the X and Y properties must be set and available before we can create the control
hierarchy. Otherwise, we wouldn’t know what dimensions to use for the table.

Our implementation of CreateChildControls() calls into routines responsible for adding
the child controls representing the header and the HTML table of the control, which are named
BuildHeader() and BuildTable(), respectively. It is also the linkage point for evaluating the X
and Y dimensions of the table.

BuildHeader() demonstrates the use of an HtmlGenericControl control from the System.
Web.UI.HtmlControls namespace to render the <h3> content. This control was chosen due to its
lack of built-in styling capabilities to keep the example simple. We build up the string content
of the control by using the StringBuilder class. This class is a more efficient way of building up
strings in .NET than concatenating literals as Strings, because StringBuilder uses a buffer.
Variables of type String are immutable, and a concatenation operation actually builds a third
string from the two strings brought together, literal or otherwise. For those who were worried
about the HtmlTextWriter class and its efficiencies, the Render() and Write() methods write to a
buffer, so there aren’t any performance concerns about calling these methods multiple times.

Once we have built up the string content, we next use the InnerHtml property to easily load
the HTML information inside the <h3> control. The final step is to add the HtmlGenericControl
to the Controls collection of our new custom server control.

Building the HTML table in the BuildTable() method follows the well worn process of
programmatically building up the HtmlTable control’s child content. The result is almost an
exact image of the user control version of the table. This is a good indication of the strength of
custom controls when it comes to dynamic generation. The declarative advantages of the user
control are not as powerful when content is built on the fly.

Using the Custom Table Controls

To verify that both custom controls provide identical HTML output, we use a web form that
hosts them side by side in an HTML table. Figure 2-9 shows that they have the same Designer
capability, though TableCompCustomControl requires the additional Designer attribute on its
class to render correctly at design time, as discussed previously. Figure 2-10 shows that the
final output is identical in the browser.

Cameron_865-2C02.fm Page 72 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 73

Figure 2-9. The Visual Studio Design view of custom table controls on a web form

Figure 2-10. Output from the table custom control demonstration web form

Listings 2-16 and 2-17 show TableCustomControlDemo’s .aspx and class files.

Cameron_865-2C02.fm Page 73 Wednesday, February 20, 2008 4:31 PM

74 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Listing 2-16. The TableCustomControlDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TableCustomControlDemo.aspx.cs"
Inherits="ControlsBook2Web.Ch02.TableCustomControlDemo"
 Title="Table Custom Controls Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch02"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Table Custom Controls</h3>
 <table>
 <tr>
 <td style="width: 50%">
 <apress:TableCustomControl ID="TableCust1" runat="server" Y="2" X="2">
 </apress:TableCustomControl>
 </td>
 <td>
 <apress:TableCompCustomControl ID="TableCompCust1"
 runat="server" X="2" Y="2"></apress:TableCompCustomControl>
 </td>
 </tr>
 </table>
</asp:Content>

Listing 2-17. The TableCustomControlDemo Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch02
{
 public partial class TableCustomControlDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 TableCust1.X = 3;
 TableCust1.Y = 3;
 TableCompCust1.X = 3;
 TableCompCust1.Y = 3;
 }

Cameron_865-2C02.fm Page 74 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 75

 }
 }
}

Inheriting from an Existing Server Control

The previous examples are very simple controls in concept. This was by design; we focused on
the details required to build the simplest of controls in order to give you a taste of the control-
building process. In this section, we demonstrate how, with just a little bit of code, it is possible
to add pleasing functionality through inheritance to one of the existing ASP.NET controls.

In this simple inheritance example, we’ll add a 3-D look to the WebControl TextBox class. To
add this UI behavior, we take advantage of the DHTML features of Internet Explorer when
rendering our new server control. Listing 2-18 contains TextBox3d’s class file.

Listing 2-18. The TextBox3d Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;
using System.Drawing;

namespace ControlsBook2Lib.Ch02
{
 [ToolboxData("<{0}:textbox3d runat=server></{0}:textbox3d>"),
 ToolboxBitmap(typeof(ControlsBook2Lib.Ch02.TextBox3d),
 "ControlsBook2Lib.Ch03.TextBox3d.bmp")]
 public class TextBox3d : TextBox// Inherit from rich control
 {
 public TextBox3d()
 {
 Enable3D = true;
 }

 // Custom property to set 3D appearance
 [DescriptionAttribute("Set to true for 3d appearance"), DefaultValue("True")]
 public bool Enable3D
 {
 get
 {
 object enable3D = ViewState["Enable3D"];
 if (enable3D == null)
 return false;
 else
 return (bool)enable3D;
 }
 set
 {

Cameron_865-2C02.fm Page 75 Wednesday, February 20, 2008 4:31 PM

76 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

 ViewState["Enable3D"] = value;
 }
 }

 protected override void Render(HtmlTextWriter output)
 {
 // Add DHTML style attribute
 if (Enable3D)
 output.AddStyleAttribute("FILTER", "progid:DXImageTransform.Microsoft.
 dropshadow(OffX=2, OffY=2, Color='gray', Positive='true'");

 base.Render(output);
 }
 }
}

In our inheritance example, we have two main features: a property called Enable3D and an
overridden Render() method. The property is used to determine whether or not to render with
a 3-D look. Providing a Boolean property that allows the developer to revert to the default
behavior of the base class server control is a good design guideline to follow when inheriting
from rich server controls in ASP.NET.

We make this property available so that it is possible to revert to the TextBox base class’s look
and feel without having to swap out the control. The property uses ViewState, which we cover in
Chapter 3, to store the value, with a default value of true set in the control’s constructor.

The only other interesting code in this simple control is the Render() method. Here, we add a
style attribute to the output variable to provide the 3-D look to the base TextBox control. We round
out this method with a call to the base class’s Render() method to finish off all the work.

As in previous examples, we need an .aspx page to host our custom control and show off
our new 3-D look. Figure 2-11 shows the 3-D TextBox at runtime.

Figure 2-11. Output from the TextBox3dDemo web form

Cameron_865-2C02.fm Page 76 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 77

Listings 2-19 and 2-20 contain TextBox3dDemo’s .aspx and class files, respectively.

Listing 2-19. The TextBox3dDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TextBox3DDemo.aspx.cs"
Inherits="ControlsBook2Web.Ch02.TextBox3DDemo"
 Title="TextBox3D Demo" %>

<%@ Register TagPrefix="apress" Namespace=
 "ControlsBook2Lib.Ch02" Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">

 <apress:TextBox3d ID="TextBox3d1" runat="server" Width="159px" Height="22px"
 Enable3D="True">I look 3D!</apress:TextBox3d>

 <apress:TextBox3d ID="Textbox3d2" runat="server" Width="159px" Height="22px"
 Enable3D="false">I don't!</apress:TextBox3d>

</asp:Content>

Listing 2-20. The TextBox3dDemo Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch02
{
 public partial class TextBox3DDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

Having a rich server control as the base class is a powerful means of packaging function-
ality that takes advantage of browser DHTML capabilities to generate pleasing output, as this
example demonstrates.

In the preceding examples, we did not provide persistent state for control properties to
keep the example code simple. The lack of a persistent state requires that the control’s value be
set in the page’s Load event if the desired value is different than what is set declaratively in the

Cameron_865-2C02.fm Page 77 Wednesday, February 20, 2008 4:31 PM

78 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

page. In the next chapter, we discuss how to take advantage of state management in server
controls, but first, we provide a quick introduction to the new AJAX functionality first available
in ASP.NET 3.0 and enhanced in ASP.NET 3.5.

ASP.NET AJAX
ASP.NET AJAX 1.0 released after .NET Framework 2.0 as an officially supported product that
installs on top of .NET Framework 2.0. ASP.NET AJAX 1.0 provides a set of technologies to add
AJAX (Asynchronous JavaScript and XML) support to ASP.NET 2.0. It consists of a client-side
script framework and server controls, as well as the underlying plumbing for the AJAX func-
tionality with ASP.NET.

In addition to the ASP.NET AJAX 1.0 release, the ASP.NET AJAX Control Toolkit released as
a shared-source implementation built on top of the ASP.NET AJAX Extensions 1.0 core
functionality.

■Note The ASP.NET AJAX Control Toolkit is not supported by Microsoft directly as a stand-alone product;
it is shipped as source code. This means that customers using the Control Toolkit can modify the source code
directly as well as seek help from the community and user forum resources.

The Control Toolkit has lots of useful and powerful AJAX controls and extenders with source
code that can be used as-is in applications or server as example code for building your own
AJAX-enabled server controls or an extender control that can apply AJAX functionality to an
existing server control.

The .NET Framework 3.5 provides additional enhancements to ASP.NET, building on the
currently available ASP.NET AJAX functionality, which we cover in Chapter 9. In this chapter,
we provide a quick demonstration of writing AJAX-enabled web pages—ASP.NET style—through
the use of the UpdatePanel control.

ASP.NET AJAX UpdatePanel Server Control
In Visual Studio 2008 with .NET Framework 3.5, a new node is available in the Toolbox window,
shown in Figure 2-12.

For a quick example, we’ve copied the HtmlControls sample from Chapter 1 into the Ch02
folder in the web project and renamed it HtmlControlsAJAX.aspx. As a quick review, in Chapter 1,
this example took X and Y values to dynamically build a table that had X columns and Y rows.
To quickly make this page more responsive with less page flickering (i.e., to add AJAX function-
ality), the <input> tag that renders as the button and the tag that serves as a container
for the resulting table are moved into an UpdatePanel server control available on the AJAX
Extensions Toolbox node. An additional change is required: an ASP.NET AJAX ScriptManager
server control must appear somewhere on the page before the AJAX server controls appear in
terms. In our scenario, a ScriptManager server control was added to the MasterPage
ControlsBook2MasterPage.master so that it is always present.

Cameron_865-2C02.fm Page 78 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 79

Figure 2-12. The AJAX Extensions Toolbox node

This worked great in terms of only updating the tag and not reloading the whole
page, but if you enter fairly large values for X and Y, such as 200 × 200, several seconds will pass
before the table renders without providing any visual queue as to what is going on. This could
cause the user to click the button multiple times, thinking that the first click didn’t work.

ASP.NET AJAX UpdateProgress Server Control
In building this sample, we immediately saw the value that the ASP.NET AJAX extensions
provide in terms of quickly adding AJAX-style functionality to an existing web page. To take the
AJAX example to the next level, we added an UpdateProgress server control to provide a visual
cue to the end user that work is occurring. This is a very important design requirement in building
effective AJAX-enabled web applications. Listings 2-21 and 2-22 contain the HtmlControlsAJAX
demonstration .aspx and code-behind class files, respectively.

Listing 2-21. The HtmlControlsAJAX Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="HtmlControlsAJAX.aspx.cs"
Inherits="ControlsBook2Web.Ch02.HtmlControlsAJAX"
 Title="HTML Controls Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">2</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Encapsulating Functionality in ASP.NET</asp:Label>
</asp:Content>

Cameron_865-2C02.fm Page 79 Wednesday, February 20, 2008 4:31 PM

80 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 HTML Controls</h3>
 X
 <input type="text" id="XTextBox" runat="server" />

 Y
 <input type="text" id="YTextBox" runat="server" />

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <input type="submit" id="BuildTableButton" runat="server" value=
 "Build Table" onserverclick="BuildTableButton_ServerClick" />
 <asp:UpdateProgress ID="UpdateProgress1" runat="server"
 AssociatedUpdatePanelID="UpdatePanel1">
 <ProgressTemplate>
 Updating...</ProgressTemplate>
 </asp:UpdateProgress>

 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

Listing 2-22. The TextBox3dDemo Code-Behind Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

namespace ControlsBook2Web.Ch02
{
 public partial class HtmlControlsAJAX : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void BuildTableButton_ServerClick(object sender, EventArgs e)
 {
 int xDim = Convert.ToInt32(XTextBox.Value);
 int yDim = Convert.ToInt32(YTextBox.Value);
 BuildTable(xDim, yDim);
 }

Cameron_865-2C02.fm Page 80 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 81

 private void BuildTable(int xDim, int yDim)
 {
 HtmlTable table;
 HtmlTableRow row;
 HtmlTableCell cell;
 HtmlGenericControl content;

 table = new HtmlTable();
 table.Border = 1;
 for (int y = 0; y < yDim; y++)
 {
 row = new HtmlTableRow();
 for (int x = 0; x < xDim; x++)
 {
 cell = new HtmlTableCell();
 cell.Style.Add("font", "16pt verdana bold italic");
 cell.Style.Add("background-color", "red");
 cell.Style.Add("color", "yellow");

 content = new HtmlGenericControl("SPAN");
 content.InnerHtml = "X:" + x.ToString() +
 "Y:" + y.ToString();
 cell.Controls.Add(content);
 row.Cells.Add(cell);
 }
 table.Rows.Add(row);
 }
 Span1.Controls.Add(table);
 }
 }
}

When reviewing the source code, you will find that no changes were needed in the code-
behind class file. All of the hard AJAX programming is automatically handled by the ASP.NET
AJAX extensions server controls and associated JavaScript file that ships with ASP.NET AJAX.
Figure 2-13 shows the page loading with the phrase “Updating . . .” displayed under the Build
Table button while waiting for the update HTML to return from the AJAX call.

ASP.NET AJAX provides a rapid ability to add AJAX-like functionality to existing web sites.
In Chapter 9, we cover building server controls that are AJAX aware as well as considerations to
make sure that any custom server controls you develop work properly within the ASP.NET
AJAX popular UpdatePanel server control.

Cameron_865-2C02.fm Page 81 Wednesday, February 20, 2008 4:31 PM

82 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

Figure 2-13. The Web form demonstrating ASP.NET AJAX partial updates with progress status

Using Design-Time Attributes
Visual Studio provides a rich, powerful development environment with automatic completion
and default properties, as well as custom property editors to speed developers’ coding efforts.
There are a few different technologies available to integrate and extend the Visual Studio envi-
ronment. Attributes provide one means to extend Visual Studio and are used to integrate custom
server controls into the environment. Before we present a quick overview of the most important
design-time attributes, we provide a short background on attributes.

What’s an Attribute?
An attribute is essentially a class that contains properties and methods used to modify other
classes, class methods, or class properties. Attribute information is stored with the metadata of
the element and can be retrieved at runtime through reflection.

Attributes can be applied to an entire class or to a specific class method or property. Attribute
classes are defined as public classes. All attributes derive directly or indirectly from the System.
Attribute class, and attribute classes generally end in the word Attribute to enhance readability.
Here is a sample attribute declaration:

public class SampleAttribute : Attribute
{
}

An attribute is declared within brackets just before the element to which it is applied. The
syntax consists of calling a constructor on the attribute. Here is how an attribute is applied to a
class method:

Cameron_865-2C02.fm Page 82 Wednesday, February 20, 2008 4:31 PM

C HA P TE R 2 ■ E N CA P SU L A T I N G F U N C T I ON AL I TY IN AS P. N E T 83

public class SampleClass
{
 [SampleAttribute]
 public virtual void SampleMethod()
 {
 //...
 }
}

Attributes provide an object-oriented way to extend the declarative syntax of the .NET
Framework without having to resort to macros or some other outside mechanism to store
configuration information such as the registry.

Common Design-Time Attributes
Now that you have a bit of background on attributes, let’s move on to design-time attributes for
server controls. Design-time attributes exist in the System.ComponentModel namespace. Table 2-2
provides a brief description of the most common design-time attributes.

Table 2-2. Common Design-Time Attributes

Attribute Description

BindableAttribute Indicates whether or not a property supports two-way
data binding

BrowsableAttribute Indicates whether or not a property or event should be listed in
a property browser

CategoryAttribute Specifies in which category a property or event should be listed
in the property browser

DefaultEvent Specifies the name of the default event for a class

DefaultProperty Specifies the name of the default property for a class

DefaultValue Sets the default value for a property

DescriptionAttribute Allows the property browser to display a brief description of
a property

DesignOnlyAttribute Specifies that a property can be set only at design time

EditorAttribute Associates a UI type editor with a property

TagPrefix Assembly-level attribute that indicates the tag prefix for a
control or set of controls within an assembly

ToolboxData Specifies default values for control attributes and customizes
the initial HTML content

TypeConverterAttribute Defines a custom type converter for a property

Cameron_865-2C02.fm Page 83 Wednesday, February 20, 2008 4:31 PM

84 CH AP T E R 2 ■ E N C AP S U L AT IN G FU N CT IO N A L IT Y I N A SP . N E T

You can apply multiple attributes to a particular class, method, or property. There are two
ways to do this. One syntax is to separate attributes by a comma within a set of brackets:

[DefaultProperty("Text"), toolboxdata("<{0}:mylabel runat=server></{0}:mylabel>")]
 public class SuperLabel : Label
 {...}

The other syntax is to put each attribute in its own set of brackets:

[DefaultProperty("Text")]
[ToolboxData("<{0}:mylabel runat=server></{0}:mylabel>")]
 public class SuperLabel : Label
 {...}

This completes our whirlwind tour of attributes and of the most common design-time
attributes available for use on custom controls. In this section we provided a short overview of
basic Designer attributes that we use in the code samples in this book. We cover design-time
support in more detail in Chapter 11.

Summary
The ASP.NET object model fully supports inheritance as a method of providing additional
functionality to existing controls. Given the object-oriented nature of the Framework, it is quite
easy to add powerful functionality with just a few lines of code.

ASP.NET provides two primary means of building controls: user controls and custom
controls. Encapsulation or composition is another method available in ASP.NET to package
functionality. Server control encapsulation is more applicable when focused on generic logic.
User control encapsulation is more applicable when packaging application-specific logic.

User controls have the benefit of declarative UI development and require less skill from
the development staff. Custom controls provide bare-bones access to the ASP.NET plumbing,
myriad design options, a superior deployment mechanism as an assembly, and better Designer
support for the developer/user.

Custom controls typically inherit from System.Web.UI.Control, System.Web.UI.WebControls.
WebControl, or System.Web.UI.WebControls.WebPart and are built using one of two primary
techniques: direct rendering or control composition. The HtmlTextWriter class provides a
significant amount of assistance with rendering HTML content from a custom control through
its Write() and Render() methods. Custom controls that use control composition speed devel-
opment time by letting child controls handle their own HTML generation through the application
of good object-oriented design principles.

Cameron_865-2C02.fm Page 84 Wednesday, February 20, 2008 4:31 PM

85

■ ■ ■

C H A P T E R 3

ASP.NET State Management

The need to maintain state in a web application has driven vendors and those who participate
in the evolution of web protocols to provide additional tools and standards to make life easier
for web developers. Through these clever techniques, you can make it appear to the user as if
the browser is intimately linked to the web application and maintains an ongoing, connected
relationship, as experienced when using a thick-client application running locally on the
user’s desktop. AJAX functionality takes these state management techniques to the next level
by reducing the number of full-page postback cycles giving the application an appearance
even more like a Windows application. In this chapter, we cover the various techniques avail-
able in ASP.NET 3.5 to maintain state and demonstrate how these techniques relate to building
server controls, such as using ASP.NET ViewState and ControlState to leverage the ASP.NET
infrastructure.

Web developers can choose to maintain application state in a web application in two loca-
tions: on the client side or on the web server. Client-side state management techniques include
cookies and hidden form fields. Server-side state management techniques include Session and
Application variables, as well as additional options that we discuss later in this chapter.

ASP.NET Request-Processing Architecture
When you develop web-based applications, managing user state and implementing a secure
robust application are high on the list of requirements. On the Internet, ensuring state and
application integrity (i.e., authorization, authentication, and auditing) is even more important
because of the wild nature of the Web. In this section, we provide a quick overview of the ASP.NET
request processing architecture. While not strictly required for server control development,
understanding the basics of the ASP.NET processing architecture, as well as HttpModules and
HttpHandlers, can help a developer understand where to plug in custom server controls or
where an HttpModule or HttpHandler may be more appropriate.

When a browser client makes a request to Internet Information Services (IIS) for a resource
such as an .aspx file, by default, ASP.NET initiates and then maintains user state for the duration of
the user’s site interaction, which can include multiple request/response HTTP sessions. Figure 3-1
shows the logical data flow for a typical ASP.NET request. The request is made to IIS, which checks
the file extension mappings to determine how to handle the request. If it is an ASP.NET request, IIS
hands off the request to the ASP.NET Internet Server Application Programming Interface (ISAPI)
library, aspnet_isapi.dll. That library next funnels the request into the ASP.NET pluggable
architecture, handing off the request to the ASP.NET worker process, aspnet_wp.exe.

Cameron_865-2C03.fm Page 85 Monday, February 25, 2008 1:58 PM

86 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Figure 3-1. ASP.NET request data flow

The worker process implements the HttpRuntime object, which handles ASP.NET requests
within the same process space and achieves isolation using separate AppDomains. The HttpRuntime
object uses an HttpApplicationFactory object to locate the correct AppDomain and create an
HttpApplication object to process the request. The global.asax file can be used to subscribe
to events available via the HttpApplication object. User state information for the current
user session within the application is made available through the Context property of the
HttpApplication-derived object. We cover Context in more detail in the “ASP.NET and Server-
Side State Management” section. At this point in the processing pipeline, any objects that imple-
ment the HttpModule class and are registered in the application will have their events fired.
For example, Session_Start and Session_End are implemented in an HTTP module named
SessionStateModule. HttpModule objects can be used to implement a variety of sitewide func-
tionality, such as a custom authentication architecture that verifies requests based on custom
HTTP header information.

After all registered HttpModule objects have a chance to process events, the request is
shepherded to the appropriate HTTP handler by calling its ProcessRequest() method. The
ProcessRequest() method takes one parameter of type HttpContext containing the user state of
the current request. Next, HttpHandler is responsible for generating a response to the request
using the Context.Response.Write() method. This entire process is illustrated in Figure 3-1.

As you can see, request processing flows through a series of ASP.NET objects that have full
access to the ASP.NET state. The ASP.NET classes in Figure 3-2 can examine the state of a user
request to implement authentication, authorization, and auditing in a web application. These
objects also implement numerous useful events that can be extended. The ASP.NET classes
that manage user state flow and request processing are shown in the figure. Note that the familiar
Request, Response, Application, and Session objects are implemented via classes in this section
of the ASP.NET class hierarchy as part of the HttpContext class.

The ASP.NET request processing architecture permits developers to plug into the architecture
by authoring custom objects that implement the HttpHandler or HttpModule class. As a point of
reference, the HttpHandler class has similar behavior to ISAPI extensions. Likewise, the HttpModule
class provides similar functionality to ISAPI filters. These two .NET classes greatly expand the
ISAPI library concept, as the classes are fully integrated into the ASP.NET architecture.

Cameron_865-2C03.fm Page 86 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 87

Figure 3-2. ASP.NET request processing classes

HttpHandler
HttpHandler objects deserve special attention, because ASP.NET uses this same architecture
to process requests for .aspx and .asmx pages. HttpHandlers enable processing of individual
HTTP URLs or groups of URL extensions within an application. Table 3-1 shows examples of
the HttpHandlers provided in ASP.NET by default.

The ASP.NET page handler PageHandlerFactory performs the important task of receiving
the user request and creating the Page object for manipulation by the developer. The Page object
makes user state easily accessible; this state information includes application and session
state, data stored in ViewState, and data stored in control state, which is new in ASP.NET 2.0
and later.

In general, an HttpHandler can be either synchronous or asynchronous. As you would guess,
a synchronous handler does not return data until it finishes processing the HTTP request for
which it is called. An asynchronous handler returns data immediately and is usually tasked
with launching a process that can be lengthy. As mentioned previously, HttpHandlers have a

Table 3-1. Built-in ASP.NET Handlers

Handler Description

ASP.NET service handler Default HttpHandler for all ASP.NET service (.asmx) pages

ASP.NET page handler Default HttpHandler for all ASP.NET (.aspx) pages

Cameron_865-2C03.fm Page 87 Monday, February 25, 2008 1:58 PM

88 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

simple implementation compared to writing an ISAPI extension library. After writing and
compiling code to implement an HttpHandler, deployment is a matter of registering the handler
in the application’s web.config file.

The single drawback when you compare HttpHandlers to ISAPI extensions is that you cannot
use HttpModules and HttpHandlers outside of ASP.NET in this manner.

ASP.NET and Server-Side State Management
Server-side state in ASP.NET consists of the familiar Application and Session objects, which
store application and user state data in a collection.

In general, data stored in Application variables tends to be like constants, shared by appli-
cation users and unchanging. Application variables are usually set in the global.asax file. Session
variables are user-connection specific and quite convenient for maintaining state throughout
an application. To gain access to these server-side state mechanisms, you use the Context object.

The Context Object
We mentioned previously that the HttpApplication class makes user state available to the
developer in the Context property of the HttpContext type. The HttpContext class implements
HttpSessionState and HttpApplicationState instances to provide server-side state manage-
ment. In this section, we cover these classes in detail, because they are important features of
the ASP.NET request-processing engine, as they provide server-side state mechanisms to web
applications.

Table 3-2 contains a partial description of some of the important properties attached to
the HttpContext class and what capabilities they provide. Refer to the .NET Framework docu-
mentation for more detailed information on the HttpContext class.

Table 3-2. Properties of the HttpContext Class

Property Description

Application Provides server-side state management for all clients of the web
application

ApplicationInstance Reference controls the execution process of the ASP.NET web request

Cache Provides access to the server-side cache in ASP.NET

Error Provides access to the error exceptions that occur during ASP.NET
execution

Items Key/value pair collection used to pass information between the compo-
nents in a request

Request Contains information from the client request, including browser type,
cookies, and values encoded in form and URL query string collections

Response Key/value pair collection used to pass information between the
requesting components

Server Provides utilities including Server.Transfer, Server.HtmlEncode, and
Server.MapPath

Cameron_865-2C03.fm Page 88 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 89

Web forms and controls have different methods to obtain a reference to the HttpContext
instance. A static property, HttpContext.Current, returns an instance of the current HttpContext to
any class that is interested, even if it is not inside an ASP.NET page. For example, the Current
static property can be referenced in helper classes used within the web form page’s server-side
code to gain access to any of the properties in Table 3-2, such as Cache. This ease of access allows
for more modular code that’s easier to read.

Controls inherit a Context property from System.Web.UI.Control that is mapped to the
current instance of HttpContext as a convenient reference for use in server control develop-
ment. The Page class has a Context property as well, but it goes one step further by providing
properties that are mapped to their Context counterparts, such as Request and Response.

Server-Side State Considerations
In general, we do not recommend using server-side state management techniques in server
control development, especially when most, if not all, state storage requirements can be met
using client-side state management, which we discuss in the next section.

In situations where server-side state is feasible and the limitations, such as requiring browser
cookies, are acceptable, server-side state can be a convenient method to store state for custom
controls. However, in this book, we do not use server-side state management techniques in any
of the samples, because doing so would require developer users of the server controls to enable
server-side state in order for the controls to work. Forcing server-side state on users is not a
good practice and would limit the desirability of the server controls.

ASP.NET and Client-Side State Management
ASP.NET provides access to a variety of client-side state management techniques to give you a
helping hand in building useful, interactive web sites. Control developers can leverage these
state management features to provide extra value in their controls by making it look as if the
controls can remember their previous values or obviate the need to go back to a data source to
display information for tabular controls. What makes this capability wonderful is that these
options do not require any special-purpose mechanism on the web server; instead, they use
the everyday features of a web browser to make this magic happen. In this section, we provide
an overview of the client-side state options that are available:

• URL strings

• Cookies

• Hidden HTML variables

• View state

Session State collection maintained on behalf of a web application user

Trace Debugging utility for writing to the trace output of the web form

User Makes security information available when a user is authenticated

Table 3-2. Properties of the HttpContext Class

Property Description

Cameron_865-2C03.fm Page 89 Monday, February 25, 2008 1:58 PM

90 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

URL Strings
Encoding information in the URL string passed to the web server is one of the simplest and
most widely used techniques for storing client state. A great example is your favorite e-commerce
store that puts the category and product-identifying information in a list of hyperlinks for the
rows of products that fit a category. The embedded information in the URL allows the web site
to remember what category the user came from when choosing to follow a link for a particular
product. Developers can also add nonnavigational information at the end of the URL string by
just appending another variable, to track such information as the customer’s buying history
with the web site to provide a discount, for example:

http://acme.com/product.aspx?categoryid=1&productid=1&custtype=preferred

ASP.NET parses the URL string that it receives as part of the page request and provides
easy access to the key/value pairs through two properties of the HttpRequest class: QueryString
and Params. HttpRequest itself is available through the Request property of the Context object.
The following code snippet shows how either the QueryString or Params collection can read the
incoming product.aspx URL string for category and custom information:

string categoryID = Request.QueryString["categoryid"];
string productID = Request.Params["productid"];
string custType = Request.Querystring["custtype"];

Adding extra variables or removing variables from the URL string in maintaining an appli-
cation is something that the programmer must do manually. Forgetting to add variables or
neglecting to modify all hyperlinks on a web form is a common mistake. Finally, URL strings
have size limitations that vary among browser devices, so developers must take a one-size-fits-
all approach when attempting to store state in the URL string.

Cookies
The second client-side state feature of ASP.NET we discuss here is the client-side cookie, a
mechanism familiar to most web developers that is added to the HTTP protocol to allow the
web server and web browser to collaborate in storing information on the user’s machine. A
cookie can store site-specific data for a defined period of time, after which the cookie expires.
The cookie time limit is put to use by server-side state mechanisms in ASP.NET, such as session
state, and security mechanisms, such as ASP.NET forms authentication. Both emit cookies to
identify the user and track information related to storing data on the web server or authenti-
cating the user browsing the web site.

The cookie information passed between browser and server is delivered via HTTP headers.
The web server will send down to the browser client an HTTP header named Set-Cookie with
the information it wants the browser to persist on the user’s local machine. The next time the
user visits that site (and only that site), the browser responds with a Cookie HTTP header
containing the locally stored site-specific data, as long as the cookie hasn’t expired.

ASP.NET provides access to outgoing cookies via the Cookies property of the HttpResponse
class. HttpResponse represents the output of the web form and is reached through the Response
property of the Context object, which is available to server controls via the System.Web.UI.Control
class. The Cookies collection is serialized to a set of string values attached to HTTP headers.

Cameron_865-2C03.fm Page 90 Monday, February 25, 2008 1:58 PM

http://acme.com/product.aspx?categoryid=1&productid=1&custtype=preferred

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 91

The following code adds two differently named cookies representing the first and last
name of one of the authors to the Cookies collection:

Response.Cookies["firstname"] = "Dale";
Response.Cookies["lastname"] = "Michalk";

The Cookies collection serialization process generates two Set-Cookie headers, one for
each cookie being sent down to the browser:

Set-Cookie: firstname=Dale; path=/
Set-Cookie: lastname=Michalk; path=/

The HttpRequest class has a Cookies collection that allows the developer to read incoming
cookies in a manner identical to the outgoing collection. In our example, when the browser
comes back to the same web form, it will send the cookie information for both cookies in a
single HTTP header named Cookie:

Cookie: firstname=Dale; lastname=Michalk

The following code shows you how to read the two cookies via the Cookies collection on a
web form:

string firstname = Request.Cookies["firstname"];
string lastname = Request.Cookies["lastname"];

Common sense dictates that you should not store a large value, because the information
stored in a cookie is transmitted as part of the web page automatically, unlike a URL string
parameter, which must be continuously refreshed by the programmer, or an HTML hidden
variable, which must be sent via an HTTP POST request for a specific page. The cookie technique
also presents challenges when the user either disables cookies or has problems with maintaining
or deleting them from the local cookie store. Some browsing devices don’t support cookies at
all, so you may have to avoid them entirely as an option for storing state in your controls.

HTML Hidden Variables
Hidden input variables inside an HTML form are the third method of client-side state manage-
ment available in ASP.NET that we discuss in this section. This technique is familiar to many
developers who created web applications with technologies such as Common Gateway Inter-
face (CGI) and ASP. Unlike the URL string and cookie options, size limitations and device
support issues are not pressing concerns, so hidden input variables as part of an HTML form
are a heavily used technique for client-side state management.

For data stored in an HTML form to be available, the use of the HTTP POST mechanism is
required to transmit the state information back to the web server. ASP.NET helps ensure this
through the System.Web.UI.HtmlControls.HtmlInputForm server control. HtmlInputForm is smart
enough to render a method="post" attribute, along with an action attribute that directs the page
back to the original URL. The following tag on a hypothetical web form named first.aspx is
rendered as a server control because of the runat="server" attribute:

<form id="first" method="post" runat="server">

Cameron_865-2C03.fm Page 91 Monday, February 25, 2008 1:58 PM

92 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

The server control representing the form tag emits the following HTML output:

<form id="first" method="post" action="first.aspx">

Notice that the tag is tied to the HTTP POST protocol and has an action attribute to submit
the page back to the original URL of the web page. Ensuring that all emitted form variables,
hidden or not, can be read upon form submission is a key requirement. Here’s the complete
form output for our simple example:

<form id="first" method="post" action="first.aspx">
 <input id="names" type="text" value="Dale Michalk Rob Cameron">
 <input id="task" type="text" value="write book">
</form>

Once the web form is submitted via a button click or a JavaScript submission of the form,
ASP.NET parses the input values to allow web form and control code to extract the values and
drive the logic of the web application. The variables in an HTTP POST are encoded using HTML
encoding rules and are separated in the body of the request via ampersand characters:

names=dale+michalk+rob+cameron&task=writebook

ASP.NET provides the Form or Params collections attached to the HttpRequest class in the
current HttpContext to read the values:

string names = Request.Form["names"];
string task = Request.Params["task"];

As you can see, form data is made available on the server through the construct of the
ASP.NET postback mechanism and the HttpContext object. Figure 3-3 shows the ASP.NET
postback mechanism.

Figure 3-3. The ASP.NET postback mechanism

Cameron_865-2C03.fm Page 92 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 93

Most of the time, when building web applications, developers need to store state infor-
mation that shouldn’t be exposed to the user, such as application-specific logic to aid in
processing a request. Hidden input fields give developers the ability to store additional infor-
mation as part of the web form without making the data directly visible to the user. The <input
type="hidden"> tag can carry the additional state information as part of the <form> tag inside an
HTML document:

<form id="writing" method="post" action="writing.aspx">
 <input id="names" value="Dale Michalk Rob Cameron">
 <input id="task" value="write book">
 <input id="SessionNumber" type="hidden" value="234234222">
 <input id="progress" type="hidden" value="50%">
</form>

Naturally, the hidden form fields can be accessed in server-side code in the same way as
the text form fields were previously, by using either the Request.Form or Request.Params collec-
tion. Hidden form variables do have some potential drawbacks:

• As with URL query string variables, programmers must manually track changes to hidden
variables and emit values each time a page is rendered in order to maintain the user’s
state within the application.

• Although hidden fields are not immediately visible to the user, selecting View ➤ Source
in the browser enables the user to see what information is available in hidden fields. In
most cases, this may not be an issue, but it is important to be cognizant of this and either
refrain from storing sensitive data or manually add an additional processing layer of
encryption to prevent exposure.

• Storing a large amount of data in hidden variables can become a performance issue,
depending on the amount of network bandwidth and processing available. Like the
previous drawback, developers can manually add an additional processing layer that
implements compression to minimize data size.

Despite these limitations, hidden form fields remain a popular method for developers to
maintain application state. ASP.NET takes its cue from this and adds a layer of abstraction
called view state on top of the HTML form hidden variable mechanism to make life easier on
web developers wishing to take advantage of client-side state with a minimal amount of fuss
and effort.

ViewState
As mentioned in the previous section, the ViewState server control state management technique
builds on the hidden form field client-side method, taking advantage of its well documented
benefits while minimizing its potential drawbacks. ViewState addresses hidden form variable
limitations by providing built-in data management, compression, encoding, and tamper resis-
tance, so web developers and control builders can focus on the application requirements and
business logic.

Cameron_865-2C03.fm Page 93 Monday, February 25, 2008 1:58 PM

94 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

In ASP.NET 2.0 and later, ViewState is greatly improved compared to .NET Framework 1.1
or earlier by a reduction in encoding size, which reduces the size of pages with ViewState enabled.
Also, ViewState in ASP.NET 2.0 and later does a much better job of integrating with data controls
like GridView by intelligently using ViewState when data controls are bound to declarative data
source controls—meaning, if ViewState is enabled, ASP.NET 2.0 and later will not go back to
the database to get data. However, if ViewState is disabled, ASP.NET 2.0 and later will automat-
ically go back and bind to the data source. This functionality is building into the
DataBoundControl base class.

Another improvement in ASP.NET 2.0 and later is control state, which allows a control to
store important control-related data items required for proper function even if ViewState is
disabled. We cover control state in more detail later in this chapter.

The StateBag Class and the IStateManager Interface

The client-side state management technique ViewState exists in the .NET Framework class
hierarchy as a member property of the System.Web.UI.Control class called ViewState, of type
StateBag, which implements a dictionary data structure to store name/value pairs. The StateBag
class implements the interfaces in Table 3-3.

The interfaces ICollection and IEnumerable are standard interfaces used to give collection
functionality to a class. IDictionary provides the name/value storage mechanism required
when working with ViewState. IStateManager is the interface that handles all the tedious state
maintenance functions during server-side processing and greatly contributes to the Visual
Basic–like ease of programming model for ASP.NET web developers.

As you can see, the IStateManager interface is the most interesting interface implemented
by the StateBag class, as it includes methods to load and save a control’s data or state. Because
all server controls descend from System.Web.UI.Control, the .NET Framework uses the methods
and properties implemented by IStateManager to dehydrate controls before serialization into
a hidden form field named __VIEWSTATE. Likewise, ASP.NET calls on IStateManager during post-
back to rehydrate server control objects for server-side processing.

Table 3-3. Interfaces Implemented by the StateBag Class

Interface Description

ICollection Defines enumerators, synchronization methods, and size for collections

IDictionary Specialized collection interface that implements a collection of
name/value pairs

IEnumerable Provides the enumerator for iteration over a collection

IStateManager Defines the properties and methods required to support ViewState manage-
ment in server controls

Cameron_865-2C03.fm Page 94 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 95

State Data Management

Because both custom controls and the Page class inherit from Control, ViewState is easily acces-
sible to the ASP.NET developer from either the web form or from within a custom control class.
As described in the previous section, the type of the ViewState collection that is serialized into
the __VIEWSTATE hidden form field is System.Web.UI.StateBag, a strongly typed dictionary data
structure that stores name/value pairs with the value having a type that is either serializable or
has a TypeConverter defined.

Native data types such as int, string, and so forth have default TypeConverters that provide
string-to-value conversions, so no additional work is required on the part of the developer. In
situations where a developer creates a custom type for use in a server control, we recommend
that the developer create a TypeConverter class for the custom type in place of implementing
ISerializable. The reason is that types that are only defined as serializable are slower and
generate much larger ViewState than types that have a TypeConverter implemented. We discuss
how to create a TypeConverter in Chapter 11.

An alternative to implementing a TypeConverter is to customize how property data is
stored in ViewState. The System.Web.UI.Control class provides two methods for this purpose:
SaveViewState and LoadViewState. As you would guess, these methods must be implemented
in tandem.

Compression and Integrity

State information placed inside of the ViewState collection is kept separate for each control as
well as from the web form itself. During page processing, ViewState data is converted into a
hashed, compressed, and encoded blob that is streamed to the client as a hidden form field
named __VIEWSTATE.

■Tip To see what ViewState looks like on the client side, simply load one of the book’s sample web forms
(you can find them on the book’s page on the Apress web site at http://www.apress.com) and select View ➤
Source in your web browser. You will find a hidden form field named __VIEWSTATE and its value.

The output that is sent to the browser by ViewState overcomes one of the big weaknesses
of other client-side state systems whose values can be mimicked in an attempt to spoof the
server. Any attempts to manipulate ViewState outside of the page’s life cycle process will be
detected by the ASP.NET, minimizing the possibility of tampering.

Ease of Use

Having a tamper-resistant, efficient state management technology is one thing, but what truly
makes ViewState successful is how easy it is to put to work. Using ViewState is like using any of
the collection types available in .NET. The following code snippet adds the value writebook
with a key value of task:

ViewState["task"] = "writebook";

Cameron_865-2C03.fm Page 95 Monday, February 25, 2008 1:58 PM

http://www.apress.com

96 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Accessing ViewState in this way results in a hidden form variable, like the following one,
that contains not only the values loaded by all controls with ViewState enabled but also the
data loaded in our example:

<input type="hidden" name="__VIEWSTATE" value="dDw2MDQ5NjY2NDk7dDxw... " />

Reading back the value is a simple process of accessing the ViewState collection when the
form is posted back to the web server. ASP.NET checks the ViewState data for its hash value and
ensures no unscheduled modifications have taken place prior to populating the collection:

string name = ViewState["task"];

As described previously, ViewState uses the well-known <input type="hidden"
name="__VIEWSTATE"> HTML tag to hold the page’s state data. No special browser techniques
or proprietary mechanisms are required to work with ViewState.

The primary consideration with ViewState is the serialization process used to dehydrate
and rehydrate state for each server control in the page’s control tree. On a web form with either
numerous server controls or controls with large amounts of data, the size of the __VIEWSTATE
hidden variable can be large. Because ViewState data is transported over the wire for each
round-trip, it’s recommended that developers turn off ViewState for controls that don’t need to
retain state. This can greatly decrease the size of the generated ViewState transported with the
HTML document. ViewState emissions are handled through the EnableViewState property that
all controls inherit from System.Web.UI.Control. Developers need to be cognizant of this ability
to disable ViewState when building server controls.

A Client State Workshop
Before jumping into server control development using client-side state, let’s quickly review the
different client-side state management techniques, as well as highlight how performing an
HTTP GET or HTTP POST affects state. The ClientState.aspx web form demonstrates the process
of working with the client side in general. It is a rather contrived but sufficient example with a
single TextBox that provides the input device for storing a name on the client using a cookie,
URL query string, hidden fields, and ViewState.

The web form has two buttons that can submit the page back to the web server using the
HTTP POST mechanism. One button, Set State, causes the page to post back to the web server
and change the name that is persisted to the client. The other button, Submit Page, posts the
page back to the server without changing any state information. This button simply causes a
round-trip to test the holding power of each of the state mechanisms. There is also a hyperlink
on the page to test the use of the URL query string as a state-persistence device.

Figure 3-4 shows the web page generated from ClientState.aspx after an initial HTTP GET
request from the browser. Listings 3-1 and 3-2 contain the .aspx file and code-behind class,
respectively. One of this book’s author’s names is entered into the TextBox control in order to
set the page up for saving that name via client-side state. The bottom portion of the web form
has readouts for all the client-state mechanisms: URL strings, cookies, hidden variables, and
ViewState. It shows the result of an attempt to read the state mechanism, which is initially
blank because no state has been set just yet.

Cameron_865-2C03.fm Page 96 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 97

Figure 3-4. The ClientState.aspx web form after first request

Listing 3-1. The ClientState Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="ClientState.aspx.cs"
 Inherits="ControlsBook2Web.Ch03.ClientState"
 Title="Client State Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">3</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 ASP.NET State Management</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Client State</h3>
 Enter your name:

 <asp:TextBox ID="NameTextBox" runat="server"></asp:TextBox>

Cameron_865-2C03.fm Page 97 Monday, February 25, 2008 1:58 PM

98 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

 <asp:Button ID="SetStateButton" runat="server" Text="Set State"
 OnClick="SetStateButton_Click">
 </asp:Button>
 <asp:Button ID="SubmitPageButton" runat="server"
 Text="Submit Page"></asp:Button>

 <input id="HiddenName" type="hidden" runat="server" />

 <asp:HyperLink ID="URLEncodeLink" runat="server">
 Link to encode name in URL</asp:HyperLink>

 <h3>
 Results</h3>
 Cookie:<asp:Label ID="CookieLabel" runat="server"></asp:Label>

 URL:<asp:Label ID="URLLabel" runat="server"></asp:Label>

 Hidden Variable:<asp:Label ID="HiddenLabel" runat="server"></asp:Label>

 ViewState:<asp:Label ID="ViewStateLabel" runat="server"></asp:Label>

</asp:Content>

Listing 3-2. The ClientState Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch03
{
 public partial class ClientState : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 GetClientState();
 }

 protected void SetStateButton_Click(object sender, EventArgs e)
 {
 SetClientState();
 }

 private void SetClientState()
 {
 string name = NameTextBox.Text;

 // set the name Cookie value
 Response.Cookies["cookiename"].Value = name;

 // encode the name in the redirect URL
 URLEncodeLink.NavigateUrl = "ClientState.aspx?urlname=" + name;

Cameron_865-2C03.fm Page 98 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 99

 // put the name in the hidden variable
 HiddenName.Value = name;

 // put the name in ViewState
 ViewState["viewstatename"] = name;
 }

 private void GetClientState()
 {
 // check the cookiename Cookie
 CookieLabel.Text = "";
 if (Request.Cookies["cookiename"] != null)
 CookieLabel.Text = Request.Cookies["cookiename"].Value;

 // check the URL for urlname variable
 URLLabel.Text = "";
 if (Request.QueryString["urlname"] != null)
 URLLabel.Text = Request.Params["urlname"];

 // check the form data for hiddenname variable
 // Must use UniqueID to get correct HTML Form name
 HiddenLabel.Text = "";
 if (Context.Request.Form[HiddenName.UniqueID] != null)
 HiddenLabel.Text = Request.Form[HiddenName.UniqueID];

 // check the Viewstate for the viewstatename variable
 ViewStateLabel.Text = "";
 if (ViewState["viewstatename"] != null)
 ViewStateLabel.Text = ViewState["viewstatename"].ToString();
 }
 }
}

Clicking the Set State button submits the page via postback to ASP.NET, which retrieves
the name gathered from the NameTextBox control on the ClientState.aspx web form and pushes
it out to the client-state mechanisms we are interested in testing.

The page that renders after the server-side execution of Set State is complete contains the
client state for the name entered into the NameTextBox control. The URL has the name embedded as
part of the query string. If you click the link, it will force a read of the query string state, which
allows the URL field at the bottom of the page a chance to show the value through this state
mechanism. The web form has two hidden variables; one is populated with ViewState and used
to hold the name entered by the user in the web form, as a developer would code using just
hidden input tags. To see this, select View ➤ Source in the browser. Finally, the Cookie value is
included in the HTTP response.

Interestingly, the URL fields at the bottom of the page are blank. Not until the next round-
trip to the server does ASP.NET have a chance to access the current state and populate the
fields at the bottom of the page. The reason for this is that when you click Set State, the Page_Load
event fires first, which executes the GetClientState() helper method. GetClientState() loads

Cameron_865-2C03.fm Page 99 Monday, February 25, 2008 1:58 PM

100 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

the current values from the various state storage mechanisms into the labels on the bottom
portion of the web form. Because the server-side click event SetStateButton_Click has not
had a chance to fire just yet, the state loaded into the fields at the bottom of the web form by
GetClientState() in Page_Load is the previous state, as shown in Figure 3-4. After the Page_Load
event completes, SetStateButton_Click executes next, calling SetClientState(), which loads
the value from the TextBox control into all the client-state mechanisms. The resulting page
shows that all the state mechanisms are storing the value.

Now that the state has been set, clicking the Submit button one more time forces a round-
trip to the server, executing the Page_Load event. This time around, the fields at the bottom of
the page have a chance to pick up the current state in GetClientState() and display the expected
values. The only difference between Figure 3-4 and Figure 3-5 is that the browser notices our
hyperlink has a nonblank URL and displays the link text in blue underlined font.

Figure 3-5. The ClientState.aspx web form during the Set State button postback

Reading the Client State
Click the Submit Page button to submit the web form back to the server one more time. There
is no button-handling routine for this button on the server, so the only logic that executes
is the Page_Load event handler. All this simple routine does is call GetClientState(). The
GetClientState() routine pulls back values for all systems except the URL-encoding scheme,
as shown in Figure 3-6.

Cameron_865-2C03.fm Page 100 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 101

Figure 3-6. The ClientState.aspx web form after the Submit Page button postback

GetClientState() is careful when accessing the state collections; it checks for null values
and sets the name to a blank string where appropriate. This provides more reliable code that is
capable of operating under failure conditions. The following excerpt of the code from Listing 3-2
reads values from ViewState. See Listing 3-2 for the details on the code for the other state
mechanisms.

 // check the Viewstate for the viewstatename variable
 ViewStateLabel.Text = "";
 if (ViewState["viewstatename"] != null)
 ViewStateLabel.Text = ViewState["viewstatename"].ToString();

Getting the URL State
The URL string did not display in the previous attempts, because we navigated to the same
page through the postback mechanism enforced by the HtmlInputForm control and its <form>
tag generation, which uses an HTTP POST. The URL string state mechanism is activated in our
demonstration only through clicking the hyperlink on the web form.

Figure 3-7 displays the values from the URL string but loses the information that was avail-
able for our HTML hidden variable and ViewState. The reason for the change in behavior is a
switch from an HTTP POST request using the postback mechanism to an HTTP GET request by
clicking the hyperlink. Because we bypassed the form postback with an HTTP GET, all values

Cameron_865-2C03.fm Page 101 Monday, February 25, 2008 1:58 PM

102 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

based on HTML form information, such as hidden variables and ViewState, are lost. ViewState
must go through the postback cycle to the original page it was produced from for it to work and
give our controls the capability to remember state.

Figure 3-7. The ClientState.aspx web form after hyperlink navigation

ASP.NET Server Controls and State
Now that we have demonstrated a web form taking advantage of the various client-side state
management techniques, we transition to using it inside server controls. Taking into account
all the client-side state facilities available, we strongly recommended that you follow the lead
of the prebuilt controls in ASP.NET and use ViewState and control state within your server
controls. With extensive support in the ASP.NET framework, using ViewState in custom control
development will greatly reduce development time and ensure consistent behavior. Likewise,
using the new control state functionality in ASP.NET 2.0 and later helps ensure consistent
server control behavior whether or not ViewState is enabled; we cover control state later in this
chapter.

The StatelessLabel Server Control

The first label control we build here does not take advantage of any of the state mechanisms in
ASP.NET as an example of working without state. StatelessLabel inherits from System.Web.
UI.Control and provides a string Text property that it uses to render its content inside a .

Cameron_865-2C03.fm Page 102 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 103

The Text property is mapped to a private field named text that is not persisted and is available
only when the control is in memory on the web server. Listing 3-3 shows the code for the
StatelessLabel server control.

Listing 3-3. The StatelessLabel Class File

using System;
using System.Web.UI;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch03
{
 [ToolboxData("<{0}:statelesslabel runat=server></{0}:statelesslabel>"),
 DefaultProperty("Text")]
 public class StatelessLabel : Control
 {
 public string Text { get; set; }

 override protected void Render(HtmlTextWriter writer)
 {
 base.Render(writer);

 writer.RenderBeginTag(HtmlTextWriterTag.Span);
 writer.Write(Text);
 writer.RenderEndTag();
 }
 }
}

The StatefulLabel Server Control

To spiff up things and take advantage of ViewState, the second label control, StatefulLabel,
has a different mechanism for storing the information passed to the Text property. It uses the
ViewState collection to read/write the property information in its get and set methods. Listing
3-4 contains the source code for the StatefulLabel class file.

Listing 3-4. The StatefulLabel Class File

using System;
using System.Web.UI;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch03
{
 [ToolboxData("<{0}:statefullabel runat=server></{0}:statefullabel>"),
 DefaultProperty("Text")]

Cameron_865-2C03.fm Page 103 Monday, February 25, 2008 1:58 PM

104 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

 public class StatefulLabel : Control
 {
 public virtual string Text
 {
 get
 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 override protected void Render(HtmlTextWriter writer)
 {
 base.Render(writer);

 writer.RenderBeginTag(HtmlTextWriterTag.Span);
 writer.Write(Text);
 writer.RenderEndTag();
 }
 }
}

The get method for the Text property uses some guard code to correctly deal with the
ViewState collection if the key we are looking for is not available. If the return value is null, it
returns an empty string.

Returning an empty string is a good habit to get into, especially for control properties that
are more complex than a primitive, such as a string or integer.

Comparing the Labels

Label Controls is a web form example that directly compares both the stateless and stateful
controls in their use, or lack, of client-side state. The GUI layout setup is similar to the one we
used for ClientState.aspx in the previous demonstration but changes the bottom portion of
the web form layout to display the two label controls. Navigating to the web form URL directly
renders the output shown in Figure 3-8. Listings 3-5 and 3-6 contain the .aspx page and code-
behind class file for the Label Controls demonstration.

Cameron_865-2C03.fm Page 104 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 105

Figure 3-8. LabelControls.aspx after the first request

Listing 3-5. The LabelControls Web Form .aspx Page File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="LabelControls.aspx.cs"
 Inherits="ControlsBook2Web.Ch03.LabelControls"
 Title="Label Controls Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch03"
 Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">3</asp:Label> <asp:Label
ID="ChapterTitleLabel" runat="server" Width="360px">
ASP.NET State Management</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Label Controls</h3>
 Enter your name:

Cameron_865-2C03.fm Page 105 Monday, February 25, 2008 1:58 PM

106 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

 <asp:TextBox ID="NameTextBox" runat="server"></asp:TextBox>

 <asp:Button ID="SetLabelButton" runat="server" Text="Set Labels"
 OnClick="SetLabelButton_Click">
 </asp:Button>
 <asp:Button ID="SubmitPageButton" runat="server"
 Text="Submit Page"></asp:Button>

 <h3>
 StatelessLabel</h3>
 <apress:StatelessLabel ID="StatelessLabel1"
 Text="StatelessLabel" runat="server" />

 <h3>
 StatefulLabel</h3>
 <apress:StatefulLabel ID="StatefulLabel1" Text="StatefulLabel" runat="server" />
</asp:Content>

Listing 3-6. The LabelControls Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch03
{
 public partial class LabelControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void SetLabelButton_Click(object sender, EventArgs e)
 {
 StatelessLabel1.Text = "Set by " + NameTextBox.Text;
 StatefulLabel1.Text = "Set by " + NameTextBox.Text;
 }
 }
}

Setting the Label Control State

Click the Set Labels button to post the web page back to the server. The SetLabelButton_Click
routine is executed by ASP.NET when the SetLabelButton button is notified that the HTML
button it represents caused the postback.

SetLabelButton_Click has the simple job of setting the Text property of the StatelessLabel
and StatefulLabel controls:

Cameron_865-2C03.fm Page 106 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 107

protected void SetLabelButton_Click(object sender, EventArgs e)
{
 StatelessLabel1.Text = "Set by " + NameTextBox.Text;
 StatefulLabel1.Text = "Set by " + NameTextBox.Text;
}

The output of the web form for these controls is identical, because they both render their
contents into HTML based on the recently set Text property, as shown in Figure 3-9.

Figure 3-9. LabelControls.aspx after the Set Labels button postback

Testing Control ViewState

To test the state-saving features of ViewState and its impact on controls, click the Submit Page
button. The SubmitPageButton control has no event-handling routines defined, and our
Page_Load event handler is blank, so the net result of clicking the button is a recycling of the
web form without any explicit web form code.

In this sample page, the only action in the controls is getting and setting properties during
the page life cycle through postback. The controls are involved in regenerating their HTML
content and the possibility of taking advantage of the ViewState that was posted back from the
client. In Figure 3-10, you can see that the StatefulLabel control was able to remember its
previous Text property value, while the StatelessLabel control reverted to the initial value set
in its Text attribute as part of the .aspx page markup.

Cameron_865-2C03.fm Page 107 Monday, February 25, 2008 1:58 PM

108 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Figure 3-10. LabelControls.aspx after the Submit Page button postback

Form Post Data and ASP.NET Controls
The postback mechanism in ASP.NET provides a means of generating client-side state as well
as the opportunity to receive input from the user. The first part of this chapter concentrated on
client-side state. Now, we focus on interacting with the normal HTML form input elements.

Many controls model themselves after <input> tags and provide value-added features,
such as remembering state and raising events to their clients when internal state changes
occur. To work with the HTTP POST mechanism to retrieve data, one implementation would be
for the client to simply read all of the form variables directly. Fortunately, ASP.NET provides a
more organized mechanism to server controls that implement the IPostBackDataHandler
interface.

The IPostBackDataHandler Interface
The IPostBackDataHandler interface is the recommended method to read form post data from
a control in ASP.NET without having to use the Page class and its Request object.

Cameron_865-2C03.fm Page 108 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 109

■Note In general, we do not recommend that you directly access the Request or Response object provided by
the Page class (HttpContext), as this would interfere with normal page processing. If you need to write to
the output stream, use the HtmlTextWriter class for this purpose.

IPostBackDataHandler also provides a framework to allow the control to raise change events
at a later point in time if the state of the control has changed sufficiently to warrant such an
action. Listing 3-7 shows the interface definition for IPostBackDataHandler. LoadPostData is the
interface method we concentrate on in this section, as it provides the means to retrieve data
posted to the web server.

Listing 3-7. The IPostBackDataHandler Interface Definition

public interface IPostBackDataHandler{
 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection);
 public void RaisePostDataChangedEvent();
}

On a postback of a web form to the web server, the ASP.NET framework searches the
posted form values for matches between the corresponding id of the form element and the
UniqueID property of the matching control. It then calls the LoadPostData() method for each
control where there is a match to give the control a chance to retrieve its posted data. The
UniqueID property of a control is the same as the ID value. The ID value is determined by its
value in the .aspx page for a control. As an example, the following StatefulLabel control tag
would have an ID and UniqueID property value equal to StatefulLabel1:

<apress:StatefulLabel id="StatefulLabel1" Text="StatelessLabel" runat="server" />

The two id properties need to differ only when working with composite controls that
may contain multiple versions of the same control definition via templates. However, they
are still required to have a way to uniquely identify themselves to ASP.NET. We examine how
the INamingContainer interface solves this problem in Chapter 5.

The return value from LoadPostData() provides a means for a control to raise a state change
event at a later point in time. If you return true in your implementation of LoadPostData in your
server control, the ASP.NET framework will call your RaisePostDataChangedEvent() method
further down in the page processing life cycle. If you return false, ASP.NET will skip the call-
back notification for your control.

The Textbox Control
A commonly used HTML form input element is the <input type="text"> tag. The ASP.NET
framework provides controls that render this type of tag, including System.Web.UI.HtmlControls.
HtmlInputText and System.Web.UI.WebControls.TextBox. We reinvent the wheel here (see
Listing 3-8) to show you how these controls use ViewState and work with the postback data
submitted from a web form.

Cameron_865-2C03.fm Page 109 Monday, February 25, 2008 1:58 PM

110 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Listing 3-8. The Textbox Class File

using System;
using System.Web;
using System.Web.UI;
using System.Collections.Specialized;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch03
{
 [ToolboxData("<{0}:textbox runat=server></{0}:textbox>"),
 DefaultProperty("Text")]
 public class Textbox : Control, IPostBackDataHandler
 {
 public virtual string Text
 {
 get
 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string) text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 string postedValue = postCollection[postDataKey];
 Text = postedValue;
 return false;
 }

 public virtual void RaisePostDataChangedEvent()
 {

 }

 override protected void Render(HtmlTextWriter writer)
 {
 Page.VerifyRenderingInServerForm(this);

 base.Render(writer);

Cameron_865-2C03.fm Page 110 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 111

 // write out the <INPUT type="text"> tag
 writer.Write("<INPUT type=\"text\" name=\"");
 writer.Write(this.UniqueID);
 writer.Write("\" value=\"" + this.Text + "\" />");
 }
 }
}

The Textbox control in Listing 3-8 inherits from System.Web.UI.Control and reuses the
same Text property ViewState handling from our previous StatefulLabel control class. This
provides the control all the memory it needs to rehydrate itself completely.

The Render() method override has to do a little more work by inserting the UniqueID and
Text properties of our control into the output, along with some quote-character escapes in the
string. The UniqueID property is used by ASP.NET to identify our control and retrieve its data
from the postback.

Notice the call to VerifyRenderingInServerForm() in the Render() method. Developers
should call this method when building a server control that requires rendering inside a <form
runat="server"> tag. ASP.NET will throw an exception if a developer or user attempts to put
such a control outside an HTML <form> tag.

The IPostBackDataHandler interface is implemented by our LoadPostData() and
RaisePostDataChangedEvent() methods. RaisePostDataChangedEvent() is blank, because we
are not emitting events from our control based on state changes, but it still must be present to
satisfy the terms of the interface. In the next chapter, we go further into raising our own events
and examine what kind of code you would normally put into the RaisePostDataChangedEvent().

LoadPostData() has the necessary logic to read the information posted by our <input
type="text"> tag rendered in the HTML document. LoadPostData() uses the passed-in key to
read from the postCollection collection passed into the routine. The type of the collection is
NameValueCollection, so you can expect a string value to be passed back when you access the
data with your key.

Once we pull out the data, we store it immediately in ViewState via the Text property so the
control can remember what was sent to it as well as render the correct HTML for the <input>
tag with the value filled in upon return to the browser. The LoadPostData() routine closes by
returning false, because it does not need to have RaisePostDataChangedEvent() called, as no
events are implemented.

Using the Textbox Control
The Postback Data web form is identical to the previous Label Controls demonstration except
for removal of the ASP.NET TextBox control and substitution of the one we just created. It has
the button setup you have become familiar with: one button sets the value of the labels, and
the other button recycles the form to exercise ViewState. Because the Textbox control receives
its own postback data, we do not need to set its value in the code-behind class explicitly or
worry about maintaining its state.

The initial page in Figure 3-11 looks identical to the previous web form that demonstrated
our labels. Our Textbox control performs admirably well as a substitute for the ASP.NET built-
in version of the control. Listings 3-9 and 3-10 contain the source code for this demonstration.

Cameron_865-2C03.fm Page 111 Monday, February 25, 2008 1:58 PM

112 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Figure 3-11. PostbackData.aspx after the first request

Listing 3-9. The Postback Data Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="PostbackData.aspx.cs"
 Inherits="ControlsBook2Web.Ch03.PostbackData"
 Title="Postback Data Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch03"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">3</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 ASP.NET State Management</asp:Label>
</asp:Content>

Cameron_865-2C03.fm Page 112 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 113

<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Postback Data</h3>
 Enter your name:

 <apress:Textbox ID="NameTextBox" runat="server">
 </apress:Textbox>

 <asp:Button ID="SetLabelButton" runat="server" Text=
"Set Labels" OnClick="SetLabelButton_Click">
 </asp:Button>
 <asp:Button ID="SubmitPageButton" runat="server"
 Text="Submit Page"></asp:Button>

 <h3>
 StatelessLabel</h3>
 <apress:StatelessLabel ID="StatelessLabel1" runat="server" Text="StatelessLabel">
 </apress:StatelessLabel>

 <h3>
 StatefulLabel</h3>
 <apress:StatefulLabel ID="StatefulLabel1" runat="server" Text="StatefulLabel">
 </apress:StatefulLabel>
</asp:Content>

Listing 3-10. The Postback Data Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch03
{
 public partial class PostbackData : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void SetLabelButton_Click(object sender, EventArgs e)
 {
 StatelessLabel1.Text = "Set by " + NameTextBox.Text;
 StatefulLabel1.Text = "Set by " + NameTextBox.Text;
 }
 }
}

Cameron_865-2C03.fm Page 113 Monday, February 25, 2008 1:58 PM

114 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

To test the page, click the Set Labels button on the web form to generate a postback to the
web server. The button-click code in the code-behind class file sets the two label controls’ Text
properties. The postback itself gives our Textbox control the opportunity to receive data from
the HTML form and set its Text property in its LoadPostData() implementation without any
additional work needed in the test .aspx page. The emitted HTML control from the Textbox
Render() method also sets the value of the <input type="text"> tag, as shown in Figure 3-12.

Figure 3-12. PostbackData.aspx after the first postback via the SetLabelButton control

Next, click the Submit Page button to test the ViewState capabilities of the label controls
and submit the Textbox data to the Textbox control yet again via another postback. The net
result is that one label control can read from ViewState, and the other control reverts to its
initial value, as shown in Figure 3-13.

The use of ViewState for our Textbox control was not really necessary. A control based on
an <input> tag has built-in state management within the ASP.NET framework. The posted data
of the tag is always returned to the control via LoadPostData(). However, we put the extra work
here with ViewState to good use in the next chapter, which covers server control events. The
control will be extended to take the value persisted in ViewState and check it against the post-
back data in order to raise a state change event.

Cameron_865-2C03.fm Page 114 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 115

Figure 3-13. PostbackData.aspx after the second postback via the SubmitPageButton control

In the next section, we cover the new ASP.NET 2.0 and later control state functionality.

ASP.NET Control State
Control state was briefly discussed in the preceding ViewState section primarily because
control state was added to ASP.NET 2.0 and later to provide more flexibility to server control
developers. Control state allows a server control developer to maintain non-user-related state
data between page post back cycles to still have correct control behavior even when the devel-
oper user disables ViewState.

ViewState Is Now Application User State
ViewState provides a very convenient way to maintain state in an application. The one draw-
back to ViewState is that it transports the page state down to the user’s browser on every
round-trip. This can lead to performance issues on busy web sites with complex web forms.
ASP.NET developers know to disable ViewState when not required or when redundant. For
example, enabling ViewState on a DataGrid control that retrieves fresh data on each request is

Cameron_865-2C03.fm Page 115 Monday, February 25, 2008 1:58 PM

116 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

redundant, because the data is retrieved and rendered as well as persisted in ViewState, essen-
tially, it’s transmitted twice. In ASP.NET 1.1, ViewState is an all or nothing proposition, meaning,
if you disable ViewState for an entire page, it reduces functionality for some built-in server
controls like DataGrid. Behaviors like paging in the DataGrid server control require ViewState to
be enabled to function correctly. This had an effect of forcing web page developers to enable
ViewState in order to have full server control functionality when it may not be desired.

In ASP.NET 2.0 and later, state related to control behavior like paging in the GridView control
can be stored in the new control state functionality. This allows server controls to support core
control functionality without requiring that ViewState be enabled.

■Caution The DataGrid control has not been redesigned to use control state. Luckily, ASP.NET 2.0 and
later has the new GridView control, which does take advantage of control state as well as other enhance-
ments that DataGrid does not.

Control state operations, similar to ViewState, store control state in the same hidden field;
with control state appended to the end of the ViewState data. However, if ViewState is disabled
for the individual control or the whole page, control state is still persisted. This allows devel-
opers to store state related to basic control functionality in control state without having to
enable ViewState.

Server control developers have a responsibility to appropriately use control state for the
behavioral state of a control only, and not use it for all states including content. To demonstrate
a good use of control state, we’ll enhance the TextBox3d class from Chapter 2 to support control
state for its Enable3D property, so ViewState is not required but the control still functions as
expected without ViewState enabled.

New TextBox3d Demonstration Web Form
Let’s copy the TextBox3d class into the ControlsBook2Lib.Ch03 namespace as our starting point
for updating the server control to support control state for the Enable3D property. We’ll also
copy the demonstration page for the original TextBox3d control and update it to include an
instance of our new version of TextBox3d that supports control state. Figure 3-14 shows the
TextBox3DControlStateDemo web form at design time.

When this web form is run with the EnableViewState property on the page or on both controls
set to true, the Toggle3d button dutifully toggles the Enable3D property on both controls, and
pressing the Submit button results in the expected postback with state maintained for both
controls.

If the EnableViewState property on the page or on the controls is set to false, clicking the
Toggle3d button will enable the Enable3D property on both controls for that postback. However, the
setting of true does not persist between the Submit button clicks; instead, the value reverts to the
default value of false. Listings 3-11 and 3-12 have the code for the TextBox3DControlStateDemo
web form.

Cameron_865-2C03.fm Page 116 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 117

Figure 3-14. TextBox3DControlStateDemo web form at design time

Listing 3-11. The TextBox3DControlStateDemo Web Form .aspx File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TextBox3DControlStateDemo.aspx.cs"
 Inherits="ControlsBook2Web.Ch03.TextBox3DControlStateDemo"
 Title="Control State Demo" %>

<%@ Register TagPrefix="apressCh02" Namespace="ControlsBook2Lib.Ch02"
Assembly="ControlsBook2Lib" %>
<%@ Register TagPrefix="apressCh03" Namespace="ControlsBook2Lib.Ch03"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">3</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
ASP.NET State Management</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">

 <asp:Button ID="buttonToggle3d" runat="server" Text="Toggle3d"
 OnClick="buttonToggle3d_Click" />

 <apressCh03:TextBox3d ID="Textbox3CtrlState" runat="server" Width="159px"

Cameron_865-2C03.fm Page 117 Monday, February 25, 2008 1:58 PM

118 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Height="18px" Enable3D="False" EnableViewState="False">I
 support control state</apressCh03:TextBox3d>

 <apressCh02:TextBox3d ID="TextBox3dBasic" runat="server"
 Width="159px" Height="16px"
 Enable3D="False" EnableViewState="False">I don't!</apressCh02:TextBox3d>

 <asp:Button ID="ButtonSubmit" runat="server" Text="Submit" />

 <asp:Label ID="LabelViewState" runat="server" Text="ViewState"></asp:Label>

</asp:Content>

Listing 3-12. The TextBox3DControlStateDemo Web Form .aspx File

using System;

namespace ControlsBook2Web.Ch03
{
 public partial class TextBox3DControlStateDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 LabelViewState.Text = "ViewState Enabled = " +
Textbox3CtrlState.EnableViewState.ToString();
 }

 protected void buttonToggle3d_Click(object sender, EventArgs e)
 {
 Textbox3CtrlState.Enable3D = !Textbox3CtrlState.Enable3D;
 TextBox3dBasic.Enable3D = !TextBox3dBasic.Enable3D;
 }
 }
}

In the next section, we cover how we added support for control state to the TextBox3D
custom server control.

Adding Control State to TextBox3D
The first step is to override the control’s OnInit() member to notify the page that control state
is required for our new and improved TextBox3D control:

Cameron_865-2C03.fm Page 118 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 119

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);
 Page.RegisterRequiresControlState(this);
}

Next, the Enable3D property is updated to no longer use ViewState and instead store the
Enable3D property using the new C# 3.0 property declaration syntax:

[DescriptionAttribute("Set to true for 3d appearance"), DefaultValue("True")]
public bool Enable3D {get; set; }

The Enable3D property is saved and loaded by overriding the control’s SaveControlState()
and LoadControlState() (described later) to save the value and load the value for the _enable3D
private member variable. This enables the new and improved TextBox3D class to maintain the
value of the Enable3D property when ViewState disabled. The source code for the control state-
aware version of TextBox3D is shown in Listing 3-13.

Listing 3-13. The TextBox3D with a Control State Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;
using System.Drawing;

namespace ControlsBook2Lib.Ch03
{
 [ToolboxData("<{0}:textbox3d runat=server></{0}:textbox3d>"),
 ToolboxBitmap(typeof(ControlsBook2Lib.Ch03.TextBox3d),
 "ControlsBook2Lib.Ch02.TextBox3d.bmp")]
 public class TextBox3d : TextBox// Inherit from rich control
 {
 public TextBox3d()
 {
 Enable3D = true;
 }

 // Custom property to set 3D appearance
 [DescriptionAttribute("Set to true for 3d appearance"), DefaultValue("True")]
 public bool Enable3D {get; set; }

 protected override void Render(HtmlTextWriter output)
 {
 // Add DHTML style attribute
 if (Enable3D)
 output.AddStyleAttribute("FILTER", "progid:DXImageTransform.Microsoft.
 dropshadow(OffX=2, OffY=2, Color='gray', Positive='true'");

Cameron_865-2C03.fm Page 119 Monday, February 25, 2008 1:58 PM

120 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

 base.Render(output);
 }

 //Notify the page that control state is required
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 Page.RegisterRequiresControlState(this);
 }

 protected override object SaveControlState()
 {
 object obj = base.SaveControlState();
 if (_enable3D != false)
 {
 if (obj != null)
 {
 return new Pair(obj, _enable3D);
 }
 else
 {
 return (_enable3D);
 }
 }
 else
 {
 return obj;
 }
 }

 protected override void LoadControlState(object state)
 {
 if (state != null)
 {
 Pair p = state as Pair;
 if (p != null)
 {
 base.LoadControlState(p.First);
 _enable3D = (bool)p.Second;
 }
 else
 {
 if (state is bool)
 {
 _enable3D = (bool)state;
 }

Cameron_865-2C03.fm Page 120 Monday, February 25, 2008 1:58 PM

CH AP T E R 3 ■ A SP . N E T S TA TE M AN AG E M E N T 121

 else
 {
 base.LoadControlState(state);
 }
 }
 }
 }
 }
}

An instance of the new control’s state-aware version maintains state and looks 3-D when
ViewState is disabled, while the old version that relied on ViewState for all state information
does not look 3-D, as shown in Figure 3-15.

Figure 3-15. The TextBox3DControlStateDemo web form in the browser

Summary
Client-side state takes on four forms in ASP.NET: URL strings, cookies, HTML hidden form
variables, and ViewState. HttpContext bundles together the important classes in ASP.NET for
working with the request/response cycle of a web form in ASP.NET, including Session and
Application server-side state mechanisms. Controls access the HttpContext class through the
Context property they inherit from System.Web.UI.Control.

Cameron_865-2C03.fm Page 121 Monday, February 25, 2008 1:58 PM

122 CH AP T E R 3 ■ AS P . N E T S TA TE M AN AG E M E N T

Variables in URL strings can be accessed through the QueryString or Params collection
properties attached to the HttpRequest class. Cookies can be manipulated via the Request.
Cookies or Response.Cookies collections attached to the Page class. HTML form hidden variables
are accessible through the Form and QueryString properties attached to the HttpRequest class.

ViewState is a client-side state management technology built on top of the hidden HTML form
variable state management technique. It abstracts the details of managing state for web form and
server control programmers. ViewState is manipulated through the ViewState property available
to all controls through inheritance from System.Web.UI.Control. ViewState requires the postback
system, where a web form always executes an HTTP POST back to the same page. This allows all
controls to read their previous states and provide memory in the application for server-side
page processing.

Control state is a new feature in ASP.NET 2.0 and later that allows server controls to main-
tain critical control-related state when ViewState is disabled. This allows web form developers
to decide whether to enable ViewState or not without loosing any server control functionality.

IPostBackDataHandler is the interface a control implements to receive HTML form’s post
data from a postback. The control must emit an <input> tag with its UniqueID property to be
called by the framework. LoadPostData() is the method in IPostBackDataHandler that allows a
control to read its post data.

Cameron_865-2C03.fm Page 122 Monday, February 25, 2008 1:58 PM

123

■ ■ ■

C H A P T E R 4

The WebControl Base Class
and Control Styles

The ability to configure how a web page renders its HTML elements is an essential require-
ment of any web development model. As you would expect, the .NET Framework and ASP.NET
3.5 provide a rich architecture to support styling of web page elements through server controls
on the web form.

In this chapter, we introduce a new server control construction model and build several
custom server controls that inherit from WebControl (instead of Control) as a means to examine
how to customize control styling using the System.Web.UI.WebControls.Style class, as well as
a means to introduce the more powerful rendering model provided by the WebControl class.

In the final portion of the chapter, we discuss how to customize ViewState storage to
preserve any applied styling and we show how to override the Style property to support your
own customized style class for further customization of appearance. This section also highlights
the benefits the strongly typed styling mechanism provided by ASP.NET.

Customizing the Appearance of Controls
Controls have a tough crowd to please. Programmers want them to be powerful, easy to use,
robust, high performing, and fully customizable in their look and feel. Not a short list by any
means. The last item, look and feel, garners most of the attention. After all, who cares what the
control does on the inside if the HTML it produces is a pain to configure or is rigidly fixed to a
certain output? Because many controls will be distributed to their consumer as an assembly,
without source code, a customizable look and feel is a requirement.

Controls based on System.Web.UI.WebControls.WebControl benefit from a wonderful
amount of prebuilt functionality to customize themselves with Cascading Style Sheet (CSS)
styling. Controls of type WebControl are also smart enough to appropriately render HTML
tags for browsers that support HTML 3.2 so that many of the style features are not lost in
down-level browsers.

Cameron_865-2C04.fm Page 123 Tuesday, January 22, 2008 6:27 AM

124 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

HTML: Content and Appearance
The HTML document that renders in your favorite browser has two core aspects to its makeup.
The first is the textual content placed in the document—the information that users seek.
The second is the appearance and layout of the content on the page. The style of the document
determines whether the text is a certain font, is italicized, or has a particular color. Style also
involves how information is laid out on the page, which determines the position and flow of
text and other content such as images.

Styling Using Tags
HTML was invented to provide access to textual information that can be easily navigated and
cross-referenced via hyperlinks. Commercialization of the Internet drove the need for rich
HTML content, and the ensuing browser competition generated strong demand for styling
capability. The initial wave of style support came in the form of tags that would modify the
output of text or attributes such as color. The , , and <i> tags are a perfect example of
the style tags added to HTML.

The following piece of HTML displays text using an Arial font with bold and italic styling:

 <i>This text is Bold, Italic Blue Text</i>

Layout tags such as <center> and <table> can also be considered part of the style of the
document. Originally designed to display data in a tabular format, these tags have been co-opted
for layout purposes by web designers. Most of the HMTL sites you see on the Web use the <table>
tag to lay out content. Unfortunately, tables render differently in different browsers and much
tweaking is required to get them “just right.” Having a more precise layout mechanism would
go a long way toward reducing the amount of work needed.

Another unfortunate side effect of using style tags to manage the appearance of an HTML
document is tag maintenance. Modifying tags scattered throughout a complex
HTML document, let alone an entire site, is an error-prone and time-consuming undertaking.
Luckily, as the Internet has evolved, so have the technologies used to present content to web
surfers. One such technological advancement is the topic of the next section: CSS, which permits
separation of content from styling and layout.

Styling Using Cascading Style Sheets
CSS technology permits web developers to separate the concerns of HTML content from its
appearance by defining a system for applying styling rules to informational content. The heart
of CSS is a set of style properties that are defined separately from the content. CSS can be defined
inline on an HTML tag or defined in a separate file with an extension of .css. Here is an example
CSS class that would apply to the <title> tag for a web form:

.title {
 padding: 0;
 border-bottom: 0;
 margin: 0;
 font-size: 22px;
}

Cameron_865-2C04.fm Page 124 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 125

If the CSS class is stored in a separate file, the file would need to be referenced in the web
form <head> tag using a <link> tag like this:

<link href="ListsStyleSheet.css" rel="stylesheet" type="text/css" />

The syntax for a CSS style property is simple. It consists of a property name followed by a
colon (:) and then the value of that property. Multiple properties are separated by semicolons
(;). The following style properties specify that the textual content be displayed in blue Arial
font with bold and italic effects:

<span style="font-family: Arial; color: Blue; font-weight:bold;
font-style:italic;">This text is Bold, Italic Blue Text

Contrast this with the use of the , , and <i> tags in the previous section to describe
the same textual styling. If the style properties are not defined inline with the HTML element,
they take on a slightly different appearance. A mechanism called a selector is needed to join style
rules to HTML elements. The following style sheet snippet defines a rule for elements where
the textual content should be displayed in blue Arial font with bold and italic effects:

span
{ font-family: Arial; color: Blue; font-weight:bold; font-style:italic; }

The span keyword is an HTML element selector in CSS, because it uses HTML element
names to modify the selection process. HTML element selectors are good for setting up default
styles for specific tags that a web site uses for its content.

Sometimes, you want to target a specific group of HTML elements with CSS styles instead
of all instances of an element type. Putting a period in front of the CSS style class name defines
a class selector, as you can see in the following code snippet. The class selector applies to all
HTML tags with a class attribute equal to the selector name. The period in front of the class
name makes it a class selector.

 .second
{ font-family: Arial; color: Blue; font-weight:bold; font-style:italic; }

The second class style rule would apply to the following because of its class attribute:

Bold, Italic Blue Text

A selector with a hash (#) character in front of it signals the use of an id selector. It applies
to HTML elements that have the same id attribute value as the selector name. Because id attributes
for HTML elements on a page need to be unique, this specifies a style setting for a specific tag.
If we changed the selector from the previous style definition to

#third
{ font-family: Arial; color: Blue; font-weight:bold; font-style:italic; }

then to use it we need a with an id attribute equal to third:

Bold, Italic Blue Text

You can combine the id or class technique along with the tag selector to separate the CSS
classes from the tags they mark up. The following CSS definition shows the and <div>
HTML element selector names combined with the same class selector:

Cameron_865-2C04.fm Page 125 Tuesday, January 22, 2008 6:27 AM

126 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

span.first
{ font-family: Arial; color: Blue; font-weight:bold; font-style:italic; }
div.first
{ font-family: Arial; color: Red; font-weight:bold; font-style:italic; }

This produces different text layout depending on whether the class attribute first is used
with a or <div> tag:

Bold, Italic Blue Text
<div class="first">Bold, Italic Red Text

There are additional selectors that do more specialized selection of HTML elements, such
as the ability to group several selectors via commas. Please refer to a good text on CSS styling,
such as CSS Mastery: Advanced Web Standards Solutions (Andy Budd, Simon Collison, Cameron
Moll. friends of ED, 2006.), for more information on CSS selectors.

CSS provides several ways to formulate the style rules. You can place styles in their own
separate CSS file and bring them in via a <link> tag as described previously, or you can place
CSS styles in a <style> block in the <head> section of the document:

<style type="text/css">
 .bluetext
 {
 color: blue;
 background-color: yellow;
 }
</style>

You can also place CSS styles inline with the style attribute:

Yellow background, red text

This begs the question, what happens when style properties that are defined in several
different locations come together on the same document? CSS is built to handle this situation
and this is where the “cascading” part of the CSS acronym comes in to play. The process can be
summarized this way: if the styles do not conflict, the attributes are combined in an additive
process. Also, style settings in the parent container apply to the parent’s child elements.

When conflicts do arise because of the flow of style properties, there is a pecking order to
determine which style takes precedence. The rule is simple: definitions closer to the tag take
precedence over the more remote definitions, in terms of location on the page. The following
order is taken into consideration, with the last bullet taking precedence over the first bullet:

• Browser defaults

• External style sheet

• Internal style sheet (inside the <head> tag)

• Inline style (style attribute on HTML element)

Cameron_865-2C04.fm Page 126 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 127

The previous example displays with a yellow background that it inherits from the
class selector, and its inline style color displays the text in red.

Style Properties and Visual Studio
Trying to remember what the various CSS properties are and how to use them can be a daunting
task. You either need to have a thick reference close at hand or use the CSS editing features
bundled with Visual Studio. Figure 4-1 shows a CSS style sheet in the main window and the
Explorer view of its rules on the left side.

Figure 4-1. The Visual Studio CSS file designer

Right-click the design surface to add new styles or build on existing styles. The Add Style
Rule dialog box shown in Figure 4-2 helps build the selector and outlines how the cascading
style rules are applied.

Once you’ve added a new style selector to a CSS file, you can right-click the selector in the
outline view to get the Style Builder dialog box, as shown in Figure 4-3. This is an excellent way
to configure CSS classes, as it previews the style in the dialog box as it is created.

Cameron_865-2C04.fm Page 127 Tuesday, January 22, 2008 6:27 AM

128 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Figure 4-2. The Visual Studio CSS designer Add Style Rule dialog box

Figure 4-3. The Visual Studio CSS designer Style Builder dialog box

Cameron_865-2C04.fm Page 128 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 129

Visual Studio .NET 2003 included a page property called pageLayout, which enabled precise
positioning of server controls when the pageLayout property is set to GridLayout. Visual Studio
and ASP.NET 2.0 and later do not have a pageLayout property on web form documents, but
there is a similar capability in the HTML designer. Go to Tools ➤ Options, and expand the
HTML Designer node. Select the CSS Positioning node, check the option “Change positioning
to the following for controls”, and select “Absolutely positioned” in the combo box. Note that
this is a global setting that will affect all subsequent web forms. Figure 4-4 shows the Options
dialog box.

Figure 4-4. The Visual Studio HTML Designer Options dialog box for setting the web form layout
to “Absolutely positioned”

The “Absolutely positioned” option uses the features of CSS absolute positioning, speci-
fying pixel locations for server control objects, as shown in Figure 4-5. Visual Studio translates
the developer’s drag-and-drop movements of controls on the Designer surface into CSS style
properties.

The following server control style properties position a button 133 pixels from the top of
the document and 252 pixels from the left edge.

<asp:Button id="Button1" style="Z-INDEX: 101; LEFT: 252px; POSITION: absolute;
TOP: 133px" runat="server" Text="Button"></asp:Button>

CSS absolute positioning is enabled with the position property having an absolute value.
The z-index provides a way to position the HTML elements in a third dimension: depth. This
allows for overlapping content and some interesting visual effects.

Cameron_865-2C04.fm Page 129 Tuesday, January 22, 2008 6:27 AM

130 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Figure 4-5. A Visual Studio Designer web form using “Absolutely positioned”

WebControl and Control Styling
Up to this point in this book, we built our server controls by inheriting from System.Web.UI.
Control as the base class. We did this to keep things simple, concentrating on the basics of
control development. However, Control as a base class starts to show its inherent limitations
when we start working with styling and cross-browser support. When inheriting from Control,
developers are responsible for manually building up the HTML tags, providing a style property
and manually emitting the style property into the HTML output stream. To avoid this work, a
better choice is inheriting from the WebControl class, as you will see in the ensuing discussion.

■Note There will be times when inheriting from Control is desired in order to have full control over the
rendering process and the capabilities built into WebControl are not required. When this is not the case, we
recommend inheriting from WebControl or WebPart discussed later in this book whenever possible.

Cameron_865-2C04.fm Page 130 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 131

In this section, we discuss how to add styling capabilities to server controls. We also intro-
duce a new method of building server controls that inherit from the WebControl class. The
WebControl class provides an abstraction layer over the rendering process to support strong
styling capabilities and rendering in down-level browsers.

The WebControl class from the System.Web.UI.WebControls namespace provides a wealth
of style support in the form of style properties and automatic style rendering. Not only does it
take care of rendering CSS style properties, but it also goes the extra mile to support HTML 3.2
with explicit style tags for down-level browsers.

Control styling and rendering are closely coupled, because at the end of the day, raw HTML
is the output from a server control. In the next section, we dive into the styling capabilities
available in WebControl. Along the way, we discuss the new rendering model in WebControl that
provides the necessary support for styling and down-level browsers without requiring too much
effort on the developer’s part to make it happen.

WebControl’s ControlStyle Property
ControlStyle is the property of interest in the WebControl class for manipulating styling. It is a
read-only property that provides access to an instance of the System.Web.UI.WebControls.Style
class. The Style class captures most of the commonly used style properties that a web devel-
oper needs to use with a control, focusing on text, font, color, and borders. Table 4-1 shows the
properties that hang from the Style class and the CSS property that is rendered in conjunction
with the property.

CssClass is a string property that translates directly to rendering a class attribute on the
control tag. Setting the CssClass property in the .aspx page for the ASP.NET Label WebControl

<asp:label id="myspan" runat="server" CssClass="mycssclass" Text="blank" />

Table 4-1. Properties of the System.Web.UI.WebControls.Style Class

Style Property CSS Property

BackColor background-color

BorderColor border-color

BorderStyle border-style

BorderWidth border-width

CssClass CSS class name

Font Font weight, style, family, and so on

ForeColor color

Height height

Width width

Cameron_865-2C04.fm Page 131 Tuesday, January 22, 2008 6:27 AM

132 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

translates into the following HTML:

blank

The Font property exposes a set of subproperties, so we continue our property examina-
tion with Table 4-2 for the System.Web.UI.FontInfo class.

WebControl Top-Level Style Properties
Going through the ControlStyle property to access these attributes would require a lot of extra
typing when setting style properties in either the .aspx control tag or the code-behind class file.
The WebControl class makes life easier by exposing all of the properties listed in Tables 4-1 and
4-2 directly as properties (see Figure 4-6), which saves a lot of typing.

The top-level property exposure as shown in Figure 4-6 shortens the syntax from this

Mycontrol.ControlStyle.ForeColor = red;

to the more pleasant

MyControl.ForeColor = red;

The style properties are also available for configuration of the control tag via attributes in
the .aspx page as well:

<apress:textbox id="MyControl" runat="server" forecolor="red" font-bold="true" />

These top-level properties are convenient to use, but there are other styling attributes
available too numerous to hang off of the WebControl class. Instead, you can access these
styling capabilities through the Style property.

Table 4-2. Properties of the System.Web.UI.WebControls.FontInfo Class

Font Property CSS Property

Bold font-weight: bold

Italic font-style: italic

Name font-family

Names font-family

Overline text-decoration: overline

Size font-size

Strikeout text-decoration: line-through

Underline text-decoration: underline

Cameron_865-2C04.fm Page 132 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 133

Figure 4-6. WebControl and top-level style properties

The Style Property
The ControlStyle property and top-level properties of WebControl do not expose the complete
spectrum of CSS styling capabilities. The most notable omissions are the placement attributes
that allow you to do CSS absolute positioning.

To handle these “other” style properties, WebControl exposes a collection via the Style
property. The Style property is an instance of type CssStyleCollection. CssStyleCollection is
a string-based collection that uses string names as indexers into the values. This is similar to
the Hashtable class, except it mandates strings for both keys and values.

You can set the Style property programmatically, but it is more commonly set by adding
style properties to the .aspx page. The WYSIWYG designers, such as the ASP.NET Designer in
Visual Studio in “Absolutely positioned” mode, are the best examples of this. The ASP.NET
Designer uses the Style property on the .aspx page to control the layout of the controls when
it is set to be absolutely positioned:

<asp:button id="Button2" runat="server" style="Z-INDEX: 101; LEFT: 252px;
POSITION: absolute;"></asp:button>

Cameron_865-2C04.fm Page 133 Tuesday, January 22, 2008 6:27 AM

134 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Parsing an .aspx page creates start-up code that initializes a control’s Style property
collection with declarative style properties. You can modify the Style property programmatically
as well. The following line of code changes the button’s text color from its declarative red value
to a programmatically set blue value:

Button1.Style[color] = blue;

The primary drawback to adding style properties via the Style property collection is that
it isn’t browser-aware. Although ControlStyle properties render HTML tags for down-level
browsers, the Style properties are streamed to the browser verbatim as CSS properties. If the
browser doesn’t understand the CSS properties, it simply ignores them.

We next move on to discuss how to provide cross-browser compatible styling capabilities
by taking advantage of the rendering system provided by the WebControl class.

A New Rendering System
As we stated earlier, the custom controls we have developed so far inherit from Control and
require that we override the Render() method of the base Control class to emit HTML output.
Going forward in this chapter, we will inherit from the WebControl class, which overrides Render()
by default to save us from having to emit raw HTML tags and style content into the output
stream. Instead, we override RenderContents(), which is a method in the WebControl class.

RenderContents() provides a method signature identical to that of Render() with an
HtmlTextWriter reference as its sole parameter. The difference is that you have the task of emit-
ting what is inside the outermost HTML tag for the control. For this reason, you need to let
WebControl know what kind of HTML tag formulates your control’s outer shell. You can do this
in one of two ways: by passing the tag via the HtmlTextWriterTag enumeration to the base
WebControl constructor or by setting either the TagKey or TagName property of WebControl. The
more common way is to use the base constructor:

public Label() : base(HtmlTextWriterTag.Span)
{
}

In the next section, we dive into WebControl-based control building and create a simple
Label control.

A Styled Label Control
Label controls are probably the simplest controls in the ASP.NET server control arsenal. They
have a single mission: to render a piece of content within a tag. To demonstrate the
styling powers of the WebControl class, we will build our own version of the Label control.
Listing 4-1 shows how easy this truly is.

Listing 4-1. The Label Control

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

Cameron_865-2C04.fm Page 134 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 135

namespace ControlsBook2Lib.Ch04
{
 [ToolboxData("<{0}:label runat=server></{0}:label>"),
 DefaultProperty("Text")]
 public class Label : WebControl
 {
 public Label()
 : base(HtmlTextWriterTag.Span)
 {
 }

 public virtual string Text
 {
 get
 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 override protected void RenderContents(HtmlTextWriter writer)
 {
 writer.Write(Text);
 }
 }
}

The constructor of the Label control calls the base constructor of WebControl to have it emit the
content inside of tags via the HtmlTextWriterTag.Span enumeration value. This sets up
the control to call our overridden RenderContents() method. Note that we do not emit a single
HTML tag directly. The RenderContents() method simply has to write out the Text property to
complete the control functionality. We next create a TextBox control to demonstrate further
how to work with WebControl, laying the groundwork for building stylized server controls that
take full advantage of the capabilities built into ASP.NET and the WebControl class.

The AddAttributesToRender() Method
The Label was an easy enough control to build, but its limited functionality did not require the
use of attributes on the tag. What happens when you have an <input> tag like our various
TextBox controls from previous chapters? It needs to output type and value attributes inside
the <input> tag.

Cameron_865-2C04.fm Page 135 Tuesday, January 22, 2008 6:27 AM

136 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

For those who need to render attributes on the outer tag, the AddAttributesToRender()
method is a method override available when inheriting from WebControl that fits the bill. It is
part of the customized Render() process that WebControl orchestrates, and it is called by the
RenderBeginTag() method of WebControl. The WebControl version of Render() executes the
following routines in order, with RenderBeginTag() calling AddAttributesToRender():

• RenderBeginTag()

• RenderContents()

• RenderEndTag()

Figure 4-7 shows the relationship graphically.

Figure 4-7. The rendering process in the WebControl class

Depending on the level of control required, you can overload each step of the process as
necessary. The RenderBeginTag()/RenderEndTag() method pairs are less commonly overloaded,
because they do the outer tag rendering by looking up the TagKey or TagName property values
and emitting the content via HtmlTextWriter.

The key point to remember is that when you override AddAttributesToRender(), you must
also call the base WebControl version of the method to ensure that the style properties managed
by WebControl are emitted properly:

base.AddAttributesToRender(writer);

Also, you can use HtmlTextWriter and its AddAttribute() method to add other attributes as
necessary:

writer.AddAttribute("value",Text);

Now that we have covered the basics of inheriting from WebControl, we can move on to add
style capabilities to our TextBox control from earlier in this book.

A Styled TextBox Control
In this section, we bring back our favorite TextBox control from chapters past and update it with
WebControl capabilities. As you would guess, most of the implementation remains the same.
The biggest changes relate to how we handle the rendering process.

Cameron_865-2C04.fm Page 136 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 137

The first step in updating TextBox is to inherit from WebControl and set the constructor to
create the tag for the outer shell of the control. The following code snippet sets up our WebControl
version of the TextBox to render an <input> tag:

public class Textbox : WebControl, IPostBackDataHandler
{
 public Textbox() : base(HtmlTextWriterTag.Input)
 {
 }
}

The rendering code in this version of TextBox is dramatically smaller than the previous
version that inherited from Control. All we have to implement is the AddAttributesToRender()
method to set the <input> tag with the appropriate attributes, and we need to call the base class
version to add the style properties:

override protected void AddAttributesToRender(HtmlTextWriter writer)
{
 writer.AddAttribute("type","text");
 writer.AddAttribute("name",UniqueID);
 writer.AddAttribute("value",Text);

 base.AddAttributesToRender(writer);
}

Listing 4-2 shows the full code for the TextBox control.

Listing 4-2. The TextBox Control

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Collections.Specialized;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch04
{
 [ToolboxData("<{0}:textbox runat=server></{0}:textbox>"),
 DefaultProperty("Text")]
 public class Textbox : WebControl, IPostBackDataHandler
 {
 public Textbox()
 : base(HtmlTextWriterTag.Input)
 {
 }

 public virtual string Text
 {
 get

Cameron_865-2C04.fm Page 137 Tuesday, January 22, 2008 6:27 AM

138 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 string postedValue = postCollection[postDataKey];
 if (!Text.Equals(postedValue))
 {
 Text = postedValue;
 return true;
 }
 else
 return false;
 }

 public void RaisePostDataChangedEvent()
 {
 OnTextChanged(EventArgs.Empty);
 }

 private static readonly object TextChangedKey = new object();
 public event EventHandler TextChanged
 {
 add
 {
 Events.AddHandler(TextChangedKey, value);
 }
 remove
 {
 Events.RemoveHandler(TextChangedKey, value);
 }
 }

Cameron_865-2C04.fm Page 138 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 139

 protected virtual void OnTextChanged(EventArgs e)
 {
 EventHandler textChangedEventDelegate =
 (EventHandler)Events[TextChangedKey];
 if (textChangedEventDelegate != null)
 {
 textChangedEventDelegate(this, e);
 }
 }

 override protected void AddAttributesToRender(HtmlTextWriter writer)
 {
 writer.AddAttribute("type", "text");
 writer.AddAttribute("name", UniqueID);
 writer.AddAttribute("value", Text);

 base.AddAttributesToRender(writer);
 }
 }
}

The Web Control Style Web Form
The Web Control Style web form is a workbench for testing both the Label and the TextBox
controls we have created so far in this chapter. It has a set of controls to allow the user to inter-
actively change style properties, rendering the control with its new styles on the web form.
Figure 4-8 displays what the web form looks like when displayed in a browser.

The top of the form is the TextBox control with properties that are set in the .aspx tag page
to make the TextBox background gray and set its text to Tahoma font with bold and italic features:

<apress:textbox id="NameTextbox" runat="server" Font-Bold="True"
BackColor="#E0E0E0" Font-Italic="True" Font-Names="Tahoma"></apress:textbox>

Below the web form is a set of server controls that provide a control panel for styling a Label
control at the very bottom of the .aspx page, just before the footer:

<apress:label id="NameLabel" runat="server" Text="blank"></apress:label>

The user can set the following properties: Font-Name, ForeColor, Bold, Italic, and Underline,
along with CssClass. In ASP.NET 1.1, the .aspx page had a link to an external style sheet called
WebControlStyle. This was useful for exercising the CssClass property, as all the style rules had
class selectors:

<link href="WebControlStyle.css" type="text/css" rel="stylesheet"/>

Cameron_865-2C04.fm Page 139 Tuesday, January 22, 2008 6:27 AM

140 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Figure 4-8. The Web Control Style web form

In ASP.NET 2.0 and later, when using master pages, a <link> tag can be added directly to
the <head> portion of the .aspx page, by adding a content tag to the head section of the master
page. Another option is to add the <link> tag programmatically as shown here:

private void AddCssLinktoHeader()
{
 HtmlLink cssRef = new HtmlLink();
 cssRef.Href = "../Ch04/WebControlStyle.css";
 cssRef.Attributes.Add("rel", "stylesheet");
 cssRef.Attributes.Add("type", "text/css");
 Header.Controls.Add(cssRef);
}

Notice that the Href value must be provided relative to the directory where the master
page exists.

To try applying a CSS class selector via the CssClass property, type either yellowbackground
or grayborder in the CSS class text box, and click the Set Style button. You can see the style
changes take effect based on the class name you typed. The full listing of the web form is shown
in Listings 4-3 and 4-4, and the style sheet is shown in Listing 4-5.

Cameron_865-2C04.fm Page 140 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 141

Listing 4-3. The Web Control Style Web Form .aspx File

<%@ Page Language="C#"
 MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="WebControlStyle.aspx.cs"
 Inherits="ControlsBook2Web.Ch04.WebControlStyle"
 Title="Web Control Style Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch04"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">4</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 WebControl Base Class and Control
Styles</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Web Control Style</h3>
 Enter your first name:

 <apress:Textbox ID="NameTextbox" runat="server"
 Font-Bold="True" BackColor="#E0E0E0"
 Font-Italic="True" Font-Names="Tahoma"></apress:Textbox>

 Font-Name:
 <asp:DropDownList ID="FontDropDownList" runat="server">
 <asp:ListItem Value="Arial">Arial</asp:ListItem>
 <asp:ListItem Value="Courier New">Courier New</asp:ListItem>
 <asp:ListItem Value="Times New Roman">Times New Roman</asp:ListItem>
 <asp:ListItem Value="Monotype Corsiva">Monotype Corsiva</asp:ListItem>
 </asp:DropDownList>

 ForeColor:
 <asp:DropDownList ID="ForeColorDropDownList" runat="server">
 <asp:ListItem Value="Blue">Blue</asp:ListItem>
 <asp:ListItem Value="Red">Red</asp:ListItem>
 <asp:ListItem Value="Black">Black</asp:ListItem>
 </asp:DropDownList>

 <asp:CheckBox ID="BoldCheckbox" runat="server" Text="Bold: "
TextAlign="Left"></asp:CheckBox>

 <asp:CheckBox ID="ItalicCheckbox" runat="server" Text="Italic: " TextAlign="Left">
 </asp:CheckBox>

 <asp:CheckBox ID="UnderlineCheckbox" runat="server" Text="Underline: "
 TextAlign="Left">
 </asp:CheckBox>

Cameron_865-2C04.fm Page 141 Tuesday, January 22, 2008 6:27 AM

142 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 CSS class:
 <asp:TextBox ID="CssClassTextBox" runat="server" Text=""></asp:TextBox>

 <asp:Button ID="SetStyleButton" runat="server" Text="Set Style"
 OnClick="SetStyleButton_Click">
 </asp:Button>
 <asp:Button ID="SubmitPageButton" runat="server" Text="Submit Page">
 </asp:Button>

 <apress:Label ID="NameLabel" runat="server" Text="blank"></apress:Label>

</asp:Content>

Listing 4-4. The Web Control Style Web Form Code-Behind Class File

using System;
using System.Drawing;
using System.ComponentModel;
using System.Web.UI.HtmlControls;

namespace ControlsBook2Web.Ch04
{
 public partial class WebControlStyle : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 //Add link to css class file
 AddCssLinktoHeader();

 }

 private void AddCssLinktoHeader()
 {
 HtmlLink cssRef = new HtmlLink();
 cssRef.Href = "../Ch04/WebControlStyle.css";
 cssRef.Attributes.Add("rel", "stylesheet");
 cssRef.Attributes.Add("type", "text/css");
 Header.Controls.Add(cssRef);
 }

Cameron_865-2C04.fm Page 142 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 143

 protected void SetStyleButton_Click(object sender, EventArgs e)
 {
 NameLabel.Text = NameTextbox.Text;

 NameLabel.CssClass = CssClassTextBox.Text;

 NameLabel.Font.Name = FontDropDownList.SelectedItem.Value;
 NameLabel.Font.Bold = (BoldCheckbox.Checked == true);
 NameLabel.Font.Italic = (ItalicCheckbox.Checked == true);

 // Use the TypeConverter for the System.Drawing.Color class
 // to get the typed Color value from the string value
 Color c =
 (Color)TypeDescriptor.GetConverter(typeof(Color)).ConvertFromString(
 ForeColorDropDownList.SelectedItem.Value);
 NameLabel.ForeColor = c;

 // set the text-decoration CSS style properties
 // using manual manipulation of the Style property
 string textdecoration = "none";
 if (UnderlineCheckbox.Checked == true)
 textdecoration = "underline";
 NameLabel.Style["text-decoration"] = textdecoration;
 }
 }
}

Listing 4-5. The WebControlStyle.css File

.yellowbackground
{
 background-color: #ffff66;
}

.grayborder
{
 border-right: gray thin groove;
 padding-right: 2px;
 border-top: gray thin groove;
 padding-left: 2px;
 padding-bottom: 2px;
 border-left: gray thin groove;
 padding-top: 2px;
 border-bottom: gray thin groove;
}

Cameron_865-2C04.fm Page 143 Tuesday, January 22, 2008 6:27 AM

144 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

The Set Style button on the Web Control Style web form is used to programmatically change
the style properties of the Label control in the code-behind file. The SetStyleButton_Click
routine performs the heavy lifting. The attributes set are fairly easy ones that include the Text-
and Font-related properties, along with the CssClass of the control.

A more complicated effort is required to set up the ForeColor property of the control to a
value of type System.Drawing.Color. We use the TypeConverter class that is available to perform this
conversion from our string value to the exact Color type necessary to set the ForeColor property:

// Use the TypeConverter for the System.Drawing.Color class
// to get the typed Color value from the string value
Color c =
 (Color)TypeDescriptor.GetConverter(typeof(Color)).ConvertFromString(
 ForeColorDropDownList.SelectedItem.Value);
NameLabel.ForeColor = c;

In Chapter 11, in which we discuss designer support, we show how to build and work with
TypeConverter classes.

The final part of the Set Style button click handler is code that uses the Style property to
set the underline styling of the Label control. This step is not necessary, as there is an Underline
property exposed by the Font object. We do it here to demonstrate the longer version:

// set the text-decoration CSS style property
// using manual manipulation of the Style property
string textdecoration = "none";
if (UnderlineCheckbox.Checked == true)
 textdecoration = "underline";
NameLabel.Style["text-decoration"] = textdecoration;

The other button on the web form with a Submit Page caption is there to execute a post-
back without any server-side code executing. We use it to cycle the values from ViewState to
demonstrate that the controls are working with client state properly.

Navigate to the WebControlStyle.aspx page to display the web form in your browser. Enter
your first name in the TextBox at the top and click the Set Style button. The display should look
similar to Figure 4-9, with the Label control picking up the TextBox Text property value.

The HTML emitted by the TextBox control shows the translation from top-level server
control properties to the style attribute on the HTML <input> element:

<input type="text" name="NameTextbox" value="" id="NameTextbox"
style="background-color:#E0E0E0;font-family:Tahoma;font-weight:bold;
font-style:italic;" />

Cameron_865-2C04.fm Page 144 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 145

Figure 4-9. Setting the name and style in the Web Control Style web form

The same process occurs at the bottom of the web form with the Label control. It picks up
the style properties we set in HTML:

<span id="NameLabel" style="color:Blue;font-family:Arial;
text-decoration:none;">Rob

For the next demonstration, we change the Font-Name to Monotype Corsiva; select the
italic, bold, and underline options; and enter grayborder in the CssClass TextBox control, as
shown in Figure 4-10.

Cameron_865-2C04.fm Page 145 Tuesday, January 22, 2008 6:27 AM

146 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Figure 4-10. Grayborder CSS class, Monotype Corsiva font, and italic, bold, and underline styles in
the Web Control Style web form

This renders the Label in quite a different manner, picking up the color and the font text
settings such as italic, bold, and underline. The most prominent feature is the gray border
styling picked up by using the CssClass attribute in conjunction with the external style sheet,
WebControlStyle.css. The HTML for the Label control is as follows:

<span id="NameLabel" class="grayborder" style="color:Blue;font-family:Monotype
Corsiva;font-weight:bold;font-style:italic;text-decoration:underline;">Rob

The same settings rendered in Firefox 2.0, shown in Figure 4-11, demonstrate that it displays
the style settings with aplomb.

Cameron_865-2C04.fm Page 146 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 147

Figure 4-11. Styles in Firefox 2.0

Styles, HTML 3.2, and Down-Level Browsers
The styling in ASP.NET is thankfully smart enough to help a browser that only supports HTML 3.2
display the page properly as well. You have two options for testing this: adding the ClientTarget=
"downlevel" attribute to the @Page directive at the top of the web form .aspx page or finding a
browser client that only supports HTML 3.2. The 3.2 browser is a better test, because Internet
Explorer (IE) or Netscape will still render styles that are present that don’t translate into HTML
3.2 tags.

In order to test this, we downloaded a copy of Netscape 3.04, installing on Windows Vista,
just to see how good down-level support really is in ASP.NET 2.0 and later. Running the same
web form test with the Font-Name set to Monotype Corsiva, CssClass set to grayborder, and the
italic, bold, and underline options selected results in the screenshot shown in Figure 4-12.

Cameron_865-2C04.fm Page 147 Tuesday, January 22, 2008 6:27 AM

148 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Figure 4-12. Down-level browser rendering

Netscape 3.04 does not know how to interpret the
 tag correctly, resulting in the jumbled
output. Changing the tag to
 instead does render the line breaks correctly, but the web
form then fails Visual Studio XHTML validation with this error:

Cannot switch views: Validation (ASP.Net): Element '' is missing the '>' character
from its closing tag.

Besides the issue with the
 tag, the web form does its best to translate the desired CSS
style properties to HTML 3.2 tags for the old Netscape browser. For the most part, it does a good
job, especially with text. Viewing the HTML source shows how this compatibility was achieved:

<span id="ctl00_ControlsBookContent_NameLabel" class="grayboarder"
style="text-decoration:underline;"><i><font face="Monotype Corsiva"
color="Blue">Rob</i>

The style attribute is still present because we used the Style collection for setting the
text-decoration attribute in the code-behind class. Setting the font to have an underline style
using this method is the reason why the text-decoration property does not affect the display
in HTML 3.2 and why you should be careful when using the Style property unless you are only
targeting an up-level browser. The class attribute is present as well, but it is ignored by the
down-level browser, so we won’t see a border either. As you can see, building controls that
inherit from WebControl provides cross-browser support without your having to worry about
the details of browser detection and raw HTML output. We next discuss what goes on under
the covers with respect to down-level browser support.

Cameron_865-2C04.fm Page 148 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 149

Down-Level Browser Style Rendering Behind the Scenes
The style conversion that occurs automatically when the Web Control Style web form is viewed
in the down-level Netscape browser is a clever technology built into the ASP.NET framework.
When a request is made for an .aspx page, ASP.NET parses the header information to determine
the capability of the browser. An instance of the System.Web.HttpBrowserCapabilities class is
attached to the HttpRequest class via its Browser property.

The HttpBrowserCapabilities class has a TagWriter property pointing to an instance of the
HtmlTextWriter class, or a type inherited from it, to inject HTML into the output stream. Up-
level browsers such as IE 6.0 and Netscape 7.02 are rendered with an instance of HtmlTextWriter,
whereas HTML 3.2 and down-level browsers are rendered with an instance of Html32TextWriter.

Html32TextWriter has a special implementation for handling style information added
through AddStyleAttribute. When you call RenderBeginTag, it converts the style properties into
necessary HTML tags such as , , and <i>. Because the interfaces are identical between
HtmlTextWriter and Html32TextWriter, controls are none the wiser and do not need to worry
about the differences, which makes developing cross-browser-friendly web pages as well as
server controls much easier when inheriting from WebControl.

We examine the HttpBrowserCapabilities class in more detail in Chapter 8, which is dedi-
cated to integrating client script with control development.

Custom Styling
The WebControl base class provides a great start in implementing styling in your control. It
offers a base set of style properties that affect the look and feel of the rendered HTML. With that
said, sometimes your controls will be more complex than a single HTML tag. Think of how the
composite control renders a whole host of child controls by recursively calling Render() on
each control. Because the child controls are not directly accessible to outside clients, how can
you make the individual controls accessible without breaking the composite control object?

The Style class that backs the ControlStyle property on a WebControl-based control can
easily be used by the composite control to provide custom style properties for its child controls.
Many of the more advanced list controls, such as the DataGrid in ASP.NET, provide the ability
to stylize different settings—for example, how alternating items or edited items appear through the
ItemStyle, AlternateItemStyle, and EditItemStyle properties. The DataGrid exposes the Style
classes through these properties, applying the styles prior to the start of the rendering process.
We demonstrate how to manage styles in a composite control in the next section.

The Styled InputBox Control
To demonstrate custom styling, we develop a composite control called InputBox that aggregates
the controls built so far in this chapter (see Figure 4-13). It consists of a Label control and a
TextBox control placed near each other, as a web developer normally would place them when
laying out a web form. To set the styles on each of the child controls, InputBox exposes LabelStyle
and TextBoxStyle properties. It also merges the child control styles with the parent styles set
via the ControlStyle property to provide a consistent appearance.

Cameron_865-2C04.fm Page 149 Tuesday, January 22, 2008 6:27 AM

150 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Figure 4-13. The InputBox control and its multiple styles

The first step in building our control is to select the tag that represents the outer shell of
our custom control. For the InputBox we use a <div> tag. We pass the tag enumeration value to
the base constructor of WebControl so that it knows how to render itself:

public InputBox() : base(HtmlTextWriterTag.Div)
{
}

Because we are building a composite control, we need to override the
CreateChildControls() method so we can populate the internal Controls collection with our
child controls. InputBox adds the Label and TextBox controls, in that order:

override protected void CreateChildControls()
{
 ControlsBookLib.Ch04.Label label = new ControlsBookLib.Ch04.Label();
 Controls.Add(label);

 ControlsBookLib.Ch04.Textbox textbox = new ControlsBookLib.Ch04.Textbox();
 Controls.Add(textbox);
}

Cameron_865-2C04.fm Page 150 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 151

The text properties of the child Label and TextBox controls are wired up to top-level prop-
erties of our new InputBox control as LabelText and TextBoxText, respectively. The bulk of the
code is spent looking up the child controls by position in the Controls collection to set or get
the Text property value by casting to the appropriate type:

public string LabelText
{
 get
 {
 EnsureChildControls();
 ControlsBookLib.Ch04.Label label =
 (ControlsBookLib.Ch04.Label) Controls[0];
 return label.Text;
 }
 set
 {
 EnsureChildControls();
 ControlsBookLib.Ch04.Label label =
 (ControlsBookLib.Ch04.Label) Controls[0];
 label.Text = value;
 }
}

public string TextboxText
{
 get
 {
 EnsureChildControls();
 ControlsBookLib.Ch04.Textbox textbox =
 (ControlsBookLib.Ch04.Textbox) Controls[1];
 return textbox.Text;
 }
 set
 {
 EnsureChildControls();
 ControlsBookLib.Ch04.Textbox textbox =
 (ControlsBookLib.Ch04.Textbox) Controls[1];
 textbox.Text = value;
 }
}

One item to highlight for our new composite control is the EnsureChildControls()
method of System.Web.UI.Control, which prevents us from trying to work with a null pointer.
EnsureChildControls() checks to see if the child control collection is populated and will cause
the CreateChildControls() method to be called if necessary. We do this in our Text routines to
ensure that we find the appropriate child control and can safely manipulate its Text property.
This is an important step to take before accessing the control hierarchy when working with
composite controls.

Cameron_865-2C04.fm Page 151 Tuesday, January 22, 2008 6:27 AM

152 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

LabelStyle and TextBoxStyle
Now that we have code to create the child Label and TextBox controls, as well as code to get and
set their Text properties, we can move on to demonstrating how to implement custom styles.

Both LabelStyle and TextBoxStyle rely on private instances of the Style class to hold style
properties. The private instance is exposed via a read-only property. One of the tasks for this
read-only property is to make an instance copy of the configured Style class for each child
control available. The other task of the property is to manage ViewState tracking for style settings:

Style labelStyle;
public virtual Style LabelStyle
{
 get
 {
 if (labelStyle == null)
 {
 labelStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)labelStyle).TrackViewState();
 }
 return labelStyle;
 }
}

Style textboxStyle;
public virtual Style TextboxStyle
{
 get
 {
 if (textboxStyle == null)
 {
 textboxStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)textboxStyle).TrackViewState();
 }
 return textboxStyle;
 }
}

As discussed in Chapter 3, ViewState is implemented via a StateBag collection that tracks
modifications to its collection. Both the Style class and the Control class support ViewState,
providing access through implementing the IStateManager interface:

interface IStateManager
{
 bool IsTrackingViewState() { get; }
 void TrackViewState();
 void LoadViewState(object state);
 object SaveViewState();
}

Cameron_865-2C04.fm Page 152 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 153

The TextBoxStyle and LabelStyle properties’ get accessor methods call the
IsTrackingViewState() method of the InputBox control to determine if the control is tracking
ViewState changes. If it is, the code ensures that state is maintained for the style properties as well.

Customizing ViewState
The WebControl class has facilities to manage ViewState serialization for styles maintained in
WebControl’s ControlStyle property instance of the Style class. Because we are providing our
own style management implementation, we need to customize ViewState persistence mecha-
nisms to include our new styling information, as shown in the following code:

override protected object SaveViewState()
{
 object baseState = base.SaveViewState();
 object labelStyleState = (labelStyle != null) ?
((IStateManager)labelStyle).SaveViewState() : null;
 object textboxStyleState = (textboxStyle != null) ?
((IStateManager)textboxStyle).SaveViewState() : null;

 object[] state = new object[3];
 state[0] = baseState;
 state[1] = labelStyleState;
 state[2] = textboxStyleState;

 return state;
}

The first thing we do in the code is call WebControl’s version of SaveViewState() to ensure
we don’t break any behavior implemented in the base class. Calling base.SaveViewState()
persists state information, including the values in the ControlStyle property. Next, we persist the
styling information for the label and text box into ViewState. This is accomplished by casting the
Style instances to the IStateManager interface on the Style class so that we gain access to the
SaveViewState() method. Finally, we package the three object state binary large objects (BLOBs)
into an object array that the ASP.NET framework persists into ViewState.

Retrieving style information from ViewState performs these steps in reverse. Our
LoadViewState() method is as follows:

override protected void LoadViewState(object savedState)
{
 if (savedState != null)
 {
 object[] state = (object[])savedState;

 if (state[0] != null)
 base.LoadViewState(state[0]);
 if (state[1] != null)
 ((IStateManager)LabelStyle).LoadViewState(state[1]);
 if (state[2] != null)
 ((IStateManager)TextboxStyle).LoadViewState(state[2]);
 }
}

Cameron_865-2C04.fm Page 153 Tuesday, January 22, 2008 6:27 AM

154 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

LoadViewState() casts the incoming parameter to an object array identical to what we used
to persist style information in SaveViewState(). We next call LoadViewSate() for each Style class,
checking to ensure that we don’t have a null reference before loading state from ViewState. Order
matters, so WebControl LoadViewState() goes first followed by the Label and TextBox controls’
LoadViewState() routines. At the end of the InputBox LoadViewState() routine, we can be assured
that the saved ViewState is retrieved from the postback and is ready to go for rendering.

Rendering the Output
Normally, a composite control leaves the rendering to the base class implementation of Control or
WebControl. Because we are doing our own custom style work, we override Render() for the
maximum amount of control. In our Render() method override (shown in the following code
snippet), we need to call RenderBigTag() to emit the starting <div> tag and the base style properties,
we need to call RenderChildren() to have the child controls render their content, and finally, we
need to call RenderEndTag() to emit the closing </div> tag. We skip calling RenderContents(),
because we took full responsibility for rendering the control, including the inner HTML.

override protected void Render(HtmlTextWriter writer)
{
 PrepareControlHierarchy();
 RenderBeginTag(writer);
 RenderChildren(writer);
 RenderEndTag(writer);
}

Our implementation of Render() performs some extra work to massage the style
information in a helper method named PrepareControlHierarchy() prior to rendering.
PrepareControlHierarchy() obtains a reference to each of our child controls so that it can
apply style properties:

private void PrepareControlHierarchy()
{
 ControlsBookLib.Ch04.Label label =
 (ControlsBookLib.Ch04.Label) Controls[0];
 label.ApplyStyle(LabelStyle);
 label.MergeStyle(ControlStyle);

 ControlsBookLib.Ch04.Textbox textbox =
 (ControlsBookLib.Ch04.Textbox) Controls[1];
 textbox.ApplyStyle(TextboxStyle);
 textbox.MergeStyle(ControlStyle);
}

The ApplyStyle() class method overwrites any existing style properties that are in effect
for a control. You can use this to wipe the slate clean, as it replaces all style properties.

Cameron_865-2C04.fm Page 154 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 155

The MergeStyle() class method is used to add style properties that are not already set in the
Style instance. You have to be careful with what MergeStyle() considers to be set. For a Style
attribute such as Font.Italic, it does not consider a false value to be a set value. So, if the existing
Style instance has Font.Italic explicitly set to false, MergeStyle() will set Font.Italic to true if
the style to be copied has it set to true, as a value of true is considered to be set.

PrepareControlHierachy() uses ApplyStyle() for the custom style properties to load all
their attributes. This ensures that the TextBox is decorated with its TextBoxStyle properties and
the Label is decorated with its LabelStyle properties. The parent InputBox ControlStyle style is
then merged using MergeStyle() to fill in any style properties that are not set by the custom
styles. If there aren’t any custom style properties selected, the ControlStyle properties will be
the default for the two custom controls. Listing 4-6 shows the full listing for InputBox.

Listing 4-6. The InputBox Custom Control Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Collections.Specialized;

namespace ControlsBook2Lib.Ch04
{
 [ToolboxData("<{0}:inputbox runat=server></{0}:inputbox>")]
 public class InputBox : WebControl
 {
 public InputBox()
 : base(HtmlTextWriterTag.Div)
 {
 }

 public string LabelText
 {
 get
 {
 EnsureChildControls();
 ControlsBook2Lib.Ch04.Label label =
 (ControlsBook2Lib.Ch04.Label)Controls[0];
 return label.Text;
 }
 set
 {
 EnsureChildControls();
 ControlsBook2Lib.Ch04.Label label =
 (ControlsBook2Lib.Ch04.Label)Controls[0];
 label.Text = value;
 }
 }

Cameron_865-2C04.fm Page 155 Tuesday, January 22, 2008 6:27 AM

156 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 public string TextboxText
 {
 get
 {
 EnsureChildControls();
 ControlsBook2Lib.Ch04.Textbox textbox =
 (ControlsBook2Lib.Ch04.Textbox)Controls[1];
 return textbox.Text;
 }
 set
 {
 EnsureChildControls();
 ControlsBook2Lib.Ch04.Textbox textbox =
 (ControlsBook2Lib.Ch04.Textbox)Controls[1];
 textbox.Text = value;
 }
 }

 Style labelStyle;
 public virtual Style LabelStyle
 {
 get
 {
 if (labelStyle == null)
 {
 labelStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)labelStyle).TrackViewState();
 }
 return labelStyle;
 }
 }

 Style textboxStyle;
 public virtual Style TextboxStyle
 {
 get
 {
 if (textboxStyle == null)
 {
 textboxStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)textboxStyle).TrackViewState();
 }

Cameron_865-2C04.fm Page 156 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 157

 return textboxStyle;
 }
 }

 override protected void LoadViewState(object savedState)
 {
 if (savedState != null)
 {
 object[] state = (object[])savedState;

 if (state[0] != null)
 base.LoadViewState(state[0]);
 if (state[1] != null)
 ((IStateManager)LabelStyle).LoadViewState(state[1]);
 if (state[2] != null)
 ((IStateManager)TextboxStyle).LoadViewState(state[2]);
 }
 }

 override protected object SaveViewState()
 {
 object baseState = base.SaveViewState();
 object labelStyleState = (labelStyle != null) ?
((IStateManager)labelStyle).SaveViewState() : null;
 object textboxStyleState = (textboxStyle != null) ?
((IStateManager)textboxStyle).SaveViewState() : null;

 object[] state = new object[3];
 state[0] = baseState;
 state[1] = labelStyleState;
 state[2] = textboxStyleState;

 return state;
 }

 override protected void CreateChildControls()
 {

 ControlsBook2Lib.Ch04.Label label = new ControlsBook2Lib.Ch04.Label();
 Controls.Add(label);

 ControlsBook2Lib.Ch04.Textbox textbox = new ControlsBook2Lib.Ch04.Textbox();
 Controls.Add(textbox);
 }

Cameron_865-2C04.fm Page 157 Tuesday, January 22, 2008 6:27 AM

158 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 private void PrepareControlHierarchy()
 {
 ControlsBook2Lib.Ch04.Label label = (ControlsBook2Lib.Ch04.Label)Controls[0];
 label.ApplyStyle(LabelStyle);
 label.MergeStyle(ControlStyle);

 ControlsBook2Lib.Ch04.Textbox textbox =
(ControlsBook2Lib.Ch04.Textbox)Controls[1];
 textbox.ApplyStyle(TextboxStyle);
 textbox.MergeStyle(ControlStyle);
 }

 override protected void Render(HtmlTextWriter writer)
 {
 PrepareControlHierarchy();
 RenderBeginTag(writer);
 RenderChildren(writer);
 RenderEndTag(writer);
 }
 }
}

The InputBox Style Web Form
We now put our new server control to the test with an updated version of the styling workbench
from the previous example. The web form example for the InputBox control takes the previous
style setting workbench and adds the ability to set styles for the Label and the TextBox as well.
Figure 4-14 provides a snapshot of the updated workbench with a panel for styling both child
controls.

The control panel for each child control’s Style has the same feature set as our previous
Web Control Style web form, minus the ability to set the CssClass attribute. It does add a radio
button group at the top of the control boxes that allows you to either set or not set the styling
for the Label or TextBox control. The full code listings for the web form and the code-behind
class file are shown in Listings 4-7 and 4-8, respectively.

Cameron_865-2C04.fm Page 158 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 159

Figure 4-14. The InputBox Style web form .aspx Page

Listing 4-7. The InputBox Style Web Form .aspx Page File

<%@ Page Language="C#"
 MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="InputBoxStyle.aspx.cs"
 Inherits="ControlsBook2Web.Ch04.InputBoxStyle"
 Title="InputBox Style Web Form Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch04"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">4</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 WebControl Base Class and Control Styles</asp:Label>
</asp:Content>

Cameron_865-2C04.fm Page 159 Tuesday, January 22, 2008 6:27 AM

160 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 InputBox Style</h3>
 <apress:InputBox ID="NameInputBox" runat="server" LabelText="Enter your name: "
 TextboxText="blank"
 Font-Names="Courier New" ForeColor="Red" Font-Italic="True"></apress:InputBox>

 <table>
 <tr>
 <td>
 Label Style

 <asp:RadioButtonList ID="LabelActionList" RepeatColumns="3" runat="server">
 <asp:ListItem Value="Off" Selected="True">Off</asp:ListItem>
 <asp:ListItem Value="Apply">Apply</asp:ListItem>
 </asp:RadioButtonList>

 Font-Name:
 <asp:DropDownList ID="LabelFontDropDownList" runat="server">
 <asp:ListItem Value="Arial">Arial</asp:ListItem>
 <asp:ListItem Value="Courier New">Courier New</asp:ListItem>
 <asp:ListItem Value="Times New Roman">Times New Roman</asp:ListItem>
 <asp:ListItem Value="Monotype Corsiva">Monotype Corsiva</asp:ListItem>
 </asp:DropDownList>

 ForeColor:
 <asp:DropDownList ID="LabelForeColorDropDownList" runat="server">
 <asp:ListItem Value="Blue">Blue</asp:ListItem>
 <asp:ListItem Value="Red">Red</asp:ListItem>
 <asp:ListItem Value="Black">Black</asp:ListItem>
 </asp:DropDownList>

 <asp:CheckBox ID="LabelBoldCheckbox" runat="server" Text="Bold: "
 TextAlign="Left">
 </asp:CheckBox>

 <asp:CheckBox ID="LabelItalicCheckbox" runat="server" Text="Italic: "
 TextAlign="Left">
 </asp:CheckBox>

 </td>
 <td>
 Textbox Style

 <asp:RadioButtonList ID="TextboxActionList" RepeatColumns="3"
 runat="server">
 <asp:ListItem Value="Off" Selected="True">Off</asp:ListItem>
 <asp:ListItem Value="Apply">Apply</asp:ListItem>
 </asp:RadioButtonList>

 Font-Name:

Cameron_865-2C04.fm Page 160 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 161

 <asp:DropDownList ID="TextboxFontDropDownList" runat="server">
 <asp:ListItem Value="Arial">Arial</asp:ListItem>
 <asp:ListItem Value="Courier New">Courier New</asp:ListItem>
 <asp:ListItem Value="Times New Roman">Times New Roman</asp:ListItem>
 <asp:ListItem Value="Monotype Corsiva">Monotype Corsiva</asp:ListItem>
 </asp:DropDownList>

 ForeColor:
 <asp:DropDownList ID="TextboxForeColorDropDownList" runat="server">
 <asp:ListItem Value="Blue">Blue</asp:ListItem>
 <asp:ListItem Value="Red">Red</asp:ListItem>
 <asp:ListItem Value="Black">Black</asp:ListItem>
 </asp:DropDownList>

 <asp:CheckBox ID="TextboxBoldCheckbox" runat="server" Text="Bold: "
 TextAlign="Left">
 </asp:CheckBox>

 <asp:CheckBox ID="TextboxItalicCheckbox" runat="server" Text="Italic: "
 TextAlign="Left">
 </asp:CheckBox>

 </td>
 </tr>
 </table>

 <asp:Button ID="SetStyleButton" runat="server" Text="Set Style" Height="23px"
 Width="83px"
 OnClick="SetStyleButton_Click"></asp:Button>
 <asp:Button ID="SubmitPageButton" runat="server" Text="Submit Page">
 </asp:Button>

</asp:Content>

Listing 4-8. The InputBox Style Web Form Code-Behind Class File

using System;
using System.Drawing;
using System.ComponentModel;

namespace ControlsBook2Web.Ch04
{
 public partial class InputBoxStyle : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

Cameron_865-2C04.fm Page 161 Tuesday, January 22, 2008 6:27 AM

162 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 protected void SetStyleButton_Click(object sender, EventArgs e)
 {
 if (LabelActionList.SelectedIndex > 0)
 SetLabelStyle();

 if (TextboxActionList.SelectedIndex > 0)
 SetTextboxStyle();
 }
 private void SetLabelStyle()
 {
 NameInputBox.LabelStyle.Font.Name = LabelFontDropDownList.SelectedItem.Value;
 NameInputBox.LabelStyle.Font.Bold = (LabelBoldCheckbox.Checked == true);
 NameInputBox.LabelStyle.Font.Italic = (LabelItalicCheckbox.Checked == true);
 Color labelColor =
 (Color)TypeDescriptor.GetConverter(typeof(Color)).ConvertFromString(
 LabelForeColorDropDownList.SelectedItem.Value);
 NameInputBox.LabelStyle.ForeColor = labelColor;
 }

 private void SetTextboxStyle()
 {
 NameInputBox.TextboxStyle.Font.Name =
 TextboxFontDropDownList.SelectedItem.Value;
 NameInputBox.TextboxStyle.Font.Bold = (TextboxBoldCheckbox.Checked == true);
 NameInputBox.TextboxStyle.Font.Italic =
 (TextboxItalicCheckbox.Checked == true);

 // Use the TypeConverter for the System.Drawing.Color class
 // to get the typed Color value from the string value
 Color textboxColor =
 (Color)TypeDescriptor.GetConverter(typeof(Color)).ConvertFromString(
 TextboxForeColorDropDownList.SelectedItem.Value);
 NameInputBox.TextboxStyle.ForeColor = textboxColor;
 }
 }
}

The default rendering style of the web form displays our InputBox in a red Courier New
font with italic enabled. Both the Label and TextBox controls inside the InputBox pick up the
parent-level settings in the .aspx page:

<apress:inputbox id="NameInputBox" runat="server" LabelText="Enter your name: "
 TextboxText="blank" Font-Names="Courier New" ForeColor="Red"
 Font-Italic="True">
</apress:inputbox>

The style properties from the .aspx page render the following HTML tags for the InputBox
control:

Cameron_865-2C04.fm Page 162 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 163

<div id="NameInputBox"
 style="color:Red;font-family: Courier New;font-style:italic;">

 Enter your name:

 <input type="text" name="_ctl1" value="blank"
 style="color:Red;font-family:Courier New;font-style:italic;" />
</div>

The HTML snippet shows that the <div>, , and <input> tags all have identical style
property strings.

Applying the LabelStyle and TextBoxStyle Settings
Now, it is time to mix things up a little. Go to the Label Style panel, and select the Apply radio
button. Check the Bold check box, leaving the rest of the settings for the Label style as they are.
Click the Set Style button to post the web form back to the web server, and apply the style changes
to the Label child control of the InputBox control:

private void SetStyleButton_Click(object sender, System.EventArgs e)
{
 if (LabelActionList.SelectedIndex > 0)
 SetLabelStyle();

 if (TextboxActionList.SelectedIndex > 0)
 SetTextboxStyle();
}

The SetStyleButton_Click routine handles the button click activity and is responsible for
checking the radio button group for each control to determine whether or not to update the
custom styles for the embedded Label and TextBoxStyle controls to the current settings on the
web form. In this iteration, only the SetLabelStyle routine is executed, because we set the radio
button group to Apply. The code in SetLabelStyle is almost identical to what we discussed in
the previous Web Control Style web form example. The web form renders as shown in Figure 4-15.

The HTML for our InputBox control reveals the presence of a different style attribute for
the tag representing the Label control:

<div id="NameInputBox"
 style="color:Red;font-family:Courier New;font-style:italic;">

 Enter your name:

 <input type="text" name="_ctl1" value="Rob"
 style="color:Red;font-family:Courier New;font-style:italic;" />
</div>

The tag has a style attribute that reflects the Arial font and bold font weight settings.
What is interesting is that the tag still inherits the italic font style from the parent
InputBox ControlStyle property settings. This shows how the control method MergeStyle()

Cameron_865-2C04.fm Page 163 Tuesday, January 22, 2008 6:27 AM

164 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

will overwrite a Font.Italic = false style setting. The code-behind class sets it every time in
the following line of code, so it is not an issue of us not accessing the LabelStyle property. It is
a behavior to be aware of in the current implementation of the ASP.NET style system.

NameInputBox.LabelStyle.Font.Italic = (LabelItalicCheckbox.Checked == true);

Figure 4-15. The InputBox Style web form with the Label style applied

The next step in our demonstration is to exercise the TextBox Style settings. Check the Apply
radio button for the TextBoxStyle box, and then select a different font, such as bold Monotype
Corsiva, with a ForeColor of black. Click the Set Style button again to post the web form. The
result in Figure 4-16 shows that the two child controls have separate styles, but are both inher-
iting the italic setting from their parent control via MergeStyle().

Cameron_865-2C04.fm Page 164 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 165

Figure 4-16. The InputBox Style web form with both Label and TextBox styles applied

The HTML source confirms the screenshot style view in the browser:

<div id="ctl00_ControlsBookContent_NameInputBox"
 style="color:Red;font-family:Courier New;font-style:italic;">

 Enter your name:

 <input type="text" name="ctl00$ControlsBookContent$ctl01" value="Rob"
 style="color:Black;font-family:Monotype Corsiva;font-weight:bold;
 font-style:normal;" />
</div>

Now that we have covered the basics on styling when inheriting from WebControl, we will
move on to cover how to create a custom style class that integrates into the framework while
providing additional capabilities.

Cameron_865-2C04.fm Page 165 Tuesday, January 22, 2008 6:27 AM

166 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Creating a Custom Style Class
The Style class that we have worked with so far in this chapter is geared toward a small set of
CSS style features. However, IE supports a much larger range of CSS capabilities that allow for
some very nice features in your web application. One such attribute is the CSS property named
cursor. As you would guess, the CSS cursor property changes the mouse cursor when the mouse
passes over HTML elements configured with this property.

One method available to add styles not directly supported by the Style class is to use the
Styles collection provided by WebControl and add additional styling using name/value pairs.
This option is geared more toward control users. Server control developers should instead
provide access to additional styles through custom Style classes, which provide strongly typed
access to styling and better designer support with drop-down boxes containing enumeration
types or perhaps made available to control users via a custom designer. This is the approach
taken by the DataGrid control, which exposes the TableItemStyle via its HeaderStyle, FooterStyle,
ItemStyle, AlternatingItemStyle, EditItemStyle, and SelectedItemStyle properties.

Following our own recommendation, we next create a FancyLabelStyle class for our
FancyLabel server control that provides a new styling capability that configures how the cursor
renders. This takes advantage of the CSS cursor property supported by IE.

The CursorStyle Enumeration
To add our new custom style to the FancyLabel server control, the first task is to create an
enumeration that represents the various settings available to the CSS cursor property:

public enum CursorStyle
{
 auto,
 hand,
 crosshair,
 help,
 move,
 text,
 wait
}

This makes it convenient for us to emit the appropriate text value in the output string
using the Enum.Format() method. The next step is to create the FancyLabelStyle class, over-
riding the constructors from the base Style class:

public class FancyLabelStyle : Style
{
 public FancyLabelStyle() : base()
 {
 }

 public FancyLabelStyle(StateBag ViewState) : base(ViewState)
 {
 }
}

Cameron_865-2C04.fm Page 166 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 167

In the preceding declaration are two constructors. We can either create a Style object
that maintains its own ViewState or integrate into the ViewState of the control by calling
base(ViewState). For a noncomposite server control, we recommend passing in the control’s
ViewState and not creating a separate StateBag for a custom Style class in order to maximize
performance. We maintain the value of the Cursor’s style in ViewState, as shown in the
following code:

public CursorStyle Cursor
{
 get
 {
 if (ViewState["cursor"]!= null)
 {
 return (CursorStyle)ViewState["cursor"] ;
 }
 else
 {
 return CursorStyle.auto ;
 }
 }
 set
 {
 ViewState["cursor"] = value;
 }
}

Style classes add their attributes to a control’s output stream by implementing the
AddAttributesToRender() method. It takes a reference to the HtmlTextWriter instance
the control is using, along with a direct reference to the control itself. Our version of
AddAttributesToRender() checks to make sure the Cursor property has been set by
checking for the value in ViewState before it adds style properties to HtmlTextWriter:

override public void AddAttributesToRender(HtmlTextWriter writer, WebControl owner)
{
 base.AddAttributesToRender(writer, owner); // Ensure base Style class adds its
 // attributes to the output stream
 if (ViewState["cursor"] != null)
 {
 string cursor =
 Enum.Format(typeof(CursorStyle), (CursorStyle)ViewState["cursor"], "G");
 writer.AddStyleAttribute("cursor", cursor);
 }

The CursorStyle enumeration is formatted into a string value and added to HtmlTextWriter
through its AddStyleAttribute() method. Before we do this, we call the base version of
AddAttributesToRender() at the beginning of the method to ensure that the rest of the Style
class properties make it into the final output along with our custom property extension.

The Style class also has two overrides available, CopyFrom() and MergeWith(), that allow a
control developer to extend the copying and merging of style information. WebControl uses

Cameron_865-2C04.fm Page 167 Tuesday, January 22, 2008 6:27 AM

168 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

these methods in its ApplyStyle() and MergeStyle() methods. WebControl.MergeStyle() calls
Style.MergeWith(), and WebControl.ApplyStyle() calls Style.CopyFrom().

The first method we implement to enhance our custom style class is CopyFrom():

override public void CopyFrom(Style style)
{
 base.CopyFrom(style);

 FancyLabelStyle flstyle = style as FancyLabelStyle;
 if (flstyle != null)
 Cursor = flstyle.Cursor;
}

CopyFrom() calls the base class version to copy all the standard style properties. It then
casts the Style reference passed in to make sure it is of type FancyLabelStyle before it copies
the Cursor property. CopyFrom() overwrites Cursor regardless of its current setting.

MergeWith() is similar to CopyFrom(), except it should copy a property only if the value in
the Style object has not already been set. Our implementation uses our custom IsEmpty property
to determine whether it needs to perform the copy operation. If our current style is set, then
IsEmpty returns false and prevents us from overwriting the current setting. It also does a cast
to ensure that we are dealing with the correct Style type before copying:

override public void MergeWith(Style style)
{
 base.MergeWith(style);

 FancyLabelStyle flstyle = style as FancyLabelStyle;

 //Only merge if inbound style is set and current style is not set
 if ((flstyle != null) && (!flstyle.IsEmpty) && (IsEmpty))
 Cursor = flstyle.Cursor;
}

The IsEmpty property follows the pattern of the base Style class. Here is the signature of
our version:

protected internal new bool IsEmpty
{
 get
 { //Call base class version to get default behavior
 return base.IsEmpty && (ViewState["cursor"] == null);
 }
}

Note that we don’t use the override keyword. The base class Style implements this prop-
erty with the internal keyword, which prevents us from overriding this property. Instead, we
use the keyword new to provide our custom replacement. We still call the base version of this
method internally, but we also implement custom logic to handle our additional style setting.

The final method we implement is Reset(). This method simply calls the base class version
of Reset and removes the cursor value from ViewState:

Cameron_865-2C04.fm Page 168 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 169

override public void Reset()
{
 base.Reset();

 if (ViewState["cursor"] != null)
 {
 ViewState.Remove("cursor");
 }
}

Listing 4-9 presents the complete FancyLabelStyle class.

Listing 4-9. The FancyLabelStyle Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch04
{
 public enum CursorStyle
 {
 auto,
 hand,
 crosshair,
 help,
 move,
 text,
 wait
 }

 public class FancyLabelStyle : Style
 {
 public FancyLabelStyle()
 : base()
 {
 }

 public FancyLabelStyle(StateBag ViewState)
 : base(ViewState)
 {
 }

 public CursorStyle Cursor
 {
 get
 {

Cameron_865-2C04.fm Page 169 Tuesday, January 22, 2008 6:27 AM

170 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 if (ViewState["cursor"] != null)
 {
 return (CursorStyle)ViewState["cursor"];
 }
 else
 {
 return CursorStyle.auto;
 }
 }
 set
 {
 ViewState["cursor"] = value;
 }
 }

 override public void CopyFrom(Style style)
 {
 base.CopyFrom(style);

 FancyLabelStyle flstyle = style as FancyLabelStyle;
 if (flstyle != null)
 Cursor = flstyle.Cursor;
 }

 override public void MergeWith(Style style)
 {
 base.MergeWith(style);

 FancyLabelStyle flstyle = style as FancyLabelStyle;

 //Only merge if inbound style is set and current style is not set
 if ((flstyle != null) && (!flstyle.IsEmpty) && (IsEmpty))
 Cursor = flstyle.Cursor;
 }

 override public void Reset()
 {
 base.Reset();

 if (ViewState["cursor"] != null)
 {
 ViewState.Remove("cursor");
 }
 }

Cameron_865-2C04.fm Page 170 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 171

 // Hide base class version of IsEmpty using the keyword "new"
 //and provide our own
 // The keyword "internal" limits access to within the assembly only,
 //following the pattern
 // established by the base Style class
 protected internal new bool IsEmpty
 {
 get
 { // Call base class version to get default behavior
 return base.IsEmpty && (ViewState["cursor"] == null);
 }
 }

 override public void AddAttributesToRender
 (HtmlTextWriter writer, WebControl owner)
 {
 base.AddAttributesToRender(writer, owner); // Ensure base Style class adds its
 // attributes to the output stream
 if (ViewState["cursor"] != null)
 {
 string cursor =
 Enum.Format(typeof(CursorStyle), (CursorStyle)ViewState["cursor"], "G");
 writer.AddStyleAttribute("cursor", cursor);
 }
 }
 }
}

The FancyLabel Control
The FancyLabel control is our choice for implementing the wonderful cursor capability of the
FancyLabelStyle style class. It inherits the code from our Label example earlier in the chapter.
We take it into the garage for an overhaul to gain the new style capabilities.

The first upgrade for FancyLabel is overriding the ControlStyle property creation logic.
The CreateControlStyle() method override is the recommended way to replace the Style
class that is normally associated with ControlStyle to one of your own. We substitute in
FancyLabelStyle for the FancyLabel control:

protected override Style CreateControlStyle()
{
 FancyLabelStyle style = new FancyLabelStyle(ViewState);
 return style;
}

One of the nice features about WebControl is the top-level support it gives to style properties.
We mimic this feature set by adding a new top-level property to make it easy to set the cursor
styling. It is linked directly to our LabelStyle class instance operating under the ControlStyle
property:

Cameron_865-2C04.fm Page 171 Tuesday, January 22, 2008 6:27 AM

172 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

public CursorStyle Cursor
{
 get
 {
 return ((FancyLabelStyle)ControlStyle).Cursor;
 }
 set
 {
 ((FancyLabelStyle)ControlStyle).Cursor = value;
 }
}

The Cursor property accessor must cast ControlStyle to the FancyLabelStyle class via an
explicit cast because ControlStyle is defined to be of type of Style. Once this is complete, the
Cursor property of the style class is available.

Rendering the FancyLabel Control
The final step is to provide the correct rendering of the new style class in our FancyLabel control.
Unfortunately, this step is not the automatic process you might think it would be. The culprit
causing the implementation challenge is the design of the Style base class and how WebControl
interacts with it.

Both WebControl and the Style class have an implementation of the AddAttributesToRender()
method, as Figure 4-17 illustrates. The WebControl version does things such as add utility attributes
to the HTML start tag for the control for settings such as Enabled, AccessKey, ToolTip, and
TabIndex via the HtmlTextWriter AddAttribute() method. It also walks through the Attributes
collection of WebControl, adding those through HtmlTextWriter as well.

Figure 4-17. WebControl and Style AddAttributesToRender()

The Style class instance that is linked to the ControlStyle property is called by WebControl
to add its style properties through its version of AddAttributesToRender(). There is one caveat
with this call. It is executed only if the Style object signals that its internal state has been modi-
fied via the return value of the Style IsEmpty property. In the base Style class, IsEmpty is declared

Cameron_865-2C04.fm Page 172 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 173

as internal. Because we want our new version of IsEmpty to be called, we hide the base class
version by declaring our version of IsEmpty with the new modifier:

protected internal new bool IsEmpty
{
 get
 { // Call base class version to get default behavior
 return base.IsEmpty && (ViewState["cursor"] == null);
 }
}

Listing 4-10 shows the full control class.

Listing 4-10. The FancyLabel Control Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch04
{
 [ToolboxData("<{0}:fancylabel runat=server></{0}:fancylabel>"),
 DefaultProperty("Text")]
 public class FancyLabel : WebControl
 {
 public FancyLabel()
 : base(HtmlTextWriterTag.Span)
 {
 }

 public CursorStyle Cursor
 {
 get
 {
 return ((FancyLabelStyle)ControlStyle).Cursor;
 }
 set
 {
 ((FancyLabelStyle)ControlStyle).Cursor = value;
 }
 }

 public virtual string Text
 {
 get
 {
 object text = ViewState["Text"];

Cameron_865-2C04.fm Page 173 Tuesday, January 22, 2008 6:27 AM

174 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 protected override Style CreateControlStyle()
 {
 FancyLabelStyle style = new FancyLabelStyle(ViewState);
 return style;
 }

 override protected void RenderContents(HtmlTextWriter writer)
 {
 writer.Write(Text);
 }
 }
}

The FancyLabel Style Web Form
FancyLabel Style is a web form that provides an opportunity to demonstrate our newly minted
FancyLabel Style class and the containing control, FancyLabel. The web form contains eight
different FancyLabel controls with different Cursor properties and one FancyLabel without any
cursor set to test default behavior. The web form code is provided in full in Listings 4-11 and 4-12.

Listing 4-11. The FancyLabel Style Web Form .aspx File

<%@ Page Language="C#"
 MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="FancyLabelStyle.aspx.cs"
 Inherits="ControlsBook2Web.Ch04.FancyLabelStyle"
 Title="FancyLabel Style Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch04"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">4</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 WebControl Base Class and Control Styles</asp:Label>

Cameron_865-2C04.fm Page 174 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 175

</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 FancyLabelStyle</h3>
 <apress:FancyLabel ID="DefaultLabel" runat="server" CssClass="grayborder" Text=
 "No cursor set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="AutoLabel" runat="server" CssClass="grayborder" Text=
 "Auto cursor set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="CrosshairLabel" runat="server" CssClass="grayborder"
 Text="Crosshair cursor set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="HandLabel" runat="server" CssClass="grayborder"
 Text="Hand cursor set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="HelpLabel" runat="server" CssClass="grayborder"
 Text="Help cursor set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="MoveLabel" runat="server" CssClass="grayborder"
 Text="Move cursor set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="TextLabel" runat="server" CssClass="grayborder"
 Text="Text cursort set">
 </apress:FancyLabel>

 <apress:FancyLabel ID="WaitLabel" runat="server" CssClass="grayborder"
 Text="Wait cursor set">
 </apress:FancyLabel>

 <asp:Button ID="Button1" runat="server" Text="Submit"></asp:Button>

</asp:Content>

Cameron_865-2C04.fm Page 175 Tuesday, January 22, 2008 6:27 AM

176 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

Listing 4-12. The FancyLabel Style Web Form Code-Behind Class File

using System;
using System.Web.UI.HtmlControls;

namespace ControlsBook2Web.Ch04
{
 public partial class FancyLabelStyle : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 AddCssLinktoHeader();
 if (!Page.IsPostBack)
 {
 AutoLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.auto;
 CrosshairLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.crosshair;
 HandLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.hand;
 HelpLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.help;
 MoveLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.move;
 TextLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.text;
 WaitLabel.Cursor = ControlsBook2Lib.Ch04.CursorStyle.wait;
 }
 }

 private void AddCssLinktoHeader()
 {
 HtmlLink cssRef = new HtmlLink();
 cssRef.Href = "../Ch04/WebControlStyle.css";
 cssRef.Attributes.Add("rel", "stylesheet");
 cssRef.Attributes.Add("type", "text/css");
 Header.Controls.Add(cssRef);
 }
 }
}

Figure 4-18 shows what the web form looks like when it’s rendered.

Cameron_865-2C04.fm Page 176 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 177

Figure 4-18. The FancyLabel Style web form

The following HTML fragment shows the rendered tags and their style attributes
for the CSS cursor property:

<span id="ctl00_ControlsBookContent_AutoLabel" class="grayborder"
 style="cursor:auto;">Auto cursor set

 <span id="ctl00_ControlsBookContent_CrosshairLabel" class="grayborder"
 style="cursor:crosshair;">Crosshair cursor set

 <span id="ctl00_ControlsBookContent_HandLabel" class="grayborder"
 style="cursor:hand;">Hand cursor set

Cameron_865-2C04.fm Page 177 Tuesday, January 22, 2008 6:27 AM

178 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

 <span id="ctl00_ControlsBookContent_HelpLabel" class="grayborder"
 style="cursor:help;">Help cursor set

 <span id="ctl00_ControlsBookContent_MoveLabel" class="grayborder"
 style="cursor:move;">Move cursor set

 <span id="ctl00_ControlsBookContent_TextLabel" class="grayborder"
 style="cursor:text;">Text cursort set

 <span id="ctl00_ControlsBookContent_WaitLabel" class="grayborder"
 style="cursor:wait;">Wait cursor set

 <input type="submit" name="ctl00$ControlsBookContent$Button1" value="Submit"
 id="ctl00_ControlsBookContent_Button1" />

The StyleCollection Class
New in ASP.NET 2.0 and later, the StyleCollection class can be used by server control devel-
opers to store and manage Style objects for a control. Style objects stored in a StyleCollection
object are applied to different portions of the control.

The best example of how a StyleCollection object can benefit control developers is a hier-
archical control, such as the ASP.NET 2.0 and later Menu control. The Menu control allows an
ASP.NET developer to define a Style by menu depth in the control. The StyleCollectionDemo
web form provides an example of how this works by declaratively providing three Style objects
in a LevelMenuItemStyles tag:

<LevelMenuItemStyles>
 <asp:MenuItemStyle BackColor="Beige" Font-Italic="True" Font-Names="Verdana"
 ForeColor="Green" Font-Underline="False" />
 <asp:MenuItemStyle BackColor="Black" Font-Italic="False" Font-Names="Tahoma"
 ForeColor="Orange" Font-Underline="False" />
 <asp:MenuItemStyle BackColor="Green" Font-Italic="True" Font-Names="Arial"
 ForeColor="Red" Font-Underline="False" />
</LevelMenuItemStyles>

The MenuItemStyle objects declared in the preceding tag are applied in order of level,
so the first MenuItemStyle with a BackColor equal to "Beige" is applied to the top-level menu.
The second MenuItemStyle applies to the next submenu level, and so on. The declarative syntax
makes it very easy to apply styles per menu level. The LevelMenuItemStyles object is also avail-
able at runtime and can be altered as shown in the StyleCollectionDemo web form Page_Load
event handler:

Cameron_865-2C04.fm Page 178 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 179

MenuItemStyle alterStyle = new MenuItemStyle();
alterStyle.BackColor = System.Drawing.Color.Navy;
alterStyle.ForeColor = System.Drawing.Color.Gold;

// Remove the last of the three menu item styles. Note that
// since the collection has a zero-based index, the third
// entry has an index value of 2.
MainMenuID.LevelMenuItemStyles.RemoveAt(2);
MainMenuID.LevelMenuItemStyles.Add(alterStyle);

Figure 4-19 shows the StyleMenuCollectionDemo web form.

Figure 4-19. StyleCollectionDemo web form in Action

In Figure 4-19, you can see the styles applied to the three menu levels, including the dynami-
cally altered style for the third menu level, providing a highly intuitive means to apply styles.
Listings 4-13 and 4-14 show the code for the StyleCollectionDemo web form.

Listing 4-13. The StyleCollectionDemo Web Form .aspx File

<%@ Page Language="C#"
 MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="StyleCollectionDemo.aspx.cs"
 Inherits="ControlsBook2Web.Ch04.StyleCollectionDemo"
 Title="StyleCollection Demo Web Form" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">4</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 WebControl Base Class and Control Styles</asp:Label>

Cameron_865-2C04.fm Page 179 Tuesday, January 22, 2008 6:27 AM

180 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Style Collection Demo</h3>
 <asp:Menu ID="MainMenuID" Font-Names="Arial" ForeColor="Blue" runat="server"
 Orientation="Horizontal">
 <LevelMenuItemStyles>
 <asp:MenuItemStyle BackColor="Beige" Font-Italic="True" Font-Names="Verdana"
 ForeColor="Green"
 Font-Underline="False" />
 <asp:MenuItemStyle BackColor="Black" Font-Italic="False" Font-Names="Tahoma"
 ForeColor="Orange"
 Font-Underline="False" />
 <asp:MenuItemStyle BackColor="Green" Font-Italic="True" Font-Names="Arial"
 ForeColor="Red"
 Font-Underline="False" />
 </LevelMenuItemStyles>
 <Items>
 <asp:MenuItem Text="File" ToolTip="File" Value="File">
 <asp:MenuItem Text="New" ToolTip="New" Value="New">
 <asp:MenuItem Text="Project" ToolTip="Project" Value="Project" />
 <asp:MenuItem Text="Web Site" ToolTip="Web Site" Value="Web Site" />
 <asp:MenuItem Text="File" ToolTip="File" Value="File" />
 </asp:MenuItem>
 <asp:MenuItem Text="Open" ToolTip="Open" Value="Open">
 <asp:MenuItem Text="Project" ToolTip="Project" Value="Project" />
 <asp:MenuItem Text="Web Site" ToolTip="Web Site" Value="Web Site" />
 <asp:MenuItem Text="File" ToolTip="File" Value="File" />
 </asp:MenuItem>
 </asp:MenuItem>
 <asp:MenuItem Text="Edit" ToolTip="Edit" Value="Edit">
 <asp:MenuItem Text="Find and Replace" ToolTip="Find and Replace"
 Value="Find and Replace">
 <asp:MenuItem Text="Quick Find" ToolTip="Quick Find" Value="Quick Find" />
 <asp:MenuItem Text="Quick Replace" ToolTip="Quick Replace"
 Value="Quick Replace" />
 <asp:MenuItem Text="Find in Files" ToolTip="Find in Files"
 Value="Find in Files" />
 </asp:MenuItem>
 <asp:MenuItem Text="Advanced" ToolTip="Advanced" Value="Advanced">
 <asp:MenuItem Text="Format Document" ToolTip="Format Document"
 Value="Format Document" />
 <asp:MenuItem Text="Make Uppercase" ToolTip="Make Uppercase"
 Value="Make Uppercase" />
 <asp:MenuItem Text="Make Lowercase" ToolTip="Make Lowercase"
 Value="Make Lowercase" />

Cameron_865-2C04.fm Page 180 Tuesday, January 22, 2008 6:27 AM

C HA P TE R 4 ■ T H E W E B C ON TR O L B A SE C L AS S A N D CO N T R O L ST Y L E S 181

 </asp:MenuItem>
 </asp:MenuItem>
 </Items>
 </asp:Menu>

</asp:Content>

Listing 4-14. The StyleCollectionDemo Web Form Code-Behind Class File

using System;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch04
{
 public partial class StyleCollectionDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 MenuItemStyle alterStyle = new MenuItemStyle();
 alterStyle.BackColor = System.Drawing.Color.Navy;
 alterStyle.ForeColor = System.Drawing.Color.Gold;

 // Remove the last of the three menu item styles. Note that
 // since the collection has a zero-based index, the third
 // entry has an index value of 2.
 MainMenuID.LevelMenuItemStyles.RemoveAt(2);
 MainMenuID.LevelMenuItemStyles.Add(alterStyle);
 }
 }
 }
}

Summary
In this chapter, we started off with a discussion of how HTML documents have two aspects to
them: content and appearance. HTML initially promoted tags such as , , and <table>
to enhance document appearance. This mixed content with the appearance, increasing code
maintenance challenges. We next covered Cascading Style Sheets (CSS). CSS specifies a language
to modify the appearance of an HTML document that permits separation of content from
appearance. CSS style rules can be declared inline via the style attribute, in the document in
the <head> section via a <style> block, or externally via the <link> tag.

Then we covered the new rendering model provided by WebControl. When you develop
your own custom controls, we recommend starting with WebControl to leverage the capabilities
it brings to the table such as styling and down-level browser support.

Cameron_865-2C04.fm Page 181 Tuesday, January 22, 2008 6:27 AM

182 CH AP T E R 4 ■ T HE WE B CO N T R OL B AS E CL A SS AN D CO N T R OL S TY L E S

WebControl offers explicit support for CSS styling via the ControlStyle class, which exposes
the System.Web.UI.WebControls.Style class, and the Style properties, which expose the
CssStyleCollection class. WebControl provides top-level style properties that are directly linked
to the properties of the Style class exposed by the ControlStyle property for easier access by
web developers.

As part of the down-level browser support built into WebControl, ASP.NET is smart enough to
choose HtmlTextWriter to emit CSS styles for up-level browsers or to choose Html32TextWriter to
use HTML 3.2 style tags for down-level browsers.

Developers can expose multiple Style class instances via custom properties, but they must
explicitly manage instance creation, ViewState persistence, and rendering. To implement a
custom style class, start with the base Style class and then add additional custom style properties
as necessary to meet requirements.

Finally, we provide a quick demonstration of the new StyleCollection object, available in
ASP.NET 2.0 and later, that allows server control developers to provide a declarative method of
applying multiple styles to different areas of a server control.

Cameron_865-2C04.fm Page 182 Tuesday, January 22, 2008 6:27 AM

183

■ ■ ■

C H A P T E R 5

Server Control Events

In this chapter, we explore the intricacies of working with server control events. The first part
of this chapter is a general discussion of the .NET event architecture. We discuss how to add
events to a control, bringing back our favorite TextBox control as part of the demonstration.
Then, we illustrate how to define custom events and add them to yet another version of our
famous TextBox. We also examine System.Web.UI.Control’s support for maintaining events.
Next, we show how to initiate and capture a postback using a Button control that we create
named SuperButton. This section examines Command events and event bubbling with an example
composite control to demonstrate these concepts. In the final portion of the chapter, we bring
it all together with a discussion of the page life cycle, focusing on events. Let’s start with a quick
overview of events and ASP.NET controls.

Events and ASP.NET Controls
The event-based development paradigm is a well-traveled path on the Windows platform with
Visual Basic 6.0 and Visual C++ Microsoft Foundation Classes (MFC) development tools. In this
model, developers need not be concerned with the details of how to gather input from hardware or
render output to the video card; instead, they can focus on business logic coded in event handlers
attached to UI widgets that receive events from the operating system. In ASP.NET, this develop-
ment model is brought to the Web in much the same way through server controls.

The key technology that sets ASP.NET apart from previous web development paradigms is
the use of server-side controls as first-class objects in a similar fashion to Visual Basic or MFC.
Server controls provide a rich, object-oriented method of building web content in an environ-
ment that is normally spartan in its feature set and procedural in its execution model. A critical
aspect of working with objects such as ASP.NET server controls is event-based programming,
which we cover in this chapter.

The Need for Events in ASP.NET
In any object-oriented development framework, events are a necessary means of decoupling
reusable functionality from the specifics of any given application. This is true in ASP.NET as
well. Events allow the encapsulated functionality of a server control, such as a Button, to be
hooked into the logic of an application without requiring any changes, such as recompilation,
to the Button itself.

Cameron_865-2C05.fm Page 183 Tuesday, January 22, 2008 11:49 AM

184 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Events simplify the work of the programmer by providing a consistent protocol for devel-
opment. Client applications can register their interest in a UI object or control via an event and
be notified later by the control when some activity has taken place in the same way regardless
of the control. The only thing that changes from control to control is the number or type of events
that are available as well as possibly the arguments that a particular event makes available in
its method signature. Figure 5-1 presents a comparison between traditional programming and
event-based programming.

Figure 5-1. Traditional programming versus event-based programming

ASP.NET turns on its head the traditional assumption that UI controls are only appropriate for
thick-client applications. Through clever use of client-side state and the HTTP POST protocol,
ASP.NET server controls appear as if they maintain memory on the client and react to user
interaction by raising events. Server controls do this without having to resort to a bunch of
client-side tricks such as applets or ActiveX controls. Even browsing devices that don’t support
JavaScript on the client can raise events through HTML form actions.

Figure 5-2 illustrates how a control can raise events and make it look like ASP.NET has turned
the browser into an interactive thick-client application. The TextBox exposes the TextChanged
event, while the Button notifies interested clients through a Click event. All event-handling code
for the TextChanged and Click events is located on the server where the ASP.NET processing
occurs. In Chapter 9, we cover how you can take this a step further via ASP.NET 1.0 AJAX, where
only a portion of the page is updated instead of causing a full postback, so the web page behaves
even more like a thick-client application.

For the event code to react to changes the user makes with the TextBox on the web form in
the browser, the control must shift execution from the browser back to the web server. The
Button control is responsible for handling this by generating a form postback when it is clicked.

Buttons automatically generate a form postback, but other server controls can also generate a
postback using JavaScript. Changing the AutoPostBack property for a control that supports it,
such as BulletedList, CheckBox, ListControl, and TextBox, from the default value of false to
true will cause the control to emit the appropriate JavaScript, taking advantage of client-side
events to cause postback.

Cameron_865-2C05.fm Page 184 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 185

Figure 5-2. Server-side control events in ASP.NET

When a user clicks a Button in a web form and the browser performs an HTTP POST back to
the web server, ASP.NET builds the page control tree on the server to dynamically handle the
postback request. As discussed in Chapter 3, ASP.NET gives each control in the control tree
that has ViewState enabled a chance to examine posted data through its LoadPostData method.
In this method, the control can examine the user input on the server via the posted data and
compare it to what was previously stored in ViewState. If the data has indeed changed, and if
the control has an event that can be fired in response to the data change, the control should
return true to ASP.NET in LoadPostData. Later on in the page life cycle, ASP.NET will call the
RaisePostDataChangedEvent member for each server control that returned true in LoadPostData so
that the control can, in turn, raise the appropriate event and execute any business logic imple-
mented via an event handler written by the developer. This is the ASP.NET page life cycle that
repeats during each postback for state (data) changes and event firing. Before we dive into writing
events for ASP.NET, we first provide a high-level overview of events in the .NET Framework in
the next section.

The .NET Framework Event Model
Events are generally used in UI development to notify the appropriate object that the user has
made a selection, but events can be used for any asynchronous communication need. Whether
you’re developing desktop Windows applications using Windows Forms or web applications
using ASP.NET, classes as objects need a mechanism to communicate with each other. The
.NET Framework provides a first-class event model based on delegates, which we discuss in
this section.

Cameron_865-2C05.fm Page 185 Tuesday, January 22, 2008 11:49 AM

186 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Delegates
Delegates are similar to interfaces—they specify a contract between the publisher and the
subscriber. Although an interface is generally used to specify a set of member functions, a dele-
gate specifies the signature of a single function. To create an instance of a delegate, you must
create a function that matches the delegate signature in terms of parameters and data types.

Delegates are often described as safe function pointers; however, unlike function pointers,
delegates call more than one function at a time and can represent both static and instance
methods. Also unlike function pointers, delegates provide a type-safe callback implementation
and can be secured through code access permissions as part of the .NET Framework security
model.

Delegates have two parts in the relationship: the delegate declaration and the delegate
instance or static method. The delegate declaration defines the function signature as a refer-
ence type. Here is how a delegate is declared:

public delegate int PrintStatusNotify (object printer, object document) ;

Delegates can be declared either outside a class definition or as part of a class through the
use of the delegate keyword. The .NET Framework Delegate class and the .NET Framework
MulticastDelegate class serve as the base classes for delegates, but neither of these classes is
creatable by developers; instead, developers use the delegate keyword. As background, the
MulticastDelegate base class maintains a linked list of delegates that are invoked in order of
declaration when the delegate is fired, as you will see in our example in the next section.

In .NET Framework 2.0 and later, anonymous delegates are supported. Anonymous dele-
gates allow a developer to skip the delegate declaration and instead define the delegate using
more of an inline syntax, to borrow a term from C++. Let’s borrow some code from the .NET
Framework 2.0 anonymous delegate sample to serve as an example; the borrowed code is available
on MSDN Online (search for “Anonymous Delegates Sample”). The example declares a delegate as
expected:

// Define the delegate method.
delegate decimal CalculateBonus(decimal sales);

Next, an object (in this sample an Employee class) is declared that has an event declared of
type CalculateBonus like this:

public CalculateBonus calculation_algorithm;

After that, declare a named method; the way to define a delegate implementation in .NET
Framework 1.1 is like this:

static decimal CalculateStandardBonus(decimal sales)
{
 return sales / 10;
}

Next, a standard bonus delegate that uses the named method listed previously is defined:

CalculateBonus standard_bonus =
new CalculateBonus(CalculateStandardBonus);

Cameron_865-2C05.fm Page 186 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 187

The preceding code declares a new delegate and passes in the named method
(CalculateStandardBonus) for the event method. Things get interesting in the next delegate
declaration, which declares the anonymous delegate listed here:

CalculateBonus enhanced_bonus =
delegate(decimal sales) { return multiplier * sales / 10; };

Instead of using new and passing in a method name, it uses the delegate keyword and
declares an unnamed function that takes a parameter named sales of type decimal and returns
a calculation of type decimal. The compiler infers the delegate type by the type of the variable
(enhanced_bonus of type CalculateBonus). From a runtime perspective, named delegates and
anonymous delegates are equivalent, but we would be remiss not to mention this new .NET
Framework 2.0 and later syntax.

One question that arises with delegates is what happens if an invoked method throws an
exception. Does the delegate continue processing the methods in the invocation list? Actually,
if an exception is thrown, the delegate stops processing methods in the invocation list. It does
not matter whether or not an exception handler is present. This makes sense, because odds are
that if an invoked method throws an exception, methods that follow may throw an exception
as well, but it is something to keep in mind.

Working with Delegates

In this section we create a console-based application to demonstrate how delegates work. In
our example, we declare a very simple delegate that takes one parameter:

delegate void SimpleMulticastDelegate(int i);

We next declare a class that contains two class instance methods and one static method.
These methods match the signature of the previous delegate declaration:

 public class DelegateImplementorClass
 {
 public void ClassMethod(int i)
 {
 Console.WriteLine("You passed in " + i.ToString() +"
 to the class method");
 }

 static public void StaticClassMethod(int j)
 {
 Console.WriteLine("You passed in "+ j.ToString() +"
 to the static class method");
 }

 public void YetAnotherClassMethod(int k)
 {
 Console.WriteLine("You passed in " + k.ToString() +"
 to yet another class method");
 }
 }

Cameron_865-2C05.fm Page 187 Tuesday, January 22, 2008 11:49 AM

188 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

In method Main, the entry point of any console application in .NET, we put the delegate to
work. Here we declare an instance of DelegateImplementorClass, as we will add instance methods
from this class as subscribers to our delegate:

DelegateImplementorClass ImpClass = new DelegateImplementorClass();

We next declare an instance of our delegate, adding an instance method to the delegate
invocation list that will be called when the delegate instance executes:

SimpleMulticastDelegate d = new SimpleMulticastDelegate(ImpClass.ClassMethod);

Firing the delegate is simply a matter of calling the delegate instance function:

d(5);

The rest of method Main adds additional methods to the delegate’s invocation list. Listing 5-1
is the full code listing. Figure 5-3 shows the output. Notice how each subsequent call to the
delegate reflects this in the output. Each time the delegate fires, it passes the parameter value
to each subscriber in its invocation list, taking advantage of multicasting behavior.

Listing 5-1. Delegates in Action

using System;

namespace ControlsBook2.Ch05
{
 delegate void SimpleMulticastDelegate(int i);

 public class DelegateImplementorClass
 {
 public void ClassMethod(int i)
 {
 Console.WriteLine("You passed in " + i.ToString() + " to the class method");
 }

 static public void StaticClassMethod(int j)
 {
 Console.WriteLine("You passed in " + j.ToString() +
 " to the static class method");
 }

 public void YetAnotherClassMethod(int k)
 {
 Console.WriteLine("You passed in " + k.ToString() +
 " to yet another class method");
 }
 }

Cameron_865-2C05.fm Page 188 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 189

 class Program
 {
 static void Main(string[] args)
 {
 DelegateImplementorClass ImpClass = new DelegateImplementorClass();

 SimpleMulticastDelegate d = new SimpleMulticastDelegate(ImpClass.ClassMethod);
 d(5);
 Console.WriteLine("");

 d += new SimpleMulticastDelegate(DelegateImplementorClass.StaticClassMethod);
 d(10);
 Console.WriteLine("");

 d += new SimpleMulticastDelegate(ImpClass.YetAnotherClassMethod);
 d(15);
 Console.Read();
 }
 }
}

Figure 5-3. Output from our work with delegates

Stepping back for a minute, you can see how delegates quite successfully fulfill the require-
ments of the publisher/subscriber model. Here we have the member function Main using an
instance of the delegate to send messages to subscribing methods in the
DelegateImplementorClass class. As long as the subscribing methods match the delegate signa-
ture, the delegate is happy to add those methods to its invocation list, and it promptly processes
this list each time it is invoked with a call to d().

If you step through this code with the debugger, you will notice that methods on the delegate’s
invocation list are synchronously called in the order that they are added to the invocation list. The
syntax for adding a delegate to the invocation list may seem strange at first, because what

Cameron_865-2C05.fm Page 189 Tuesday, January 22, 2008 11:49 AM

190 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

we are really adding is something more akin to function pointers than, say, an integer. The magic
behind this is the keyword delegate and the .NET infrastructure provided by the System.Delegate
and System.Delegate.MulticastDelegate classes. The result is that the language compiler simpli-
fies things by providing a keyword that developers use to plug into the delegate infrastructure.

Events
As you may have guessed by now, delegates are the heart and soul of event handling in .NET.
They provide the underlying infrastructure for asynchronous callbacks and UI events in web
applications under ASP.NET. In addition to the delegate keyword, there is also the event keyword
in C#. The event keyword lets you specify a delegate that will fire upon the occurrence of some
event in your code. The delegate associated with an event can have one or more client methods
in its invocation list that will be called when the object indicates that an event has occurred, as
is the case with a MulticastDelegate.

We can declare an event using the event keyword followed by a delegate type and the name of
the event. The following event declaration creates a Click event with public accessibility that
would be right at home on a Button control:

public event EventHandler Click;

The name of the event should be a verb signifying that some action has taken place. Init,
Click, Load, Unload, and TextChanged are all good examples of such verbs used in the ASP.NET
framework.

The event declaration causes the C# compiler to emit code that adds a private field to the
class named Click, along with add and remove methods for working with the events hooked in
from clients. The nice thing about the event declaration and the code it generates is that it
happens under the covers without your having to worry about it. Later on in this chapter, we
discuss how to optimize event registration with respect to storage for controls that publish a
large number of events, but only a small fraction of them are likely to be subscribed to for a
given control instance.

System.EventHandler Delegate
The common denominator of the event declarations with .NET controls is the delegate class
System.EventHandler. All the built-in controls in ASP.NET use its signature or some derivative
of it to notify their clients when events occur. We recommend that you leverage this infrastruc-
ture, because it reduces the amount of custom event development required. In addition, the
signature of EventHandler permits server controls in the .NET Framework and their clients to
interoperate:

delegate void EventHandler(Object o, EventArgs e);

The first parameter to EventHandler is an object reference to the control that raised the
event. The second parameter to the delegate, EventArgs, contains data pertinent to the event.
The base EventArgs class doesn’t actually hold any data; it’s more of an extensibility point for
custom events to override. The EventArgs class does have a read-only static field named Empty
that returns an instance of the class that’s syntactically convenient to use when raising an
event that doesn’t require any special arguments or customization.

Cameron_865-2C05.fm Page 190 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 191

Invoking an Event in a Control
After you add an event to a control, you need to raise the event in some manner. Instead of
calling the event directly, a good design pattern followed by all the prebuilt server controls in
ASP.NET is to add a virtual protected method that invokes the event with a prefix of On attached to
the name of the method. This provides an additional level of abstraction that allows controls
that derive from a base control to easily override the event-raising mechanism to run additional
business logic or suppress event invocation altogether. The following code shows an OnClick
protected method used to provide access to the Click event of class:

protected virtual void OnClick(EventArgs e)
{
 if (Click != null)
 Click(this, e);
}

The first thing the protected method does is check to see if any client methods have regis-
tered themselves with the Click event instance. The event field will have a null value if no
clients have registered a method onto the delegate’s invocation list. If clients have subscribed
to the Click event with a method having a matching signature, the event field will contain an
object reference to a delegate that maintains the invocation list of all registered delegates. The
OnClick routine next invokes the event using the function call syntax along with the name of
the event. The parameters passed in are a reference to the control raising the event and the
event arguments passed into the routine.

Adding an Event to the TextBox Control
The TextBox control that we started in Chapter 3 had the beginnings of a nice clone of the
ASP.NET System.Web.UI.WebControls.TextBox control. It saves its values to ViewState, emits
the correct HTML to create a text box in the browser, and handles postback data correctly. The
control is well on its way to becoming a respectable member of the family.

We next enhance our TextBox control by adding the capability to raise an event when the
Text property of the control has changed, as detected by comparing the value currently stored
in ViewState with postback data.

Enhancing the TextBox Control with a TextChanged Event
The next step in our TextBox journey is to add a TextChanged event to help bring its functionality
more in line with that of the built-in ASP.NET text controls. This necessitates adding an event
declaration and enhancing the implementation of the IPostBackDataHandler interface in our
control. The most important upgrade is the addition of the TextChanged event field and a protected
OnTextChanged method to invoke it:

protected virtual void OnTextChanged(EventArgs e)
{
 if (TextChanged != null)
 TextChanged(this, e);
}
public event EventHandler TextChanged;

Cameron_865-2C05.fm Page 191 Tuesday, January 22, 2008 11:49 AM

192 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

The second upgrade is the logic enhancement to the LoadPostData and RaisePostDataChanged
methods. In LoadPostData, the ViewState value of the Text property is checked against the
incoming value from postback for any differences. If there is a difference, the Text property is
changed to the new value in ViewState, and true is returned from the routine. This guarantees
that the event is raised when RaisePostDataChangedEvent is called by ASP.NET 2.0 and later
further on in the page life cycle.

public bool LoadPostData(string postDataKey, NameValueCollection postCollection)
{
 string postedValue = postCollection[postDataKey];
 if (!Text.Equals(postedValue))
 {
 Text = postedValue;
 return true;
 }
 else
 return false;
}

The upgrade to the RaisePostDataChangedEvent method is the addition of a single line. Instead
of being blank, it calls on our newly created OnTextChanged method to invoke the TextChanged
event. We use the static field Empty of the EventArgs class to create an instance of EventArgs for
us, as we don’t need to customize EventArgs in this case:

public void RaisePostDataChangedEvent()
{
 OnTextChanged(EventArgs.Empty);
}

The code in Listing 5-2 is full text of the control after the modifications required to add the
TextChanged event.

Listing 5-2. The Improved TextBox Control with Events Using System

using System.Web;
using System.Web.UI;
using System.Collections.Specialized;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch05
{
 [ToolboxData("<{0}:textbox runat=server></{0}:textbox>"),
 DefaultProperty("Text")]
 public class TextBox : Control, IPostBackDataHandler
 {
 public string Text
 {

Cameron_865-2C05.fm Page 192 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 193

 get
 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 string postedValue = postCollection[postDataKey];
 if (!Text.Equals(postedValue))
 {
 Text = postedValue;
 return true;
 }
 else
 return false;
 }

 public void RaisePostDataChangedEvent()
 {
 OnTextChanged(EventArgs.Empty);
 }

 protected virtual void OnTextChanged(EventArgs e)
 {
 if (TextChanged != null)
 TextChanged(this, e);
 }

 public event EventHandler TextChanged;

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 Page.VerifyRenderingInServerForm(this);
 // write out the <INPUT type="text"> tag
 writer.Write("<INPUT type=\"text\" name=\"");
 writer.Write(this.UniqueID);
 writer.Write("\" value=\"" + this.Text + "\" />");

Cameron_865-2C05.fm Page 193 Tuesday, January 22, 2008 11:49 AM

194 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

 }
 }
}

Using the TextBox Control on a Web Form
The TextBox web form shown in the Design view in Figure 5-4 hosts the newly minted TextBox
control with its TextChanged event capabilities.

Figure 5-4. Server-side control events in ASP.NET

The web form contains an instance of our TextBox control named NameTextBox, along with
a Label control named ChangeLabel that is used to indicate the raising of TextChanged event.
The label is programmatically set to a value of “No change!” along with the current time by
default during the loading of the web form. Raising the TextChanged event causes the event-
handling code to set the label’s value to “Changed” along with the current time. This allows you
to recycle the control several times to verify that the event is working properly.

The TextChanged event of the NameTextBox control is visible when you select the control in
the Design view of Visual Studio and look at it in the Properties window, as shown in Figure 5-4.
Click the lightning bolt icon to categorize the properties by events and you will see TextChanged. We
used an event handler called Name_TextChanged as a client subscriber to the TextChanged event.
The full extent of our code work is shown in Listings 5-3 and 5-4.

Listing 5-3. The TextBox Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TextBox.aspx.cs"
Inherits="ControlsBook2Web.Ch05.TextBox" Title="Untitled Page" %>

Cameron_865-2C05.fm Page 194 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 195

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch05"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">5</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Events</asp:Label></asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 TextBox</h3>
 Enter your name:

 <apress:TextBox ID="NameTextBox" runat="server"
 OnTextChanged="NameTextBox_TextChanged">
 </apress:TextBox>

 <asp:Button ID="SubmitPageButton" runat="server" Text="Submit Page">
 </asp:Button>

 <asp:Label ID="ChangeLabel" runat="server" Text=""></asp:Label>

</asp:Content>

Listing 5-4. The TextBox Web Form Code-Behind Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch05
{
 public partial class TextBox : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 ChangeLabel.Text = DateTime.Now.ToLongTimeString() + ": No change.";
 }

 protected void NameTextBox_TextChanged(object sender, EventArgs e)
 {
 ChangeLabel.Text = DateTime.Now.ToLongTimeString() + ": Changed!";
 }
 }
}

Cameron_865-2C05.fm Page 195 Tuesday, January 22, 2008 11:49 AM

196 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

In ASP.NET 1.1, the event wiring is conducted, usually by the Visual Studio .NET 2003
designer, inside the InitializeComponent routine:

private void InitializeComponent()
{
 this.NameTextBox.TextChanged += new System.EventHandler(this.Name_TextChanged);
 this.Load += new System.EventHandler(this.Page_Load);
}

In ASP.NET 2.0 and later, the syntax is much more streamlined; you simply declare the
event handler as an attribute on the server control tag:

<apress:textbox id="NameTextBox" runat="server"
OnTextChanged="NameTextBox_TextChanged">

Notice the attribute OnTextChanged is assigned the method name in the code-behind file,
simplifying the page model greatly. Behind the scenes in ASP.NET 2.0 and later, just like in
ASP.NET 1.1, the Name_TextChanged method is wrapped by a System.EventHandler delegate and
then passed to the TextChanged event of our custom TextBox control to add it to its delegate
invocation list. The execution of the web form during the initial page request results in the UI
output of Figure 5-5. The ViewState rendered by the control into this web form shows the Text
property as a blank value. We entered a name into the TextBox as well, but we haven’t clicked
the button to submit the web form via postback.

Figure 5-5. Initial rendering of the TextBox control

Cameron_865-2C05.fm Page 196 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 197

Upon clicking the button to execute a postback to the web server, the TextBox control will
read the blank value from ViewState and find the name value “Rob” when the ASP.NET invokes
LoadPostData. Because the posted data is different from the current ViewState value, it calls its
internal OnTextChanged method to raise events to all registered delegate subscribers. This results
in the Name_TextChanged event handler method firing, and the code that changes the label to
reflect the new value executes:

private void Name_TextChanged(object sender, System.EventArgs e)
{
 ChangeLabel.Text = DateTime.Now.ToLongTimeString() + ": Changed!";
}

The result is that ChangeLabel displays the text containing the current time and the word
“Changed!” as shown in Figure 5-6.

Figure 5-6. The TextBox control fires the TextChanged event.

The next step in this demonstration is to recycle the page without changing the value in
the TextBox control by simply clicking the Submit Page button. Because the ViewState and the
control’s text post data contain the same value of “Rob,” no event is raised. The increment of
the timestamp in the label in Figure 5-7 confirms that the page was processed successfully. Our
control is able to react appropriately to changes of its Text property.

Cameron_865-2C05.fm Page 197 Tuesday, January 22, 2008 11:49 AM

198 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-7. The TextBox control fires the TextChanged event with no change.

Creating a Custom Event
If an event does not provide data but is merely a signal that something has happened, you can
take advantage of the EventHandler delegate class and its empty EventArgs implementation.
However, we want to provide additional information in the TextChanged event raised by our
TextBox control. The newly minted event will track both before and after values of the Text
property between postback submissions. The control loads the oldValue from data saved in
ViewState; the newValue value loads from the data received in the <INPUT type="text"> HTML
element through postback. We now move on to create our custom EventArgs class to support
our custom event.

Creating a TextChangedEventArgs Class
The first requirement is to create an enhanced EventArgs-based class that holds the event data.
We create a new class derived from EventArgs that exposes two read-only properties to clients,
OldValue and NewValue, as shown in the following code:

public class TextChangedEventArgs : EventArgs
{
 private string oldValue;
 private string newValue;

Cameron_865-2C05.fm Page 198 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 199

 public TextChangedEventArgs(string oldValue, string newValue)
 {
 this.oldValue = oldValue;
 this.newValue = newValue;
 }

 public string OldValue
 {
 get
 {
 return oldValue;
 }
 }

 public string NewValue
 {
 get
 {
 return newValue;
 }
 }
}

The class created is fairly straightforward. The two properties have only get accessors to
make them read-only, making the constructor the only way to populate the internal fields with
their values.

Creating a TextChangedEventHandler Delegate
Delegate creation is the next step in defining our custom event. There is not an inheritance
chain that must be followed with delegates, as all delegate types are created using the keyword
delegate. Instead, we choose to follow the method signature used by other controls in ASP.NET to
build on a successful design pattern.

The signature of the delegate has two parameters and a void return value. The first param-
eter remains of type object, and the second parameter must be of type EventArgs or derived
from it. Because we already created the TextChangedEventArgs class, we use that as our second
parameter to take advantage of its OldValue and NewValue properties.

The name used in the declaration of the following delegate is also important. The pattern
for ASP.NET controls is to add the word “EventHandler” to the end of the event of the delegate.
In this case, we add “TextChanged” to “EventHandler” to get TextChangedEventHandler as
our name.

Both the TextChangedEventArgs class and the TextChangedEventHandler delegate are put
into a file named TextChanged.cs that is part of the ControlsBook2Lib library project for refer-
ence by our new control, as shown in Listing 5-5.

Cameron_865-2C05.fm Page 199 Tuesday, January 22, 2008 11:49 AM

200 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Listing 5-5. The TextChanged.cs Class File for the TextChangedEventArgs Class and
TextChangedEventHandler Delegate Definitions

using System;

namespace ControlsBook2Lib.Ch05
{
 public delegate void
 TextChangedEventHandler(object o, TextChangedEventArgs tce);

 public class TextChangedEventArgs : EventArgs
 {
 private string oldValue;
 private string newValue;

 public TextChangedEventArgs(string oldValue, string newValue)
 {
 this.oldValue = oldValue;
 this.newValue = newValue;
 }

 public string OldValue
 {
 get
 {
 return oldValue;
 }
 }

 public string NewValue
 {
 get
 {
 return newValue;
 }
 }
 }
}

Adding an Event to the CustomEventTextBox Control
To demonstrate the newly minted TextChangedEventHandler delegate, we take our TextBox
control and copy its contents into a class named CustomEventTextBox. Another option would be
to customize the behavior in an object-oriented manner by overriding the necessary methods
in a derived class. However, in this chapter, we choose the route of separate classes so that we
can more clearly isolate the two TextBox control examples and highlight the different design
decisions embodied in them.

Cameron_865-2C05.fm Page 200 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 201

Replacing the event declaration is the easiest part. The control starts with an EventHandler
delegate but is changed to take a TextChangedEventHandler delegate:

public event TextChangedEventHandler TextChanged;

The second change is the replacement of the OnTextChanged event invocation method to
take TextChangedEventArgs as the single parameter to the method, as shown in the following
code. This is one of the reasons for having the On-prefixed methods in controls as an abstraction
layer. It makes it a simpler code change to augment or replace the event mechanism.

protected virtual void OnTextChanged(TextChangedEventArgs tce)
{
 if (TextChanged != null)
 TextChanged(this, tce);
}

The next step is to add logic to track the before and after values. A private string field named
oldText is added to the class and is given its value inside LoadPostData. This gives us a chance
to load TextChangedEventArgs properly when we raise the event. Here is a snippet of the code
change from LoadPostData that does the work:

if (!Text.Equals(postedValue))
{
 oldText = Text;
 Text = postedValue;
 return true;
}

The last step is to replace all routines that call OnTextChanged. We have only one:
RaisePostDataChanged. It takes the before and after values from the oldText field and the Text
property in LoadPostData and creates a new TextChangedEventArgs class instance:

public void RaisePostDataChangedEvent()
{
 OnTextChanged(new TextChangedEventArgs(oldText, Text));
}

Our control is now ready for testing on a web form to display its dazzling event capabilities.
Listing 5-6 contains the full source code.

Listing 5-6. The CustomEventTextBox Control Class File

using System;
using System.Web;
using System.Web.UI;
using System.Collections.Specialized;
using System.ComponentModel;

Cameron_865-2C05.fm Page 201 Tuesday, January 22, 2008 11:49 AM

202 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

namespace ControlsBook2Lib.Ch05
{
 [ToolboxData("<{0}:customeventtextbox runat=server></{0}:customeventtextbox>"),
 DefaultProperty("Text")]
 public class CustomEventTextBox : Control, IPostBackDataHandler
 {
 private string oldText;

 public virtual string Text
 {
 get
 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 string postedValue = postCollection[postDataKey];
 if (!Text.Equals(postedValue))
 {
 oldText = Text;
 Text = postedValue;
 return true;
 }
 else
 return false;
 }

 public void RaisePostDataChangedEvent()
 {
 OnTextChanged(new TextChangedEventArgs(oldText, Text));
 }

 protected virtual void OnTextChanged(TextChangedEventArgs tce)
 {
 if (TextChanged != null)
 TextChanged(this, tce);
 }

Cameron_865-2C05.fm Page 202 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 203

 public event TextChangedEventHandler TextChanged;

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 Page.VerifyRenderingInServerForm(this);
 // write out the <INPUT type="text"> tag
 writer.Write("<INPUT type=\"text\" name=\"");
 writer.Write(this.UniqueID);
 writer.Write("\" value=\"" + this.Text + "\" />");
 }
 }
}

Using the CustomEventTextBox Control on a Web Form
After building our new control, we are ready to put it to use in the CustomEventTextBox web
form. This web form has the CustomEventTextBox control plus a button and two labels named
BeforeLabel and AfterLabel that are used to track the before and after values of the control
when the custom TextChanged event is raised.

Creating the event mapping in Visual Studio is performed in the same manner as the previous
TextChanged event in the preceding TextBox demonstration. We use the Properties window, as
shown in Figure 5-8, to wire up the event to the NameCustom_TextChanged handling method in
the code-behind class.

The web form starts out with the labels displaying blank values, as shown in Figure 5-9. We
enter Rob’s name to cause the next form submit to raise the event. Listings 5-7 and 5-8 contain
the source code for the CustomEventTextBox web form.

Figure 5-8. The Properties window view of our custom TextChanged event

Cameron_865-2C05.fm Page 203 Tuesday, January 22, 2008 11:49 AM

204 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-9. Initial page request with the CustomEventTextBox web form

Listing 5-7. The CustomEventTextBox Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="CustomEventTextBox.aspx.cs"
 Inherits="ControlsBook2Web.Ch05.CustomEventTextBox"
 Title="Custom Event TextBox Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch05"
 Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">5</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">Server Control Events
 </asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 CustomEventTextBox</h3>

Cameron_865-2C05.fm Page 204 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 205

 Enter your name:

 <apress:CustomEventTextBox ID="NameCustom" runat="server"
 OnTextChanged="NameCustom_TextChanged">
 </apress:CustomEventTextBox>

 <asp:Button ID="SubmitPageButton" runat="server" Text="Submit Page"></asp:Button>

 Before:<asp:Label ID="BeforeLabel" runat="server" Text=""></asp:Label>

 After:<asp:Label ID="AfterLabel" runat="server" Text=""></asp:Label>

</asp:Content>

Listing 5-8. The CustomEventTextBox Web Form Code-Behind Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch05
{
 public partial class CustomEventTextBox : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 BeforeLabel.Text = NameCustom.Text;
 AfterLabel.Text = NameCustom.Text;
 }

 protected void NameCustom_TextChanged(object o,
 ControlsBook2Lib.Ch05.TextChangedEventArgs tce)
 {
 BeforeLabel.Text = tce.OldValue;
 AfterLabel.Text = tce.NewValue;
 }
 }
}

We exercise the custom event by submitting the page by clicking the Submit Page button.
This causes the AfterLabel control to change to “Rob,” whereas the BeforeLabel keeps the old
blank value, as shown in Figure 5-10.

Cameron_865-2C05.fm Page 205 Tuesday, January 22, 2008 11:49 AM

206 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-10. The page after submitting the CustomEventTextBox web form

The Visual Studio Properties window did its job in wiring up to the custom event. It was
smart enough to realize we had to use TextChangedEventHandler as a delegate to wrap the
NameCustom_TextChanged event-handling method. This behavior by the Designer is one more
reason we recommend sticking to the event model design pattern implemented in .NET. As
mentioned previously, the resulting wire-up code appears in the .aspx page as an attribute on
the server control:

<apress:CustomEventTextBox id="NameCustom" runat="server"
OnTextChanged="NameCustom_TextChanged"></apress:CustomEventTextBox>

The following definition of NameCustom_TextChanged shows it is connected to TextChanged
correctly, taking TextChangedEventArgs as its second parameter. The parameter named tce is
the conduit to the information added to the BeforeLabel and AfterLabel Text values:

private void NameCustom_TextChanged(object o,
 ControlsBook2Lib.Ch05.TextChangedEventArgs tce)
{
 BeforeLabel.Text = tce.OldValue;
 AfterLabel.Text = tce.NewValue;
}

Figure 5-11 shows what happens if we type a second name in the CustomEventTextBox
control input box and click the Submit Page button to generate another postback. The control
successfully remembers what the previous input was.

Cameron_865-2C05.fm Page 206 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 207

Figure 5-11. The second request with a new name on the CustomEventTextBox web form

Capturing Postback with the Button Control
The TextBox control does a great job in gathering input and raising state change events to their
clients, but sometimes we need controls that provide action and post data back to the server.
A perfect example of this type of control in the ASP.NET framework is the System.Web.UI.
WebControls.Button control. The Button control exists for one reason: to post the page back to
the server and raise events.

We would be remiss if we only reverse-engineered the ASP.NET TextBox control and left
out the Button control, so our next task is to build our own version of the Button control. We
add some bells and whistles along the way, such as the capability for the control to display itself
as a Button or as a hyperlink similar to the LinkButton control in ASP.NET. This new, amazing
Button server control will be named SuperButton for all its rich functionality.

Rendering the Button
The first decision we have to make when building our button relates to how it will render. Because
we decided to render either as an <INPUT type="submit"> or an <A> tag, we choose to use a
strongly-typed enumeration as a means to configure its display output. We call this enumera-
tion ButtonDisplay and give it values that reflect how our button can appear in a web form:

public enum ButtonDisplay
{
 Button = 0,
 Hyperlink = 1
}

Cameron_865-2C05.fm Page 207 Tuesday, January 22, 2008 11:49 AM

208 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

The ButtonDisplay enumeration is exposed from our control through a Display property.
It defaults to a Button value if nothing is passed into the control:

public virtual ButtonDisplay Display
{
 get
 {
 object display = ViewState["Display"];
 if (display == null)
 return ButtonDisplay.Button;
 else
 return (ButtonDisplay) display;
 }
 set
 {
 ViewState["Display"] = value;
 }
}

We also have a Text property that has an identical representation in the code to our previous
examples. It will appear as text on the surface of the button or as the text of the hyperlink.

The button-rendering code needs to have an if/then construct to switch the display based
on the enumeration value set by the developer/user. It also needs a way to submit the page
back to the web server when using the hyperlink display mode. The hyperlink is normally used
for navigation and is not wired into the postback mechanism that buttons get for free.

When updating the code from .NET Framework 1.1 server control to .NET Framework 2.0
and later, this warning message appeared:

'System.Web.UI.Page.GetPostBackClientHyperlink(System.Web.UI.Control, string)' is
obsolete: 'The recommended alternative is ClientScript.GetPostBackClientHyperlink.

Page.ClientScript.GetPostBackClientHyperlink is the replacement for System.Web.UI.
Page.GetPostBackClientHyperlink. The Page.ClientScript object is of type ClientScriptManager,
which is a new class introduced in ASP.NET 2.0 and later that defines methods for managing
client-side scripts in web applications.

The ClientScriptManager class comes to the rescue in this instance. It has a static method
named GetPostBackClientHyperlink that registers the JavaScript necessary to submit the web
form via an HTTP POST. In the web form example that hosts our SuperButton control, we examine
the HTML output to see how it is integrated into the postback process. Here is the code that
hooks into the postback mechanism:

override protected void Render(HtmlTextWriter writer)
{
 base.Render(writer);
 Page.VerifyRenderingInServerForm(this);

 if (Display == ButtonDisplay.Button)

Cameron_865-2C05.fm Page 208 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 209

 {
 writer.Write("<INPUT type=\"submit\"");
 writer.Write(" name=\"" + this.UniqueID + "\"");
 writer.Write(" id=\"" + this.UniqueID + "\"");
 writer.Write(" value=\"" + Text + "\"");
 writer.Write(" />");
 }
 else if (Display == ButtonDisplay.Hyperlink)
 {
 writer.Write("<A href=\"");
 writer.Write(Page.ClientScript.GetPostBackClientHyperlink(this,""));
 writer.Write("\">" + Text + "");
 }
}

Exposing a Click Event and the Events Collection
The first event we add to our SuperButton control is a Click event. This is your garden-variety
System.EventHandler delegate type event, but our actual event implementation will be different
this time around. Instead of adding an event field to the control class, we reuse a mechanism
given to all controls from the System.Web.UI.Control base class.

The Events read-only property inherited from the Control class provides access to an
event collection of type System.ComponentModel.EventHandlerList. EventHandlerList provides
access to delegates that represent the invocation list for each event the control exposes. This
means that the only memory taken up to handle event delegates is by those events that have a
client event handler method registered, unlike the previous technique, which takes a hit for
each event, regardless of any clients using it. This can potentially save a fair amount of memory
on a control that exposes many events. Figure 5-12 graphically depicts the benefits of using the
Events collection.

Figure 5-12. The difference between using an event field and using the Events collection

Cameron_865-2C05.fm Page 209 Tuesday, January 22, 2008 11:49 AM

210 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

The first thing we need to do for an event using this new model is provide a key for the
delegate that is used to store it inside the Events collection. We add this at the top of our class
by creating a generic static, read-only object to represent the key for our click-related delegate:

private static readonly object ClickEvent = new object();

The second step is to use the syntax C# provides for custom delegate registration with our
Click event. It is an expansion of the event declaration used previously that includes add and
remove code blocks. It is similar to the get and set code blocks that programmers can use to
define properties in C#. The result is the following Click event:

public event EventHandler Click
{
 add
 {
 Events.AddHandler(ClickEvent, value);
 }
 remove
 {
 Events.RemoveHandler(ClickEvent, value);
 }
}

The first thing to notice is the event declaration itself. It is declared with an event keyword,
delegate type, name, and accessibility modifier as before. The new functionally is added via
code blocks below the declaration. The add and remove code blocks handle the delegate regis-
tration process in whatever manner they see fit. In this case, these code blocks are passed the
delegate reference via the value keyword to accomplish their assigned tasks.

The code in our Click event uses the Events collection to add the delegate via AddHandler
or to remove the delegate via RemoveHandler. ClickEvent is the access key used to identify the
Click delegates in our Events collection, keeping like event handlers in separate buckets.

After we declare our event with its event subscription code, we need to define our OnClick
method to raise the event. The code uses the Events collection and our defined key object to get
the Click delegate and raise the event to subscribers:

protected virtual void OnClick(EventArgs e)
{
 EventHandler clickEventDelegate = (EventHandler)Events[ClickEvent];
 if (clickEventDelegate != null)
 {
 clickEventDelegate(this, e);
 }
}

The first step is to pull the delegate of type EventHandler from the Events collection. Our
second step as before is to check it for a null value to ensure that we actually need to invoke it.
The invocation code on the delegate is the same as we used previously with our event in the
TextBox demonstrations. We invoke the delegate using function call syntax with the name of
the delegate. At this point, our Click event is ready to go—all we need to do is raise it when a
postback occurs.

Cameron_865-2C05.fm Page 210 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 211

Command Events and Event Bubbling
The second event exposed by our SuperButton control is a command event. The command
event is a design pattern borrowed from the controls in the System.Web.UI.WebControls namespace
that makes event handling in list controls easier.

One example for this scenario is the DataGrid control, which can have buttons embedded
in a column for edit and delete operations. The buttons activate edit or delete functionality
respectively in the DataGrid control, as long as the command events exposed by these buttons
have the correct CommandName property in the CommandEventArgs class as part of the event. If the
button is set with a CommandName of "Delete", it kicks off delete activity. If the button is set with
a CommandName of "Edit", it starts edit functions in the DataGrid control. Controls that raise
command events that are not in those expected by the DataGrid control are wrapped into an
ItemCommand event exposed by the control.

The capabilities provided by a command event are an implementation of event bubbling.
Event bubbling is a technique that allows a child control to propagate command events up its
control hierarchy, allowing the event to be handled in a more convenient location. Figure 5-13
provides a graphical depiction of event bubbling. This technique allows the DataGrid control to
take a crack at handling the button events despite the fact that the buttons are several layers
deep inside of its control hierarchy.

Figure 5-13. Event bubbling

Exposing the Command Event
The techniques used to expose a command event on our control are similar to those used with
the Click event. As before, an important preliminary task to creating the event declaration is
the need for an object to provide a “key” that gives access to the event in the Events collection.
The CommandEvent field handles this chore:

Cameron_865-2C05.fm Page 211 Tuesday, January 22, 2008 11:49 AM

212 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

private static readonly object CommandEvent = new object();

The event declaration for the Command event is almost identical to the Click event except for
the delegate type used. It exposes the CommandEventHandler delegate, which provides data through
the CommandEventArgs parameter to clients registered to process the event:

public event CommandEventHandler Command
{
 add
 {
 Events.AddHandler(CommandEvent, value);
 }
 remove
 {
 Events.RemoveHandler(CommandEvent, value);
 }
}

The CommandEventArgs class provides two properties: CommandName and CommandArgument.
A control is expected to maintain these values as part of a command event bubbling protocol.
These values are copied directly into the CommandEventArgs class when the command event is
raised. Command controls expose these values through the CommandName and CommandArgument
public properties, respectively:

public virtual string CommandName
{
 get
 {
 object name = ViewState["CommandName"];
 if (name == null)
 return string.Empty;
 else
 return (string) name;
 }
 set
 {
 ViewState["CommandName"] = value;
 }
}

public virtual string CommandArgument
{
 get
 {
 object arg = ViewState["CommandArgument"];
 if (arg == null)
 return string.Empty;

Cameron_865-2C05.fm Page 212 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 213

 else
 return (string) arg;
 }
 set
 {
 ViewState["CommandArgument"] = value;
 }
}

The final step in working with a command event is to raise the event. The OnCommand method in
our class holds this important code. It pulls back the appropriate delegate type from the Events
collection and invokes it in a similar manner to the OnClick method we reviewed earlier:

protected virtual void OnCommand(CommandEventArgs ce)
{
 CommandEventHandler commandEventDelegate =
 (CommandEventHandler) Events[CommandKey];
 if (commandEventDelegate != null)
 {
 commandEventDelegate(this, ce);
 }

 RaiseBubbleEvent(this, ce);
}

The new code that stands out is the RaiseBubbleEvent method call at the end of the OnCommand
method. This code takes advantage of the internal event-bubbling plumbing that all controls
receive just by inheriting from System.Web.UI.Control.

RaiseBubbleEvent takes an object reference and a System.EventArgs reference for its two
parameters. This permits all events, even those not related to command event functionality, to
take advantage of event bubbling. Naturally, the primary concern of event bubbling in ASP.NET is
with command events.

At this point in our design, we have successfully exposed both the Click event and the
command event for our control using the Events collection. One of the limitations of the Events
collection is its implementation as a linked list. Given the nature of the linked list data structure,
it can cause a performance problem in certain scenarios when many delegate nodes are traversed
in order to find the correct event delegate. As background, you are free to use other System.
Collections types to hold event delegates. One alternative to using a linked list is to implement
the events collection as a Hashtable, which can speed access.

Capturing the Postback via IPostBackEventHandler
As part of our design, we had the requirement of rendering the button as either a normal button
or as a specially configured hyperlink to submit the web form. With events in hand, we now
move on to hooking the button click into the postback process through implementation of the
IPostBackEventHandler interface. To achieve this, we next implement the single method of the
postback interface, RaisePostBackEvent:

public void RaisePostBackEvent(string argument);

Cameron_865-2C05.fm Page 213 Tuesday, January 22, 2008 11:49 AM

214 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

RaisePostBackEvent takes a single argument as a means to retrieve a value from the form
submission. When a Button submits a web form, it always passes a blank value for this argu-
ment to RaisePostBackEvent. Our hyperlink-rendering code has a choice of what information
to pass via the Page.ClientScript.GetPostBackClientHyperlink method call. The following
code snippet submits a blank value to keep things in line with our button rendering:

writer.Write("<A href=\"");
writer.Write(Page.ClientScript.GetPostBackClientHyperlink(this,""));
writer.Write("\">" + Text + "");

The RaisePostBackEvent implementation in our SuperButton control has very little work to
do, as we encapsulated the bulk of our event-generating code in the OnClick and OnCommand
methods:

public void RaisePostBackEvent(string argument)
{
 OnCommand(new CommandEventArgs(CommandName, CommandArgument));
 OnClick(EventArgs.Empty);
}

Completing the RaisePostBackEvent method brings our SuperButton control to fruition.
Listing 5-9 is the class file for the control and its related enumeration. The control needs a
using import for the System.Web.UI.WebControls namespace, because it takes advantage of
Command events.

Listing 5-9. The SuperButton Control Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch05
{
 public enum ButtonDisplay
 {
 Button = 0,
 Hyperlink = 1
 }

 [ToolboxData("<{0}:superbutton runat=server></{0}:superbutton>")]
 public class SuperButton : Control, IPostBackEventHandler
 {
 public virtual ButtonDisplay Display
 {
 get
 {
 object display = ViewState["Display"];
 if (display == null)
 return ButtonDisplay.Button;

Cameron_865-2C05.fm Page 214 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 215

 else
 return (ButtonDisplay)display;
 }
 set
 {
 ViewState["Display"] = value;
 }
 }

 public virtual string Text
 {
 get
 {
 object text = ViewState["Text"];
 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 private static readonly object ClickKey = new object();

 public event EventHandler Click
 {
 add
 {
 Events.AddHandler(ClickKey, value);
 }
 remove
 {
 Events.RemoveHandler(ClickKey, value);
 }
 }

 protected virtual void OnClick(EventArgs e)
 {
 EventHandler clickEventDelegate =
 (EventHandler)Events[ClickKey];
 if (clickEventDelegate != null)
 {
 clickEventDelegate(this, e);
 }
 }

Cameron_865-2C05.fm Page 215 Tuesday, January 22, 2008 11:49 AM

216 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

 private static readonly object CommandKey = new object();

 public event CommandEventHandler Command
 {
 add
 {
 Events.AddHandler(CommandKey, value);
 }
 remove
 {
 Events.RemoveHandler(CommandKey, value);
 }
 }

 public virtual string CommandName
 {
 get
 {
 object name = ViewState["CommandName"];
 if (name == null)
 return string.Empty;
 else
 return (string)name;
 }
 set
 {
 ViewState["CommandName"] = value;
 }
 }

 public virtual string CommandArgument
 {
 get
 {
 object arg = ViewState["CommandArgument"];
 if (arg == null)
 return string.Empty;
 else
 return (string)arg;
 }
 set
 {
 ViewState["CommandArgument"] = value;
 }
 }

Cameron_865-2C05.fm Page 216 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 217

 protected virtual void OnCommand(CommandEventArgs ce)
 {
 CommandEventHandler commandEventDelegate =
 (CommandEventHandler)Events[CommandKey];
 if (commandEventDelegate != null)
 {
 commandEventDelegate(this, ce);
 }

 RaiseBubbleEvent(this, ce);
 }

 public void RaisePostBackEvent(string argument)
 {
 OnCommand(new CommandEventArgs(CommandName, CommandArgument));
 OnClick(EventArgs.Empty);
 }

 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 Page.VerifyRenderingInServerForm(this);

 if (Display == ButtonDisplay.Button)
 {
 writer.Write("<INPUT type=\"submit\"");
 writer.Write(" name=\"" + this.UniqueID + "\"");
 writer.Write(" id=\"" + this.UniqueID + "\"");
 writer.Write(" value=\"" + Text + "\"");
 writer.Write(" />");
 }
 else if (Display == ButtonDisplay.Hyperlink)
 {
 writer.Write("<A href=\"");
 writer.Write(Page.ClientScript.GetPostBackClientHyperlink(this, ""));
 writer.Write("\">" + Text + "");
 }
 }
 }
}

Using the SuperButton Control on a Web Form
The SuperButton web form hosts two SuperButton controls: one of the button variety and the other
of the hyperlink persuasion. It also has a label that is set according to event handlers for each
button. The first request to the web form generates the page shown in Figure 5-14. Listings 5-10 and
5-11 provide the source code for this web form.

Cameron_865-2C05.fm Page 217 Tuesday, January 22, 2008 11:49 AM

218 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-14. The SuperButton web form rendering its first request

Listing 5-10. The SuperButton Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="SuperButton.aspx.cs"
Inherits="ControlsBook2Web.Ch05.SuperButton"
 Title="SuperButton Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch05"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID=
 "ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server" Width="14px">5</asp:Label>
 <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Events</asp:Label></asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 SuperButton</h3>
 <apress:SuperButton ID="superbtn" runat="server"

Cameron_865-2C05.fm Page 218 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 219

 Text="SuperButton Button" OnClick="superbtn_Click">
 </apress:SuperButton>

 <apress:SuperButton Display="hyperlink" ID="superlink" runat="server"
 Text="SuperButton HyperLink"
 OnClick="superlink_Click">
 </apress:SuperButton>

 <h3>
 <asp:Label ID="ClickLabel" runat="server">Waiting...</asp:Label></h3>
</asp:Content>

Listing 5-11. The SuperButton Web Form Code-Behind Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch05
{
 public partial class SuperButton : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 ClickLabel.Text = "Waiting...";
 }

 protected void superbtn_Click(object sender, EventArgs e)
 {
 ClickLabel.Text = "superbtn was clicked!";
 }

 protected void superlink_Click(object sender, EventArgs e)
 {
 ClickLabel.Text = "superlink was clicked!";
 }
 }
}

Clicking the button generates the output shown in Figure 5-15. Clicking the hyperlink
generates the output shown in Figure 5-16.

Cameron_865-2C05.fm Page 219 Tuesday, January 22, 2008 11:49 AM

220 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-15. The SuperButton web form after a button click

Figure 5-16. The SuperButton web form after a hyperlink click

Of more interest is what is rendered on the HTML page that represents the web form.
Listing 5-12 shows the HTML.

Cameron_865-2C05.fm Page 220 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 221

Listing 5-12. The SuperButton Web Form’s Rendered HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>SuperButton Demo</title>
<link href="../css/ControlsBook2Master.css" rel="stylesheet" type="text/css" />
 <link href="../css/SkinnedControl.css" rel="stylesheet" type="text/css" />
 </head>
<body>
 <form name="aspnetForm" method="post" action="SuperButton.aspx" id="aspnetForm">
<div>
<input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value=
"/wEPDwUKMTk1NzAxNTA4OQ9kFgJmD2QWAgIDD2QWAgIND2QWAgIF
 Dw8WAh4EVGV4dAUKV2FpdGluZy4uLmRkZCVrMj4twiLopSQe2Bv49Qt4I2Me" />
</div>

<script type="text/javascript">
//<![CDATA[
var theForm = document.forms['aspnetForm'];
if (!theForm) {
 theForm = document.aspnetForm;
}
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
//]]>
</script>

<script src="/WebResource.axd?d=puMa8Av1AilWiuWD8_1Zng2
&t=633213291362029098" type="text/javascript"></script>

<script src="/ScriptResource.axd?d=0oc1BWZd820Y0xgUreI6u7sW71ZA_JJlVHJD
 bjlwydjgePxXiP4o8bnwriUWSGvMmu3bfGm7GGOYOkZOpjk1i_O-3o
 X6tEF2F-Ad4yqjb1I1&t=633213301364593098"
 type="text/javascript"></script>
<script type="text/javascript">
//<![CDATA[
if (typeof(Sys) === 'undefined') throw new Error(
 'ASP.NET Ajax client-side framework failed to load.');
//]]>
</script>

Cameron_865-2C05.fm Page 221 Tuesday, January 22, 2008 11:49 AM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

222 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

<script src="/ScriptResource.axd?d=0oc1BWZd820Y0xgUreI6u7sW71ZA_JJlV
HJDbjlwydjgePxXiP4o8bnwriUWSGvMq_aVE3uFzkIcPnHrB6A2BVXqGLckR0
G1AUsyomgWNBg3Fxr9HCw9umLH5BqubMkk0&t=
633213301364593098" type="text/javascript"></script>
<script src="../ch09/hoverbutton.js" type="text/javascript"></script>
 <div id="HeaderPanel">
 <script type="text/javascript">
//<![CDATA[
Sys.WebForms.PageRequestManager._initialize('ctl00$ControlsBook2ScriptManager',
document.getElementById('aspnetForm'));
Sys.WebForms.PageRequestManager.getInstance()._updateControls([], [], [], 90);
//]]>
</script>

 <span id="ctl00_Label2" class="TitleHeader"
 style="display:inline-block;height:18px;width:604px;">
Pro ASP.NET 3.5 Server Controls and AJAX Components

 <div id="ChapterInfo" class="Chapter">
 Chapter

 <span id="ctl00_ChapterNumAndTitle_ChapterNumberLabel" style=
 "display:inline-block;width:14px;">5 <span
 id="ctl00_ChapterNumAndTitle_ChapterTitleLabel"
 style="display:inline-block;width:360px;">Server Control Events
 Back To Start Page

 </div>

 <h3>
 SuperButton</h3>

 <INPUT type="submit" name="ctl00$PrimaryContent$superbtn"
 id="ctl00$PrimaryContent$superbtn" value="SuperButton Button" />

 SuperButton HyperLink

 <h3>
 Waiting...</h3>

 <div id="FooterPanel">

Cameron_865-2C05.fm Page 222 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 223

 Pro ASP.NET 3.5 Server Controls and AJAX Components

 By Rob Cameron and Dale Michalk

 Copyright © 2007, Apress L.P.
</div>
 </div>

<script type="text/javascript">
//<![CDATA[
Sys.Application.initialize();
//]]>
</script>
</form>
</body>
</html>

The first thing to examine is how our hyperlink generates a postback:

SuperButton HyperLink

It uses a JavaScript function named __doPostBack, which actually sends the page
back to the server. This JavaScript invocation is added by our Page.ClientScript.
GetPostBackClientHyperlink call in the Render method of SuperButton. The __doPostBack
JavaScript routine is emitted into the HTML by the ASP.NET framework as a result of this
method call:

<div>
<input type="hidden" name="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" value="" />
<div/>
<script language="javascript">
<!--
var theForm = document.forms['aspnetForm'];
if (!theForm) {
 theForm = document.aspnetForm;
}
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
// -->
</script>

Cameron_865-2C05.fm Page 223 Tuesday, January 22, 2008 11:49 AM

224 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

The JavaScript code programmatically submits the form and sets two hidden variables to
give ASP.NET enough information about what control was responsible for causing the post-
back. It doesn’t need this extra step when rendering the <INPUT type="submit"> button, but the
step is mandatory for hyperlinks. You can also see that the purpose of the second parameter in
Page.ClientScript.GetPostBackClientHyperlink is to pass an eventArgument, which makes its
way back to the RaisePostBack method invocation on the server-side control implementation
as the string parameter named argument.

Composing the SuperButton Control into a
Composite Pager Control
Our SuperButton control is capable of raising command events through the event-bubbling
mechanism. To capture these bubbled events, we use a composite control named Pager. Pager
recognizes bubbled command events from its children and raises a PageCommand event to its
event clients. This is similar to the event bubbling performed by the DataGrid list control when
it grabs all command events from child controls and exposes them via a single ItemCommand event.
We next describe the design of the Pager control, starting with how the control is constructed.

Building the Pager Child Control Hierarchy
Composite control development begins with creating a child control hierarchy. The Pager control
uses a private method named CreateChildControlHierarchy that is called from the overridden
protected CreateChildControls method inherited from the Control class. Listing 5-13 provides
the source code for CreateChildControlHierarchy. CreateChildControls is called by the ASP.NET
Framework to allow composite controls to build up their structure prior to rendering.

Listing 5-13. The Pager Implementation of CreateChildControlHierarchy

private SuperButton buttonLeft ;
private SuperButton buttonRight;
private void CreateChildControlHierarchy()
{
 LiteralControl tableStart = new
 LiteralControl("<table border=1><tr><td>");
 Controls.Add(tableStart);

 buttonLeft = new SuperButton();
 buttonLeft.ID = "buttonLeft";
 if (Context != null)
 {
 buttonLeft.Text = Context.Server.HtmlEncode("<") + " Left";
 }
 else
 {
 buttonLeft.Text = "< Left";
 }

Cameron_865-2C05.fm Page 224 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 225

 buttonLeft.CommandName = "Page";
 buttonLeft.CommandArgument = "Left";
 Controls.Add(buttonLeft);

 LiteralControl spacer = new LiteralControl(" ");
 Controls.Add(spacer);

 buttonRight = new SuperButton();
 buttonRight.ID = "buttonRight";
 buttonRight.Display = Display;
 if (Context != null)
 {
 buttonRight.Text = "Right " + Context.Server.HtmlEncode(">");
 }
 else
 {
 buttonRight.Text = "Right >";
 }
 buttonRight.CommandName = "Page";
 buttonRight.CommandArgument = "Right";
 Controls.Add(buttonRight);

 LiteralControl tableEnd = new
 LiteralControl("</td></tr></table>");
 Controls.Add(tableEnd);
}

The child control collection created by the Pager control includes a set of SuperButton
controls representing left and right direction arrows that are wrapped inside an HTML table.
The Left direction SuperButton includes the text "< Left", and the Right direction SuperButton
uses "Right >". The Text property uses HtmlEncode to properly render the special characters.
Otherwise, CreateChildControlHierarchy renders straight text when Context is not available at
design time.

if (Context != null)
{
 buttonLeft.Text = Context.Server.HtmlEncode("<") + " Left";
}
else
{
 buttonLeft.Text = "< Left";
}

The most important settings in CreateChildControlHierarchy are the Command properties.
The CommandName value chosen for the SuperButton controls is Page. This lets the Pager know that it
is receiving Command events from its specially configured SuperButton controls. CommandArgument
tells the Pager whether it is the left or right control emitting the event:

Cameron_865-2C05.fm Page 225 Tuesday, January 22, 2008 11:49 AM

226 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

buttonLeft.CommandName = "Page";
buttonLeft.CommandArgument = "Left";
...
buttonRight.CommandName = "Page";
buttonRight.CommandArgument = "Right";

The final rendering feature is the Display property passed on to the SuperButton controls.
Our Pager can display its left and right UI elements as either buttons or hyperlinks. The imple-
mentation of the Display property in Pager is as follows. It calls EnsureChildControls and then
gets or sets the Display property on the child controls. The SuperButton server control defaults
to a Display value of Button, which becomes the default for Pager as well if the value is not set.

public virtual ButtonDisplay Display
{
 get
 {
 EnsureChildControls();
 return buttonLeft.Display ;
 }
 set
 {
 EnsureChildControls();
 buttonLeft.Display = value;
 buttonRight.Display = value;
 }
}

Defining the PageCommand Event
The Pager control exposes a custom PageCommand event to let its client know whether it is moving
in the left or right direction. The PageDirection enumeration provides a finite way to specify
this in code:

public enum PageDirection
{
 Left = 0,
 Right = 1
}

The PageCommandEventArgs class uses this enumeration as the data type for its Direction
property exposed as part of an EventArgs replacement for the PageCommand delegate. The
complete PageCommand event–related code is grouped in the PageCommand class file shown in
Listing 5-14.

Cameron_865-2C05.fm Page 226 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 227

Listing 5-14. The PageCommand Class File

using System;

namespace ControlsBook2Lib.Ch05
{
 public enum PageDirection
 {
 Left = 0,
 Right = 1
 }

 public delegate void PageCommandEventHandler(object o,
 PageCommandEventArgs pce);

 public class PageCommandEventArgs
 {
 public PageCommandEventArgs(PageDirection direction)
 {
 this.direction = direction;
 }

 PageDirection direction;
 public PageDirection Direction
 {
 get { return direction; }
 }
 }
}

Exposing the PageCommand Event from the Pager Control
The Pager control uses the PageCommandEventHandler delegate to declare its event-handling
code. As with the SuperButton, we use the Events property technique for handling delegate
registration:

private static readonly object PageCommandKey = new object();
public event PageCommandEventHandler PageCommand
{
 add
 {
 Events.AddHandler(PageCommandKey, value);
 }
 remove
 {
 Events.RemoveHandler(PageCommandKey, value);
 }
}

Cameron_865-2C05.fm Page 227 Tuesday, January 22, 2008 11:49 AM

228 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

We also add an OnPageCommand method to raise the event. This method uses the custom
PageCommandEventArgs class we defined earlier to invoke the PageCommandEventHandler delegate:

protected virtual void OnPageCommand(PageCommandEventArgs pce)
{
 PageCommandEventHandler pageCommandEventDelegate =
 (PageCommandEventHandler) Events[PageCommandEvent];
 if (pageCommandEventDelegate != null)
 {
 pageCommandEventDelegate(this, pce);
 }
}

OnPageCommand is the last bit of code required to raise events associated with the PageCommand
event type. The next task is to capture the bubbled Command events and turn them into
PageCommand events.

Capturing the Bubbles via OnBubbleEvent
The OnBubbleEvent method inherited from System.Web.UI.Control is the counterpart to the
RaiseBubbleEvent method used inside the SuperButton control. It allows a control to hook into
the stream of bubbled events from child controls and process them accordingly:

protected override bool OnBubbleEvent(object source, EventArgs e);

The method definition for OnBubbleEvent specifies the ubiquitous System.EventHandler
method signature, with one difference. It takes an object reference and an EventArgs reference
but returns a bool. The bool return value indicates whether or not the control has processed the
bubble event. A value of false indicates that the bubble event should continue bubbling up the
control hierarchy; a value of true indicates a desire to stop the event in its tracks, because it has
been handled. If a control does not implement OnBubbleEvent, the default implementation
passes the event on up to parent controls.

The Pager control implements its OnBubbleEvent as shown in Listing 5-15.

Listing 5-15. The Pager Implementation of OnBubbleEvent

protected override bool OnBubbleEvent(object source, EventArgs e)
{
 bool result = false;
 CommandEventArgs ce = e as CommandEventArgs;

 if (ce != null)
 {
 if (ce.CommandName.Equals("Page"))
 {
 PageDirection direction;
 if (ce.CommandArgument.Equals("Right"))
 direction = PageDirection.Right;

Cameron_865-2C05.fm Page 228 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 229

 else
 direction = PageDirection.Left;

 PageCommandEventArgs pce =
 new PageCommandEventArgs(direction);

 OnPageCommand(pce);
 result = true;
 }
 }
 return result;
}

The result variable holds the return value of OnBubbleEvent for the Pager control. It is set
to false, assuming failure until success. The first check is to cast the EventArgs reference to
ensure we receive a Command event of the proper type. The code performs this check using the
as keyword in C# to cast the reference to the desired type, which returns null if the cast fails.

If the type cast succeeds, the next check is to ensure the proper CommandName is set to "Page".
After the checks pass, the OnBubbleEvent code can create a PageCommandEventArgs class and set
the Direction property according to the CommandArgument value. The final task is to raise the
PageCommand event by calling OnPageCommand. Finally, the function returns the value of result to
tell the ASP.NET framework whether or not the event was handled.

The INamingContainer Interface
When a composite control builds up its child control tree, it sets each control’s identification
via the ID property. For example, the Pager control sets the left SuperButton child control ID
property value in the following single line of code:

buttonLeft.ID = "buttonLeft";

The problem with using just the ID value to uniquely identify child controls is that multiple
Pager controls could be used on a web form, and the emitted button or hyperlink ID values
would conflict. To protect against name collisions, each composite control creates a unique
namespace that prefixes the ID of a control with the parent control’s ID (and the parent control’s
parent’s ID and so on) and a dollar sign or underscore. The INamingContainer interface tells
ASP.NET to do this. INamingContainer is a marker interface (i.e., an interface without any defined
methods) used by ASP.NET to identify the parent in a composite control to ensure unique names
or IDs for child controls as they are dynamically created during the page-rendering process.

Implementing the INamingContainer interface in the Pager server control activates this
mechanism, causing ASP.NET to prefix the ID of a control with the parent control’s ID and a
colon. The previous left button in a Pager control named "pagerbtn" would therefore have an
ID value of "buttonLeft" but a UniqueID value of "pagerbtn$buttonLeft". Listing 5-16 contains
the full code listing for the Pager control.

Cameron_865-2C05.fm Page 229 Tuesday, January 22, 2008 11:49 AM

230 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Listing 5-16. The Pager Control Class File

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.WebControls;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch05
{
 [ToolboxData("<{0}:pager runat=server></{0}:pager>")]
 public class Pager : CompositeControl
 {
 private static readonly object PageCommandKey = new object();
 public event PageCommandEventHandler PageCommand
 {
 add
 {
 Events.AddHandler(PageCommandKey, value);
 }
 remove
 {
 Events.RemoveHandler(PageCommandKey, value);
 }
 }

 protected virtual void OnPageCommand(PageCommandEventArgs pce)
 {
 PageCommandEventHandler pageCommandEventDelegate =
 (PageCommandEventHandler)Events[PageCommandKey];
 if (pageCommandEventDelegate != null)
 {
 pageCommandEventDelegate(this, pce);
 }
 }

 protected override bool OnBubbleEvent(object source, EventArgs e)
 {
 bool result = false;
 CommandEventArgs ce = e as CommandEventArgs;

 if (ce != null)
 {
 if (ce.CommandName.Equals("Page"))
 {
 PageDirection direction;
 if (ce.CommandArgument.Equals("Right"))
 direction = PageDirection.Right;

Cameron_865-2C05.fm Page 230 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 231

 else
 direction = PageDirection.Left;

 PageCommandEventArgs pce =
 new PageCommandEventArgs(direction);

 OnPageCommand(pce);
 result = true;
 }
 }
 return result;
 }

 public ButtonDisplay Display
 {
 get
 {
 EnsureChildControls();
 return buttonLeft.Display;
 }
 set
 {
 EnsureChildControls();
 buttonLeft.Display = value;
 buttonRight.Display = value;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();
 CreateChildControlHierarchy();
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 private SuperButton buttonLeft;
 private SuperButton buttonRight;

Cameron_865-2C05.fm Page 231 Tuesday, January 22, 2008 11:49 AM

232 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

 private void CreateChildControlHierarchy()
 {
 LiteralControl tableStart = new
 LiteralControl("<table border=1><tr><td>");
 Controls.Add(tableStart);

 buttonLeft = new SuperButton();
 buttonLeft.ID = "buttonLeft";
 if (Context != null)
 {
 buttonLeft.Text = Context.Server.HtmlEncode("<") + " Left";
 }
 else
 {
 buttonLeft.Text = "< Left";
 }
 buttonLeft.CommandName = "Page";
 buttonLeft.CommandArgument = "Left";
 Controls.Add(buttonLeft);

 LiteralControl spacer = new LiteralControl(" ");
 Controls.Add(spacer);

 buttonRight = new SuperButton();
 buttonRight.ID = "buttonRight";
 buttonRight.Display = Display;
 if (Context != null)
 {
 buttonRight.Text = "Right " + Context.Server.HtmlEncode(">");
 }
 else
 {
 buttonRight.Text = "Right >";
 }
 buttonRight.CommandName = "Page";
 buttonRight.CommandArgument = "Right";
 Controls.Add(buttonRight);

 LiteralControl tableEnd = new
 LiteralControl("</td></tr></table>");
 Controls.Add(tableEnd);
 }
 }
}

Cameron_865-2C05.fm Page 232 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 233

Using the Pager Control on a Web Form
The Pager Event Bubbling web form demonstrates the Pager control in both its button and
hyperlink display motifs. A single label represents the PageCommand activity generated by the
two controls. The first request for the page appears in the browser, as shown in Figure 5-17.
Listings 5-17 and 5-18 provide the .aspx and code-behind files for this web form.

Figure 5-17. The Pager Event Bubbling web form rendering its first request

Listing 5-17. The Pager Event Bubbling Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="PagerEventBubbling.aspx.cs"
 Inherits="ControlsBook2Web.Ch05.PagerEventBubbling"
 Title="Pager Event Bubbling Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch05"
 Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server" Width="14px">5</asp:Label>
 <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Events</asp:Label>
</asp:Content>

Cameron_865-2C05.fm Page 233 Tuesday, January 22, 2008 11:49 AM

234 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Pager Event Bubbling</h3>
 <apress:Pager ID="pager1" Display="Button" runat="server"
OnPageCommand="Pagers_PageCommand">
 </apress:Pager>

 <h3>
 Direction: <asp:Label ID="DirectionLabel" runat="server"></asp:Label></h3>
 <apress:Pager ID="pager2" runat="server" Display="Hyperlink"
OnPageCommand="Pagers_PageCommand">
 </apress:Pager>

</asp:Content>

Listing 5-18. The Pager Event Bubbling Web Form Code-Behind Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch05
{
 public partial class PagerEventBubbling : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void Pagers_PageCommand(object o,
 ControlsBook2Lib.Ch05.PageCommandEventArgs pce)
 {
 DirectionLabel.Text = ((Control)o).ID + ": " +
 Enum.GetName(typeof(ControlsBook2Lib.Ch05.PageDirection), pce.Direction);
 }
 }
}

The Pager controls are wired to the same event handler in the code-behind class named
Pagers_PageCommand in the .aspx file web form.

Cameron_865-2C05.fm Page 234 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 235

ControlsBook2LibControlsBook2LibOnPageCommand="Pagers_PageCommand"

Pagers_PageCommand has an all-important second parameter of type PageCommandEventArgs. We
use it along with the System.Enum class’s static GetName method to produce a textual represen-
tation of the PageDirection enumeration value for display in the DirectionLabel Text property:

private void Pagers_PageCommand(object o, C
 ontrolsBookLib.Ch05.PageCommandEventArgs pce)
{
 DirectionLabel.Text =
 Enum.GetName(typeof(ControlsBook2Lib.Ch05.PageDirection),
 pce.Direction);
}

Click the Left button of the top Pager control to verify that it is working. The result should
look something like Figure 5-18.

Figure 5-18. The Page Event Bubbling web form after clicking the Left hyperlink button

Try the Right button with the bottom Pager, which is in a hyperlink form, and you should
get output similar to Figure 5-19.

Cameron_865-2C05.fm Page 235 Tuesday, January 22, 2008 11:49 AM

236 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-19. The Page Event Bubbling web form after clicking the Right hyperlink button

A snippet from the rendered HTML shows that the pager1 and pager2 Pager controls from
the Pager Event Bubbling web form have their child controls identified in a nested fashion due
to the INamingContainer interface with ASP.NET generating the UniqueID property:

<INPUT type="submit" name="ctl00$ControlsBookContent$pager1$buttonLeft"
id="ctl00$ControlsBookContent$pager1$buttonLeft" value="< Left" />
<INPUT type="submit" name="ctl00$ControlsBookContent$pager1$buttonRight"
id="ctl00$ControlsBookContent$pager1$buttonRight" value="Right >"
/></td></tr></table>

 <h3>Direction: pager2:
Right</h3>
 <table border=1><tr><td><A
href="javascript:__doPostBack
('ctl00$ControlsBookContent$pager2$buttonLeft','')"><
Left <A href="javascript:__doPostBack
('ctl00$ControlsBookContent$pager2$buttonRight','')">
Right ></td></tr></table>

In the final section of this chapter, we review the control life cycle, which provides orderly
processing to the busy life of server controls.

Cameron_865-2C05.fm Page 236 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 237

Control Life Cycle
The examples so far have demonstrated the use of server-side events to coordinate the activities of
an ASP.NET application as part of an .aspx page. Each HTTP request/response cycle that the
page executes follows a well-defined process known as the control execution life cycle. The
Page server control orchestrates these activities on behalf of all the server controls in the Page’s
control tree. Control developers need to understand the flow of execution to ensure that their
custom controls perform as expected as part of an ASP.NET web form. Figure 5-20 provides a
high-level view of the page life cycle.

Figure 5-20. An overview of the page life cycle

After the initial page request as an HTTP GET, each subsequent HTTP POST page request/
response cycle generally consists of the following steps:

1. Instantiate the control tree, creating each server control object.

2. Unpack ViewState, which includes control state in ASP.NET 2.0 and later, for each
server control object.

3. Set the state from the previous server-side processing cycle for each object in the tree.

4. Process postback data.

5. Handle the Page_Load event.

6. Let controls know that data changed through postback, updating control state as necessary.

7. Execute server-side events based on data changes from postback.

Cameron_865-2C05.fm Page 237 Tuesday, January 22, 2008 11:49 AM

238 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

8. Persist state back to ViewState, which includes control state in ASP.NET 2.0 and later.

9. Execute the render process for each server control.

10. Unload the page and its control tree.

This process is what provides the illusion of a stateful application to the end user. During
each request/response round-trip, state is unpacked, changes are processed, the UI is updated,
and the page is sent back to the user’s browser with its new state values embedded in a hidden
form field as ViewState, ready for the next request/response cycle. We next examine what events
are available to controls as the page life cycle executes on the server side.

Plugging Into the Life Cycle
Server controls have a well-defined behavior pattern that coincides with the overall page life cycle.
The ASP.NET framework provides a series of events that server controls can override to customize
behavior during each phase of the life cycle. Table 5-1 provides an overview of these events.

Table 5-1. Server Control Events Related to the Control Execution Life Cycle

Server Control Event Page Life Cycle Phase Description

Init Initialization Initializes settings for the control.

LoadViewState Unpack ViewState Populates the state values of the
control from ViewState.

LoadControlState Unpack control state Populates the state values of the
control from control state.

LoadPostData Handle form postback Updates control’s state values
from data posted data.

Load Page_Load event Executes code common to every
page request/response cycle.

TrackViewState Track ViewState Causes IsTrackingViewState
property to return true when
called.

RaisePostDataChangedEvent Initialization for
server-side events

Notifies control that newly
posted data changed its state.

RaisePostBackEvent Execute server-side events Goes hand-in-hand with previous
events listed in this table. Server-
side events fire as a result of
changes found in posted data for
a particular control.

PreRender Render process Allows each control a chance
to update state values before
rendering.

SaveViewState Save ViewState Persists a control’s updated
state through the ViewState
mechanism.

Cameron_865-2C05.fm Page 238 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 239

As Table 5-1 shows, ASP.NET provides each server control the capability to finely tune
each phase in the life cycle. You can choose to accept default behavior, or you can customize a
particular phase by overriding the appropriate event.

The Lifecycle Server Control
Now that we have covered the basics of the control execution life cycle, we are going to examine
this process in more detail by overriding all available events in a server control named Lifecycle.
The overridden methods generally fall into two camps: those that raise defined events exposed
by a control and those that are not events but perform a necessary action for the control.

OnInit, OnLoad, OnPreRender, and OnUnload are events defined in System.Web.UI.Control
that a control developer can override as required for a particular control. LoadViewState,
LoadControlState, LoadPostData, RaisePostDataChangedEvent, RaisePostBackEvent,
TrackViewState, SaveControlState, SaveViewState, and Render are all events that perform
necessary actions for the control to maintain its state and event processing.

■Caution As with most object-oriented class hierarchies, it is usually (though not always) necessary to call
the base class’s version of an overridden method in the descendent class to ensure consistent behavior. If the
base method is not called in the descendent class, class instances will most likely fail to behave as expected—
or worse, they could cause instability.

The implementation of Dispose deviates from the previous description for overridden
methods. The Control class does expose a Dispose event, but it does not have an OnDispose
method to raise it. Instead, providing a Dispose method follows the design pattern for objects
that work with scarce resources, implementing the IDisposable interface.

Life Cycle and the HTTP Protocols GET and POST
The page life cycle differs based on whether the web form is requested for the first time via an
HTTP GET or instead is initiated as part of a postback resulting from an HTTP POST generated by
a control element on the page submitting the web form back to the server. The HTTP POST

SaveControlState Save control state Persists a control’s updated
control state through the
ViewState mechanism

Render Render process Generates HTML reflecting the
control’s state and settings.

Dispose Dispose of control tree Releases any resources held by
the control before teardown.

Table 5-1. Server Control Events Related to the Control Execution Life Cycle

Server Control Event Page Life Cycle Phase Description

Cameron_865-2C05.fm Page 239 Tuesday, January 22, 2008 11:49 AM

240 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

generally causes more life cycle activities because of the requirement to process data posted by
the client back to the web server, raising events associated with state changes.

Figure 5-21 shows the two variants (initial GET versus initial POST) of the web form life cycle
and the names of the phases we discuss in detail shortly.

Figure 5-21. The control life cycle

In order to discuss the control life cycle, we use a control that overrides the methods
necessary to track the execution of each of the life cycle events as they occur. Listing 5-19
provides the class file for the Lifecycle control that handles this task. The implementation of
each overridden method is quite simple, with a call to the trace function notifying us that the
method is executing.

Listing 5-19. The Lifecycle Control Class File

using System;
using System.Web.UI;
using System.Collections.Specialized;
using System.Diagnostics;

namespace ControlsBook2Lib.Ch05
{
 [ToolboxData("<{0}:lifecycle runat=server></{0}:lifecycle>")]
 public class Lifecycle : Control, IPostBackEventHandler, IPostBackDataHandler
 {

Cameron_865-2C05.fm Page 240 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 241

 // Init Event
 protected override void OnInit(System.EventArgs e)
 {
 Trace("Lifecycle: Init Event.");
 base.OnInit(e);
 }

 protected override void TrackViewState()
 {
 Trace("Lifecycle: Track ViewState.");
 base.TrackViewState();
 }

 // Load ViewState Event
 protected override void LoadViewState(object savedState)
 {
 Trace("Lifecycle: Load ViewState Event.");
 base.LoadViewState(savedState);
 }

 protected override void LoadControlState(object savedState)
 {
 Trace("Lifecycle: Load ControlState Event.");
 base.LoadControlState(savedState);
 }

 public override void DataBind()
 {
 Trace("Lifecycle: DataBind Event.");
 base.DataBind();
 }

 // Load Postback Data Event
 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 Trace("Lifecycle: Load PostBack Data Event.");
 Page.RegisterRequiresRaiseEvent(this);
 return true;
 }

 // Load Event
 protected override void OnLoad(System.EventArgs e)
 {
 Trace("Lifecycle: Load Event.");
 base.OnLoad(e);
 }

Cameron_865-2C05.fm Page 241 Tuesday, January 22, 2008 11:49 AM

242 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

 // Post Data Changed Event
 public void RaisePostDataChangedEvent()
 {
 Trace("Lifecycle: Post Data Changed Event.");
 }

 // Postback Event
 public void RaisePostBackEvent(string argument)
 {
 Trace("Lifecycle: PostBack Event.");
 }

 // PreRender Event
 protected override void OnPreRender(System.EventArgs e)
 {
 Trace("Lifecycle: PreRender Event.");
 Page.RegisterRequiresPostBack(this);
 base.OnPreRender(e);
 }

 // Save ViewState
 protected override object SaveViewState()
 {
 Trace("Lifecycle: Save ViewState.");
 return base.SaveViewState();
 }

 // Save ControlState
 protected override object SaveControlState()
 {
 Trace("Lifecycle: Save ControlState.");
 return base.SaveControlState();
 }

 // Render Event
 protected override void Render(HtmlTextWriter writer)
 {
 base.Render(writer);
 Trace("Lifecycle: Render Event.");
 writer.Write("<h3>LifeCycle Control</h3>");
 }

 // Unload Event
 protected override void OnUnload(System.EventArgs e)
 {
 Trace("Lifecycle: Unload Event.");
 base.OnUnload(e);
 }

Cameron_865-2C05.fm Page 242 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 243

 // Dispose Event
 public override void Dispose()
 {
 Trace("Lifecycle: Dispose Event.");
 base.Dispose();
 }

 private void Trace(string info)
 {
 if (Context != null)
 {
 Context.Trace.Warn(info);
 Debug.WriteLine(info);
 }
 }
 }
}

Listings 5-20 and 5-21 outline the web form that hosts the control, with the ASP.NET tracing
mechanism turned on. The UI appearance is a single button on the web form with trace output
turned on.

Listing 5-20. The Life Cycle Web Form .aspx Page File

<%@ Page Trace="true" Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="LifeCycle.aspx.cs"
Inherits="ControlsBook2Web.Ch05.LifeCycle"
 Title="LifeCycle Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch05"
 Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">5</asp:Label> <asp:Label
ID="ChapterTitleLabel" runat="server" Width="360px">
Server Control Events</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 LifeCycle</h3>
 <apress:Lifecycle ID="life1" runat="server" />
 <asp:Button ID="Button1" runat="server" Text="Button"></asp:Button>
</asp:Content>

Cameron_865-2C05.fm Page 243 Tuesday, January 22, 2008 11:49 AM

244 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Listing 5-21. The Life Cycle Web Form Code-Behind Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Web.Ch05
{
 public partial class LifeCycle : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

The first execution of the Life Cycle web form results in an HTTP GET protocol request and
generates the life cycle events shown in the ASP.NET trace output shown in Figure 5-22.

Figure 5-22. The Lifecycle.aspx trace output from an HTTP GET request

Cameron_865-2C05.fm Page 244 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 245

We next cover the life cycle events that occur when an HTTP GET request occurs, starting
with the Init event.

Init Event

The first phase processed by the control is the Init event. We are notified of this phase by over-
riding the protected OnInit method inherited from the base class System.Web.UI.Control:

override protected void OnInit(System.EventArgs e)
{
 base.OnInit();
 Trace("Lifecycle: Init Event.");
}

The code in the OnInit method uses a private utility method called Trace that sends status
information to the Trace class via the control’s Context property available to ASP.NET server
controls:

private void Trace(string info)
{
 Page.Trace.Warn(info);
 Debug.WriteLine(info);
}

This class method also sends output to the debug stream via the System.Diagnostics.
Debug class and its WriteLine method. The reason for this extra step is to view Unload and
Dispose event execution, which occurs after the web form is finished writing out its content via
the Render method and the ASP.NET trace tables have been generated. You can view debug
stream information in the Output window of Visual Studio when debugging.

The Init event is an opportunity for the control to initialize any resources it needs to
service the page request. A control can access any child controls in this method if necessary;
however, peer- and parent-level controls are not guaranteed to be accessible at this point in
the life cycle.

Overriding methods such as OnInit from the base class System.Web.UI.Control requires
that we call the base version of this method to ensure proper functioning of the event. The base
class implementation of OnInit actually raises the Init event exposed by the root Control class
to clients.

If you override OnInit but do not call the base class version of this event, the event will not
be raised to clients that are registered to receive it. This applies to the other On-prefixed methods
such as OnLoad, OnPreRender, and OnUnload, which are part of the life cycle process, as well as
other non-life-cycle-specific event methods such as OnDataBinding and OnBubbleEvent.

TrackViewState Method

The TrackViewState method executes immediately after initialization and marks the beginning
of ViewState processing, and state tracking, in the control life cycle. If you have attribute values
that you do not want to save in ViewState across page round-trips for efficiency purposes, you
should set these values in the OnInit method. Otherwise, all control property value modifica-
tions performed after this method executes will persist to ViewState.

Cameron_865-2C05.fm Page 245 Tuesday, January 22, 2008 11:49 AM

246 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

If desired, you can make modifications to state values in this method that won’t be marked
as dirty as long as you do so before executing the inherited base.TrackViewState method or
before calling the encapsulated StateBag.TrackViewState method.

Load Event

The Load event should be quite familiar to you, because we have leveraged this convenient
location for common page code in our web forms in previous examples. It is a handy place to
put page initialization logic, because you are guaranteed that all controls in the Page’s control
tree are created and all state-loading mechanisms have restored each control’s state back to
where it was at the end of the previous request/ response page round-trip. This event also
occurs before any controls in the Page’s control tree fire their specific events resulting from
value changes in postback data. To customize control behavior in this phase, override the
OnLoad method.

PreRender Event

The PreRender event is a phase in the control life cycle that represents the last-ditch chance for
a control to do something before it is rendered. This is the location to put code that must
execute before rendering but after the Load event, state management methods, and postback
events have occurred. Controls can override the OnPreRender method for this special situation.
Note that changes made to a control’s state at this point in the life cycle will persist to
ViewState.

SaveViewState Method

The SaveViewState method saves the ViewState dictionary by default without any additional
action by you. Overriding this method is only necessary when a control needs to customize
state persistence in ViewState. This method is called only when the EnableViewState property
inherited from Control is set to true. The object instance that is returned from this method is
serialized by ASP.NET into the final ViewState string that is emitted into the page’s __VIEWSTATE
hidden field. Be aware that SaveViewState is called twice in our sample code as a result of
enabling page tracing, which makes a call to SaveViewState to gather information for tracing
purposes. With tracing disabled during normal page execution, SaveViewState is called only
once.

SaveControlState Method

The SaveControlState method saves the control state changes to ViewState. Overriding this
method is only necessary when a control needs to customize state persistence in control state.
Control state may or may not be used by a server control. In contrast to ViewState, control state
cannot be disabled by the developer user. Control state is stored using the same mechanism of
ViewState, but it cannot be turned off like ViewState.

Render Method

You are, by now, very familiar with overriding the Render method in a custom control to generate a
control’s UI. The HtmlTextWriter class does the bulk of the work here, writing out the control
as HTML and script where applicable to the HTTP response stream. Note that any changes to

Cameron_865-2C05.fm Page 246 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 247

a control’s state made within this method will render into the UI but will not be saved as part
of ViewState.

Unload Event

The Page class implements this method to perform cleanup. Overriding the OnUnload method
from the base control class allows the control to hook into this event. Although the Unload
event is an opportunity for a control to release any resources that it has obtained in earlier
control events such as Init or Load, it is recommended that you release resources in its Dispose
method.

The trace output from the ASP.NET page does not display any information pertaining to
this event, because it fires after Render executes, but we can use the debug stream output from
the Output window when debugging the web form in Visual Studio to see the result:

Lifecycle: Init Event.
Lifecycle: Track ViewState.
Lifecycle: Load Event.
Lifecycle: PreRender Event.
Lifecycle: Save ViewState.
Lifecycle: Save ViewState.
Lifecycle: Render Event.
Lifecycle: Unload Event.
Lifecycle: Dispose Event.

Dispose Method

Dispose is the recommended location for cleaning up resources. Implementing a Dispose
method is recommended in .NET Framework programming when unmanaged resources (such
as a connection to SQL Server) are acquired by a control and need to be safely released within
the garbage collection architecture. The pattern is based on the IDispose interface that gives a
way for clients to tell an object to clean up its unmanaged resources:

Interface IDispose
{
 void Dispose();
}

Once a client is finished working with an object, the client notifies the object that it is
finished by calling the object’s Dispose method. This gives the object immediate confirmation
that it can clean up its resources instead of waiting for its Finalize method to be called during
garbage collection. Because Dispose is the design pattern common in .NET, it is recommended
that you implement cleanup in Dispose instead of Unload to release unmanaged resources.

HTTP POST Request via Postback
Additional events and methods of the control life cycle are exercised once we execute a post-
back of the Life Cycle web form by clicking the button. The output of the trace is much larger,
so the screen shot in Figure 5-23 is filled by that table.

Cameron_865-2C05.fm Page 247 Tuesday, January 22, 2008 11:49 AM

248 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

Figure 5-23. The Lifecycle.aspx Trace output from an HTTP POST postback

The output from the Visual Studio Debug window confirms the sequence of events as well:

Lifecycle: Init Event.
Lifecycle: Track ViewState.
Lifecycle: Load Event.
Lifecycle: PreRender Event.
Lifecycle: Save ViewState.
Lifecycle: Save ViewState.
Lifecycle: Render Event.
Lifecycle: Unload Event.

Cameron_865-2C05.fm Page 248 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 249

Lifecycle: Dispose Event.
Lifecycle: Init Event.
Lifecycle: Track ViewState.
Lifecycle: Load PostBack Data Event.
Lifecycle: Load Event.
Lifecycle: Post Data Changed Event.
Lifecycle: PostBack Event.
Lifecycle: PreRender Event.
Lifecycle: Save ViewState.
Lifecycle: Save ViewState.
Lifecycle: Render Event.
Lifecycle: Unload Event.
Lifecycle: Dispose Event.

LoadViewState Method

Overriding the LoadViewState method is necessary if a control has previously overridden
SaveViewState to customize ViewState serialization. Customization of the ViewState persistence
mechanism is commonly performed by developers in more complex controls that have complex
properties such as a reference type or a collection of objects. The decision to customize ViewState
really comes down to whether or not a control’s state can be easily or efficiently reduced to a
string representation.

LoadControlState Method

Overriding the LoadControlState method is necessary if a control has previously overridden
SaveControlState to customize ControlState serialization. Customization of the ControlState
persistence mechanism is commonly performed by developers in more complex controls that
have properties that must always be available even if ViewState is not available.

LoadPostBackData Method

In the previous chapter, we discussed how to retrieve client form post data via implementation
of the IPostBackDataHandler interface. The LoadPostData routine is given the opportunity to
process the postback data and to update the control’s state. It also allows the control to notify
ASP.NET that it wishes to raise an event at a later time in order to permit clients a chance to
process the state change. For our purposes, the Lifecycle control always returns true, so the
change event is always raised.

Keen observers will notice that we really should not be receiving the form post informa-
tion, because we did not emit an HTML tag such as <INPUT>. However, we greased the wheels
in the ASP.NET framework by calling Page.RegisterRequiresPostBack in OnPreRender:

override protected void OnPreRender(System.EventArgs e)
{
 base.OnPreRender(e);
 Trace("Lifecycle: PreRender Event.");
 Page.RegisterRequiresPostBack(this);
}

Cameron_865-2C05.fm Page 249 Tuesday, January 22, 2008 11:49 AM

250 CH AP T E R 5 ■ SE R V E R C ON TR O L E V E N T S

This makes it possible to receive a call to our LoadPostData method by ASP.NET. We
perform a similar task in LoadPostData to ensure we receive the PostBack event by calling
Page.RegisterRequiresRaiseEvent:

public bool LoadPostData(string postDataKey, NameValueCollection postCollection)
{
 Trace("Lifecycle: Load PostBack Data Event.");
 Page.RegisterRequiresRaiseEvent(this);
 return true;
}

RaisePostDataChangedEvent Method

For controls that have state changes reflected in postback data, these controls most likely need
to raise server-side events. These events are raised from within the RaisePostDataChangedEvent
method of each respective control. Following this design guideline ensures that control state is
restored from ViewState and updated from postback data before the various events begin to
fire. Raising server-side events from within any other control method can cause hard-to-debug
side effects for event consumers. This routine is called only if the LoadPostData returns true.

RaisePostBackEvent Method

Implementing RaisePostBackEvent ensures that the server control notifies ASP.NET that the
state of the control has changed. To participate in postback processing, a control must imple-
ment the IPostBackEventHandler interface. Controls implement this interface and emit some
sort of HTML to submit the web form back to the server, whether via a button or an HTML element
with JavaScript code to submit the form programmatically.

In our sample Lifecycle control, we rigged the system by calling Page.
RegisterRequiresRaiseEvent in the LoadPostData method. Our SuperButton control sample in
this chapter demonstrates how to execute this properly. We use this shortcut to hook into this
event for purposes discussing the control life cycle.

Summary
In this chapter, we discussed how to implement events in the ASP.NET framework. Event-based
programming is a critical aspect of ASP.NET development, making web development more like
developing with Visual Basic on the Windows desktop. We also discussed how to bubble events
up the control hierarchy and we explored the control life cycle.

System.EventHandler is the default delegate type for events in ASP.NET. Inherit from this
type when you create custom event handlers so that your controls behave in a similar manner
to the built-in controls.

Events are generally invoked in a control through a virtual protected method that prefixes
the word “On” to the event name to create a method name such as OnClick and OnTextChanged.
Custom events implement their own delegate type with the name suffixed by “EventHandler”.
Custom events can also implement a custom EventArgs-derived class to provide event data
tailored to the particular situation. The simplest way for a control to expose an event is to
declare one as a public field of a custom control class.

Cameron_865-2C05.fm Page 250 Tuesday, January 22, 2008 11:49 AM

C HA P TE R 5 ■ SE R V E R CO N T R O L E V E N TS 251

Controls can use the Events collection inherited from System.Web.UI.Control to efficiently
manage events in a sparse collection instead of the one-field-per-event model. Using the Events
collection along with custom event registration code can potentially save a large amount of
memory for a control with many events that are not all normally implemented.

Command events are a special event type used by list controls in ASP.NET to simplify handling
buttons as child controls. Command events expose CommandName and CommandArgument properties
to communicate their intentions to the parent control.

Event bubbling is a concept in ASP.NET whereby a control can raise an event through
its parent control hierarchy. RaiseBubbleEvent starts the event in motion. Parent controls
can catch the event by overriding OnBubbleEvent. RaisePostBackEvent is the method in
IPostBackEventHandler that allows a control to capture a postback generated by a change in data.

INamingContainer is used by a composite control to ensure that its child controls have a
unique name on the page even if the composite control is used several times on the page via
the UniqueID property.

Controls follow a well-defined life cycle execution process to help coordinate events and
activities. Understanding the control life cycle will ensure your custom controls behave as
expected. The complete control life cycle for an HTTP GET request includes these events in
order: Init, TrackViewState, Load, PreRender, SaveViewState, SaveControlState, Render,
Unload, and Dispose. The complete control life cycle for an HTTP POST request includes these
events in order: Init, TrackViewState, LoadViewState, LoadControlState, LoadPostData, Load,
RaisePostDataChangedEvent, PostBack, PreRender, SaveViewState, Render, Unload, and Dispose.

Cameron_865-2C05.fm Page 251 Tuesday, January 22, 2008 11:49 AM

Cameron_865-2C05.fm Page 252 Tuesday, January 22, 2008 11:49 AM

253

■ ■ ■

C H A P T E R 6

Server Control Templates

Starting in ASP.NET 2.0, adding templates and data binding to server controls requires much
less code than in previous versions of ASP.NET. The examples in this chapter take advantage of
these improvements.

Templates allow customization of how server controls or HTML elements display data.
Templates and data binding generally are brought together in more advanced controls, such as
the ASP.NET GridView or Repeater server controls, making database-driven web development
quick and easy. Pull a piece of data from the database via ADO.NET, bind it to a server control,
configure its style properties and templates, and web developers can build a very appealing
HTML display that appears to act like a Visual Basic form with data paging, alternate colors,
and so on. The server control handles all the heavy lifting that would normally require a large
amount of hand coding in plain old ASP. We cover combining data binding with templates in
the next chapter.

In this chapter, we focus on adding support for templates to server controls. We start the
examples with a template control named TemplateMenu; this example shows you how to build
a server control that lets you apply templates to hyperlinks. The next example control builds
demonstrates how to treat content tags as data to build out control content.

Customized Control Content
HTML is a combination of content and appearance. The previous chapter showed how server
controls customize the appearance of content through the use of style attributes that modify
features such as font, color, size, or even placement of the HTML. In this chapter, we discuss
how to modify the core content of the Web Form through two incredibly useful techniques:
templates and data binding.

Templates allow web developers to specify the HTML elements and server controls that
render as part of the main server control’s output. The server control provides templates that
are placeholders for content insertion, as illustrated in Figure 6-1. Templates allow customiza-
tion of how a control renders simply by editing the .aspx page. Server control developers should
look to add template functionality to custom controls to provide this level of flexibility when it
makes sense to allow the developer user to customize the UI of the server control.

Cameron_865-2C06.fm Page 253 Tuesday, January 22, 2008 6:33 AM

254 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

Figure 6-1. Templates with server controls

Using Control Templates
An ASP.NET template is a mix of HTML elements and ASP.NET controls that make up the layout for
a particular area of a control. Templates increase the level of flexibility in a control and allow
the developer/user to customize the graphical presentation of control content. The following
code snippet is a hypothetical MyTemplate template:

<MyTemplate>
 Raw HTML
 <asp:Label id="Label1" runat="server" Text="My Server Control Label" />
</MyTemplate>

The template has begin and end tags with some content consisting of raw HTML inter-
mixed with ASP.NET server controls. You normally specify the content declaratively, but you
can load it from a file or instantiate it from a prebuilt template class at runtime for dynamic
template use, as we show in Chapter 7 when we test our version of the Repeater control.

In some ways, ASP.NET’s support for templates partially removes the look-and-feel burden
from the control developer. The control developer can focus on plumbing while the control
user, or the graphic designer working in concert with the control user, can build pleasing templates
that lay inside the control. Of course, the control developer can provide custom designers that
can help with template creation, but this is not required (we cover design-time functionality in
Chapter 11.)

The ParseChildren Attribute
A control that provides support for templates must indicate to the ASP.NET page parser that it
wishes to manage its child content by adding the ParseChildren attribute to its class declaration.

Cameron_865-2C06.fm Page 254 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 255

This attribute instructs the page parser to handle child elements as control properties. For
controls that inherit from System.Web.UI.WebControls.WebControl or a descendent class, this
functionality comes for free via inheritance. You must add the attribute manually to controls
based on System.Web.UI.Control.

The ParseChildren attribute has a property named ChildrenAsProperties that configures
the parsing behavior. WebControl sets the ChildrenAsProperties property of the ParseChildren
attribute to true by default, as shown in the following line of code. If you need to use a different
value for a server control based on WebControl, remember to set the attribute explicitly to over-
ride the default behavior.

ParseChildrenAttribute(ChildrenAsProperties = true)

ParseChildrenAttribute also takes a shortened version to set the ChildrenAsProperties
property:

ParseChildren(true)

The presence of the ParseChildren attribute set to true for ChildrenAsProperties causes
the ASP.NET page parser to map top-level XML elements or tags under the server control directly
to its exposed properties. The server control is responsible for providing the appropriate mapping,
as illustrated in Figure 6-2.

Figure 6-2. The ParseChildren attribute with ChildrenAsProperties=true

If the ChildrenAsProperties property value is set to false instead of true, ASP.NET attempts to
process the child content of the outer control tags as embedded server controls, as shown in
Figure 6-3. The default implementation of a control’s IParserAccessor interface and its single
AddParsedSubObject method adds those child server controls to the parent control’s Controls
collection. Literal text in between the tags becomes a LiteralControl server control instance.

Cameron_865-2C06.fm Page 255 Tuesday, January 22, 2008 6:33 AM

256 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

Figure 6-3. The ParseChildren attribute with ChildrenAsProperties=false

A Menu Control with Templates
The menu control implemented back in Chapter 2 displayed a simple list of HTML hyperlinks.
We revisit its design to illustrate the use of UI templates. The hyperlinks will be retained while
we provide several custom templates to render the output.

We build the TemplateMenu control as a composite control with three templates:
HeaderTemplate, FooterTemplate, and SeparatorTemplate (see Figure 6-4). As you would guess,
HeaderTemplate and FooterTemplate allow developers to customize the top and bottom portions of
the menu control. SeparatorTemplate provides customization of the content between hyper-
links. To keep things simple, the control uses an internal data source to provide content for
rendering each hyperlink in the menu.

Figure 6-4. The TemplateMenu control templates

The first step in building our composite control is to inherit from CompositeControl. This
will use a <DIV> tag as the enclosing tag as well as implement INamingContainer, which is required
for template controls, because you will embed controls in templates that may conflict in their
ID values.

CompositeControl is one of the new base classes, listed in Chapter 2, that provide addi-
tional useful functionality for the control developer. The primary benefit of inheriting from
CompositeControl is the associated designer CompositeControlDesigner, which provides basic
design-time support for composite control developers.

The following code shows our server control declaration:

Cameron_865-2C06.fm Page 256 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 257

[ToolboxData("<{0}:templatemenu
runat=server></{0}:templatemenu>"),Designer(typeof(TemplateMenuDesigner))]
public class TemplateMenu : CompositeControl
 private ArrayList menuData;
 public TemplateMenu() : base(HtmlTextWriterTag.Div)
 {
 menuData = new ArrayList();
 menuData.Add(new MenuItemData("Authors Book Site","","",""));
 menuData.Add(new MenuItemData("Apress","http://www.apress.com","",""));
 menuData.Add(new MenuItemData("Microsoft","http://www.microsoft.com","",""));
 menuData.Add(new MenuItemData("GotDotNet","http://asp.net","",""));
 }
...
}

Notice the attributes applied to the TemplateMenu class. The ToolBoxData attribute provides
a means to customize the initial HTML, such as initial or default values, when the control is
dragged from the Visual Studio Toolbox and placed on the design surface.

Since we want to be able to edit the templates using the Visual Studio design-time envi-
ronment, we override the default CompositeControlDesigner and add our own custom designer
via the Designer attribute. We cover how to create custom designer classes in Chapter 11, but
we use it here to demonstrate its functionality.

The constructor for our control fills a private ArrayList collection that holds the title and
URL of each of the hyperlinks in the menu. Hard-coding the data in the control is replaced in
later examples where the link data is provided via nested child tags.

MenuItemData is the type held in the private ArrayList. It has properties for the title of the
hyperlink, the URL it directs the browser to, the URL to display it as an image instead of text,
and the Target property to direct a particular frame to load the address from the hyperlink. We
use it to store hyperlink data in all our menu examples.

The Template Properties
Because WebControl parses the child content into properties, we need to give the ASP.NET page
parser a target that matches up with properties on our control when it encounters the child
HeaderTemplate, FooterTemplate, and SeparatorTemplate tags in the .aspx page. The control
does this by exposing ITemplate type properties of those exact names:

private ITemplate headerTemplate;
[Browsable(false),Description("The header template"),
PersistenceMode(PersistenceMode.InnerProperty),
TemplateContainer(typeof(BasicTemplateContainer))]
public ITemplate HeaderTemplate
{
 get
 {
 return headerTemplate;
 }

Cameron_865-2C06.fm Page 257 Tuesday, January 22, 2008 6:33 AM

http://www.apress.com
http://www.microsoft.com
http://asp.net

258 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 set
 {
 headerTemplate = value;
 }
}

The preceding snippet is the portion of the control that implements the HeaderTemplate
property and its storage. The HeaderTemplate property does a set and get on the private ITemplate
type field named headerTemplate. ASP.NET is smart enough to query the type of the property
and realize that it is working with ITemplate. It then follows a set of steps to instantiate a Template
class and assign it to the property. The code for the FooterTemplate and SeparatorTemplate
properties is identical to that of the HeaderTemplate property.

The final item that a template property needs is a TemplateContainer attribute to tell ASP.NET
what type of control will contain the template. This step wires up the control content inside the
template to its outside container and allows value-added features such as data binding to occur.

The HeaderTemplate property uses the BasicTemplateContainer type to do this.
BasicTemplateContainer is a very simple WebControl shell that renders a tag. The full
class definition is as follows:

public class BasicTemplateContainer : WebControl, INamingContainer
{
 public BasicTemplateContainer() : base(HtmlTextWriterTag.Span)
 {
 this.BorderWidth = 2;
 this.BorderStyle = BorderStyle.Outset;
 }
}

The template container itself can be customized as shown previously by modifying the
BorderWidth and BorderStyle attributes. The separator template would not look good with the
modified border attributes, so it uses the SeperatorTemplateContainer, which renders as an
empty HTML Span tag:

public class SeperatorTemplateContainer : WebControl, INamingContainer
{
 public SeperatorTemplateContainer() : base(HtmlTextWriterTag.Span)
 {
 }
}

Creating the Header Section
The TemplateMenu control is a composite control, so it needs to override the
CreateChildControls method to add child controls to its Controls collection. The control abstracts
this process by using a CreateControlHierarchy helper method to do the child creation work.
CreateControlHierarchy contains code to add the templates and the hyperlinks as child controls:

Cameron_865-2C06.fm Page 258 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 259

override protected void CreateChildControls()
{
 Controls.Clear();
 CreateControlHierarchy();
}

CreateControlHierarchy starts out by working with the HeaderTemplate template. The first
item that must always be checked is whether the template property has a value. This is detected
by examining the template property for a null value:

if (HeaderTemplate != null)
{
 BasicTemplateContainer header = new BasicTemplateContainer();
 HeaderTemplate.InstantiateIn(header);
 Controls.Add(header);
 Controls.Add(new LiteralControl("
"));
}

If the template property is null, a common feature of server controls is to render a generic
default HTML template so the output is consistent. The ASP.NET DataGrid control does this by
rendering a simple, plain HTML table when it is bound to a data source without templates. For
the HeaderTemplate template, we ignore the template and display nothing if it is null.

After the code checks for a null value of the template property, it next instantiates the
container that will serve as the host for the template content. The TemplateMenu control wraps
all templates into a HTML element via the use of a custom BasicTemplateContainer
control based on System.Web.UI.WebControls.WebControl. To load the template content into
the BasicTemplateContainer control, the ITemplate interface provides an InstantiateIn method
that takes the container as a parameter, as shown in Figure 6-5.

Figure 6-5. ITemplate and InstantiateIn

The use of InstantiateIn completes the work required for the header control container.
The control code next adds the header to its child Controls collection. We also add a LiteralControl

Cameron_865-2C06.fm Page 259 Tuesday, January 22, 2008 6:33 AM

260 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

object that renders a
 tag to make the separation of the header from the hyperlinks a
mandatory feature of the UI rendering of the TemplateMenu control.

Creating the Footer Section
The code for the FooterTemplate at the end of CreateControlHierarchy is almost identical to
that of the HeaderTemplate. The only real difference besides a different template property is
that it adds the
 tag before it adds the template content:

if (FooterTemplate != null)
{
 Controls.Add(new LiteralControl("
"));
 BasicTemplateContainer footer = new BasicTemplateContainer();
 FooterTemplate.InstantiateIn(footer);
 Controls.Add(footer);
}

Creating the Hyperlink Section
The middle of the code for the CreateControlHierarchy method adds the items in the menu
using the ASP.NET HyperLink control. The data for the process is provided by the ArrayList
collection exposed by the private menuData field that we instantiated in the constructor for our
control.

The first task in building each hyperlink is iterating through the menuData ArrayList. We
use a loop and a counter to help us track when we need to apply the MenuSeparatorTemplate
template to separate the hyperlinks. The loop drives retrieval of the instances of the MenuItemData
class from the collection and the execution of the CreateMenuItem helper method:

int count = menuData.Count;
for (int index = 0; index < count; index++)
{
 MenuItemData itemdata = (MenuItemData) menuData[index];
 CreateMenuItem(itemdata.Title, itemdata.Url,itemdata.ImageUrl, itemdata.Target);

 if (index != count-1)
 {
 if (SeparatorTemplate != null)
 {
 SeperatorTemplateContainer separator = new SeperatorTemplateContainer ();
 SeparatorTemplate.InstantiateIn(separator);
 Controls.Add(separator);
 }
 else
 {
 Controls.Add(new LiteralControl(" | "));
 }
 }
}

Cameron_865-2C06.fm Page 260 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 261

CreateMenuItem creates an ASP.NET HyperLink control and adds it to the TemplateMenu
control child controls:

private void CreateMenuItem(string title, string url,
 string target, string imageurl)
{
 HyperLink link = new HyperLink();
 link.Text = title;
 link.NavigateUrl = url;
 link.ImageUrl = imageurl;
 link.Target = target;
 Controls.Add(link);
}

The SeparatorTemplate uses a different template container, the SeperatorTemplateContainer,
but otherwise, the code follows the lead of the FooterTemplate and HeaderTemplate templates.
What is unique in this piece of code is the addition of code to render a sensible separator via
LiteralControl should the user decide not to wire in a SeparatorTemplate value in the .aspx page.

When you build a server control that supports templates, it is recommended that you ensure
the control functions properly, or at least degrades gracefully, with a basic default template if
templates are not specified.

The full version of the TemplateMenu control is shown in Listing 6-1.

Listing 6-1. The TemplateMenu Control

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Collections;
using System.ComponentModel;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch06
{
 [ToolboxData("<{0}:templatemenu runat=server></{0}:templatemenu>"),
 Designer(typeof(TemplateMenuDesigner))]
 public class TemplateMenu : CompositeControl
 {
 private ArrayList menuData;
 public TemplateMenu()
 : base()
 {
 menuData = new ArrayList()
 //Uses new C# 3.0 Object and Collection Initializers
 {
 new MenuItemData{Title="Apress", Url="http://www.apress.com"},
 new MenuItemData{Title="Microsoft", Url="http://www.microsoft.com"},
 new MenuItemData{Title="ASP.Net", Url="http://asp.net"}

Cameron_865-2C06.fm Page 261 Tuesday, January 22, 2008 6:33 AM

http://www.apress.com
http://www.microsoft.com
http://asp.net

262 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 };
 }

 private ITemplate headerTemplate;
 [Browsable(false), Description("The header template"),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(BasicTemplateContainer))]
 public ITemplate HeaderTemplate
 {
 get
 {
 return headerTemplate;
 }
 set
 {
 headerTemplate = value;
 }
 }

 private ITemplate footerTemplate;
 [Browsable(false), Description("The footer template"),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(BasicTemplateContainer))]
 public ITemplate FooterTemplate
 {
 get
 {
 return footerTemplate;
 }
 set
 {
 footerTemplate = value;
 }
 }

 private ITemplate separatorTemplate;
 [Browsable(false), Description("The separator template"),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(SeperatorTemplateContainer))]
 public ITemplate SeparatorTemplate
 {
 get
 {
 return separatorTemplate;
 }

Cameron_865-2C06.fm Page 262 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 263

 set
 {
 separatorTemplate = value;
 }
 }

 private void CreateControlHierarchy()
 {
 if (HeaderTemplate != null)
 {
 BasicTemplateContainer header = new BasicTemplateContainer();
 HeaderTemplate.InstantiateIn(header);
 Controls.Add(header);
 }

 int count = menuData.Count;
 for (int index = 0; index < count; index++)
 {
 MenuItemData itemdata = (MenuItemData)menuData[index];

 HyperLink link = new HyperLink() { Text = itemdata.Title,
 NavigateUrl = itemdata.Url, ImageUrl = itemdata.ImageUrl,
 Target = itemdata.Target };
 Controls.Add(link);

 if (index != count - 1)
 {
 if (SeparatorTemplate != null)
 {
 SeperatorTemplateContainer separator = new SeperatorTemplateContainer();
 SeparatorTemplate.InstantiateIn(separator);
 Controls.Add(separator);
 }
 else
 {
 Controls.Add(new LiteralControl(" | "));
 }
 }
 }

 if (FooterTemplate != null)
 {
 BasicTemplateContainer footer = new BasicTemplateContainer();
 FooterTemplate.InstantiateIn(footer);
 Controls.Add(footer);
 }
 }

 override protected void CreateChildControls()

Cameron_865-2C06.fm Page 263 Tuesday, January 22, 2008 6:33 AM

264 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 {
 Controls.Clear();
 CreateControlHierarchy();
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 public override void DataBind()
 {
 CreateChildControls();
 ChildControlsCreated = true;

 base.DataBind();
 }
 }
}

The new C# 3.0 object initialization and collection initialization features are put to use when
menuArray is instantiated in Listing 6-1. The source file for the templates, TemplateContainers.cs,
is shown in Listing 6-2. Listing 6-3 contains the MenuItemData data class used to populate the
menu hyperlinks.

Listing 6-2. TheTemplateContainers Code File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch06
{
 public class BasicTemplateContainer : WebControl, INamingContainer
 {
 public BasicTemplateContainer() : base(HtmlTextWriterTag.Span)
 {
 this.BorderWidth = 2;
 this.BorderStyle = BorderStyle.Outset;
 }
 }

Cameron_865-2C06.fm Page 264 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 265

 public class SeperatorTemplateContainer : WebControl, INamingContainer
 {
 public SeperatorTemplateContainer() : base(HtmlTextWriterTag.Span)
 {
 }
 }
}

Listing 6-3. The MenuItemData Data Class

using System;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch06
{
 [TypeConverter(typeof(ExpandableObjectConverter))]
 public class MenuItemData
 {
 public MenuItemData()
 {

 }

 //Override this method to display just MenuItemData
 //instead of fully qualified type
 //in the custom collection editor
 public override string ToString()
 {
 return "MenuItemData";
 }

 [NotifyParentProperty(true)]
 public string Title {get; set; }

 [NotifyParentProperty(true)]
 public string Url { get; set; }

 [NotifyParentProperty(true)]
 public string ImageUrl {get; set; }

 [NotifyParentProperty(true)]
 public string Target { get; set; }
 }
}

Cameron_865-2C06.fm Page 265 Tuesday, January 22, 2008 6:33 AM

266 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

Viewing the TemplateMenu Control
The web form created for viewing the TemplateMenu control could not be simpler. It consists of
a single control on the form—that’s it. The following templates exercise the UI customization
features of the control:

<apress:TemplateMenu id="menu1" runat="server" height="43px" width="224px">
 <SeparatorTemplate> | </SeparatorTemplate>
 <HeaderTemplate>
 <span style="FONT-WEIGHT: bold; COLOR: white;
BACKGROUND-COLOR: blue">Please follow the link of interest
 </HeaderTemplate>
 <FooterTemplate>
 <span style="FONT-WEIGHT: bold; COLOR: white;
BACKGROUND-COLOR: red">Thanks for visiting this site
 </FooterTemplate>
</apress:TemplateMenu>

We can edit the templates for the web form by clicking the HTML tab in Visual Studio.
The .NET Framework also provides the ability to visually edit templates, and the
Designer(typeof(TemplateMenuDesigner))] attribute applied to the TemplateMenu class provides
this support for the TemplateMenu server control.

This custom designer, which we cover in detail in Chapter 11, adds an Edit Templates
menu item to the task list for the control. Click the task arrow when the control is selected in
the designer; click Edit Template; and then choose the template you want to edit. This brings
up a visual UI for the template, where you can drag and drop other ASP.NET controls, such as
an image control for the separator template, and edit the style for the template in the Properties
tool window. Figure 6-6 shows the results of our control after customizing its templates.
Listings 6-4 and 6-5 contain the .aspx file and code-behind class for the TemplateMenu web
form, respectively.

Figure 6-6. The TemplateMenu web form displayed in a browser

Cameron_865-2C06.fm Page 266 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 267

Listing 6-4. The TemplateMenu Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TemplateMenu.aspx.cs"
Inherits="ControlsBook2Web.Ch06.TemplateMenu"
 Title="Template Menu Control Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch06"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle"
 runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">6</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Templates</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent"
 runat="server">
 <h3>
 TemplateMenu Control</h3>
 <apress:TemplateMenu ID="menu1" runat="server" Height="43px" Width="224px">
 <SeparatorTemplate>
 <>
 </SeparatorTemplate>
 <HeaderTemplate>
 <div style="font-weight: bold; color: white; background-color: blue">
 Please follow the link of interest</div>
 </HeaderTemplate>
 <FooterTemplate>
 <div style="font-weight: bold; color: white; background-color: red">
 Thanks for visiting this site</div>
 </FooterTemplate>
 </apress:TemplateMenu>

</asp:Content>

Listing 6-5. The TemplateMenu Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch06
{
 public partial class TemplateMenu : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

Cameron_865-2C06.fm Page 267 Tuesday, January 22, 2008 6:33 AM

268 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 }
 }
}

Checking the Rendered HTML
The HTML rendered by the TemplateMenu control verifies that the control has successfully
included the templates in its output:

<div id="ctl00_ControlsBookContent_menu1" style="height:43px;width:224px;">

 Please follow the link of interest

 Apress <>
 Microsoft <>
 ASP.Net

' Thanks for visiting this site

</div>

The HeaderTemplate and FooterTemplate templates go into the final HTML verbatim. The
code that builds the hyperlinks correctly inserts the SeparatorTemplate template with the <>
characters as well. The next section discusses how to store data as child tags that are part of a
server control.

Parsing Data from the Control Tags
The TemplateMenu control has one major limitation. The data it uses to display the hyperlinks is
hard-coded in its constructor. A user of this control must have the source code to modify what
is displayed. This is not the best way to go about building controls that are flexible and adapt-
able. Giving web developers a way to pass in the necessary data is a much better approach and
is what we cover in the sections that follow.

The approach that we take to add customizable data to the control is to use child tags that
pass in the data to the control. This is similar to the method used by the ASP.NET list controls,
such as DropDownList and CheckBoxList, which support the use of the asp:listitem tag to pass
in data declaratively. The server control we build in the next section uses the ParseChildren
attribute. In the following section, we build a server control that shows how to customize this
process further using a ControlBuilder class.

The TagDataMenu Control
The TagDataMenu control is an example control we create in this section that reads its child tag
values to build its collection of data for hyperlinks. It does this by taking advantage of a feature

Cameron_865-2C06.fm Page 268 Tuesday, January 22, 2008 6:33 AM

http://www.apress.com
http://www.microsoft.com
http://asp.net

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 269

of the ParseChildren attribute that tells the ASP.NET page parser to treat child content as items
to be added to a collection.

The following attribute shows the ChildrenAsProperties property being set on the
ParseChildren attribute, along with a DefaultProperty property:

[ParseChildren(ChildrenAsProperties=true, DefaultProperty="MenuItems")]

The following shorthand code does the same thing:

[ParseChildren(true, "MenuItems")]

Setting the DefaultProperty property in the ParseChildren attribute causes the ASP.NET
page parser to look at all the child XML content of the server control as items in a collection.
The items are created by the page parser and added to the collection specified by the MenuItems
property. The type of the item in the collection is determined by the name of the child tag.
ASP.NET looks for that type name in the project and creates an object for it, filling in its prop-
erties according to the tag attributes.

TagDataMenu configures itself for using the MenuItems collection by setting up its
ParseChildren attribute accordingly:

[ParseChildren(true, "MenuItems")]
[ToolboxData("<{0}:TagDataMenu runat=server></{0}:TagDataMenu>")]
public class TagDataMenu : CompositeControl
{
 public TagDataMenu() : base(HtmlTextWriterTag.Div)
 {
 }
...
}

Figure 6-7 illustrates the relationship between the TagDataMenu control and its MenuItems
collection.

Figure 6-7. The ParseChildren attribute with the Default property

The read-only MenuItems property exposed by the control takes advantage of generics by
implementing a List like this: List<MenuItemData>. This collection is populated by ASP.NET
based on the control’s child tag data:

Cameron_865-2C06.fm Page 269 Tuesday, January 22, 2008 6:33 AM

270 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

private MenuItemDataCollection menuData;
[DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
Description("Collection of MenuItemData objects for display"),
PersistenceMode(PersistenceMode.InnerDefaultProperty),NotifyParentProperty(true)]
public MenuItemDataCollection MenuItems
 {
 get
 {
 if (menuData == null)
 {
 menuData = new MenuItemDataCollection();
 }
 return menuData;
 }
}

Permitting data entry in child tags has one trade-off: a lack of template support. ASP.NET
assumes that all the child tags go into the DefaultProperty collection, and it will not parse if it
sees templates. For controls as simple as TagDataMenu, this is a reasonable trade-off. More advanced
controls, such as the Repeater control we build in Chapter 7, will expose a property that allows
web developers to set the data source programmatically.

The slimmed-down CreateControlHierarchy method doesn’t have to worry about template
building. We’re able to reuse CreateMenuItem from the TemplateMenu control. For menu link
separation, we use the pipe character (|) as the separator this time around:

override protected void CreateChildControls()
{
 Controls.Clear();
 CreateControlHierarchy();
}

private void CreateControlHierarchy()
{
 int count = menuData.Count;
 for (int index = 0; index < count; index++)
 {
 MenuItemData itemdata = (MenuItemData) menuData[index];
 CreateMenuItem(itemdata.Title, itemdata.Url,
 itemdata.ImageUrl, itemdata.Target);

 if ((count > 1) && (index < count -1))
 {
 Controls.Add(new LiteralControl(" | "));
 }
 }
}

Cameron_865-2C06.fm Page 270 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 271

Listing 6-6 presents the full code for the TagDataMenu control.

Listing 6-6. The TagDataMenu Control Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Collections.Generic;
using System.ComponentModel;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch06
{
 // PaseChildren attribute tells the ASP.NET page parser to treat
 // child content as items to be added to a collection.
 [ParseChildren(true, "MenuItems")]
 [ToolboxData("<{0}:tagdatamenu runat=server></{0}:tagdatamenu>")]
 public class TagDataMenu : CompositeControl
 {
 public TagDataMenu()
 : base()
 {
 }

 private List<MenuItemData> menuData = new List<MenuItemData>();

 // This collection is automatically populated by ASP.NET because of the
 // ParseChildren attribute on the class
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 Description("Collection of MenuItemData objects for display"),
 PersistenceMode(PersistenceMode.InnerDefaultProperty),
 NotifyParentProperty(true)]
 public List<MenuItemData> MenuItems
 {
 get
 {
 if (menuData == null)
 {
 menuData = new List<MenuItemData>();
 }
 return menuData;
 }
 }

Cameron_865-2C06.fm Page 271 Tuesday, January 22, 2008 6:33 AM

272 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 private void CreateMenuItem(string title, string url, string
 target, string imageUrl)
 {
 HyperLink link = new HyperLink();
 link.Text = title;
 link.NavigateUrl = url;
 link.ImageUrl = imageUrl;
 link.Target = target;
 Controls.Add(link);
 }

 override protected void CreateChildControls()
 {
 Controls.Clear();
 CreateControlHierarchy();
 }

 private void CreateControlHierarchy()
 {
 int count = MenuItems.Count;
 for (int index = 0; index < count; index++)
 {
 MenuItemData itemdata = (MenuItemData)MenuItems[index];
 CreateMenuItem(itemdata.Title, itemdata.Url,
 itemdata.ImageUrl, itemdata.Target);

 if ((count > 1) && (index < count - 1))
 {
 Controls.Add(new LiteralControl(" | "));
 }
 }
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }
 }
}

We mentioned previously that the MenuItems property uses generics and is declared as a
List. This removes the need to create a custom collection. This type provides us with the ability
to add a collection editor at design time to permit editing of menu item data via a dialog box in

Cameron_865-2C06.fm Page 272 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 273

much the same way as the built-in ASP.NET server controls that have InnerDefaultProperty
persistence.

By default, ASP.NET provides a UI type editor for design-time editing of the MenuItems. As
background, for properties that we do not want to be visible in the Visual Studio Properties tool
window, we add this attribute:

[Browsable(false)]

For collection properties that we do not want to be serialized as data, we add this attribute:

[DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]

The DesignerSerializationVisibility attribute indicates whether the value for a property
is Visible and should be persisted in initialization code; or whether it is Hidden and should not
be persisted in initialization code; or whether it consists of Content, which should have initial-
ization code generated for each public, not hidden property of the object assigned to the property.
The default value if the attribute is not present is Visible, and the Visual Studio Designer, at
design time, will attempt to serialize the property based on the property’s type. The MenuItems
property on the TagDataMenu class is an example of a property with visibility set to Content:

[DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
PersistenceMode(PersistenceMode.InnerDefaultProperty),NotifyParentProperty(true)]
public MenuItemDataCollection MenuItems
 {

 }
...
}

We now move on to discuss how to customize the parsing process using a ControlBuilder
class. This option provides for complete customization of the parsing process, as you will see
in the next section.

The BuilderMenuControl
The BuilderMenu control demonstrates a second technique for reading the child tags and creating
the menu data. It uses a feature of ASP.NET that allows for complete customization of the control
parsing process by implementing a custom ControlBuilder class. The implementation of the
BuilderMenu control will be identical to that of the TagDataMenu control, except for the ability to
manage the tag parsing process.

The normal default ControlBuilder that is linked to classes that derive from the base
System.Web.UI.Control class performs the following tasks:

• Parses the child XML content into control types

• Creates the child control

• Calls on the IParserAccessor interface method AddParsedSubObject to add the child
control to the server control’s Controls collection, as shown in Figure 6-8

Cameron_865-2C06.fm Page 273 Tuesday, January 22, 2008 6:33 AM

274 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

Figure 6-8. ControlBuilder and the IParserAccessor.AddParsedSubObject default

A custom ControlBuilder gets the opportunity to completely customize the way the
ASP.NET page parser parses the child content. This is configured by adding the ControlBuilder
attribute. The class declaration portion of the BuilderMenu control looks like this:

[ParseChildren(false)]
[ControlBuilder(typeof(MenuControlBuilder))]
[ToolboxData("<{0}:BuilderMenu runat=server></{0}:BuilderMenu>")]
public class BuilderMenu : CompositeControl
{
 public BuilderMenu() : base()
 {

 }
...
}

The first thing to note is that the ParseChildren attribute is set to false. This means that we
want the ControlBuilder to make the decisions on how the child XML tags are handled. The
attribute of interest is the ControlBuilder attribute, which is passed the System.Type reference
of the MenuControlBuilder class.

MenuControlBuilder derives from the System.Web.UI.ControlBuilder class and overrides
two methods to customize the parsing process. The most common reason to create your own
ControlBuilder is to override the GetChildControlType method so that the control to which the

Cameron_865-2C06.fm Page 274 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 275

builder is applied can determine how to map between a child tag and the class that needs to be
created to represent the child tag during server-side processing:

public class MenuControlBuilder : ControlBuilder
{
public override Type GetChildControlType(String tagName, Dictionary attributes)
{
 if (String.Compare(tagName, "data", true) == 0)
 {
 return typeof(MenuItemData);
 }

 return null;
}

MenuControlBuilder looks for child tags with a name of “data”. If it finds a match, it returns
the MenuItemData type back to the BuilderMenu control to which it is linked. This assumes that
the data tag has the appropriate attributes that map to the MenuItemData type’s properties.

The other method that the MenuControlBuilder class overrides is AppendLiteralString. We
give this method an empty implementation to ignore the literal content that is between the
tags that hold the data.

public override void AppendLiteralString(string s)
{
 // Ignores literals between tags
}

There are other features of ControlBuilder parsing that we left out in this demonstration.
For example, ControlBuilders can parse the raw string content between the server control’s
parent tags and provide support for nested ControlBuilders to process child control content.
Please refer to the .NET Framework documentation for more information.

Going back to the BuilderMenu control, let’s look at the implementation of IParserAccessor
and the AddParsedSubObject method. The following code simply adds the data object passed
into its internal ArrayList collection exposed by the menuData field. The only check it performs
is a type check to ensure the right type instance is being passed from the ControlBuilder asso-
ciated with the control.

protected override void AddParsedSubObject(Object obj)
{
 if (obj is MenuItemData)
 {
 menuData.Add(obj);
 }
}

Listings 6-7 and 6-8 show the final listing of BuilderMenu and its helper
MenuControlBuilder.

Cameron_865-2C06.fm Page 275 Tuesday, January 22, 2008 6:33 AM

276 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

Listing 6-7. The BuilderMenu Control Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Collections;
using System.ComponentModel;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch06
{
 [ParseChildren(false)]
 [ControlBuilder(typeof(MenuControlBuilder))]
 [ToolboxData("<{0}:buildermenu runat=server></{0}:buildermenu>")]
 public class BuilderMenu : CompositeControl
 {
 public BuilderMenu()
 : base()
 {
 }

 private ArrayList menuData = new ArrayList();
 public ArrayList MenuItems
 {
 get
 {
 return menuData;
 }
 }

 protected override void AddParsedSubObject(Object obj)
 {
 if (obj is MenuItemData)
 {
 menuData.Add(obj);
 }
 }

 private void CreateMenuItem(string title, string url, string
 target, string imageUrl)
 {
 HyperLink link = new HyperLink();
 link.Text = title;
 link.NavigateUrl = url;
 link.ImageUrl = imageUrl;
 link.Target = target;
 Controls.Add(link);
 }

Cameron_865-2C06.fm Page 276 Tuesday, January 22, 2008 6:33 AM

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 277

 private void CreateControlHierarchy()
 {
 int count = menuData.Count;
 for (int index = 0; index < count; index++)
 {
 MenuItemData itemdata = (MenuItemData)menuData[index];
 CreateMenuItem(itemdata.Title, itemdata.Url,
 itemdata.ImageUrl, itemdata.Target);

 if ((count > 1) && (index < count - 1))
 {
 Controls.Add(new LiteralControl(" | "));
 }
 }
 }

 override protected void CreateChildControls()
 {
 CreateControlHierarchy();
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }
 }
}

Listing 6-8. The MenuControlBuilder Control Builder Class File

using System;
using System.Web;
using System.Web.UI;
using System.Collections;

namespace ControlsBook2Lib.Ch06
{
 public class MenuControlBuilder : ControlBuilder
 {
 public override Type GetChildControlType(String tagName,
 IDictionary attributes)
 {

Cameron_865-2C06.fm Page 277 Tuesday, January 22, 2008 6:33 AM

278 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 if (String.Compare(tagName, "data", true) == 0)
 {
 return typeof(MenuItemData);
 }

 return null;
 }

 public override void AppendLiteralString(string s)
 {
 s.Trim();
 // Ignores literals between tags.
 }
 }
}

Viewing the Tag Parsing Menu Controls
The Tag Parsing Menu web form demonstrates both of our declaratively loaded menu controls
in action. In Visual Studio, if you click the TagDataMenu control and select the MenuItems property,
you will see a button that, if clicked, will bring up a UI collection editor for the MenuItemData
collection. For the TagDataMenu control, the child tags take the name of the MenuItemData hyper-
link data class:

<apress:tagdatamenu id="menu1" runat="server">
 <apress:MenuItemData title="Apress" url="http://www.apress.com" imageurl=""
 target="" />
 <apress:MenuItemData title="Microsoft" url="http://www.microsoft.com"
 imageurl="" target="" />
 <apress:MenuItemData title="GotDotNet" url="http://www.gotdotnet.com"
 imageurl="" target="" />
</apress:tagdatamenu>

The BuilderMenu control needs tags with the “data” name so that the MenuControlBuilder
grabs each item and passes it into the control:

<apress:buildermenu id="menu2" runat="server">
 <data title="Apress" url="http://www.apress.com" imageurl="" target="" />
 <data title="Microsoft" url="http://www.microsoft.com" imageurl="" target="" />
 <data title="GotDotNet" url="http://www.gotdotnet.com" imageurl="" target="" />
</apress:buildermenu>

Figure 6-9 shows that the final result for the two controls in the browser after they are
rendered is identical.

Cameron_865-2C06.fm Page 278 Tuesday, January 22, 2008 6:33 AM

http://www.apress.com
http://www.microsoft.com
http://www.gotdotnet.com
http://www.apress.com
http://www.microsoft.com
http://www.gotdotnet.com

CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S 279

Figure 6-9. The Tag Parsing Menu web form displayed in a browser

Listings 6-9 and 6-10 contain the full code for the web form.

Listing 6-9. The TagParsingMenus Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TagParsingMenu.aspx.cs"
Inherits="ControlsBook2Web.Ch06.TagParsingMenu"
 Title="Tag-Parsing Menu Controls Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch06"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID=
 "ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">6</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Templates</asp:Label></asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID=
 "PrimaryContent" runat="server">
 <h3>
 Tag-Parsing Menu Controls</h3>
 <div id="TagDataMenu">
 Tag Data Menu

 <apress:TagDataMenu ID="TagDataMenu1" runat="server">
 <apress:MenuItemData Title="Apress" ImageUrl=""
 Url="http://www.apress.com" Target="">
 </apress:MenuItemData>

Cameron_865-2C06.fm Page 279 Tuesday, January 22, 2008 6:33 AM

http://www.apress.com

280 CH AP T E R 6 ■ SE R V E R C ON TR O L T E M P L AT E S

 <apress:MenuItemData Title="Microsoft" ImageUrl=""
 Url="http://www.microsoft.com"
 Target=""></apress:MenuItemData>
 <apress:MenuItemData Title="MSDN" ImageUrl=""
 Url="http://msdn.microsoft.com" Target="">
 </apress:MenuItemData>
 </apress:TagDataMenu>
 </div>

 <div id="Builder Menu">
 Builder Menu

 <apress:BuilderMenu ID="BuilderMenu1" runat="server">
 <data title="Apress" url="http://www.apress.com" imageurl="" target="" />
 <data title="Microsoft" url=http://www.microsoft.com
 imageurl="" target="" />
 <data title="MSDN" url="http://msdn.microsoft.com" imageurl="" target="" />
 </apress:BuilderMenu>
 </div>

</asp:Content>

Listing 6-10. The Tag Parsing Menus Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch06
{
 public partial class TagParsingMenu : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

Summary
Templates are one of the two primary ways to modify the graphical content of an ASP.NET web
form. Templates provide a way for developers to declaratively insert raw HTML through server
controls into the output of a prebuilt control. Templates can be loaded dynamically through
Page.LoadTemplate or instantiated by classes that implement the ITemplate interface.

The ParseChildren attribute determines if ASP.NET parses a server control’s inner tag
content in an .aspx page as child controls or child properties. The ControlBuilder attribute
allows a control to redirect the tag parsing process to a custom ControlBuilder class.

In the next chapter, we continue our discussion of template-based control by adding
databinding to the mix.

Cameron_865-2C06.fm Page 280 Tuesday, January 22, 2008 6:33 AM

http://www.microsoft.com
http://msdn.microsoft.com
http://www.apress.com
http://www.microsoft.com
http://msdn.microsoft.com

281

■ ■ ■

C H A P T E R 7

Server Control Data Binding

The vast majority of web sites that provide dynamic content do so by rendering HTML that
represents a data source to a database back-end system. A common task for web developers
is to retrieve data and format it for output manually or through technology like ASP.NET data
binding. Starting in ASP.NET 2.0, adding templates and data binding to server controls requires
much less code than in previous versions of ASP.NET. We take advantage of these improve-
ments in the examples in this chapter.

Data binding dynamically merges a collection of data with a server control at runtime to
produce HTML content representing the data source, as shown in Figure 7-1.

Figure 7-1. Data binding with server controls

Templates and data binding are naturally complementary. Data binding efficiently brings
data into the control, and templates allow customization of how server controls or HTML elements
display the data. Templates and data binding generally are brought together in more advanced
controls, such as the ASP.NET GridView or Repeater server controls, making database-driven
web development quick and easy. Pull a piece of data from the database via ADO.NET or an
IDataSource-based control, bind it to a server control, configure its style properties and templates
resulting in a very appealing HTML display that appears to act like a Visual Basic form with

Cameron_865-2C07.fm Page 281 Monday, February 18, 2008 4:07 PM

282 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

data paging, alternate colors, and so on. The server control handles all the heavy lifting that
would normally require a large amount of hand coding in plain old ASP.

In this chapter, we start off the examples with a clone of the ASP.NET Repeater control
that puts templates and data binding in action together. We next examine how to interact with
the rich features of our Repeater control and demonstrate how to load templates dynamically
from disk and create them programmatically. We close the chapter with a sample that inherits
from one of the new base server control classes introduced in .NET Framework 2.0 called
DataBoundCompositeControl. The EnhancedSpreadSheetControl sample takes the
SimpleSpreadSheetControl sample from the documentation and adds IDataSource binding
support, header row functionality, and other UI enhancements, as well as additional design-
time features to make it a more useful control.

Customized Control Content
HTML is a combination of content and appearance. Chapter 5 showed how server controls
customize the appearance of content through the use of style attributes that modify features
such as font, color, size, or even placement of the HTML. In Chapter 6, we discussed how to
modify the core content of the web form through two incredibly useful techniques: templates
and tag parsing. In this chapter, we cover how to add data binding support.

Control Data Binding
Using server control tags is a convenient way to declaratively configure simple server controls
such as the menu controls we developed. For complex, dynamically loaded data, we need to
take a more sophisticated path. The tried-and-true approach to passing data into a server control
is through data binding, which we cover in this section. This is a complex topic, but we present
plenty of code in the following subsections to help you get started with adding data binding
capabilities to your own controls.

Data binding comes in several different forms. Simple data binding occurs when a data-
binding expression is evaluated to a single value and that value is used to set the property
of a server control. The following code snippet binds the result of a method named
MyDataBoundMethod on a web form to the Text property of an ASP.NET server control:

<asp:Label id="MyLabel" runat="server" Text="<%= MyDataBoundMethod() %> />

Repeated or complex data binding occurs when a collection of multirow data is bound to
a list control that iterates through its contents to generate HTML output. The classic example
of this is binding a DataSet to an ASP.NET DataGrid control to generate an HTML table repre-
senting the data. This is also the case when we take a simple collection such as an ArrayList full
of strings and bind it to a DropDownList control. The next subsection covers the data binding
base class options available in the .NET Framework.

DataBinding Base Class Options
There are several useful base classes that can simplify writing data bound controls. The .NET
Framework documentation is helpful in suggesting where to start with the base classes and
provides sample implementations. Here is a list of these specialized base classes:

Cameron_865-2C07.fm Page 282 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 283

• System.Web.UI.WebControls.DataBoundControl: This can serve as a base class when
displaying data in list or tabular form. The designer DataBoundControlDesigner class is
configured on this base class via the Designer attribute.

• System.Web.UI.WebControls.CompositeDataBoundControl: This class inherits from
DataBoundControl and can serve as the base class for tabular data bound controls that
are composed of other server controls.

• System.Web.UI.WebControls.HierarchicalDataBoundControl: This one can serve
as a base class to create data bound controls that work with classes that implement
the IHierarchicalDataSource interface and classes that derive from the
HierarchicalDataSourceControl and HierarchicalDataSourceView classes.

There certainly may be scenarios where complete control is required and the preceding
base classes are limiting in some way, in which case a control developer can always simply
inherit from Control or WebControl. Otherwise, we recommend that developers consider these
base classes as a first option, since inheriting from them can save time. In the next section, we
take a look at a sample control that inherits from the DataBoundControl base class.

The Repeater Control
The case study we present to help explain data binding creates a replica of the Repeater control
built into ASP.NET. The Repeater control is a data-bound server control that takes advantage of
templates to generate the display for the data source. It is a complex control that requires a fair
amount of source code, but this effort is worth the ease of use data binding provides to the user
of a data bindable server control.

The Repeater control includes five templates: HeaderTemplate, FooterTemplate,
SeparatorTemplate, ItemTemplate, and AlternatingItemTemplate. We provided the first three
templates types in our TemplateMenu control. For clarity, those three templates do not take
advantage of data binding. We are adding data binding capabilities to the ItemTemplate and
AlternatingItemTemplate templates.

The ItemTemplate and AlternatingItemTemplate templates are applied to each row of data
retrieved from the data source based on an alternating pattern. The SeparatorTemplate template is
placed between the item templates to keep things looking nice. The diagram in Figure 7-2 shows
how the templates determine the output of the control rendering process.

Our Repeater control implements a fairly sophisticated system of events that provide rich
functionality: ItemCommand, ItemCreated, and ItemDataBound. ItemCommand is an event raised by
our Repeater control that aggregates bubbled command events raised by subordinate command
controls such as an ASP.NET Button control. We discuss these events in detail in the section
titled “Repeater Control Event Management” later in this chapter.

The ItemCreated event is raised each time a RepeaterItem control is created. This gives the
client of the event an opportunity to modify or change the final control output in the template
dynamically. ItemDataBound gives the same opportunity, except it is raised after any data binding
has been performed on a template. This event is limited to the ItemTemplate and
AlternatingItemTemplate templates, because the header and footer templates do not support
data binding.

Cameron_865-2C07.fm Page 283 Monday, February 18, 2008 4:07 PM

284 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

Figure 7-2. The Repeater control and its templates

The RepeaterItem Container Control

RepeaterItem is a building block used by the Repeater control to create its content. It is based
on the System.Web.UI.Control base class and serves as the primary container for instantiating
templates and working with events.

The following code snippet shows how the RepeaterItem control is declared, inheriting
from Control and implementing the INamingContainer interface to prevent name collisions on
child controls:

public class RepeaterItem : Control, INamingContainer
{
...
 public RepeaterItem(int itemIndex, ListItemType itemType, object dataItem)
 {
 this.itemIndex = itemIndex;
 this.itemType = itemType;
 this.dataItem = dataItem;
 }
...
...
}

The private data members are instantiated by the constructor. These fields are exposed as
public properties as well:

private object dataItem;
public object DataItem
{

Cameron_865-2C07.fm Page 284 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 285

 get
 {
 return dataItem;
 }
 set
 {
 dataItem = value;
 }
}

private int itemIndex;
public int ItemIndex
{
 get
 {
 return itemIndex;
 }
}

private ListItemType itemType;
public ListItemType ItemType
{
 get
 {
 return itemType;
 }
}

ItemIndex exposes the relative position of the RepeaterItem control with respect to its siblings
underneath the parent Repeater control. ItemType borrows the ListItemType enumeration
from the System.Web.UI.WebControl namespace to identify the purpose of the RepeaterItem
control. The following code shows a reproduction of the enumeration definition in the System.
Web.UI.WebControls namespace:

enum ListItemType
{
 Header,
 Footer,
 Item,
 AlternatingItem,
 SelectedItem,
 EditItem,
 Separator,
 Pager
}

The last property exposed by the RepeaterItem class is DataItem. For RepeaterItem child
controls that are bound to a data source (i.e., ItemTemplate or AlternatingItemTemplate

Cameron_865-2C07.fm Page 285 Monday, February 18, 2008 4:07 PM

286 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

RepeaterItems), DataItem will reference a particular row in the collection that makes up the
data source. This permits us to use the Container.DataItem syntax in a data-binding expression:

<ItemTemplate>
 <% Container.DataItem[Name] %>
</ItemTemplate>

Command Events and the RepeaterItem Control

The RepeaterItem control plays a key role in ensuring that Command events are bubbled up to
the parent Repeater control so that it can raise an ItemCommand event to the outside world.
The following code takes Command events that are bubbled and wraps the events in a custom
RepeaterCommandEventArgs object to provide additional information on the event’s source:

protected override bool OnBubbleEvent(object source, EventArgs e)
{
 CommandEventArgs ce = e as CommandEventArgs;

 if (ce != null)
 {
 RepeaterCommandEventArgs rce = new
 RepeaterCommandEventArgs(this, source, ce);
 RaiseBubbleEvent(this, rce);

 return true;
 }
 else
 return false;
}

The OnBubbleEvent member function performs a typecast to validate that it is indeed a
Command event, instantiates a RepeaterCommandEventArgs class, and then sends it on up to the
Repeater control through the RaiseBubbleEvent method. The return value of true indicates to
ASP.NET that the event was handled. Later on, we show the code in Repeater that handles the
bubbled event and raises its own Command event.

We create a custom EventArgs class to make working with the Repeater control easier, as
shown in Listing 7-1. Instead of having to search through all the controls that are in the Repeater’s
Control collection, we can narrow it down to just the RepeaterItem control of interest.

Listing 7-1. The RepeaterCommand Event Class File

using System;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch07
{
 public delegate void RepeaterCommandEventHandler(object o,
 RepeaterCommandEventArgs rce);

Cameron_865-2C07.fm Page 286 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 287

 public class RepeaterCommandEventArgs : CommandEventArgs
 {
 public RepeaterCommandEventArgs(RepeaterItem item, object commandSource,
 CommandEventArgs originalArgs) : base(originalArgs)
 {
 this.item = item;
 this.commandSource = commandSource;
 }

 private RepeaterItem item;
 public RepeaterItem Item
 {
 get
 {
 return item;
 }
 }

 private object commandSource;
 public object CommandSource
 {
 get
 {
 return commandSource;
 }
 }
 }
}

The source of the event is available in the RepeaterCommandEventArgs class via the
CommandSource property. The RepeaterItem container control that houses the CommandSource
property is reachable through the Item property. It allows us to identify and programmatically
manipulate the exact block of content that was the source of the event. Our code for this control
also defines a delegate named RepeaterCommandEventHandler to work with the custom EventArgs
class. Listing 7-2 shows the full listing for the RepeaterItem control.

Listing 7-2. The RepeaterItem Control Class File

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch07
{

Cameron_865-2C07.fm Page 287 Monday, February 18, 2008 4:07 PM

288 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 public class RepeaterItem : Control, INamingContainer
 {
 [ToolboxItem(false)]
 public RepeaterItem(int itemIndex, ListItemType itemType, object dataItem)
 {
 this.itemIndex = itemIndex;
 this.itemType = itemType;
 this.DataItem = dataItem;
 }

 public object DataItem { get; set; }

 private int itemIndex;
 public int ItemIndex
 {
 get
 {
 return itemIndex;
 }
 }

 private ListItemType itemType;
 public ListItemType ItemType
 {
 get
 {
 return itemType;
 }
 }

 protected override bool OnBubbleEvent(object source, EventArgs e)
 {
 CommandEventArgs ce = e as CommandEventArgs;

 if (ce != null)
 {
 RepeaterCommandEventArgs rce = new
 RepeaterCommandEventArgs(this, source, ce);
 RaiseBubbleEvent(this, rce);

 return true;
 }
 else
 return false;
 }
 }

Cameron_865-2C07.fm Page 288 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 289

 public delegate void RepeaterItemEventHandler(object o,
 RepeaterItemEventArgs rie);

 public class RepeaterItemEventArgs : EventArgs
 {
 public RepeaterItemEventArgs(RepeaterItem item)
 {
 this.item = item;
 }

 private RepeaterItem item;
 public RepeaterItem Item
 {
 get
 {
 return item;
 }
 }
 }
}

In the next section, we discuss the implementation details of our version of the Repeater
server control.

The Repeater Control Architecture

Now that we have the main building block of our Repeater control ready for action, we can
move on to the core logic of our control. As shown in the following code, Repeater inherits from
System.Web.UI.WebControls.DataBoundControl and implements INamingContainer to prevent
control ID conflicts like its RepeaterItem sibling. The ParseChildren attribute set to true on the
Repeater class enables the use of template properties. PersistChildren is set to false to prevent
child controls from being persisted as nested inner controls; they are instead persisted as nested
elements. The Designer attribute associates a custom designer named RepeaterDesigner that
provides template editing design-time support. We discuss RepeaterDesigner further in
Chapter 11.

[ToolboxData("<{0}:repeater runat=server></{0}:repeater>"), ParseChildren(true),
PersistChildren(false),
 Designer(typeof(ControlsBook2Lib.Ch11.Design.RepeaterDesigner))]
 public class Repeater : DataBoundControl, INamingContainer
 {

The heart of the architecture behind Repeater is two methods: CreateChildControls and
PerformDataBinding. Both of these member functions create the control hierarchy for Repeater, but
each does so as a result of two fundamentally different scenarios. First, here is the code for the
DataBind method:

Cameron_865-2C07.fm Page 289 Monday, February 18, 2008 4:07 PM

290 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

public override void DataBind()
{
 this.PerformSelect();
}

Starting in ASP.NET 2.0, the PerformSelect method performs the work to load the data as
listed here:

protected override void PerformSelect()
{
 if (!IsBoundUsingDataSourceID)
 {
 OnDataBinding(EventArgs.Empty);
 }

 GetData().Select(CreateDataSourceSelectArguments(),
 OnDataSourceViewSelectCallback);

 RequiresDataBinding = false;
 MarkAsDataBound();

 OnDataBound(EventArgs.Empty);
}

Depending on whether the control is bound using an IDataSource control introduced in
ASP.NET 2.0 or any other DataSource control determines how PerformSelect executes. The
OnDataBinding call must occur before the GetData call if not bound with an IDataSource-based
control, which is where the check on IsBoundUsingDataSourceID is necessary at the beginning
of the method. The GetData method retrieves the DataSourceView object from the IDataSource
associated with the data-bound control so OnDataBinding is called prior to GetData. Finally, the
DataBound event is raised.

The method GetData is called within PerformSelect and takes a callback method as a param-
eter. The callback method is OnDataSourceViewSelectCallback, which calls PerformDataBinding to
build out the control via the CreateControlHierarchy method. Once again, whether the control
is bound to an IDataSource-based control or not determines how the control tree is built by
passing in different parameters to CreateControlHierarchy.

As you would guess, DataBind takes precedence as a control-loading mechanism when
binding to a data source. It is called on the web form after the data source has been linked to
the control.

The first task of DataBind is to fire the data-binding event OnDataBinding. If the Repeater
control is binding to a design-time data source, firing this event in DataBind is required for the
control to see the selected design-time data source at runtime.

Next, DataBind starts with a clean slate, clearing the current set of controls and any ViewState
values that are lingering, after which the control is ready to track ViewState. As shown in the
preceding code, once the table has been set, DataBind builds the child control hierarchy
based on the data source through the CreateControlHierarchy method. It then sets the
ChildControlsCreated property to true to let ASP.NET know that the control is populated. This
prevents the framework from calling CreateChildControls after DataBind.

Cameron_865-2C07.fm Page 290 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 291

We next discuss how CreateChildControls handles control creation. Here is the code for
CreateChildControls:

override protected void CreateChildControls()
{
 Controls.Clear();
 if (ViewState["ItemCount"] != null)
 {
 CreateControlHierarchy(false);
 }
 ClearChildViewState();
}

You have already encountered CreateChildControls in all the composite controls samples
so far in the book. It is called whenever the control needs to render itself outside of a DataBind.
The code implementation uses the CreateControlHierarchy helper method to do the dirty work as
in the DataBind method. The single difference is that the code in CreateChildControls checks
the ViewState ItemCount property. If ItemCount is not null, this indicates that we need to re-create
the control hierarchy using postback control ViewState values. Figure 7-3 illustrates the difference
between DataBind and CreateChildControls.

Figure 7-3. DataBind versus CreateChildControls

We pass a Boolean value to CreateControlHierarchy to indicate whether it needs to use the
data source to build up the control hierarchy or whether it should try to rebuild the control
hierarchy from ViewState at the beginning of a postback cycle. For CreateChildControls, we
pass in false to CreateChildHierarchy if ItemCount is present in ViewState.

The data binding process is controlled by three properties: DataSourceID, DataMember, and
DataSource. Notice that none of these properties are declared directly in our custom Repeater
control. Our Repeater control inherits from DataBoundControl, where much of the data binding
functionality is handled by the base class itself. The DataSourceID is set as the DataSource when
using an IDataSource-based control first introduced in ASP.NET 2.0, such as the SqlDataSource
class. DataSourceID appears in the Properties window, but DataSource does not, though
DataSource is still a public property that can be set in code.

Cameron_865-2C07.fm Page 291 Monday, February 18, 2008 4:07 PM

292 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

In the next section, we dissect CreateControlHierarchy by breaking the code into bite-
sized chunks as part of the discussion.

The CreateControlHierarchy Method

CreateControlHierarchy contains the most complicated logic in the Repeater control. It has
logic that covers creating the header and footer section of the control, along with the data-bound
item content. The first part of CreateControlHierarchy creates the header section of the control:

private void CreateControlHierarchy(bool useDataSource)
{
 items = new ArrayList();
 IEnumerable ds = null;

 if (HeaderTemplate != null)
 {
 RepeaterItem header = CreateItem(-1, ListItemType.Header, false, null);
 }

The preceding code checks for the presence of a HeaderTemplate template, and if it exists,
it creates a header RepeaterItem via CreateItem. CreateItem is the code that handles the actual
RepeaterItem creation and adds it to the Repeater’s Controls collection.

The items field is an ArrayList containing the RepeaterItem collection for the
RepeaterControl. It is declared as a private field under the Repeater class:

private ArrayList items = null;

You can think of this as a secondary collection of child controls like the Controls collection
but one that is filtered to include just the RepeaterItem containers that represent data from the
data source.

After the header is created, CreateControlHierarchy creates the core data-oriented
RepeaterItem child controls. The first step in the process is resolving the DataSource. If
CreateControlHierarchy is called from the PerformDataBinding method, the useDataSource
Boolean parameter will be set to true and the usingIDataSource parameter will be false or
true depending on whether the control is bound to an IDataSource-based control. Otherwise,
if CreateControlHierarchy is called from CreateChildControls, useDataSource and
usingIDataSource will be set to false:

private void CreateControlHierarchy(bool useData, bool
 usingIDataSource, IEnumerable data)

We now move on to discuss how the Repeater control resolves its data source and builds
up its control hierarchy as it data binds.

The DataSourceHelper Class and Data Binding

When building the control hierarchy as a result of data binding, we use a helper class named
DataSourceHelper to resolve the DataSource to something that supports the IEnumerable inter-
face. You can use this code directly to perform the same task in your data-bound custom server
controls.

Cameron_865-2C07.fm Page 292 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 293

The ResolveDataSource method of the DataSourceHelper class detects the interfaces
supported by the data source and will walk into the DataMember field of the DataSource if
necessary. For collections such as arrays based on System.Array, ArrayList, and the DataReader
classes of ADO.NET, ResolveDataSource performs a simple cast to IEnumerable.

Complex IListSource data collections such as the DataSet account for the bulk of the work
in ResolveDataSource. For DataSet, we need to drill down into its child collections based on the
DataMember passed into the control. Here is how DataSet is declared:

public class DataSet : MarshalByValueComponent, IListSource,
 ISupportInitialize, ISerializable

The IListSource interface implemented by the DataSet provides a way to determine if
there are multiple DataTable child collections by checking the value of the Boolean
ContainsListCollection property. If the class implementing IListSource supports a bindable
list, we need to use the ITypedList interface to bind to it at runtime. The DataViewManager class
provides just such a bindable list for the DataTables that make up a DataSet. DataViewManager
has the following declaration:

public class DataViewManager : MarshalByValueComponent,
 IBindingList, IList, ICollection, IEnumerable, ITypedList

The GetList method of the IListSource interface implemented by the DataSet class
returns an instance of the ITypedList interface implemented by the DataViewManager class
through casting to the appropriate interface. We use the ITypedList interface to dynamically
bind to the correct data source. Figure 7-4 provides a diagram of the process required to handle
an ITypedList data source such as a DataSet.

Figure 7-4. Resolving IListSource data sources

Cameron_865-2C07.fm Page 293 Monday, February 18, 2008 4:07 PM

294 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

ITypedList gives us the ability to dynamically find properties exposed by a class.
DataViewManager, as part of its ITypedList implementation, exposes the DataTables as properties
in its DataViewSettingCollection. The code checks the dynamic properties of DataViewManager
to see if it can retrieve the DataViewSetting property that matches the DataMember passed into
the Repeater control. If the DataMember is blank, we choose the first DataTable in the DataSet.
Listing 7-3 presents the full source code for the DataSourceHelper class.

Listing 7-3. The DataSourceHelper Class File

using System;
using System.Collections;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch07
{
 public class DataSourceHelper
 {
 public static object ResolveDataSource(object dataSource, string dataMember)
 {
 if (dataSource == null)
 return null;

 if (dataSource is IEnumerable)
 {
 return (IEnumerable)dataSource;
 }
 else if (dataSource is IListSource)
 {
 IList list = null;
 IListSource listSource = (IListSource)dataSource;
 list = listSource.GetList();
 if (listSource.ContainsListCollection)
 {
 ITypedList typedList = (ITypedList)list;
 PropertyDescriptorCollection propDescCol =
 typedList.GetItemProperties(new PropertyDescriptor[0]);

 if (propDescCol.Count == 0)
 throw new Exception("ListSource without DataMembers");

 PropertyDescriptor propDesc = null;
 //Check to see if dataMember has a value, if not, default to first
 //property (DataTable) in the property collection (DataTableCollection)
 if ((dataMember == null) || (dataMember.Length < 1))
 {
 propDesc = propDescCol[0];
 }

Cameron_865-2C07.fm Page 294 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 295

 else //If dataMember is set, try to find it in the property collection
 propDesc = propDescCol.Find(dataMember, true);

 if (propDesc == null)
 throw new Exception("ListSource missing DataMember");

 object listitem = list[0];

 //Get the value of the property (DataTable) of interest
 object member = propDesc.GetValue(listitem);

 if ((member == null) || !(member is IEnumerable))
 throw new Exception("ListSource missing DataMember");

 return (IEnumerable)member;
 }
 else
 return (IEnumerable)list;
 }
 return null;
 }
 }
}

The end result is a PropertyDescriptor that allows us to dynamically retrieve the appro-
priate data for binding. For the DataSet, this gives us a reference to a DataTable. We cast the
result to IEnumerable and return it to the control so that we can continue the data binding process.

PropertyDescriptor, PropertyDescriptorCollection, and IListSource are all members of
the System.ComponentModel namespace. This namespace plays a critical role in performing
dynamic lookups and enhancing the design-time experience of controls. We focus on the
design time support, including data binding design time support, in Chapter 11.

The DummyDataSource Class and Postback

If CreateControlHierarchy is not in the midst of a DataBind, it needs to determine whether or
not it is in a postback environment. We can check this by looking for the ItemCount variable in
ViewState. If it is present, we create a DummyDataSource object that is appropriately named,
because it serves as a placeholder to rehydrate the control state that was originally rendered
and sent back to the web server via postback. Listing 7-4 provides the class source code for
DummyDataSource.

Listing 7-4. The DummyDataSource Class File

using System;
using System.Collections;
using System.ComponentModel;

Cameron_865-2C07.fm Page 295 Monday, February 18, 2008 4:07 PM

296 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

namespace ControlsBook2Lib.Ch07
{
 internal sealed class DummyDataSource : ICollection
 {
 public DummyDataSource(int dataItemCount)
 {
 this.Count = dataItemCount;
 }

 public int Count { get; set; }

 public bool IsReadOnly
 {
 get
 {
 return false;
 }
 }

 public bool IsSynchronized
 {
 get
 {
 return false;
 }
 }

 public object SyncRoot
 {
 get
 {
 return this;
 }
 }

 public void CopyTo(Array array, int index)
 {
 for (IEnumerator e = this.GetEnumerator(); e.MoveNext();)
 array.SetValue(e.Current, index++);
 }

 public IEnumerator GetEnumerator()
 {
 return new DummyDataSourceEnumerator(Count);
 }

Cameron_865-2C07.fm Page 296 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 297

 private class DummyDataSourceEnumerator : IEnumerator
 {
 private int count;
 private int index;

 public DummyDataSourceEnumerator(int count)
 {
 this.count = count;
 this.index = -1;
 }

 public object Current
 {
 get
 {
 return null;
 }
 }

 public bool MoveNext()
 {
 index++;
 return index < count;
 }

 public void Reset()
 {
 this.index = -1;
 }
 }
 }
}

DummyDataSource implements the necessary collection interfaces to be compatible with the
rendering logic in Repeater. The key ingredients are implementation of the IEnumerable and
IEnumeration interfaces. As an example of how this works, this code snippet enumerates a
string array:

string[] numbers = new string[] { one,two,three };
foreach (string number in numbers)
{
 // action
}

IEnumerable signifies that the collection supports enumeration via constructs, such as the
foreach statement in C#. The method to get the enumerator from an IEnumerable collection is
GetEnumerator. It returns an IEnumerator interface.

Cameron_865-2C07.fm Page 297 Monday, February 18, 2008 4:07 PM

298 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

Client code uses the IEnumerator interface to move around the collection. MoveNext advances
the cursor, and the Current property allows the client to grab the item pointed to by the cursor
in the collection. The following code shows what really goes on when you use foreach in C#:

IEnumerator enum = numbers.GetEnumerator();
string number = null;
while (enum.MoveNext())
{
 number = enum.Current;
 // action
}

DummyDataSource implements its enumerator as a private nested class named
DummyDataSourceEnumerator. It returns an instance of this class from its GetEnumerator method.
Figure 7-5 illustrates the role that the DummyDataSource class plays during postback.

The dummy collection source is initialized by passing in the count of items to the
DummyDataSource constructor. When a client retrieves the enumerator, it will iterate through
that count of items, returning a null value. This may seem pointless, but it is enough to prime
the pump inside CreateControlHierarchy to rehydrate the RepeaterItem controls from ViewState
during postback. Once the controls are added, each RepeaterItem control can retrieve its former
contents using ViewState and postback data. We now move on to how the Repeater control
creates its content when data binding to a data source.

Figure 7-5. Using DummyDataSource

Creating the Middle Content

Once we have a valid object in the DataSource property, we can continue the task of creating
the RepeaterItem controls in CreateControlHierarchy, as shown in the following code. If the
previous step failed, the DataSource will be null, and no content gets rendered. However, if the

Cameron_865-2C07.fm Page 298 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 299

call to ResolveDataSource is successful, the code loops through the DataSource named ds using
a foreach construct to create RepeaterItem controls. Like the header section of the Repeater
control, the CreateItem method does the bulk of work in configuring each RepeaterItem.

if (ds != null)
{
 int index = 0;
 count = 0;
 RepeaterItem item;
 ListItemType itemType = ListItemType.Item;

 foreach (object dataItem in (IEnumerable)ds)
 {
 if (index != 0)
 {
 RepeaterItem separator = CreateItem(-1, ListItemType.Separator, false, null);
 }

 item = CreateItem(index, itemType, useData, dataItem);
 items.Add(item);
 index++;
 count++;

 if (itemType == ListItemType.Item)
 itemType = ListItemType.AlternatingItem;
 else
 itemType = ListItemType.Item;
 }
}

The looping code also keeps track of the index of the RepeaterItem and the total count of
controls added to the Controls collection. It meets our specification of having an item, an alter-
nating item, and a separator by alternating between ItemTemplate and AlternatingItemTemplate,
as well as including a RepeaterItem control implementing SeparatorTemplate between each
data item.

The final section of CreateControlHierarchy is the portion that creates the footer for our
Repeater implementation:

if (FooterTemplate != null)
{
 RepeaterItem footer = CreateItem(-1, ListItemType.Footer, false, null);
}

if (useData)
{
 ViewState["ItemCount"] = ((ds != null) ? count : -1);
}

Cameron_865-2C07.fm Page 299 Monday, February 18, 2008 4:07 PM

300 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

The last if-then construct stores the count of RepeaterItem controls in ViewState so we
can rehydrate DummyDataSource on postback. We drill into the CreateItem method in the next
section.

Creating the RepeaterItem Control in CreateItem

Much of the previous code in CreateControlHierarchy offloaded work to CreateItem. CreateItem is
tasked with doing quite a few things beyond just creating a RepeaterItem control: it handles
template instantiation and raises the ItemDataBound and ItemCreated events.

The first portion of CreateItem checks the ListItemType so that it can determine the right
enumeration to use with the RepeaterItem control:

private RepeaterItem CreateItem(int itemIndex, ListItemType itemType,
bool dataBind, object dataItem)
{
 ITemplate selectedTemplate;

 switch (itemType)
 {
 case ListItemType.Header:
 selectedTemplate = headerTemplate;
 break;
 case ListItemType.Item:
 selectedTemplate = itemTemplate;
 break;
 case ListItemType.AlternatingItem:
 selectedTemplate = alternatingItemTemplate;
 break;
 case ListItemType.Separator:
 selectedTemplate = separatorTemplate;
 break;
 case ListItemType.Footer:
 selectedTemplate = footerTemplate;
 break;
 default:
 selectedTemplate = null;
 break;
 }

 if ((itemType == ListItemType.AlternatingItem) &&
 (alternatingItemTemplate == null))
 {
 selectedTemplate = itemTemplate;
 itemType = ListItemType.Item;
 }

Cameron_865-2C07.fm Page 300 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 301

 RepeaterItem item = new RepeaterItem(itemIndex, itemType, dataItem);

 if (selectedTemplate != null)
 {
 selectedTemplate.InstantiateIn(item);
 }

 OnItemCreated(new RepeaterItemEventArgs(item));

 Controls.Add(item);

 if (dataBind)
 {
 item.DataBind();
 OnItemDataBound(new RepeaterItemEventArgs(item));
 }
 return item;
}

The code next instantiates a RepeaterItem control with the index of the object, the
ListItemType, and a reference to the data source. For RepeaterItem instances that are based on
the HeaderTemplate, FooterTemplate, and SeparatorTemplate templates, the dataItem parameter
will be null. Only the ItemTemplate- and AlternatingItemTemplate-based RepeaterItem controls
are linked to a row in the data source:

RepeaterItem item = new RepeaterItem(itemIndex, itemType, dataItem);

if (selectedTemplate != null)
{
 selectedTemplate.InstantiateIn(item);
}

OnItemCreated(new RepeaterItemEventArgs(item));

Controls.Add(item);

At this point in CreateItem, the RepeaterItem control is fully populated, and we raise the
ItemCreated event through the OnItemCreated method to allow interested clients to react to the
creation process. They can then add additional controls to our RepeaterItem to customize its
content if necessary. After this event is raised, we add the RepeaterItem control to the Controls
collection of the Repeater class.

If we are data binding, the code calls DataBind on the RepeaterItem to resolve its data binding
expressions to the piece of data attached to its DataItem property. We also raise an event via
OnItemDataBound, as shown in the following code. This causes any data binding expressions in
the templates to resolve to the particular row in the data source and get needed data for the
final render process.

Cameron_865-2C07.fm Page 301 Monday, February 18, 2008 4:07 PM

302 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 if (dataBind)
 {
 item.DataBind();
 OnItemDataBound(new RepeaterItemEventArgs(item));
 }
 return item;
}

The last step is to return the RepeaterItem so that the calling code can add it to the items
ArrayList maintained by Repeater.

Accessing RepeaterItem Instances After Creation

CreateControlHierarchy, along with CreateItem, does a great job of creating RepeaterItem
instances and adding them to the Controls collection and the items generic List, providing
access to a read-only collection to give access to the RepeaterInfo instances without having to
create a custom collection class of RepeaterItems.

The Items property on Repeater uses a collection of type generic List<> to allow easy access
to the RepeaterItems. Note that items is a private field for the Items property that we also use
in CreateControlHierarchy. We now move on to discuss the various events that the Repeater
control implements.

Repeater Control Event Management

Repeater exposes an ItemCommand event, an ItemCreated event, and an ItemDataBound event. We
use the Events collection provided by System.Web.UI.Control to track registered client delegates.
The following code for the ItemCommand event is reproduced in a similar manner for the
ItemCreated and ItemDataBound events:

private static readonly object ItemCommandKey = new object();
public event RepeaterCommandEventHandler ItemCommand
{
 add
 {
 Events.AddHandler(ItemCommandKey, value);
 }
 remove
 {
 Events.RemoveHandler(ItemCommandKey, value);
 }
}

The On-prefixed protected methods use standard event techniques to notify the delegates
that subscribe to the event when it is fired. The following OnItemCommand is mirrored by
OnItemDataBound and OnItemCreated:

protected virtual void OnItemCommand(RepeaterCommandEventArgs rce)
{
 RepeaterCommandEventHandler repeaterCommandEventDelegate =
 (RepeaterCommandEventHandler) Events[ItemCommandKey];

Cameron_865-2C07.fm Page 302 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 303

 if (repeaterCommandEventDelegate != null)
 {
 repeaterCommandEventDelegate(this, rce);
 }
}

ItemCommand requires an extra step to handle the RepeaterCommand events bubbled up from
child RepeaterItem controls. To wire into the event bubbling, it implements OnBubbleEvent:

protected override bool OnBubbleEvent(object source, EventArgs e)
{
 RepeaterCommandEventArgs rce = e as RepeaterCommandEventArgs;

 if (rce != null)
 {
 OnItemCommand(rce);
 return true;
 }
 else
 return false;
}

OnBubble traps the RepeaterCommand events and raises them as ItemCommand events to event
subscribers. Listing 7-5 shows the final source code for the Repeater control class.

Listing 7-5. The Repeater Control Class File

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.Design.WebControls;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch07
{
 [ToolboxData("<{0}:repeater runat=server></{0}:repeater>"),
 ParseChildren(true), PersistChildren(false),
 Designer(typeof(ControlsBook2Lib.Ch11.Design.RepeaterDesigner))]
 public class Repeater : DataBoundControl, INamingContainer
 {
 #region Template Code
 private ITemplate headerTemplate;
 [Browsable(false), TemplateContainer(typeof(RepeaterItem)),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public ITemplate HeaderTemplate

Cameron_865-2C07.fm Page 303 Monday, February 18, 2008 4:07 PM

304 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 {
 get
 {
 return headerTemplate;
 }

 set
 {
 headerTemplate = value;
 }
 }

 private ITemplate footerTemplate;
 [Browsable(false), TemplateContainer(typeof(RepeaterItem)),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public ITemplate FooterTemplate
 {
 get
 {
 return footerTemplate;
 }

 set
 {
 footerTemplate = value;
 }
 }

 private ITemplate itemTemplate;
 [Browsable(false), TemplateContainer(typeof(RepeaterItem)),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public ITemplate ItemTemplate
 {
 get
 {
 return itemTemplate;
 }

 set
 {
 itemTemplate = value;
 }
 }

Cameron_865-2C07.fm Page 304 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 305

 private ITemplate alternatingItemTemplate;
 [Browsable(false), TemplateContainer(typeof(RepeaterItem)),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public ITemplate AlternatingItemTemplate
 {
 get
 {
 return alternatingItemTemplate;
 }

 set
 {
 alternatingItemTemplate = value;
 }
 }

 private ITemplate separatorTemplate;
 [Browsable(false), TemplateContainer(typeof(RepeaterItem)),
 PersistenceMode(PersistenceMode.InnerProperty)]
 public ITemplate SeparatorTemplate
 {
 get
 {
 return separatorTemplate;
 }

 set
 {
 separatorTemplate = value;
 }
 }

 private RepeaterItem CreateItem(int itemIndex, ListItemType
 itemType, bool dataBind, object dataItem)
 {
 ITemplate selectedTemplate;

 switch (itemType)
 {
 case ListItemType.Header:
 selectedTemplate = headerTemplate;
 break;

Cameron_865-2C07.fm Page 305 Monday, February 18, 2008 4:07 PM

306 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 case ListItemType.Item:
 selectedTemplate = itemTemplate;
 break;
 case ListItemType.AlternatingItem:
 selectedTemplate = alternatingItemTemplate;
 break;
 case ListItemType.Separator:
 selectedTemplate = separatorTemplate;
 break;
 case ListItemType.Footer:
 selectedTemplate = footerTemplate;
 break;
 default:
 selectedTemplate = null;
 break;
 }

 if ((itemType == ListItemType.AlternatingItem) &&
 (alternatingItemTemplate == null))
 {
 selectedTemplate = itemTemplate;
 itemType = ListItemType.Item;
 }

 RepeaterItem item = new RepeaterItem(itemIndex, itemType, dataItem);

 if (selectedTemplate != null)
 {
 selectedTemplate.InstantiateIn(item);
 }

 OnItemCreated(new RepeaterItemEventArgs(item));

 Controls.Add(item);

 if (dataBind)
 {
 item.DataBind();
 OnItemDataBound(new RepeaterItemEventArgs(item));
 }
 return item;
 }
 #endregion

Cameron_865-2C07.fm Page 306 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 307

 [Browsable(false)]
 public List<RepeaterItem> Items
 {
 get
 {
 EnsureChildControls();
 return items;
 }
 }

 protected override void PerformSelect()
 {
 // Call OnDataBinding here if bound to a data source using the
 // DataSource property (instead of a DataSourceID), because the
 // databinding statement is evaluated before the call to GetData.
 if (!IsBoundUsingDataSourceID)
 {
 OnDataBinding(EventArgs.Empty);
 }

 // The GetData method retrieves the DataSourceView object from
 // the IDataSource associated with the data-bound control.
 GetData().Select(CreateDataSourceSelectArguments(),
 OnDataSourceViewSelectCallback);

 // The PerformDataBinding method has completed.
 RequiresDataBinding = false;
 MarkAsDataBound();

 // Raise the DataBound event.
 OnDataBound(EventArgs.Empty);
 }

 private void OnDataSourceViewSelectCallback(IEnumerable retrievedData)
 {

 // Call OnDataBinding only if it has not already been
 // called in the PerformSelect method.
 if (IsBoundUsingDataSourceID)
 {
 OnDataBinding(EventArgs.Empty);
 }
 // The PerformDataBinding method binds the data in the
 // retrievedData collection to elements of the data-bound control.
 PerformDataBinding(retrievedData);
 }

Cameron_865-2C07.fm Page 307 Monday, February 18, 2008 4:07 PM

308 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 protected override void PerformDataBinding(IEnumerable data)
 {
 base.PerformDataBinding(data);

 Controls.Clear();
 ClearChildViewState();
 TrackViewState();

 if (IsBoundUsingDataSourceID)
 CreateControlHierarchy(true, true, data);
 else
 CreateControlHierarchy(true, false, data);
 ChildControlsCreated = true;
 }

 protected override void ValidateDataSource(object dataSource)
 {
 if (((dataSource != null) && !(dataSource is IListSource)) &&
 (!(dataSource is IEnumerable) && !(dataSource is IDataSource)))
 {
 throw new InvalidOperationException();
 }
 }

 public override void DataBind()
 {
 this.PerformSelect();
 }

 private List<RepeaterItem> items; //private collection backing Items property
 private void CreateControlHierarchy(bool useData, bool
 usingIDataSource, IEnumerable data)
 {
 items = new List<RepeaterItem>();
 IEnumerable ds = null;

 if (HeaderTemplate != null)
 {
 RepeaterItem header = CreateItem(-1, ListItemType.Header, false, null);
 }

Cameron_865-2C07.fm Page 308 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 309

 int count = -1;
 if (useData)
 {
 if (!usingIDataSource)
 ds = (IEnumerable)DataSourceHelper.ResolveDataSource(DataSource,
 DataMember);
 else
 ds = data;
 }
 else
 {
 count = (int)ViewState["ItemCount"];
 if (count != -1)
 {
 ds = new DummyDataSource(count);
 }
 }

 if (ds != null)
 {
 int index = 0;
 count = 0;
 RepeaterItem item;
 ListItemType itemType = ListItemType.Item;

 foreach (object dataItem in (IEnumerable)ds)
 {
 if (index != 0)
 {
 RepeaterItem separator = CreateItem(-1,
 ListItemType.Separator, false, null);
 }

 item = CreateItem(index, itemType, useData, dataItem);
 items.Add(item);
 index++;
 count++;

 if (itemType == ListItemType.Item)
 itemType = ListItemType.AlternatingItem;
 else
 itemType = ListItemType.Item;
 }
 }

Cameron_865-2C07.fm Page 309 Monday, February 18, 2008 4:07 PM

310 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 if (FooterTemplate != null)
 {
 RepeaterItem footer = CreateItem(-1, ListItemType.Footer, false, null);
 }

 if (useData)
 {
 ViewState["ItemCount"] = ((ds != null) ? count : -1);
 }
 }

 override protected void CreateChildControls()
 {
 Controls.Clear();
 if (ViewState["ItemCount"] != null)
 {
 CreateControlHierarchy(false, false, null);
 }
 ClearChildViewState();
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 private static readonly object ItemCommandKey = new object();
 public event RepeaterCommandEventHandler ItemCommand
 {
 add
 {
 Events.AddHandler(ItemCommandKey, value);
 }
 remove
 {
 Events.RemoveHandler(ItemCommandKey, value);
 }
 }

Cameron_865-2C07.fm Page 310 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 311

 private static readonly object ItemCreatedKey = new object();
 public event RepeaterItemEventHandler ItemCreated
 {
 add
 {
 Events.AddHandler(ItemCreatedKey, value);
 }
 remove
 {
 Events.RemoveHandler(ItemCreatedKey, value);
 }
 }

 private static readonly object ItemDataBoundKey = new object();
 public event RepeaterItemEventHandler ItemDataBound
 {
 add
 {
 Events.AddHandler(ItemDataBoundKey, value);
 }
 remove
 {
 Events.RemoveHandler(ItemDataBoundKey, value);
 }
 }

 protected override bool OnBubbleEvent(object source, EventArgs e)
 {
 RepeaterCommandEventArgs rce = e as RepeaterCommandEventArgs;

 if (rce != null)
 {
 OnItemCommand(rce);
 return true;
 }
 else
 return false;
 }

 protected virtual void OnItemCommand(RepeaterCommandEventArgs rce)
 {
 RepeaterCommandEventHandler repeaterCommandEventDelegate =
 (RepeaterCommandEventHandler)Events[ItemCommandKey];

Cameron_865-2C07.fm Page 311 Monday, February 18, 2008 4:07 PM

312 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 if (repeaterCommandEventDelegate != null)
 {
 repeaterCommandEventDelegate(this, rce);
 }
 }

 protected virtual void OnItemCreated(RepeaterItemEventArgs rie)
 {
 RepeaterItemEventHandler repeaterItemEventDelegate =
 (RepeaterItemEventHandler)Events[ItemCreatedKey];
 if (repeaterItemEventDelegate != null)
 {
 repeaterItemEventDelegate(this, rie);
 }
 }

 protected virtual void OnItemDataBound(RepeaterItemEventArgs rie)
 {
 RepeaterItemEventHandler repeaterItemEventDelegate =
 (RepeaterItemEventHandler)Events[ItemDataBoundKey];
 if (repeaterItemEventDelegate != null)
 {
 repeaterItemEventDelegate(this, rie);
 }
 }
 }
}

Now that we have covered the construction of our version of the Repeater control, in the
next section we put it to the test to see if it behaves in a similar manner to the built-in ASP.NET
Repeater server control.

Data Binding with the Repeater Control
Our long journey to build a Repeater control replica is complete. Now, we need to take it for a
test drive with a variety of .NET collection types and a design-time DataSet to prove that the
core feature set works as advertised.

The Databound Repeater web form has five Repeater controls that are attached to five
different collection types: Array, ArrayList, SqlDataReader, DataSet, and an IDataSource-based
control. The form also has a button on it to exercise the postback capabilities of the Repeater
control to show how the control remembers its previous content without having to perform an
additional data bind. The UI for the web form is shown in Figure 7-6.

Cameron_865-2C07.fm Page 312 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 313

Figure 7-6. The rendered Databound Repeater web form

Listings 7-6 and 7-7 show the full code for the web form.

Listing 7-6. The DataboundRepeater Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="DataBoundRepeater.aspx.cs"
Inherits="ControlsBook2Web.Ch07.DataBoundRepeater"
 Title="DataBound Repeater Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch07"
Assembly="ControlsBook2Lib" %>

Cameron_865-2C07.fm Page 313 Monday, February 18, 2008 4:07 PM

314 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">7</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Data Binding</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Databound Repeater Control</h3>

 <table>
 <tbody>
 <tr valign="top">
 <td>
 <apress:Repeater ID="repeaterA" runat="server">
 <HeaderTemplate>
 Array

 </HeaderTemplate>
 <ItemTemplate>
 <%# Container.DataItem %></ItemTemplate>
 <SeparatorTemplate>

 </SeparatorTemplate>
 </apress:Repeater>

 </td>
 <td>
 </td>
 <td class="style1">
 <apress:Repeater ID="repeaterAl" runat="server">
 <HeaderTemplate>
 <div>
 <asp:Label ID="Label1" runat="server"
 BackColor="Maroon"
 ForeColor="White" Text="ArrayList"
 Width="96px"></asp:Label></div>

 </HeaderTemplate>
 <ItemTemplate>
 </ItemTemplate>
 <SeparatorTemplate>

 </SeparatorTemplate>
 <FooterTemplate>
 <div style="color: white; height: 24px; background-color: navy">
 </div>
 </FooterTemplate>

Cameron_865-2C07.fm Page 314 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 315

 </apress:Repeater>

 </td>
 </tr>
 <tr valign="top">
 <td>
 <apress:Repeater ID="repeaterRdrCust" runat="server">
 <HeaderTemplate>
 Customers DataReader

 </HeaderTemplate>
 <ItemTemplate>
 <div style="display: inline; font-weight: bold;
 color: yellow; background-color: red">
 <%# DataBinder.Eval(Container.DataItem,"ContactName") %></div>
 </ItemTemplate>
 <AlternatingItemTemplate>
 <div style="display: inline; font-weight: bold;
 color: yellow; background-color: blue">
 <%# DataBinder.Eval(Container.DataItem,"ContactName") %></div>
 </AlternatingItemTemplate>
 <SeparatorTemplate>

 </SeparatorTemplate>
 <FooterTemplate>

 End of the list
 </FooterTemplate>
 </apress:Repeater>
 </td>
 <td>
 </td>
 <td class="style1">
 <apress:Repeater ID="repeaterDtEmp" runat="server">
 <HeaderTemplate>
 DataSet Employees DataTable

 </HeaderTemplate>
 <ItemTemplate>
 <%# DataBinder.Eval(Container.DataItem,"FirstName") %>
 <%# DataBinder.Eval(Container.DataItem,"LastName") %>
 </ItemTemplate>
 <SeparatorTemplate>

 </SeparatorTemplate>
 </apress:Repeater>
 </td>
 <td>
 <apress:Repeater ID="RepeaterDesignTime" runat="server"

Cameron_865-2C07.fm Page 315 Monday, February 18, 2008 4:07 PM

316 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 DataSourceID="EmployeeDataSource">
 <HeaderTemplate>
 Binding to a Design-Time Data Source

 </HeaderTemplate>
 <ItemTemplate>
 <%# DataBinder.Eval(Container.DataItem,"FirstName") %>
 <%# DataBinder.Eval(Container.DataItem,"LastName") %>
 </ItemTemplate>
 <SeparatorTemplate>

 </SeparatorTemplate>
 </apress:Repeater>
 </td>
 </tr>
 </tbody>
 </table>
 <asp:Button ID="Button1" runat="server" Text="Submit"></asp:Button>
 <asp:SqlDataSource ID="EmployeeDataSource" runat="server" ConnectionString=
 "<%$ ConnectionStrings:NorthWindDB %>"
 ProviderName="<%$ ConnectionStrings:NorthWindDB.ProviderName %>"
SelectCommand="SELECT [FirstName], [LastName], [Title] FROM [Employees]">
 </asp:SqlDataSource>
</asp:Content>
<asp:Content ID="Content3" runat="server" ContentPlaceHolderID="HeadSection">
 <style type="text/css">
 .style1
 {
 width: 207px;
 }
 </style>
</asp:Content>

Listing 7-7. The DataboundRepeater Code-Behind Class File

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;
using System.Collections;
using System.Web.Configuration;

namespace ControlsBook2Web.Ch07
{

Cameron_865-2C07.fm Page 316 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 317

 public partial class DataBoundRepeater : System.Web.UI.Page
 {
 protected System.Data.SqlClient.SqlDataAdapter dataAdapterEmp;
 protected System.Data.SqlClient.SqlCommand sqlSelectCommand1;
 protected DataSetEmp dataSetEmp;

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 string[] array = new String[] { "one", "two", "three" };
 repeaterA.DataSource = array;
 repeaterA.DataBind();

 ArrayList list = new ArrayList();
 list.Add("four");
 list.Add("five");
 list.Add("six");
 repeaterAl.DataSource = list;
 repeaterAl.DataBind();

 SqlDataReader dr = GetCustomerDataReader();
 repeaterRdrCust.DataSource = dr;
 repeaterRdrCust.DataBind();
 dr.Close();

 DataSet ds = new DataSet();
 FillEmployeesDataSet(ds);

 repeaterDtEmp.DataSource = ds;
 repeaterDtEmp.DataMember = "Employees";
 repeaterDtEmp.DataBind();
 }
 }

 private SqlDataReader GetCustomerDataReader()
 {
 SqlConnection conn =
 new SqlConnection(WebConfigurationManager.ConnectionStrings["NorthWindDB"]
 .ConnectionString);
 conn.Open();

Cameron_865-2C07.fm Page 317 Monday, February 18, 2008 4:07 PM

318 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 SqlCommand cmd =
 new SqlCommand("SELECT CustomerID, ContactName, ContactTitle,
 CompanyName FROM Customers WHERE CustomerID LIKE '[AB]%'",
 conn);
 SqlDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);
 return dr;
 }

 private void FillEmployeesDataSet(DataSet ds)
 {
 SqlConnection conn =
 new SqlConnection(WebConfigurationManager.ConnectionStrings["NorthWindDB"]
.ConnectionString);
 conn.Open();

 SqlDataAdapter da =
 new SqlDataAdapter("SELECT EmployeeID, FirstName, LastName,
 Title FROM Employees WHERE EmployeeID < 5",
 conn);
 da.Fill(ds, "Employees");

 conn.Close();
 }
 }
}

In the next section, we test the events published by the Replica Repeater server control we
created in this chapter.

Advanced Interaction with the Repeater Control
The previous web form demonstrates that our Repeater control is capable of binding to a variety
of data sources. The Advanced Repeater web form takes this a few steps further. Instead of just
binding a SqlDataReader to a Repeater control, the Advanced Repeater web form hooks into the
ItemCreated and ItemDataBound events of our Repeater control to dynamically alter its output.

The Advanced Repeater web form dynamically adds an ASP.NET Label control to each
RepeaterItem row in its ItemCreated handler:

protected void repeaterRdrCust_ItemCreated(object o,
ControlsBook2Lib.Ch07.RepeaterItemEventArgs rie)
{
 ControlsBook2Lib.Ch07.RepeaterItem item = rie.Item;
 if (item.ItemType == ListItemType.Item)
 {
 Label lblID = new Label();
 lblID.ID = "lblID";
 item.Controls.Add(lblID);
 item.Controls.Add(new LiteralControl(" "));
 }

Cameron_865-2C07.fm Page 318 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 319

Once the control data binds, it changes the value of the added Label control to the
CustomerID value of the current row in the SqlDataReader:

protected void repeaterRdrCust_ItemDataBound(object o,
ControlsBook2Lib.Ch07.RepeaterItemEventArgs rie)
{
 ControlsBook2Lib.Ch07.RepeaterItem item = rie.Item;
 DbDataRecord row = (DbDataRecord)item.DataItem;
 string ID = (string)row["CustomerID"];
 Label lblID = (Label)item.FindControl("lblID");
 lblID.Text = ID;
}

The result of the event handling during creation and data binding is the browser output
shown in Figure 7-7.

Figure 7-7. The rendered Advanced Repeater web form

Listings 7-8 and 7-9 present the full code for the web form.

Cameron_865-2C07.fm Page 319 Monday, February 18, 2008 4:07 PM

320 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

Listing 7-8. The AdvancedRepeater .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="AdvancedRepeater.aspx.cs"
Inherits="ControlsBook2Web.Ch07.AdvancedRepeater"
 Title="Advanced Repeater Control Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch07"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">7</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Data Binding</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Ch07 Advanced Repeater Control</h3>

 <asp:Label ID="status" runat="server" BackColor="#FFC080"></asp:Label>

 <apress:Repeater ID="repeaterRdrCust" runat="server"
 OnItemCommand="repeaterRdrCust_ItemCommand"
 OnItemDataBound="repeaterRdrCust_ItemDataBound"
 OnItemCreated="repeaterRdrCust_ItemCreated">
 <ItemTemplate>
 <%# DataBinder.Eval(Container.DataItem,"ContactName") %>
 <asp:Button ID="contact1" runat="server"></asp:Button>
 </ItemTemplate>
 <SeparatorTemplate>

 </SeparatorTemplate>
 </apress:Repeater>
</asp:Content>

Listing 7-9. The AdvancedRepeater Code-Behind Class File

using System;
using System.Data;
using System.Data.Common;
using System.Data.SqlClient;
using System.Web.UI;
using System.Web.UI.WebControls;
using ControlsBook2Lib.Ch07;
using System.Web.Configuration;

Cameron_865-2C07.fm Page 320 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 321

namespace ControlsBook2Web.Ch07
{
 public partial class AdvancedRepeater : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 status.Text = "";
 if (!Page.IsPostBack)
 {
 SqlDataReader dr = GetCustomerDataReader();
 repeaterRdrCust.DataSource = dr;
 repeaterRdrCust.DataBind();
 dr.Close();
 }
 }

 private SqlDataReader GetCustomerDataReader()
 {
 SqlConnection conn =
 new SqlConnection(WebConfigurationManager.ConnectionStrings["NorthWindDB"].
 ConnectionString);
 conn.Open();

 SqlCommand cmd ='
 new SqlCommand("SELECT CustomerID, ContactName, ContactTitle,
 CompanyName FROM Customers WHERE CustomerID LIKE '[AB]%'",
 conn);
 SqlDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);
 return dr;
 }

 protected void repeaterRdrCust_ItemCommand(object o,
ControlsBook2Lib.Ch07.RepeaterCommandEventArgs rce)
 {
 ControlsBook2Lib.Ch07.RepeaterItem item = rce.Item;
 Label lblID = (Label)item.FindControl("lblID");
 status.Text = lblID.Text + " was clicked!";
 }

 protected void repeaterRdrCust_ItemDataBound(object o,
ControlsBook2Lib.Ch07.RepeaterItemEventArgs rie)
 {
 ControlsBook2Lib.Ch07.RepeaterItem item = rie.Item;
 DbDataRecord row = (DbDataRecord)item.DataItem;
 string ID = (string)row["CustomerID"];
 Label lblID = (Label)item.FindControl("lblID");
 lblID.Text = ID;
 }

Cameron_865-2C07.fm Page 321 Monday, February 18, 2008 4:07 PM

322 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 protected void repeaterRdrCust_ItemCreated(object o,
ControlsBook2Lib.Ch07.RepeaterItemEventArgs rie)
 {
 ControlsBook2Lib.Ch07.RepeaterItem item = rie.Item;
 if (item.ItemType == ListItemType.Item)
 {
 Label lblID = new Label();
 lblID.ID = "lblID";
 item.Controls.Add(lblID);
 item.Controls.Add(new LiteralControl(" "));
 }
 }
 }
}

More work remains for the AdvancedDataRepeater after rendering—specifically, firing
events. The web form is wired into the ItemCommand event raised by the Repeater control. This is
triggered by the ASP.NET Button control that is a part of each row rendered in conjunction with
the data from the Customers table in the Northwind database:

protected void repeaterRdrCust_ItemCommand(object o,
ControlsBook2Lib.Ch07.RepeaterCommandEventArgs rce)
{
 ControlsBook2Lib.Ch07.RepeaterItem item = rce.Item;
 Label lblID = (Label)item.FindControl("lblID");
 status.Text = lblID.Text + " was clicked!";
}

The RepeaterCommand method that handles the ItemCommand event uses
RepeaterCommandEventArgs and its Item property to retrieve the RepeaterItem control that
contains the row where the button was clicked. It uses this control reference along with the
FindControl method to locate the dynamically added Label control. The Text property value
of the Label control is the same as the CustomerID value from the database. RepeaterCommand
displays this information in the status Label control at the top the web form. Figure 7-8 shows
what happens when we click the first row’s button.

As shown in the examples, our Repeater copy fires its events as one would expect of any of
the built-in list controls. We next demonstrate how our Repeater is capable of loading templates
dynamically, just like the built-in one.

Cameron_865-2C07.fm Page 322 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 323

Figure 7-8. The Advanced Repeater web form and the ItemCommand event

Using Dynamic Templates
The templates used in the Menu and Repeater demonstrations to this point were statically
declared in an .aspx page. Sometimes, web developers must generate the templates on the fly
to modify the output of the templated control. ASP.NET lends a helping hand with two tech-
niques: loading from file via the LoadTemplate method of the Page class and creating a prebuilt
class that implements the ITemplate interface. We discuss these techniques in the following
sections.

The Dynamic Templates Web Form
The Dynamic Templates web form demonstrates how to dynamically load templates into an
instance of the Repeater control built in this chapter. The Repeater control on the web form
looks like the typical Repeater bound to a SqlDataReader. The difference is the DropDownList
control that is used to select which template to apply to the Repeater control when it is loaded:

Cameron_865-2C07.fm Page 323 Monday, February 18, 2008 4:07 PM

324 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

<asp:DropDownList id="templateList" Runat="server" AutoPostBack="True">
 <asp:ListItem>FileTemplate.ascx</asp:ListItem>
 <asp:ListItem>CustCodeTemplate</asp:ListItem>
 <asp:ListItem>CustFileTemplate.ascx</asp:ListItem>
</asp:DropDownList>

The first two selections load the template from .ascx files that are present in the same
virtual directory as the web form. The default template is FileTemplate.ascx, as shown in
Figure 7-9.

Figure 7-9. The Dynamic Templates web form and FileTemplate.ascx

The actual code for the .ascx file is shown in Listing 7-10. Notice that we did not have to
include the <ITEMTEMPLATE> container tags.

Cameron_865-2C07.fm Page 324 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 325

Listing 7-10. The FileTemplate and CustFileTemplate .ascx Files

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="FileTemplate.ascx.cs"
 Inherits="ControlsBook2Web.Ch07.FileTemplate" %>
Contact:

 <%# DataBinder.Eval(Container, "DataItem.ContactName") %>

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="CustFileTemplate.ascx.cs"
 Inherits="ControlsBook2Web.Ch07.CustFileTemplate" %>
Contact:

<input type="text" value="<%# DataBinder.Eval(Container,
 "DataItem.ContactName") %>" />

Because the DropDownList control has the AutoPostBack property set to true, changing
the template used by the Repeater control is as easy as selecting a different template in the
DropDownList control. This causes a postback to occur and executes the code in LoadRepeater
that is responsible for finding the right template and binding it to the Repeater control:

string templateName = templateList.SelectedItem.Text;
if (templateName.IndexOf(".ascx") > 0)
{
 repeaterRdrCust.ItemTemplate = Page.LoadTemplate(templateName);
}

The first thing the code does is check for the .ascx file extension to determine whether this
is a file-based template. Next, the code calls Page.LoadTemplate to load the template from disk.
At that point, it can assign the ITemplate reference to the ItemTemplate property of the Repeater
server control and continue with the rest of the data-binding process. Figure 7-10 demonstrates
a different layout with the template CustFileTemplate.ascx.

Selecting the CustCodeTemplate option from the DropDownList control executes a different
code path that programmatically instantiates templates and assigns them to the Repeater control:

else
{
 repeaterRdrCust.HeaderTemplate = new CustCodeHeaderTemplate();

 repeaterRdrCust.ItemTemplate = new CustCodeItemTemplate(true);

 repeaterRdrCust.AlternatingItemTemplate = new CustCodeItemTemplate(false);

 repeaterRdrCust.FooterTemplate = new CustCodeFooterTemplate();
}

Cameron_865-2C07.fm Page 325 Monday, February 18, 2008 4:07 PM

326 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

Figure 7-10. The Dynamic Templates web form and CustFileTemplate.ascx

Three custom template classes are used to affect the output of Repeater:
CustCodeHeaderTemplate, CustCodeItemTemplate, and CustCodeFooterTemplate. The
CustCodeItemTemplate class does double duty by implementing both the ItemTemplate and
AlternatingItemTemplate templates for the Repeater control. The Boolean value passed to the
CustCodeItemTemplate templates’ constructor in the web form’s code behind file ensures they
have unique colors to make the output easy to read, as shown in Figure 7-11.

Cameron_865-2C07.fm Page 326 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 327

Figure 7-11. The Dynamic Templates web form and CustCodeTemplates.cs

Listings 7-11 and 7-12 show the full code for the web form.

Listing 7-11. The DynamicTemplates .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="DynamicTemplates.aspx.cs
" Inherits="ControlsBook2Web.Ch07.DynamicTemplates"
 Title="Dynamic Templates Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch07
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle"
 runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">7</asp:Label><asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Data Binding</asp:Label>
</asp:Content>

Cameron_865-2C07.fm Page 327 Monday, February 18, 2008 4:07 PM

328 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Dynamic Templates</h3>
 Template:

 <asp:DropDownList ID="templateList" runat="server" AutoPostBack="True">
 <asp:ListItem>FileTemplate.ascx</asp:ListItem>
 <asp:ListItem>CustCodeTemplate</asp:ListItem>
 <asp:ListItem>CustFileTemplate.ascx</asp:ListItem>
 </asp:DropDownList>

 Repeater:

 <apress:Repeater ID="repeaterRdrCust" runat="server">
 </apress:Repeater>
</asp:Content>

Listing 7-12. The DynamicTemplates Web Form Code-Behind Class File

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.UI.WebControls;
using ControlsBook2Lib.Ch07;
using System.Web.Configuration;

namespace ControlsBook2Web.Ch07
{
 public partial class DynamicTemplates : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 LoadRepeater();
 }

 private void LoadRepeater()
 {
 string templateName = templateList.SelectedItem.Text;
 if (templateName.IndexOf(".ascx") > 0)
 {
 repeaterRdrCust.ItemTemplate = Page.LoadTemplate(templateName);
 }
 else
 {
 repeaterRdrCust.HeaderTemplate = new CustCodeHeaderTemplate();

Cameron_865-2C07.fm Page 328 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 329

 repeaterRdrCust.ItemTemplate = new CustCodeItemTemplate(true);

 repeaterRdrCust.AlternatingItemTemplate = new CustCodeItemTemplate(false);

 repeaterRdrCust.FooterTemplate = new CustCodeFooterTemplate();
 }

 SqlDataReader dr = GetCustomerDataReader();
 repeaterRdrCust.DataSource = dr;
 repeaterRdrCust.DataBind();
 dr.Close();
 }

 private SqlDataReader GetCustomerDataReader()
 {
 SqlConnection conn =
 new SqlConnection(WebConfigurationManager.ConnectionStrings["NorthWindDB"]
.ConnectionString);
 conn.Open();

 SqlCommand cmd =
 new SqlCommand("SELECT CustomerID, ContactName, ContactTitle,
 CompanyName FROM Customers WHERE CustomerID LIKE '[AB]%'",
 conn);
 SqlDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 return dr;
 }
 }
}

Our Repeater class does a pretty good job of mimicking the built-in Repeater class, and we
hope you agree that it provides a nice example of inheriting from the DataBoundControl base
class. We covered the basics of using templates in Chapter 6, and in the next section, we dig a
bit deeper with a discussion of the template implementation in the Repeater server control.

Implementing the ITemplate Interface
The ITemplate interface requires that only a single method named InstantiateIn be imple-
mented by a control. The template code gets a reference to its container as the sole parameter
and is free to add control content to the container.

The TemplateMenu sample in Chapter 6 shares its templates with the Dynamic Templates
sample from the previous section, and both are implemented in the CustomCodeTemplates
class. The following implementation of InstantiateIn in the CustCodeHeaderTemplate template
shows that its job is to set up the Literal control that emits an HTML table header.
CustCodeFooterTemplate does much the same for closing out the HTML table.

Cameron_865-2C07.fm Page 329 Monday, February 18, 2008 4:07 PM

330 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

public void InstantiateIn(Control container)
{
 LiteralControl table =
 new LiteralControl(
 "<table cellspacing=\"0\" cellpadding=\"3\" " +
 "rules=\"cols\" bordercolor=\"#999999\" border=\"1\" " +
 "style=\"background-color:White;border-color:#999999;" +
 "border-width:1px;border-style:None;" +
 "border-collapse:collapse;\">" +
 "<th>Name</th><th>Title</th><th>Company</th>"
);
 container.Controls.Add(table);
}

CustCodeItemTemplate is a bit more complex, because it adds Label controls representing
the ContactName, ContactTitle, and CompanyName columns into the mix. These tags go hand in
hand with the necessary <TR> and <TD> tags to build the rows in the HTML table.

We also wire in the capability for this template class to serve as an ItemTemplate or
AlternatingItemTemplate template via a Boolean parameter that is passed to its constructor:

public class CustCodeItemTemplate : ITemplate
{
 bool isItem = false;

 public CustCodeItemTemplate(bool IsItem)
 {
 isItem = IsItem;
}

CustCodeItemTemplate also has Color and BackgroundColor properties that generate a blue
or white color string, depending on the Boolean value of isItem:

public string BackgroundColor
{
 get
 {
 if (isItem)
 return "blue";
 else
 return "white";
 }
}

public string Color
{
 get
 {

Cameron_865-2C07.fm Page 330 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 331

 if (isItem)
 return "white";
 else
 return "blue";
 }
}

This customization provides a nice alternating blue and white color scheme in the table
output for the control using the templates. InstantiateIn makes use of the property to set up
the <TR> tag with the right CSS style properties. It also adds the necessary LiteralControl
controls that will bind the data to its source:

public void InstantiateIn(Control container)
{
 LiteralControl row =
 new LiteralControl("<tr style=\"color:" + Color +
 ";background-color:" + BackgroundColor +
 ";font-weight:bold;\">");
 container.Controls.Add(row);

 LiteralControl contactName = new LiteralControl();
 contactName.DataBinding += new EventHandler(BindContactName);
 container.Controls.Add(contactName);

 LiteralControl contactTitle = new LiteralControl();
 contactTitle.DataBinding += new EventHandler(BindContactTitle);
 container.Controls.Add(contactTitle);

 LiteralControl companyName = new LiteralControl();
 companyName.DataBinding += new EventHandler(BindCompanyName);
 container.Controls.Add(companyName);

 row = new LiteralControl("</tr>");
 container.Controls.Add(row);
}

To make the data binding process work properly, the template has built-in data binding
event handlers wired to each LiteralControl instance representing a column in the data source.
During data binding, each template data binds, and the LiteralControls inside of the template
data bind as well, firing events that the template handles by casting to the RepeaterItem container
and accessing the current data source row to fill in the Text property of the LiteralControl
controls. The code for ContactName is as follows:

private void BindContactName(object source, EventArgs e)
{
 LiteralControl contactName = (LiteralControl) source;
 RepeaterItem item = (RepeaterItem) contactName.NamingContainer;

Cameron_865-2C07.fm Page 331 Monday, February 18, 2008 4:07 PM

332 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 contactName.Text = "<td>" +
 DataBinder.Eval(item.DataItem, "ContactName")
 + "</td>";
}

Listing 7-13 contains the full code for all the custom-coded templates.

Listing 7-13. The CustCodeTemplates.cs Template Class File

using System;
using System.Web.UI;

namespace ControlsBook2Lib.Ch07
{
 public class CustCodeHeaderTemplate : ITemplate
 {
 public void InstantiateIn(Control container)
 {
 LiteralControl table =
 new LiteralControl(
 "<table cellspacing=\"0\" cellpadding=\"3\" " +
 "rules=\"cols\" bordercolor=\"#999999\" border=\"1\" " +
 "style=\"background-color:White;border-color:#999999;" +
 "border-width:1px;border-style:None;" +
 "border-collapse:collapse;\">" +
 "<th>Name</th><th>Title</th><th>Company</th>"
);
 container.Controls.Add(table);
 }
 }

 public class CustCodeItemTemplate : ITemplate
 {
 bool isItem = false;

 public CustCodeItemTemplate(bool IsItem)
 {
 isItem = IsItem;

 }

 public string BackgroundColor
 {
 get
 {

Cameron_865-2C07.fm Page 332 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 333

 if (isItem)
 return "blue";
 else
 return "white";
 }
 }

 public string Color
 {
 get
 {
 if (isItem)
 return "white";
 else
 return "blue";
 }
 }

 public void InstantiateIn(Control container)
 {
 LiteralControl row =
 new LiteralControl("<tr style=\"color:" + Color +
 ";background-color:" + BackgroundColor +
 ";font-weight:bold;\">");
 container.Controls.Add(row);

 LiteralControl contactName = new LiteralControl();
 contactName.DataBinding += new EventHandler(BindContactName);
 container.Controls.Add(contactName);

 LiteralControl contactTitle = new LiteralControl();
 contactTitle.DataBinding += new EventHandler(BindContactTitle);
 container.Controls.Add(contactTitle);

 LiteralControl companyName = new LiteralControl();
 companyName.DataBinding += new EventHandler(BindCompanyName);
 container.Controls.Add(companyName);

 row = new LiteralControl("</tr>");
 container.Controls.Add(row);
 }

 private void BindContactName(object source, EventArgs e)
 {
 LiteralControl contactName = (LiteralControl)source;
 RepeaterItem item = (RepeaterItem)contactName.NamingContainer;
 contactName.Text = "<td>" +

Cameron_865-2C07.fm Page 333 Monday, February 18, 2008 4:07 PM

334 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 DataBinder.Eval(item.DataItem, "ContactName")
 + "</td>";
 }

 private void BindContactTitle(object source, EventArgs e)
 {
 LiteralControl contactTitle = (LiteralControl)source;
 RepeaterItem item = (RepeaterItem)contactTitle.NamingContainer;
 contactTitle.Text = "<td>" +
 DataBinder.Eval(item.DataItem, "ContactTitle")
 + "</td>";
 }

 private void BindCompanyName(object source, EventArgs e)
 {
 LiteralControl companyName = (LiteralControl)source;
 RepeaterItem item = (RepeaterItem)companyName.NamingContainer;
 companyName.Text = "<td>" +
 DataBinder.Eval(item.DataItem, "CompanyName")
 + "</td>";
 }
 }

 public class CustCodeFooterTemplate : ITemplate
 {
 public void InstantiateIn(Control container)
 {
 LiteralControl table = new LiteralControl("<tr>
 <td colspan=3> </td></tr></table>");
 container.Controls.Add(table);
 }
 }
}

In the next subsection, we cover how to write a control that inherits from the
CompositeDataBoundControl base class.

CompositeDataBoundControl
In the previous section, we inherited from the base class DataBoundControl for Repeater to
leverage its built-in features. In this section, we investigate the CompositeDataBoundControl
base class.

In the .NET Framework documentation, there is a sample listed in the documentation for
the CompositeDataBoundControl base class called the SimpleSpreadsheetControl. When first
examining the sample to see how it worked, the control did not data bind correctly to a
SqlDataSource if DataSourceMode is configured as DataSet. Instead of returning the data values
for each row in the table, it simply wrote out the ToString() value for the System.Data.DataRowView
class.

Cameron_865-2C07.fm Page 334 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 335

The code where the data binding occurs in the SimpleSpreadsheetControl checks for
DbDataRecord and then writes out the data. If the data object is not of type DbDataRecord, it simply
writes out the string value for the object using ToString(), which is why System.Data.DataRowView
is rendered for each row instead of the data from the SqlDataSource. This issue provided us an
excuse to improve the implementation resulting in the EnhancedSpreadSheet control. First, let’s
take a look at how the CompositeDataBoundControl works.

CompositeDataBoundControl Mechanics

In general, composite control rendering is centered around the CreateChildControls method
that is inherited from the base Control class. The Render method is not overridden in a composite
server control, because the child controls perform their own rendering. By simply creating the
child controls, a composite server control achieves rendering its contents.

When inheriting from CompositeDataBoundControl, it is required to override this method:

CreateChildControls(IEnumerable dataSource,Boolean dataBinding)

When initially loading the page, a dataSource is passed in based on how the control is
configured for data binding and dataBinding is set to true. The rows are built out with data
from the configured data source and rendered to the browser. Upon postback, the value for the
dataSource parameter is an array of null objects that has a count that matches the number of
rows added to the HTML Table’s Rows collection. The value of dataBinding is false, since the
values will be retrieved from ViewState unless the data binding configuration was altered
programmatically by the developer. For postback, the control creates an empty (but not null)
TableRow object for the header and a set of empty EnhancedSpreadsheetRow objects as place
holders for the values stored in ViewState.

The EnhancedSpreadsheetControl

This section covers the improvements made to the SimpleSpreadsheetControl in our new
control called the EnhancedSpreadsheetControl. The first improvement provided in the
EnhancedSpreadsheetControl is to allow the control to data bind to a SqlDataSource by also
checking to see if the data source object is of type DataRowView. If it is, the code writes out
the data values associated with the data source. Here is a snippet from the server control class’s
EnhancedSpreadsheetRow.RenderContents method:

if (datarow is DataRowView)
{
 DataRow temp = ((DataRowView)datarow).Row;

 for (int i = 0; i < temp.Table.Columns.Count; ++i)
 {
 cellData = new TableCell();
 row.Cells.Add(cellData);
 cellData.Text = temp[i].ToString();
 }

Cameron_865-2C07.fm Page 335 Monday, February 18, 2008 4:07 PM

336 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

In addition to adding a border and other visual configuration to the containing Table
object, one other enhancement is the addition of a header row that reads the schema of the
first data row to determine the column names using this code:

if (dataRow is DbDataRecord)
{
 DbDataRecord temp = (DbDataRecord)dataRow;
 for (int i = 0; i < temp.FieldCount; ++i)
 {
 columnName = new TableCell();
 headerRow.Cells.Add(columnName);
 columnName.Text = temp.GetName(i);
 }
}

if (dataRow is DataRowView)
{
 DataRowView drv = (DataRowView)dataRow;
 for (int i = 0; i < drv.Row.Table.Columns.Count; ++i)
 {
 columnName = new TableCell();
 headerRow.Cells.Add(columnName);
 columnName.Text = drv.Row.Table.Columns[i].Caption;
 }
}

Listings 7-14 and 7-15 have the source code for EnhancedSpreadsheetControl and
EnhancedSpreadsheetRow respectively.

Listing 7-14. The EnhancedSpreadsheetControl Control

using System;
using System.Data;
using System.Drawing;
using System.ComponentModel;
using System.Collections;
using System.Data.Common;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch07
{
 [ToolboxData("<{0}:EnhancedSpreadsheetControl
 runat=server></{0}:EnhancedSpreadsheetControl>")]
 public class EnhancedSpreadsheetControl : CompositeDataBoundControl
 {

Cameron_865-2C07.fm Page 336 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 337

 protected Table table = new Table();

 [Browsable(false)]
 public virtual TableRowCollection Rows
 {
 get
 {
 EnsureChildControls();
 return table.Rows;
 }
 }

 public Color HeaderRowBackColor
 {
 get
 {
 object headerRowBackColor = ViewState["HeaderRowBackColor"];
 if (headerRowBackColor == null)
 return Color.White;
 else
 return (Color)headerRowBackColor;
 }
 set
 {
 ViewState["HeaderRowBackColor"] = value;
 }
 }

 public Color HeaderRowForeColor
 {
 get
 {
 object headerRowForeColor = ViewState["HeaderRowForeColor"];
 if (headerRowForeColor == null)
 return Color.Black;
 else
 return (Color)headerRowForeColor;
 }
 set
 {
 ViewState["HeaderRowForeColor"] = value;
 }
 }

Cameron_865-2C07.fm Page 337 Monday, February 18, 2008 4:07 PM

338 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 protected override int CreateChildControls(IEnumerable dataSource,
 bool dataBinding)
 {
 int count = 0;
 if (dataSource != null)
 {
 table = new Table();
 Controls.Add(table);

 table.Attributes.Add("border", "1");
 table.Attributes.Add("cellpadding", "2");

 if (dataBinding)
 {
 EnhancedSpreadsheetRow row;
 TableCell cellData;
 IEnumerator e = dataSource.GetEnumerator();
 e.MoveNext();
 //Populate Header Row based on datasource schema for first data item
 BuildHeaderRow(e.Current, dataBinding);
 ++count; //Increment for header row

 do
 {
 object datarow = e.Current;
 row = new EnhancedSpreadsheetRow(count, datarow, dataBinding);
 this.Rows.Add(row);
 if (datarow is DbDataRecord)
 {
 DbDataRecord temp = (DbDataRecord)datarow;
 for (int i = 0; i < temp.FieldCount; ++i)
 {
 cellData = new TableCell();
 row.Cells.Add(cellData);
 cellData.Text = temp.GetValue(i).ToString();
 }
 }
 if (datarow is DataRowView)
 {
 DataRow temp = ((DataRowView)datarow).Row;

Cameron_865-2C07.fm Page 338 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 339

 for (int i = 0; i < temp.Table.Columns.Count; ++i)
 {
 cellData = new TableCell();
 row.Cells.Add(cellData);
 cellData.Text = temp[i].ToString();
 }
 }
 row.HorizontalAlign = HorizontalAlign.Center;
 ++count;
 }
 while (e.MoveNext());
 }
 else //Not databinding, values come from ViewState
 {
 //Add TableRow row as placeholder for
 //header row ViewState
 TableRow headerRow = new TableRow();
 this.Rows.Add(headerRow);
 IEnumerator e = dataSource.GetEnumerator();
 e.MoveNext();
 ++count; //increment since header row handled

 //Add correct number of EnhancedSpreadsheetRows
 //as placeholder for data row ViewState
 EnhancedSpreadsheetRow row;
 while (e.MoveNext())
 {
 row = new EnhancedSpreadsheetRow(count,e.Current,dataBinding);
 row.HorizontalAlign = HorizontalAlign.Center;
 this.Rows.Add(row);
 ++count;
 }
 }
 }
 return count;
 }

 private void BuildHeaderRow(object dataRow, bool dataBinding)
 {
 //Add header row with column names:
 TableRow headerRow = new TableRow();
 this.Rows.Add(headerRow);

 TableCell columnName;

Cameron_865-2C07.fm Page 339 Monday, February 18, 2008 4:07 PM

340 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 if (dataRow is DbDataRecord)
 {
 DbDataRecord temp = (DbDataRecord)dataRow;
 for (int i = 0; i < temp.FieldCount; ++i)
 {
 columnName = new TableCell();
 headerRow.Cells.Add(columnName);
 columnName.Text = temp.GetName(i);
 }
 }

 if (dataRow is DataRowView)
 {
 DataRowView drv = (DataRowView)dataRow;
 for (int i = 0; i < drv.Row.Table.Columns.Count; ++i)
 {
 columnName = new TableCell();
 headerRow.Cells.Add(columnName);
 columnName.Text = drv.Row.Table.Columns[i].Caption;
 }
 }

 headerRow.HorizontalAlign = HorizontalAlign.Center;
 headerRow.BackColor = HeaderRowBackColor;
 headerRow.ForeColor = HeaderRowForeColor;
 }
 }
}

Listing 7-15. The EnhancedSpreadsheetRow Control

using System;
using System.ComponentModel;
using System.Collections.Generic;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch07
{
 public class EnhancedSpreadsheetRow : TableRow, IDataItemContainer
 {
 private object data;
 private int _itemIndex;

Cameron_865-2C07.fm Page 340 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 341

 public EnhancedSpreadsheetRow(int itemIndex, object o, bool dataBinding)
 {
 if (dataBinding)
 {
 data = o;
 _itemIndex = itemIndex;
 }
 }

 public virtual object Data
 {
 get
 {
 return data;
 }
 }

 object IDataItemContainer.DataItem
 {
 get
 {
 return Data;
 }
 }

 int IDataItemContainer.DataItemIndex
 {
 get
 {
 return _itemIndex;
 }
 }

 int IDataItemContainer.DisplayIndex
 {
 get
 {
 return _itemIndex;
 }
 }
 }
}

Cameron_865-2C07.fm Page 341 Monday, February 18, 2008 4:07 PM

342 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

The EnhancedSpreadsheetControl is demonstrated in the EnhancedSpreadsheetControl.aspx
web form, shown in Figure 7-12.

Figure 7-12. The EnhancedSpreadsheetControl demonstration web form

Listings 7-16 and 7-17 have the code for the EnhancedSpreadSheetControl demonstration
web form.

Listing 7-16. The EnhancedSpreadSheetControl Web Form .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="EnhancedSpreadSheetControl.aspx.cs"
Inherits="ControlsBook2Web.Ch07.EnhancedSpreadSheetControl"
 Title="Enhanced Spreadsheet Control Demo" %>

Cameron_865-2C07.fm Page 342 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 343

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch07"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle"
 runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">7</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Server Control Data Binding</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">

 <apress:EnhancedSpreadsheetControl ID="EnhancedSpreadsheetControl1"
 runat="Server"
 DataMember="DefaultView" DataSourceID="SqlDataSource1" BorderWidth="2px"
HeaderRowColor="Gainsboro"
 HeaderRowBackColor="Navy" HeaderRowForeColor="Gold" />
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthWindDB %>"
 SelectCommand=
 "SELECT [FirstName], [LastName], [Title], [HireDate] FROM [Employees]">
 </asp:SqlDataSource>

 <apress:EnhancedSpreadsheetControl ID="EnhancedSpreadsheetControl2"
 runat="server"
 BorderWidth="2px" HeaderRowColor="Gainsboro"
 HeaderRowBackColor="Navy" HeaderRowForeColor="Gold" />

 <asp:Button ID="Button1" runat="server" Text="Submit" />

</asp:Content>

Listing 7-17. The EnhancedSpreadSheetControl Code-Behind Class File

using System;
using System.Data;
using System.Data.SqlClient;
using System.Configuration;
using System.Web.Configuration;

namespace ControlsBook2Web.Ch07
{
 public partial class EnhancedSpreadSheetControl : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 EnhancedSpreadsheetControl1.DataBind();

Cameron_865-2C07.fm Page 343 Monday, February 18, 2008 4:07 PM

344 CH AP T E R 7 ■ SE R V E R C ON TR O L D AT A B IN D I N G

 SqlDataReader dr = GetCustomerDataReader();
 EnhancedSpreadsheetControl2.DataSource = dr;
 EnhancedSpreadsheetControl2.DataBind();
 dr.Close();
 }

 private SqlDataReader GetCustomerDataReader()
 {
 SqlConnection conn =
 new SqlConnection(WebConfigurationManager.
 ConnectionStrings["NorthWindDB"].ConnectionString);
 conn.Open();

 SqlCommand cmd =
 new SqlCommand("SELECT CustomerID, ContactName, ContactTitle,
 CompanyName FROM Customers WHERE CustomerID LIKE '[AB]%'",
 conn);
 SqlDataReader dr = cmd.ExecuteReader(CommandBehavior.CloseConnection);
 return dr;
 }

 private void FillEmployeesDataSet(DataSet ds)
 {
 SqlConnection conn =
 new SqlConnection(WebConfigurationManager.
 ConnectionStrings["NorthWindDB"].ConnectionString);
 conn.Open();

 SqlDataAdapter da =
 new SqlDataAdapter("SELECT EmployeeID, FirstName, LastName, Title
 FROM Employees WHERE EmployeeID < 5",
 conn);
 da.Fill(ds, "Employees");
 conn.Close();
 }
 }
}

Summary
Data binding simplifies the task of rendering data intermixed with HTML for web developers
by rendering a control according to the information in the data source that is bound to the
control. Data-bound controls should strive to support a variety of data sources by implementing
both IEnumerable and IListSource.

Templates and data binding are the two primary ways to modify the graphical content of
an ASP.NET web form. Templates provide a way for developers to declaratively insert raw
HTML through server controls into the output of a prebuilt control. Templates can be loaded

Cameron_865-2C07.fm Page 344 Monday, February 18, 2008 4:07 PM

C H AP TE R 7 ■ SE R V E R CO N T R O L DA T A B I N D IN G 345

dynamically through Page.LoadTemplate or instantiated by classes that implement the ITemplate
interface. The Repeater control built in this chapter demonstrates how to combine templates
with data binding for a rich user experience.

The built-in base classes for data binding such as DataBoundControl inherited by our
Repeater and the DataBoundCompositeControl inherited by the EnhancedSpreadsheetControl
can greatly simplify data binding tasks.

Cameron_865-2C07.fm Page 345 Monday, February 18, 2008 4:07 PM

Cameron_865-2C07.fm Page 346 Monday, February 18, 2008 4:07 PM

347

■ ■ ■

C H A P T E R 8

Integrating Client-Side Script

Software development, like any other engineering discipline, requires trade-offs between
competing issues such as browser reach versus platform features, client-side interactivity
versus server-side processing and its necessary round-trips, and time required to build versus
rich user interactivity. This chapter focuses on how these trade-offs come into play with respect to
integrating client-side scripts into your ASP.NET server control development efforts.

Although the .NET Framework provides top-notch support for server-side development
through its rich object model, ASP.NET server controls are an excellent way to facilitate develop-
ment of web applications with a rich client-side UI. ASP.NET provides the means to encapsulate
client-side script complexity within the confines of a server control and build a reusable UI
widget library that can be consumed by developers building web applications.

In ASP.NET 3.5, AJAX functionality is well integrated into the ASP.NET server control model,
which we cover in the next chapter. The functionality enabled by ASP.NET AJAX is based on the
capabilities we discuss in this chapter. Also, there may be situations where you want to quickly
add scripts to a server control, which we also cover in this chapter.

To start off, we describe the various features that client-side scripting can provide to a web
application, and after that, we dive into the details of how to integrate those client-side features
into custom server controls.

Client-Side Script Server Control Scenarios
In this chapter, we cover the gamut of client-side features. Here are the highlights of the topics
we cover:

• Handling client-side events: This script executes when a client activity occurs, such as
when the user clicks with the mouse, moves the mouse, or presses a key. You handle
these events by adding script code to HTML tag attributes on the page.

• Handling the Page_Load event in the browser: You add this script code to the bottom of
an HTML page that executes on page load in the browser. It usually performs initializa-
tion tasks.

• Running scripts when a page form is submitted: This consists of adding a script to handle
verification or validation tasks before posting back to the web server. You accomplish
this through JavaScript form submission code or by handling the onsubmit event of the
<form> tag.

Cameron_865-2C08.fm Page 347 Monday, February 18, 2008 4:10 PM

348 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

• Integrating client- and server-side events: This script ensures client-side events and data
are appropriately mapped to server-side code operations when the form is posted back
to the web server.

• Using the web resource system introduced in ASP.NET 2.0 for managing content: This
allows scripts and other file resources to be compiled into an assembly. Script and file
resources can then be rendered from the web server via the WebResource.axd handler
without the extra deployment step of copying loose file content.

• Using ASP.NET 2.0 (or later) client callbacks: A new feature introduced in ASP.NET 2.0
provides a structured way for client-side scripts to invoke server-side functionality to
retrieve data or content from the server without executing a full-page postback and refresh
of the HTML page in the browser.

We feel the best way to cover these client-side script scenarios is to develop a set of server
controls that demonstrates the listed capabilities. The controls we build in this chapter include
an image control that performs client-side image mouse rollovers, a control that confirms the
user’s action when clicking a link button, and an up/down numeric control similar to its desktop
cousin that can work with or without JavaScript support. In the last example, we show how to
use client callbacks as part of a server control that fetches data from an MSN Money stock news
feed without requiring a postback when the requested stock symbol is changed by the user.

Handling Client-Side Events
The web browser has its own object model representing the HTML tags and events that occur
when the user is interacting with them. This event system within the browser has been around
for a while and is completely different from the server-side event mechanism we discussed in
detail in Chapter 5.

Client-side events fired in the browser window are added to HTML tags via attributes with
names such as onclick, onblur, onmouseover, onmouseout, and so on. The value of the event-
handling attribute contains the script that you want to execute when the event is raised. The
following HTML snippet shows a tag with an inline onclick event handler that pops up
an alert message box:

TopLabel

The browser is perfectly happy to execute this JavaScript when the tag is clicked.
The first server control example demonstrates how to add script code to an ASP.NET server
control to handle a client-side click event like the previous one. As an ASP.NET developer, you
have two options available to add the onclick event code to the server control:

• You can add it declaratively via an attribute on the control’s tag in the .aspx page.

• You can add it programmatically to the Attributes collection of the server control in the
code-behind class.

Adding the code to the .aspx page is the simpler of the two options. Another way to add a
client-side click event handler is to encapsulate the script into a server control. The following
code shows how to generate the content with an onclick event handler using an ASP.NET

Cameron_865-2C08.fm Page 348 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 349

Label server control and adding an onclick attribute. The page parser is responsible for ensuring
this becomes part of the control’s final output.

<asp:Label ID="TopLabel" Runat="server" Text="TopLabel"
tabIndex=1 onclick="alert('TopLabel clicked!');">TopLabel</asp:Label>

The following code shows the second option: adding the attribute to the HTML element
via the Attributes collection of the server control in the code-behind class. The recommended
place to put this type of code is in the Page_Load event because the control is fully initialized.

BottomLabel.Attributes.Add("onclick", "alert('BottomLabel clicked!');");

The two preceding techniques add the client-side script code via external manipulation of
the server control. You can add the same attribute-handling code internally to a server control
just as easily. Listing 8-1 shows a server control that inherits from the ASP.NET Label control
and adds code to an override of the OnPreRender method that generates an onclick attribute to
the final output of our new custom Label control, ClickLabel.

Listing 8-1. The ClickLabel Server Control

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch08
{
 [ToolboxData("<{0}:ClickLabel runat=server></{0}:ClickLabel>"),
 DefaultProperty("ClickText")]
 public class ClickLabel : Label
 {
 public virtual string ClickText
 {
 get
 {
 return (string)ViewState["ClickText"];
 }
 set
 {
 ViewState["ClickText"] = value;
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 // Add the onclick client-side event handler to
 // display a JavaScript alert box

Cameron_865-2C08.fm Page 349 Monday, February 18, 2008 4:10 PM

350 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 Attributes.Add("onclick", "alert('" + ClickText + "');");
 }
 }
}

This ensures that the control’s Attributes collection is loaded before the Render method is
called. A ClickText property is provided to make the control easily configurable as to what text
message displays in the JavaScript alert pop-up. Though this is a trivial example, it does demon-
strate one way to make client-side script capabilities available through a server control to the
developer/user without the developer having to know how to write the JavaScript. In the next
section, we present a web form that demonstrates these options.

The Click Web Form
The following Click web form example demonstrates all three techniques for emitting client-
side event handlers. The web form renders with three Label controls that all generate the same
JavaScript alert pop-up when clicked. The following HTML code shows the tags and
their inline client-side JavaScript:

Click the TopLabel

Click the MiddleLabel

Click the BottomLabel

Figure 8-1 shows what happens when the middle ClickLabel text output is clicked.

Figure 8-1. The Click web form after the middle label is clicked

Cameron_865-2C08.fm Page 350 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 351

The full code for the web form is shown in Listings 8-2 and 8-3.

Listing 8-2. The Click Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="Click.aspx.cs"
Inherits="ControlsBook2Web.Ch08.Click" Title="Click Demo" %>

<%@ Register Assembly="ControlsBook2Lib" Namespace=
 "ControlsBook2Lib.Ch08" TagPrefix="apress" %>
<asp:Content ID="Content1" ContentPlaceHolderID=
 "ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">8</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Integrating Client-Side Script</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Ch08 Click Event Handling</h3>
 <asp:Label ID="TopLabel" runat="server" Text=
 "Click the TopLabel" onclick="alert('TopLabel clicked!');" />

 <apress:ClickLabel ID="ClickLabel1" runat="server" Text=
 "Click the MiddleLabel" ClickText="MiddleLabel clicked!" />

 <asp:Label ID="BottomLabel" runat="server" Text="Click the BottomLabel" />
</asp:Content>

Listing 8-3. The Click Web Form Code-Behind Class File

using System;
using System.Collections.Generic;
using System.Web.UI;

namespace ControlsBook2Web.Ch08
{
 public partial class Click : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 BottomLabel.Attributes.Add("onclick",
 "alert('BottomLabel clicked!');");
 }
 }
}

Cameron_865-2C08.fm Page 351 Monday, February 18, 2008 4:10 PM

352 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

Controls such as Button, LinkButton, and ImageButton have additional support for click
handling that goes beyond the preceding sample. The OnClientClick attribute can be set on
these controls in either the .aspx page or in the code-behind class as a property to achieve the
same effect that we showed with the Label controls.

Now that we have introduced how to add client-side script to a server control, we move on
to a more interesting example of providing image rollovers within a server control by integrating
client-side scripts.

Handling Mouse Events for Image Rollovers
Although the ASP.NET Image control makes it easy to assign image URL information through its
Designer property support, its distinct lack of rich functionality provides ample room for
improvement. A nice extension to this control would be the capability to perform client-side
image mouse rollovers. As we demonstrate in Chapter 3 with the TextBox3d control, the object-
oriented nature of ASP.NET makes it easy to take existing controls and inherit from them to
add additional features. RolloverImageLink is a server control that we build next that inherits
the full feature set of the ASP.NET Image server control while adding client-side rollover capa-
bility and hyperlink navigation.

As shown in the following code, RolloverImageLink adds an OverImageUrl property that
stores the location of the rollover image file and a NavigationalUrl property that stores the
hyperlink location. The EnableClientScript property allows the user to turn on or off the client
JavaScript functionality on demand.

[ToolboxData("<{0}:RolloverImageLink runat=server></{0}:RolloverImageLink>"),
DefaultProperty("NavigateUrl")]
public class RolloverImageLink : Image
{
 public virtual bool EnableClientScript
 {
 get
 {
 object script = ViewState["EnableClientScript"];
 return (script == null) ? true : (bool) script;
 }
 set
 {
 ViewState["EnableClientScript"] = value;
 }
 }

 public string NavigateUrl
 {
 get
 {
 object url = ViewState["NavigateUrl"];
 return (url == null) ? "" : (string) url;
 }

Cameron_865-2C08.fm Page 352 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 353

 set
 {
 ViewState["NavigateUrl"] = value;
 }
 }

 public string OverImageUrl
 {
 get
 {
 object url = ViewState["OverImageUrl"];
 return (url == null) ? "" : (string) url;
 }
 set
 {
 ViewState["OverImageUrl"] = value;
 }
 }

 public bool PreLoadImages
 {
 get
 {
 object pre = ViewState["PreLoadImages"];
 return (pre == null) ? true : (bool) pre;
 }
 set
 {
 ViewState["PreLoadImages"] = value;
 }
 }

RolloverImageLink also supports preloading the images pointed to by the ImageUrl and
OverImageUrl properties, so you don’t have to write the time-consuming JavaScript that makes
the rollover effect much more responsive in the browser. If the user sets the PreLoadImages
property of the control to true, this generates extra JavaScript that loads the images when the
page is loaded into the browser.

JavaScript Detection

The RolloverImageLink control is a good citizen in that it detects the browser support
for JavaScript before it generates the client script to render the rollover images. The
DetermineRenderClientScript method encapsulates the verification logic and sets a private
bool named renderClientScript, depending on the outcome:

Cameron_865-2C08.fm Page 353 Monday, February 18, 2008 4:10 PM

354 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

private bool renderClientScript = false;
protected void DetermineRenderClientScript()
{
 if (EnableClientScript &&
 Context.Request.Browser. EcmaScriptVersion.Major >=1)
 renderClientScript = true;
}

The JavaScript capability is checked by examining an instance of the
HttpBrowserCapabilities class that is taken from the Browser property of the current request
context. For now, all we use is the EcmaScriptVersion property, but there are a variety of other
detection-specific attributes one can use to tailor the output of a server control if desired, and
these can be found in the documentation for the class.

Rendering Client Script Code

RolloverImageLink takes advantage of most of the features built into ASP.NET via the
ClientScriptManager class that is attached to the Page class as a static ClientScript property
for emitting JavaScript into the HTML output in a modular manner. This capability includes a
registration system that ensures only a single instance of a block of script code is emitted in the
final HTML output, despite the presence of multiple instances of a server control that need it
on a web form. The ClientScriptManager replaces the now-obsolete methods that hang off the
Page class directly as static methods and consolidates client interaction in one class. Table 8-1
summarizes the script-related feature set of ClientScriptManager.

Table 8-1. ASP.NET ClientScriptManager Class Script Registration Methods

Method Description

RegisterClientScriptBlock Emits the specified JavaScript code at the top of the HTML
form to allow all of the controls on the page rendered after it
to reference it.

IsClientScriptBlockRegistered Checks to see if a previous control has registered a
JavaScript block at the top of the HTML form.

RegisterStartupScript Emits the specified JavaScript code at the bottom of the
HTML form to be able to access any of the controls on the
web form from the script block.

IsStartupScriptRegistered Checks to see if a previous control has registered a start-up
JavaScript block at the bottom of the HTML form.

RegisterArrayDeclaration Emits an array value to the specified JavaScript array
name at the bottom of the HTML form. This method can
be called repeatedly from multiple controls. The values
are aggregated in the same array.

RegisterOnSubmitStatement Emits JavaScript code that is executed in the context of
an onsubmit event handler on the HTML <form> element.

IsOnSubmitStatementRegistered Checks to see if a previous control has registered an
onsubmit event handler on the HTML <form> element.

Cameron_865-2C08.fm Page 354 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 355

The bulk of the JavaScript creation occurs in the OnPreRender method of the RolloverImageLink
control:

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);

 DetermineRenderClientScript();

 if (renderClientScript)
 {
 // register the image-swapping JavaScript
 // if it is not already registered
 if (!Page.ClientScript.IsClientScriptBlockRegistered(
 typeof(RolloverImageLink),"SWAP_SCRIPT"))
 {
 Page.ClientScript.RegisterClientScriptBlock(
 typeof(RolloverImageLink),
 "SWAP_SCRIPT",
 SWAP_SCRIPT,
 true);
 }

 if (this.PreLoadImages)
 {
 // add image names to the
 // array of rollover images to be preloaded

RegisterClientScriptInclude Emits a JavaScript script block that includes the script file
specified in a URL parameter in the function.

IsClientScriptIncludeRegistered Checks to see if a previous control has registered to emit
a similar script block include for a script file.

RegisterClientScriptResource Emits a JavaScript script block that includes script
content from compiled resources inside an assembly
served via the WebResource.axd HTTP handler.

GetWebResourceUrl Provides a URL with content from compiled resources
inside an assembly served via the WebResource.axd HTTP
handler.

GetPostBackEventReference Emits a JavaScript that allows a control to initiate a
postback to the server.

GetCallbackEventReference Emits a JavaScript that allows a client-side script to initiate
an out-of- band call to the server to retrieve data or content
without requiring a full postback of the browser page.

Table 8-1. ASP.NET ClientScriptManager Class Script Registration Methods

Method Description

Cameron_865-2C08.fm Page 355 Monday, February 18, 2008 4:10 PM

356 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 Page.ClientScript.RegisterArrayDeclaration(
 SWAP_ARRAY,
 "'" + ResolveUrl(this.ImageUrl) + "'," +
 "'" + ResolveUrl(this.OverImageUrl) + "'");

 // register the image, preloading JavaScript
 // if it is not already registered
 if (!Page.ClientScript.IsStartupScriptRegistered(
 typeof(RolloverImageLink),"PRELOAD_SCRIPT"))
 {
 Page.ClientScript.RegisterStartupScript(
 typeof(RolloverImageLink),
 "PRELOAD_SCRIPT",
 PRELOAD_SCRIPT.Replace("{arrayname}", SWAP_ARRAY),
 true);
 }
 }
 }
}

The first client script feature we use in RolloverImageLink is the capability to render a
script function that swaps the images for rollover effect at the top of the HTML document.
The server control code uses the ClientScriptManager method RegisterClientScriptBlock in
conjunction with the constant string named SWAP_SCRIPT, as shown in the following code. This
string constant uses the “at” symbol (@) to enable verbatim strings that allow for easy formatting
and maintenance inside the server control. Before we register the client script, we check to see
if the script block has already been registered by another instance of the control on the page with
a call to IsClientScriptBlockRegistered. Note that if we were to call RegisterClientScript
twice, the content of the second invocation would replace the script generated by the first call.

protected const string SWAP_SCRIPT = @"
function __Image_Swap(sName, sSrc)
{
document.images[sName].src = sSrc;
}
";

RegisterClientScriptBlock takes four parameters: a type definition that scopes the script
registration on a Page, a unique ID that identifies the script block for that Type, the string value
of the script to be emitted, and a Boolean value that tells the control system to include enclosing
<script> tags around the script content.

If we are preloading the images, we register the necessary information using a data-oriented
approach to the script processing. We can easily do this—ASP.NET makes it simple to emit
JavaScript arrays. The RegisterArrayDeclaration method of the Page object allows us to add all
the image names to the HTML document as an array that our PRELOAD_SCRIPT script block can
iterate over when loading images. Unlike the swap script function, this script is emitted near
the end of the document.

Cameron_865-2C08.fm Page 356 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 357

The image preloading script comes from a constant string like the one for swapping images.
It is a little different because it has a placeholder, {arrayname}, for the array that is emitted into
the output:

protected const string PRELOAD_SCRIPT = @"
for (index = 0; index < {arrayname}; index++)
{
loadimg = new Image();
loadimg.src = {arrayname}[index];
}
";

The OnPreRender code replaces the array name correctly from the script template and
passes it to the RegisterStartupScript method of the Page class. This will emit it at the very
bottom of the HTML form, after any registered JavaScript arrays. Of course, we also check to
see if the script was registered by a previous control with a call to IsStartupScriptRegistered
provided by the Page class.

Rendering the HTML Code

The RolloverImageLink control overrides the rendering process of the inherited image control
so that it can add the hyperlink and JavaScript code. The main task is to wrap the tag
generation process of the base Image control with an enclosing <a> tag.

■Note Because generating the link (<a> tag) is an HTML operation, it is not affected by the value of the
EnableClientScript property on the server control. This functionality is present on the server regardless
of JavaScript capabilities.

Before we do this, we call the Page method named VerifyRenderingInServerForm, as shown in
the following code. This method raises an exception if the control is not rendering within the
confines of a <form runat="server"> tag required for the web form environment. It is a good
habit to put this call into the Render phase of a control, especially if the control is emitting
client-side script that performs a postback to the web server.

protected override void Render(HtmlTextWriter writer)
{
 // ensure the control is used inside <form runat="server">
 Page.VerifyRenderingInServerForm(this);

 // set up attributes for the enclosing hyperlink
 // <a href> tag pair that go around the tag
 writer.AddAttribute("href",this.NavigateUrl);

Cameron_865-2C08.fm Page 357 Monday, February 18, 2008 4:10 PM

358 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 // we have to create an ID for the <a> tag so that it
 // doesn't conflict with the tag generated by
 // the base Image control
 writer.AddAttribute("name",this.UniqueID + "_href");

 // emit onmouseover/onmouseout attributes that handle
 // client events and invoke our image-swapping JavaScript
 // code if client supports it
 if (renderClientScript)
 {
 writer.AddAttribute("onmouseover",
 SWAP_FUNC + "('" + this.UniqueID + "','" +
 ResolveUrl(this.OverImageUrl) + "');");
 writer.AddAttribute("onmouseout",
 SWAP_FUNC + "('" + this.UniqueID + "','" +
 ResolveUrl(this.ImageUrl) + "');");

 }
 writer.RenderBeginTag(HtmlTextWriterTag.A);

 // use name attribute to identify HTML element
 // for older browsers
 writer.AddAttribute("name",this.UniqueID);

 base.Render(writer);

 writer.RenderEndTag();
}

The first section of our Render override adds attributes to help generate the <a> hyperlink,
including the href attribute that is linked to NavigateUrl. Notice that we create a unique name
attribute for the <a> tag to prevent any naming conflicts with other tags on the page, including
a potential conflict with the tag of the inherited Image control.

The next step in working with the <a> tag is to add the onmouseover and onmouseout event-
handling attributes. Render puts values in the attributes to call the image-swapping JavaScript
function. This is done using the SWAP_FUNC constant that points to the actual JavaScript function
name. After the <a> tag attributes are added to the HtmlTextWriter stream, we render the begin-
ning <a> tag.

The next step is to prepare for the base Image class to render the tag. To make the
script friendlier to browsers that favor the name attribute in JavaScript, we add a name attribute
to the HtmlTextWriter stream before we call on the base Image class’s Render method. The
RolloverImageLink override of Render ends by emitting the closing tag.

At this point, the control is fully implemented, as shown in Listing 8-4.

Cameron_865-2C08.fm Page 358 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 359

Listing 8-4. The RolloverImageLink Server Control

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch08
{
 [ToolboxData("<{0}:RolloverImageLink runat=server></{0}:RolloverImageLink>"),
 DefaultProperty("NavigateUrl")]
 public class RolloverImageLink : Image
 {
 public virtual bool EnableClientScript
 {
 get
 {
 object script = ViewState["EnableClientScript"];
 return (script == null) ? true : (bool)script;
 }
 set
 {
 ViewState["EnableClientScript"] = value;
 }
 }

 public string NavigateUrl
 {
 get
 {
 object url = ViewState["NavigateUrl"];
 return (url == null) ? "" : (string)url;
 }
 set
 {
 ViewState["NavigateUrl"] = value;
 }
 }

 public string OverImageUrl
 {
 get
 {
 object url = ViewState["OverImageUrl"];
 return (url == null) ? "" : (string)url;
 }

Cameron_865-2C08.fm Page 359 Monday, February 18, 2008 4:10 PM

360 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 set
 {
 ViewState["OverImageUrl"] = value;
 }
 }

 public bool PreLoadImages
 {
 get
 {
 object pre = ViewState["PreLoadImages"];
 return (pre == null) ? true : (bool)pre;
 }
 set
 {
 ViewState["PreLoadImages"] = value;
 }
 }

 protected const string SWAP_FUNC = "__Image_Swap";
 protected const string SWAP_ARRAY = "__Image_Swap_Array";

 //@ symbol in front of the string preserves the layout of the string content
 protected const string SWAP_SCRIPT = @"
 function __Image_Swap(sName, sSrc)
 {
 document.images[sName].src = sSrc;
 }
 ";

 protected const string PRELOAD_SCRIPT = @"
 for (index = 0; index < {arrayname}; index++)
 {
 loadimg = new Image();
 loadimg.src = {arrayname}[index];
 }
 ";

 private bool renderClientScript = false;
 protected void DetermineRenderClientScript()
 {
 if (EnableClientScript &&
 Context.Request.Browser.EcmaScriptVersion.Major >= 1)
 renderClientScript = true;
 }

Cameron_865-2C08.fm Page 360 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 361

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 DetermineRenderClientScript();

 if (renderClientScript)
 {
 // register the image-swapping JavaScript
 // if it is not already registered
 if (!Page.ClientScript.IsClientScriptBlockRegistered(
 typeof(RolloverImageLink), "SWAP_SCRIPT"))
 {
 Page.ClientScript.RegisterClientScriptBlock(
 typeof(RolloverImageLink),
 "SWAP_SCRIPT",
 SWAP_SCRIPT,
 true);
 }

 if (this.PreLoadImages)
 {
 // add image names to the
 // array of rollover images to be preloaded
 Page.ClientScript.RegisterArrayDeclaration(
 SWAP_ARRAY,
 "'" + ResolveUrl(this.ImageUrl) + "'," +
 "'" + ResolveUrl(this.OverImageUrl) + "'");

 // register the image, preloading JavaScript
 // if it is not already registered
 if (!Page.ClientScript.IsStartupScriptRegistered(
 typeof(RolloverImageLink), "PRELOAD_SCRIPT"))
 {
 Page.ClientScript.RegisterStartupScript(
 typeof(RolloverImageLink),
 "PRELOAD_SCRIPT",
 PRELOAD_SCRIPT.Replace("{arrayname}", SWAP_ARRAY),
 true);
 }
 }
 }
 }

Cameron_865-2C08.fm Page 361 Monday, February 18, 2008 4:10 PM

362 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 protected override void Render(HtmlTextWriter writer)
 {
 // ensure the control is used inside <form runat="server">
 Page.VerifyRenderingInServerForm(this);

 // set up attributes for the enclosing hyperlink
 // <a href> tag pair that go around the tag
 writer.AddAttribute("href", this.NavigateUrl);

 // we have to create an ID for the <a> tag so that it
 // doesn't conflict with the tag generated by
 // the base Image control
 writer.AddAttribute("name", this.UniqueID + "_href");

 // emit onmouseover/onmouseout attributes that handle
 // client events and invoke our image-swapping JavaScript
 // code if client supports it
 if (renderClientScript)
 {
 writer.AddAttribute("onmouseover",
 SWAP_FUNC + "('" + this.UniqueID + "','" +
 ResolveUrl(this.OverImageUrl) + "');");
 writer.AddAttribute("onmouseout",
 SWAP_FUNC + "('" + this.UniqueID + "','" +
 ResolveUrl(this.ImageUrl) + "');");
 }
 writer.RenderBeginTag(HtmlTextWriterTag.A);

 // use name attribute to identify HTML element
 // for older browsers
 writer.AddAttribute("name", this.UniqueID);

 base.Render(writer);

 writer.RenderEndTag();
 }
 }
}

The RolloverImage Web Form
The RolloverImage web form demonstrates the RolloverImageLink server control by adding
two controls linked to large numeric images (1 and 2), as shown in Figure 8-2.

Cameron_865-2C08.fm Page 362 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 363

Figure 8-2. The RolloverImage web form

When you hover over a button with the mouse, the image changes to a pushed down
version, providing the nice effect shown in Figure 8-3.

Figure 8-3. The RolloverImage web form on rollover

Cameron_865-2C08.fm Page 363 Monday, February 18, 2008 4:10 PM

364 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

If you click an image, the page will navigate either to the publisher’s site or to the ASP.NET
web site. The full code for the web form is shown in Listings 8-5 and 8-6.

Listing 8-5. The RolloverImage Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="RolloverImage.aspx.cs"
Inherits="ControlsBook2Web.Ch08.RolloverImage"
 Title="RolloverImage Demo" %>

<%@ Register Assembly="ControlsBook2Lib" Namespace=
 "ControlsBook2Lib.Ch08" TagPrefix="apress" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle"
 runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">8</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Integrating Client-Side Script</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">
 <apress:RolloverImageLink ID="image1" runat="server"
 ImageUrl="ex1.gif" OverImageUrl="ex1_selected.gif"
 NavigateUrl="http://www.apress.com" />
 <apress:RolloverImageLink ID="image2" runat="server" ImageUrl="ex2.gif"
 OverImageUrl="ex2_selected.gif"
 NavigateUrl="http://asp.net" EnableClientScript="True" />

</asp:Content>

Listing 8-6. The RolloverImage Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch08
{
 public partial class RolloverImage : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

Cameron_865-2C08.fm Page 364 Monday, February 18, 2008 4:10 PM

http://www.apress.com
http://asp.net

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 365

Analyzing the Rollover HTML Output

The rollover functionality lives in the emitted hyperlink tags in the HTML output. The top of
the HTML form also contains the image-swapping function called by the onmouseover and
onmouseout client event handlers attached to the hyperlinks, as shown here:

<script type="text/javascript">
<!--

 function __Image_Swap(sName, sSrc)
 {
 document.images[sName].src = sSrc;
 }
 // -->
</script>

The Image control output shows the tags wrapped by an <a> tag and the client-script
event mappings for onmouseover and onmouseout:

<a href="http://www.apress.com" name="ctl00$ControlsBookContent$image1_href"
onmouseover="__Image_Swap('ctl00$ControlsBookContent$image1',
'/ControlsBook2Web/Ch08/ex1_selected.gif');" onmouseout=
"__Image_Swap('ctl00$ControlsBookContent$image1',
'/ControlsBook2Web/Ch08/ex1.gif');"><img name="ctl00$ControlsBookContent$image1"
id="ctl00_ControlsBookContent_image1" src="ex1.gif" style="border-width:0px;" />
<a href="http://asp.net" name="ctl00$ControlsBookContent$image2_href"
onmouseover="__Image_Swap('ctl00$ControlsBookContent$image2',
 '/ControlsBook2Web/Ch08/ex2_selected.gif');" onmouseout=
 "__Image_Swap('ctl00$ControlsBookContent$image2',
 '/ControlsBook2Web/Ch08/ex2.gif');"><img name=
 "ctl00$ControlsBookContent$image2"
id="ctl00_ControlsBookContent_image2" src="ex2.gif" style="border-width:0px;" />

At the bottom of the HTML document is the code to preload the images. It creates the
Image JavaScript object and sets the src attribute to complete its task. One script block is emitted
for each control to initialize its images:

<script type="text/javascript">
<!--
var __Image_Swap_Array = new Array('/ControlsBook2Web/Ch08/ex1.gif','/
ControlsBook2Web/Ch08/ex1_selected.gif',
'/ControlsBook2Web/Ch08/ex2.gif',
'/ControlsBook2Web/Ch08/ex2_selected.gif');
// -->
</script>
<script type="text/javascript">
<!--

Cameron_865-2C08.fm Page 365 Monday, February 18, 2008 4:10 PM

http://www.apress.com
http://asp.net

366 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 for (index = 0; index < __Image_Swap_Array; index++)
 {
 loadimg = new Image();
 loadimg.src = __Image_Swap_Array[index];
 }
// -->
</script>

Running a Client Script When a Form Is Submitted
The previous section showed how to run client script at load time of the HTML document via
the RegisterStartupScript method in the ClientScriptManager class. In this section, we discuss
how to execute a client script just after postback is initiated by the end user, whether through a
button click or through a JavaScript-based method. We create two custom server controls to
assist in presenting the concepts required to execute client script when a form is submitted.
The first server control we discuss is the FormConfirmation control.

The FormConfirmation Control
FormConfirmation is a server control designed to display a message when the browser is ready
to submit the HTML document back to the web server. We inherit from System.Web.UI.Control,
because we do not have a UI to display and, therefore, do not need the styling and device-
rendering features of System.Web.UI.WebControls.WebControl.

Listing 8-7 provides the source code for the FormConfirmation server control. ASP.NET
allows you to add code to the onsubmit event attribute of the <form> tag generated by the web
form via the RegisterOnSubmitStatement method in the ClientScriptManager class. This hooks
into the normal HTTP posting mechanism, as we describe in Chapter 5.

Listing 8-7. The FormConfirmation Server Control

using System;
using System.Web;
using System.Web.UI;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch08
{
 [ToolboxData("<{0}:FormConfirmation runat=server></{0}:FormConfirmation>"),
 DefaultProperty("Message")]
 public class FormConfirmation : Control
 {
 public virtual string Message
 {
 get
 {
 return (string)ViewState["Message"];
 }

Cameron_865-2C08.fm Page 366 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 367

 set
 {
 ViewState["Message"] = value;
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 if (Context.Request.Browser.EcmaScriptVersion.Major >= 1)
 {
 string script = "return (confirm('" + this.Message + "'));";

 // register JavaScript code for onsubmit event
 // of the HTML <form> element
 Page.ClientScript.RegisterOnSubmitStatement(typeof(FormConfirmation),
 "FormConfirmation", script);
 }
 }

 protected override void Render(HtmlTextWriter writer)
 {
 // make sure the control is rendered inside
 // <form runat=server> tags
 Page.VerifyRenderingInServerForm(this);

 base.Render(writer);
 }
 }
}

FormConfirmation exposes a Message property to allow web developers to customize the
JavaScript confirmation prompt to the end user. This simple control takes advantage of the
ClientScriptManager class’s RegisterOnSubmitStatement method we described previously to
properly inject the script into the HTML stream loaded in the browser. Just drop the control
on a web form, and voilà! You can confirm that the user is ready to proceed with submitting
the form back to the server. If the user does not affirm the form submission, the script cancels the
action by returning false. The other item to highlight for this control is the Render override
for the purposes of ensuring the control is located inside a web form via the Page class’s
VerifyRenderingInServerForm method.

In the next section, we discuss an interesting variation on this theme of confirming navi-
gation away from a page by adding the capability of checking whether a user wants to move on
to a new page or stay on the current web form.

The ConfirmedLinkButton Control
The ConfirmedLinkButton button prompts with a custom message that will not navigate if the
user cancels the action. ConfirmedLinkButton does not use the RegisterOnSubmitStatement of
the ClientScriptManager class; rather, it uses the client-side postback system of ASP.NET.

Cameron_865-2C08.fm Page 367 Monday, February 18, 2008 4:10 PM

368 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

We use this control on a web form in conjunction with the previously created FormConfirmation
control to show how the two mechanisms interact.

The source code for the ConfirmedLinkButton server control is provided in Listing 8-8.
ConfirmedLinkButton exposes a Message property like FormConfirmation, but it differs in that it
inherits from the LinkButton control. LinkButton renders as a hyperlink but submits the web
form via JavaScript.

Listing 8-8. The ConfirmedLinkButton Server Control

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;
using System.ComponentModel;

namespace ControlsBook2Lib.Ch08
{
 [ToolboxData("<{0}:ConfirmedLinkButton runat=server></{0}:ConfirmedLinkButton>"),
 DefaultProperty("Message")]
 public class ConfirmedLinkButton : LinkButton
 {
 private string message = "";
 public virtual string Message
 {
 get { return message; }
 set { message = value; }
 }

 protected override void AddAttributesToRender(HtmlTextWriter writer)
 {
 // enhance the LinkButton by replacing its
 // href attribute while leaving the rest of the
 // rendering process to the base class
 if (Context != null && Context.Request.Browser.EcmaScriptVersion.Major >= 1 &&
 this.Message != "")
 {
 StringBuilder script = new StringBuilder();
 script.Append("javascript: if (confirm('");
 script.Append(this.Message);
 script.Append("')) {");
 // get the ASP.NET JavaScript that does a form
 // postback and have this control submit it
 script.Append(Page.ClientScript.GetPostBackEventReference(this, ""));
 script.Append("}");
 writer.AddAttribute(HtmlTextWriterAttribute.Href,
 script.ToString());

Cameron_865-2C08.fm Page 368 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 369

 }
 }
 }
}

We override the AddAttributesToRender method so that we can change the normal href
attribute content to add a call to the JavaScript confirm method instead. Because we override
the href attribute, we use the GetPostBackEventReference method to set up postback; otherwise,
the form submission mechanism will not fire. GetPostBackEventReference obtains a reference to
a client-side script function that causes the server to post back to the page.

Because this control is inheriting from an existing WebControl, we do not need to call
Page.VerifyRenderingInServerForm, because this call is already performed by the base class
implementation of LinkButton. In the next section, we test the behavior of the ConfirmedLinkButton
and FormConfirmation server controls in the Confirm web form demonstration .aspx page.

The Confirm Web Form
The interaction between the client form submission event and the code emitted by controls to
perform JavaScript postbacks for ASP.NET is not as integrated as we would like. The core problem
is that the onsubmit client event is not fired if the HTML form is submitted programmatically
via JavaScript. To demonstrate the need for better integration, the Confirm web form hosts a
set of form posting controls.

On the Confirm web form are a regular ASP.NET Button that does a traditional HTML form
post and an ASP.NET LinkButton that uses JavaScript from ASP.NET to cause a postback. We
also have our FormConfirmation and ConfirmedLinkButton server controls to show how they
provide confirmation on form submit in their own unique manner. Figure 8-4 shows the static
web form display output.

Figure 8-4. The Confirm web form

Cameron_865-2C08.fm Page 369 Monday, February 18, 2008 4:10 PM

370 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

The code-behind web form class has logic to announce which control was responsible for
the postback to help us see what is going on. The first control we exercise is the regular ASP.NET
Button on the form. This Button causes the form to post, but we plugged into this mechanism
with the FormConfirmation server control. When this button is clicked, it kicks off the
FormConfirmation server control’s JavaScript code according to the setting on its Message property,
as shown in Figure 8-5. Click the Reset Status button to return the form to its original state.

Figure 8-5. Using the ASP.NET Button control on the web form

The HTML generated by the web form shows the emission of the onsubmit JavaScript
handler on the <form> tag:

<form name="aspnetForm" method="post" action="Confirm.aspx" onsubmit=
"javascript:return WebForm_OnSubmit();" id="aspnetForm">

The next iteration of the Confirm web form in Figure 8-6 shows what happens when the
ASP.NET LinkButton is clicked.

This control executes the __doPostback JavaScript method emitted by ASP.NET to program-
matically submit the web form:

<a id="ctl00_ControlsBookContent_linkbutton1"href="javascript:__doPostBack
('ctl00$ControlsBookContent$linkbutton1','')">LinkButton

Cameron_865-2C08.fm Page 370 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 371

Figure 8-6. Using the ASP.NET LinkButton on the web form

__doPostBack is emitted by the core ASP.NET Framework when a control registers to
initiate a client-side postback via JavaScript. If you select View ➤ Source in the browser, you
can see how the script works. It locates the HTML <form> tag and calls its Submit method:

<script type="text/javascript">
<!--
var theForm = document.forms['aspnetForm'];
if (!theForm) {
 theForm = document.aspnetForm;
}
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
// -->
</script>

This results in the web form submitting with a customized JavaScript alert box popping up
and hooking into the form submission process with the FormConfirmation control.

Cameron_865-2C08.fm Page 371 Monday, February 18, 2008 4:10 PM

372 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

The use of the ConfirmedLinkButton control gives us a different, though similar, outcome.
It executes its own JavaScript pop-up before submitting the web form with “confirmedlinkbutton”
as part of the text. This pop-up, shown in Figure 8-7, is different from the one emitted by the
FormConfirmation control. The FormConfirmation control also renders a dialog, so normally,
you would not use both controls on the same web form; we do so for demonstration purposes.

Figure 8-7. Using the ConfirmedLinkButton control on the web form

ConfirmedLinkButton emits a hyperlink that is similar to the LinkButton hyperlink, but it
tacks on extra JavaScript to confirm the form submission before calling __doPostBack:

<a href="javascript: if (confirm('confirmedlinkbutton:
Are you sure you want to submit?'))
{__doPostBack('ctl00$ControlsBookContent$confirmlink1','')}">
ConfirmedLinkButton

The point of this discussion is to show you what mechanisms are available to server controls to
cause postback and how to plug into the architecture. The full Confirm web form is shown in
Listings 8-9 and 8-10.

Listing 8-9. The Confirm Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="Confirm.aspx.cs"
 Inherits="ControlsBook2Web.Ch08.Confirm"
 Title="Confirm Demo" %>

Cameron_865-2C08.fm Page 372 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 373

<%@ Register Assembly="ControlsBook2Lib" Namespace=
 "ControlsBook2Lib.Ch08" TagPrefix="apress" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server" Width="14px">8</asp:Label>
 <asp:Label ID="ChapterTitleLabel" runat="server" Width="360px">
Integrating Client-Side Script</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <apress:FormConfirmation ID="confirm1" runat="server" Message=
 "formconfirmation: Are you sure you want to submit?" />

 <asp:Button ID="button1" runat="server" Text="Button" OnClick="Button_Click" />

 <asp:LinkButton ID="linkbutton1" runat="server" Text="LinkButton"
 OnClick="LinkButton_Click" />

 <apress:ConfirmedLinkButton ID="confirmlink1" runat="server"
 Message="confirmedlinkbutton: Are you sure you want to submit?"
 OnClick="ConfirmLinkButton_ClickClick">ConfirmedLinkButton
 </apress:ConfirmedLinkButton>

 <asp:Button ID="Button2" runat="server" Text="Reset Status"
 onclick="Button2_Click" />
 <asp:Label ID="status" runat="server" Text="Click a button."/>
</asp:Content>

Listing 8-10. The Confirm Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch08
{
 public partial class Confirm : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void Button_Click(object sender, System.EventArgs e)
 {
 status.Text = "Regular Button Clicked! - " + DateTime.Now;
 }

 protected void LinkButton_Click(object sender, System.EventArgs e)
 {
 status.Text = "LinkButton Clicked! - " + DateTime.Now;
 }

Cameron_865-2C08.fm Page 373 Monday, February 18, 2008 4:10 PM

374 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 protected void ConfirmLinkButton_ClickClick(object sender, System.EventArgs e)
 {
 status.Text = "ConfirmLinkButton Clicked! - " + DateTime.Now;
 }

 protected void Button2_Click(object sender, EventArgs e)
 {
 status.Text = "Click a button.";
 }
 }
}

So far in this chapter, we have covered how to integrate client-side script in general, how
to execute client script on page load, and how to execute client script during form submission
or as part of navigation. In the next section, we explore how to integrate client- and server-side
events to provide graceful degradation if client-side script support is not available.

Integrating Client-Side and Server-Side Events
The event processing that occurs in the client browser is separate from the ASP.NET activity
that occurs on the server to generate HTML output and respond to server-side events. In this
section, we build an example server control that provides seamless integration of the two event
models in a similar manner to the built-in ASP.NET Validator controls’ client-side and server-
side functionality. We discuss Validator controls in Chapter 10. The control we build in this
chapter is similar in functionality to the NumericUpDown Windows Forms control.

Control developers who extend or create a server control that uses client-side features
need to ensure that the client activities are smoothly integrated with the feature set of ASP.NET
and do not contradict or interfere with mechanisms such as ViewState or postback. It is also
recommended that developers build controls that integrate client-side scripts to degrade
gracefully when the client viewing the generated HTML content does not support advanced
features. A good example of this is the Validator class of controls, which emit client-side
JavaScript validation routines only if the browser supports JavaScript. Let’s now dive into
creating the UpDown custom server control.

The UpDown Server Control
To demonstrate integration between client-side programming and server controls along with
graceful down-level client rendering, we construct a server control that mimics the NumericUpDown
control from the Windows Forms desktop .NET development environment; our control is
shown in Figure 8-8.

The UpDown server control takes the form of a composite control with a TextBox to hold the
value and two Buttons with the captions + and – to represent up and down incrementing clicks.
Although the UI is not spectacular, it permits us to show how to wire up client script with
server events.

Cameron_865-2C08.fm Page 374 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 375

Figure 8-8. The UpDown Windows Forms desktop control

If the browser supports it, the UpDown server control emits JavaScript that increments or
decrements the value in the TextBox in the local environment of the browser without having to
make a round-trip to the web server to perform these operations. Client-side operations include
the same functionality available in the server-side events, such as range checking, though we
simply display a message notifying the user of the input error while in the server-side events we
throw an ArgumentOutOfRangeException. The UpDown server control has a number of important
properties that we discuss in the next section.

Key Properties: MinValue, MaxValue, Increment, and Value

The UpDown server control exposes four properties that allow developers to configure its behavior in
the Visual Studio Designer: MinValue, MaxValue, Increment, and Value. The property handlers
perform data validation tasks to ensure the number set for the Value property falls between the
MinValue and MaxValue property range. We default to System.Int.MaxRange for the MaxValue
property to prevent an exception if the value is too large. Here’s how these properties are
declared within the UpDown server control:

public virtual int MinValue
{
 get
 {
 EnsureChildControls();
 object min = ViewState["MinValue"];
 return (min == null) ? 0 : (int) min;
 }
 set
 {
 EnsureChildControls();
 if (value < MaxValue)
 ViewState["MinValue"] = value;
 else
 throw new ArgumentException(
"MinValue must be less than MaxValue.","MinValue");
 }
}

Cameron_865-2C08.fm Page 375 Monday, February 18, 2008 4:10 PM

376 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

public virtual int MaxValue
{
 get
 {
 EnsureChildControls();
 object max = ViewState["MaxValue"];
 return (max == null) ? System.Int32.MaxValue : (int) max;
 }
 set
 {
 EnsureChildControls();
 if (value > MinValue)
 ViewState["MaxValue"] = value;
 else
 throw new ArgumentException(
"MaxValue must be greater than MinValue.","MaxValue");
 }
}

public int Value
{
 get
 {
 EnsureChildControls();
 object value = (int)ViewState["value"];
 return (value != null) ? (int)value : 0;
 }
 set
 {
 EnsureChildControls();
 if ((value <= MaxValue) &&
 (value >= MinValue))
 {
 valueTextBox.Text = value.ToString();
 ViewState["value"] = value ;
 }
 else
 {
 throw new ArgumentOutOfRangeException("Value",
 "Value must be between MinValue and MaxValue.");
 }
 }
}

Cameron_865-2C08.fm Page 376 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 377

public int Increment
{
 get
 {
 EnsureChildControls();
 object inc = ViewState["Increment"];
 return (inc == null) ? 1 : (int) inc;
 }
 set
 {
 EnsureChildControls();
 if (value > 0)
 ViewState["Increment"] = value;
 }
}

When you view the UpDown.aspx file in the Visual Studio Designer, if you select the updown1
control and try to give it a value that is either above MaxValue or below MinValue, you will get a
message dialog box reporting the error. Likewise, if you set MaxValue to a number that is less
than MinValue, or vice versa, you will get an error dialog box. This design-time behavior is a
good way to help developers understand how the control works and what errors to catch in
exception handler blocks when working with the control at runtime.

In the next section, we move on to describe how the control is constructed.

Accessing UpDown Child Controls

UpDown is a composite server control that declares private controls of type TextBox to render an
<INPUT type="text"> tag and two Button controls to render <INPUT type="button"> tags. It adds
these controls by overriding the CreateChildControls method from WebControl, and it wires up
their events to the parent control’s events.

Because our control will emit JavaScript that needs to know the fully qualified name of
each child control in order to work properly on the client, we implement the INamingContainer
interface to ensure generation of unique names and use the UniqueID property from each of our
private control declarations. In the following code, we access the UniqueID of the valueTextBox that
holds the value of the UpDown control:

scriptInvoke = DOWN_FUNC + "('" + valueTextBox.UniqueID

Now that we have presented an overview of how the control is constructed, we can jump
into a discussion in the next section of how the control renders itself to support client-side and
server-side event integration.

Preparing the Script for Rendering

Like any good client-side script-rendering server control, UpDown checks to see if the browser
can support client-side script prior to rendering. DetermineRenderClientScript is similar to
what we looked at for the Focus control—it checks for Document Object Model (DOM) Level 1
compliance and JavaScript features. Our client script is not very demanding, as we use only the

Cameron_865-2C08.fm Page 377 Monday, February 18, 2008 4:10 PM

378 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

document.getElementById method, but this method could be extended to perform additional
checking if you want to support other browsers:

protected void DetermineRenderClientScript()
{
 if (EnableClientScript)
 {
 if ((Page != null) && (Page.Request != null))
 {
 HttpBrowserCapabilities caps = Context.Request.Browser;

 // require JavaScript and DOM Level 1
 // support to render client-side code
 // (IE 5+ and Netscape 6+)
 if (caps.EcmaScriptVersion.Major >= 1 &&
 caps.W3CDomVersion.Major >= 1)
 {
 renderClientScript = true;
 }
 }
 }
}

The OnPreRender method calls DetermineRenderClientScript to guide its JavaScript emis-
sions. In UpDown, we take a different approach from previous server controls in the chapter if we
get the green light that we can take advantage of client script. The Web Resource system that is
new to ASP.NET 2.0 allows what formerly required loose script files installed in folders like
aspnet_client on the web server to actually have them originate from the compiled assembly
itself as embedded resources. The embedded resources are retrieved by browser clients using
special URLs created by ASP.NET that point back to the WebResource.axd handler for a web site.
We will use it for JavaScript functionality with the UpDown control, but it can also be employed
to embed images, style sheets, or other loose content for easy deployment and maintenance.

The Web Resource system is enabled by two primary steps for marking resources:

• Setting the Build Action for a file in Visual Studio to Embedded Resource

• Adding a WebResource attribute at the assembly level for the embedded resource

The control source code has the following attribute for the UpDown.js script file in the project:

[assembly: WebResource("ControlsBook2Lib.Ch08.UpDown.js", "text/javascript")]

The parameters to the WebResource attribute include a fully qualified name to the resource
file in a project that accounts for folder depth and the MIME type of the resource being embedded
in the assembly.

After the web resources have been embedded and made visible via the WebResource
attribute, the control needs to emit something to link in the URL for it. This can be done with
either the GetWebResourceUrl method of the ClientScriptManager class for generic content or
the more applicable RegisterClientScriptResource call for our UpDown control, which emits a
script block with the src attribute pointing at the web resource URL.

Cameron_865-2C08.fm Page 378 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 379

Page.ClientScript.RegisterClientScriptResource(typeof(UpDown),
 "ControlsBook2Lib.Ch08.UpDown.js");

The rest of the prerendering functionality wires up the appropriate client events using the
function names in the UpDown.js file:

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);

 DetermineRenderClientScript();

 // textbox script that validates the textbox when it
 // loses focus after input
 string scriptInvoke = "";
 if (renderClientScript)
 {
 scriptInvoke = this.CHECK_FUNC + "('" +
 valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + ")";
 valueTextBox.Attributes.Add("onblur", scriptInvoke);
 }

 // add the '+' button client script function that
 // manipulates the textbox on the client side
 if (renderClientScript)
 {
 scriptInvoke = UP_FUNC + "('" + valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + "," + this.Increment
 + "); return false;";
 upButton.Attributes.Add("onclick", scriptInvoke);
 }

 // add the '-' button client script function that
 // manipulates the textbox on the client side
 if (renderClientScript)
 {
 scriptInvoke = DOWN_FUNC + "('" + valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + "," + this.Increment
 + "); return false;";
 downButton.Attributes.Add("onclick", scriptInvoke);
 }

 // register to ensure we receive postback handling
 // to properly handle child input controls
 Page.RegisterRequiresPostBack(this);

Cameron_865-2C08.fm Page 379 Monday, February 18, 2008 4:10 PM

380 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 if (renderClientScript)
 {
 // register the <script> block that does the
 // client-side handling
 Page.ClientScript.RegisterClientScriptResource(typeof(UpDown),
 "ControlsBook2Lib.Ch08.UpDown.js");
 }
}

First, we add a script to the valueTextBox TextBox to check its value when the user tabs out
or otherwise exits the control. The onblur client-side event is triggered anytime a user enters a
value in the text box and switches the focus from that element on the web page to some other
element. The CHECK_FUNC constant points to __UpDown_Check in UpDown.js. Here is the code for
__UpDown_Check:

function __UpDown_Check(boxid, min, max)
{
 var box = document.getElementById(boxid);

 if (isNaN(parseInt(box.value)))
 box.value = min;
 if (box.value > max)
 box.value = max;
 if (box.value < min)
 box.value = min;
}

We have to pass in the exact ID of the control on the client side, as well as our minimum
and maximum values for validation purposes. The client script checks for nonnumeric values
and resets to the minimum value if they are found. The next part of OnPreRender configures
client-side script for the plus and minus buttons:

// add the '+' button client script function that
// manipulates the textbox on the client side
if (renderClientScript)
{
 scriptInvoke = UP_FUNC + "('" + valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + "," +
 this.Increment + "); return false;";
 upButton.Attributes.Add("onclick",scriptInvoke);
}

// add the '-' button client script function that
// manipulates the textbox on the client side

Cameron_865-2C08.fm Page 380 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 381

if (renderClientScript)
{
 scriptInvoke = DOWN_FUNC + "('" + valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + "," +
 this.Increment + "); return false;";
 downButton.Attributes.Add("onclick",scriptInvoke);
}

The client-side script for the up and down buttons is virtually identical. The script function
for the up button is as follows:

function __UpDown_Up(boxid, min, max, howmuch)
{
 var box = document.getElementById(boxid);

 var newvalue = parseInt(box.value) + howmuch;
 if ((newvalue <= max) && (newvalue >= min))
 box.value = newvalue;
}

It takes the ID of the text box and the minimum, maximum, and increment values from the
server control’s properties. We check for valid numbers within the range of the minimum and
maximum values on the client. We display an alert message box if a constraint is violated. This
makes sure client-side operations are validated as they are as part of server-side validation.

In the next section, we get into the nitty-gritty of how the control is constructed, starting
with an examination of the CreateChildControls method.

Creating the Child Controls

We covered the supporting methods and prerendering steps. Now, we can dive into
CreateChildControls and see how it sets things up. At the top of the class file, we declare our
child controls:

private TextBox valueTextBox ;
private Button upButton ;
private Button downButton ;

We use these references in CreateChildControls when building up the control hierarchy in
our composite control:

protected override void CreateChildControls()
{
 Controls.Clear();

 // add the textbox that holds the value
 valueTextBox = new TextBox();
 valueTextBox.ID = "InputText";
 valueTextBox.Width = 40;
 valueTextBox.Text = "0";
 Controls.Add(valueTextBox);

Cameron_865-2C08.fm Page 381 Monday, February 18, 2008 4:10 PM

382 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 // add the '+' button
 upButton = new Button();
 upButton.ID = "UpButton";
 upButton.Text = " + ";
 upButton.Click += new System.EventHandler(this.UpButtonClick);
 Controls.Add(upButton);

 // add the '-' button
 downButton = new Button();
 downButton.ID = "DownButton";
 downButton.Text = " - ";
 downButton.Click += new System.EventHandler(this.DownButtonClick);
 Controls.Add(downButton);
}

The first thing we do is clear out the control tree so we start with a clean slate. We set the
downButton Button to the same size as the upButton Button to improve our UI just a bit. We add
server-side event handlers to both upButton and downButton, in case we need them because
either the client-side script is not enabled or the browser does not support the level of DOM
access required. In the next section, we discuss how the UpDown control provides a smooth
experience to the end user with a discussion of how the server control monitors for value changes.

The ValueChanged Event

Our server control makes it easy to monitor the UpDown control and be notified only when it
changes value through a server-side event named ValueChanged. The ValueChanged event is
raised when it detects a difference between the Value property of the control from ViewState
and what is received from the client after a postback:

public event EventHandler ValueChanged
{
 add
 {
 Events.AddHandler(ValueChangedKey, value);
 }
 remove
 {
 Events.RemoveHandler(ValueChangedKey, value);
 }
}

protected virtual void OnValueChanged(EventArgs e)
{
 EventHandler valueChangedEventDelegate =
 (EventHandler) Events[ValueChangedKey];

Cameron_865-2C08.fm Page 382 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 383

 if (valueChangedEventDelegate != null)
 {
 valueChangedEventDelegate(this, e);
 }
}

ValueChanged follows the basic pattern of the System.EventHandler delegate for its event
declaration, so we can reuse the System.EventArgs class that goes with it. We also leverage the
built-in Events property from System.Web.Control to efficiently store our subscribing delegates. We
covered event-handling mechanisms in Chapter 5.

Now, we have a way to generate events based on the value being changed. In the next
section, we discuss how to retrieve the old and new value to enforce the UI logic.

Retrieving the Data

The ValueChanged event does us little good if we cannot retrieve the value of the form at post-
back. Instead of relying on the default value and event handling of the TextBox control, we take
matters into our own hands for our composite control to ensure that we are notified during
the form postback processing. We set things up by calling Page.RegisterRequiresPostback in
OnPreRender. We finish the task by implementing the methods of IPostBackDataHandler.

In the following code, LoadPostData uses knowledge of the TextBox control’s UniqueID
property to index into the posted data collection. Once we retrieve the value, we can validate
that it is a number with the Parse function of the System.Int32 type. We include a try-catch, so
we can handle problems with parsing if it is not an integer:

bool IPostBackDataHandler.LoadPostData(string postDataKey,
 NameValueCollection postCollection)
{
 bool changed = false;

 // grab the value posted by the textbox
 string postedValue = postCollection[valueTextBox.UniqueID];
 int postedNumber = 0;

 try
 {
 postedNumber = System.Int32.Parse(postedValue);

 if (!Value.Equals(postedNumber))
 changed = true;

 Value = postedNumber;
 }
 catch (FormatException fe)
 {
 changed = false;
 }
 return changed;
}

Cameron_865-2C08.fm Page 383 Monday, February 18, 2008 4:10 PM

384 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

If the value is an integer, we can assign it to the Value property. We perform range checking
in the property declaration. Before we do assign the value, we first check the Value property’s
ViewState value to see if there was indeed a change. If this is the case, we return true from the
function. Returning true causes RaisePostChangedEvent to be invoked and, in turn, raise our
ValueChanged event via the OnValueChanged helper method, as shown in the following code:

void IPostBackDataHandler.RaisePostDataChangedEvent()
{
 OnValueChanged(EventArgs.Empty);
}

Because our control publishes just a single event, the corresponding
RaisePostDataChangedEvent is also simple. In the next section, we drill down into how child
button clicks that change the value are handled by the composite control and how the control
dynamically determines whether or not to fire server-side events.

Handling Child Control Events

We glossed over the fact that we mapped the button-click events to server-side handlers in our
composite UpDown control. They are not necessary if we assume the browser can handle the
client-side script. The client-side onclick event fully handles the clicking of the up and down
buttons and never needs to post back to the web server. Of course, this is not a good situation
if you have a down-level client. If this is the case, you can fall back on the natural capability of
the buttons to execute a postback by virtue of being located on a web form. We assign the server-
side events to our buttons in CreateChildControls in case they are required.

The UpDown control can make several assumptions when the server reaches its handlers for
the buttons. The first is that the Value property is loaded with the number in the TextBox. We
discussed the LoadPostData handling that did this in the previous section. The second is that all
other events have fired. Remember that buttons and other controls initiating postback always
let other events fire before getting their turn.

The implementation of UpButtonClick takes the Increment property, applies it to the Value
property, and makes sure its stays in bounds, as shown in the following code. Because it knows
that a change has occurred, it raises the OnValueChanged event. DownButtonClick is identical
except for subtracting the Increment value:

protected void UpButtonClick(object source, EventArgs e)
{
 int newValue = Value + Increment;
 if ((newValue <= MaxValue) && (newValue >= MinValue))
 {
 Value = newValue;
 OnValueChanged(EventArgs.Empty);
 }
}

At this point, our data loading and event raising tasks are complete. Our control is prepared to
render in the browser. Listing 8-11 presents the full source code for the UpDown control. Listing
8-12 contains the UpDown.js JavaScript file.

Cameron_865-2C08.fm Page 384 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 385

Listing 8-11. The UpDown Server Control

using System;
using System.Collections.Specialized;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

[assembly: WebResource("ControlsBook2Lib.Ch08.UpDown.js", "text/javascript")]

namespace ControlsBook2Lib.Ch08
{
 [ToolboxData("<{0}:UpDown runat=server></{0}:UpDown>"),
 DefaultProperty("Value")]
 public class UpDown : WebControl, IPostBackDataHandler, INamingContainer
 {
 protected const string UP_FUNC = "__UpDown_Up";
 protected const string DOWN_FUNC = "__UpDown_Down";
 protected string CHECK_FUNC = "__UpDown_Check";

 private TextBox valueTextBox ;
 private Button upButton ;
 private Button downButton ;
 private bool renderClientScript;
 private static readonly object ValueChangedKey = new object();

 public UpDown() : base(HtmlTextWriterTag.Div)
 {
 renderClientScript = false;
 }

 public virtual bool EnableClientScript
 {
 get
 {
 EnsureChildControls();
 object script = ViewState["EnableClientScript"];
 if (script == null)
 return true;
 else
 return (bool) script;
 }

Cameron_865-2C08.fm Page 385 Monday, February 18, 2008 4:10 PM

386 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 set
 {
 EnsureChildControls();
 ViewState["EnableClientScript"] = value;
 }
 }

 public virtual int MinValue
 {
 get
 {
 EnsureChildControls();
 object min = ViewState["MinValue"];
 return (min == null) ? 0 : (int) min;
 }
 set
 {
 EnsureChildControls();
 if (value < MaxValue)
 ViewState["MinValue"] = value;
 else
 throw new ArgumentException(
 "MinValue must be less than MaxValue.","MinValue");
 }
 }

 public virtual int MaxValue
 {
 get
 {
 EnsureChildControls();
 object max = ViewState["MaxValue"];
 return (max == null) ? System.Int32.MaxValue : (int) max;
 }
 set
 {
 EnsureChildControls();
 if (value > MinValue)
 ViewState["MaxValue"] = value;
 else
 throw new ArgumentException(
 "MaxValue must be greater than MinValue.","MaxValue");
 }
 }

 public int Value
 {

Cameron_865-2C08.fm Page 386 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 387

 get
 {
 EnsureChildControls();
 object value = (int)ViewState["value"];
 return (value != null) ? (int)value : 0;
 }
 set
 {
 EnsureChildControls();
 if ((value <= MaxValue) &&
 (value >= MinValue))
 {
 valueTextBox.Text = value.ToString();
 ViewState["value"] = value ;
 }
 else
 {
 throw new ArgumentOutOfRangeException("Value",
 "Value must be between MinValue and MaxValue.");
 }
 }
 }

 public int Increment
 {
 get
 {
 EnsureChildControls();
 object inc = ViewState["Increment"];
 return (inc == null) ? 1 : (int) inc;
 }
 set
 {
 EnsureChildControls();
 if (value > 0)
 ViewState["Increment"] = value;
 }
 }

 // LoadPostData is overridden to get the data
 // back from the textbox and set up the
 // ValueChanged event if necessary
 bool IPostBackDataHandler.LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 bool changed = false;

Cameron_865-2C08.fm Page 387 Monday, February 18, 2008 4:10 PM

388 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 // grab the value posted by the textbox
 string postedValue = postCollection[valueTextBox.UniqueID];
 int postedNumber = 0;

 try
 {
 postedNumber = System.Int32.Parse(postedValue);

 if (!Value.Equals(postedNumber))
 changed = true;

 Value = postedNumber;
 }
 catch (FormatException)
 {
 changed = false;
 }
 return changed;
 }

 void IPostBackDataHandler.RaisePostDataChangedEvent()
 {
 OnValueChanged(EventArgs.Empty);
 }

 public event EventHandler ValueChanged
 {
 add
 {
 Events.AddHandler(ValueChangedKey, value);
 }
 remove
 {
 Events.RemoveHandler(ValueChangedKey, value);
 }
 }

 protected virtual void OnValueChanged(EventArgs e)
 {
 EventHandler valueChangedEventDelegate =
 (EventHandler) Events[ValueChangedKey];
 if (valueChangedEventDelegate != null)
 {
 valueChangedEventDelegate(this, e);
 }
 }

Cameron_865-2C08.fm Page 388 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 389

 // up/down button click handling when client-side
 // script functionality is not enabled
 protected void UpButtonClick(object source, EventArgs e)
 {
 int newValue = Value + Increment;
 if ((newValue <= MaxValue) && (newValue >= MinValue))
 {
 Value = newValue;
 OnValueChanged(EventArgs.Empty);
 }
 }

 protected void DownButtonClick(object source, EventArgs e)
 {
 int newValue = Value - Increment;
 if ((newValue <= MaxValue) && (newValue >= MinValue))
 {
 Value = newValue;
 OnValueChanged(EventArgs.Empty);
 }
 }

 protected void DetermineRenderClientScript()
 {
 if (EnableClientScript)
 {
 if ((Page != null) && (Page.Request != null))
 {
 HttpBrowserCapabilities caps = Context.Request.Browser;

 // require JavaScript and DOM Level 1
 // support to render client-side code
 // (IE 5+ and Netscape 6+)
 if (caps.EcmaScriptVersion.Major >= 1 &&
 caps.W3CDomVersion.Major >= 1)
 {
 renderClientScript = true;
 }
 }
 }
 }

Cameron_865-2C08.fm Page 389 Monday, February 18, 2008 4:10 PM

390 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 DetermineRenderClientScript();

 // textbox script that validates the textbox when it
 // loses focus after input
 string scriptInvoke = "";
 if (renderClientScript)
 {
 scriptInvoke = this.CHECK_FUNC + "('" +
 valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + ")";
 valueTextBox.Attributes.Add("onblur",scriptInvoke);
 }

 // add the '+' button client script function that
 // manipulates the textbox on the client side
 if (renderClientScript)
 {
 scriptInvoke = UP_FUNC + "('" + valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + "," + this.Increment
 + "); return false;";
 upButton.Attributes.Add("onclick",scriptInvoke);
 }

 // add the '-' button client script function that
 // manipulates the textbox on the client side
 if (renderClientScript)
 {
 scriptInvoke = DOWN_FUNC + "('" + valueTextBox.UniqueID +
 "'," + this.MinValue + "," + this.MaxValue + "," + this.Increment
 + "); return false;";
 downButton.Attributes.Add("onclick",scriptInvoke);
 }

 // register to ensure we receive postback handling
 // to properly handle child input controls
 Page.RegisterRequiresPostBack(this);

Cameron_865-2C08.fm Page 390 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 391

 if (renderClientScript)
 {
 // register the <script> block that does the
 // client-side handling
 Page.ClientScript.RegisterClientScriptResource(typeof(UpDown),
 "ControlsBook2Lib.Ch08.UpDown.js");
 }
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();

 // add the textbox that holds the value
 valueTextBox = new TextBox();
 valueTextBox.ID = "InputText";
 valueTextBox.Width = 40;
 valueTextBox.Text = "0";
 Controls.Add(valueTextBox);

 // add the '+' button
 upButton = new Button();
 upButton.ID = "UpButton";
 upButton.Text = " + ";
 upButton.Click += new System.EventHandler(this.UpButtonClick);
 Controls.Add(upButton);

 // add the '-' button
 downButton = new Button();
 downButton.ID = "DownButton";
 downButton.Text = " - ";
 downButton.Click += new System.EventHandler(this.DownButtonClick);
 Controls.Add(downButton);
 }
 }
}

Cameron_865-2C08.fm Page 391 Monday, February 18, 2008 4:10 PM

392 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

Listing 8-12. The UpDown JavaScript File

function __UpDown_Check(boxid, min, max)
{
 var box = document.getElementById(boxid);

 if (isNaN(parseInt(box.value)))
 box.value = min;
 if (box.value > max)
 {
 alert('Value cannot be greater than the Maximum allowed.');
 box.value = max;
 }
 if (box.value < min)
 {
 alert('Value cannot be less than the Minimum.');
 box.value = min;
 }
}

function __UpDown_Up(boxid, min, max, howmuch)
{
 var box = document.getElementById(boxid);

 var newvalue = parseInt(box.value) + howmuch;
 if ((newvalue <= max) && (newvalue >= min))
 box.value = newvalue;
}

function __UpDown_Down(boxid, min, max, howmuch)
{
 var box = document.getElementById(boxid);

 var newvalue = parseInt(box.value) - howmuch;
 if ((newvalue <= max) && (newvalue >= min))
 box.value = newvalue;
}

In the next section, we move on to the web form demonstration of our newly minted
UpDown custom server control, testing that it correctly implements the expected UI logic.

The UpDown Web Form
To test the UpDown control, we place it on a web form named UpDown and take it for a test drive,
as shown in Figure 8-9. Clicking the buttons shows that the time label isn’t advancing.

Cameron_865-2C08.fm Page 392 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 393

Figure 8-9. The UpDown control in action on a web form

If you add the following name/value pair to the @Page directive of the web form, it will force
the control to stop emitting JavaScript:

ClientTarget="downlevel"

The result in Figure 8-10 shows the time label changing on each button click because a
server postback occurs.

Figure 8-10. The UpDown control with EnableClientScript = “False”

Cameron_865-2C08.fm Page 393 Monday, February 18, 2008 4:10 PM

394 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

As you can see, both client-side and server-side code work with aplomb. Viewing the
source code that is rendered into the form one can see the script block that is added that gives
the UpDown control its client side functionality:

<script src="/ControlsBook2Web/ WebResource.axd?d=
SkYTaYYXk75i23lOYwPL35uNSpiWvrGd4PWPmHoFkkJW-
MP7oRKUTQnH3nGbezsIQoLucMZWprW1QVh2mXqhrQ2&t=
633154197040000000" type="text/javascript"></script>

The RegisterScriptResource call to ClientScriptManager emits a <script> tag with a src
attribute pointing to the WebResource.axd handler that has d and t parameters. If one used the
GetWebResourceUrl of ClientScriptManager a similar parameterized URL would be returned
but would have required manual rendering of the <script> tag. The d parameter is an encrypted
value that represents the identifier for the resource annotated by the WebResource assembly
attribute. The t parameter is a timestamp, which helps the browser determine whether cached
content returned from a resource handler has changed.

The full source code for the web form and code-behind class is shown in Listings 8-13
and 8-14.

Listing 8-13. The UpDown Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="UpDown.aspx.cs"
 Inherits="ControlsBook2Web.Ch08.UpDown"
 Title="UpDown Demo" %>

<%@ Register Assembly="ControlsBook2Lib" Namespace=
"ControlsBook2Lib.Ch08" TagPrefix="apress" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle"
 runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">8</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Integrating Client-Side Script</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent"
 runat="server">
 <apress:UpDown ID="updown1" runat="server" MinValue="1"
 MaxValue="15" Increment="3"
 Value="6" OnValueChanged="updown1_ValueChanged" Width="98px"
 EnableClientScript="True"></apress:UpDown>

 Time:<asp:Label ID="timelabel" runat="server" />

Cameron_865-2C08.fm Page 394 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 395

 Changes:<asp:Label ID="changelabel" runat="server" />

 <asp:Button ID="submitbtn" runat="server" Text="Submit" />
</asp:Content>

Listing 8-14. UpDown Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch08
{
 public partial class UpDown : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 timelabel.Text = DateTime.Now.ToString();
 changelabel.Text = "";
 }

 protected void updown1_ValueChanged(object sender, System.EventArgs e)
 {
 changelabel.Text = " UpDown value is now " + updown1.Value + "!";
 }
 }
}

Client Callbacks
The normal client server interaction in ASP.NET is driven by the postback process, which shuttles
HTML form and ViewState data for processing to the server and causes the subsequent refresh
of the results in the browser once they are sent back. While making life simpler from a web devel-
opment perspective and the foundation of the ASP.NET control model, it impacts the end-user
experience in negative ways. At a minimum, the flashing of the HTML can be annoying for the
user, and the entire experience may be perceived as unresponsive if there is significant latency
observed when communicating across the network for even the smallest UI change.

Client callbacks are a feature added to the ASP.NET 2.0 release that provide a standardized
way to make requests for pieces of data or content from client-side scripts without the need to
build the underlying plumbing to make such a call or change the ASP.NET web form model
significantly.

This feature set was a precursor to the more complete ASP.NET AJAX Extensions feature
set we discuss later in the book but still has value when more limited client-side functionality
is needed with a controls feature set without requiring the complete deployment of the entire
ASP.NET Ajax Extensions framework. The one thing they do share in common is the use of the
XmlHttpRequest object introduced by Internet Explorer that gives client-side script the ability
to make network calls back to a server. We will leave the plumbing discussion for later chapters
on Ajax technologies and focus on the high level API gives the web developer in ASP.NET.

Cameron_865-2C08.fm Page 395 Monday, February 18, 2008 4:10 PM

396 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

Client Callbacks API
The client callback system is anchored on the server side by the ICallbackEventHandler inter-
face implemented by a web form or a server control that wishes to be the target of a client script
call. The interface defines two functions that are executed in sequence to receive the parameters
from the client through the RaiseCallbackEvent method and then send the response content
back via a GetCallbackResult method.

void RaiseCallbackEvent(string eventArgument)
string GetCallbackResult()

The argument sent to RaiseCallbackEvent and the response sent back from
GetCallbackResult are both of type string and require the appropriate translation between the
world of JavaScript and .NET. The splitting of the API into two calls also means the web form or
control needs to maintain internal state between the two invocations to store execution results
and then return them.

In order for client side script to invoke the ICallbackEventHandler interface, it needs the
support of the ClientScriptManager method GetCallbackEventReference to create a JavaScript
function call stub that links to a client side script library pulled in to support the process. A
variety of other method overloads are provided for additional support, such as making the call
synchronous or asynchronous, as well as providing a user side error handling function if some-
thing goes awry. We take the simplest form to show in our examples:

public string GetCallbackEventReference (Control control, string argument,
 string clientCallback, string context)

The control parameter is the web form or server control that implements
ICallbackEventHandler, the argument parameter is the JavaScript variable on the client side
that is being passed to the RaiseCallbackEvent method, and the clientCallBack parameter is
the client-side function that will be invoked with the results of the server call. context is a
parameter placeholder for JavaScript code that is executed before the callback code is invoked
and its result value is returned to the JavaScript code specified via the clientCallback param-
eter as a like named context parameter to that JavaScript function. This feature set is not used
by our samples, so it will be set to null.

The Callback Web Form
The Callback web form in Figure 8-11 shows an example of the client callback feature when
implemented via code on a web form. The somewhat contrived example shows a DropDownList
control holding vehicle category data linked in a parent-child hierarchy with a ListBox control
displaying vehicles from several manufacturers. Changes to the category in the DropDownList
refresh the vehicles displayed in the ListBox according to that category. The top set of controls
uses the traditional approach to the solution with an automatic postback control with server-
side data binding changes while the bottom set uses client-side callback features to refresh the
data without a postback. The clock at the top of the page confirms whether a postback was
incurred or not.

Cameron_865-2C08.fm Page 396 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 397

Figure 8-11. The Callback web form client callback example

The key function in the web form code is a utility function named RenderScripts. The first
thing it does is add client-side JavaScript code to detect a select element change from the
rendered DropDownList named CbCategoryDrp and then tie its selected value to an invocation of
a function named GetVehicles.

 CbCategoryDrp.Attributes.Add("onChange",
 "GetVehicles(this.options[this.selectedIndex].value)");

GetVehicles is a small wrapper over the GetCallbackEventReference stub that is registered
for inclusion into the HTML content via RegisterClientScriptBlock.

 string callBack = Page.ClientScript.GetCallbackEventReference(
 this, "category", "LoadVehicles", null);

 string clientCallFunc = "function GetVehicles(category)
 { " + callBack + "; }";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "GetVehicles", clientCallFunc, true);

The key parameters to the GetCallBackEventReference include the category JavaScript
variable that is defined by GetVehicles, which takes the selected value of the select element

Cameron_865-2C08.fm Page 397 Monday, February 18, 2008 4:10 PM

398 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

generated by the DropDownList control. The other parameter of interest is the LoadVehicles that
is also defined in the server-side RenderScripts method.

 string clientRecFunc = @"
 function LoadVehicles(results, context)
 {
 var vehLst = document.getElementById('$list');
 vehLst.innerHTML = '';

 var cars = results.split(';');
 for (var i = 0; i < cars.length-1; i++)
 {
 var values = cars[i].split(':');
 var option = document.createElement('option');
 option.value = values[0];
 option.innerHTML = values[1];
 vehLst.appendChild(option);
 }
 }";

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "LoadVehicles", clientRecFunc.Replace("$list",CbVehicleLst.ClientID),
 true);

LoadVehicles takes the results from the server-side callback as well as a context parameter
and uses the data to load the data into the client side rendering of the CbVehicleList ListBox
control. The script text has a placeholder for the name of the control; it is replaced at registra-
tion time with the actual ClientID property of the ListBox.

The other interesting item of note is the encoding mechanism used to send vehicle data to
the client, which is best understood by looking at the web form’s implementation of
ICallbackEventHandler.

 public void RaiseCallbackEvent(string eventArgument)
 {
 cbVehicles = GetVehiclesByCategory(eventArgument);
 }

 public string GetCallbackResult()
 {
 string result = "";
 foreach (Vehicle veh in cbVehicles)
 {
 result += veh.Name + ":" + veh.Description + ";";
 }
 return result;
 }

The Vehicle class has two properties named Name and Description, which are serialized
into a string. The properties are separated with a colon and returned instances are separated by

Cameron_865-2C08.fm Page 398 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 399

semicolons. We will delve into the more elegant means of doing such serialization with a more
natural JavaScript syntax called JavaScript Object Notation (JSON) later in this book, when we
focus on ASP.NET Ajax Extensions.

Looking at the final rendering of the code in the browser, you can see the linkup between
the client script in GetVehicle and a WebForm_DoCallback method that is brought in along with
other callback JavaScript method support via a script include. An interesting side trip for the
user is to follow the reference to the included script and see the use of XmlHttpRequest and
iframe techniques to implement the callback.

<script src="/ControlsBook2Web/WebResource.axd?d=5DxW5OyyTz6vxBRQ_8ouAg2&t=
633160590894162000" type="text/javascript"></script>

<script type="text/javascript">
<!--
 function LoadVehicles(results, context)
 {
 var vehLst = document.getElementById(
 'ctl00_ControlsBookContent_CbVehicleLst');
 vehLst.innerHTML = '';

 var cars = results.split(';');
 for (var i = 0; i < cars.length-1; i++)
 {
 var values = cars[i].split(':');
 var option = document.createElement('option');
 option.value = values[0];
 option.innerHTML = values[1];
 vehLst.appendChild(option);
 }
 }

function GetVehicles(category)
{
 WebForm_DoCallback('__Page',category,LoadVehicles,null,null,false);
 }
// -->
</script>

The full code for the Callback web form is show in Listings 8-15 and 8-16.

Listing 8-15. The Callback Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="Callback.aspx.cs"
Inherits="ControlsBook2Web.Ch08.Callback"
 Title="Callback Demo" %>

Cameron_865-2C08.fm Page 399 Monday, February 18, 2008 4:10 PM

400 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" r
unat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">8</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Integrating Client-Side Script</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Ch08 Client Side Callback</h3>
 <h4>
 Current Time:
 <%= DateTime.Now %>
 </h4>
 <h4>
 AutoPostBack ListBox</h4>
 <table>
 <tr valign="top">
 <td>
 <asp:DropDownList ID="CategoryDrp" runat="server" AutoPostBack="true"
 OnSelectedIndexChanged="CategoryDrp_SelectedIndexChanged">
 <asp:ListItem Selected="true">Car</asp:ListItem>
 <asp:ListItem>Truck</asp:ListItem>
 <asp:ListItem>SUV</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td>
 <asp:ListBox ID="VehicleLst" Width="200" runat="server"
 DataTextField="Description"
 DataValueField="Name"></asp:ListBox>
 </td>
 </tr>
 </table>
 <h4>
 Client Side Callback ListBox</h4>
 <table>
 <tr valign="top">
 <td>
 <asp:DropDownList ID="CbCategoryDrp" runat="server">
 <asp:ListItem Selected="true">Car</asp:ListItem>
 <asp:ListItem>Truck</asp:ListItem>
 <asp:ListItem>SUV</asp:ListItem>
 </asp:DropDownList>
 </td>
 <td>

Cameron_865-2C08.fm Page 400 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 401

 <asp:ListBox ID="CbVehicleLst" Width="200" runat="server"
 DataTextField="Description"
 DataValueField="Name"></asp:ListBox>
 </td>
 </tr>
 </table>

</asp:Content>

Listing 8-16. Callback Web Form Code-Behind Class File

using System;
using System.Collections.Generic;
using System.Web.UI;

namespace ControlsBook2Web.Ch08
{
 public partial class Callback : System.Web.UI.Page, ICallbackEventHandler
 {
 private List<Vehicle> cbVehicles;

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 LoadVehicleListBoxes();
 }
 }

 private void RenderScripts()
 {

 CbCategoryDrp.Attributes.Add("onChange",
 "GetVehicles(this.options[this.selectedIndex].value)");

 string clientRecFunc = @"
 function LoadVehicles(results, context)
 {
 var vehLst = document.getElementById('$list');
 vehLst.innerHTML = '';

 var cars = results.split(';');

Cameron_865-2C08.fm Page 401 Monday, February 18, 2008 4:10 PM

402 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 for (var i = 0; i < cars.length-1; i++)
 {
 var values = cars[i].split(':');
 var option = document.createElement('option');
 option.value = values[0];
 option.innerHTML = values[1];
 vehLst.appendChild(option);
 }
 }";

 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "LoadVehicles", clientRecFunc.Replace(
 "$list", CbVehicleLst.ClientID), true);

 string callBack = Page.ClientScript.GetCallbackEventReference(
 this, "category", "LoadVehicles", null);

 string clientCallFunc = "function GetVehicles(category)
 { " + callBack + "; }\n";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "GetVehicles", clientCallFunc, true);
 }

 private void LoadVehicleListBoxes()
 {
 VehicleLst.DataSource = GetVehiclesByCategory(CategoryDrp.SelectedValue);
 VehicleLst.DataBind();

 CbVehicleLst.DataSource = GetVehiclesByCategory(CbCategoryDrp.SelectedValue);
 CbVehicleLst.DataBind();

 RenderScripts();
 }

 protected void CategoryDrp_SelectedIndexChanged(object sender, EventArgs e)
 {
 LoadVehicleListBoxes();
 }

 private List<Vehicle> GetVehiclesByCategory(string category)
 {
 List<Vehicle> vehicles = new List<Vehicle>();

Cameron_865-2C08.fm Page 402 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 403

 switch (category)
 {
 case "Car":
 vehicles.Add(new Vehicle("Camaro", "Chevrolet Camaro"));
 vehicles.Add(new Vehicle("Charger", "Dodge Charger"));
 vehicles.Add(new Vehicle("Mustang", "Ford Mustang"));
 break;
 case "Truck":
 vehicles.Add(new Vehicle("Silverado", "Chevrolet Silverado"));
 vehicles.Add(new Vehicle("Ram", "Dodge"));
 vehicles.Add(new Vehicle("F150", "Ford F150"));
 break;
 case "SUV":
 vehicles.Add(new Vehicle("Yukon", "Chevrolet Yukon"));
 vehicles.Add(new Vehicle("Durango", "Dodge Durango"));
 vehicles.Add(new Vehicle("Expedition", "Ford Expedition"));
 break;
 }
 return vehicles;
 }
 #region ICallbackEventHandler Members

 public string GetCallbackResult()
 {
 string result = "";
 foreach (Vehicle veh in cbVehicles)
 {
 result += veh.Name + ":" + veh.Description + ";";
 }
 return result;
 }

 public void RaiseCallbackEvent(string eventArgument)
 {
 cbVehicles = GetVehiclesByCategory(eventArgument);
 }
 #endregion
 }

 public class Vehicle
 {
 public Vehicle(string name, string description)
 {
 Name = name;
 Description = description;
 }

Cameron_865-2C08.fm Page 403 Monday, February 18, 2008 4:10 PM

404 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 public string Name {get; set;}

 public string Description {get; set;}
 }
}

The StockNews Callback Control
Most web developers would prefer for controls to hide the details of the client-side callback
process and not have to wire it up themselves like in our first example. The ASP.NET control
library itself follows this strategy with the TreeView control and its use of the callback feature set
to implement an on-demand population of child tree view nodes without requiring a full page
refresh.

We will follow the same callback strategy with a server control that fetches the news for a
stock symbol from the MSN Money stock news RSS feed. The UI of this custom composite
control includes a DropDownList control that contains the stock symbols and a div element
below it that contains the rendered contents of the RSS feed. Figure 8-12 shows the results of
putting the control on a web form.

Figure 8-12. The Control Callback web form

Cameron_865-2C08.fm Page 404 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 405

The StockNews control derives from the CompositeDataBoundControl abstract control
base class to handle the bulk of its server control overhead. The control creation implemen-
tation in CreateChildControls takes an IEnumerable collection of strings that represent the
stock symbols and loads them into a DropDownList control. It also invokes a helper method
named CreateClientScript to generate the client side functionality.

protected override int CreateChildControls(
System.Collections.IEnumerable dataSource, bool dataBinding)
 {
 int count = 0;
 if (dataSource != null)
 {
 LiteralControl txt = new LiteralControl("Stock Symbol:");
 Controls.Add(txt);

 list = new DropDownList();
 Controls.Add(list);

 div = new HtmlGenericControl("div");
 Controls.Add(div);

 if (dataBinding)
 {
 IEnumerator e = dataSource.GetEnumerator();
 while(e.MoveNext())
 {
 string symbol = e.Current.ToString();
 ListItem item = new ListItem(symbol, symbol);
 list.Items.Add(item);
 count++;

 }
 }
 else
 {
 IEnumerator e = dataSource.GetEnumerator();
 while (e.MoveNext())
 {
 ListItem item = new ListItem("","");
 list.Items.Add(item);
 count++;
 }
 }
 CreateClientScript();
 }
 return count;
 }

Cameron_865-2C08.fm Page 405 Monday, February 18, 2008 4:10 PM

406 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

CreateClientScript builds the callback script logic and wires it with the appropriate
client-side interactivity of the DropDownList control. The GetNews and LoadNews functions are
similar in functionality to the previous web form callback example.

 private void CreateClientScript()
 {
 list.Attributes.Add("onChange",
 "GetNews(this.options[this.selectedIndex].value)");

 string clientRecFunc = @"
 function LoadNews(results, context)
 {
 var newsDiv = document.getElementById('$div');
 newsDiv.innerHTML = results;
 }";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "LoadNews", clientRecFunc.Replace("$div",div.ClientID),
 true);

 string callBack = Page.ClientScript.GetCallbackEventReference(
 this, "symbol", "LoadNews", null);
 string clientCallFunc = "function GetNews(symbol){ " +
 callBack + "; }";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "GetNews", clientCallFunc, true);
 }

A bigger difference in the control callback implementation is evident in the code that
handles the callback invocation in the control server-side code. The result returned is sent
back in HTML form for the client to insert into the div element below the DropDownList control.
The call to GetNewsItem does all the work to retrieve and parse the RSS feed into a generic List
collection of NewsItem-based objects that are serialized into the HTML string.

 public void RaiseCallbackEvent(string eventArgument)
 {
 items = GetNewsItems(eventArgument);
 }

 public string GetCallbackResult()
 {
 StringBuilder sb = new StringBuilder();
 if (items != null)
 {
 foreach (NewsItem item in items)
 {
 sb.Append("<a href='");
 sb.Append(item.Link);
 sb.Append("'>");

Cameron_865-2C08.fm Page 406 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 407

 sb.Append(item.Title);
 sb.Append("");
 sb.Append("
");
 sb.Append("");
 sb.Append(item.Description);
 sb.Append("");
 sb.Append("
");
 }
 }
 return sb.ToString();
 }

Another interesting implementation note in StockNews control is the use of the PreRender
overload to prime the initial content of the HTTP GET request to the form with the symbol
selected by the DropDownList control. This timing in the control life cycle not only ensures an
initial value in the control but also aligns nicely with any postback that might occur with other
controls on the form and lets ViewState work its magic to keep our client side activities in sync
with the normal server side functionality of a postback.

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);
 RaiseCallbackEvent(list.SelectedValue);
 div.InnerHtml = GetCallbackResult();
}

The other code of interest that is specific to .NET 3.5 is the Language Integrated Query (LINQ)
code that iterates over the feed data, creates a collection of anonymous types that contain the
data from the field, and then uses object initialization to create the feed items for rendering to
the browser. You can find this code in the GetNewsItems method in Listing 8-17. In the source
code included in this book, the StockNews.cs code file includes the “old way” to do this using
an XPathNavigator for comparison purposes. The full code listing for both the server control
and its related web form are in Listings 8-17, 8-18, and 8-19.

Listing 8-17. StockNews Control Class File

using System;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.ComponentModel;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.Net;
using System.Linq;
using System.Xml.Linq;

Cameron_865-2C08.fm Page 407 Monday, February 18, 2008 4:10 PM

408 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

namespace ControlsBook2Lib.Ch08
{
 [ToolboxData("<{0}:StockNews runat=server></{0}:StockNews>"),
 DefaultProperty("Symbols")]
 public class StockNews : CompositeDataBoundControl, ICallbackEventHandler
 {
 protected DropDownList list = new DropDownList();
 protected HtmlGenericControl div;
 private List<NewsItem> items;

 [Browsable(false)]
 public virtual ListItemCollection Symbols
 {
 get
 {
 EnsureChildControls();
 return list.Items;
 }
 }

 protected override int CreateChildControls(System.Collections.IEnumerable
 dataSource, bool dataBinding)
 {
 int count = 0;
 if (dataSource != null)
 {
 LiteralControl txt = new LiteralControl("Stock Symbol:");
 Controls.Add(txt);

 list = new DropDownList();
 Controls.Add(list);

 div = new HtmlGenericControl("div");
 Controls.Add(div);

 if (dataBinding)
 {
 IEnumerator e = dataSource.GetEnumerator();
 while (e.MoveNext())
 {
 string symbol = e.Current.ToString();
 ListItem item = new ListItem(symbol, symbol);
 list.Items.Add(item);
 count++;

 }
 }

Cameron_865-2C08.fm Page 408 Monday, February 18, 2008 4:10 PM

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 409

 else
 {
 IEnumerator e = dataSource.GetEnumerator();
 while (e.MoveNext())
 {
 ListItem item = new ListItem("", "");
 list.Items.Add(item);
 count++;
 }
 }
 CreateClientScript();
 }
 return count;
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);
 RaiseCallbackEvent(list.SelectedValue);
 div.InnerHtml = GetCallbackResult();
 }

 private void CreateClientScript()
 {
 list.Attributes.Add("onChange",
 "GetNews(this.options[this.selectedIndex].value)");

 string clientRecFunc = @"
 function LoadNews(results, context)
 {
 var newsDiv = document.getElementById('$div');
 newsDiv.innerHTML = results;
 }";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "LoadNews", clientRecFunc.Replace("$div", div.ClientID),
 true);

 string callBack = Page.ClientScript.GetCallbackEventReference(
 this, "symbol", "LoadNews", null);
 string clientCallFunc = "function GetNews(symbol){ " +
 callBack + "; }";
 Page.ClientScript.RegisterClientScriptBlock(this.GetType(),
 "GetNews", clientCallFunc, true);

 }

Cameron_865-2C08.fm Page 409 Monday, February 18, 2008 4:10 PM

410 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

 public string GetCallbackResult()
 {
 StringBuilder sb = new StringBuilder();
 if (items != null)
 {
 foreach (NewsItem item in items)
 {
 sb.Append("<a href='");
 sb.Append(item.Link);
 sb.Append("'>");
 sb.Append(item.Title);
 sb.Append("");
 sb.Append("
");
 sb.Append("");
 sb.Append(item.Description);
 sb.Append("");
 sb.Append("
");
 }
 }
 return sb.ToString();
 }

 public void RaiseCallbackEvent(string eventArgument)
 {
 items = GetNewsItems(eventArgument);
 }

 private List<NewsItem> GetNewsItems(string symbol)
 {
 List<NewsItem> Feeditems = new List<NewsItem>();
 string url = "http://moneycentral.msn.com/community/rss/generate_feed.aspx" +
 "?feedType=0&symbol=" + symbol;
 XDocument rssFeed = XDocument.Load(url);
 var posts = from item in rssFeed.Descendants("item")
 select new
 {
 Title = item.Element("title").Value,
 Description = item.Element("description").Value,
 Link = item.Element("link").Value,
 };

 var stockPosts = from item in posts
 select item;

Cameron_865-2C08.fm Page 410 Monday, February 18, 2008 4:10 PM

http://moneycentral.msn.com/community/rss/generate_feed.aspx

CH AP T E R 8 ■ IN TE G R AT IN G CL I E N T - S I DE SC R IP T 411

 foreach (var item in stockPosts)
 {
 Feeditems.Add(new NewsItem { Title = item.Title, Description =
 item.Description, Link = item.Link });
 }
 return Feeditems;
 }
 }

 class NewsItem
 {
 public string Title;
 public string Description;
 public string Link;
 }
}

Listing 8-18. The Callback Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="ControlCallback.aspx.cs"
Inherits="ControlsBook2Web.Ch08.ControlCallback"
 Title="Untitled Page" %>

<%@ Register Assembly="ControlsBook2Lib" Namespace="ControlsBook2Lib.Ch08"
TagPrefix="apress" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">8</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Integrating Client-Side Script</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">

 <apress:StockNews ID="stockNews" runat="server" />

</asp:Content>

Cameron_865-2C08.fm Page 411 Monday, February 18, 2008 4:10 PM

412 CH AP T E R 8 ■ I N TE G R AT IN G CL I E N T - S I D E SC R IP T

Listing 8-19. Callback Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch08
{
 public partial class ControlCallback : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 LoadSymbols();
 }
 }

 private void LoadSymbols()
 {
 stockNews.DataSource = new string[] { "MSFT", "IBM", "GOOG", "ORCL" };
 stockNews.DataBind();
 }
 }
}

Summary
Client-side scripts can make a web application more appealing, interactive, and scalable. ASP.NET
allows encapsulation of the client-side script code to reduce some of the inherent complexity
client script can bring to web development projects. Controls support adding client-side event
attributes to the .aspx page declaratively and programmatically via the Attributes collection.
Also, the ClientScriptManager class that is tied to the Page.ClientScript property supports
several options for registering client-side scripts: RegisterClientScriptBlock for the top of the
form, RegisterStartupScript for the bottom of the form, RegisterArrayDeclaration for adding
an array, and RegisterOnSubmitStatement for hooking into the onsubmit event of the form.

Client-side detection is done through an instance of the HttpBrowserCapabilities class.
An instance is provided by the Page.Request.Browser class. Controls should provide graceful
degradation wherever possible, in case a client doesn’t support client-side functionality to the
level required.

Be careful when you map to the onsubmit event of an HTML form. It will fire when a control
such as LinkButton uses the client-side JavaScript form submission code provided by ASP.NET.

Client callbacks are a great way to pull data or content from the server to the client without
requiring a postback or refreshing of the browser page. They also make deployment easy by
being integrated directly into the ASP.NET 2.0 or later Framework feature set.

Cameron_865-2C08.fm Page 412 Monday, February 18, 2008 4:10 PM

413

■ ■ ■

C H A P T E R 9

ASP.NET AJAX Controls
and Extenders

Up to this chapter, we have provided the necessary background to create powerful ASP.NET
server controls that support custom styling, templating, data binding, and client-side scripts.
While the existing client-side script integration is useful in ASP.NET, ASP.NET AJAX takes it to
the next level by providing a powerful client-side script library that integrates well with the server-
side programming model and design-time support that ASP.NET developers know and love.

In this chapter, we bridge the gap to client-side integration when building custom server
controls via ASP.NET AJAX. We provide an overview of ASP.NET AJAX extensibility points followed
by step-by-step examples on how to create AJAX-enabled server controls as well as ASP.NET
AJAX extenders and client-side behaviors.

ASP.NET AJAX
ASP.NET AJAX enables developers to quickly create web pages that include a rich user experi-
ence with responsive and familiar UI elements, quite often without writing a single line of
JavaScript. In addition, ASP.NET AJAX includes a client script library that incorporates cross-
browser ECMAScript (JavaScript) and dynamic HTML (DHTML) technologies. ASP.NET AJAX
integrates the JavaScript library with the ASP.NET to provide a powerful tool set that can help
developers improve the user experience and the efficiency of web applications without giving
up the server-side programming model they love.

■Note We will show all the configuration steps and, of course, all of the code in this chapter, but we don’t
provide complete background on all ASP.NET AJAX functionality. That would take an entire book.

There are two primary ways to leverage the ASP.NET AJAX framework. There is a client-site
option that is more familiar to anyone who has hand-coded AJAX in JavaScript, and there is
also a server-side option that performs partial page updates on the client as you would expect
with AJAX but still executes the full server-side page life cycle. No matter what route you choose,
any page that wants to leverage the ASP.NET AJAX functionality must include a ScriptManager

Cameron_865-2C09.fm Page 413 Monday, February 18, 2008 4:15 PM

414 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

control on the page to include the required underlying plumbing. In the next section, we cover
partial page updates.

Partial Page Updates
Partial page updates are driven by the ASP.NET AJAX UpdatePanel server control. The UpdatePanel
is a container control where developers can drag regular ASP.NET server controls and HTML
into the designer and have the contents of the UpdatePanel updated without causing a full page
postback. Upon the first HTTP GET, the entire page is sent to the browser as expected. This is
where the magic occurs: if any of the controls within the UpdatePanel cause a server postback,
or a Trigger in the UpdatePanel is configured to cause the postback, only the UI contained
within the UpdatePanel control is updated, eliminating the full postback flicker so familiar to
end users. It results in a reduced amount of data flowing over the network, helping to conserve
bandwidth while not sacrificing the benefits of what we know and love about ASP.NET, such as
the server-side event execution model and design-time control configuration.

Taking advantage of the UpdatePanel is extremely simple. Add an ASP.NET AJAX
ScriptManager nonvisual server control to your page, add an UpdatePanel, and drag controls
into the UpdatePanel that you want to update independently from the rest of the page.

SimpleUserControlAJAX Demonstration
The UpdatePanel is a great tool to add AJAX functionality to an ASP.NET application with
minimal effort. To demonstrate this, we took the SimpleUserControl example from Chapter 2
and converted into the SimpleUserControlAJAX example by adding an UpdatePanel to the user
control to encapsulate the GridView control.

By simply adding an UpdatePanel around the GridView, paging, sorting, and so forth in the
GridView no longer causes a full web form postback. Since this is dynamic in nature, screen
shots are not included, so please download and run the sample to see the benefits of the
UpdatePanel. Listing 9-1 shows the source code for SimpleUserControlAJAX.ascx.

Listing 9-1. The SimpleUserControlAJAX User Control

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="SimpleUserControlAJAX.ascx.cs"
Inherits="ControlsBook2Web.Ch09.SimpleUserControlAJAX" %>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False" CellPadding="4"
 DataKeyNames="ID" DataSourceID="ApressBooksds"
 EmptyDataText="There are no data records to display." Font-Names="Arial"
 Font-Size="X-Small" ForeColor="#333333" GridLines="None">
 <Columns>
 <asp:commandfield ShowSelectButton="True" />
 <asp:boundfield DataField="ID" HeaderText="ID" ReadOnly="True"
 SortExpression="ID" Visible="False" />
 <asp:boundfield DataField="ISBN" HeaderText="ISBN" SortExpression="ISBN" />
 <asp:boundfield DataField="Author" HeaderText="Author"

Cameron_865-2C09.fm Page 414 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 415

 SortExpression="Author" />
 <asp:boundfield DataField="Title" HeaderText="Title"
 SortExpression="Title" />
 <asp:boundfield DataField="Description" HeaderText="Description"
 SortExpression="Description" />
 <asp:boundfield DataField="DatePublished" HeaderText="DatePublished"
 SortExpression="DatePublished" />
 <asp:boundfield DataField="NumPages" HeaderText="NumPages"
 SortExpression="NumPages" />
 <asp:boundfield DataField="TOC" HeaderText="TOC" SortExpression="TOC" />
 <asp:boundfield DataField="Price" HeaderText="Price"
 SortExpression="Price" />
 </Columns>
 <FooterStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />
 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True" ForeColor="Navy" />
 <PagerStyle BackColor="#FFCC66" ForeColor="#333333"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />
 </asp:GridView>
 <asp:AccessDataSource ID="ApressBooksds" runat="server"
 DataFile="..\App_Data\ApressBooks.mdb" SelectCommand="SELECT * FROM [Books]">
 </asp:AccessDataSource>
 </ContentTemplate>
</asp:UpdatePanel>

Listings 9-2 and 9-3 have the source code for the SimpleUserControlAjaxDemo web form
and code-behind file.

Listing 9-2. The SimpleUserControlAJAX Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="SimpleUserControlAJAXDemo.aspx.cs"
 Inherits="ControlsBook2Web.Ch09.SimpleUserControlAJAXDemo1"
 Title="Simple user Control AJAX Demo" %>

<%@ Register Src="SimpleUserControlAJAX.ascx" TagName=
"SimpleUserControlAJAX" TagPrefix="apressuc" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">9</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 ASP.NET AJAX Controls and Extenders</asp:Label>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="PrimaryContent" runat="server">
 <apressuc:SimpleUserControlAJAX ID="SimpleUserControlAJAX1" runat="server" />
</asp:Content>

Cameron_865-2C09.fm Page 415 Monday, February 18, 2008 4:15 PM

416 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

Listing 9-3. The SimpleUserControlAJAX Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch02
{
 public partial class SimpleUserControlDemo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

We won’t cover the UpdatePanel control any further. Next, we cover the ASP.NET AJAX
infrastructure, where we demonstrate extending ASP.AJAX functionality with custom controls
and extenders.

ASP.NET AJAX Extensibility
ASP.NET AJAX provides a set of ASP.NET namespaces as well as base classes and services via
the System.Web.Extensions assembly. Table 9-1 provides an overview of the namespaces either
extended or added originally by ASP.NET AJAX 1.0 and now included in .NET Framework 3.5.

Table 9-1. ASP.NET AJAX-Related Namspaces

Namespace Description

System.Web.Configuration This namespace is extended by ASP.NET AJAX to support declara-
tive and programmatic access to ASP.NET AJAX configuration
elements. Example classes are ScriptingJsonSerializationSection
and ScriptingSectionGroup.

System.Web.Script.Serialization This namespace was added to ASP.NET to support JavaScript
Object Notation (JSON) serialization as well as provide extensi-
bility features to customize serialization.

System.Web.Script.Services This namespace was added to ASP.NET to provide attributes for
customizing web service support in ASP.NET AJAX. Example
classes are ScriptServiceAttribute and ScriptMethodAttribute.

System.Web.UI This namespace is extended by ASP.NET AJAX to provide classes
and interfaces that enable client-server communication and rich
UI. Example classes are ExtenderControl, ScriptControl, and
UpdatePanel.

System.Web.UI.Design This namespace is extended by ASP.NET AJAX to provide design-
time support for Microsoft ASP.NET AJAX. Example classes are
UpdatePanelDesigner, TimeDesigner, and UpdateProgressDesigner.

System.Web.Handlers This namespace is extended by ASP.NET AJAX to provide the
necessary HTTP handler (ScriptResourceHandler) and HTTP
module (ScriptModule) to support ASP.NET AJAX.

Cameron_865-2C09.fm Page 416 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 417

In this chapter, we focus on the classes that support extending ASP.NET AJAX functionality
for custom server controls. Table 9-2 provides an overview of the important base classes in
ASP.NET AJAX for use when creating ASP.NET AJAX controls and extenders.

The two primary items in the Table 9-2 are the ExtenderControl class and IScriptControl
interface. Add the IScriptControl interface to a custom server control that will include ASP.NET
AJAX functionality. You create controls that inherit from ExtenderControl when you want to
encapsulate client-side functionality (e.g., DHTML behavior) that is applied to other server
controls, such as built-in the TextBox or Button server controls. Both ExtenderControl and
IScriptControl require implementation of two methods:

• GetScriptReferences

• GetScriptDescriptors

These two methods are at the heart of wiring up server-side ASP.NET with the client-side
ASP.NET AJAX script library and custom behaviors. We cover these two methods next in prep-
aration for creating both a custom ASP.NET AJAX server control and a custom ASP.NET AJAX
Extender later in this chapter.

The GetScriptReferences Method
In order to add AJAX functionality to a custom server control, some JavaScript code is prob-
ably required. It is a good convention to create a .js file that has the same name as the custom
server control to help keep things organized. This script file must be made available to the
control at runtime.

Table 9-2. Important ASP.NET AJAX Classes and Interfaces

Base Class Description

ExtenderControl This is the abstract base class implemented when creating an ASP.NET
AJAX extender control. This class inherits from Control and implements
IExtenderControl.

IExtenderControl Implement this interface to build an extender control that does not
require a ScriptManager. The IExtenderControl interface registers the
script libraries for a control by calling the GetScriptReferences()
method, and it registers ScriptDescriptor objects by calling the
GetScriptDescriptors(Control) method.

IScriptControl Implement this interface to add ASP.NET AJAX support to a custom server
control. The methods of the IScriptControl interface provide references
to script libraries that define client components and script descriptors
that represent instances of client types required to add script control
functionality in an ASP.NET Server control. It’s found in the System.Web.UI
namespace.

ScriptControl This is the abstract base class implemented when creating an ASP.NET
server control that includes ASP.NET AJAX functionality. This class
inherits from WebControl and implements IScriptControl.

ScriptReference This class registers an ECMAScript (JavaScript) file for use on a web page.

Cameron_865-2C09.fm Page 417 Monday, February 18, 2008 4:15 PM

418 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

The GetScriptReferences method adds references to the required script files at runtime so
that they are available to the custom AJAX server control. You can certainly include multiple
script files as part of a server control to help keep things organized. For this reason, the
GetScriptReferences returns a collection of ScriptReference objects, one for each script.
There are two ways to obtain a script reference. One way is to provide a reference to the script
based on the script’s relative location to the web page via the ScriptReference object’s .Path
property.

The other way is to obtain a reference to a script included in an assembly as an embedded
resource via the ScriptReference.Assembly property, which is our preferred method to ship
JavaScript files with an ASP.NET AJAX custom server control. Here is an example implementa-
tion of the GetScriptReferences method:

protected virtual IEnumerable<ScriptReference> GetScriptReferences()
{
 ScriptReference reference = new ScriptReference();
 //Load script from embedded resource
 reference.Assembly = "ControlsBook2Lib";
 reference.Name = "ControlsBook2Lib.Ch09.HighlightedHyperLink.js";

 return new ScriptReference[] { reference };
}

For the preceding code to succeed, a couple of steps must be taken:

• The script file named HighlightedHyperLink.js must have its Build Action property
set to Embedded Resource so that the script is included in the compiled assembly as
a resource.

• The other step is to add a WebResource attribute to the assembly like this:

[assembly: WebResource("ControlsBook2Lib.Ch09.HighlightedHyperLink.js",
"text/javascript")]

The WebResourceAttribute defines the metadata attribute that enables an embedded
resource in an assembly to be available. At runtime, ASP.NET dynamically creates a script file
for the resource that is downloaded to the client just like a normal JavaScript file referenced by
a URL. In the next section, we cover the GetScriptDescriptors method.

The GetScriptDescriptors Method
The allure of ASP.NET AJAX is having AJAX functionality without losing the server-side program-
ming model or losing the ability to configure server controls in Visual Studio at design time. For
this to work, there must be a means to convert server-side configuration to client-side configura-
tion and functionality. Thankfully, ASP.NET AJAX provides the plumbing to make this happen,
and the GetScriptDescriptors method is the means to plug into the infrastructure.

The GetScriptDescriptors method returns one or more ScriptDescriptor objects via a
ScriptDescriptor collection. Each ScriptDescriptor object has information about a client-
side component that is required. The ScriptDescriptor includes the client type to create, the
properties to assign, and the events to add handlers for. Here is an example implementation of
the GetScriptDescriptors method:

Cameron_865-2C09.fm Page 418 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 419

protected virtual IEnumerable<ScriptDescriptor> GetScriptDescriptors()
{
 ScriptControlDescriptor descriptor = new ScriptControlDescriptor
("ControlsBook2Lib.Ch09.HighlightedHyperlink", this.ClientID);

 descriptor.AddProperty("highlightCssClass", this.HighlightCssClass);
 descriptor.AddProperty("nohighlightCssClass", this.NoHighlightCssClass);

 return new ScriptDescriptor[] { descriptor };
}

The preceding code creates a client-side component called ControlsBook2Lib.Ch09.
HighlightedHyperlink in the constructor for the ScriptBehaviorDescriptor object. The
constructor also provides the client-side name of the server control that the client-side component
interacts with via the this.ClientID property. Since AJAX extender server controls apply behav-
iors via client-side components to other ASP.NET server controls, this.ClientID would not be
used. Instead, for an extender control, the value passed in would be targetControl.ClientID.

After the new ScriptBehaviorDescriptor object is created, methods are called to set prop-
erties (via AddProperty), event handler names (via AddEvent), and so forth on the client-side
component created in the constructor.

Implementing an ASP.NET AJAX custom server control requires a bit more work, which we
describe later in this chapter. First, we dive in with example code that leverages the ASP.NET
AJAX client library functionality in the next section.

ASP.NET AJAX Client Script
The ASP.NET AJAX client script provides numerous advantages over plain old JavaScript. The
script library adds object-oriented-like capabilities to JavaScript code to increase code reuse,
flexibility, and maintainability. There are many extensions that reduce development time by
wrapping common functionality, such as making cross-browser-compatible XmlHttp calls. For
example, instead of making calls to XmlHttp objects directly, there is a Sys.Net.WebRequest
object that greatly enhances XmlHttp functionality through a higher level, cross-browser
programming model.

The ASP.NET AJAX client script supports reflection to examine the structure and compo-
nents of client script at runtime. It adds enumerations to provide an easily readable alternative
to integer representations. There are debugging extensions and a trace feature for faster and
more informative debugging than with traditional JavaScript debugging techniques, as well as
the ability to create debug and retail versions of script files that are automatically managed by
ASP.NET. Let’s take a look at a simple example of a client-side control called HoverButton to
further examine the ASP.NET AJAX client script library.

HoverButton Example
The HoverButton example is based on the example in the ASP.NET AJAX documentation with
some minor modifications, and it’s very useful in helping you understand the ASP.NET AJAX
client script library. Understanding how to write JavaScript client-side controls using the ASP.NET
AJAX client-side library is critical to writing ASP.NET AJAX-enabled custom server controls.

Cameron_865-2C09.fm Page 419 Monday, February 18, 2008 4:15 PM

420 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

The web form HoverButton.aspx is pretty simple in that it declares a plain old HTML <button>
and a <div> tag. HoverButton.aspx has event handlers for the HoverButton client control as well
as start-up code. The file HoverButton.js has the actual declaration of the HoverButton client
component that manages the behavior. Let’s start by going through the JavaScript in the web
form HoverButton.aspx. The JavaScript starts out with this code:

var app = Sys.Application;
app.add_load(applicationLoadHandler);

The add_load method provides a delegate function that is called when the Application.
load event occurs. The load event is raised after all scripts have been loaded and the objects in
the application have been created and initialized. Here is the event handler for load from
HoverButton.aspx:

function applicationLoadHandler(sender, args)
{
 $create(ControlsBook2Lib.Ch09.HoverButton,
 {text: 'A HoverButton Control', //properties
 element: {style: {fontWeight: "bold", borderWidth: "2px"}}}, //properties
 {click: doClick, hover: doSomethingOnHover,
 unhover: doSomethingOnUnHover}, //events
 null, //references (none in this case)
 $get('Button1')); //element where the behavior is applied
}

The $create method is a shortcut to the Sys.Component.Create method in the ASP.NET
AJAX client library. Here is the syntax of the call:

$create(type, properties, events, references, element);

From the preceding example, the type is ControlsBook2Lib.Ch09.HoverButton found in
HoverButton.js. The type parameter is mandatory. The properties, events, references, and
element parameters are optional but will most likely be present if the component is going to do
something useful. The value must be in JavaScript Object Notation (JSON) format for the prop-
erties, events, references, and element parameters, which explains why the syntax is not very
familiar (but the comments in the text just before this paragraph identify the parameters). For more
information on JSON, please refer to the ASP.NET AJAX client-side library documentation.

The third parameter, events, is interesting since the rest of the JavaScript in HoverButton.
aspx contains the event handlers mapped in the $create call. We see that the click event is
mapped to the doClick function located in HoverButton.aspx, the hover event handler is
the doSomethingOnHover function, and the unhover event handler is the doSomethingOnUnHover
function. When you run the page HoverButton.aspx, you see that all events fire with the
<div id="HoverLabel"> element having text set and cleared based on whether or not the
mouse is hovering over the button. When the HTML <button id="Button1"> is clicked, the
doClick event fires, displaying the alert message. Listings 9-4 and 9-5 provide the source
code for HoverButton.aspx and HoverButton.aspx.cs, respectively.

Cameron_865-2C09.fm Page 420 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 421

Listing 9-4. The HoverButton Web Form .aspx Page File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
AutoEventWireup="true" CodeBehind="HoverButton.aspx.cs"
Inherits="ControlsBook2Web.Ch09.HoverButton"
Title="HoverButton Client Control Demo" %>

<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
 <style type="text/css">
 button
 {
 border: solid 1px black;
 }
 #HoverLabel
 {
 color: blue;
 }
 </style>
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">9</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 ASP.NET AJAX Controls and Extenders</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">

 <script type="text/javascript">
 var app = Sys.Application;
 app.add_load(applicationLoadHandler);

 function applicationLoadHandler(sender, args)
 {
 $create(ControlsBook2Lib.Ch09.HoverButton,
 {text: 'A HoverButton Control', //properties
 element: {style: {fontWeight: "bold", borderWidth: "2px"}}},
 //properties (continued)
 {click: doClick, hover:
 doSomethingOnHover, unhover: doSomethingOnUnHover},
 //events
 null, //references (none in this case)
 $get('Button1'));
 //element where the behavior is applied
 //(in this case, the HTML button Button1)
 }

Cameron_865-2C09.fm Page 421 Monday, February 18, 2008 4:15 PM

422 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 function doSomethingOnHover(sender, args)
 {
 hoverMessage = "The mouse is over the button."
 $get('HoverLabel').innerHTML = hoverMessage;
 }

 function doSomethingOnUnHover(sender, args)
 {
 $get('HoverLabel').innerHTML = "";
 }

 function doClick(sender, args)
 {
 alert("The client-side JavaScript function
 doClick handled the HoverButton click event.");
 }
 </script>

 <button type="button" id="Button1">
 </button>

 <div id="HoverLabel">
 </div>

</asp:Content>

Listing 9-5. The HoverButton Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch09
{
 public partial class HoverButton : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

We now dive into the contents of HoverButton.js, which contains the HoverButton client
control. The ASP.NET AJAX client script library provides support for namespaces via the Type.
registerNamespace call, which helps to keep things organized.

Cameron_865-2C09.fm Page 422 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 423

Writing object-oriented-like JavaScript using the ASP.NET AJAX library is fairly straightfor-
ward but requires a deeper level understanding of the JavaScript language. An excellent MSDN
article that provides great background can be found here:

http://msdn.microsoft.com/msdnmag/issues/07/05/JavaScript/default.aspx

In HoverButton.js, you find a HoverButton constructor function, a HoverButton prototype,
and a call that registers the HoverButton class into the client-side framework. The constructor
does what you would expect; that is, it initializes the class through a call to initializeBase and
then sets the event handlers to null. Through the client-side framework, when the developer
user creates a HoverButton client control as in HoverButton.aspx, initializeBase is called
when the page is run, which then calls initialize on the HoverButton prototype. The prototype
provides the meat of the class, wiring up event handlers, and so on, as well as clean-up via a
dispose method. Listing 9-6 contains the JavaScript from HoverButton.js.

Listing 9-6. The HoverButton.js Script File

Type.registerNamespace("ControlsBook2Lib.Ch09");

//HoverButton Constructor
ControlsBook2Lib.Ch09.HoverButton = function(element)
{
 ControlsBook2Lib.Ch09.HoverButton.initializeBase(this, [element]);

 this._clickDelegate = null;
 this._hoverDelegate = null;
 this._unhoverDelegate = null;
}

//HoverButton Prototype
ControlsBook2Lib.Ch09.HoverButton.prototype =
{
 // text property accessors.
 get_text: function()
 {
 return this.get_element().innerHTML;
 },
 set_text: function(value)
 {
 this.get_element().innerHTML = value;
 },

 // Bind and unbind to click event.
 add_click: function(handler)
 {
 this.get_events().addHandler('click', handler);
 },

Cameron_865-2C09.fm Page 423 Monday, February 18, 2008 4:15 PM

http://msdn.microsoft.com/msdnmag/issues/07/05/JavaScript/default.aspx

424 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 remove_click: function(handler)
 {
 this.get_events().removeHandler('click', handler);
 },

 // Bind and unbind to hover event.
 add_hover: function(handler)
 {
 this.get_events().addHandler('hover', handler);
 },
 remove_hover: function(handler)
 {
 this.get_events().removeHandler('hover', handler);
 },

 // Bind and unbind to unhover event.
 add_unhover: function(handler)
 {
 this.get_events().addHandler('unhover', handler);
 },
 remove_unhover: function(handler)
 {
 this.get_events().removeHandler('unhover', handler);
 },

 // Release resources before control is disposed.
 dispose: function()
 {
 var element = this.get_element();

 if (this._clickDelegate)
 {
 Sys.UI.DomEvent.removeHandler(element, 'click', this._clickDelegate);
 delete this._clickDelegate;
 }

 if (this._hoverDelegate)
 {
 Sys.UI.DomEvent.removeHandler(element, 'focus', this._hoverDelegate);
 Sys.UI.DomEvent.removeHandler(element, 'mouseover',
 this._hoverDelegate);
 delete this._hoverDelegate;
 }

Cameron_865-2C09.fm Page 424 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 425

 if (this._unhoverDelegate)
 {
 Sys.UI.DomEvent.removeHandler(element, 'blur', this._unhoverDelegate);
 Sys.UI.DomEvent.removeHandler(element, 'mouseout',
 this._unhoverDelegate);
 delete this._unhoverDelegate;
 }
 ControlsBook2Lib.Ch09.HoverButton.callBaseMethod(this, 'dispose');
 },

 initialize: function()
 {
 var element = this.get_element();

 if (!element.tabIndex) element.tabIndex = 0;

 if (this._clickDelegate === null)
 {
 this._clickDelegate = Function.createDelegate(this, this._clickHandler);
 }
 Sys.UI.DomEvent.addHandler(element, 'click', this._clickDelegate);

 if (this._hoverDelegate === null)
 {
 this._hoverDelegate = Function.createDelegate(this, this._hoverHandler);
 }
 Sys.UI.DomEvent.addHandler(element, 'mouseover', this._hoverDelegate);
 Sys.UI.DomEvent.addHandler(element, 'focus', this._hoverDelegate);

 if (this._unhoverDelegate === null)
 {
 this._unhoverDelegate =
 Function.createDelegate(this, this._unhoverHandler);
 }
 Sys.UI.DomEvent.addHandler(element, 'mouseout', this._unhoverDelegate);
 Sys.UI.DomEvent.addHandler(element, 'blur', this._unhoverDelegate);

 ControlsBook2Lib.Ch09.HoverButton.callBaseMethod(this, 'initialize');

 },

 _clickHandler: function(event)
 {
 var h = this.get_events().getHandler('click');
 if (h) h(this, Sys.EventArgs.Empty);
 },

Cameron_865-2C09.fm Page 425 Monday, February 18, 2008 4:15 PM

426 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 _hoverHandler: function(event)
 {
 var h = this.get_events().getHandler('hover');
 if (h) h(this, Sys.EventArgs.Empty);
 },

 _unhoverHandler: function(event)
 {
 var h = this.get_events().getHandler('unhover');
 if (h) h(this, Sys.EventArgs.Empty);
 }
}

//Register the new class
ControlsBook2Lib.Ch09.HoverButton.registerClass('ControlsBook2Lib.Ch09.HoverButton',
Sys.UI.Control);

// Since this script is not loaded by System.Web.Handlers.ScriptResourceHandler
// invoke Sys.Application.notifyScriptLoaded to notify ScriptManager
// that this is the end of the script.
if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

This concludes our background work in preparing to write ASP.NET AJAX server controls.
In the next section, we cover how to write an ASP.NET AJAX extender server control as well as
an ASP.NET custom server control that integrates ASP.NET AJAX functionality.

ASP.NET AJAX Server Controls
As we mentioned previously, there are generally two types of ASP.NET AJAX server controls:
extender controls, which apply client-side behavior to a different ASP.NET server control
without requiring any modification of the other ASP.NET server control, and ASP.NET AJAX
server controls, which are simply server controls that integrate ASP.NET AJAX functionality,
adding script to its own capabilities. In the next section, we create an ASP.NET AJAX extender
server control.

The TextCaseExtender Control
Quite often, applications require input in a particular case, such as lowercase or uppercase
text. While there are lots of ways to enforce case, in this section, we demonstrate an extender
control that enforces three types of case: lowercase, uppercase, and title case. We define “title
case” as text in which the first letter of every word is capitalized. The server control inherits
from System.Web.UI.ExtenderControl, as you would expect, since it is an extender control.

The associated client-side component named TextCaseBehavior is located in
ControlsBook2Lib.Ch09.TextCaseBehavior.js. The client-side component is accessible
as an embedded resource through the implementation of GetScriptReferences and
Assembly:WebResource attributes, as described in the “The GetScriptReferences Method” section.

Cameron_865-2C09.fm Page 426 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 427

The control declares an enumeration type TextCaseStyle with three possible values:
LowerCase, TitleCase, and UpperCase. TextCaseStyle is the type for the CaseStyle property of the
extender server control. The CaseStyle property is configured to use ViewState as you would expect
and also is decorated with the Bindable, Category, DefaultValue, and Localizable attributes.

In the GetScriptDescriptors method, the CaseStyle property is set on the client-side
component so that it knows how to enforce the case on the target control. For more information
on the GetScriptDescriptors see the “The GetScriptDescriptors Method” section. Listing 9-7
has the full listing of the TextCaseExtender server control.

Listing 9-7. The TextCaseExtender Class File

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.WebControls;

//Attribute required to make embedded resource script files available at run time.
[assembly: WebResource("ControlsBook2Lib.Ch09.TextCaseBehavior.js",
"text/javascript")]

public enum TextCaseStyle
{
 LowerCase,
 TitleCase,
 UpperCase
}

namespace ControlsBook2Lib.Ch09
{
 [TargetControlType(typeof(Control))]
 [ToolboxData("<{0}:textcaseextender runat=server></{0}:textcaseextender>")]
 public class TextCaseExtender : ExtenderControl
 {
 [Bindable(true)]
 [Category("Appearance")]
 [DefaultValue("LowerCase")]
 [Localizable(true)]
 public TextCaseStyle CaseStyle
 {
 get
 {
 return (TextCaseStyle)ViewState["CaseStyle"];
 }

Cameron_865-2C09.fm Page 427 Monday, February 18, 2008 4:15 PM

428 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 set
 {
 ViewState["CaseStyle"] = value;
 }
 }

 protected override IEnumerable<ScriptReference> GetScriptReferences()
 {
 ScriptReference reference = new ScriptReference();
 //Load script from embedded resource
 reference.Assembly = "ControlsBook2Lib";
 reference.Name = "ControlsBook2Lib.Ch09.TextCaseBehavior.js";

 return new ScriptReference[] { reference };
 }

 protected override IEnumerable<ScriptDescriptor> GetScriptDescriptors
 (Control targetControl)
 {
 ScriptBehaviorDescriptor descriptor = new
ScriptBehaviorDescriptor("ControlsBook2Lib.Ch09.TextCaseBehavior",
targetControl.ClientID);
 descriptor.AddProperty("caseStyle", this.CaseStyle.ToString());
 return new ScriptDescriptor[] { descriptor };
 }
 }
}

In the next section, we describe the TextCaseBehavior client-side component.

The TextCaseBehavior Client-Side Component
Every ASP.NET AJAX server control and extender control has a component to specify client-
side behavior. For the TextCaseExtender extender server control, it is the TextCaseBehavior
client-side component.

The TextCaseBehavior component has one property called caseStyle that is set by the
TextCaseExtender extender server control in the GetScriptDescriptors method.
TextCaseBehavior adds a handler for the key-up event named onKeyUp to the target control
where the extender control should be applied. onKeyUp checks the caseStyle setting and
enforces the desired text case, as shown in Listing 9-8.

Listing 9-8. The TextCaseBehavior JavaScript File

Type.registerNamespace('ControlsBook2Lib.Ch09');

// Define the behavior properties.
ControlsBook2Lib.Ch09.TextCaseBehavior = function(element)
{

Cameron_865-2C09.fm Page 428 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 429

 ControlsBook2Lib.Ch09.TextCaseBehavior.initializeBase(this, [element]);

 this._caseStyle = null;
}

// Create the prototype for the behavior
ControlsBook2Lib.Ch09.TextCaseBehavior.prototype =
{
 initialize : function()
 {
 ControlsBook2Lib.Ch09.TextCaseBehavior.callBaseMethod(this, 'initialize');

 $addHandlers(this.get_element(),
 { 'keyup' : this._onKeyUp},
 //Note onkeyups => 'keyup' when adding handlers
 this);
 },

 dispose : function()
 {
 $clearHandlers(this.get_element());
 ControlsBook2Lib.Ch09.TextCaseBehavior.callBaseMethod(this, 'dispose');
 },

 _onKeyUp: function(e)
 {
 if (this.get_element() && !this.get_element().disabled)
 {
 switch(this._caseStyle)
 {
 case 'LowerCase':
 this.get_element().value=this.get_element().value.toLowerCase();
 break
 case 'UpperCase':
 this.get_element().value=this.get_element().value.toUpperCase();
 break
 case 'TitleCase':
 this.get_element().value=this.get_element().value.toLowerCase();
 this.get_element().value=this.get_element().value.toTitleCase();
 break
 }
 }
 },

Cameron_865-2C09.fm Page 429 Monday, February 18, 2008 4:15 PM

430 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 // Behavior property
 get_caseStyle : function()
 {
 return this._caseStyle;
 },

 set_caseStyle : function(value)
 {
 if (this._caseStyle !== value)
 {
 this._caseStyle = value;
 this.raisePropertyChanged('caseStyle');
 }
 }
}

// Optional descriptor for JSON serialization.
ControlsBook2Lib.Ch09.TextCaseBehavior.descriptor =
{
 properties: [{name: 'caseStyle', type: String}]
}

// Register the class as a type that inherits from Sys.UI.Control.
ControlsBook2Lib.Ch09.TextCaseBehavior.registerClass('ControlsBook2Lib.Ch09.
TextCaseBehavior', Sys.UI.Behavior);

//Create toTitleCase() prototype
String.prototype.toTitleCase = function ()
{
 var str = "";
 var str2 = "" ;
 var tokens = this.split(' ');
 for(key in tokens)
 {
 str2 = tokens[key].substr(0,1).toUpperCase()
 + tokens[key].substr(1,tokens[key].length);

 //Don't add space if on last token in string
 if (key != (tokens.length-1))
 str += str2+' ';
 else
 str+=str2;
 }
 return str;
}

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Cameron_865-2C09.fm Page 430 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 431

Notice the call toTitleCase used to enforce the TitleCase configuration. This is not a built-
in function on strings. It is added via the String.prototype.toTitleCase function shown in
Listing 9-8. The client-side component TextCaseBehavior enforces the text case configuration
as each character is typed. The TextCaseExtender is enforced on an ASP.NET TextBox control in
the TextCaseExtender web form shown in Listings 9-9 and 9-10.

Listing 9-9. The TextCaseExtender Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TextCaseExtender.aspx.cs"
Inherits="ControlsBook2Web.Ch09.TextCaseExtenderControl"
 Title="TextCaseExtender Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch09"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle"
 runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">9</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
ASP.NET AJAX Controls and Extenders</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">

 <asp:TextBox ID="TextBox1" runat="server" Width="300px"></asp:TextBox>

 <asp:Label ID="Label1" runat="server" Text=
 "Set case in the DropDownList, click Submit, and then type some text."
 CssClass="Chapter"></asp:Label>

 <asp:DropDownList ID="DropDownList1" runat="server" Height="21px" Width="148px">
 <asp:ListItem Text="LowerCase" Value="lowercase" Selected="True" />
 <asp:ListItem Text="TitleCase" Value="TitleCase" />
 <asp:ListItem Text="UpperCase" Value="UPPERCASE" />
 </asp:DropDownList>

 <asp:Button ID="Button1" runat="server" Text="Submit" OnClick="Button1_Click" />
 <apress:TextCaseExtender ID="TextCaseExtender1" runat="server"
 TargetControlID="TextBox1"
 CaseStyle="LowerCase" />
</asp:Content>

Cameron_865-2C09.fm Page 431 Monday, February 18, 2008 4:15 PM

432 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

Listing 9-10. The TextCaseExtender Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch09
{
 public partial class TextCaseExtenderControl : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 //Convert selected value to TextCaseStyle and then update TextCaseExtender
 TextCaseExtender1.CaseStyle = (TextCaseStyle)Enum.Parse(typeof(TextCaseStyle),
 DropDownList1.SelectedValue, true);
 //Reset page
 TextBox1.Text = "";
 this.SetFocus(TextBox1);
 }
 }
}

The form has a DropDownList box with case settings and a submit button that performs a
postback to enforce the setting configured in the DropDownList. It seems a bit silly to have a
server-side postback to enforce a client-side setting, but it demonstrates how the server-side
configuration is enforced on the client-side behavior. This concludes our discussion of the
TextCaseExtender control. In the next section, we create an ASP.NET server control that inte-
grates ASP.NET AJAX functionality.

The HighlightedHyperLink ASP.NET AJAX Server Control
In this section, we cover the custom ASP.NET AJAX server control HighlightedHyperLink that
includes a client-side behavior that applies a custom CSS style to an HTTP hyperlink when the
user moves the mouse over the hyperlink, providing nice visual cuing over which link will be
clicked if the primary mouse button is clicked.

Since HighlightedHyperLink is just a customization of the ASP.NET HyperLink control, it
inherits from HyperLink but implements IScriptControl to bring in the ASP.NET AJAX function-
ality. The associated client-side component HighlightedHyperLink is contained in an embedded
resource ControlsBook2Lib.Ch09.HighlightedHyperLink.js file. As before, the script is marked
as embedded, and an Assembly:WebResource attribute is used to make it available via the
GetScriptReferences method.

To ensure proper behavior in HighlightedHyperlink, since it implements the IScriptControl
interface directly, the OnPreRender method is overridden to check for the presence of a
ScriptManager control. In addition, even though this control inherits from an existing ASP.NET

Cameron_865-2C09.fm Page 432 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 433

control (HyperLink), it overrides the Render method to make the required call to ScriptManager.
RegisterScriptDescriptors to wire up the client-script with the ASP.NET client-script engine.

The HighlightedHyperLink ASP.NET AJAX server control has to properties to configure
the client-side component behavior called HighlightCssClass and NoHighlightCssClass.
These properties backed by ViewState are configured on the client-side component via the
GetScriptDescriptors method. Listing 9-11 has the full code of the HighlightedHyperlink
server control.

Listing 9-11. The HighlightedHyperLink Class File

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

//Attribute required to make embedded resource script files available at run time
[assembly: WebResource("ControlsBook2Lib.Ch09.HighlightedHyperLink.js"
, "text/javascript")]

namespace ControlsBook2Lib.Ch09
{
 [DefaultProperty("HighlightCssClass")]
 [ToolboxData(
 "<{0}:highlightedhyperLink runat=server></{0}:highlightedhyperLink>")]
 public class HighlightedHyperLink : HyperLink, IScriptControl
 {
 private ScriptManager sm;

 [Bindable(false)]
 [Category("Target Control Appearance")]
 [DefaultValue("")]
 [Localizable(true)]
 public string HighlightCssClass
 {
 get
 {
 return (string)ViewState["HighlightCssClass"];
 }
 set
 {
 ViewState["HighlightCssClass"] = value;
 }
 }

Cameron_865-2C09.fm Page 433 Monday, February 18, 2008 4:15 PM

434 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 [Bindable(false)]
 [Category("Target Control Appearance")]
 [DefaultValue("")]
 [Localizable(true)]
 public string NoHighlightCssClass
 {
 get
 {
 return (string)ViewState["NoHighlightCssClass"];
 }
 set
 {
 ViewState["NoHighlightCssClass"] = value;
 }
 }

 protected override void OnPreRender(EventArgs e)
 {
 if (!this.DesignMode)
 {
 // Test for ScriptManager and register if it exists
 sm = ScriptManager.GetCurrent(Page);

 if (sm == null)
 throw new HttpException(
 "A ScriptManager control must exist on the current page.");

 sm.RegisterScriptControl(this);
 }

 base.OnPreRender(e);
 }

 protected override void Render(HtmlTextWriter writer)
 {
 if (!this.DesignMode)
 sm.RegisterScriptDescriptors(this);

 base.Render(writer);
 }

 protected virtual IEnumerable<ScriptReference> GetScriptReferences()
 {
 ScriptReference reference = new ScriptReference();
 //Load script from embedded resource
 reference.Assembly = "ControlsBook2Lib";
 reference.Name = "ControlsBook2Lib.Ch09.HighlightedHyperLink.js";

Cameron_865-2C09.fm Page 434 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 435

 return new ScriptReference[] { reference };
 }

 protected virtual IEnumerable<ScriptDescriptor> GetScriptDescriptors()
 {
 ScriptControlDescriptor descriptor = new ScriptControlDescriptor
 ("ControlsBook2Lib.Ch09.HighlightedHyperlink", this.ClientID);
 descriptor.AddProperty("highlightCssClass", this.HighlightCssClass);
 descriptor.AddProperty("nohighlightCssClass", this.NoHighlightCssClass);

 return new ScriptDescriptor[] { descriptor };
 }

 IEnumerable<ScriptReference> IScriptControl.GetScriptReferences()
 {
 return GetScriptReferences();
 }

 IEnumerable<ScriptDescriptor> IScriptControl.GetScriptDescriptors()
 {
 return GetScriptDescriptors();
 }
 }
}

In the next section, we describe the HighlightedHyperLink client-side component.

The HighlightedHyperlink Client-Side Component
Every ASP.NET AJAX server control and extender control has a client-side behavior. For our
ASP.NET AJAX server control, the name of the client-side behavior is HighlightedHyperlink to
match the name of the server control.

The HighlightedHyperlink component has two properties, highlightCssClass and
nohighlightCssClass, that are set by the HighlightedHyperLink server control in the
GetScriptDescriptors method. HighlightedHyperLink adds two event handlers for the
mouseover and mouseout events named _onMouseover and _onMouseOut respectively. It is in these
event handlers where the HighlightCssClass and NoHighlightCssClass properties configured
on the HighlightedHyperLink ASP.NET AJAX server control are applied to the control on the
client side. Listing 9-12 contains the HighlightedHyperlink client-side component JavaScript.

Listing 9-12. The HighlightedHyperlink JavaScript File

Type.registerNamespace('ControlsBook2Lib.Ch09');

// Define the control properties.
ControlsBook2Lib.Ch09.HighlightedHyperlink = function(element)
{

Cameron_865-2C09.fm Page 435 Monday, February 18, 2008 4:15 PM

436 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

 ControlsBook2Lib.Ch09.HighlightedHyperlink.initializeBase(this, [element]);

 this._highlightCssClass = null;
 this._nohighlightCssClass = null;
}

// Create the prototype for the control
ControlsBook2Lib.Ch09.HighlightedHyperlink.prototype =
{
 initialize : function()
 {
 ControlsBook2Lib.Ch09.HighlightedHyperlink.
 callBaseMethod(this, 'initialize');

 this._onMouseOver = Function.createDelegate(this, this._onMouseOver);
 this._onMouseOut = Function.createDelegate(this, this._onMouseOut);

 $addHandlers(this.get_element(),
 { 'mouseover' : this._onMouseOver,
 'mouseout' : this._onMouseOut },
 this);
 this.get_element().className = this._nohighlightCssClass;
 },

 dispose : function()
 {
 $clearHandlers(this.get_element());

 ControlsBook2Lib.Ch09.HighlightedHyperlink.callBaseMethod(this, 'dispose');
 },

 // Event delegates
 _onMouseOver : function(e)
 {
 if (this.get_element() && !this.get_element().disabled)
 {
 this.get_element().className = this._highlightCssClass;
 }
 },

 _onMouseOut : function(e)
 {
 if (this.get_element() && !this.get_element().disabled)
 {
 this.get_element().className = this._nohighlightCssClass;
 }
 },

Cameron_865-2C09.fm Page 436 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 437

 // Control properties
 get_highlightCssClass : function()
 {
 return this._highlightCssClass;
 },

 set_highlightCssClass : function(value)
 {
 if (this._highlightCssClass !== value)
 {
 this._highlightCssClass = value;
 this.raisePropertyChanged('highlightCssClass');
 }
 },

 get_nohighlightCssClass : function()
 {
 return this._nohighlightCssClass;
 },

 set_nohighlightCssClass : function(value)
 {
 if (this._nohighlightCssClass !== value)
 {
 this._nohighlightCssClass = value;
 this.raisePropertyChanged('nohighlightCssClass');
 }
 }
}

// Optional descriptor for JSON serialization.
ControlsBook2Lib.Ch09.HighlightedHyperlink.descriptor =
{
 properties: [{name: 'highlightCssClass', type: String},
 {name: 'nohighlightCssClass', type: String}]
}

// Register the class as a type that inherits from Sys.UI.Control.
ControlsBook2Lib.Ch09.HighlightedHyperlink.registerClass('ControlsBook2Lib.Ch09.
HighlightedHyperlink', Sys.UI.Control);

if (typeof(Sys) !== 'undefined') Sys.Application.notifyScriptLoaded();

Notice that the HighlightedHyperlink client-side component doesn’t need to know the
CSS class names in advance. The client-side component also contains an optional descriptor
for JSON serialization support. Figure 9-1 shows HighlightedHyperLink ASP.NET AJAX-enabled
server control in action in the HighlightedHyperLink web form.

Cameron_865-2C09.fm Page 437 Monday, February 18, 2008 4:15 PM

438 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

Figure 9-1. The rendered HighlightedHyperLink web form in Firefox

The source code for the HighlightedHyperLink web form and code-behind file is shown in
Listings 9-13 and 9-14.

Listing 9-13. The HighlightedHyperLink Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="HighlightedHyperlink.aspx.cs"
Inherits="ControlsBook2Web.Ch09.HighlightedHyperlink"
 Title="HighlightedHyperLink Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch09"
Assembly="ControlsBook2Lib" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
 <style type="text/css">
 .Highlight
 {
 color: navy;
 font-weight: bolder;
 }
 .NoHighlight
 {
 color: Green;
 font-weight: lighter;
 }
 </style>
</asp:Content>

Cameron_865-2C09.fm Page 438 Monday, February 18, 2008 4:15 PM

CH A PT E R 9 ■ A SP . N E T A J AX C ON TR O L S AN D E X T E N D E R S 439

<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server
Width="14px">9</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 ASP.NET AJAX Controls and Extenders</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">

 <apress:HighlightedHyperLink ID="HighlightedHyperLink1"
 HighlightCssClass="Highlight"
 NoHighlightCssClass="NoHighlight" runat="server"
NavigateUrl="http://www.microsoft.com">Microsoft
 </apress:HighlightedHyperLink>

 <apress:HighlightedHyperLink ID="HighlightedHyperLink2"
 HighlightCssClass="Highlight"
 NoHighlightCssClass="NoHighlight" runat="server"
 NavigateUrl="http://apress.com">Apress
 </apress:HighlightedHyperLink>

 <apress:HighlightedHyperLink ID="HighlightedHyperLink3"
 HighlightCssClass="Highlight"
 NoHighlightCssClass="NoHighlight" runat="server"
 NavigateUrl="http://ajax.asp.net">
 ASP.NET AJAX</apress:HighlightedHyperLink>

 <apress:HighlightedHyperLink ID="HighlightedHyperLink4"
 HighlightCssClass="Highlight"
 NoHighlightCssClass="NoHighlight" runat="server"
 NavigateUrl="http://msdn.microsoft.com">
 MSDN Online</apress:HighlightedHyperLink>

</asp:Content>

Listing 9-14. The HighlightedHyperLink Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch09
{
 public partial class HighlightedHyperlink : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

This concludes our discussion of the HighlightedHyperLink ASP.NET AJAX server control.

Cameron_865-2C09.fm Page 439 Monday, February 18, 2008 4:15 PM

http://www.microsoft.com
http://apress.com
http://ajax.asp.net
http://msdn.microsoft.com

440 CH AP T E R 9 ■ AS P . N E T A J AX CO N T R O L S A N D E X T E N D E R S

Summary
In this chapter, we provided an overview of ASP.NET AJAX, both the server-side and client-side
functionality. ASP.NET AJAX includes a powerful client-side script library that provides cross-
browser compatibility, as well as a powerful client-side programming model that mimics
object-oriented behavior in JavaScript.

We covered the server-side programming model that requires implementation of the
GetScriptDescriptors and GetScriptReferences methods. We also explained how the server-
side configuration is passed to the client-side component utilizing the ScriptBehaviorDescriptor
class. Finally, we demonstrated how to implement both an ASP.NET AJAX server control by
implementing IScriptControl, as well as how to implement an extender control by inheriting
from the ExtenderControl base class.

For additional examples of ASP.NET AJAX server controls and extenders, we recommend
downloading and reviewing the ASP.NET AJAX Control Toolkit available at http://asp.net/
ajax/ajaxcontroltoolkit/samples/.

Cameron_865-2C09.fm Page 440 Monday, February 18, 2008 4:15 PM

http://asp.net

441

■ ■ ■

C H A P T E R 1 0

Other Server Controls

Up to this chapter, we have focused on providing the necessary background to create powerful
ASP.NET server controls that support custom styling, templating, data binding, client-side
script, and ASP.NET AJAX. These development techniques and features can be put to work in
many different ways. In this part of the book, we begin to move on to advanced topics such web
part development and design-time support.

In this chapter, we begin our advanced topic journey by covering web part development
and adaptive control programming. We will start off with a discussion on building web parts
for both ASP.NET and Microsoft Office SharePoint Server 2007. Next, we will focus on adaptive
control development, including the mobile controls for devices. In the next section, we begin
our journey with web parts.

■Note For information on building custom validator controls, the MSDN documentation contains a nice set of
cross-browser validator control samples that also comply with the WWW Consortium DOM Level 1 specification; the
samples are located here: http://msdn2.microsoft.com/en-us/library/aa719624(VS.71).aspx.

Web-Part-Based Web Site Development
This chapter won’t attempt to provide a complete overview of the web part infrastructure and
development model available in ASP.NET, because the documentation does a very good job of
explaining what functionality is available. What I will do is provide a discussion on various web
part topics encountered while building out the example web parts in this chapter to help you
understand the moving parts available when building web parts. If you find that you need
more background information on a particular area, here is the top-level link to the ASP.NET
web parts documentation at MSDN Online:

http://msdn2.microsoft.com/en-us/library/e0s9t4ck(VS.90).aspx

From the preceding link, you can navigate to these sections for more detail on a partic-
ular topic:

• ASP.NET Web Parts Overview

• Web Parts Control Set Overview

Cameron_865-2C10.fm Page 441 Thursday, February 21, 2008 1:01 PM

http://msdn2.microsoft.com/en-us/library/aa719624
http://msdn2.microsoft.com/en-us/library/e0s9t4ck

442 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

• Web Parts Page Display Modes

• Web Parts Personalization

• Web Parts Connections Overview

For an idea of what’s possible, look no further than Microsoft Office SharePoint Server
(MOSS) 2007, which is built on top of ASP.NET and the web part infrastructure. A public-facing
Internet site built on top of MOSS with custom web parts is http://www.glu.com. Here is a link
to the first of a three-part series on how this site was built by Allin Consulting on MOSS and
ASP.NET web parts:

http://blogs.msdn.com/sharepoint/archive/2007/06/14/
moss-has-got-game-glu-mobile-s-website-www-glu-com-how-we-did-it-part-1-of-3.aspx

With that background out of the way, we’ll dive into a discussion on web part development
in the next section.

Web Part Development
Web parts have existed in SharePoint for many years. Initially, the web part development
model was based on VBScript, which is not what most developers would call their favorite
development language or environment. In SharePoint Server 2003, Microsoft more closely
integrated SharePoint with ASP.NET, providing namespaces for supporting web part develop-
ment in .NET. With .NET Framework 2.0, the ASP.NET team integrated the web part infrastructure
and development model within ASP.NET itself. However, the two web part models remained
separate. Building web parts that targeted both ASP.NET 2.0 and SharePoint Server 2003 required
custom compilation, since different namespaces and base classes where required. In Microsoft
Office SharePoint Server (MOSS) 2007, SharePoint is completely integrated with and built on
ASP.NET 2.0. This means that you can build web parts for MOSS using the ASP.NET WebPart
base class.

■Note Microsoft recommends inheriting from the ASP.NET WebPart base class whether developing for
pure ASP.NET or SharePoint.

The next section provides a brief overview of the ASP.NET web part infrastructure to set
the state for building web parts that take advantage of this framework.

Web Part Infrastructure
One of the features of WebPart-based applications is personalization. WebParts can have attributes
configured with the PersonalizableAttribute so that a user can create a unique view on the
page. Personalization for an ASP.NET web site requires that the SQL personalization provider
is configured for the site.

Cameron_865-2C10.fm Page 442 Thursday, February 21, 2008 1:01 PM

http://www.glu.com
http://blogs.msdn.com/sharepoint/archive/2007/06/14

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 443

■Note Personalization requires that the <trust level="" /> element is configured for Medium in order
to access members in the SqlClient namespace.

The SqlPersonalizationProvider class is used to configure the personalization in SQL Server.
The ASP.NET SQL Server Registration Tool (Aspnet_regsql.exe) can be used to set up the

database location for web part personalization, among other databases such as the ASP.NET
membership database. The tool is located at \%windir%\Microsoft.NET\Framework\v2.0.50727,
or at the same location for a later version of the framework.

There is a section in the web.config file to declaratively configure web part personalization via
the WebPartsPersonalization class under <system.web> <WebParts> <personalization. . . > that
can be used to configure the web part environment. Refer to the MSDN documentation for
more information on the WebPartsPersonalization class.

Web parts are hosted within the rich web part infrastructure, so as you would expect, there
are additional customizations available for web part developers. Table 10-1 provides a list of
the most common overrides when creating a WebPart server control.

With that background out of the way, let’s move on to creating web parts in the next section.

Creating Web Parts
In this section, we create two server controls and demonstrate them in a basic ASPX page. Next,
we convert the server controls to web parts and then demonstrate them in a web part portal page.

Table 10-1. WebPart Common Overrides

WebPart Member Overview

"Allow" properties These are behavior-focused properties that control developers
may want to manage for the logic of their custom WebPart control.
Examples are AllowClose, AllowConnect, and AllowEdit.

CreateChildControls It is quite common to build web parts based on composite server
controls to encapsulate chunks of functionality as a WebPart control.

CreateEditorParts Web parts can have custom editor web parts based on EditorPart
to enable users to edit custom web part properties. Override
CreateEditorParts to incorporate the custom EditorPart control.

PersonalizableAttribute This attribute is applied to properties of the custom web part that
the user may want to save unique settings to.

Rendering methods As with custom server controls, sometimes you may need to
override Render or RenderContents to completely change the
outputted HTML or to simply customize it by also calling the
base method.

Verbs Add custom WebPartVerb objects to the Verbs collection to allow
custom menu actions to appear along with the standard verbs
such as close or minimize.

Cameron_865-2C10.fm Page 443 Thursday, February 21, 2008 1:01 PM

444 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

This may seem like the long road to building web parts, but we believe it is more realistic.
In many situations, developers will create server controls and statically code the page layout
and what server controls appear on a page as part of an application. Initially, there are perhaps
just a couple of server controls, but after a couple of cycles where users ask for additional func-
tionality or views on data, developers may find themselves with a library of server controls with
different users requesting multiple combinations of server controls, resulting in multiple, hand-
coded, statically linked and created web forms. At this point, the developer may ask, “Why not
create a web part portal page where users can pick which controls display on the page, how the
controls are laid out, and which controls are linked?”

Regarding what type of scenario may fit this model, a reporting web portal or business
intelligence application comes to mind, so our focus for this demonstration is providing a
reporting page focused on the famous Northwind database with NorthWind customers as the
theme for the site.

In the next section, we build the server controls web form with two server controls reporting
NorthWind customer data.

The Server Controls

As mentioned in the previous section, we start out by creating server control versions of the
web parts and then show how to turn them into web parts in the next section. The two server
controls retrieve data from the NorthWind database. The first server control displays a list of
customers and allows editing of existing customers but not insertion or deletion. The second
server control takes a customer ID and displays invoice highlights for the customer based on
the provided customer ID. Both server controls allow sorting and paging, as well as provide a
simple style to show row highlighting.

If you have read this book straight through, you can probably guess that each of the two
server controls detailed here is a composite control containing a GridView and a DataSource
control and inheriting from CompositeControl. All of those guesses would be correct. Listing
10-1 contains the CustomerList custom server control.

Listing 10-1. The CustomerList Server Control

using System;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch10
{
 [ToolboxData("<{0}:CustomerList runat=server></{0}:CustomerList>")]
 public class CustomerList : CompositeControl
 {
 private const string strSelectCmd = @"Select * from [Customers]";
 private const string strUpdateCmd = @"UPDATE [Customers] SET " +
 @"[CompanyName] = @CompanyName, [ContactName] = @ContactName, " +
 @"[Phone] = @Phone WHERE [CustomerID] = @CustomerID";

Cameron_865-2C10.fm Page 444 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 445

 public CustomerList()
 {
 }

 public String CustomerID
 {
 get
 {
 object customerID = ViewState["CustomerID"];
 if (customerID == null)
 return String.Empty;
 else
 return (String)customerID;
 }
 set
 {
 ViewState["CustomerID"] = value;
 }
 }

 // Allow page developers to set the connection string.
 public String ConnectionString
 {
 get
 {
 object connectionString = ViewState["ConnectionString"];
 if (connectionString == null)
 return String.Empty;
 else
 return (String)connectionString;
 }
 set
 {
 ViewState["ConnectionString"] = value;
 }
 }

 public Boolean AllowCustomerEditing
 {
 get
 {
 object allowEditing = ViewState["AllowCustomerEditing"];
 if (allowEditing == null)
 return false;
 else
 return (Boolean)allowEditing;
 }

Cameron_865-2C10.fm Page 445 Thursday, February 21, 2008 1:01 PM

446 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 set
 {
 ViewState["AllowCustomerEditing"] = value;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();

 SqlDataSource ds = new SqlDataSource(this.ConnectionString, strSelectCmd);
 ds.ID = "dsCustomers";
 ds.DataSourceMode = SqlDataSourceMode.DataSet;
 ds.UpdateCommandType = SqlDataSourceCommandType.Text;
 ds.UpdateCommand = strUpdateCmd;
 ParameterCollection updateParams = new ParameterCollection();
 updateParams.Add(_createParameter("CustomerID", TypeCode.String));
 updateParams.Add(_createParameter("CompanyName", TypeCode.String));
 updateParams.Add(_createParameter("ContactName", TypeCode.String));
 updateParams.Add(_createParameter("Phone", TypeCode.String));

 Controls.Add(ds);

 Label title = new Label();
 title.Text = "Customer list";
 Controls.Add(title);

 LiteralControl br = new LiteralControl("
");
 Controls.Add(br);

 GridView grid = new GridView();
 grid.ID = "customerGrid";
 grid.Font.Size = 8;
 grid.AllowPaging = true;
 grid.AllowSorting = true;
 grid.AutoGenerateColumns = false;
 String[] fields = { "CustomerID" };
 grid.DataKeyNames = fields;
 grid.DataSourceID = "dsCustomers";
 CommandField controlButton = new CommandField();

 //Only show Edit button if control configured to allow it
 if (AllowCustomerEditing)
 controlButton.ShowEditButton = true;

Cameron_865-2C10.fm Page 446 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 447

 controlButton.ShowSelectButton = true;
 grid.Columns.Add(controlButton);
 BoundField customerID = _createBoundField("CustomerID");
 customerID.ReadOnly = true;
 grid.Columns.Add(customerID);
 grid.Columns.Add(_createBoundField("CompanyName"));
 grid.Columns.Add(_createBoundField("ContactName"));
 grid.Columns.Add(_createBoundField("Phone"));
 grid.SelectedRowStyle.BackColor = Color.AntiqueWhite;

 grid.SelectedIndexChanged += new EventHandler(SelectedIndexChanged);
 grid.PageIndexChanged += new EventHandler(PageIndexChanged);
 Controls.Add(grid);
 Style.Add(HtmlTextWriterStyle.FontFamily, "arial");
 BorderStyle = BorderStyle.Solid;
 BorderColor = Color.LightBlue;
 }

 protected void SelectedIndexChanged(object sender, EventArgs e)
 {
 GridViewRow row = ((GridView)(sender)).SelectedRow;
 CustomerID = row.Cells[1].Text;
 }

 protected void PageIndexChanged(object sender, EventArgs e)
 {
 ((GridView)(sender)).SelectedIndex = -1;
 }

 private BoundField _createBoundField(String fieldName)
 {
 BoundField field = new BoundField();
 switch (fieldName)
 {
 case "CompanyName": field.HeaderText = "Company Name";
 break;
 case "ContactName": field.HeaderText = "Contact Name";
 break;
 case "PhoneName": field.HeaderText = "Phone Name";
 break;
 case "CustomerID": field.HeaderText = "Customer ID";
 break;
 default: field.HeaderText = fieldName; break;
 }

Cameron_865-2C10.fm Page 447 Thursday, February 21, 2008 1:01 PM

448 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 field.SortExpression = fieldName;
 field.DataField = fieldName;
 return field;
 }

 private Parameter _createParameter(String paramName, TypeCode dataTypeCode)
 {
 Parameter theParm = new Parameter(paramName, dataTypeCode);
 return theParm;
 }
 }
}

The CustomerID property is used to store the selected row’s CustomerID value from the
customer list. The ConnectionString is a public property for the SqlDataSource control that is
part of the server control hierarchy to use to connect to the database. The CustomerList server
control allows editing of the customer list. The AllowCustomerEditing property is used to
control whether the editing is permitted for a particular instance of the control on a web form.

As with all composite server controls, CreateChildControls does all of the heavy lifting to
build out the server control hierarchy. The controls include a Label for the title, a LiteralControl to
contain a br tag, a SqlDataSource, and, of course, the GridView control.

The CreateChildControls override attaches two events to the GridView control, one
for the SelectedIndexChanged event and the other for the PageIndexChanged event. The
SelectedIndexChanged event sets the CustomerID property to the CustomerID value from the
GridView. The PageIndexChanged event resets the SelectedIndex to –1 so that a row is not selected
after the page is changed. The CustomerInvoices server control is similar to the CustomerList
server control, except that it is based on a database view instead of a table and so does not allow
editing. Listing 10-2 shows the source code for the CustomerInvoices server control.

Listing 10-2. The CustomerInvoices Server Control

using System;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.Ch10
{
 [ToolboxData("<{0}:CustomerInvoices runat=server></{0}:CustomerInvoices>")]
 public class CustomerInvoices : CompositeControl
 {
 private const string strSelectCmd = @"Select * from [Invoices] where "+
 "CustomerID = '{0}'";

Cameron_865-2C10.fm Page 448 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 449

 public CustomerInvoices()
 {
 }

 public String CustomerID
 {
 get
 {
 object customerID = ViewState["CustomerID"];
 if (customerID == null)
 return String.Empty;
 else
 return (String)customerID;
 }
 set
 {
 ViewState["CustomerID"] = value;
 }
 }

 // Allow page developers to set the connection string.
 public String ConnectionString
 {
 get
 {
 object connectionString = ViewState["ConnectionString"];
 if (connectionString == null)
 return String.Empty;
 else
 return (String)connectionString;
 }
 set
 {
 ViewState["ConnectionString"] = value;
 }
 }
 protected override void CreateChildControls()
 {
 Controls.Clear();

 SqlDataSource ds = new SqlDataSource(this.ConnectionString,
 String.Format(strSelectCmd,CustomerID));
 ds.ID = "dsCustomerInvoices";
 ds.DataSourceMode = SqlDataSourceMode.DataSet;
 Controls.Add(ds);

Cameron_865-2C10.fm Page 449 Thursday, February 21, 2008 1:01 PM

450 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 Label title = new Label();
 title.Text = "Customer Invoices - "+ CustomerID;
 Controls.Add(title);

 LiteralControl br = new LiteralControl("
");
 Controls.Add(br);

 GridView grid = new GridView();
 grid.ID = "customerInvoicesGrid";
 grid.Font.Size = 8;
 grid.AllowPaging = true;
 grid.PageSize = 5;
 grid.AllowSorting = true;
 grid.AutoGenerateColumns = false;
 String[] fields = { "CustomerID" };
 grid.DataKeyNames = fields;
 grid.DataSourceID = "dsCustomerInvoices";
 CommandField controlButton = new CommandField();
 controlButton.ShowSelectButton = true;
 grid.Columns.Add(controlButton);
 grid.Columns.Add(_createBoundField("OrderID"));
 grid.Columns.Add(_createBoundField("RequiredDate"));
 grid.Columns.Add(_createBoundField("ShippedDate"));
 grid.Columns.Add(_createBoundField("ProductName"));
 grid.Columns.Add(_createBoundField("Quantity"));
 grid.SelectedRowStyle.BackColor = Color.AntiqueWhite;

 grid.SelectedIndexChanged += new EventHandler(SelectedIndexChanged);
 grid.PageIndexChanged += new EventHandler(PageIndexChanged);

 Controls.Add(grid);
 Style.Add(HtmlTextWriterStyle.FontFamily, "arial");
 BorderStyle = BorderStyle.Solid;
 BorderColor = Color.LightBlue;
 }

 protected void SelectedIndexChanged(object sender, EventArgs e)
 {
 GridViewRow row = ((GridView)(sender)).SelectedRow;
 }

Cameron_865-2C10.fm Page 450 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 451

 protected void PageIndexChanged(object sender, EventArgs e)
 {
 ((GridView)(sender)).SelectedIndex = -1;
 }

 private BoundField _createBoundField(String fieldName)
 {
 BoundField field = new BoundField();
 switch (fieldName)
 {
 case "Order ID": field.HeaderText = "Order ID";
 break;
 case "RequiredDate": field.HeaderText = "Required Date";
 break;
 case "ShippedDate": field.HeaderText = "Shipped Date";
 break;
 case "ProductName": field.HeaderText = "Product Name";
 break;
 case "Quanity": field.HeaderText = "Quantity Ordered";
 break;
 default: field.HeaderText = fieldName; break;
 }
 field.DataField = fieldName;
 field.SortExpression = fieldName;
 return field;
 }

 private Parameter _createParameter(String paramName, TypeCode dataTypeCode)
 {
 Parameter theParm = new Parameter(paramName, dataTypeCode);
 return theParm;
 }
 }
}

Both controls have two helper methods for building out the control hierarchy; they are
named _createBoundField and _createParameter, and they help to create the bound fields and
parameters for the GridView control. The demonstration web form for the two server controls
is CustomerInfo.aspx. The source code is shown in Listings 10-3 and 10-4.

Cameron_865-2C10.fm Page 451 Thursday, February 21, 2008 1:01 PM

452 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Listing 10-3. The Customer Information Web Form .aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
AutoEventWireup="true" CodeBehind="CustomerInfo.aspx.cs"
Inherits="ControlsBook2Web.Ch10.CustomerInfo"
Title="Customer Info Demo Web Form" %>
<%@ Register assembly="ControlsBook2Lib" namespace="ControlsBook2Lib.Ch10"
tagprefix="apress" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">

 <apress:CustomerList ID="CustomerList1" runat="server"
 ConnectionString = "<%$ ConnectionStrings:NorthWindDB %>"
 AllowCustomerEditing="True" />

 <apress:CustomerInvoices ID="CustomerInvoices1" runat="server" CustomerID="VINET"
 ConnectionString = "<%$ ConnectionStrings:NorthWindDB %>" />

</asp:Content>

Listing 10-4. The Customer Information Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch10
{
 public partial class CustomerInfo : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

Figure 10-1 shows how the customer information web form application appears in
the browser.

We could wire up these controls by bubbling up the SelectedIndexChanged event for the
GridView to the CustomerList parent control as shown in Chapter 5, so that we can get the
customer ID and then pass it to the CustomerInvoices control, but we want to link the controls
using the web part, which we cover in the next section when we convert the server controls into
web parts.

Cameron_865-2C10.fm Page 452 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 453

Figure 10-1. The Customer Info web form in the browser

Converting to WebPart Controls

To start the conversion, we copied the CustomerList and CustomerInvoices server control to
new class files with the same names but with the term “WebPart” appended. To start, System.Web.
UI.WebControls.WebParts was added to the class files, and the base control changed from
CompositeControl to WebPart.

At this point, the project compiles. As a test, we begin by creating the test form to see if the
web parts will host in a WebPartZone control. We added a page, CustomerInfoWebPart.aspx, to
the web project. Next, we added WebPartZone and ZoneTemplate controls to contain the two web
parts. A required step is to add a WebPartManager control to the page to enable web part function-
ality. Figure 10-2 shows the results of this minimalist effort.

Cameron_865-2C10.fm Page 453 Thursday, February 21, 2008 1:01 PM

454 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Figure 10-2. The Customer Info web part basic web form in the browser

The web form renders with the additional chrome of the web parts around the controls,
including the basic web part menu containing just the Minimize and Close commands, but this
version of the web page is not much different from the server control version. We next discuss
how to enable different web part modes, such as design.

Cameron_865-2C10.fm Page 454 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 455

The WebPartPageController Server Control

Part of the allure of web forms with web parts is the ability to provide to end users design-time
functionality normally in the hands of developers. The WebPartPageController server control
provides a menu to do this by plugging into the web part page functionality. One example
behavior is the ability to move the location of web parts by entering design mode for the page.
Once finished designing the page, the end user can choose browse mode in the drop-down
menu. The WebPartPageController control also allows the user to choose whether to save
personalization data at the User or Shared scope. One consideration would be to apply role
checking on this setting if only certain users should be able to select the Shared scope. Figure 10-3
shows WebpartPageController in action.

Figure 10-3. WebpartPageController in the browser

Figure 10-4 shows the form in design mode with the mouse dragging
CustomerInvoicesWebPart to the top of the web part zone within the browser.

Cameron_865-2C10.fm Page 455 Thursday, February 21, 2008 1:01 PM

456 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Figure 10-4. The Customer Info web part web form in design mode

What is handy about this server control is that just by dropping it on to the web-part-enabled
web form, you get immediate customization functionality. Listing 10-5 provides the source
code for the WebPartController server control.

Listing 10-5. The WebPartPageController Server Control

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

Cameron_865-2C10.fm Page 456 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 457

namespace ControlsBook2Lib.Ch10
{
 [DefaultProperty("DisplayModeText")]
 [ToolboxData("<{0}:WebPartPageController runat=server>
</{0}:WebPartPageController>")]
 public class WebPartPageController : CompositeControl
 {
 WebPartManager _currentWebPartManager;

 Label displayMode;
 DropDownList displayModeDropDown;
 RadioButton userRB;
 RadioButton sharedRB;
 Panel personalizationScopePanel;

 #region Properties
 [Bindable(true), Category("Appearance"), DefaultValue("Display Mode"),
 Localizable(true), Description(
 "Sets the text on the caption for the web part state dropdown.")]
 public string DisplayModeText
 {
 get
 {
 object displayModeText = ViewState["DisplayModeText"];
 if (displayModeText == null)
 return string.Empty;
 else
 return (string)displayModeText;
 }

 set
 {
 ViewState["DisplayModeText"] = value;
 }
 }

 [Bindable(true), Category("Appearance"), DefaultValue("Reset User State"),
 Localizable(true), Description(
 "Configures the text on the link button to reset state.")]
 public string ResetStateText
 {
 get
 {
 object resetStateText = ViewState["ResetStateText"];
 if (resetStateText == null)
 return string.Empty;

Cameron_865-2C10.fm Page 457 Thursday, February 21, 2008 1:01 PM

458 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 else
 return (string)resetStateText;
 }

 set
 {
 ViewState["ResetStateText"] = value;
 }
 }

 [Bindable(true), Category("Appearance"), Localizable(true),
 DefaultValue("Reset the current user's personalization data for the page."),
 Description("Configures the tooltip for the link button to reset state.")]
 public string ResetStateToolTip
 {
 get
 {
 object resetStateToolTip = ViewState["ResetStateToolTip"];
 if (resetStateToolTip == null)
 return string.Empty;
 else
 return (string)resetStateToolTip;
 }

 set
 {
 ViewState["ResetStateToolTip"] = value;
 }
 }

 #endregion

 #region Overrides
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);

 _currentWebPartManager =
 WebPartManager.GetCurrentWebPartManager(Page);
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 String browseModeName = WebPartManager.BrowseDisplayMode.Name;

Cameron_865-2C10.fm Page 458 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 459

 //Reset items collection on dropdown
 displayModeDropDown.Items.Clear();

 // Fill the DropDown with the names of supported display modes.
 foreach (WebPartDisplayMode mode
 in _currentWebPartManager.SupportedDisplayModes)
 {
 String modeName = mode.Name;
 // Make sure a mode is enabled before adding it.
 if (mode.IsEnabled(_currentWebPartManager))
 {
 ListItem item = new ListItem(modeName, modeName);
 displayModeDropDown.Items.Add(item);
 }
 }

 // If shared scope is allowed for this user, display the scope-switching
 // UI and select the appropriate radio button for the current user scope.
 if (_currentWebPartManager.Personalization.CanEnterSharedScope)
 {
 personalizationScopePanel.Visible = true;
 if (_currentWebPartManager.Personalization.Scope
 == PersonalizationScope.User)
 userRB.Checked = true;
 else
 sharedRB.Checked = true;
 }

 ListItemCollection items = displayModeDropDown.Items;
 int selectedIndex =
 items.IndexOf(items.FindByText(_currentWebPartManager.DisplayMode.Name));
 displayModeDropDown.SelectedIndex = selectedIndex;
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 public override Unit Height
 {

Cameron_865-2C10.fm Page 459 Thursday, February 21, 2008 1:01 PM

460 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 get
 {
 return base.Height;
 }
 set
 {
 EnsureChildControls();
 Unit min = new Unit(87);
 if (value.Value > min.Value)
 base.Height = value;
 else
 base.Height = min;
 }
 }

 public override Unit Width
 {
 get
 {
 return base.Width;
 }
 set
 {
 EnsureChildControls();
 Unit min = new Unit(167);
 if (value.Value >= min.Value)
 base.Width = value;
 else
 base.Width = min;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();
 CreateChildControlHierarchy();
 }

 #endregion

 private void CreateChildControlHierarchy()
 {
 Panel rootPanel = new Panel
 {
 ID = "rootPanel",
 BorderWidth = 1,
 BackColor = this.BackColor,

Cameron_865-2C10.fm Page 460 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 461

 ForeColor = this.ForeColor
 };
 rootPanel.Font.Names = new string[] { "Verdana", "Arial", "Sans Serif" };

 rootPanel.Width = this.Width;
 rootPanel.Height = this.Height;
 Controls.Add(rootPanel);

 displayModeDropDown = new DropDownList
 {
 ID = "displayModeDropDown",
 AutoPostBack = true,
 Width = 120
 };
 displayModeDropDown.SelectedIndexChanged += new
 EventHandler(displayModeDropDown_SelectedIndexChanged);

 displayMode = new Label
 {
 ID = "displayMode",
 Text = DisplayModeText,
 AssociatedControlID = "DisplayModeDropDown"
 };
 displayMode.Font.Bold = true;
 displayMode.Font.Size = 8;

 //Add in order of desired rendering
 rootPanel.Controls.Add(displayMode);
 HtmlGenericControl div1 = new HtmlGenericControl("div");
 div1.Controls.Add(displayModeDropDown);
 rootPanel.Controls.Add(div1);

 LinkButton resetUserState = new LinkButton
 {
 ID = "resetUserState",
 Text = ResetStateText,
 ToolTip = ResetStateToolTip
 };
 resetUserState.Font.Size = 8;
 resetUserState.Click += new EventHandler(resetUserState_Click);
 HtmlGenericControl div2 = new HtmlGenericControl("div");
 div2.Controls.Add(resetUserState);
 rootPanel.Controls.Add(div2);
 personalizationScopePanel = new Panel
 {
 ID = "personalization Scope",
 GroupingText = "Personalization Scope",

Cameron_865-2C10.fm Page 461 Thursday, February 21, 2008 1:01 PM

462 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 Width = 165
 };
 personalizationScopePanel.Font.Size = 8;
 personalizationScopePanel.Font.Bold = true;
 rootPanel.Controls.Add(personalizationScopePanel);

 userRB = new RadioButton
 {
 ID = "userRB",
 Text = "User",
 AutoPostBack = true,
 GroupName = "Scope"
 };
 userRB.CheckedChanged += new EventHandler(userRB_CheckedChanged);
 personalizationScopePanel.Controls.Add(userRB);

 sharedRB = new RadioButton
 {
 ID = "sharedRB",
 Text = "Shared",
 AutoPostBack = true,
 GroupName = "Scope"
 };
 sharedRB.CheckedChanged += new EventHandler(sharedRB_CheckedChanged);
 personalizationScopePanel.Controls.Add(sharedRB);
 }

 #region Control Events
 void sharedRB_CheckedChanged(object sender, EventArgs e)
 {
 if (_currentWebPartManager.Personalization.CanEnterSharedScope &&
 _currentWebPartManager.Personalization.Scope
 == PersonalizationScope.User)
 _currentWebPartManager.Personalization.ToggleScope();
 }

 void userRB_CheckedChanged(object sender, EventArgs e)
 {
 if (_currentWebPartManager.Personalization.Scope
 == PersonalizationScope.Shared)
 _currentWebPartManager.Personalization.ToggleScope();
 }

 void resetUserState_Click(object sender, EventArgs e)
 {
 _currentWebPartManager.Personalization.ResetPersonalizationState();
 }

Cameron_865-2C10.fm Page 462 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 463

 void displayModeDropDown_SelectedIndexChanged(object sender, EventArgs e)
 {
 String selectedMode = displayModeDropDown.SelectedValue;

 WebPartDisplayMode mode =
 _currentWebPartManager.SupportedDisplayModes[selectedMode];
 if (mode != null)
 _currentWebPartManager.DisplayMode = mode;
 }
 #endregion
 }
}

Now that we have good control over the web part page functionality, we next take care of
a little bit of code cleanup to make the web parts look better before moving on to discuss how
to enable connections between web parts.

Connecting Web Parts

In the previous sections, we created server controls and then converted them to web parts. We
also added a handy web page controller web part to expose web part page functionality to end
users. In the server control versions of the web parts, we added a border and a label to contain
a title for the control. If you view the screen shots in Figures 10-1 to 10-4, you see that the
CustomerListWebPart control has the title set to Customer List, resulting in the phrase “Customer
List” appearing twice. The CustomerInvoicesWebPart has a title of Untitled. Web parts include
their own border and title functionality, so we first need to remove the blue border function-
ality from the server controls. Next, we’ll start the work on connecting the web parts.

First, we create an interface for passing the customer ID from the CustomerListWebPart to
the CustomerInvoicesWebPart called ICustomerID. We add the [Personalizable()] attribute
to the CustomerID property on the CustomerListWebPart control so that the value of CustomerID
is saved as part of the persistence service and will be available the next time the page is loaded.

Next, we add a new method to the CustomerListWebPart called ProvideICustomerID that
returns an ICustomerID object. The new method is decorated with the ConnectionProvider
attribute so that the web part infrastructure is aware of how to connect this web part.

For the CustomerInvoicesWebPart, we add a private variable called customerIDProvider
of type ICustomerID to hold a reference. We also add a GetICustomerID method that takes a
parameter of type ICustomerID and assigns it to the private variable customerIDProvider. Finally,
we override OnPreRender for the CustomerInvoicesWebPart so that the CustomerID can be retrieved
from the provider and set on the CustomerInvoicesWebPart’s CustomerID property.

Wiring Up the Page

To allow connections between the web parts, we first add a ConnectionZone web control to the
CustomerInfoWebPart.aspx markup and add verbs such as connect, configure, disconnect, and
so on to the ConnectionZone control. We also override OnPreRender in CustomerInfoWebPart.
aspx.cs and set properties for the connection verbs and UI to customize the connection func-
tionality. This completes the work necessary to wire up our server controls and link them the
web-part way.

Cameron_865-2C10.fm Page 463 Thursday, February 21, 2008 1:01 PM

464 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

To test this functionality, run the page, and select the new Connect option that appears
as a Display mode. This menu item is available because the WebPartPageController server
control dynamically reads what modes are supported by the WebPartManager control on the
page. Figure 10-5 shows the web form in Connect mode.

Figure 10-5. The Customer Info Web Part web form in Connect mode

After clicking Connect as shown in Figure 10-5, Figure 10-6 shows a screen shot of the
Create and Manage Connections functionality, as well as the Close Zone button to cancel out
creating a connection.

Cameron_865-2C10.fm Page 464 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 465

Figure 10-6. The Create and Manage Connections UI without any connections

Figure 10-7 shows the UI after clicking the “Select a consumer” link with the CustomerInvoices
web part selected for the To value.

Figure 10-7. The Create and Manage Connections UI after connecting the web parts

After clicking the Connect Controls button and selecting Browse mode in
WebPartPageController, the controls are now linked. Selecting a row in the CustomerList web
part filters the CustomerInvoices web part to invoices for the selected customer based on the
CustomerID passed via the web part connection, as shown in Figure 10-8 where CustomerID
BLAUS is selected and the customer’s invoices display below in the CustomerInvoices web part.

Cameron_865-2C10.fm Page 465 Thursday, February 21, 2008 1:01 PM

466 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Figure 10-8. Linked web parts

This concludes our web part walkthrough. The final web part source code for the
CustomerListWebPart and CustomerInvoicesWebPart web parts as well as the final
CustomerInfoWebPart web form are provided in Listings 10-6, 10-7, 10-8, and 10-9 respectively.

Listing 10-6. The CustomerListWebPart Server Control

using System;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace ControlsBook2Lib.Ch10
{
 [ToolboxData("<{0}:CustomerListWebPart runat=server></{0}:CustomerListWebPart>")]

Cameron_865-2C10.fm Page 466 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 467

 public class CustomerListWebPart : WebPart, ICustomerID
 {
 private const string strSelectCmd = @"Select * from [Customers]";
 private const string strUpdateCmd = @"UPDATE [Customers] SET " +
 @"[CompanyName] = @CompanyName, [ContactName] = @ContactName, " +
 @"[Phone] = @Phone WHERE [CustomerID] = @CustomerID";

 public CustomerListWebPart()
 {
 }

 [Personalizable()]
 public virtual String CustomerID
 {
 get
 {
 object customerID = ViewState["CustomerID"];
 if (customerID == null)
 return String.Empty;
 else
 return (String)customerID;
 }
 set
 {
 ViewState["CustomerID"] = value;
 }
 }

 //This callback method returns the provider.
 [ConnectionProvider("CustomerID Provider", "CustomerIDProvider")]
 public ICustomerID ProvideICustomerID()
 {
 return this;
 }

 // Allow page developers to set the connection string.
 public String ConnectionString
 {
 get
 {
 object connectionString = ViewState["ConnectionString"];
 if (connectionString == null)
 return String.Empty;
 else
 return (String)connectionString;
 }

Cameron_865-2C10.fm Page 467 Thursday, February 21, 2008 1:01 PM

468 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 set
 {
 ViewState["ConnectionString"] = value;
 }
 }

 public Boolean AllowCustomerEditing
 {
 get
 {
 object allowEditing = ViewState["AllowCustomerEditing"];
 if (allowEditing == null)
 return false;
 else
 return (Boolean)allowEditing;
 }
 set
 {
 ViewState["AllowCustomerEditing"] = value;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();

 SqlDataSource ds = new SqlDataSource(this.ConnectionString, strSelectCmd);
 ds.ID = "dsCustomers";
 ds.DataSourceMode = SqlDataSourceMode.DataSet;
 ds.UpdateCommandType = SqlDataSourceCommandType.Text;
 ds.UpdateCommand = strUpdateCmd;
 ParameterCollection updateParams = new ParameterCollection();
 updateParams.Add(_createParameter("CustomerID", TypeCode.String));
 updateParams.Add(_createParameter("CompanyName", TypeCode.String));
 updateParams.Add(_createParameter("ContactName", TypeCode.String));
 updateParams.Add(_createParameter("Phone", TypeCode.String));

 Controls.Add(ds);

 GridView grid = new GridView();
 grid.ID = "customerGrid";
 grid.Font.Size = 8;
 grid.AllowPaging = true;
 grid.AllowSorting = true;
 grid.AutoGenerateColumns = false;
 String[] fields = { "CustomerID" };
 grid.DataKeyNames = fields;

Cameron_865-2C10.fm Page 468 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 469

 grid.DataSourceID = "dsCustomers";
 CommandField controlButton = new CommandField();

 //Only show Edit button if control configured to allow it
 if (AllowCustomerEditing)
 controlButton.ShowEditButton = true;

 controlButton.ShowSelectButton = true;
 grid.Columns.Add(controlButton);
 BoundField customerID = _createBoundField("CustomerID");
 customerID.ReadOnly = true;
 grid.Columns.Add(customerID);
 grid.Columns.Add(_createBoundField("CompanyName"));
 grid.Columns.Add(_createBoundField("ContactName"));
 grid.Columns.Add(_createBoundField("Phone"));
 grid.SelectedRowStyle.BackColor = Color.AntiqueWhite;

 grid.SelectedIndexChanged += new EventHandler(SelectedIndexChanged);
 grid.PageIndexChanged += new EventHandler(PageIndexChanged);
 Controls.Add(grid);
 Style.Add(HtmlTextWriterStyle.FontFamily, "arial");
 }

 protected void SelectedIndexChanged(object sender, EventArgs e)
 {
 GridViewRow row = ((GridView)(sender)).SelectedRow;
 CustomerID = row.Cells[1].Text;
 }

 protected void PageIndexChanged(object sender, EventArgs e)
 {
 ((GridView)(sender)).SelectedIndex = -1;
 }

 private BoundField _createBoundField(String fieldName)
 {
 BoundField field = new BoundField();
 switch (fieldName)
 {
 case "CompanyName": field.HeaderText = "Company Name";
 break;
 case "ContactName": field.HeaderText = "Contact Name";
 break;
 case "PhoneName": field.HeaderText = "Phone Name";
 break;

Cameron_865-2C10.fm Page 469 Thursday, February 21, 2008 1:01 PM

470 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 case "CustomerID": field.HeaderText = "Customer ID";
 break;
 default: field.HeaderText = fieldName; break;
 }
 field.SortExpression = fieldName;
 field.DataField = fieldName;
 return field;
 }

 private Parameter _createParameter(String paramName, TypeCode dataTypeCode)
 {
 Parameter theParm = new Parameter(paramName, dataTypeCode);
 return theParm;
 }
 }
}

Listing 10-7. The CustomerListWebPart Server Control

using System;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace ControlsBook2Lib.Ch10
{
 [ToolboxData("<{0}:CustomerInvoicesWebPart
 runat=server></{0}:CustomerInvoicesWebPart>")]
 public class CustomerInvoicesWebPart : WebPart
 {
 private const string strSelectCmd = @"Select * from [Invoices] where " +
 "CustomerID = '{0}'";
 private ICustomerID _customerIDProvider;

 public CustomerInvoicesWebPart()
 {
 }

 public String CustomerID
 {
 get
 {
 object customerID = ViewState["CustomerID"];
 if (customerID == null)
 return String.Empty;

Cameron_865-2C10.fm Page 470 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 471

 else
 return (String)customerID;
 }
 set
 {
 ViewState["CustomerID"] = value;
 }
 }

 //The ConnectionConsumer attribute identifies
 //this method as the mechanism for connecting with
 // the provider.
 [ConnectionConsumer("CustomerID Consumer", "CustomerIDConsumer")]
 public void GetICustomerID(ICustomerID Provider)
 {
 _customerIDProvider = Provider;
 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 if (this._customerIDProvider != null)
 {
 CustomerID = _customerIDProvider.CustomerID.Trim();
 }
 Title = "Customer Invoices = " + CustomerID;
 }

 // Allow page developers to set the connection string.
 public String ConnectionString
 {
 get
 {
 object connectionString = ViewState["ConnectionString"];
 if (connectionString == null)
 return String.Empty;
 else
 return (String)connectionString;
 }
 set
 {
 ViewState["ConnectionString"] = value;
 }
 }

Cameron_865-2C10.fm Page 471 Thursday, February 21, 2008 1:01 PM

472 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 protected override void CreateChildControls()
 {
 Controls.Clear();

 SqlDataSource ds = new SqlDataSource(this.ConnectionString,
 String.Format(strSelectCmd, CustomerID));
 ds.ID = "dsCustomerInvoicesWebPart";
 ds.DataSourceMode = SqlDataSourceMode.DataSet;
 Controls.Add(ds);

 GridView grid = new GridView();
 grid.ID = "CustomerInvoicesWebPartGrid";
 grid.Font.Size = 8;
 grid.AllowPaging = true;
 grid.PageSize = 5;
 grid.AllowSorting = true;
 grid.AutoGenerateColumns = false;
 String[] fields = { "CustomerID" };
 grid.DataKeyNames = fields;
 grid.DataSourceID = "dsCustomerInvoicesWebPart";
 CommandField controlButton = new CommandField();
 controlButton.ShowSelectButton = true;
 grid.Columns.Add(controlButton);
 grid.Columns.Add(_createBoundField("OrderID"));
 grid.Columns.Add(_createBoundField("RequiredDate"));
 grid.Columns.Add(_createBoundField("ShippedDate"));
 grid.Columns.Add(_createBoundField("ProductName"));
 grid.Columns.Add(_createBoundField("Quantity"));
 grid.SelectedRowStyle.BackColor = Color.AntiqueWhite;

 grid.SelectedIndexChanged += new EventHandler(SelectedIndexChanged);
 grid.PageIndexChanged += new EventHandler(PageIndexChanged);

 Controls.Add(grid);
 Style.Add(HtmlTextWriterStyle.FontFamily, "arial");
 }

 protected void SelectedIndexChanged(object sender, EventArgs e)
 {
 GridViewRow row = ((GridView)(sender)).SelectedRow;
 }

 protected void PageIndexChanged(object sender, EventArgs e)
 {
 ((GridView)(sender)).SelectedIndex = -1;
 }

Cameron_865-2C10.fm Page 472 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 473

 private BoundField _createBoundField(String fieldName)
 {
 BoundField field = new BoundField();
 switch (fieldName)
 {
 case "Order ID": field.HeaderText = "Order ID";
 break;
 case "RequiredDate": field.HeaderText = "Required Date";
 break;
 case "ShippedDate": field.HeaderText = "Shipped Date";
 break;
 case "ProductName": field.HeaderText = "Product Name";
 break;
 case "Quanity": field.HeaderText = "Quantity Ordered";
 break;
 default: field.HeaderText = fieldName; break;
 }
 field.DataField = fieldName;
 field.SortExpression = fieldName;
 return field;
 }

 private Parameter _createParameter(String paramName, TypeCode dataTypeCode)
 {
 Parameter theParm = new Parameter(paramName, dataTypeCode);
 return theParm;
 }
 }
}

Listing 10-8. The Customer Information Web Part Web Form .aspx Page File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
AutoEventWireup="true"
CodeBehind="CustomerInfoWebPart.aspx.cs"
Inherits="ControlsBook2Web.Ch10.CustomerInfoWebPart"
Title="Customer Info Web Part Demo Web Form" %>
<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch10"
 Assembly="ControlsBook2Lib" %>

<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
<asp:Label ID="ChapterNumberLabel" runat="server"
Width="14px">10</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">Other Server Controls
 </asp:Label>

Cameron_865-2C10.fm Page 473 Thursday, February 21, 2008 1:01 PM

474 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">
 <div>

 <asp:WebPartManager ID="WebPartManager1" runat="server">
 </asp:WebPartManager>
 <apress:WebPartPageController ID="options" runat="server" DisplayModeText=
 "Display Mode:"
 ResetStateText="Reset User State"

 ResetStateToolTip=
 "Reset the current user's personalization data for the page."
 Height="87px" Width="167px" BackColor="Silver" ForeColor="White" />
 <asp:webpartzone id="WebPartZone1" runat="server" BorderColor="#CCCCCC"
 Font-Names="Verdana" Padding="6" >
 <EmptyZoneTextStyle Font-Size="0.8em" />
 <PartStyle Font-Size="0.8em" ForeColor="#333333" />
 <TitleBarVerbStyle Font-Size="0.6em" Font-Underline="False" ForeColor="White" />
 <MenuLabelHoverStyle ForeColor="#E2DED6" />
 <MenuPopupStyle BackColor="#5D7B9D" BorderColor="#CCCCCC" BorderWidth="1px"
 Font-Names="Verdana" Font-Size="0.6em" />
 <MenuVerbStyle BorderColor="#5D7B9D" BorderStyle="Solid" BorderWidth="1px"
 ForeColor="White" />
 <PartTitleStyle BackColor="#5D7B9D" Font-Bold="True" Font-Size="0.8em"
 ForeColor="White" />
 <zonetemplate>
 <apress:CustomerListWebPart id="CustomerListWebPart" runat="server"
 ConnectionString = "<%$ ConnectionStrings:NorthWindDB %>"
 Title="Customer List" AllowEdit="False" AllowCustomerEditing="True" />
 <apress:CustomerInvoicesWebPart ID="CustomerInvoicesWebPart1" runat="server"
 CustomerID="VINET"
 ConnectionString = "<%$ ConnectionStrings:NorthWindDB %>"
 Title="Customer Invoices"/>
 </zonetemplate>
 <MenuVerbHoverStyle BackColor="#F7F6F3" BorderColor="#CCCCCC"
 BorderStyle="Solid" BorderWidth="1px" ForeColor="#333333" />
 <PartChromeStyle BackColor="#F7F6F3" BorderColor="#E2DED6" Font-Names="Verdana"
 ForeColor="White" />
 <HeaderStyle Font-Size="0.7em" ForeColor="#CCCCCC" HorizontalAlign="Center" />
 <MenuLabelStyle ForeColor="White" />
 </asp:webpartzone>
 <asp:connectionszone id="connectionsZone1" runat="server" >
 <cancelverb text="Terminate" />
 <closeverb text="Close Zone" />
 <configureverb text="Configure" />
 <connectverb text="Connect Controls" />
 <disconnectverb text="End Connection" />

Cameron_865-2C10.fm Page 474 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 475

 </asp:connectionszone>

 </div>
</asp:Content>

Listing 10-9. The Customer Information Web Part Web Form Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch10
{
 public partial class CustomerInfoWebPart : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected override void OnPreRender(EventArgs e)
 {
 base.OnPreRender(e);

 // Set properties on verbs.
 connectionsZone1.CancelVerb.Description =
 "Terminates the connection process";
 connectionsZone1.CloseVerb.Description =
 "Closes the connections UI";
 connectionsZone1.ConfigureVerb.Description =
 "Configure the transformer for the connection";
 connectionsZone1.ConnectVerb.Description =
 "Connect two WebPart controls";
 connectionsZone1.DisconnectVerb.Description =
 "End the connection between two controls";

 // Set properties for UI text strings.
 connectionsZone1.ConfigureConnectionTitle =
 "Configure";
 connectionsZone1.ConnectToConsumerInstructionText =
 "Choose a consumer connection point";
 connectionsZone1.ConnectToConsumerText =
 "Select a consumer for the provider to connect with";
 connectionsZone1.ConnectToConsumerTitle =
 "Send data to this consumer";
 connectionsZone1.ConnectToProviderInstructionText =
 "Choose a provider connection point";
 connectionsZone1.ConnectToProviderText =
 "Select a provider for the consumer to connect with";

Cameron_865-2C10.fm Page 475 Thursday, February 21, 2008 1:01 PM

476 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 connectionsZone1.ConnectToProviderTitle =
 "Get data from this provider";
 connectionsZone1.ConsumersInstructionText =
 "WebPart controls that receive data from providers";
 connectionsZone1.ConsumersTitle = "Consumer Controls";
 connectionsZone1.GetFromText = "Receive from";
 connectionsZone1.GetText = "Retrieve";
 connectionsZone1.HeaderText =
 "Create and Manage Connections";
 connectionsZone1.InstructionText =
 "Manage connections for the selected WebPart control";
 connectionsZone1.InstructionTitle =
 "Manage connections for consumers or providers";
 connectionsZone1.NoExistingConnectionInstructionText =
 "No connections exist. Click the above link to create "
 + "a connection.";
 connectionsZone1.NoExistingConnectionTitle =
 "No current connections";
 connectionsZone1.ProvidersInstructionText =
 "WebPart controls that send data to consumers";
 connectionsZone1.ProvidersTitle = "Provider controls";
 }
 }
}

For further testing, close the web form and reopen it. You should see that your previous
settings, such as the selected customer and the connection, are restored. This is a result of the
personalization configuration on the web part and in the web form UI based on the
WebPartPageController settings. Click Reset User State, and the connection and currently
selected value will reset to the default values. You can again build the connection between
the two server controls by selecting Connect for the WebPartPageController Display Mode
DropDownList and clicking Connect on the web part menu to reconnect the web parts’ link.

Web Part Development Tips
In the preceding sections, we covered the details of creating web parts and enabling web part
functionality. An item to consider when building web part pages with multiple web parts is
performance. On a web part page with five or six web parts, each calling either a web service or
making one or more database calls, performance can suffer depending on application load and
similar considerations. If you find that performance is an issue, an excellent way to improve
performance is to perform tasks such as calling a web service or retrieving data from a database
on separate threads. The article “Asynchronous Web Parts” by Fritz Onion, available at the
following URL, provides an excellent reference on how to do this:

http://msdn.microsoft.com/msdnmag/issues/06/07/ExtremeASPNET/default.aspx

If you intend to make extensive use of web parts, the OnPreRender code in Listing 10-9
for the CustomerInfoWebPart.aspx.cs page could be added to a master page that contains the
desired web part zones, including ConnectionZone. In addition, WebPartPageController could

Cameron_865-2C10.fm Page 476 Thursday, February 21, 2008 1:01 PM

http://msdn.microsoft.com/msdnmag/issues/06/07/ExtremeASPNET/default.aspx

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 477

also be added as part of a master page. This would standardize a site on a single web part page
template with the boilerplate code added to the master page.

This concludes our coverage of web part development. In the next section, we cover adaptive
control behavior.

Adaptive Control Behavior
With versions after .NET Framework 1.0, Microsoft shipped an add-on called the Mobile Internet
Toolkit. In .NET Framework 1.1, the toolkit was fully incorporated into the .NET Framework.
These extensions to ASP.NET are called mobile controls and are located under the System.
Web.UI.MobileControls namespace. Fortunately, the mobile web page framework is based on
the same fundamental model as ASP.NET, with the web form construct and server control
model, providing for a short learning curve to develop mobile web applications.

When the .NET Framework 2.0 was in beta, the product team shared information about
the new control adapter framework that was going to be introduced. Initially, there was talk of
the control adapter framework replacing the device adapters for mobile controls that became
part of .NET Framework 1.1, but the product team backed off this concept. When you think
about it, not trying to do this makes a lot of sense because of the limitations of mobile device
capabilities. In general, mobile browsers have limited capabilities, such as small screen size
and limited navigation, though that is changing with each new generation of phones. Also,
from an application design perspective, it would not make sense to have full parity with a
desktop web application in most cases due to the limited bandwidth available and smaller
screen size. Most mobile applications are designed to provide streamlined access to the most
important application processes.

What is exciting is that the control adapter framework remained in .NET Framework 2.0
and later to provide web developers the ability to modify the HTML output of the built-in
server controls.

For mobile web development, the ASP.NET mobile controls live on in the .NET Frame-
work 3.5, which we cover later in this chapter. However, first we provide an overview of the
adaptive behavior framework including steps to build a custom control adapter in the next section.

Nonmobile Adaptive Behavior
Starting in .NET Framework 2.0, ASP.NET includes the ability to change rendering for a web
server control such as the built-in TreeView server control. The adaptive rendering function-
ality provides for multiple ways to modify control behavior:

• Use declarative device markup or browser filtering to affect how control properties are
set based on device filter definitions.

• Configure a web application to render multiple markups depending on the browser device.

• Create a custom TextWriter class to render output.

• Use the XhtmlTextWriter or ChtmlTextWriter classes to customize control tags
and attributes.

• Develop a custom control adapter that substitutes an adapter life cycle method for the
default life cycle method for an existing server control.

Cameron_865-2C10.fm Page 477 Thursday, February 21, 2008 1:01 PM

478 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

In addition to controlling rendering, server control behavior can be modified for a target
browsing device as follows:

• Prevent a custom control from being adapted, which may be desirable for server control
developers.

• Alter ViewState management.

• Alter how postback data is processed.

Refer to the ASP.NET documentation for details on how to take advantage of the adapter
control framework in general. In the next section, we focus on building control adapters.

Control Adapters

The adaptive control behavior framework allows the control developer to substitute custom
rendering behavior at key life cycle stages of a server control, without actually modifying or
inheriting from the target control. A single instance of the control adapter is mapped into a
page to modify behavior of all server control instances of the target server control type.

What happens is that when a page request is made, the ASP.NET page processing pipeline
checks to see if there is an associated adapter for a control in the page’s control tree and calls
the adapter’s associated method, instead of the target control’s method. So, instead of calling the
control’s Render method, the control adapter’s Render method is called instead. Quite often,
the control adapter will refer to the control’s version of the method, so it is not necessary to
reimplement every bit of a control’s functionality in the control adapter, which is one of the
reasons why this architecture is so appealing. Control developers have to implement only what
is needed. The relevant namespace for control adapters are System.Web.UI.Adapters and
System.Web.UI.WebControls.Adapters, when targeting nonmobile scenarios.

■Note There is also a ControlAdapter class in the System.Web.UI.MobileControls.Adapters
namespace for mobile scenarios that we cover later in this chapter.

There are many built-in adapters listed in the .NET Framework documentation in the
System.Web.UI.Adapters namespace, such as the DataBoundControlAdapter and
HideDisabledControlAdapter classes. Table 10-2 lists the key base classes and role in the
adaptive framework.

Table 10-2. Key Classes in the Adaptive Control Framework

Class Description

ControlAdapter Base class for all control adapters

WebControlAdapter Base class for adaptively rendering server controls that inherit from
the WebControl class

PageAdapter Base class for adaptively rendering a web form

Cameron_865-2C10.fm Page 478 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 479

The ControlAdapter class is abstract, providing base methods for adaptive functionality
such as representative methods of the control life cycle like the following:

• OnInit

• OnLoad

• OnPreRender

• OnUnload

• Render

• RenderChildren

These methods are implemented by custom control adapters to alter the corresponding
target control’s behavior in the control life cycle. So, to modify Render in the target server
control, the control adapter would override method to implement the new functionality. Not
every method must be implemented in order to create a control adapter. In the next section,
we briefly discuss page adapters.

The PageAdapter Base Class

The PageAdapter class is an abstract class that can be implemented to adapt a web page for a
specific class of browsers as well as to alter ASP.NET web form behavior. Before implementing
a custom PageAdapter class, instead consider implementing a custom text writer class that
derivers from HtmlTextWriter as a means to provide the desired functionality.

The example in the documentation called CustomPageAdapter overrides the
RenderBeginHyperlink method in order to add a src attribute that points to the current page for
all hyperlink controls on the page. This is an example of creating a PageAdapter for a reason
beyond targeting a specific class of browsers.

Another example available on the Internet demonstrates a PageAdapter class that alters
the way ASP.NET handles ViewState. There are two ways to do this with a very small amount of
code, and both require that session state is enabled. The first method is to override PageAdapter.
LoadPageStateFromPersistenceMedium and PageAdpater.SavePageStateToPersistenceMedium to
store the state in session state. The second method is to override PageAdapter.GetStatePersister
so that it returns a SessionPageStatePersister. With the second technique, you can run into
issues if a user creates multiple browser windows within the same session. Therefore, with any
technique that provides this type of deep behavior modification, testing is always a good idea.

For further examples, search the Internet for the text “PageAdapter” and numerous posts
with examples will pop up.

I should add that both methods require a .browsers file in the App_Browsers folder for the
web site so that the custom PageAdapter is picked up by ASP.NET. The file would contain a
small amount of configuration code like this:

<browsers>
 <browser refID="Default">
 <controlAdapters>
 <adapter controlType="System.Web.UI.Page"
 adapterType="PageSessionStateAdapter" />
 </controlAdapters>
 </browser>
</browsers>

Cameron_865-2C10.fm Page 479 Thursday, February 21, 2008 1:01 PM

480 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

The adapter element in the preceding code designates the target control in the controlType
attribute and the custom PageAdapter in the adapterType attribute. This concludes our discus-
sion of PageAdapters. In the next section, we cover the WebControlAdapter base class as well as
provide an example control adapter.

The WebControlAdapter Base Class

So far, we have provided background on the adaptive control behavior architecture and discussed
how it works. In this section, we go a bit deeper and implement two simple custom control
adapters: one that inherits from the ControlAdapter base class and another that inherits from
the WebControlAdapter base class.

Our simple adapters essentially perform the same functionality in changing the output
from a HTML tag to a <div> HTML tag for the StatefulLabel and FancyLabel server
controls created earlier in this book. As you might guess, the StatefulLabel custom adapter
class name is StatefulLabelAdapter, following the naming convention in the .NET Framework
of appending “Adapter” to the target control’s class name. Likewise, the FancyLabel adapter is
named FancyLabelAdapter.

Both adapters override the Render method to output an HTML <div> tag instead of the
standard tag. Naturally, the custom adapters need to know what value to output, so
each uses a Control property that points to the target control to obtain the value of the Text
property found on both controls. Listings 10-10 and 10-11 contain the custom control adapters’
source code.

Listing 10-10. The StatefulLabelAdapter Control Adapter

using System.Web.UI.Adapters;
using ControlsBook2Lib.Ch03;

namespace ControlsBook2Lib.Ch10
{
 class StatefulLabelAdapter : ControlAdapter
 {
 protected override void Render(System.Web.UI.HtmlTextWriter writer)
 {
 //base.Render(writer); Don't want default rendering so comment out

 //Change rendering from a span to a div
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 //Get a reference to the target control to determine what value to write out
 writer.Write(((StatefulLabel)this.Control).Text);
 writer.RenderEndTag();
 }
 }
}

Cameron_865-2C10.fm Page 480 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 481

Listing 10-11. The FancyLabelAdapter Control Adapter

using System.Web.UI;
using System.Web.UI.WebControls.Adapters;
using ControlsBook2Lib.Ch04;

namespace ControlsBook2Lib.Ch10
{
 class FancyLabelAdapter : WebControlAdapter
 {
 protected override void Render(System.Web.UI.HtmlTextWriter writer)
 {
 //base.Render(writer); Don't want default rendering so comment out

 //Change rendering from a span to a div
 writer.RenderBeginTag(HtmlTextWriterTag.Div);
 //Get a reference to the target control to determine what value to write out
 writer.Write(((FancyLabel)this.Control).Text);
 writer.RenderEndTag();
 }
 }
}

Note that, since the StatefulLabel custom server control inherits from Control, the
StatefulLabelAdapter control adapter must inherit from ControlAdapter. Likewise, since the
FancyLabel custom server control inherits from WebControl, the FancyLabelAdapter control
adapter must inherit from WebControlAdapter.

For the control adapters to be picked up by ASP.NET, an ASP.NET folder must be added to
the web project by right-clicking the web project and selecting Add ➤ Add ASP.NET Folder ➤
App_Browsers. In this folder, create a file with any name and with the file extension of .browser. If
you right-click App_Browsers and select Add ➤ New Item, you can select Browser File in the
Add New Item dialog box to provide a starting file. Listing 10-12 contains our simple .browser
file, named NonMobileAdapter.browser.

Listing 10-12. The NonMobileAdapters.browser File

<browsers>
 <browser refID="Default">
 <controlAdapters>
 <adapter controlType="ControlsBook2Lib.Ch03.StatefulLabel"
 adapterType="ControlsBook2Lib.Ch10.StatefulLabelAdapter" />
 <adapter controlType="ControlsBook2Lib.Ch04.FancyLabel"
 adapterType="ControlsBook2Lib.Ch10.FancyLabelAdapter" />
 </controlAdapters>
 </browser>
</browsers>

Cameron_865-2C10.fm Page 481 Thursday, February 21, 2008 1:01 PM

482 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

The adapter elements are commented out when you first unpack the source code so that
the samples from Chapters 3 and 4 run correctly and render the span tag. We tried putting the
App_Browsers folder in the web site’s Ch10 folder to have adapters apply only in that folder, but
ASP.NET does not pick up the .browser file unless App_Browsers is in the root web folder.

Once you go through these simple examples, we highly recommend downloading the
CSSFriendlyTutorial sample provided by Microsoft. This high-quality sample provides numerous
control adapters that output CSS style tags for rendering a number of built-in server controls,
such as GridView, Login, Menu, and TreeView to name a few. The download includes the adapter
source code as well as a sample web site to test out the adapters. It is available here:

http://www.asp.net/cssadapters/Default.aspx

As you can see from the discussion of control and page adapters, ASP.NET provides a very
pluggable model that allows the developer to control just about any aspect of page and server
control rendering for precise HTML output that can make any CSS-focused web designer happy. In
addition, if a server control is not quite outputting correctly for a particular browser, the tools
are available to modify the HTML output as needed.

In the next section, we dive into device-specific rendering for mobile applications.

Mobile Controls Overview
The ability to build web applications that target mobile devices in addition to traditional desktop
HTML browsers is becoming an important web application feature as more and more users are
browsing the Internet using a mobile device. An example of this is the fact that Microsoft produces
several versions of Internet Explorer: Pocket Internet Explorer for the Windows Mobile Profes-
sional and Windows Mobile Standard editions, as well as the traditional desktop Internet
Explorer product.

Mobile phones sold today support a variety of client markup technology, such as Wireless
Markup Language (WML), compact HTML (cHTML), and Extensible Hypertext Markup Language
(XHTML). Mobile devices present a great opportunity for delivering web content, especially
when combined with the ever-increasing bandwidth available through wireless carrier networks.
In addition, many devices sport wireless network adapters, allowing web surfing through rela-
tively high-speed 802.11x wireless networks.

Developing mobile web applications has traditionally been a complex and tedious under-
taking due to the need to address the plethora of device capabilities and ever-changing content
markup specifications. Devices have different methods of sizing, positioning, and coloring
information and of maintaining state on the client. Attempting to address these variations with
custom code or XSLT scripts quickly becomes a maintenance nightmare. Add to that the task
of keeping up with the actual content or business logic, and mobile web development can
quickly become very costly to create and maintain. Having a powerful, flexible framework that
provides an abstraction layer between application design and device-specific rendering can
mean the difference between success and failure for a mobile development project.

Working in Visual Studio 2008

The mobile controls framework shipped soon after .NET Framework 1.0 as the Mobile Internet
Toolkit and was later incorporated into .NET Framework 1.1. The mobile web forms and mobile
controls have been brought forward with each new version of the .NET Framework. For Visual

Cameron_865-2C10.fm Page 482 Thursday, February 21, 2008 1:01 PM

http://www.asp.net/cssadapters/Default.aspx

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 483

Studio 2008, please review the following MSDN blog post on working with the mobile controls
for more information:

http://blogs.msdn.com/webdevtools/archive/2007/09/17/
tip-trick-asp-net-mobile-development-with-visual-studio-2008.aspx

The blog post has a download containing project and item templates for the mobile controls
so that you can work with the mobile controls in Visual Studio 2005 or Visual Studio 2008.

To get started with a new project in Visual Studio 2008, follow the instructions at the preceding
link as well as the instructions in the download to set up the templates. After the templates are
installed, create an ASP.NET web application project by launching Visual Studio 2008 and
selecting File ➤ New ➤ Project and then selecting Web Application. Delete the default.aspx
and web.config files that are automatically created. Right-click the project, and select Add ➤
New Item followed by Mobile Web Configuration File. This adds a web.config that has a bunch
of device filters defined. Perform the same step to select to add a Mobile Web Form or Mobile
Web User Control.

In the next section, we provide an overview of the mobile controls available in ASP.NET.

Mobile Controls Quick Primer

ASP.NET mobile web applications are created using a descendent of the Page. The MobilePage
class inherits from System.Web.UI.Page. After downloading the templates described in the
previous section, a Mobile Web Form item is available in Visual Studio in the My Templates
section in the Add New Item dialog shown in Figure 10-9.

Figure 10-9. The mobile web items in the Add New Item dialog under My Templates

Cameron_865-2C10.fm Page 483 Thursday, February 21, 2008 1:01 PM

http://blogs.msdn.com/webdevtools/archive/2007/09/17

484 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

This new MobilePage web page class is necessary because of how .aspx pages are constructed
to support mobile development. The differences that spring to mind when comparing a regular
ASP.NET web form with a mobile web form are that mobile application namespaces and tag
prefixes are brought in by the topmost Register directive. The controls and the mobile web
form import from the System.Web.UI.MobileControls namespace.

Another noticeable difference is that there is more than one web form tag in the .aspx
page. The mobile .aspx page XML schema permits multiple mobile web forms on a single
physical file to simplify the process of designing mobile web applications. Figure 10-10 shows
the inheritance tree for the mobile Form class.

Figure 10-10. The mobile Form class inheritance tree

The recommended architecture for mobile web applications is to break down the content
into bite-sized chunks that are compatible with small screen displays. Although you could
achieve this with multiple physical pages, it is more manageable to keep related content cohe-
sively together on a single .aspx page, with a single MobilePage class, but in separate mobile
web forms.

Another benefit of this design choice is that it mirrors the WML deck/card format that is
prevalent on many mobile phones: the deck itself has multiple cards, or forms, that contain the
content and is downloaded as a single entity. This allows for a fair amount of navigation and
manipulation on the device without having to go back to the server over the generally scarce
bandwidth of the wireless carrier network.

Only the current, active mobile web form is rendered, even when browsing a mobile web
form using a traditional HTML browser. Also, despite multiple form tags within an .aspx page,
mobile web form technology fully supports code-behind and server-side event handling.

The unification of these two completely different display models demonstrates how the
mobile web form technology automatically accounts for the vast majority of display device
types out of the box. In the next section, we provide an overview of the mobile controls avail-
able in ASP.NET.

System.Web.UI.MobileControls Controls

In this section, we start off by discussing the various text controls available in the MobileControls
namespace. As you would guess, we need a way to navigate through our mobile web forms, and
that is the topic of the section titled “Transfer Controls” in this section. We then dive into an
example .aspx page to demonstrate these controls in action. After this, we cover list, rich, valida-
tion, and pagination mobile server controls, sprinkling in example demonstrations along the way.

Cameron_865-2C10.fm Page 484 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 485

After you read this section, you will have a strong sense of what’s available in the
MobileControls namespace and how mobile controls work, as compared to regular server
controls. We start off with a discussion of text controls.

Text Controls

The workhorses of the ASP.NET mobile controls namespace are the controls that emit the textual
content. Table 10-3 outlines the text-based control options in System.Web.UI.MobileControls.

The previous example, MobileBasics.aspx, demonstrated the Label and TextBox controls
in action. Label simply emits the text straight into the output stream without modification or
processing. TextBox supports the ability to gather text input from a device, including a Password
option that masks input.

The TextView is a supercharged version of the Label control that supports pagination to
break up its content via the <p> or
 tag, offers navigation via the <a> tag, and provides addi-
tional support for font-related tags, such as and <i>, in a similar manner to literal text within a
Form tag.

Transfer Controls

Transfer controls support navigation and are listed in Table 10-4. The Link control is used in
MobileBasics.aspx to navigate among the mobile web forms on the mobile page. The Link
control can also be used to navigate to a new end-point URL. The PhoneCall control is for use
with devices that have a wireless radio stack in them; it allows such a device to activate the
dialing software. If the device doesn’t support that, it will substitute either a text message or
a clickable URL.

Table 10-3. Simple Mobile Controls

Name HTML Tag WML Tag Description

Label text text Displays text

TextBox <INPUT type="text"> or
<INPUT type="password">

<INPUT type="text"> or
<INPUT type="password">

Gathers text input

TextView text, <a>, , <i>, and
 text, <a>, , <i>, and
 Displays text
with formatting,
navigation, and
pagination

Table 10-4. Transfer Mobile Controls

Name HTML Tag WML Tag Description

Link <go> Links to a URL

Command <INPUT type="Submit"> <GO type="submit"> Posts to a URL

PhoneCall <do> and <go> Initiates a phone call or links
to a URL

Cameron_865-2C10.fm Page 485 Thursday, February 21, 2008 1:01 PM

486 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

The Command control posts back the current web form to the web server for processing form
data. Once the content is at the server, you can redirect it to a new URL or to one of the mobile
web forms on a page by setting the Page.ActiveForm property.

List Controls

The list controls are best used to display data in mobile device applications and are described
in Table 10-5. Like their cousins in WebControl, the list controls make it simple to bind to a data
source and display the information in an easily accessible format. As you would expect, these
controls take into account the limited screen size of the majority of mobile phones. The controls
do differ in their capability to paginate themselves, have static information linked to them, and
provide a detailed view of the data they are linked to.

The list controls are very useful for data binding and can provide a master/detail type
of navigation.

The Image, AdRotator, and Calendar Controls

The Image and AdRotator controls support the capability to display an image in the mobile
device browser. The difference between the two controls is whether the choice is static or dynamic
based on who is visiting for advertisement purposes. We have added the Calendar control to
this discussion, because this topic is as good as any to cover it in. It is probably the richest
control in the mobile space outside of ObjectList. Table 10-6 describes these three controls.

In the next section, we move on to cover container controls and pagination. Pagination is
an especially important topic, because most WML mobile phone devices are limited to displaying
four lines of content at a time.

Table 10-5. List Mobile Controls

Name Description Static/Dynamic Pagination

List Renders a list of items Both Yes

SelectionList Renders a list of items Similar to
ListBox or ComboBox

Both No

ObjectList Renders a list of items with multiple
properties and item commands

Dynamic only Yes

Table 10-6. Image Mobile Controls

Name HTML Tag WML Tag Description

Image <do> and <go> Links to a new URL or deck

AdRotator <do> and <go> Links to a new URL or deck

Calendar <TABLE> <DO>, <go>, and <select> Permits the selection of a date

Cameron_865-2C10.fm Page 486 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 487

Container Controls and Pagination

The controls discussed previously in this chapter display information. The controls covered in
this section, however, provide content management via containment. Table 10-7 summarizes
the container controls. You are already familiar with the Form control as a means of grouping
together mobile server controls in a nice package on a MobilePage web page. The Panel control
is an option for containing controls within a mobile web form.

Using a Panel control within a form is a handy way to group controls together. For instance,
you may want to make a group of controls visible or not visible, en masse. Setting the Visible
property on a Panel control to false will cause the controls contained by the Panel control to
have the same value for their Visible property. In general, controls placed in a Panel control
inherit style properties from the Panel container, although a control can override a particular
style property if desired.

Pagination is an important capability in mobile server controls, because most WML devices
only support anywhere from two to ten lines of content onscreen, with each line containing
just a few characters.

Controls that support pagination inherit from PagedControl instead of MobileControl. For
example, the List, ObjectList, and LiteralText classes all inherit from PagedControl. When
you build your own custom mobile server controls, consider inheriting form PagedControl if
your control is capable of rendering a large amount of text.

The Form and Panel controls are containers that support pagination of their child control
content. For example, the Paginate property of the Panel mobile server control is a suggestion
to the ASP.NET runtime to keep the controls on the Panel together when paginating a mobile
web form. Likewise, enabling pagination on a Form control provides support to mobile devices
with limited screen area by permitting content to be spread across multiple views.

Browsing Mobile Web Forms
Although it is convenient to browse a mobile web form in a desktop browser for basic testing,
serious mobile web applications must be tested with all possible browsing devices. At the very
least, a mobile web application should be tested with a sampling of device capabilities such as
HTML, WML, and XHTML.

Using actual devices is ideal; however, testing with an emulator is the next best thing. Many
of the popular mobile phone device manufacturers and other vendors provide an SDK with a
phone emulator for testing purposes. It is possible to use an emulator for testing ASP.NET mobile
web applications too. To display a mobile web form using the Pocket PC emulator, a wireless
application protocol (WAP) emulator, or an XHTML emulator, simply start the emulator, launch
the web browser (if necessary), and enter the URL.

Table 10-7. Container Mobile Controls

Name HTML Tag WML Tag Description

Form <do> and <go> Links to a new URL or deck

Panel <do> and <go> Links to a new URL or deck

Cameron_865-2C10.fm Page 487 Thursday, February 21, 2008 1:01 PM

488 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Once you have the desired emulators installed, you have a couple of options for debugging
a mobile web application. One option is to simply run the web application using Internet
Explorer. Once the browser loads, minimize it, and launch the desired emulator by entering the
URL for the mobile web application. Because the application is in debug mode, you will hit
breakpoints when viewing the web application in the emulator. When you have finished, close
Internet Explorer to stop debugging.

Another option is to integrate the emulator into Visual Studio .NET so that the emulator
launches when you click Start Debug. To do this, right-click a mobile web form .aspx page, and
select Browse With from the context menu. Next, click Add; click Browse to locate the emulator
executable; click OK; provide a friendly name; and then click OK to return to the Browse With
dialog box. Then, select the newly added emulator, and click Set As Default. Note that if
the emulator takes a command-line argument, you can provide the URL as a parameter with
this syntax:

"C:\pathToEmulator\emulator.exe %URL"

To have the emulator launch by default, you will need to change a project setting. Right-
click the project in Solution Explorer, and select Properties. Next, click the Web tab, and select
“Start external program.” This allows you to set the path to the emulator, provide command-
line arguments, and set the working directory. Note that if the emulator does not take a command-
line parameter, you will have to manually enter the URL once the emulator is running. Once
the emulator starts browsing the web application, the mobile web application will be in debug
mode and will hit any breakpoints that are set and enabled.

This completes our overview of the mobile controls available and development model in
ASP.NET. Next, we move on to covering how to build custom mobile controls as the final lap
around mobile web development.

Customizing and Implementing Mobile Controls
ASP.NET mobile server controls provide a rich, extensible framework for delivering content
viewable on a wide array of mobile devices. In the previous section, we looked at out-of-the-
box controls and the feature set available in the .NET Framework as a means to examine mobile
server control technology. In this section, we drill down into extensibility and customization
mechanisms available to mobile server control developers. The extensibility hooks fall into the
following categories:

• The StyleSheet control

• Templates

• Device-specific UI choices

• User controls

• Custom controls

• Device adapters

The StyleSheet class can provide a consistent look and feel in terms of styling objects,
such as Font, across a set of controls or any number of mobile forms. Templates provide a
mechanism to customize how content renders, such as what controls display content using the

Cameron_865-2C10.fm Page 488 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 489

techniques discussed in Chapter 6. Device-specific UI customization is available with both
of these techniques, as is customizing the attributes of a control based on the target device.
Developers have the option to stay within the abstraction layer provide by the Framework, or
they can specify alternate content to render on specific devices if it’s desired or required. The
flexible detection engine built into ASP.NET makes this magic happen, greatly simplifying
mobile web development without giving up fine-grained control.

The final two sections of this chapter cover the custom control opportunities discussed
earlier in this book for traditional ASP.NET development: user controls and custom controls.
Both techniques are available for mobile server control development, with the addition of
mobile device capability management. The section covering mobile controls in this chapter
examines how mobile controls emit device-specific output with the help of device adapters.

The StyleSheet Control

A couple of options are available to apply styles to controls in the mobile control framework.
One option is to configure style attributes on individual controls. This results in increased
maintenance as the number of individually configured controls increases, which is not optimal.
The other option is the StyleSheet control, which provides a method to attach a consistent
look and feel across multiple controls, centralizing style maintenance to one location. ASP.NET
provides a default StyleSheet control with three styles elements named error, subcommand, and
title. Table 10-8 shows how each is configured.

As with other, similar style-handling mechanisms such as CSS, the StyleSheet class
simplifies maintenance by providing a named Style element that represents a collection of
style attributes. Due to widely varying device capabilities, StyleSheet Style elements provide
access to common features that apply across a wide range of devices, particularly those relating to
textual display.

Every mobile control contains an internal Style object inherited from the MobileControl
class that is not directly accessible. Instead, Style attributes on the internal Style object can be
customized through public properties:

• Font (Bold, Italic, Name, or Size)

• Background (color)

• Foreground (color)

• Alignment (Left, Center, Right, or NotSet)

• Wrapping (Wrap, NoWrap, or NotSet)

• DeviceSpecific

Table 10-8. Default StyleSheet Styles Provided by ASP.NET

Style Configuration

error ForeColor=red

subcommand FontSize=small

title Font-Bold=true, or FontSize=large

Cameron_865-2C10.fm Page 489 Thursday, February 21, 2008 1:01 PM

490 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Other controls, or your own custom mobile server controls, can have custom Style classes
that inherit from the base Style class. For example, the Form class has a custom style class
named PagerStyle that inherits from the default Style class to provide access to additional
styling customization with respect to pagination. The ability to provide custom style classes to
support custom control development is similar to traditional ASP.NET development, as covered
in Chapter 4.

After configuring a few styles on the StyleSheet object, we can apply these styles to controls.
Controls gain access to StyleSheet styles through the StyleReference property inherited from
MobileControl. The StyleReference drop-down list automatically populates with the default
styles in addition to the custom styles we defined in the StyleSheet control.

Mobile controls apply configured styles during the rendering process with the help of
device adapters, which we discuss later in this chapter. If a control is configured with a style
that will not render on a particular device requesting the page, such as a WML browser that
does not support color styles, the style will be ignored. This approach ensures that content is
returned to the requesting device, albeit with less style.

As we mentioned previously, a control can accept the default style provided by MobileControl,
or a control can require a custom style class in order to provide additional customization options
for the control user. As an example, the mobile web form takes a custom style class named
PagerStyle that provides an easy way for the control user to customize pagination behavior.
PagerStyle provides the following attributes to customize the multipage navigation UI:

• NextPageText

• PageLabel

• PreviousPageText

These attributes permit you to customize the UI. For example, if you are programmatically
creating a form with Next and Previous links to the appropriate pages, you can override the text
for these links by setting the value of the properties previously mentioned. You can use methods
such as GetNextPageText, GetPreviousPageText, or GetPageLabel to retrieve the current value of the
properties. This chapter’s StyleSheetInline.aspx Mobile Web Page demonstration web form in
the source code that accompanies this book provides an example of using the StyleSheetInline
control. We next discuss a method to store the StyleSheet control in an external file.

The StyleSheetExternal Mobile Web Page

In the previous example, we embedded a StyleSheet control into the mobile web page to make
Style attributes available to mobile forms and controls. This model of embedding a style sheet
into the mobile web page requires maintenance on each mobile page’s StyleSheet object to
keep all the mobile web pages in a web application consistent. A better model would be to main-
tain a single StyleSheet control instance that is shared by all of the mobile web pages in a web
application.

The ASP.NET framework provides a method to store a StyleSheet instance in an external
file. We provide an example of this in the StyleSheetExternal mobile web page. Instead of embed-
ding a StyleSheet control hosting Style objects, the StyleSheet control references an external user
control file. This is what the StyleSheet control looks like in the StyleSheetExternal mobile
web page:

Cameron_865-2C10.fm Page 490 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 491

<mobile:StyleSheet id="ExternalStyleSheet" runat="server"
ReferencePath="ExternalStyleSheetClass.ascx" />

The file named ExternalStyleSheetClass.ascx is a mobile user control file that is similar
to user controls in traditional ASP.NET development that is available for review in the Chapter 10
folder. The next section provides an overview of templates and device-specific choices.

Templates and Device-Specific Choices
As we discussed in Chapter 6, HTML or markup is a combination of content and appearance.
In the previous section, we discussed how to modify appearance using styles. In this section,
we discuss how to modify the document skeleton, or scaffold, on which control content hangs.
Mobile templates offer similar capabilities as demonstrated in Chapter 6 to enhance the
display of a mobile control or surround its data with markup that is driven via data binding.
Mobile controls have the additional capability to select a template for rendering in a device-
specific manner. This is a feature unique to mobile controls and is what we focus on in this
chapter, as we covered the basics of templates and their incorporation in controls in Chapter 6.

The DeviceSpecific.aspx Mobile Web Page
The DeviceSpecific.aspx mobile web page demonstrates the use of templates and device-specific
rendering to display a multiform web page that modifies its display based on the browsing
device capabilities. The default web form activated on the mobile web page renders an input
box for performing a search on the NorthWind database’s Customers table by ContactName, as we
demonstrated previously in the book.

If you run the DeviceSpecific.aspx web form, notice that we have a label that displays the
user agent string obtained from the Request headers collection from the current request:

AgentLabel.Text = HttpContext.Current.Request.Headers["User-Agent"];

The value for our HTML browser is

Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; PPC; 240x320)

For a WML browser, we see

OWG1 UP/4.1.20a UP.Browser/4.1.20a-XXXX UP.Link/4.1.HTTP-DIRECT

The code for the web form displays the value from the MobileCapabilities object in two
label values:

MobileCapabilities caps = (MobileCapabilities)
 HttpContext.Current.Request.Browser;
if (caps != null) //Cast succeeds
{
 PrefRendLabel.Text = caps.PreferredRenderingType.ToString();
 PrefImageLabel.Text = caps.PreferredImageMime.ToString();
}

Cameron_865-2C10.fm Page 491 Thursday, February 21, 2008 1:01 PM

492 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

MobileCapabilities inherits from HttpBrowserCapabilities. This allows us to cast the
Browser object to the MobileCapabilities type. We next populate the labels with values based
on the current request. The value of PreferredImageMIME for the HTML browser is

image/gif

The WML browser value for PreferredImageMIME is

image/vnd.wap.wbmp

The value of PreferredRenderingType for the HTML browser is

html32

The WML browser value for PreferredRenderingType is

wml11

If you run the sample in both a Windows Mobile device emulator and a WML device
emulator, the device-detection engine succeeds in identifying Pocket Internet Explorer and
the WML emulator and rendering the content appropriately. In the next sections, we cover
how this process works in detail. We start off with a discussion on templates.

Templates
The easiest part of this example to understand is the templated content, especially if you are
familiar with the concepts we discussed in Chapter 6. ObjectList has the following templates
that you can override:

• HeaderTemplate

• FooterTemplate

• ItemTemplate

• AlternatingItemTemplate

• ItemDetailsTemplate

• SeparatorTemplate

The ObjectList control in the DeviceSpecific.aspx file has two sets of templates. One set
of templates targets the textual WML display, and the other set of templates targets richer,
HTML-oriented output. The mobile control template mechanism allows us to set up any number
of templates for a control, with one getting chosen at runtime based on decisions made by the
capability targeting engine.

The default template set with its ItemTemplate demonstrates how data-binding techniques
used previously for regular ASP.NET controls function similarly in the mobile control world.
The ItemTemplate data-binding expressions are careful to cast to the appropriate data type—
in this case, the ObjectListItem class that represents each item in the ObjectList:

Cameron_865-2C10.fm Page 492 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 493

<ItemTemplate>
Name:<%#((ObjectListItem)Container)["ContactName"]%>
Title:<%#((ObjectListItem)Container)["ContactTitle"]%>
Company:<%#((ObjectListItem)Container)["CompanyName"]%>

</ItemTemplate>

Because of the ItemTemplate override, the ObjectList display is limited to our templated
list. We forego the master/detail template that the ObjectList adheres to by default, which we
examined in previous examples. Notice that there is not a link to a second page that displays
the details of each item, because we took things into our own hands. If you want to stick with
the default list and just need to override the details page, the template you should target is
ItemDetailsTemplate.

The DeviceSpecific and Choice Elements
The templates attached to the ObjectList control are not placed directly under the control’s
topmost element in the .aspx page, as would be typical for an ASP.NET control. The mobile
controls embed templates inside DeviceSpecific and Choice constructs under the ObjectList
control.

The DeviceSpecific and Choice tags permit you to specify which templates to render in a
device-specific manner. This feature is what sets mobile controls apart from their counterparts
in traditional ASP.NET development with respect to templates. DeviceSpecific and Choice
elements can do the following:

• Modify the text displayed for a control and text properties. For example, you may want
message text to be short on a WML device but longer on a device with a larger display.

• Customize the styles applied, depending on detected device capabilities.

• Specify alternate image types that match detected device capabilities. We do this for the
Image1 image mobile control in the next example.

This fine-grained tuning available also allows you to override control properties through the
DeviceSpecific/Choice element mechanism. An example of this in the DeviceSpecific.aspx
mobile web page is the Image control that overrides its ImageURL property:

<mobile:Image id="Image1" ImageUrl="../Ch10/mslogo.bmp" Runat="server">
 <DeviceSpecific>
 <Choice Filter="prefersWBMP" ImageUrl="../Ch10/mslogo.wbmp"></Choice>
 </DeviceSpecific>
</mobile:Image>

The default value is the .bmp file; however, there is a choice filter that states that a device
that prefers a .wbmp file should use the .wbmp file in place of the .bmp file.

Any control that inherits from MobileControl can contain one—and only one—
DeviceSpecific element. DeviceSpecific is a container element that hosts one or more Choice
elements. The Choice element has a filter attribute that plugs into the device capability decision
engine that is part of the mobile ASP.NET architecture.

Cameron_865-2C10.fm Page 493 Thursday, February 21, 2008 1:01 PM

494 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

In the case of the preceding Image control snippet of code, the Image control takes advan-
tage of the built-in WML rendering features via the prefersWBMP filter attribute value to look
for devices that prefer to render .wbmp bitmaps. The ObjectList control’s Choice element has
an isHTML32 filter value to ensure that the targeted device supports HTML 3.2 as a browsing
language:

<DeviceSpecific>
 <Choice Filter="isHTML32">
 <HeaderTemplate>
 <table>
...

If the filter attribute looking for isHTML32 devices is satisfied, the Choice element selects
the HeaderTemplate, ItemTemplate, AlternatingItemTemplate, and FooterTemplate templates
for rendering by the ObjectList control. If not, the default Choice element is selected.

<Choice>
 <ItemTemplate>
 Name:<%#((ObjectListItem)Container)["ContactName"]%>
Title:<%#((ObjectListItem)Container)["ContactTitle"]%>
 Company:<%#((ObjectListItem)Container)["CompanyName"]%>

 </ItemTemplate>
</Choice>

There can be many Choice elements with filters within a DeviceSpecific tag underneath a
mobile control, each targeting a different filter or device capability. The first filter to match will
stop the searching process for the appropriate Choice element. If there isn’t a match, the Choice
element without a filter attribute is selected as the default, and its child content is applied to
the output.

In the example, the default Choice element is selected for the ObjectList control if the
device filter for isHTML32 never hits. There can be only one default Choice element within a
DeviceSpecific element. Because the filter mechanism stops searching at the first match, it
is recommended that you put the default Choice element last.

Filter Attribute and deviceFilters Configuration
At this point, you may be wondering how device detection is linked to the DeviceSpecific/
Choice element with its filter attribute in the mobile control. The filter attribute refers to a
set of XML elements added to the standard web.config file when you select an ASP.NET mobile
web application in Visual Studio .NET. You can also manually add these elements to an existing
web.config file. The additional configuration section in web.config is appropriately named
deviceFilters, as shown in the web.config for the ControlsBook2Mobile project.

The filter XML element represents the comparison rules that controls link to for making
their rendering choices. Each filter element has three main properties:

• name

• compare

• argument

Cameron_865-2C10.fm Page 494 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 495

Name is used to uniquely identify the filter and is what the Choice element within a
mobile control is matched against. The compare attribute is the name of the property of the
MobileCapabilities object to test. The argument attribute is the value that should be matched
to the capability property listed in the compare attribute. This is a simple Boolean comparison:
if the compare attribute points to a capability property value that matches the argument
attribute value, the filter is true, and the Choice element on the control is picked.

Earlier we noted that the Image control was looking for prefersWBMP, whereas the ObjectList
control wanted isHTML32. You can see from the preceding code listing that we need to see the
PreferredRenderingType capability property set to a value of html32, and we need the
PreferredImageMIME capability property equal to image/vnd.wap.wbmp for the Choice elements
to match.

From a generic standpoint, the capability properties we have discussed need to come
from somewhere concrete in ASP.NET, so in the next section, we move on to discuss the
MobileCapabilities class and the important role it plays.

MobileCapabilities, browserCaps, and Device Update 2
MobileCapabilities is a class from the System.Web.Mobile namespace that inherits from
HttpBrowserCapabilities with strongly typed properties that represent device capabilities for
traditional browsers and for a wide variety of mobile devices. It is mainly the receiver of gifts,
as it is populated by the ASP.NET request mechanism when a client browser requests a page.

When a client requests a page, ASP.NET creates an instance of the HttpRequest class that
exposes a browser property that exposes the MobileCapabilities object for that request. The
MobileCapabilities object stores the device capabilities of the requestor. ASP.NET parses the
request headers and uses a regular expression to match the HTTP_USER_AGENT contained in the
headers. If a match is found, ASP.NET populates the MobileCapabilities object with informa-
tion from the matching device in the browserCapabilities section of either web.config or
machine.config, depending on where a match was found.

Adding support for a new device that accepts an existing rendering or markup technology,
such as WML or cHTML, is a matter of adding a <case> to the <browserCaps> element and popu-
lating the attributes. The device manufacturer should have information on the capabilities of a
particular device; however, rudimentary testing such as sending raw markup and testing with
various mobile control configurations on a mobile page can assist in identifying capabilities.

Updates can include support for additional devices compatible with existing rendering
technology and updates for additional devices compatible with new rendering or markup tech-
nology. For example, Device Update 2 included support for XHTML markup.

The second type of update—support for new rendering technology—not only updates
configuration files but also provides one or more additional device adapter assemblies. We
discuss device adapter technology later in this chapter. Suffice it to say that support for a new
rendering or markup technology requires a new device adapter.

For a device update, changes can be made to the following sections of the machine.config file:

• <assemblies>

• <browserCaps>

• <mobileControls>

Cameron_865-2C10.fm Page 495 Thursday, February 21, 2008 1:01 PM

496 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

If a device update does not include adding support for new rendering or markup technology,
only the <browserCaps> section is modified.

■Tip Because of configuration file inheritance or precedence rules, if you make application-specific
customizations in an application’s web.config file, these settings will take precedence if there are conflicts
with settings in machine.conifig. Be sure to verify application-specific customizations after installing a
device update.

When you install a device update to the .NET Framework, the device update adds a file
reference to the existing <browserCaps> section to a file named deviceUpdate.config. If you
make customizations to the <browserCaps> section, these changes are preserved. With the .NET
Framework, you have additional options for further customizing the <browserCaps> section:

• Place custom changes in the deviceUpdate.config file. This file is placed at
systemdrive\WindowsPath\Microsoft.NET\Framework\V2.0.x.

• Create a custom .config file such as deviceCustom.config, and add additional
<browserCaps> entries to machine.config. Order matters, so files appearing later in this
list take precedence, for example:

<file src="deviceUpdate.config" />
<file src="deviceCustom.config />

If support for a new device adapter is included in a device update, changes are made to
the <assemblies> section of machine.config. Changes are also made to the <mobileControls>
section of machine.config. This ensures that mobile controls use the correct device adapter to
support the new rendering technology.

Custom Device Adapters and Mobile Controls

If you create or obtain a custom device adapter for a device that is not included with a Microsoft
device update, you have two options. You can use the adapter provided in the device update,
or you can manually update the references in the <mobileControls> section in machine.config
after installing the device update.

For your custom mobile controls, device updates should not affect how they render with
existing browsers. For new browsing clients added by a device update, your custom mobile
controls should still render correctly, as long as the browser is compatible with your controls’
requirements. The key takeaway point is that you should test your custom mobile controls
when a new device update is released to ensure compatibility.

Cameron_865-2C10.fm Page 496 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 497

New Capabilities in MobileCapabilities
As we mentioned in the last section, the System.Web.Mobile.MobileCapabilities class inherits
from HttpBrowserCapabilities, so by default, it supports the capabilities we discussed earlier
in this chapter. Table 10-9 recaps the base class properties.

Table 10-9. HttpBrowserCapabilities Properties

Property Description

ActiveXControls Browser support for ActiveX controls.

AOL Is the browser an AOL version?

BackgroundSounds Browser support for playing sounds.

Beta Is the browser a beta version?

Browser Full browser string from the request headers.

CDF Browser support for Channel Definition Format (CDF).

ClrVersion Version of the .NET CLR supported by browser.

Cookies Browser support for cookies.

Crawler Is the browser a web site crawler for search engines?

EcmaScriptVersion Version of ECMAScript (JavaScript) supported by browser.

Frames Browser support for frames.

JavaApplets Browser support for Java applets.

JavaScript Browser support for JavaScript.

MajorVersion Major version of the browser.

MinorVersion Minor version of the browser.

MSDomVersion Microsoft version of the DOM supported by the browser.

Platform Operating system (OS) platform that the browser is running on.

Tables Browser support for tables.

TagWriter Class used to emit HTML content from the control.

Type Browser name and major version in a single string.

VBScript Browser support for VBScript.

Version Major.Minor version of the browser in single string.

W3CDomVersion W3C version of the DOM supported by the browser.

Win16 Is the OS the browser is running on Win16 based?

Win32 Is the OS the browser is running on Win32 based?

Cameron_865-2C10.fm Page 497 Thursday, February 21, 2008 1:01 PM

498 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

This list is fairly short when compared to the MobileCapabilities class’s properties.
MobileCapabilities adds the new properties shown in Table 10-10.

Table 10-10. MobileCapabilities Additional Properties

Property Description

CanCombineFormsInDeck Indicates that the browser on the device can
handle decks that contain multiple forms, as
separate cards.

CanInitiateVoiceCall Indicates whether the device is capable of
initiating a voice call.

CanRenderAfterInputOrSelectElement Indicates whether the device can render a
card that contains elements after an input or
select element.

CanRenderEmptySelects Indicates whether a device can render empty
select markup statements.

CanRenderInputAndSelectElementsTogether Indicates whether a device can render the
<input> and <select> elements together.

CanRenderMixedSelects Indicates whether the browser on the device can
handle <select> tags that include <option>
elements with both onpick and value attributes.

CanRenderOneventAndPrevElementsTogether Indicates whether a device can handle
<onevent> and <do type="prev"
label="Back"></prev></do> elements
when combined together.

CanRenderPostBackCards Indicates whether a device supports
postback cards.

CanRenderSetvarZeroWithMultiSelectionList Indicates whether a device can accept WML
<setvar> elements with the value attribute set
to zero for the select/option construct of the
multiselection list control.

CanSendMail Indicates whether the browser supports the
mailto tag for e-mail addresses.

DefaultSubmitButtonLimit Stores the default number of soft keys for
a device.

GatewayMajorVersion Stores the major version number of the
wireless gateway used by the mobile device
to access a web application.

GatewayMinorVersion Stores the minor version number of the
wireless gateway used by the mobile device
to access a web application.

GatewayVersion Stores the version number of the wireless
gateway used by the mobile device to access
a web application.

HasBackButton Indicates whether a device browser has a
dedicated Back button.

Cameron_865-2C10.fm Page 498 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 499

HidesRightAlignedMultiselectScrollbars Indicates whether the scrollbar of a right-
aligned <select multiple> element is
obscured by the scrollbar for the page.

InputType Indicates the type of input supported on a
device. The possible values are virtualKeyboard,
telephoneKeypad, and keyboard.

IsColor Indicates whether a device has a color display.

IsMobileDevice Indicates whether a device is recognized as a
mobile device.

MaximumRenderedPageSize Stores the maximum length of a page, in bytes,
that the device can display.

MaximumSoftkeyLabelLength Stores the maximum length of text that a soft
key label can display.

MobileDeviceManufacturer Stores the name of the device manufacturer.

MobileDeviceModel Stores the model name of the device,
if available.

NumberOfSoftkeys Stores the number of soft keys available on
a device.

PreferredImageMime Returns the MIME type preferred for images
on a device.

PreferredRenderingMime Returns the MIME type preferred for content
on a device.

PreferredRenderingType Returns the general name for the preferred
type of content.

PreferredRenderingTypeChtml10 Static-source identifier to use for compact
HTML 1.0.

PreferredRenderingTypeHtml32 Static-source identifier to use for HTML 3.2.

PreferredRenderingTypeWml11 Static-source identifier to use for WML 1.1.

PreferredRenderingTypeWml12 Static-source identifier to use for WML 1.2.

RendersBreakBeforeWmlSelectAndInput Indicates whether a device inserts an additional
break before rendering a WML <select> or
<input> element.

RendersBreaksAfterHtmlLists Indicates whether a device already renders
breaks after HTML list tags.

RendersBreaksAfterWmlAnchor Indicates whether a device or browser
produces a break after a stand-alone anchor.

RendersBreaksAfterWmlInput Returns whether a device automatically
renders a break after input elements have
been received.

Table 10-10. MobileCapabilities Additional Properties (Continued)

Property Description

Cameron_865-2C10.fm Page 499 Thursday, February 21, 2008 1:01 PM

500 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

RendersWmlDoAcceptsInline Indicates whether a device renders a WML
<do>-based form-accept construct as an inline
button instead of a soft key.

RendersWmlSelectsAsMenuCards Indicates whether a device renders the
<select> tag constructs as menu cards
instead of a DropDownList.

RequiredMetaTagNameValue Returns a metatag, which some devices require.

RequiresAttributeColonSubstitution Indicates whether colons in tag name
attributes need to substitute a different
character for rendering.

RequiresContentTypeMetaTag Indicates whether the device requires the
content-type metatag.

RequiresDBCSCharacter Indicates whether a device requires a double-
byte character set (DBCS) character.

RequiresHtmlAdaptiveErrorReporting Indicates whether the HTML device should
receive a default ASP.NET error message or
an adaptive one for non-HTML devices such
as WML.

RequiresLeadingPageBreak Indicates that an additional break
should render.

RequiresNoBreakInFormatting Indicates that formatting tags should not
include break (
) tags.

RequiresOutputOptimization Indicates that adapters should try to generate
minimal output.

RequiresPhoneNumbersAsPlainText Indicates whether a device supports phone
dialing based on only plain text, instead of
special markup.

RequiresSpecialViewStateEncoding Indicates whether a device requires special
encoding for generated ViewState.

RequiresUniqueFilePathSuffix Indicates whether a unique file path suffix is
required so that WAP-cached pages process
submitted forms correctly.

RequiresUniqueHtmlCheckboxNames Indicates whether a device requires that the
check box HTML <input> tag contain unique
name attribute values.

RequiresUniqueHtmlInputNames Indicates whether a device requires that
HTML <input> tags contain unique name
attribute values.

RequiresUrlEncodedPostfieldValues Indicates whether a device encodes text in the
value attribute of a posted field during postback.

ScreenBitDepth Stores the display depth in bits per pixel of a
device’s display.

Table 10-10. MobileCapabilities Additional Properties (Continued)

Property Description

Cameron_865-2C10.fm Page 500 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 501

ScreenCharactersHeight Stores the height of the display in
character lines.

ScreenCharactersWidth Stores the screen width in characters.

ScreenPixelsHeight Stores the height of the display in pixels.

ScreenPixelsWidth Stores the width of the display in pixels.

SupportsAccessKeyAttribute Indicates that a device can handle the AccessKey
attribute for the <a> and <input> tags.

SupportsBodyColor Indicates whether a device supports the
bgcolor attribute on the <body> tag.

SupportsBold Indicates whether a device supports bold text
as specified through the tag.

SupportsCacheControlMetaTag Indicates whether a device supports the
<meta> tag Cache-Control.

SupportsCss Indicates whether a device supports CSS
for styling.

SupportsDivAlign Indicates whether a device supports the align
attribute within the <div> tag.

SupportsDivNoWrap Indicates whether a device supports the
nowrap attribute within the <div> tag.

SupportsEmptyStringInCookieValue Indicates whether a device supports an empty
string for the value of a cookie.

SupportsFontColor Indicates whether a device supports the color
attribute for the tag.

SupportsFontName Indicates whether a device supports the name
attribute for the tag.

SupportsFontSize Indicates whether a device supports the size
attribute for the tag.

SupportsImageSubmit Indicates that a device can handle images
submitting the form.

SupportsIModeSymbols Indicates that a device supports i-Mode
symbols.

SupportsInputIStyle Indicates that a device supports the istyle
attribute for the <input> tag.

SupportsInputMode Indicates that a device supports attribute
mode for the <input> tag.

SupportsItalic Indicates that a device supports the <i> tag.

SupportsJPhoneMultiMediaAttributes Indicates whether a device supports J-Phone
multimedia attributes.

SupportsJPhoneSymbols Indicates whether a device supports picture
symbols specific to the J-Phone.

Table 10-10. MobileCapabilities Additional Properties (Continued)

Property Description

Cameron_865-2C10.fm Page 501 Thursday, February 21, 2008 1:01 PM

502 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

HttpBrowserCapabilities targets World Wide Web Consortium (W3C) standards that
traditional desktop web browsers adhere to pretty well, keeping this class fairly simple. As you
can see from Table 10-10, device capabilities vary widely in the mobile web application market,
and standards are fractious. This size of this table demonstrates the challenges that arise when
developers attempt to hand-code applications that target more than a couple of mobile devices.

The ASP.NET mobile controls framework lends a helping hand by abstracting device
differences while providing an extensible architecture that allows developers to add support
for new devices as they become available.

The groundwork is laid to permit us to move on to control development. Mobile user controls
are very similar to their cousins in traditional ASP.NET targeting desktop browsers. In the next
section, we discuss mobile user controls, and then we round out this chapter with a discussion
of custom server control development and device adapters.

User Controls
The ASP.NET mobile web application development system provides for modularity in control
content in the same way as ASP.NET targets desktop browsers. User controls play an important
role in this architecture. Here is a list of important characteristics of user controls:

• User controls are a great way to package HTML and modularize web development. They
are also a means of replacing the use of IIS include files.

• User controls support properties and methods that can be set either in the HTML as
attributes or in the code-behind page of the hosting .ascx page.

• User controls can be cached in the ASP.NET cache based on a number of different parame-
ters to speed web application performance (as detailed in the ASP.NET documentation).

• Certain tags are not permitted in a user control—specifically, the <html>, <head>, <body>,
and <form> tags. Using these tags would interfere with the functioning of the hosting
.aspx page.

• User control tag declarations should appear between the hosting .aspx page’s beginning
and ending form tags to ensure proper operation.

SupportsQueryStringInFormAction Indicates whether a device supports a query
string in the action attribute of a <form> tag.

SupportsRedirectWithCookie Indicates whether a device honors the
Set-Cookie header when the cookie is sent
in conjunction with a redirect.

SupportsSelectMultiple Indicates whether a device supports the
multiple attribute for HTML select tags.

SupportsUncheck Indicates whether a device returns the
unselected status for an unchecked check
box in posted data.

Table 10-10. MobileCapabilities Additional Properties (Continued)

Property Description

Cameron_865-2C10.fm Page 502 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 503

In the next section, we build two user controls that mimic the header and footer user
controls present in the traditional ASP.NET samples.

Mobile User Controls
Generally, the display constraints of mobile devices and the limited bandwidth available for
data communication dictate that content take precedence over style or aesthetics. Mobile web
applications tend to be more esoteric when compared to web applications that target desktop
browsers.

With the efforts by wireless operators to upgrade their data bandwidth capacity and the
release of more powerful mobile devices such as the Pocket PC Phone Edition and the smart-
phone, this is changing. Designing mobile web applications that can grow as bandwidth and
device capability improves warrants consideration.

Because mobile user controls provide a high degree of page modularity, they can help in
this effort just as they can when targeting a desktop browser. For example, including header,
footer, and left and right pane user controls in a web application is pretty easy to do up front.
The application page template simply includes those user controls as part of normal develop-
ment. User controls can act as placeholders for enriching the page experience as bandwidth
and device capacity improve.

For instance, an esoteric one-line copyright statement in the footer could eventually be
replaced with a footer you would expect to see in a traditional web application, with contact
information, graphic logos, and so on. It is in this vein that we demonstrate mobile user controls.

Our example mobile page, UserControlHost.aspx, is a replica of the DeviceSpecific.aspx
page that we discussed earlier in this chapter, except for the addition of two mobile user controls:
a header user control and a footer user control. We wanted the mobile header and footer user
controls to resemble their cousins designed for the desktop but take into account mobile device
considerations.

Miniaturizing the Header and Footer
To start the conversion process, we add two mobile user control files named
ControlsBook2MobileFooter.ascx and ControlsBook2MobileHeader.ascx. As you can see, the
file extension for mobile user controls is the same. Next, we copy and paste the code from the
desktop versions of the controls into the mobile versions, changing tag prefixes from asp: to
mobile: and removing all HTML formatting so that we end up with four mobile Label controls
on the header and three on the footer.

Mobile Label controls span the width of the mobile form—you can’t put two of these controls
side by side on a mobile form. Our first change, then, is to combine the Label containing
“Chapter” and the placeholder Label containing the “Chapter Number” into a single Label to
conserve one line on a mobile device.

Next, we modify Label styling to a size of Small and not Bold in an effort to make the
displayed information compact. Because <hr> tags do not have a WML equivalent, we switch
to a .bmp image for HTML32 devices and a .wbmp file for WML devices to display horizontal line
separators in the header and footer controls. The results of our changes can be viewed in
the ControlsBook2Mobile project’s user controls named ControlsBook2MobileHeader.ascx and
ControlsBook2MobileFooter.ascx.

Cameron_865-2C10.fm Page 503 Thursday, February 21, 2008 1:01 PM

504 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

We now focus our discussion on the header user control; it includes the functionality in
the footer user control but with a few additional wrinkles.

If you look at the header user control .aspx file, you will see a DeviceSpecific/Choice
construct for each mobile Label. The default behavior is to display all three labels. However, if
a WML11 device is detected, the user control displays only the first Label for the book title on
the header control and the copyright Label for the footer control.

The other Labels have their Visible property set to false to prevent these labels from
rendering. A .wbmp file is rendered for a WML11 device using a DeviceSpecific/Choice construct
as well.

Next, we explore the mobile page that hosts our new mobile user controls.

Hosting the Header and Footer User Controls
The example mobile page, aptly named UserControlHost.aspx, is a copy of the DeviceSpecific.
aspx page from the example earlier in this chapter. To add the header and footer user controls,
we drag the user control files and drop them into the appropriate spot (top or bottom) on each
mobile form. This results in the addition of the following lines to the .aspx page:

<%@ Register TagPrefix="ApressUCMobile" TagName="ControlsBook2MobileHeader"
Src="ControlsBook2MobileHeader.ascx" %>
<%@ Register TagPrefix="ApressUCMobile" TagName="ControlsBook2MobileFooter"
Src="ControlsBook2MobileFooter.ascx" %>

We changed the tag prefix from uc1 to ApressUCMobile. Also notice that we had to add the
user controls to each mobile form. Here is what the tag declaration for the header control looks like:

<ApressUCMobile:ControlsBook2MobileHeader id="ControlsBook2MobileHeader1"
ChapterNumber="10" ChapterTitle="Other Server Controls"
 runat="server"></ApressUCMobile:ControlsBook2MobileHeader>

Here is what the tag declaration for the footer control looks like:

 <ApressUCMobile:ControlsBook2MobileFooter id="ControlsBook2MobileFooter1"
runat="server"></ApressUCMobile:ControlsBook2MobileFooter>

Refer to the UserControlHost.aspx file in the sample code to review the tag declaration.
Now that we have covered mobile user controls with an example, we spend the rest of this
chapter exploring custom mobile control development issues and device adapters. Much of
control development process is the same as when you build mobile controls. Therefore, in the
next section, we focus on what is unique to custom mobile control development and develop
an example to illustrate the differences between the two development models.

Custom Controls
Mobile server controls are developed in much the same manner as server controls designed for
traditional ASP.NET web applications. In this section, we reinforce the similarities and identify
the differences between them, starting with a discussion on mobile control rendering.

Cameron_865-2C10.fm Page 504 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 505

Rendering the Mobile Control
The level of standardization that exists in the desktop browser market, though not perfect by
any means, is much better than what exists in the mobile device world in terms of device capa-
bilities and markup technology.

There are a plethora of devices and more than a few rendering technologies, such as cHTML,
WML, XHTML, and so on. This coupled with the rapidly growing and changing mobile device
market means that a flexible architecture that isolates device and markup differences is required.
Otherwise, the maintenance required to target multiple devices will prove cost prohibitive.

Luckily, ASP.NET provides a pluggable and extendible mobile-control-rendering architecture
that isolates device-specific rendering into device adapters while maintaining the fundamental
server control architecture, as covered so far in this book.

Device Adapters

Mobile server controls encapsulate logic, events, and properties just like traditional server controls,
but mobile controls do not render themselves. Instead of managing their own rendering, like
regular server controls, mobile controls offload that portion of the server control life cycle to
helper classes or objects called device adapters.

Device adapters provide a nice abstraction layer between server control technology and
the many devices and varied markup technology available. Each mobile server control can
have several device adapters to render its content on supported devices. Likewise, when a new
rendering technology becomes available, a new device adapter set is required for a mobile server
control to render to that device, as described in Table 10-11.

.NET Framework ASP.NET mobile controls include device adapter sets for the following
types of devices:

• HtmlDeviceAdapters

• ChtmlDeviceAdapters

• WmlDeviceAdapters

• XhtmlAdapters

Table 10-11. Device Adapter Set

Adapter Description

Control adapter base class Base class that all device adapters inherit from

Page adapter Adapter for the mobile page

Form adapter Adapter for each mobile form on the mobile page

Control adapter Adapter for each mobile control available

Text writer Writer that inherits from MobileTextWriter with
device-specific methods

Cameron_865-2C10.fm Page 505 Thursday, February 21, 2008 1:01 PM

506 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

So, based on Table 10-11, the following device adapters handle rendering for WML devices
that access a given mobile page:

• WmlControlAdapter

• WmlFormAdapter

• WmlPageAdapter

• WmlMobileTextWriter

WmlControlAdapter provides the base class for specific mobile control adapter classes.
For each mobile server control, there is a class that inherits from WmlControlAdapter named
WmlControlNameAdapter, where ControlName is something like Image, Label, List, and so on.
These device adapters provide WML rendering services for the corresponding control.

All device adapters implement the IControlAdapter interface. Table 10-12 details this
interface.

ItemWeight and VisibleWeight are two of the more interesting members of the
IControlAdapter interface. The pagination system in ASP.NET mobile controls uses a weighting
system to determine what controls to render on a page and how many items to render per page.

Table 10-12. IControlAdapter Interface

Members Description

Control Stores a reference to the associated control

CreateTemplatedUI Creates a templated UI when called by base classes

HandlePostBackEvent Returns true if the event is handled

ItemWeight Stores the approximate weight of an item in the associated control

LoadAdapterState Loads the adapter’s private ViewState

LoadPostData Returns true if the adapter loads posted data

OnInit Called after a form or page initializes

OnLoad Loads data for the control, page, or device adapter

OnPreRender Performs adapter-specific logic prior to rendering

OnUnload Unloads data for the control, page, or device adapter

Page Stores a reference to the page associated with the device adapter

Render Called by the associated control’s Render method

SaveAdapterState Saves the adapter’s private ViewState

VisibleWeight Stores the approximate weight of the control in characters

Cameron_865-2C10.fm Page 506 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 507

■Note The default unit system in ASP.NET mobile controls is based on a single line equal to 100 units based
on the DefaultWeight static read-only property on the ControlPager class. The default ItemWeight is also
the same value at 100 units.

Device adapters implementing IControlAdapter maintain a reference to a specific control
instance in its Control property. Device adapter instances are not shared among controls, as a
device adapter can maintain instance-specific information or state.

The Mobile Control Life Cycle
The mobile control life cycle inherits the same general life cycle of regular server controls with
a few twists related to rendering with device adapters and ViewState management. In Chapter 5,
we stated that after the initial page request as an HTTP GET, each subsequent HTTP POST page
request/response cycle generally consists of the following steps:

1. Instantiate the control tree, creating each server control object.

2. Unpack ViewState for each server control object.

3. Set the state from the previous server-side processing cycle for each object in the tree.

4. Process postback data.

5. Handle the Page_Load event.

6. Let controls know that data changed through postback, updating control state as
necessary.

7. Execute server-side events based on data changes from postback.

8. Persist state back to ViewState.

9. Execute the render process for each server control.

10. Unload page and its control tree.

This process provides the illusion of a state-full application to the end user. During each
request/response cycle, state is unpacked, changes are processed, and the UI is updated and
rendered back to the client device. Because of the varied device capabilities in the mobile web
world, two major differences exist in the mobile control life cycle—namely, rendering and
ViewState management.

Mobile Control and Adapter Interaction

As we mentioned previously, mobile server controls do not render themselves. Mobile server
control rendering is handled by device adapters. We also mentioned that each device type and/
or markup technology has its own set of adapters ready to go when called into action. We describe
exactly how this takes place next.

Cameron_865-2C10.fm Page 507 Thursday, February 21, 2008 1:01 PM

508 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

For each client request, ASP.NET populates the HttpContext object’s HttpRequest.Browser
property. This property maintains a reference to an object of type MobileCapabilities, which
we discussed earlier in this chapter with respect to device detection.

As you may surmise, device detection leads to device adapter set selection. During the initial-
ization phase of the mobile page’s life cycle, ASP.NET maps information in the MobileCapabilities
object to the device mappings in the <mobileControls> section of the web.config file. Once device
adapters are selected and device-specific customizations are applied, the page life cycle continues.
Table 10-13 details the mobile control specifics related to the server control life cycle.

As you can see, the mobile server control object and device adapter object are tightly coupled
from the time that the life cycle starts all the way through rendering. Figure 10-11 illustrates the
entire device detection and rendering process.

Table 10-13. Mobile Server Control Events Related to the Control Execution Life Cycle

Server Control Event Page Life Cycle
Phase

Mobile Control Specifics

Init Initialize MobileControl.Init is called. Adapter.Init
is called.

LoadViewState Unpack ViewState MobileControl.LoadPrivateViewState is
called. Adapter.LoadAdapterState is called.

LoadPostData Handle form
postback data

MobileControl.LoadPostData is called.

Load Page_Load event MobileControl.Load is called. Adapter.Load
is called.

RaisePostDataChangedEvent Notifies the page
that the state of
the control has
changed.

MobileControl.RaisePostDataChangedEvent
is called.

RaisePostBackEvent Execute
server-side
events

MobileControl.RaisePostBackEvent is called.
Possibly call Adapter.RaisePostBackEvent if
events can vary based on the client device.

PreRender Render process MobileControl.PreRender is called.
Adapter.PreRender is called.

SaveViewState Save ViewState MobileControl.SavePrivateViewState is
called. Adapter.SaveAdapterState is called.

Render Render process MobileControl.Render is called, which calls
Adapter.Render. MobileTextWriter is called
to actually output the required markup.

Unload Unload process MobileControl.Unload is called.
Adapter.Unload is called.

Dispose Dispose of
control tree

MobileControl.Dispose is called.

Cameron_865-2C10.fm Page 508 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 509

Figure 10-11. The capability detection and device-specific rendering process

Managing ViewState

Because of varied mobile device display capabilities and limited bandwidth available to mobile
devices, the normal ViewState storage mechanism that uses a hidden form field on the client is
not a viable option.

Instead, the mobile web application stores ViewState data into the Session object. Storing
ViewState in the Session object provides a performance boost, because ViewState is not trans-
mitted over the wire during each postback cycle. However, this does incur additional memory
demands on the server, which is something to keep in mind when you tune your mobile web
applications.

Once a client device establishes a session with the web application, the session ID is
embedded into the URL of the web application. For example, for the UserControlHost.aspx
page, the client performs the initial HTTP GET with this URL:

http://localhost/ControlsBook2Mobile/ch11/usercontrolhost.aspx

When the page loads, a URL similar to this is returned:

http://localhost/ControlsBook2Mobile/(sttxgl55ofwsrl45by2l2i55)/Ch11/
UserControlHost.aspx

Notice the “(sttxgl55ofwsrl45by2l2i55)” string embedded into the URL. This string links
the page to the session ID for the browsing device and is what associates the page’s ViewState
with the current session.

Because the ViewState is not physically stored with the page and given the stateless nature
of HTTP, it is possible for a page to become out of sync with its current state. For instance, the
user can click the Back button when viewing the latest page to bring up the previous page. The
most recent ViewState on the server would be for the most recent page viewed—not the previous
page brought up by the user clicking the Back button.

Browser
Device

Browser
Device

ASP.NET runtime
detects the
browsing device.

ASP.NET Runtime
MobileCapabilities

Object

The MobileCapabilities
object is used to generate
device-specific content.

Configuration files
provide device mapping
and filter attributes.

Device-Specific
Choice Constructs

HTML Device Adapter

XHTML Device Adapter

WML Device Adapter

cHTML Device Adapter

Cameron_865-2C10.fm Page 509 Thursday, February 21, 2008 1:01 PM

http://localhost/ControlsBook2Mobile/ch11/usercontrolhost.aspx
http://localhost/ControlsBook2Mobile

510 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

To alleviate this, the ASP.NET runtime keeps track of a limited number of ViewState pages
in a ViewState history. The identifier in the preceding URL indicates what page the user is currently
viewing in the history.

You can specify how many pages worth of ViewState should be cached in the web.config
file, which can override the value stored in the machine.config file. On our machines, the
machine.config file has this value:

<mobileControls
 sessionStateHistorySize="6"
...

ViewState can expire in mobile web applications because it is stored in the user’s current
session. If a page does not post back within the session expiration time, the OnViewStateExpire
method fires for the page. The default implementation of this method is to throw an exception.
An application has the option of overriding this method to prevent the exception if the appli-
cation can restore ViewState manually.

As with traditional ASP.NET applications, each mobile control is responsible for managing
its own ViewState. As we have alluded to, mobile controls differ from traditional server controls
with respect to rendering and ViewState. We cover rendering in the next section, but for now,
it suffices to say that when a mobile control renders, it has help from device adapters to render
its content appropriately for the device currently making the request.

One difference with server controls of type MobileControl is PrivateViewState. Mobile
controls have an additional state-management mechanism in PrivateViewState that cannot
be disabled as ViewState can be by setting EnableViewState to a value of false. To use
PrivateViewState, a control overrides the LoadPrivateViewState and SavePrivateViewState
methods.

PrivateViewState is stored in the page sent to the client, so state placed in
PrivateViewState should be kept to a minimum due to both limited bandwidth and device
capabilities. The main function of PrivateViewState is to make state information available
across multiple pages. Here are some reasons why you would want to use PrivateViewState:

• To store the currently active form on a page

• To store pagination information about a form

• To store device-specific decisions made by a control’s adapter

The device adapter object is closely tied to its associated mobile control instance, storing
ViewState specific to the device adapter in addition to the mobile control’s ViewState. All device
adapters inherit from the IControlAdapter interface, which includes the following methods:

• LoadAdapterState

• SaveAdapterState

LoadAdapterState is called by the mobile control’s LoadPrivateViewState method during
the control’s life cycle. Likewise, the mobile control’s SavePrivateViewState method calls the
device adapter’s SaveAdapterState method. This extension of ViewState storage to the device
adapter provides an opportunity for the device adapter to manage additional state with respect
to control UI management. This is a great example of the flexibility this architecture provides.

Cameron_865-2C10.fm Page 510 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 511

Now that we have covered the differences between traditional server controls and mobile
controls and have discussed the mobile control life cycle, we can move to discuss actually
implementing mobile server controls. It is possible to create mobile server controls using the
same techniques for traditional server control development, including

• Inheritance (Inherit from an existing control)

• Composition

• Inheriting from MobileControl, the base class for all mobile controls, to create a new control

We cover these options in the next sections.

Inheritance
Customizing an existing server control through inheritance is an excellent option, especially
for mobile controls because of the increased complexity with rendering. Unless you override
the Render method in an inherited control, the base mobile control will still handle its own
rendering.

Because inheritance in mobile server control development is performed in the same manner
as with traditional server control development, we do not provide an example here. Instead, we
refer you to Chapter 2, where we implemented an inherited control named TextBox3d.

Composition
Building composite mobile server controls is performed in a similar manner to developing
traditional mobile control composite controls. As with inheritance, composition generally
does not require any additional work due to the differences in rendering technology with
mobile controls.

Composition in both traditional and mobile server control development relies on child
controls to handle their own rendering. Also, there may be situations in which a composite
control’s behavior and appearance can be enhanced by altering the contained child controls in
a device-specific manner. You can create a device-specific control adapter class that renders a
device-specific control tree.

When you build composite mobile server controls, we recommend inheriting from Panel
instead of MobileControl. This is similar to inheriting from a <div> tag in traditional composite
control development, as it provides a nice container for the control. With composite mobile
controls, this is especially important because the .NET Framework mobile architecture attempts to
keep controls within a Panel displayed as a unit and not split controls in a Panel across pages
whenever possible.

Because composite mobile control development is similar to building composite controls
in traditional ASP.NET development, we do not provide an example but rather refer you to
earlier chapters that include composite control samples, such as Chapter 8 with the UpDown
composite control.

Inheriting from MobileControl
Now that you have a firm grasp of the inner workings of mobile server controls, you can see
how similar in design they are to traditional ASP.NET server controls. You should now have a

Cameron_865-2C10.fm Page 511 Thursday, February 21, 2008 1:01 PM

512 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

good understanding of what is unique to mobile server controls. We now move on to imple-
menting a simple mobile server control that targets WML and HTML browsers.

The MCTextBox Control

The mobile control TextBox control, or MCTextBox sample, is a duplicate of the TextBox sample
from Chapter 5. We first copied the TextBox control source code, changed the namespace to
ControlsBookLib.Ch11, and changed the class name to MCTextBox. We also added a using statement
for System.Web.UI.MobileControls and changed the inherited class from Control to MobileControl.

For our example, we keep the postback-handling code and continue to use the
TextChangedEventHandler class from Chapter 5. We add the property customizations listed in
Table 10-14 to round out our mobile control implementation.

Listing 10-13 is the code for our mobile control.

Listing 10-13. The MCTextBox.cs File

using System;
using System.Collections.Specialized;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.MobileControls;

namespace ControlsBook2Lib.Ch10
{
 [ToolboxData("<{0}:MCTextBox runat=server></{0}:MCTextBox>"),
 DefaultProperty("Text")]
 public class MCTextBox : MobileControl, IPostBackDataHandler
 {
 public string Text
 {
 get
 {
 object text = ViewState["text"];

Table 10-14. Added Property Customizations

Property Description

MaxLength Maximum length permitted for the Text property

Numeric Boolean value that indicates whether the Text property takes only numbers

Password Boolean value that indicates whether the password characters are displayed

Size Indicates the estimated size of Text property

Title Stores the Title value for the control

Cameron_865-2C10.fm Page 512 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 513

 if (text == null)
 return string.Empty;
 else
 return (string)text;
 }
 set
 {
 ViewState["text"] = value;
 }
 }

 public string Title
 {
 get
 {
 object title = ViewState["title"];
 if (title == null)
 return string.Empty;
 else
 return (string)title;
 }
 set
 {
 ViewState["title"] = value;
 }
 }

 public int MaxLength
 {
 get
 {
 object maxLength = ViewState["maxLength"];
 if (maxLength == null)
 return 0;
 else
 return (int)maxLength;
 }
 set
 {
 ViewState["maxLength"] = value;
 }
 }

 public int Size
 {

Cameron_865-2C10.fm Page 513 Thursday, February 21, 2008 1:01 PM

514 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 get
 {
 object size = ViewState["size"];
 if (size == null)
 return 0;
 else
 return (int)size;
 }
 set
 {
 ViewState["size"] = value;
 }
 }

 public bool Password
 {
 get
 {
 object password = ViewState["password"];
 if (password == null)
 return false;
 else
 return (bool)password;
 }
 set
 {
 ViewState["password"] = value;
 }
 }

 public bool Numeric
 {
 get
 {
 object numeric = ViewState["numeric"];
 if (numeric == null)
 return false;
 else
 return (bool)numeric;
 }
 set
 {
 ViewState["numeric"] = value;
 }
 }

Cameron_865-2C10.fm Page 514 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 515

 public event EventHandler TextChanged;

 public bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 string postedValue = postCollection[postDataKey];
 if (!Text.Equals(postedValue))
 {
 Text = postedValue;
 return true;
 }
 else
 return false;
 }

 public void RaisePostDataChangedEvent()
 {
 OnTextChanged(EventArgs.Empty);
 }

 protected virtual void OnTextChanged(EventArgs e)
 {
 if (TextChanged != null)
 TextChanged(this, e);
 }
 }
}

As we discussed previously, mobile controls do not render themselves. Instead, mobile
controls are associated with device adapters to handle rendering tasks. In our example, we
implement two device adapters: one for HTML devices and the other for WML devices.

The HTML Device Adapter

This device adapter is pretty easy to create, because the rendering code is essentially the same
as the sample server control in Chapter 5. Device adapters follow a naming convention of
RenderingTechnologyControlNameAdapter, which translates to HtmlMCTextBoxAdapter for our
sample. Listing 10-14 contains the source code for the HTML device adapter.

Listing 10-14. The HtmlMCTextBoxAdapter Source File

using System.Web.UI.MobileControls.Adapters;

namespace ControlsBook2Lib.Ch10.Adapters
{
 public class HtmlMCTextBoxAdapter : HtmlControlAdapter
 {
 protected new MCTextBox Control

Cameron_865-2C10.fm Page 515 Thursday, February 21, 2008 1:01 PM

516 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

 {
 get
 {
 return (MCTextBox)base.Control;
 }
 }

 public override void Render(HtmlMobileTextWriter writer)
 {
 // write out the HTML tag

 writer.Write("<input name=\"" + Control.UniqueID + "\" ");
 writer.Write("value=\"" + Control.Text + "\" ");
 if (Control.Password)
 {
 writer.Write("type=\"password\" ");
 }
 if (Control.Size != 0)
 {
 writer.Write("size=\"" + Control.Size + "\" ");
 }
 writer.Write("/>");

 if (Control.BreakAfter)
 {
 writer.Write("
");
 }
 }
 }
}

The device adapter inherits from HtmlControlAdapter and implements two methods. We
replace the Control property using the new keyword with a strongly typed Control read-only
property. ASP.NET populates this property with the associated MCTextBox control at runtime.

Render is the other method we implement, and it has a few enhancements when compared
to the original rendering code from the TextBox control in Chapter 5. We have logic to add a

 tag if the BreakAfter property has a value of true. Similarly, we render the input tag as of
type password if the Password property is set to true.

We also set the size for the <input> tag. The Size property does not enforce a rule, but it
does set the initial width in characters for the control. Following the convention for the mobile
control TextBox, we ignore the Numeric and Title properties’ settings when rendering HTML.

One difference from the rendering logic in Chapter 5 is that instead of using the this
reference, we use the strongly typed reference stored in the Control property to get control
data for rendering. Also, the writer parameter is a reference to HtmlMobileTextWriter to
handle markup output.

Cameron_865-2C10.fm Page 516 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 517

The WML Device Adapter

The WML device adapter is nearly identical to the HTML device adapter, except, of course, for
the Render method. Listing 10-15 presents the code for WmlMCTextBoxAdapter.

Listing 10-15. The WmlMCTextBoxAdapter.cs Source File

using System.Web.UI.MobileControls.Adapters;

namespace ControlsBook2Lib.Ch10.Adapters
{
 public class WmlMCTextBoxAdapter : WmlControlAdapter
 {
 protected new MCTextBox Control
 {
 get
 {
 return (MCTextBox)base.Control;
 }
 }

 public override void Render(WmlMobileTextWriter writer)
 {
 string Format;

 if (Control.Numeric)
 {
 Format = "*N"; //Set format to any number of numeric characters
 }
 else
 {
 Format = "*M"; //Set format to any number of characters
 }
 writer.RenderTextBox(Control.UniqueID, Control.Text, Format, Control.Title,
 Control.Password, Control.Size, Control.MaxLength, false, Control.BreakAfter);
 }
 }
}

The Render method takes advantage of a method on the WmlMobileTextWriter writer
named RenderTextBox. This method takes a series of parameters for customizing the output.
Table 10-15 lists the parameters for RenderTextBox.

When you compare the parameters of this method with the properties on the mobile
TextBox and MCTextBox controls, you can see that the Numeric and Title properties are geared
toward WML-capable devices.

Cameron_865-2C10.fm Page 517 Thursday, February 21, 2008 1:01 PM

518 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

The other logic in the Render method for the WmlMCTextBoxAdapter class modifies the
format parameter for this method, setting it to *N for unlimited numeric characters or *M for
unlimited any type of characters. These settings come from the WML specification for the
<input> tag. Table 10-16 details the available values for the format setting.

Creating device adapters requires a deep understanding of the nuances of the markup
language. (Either that or a good reference close at hand!)

Table 10-15. WmlMobileTextWriter.RenderTextBox Parameters

Parameter Description

breakAfter Indicates whether a
 tag should be rendered after the <input> tag

format Permits application of WML-specific formatting options

generateRandomID Indicates whether the identifier for the control should be encrypted

id Identifier of the associated mobile control

maxLength Stores the maximum length permitted for the string

password Indicates if the data should be masked with the password character *

size Stores the size of the string

title Stores the title for the text box

value Value to initialize the control

Table 10-16. Permitted Settings for the WML <input> Tag format Value

Format Description

A Punctuation or uppercase alphabetic characters.

a Punctuation or lowercase alphabetic characters.

M All characters permitted.

m All characters permitted.

N Numeric characters only.

X Uppercase characters only.

x Lowercase characters only.

nf n indicates a number between 1 and 9 for the number of characters permitted.
Replace f with one of the preceding letters to specify what characters are legal.

*f * indicates any number of characters permitted. Replace f with one of the preceding
letters to specify what characters are legal.

Cameron_865-2C10.fm Page 518 Thursday, February 21, 2008 1:01 PM

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 519

Mapping Device Adapters

Now that we have created our mobile server control and device adapters, it is time to modify a
configuration file so that the ASP.NET runtime can select the correct device adapter to render
the mobile control.

We can inherit from the machine.config file and create a new device mapping in the
web.config file, or we can modify the machine.config file. The section of the configuration file
we need to customize is the <mobileControls> element. For a given device target, we need to
map the mobile control to a device adapter. Here is the syntax to map a mobile server control
to a device adapter:

<control name= "controlName, assembly" adapter="adapterName, assembly" />

If the assembly is registered in the GAC, you can omit the assembly name. For our sample,
we chose to modify the <mobileControls> tag in web.config by adding the following section:

 <mobileControls cookielessDataDictionaryType=
 "System.Web.Mobile.CookielessData">
 <device name="ControlsBookHtml" inheritsFrom="HtmlDeviceAdapters">
 <control name=
 "ControlsBookLib.Ch11.MCTextBox,ControlsBookLib" adapter=
 "ControlsBookLib.Ch11.Adapters.HtmlMCTextBoxAdapter,ControlsBookLib" />
 </device>
 <device name="ControlsBookWml" inheritsFrom="WmlDeviceAdapters">
 <control name=
 "ControlsBookLib.Ch11.MCTextBox,ControlsBookLib" adapter=
 "ControlsBookLib.Ch11.Adapters.WmlMCTextBoxAdapter,ControlsBookLib" />
 </device>
 </mobileControls>

In the preceding section, we inherit from the standard device mappings listed in
machine.config and can simply make the modifications we need for our control. This method
makes it easy to add server controls to device adapter mappings.

Testing MCTextBox
Now that we have everything set up, we can put our new control through its paces. The sample
mobile page is very similar to the sample in Chapter 5. Because the new control keeps the code the
same as much as possible, it handles postback data and generates server-side events if the data
changes in the MCTextBox. Listings 10-16 and 10-17 provide the source for MCTextBoxDemo.aspx and
its code-behind file.

Listing 10-16. The MCTextBoxDemo.aspx File

<%@ Page Language="c#" CodeBehind="MCTextBoxDemo.aspx.cs"
Inherits="ControlsBook2Mobile.Ch10.MCTextBox"
 AutoEventWireup="True" %>

Cameron_865-2C10.fm Page 519 Thursday, February 21, 2008 1:01 PM

520 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.MobileControls"
Assembly="System.Web.Mobile" %>
<%@ Register TagPrefix="ApressMC" Namespace="ControlsBook2Lib.Ch10"
Assembly="ControlsBook2Lib" %>
<head>
 <meta content="Microsoft Visual Studio .NET 7.1" name="GENERATOR">
 <meta content="C#" name="CODE_LANGUAGE">
 <meta content="http://schemas.microsoft.com/Mobile/Page" name="vs_targetSchema">
</head>
<body>
 <mobile:Form ID="Form1" Runat="server">
 <mobile:Label ID="Label1" Runat="server">Change the value:</mobile:Label>
 <ApressMC:MCTextBox ID="MCTextBox1" runat="server"
 Text="Hi There!" MaxLength="15"
 Numeric="False" Password="False" Size="10"
 OnTextChanged="MCTextBox1_TextChanged">
 </ApressMC:MCTextBox>
 <mobile:Command ID="Command1" Runat="server">Command</mobile:Command>
 <mobile:Label ID="ChangeLabel" Runat="server">Message</mobile:Label>
 </mobile:Form>
</body>

Listing 10-17. The MCTextBoxDemo.aspx File

using System;

namespace ControlsBook2Mobile.Ch10
{
 public partial class MCTextBox : System.Web.UI.MobileControls.MobilePage
 {
 protected System.Web.UI.MobileControls.TextBox TextBox1;

 protected void Page_Load(object sender, System.EventArgs e)
 {
 ChangeLabel.Text = DateTime.Now.ToLongTimeString() + ": MCTextBox No change.";
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

Cameron_865-2C10.fm Page 520 Thursday, February 21, 2008 1:01 PM

http://schemas.microsoft.com/Mobile/Page

C H AP TE R 1 0 ■ OT H E R S E R V E R C O N TR OL S 521

 /// <summary>
 // /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {

 }
 #endregion

 protected void MCTextBox1_TextChanged(object sender, System.EventArgs e)
 {
 ChangeLabel.Text = DateTime.Now.ToLongTimeString() +
 ": MCTextbox Changed! " + MCTextBox1.Text;
 }
 }
}

The sample consists of MCTextBox, a Command button, and a Label to display a message.
When the form first appears, the message label displays “No change”. Change the value in the
MCTextBox control, and click the Command button.

When the mobile form reloads after the postback process, the message label displays an
updated time and a message stating that the value changed. This shows that the server-side
event process is correctly implemented.

The MCTextBox control will render correctly using both Pocket Internet Explorer and a
WML emulator, demonstrating the extensibility of the ASP.NET Framework mobile server
control architecture. This concludes our discussion of mobile control development.

Summary
In this chapter, we provided a quick overview of the web part infrastructure. Next, we created
the WebPartPageController server control to provide a UI to the end user for manipulating the web
part infrastructure. After that, we created two basic server controls and migrated them to web parts
as a way to demonstrate the tasks that are typically required. We then walked through enabling
web part connections between the web parts.

The next section began a discussion of adaptive control programming by customizing the
HTML output of a server control without actually inheriting from the control. We walked through
creating a simple control adapter to demonstrate how it works. The best examples of this are
the DHTML control adapters available from Microsoft for download.

For device-specific programming, we covered the extensibility hooks for mobile server
controls, which are the StyleSheet control, templates, device-specific UI choices, user controls,
custom controls, and device adapters. ASP.NET provides three default StyleSheet Style
attributes in the StyleReference property: error, subcommand, and title.

Cameron_865-2C10.fm Page 521 Thursday, February 21, 2008 1:01 PM

522 CH AP T E R 1 0 ■ O TH E R SE R V E R CO N T R O L S

Mobile control technology includes user controls, composite controls, and custom-developed
controls inherited from MobileControl. Creating custom mobile server controls is very similar
to creating traditional mobile controls. The two major differences are ViewState management
and the rendering process. Mobile server controls that inherit from MobileControl do not render
themselves but instead rely on device adapters to handle their rendering. Device adapters render
mobile controls on specific mobile devices, providing support for HTML, WML, cHTML, and
XHTML. MobileCapabilties inherits from HttpBrowserCapabilities and aids in detecting the
closest match of what device is currently browsing a web application.

Cameron_865-2C10.fm Page 522 Thursday, February 21, 2008 1:01 PM

523

■ ■ ■

C H A P T E R 1 1

Design-Time Support

Design-time support refers to working with server controls within the Visual Studio develop-
ment environment. Dragging controls onto the web page Component Designer surface from
the Toolbox tool window, editing server control properties in the Properties tool window, and
right-clicking a control to bring up a context menu are all examples of design-time support.

All these capabilities and more are made available to server control developers by the .NET
Framework. In this chapter, we explore the design-time capabilities and techniques available
in the .NET Framework for inclusion in custom-developed server control development efforts.

Professional Quality
Support for visual controls in rapid application development (RAD) environments on the Windows
platform have existed since the early days of Visual Basic. As opposed to just working with a
class in code, controls enhance the development environment experience and speed up devel-
opment time. The qualities associated with a professional control include the following:

• Ease of installation

• High level of documentation

• Sample code that demonstrates control functionality

• Design-time support

In the remainder of this book, we aim to provide you with the requisite knowledge to assist
you in developing professional quality controls. In this chapter we cover design-time support.
We cover localization, help file integration, and deployment in the following chapters. In the
next section, we take a look at the design-time architecture provided by the .NET Framework.

Design-Time Architecture
The .NET Framework provides design-time customizations for both Windows controls and web
controls. The customizations available in each environment differ mostly as a result of rendering
technology: ASP.NET server controls generate HTML; Windows Forms controls render using GDI+;
and Windows Presentation Foundation controls render in DirectX 3D. This chapter focuses on
design-time capabilities for web controls, but many of the concepts discussed here apply to
the Windows Forms or Windows Presentation Foundation environment as well.

Cameron_865-2C11.fm Page 523 Thursday, February 21, 2008 2:19 PM

524 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

It is interesting to note that design-time support is built into the .NET Framework, not
directly into Visual Studio. In the past, design-time support was built into editing tools or
implemented on a component-by-component basis, such as ActiveX property pages. This is
not the case with the .NET Framework.

For example, if you open a web form in Visual Studio, drag a DataGrid or GridView onto the
Component Designer surface, and select the Control Tasks arrow in the upper-right corner of
the control, a list of tasks, such as AutoFormat, is displayed. Now, perform the same steps in
Visual Web Developer Express Edition (available at http://www.asp.net). Open a web form,
place a DataGrid or GridView on the Component Designer surface, click the Control Tasks arrow
in the upper-right corner of the control, and the same design-time UI is displayed. The UI is
part of the control, not the development environment.

The .NET Framework provides rich design-time support, and Visual Studio 2008 provides
rich extensibility points for tools as well as component vendors built on top of the .NET Frame-
work. There are two primary facilities available for design-time programming:

• Design-time environment services

• Component-specific customizations

We next provide an overview of design-time environment services, and then we move on
to cover component customization. As we implement component customization samples, we
touch on the design-time environment services necessary to integrate into a design-time envi-
ronment such as Visual Studio.

Environment Services Overview
The .NET Framework design-time environment services extend the capabilities and level of
integration with a designer tool such as Visual Studio. To obtain a service, the Component class
implements IServiceProvider, which has a method named GetService that can be used to
obtain a reference to a service interface implemented by the design-time environment.

For example, a server control can use the GetService method in a UI type editor to obtain
a reference to IWindowsFormsEditorService. Next, the control can call the ShowDialog method
on the reference to have the design-time environment create a Windows Forms–based UI for
editing a particular property. This is just one example of what is available in design-time envi-
ronment services. Table 11-1 provides an overview of available design-time environment services.

Table 11-1. Design-Time Environment Interfaces

Interface Description

IComponentChangeService Permits a designer to receive notifications when components
are changed, added, or removed from the design-time
environment.

IDesignerEventService Permits a designer to receive notifications when designers
are added or removed, and notifications when the selected
component changes.

IDesignerFilter Permits a designer to add to the set of properties displayed in
the property browser and filter the properties.

Cameron_865-2C11.fm Page 524 Thursday, February 21, 2008 2:19 PM

http://www.asp.net

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 525

IDesignerHost Used to add and retrieve services available in the design-time
environment and handle events related to designer state. It
provides support for detecting that a designer is loading and
helps manage component and designer transactions.

IDesignerOptionService Permits a designer to get and set property values displayed in
the Windows Forms Designer property grid displayed when
Tools ➤ Options is selected.

IDictionaryService Provides a key-based collection for user-defined data
for designers.

IEventBindingService Permits a designer to expose events at design time for the
selected component in a property browser.

IExtenderListService Makes the currently active extender providers available to
a designer.

IExtenderProviderService Permits a designer to add or remove extender providers at
design time.

IHelpService Permits a designer to create and remove help service contexts
and attributes, and display help topics by keyword and URL.

IInheritanceService Permits a designer to search for components of derived
classes and identify any inheritance attributes for each.

IMenuCommandService Permits a designer to search for, add, remove, and invoke
menu commands at design time.

IReferenceService Permits a designer to obtain a reference to an object by
name and type, and obtain a reference to the desired object’s
parent.

IResourceService Permits a designer to obtain a culture-specific resource reader
or writer.

IRootDesigner Permits a designer to replace the root designer view with a
custom designer view display.

ISelectionService Permits a designer to get a set of references to currently
selected components, select components(s), and determine
what components are currently selected.

IServiceContainer Permits a component or designer to add or remove services
for use by other components or designers.

ITypeDescriptorFilterService Permits a component or designer to filter attributes, events,
and properties exposed by a component.

ITypeResolutionService Permits a designer to add an assembly reference to a project,
obtain a type or assembly by name, and obtain the
assembly’s path.

IWindowsFormsEditorService Permits a UI designer to create a Windows Form UI for editing
a property at design time.

Table 11-1. Design-Time Environment Interfaces

Interface Description

Cameron_865-2C11.fm Page 525 Thursday, February 21, 2008 2:19 PM

526 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

As Table 11-1 shows, the .NET Framework includes quite a few interfaces to permit a high
level of integration between the framework, the components, and the design-time environment.

We now move our discussion to the primary method to implement design-time capabili-
ties: customizing component behavior.

Customizing Component Behavior
The .NET Framework provides the necessary interfaces and services to enable a rich design-
time experience when working with controls. As we mentioned previously, the design-time
architecture is shared between Windows Forms, Windows Presentation Foundation, and
ASP.NET.

Windows Forms controls inherit from System.ComponentModel.Component, and we know that
ASP.NET controls inherit from System.Web.UI.Control. Both classes implement the IComponent
interface, which is in the System.ComponentModel namespace. The System.ComponentModel.Design
namespace is where the majority of design-time classes exist.

Examine the design-time capabilities of the built-in GridView server control and you
quickly see how extensive the support is. Customizations available at design time fall into the
following categories:

• Designers

• Type converters

• UI type editors

The common root base class for both the Windows Forms and web forms custom designers
is System.ComponentModel.Design.ComponentDesigner. Custom designers manage the UI and
behavior of a component at design time. Customizations include changing the component’s
appearance, initialization, and interaction on the Component Designer surface. The
DesignerAttribute associates a designer with a type.

A custom designer can modify what properties display in the property browser and provide
methods that can be linked to component events or fired through the developer/user clicking
a menu command. Designers are only used by controls at design time.

The base class for type converters is System.ComponentModel.TypeConverter. Type converters
are generally implemented for control properties that are not readily converted to the string
type. Type converters are also implemented for types that include subproperties, such as the
expand/collapse UI for the Font property. TypeConverterAttribute associates a type converter
with a type or type member. TypeConverters can be used by controls both at design time and
runtime.

The root base class for UI type editors for Windows Forms, Windows Presentation Founda-
tion, and web forms is System.Drawing.Design.UITypeEditor. A UI type editor can provide a
custom user interface for editing property values. It displays a custom representation of a property
at design time. UI type editors are type specific. An example is the ForeColor property of type Color
that displays the various colors available, which makes it much easier to select a particular
color than with a hex value or name. EditorAttribute associates a UI type editor with a type or
type member. A UI type editor can be used by controls both at design time and runtime.

For a web form’s design-time support, ASP.NET-specific base class implementations exist
in the System.Web.UI.Design namespace. For example, the base class for ASP.NET server control
custom designers is System.Web.UI.Design.HtmlControlDesigner, which inherits from System.
ComponentModel.Design.ComponentDesigner (discussed previously).

Cameron_865-2C11.fm Page 526 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 527

HtmlControlDesigner provides basic designer functionality for server controls. The class
that developers extend when building custom designer classes for ASP.NET server controls is
System.Web.UI.Design.ControlDesigner.

Though Windows Forms, Windows Presentation, and web forms share a common
architecture for design-time support, the recommendation here is to look to the rendering
technology-specific design-time support namespaces first to ease development effort.

Attributes
As we mentioned previously, control customizations are applied using attributes. We provided
an overview of attributes at the end of Chapter 3. Table 3-2 in Chapter 3 details basic design-
time attributes such as DefaultProperty, DefaultValue, DescriptionAttribute, and so on. In
the examples that follow, we apply several of these basic attributes as well as more advanced
attributes related to this chapter’s discussion. For more information on attributes, please refer
to Chapter 3 or the .NET Framework documentation.

The TitledThumbnail Control
To demonstrate design-time behavior, we created a simple composite server control named
TitledThumbnail. As you might have guessed, TitledThumbnail displays a thumbnail image
with a title underneath. It has several custom properties including a complex property to help
demonstrate design-time techniques. Figure 11-1 shows the control in a browser window.

Figure 11-1. The TitledThumbnail demonstration page in the browser

Cameron_865-2C11.fm Page 527 Thursday, February 21, 2008 2:19 PM

528 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

There are two instances of the control displaying an image with a caption. We want to
jump straight to our design-time discussion, and TitledThumbnail is so straightforward that we
don’t provide a discussion of how this control is constructed so we can go straight to the code.
Listing 11-1 contains the source for the TitledThumbnail control.

Listing 11-1. The TitledThumbnail Control

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch11
{
 public enum TitleAlignment { center, justify, left, right };

 [ToolboxData("<{0}:TitledThumbnail runat=server></{0}:TitledThumbnail>"),
 EditorAttribute(typeof(TitledThumbnailComponentEditor), typeof(ComponentEditor)),
 Designer(typeof(TitledThumbnailDesigner)),
 DefaultProperty("ImageUrl")]
 public class TitledThumbnail : WebControl
 {
 private Image imgThumbnail;
 private Label lblTitle;
 private ImageMetaData metaData;

 public TitledThumbnail()
 : base(HtmlTextWriterTag.Div)
 {

 }

 [DescriptionAttribute("Text to be shown as the image caption."),
 CategoryAttribute("Appearance")]
 public string Title
 {
 get
 {
 EnsureChildControls();
 object title = ViewState["title"];
 return (title == null) ? "" : (string)title;
 }
 set
 {

Cameron_865-2C11.fm Page 528 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 529

 EnsureChildControls();
 lblTitle.Text = value;
 ViewState["title"] = value;
 }
 }

 [DescriptionAttribute("The Url of the image to be shown."),
 CategoryAttribute("Appearance")]
 public string ImageUrl
 {
 get
 {
 EnsureChildControls();
 object imageUrl = ViewState["imageUrl"];
 return (imageUrl == null) ? "" : (string)imageUrl;
 }
 set
 {
 EnsureChildControls();
 imgThumbnail.ImageUrl = value;
 ViewState["imageUrl"] = value;
 }
 }

 [DescriptionAttribute("Set the alignment for the Image and Title."),
 CategoryAttribute("Layout"), DefaultValue("center")]
 public TitleAlignment Align
 {
 get
 {
 EnsureChildControls();
 object align = ViewState["align"];
 return (align == null) ? TitleAlignment.left : (TitleAlignment)align;
 }
 set
 {
 EnsureChildControls();
 this.Attributes.Add("align", Enum.GetName(typeof(TitleAlignment), value));
 ViewState["align"] = value;
 }
 }

 [DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true), CategoryAttribute("MetaData"),
 DescriptionAttribute(
 "Meta data that stores information
 about the displayed photo image.")]

Cameron_865-2C11.fm Page 529 Thursday, February 21, 2008 2:19 PM

530 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 public ImageMetaData ImageInfo
 {
 get
 {
 EnsureChildControls();
 if (metaData == null)
 {
 metaData = new ImageMetaData();
 }
 return metaData;
 }
 }

 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 protected override void CreateChildControls()
 {
 Controls.Clear();

 HtmlGenericControl divImageContainer = new HtmlGenericControl("div");
 divImageContainer.ID = "imageDiv";
 imgThumbnail = new Image();
 divImageContainer.Controls.Add(imgThumbnail);
 this.Controls.Add(divImageContainer);
 HtmlGenericControl divSpacer = new HtmlGenericControl("div");
 divSpacer.ID = "divSpacer";
 divSpacer.Attributes.Add("style", "margin:3px;");
 this.Controls.Add(divSpacer);
 lblTitle = new Label();
 lblTitle.ID = "imageTitle";
 lblTitle.ForeColor = System.Drawing.Color.White;
 this.Controls.Add(lblTitle);
 }

 protected override void AddAttributesToRender(HtmlTextWriter writer)
 {
 writer.AddAttribute(HtmlTextWriterAttribute.Align, "center");

Cameron_865-2C11.fm Page 530 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 531

 writer.AddStyleAttribute(HtmlTextWriterStyle.BackgroundColor, "#2666A5");
 writer.AddStyleAttribute(HtmlTextWriterStyle.Width, "94px");
 writer.AddStyleAttribute(HtmlTextWriterStyle.Height, "88px");
 writer.AddStyleAttribute(HtmlTextWriterStyle.BorderColor, "silver");
 writer.AddStyleAttribute(HtmlTextWriterStyle.BorderStyle, "ridge");
 writer.AddStyleAttribute(HtmlTextWriterStyle.BorderWidth, "4px");
 writer.AddStyleAttribute(HtmlTextWriterStyle.FontSize, "XX-Small");
 writer.AddStyleAttribute(HtmlTextWriterStyle.FontFamily, "Tahoma");

 base.AddAttributesToRender(writer);
 }
 }
}

Listings 11-2 and 11-3 contain the source for the TitledThumbnail server control demon-
stration page and code-behind file.

Listing 11-2. The TitledThumbnail Demonstration .aspx File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="TitledThumbnail.aspx.cs"
 Inherits="ControlsBook2Web.Ch11.TitledThumbnail"
 Title="TitledThumbnail Demo" %>

<%@ Register TagPrefix="apress" Namespace="ControlsBook2Lib.Ch11"
 Assembly="ControlsBook2Lib" %>
<%@ Register Assembly="ControlsBook2Lib" Namespace="ControlsBook2Lib.Ch03"
 TagPrefix="cc1" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">11</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Design-Time Support</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">

 <apress:TitledThumbnail ID="TitledThumbnail1" Title="Clear Winter Day"
 runat="server" ImageInfo-PhotographerFullName=
 "Robert Cameron" ImageInfo-ImageLongDescription=
 "Winter outdoor scene in February"
 ImageInfo-ImageDate="2007-09-01" ImageUrl="imgs/Outdoors.jpg"
 ImageInfo-ImageLocation="31N,123W">
 </apress:TitledThumbnail>

Cameron_865-2C11.fm Page 531 Thursday, February 21, 2008 2:19 PM

532 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 <apress:TitledThumbnail ID="Titledthumbnail2"
 Title="Lizard on the Prowl"
 runat="server"
 ImageInfo-PhotographerFullName="Rob Cameron"
 ImageInfo-ImageLongDescription=
 "A lizard on the side of a wooden deck."
 ImageInfo-ImageDate="2007-08-08" ImageUrl=
 "imgs/Lizard.jpg" ImageInfo-ImageLocation="32S,123E">
 </apress:TitledThumbnail>

</asp:Content>

Listing 11-3. The TitledThumbnail Demonstration Page Code-Behind File

using System;

namespace ControlsBook2Web.Ch11
{
 public partial class TitledThumbnail : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

The TitledThumbnail control implements properties such as ImageMetaData and Location
that do not configure the control; rather, they store data about the thumbnail image. Though
this may or may not be a useful design, the properties help us demonstrate design-time customiza-
tions, which is this chapter’s focus.

The TitledThumbnail Control at Design Time
Figure 11-2 displays an annotated screen shot of the TitledThumbnail control at design time.
Item 1 in Figure 11-2 highlights a couple of properties displayed in the Properties window. We
discuss customizations for the Properties window in the next section.

Cameron_865-2C11.fm Page 532 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 533

Figure 11-2. The TitledThumbnail control in the Visual Studio Designer

The Properties Window

Without any work by the developer, a control that inherits from System.Web.UI.Control displays
simple properties in the property browser. Simple properties include Boolean, string, integer,
decimal, and so on. Although not a simple type, enumeration types also display automatically,
as does a drop-down list in the property browser.

Some easy customizations include applying the basic design-time attributes listed in
Chapter 3. Here is an example from the TitledThumbnail control:

[DescriptionAttribute("Set the alignment for the Image and Title."),
 CategoryAttribute("Layout"),DefaultValue("center")]

The DescriptionAttribute displays the passed-in string at the bottom of the property
browser, as pointed out by item 4 in Figure 11-2. The CategoryAttribute places the property
in the passed-in category in the Properties window. Example property browser categories are
Layout, Behavior, and so on. The last attribute, DefaultValue, sets the default value for the property.
For an enumeration property, set the DefaultValue property to a string value representing the
enumeration value, not the actual strongly typed enumeration value.

Attributes are generally named with the word “Attribute” appended at the end. However,
the word “Attribute” is optional when applying the attribute. In the previous example, the text
DescriptionAttribute("..") could be replaced with Description(""). Likewise, the actual
class name of the DefaultValue attribute in the .NET Framework is DefaultValueAttribute.

1. Custom properties display in
the Properties window.

2. Type Converters customize
how data displays in the
Properties window.

3. Custom property
editor form available via
Property Builder menu.

4. Customize help
information on the currently
selected property in the
Properties window

Cameron_865-2C11.fm Page 533 Thursday, February 21, 2008 2:19 PM

534 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

The ImageInfo property on the TitledThumbnail control is of type ImageMetaData. Listing 11-4
contains the source for the ImageMetaData class.

Listing 11-4. The ImageMetaData Class

using System;
using System.ComponentModel;
using System.Drawing.Design;
using System.Globalization;
using System.Security.Permissions;
using System.Web;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch11
{
 [TypeConverter(typeof(ImageMetaDataConverter)),
 AspNetHostingPermission(
 SecurityAction.LinkDemand,
 Level = AspNetHostingPermissionLevel.Minimal)]
 public class ImageMetaData
 {
 public ImageMetaData()
 {

 }

 public ImageMetaData(DateTime PhotoDate, Location Loc,
 string ImageDescription, string FullName)
 {
 PhotographerFullName = FullName;
 ImageDate = PhotoDate;
 ImageLongDescription = ImageDescription;
 ImageLocation = Loc;
 }

 [NotifyParentProperty(true),
 DescriptionAttribute("Name of the photographer who captured the image.")]
 public string PhotographerFullName {get; set;}

 [NotifyParentProperty(true),
 DescriptionAttribute("Date the image was captured.")]
 public DateTime ImageDate {get; set;}

 [NotifyParentProperty(true),
 DescriptionAttribute("Extended description of the image."),
 EditorAttribute(typeof(ControlsBook2Lib.Ch11.Design.SimpleTextEditor),
 typeof(UITypeEditor))]

Cameron_865-2C11.fm Page 534 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 535

 public string ImageLongDescription {get; set;}

 [NotifyParentProperty(true),
 DescriptionAttribute("GPS Location where the image was captured.")]
 public Location ImageLocation {get; set;}

 [Browsable(false)]
 public bool IsEmpty
 {
 get
 {
 return ((ImageLongDescription == null) &&
 (PhotographerFullName == null) &&
 (ImageDate == null));
 }
 }

 public override string ToString()
 {
 return ToString(CultureInfo.CurrentCulture);
 }

 public string ToString(CultureInfo Culture)
 {
 return string.Format(CultureInfo.CurrentCulture, "[{0}: Date={1},
 LongDescription={2}, PhotographerName={3}]", new object[]
 { base.GetType().Name,
 this.ImageDate.ToShortDateString(),
 this.ImageLongDescription,
 this.PhotographerFullName });
 }
 }
}

ImageMetaData is a class containing simple types and a complex type named Location.
Listing 11-5 contains the source for the Location class.

Listing 11-5. The Location Class

using System;
using System.ComponentModel;
using System.Globalization;
using ControlsBook2Lib.Ch11.Design;

namespace ControlsBook2Lib.Ch11
{
 [Serializable,TypeConverter(typeof(LocationConverter))]
 public class Location

Cameron_865-2C11.fm Page 535 Thursday, February 21, 2008 2:19 PM

536 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 {
 public Location()
 {
 Latitude = 0;
 Longitude = 0;
 }

 public Location(double Lat, double Long)
 {
 Latitude = Lat;
 Longitude = Long;
 }

 public double Latitude {get; set;}

 public double Longitude { get; set; }

 public bool IsEmpty
 {
 get
 {
 return (Latitude == 0 && Longitude == 0);
 }
 }

 //override ToString so that it displays the values of
 //its members as opposed to its fully qualified type.
 public override string ToString()
 {
 return ToString(CultureInfo.CurrentCulture);
 }

 public string ToString(CultureInfo Culture)
 {
 string Lat;
 string Long;
 TypeConverter DoubleConverter =
 TypeDescriptor.GetConverter(typeof(double));

 //Add N/S for latitude, E/W for longitude
 if (Math.Round(this.Latitude) >= 0)
 {
 Lat =
 DoubleConverter.ConvertToString(null,
 Culture, this.Latitude) + "N";
 }

Cameron_865-2C11.fm Page 536 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 537

 else
 {
 Lat =
 DoubleConverter.ConvertToString(null,
 Culture, Math.Abs(this.Latitude)) + "S";
 }

 if (Math.Round(this.Longitude) >= 0)
 {
 Long =
 DoubleConverter.ConvertToString(null,
 Culture, this.Longitude) + "W";
 }
 else
 {
 Long = DoubleConverter.ConvertToString(null,
 Culture, Math.Abs(this.Longitude)) + "E";
 }

 // Display lat and long as concantenated string with
 // a comma as the separator based on the current culture
 return String.Join(Culture.TextInfo.ListSeparator,
 new string[] { Lat, Long });
 }

 public override bool Equals(object obj)
 {
 Location Loc = (Location) obj;

 if (Loc != null)
 {
 return (Latitude == Loc.Latitude &&
 Longitude == Loc.Longitude);
 }
 return false;
 }

 public override int GetHashCode()
 {
 //XOR the latitude and logitude coordinates
 return Latitude.GetHashCode() ^ Longitude.GetHashCode();
 }
 }
}

The Location class stores a latitude and longitude as a decimal. To help display these prop-
erties in the property browser, we implemented the ImageInfoConverter and LocationConverter
type converters. Type converters are the subject of the next section.

Cameron_865-2C11.fm Page 537 Thursday, February 21, 2008 2:19 PM

538 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

Type Converters
Type converter attributes are applied to type class definitions to assist with converting the type
to other data types and vice versa. Generally, this conversion is to/from the string type. Type
converters can also alter how a type appears in the property browser at design time.

■Note Never access a type converter directly. Instead, access the appropriate converter by using
TypeDescriptor.

A custom type converter derives from System.ComponentModel.TypeConverter regardless of
whether it is for a property of a Windows Forms or web forms control. The type converter for
the Location class type has a type converter named LocationConverter that inherits from this
class. The purpose of this type converter is to alter how the Location type displays in the prop-
erty browser.

The LocationConverter Class

The Location class stores a latitude and longitude. An instance of this type is part of the
ImageMetaData type. The ImageMetaData type uses the Location instance to store the location
where the photo displayed by the TitledThumbnail control was taken. Latitude and longitude
values are generally displayed using degrees/minutes/seconds notation or as a decimal with
N/S, E/W appended to the decimal value.

Take a look again at Figure 11-2. Item 2 highlights the display for ImageInfo and
ImageLocation. ImageLocation is of type Location. Notice the value displayed: 34S,150E. These
values are easily understood to represent a latitude and longitude. If you look at the Location
type, the underlying latitude and longitude values are of type double with a negative latitude
representing south and a negative longitude representing east. The LocationConverter type
converter makes this possible and is shown in Listing 11-6.

Listing 11-6. The LocationConverter Source

using System;
using System.ComponentModel;
using System.ComponentModel.Design.Serialization;
using System.Globalization;
using System.Reflection;

namespace ControlsBook2Lib.Ch11.Design
{
 public class LocationConverter : TypeConverter
 {
 public override object ConvertFrom(ITypeDescriptorContext
 context, CultureInfo culture, object value)
 {

Cameron_865-2C11.fm Page 538 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 539

 if (value.GetType() == typeof(string))
 {
 string str = (string)value;

 string[] propValues =
 str.Split(',');

 if (2 != propValues.Length)
 {
 throw new ArgumentException("Invalid Location.
 It must be in decimal form with N or S for latitude and E
 or W for longitude. Example: 25.4N,123.3W.", "value");
 }

 //Peel off N/S for latitude and E/W for longitude
 string Lat = propValues[0];
 if ("N" == Lat.Substring(Lat.Length - 1))
 {
 string[] latParts = Lat.Split("N".ToCharArray());
 Lat = latParts[0];
 }
 if ("S" == Lat.Substring(Lat.Length - 1))
 {
 string[] latParts = Lat.Split("S".ToCharArray());
 Lat = "-" + latParts[0];
 }

 string Long = propValues[1];
 if ("W" == Long.Substring(Long.Length - 1))
 {
 string[] longParts = Long.Split("W".ToCharArray());
 Long = longParts[0];
 }
 if ("E" == Long.Substring(Long.Length - 1))
 {
 string[] longParts = Long.Split("E".ToCharArray());
 Long = "-" + longParts[0];
 }

 return new Location(Convert.ToDouble(Lat),
 Convert.ToDouble(Long));
 }
 else
 return base.ConvertFrom(context, culture, value);
 }

Cameron_865-2C11.fm Page 539 Thursday, February 21, 2008 2:19 PM

540 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 public override object ConvertTo(ITypeDescriptorContext context,
 CultureInfo culture, object value, Type destinationType)
 {
 if (destinationType == typeof(string))
 {
 Location Loc = (Location)value;
 string Lat;
 string Long;

 //Add N/S for latitude, E/W for longitude
 if (Math.Round(Loc.Latitude) >= 0)
 {
 Lat =
 (double)Loc.Latitude + "N";
 }
 else
 {
 Lat =
 (double)Math.Abs(Loc.Latitude) + "S";
 }

 if (Math.Round(Loc.Longitude) >= 0)
 {
 Long =
 (double)Loc.Longitude + "W";
 }
 else
 {
 Long = (double)Math.Abs(Loc.Longitude) + "E";
 }

 // Display lat and long as concantenated string with
 // a comma as the separator
 return Lat + "," + Long;
 }

 if (destinationType == typeof(InstanceDescriptor))
 {
 MemberInfo memberInfo = null;
 object[] memberParameters = null;

 Location Loc = (Location)value;
 Type doubleType = typeof(double);
 memberInfo = typeof(Location).GetConstructor(new Type[] { doubleType,
 doubleType });

Cameron_865-2C11.fm Page 540 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 541

 memberParameters =
 new object[] { Loc.Latitude, Loc.Longitude };
 return new InstanceDescriptor(memberInfo, memberParameters);
 }
 return base.ConvertTo(context, culture, value, destinationType);
 }

 public override bool CanConvertTo(ITypeDescriptorContext
 context, Type destinationType)
 {
 if ((typeof(string) == destinationType) ||
 (typeof(InstanceDescriptor) == destinationType))
 {
 return true;
 }
 else
 return base.CanConvertTo(context, destinationType);
 }

 public override bool CanConvertFrom(ITypeDescriptorContext
 context, Type sourceType)
 {
 if (sourceType == typeof(string))
 {
 return true;
 }
 else
 return base.CanConvertFrom(context, sourceType);
 }
 }
}

When the page parser encounters a type that has a type converter associated with it via the
following syntax, it uses the type converter’s methods to assist with parsing the property to/from a
string value:

[TypeConverter(typeof(LocationConverter))]
 public class Location
 {
...

The .NET Framework also uses TypeConverters to stream types to/from ViewState during
the page life cycle. TypeConverters provide methods to check whether a type conversion is
supported as well as a method to make the conversion. The Location type converter imple-
ments four methods:

• CanConvertFrom(..)

• CanConvertTo(..)

Cameron_865-2C11.fm Page 541 Thursday, February 21, 2008 2:19 PM

542 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

• ConvertFrom(..)

• ConvertTo(..)

CanConvertFrom has logic that checks what type is passed in and returns true if the type is a
type, such as string, that can be converted into the class type. CanConvertTo has generally the
same logic, returning true if the target type is a type that the class type can be converted to.

ConvertFrom for the LocationConverter class has logic to ensure that the N/S, E/W values
are appropriately handled; same for ConvertTo. This type converter provides nice functionality,
altering how the type renders in the property browser so that it is more readable or in a format
that makes more sense. Note that if the user decides to enter a latitude and longitude using this
format, 34,–135 (34N,134E), the type converter logic is written in such a way to permit it.

We now move on to a discussion of the ImageMetaData class and its type converter.

The ImageMetaDataConverter Class

The ImageMetaData class is the type of the ImageInfo member on the TitledThumbnail control.
The ImageMetaData class is a complex type that contains subproperties when viewed in the
property browser, as shown in Figure 11-2. It contains the following properties:

• ImageDate

• ImageLocation

• ImageLongDescription

• PhotographerFullName

As we mentioned previously, unlike the other scalar types, ImageLocation is also a complex
type of type Location. LocationConverter customizes how properties of type Location display
in the Properties window.

Notice that the ImageMetaData class has a type converter associated with it:

[TypeConverter(typeof(ImageMetaDataConverter))]
 public class ImageMetaData
 {

This type converter inherits from System.ComponentModel.ExpandableObjectConverter,
which provides functionality to display types with properties as subproperties similar to how
the Font type displays in the Properties tool window. This type converter can also be used to
alter what data shows for the value of the ImageInfo property listed in the property browser.

In Figure 11-2, you see that the data shown in the property field consists of ImageInfo’s
subproperties, separated by a comma. This behavior is also similar to what the Font property
displays for its value in the property browser. Listing 11-7 lists the source for the
ImageMetaDataConverter class.

Listing 11-7. The ImageMetaDataConverter Class

using System;
using System.ComponentModel;
using System.ComponentModel.Design.Serialization;

Cameron_865-2C11.fm Page 542 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 543

using System.Globalization;
using System.Reflection;

namespace ControlsBook2Lib.Ch11.Design
{
 public class ImageMetaDataConverter : ExpandableObjectConverter
 {
 public override object ConvertFrom(ITypeDescriptorContext context, CultureInfo
 culture, object value)
 {
 if (null == value)
 {
 return new ImageMetaData();
 }

 if (value is string)
 {
 string str = (string)value;
 if ("" == str)
 {
 return new ImageMetaData();
 }

 string[] propValues = str.Split(',');

 if (4 != propValues.Length)
 {
 throw new ArgumentException("Invalid ImageMetaData", "value");
 }

 return new ImageMetaData(Convert.ToDateTime(propValues[0]),
 (Location)TypeDescriptor.GetConverter(typeof(Location)).
 ConvertFromString(propValues[1]),
 (string)propValues[2],
 (string)propValues[3]);
 }
 else
 return base.ConvertFrom(context, culture, value);
 }

 public override bool CanConvertFrom(ITypeDescriptorContext context,
 Type sourceType)
 {
 if (typeof(string) == sourceType)
 {
 return true;
 }

Cameron_865-2C11.fm Page 543 Thursday, February 21, 2008 2:19 PM

544 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 else
 return base.CanConvertFrom(context, sourceType);
 }

 public override object ConvertTo(ITypeDescriptorContext context, CultureInfo
 culture, object value, Type targetType)
 {
 if ((targetType == typeof(string)) && (value is ImageMetaData))
 {
 ImageMetaData imageMetaData = (ImageMetaData)value;
 if (imageMetaData.IsEmpty)
 {
 return String.Empty;
 }
 return String.Join(culture.TextInfo.ListSeparator,
 new string[] {
 imageMetaData.ImageDate.ToString(),
 imageMetaData.ImageLocation.ToString(),
 imageMetaData.ImageLongDescription,
 imageMetaData.PhotographerFullName});
 }

 if ((targetType == typeof(InstanceDescriptor)) && (value is ImageMetaData))
 {
 ImageMetaData metaData = (ImageMetaData)value;
 ConstructorInfo cInfo = typeof(ImageMetaData).GetConstructor(new Type[] {
 typeof(DateTime), typeof(Location), typeof(string), typeof(string) });
 if (cInfo != null)
 {
 object[] obj = new object[] { metaData.ImageDate, metaData.ImageLocation,
 metaData.ImageLongDescription, metaData.PhotographerFullName };
 return new InstanceDescriptor(cInfo, obj);
 }
 }
 return base.ConvertTo(context, culture, value, targetType);
 }

 public override bool CanConvertTo(ITypeDescriptorContext context,
 Type destinationType)
 {
 if ((destinationType == typeof(InstanceDescriptor)) ||
 (destinationType == typeof(string)))
 return true;
 else
 return base.CanConvertTo(context, destinationType);
 }
 }
}

Cameron_865-2C11.fm Page 544 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 545

Without this type converter, the value displayed for ImageInfo would be what you would
expect if you called the ToString() method, which is the fully qualified type name:

ControlsBookLib.Ch12.ImageMetaData

This is not a very useful value to display, which is why it is recommended that you build a
type converter that inherits from System.ComponentModel.ExpandableObjectConverter to provide
expand/collapse functionality in the property browser for complex types such as properties
with subproperties. This also provides a more useful value for the complex type in the property
browser.

UI Type Editors
UI type editors provide a pop-up UI for editing properties listed in the Properties window. An
example is the Color Picker dialog box that displays when you click the button that appears
when you click or tab into the bgColor property of the Document object in the Visual Studio
property browser. This type editor provides a better UI than entering a hexadecimal color value
by instead displaying the actual colors.

A UI type editor can have either a Windows Forms or a drop-down configuration UI for
setting a property of a specific type. An example of the drop-down UI is the editor that displays
when you click the button for the BackColor property of a Label control.

With this short discussion of UI type editors out of the way, we now implement a UI type
editor for the ImageInfo.ImageLongDescription property of the TitledThumbnail control.

The SimpleTextEditor Editor
The SimpleTextEditor UI type editor provides a large editing area for a property of type string.
Figure 11-3 shows the Windows Form UI.

Figure 11-3. The SimpleTextEditor Windows Form UI

Cameron_865-2C11.fm Page 545 Thursday, February 21, 2008 2:19 PM

546 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

The Windows Form class is named SimpleTextEditorDialog. It has a single property named
TextValue. Otherwise, the rest of the code is generated by Visual Studio. Listing 11-8 shows the
class listing.

Listing 11-8. The SimpleTextEditorDialog Class

using System.Windows.Forms;

namespace ControlsBook2Lib.Ch11.Design
{
 public partial class SimpleTextEditorDialog : Form
 {
 public SimpleTextEditorDialog()
 {
 InitializeComponent();
 }

 public string TextValue
 {
 get
 {
 return textString.Text;
 }
 set
 {
 textString.Text = value;
 }
 }
 }
}

Now that we have our UI built, we move on to create the UI type editor class. The
SimpleTextEditor class inherits from UITypeEditor, the base class for type editors. The
SimpleTextEditor includes two method overrides, EditValue and GetEditStyle. Listing 11-9
presents the source for SimpleTextEditor.

Listing 11-9. The SimpleTextEditor Source

using System;
using System.ComponentModel;
using System.Drawing.Design;
using System.Windows.Forms;
using System.Windows.Forms.Design;

namespace ControlsBook2Lib.Ch11.Design
{

Cameron_865-2C11.fm Page 546 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 547

 public class SimpleTextEditor : UITypeEditor
 {
 public override UITypeEditorEditStyle GetEditStyle(
 ITypeDescriptorContext context)
 {
 if (null != context)
 {
 return UITypeEditorEditStyle.Modal;
 }
 return base.GetEditStyle(context);
 }

 public override object EditValue(ITypeDescriptorContext context,
 IServiceProvider serviceProvider, object value)
 {
 if ((null != context) && (null != serviceProvider))
 {
 IWindowsFormsEditorService editorService =
 (IWindowsFormsEditorService)serviceProvider.GetService(
 typeof(IWindowsFormsEditorService));

 if (null != editorService)
 {
 SimpleTextEditorDialog formEditor = new SimpleTextEditorDialog();
 formEditor.TextValue = (string)value;

 DialogResult DlgResult = editorService.ShowDialog(formEditor);
 if (DialogResult.OK == DlgResult)
 {
 value = formEditor.TextValue;
 }
 }
 }
 return value;
 }
 }
}

GetEditStyle takes ITypeDescriptorContext and returns UITypeEditorEditStyle.
ITypeDescriptorContext implements IServiceProvider and is used for type conversion. In our
case, though, we simply check to see whether or not it is null. If it is not null, then we know that
it is design time, and we return a UITypeEditorEditStyle constant. The UITypeEditorEditStyle
enumeration has three possible values:

• DropDown

• Modal

• None

Cameron_865-2C11.fm Page 547 Thursday, February 21, 2008 2:19 PM

548 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

The default value in the base class implementation is to return None. Returning None indi-
cates that the editor does not have a GUI interface. In our case, we return Modal to indicate that
the type editor’s style is a modal form dialog box.

The EditStyle method does the bulk of the work in our UI type editor example. It creates
the SimpleTextEditorDialog UI and returns the value back to the callee—in this case, Visual
Studio. Earlier in this chapter, we discussed how Visual Studio provides design-time environ-
ment services.

The EditStyle method takes as parameters ITypeDescriptorContext, IServiceProvider,
and an object that represents the current value of the property. We use the context parameter
to determine that we are in a design-time environment. We next ensure serviceProvider is
valid. If it is, we call GetService on serviceProvider to obtain a reference to an object that
implements IWindowsFormsEditorService.

To implement a UI type editor that has a UITypeEditorEditStyle of DropDown as in
the BackColor property of a Label control, call the DropDownControl method of
IWindowsFormsEditorService. We call ShowDialog on editorService to display the
SimpleTextEditorDialog UI. This simple form class has a property named TextValue to set and
get the property value.

The Collection Editor
A collection editor provides you with the ability to add values to or remove values from an
item’s collection, as in the DropDownList or ListBox controls. The base class for collection
editors is CollectionEditor in the System.ComponentModel.Design namespace.

As an example, ListItemsCollectionEditor implements a descendent class of
CollectionEditor to provide the UI editor for the ListItemCollection type used in ListControl, the
base class for both the DropDownList and ListBox controls.

Implementing a collection editor involves creating a custom collection type appropriate
for your control. In the previous edition of this book, we implemented a custom collection
class named MenuItemDataCollection and created a custom collection editor class as well. With
the introduction of generic types in .NET Framework 2.0 and later, we no longer need to create
a custom collection for MenuItemData; instead, we can rely on the built-in designer support.

For the built-in collection editor to provide the proper rendering and property access, we
must apply a built-in type converter to the MenuItemData class like this:

[TypeConverter(typeof(ExpandableObjectConverter))]
public class MenuItemData
{
...

The built-in ExpandableObjectConverter type converter suffices for MenuItemData, because
this class consists of simple property types. If this class had more complex properties, as was
the case with the ImageMetaData class and its ImageLocation property of type Location, we would
need to implement a custom ExpandableObjectConverter type converter. Figure 11-4 displays
the built-in collection editor in action.

Cameron_865-2C11.fm Page 548 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 549

Figure 11-4. The built-in collection editor Windows Form UI

The built-in collection editor provides the exact same functionality as our custom collec-
tion editor from the previous edition of this book, so no further action is required. For reference
purposes, Listing 11-10 presents the code for MenuItemDataCollectionEditor.

Listing 11-10. The MenuItemDataCollectionEditor Source

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Design;
using System.Windows.Forms;
using System.Windows.Forms.Design;
using ControlsBook2Lib.Ch06;

namespace ControlsBook2Lib.Ch11.Design
{
 public class MenuItemDataCollectionEditor : CollectionEditor
 {
 public MenuItemDataCollectionEditor(Type type) : base(type)
 {
 }

 protected override
System.ComponentModel.Design.CollectionEditor.CollectionForm

Cameron_865-2C11.fm Page 549 Thursday, February 21, 2008 2:19 PM

550 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

CreateCollectionForm()
 {
 CollectionEditor.CollectionForm frm = base.CreateCollectionForm ();
 ((Form)frm).Width = 750;
 ((Form)frm).StartPosition = FormStartPosition.CenterParent;

 return frm;
 }
 }
}

The CollectionEditor class listing for MenuItemDataCollectionEditor is fairly short; it
performs the one task of customizing how the collection editor displays, as noted previously. To
modify the Width and StartPosition for the collection editing form, we cast the CollectionForm
back to Form and perform the desired modifications.

Another potential customization would be to override the CreateNewItemTypes method in
the event that the collection editor must be capable of editing multiple types. Another poten-
tial customization is to provide a custom collection editor form. With that covered, we next
move on to another form of editor: the component editor.

Component Editors
A component editor is a modal dialog box that displays a property page similar to an ActiveX
control’s property page. Probably the most familiar component editor in ASP.NET is the DataGrid’s
component editor. It provides a convenient interface to quickly configure a DataGrid’s numerous
properties. You may have noticed this attribute on the previous TitledThumbnail server control:

 EditorAttribute(typeof(TitledThumbnailComponentEditor),typeof(ComponentEditor))

This attribute is what associates the ComponentEditor with a server control. Building a
component editor is different from what we have done so far, because component editors are
considered part of .NET Windows Forms based on its namespace. The namespace for the base
class ComponentEditor is System.Windows.Forms.Design.

Component editors consist of a ComponentEditor-based class and a ComponentEditorDlg
Windows Form. The custom ComponentEditor class instantiates the component editor dialog
box, initiates a DesignerTransaction, and either commits or rolls back any changes depending
on whether the user clicks OK or Cancel on the component editor dialog box.

The Component Editor Dialog Box
Building the component editor dialog box is a matter of deciding what server control function-
ality to expose for configuration and laying out Windows Forms controls on the Windows Form
that represents the editing dialog box on the Component Designer surface.

Because the component editor dialog box is a Windows Form, all the controls in .NET
Windows Forms, such as the TabControl or TreeView, are available to provide a rich editing
environment. For TitledThumbnailComponentEditorDlg, we expose the TitledThumbnail server
control’s main properties for editing on a simple form, as shown in Figure 11-5.

Cameron_865-2C11.fm Page 550 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 551

To create TitledThumbnailComponentEditorDlg, we start by adding a Windows Form to the
project and setting the form’s AcceptButton to buttonOK and CancelButton to ButtonCancel.
Next, we edit its constructor to take a reference to a TitledThumbnail server control object. We
need this reference to the TitledThumbnail server control in order to set its properties if the
user clicks the OK button. Listing 11-11 shows the TitledThumbnailComponentEditorDlg class
file.

Figure 11-5. The TitledThumbnail component editor dialog box

Listing 11-11. The TitledThumbnailComponentEditorDlg Class File

using System;
using System.ComponentModel;
using System.Windows.Forms;

namespace ControlsBook2Lib.Ch11.Design
{
 public partial class TitledThumbnailComponentEditorDlg : Form
 {
 private TitledThumbnail titledThumbnail;

 public TitledThumbnailComponentEditorDlg()
 {
 InitializeComponent();
 }

 public TitledThumbnailComponentEditorDlg(TitledThumbnail component)
 {
 InitializeComponent();

Cameron_865-2C11.fm Page 551 Thursday, February 21, 2008 2:19 PM

552 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 titledThumbnail = component;

 PopulateAlignment();

 cboAlignment.Text = Enum.GetName(typeof(TitleAlignment),
 titledThumbnail.Align);
 textImageTitle.Text = titledThumbnail.Title;
 textLocation.Text = titledThumbnail.ImageInfo.ImageLocation.ToString();
 textPhotographerFullName.Text =
 titledThumbnail.ImageInfo.PhotographerFullName;
 dtpImageTaken.Value = titledThumbnail.ImageInfo.ImageDate;
 textLongImageDesc.Text = titledThumbnail.ImageInfo.ImageLongDescription;
 }

 private void PopulateAlignment()
 {
 foreach (object Align in Enum.GetValues(typeof(TitleAlignment)))
 {
 cboAlignment.Items.Add(Align);
 }
 }

 private void buttonOK_Click(object sender, System.EventArgs e)
 {
 PropertyDescriptorCollection properties =
 TypeDescriptor.GetProperties(titledThumbnail);

 PropertyDescriptor Title = properties["Title"];
 if (Title != null)
 {
 try
 {
 Title.SetValue(titledThumbnail, textImageTitle.Text);
 }
 catch (Exception err)
 {
 MessageBox.Show(this,
 "Problem setting title property: Source:" +
 err.Source + " Message: " + err.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

 PropertyDescriptor alignment = properties["Align"];
 if (alignment != null)
 {
 try

Cameron_865-2C11.fm Page 552 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 553

 {
 alignment.SetValue(titledThumbnail, Enum.Parse(typeof(TitleAlignment),
 cboAlignment.Text));
 }
 catch (Exception err)
 {
 MessageBox.Show(this, "Problem setting align property: Source:" +
 err.Source + " Message: " + err.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

 PropertyDescriptorCollection imageInfoProps =
 TypeDescriptor.GetProperties(titledThumbnail.ImageInfo);

 PropertyDescriptor imageDescription = imageInfoProps["ImageLongDescription"];
 if (imageDescription != null)
 {
 try
 {
 imageDescription.SetValue(titledThumbnail.ImageInfo,
 textLongImageDesc.Text);
 }
 catch (Exception err)
 {
 MessageBox.Show(this,
 "Problem setting image Long Description property: Source:" +
 err.Source + " Message: " + err.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

 PropertyDescriptor imageDate = imageInfoProps["ImageDate"];
 if (imageDate != null)
 {
 try
 {
 imageDate.SetValue(titledThumbnail.ImageInfo, dtpImageTaken.Value);
 }
 catch (Exception err)
 {
 MessageBox.Show(this,
 "Problem setting image date property: Source:" +
 err.Source + " Message: "
 + err.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

Cameron_865-2C11.fm Page 553 Thursday, February 21, 2008 2:19 PM

554 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 PropertyDescriptor photographerFullName =
 imageInfoProps["PhotographerFullName"];
 if (photographerFullName != null)
 {
 try
 {
 photographerFullName.SetValue(titledThumbnail.ImageInfo,
 textPhotographerFullName.Text);
 }
 catch (Exception err)
 {
 MessageBox.Show(this,
 "Problem setting photographer's full name property: Source:" +
 err.Source + " Message: " + err.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

 PropertyDescriptor imageLocation = imageInfoProps["ImageLocation"];
 if (imageLocation != null)
 {
 try
 {
 imageLocation.SetValue(titledThumbnail.ImageInfo,
 imageLocation.Converter.ConvertFrom(
 null, Application.CurrentCulture, textLocation.Text));
 }
 catch (Exception err)
 {
 MessageBox.Show(this,
 "Problem setting image location property: Source:" +
 err.Source + " Message: " + err.Message, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }
 }
 }
}

The first step in the code is to initialize the form’s controls with the TitledThumbnail’s
current values. The string properties ImageTitle, ImageLongDescription, ImageDate, and
PhotographerFullName are simple string assignments. Initializing the Location TextBox takes
advantage of the functionality provided by the LocationConverter type converter by calling the
ToString() method on the Location object to get the customized display of the latitude and
longitude. To initialize the Alignment ComboBox with values, we iterate over the custom enumer-
ation TitleAlignment with this code:

Cameron_865-2C11.fm Page 554 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 555

private void PopulateAlignment()
{
 foreach (object Align in Enum.GetValues(typeof(TitleAlignment)))
 {
 cboAlignment.Items.Add(Align);
 }
}

This code sets the current value for Alignment:

cboAlignment.Text = Enum.GetName(typeof(TitleAlignment),titledThumbnail.Align);

The bulk of the other code in the TitledThumbnailComponentEditorDlg class is the OK
button click method. This method starts by gaining a reference to the TitledThumbnail server
control object’s property collection. Next, for each property we obtain a PropertyDescriptor
with code like this:

PropertyDescriptor Title = properties["Title"];

This code accesses the properties collection to obtain each property. The properties’
ImageTitle and TitleAlignment are set by accessing the properties collection as follows:

alignment.SetValue(titledThumbnail,Enum.Parse(typeof(TitleAlignment),
cboAlignment.Text));

The TitledThumbnail server control contains a complex property of type ImageMetaData.
To set these properties, another property collection is obtained for ImageInfo in this code:

PropertyDescriptorCollection imageInfoProps =
 TypeDescriptor.GetProperties(titledThumbnail.ImageInfo);

ImageLongDescription, ImageDate, and PhotographerFullName are straightforward assign-
ments. For ImageLocation, we simply call ToString() on ImageLocation, which leverages the
custom type converter LocationConverter under the covers. That is all the relevant code in the
TitledThumbnailComponentEditorDlg class. In the next section, we cover the component editor
class that manages the editing dialog box.

The Component Editor Class
The TitledThumbnailComponentEditor class inherits from WindowsFormsComponentEditor and is
fairly short. This class overrides a single method named EditComponent, which is the only required
override. Listing 11-12 contains the class file for TitledThumbnailComponentEditor.

Listing 11-12. The TitledThumbnailComponentEditor Class File

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Windows.Forms;
using System.Windows.Forms.Design;

Cameron_865-2C11.fm Page 555 Thursday, February 21, 2008 2:19 PM

556 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

namespace ControlsBook2Lib.Ch11.Design
{
 public class TitledThumbnailComponentEditor : WindowsFormsComponentEditor
 {
 public override bool EditComponent(ITypeDescriptorContext context,
 object component, IWin32Window parent)
 {
 if (!(component is TitledThumbnail))
 {
 throw new ArgumentException("Must be a TitledThumbnail component",
 "component");
 }

 IServiceProvider serviceProviderSite = ((TitledThumbnail)component).Site;
 IComponentChangeService changeSrvc = null;

 DesignerTransaction trans = null;
 bool changed = false;

 try
 {
 if (null != serviceProviderSite)
 {
 IDesignerHost designerHost = (IDesignerHost)serviceProviderSite.
 GetService(typeof(IDesignerHost));
 trans = designerHost.CreateTransaction("Property Builder");

 changeSrvc = (IComponentChangeService)serviceProviderSite.
 GetService(typeof(IComponentChangeService));
 if (null != changeSrvc)
 {
 try
 {
 changeSrvc.OnComponentChanging(
 (TitledThumbnail)component, null);
 }
 catch (CheckoutException err)
 {
 if (err == CheckoutException.Canceled)
 return false;
 throw err;
 }
 }
 }

Cameron_865-2C11.fm Page 556 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 557

 try
 {
 TitledThumbnailComponentEditorDlg propertyBuilderForm =
 new TitledThumbnailComponentEditorDlg(
 (TitledThumbnail)component);
 if (propertyBuilderForm.ShowDialog(parent) == DialogResult.OK)
 {
 changed = true;
 }
 }
 finally
 {
 if (changed && (null != changeSrvc))
 {
 changeSrvc.OnComponentChanged((TitledThumbnail)component,
 null, null, null);
 }
 }
 }
 finally
 {
 if (trans != null)
 {
 if (changed)
 {
 trans.Commit();
 }
 else
 {
 trans.Cancel();
 }
 }
 }
 return changed;
 }
 }
}

EditComponent starts off by ensuring that the component editor it is associated with is a
TitledThumbnail server control. Next, EditComponent obtains a reference to the TitledThumbnail
component’s Site property. Every control has a Site property that is associated with the
hosting designer environment, in this case, Visual Studio.

Site is of type ISite, which is an interface that derives from the IServiceProvider interface.
IServiceProvider has a GetService method that permits the server control to gain access to
design-time services, as described in Table 11-1. In our code, we get two services, one of type
IDesignerHost and the other of type IComponentChangeService.

IDesignerHost is used to add and retrieve services available in the design-time environ-
ment and handle events related to designer state. IDesignerHost provides support for detecting a

Cameron_865-2C11.fm Page 557 Thursday, February 21, 2008 2:19 PM

558 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

designer is loading and managing component and designer transactions. We use IDesignerHost to
wrap component editing into a transaction of type DesignerTransaction.

IComponentChangeService permits a designer to receive notifications when components are
changed, added, or removed from the design-time environment. We use IComponentChangeService
to notify the hosting environment—in this case, Visual Studio—that the component is being
edited. Note that this code will cause Visual Studio to want to check out the .aspx page for
editing if the .aspx page is under source control:

changeSrvc.OnComponentChanging((TitledThumbnail)component, null);

Once EditComponent initiates the DesignerTransaction and notifies Visual Studio that the
page is about to be edited, it displays the TitledThumbnailComponentEditorDlg Windows Form.
If the user clicks OK to set any changes, this code notifies Visual Studio that the component has
changed:

changeSrvc.OnComponentChanged((TitledThumbnail)component, null, null, null);

The next step is to either commit or cancel the DesignerTransaction, depending on whether
or not the user clicked OK or Cancel on the component editor dialog box. That’s it for the
TitledThumbnailComponentEditor class.

When the TitledThumbnail server control is selected in the Visual Studio Designer, a Property
Builder hyperlink appears at the bottom of the Properties window. Also, if you right-click the
TitledThumbnail server control, you will see a context menu item titled with the same text. A
custom designer provides this functionality and is the topic of the next section.

Custom Designers
The Designer classes in .NET customize how components in Windows Forms and server
controls in ASP.NET appear and behave at design time. You can implement custom designers
to perform custom initialization, access design-time services such as template editing, add
menu items to context menus, or to adjust the attributes, events, and properties available in a
server control.

■Note You can use type converters and UI type editors both at design time and at runtime. You can use
designers only at design time.

To associate a custom designer with a control, you apply the DesignerAttribute attribute.
This is the code to apply the TitledThumbnailDesigner custom designer to the TitledThumbnail
component:

Designer(typeof(TitledThumbnailDesigner))

All custom designers implement the IDesigner interface and provide customized methods
and properties appropriate for the type of designer. IDesigner is a fairly simple interface, as
you can see from Table 11-2.

Cameron_865-2C11.fm Page 558 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 559

System.ComponentModel.Design.ComponentDesigner is the base class for all designers, and
it implements the IDesign interface. Both Windows Forms and server controls can have designers;
however, because of the difference in rendering technologies and architecture, separate base
designer classes that inherit from ComponentDesigner are required.

System.Web.UI.Design.ControlDesigner is the base class for ASP.NET server control designers
and is associated with System.Web.UI.Control. To implement a custom designer for a server
control, you must inherit from ControlDesigner. Table 11-3 describes the virtual members that
you must implement when you create a custom designer class.

The default behavior in ControlDesigner for GetEmptyDesignTimeHtml is to return the control
type and its ID so that controls of the same type can be differentiated. You can customize this
text by calling the helper method CreatePlaceHolderDesignTimeHtml. You can also use this
method to customize the error message returned in GetErrorDesignTimeHtml. Otherwise,
ControlDesigner returns an empty string for the error message.

For GetDesignTimeHtml, ControlDesigner calls the associated control’s RenderControl
method. For a composite control, this can cause a control to not render any design-time HTML
if the control’s child control collection, Controls, has not been created. We discuss a simple
designer that addresses this issue in the next section.

Table 11-2. IDesigner Interface

Member Description

Component Property that holds a reference to the component associated with the
designer class

DoDefaultAction Method that executes the default action for the designer class

Initialize Method that initializes the designer instance with its associated component

Verbs Property that references a collection of design-time verbs provided by a
designer class

Table 11-3. Required Overrides for a Custom Designer

Method Description

GetDesignTimeHtml This method returns a string that contains the HTML to render the
control it is associated with at design time.

GetEmptyDesignTimeHtml This method returns a string that contains the HTML to render
when a control has not been configured to render itself. Often,
this text contains instructions on how to work with the control.

GetErrorDesignTimeHtml This method returns a string that contains the HTML to render
if the design-time parser encounters an error when parsing a
control’s tag

.Initialize This method is invoked when the designer is initialized and applied
to its associated component. This is the place to ensure that the
designer has been associated with the correct control type.

Cameron_865-2C11.fm Page 559 Thursday, February 21, 2008 2:19 PM

560 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

The Control Designer and Designer Verbs
The TitledThumbnail component is a composite control that has a custom control designer
associated with it via the DesignerAttribute attribute named TitledThumbnailDesigner. This
control designer inherits from ControlDesigner, but with a couple of method overrides to
further customize its functionality.

The first override is Initialize, in which we ensure that TitledThumbnailDesigner is asso-
ciated with a TitledThumbnail component:

public override void Initialize(IComponent comp)
{
 if (!(comp is TitledThumbnail))
 {
 throw new
 ArgumentException("Must be a TitledThumbnail component.", "component");
 }
 base.Initialize(comp);
}

The next override is GetDesignTimeHtml, in which we customize behavior to display a
message that the developer/user should set the ImageUrl property as a helpful tip:

public override string GetDesignTimeHtml()
{
 ControlCollection cntrls = ((Control)Component).Controls;
 if (((TitledThumbnail)Component).ImageUrl == "")
 {
 return CreatePlaceHolderDesignTimeHtml(
 "Set ImageUrl to URL of desired thumbnail image.");
 }
 else
 {
 return base.GetDesignTimeHtml();
 }
}

When the ImageUrl property is empty for the TitledThumbnail control, it displays the broken
link image at design time, as shown in Figure 11-6.

With the override of GetDesignTimeHtml, the design-time view changes to Figure 11-7.
Instead of the broken image display, the developer/user now has a helpful hint as a guide

to what the next step is to configure the control.
The final override in TitledThumbnailDesigner is the Verbs property of type

DesignerVerbCollection. The Verbs collection is specified in the IDesigner interface as described
in Table 11-2. Each designer verb represents a command usually presented to the developer/user
by right-clicking the component. Visual Studio also displays designer verbs at the bottom of
the Properties window as pointed to by item 4 in Figure 11-2.

Cameron_865-2C11.fm Page 560 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 561

Figure 11-6. TitledThumbnail at design time without the GetDesignTimeHtml override

Figure 11-7. TitledThumbnail at design time with the GetDesignTimeHtml override

Cameron_865-2C11.fm Page 561 Thursday, February 21, 2008 2:19 PM

562 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

When the developer/user selects a menu item that represents a DesignerVerb object, an event
handler associated with the designer verb is fired to execute the action. For TitledThumbnail, we
want a menu item that when selected displays its custom component editor as described
previously. To implement the desired menu item, we build an event handler to create the
component editor UI:

private void OnPropertyBuilder(object sender, EventArgs e)
{
 TitledThumbnailComponentEditor TitledThumbnailPropsEditor = new
 TitledThumbnailComponentEditor();
 TitledThumbnailPropsEditor.EditComponent(Component);
}

The event handler creates a TitledThumbnailComponentEditor and calls its EditComponent
method.

Listing 11-13 provides the source code for TitledThumbnailDesigner. In the listing, you
find the override of the Verbs collection where a new DesgnerVerbCollection is created and the
Property Builder menu item is added to the collection and associated with the OnPropertyBuilder
event handler.

Listing 11-13. The TitledThumbnailDesigner Class File

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Web.UI;
using System.Web.UI.Design;

namespace ControlsBook2Lib.Ch11.Design
{
 public class TitledThumbnailDesigner : ControlDesigner
 {
 private DesignerVerbCollection designTimeVerbs;
 public override DesignerVerbCollection Verbs
 {
 get
 {
 if (null == designTimeVerbs)
 {
 designTimeVerbs = new DesignerVerbCollection();
 designTimeVerbs.Add(new DesignerVerb("Property Builder...",
 new EventHandler(this.OnPropertyBuilder)));
 }
 return designTimeVerbs;
 }
 }

Cameron_865-2C11.fm Page 562 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 563

 private void OnPropertyBuilder(object sender, EventArgs e)
 {
 TitledThumbnailComponentEditor TitledThumbnailPropsEditor =
 new TitledThumbnailComponentEditor();
 TitledThumbnailPropsEditor.EditComponent(Component);
 }

 public override void Initialize(IComponent comp)
 {
 if (!(comp is TitledThumbnail))
 {
 throw new ArgumentException("Must be a TitledThumbnail component.",
 "component");
 }
 base.Initialize(comp);
 }

 public override string GetDesignTimeHtml()
 {
 ControlCollection cntrls = ((Control)Component).Controls;
 if (((TitledThumbnail)Component).ImageUrl == "")
 {
 return CreatePlaceHolderDesignTimeHtml(
 "Set ImageUrl to URL of desired thumbnail image.");
 }
 else
 {
 return base.GetDesignTimeHtml();
 }
 }

 protected override string GetEmptyDesignTimeHtml()
 {
 return CreatePlaceHolderDesignTimeHtml(Component.GetType() + " control.");
 }
 }
}

In Chapters 6 and 7, we discussed templates and data binding respectively. In those chapters,
we took advantage of a couple of designers to support our templated control, TemplateMenu,
and our data-bound control, Repeater. In the next sections, we discuss these designer classes and
how they support templates and data binding.

Cameron_865-2C11.fm Page 563 Thursday, February 21, 2008 2:19 PM

564 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

The Templated Control Designer
Earlier in this chapter, we covered the various services that a design-time environment such
as Visual Studio can implement via interfaces to enhance the developer experience and
reduce development time. One of these services is template editing by implementing the
ITemplateEditingService service. We take advantage of this service to build a templated
control designer.

The templated control TemplateMenu supports Header, Separator, and Footer templates.
Although these templates can be manually edited by clicking the HTML tab in the Visual Studio
Designer, it is also possible to provide a drag-and-drop UI editing interface for template editing,
and that is what the TemplateMenuDesigner implements for the TemplateMenu control. Figure 11-8
shows the editing interface for TemplateMenu.

Figure 11-8. The menu interface for TemplateMenu control template editing

Figure 11-9 shows the editing UI for the Separator template after the developer/user clicks
the action arrow at the upper right-hand corner of the control and selects Edit Templates on
the TemplateMenu control.

The template editing interface allows the developer/user to drag and drop server controls
from the Visual Studio Toolbox into the template editing area. The developer/user can also
configure the template UI by editing properties such as style in the Properties window.

Cameron_865-2C11.fm Page 564 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 565

Figure 11-9. Template editing UI for the TemplateMenu control Separator template

The base class for TemplateMenuDesigner is TemplatedControlDesigner.
TemplatedControlDesigner subclasses ControlDesigner, adding the key methods and proper-
ties listed in Table 11-4.

As with previous designer classes, we override the Initialize method to ensure that the
TemplateMenuDesigner class is associated with a TemplateMenu server control via the Designer
attribute.

Table 11-4. Key TemplateControl Designer Methods and Properties

Member Description

CreateTemplateEditingFrame Creates a frame for template editing according to the
specified designer verb selected, as demonstrated in
Figure 11-9

GetCachedTemplateEditingVerbs Obtains a reference to the cached verbs of type
TemplateEditingVerb for template editing

GetTemplateContent Returns the current template’s content from the
control’s child tags in the .aspx page

SetTemplateContent Creates a new template instance and sets the template’s
content to the desired content

Cameron_865-2C11.fm Page 565 Thursday, February 21, 2008 2:19 PM

566 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

Because template editing is initiated through clicking a menu item on the action menu, we
override TemplateGroups to return a TemplateGroupCollection for our control. For each template,
we create a new TemplateDefinition, provide it a name, and add it to the TemplateGroupCollection
object that is returned at the end of method.

Listing 11-14 provides the full source for TemplateMenuDesigner.

Listing 11-14. The TemplateMenuDesigner Source

using System;
using System.ComponentModel;
using System.Web.UI.Design;
using ControlsBook2Lib.Ch06;

namespace ControlsBook2Lib.Ch11.Design
{
 public class TemplateMenuDesigner : ControlDesigner
 {
 TemplateGroupCollection templateGroupCol = null;

 public override void Initialize(IComponent component)
 {
 base.Initialize(component);
 if (!(component is TemplateMenu))
 {
 throw new ArgumentException(
 "Component must be a TemplateMenu control for this custom designer."
 , "component");
 }
 else
 {
 SetViewFlags(ViewFlags.TemplateEditing, true);
 }
 }

 public override TemplateGroupCollection TemplateGroups
 {
 get
 {
 if (templateGroupCol == null)
 {
 // Get the base collection
 templateGroupCol = base.TemplateGroups;

 TemplateGroup templateGroup;
 TemplateDefinition templateDef;
 TemplateMenu ctl;

Cameron_865-2C11.fm Page 566 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 567

 //Get reference to the component as TemplateMenu
 ctl = (TemplateMenu)Component;

 //Create Template Group
 templateGroup = new TemplateGroup("TemplateMenu Templates");

 //Header
 templateDef = new TemplateDefinition(this, "Header",
 ctl, "HeaderTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Separator
 templateDef = new TemplateDefinition(this, "Separator",
 ctl, "SeparatorTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Footer
 templateDef = new TemplateDefinition(this, "Footer",
 ctl, "FooterTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 // Add the TemplateGroup to the TemplateGroupCollection
 templateGroupCol.Add(templateGroup);
 }

 return templateGroupCol;
 }
 }

 public override string GetDesignTimeHtml()
 {
 //Return configuraiton instructions if no templates are set.
 if ((null == ((TemplateMenu)Component).HeaderTemplate) &&
 (null == ((TemplateMenu)Component).SeparatorTemplate) &&
 (null == ((TemplateMenu)Component).FooterTemplate))
 {
 return CreatePlaceHolderDesignTimeHtml(
 "Click here and use the task menu to edit TemplateMenu Header,
 Footer, and Seperator template properties. " +
 "
A default template is used at run-time if the separator Template is
 not specified at design-time." +
 "
The Header and Footer templates are optional.");
 }

Cameron_865-2C11.fm Page 567 Thursday, February 21, 2008 2:19 PM

568 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 //return configured html
 string designTimeHtml = String.Empty;
 try
 {
 ((TemplateMenu)Component).DataBind();
 designTimeHtml = base.GetDesignTimeHtml();
 }
 catch (Exception e)
 {
 designTimeHtml = GetErrorDesignTimeHtml(e);
 }
 return designTimeHtml;
 }

 protected override string GetErrorDesignTimeHtml(Exception e)
 {

 return CreatePlaceHolderDesignTimeHtml(
 "There was an error rendering the TemplateMenu control." +
 "
Exception: " + e.Source + " Message: " + e.Message);
 }

 public override bool AllowResize
 {
 get
 {
 bool templateExists = null != ((TemplateMenu)Component).HeaderTemplate ||
 null != ((TemplateMenu)Component).SeparatorTemplate ||
 null != ((TemplateMenu)Component).FooterTemplate;
 return templateExists || InTemplateMode;
 }
 }
 }
}

The Data-Bound Control Designer
So far, we have built custom control designers to assist server controls with rendering at design
time, to customize the context menu, to launch a custom property editor, and to demonstrate
visual template editing for controls that support templates. Our next example includes some of
those features, but the main focus is on interacting with other controls on the design surface to
connect with design-time data sources.

In general, custom data-bound control designer classes inherit from
DataBoundControlDesigner, which is what our Repeater control’s designer RepeaterDesigner
inherits. Not all data-bound controls inherit from DataBoundControlDesigner; they may instead
inherit from ControlDesigner to gain additional control with added responsibilities. Data-bound
controls that inherit from ControlDesigner directly may implement the IDataSourceProvider

Cameron_865-2C11.fm Page 568 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 569

interface if a DataMember or DataField property is supported on the targeted server control
for which the control designer needs to provide support. In our case, we found that the
DataBoundControlDesigner base class proved more than adequate and reduced the amount
of code required to provide design-time support. We strongly recommend looking first at the
customized designer bases classes available in the .NET Framework 2.0 or later when adding
design-time support in your own server controls.

The IDataSourceProvider Interface

IDataSourceProvider is an interface for control designers to use to provide access to a data
source at design time when the server control requires design-time support for DataMember or
DataField. The base designer class DataBoundControlDesigner implements this interface for
you in inheriting from that base class. Table 11-5 lists the members of IDataSourceProvider
and provides a short description of each.

GetSelectedDataSource provides access to design-time data sources such as a DataSet
component through design-time services. GetResolvedSelectedDataSource is the place where
component developers implementing a custom data-bound control designer class can provide
support for objects that implement IListSource (i.e., DataSet), which can contain multiple
objects that implement IEnumerable (i.e., DataTable), mapping the selected IEnumerable object
to the DataMember property for the server control. See Chapter 6 for more information on data
binding.

The RepeaterDesigner Class

The Repeater server control in Chapter 7 works just fine at runtime and is able to data bind with
all the expected data containers, including DataSet. However, without the RepeaterDesigner
associated with it via the DesignerAttribute, the Repeater control is not able to data bind to a
design-time data source such as a DataSet.

Before we discuss RepeaterDesigner, we should mention that there are a couple of things
you must set on the Repeater class itself to make sure the design-time functionality works
correctly. The first item is to override the DesignerSerializationVisibility attribute for the
DataSource property on the Repeater control and change it to DesignerSerializationVisibility.
Hidden. This causes the DataSource property to persist on the .aspx page like this:

<apress:repeater ... " DataSource="<%# dataSetEmp %>" ...>

Table 11-5. IDataSourceProvider Members

Member Description

GetResolvedSelectedDataSource Obtains a reference to the selected member or data table for
the selected DataSource identified in GetSelectedDataSource.

GetSelectedDataSource Obtains a reference to the selected data source. This method
is called when a DataSource is selected in the design-time
environment for the control.

Cameron_865-2C11.fm Page 569 Thursday, February 21, 2008 2:19 PM

570 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

The other item is to ensure that this event is fired in the PerformSelect method override in
the Repeater class:

OnDataBinding(System.EventArgs.Empty);

If this event is not fired in the Repeater class’s PerformSelect method, the Repeater server
control will not data bind to the design-time data source at runtime. An exception is not thrown.
The Repeater simply renders blank, as if a DataSource was not set. With these items out of the
way, we can now move on to our discussion of the RepeaterDesigner custom designer class.

The RepeaterDesigner class enables our Repeater to “see” DataSet objects at design time and
bind to any available DataSet objects, displaying the data at runtime. The RepeaterDesigner also
provides a design-time UI for the Repeater. Listing 11-15 provides the source for
RepeaterDesigner.

Listing 11-15. The RepeaterDesigner Class File

using System;
using System.ComponentModel;
using System.Web.UI.Design;
using System.Web.UI.Design.WebControls;
using ControlsBook2Lib.Ch07;

namespace ControlsBook2Lib.Ch11.Design
{
 class RepeaterDesigner : DataBoundControlDesigner
 {
 TemplateGroupCollection templateGroupCol = null;

 public override void Initialize(IComponent component)
 {
 base.Initialize(component);
 if (!(component is ControlsBook2Lib.Ch07.Repeater))
 {
 throw new ArgumentException(
 "Component must be a ControlsBook2Lib.Ch06.
 Repeater control for this custom designer."
 , "component");
 }
 else
 {
 SetViewFlags(ViewFlags.TemplateEditing, true);
 }
 }

 public override System.Web.UI.Design.TemplateGroupCollection TemplateGroups
 {
 get
 {

Cameron_865-2C11.fm Page 570 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 571

 if (templateGroupCol == null)
 {
 // Get the base collection
 templateGroupCol = base.TemplateGroups;

 TemplateGroup templateGroup;
 TemplateDefinition templateDef;
 Repeater ctl;

 //Get reference to the component as Repeater
 ctl = (Repeater)Component;

 //Create Template Group
 templateGroup = new TemplateGroup("Repeater Templates");

 //Header
 templateDef = new TemplateDefinition(this, "Header",
 ctl, "HeaderTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Separator
 templateDef = new TemplateDefinition(this, "Separator",
 ctl, "SeparatorTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 ////Item
 //templateDef = new TemplateDefinition(this, "Item",
 // ctl, "ItemTemplate", false);
 //templateGroup.AddTemplateDefinition(templateDef);

 ////Alternating Item
 //templateDef = new TemplateDefinition(this, "Alternating Item",
 // ctl, "AlternatingItemTemplate", false);
 //templateGroup.AddTemplateDefinition(templateDef);

 //Footer
 templateDef = new TemplateDefinition(this, "Footer",
 ctl, "FooterTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 // Add the TemplateGroup to the TemplateGroupCollection
 templateGroupCol.Add(templateGroup);
 }
 return templateGroupCol;
 }
 }

Cameron_865-2C11.fm Page 571 Thursday, February 21, 2008 2:19 PM

572 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

 public override string GetDesignTimeHtml()
 {
 //Return configuraiton instructions if no templates are set.
 if ((null == ((Repeater)Component).HeaderTemplate) &&
 (null == ((Repeater)Component).SeparatorTemplate) &&
 (null == ((Repeater)Component).ItemTemplate) &&
 (null == ((Repeater)Component).AlternatingItemTemplate) &&
 (null == ((Repeater)Component).FooterTemplate))
 {
 return CreatePlaceHolderDesignTimeHtml("Click here and use
 the task menu to edit Repeater Header, Footer, and
 Seperator template properties. " +
 "
A default template is used at run-time if the separator Template is
 not specified at design-time." +
 "
The Header and Footer templates are optional.");
 }

 //return configured html
 string designTimeHtml = String.Empty;
 try
 {
 ((Repeater)Component).DataBind();
 designTimeHtml = base.GetDesignTimeHtml();
 }
 catch (Exception e)
 {
 designTimeHtml = GetErrorDesignTimeHtml(e);
 }
 return designTimeHtml;
 }

 public override bool AllowResize
 {
 get
 {
 bool templateExists =
 null !=((Repeater)Component).HeaderTemplate ||
 null != ((Repeater)Component).SeparatorTemplate ||
 null != ((Repeater)Component).FooterTemplate;
 return templateExists || InTemplateMode;
 }
 }
 }
}

Since RepeaterDesigner inherits from DataBoundControlDesigner, a lot of functionality
such as managing the DataSource and DataMember properties, is handled automatically. We do

Cameron_865-2C11.fm Page 572 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 573

not have to worry about manually populating these properties at design time so that they list
any design-time data sources that are available on the web form.

The DesignTimeData Class

The .NET Framework’s built-in DesignTimeData class provides helper methods for control devel-
opers implementing data-bound control designers. It is used to create design-time sample and
dummy data. In the previous edition of this book, which targeted .NET Framework 1.1, we
had to custom implement creating design-time sample and dummy data ourselves. In .NET
Framework 2.0 or later, the DataBoundControlDesigner base class takes care of this automati-
cally, but it is important to understand where the design-time data comes from in case you
must create your own custom ControlDesigner.

Miscellaneous Design-Time Items
In this section, we tie up a couple of loose ends with respect to design-time support and
development.

The Toolbox Icon
It is possible to provide a custom bitmap for the Toolbox icon for a custom server control.
Simply add a 16×16 pixel bitmap to the custom server control’s project and give it the same
name as the component. The next step is to set its Build Action to Embedded Resource by
right-clicking the image and expanding Advanced. Under Advanced, change the value for
Build Action to Embedded Resource.

Next, apply the ToolboxBitmapAttribute attribute to the control’s class. First, add a refer-
ence to System.Drawing, which is the namespace where this attribute exists. The name of the
resource is the name of the bitmap file. For a control named MyControl and a bitmap named
MyControl.bmp, the attribute looks like this:

[ToolboxBitmap(typeof(MyControl), "MyControl.bmp")]

The constructor we use here takes the type for the MyControl server control and looks for
an embedded resource named MyControl.bmp. When the control is added to the Visual Studio
Toolbox, it will display the custom bitmap instead of the default cog bitmap.

Debugging Design-Time Development
It is not possible to fully debug design-time code with a single instance of Visual Studio. With a
single instance of Visual Studio, it is only possible to perform basic testing for design-time
code. For example, to see if a custom designer renders the correct design-time HTML, you can
create a custom designer class, apply the Designer attribute to the server control, recompile,
and then flip to the test page hosting the desired server control to get a thumbs-up/thumbs-
down judgment.

To fully debug design-time code with breakpoints, stepping through code, and so on, you
must start up a second instance of Visual Studio and open the same project in the second instance
of Visual Studio. Next, open the design-time code—for example, RepeaterDesigner—and set the
desired breakpoints in one instance of Visual Studio. In the instance of Visual Studio with

Cameron_865-2C11.fm Page 573 Thursday, February 21, 2008 2:19 PM

574 CH AP T E R 1 1 ■ D E S I G N - T IM E SU PP O R T

RepeaterDesigner opened, select the Debug ➤ Processes menu item to display the Processes
dialog box. Listed there is the other instance of devenv.exe, the filename for Visual Studio.

Then, you can either double-click devenv.exe or select devenv.exe and click Attach to
display the Attach to Process dialog box. In this box, you just check Common Language Runtime.
You should generally do this unless you have a need to select the other debugging program
types. This speeds things up a bit. Next, click OK and then Close. You should now see the debug
toolbar open with the Break All and Stop Debugging buttons enabled.

Now, you are ready to flip to the other instance of Visual Studio that is currently running
under the debugger. In this example, if you bring up the Chapter 7 DataBoundRepeater.aspx
sample test page and manipulate one of the Repeater controls at design-time, you hit the
breakpoint that you set in the other instance of Visual Studio, and you can step through code.

■Tip To quickly figure out which instance of Visual Studio is debugging and which instance is being
debugged in the Windows taskbar, click the program group to display both instances of Visual Studio. The
instance that has [run] in its caption is the instance that is debugging. The instance that has [design]
in its caption is the instance being debugged.

Note that if you attempt to rebuild the project while running multiple instances of Visual
Studio, you will get the following error message in the Output window in Visual Studio:

Cannot copy assembly 'ControlsBookLib' to file
'c:\ControlsBook\bin\ControlsBookLib.dll'. The process cannot access the file
because it is being used by another process.

To make changes and rebuild the project, close the project in one of the instances of Visual
Studio, make the desired changes, and then reopen the project in the second instance to begin
debugging again.

Summary
Controls, as opposed to just working with a class in code, exist for the purpose of enhancing the
development environment experience and speeding up development time. The .NET Frame-
work provides design-time customizations for both Windows controls and web controls. The
customizations available in each environment differ mostly as a result of rendering technology,
with web controls generating HTML and Windows controls rendering using GDI+. Design-time
customizations for controls are applied to a server control class through attributes primarily
from the System.ComponentModel and System.Web.UI.Design namespaces.

The .NET Framework design-time environment services extend the capabilities and level
of integration with a designer such as Visual Studio. To obtain a service, the Component class
implements IServiceProvider, which has a method named GetService that can be used to
obtain a reference.

Custom designers manage the UI and behavior of a component at design time. Customi-
zations include changing the component’s appearance, initialization, and interaction on the
Component Designer surface.

Cameron_865-2C11.fm Page 574 Thursday, February 21, 2008 2:19 PM

CH A PT E R 1 1 ■ D E S IG N -T I M E S U PP O R T 575

Type converters are generally implemented for control properties that are not readily
converted to the string type. Type converters are also implemented for types that include
subproperties such as the expand/collapse UI for the Font property.

A UI type editor can provide a custom user interface for editing property values. It displays
a custom representation of a property at design time. UI type editors are type specific.

Type converters and UI type editors can be used both at design time and at runtime, whereas
designers can be used only at design time.

Cameron_865-2C11.fm Page 575 Thursday, February 21, 2008 2:19 PM

Cameron_865-2C11.fm Page 576 Thursday, February 21, 2008 2:19 PM

577

■ ■ ■

C H A P T E R 1 2

Building a Complex Control

At this point in the book, we have covered all the major concepts in developing server controls.
In this chapter and the next, we bring these concepts together and develop a powerful custom
server control from the ground up to illustrate the techniques put forth in this book. This server
control programmatically interacts with the Live Search web APIs to provide a nice package
that can be dropped into an ASP.NET application to provide search functionality. We hope that
it provides a useful example and framework for building your own custom server controls and
serves as a useful addition to your server control toolkit.

We break into two chapters our discussion of our complex control to keep things manage-
able, as there is a lot of functionality to cover. In this chapter, we focus on the following aspects
of our complex control:

• Understanding the Live Search web API

• Working with web services in server controls

• Using the global assembly cache (GAC) and strong-named assemblies

• Using configuration files

• Integrating the custom web service proxy class

• Designing the Live Search control architecture

In the next section, we dive into a discussion of the Live Search API and web service.

The Problem Domain
The Live Search web site provides access to search engine services that let users search its store
of several billion URLs. To open this store to programmatic searches, Live Search provides a
web service API to search the information store from code. Our task in this and the next chapter
is to demonstrate how to build a suite of server controls that make it easy to consume the search
feature of Live Search and make it simple to incorporate into an ASP.NET web application.
Here’s a summary list of the requirements for our control project:

• Completely handle all web services communications with the Live Search web service.

• Provide the ability to either use the Live Search web service or redirect queries to the Live
Search web site directly.

Cameron_865-2C12.fm Page 577 Friday, February 22, 2008 1:05 PM

578 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

• Display a text box and button to gather search input from the end user.

• Display both the status information and the list of search results from the search query.

• Provide the Live Search look and feel out of the box while supporting complete UI
customization.

• Provide the ability localize the look and feel.

• Handle paging through the search results.

• Provide the ability to reconfigure the control without recompiling the control.

• Provide the ability to license access to the control.

The Live Search Web Service
Our first step when working with the Live Search web service is to understand what parameters
we need to provide it and the data stream it returns. Live Search helps in this effort by providing
a downloadable API from http://dev.live.com that provides documentation and sample code
for invoking the Live Search service. Figure 12-1 shows the getting started page for the Live Search
web service.

Figure 12-1. The Live Search web service’s getting started page

Cameron_865-2C12.fm Page 578 Friday, February 22, 2008 1:05 PM

http://dev.live.com

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 579

In Figure 12-1, you can see that three steps are involved in using the Live Search service:

1. Add a web reference to the MSN Search Web Service WSDL.

2. Create a Live Search Application ID to gain access to the Live Search web API service.

3. Write code to access the Live Search Web API service.

It is a good idea to read the SDK documentation on MSDN as well as download the samples at
http://dev.live.com. The second item, getting an application ID through Live Search’s Create
and Manage Application IDs, is a mandatory step, because the Live Search web APIs service
requires authentication. The final step, programmatically accessing the Live Search web APIs
service, is what the example code and discussion in this and the next chapter cover.

Web Services Description Language and .NET Web
Service Proxies
Web services are described in full detail through Web Services Description Language (WSDL)
files. WSDL files provide information on what XML is sent over the wire to communicate with
the web service, and they also determine the protocol bindings and addressing information for
the web service. The WSDL is available at this link:

http://soap.search.msn.com/webservices.asmx?wsdl

Because this is a book about building custom server controls, we do not examine the gory
details of the XML contents of the WSDL file. Plenty of .NET web services books are available
that cover that topic in depth. Instead, we show you how you can turn the WSDL file into a
.NET class that handles the grunge work of working with XML and invoking the Live Search
web service over the network.

One approach is to use the built-in Add Web Reference feature that comes with Visual
Studio. This feature provides an automated way of generating the proxy code and is the tool
most developers are familiar with. All developers have to do is click through a set of menus to
browse to the WSDL file, and the proxy code is created behind the scenes.

In Visual Studio 2008 and .NET Framework 3.5, a new built-in feature called Add Service
Reference generates a class proxy based on Windows Communication Foundation (WCF),
which was first available in .NET Framework 3.0.

Windows Communication Foundation unifies Microsoft’s various distributing technologies,
such as remoting, ASMX Web Services, COM+, MSMQ, and WSE, into a single programming
model. The programming model is focused on contract-first development, with .NET attributes
available to decorate Interface and class to customize functionality. The actual protocol, such
as remoting versus web services, can be applied via the System.ServiceModel configuration
section in an application configuration file or in code.

While our preference is to use configuration files as much as possible for WCF develop-
ment, we cannot count on the availability of a configuration file, nor do we want to burden the
developer user with manually adding the configuration XML in an application configuration
file to support making web service calls via WCF in the Search custom server control. There-
fore, we programmatically create the necessary binding and channel to communicate with the
Live Search service.

Cameron_865-2C12.fm Page 579 Friday, February 22, 2008 1:05 PM

http://dev.live.com
http://soap.search.msn.com/webservices.asmx?wsdl

580 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

Instead of using the Add Service Reference functionality in Visual Studio 2008, we take a
different route for our server control, because we want more predictability in the generated
code, and we want to make changes to it without worrying about the changes being overridden
by an automated process. For WCF, we use the command-line utility named svcutil.exe from
a Visual Studio 2008 command prompt to generate a proxy class for the Live Search web service
that is similar in its code-generation capabilities to the Add Web Reference tool in Visual Studio.

Make sure you use the command prompt that comes with Visual Studio or make sure the
binary wsdl.exe file is in your path before you try the following command on the Live Search
SearchSearch.wsdl description file:

svcutil.exe http://soap.search.msn.com/webservices.asmx?wsdl
/out:LiveSearchSearchService.cs /config:test.config

Svcutil.exe takes the provided WSDL and produces a proxy class file named Live
Search SearchSearchService.cs in the same directory where the tool was run. Live Service
SearchSearch.cs encapsulates the web service into a programmatically easy-to-use package.
Notice that we also configure it to output a configuration file, so that we can take a quick look
at the required configuration to help us write the programmatic code to achieve the same results.

At a later point in time, we will copy the code from the generated proxy class to our web
control library project to add the necessary web service support for the server controls. If you
peer inside the code file, you can see the various classes that communicate with the web service.
You can also see the main web service method, MSNSearchPortType.Search, which we will
invoke to perform searches with the Live Search web service. The code for doLiveSearchSearch
is as follows:

EndpointAddress liveSearchAddress =
 new EndpointAddress(LiveSearchWebServiceUrl);
 BasicHttpBinding binding = new BasicHttpBinding();
 ChannelFactory<MSNSearchPortType> channelFactory =
 new ChannelFactory<MSNSearchPortType>(binding, liveSearchAddress);

 MSNSearchPortType searchService = channelFactory.CreateChannel();
 SearchRequest searchRequest = new SearchRequest();

 //Set mark query word. Allows developer to highlight as desired
 searchRequest.Flags = SearchFlags.DisableHostCollapsing |
 SearchFlags.MarkQueryWords;
 searchRequest.Query = query;
 if (sourceRequests != null)
 searchRequest.Requests = sourceRequests;

 searchRequest.AppID = LiveSearchLicenseKey;
 searchRequest.CultureInfo = "en-US";

 SearchResponse searchResponse = searchService.Search(searchRequest);

 return searchResponse;

Cameron_865-2C12.fm Page 580 Friday, February 22, 2008 1:05 PM

http://soap.search.msn.com/webservices.asmx?wsdl

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 581

The internal implementation is not as important as understanding the types that are
passed into the web service. The Search method takes a SearchRequest object as its sole param-
eter, which is configured with the search query string on its Query property. The SearchRequest
object has a Requests property that takes an ArrayList of one or more SourceRequest objects.
Each SourceRequest represents a search query, so it is possible to perform multiple searches in
a single web service method call on MSNSearchPortType.Search. Configuring the SourceRequest
object is the first step in performing a search request. Table 12-1 provides an explanation of the
properties that can be configured on a SourceRequest object.

Once one or more SourceRequest objects are configured, the array of SourceRequest
objects is assigned to the SearchRequest.Request property. The other important properties on
the SearchRequest class are CultureInfo, Query, and AppID. The CultureInfo property deter-
mines the Language and locale information for the search request and is a required parameter.
The Query property represents the search criteria used by the Live Search service to look for
matches and their URLs. The AppID parameter is the application ID that authenticates requests
and allows access to the web service. You obtain an application ID by requesting one from Live
Search at http://dev.live.com. Other parameters of interest that are part of our custom server
control include the Flags property that accepts the enumeration type of SearchFlags to mark
query terms with a nonprintable character, disable spell checking for special words, and
disable host collapsing for multiple results for the same domain. The default Flags value
is SearchFlags.None. Once the SearchRequest object is configured, it is passed in as the sole
parameter to the MSNSearchPortType.Search method. Figure 12-2 shows this concept graphi-
cally. For a given search represented by the SearchRequest.Query property, each call to the web
service requests a number of entries identified by Count, starting at the position in the result set
identified by the SourceRequest.Offset parameter. We use these parameters to calculate a
sliding window that pages through the search results with the page size equaling SourceRequest.
Count, or less if it is the last page. So, based on the SourceRequest.Offset and SourceRequest.
Count, we can calculate the start index and end index for the sliding window of search results
displayed by the server control.

Table 12-1. Properties Available for the SourceRequest Object

Parameter Type Description

Count Integer Specifies the number of results to return

Offset Integer Specifies the offset from the starting point of the search
that should be returned

Source Enum Object representing one or more sources listed in the
SourceType enumeration

SearchTagFilters string[] Restricts the list of search tags returned by a query without
otherwise affecting the results of the search

FileType String Specifies the type of files (.doc, .pdf, etc.) returned for a
search

SortBy Enum Specifies the sort order of results returned from a PhoneBook
SourceType search

ResultFields Enum Specifies the results fields returned in the result set based on
the ResultFieldMask enumeration

Cameron_865-2C12.fm Page 581 Friday, February 22, 2008 1:05 PM

http://dev.live.com

582 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

Figure 12-2. The Live Search service paging results

The result set returned from the doMSNSearchPortType.Search method is of type
SearchResponse. The SearchResponse class contains a single property Responses, which is
an array of one or more SourceResponse objects. The number of returned SourceResponse
objects corresponds to the number of SourceRequest queries passed in as part of calling the
MSNSearchPortType.Search method. All of the interesting information is contained in the
SourceResponse class, which is described in Table 12-2.

While there isn’t a start index or end index, these values can easily be calculated using the
SourceResponse.Offset and SourceResponse.Total.

The actual results are in the Results ArrayList of Result items. The Result class holds the
pertinent information for each URL match that was made against a search query. Table 12-3
lists the Result class’s fields.

As you can see after reviewing Table 12-3, many types of searches are available via Live
Search, such as a location, phonebook, or news search. For this example, we focus on returning
a single web search result based on a query, but the example server controls could be extended
to allow additional search customization. Please refer to the MSDN Live Search documenta-
tion for more information.

Table 12-2. The SourceResponse Class

Parameter Type Description

Offset integer The actual zero-based offset returned for the
search query

Results LiveSearchService.Result Array of returned results for the search query

Source Enum Represents the information source based on the
SourceType enumeration

Total integer Estimate of the total number of results returned
for the search query

0 9 19 29 39

1 10 20 30 40

startIndex endIndex

Result Set (One-Based)

CountOffset

Parameters (Zero-Based)

Cameron_865-2C12.fm Page 582 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 583

We don’t dive into a discussion of the automatically generated service proxy, because it
isn’t pertinent to server control development. Likewise, we don’t show the listing in this chapter,
because it is all automatically generated code. Please see the code download for this book to
peruse the LiveSearchService.cs automatically generated service proxy class file.

For additional information on WCF and calling web services, the MSDN documentation at
http://msdn.microsoft.com provides many great resources including the documentation, articles,
walkthroughs, and virtual labs. In the next section, we begin our discussion of building the
custom server controls around the Live Search service.

Creating the Control Library Project
The first step in creating a control library is to ensure we have a well-organized namespace to
identify and partition our controls from the rest of the control universe. A common paradigm for
selecting such a namespace is to put business entities or organizations first, followed by a product
or project title, followed by significant divisions within the actual product. For the Live Search web
service control, we will use a namespace of ControlsBook2Lib.CH12.LiveSearchControls to follow
the pattern used throughout this book. We give the Visual Studio project the same name
(ControlsBook2Lib.CH12.LiveSearchControls), and we give the control assembly the output
name of ControlsBook2Lib.CH12.LiveSearchControls.dll. Keeping the namespace and the
assembly name in sync like this is not a requirement, but it is a good design guideline to
follow because it is mimicked by system DLLs, such as System.Web.dll, that are part of the
.NET Framework.

Table 12-3. Live Search Web Service Result Object’s Fields

Field Type Description

Address Address Has a value of type Address if performing a PhoneBook
SourceType search

CachedURL string Returns the URL to the cached version of the page

DateTime DateTime Returns a DateTime object containing the date and time the
page was last indexed by the search engine

Description string Returns the description text for the search result

URL string Returns the URL for the search result

Location Location Returns the Location object associated with a PhoneBook or
QueryLocation search

Phone string Returns the phone number as part of a PhoneBook search

Source string Returns the Source of a news or Encarta article search

Title string Returns the title for the search query

URL string Absolute path to the URL that matches the query

Cameron_865-2C12.fm Page 583 Friday, February 22, 2008 1:05 PM

http://msdn.microsoft.com

584 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

Strong-Named Assemblies and Versioning Attributes
After we decide on a namespace for our control project, the next step is to decide what sort of
versioning policy we want to apply to it. We have two main options:

• Manually version code by releasing weak-named assemblies with documentation and
hope consumers use the correct version.

• Take advantage of the built-in versioning in .NET available to strong-named assemblies,
which ensures that the correct version of code is being used and provides a flexible policy for
upgrade scenarios.

Although the process of taking a standard or weak-named assembly and converting it to a
strong-named assembly isn’t instant, it is pretty simple to do. Right-click the project in Solu-
tion Explorer, and select Properties. Click the Signing tab, and check the “Sign the assembly”
box. In the “Choose a strong name key file” drop-down, select New to create a strong name key
file in the project directory and update the project to ensure the generated assembly is signed.

To set the assembly version, open the project’s properties, and click the Assembly Infor-
mation button on the Application tab to fill in the assembly version, file version, title, and company
information.

The final piece of information needed for making a strong-named assembly is the culture.
The recommended culture setting for a primary assembly is the invariant culture, or a culture
name with a blank string. This is achieved by leaving the default value of Neutral Language
to (None) on the Assembly Information dialog. We discuss in depth how this setting impacts
localization in the next chapter in the “Globalization and Localization” section.

At this point, we have specified full versioning information: name, public key, version, and
culture. Clients that use our control will have metadata references using this strong name, and
any changes to something (e.g., the version number) will cause a break in compatibility. Because
of this, care should be taken when introducing bug fixes or new versions of a control library
that supersede old versions. For more information on how to manage breaking changes, please
see the .NET Framework SDK documentation.

Bin Directory or Global Assembly Cache Deployment
Once we have compiled the control library with a strong name, we can install it in either the bin
directory of a web site or in the GAC, which is the .NET Framework–versioned code store. The
GAC provides for ease of installation and reuse if several web applications need the same control
library on a machine.

Regardless of the location of deployment for a strong-named assembly, we recommend
that you provide strong-named controls for ease of versioned updates and the side-by-side
deployment capabilities they provide in .NET. Both have the potential to significantly improve
the reliability of web applications and ease the maintenance burden on the web administrator.

The strong-named assembly has built-in tamper-proof features, as we alluded to earlier.
During the build process for the assembly, the compiler performs a hash on the contents of
the assembly to create a digital signature. The public key information is also stored inside the
assembly, so it can be verified by the runtime when it loads the assembly or when it is installed
in the GAC. Any file tampering will cause an assembly load failure.

GAC installation provides a performance advantage over putting a strong-named assembly in
the bin directory of the ASP.NET web application, because the verification process happens

Cameron_865-2C12.fm Page 584 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 585

only once when the strong-named assembly is installed. If a strong-named assembly is loaded
from an application’s bin directory, the verification takes place each time on assembly load
into an application.

Additional Assembly Attributes
As mentioned previously, additional information on the control library, such as the title, descrip-
tion, company, and so on, can be configured by going to project properties and clicking the
Assembly Information button on the Application tab. To help out the Toolbox support of a web
control, we recommend adding the TagPrefixAttribute at the assembly level. Here we use the
ControlsBook2Lib.LiveSearchControls namespace and default to ApressLive as the prefix to
put in front of our tags when they are used in an .aspx page:

// configure the tag/namespace to be used in the toolbox
[assembly: TagPrefix("ControlsBook2Lib.LiveSearchControls ","ApressLive")]

Another useful attribute to have in your AssemblyInfo.cs file is the CLSCompliantAttribute
class set to true. This ensures that all Common Language Specification (CLS)–compliant
languages can work seamlessly with your code. This attribute causes the compiler to generate
a warning if a public non-CLS-compliant member is present. Think of it as a safety net that
keeps you from doing things that would make your control incompatible with its consumers.
The final list of attributes in the AssemblyInfo.cs file is shown in Listing 12-1.

Listing 12-1. The AssemblyInfo.cs Class File

using System;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Web.UI;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("ControlsBook2Lib.CH12.LiveSearchControls")]
[assembly: AssemblyDescription("Live Search Sample ASP.NET Controls")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Apress")]
[assembly: AssemblyProduct("ControlsBook2Lib.CH12.LiveSearchControls")]
[assembly: AssemblyCopyright("Copyright © Apress 2007")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

Cameron_865-2C12.fm Page 585 Friday, February 22, 2008 1:05 PM

586 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("71bf600a-6b3d-458d-8645-bece292bdb03")]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

// configure the tag/namespace to be used in the toolbox
[assembly: TagPrefix("ControlsBook2Lib.LiveSearchControls", "ApressLive")]

// ensure Common Language Specification (CLS) compliance
[assembly: CLSCompliant(true)]

Now that we have covered strong-named assemblies and how we implemented them in
Live Search, in the next section we discuss how to store and retrieve configuration information
using .config files.

Configuring the Search Settings
The Live Search search controls need a flexible way to retrieve configuration information that
allows them to interact appropriately with the online web service. The following data is required:

• License key to authenticate with the Live Search web service

• URL of the Live Search search web service

• URL of a proxy server in situations in which the code is running behind a firewall

One approach to this sort of problem is hard-coding the configuration setting as string
constants inside a control. Although simple in execution, this approach requires unnecessary
recompilation steps that could hurt versioning and deployment maintenance of the web appli-
cations using the controls. A better approach is to use the XML configuration file mechanisms
available to ASP.NET web applications.

Crafting the Configuration Section XML
Because we have several strings we want to use to configure our search controls, we decided to
use a custom configuration section. This means we will have our own block of XML that is inte-
grated as part of web.config. The following XML snippet is what we want to add to web.config:

Cameron_865-2C12.fm Page 586 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 587

<LiveSearchControls>
 <License
 LiveSearchLicenseKey="XX" />
 <Url
 LiveSearchWebServiceUrl="http://soap.search.msn.com:80/webservices.asmx" />
</liveSearchControls>

You can use whatever particular format suits your fancy as long as it is well-formed XML. Our
custom configuration XML has the two configuration values that we need: LiveSearchLicenseKey
and LiveSearchWebServiceUrl. You will need to obtain a valid Live Search license key from
http://dev.live.com/livesearch/ and replace the string of Xs in the preceding code with your
license key for the Live Search server controls to work properly.

Registering the Configuration Section
Now that we have defined the XML format for our configuration data and the requisite class to
provide an object-oriented representation of the XML data, we need a way to tell ASP.NET
what we are up to. Our next task is to register a configuration section handler so that ASP.NET
can process our custom XML configuration settings when servicing client requests.

The configuration section handler is brought into the picture via an XML section that is
added to the top of the web.config file underneath the root-level configuration XML element.
configSections is a content-wrapping element that signifies we want to add additional content
to the existing configuration sections, as shown here:

<sectionGroup name="system.web">
 <section name="liveSearchControls"
 type="ControlsBook2Lib.CH12.LiveSearchControls.LiveSearchConfigSectionHandler,
 ControlsBook2Lib.CH12.LiveSearchControls,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=9d0e1a77378e3a88" />
</sectionGroup>

An interesting read is searching for configSections in the machine.config file that comes
with the .NET Framework installation. You can see all of the configuration sections (such as for
session state, authorization, and so on) familiar to web developers in this section of the
machine.config file.

sectionGroup is used to group configuration section entries to prevent naming conflicts. If you
choose an existing sectionGroup name that is already used, the new, custom configSections entry
is nested under that configuration element. In our case, we choose to put the Live Search web
service data under the system.web elements in the web.config file. We could also have chosen a
unique name to be a root-level sectionGroup just as easily.

The final XML element in the preceding snippet, and the one that declares a binding to the
code that handles the configuration parsing, is named section. Notice that we give section a
name, liveSearchControls, that corresponds to our top-level configuration section XML element.
We also have to give it a fully qualified path to the class that implements the configuration section
handler functionality, including the means to resolve the assembly containing the code.

Because we strongly named our control library project via the settings in the previously
reviewed AssemblyInfo.cs file, we need to produce the name, version, culture, and public key
token of the assembly. The easiest way to view this information is to use the shell extension
GUI that is installed on a Windows machine along with the rest of the .NET Framework. Browse

Cameron_865-2C12.fm Page 587 Friday, February 22, 2008 1:05 PM

http://soap.search.msn.com:80/webservices.asmx
http://dev.live.com/livesearch

588 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

to the C:\windows\assembly folder. This folder has a special shell extension GUI that allows you
to enumerate assemblies installed in the GAC, as shown in Figure 12-3.

Locate the assembly, right-click it, and select Properties. This action generates a pop-up
dialog box with all the full versioning information of the assembly, as shown in Figure 12-4.

Figure 12-3. Finding your assembly in the Windows Explorer assembly viewer

Figure 12-4. The Properties dialog box from an assembly discovered by the assembly viewer

Cameron_865-2C12.fm Page 588 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 589

Building a Configuration Section Handler Class
Now that the configuration section handler is identified, ASP.NET will query the class that
represents the new configuration section anytime a request is made for it. To satisfy this request,
we need to build a configuration section handler class based on the ConfigurationSection class.

The ConfigurationSection class provides a representation of a custom section type in a
configuration file. The LiveSearchConfigSectionHandler class implements the liveSearchControls
XML configuration section. The liveSearchControls configuration section contains two
subsections titled license and url. Both of these subsections are represented by custom class
implementations of the ConfigurationElement base class.

Implementing the ConfigurationSection and ConfigurationElement classes is a matter
of providing properties that represent the attributes available on the configuration section or
subsection. Listing 12-2 presents the full listing for LiveSearchConfigSectionHandler and the
LicenseConfigElement and urlConfigElement classes.

Listing 12-2. The Live SearchConfigSectionHandler.cs Class File

using System;
using System.Configuration;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Retrieves instance of LiveSearchConfigSection fully
 /// populated from web.config
 /// </summary>
 public class LiveSearchConfigSectionHandler : ConfigurationSection
 {
 [ConfigurationProperty("License")]
 public LicenseConfigElement License
 {
 get
 { return (LicenseConfigElement)this["License"]; }
 set
 { this["License"] = value; }
 }

 [ConfigurationProperty("Url")]
 public UrlConfigElement Url
 {
 get
 { return (UrlConfigElement)this["Url"]; }
 set
 { this["Url"] = value; }
 }
 }

Cameron_865-2C12.fm Page 589 Friday, February 22, 2008 1:05 PM

590 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 public class LicenseConfigElement : ConfigurationElement
 {
 public LicenseConfigElement()
 {
 }

 public LicenseConfigElement(String licenseKey)
 {
 LiveSearchLicenseKey = licenseKey;
 }

 [ConfigurationProperty("LiveSearchLicenseKey", DefaultValue =
 "Your App Key Goes Here", IsRequired = true)]
 public String LiveSearchLicenseKey
 {
 get
 { return (String)this["LiveSearchLicenseKey"]; }
 set
 { this["LiveSearchLicenseKey"] = value; }
 }
 }

 public class UrlConfigElement : ConfigurationElement
 {
 public UrlConfigElement()
 {
 }

 public UrlConfigElement(String webServiceUrl)
 {
 LiveSearchWebServiceUrl = webServiceUrl;
 }

 [ConfigurationProperty("LiveSearchWebServiceUrl", DefaultValue =
"http://soap.search.msn.com:80/webservices.asmx", IsRequired = true)]
 public String LiveSearchWebServiceUrl
 {
 get
 { return (String)this["LiveSearchWebServiceUrl"]; }
 set
 { this["LiveSearchWebServiceUrl"] = value; }
 }
 }
}

Cameron_865-2C12.fm Page 590 Friday, February 22, 2008 1:05 PM

http://soap.search.msn.com:80/webservices.asmx

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 591

Wrapping the Web Service Proxy in a Utility Method
To make it easier to work with the web service proxy, we wrap the creation and invocation
process inside a utility class that abstracts all the details of communicating with the Live Search
web service, as shown in Listing 12-3. This class also hides the work necessary to grab configu-
ration information from the custom configuration section we created earlier in this chapter.

Listing 12-3. The SearchUtility.cs Class File

using System;
using System.Configuration;
using System.ServiceModel;
using System.Threading;
using System.Web;
using LiveSearchService;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Utility class for abstracting Live Search web service proxy work
 /// </summary>
 public sealed class SearchUtility
 {
 private const string ConfigSectionName = "controlsBook2Lib/liveSearchControls";
 /// <summary>
 /// Static method for searching Live Search that wraps web service
 proxy code for easy invocation.
 /// </summary>
 /// <param name="query">Query to Live Search search web service</param>
 /// <param name="sourceRequests">Collection of search settings</param>
 /// <returns></returns>
 public static LiveSearchService.SearchResponse SearchLiveSearchService(
 string query, SourceRequest[] sourceRequests)
 {
 string LiveSearchLicenseKey = "";
 string LiveSearchWebServiceUrl = "";

 // get <liveSearchControl> config section from web.config
 // for search settings
 LiveSearchConfigSectionHandler config =
 (LiveSearchConfigSectionHandler)ConfigurationManager.GetSection(
 ConfigSectionName);

 if (config != null)
 {
 LiveSearchLicenseKey = config.License.LiveSearchLicenseKey;
 LiveSearchWebServiceUrl = config.Url.LiveSearchWebServiceUrl;
 }

Cameron_865-2C12.fm Page 591 Friday, February 22, 2008 1:05 PM

592 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 // if control is instantiated at runtime config section should be present
 else if (HttpContext.Current != null)
 {
 throw new Exception(
 "ControlsBook2Lib.LiveSearchControls.SearchUtility
 cannot find <LiveSearchControl> configuration section.");
 }

 EndpointAddress liveSearchAddress =
 new EndpointAddress(LiveSearchWebServiceUrl);
 BasicHttpBinding binding = new BasicHttpBinding();
 ChannelFactory<MSNSearchPortType> channelFactory =
 new ChannelFactory<MSNSearchPortType>(binding, liveSearchAddress);

 MSNSearchPortType searchService = channelFactory.CreateChannel();
 SearchRequest searchRequest = new SearchRequest();
 //Required parameters on SearchRequest
 searchRequest.Query = query;
 searchRequest.AppID = LiveSearchLicenseKey;
 searchRequest.CultureInfo = Thread.CurrentThread.CurrentUICulture.Name;
 //Optional parameters for SearchRequest
 if (sourceRequests != null)
 searchRequest.Requests = sourceRequests;
 //Set mark query word. Non-printable character added to highlight query terms
 //Set DisableHostCollapsing to return all results
 searchRequest.Flags = SearchFlags.DisableHostCollapsing
 | SearchFlags.MarkQueryWords;

 //Conduct Search
 SearchResponse searchResponse = searchService.Search(searchRequest);

 return searchResponse;
 }
 }
}

The SearchUtility class provides a parameter list to its single static SearchLiveSearchService
method that accepts the search query string entered by the user and an array of SourceRequest
objects. This allows the custom server controls to customize what type of search is performed
by setting properties on the SourceRequest objects. Consult Tables 12-1 through 12-4 for details
on what settings are available. Now that we have covered how to work with the Live Search web
service and the configuration architecture, we can focus on the custom server controls.

Cameron_865-2C12.fm Page 592 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 593

Designing the Control Architecture
At this point, you have an understanding of how to access the Live Search web service, and you
have some code to invoke it to return a set of search results. In the next phase of this chapter,
you will learn how to display and interact with results from the Live Search web service.

The result set returned by the Live Search web service does not have the tabular structure
that traditional data-bound controls such as the Repeater control or the DataGrid control expect.
The top-level Live SearchResponse class contains an array of SourceResponse objects that repre-
sents multiple search requests. A SourceResponse object contains the overall status information
about the search result, which would more likely be used as a header format. The SourceResponse.
Results property contains an array of Result instances with the URL data for display in a
repeating item format. The control we need to build has to work with the data on these two
separate levels to display it appropriately. We achieve this by having templates that bind to
different portions of the data source. We discussed how to create templates in Chapter 6.

Another major consideration is how to abstract communications with Live Search so that
a developer can quickly add search capabilities to his or her application. To provide this ease
of use, we encapsulate the Live Search web service searching inside of our control’s code base.
We provide a public data-binding method to load up the control UI from the result set, but the
means to do it are abstracted away from the developer. All a developer needs to do is customize
the UI and let the control do the heavy lifting of communicating with Live Search and paging
the result set.

The first major architectural decision is to factor out the responsibilities of the control library.
Instead of one supercontrol, we factor the functionality into three major controls: Search, Result,
and Pager. We also have the ResultItem class, which contains the output templates as a utility
control in support of the Result server control. The diagram in Figure 12-5 shows the break-
down of responsibilities.

The Search control has the primary responsibility of gathering input from the user and
setting up the Result control with the first page of results in a new search. We want to separate
Search from Result to allow flexible placement of the Search control’s text boxes. The text boxes
can be deployed in separate locations on a web form so as not to constrain the web application
developer from a UI perspective.

The Result control handles the display of search results returned by the Live Search web
service. On the first query to Live Search, the Search control will set up the Result control’s
DataSource property with an instance of SearchResponse and call its DataBind method to have it
bind its templates to the result set. This mimics the behavior of data-bound controls discussed
in Chapter 7.

The Pager control is the third main control in our control library and is embedded as a
child control of the Result control. If paging is enabled, the Result control passes the Pager
control the result set so that it calculates the starting index offsets based on page size and
renders page links.

Figure 12-6 shows the action that occurs with the Search, Result, and Pager controls on an
initial search. The end result is a rendered page with embedded links that lets the page post
back to itself to change the view of the search results.

Cameron_865-2C12.fm Page 593 Friday, February 22, 2008 1:05 PM

594 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

Figure 12-5. The architecture of the Live Search controls

Figure 12-6. Controls in action on an initial search

Search
Result

Search

1. Query params

2. Return

Live Search

3. Locate Result control and data bind

4. Display templates

5. Display data for paging

6. Display pages as command hyperlinks

1 2 3

Pager

Result

Cameron_865-2C12.fm Page 594 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 595

Interacting with the paging features of the Result control is the next bit of functionality we
discuss. When the links rendered by the Pager control are clicked, the control generates a server-
side event. This event is mapped to the Result control, which then handles the process of going
back to the Live Search web service and getting the desired page in the original result set. It sets
its own DataSource property and calls DataBind on itself. This, in turn, starts the original binding
process to render the new result set. Figure 12-7 shows the process graphically when the paging
functionality of our control is exercised.

Figure 12-7. Controls in action after the paging link is clicked

Now that we have covered the overall design, we can move on to a more detailed analysis
of the source code in each control, starting in the next section with the Search server control.

The Search Control
The Search control takes the input from the user to perform the search query. To accomplish
this, we derive the control from the CompositeControl class. The Query property exposes the
query string used to search the Live Search web service and is automatically set by the TextBox
control, which is the primary input control for the Search control. The Search control does not
expose a starting index property, as it assumes it will be on a one-based scale when it executes
the query. RedirectToLiveSearch is a special property that provides the Search control the
capability to ignore the Live Search web service and redirect the web form to the Live Search
web site as if the user had typed in a query at the Live Search site directly.

The actual UI for the Search control is built in the composite control fashion of adding
child controls from within the following CreateChildControls method. The first control added
to the collection is a HyperLink to provide a clickable link back to Live Search as well. Note that
the image is the official image made available by the Live Search service. The searchTextbox

Search

2. Query params 3. Return

Live Search

4. Data bind

5. Display templates
1. Catch bubbled-up
 command event 6. Pass data for paging

7. Display pages as
 hyperlink commands

1 2 3

Pager

Result

Cameron_865-2C12.fm Page 595 Friday, February 22, 2008 1:05 PM

596 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

control is a TextBox control that grabs the input from the user. The searchButton control is a
Button control that handles posting the page contents from the client back to the web server.
Several LiteralControl instances are also added to the Controls collection to fill in the HTML
spacing between the controls and provide breaks.

protected override void CreateChildControls()
{
 liveSearchLinkImage = new HyperLink();
 liveSearchLinkImage.ImageUrl = LiveSearchLogoImageUrl;
 liveSearchLinkImage.NavigateUrl = LiveSearchWebPageUrl;
 this.Controls.Add(liveSearchLinkImage);

 LiteralControl br = new LiteralControl("
");
 this.Controls.Add(br);

 searchTextBox = new TextBox();
 searchTextBox.Width = SearchTextBoxWidth;
 //searchTextBox.TextChanged += new
 // EventHandler(SearchTextBoxTextChanged);
 this.Controls.Add(searchTextBox);

 br = new LiteralControl(" ");
 this.Controls.Add(br);

 // search button Text is localized
 ResourceManager rm = ResourceFactory.Manager;
 searchButton = new Button();
 searchButton.Text = rm.GetString("Search.searchButton.Text");
 searchButton.Click += new EventHandler(SearchButtonClick);
 this.Controls.Add(searchButton);

 br = new LiteralControl("
");
 this.Controls.Add(br);
}

Events are wired up in CreateChildControls as well. The Click event of searchButton
and the TextChanged event of searchTextBox are the events of interest. These are routed to the
SearchButtonClick and SearchTextBoxTextChanged private methods, respectively. All these
events handlers really accomplish is passing the search query text over to the HandleSearch
method, which does the majority of the work inside the Search control.

Handling the Search
The top of Search.HandleSearch has code that checks an internal Boolean variable named
searchHandled to make sure that if both events fire on the same postback, we don’t get dupli-
cate searches occurring on the same query value unnecessarily, as shown here:

Cameron_865-2C12.fm Page 596 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 597

// check to see if search was handled on this postback
// (this prevents TextChanged and ButtonClicked from
// requesting the same query twice on the Live Search web service)
if (searchHandled == true)
 return;

// check for redirect of query processing to Live Search web site
if (RedirectToLiveSearch == true)
{
 this.Page.Response.Redirect(
 LiveSearchWebSearchUrl + "?q=" +
 HttpContext.Current.Server.UrlEncode(Query), true);
}

In HandleSearch, there is code that looks at the RedirectToLiveSearch property to decide
whether to send the query back to the Live Search web site with Response.Redirect. The Query
property is put on the URL string using the q variable on the HTTP GET string to accomplish
this.

If we choose not to redirect the query to Live Search, we use the SearchUtility class to
receive a SearchResponse from the web service proxy code it wraps. The ResultControl property
of the Search control is used to do a dynamic lookup of the correct Result control via the Page
FindControl method. Since FindControl is not recursive, we look for the Result control on the
Page as well as at the same nesting level, which is the approach taken by the .Net Framework
data-bound control’s DataSourceID property.

We also use this control reference to infer the correct value for the PageSize along with the
Query property value.

if (resControl == null)
 resControl = (Result)this.NamingContainer.FindControl(ResultControl);
if (resControl == null)
 throw new Exception("Either a Result control is not set on the " +
 "Search Control or the Result control is not located on the " +
 "Page or at the same nesting level as the Search control.");
 SourceRequest[] sourceRequests = new SourceRequest[1];
 sourceRequests[0] = new SourceRequest();
 sourceRequests[0].Count = resControl.PageSize;

After getting the result data from the web service, we raise an event to any interested parties.
The type of this event is named LiveSearchSearched. This allows someone to use the Search
control as a data generator and build his or her own custom UI from the result sets. We follow
the design pattern for invoking this event through a protected method with On as the prefix to
the search name, OnLiveSearchSearched, as shown here:

OnLiveSearchSearched(new
LiveSearchSearchedEventArgs(searchResponse));

The LiveSearchSearchedEventArgs class wraps the results of a Live Search web service query.
We use that event argument’s definition to create a LiveSearchSearched event handler. If you go
back to the Search control source code, you can see the code that exposes the LiveSearchSearched

Cameron_865-2C12.fm Page 597 Friday, February 22, 2008 1:05 PM

598 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

event with this event definition. We use the generic EventHandler<T> class to help reduce
memory footprint.

After the event is raised so that subscribers receive the Live Search web service search results,
we continue processing in the Search.HandleSearch method to bind data to the Result control:

 resControl.DataSource = searchResponse;
 resControl.DataBind();

We set its DataSource property and call DataBind to have it fill its template structure with
HTML that reflects the data of our web service query. The final step in the HandleSearch method
sets the searchHandled Boolean variable to ensure the control does not fire two Live Search
searches if both the TextBox TextChanged and the Button Click events fire on the same postback.

Listing 12-4 shows the source code for the Search control.

Listing 12-4. The Search.cs Class File

using System;
using System.ComponentModel;
using System.Resources;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using LiveSearchService;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// earch control displays input textbox and button to
 ///capture input and start search process.
 /// </summary>
 [ParseChildren(true),
 ToolboxData("<{0}:Search runat=server></{0}:Search>"),
#if LICENSED
 RsaLicenseData(
 "55489e7a-bff5-4b3c-8f21-c43fad861dfa",

 "<RSAKeyValue><Modulus>mWpgckAepJAp4aU0AvEcGg3TdO+0VXws9Lji
SCLpy7aQKD5V7uj49Exh1RtcB6TcuXxm0R6dw75VmKwyoGbvYT6btOIw
QgqbLhci5LjWmWUPEdBRiYsOLD0h2POXs9xTvp4IDTKXYoP8GPDRKz
klJuuxCbbUcooESQoYHp9ppbE=</Modulus><Exponent>AQAB</Exponent>
</RSAKeyValue>"
),
 LicenseProvider(typeof(RsaLicenseProvider)),
#endif
 DefaultEvent("LiveSearchSearched"),Designer(typeof(SearchDesigner))]
 public class Search : CompositeControl
 {
 private const string LiveSearchWebPageUrl = "http://www.live.com";

Cameron_865-2C12.fm Page 598 Friday, February 22, 2008 1:05 PM

http://www.live.com

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 599

 private const string LiveSearchWebSearchUrl =
 "http://search.live.com/results.aspx";
 private const string LiveSearch25PtLogoImageUrl =
 "http://go.microsoft.com/fwlink/?LinkId=89151";
 private const string LiveSearchLogoImageUrl =
 "http://go.microsoft.com/fwlink/?LinkId=89151";
 private const int SearchTextBoxWidth = 200;
 private const bool DefaultFilteringValue = false;
 private const bool DefaultRedirectToLiveSearchValue = false;
 private bool searchHandled;

 private HyperLink liveSearchLinkImage;
 private TextBox searchTextBox;
 private Button searchButton;

#if LICENSED
 private License license;
#endif

 /// <summary>
 /// Default constructor for Search control
 /// </summary>
 public Search()
 {

#if LICENSED

 // initiate license validation
 license =
 LicenseManager.Validate(typeof(Search), this);

#endif
 }

#if LICENSED

 private bool _disposed;
 /// <summary>
 /// Override Dispose to clean up resources.
 /// </summary>
 public sealed override void Dispose()
 {
 //Dispose of any unmanaged resources
 Dispose(true);
 GC.SuppressFinalize(this);
 }

Cameron_865-2C12.fm Page 599 Friday, February 22, 2008 1:05 PM

http://search.live.com/results.aspx
http://go.microsoft.com/fwlink/?LinkId=89151
http://go.microsoft.com/fwlink/?LinkId=89151

600 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 /// <summary>
 /// You must override Dispose for controls derived from the License class
 /// </summary>
 protected virtual void Dispose(bool disposing)
 {
 if (!_disposed)
 {
 if (disposing)
 {
 //Dispose of additional unmanaged resources here
 if (license != null)
 license.Dispose();
 base.Dispose();
 }
 license = null;
 _disposed = true;
 }
 }

#endif

 /// <summary>
 /// LiveSearchControls Result control to bind search results to for display
 /// </summary>
 [DescriptionAttribute("Result control to bind search results to for display."),
 CategoryAttribute("Search")]
 virtual public string ResultControl
 {
 get
 {
 object control = ViewState["ResultControl"];
 if (control == null)
 return "";
 else
 return (string)control;
 }
 set
 {
 ViewState["ResultControl"] = value;
 }
 }

 /// <summary>
 /// Search query string
 /// </summary>
 [DescriptionAttribute("Search query string."),
 CategoryAttribute("Search")]

Cameron_865-2C12.fm Page 600 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 601

 virtual public string Query
 {
 get
 {
 EnsureChildControls();
 return searchTextBox.Text;
 }
 set
 {
 EnsureChildControls();
 searchTextBox.Text = value;
 }
 }

 /// <summary>
 /// Redirect search query to Live Search site web pages.
 /// </summary>
 [DescriptionAttribute("Redirect search query to Live Search site web pages."),
 CategoryAttribute("Search")]
 virtual public bool RedirectToLiveSearch
 {
 get
 {
 object redirect = ViewState["RedirectToLiveSearch"];
 if (redirect == null)
 return DefaultRedirectToLiveSearchValue;
 else
 return (bool)redirect;
 }
 set
 {
 ViewState["RedirectToLiveSearch"] = value;
 }
 }

 /// <summary>
 /// Click event handler for search button
 /// </summary>
 /// <param name="s">Search button</param>
 /// <param name="e">Event arguments</param>
 protected void SearchButtonClick(object source, EventArgs e)
 {
 HandleSearch();
 }

Cameron_865-2C12.fm Page 601 Friday, February 22, 2008 1:05 PM

602 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 private void HandleSearch()
 {
 // check to see if search was handled on this postback
 // (this prevents TextChanged and ButtonClicked from
 // requesting the same query twice on the Live Search web service)
 if (searchHandled == true)
 return;

 // check for redirect of query processing to Live Search web site
 if (RedirectToLiveSearch == true)
 {
 this.Page.Response.Redirect(
 LiveSearchWebSearchUrl + "?q=" +
 HttpContext.Current.Server.UrlEncode(Query), true);
 }

 if (ResultControl.Length != 0)
 {
 // lookup the Result control we are linked to
 // and get the PageSize property value
 Result resControl = (Result)Page.FindControl(ResultControl);
 if (resControl == null)
 resControl = (Result)this.NamingContainer.FindControl(ResultControl);
 if (resControl == null)
 throw new ArgumentException("Either a Result control is not set on the " +
 "Search Control or the Result control is not located on the " +
 "Page or at the same nesting level as the Search control.");
 SourceRequest[] sourceRequests = new SourceRequest[1];
 sourceRequests[0] = new SourceRequest();
 sourceRequests[0].Count = resControl.PageSize;
 //Specifies the number of results to return from offset
 sourceRequests[0].Source = SourceType.Web;
 //new search, always reset
 sourceRequests[0].Offset = 0; //start index for returned results
 sourceRequests[0].ResultFields = ResultFieldMask.All |
 ResultFieldMask.DateTime;

 // get search results from Live Search WCF service proxy
 SearchResponse searchResponse =
 SearchUtility.SearchLiveSearchService(
 Query, sourceRequests);

 // raise search results for any interested parties as well
 OnLiveSearchSearched(new LiveSearchSearchedEventArgs(searchResponse));

Cameron_865-2C12.fm Page 602 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 603

 // databind search results with the Result control
 // we are linked with
 resControl.Query = Query;
 resControl.PageNumber = 0;

 resControl.DataSource = searchResponse;
 resControl.DataBind();
 }
 // set bool that tells us the search has been handled on this
 // postback
 searchHandled = true;
 }

 public event EventHandler<LiveSearchSearchedEventArgs>
 LiveSearchSearched
 /// <summary>
 /// Protected method for invoking LiveSearchSearched event
 /// from within Result control
 /// </summary>
 /// <param name="lse">Event arguments including search results</param>
 protected virtual void OnLiveSearchSearched(LiveSearchSearchedEventArgs e)
 {
 EventHandler<LiveSearchSearchedEventArgs> evnt = LiveSearchSearched;
 if (evnt != null)
 evnt(this, e);
 }

 /// <summary>
 /// Called by framework for composite controls to create control hierarchy
 /// </summary>
 protected override void CreateChildControls()
 {
 liveSearchLinkImage = new HyperLink();
 liveSearchLinkImage.ImageUrl = LiveSearchLogoImageUrl;
 liveSearchLinkImage.NavigateUrl = LiveSearchWebPageUrl;
 this.Controls.Add(liveSearchLinkImage);

 LiteralControl br = new LiteralControl("
");
 this.Controls.Add(br);

 searchTextBox = new TextBox();
 searchTextBox.Width = SearchTextBoxWidth;
 //searchTextBox.TextChanged += new
 // EventHandler(SearchTextBoxTextChanged);
 this.Controls.Add(searchTextBox);

Cameron_865-2C12.fm Page 603 Friday, February 22, 2008 1:05 PM

604 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 br = new LiteralControl(" ");
 this.Controls.Add(br);

 // search button Text is localized
 ResourceManager rm = ResourceFactory.Manager;
 searchButton = new Button();
 searchButton.Text = rm.GetString("Search.searchButton.Text");
 searchButton.Click += new EventHandler(SearchButtonClick);
 this.Controls.Add(searchButton);

 br = new LiteralControl("
");
 this.Controls.Add(br);
 }

 /// <summary>
 /// Overridden to ensure Controls collection is created before external access
 /// </summary>
 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }
 }
}

Now that we have covered the search functionality, in the next section, we discuss how the
returned results are processed in the Result control.

The Result Control
The Result control is the most complex control of the Live Search controls library. It is a templated,
data-bound control that has the capability to page itself as well as access the web service to
update the page range. The Result server control takes its cue from the Repeater control we
developed in Chapter 7. It provides a robust set of templates: HeaderTemplate, StatusTemplate,
ItemTemplate, AlternatingItemTemplate, SeparatorTemplate, and FooterTemplate. Each template
also has a like-named Style object to modify the HTML that is rendered for style content:
HeaderStyle, StatusStyle, ItemStyle, AlternatingItemStyle, SeparatorStyle, and FooterStyle.
The embedded Pager control has its style properties exposed by a Result class property named
PagerStyle.

Each template is pushed into an instance of the ResultItem control. This is the primary
child control of Result, and it provides the means for achieving access to search results from
a template data-binding expression. As we mentioned previously, Result offloads most of the
paging work to a control class named Pager, which handles offset and range calculations. We

Cameron_865-2C12.fm Page 604 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 605

stuff the Pager control inside a ResultItem, so that it can page content. Figure 12-8 shows the
structural architecture of the Result control, including the portion handed off to the Pager control.

Figure 12-8. The ResultItem structure inside the Result control

Notice the square boxes around the search terms “Live”, “Search”, and “Development” in
the returned search results in Figure 12-8. The square boxes are nonprintable characters, so
that the developer can highlight search terms in the results if desired. In the next section, we
discuss the details behind the ResultItem control class including how to fine-tune the search
results such as adding the ability to highlight search terms.

The ResultItem Control
The ResultItem class takes on a structure that is common to containers used as data-bound
templates. It has the well-known DataItem property, as well as ItemIndex and ItemType properties to
store the index it occupies in the collection of ResultItem controls aggregated by its parent Result
control. The ResultItemType enumeration matches up its usage with the templates and styles from
the Result class as well.

Inside this file, we also have a ResultItemEventHandler signature of ResultItem events.
These provide interested clients with the capability to receive the creation (ItemCreated) and

Pager

Result ResultItem

Cameron_865-2C12.fm Page 605 Friday, February 22, 2008 1:05 PM

606 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

data-binding events (ItemDataBound) events of the parent Result control class. Listing 12-5
presents the full text listing for the ResultItem control.

Listing 12-5. The ResultItem.cs Class File

using System;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Enum which indicates what type of content/template/styles the
 /// ResultItem control represents
 /// </summary>
 public enum ResultItemType
 {
 /// <summary>
 /// Represents top of control output
 /// </summary>
 Header = 0,

 /// <summary>
 /// Represents status section below header
 /// </summary>
 Status,

 /// <summary>
 /// Represents search result item output
 /// </summary>
 Item,

 /// <summary>
 /// Represents search result alternating item output
 /// </summary>
 AlternatingItem,

 /// <summary>
 /// Represents separation between search result item or alternating item output
 /// </summary>
 Separator,

 /// <summary>
 /// Represents paging area below search result items
 /// </summary>
 Pager,

Cameron_865-2C12.fm Page 606 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 607

 /// <summary>
 /// Represents bottom of control output below paging area
 /// </summary>
 Footer
 }

 /// <summary>
 /// Primary child control of Result that contains all of the various templates
 /// when instantiated.
 /// </summary>
 public class ResultItem : CompositeControl
 {
 private object dataItem;
 private ResultItemType itemType;
 private int itemIndex;

 /// <summary>
 /// Default constructor of ResultItem control
 /// </summary>
 /// <param name="index">
 /// Index of control in collection of ResultItem controls under Result</param>
 /// <param name="type">
 /// Type of template the ResultItem control represents</param>
 /// <param name="dataItem">Data from search query</param>
 public ResultItem(int index, ResultItemType type, object dataItem)
 {
 this.itemType = type;
 this.dataItem = dataItem;
 this.itemIndex = index;
 }

 /// <summary>
 /// Data from search query
 /// </summary>
 public object DataItem
 {
 get
 {
 return dataItem;
 }
 set
 {
 dataItem = value;
 }
 }

Cameron_865-2C12.fm Page 607 Friday, February 22, 2008 1:05 PM

608 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 /// <summary>
 /// Index of control in collection of ResultItem controls under Result
 /// </summary>
 public int ItemIndex
 {
 get
 {
 return itemIndex;
 }
 }

 /// <summary>
 /// Type of template the ResultItem control represents
 /// </summary>
 public ResultItemType ItemType
 {
 get
 {
 return itemType;
 }
 }

 }

 /// <summary>
 /// Specialized EventArgs which contains a ResultItem instance
 /// </summary>
 public class ResultItemEventArgs : EventArgs
 {
 private ResultItem item;

 /// <summary>
 /// Default constructor for ResultItemEventArgs
 /// </summary>
 /// <param name="item">ResultItem control instance</param>
 public ResultItemEventArgs(ResultItem item)
 {
 this.item = item;
 }

 /// <summary>
 /// ResultItem control instance
 /// </summary>
 public ResultItem Item
 {

Cameron_865-2C12.fm Page 608 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 609

 get
 {
 return item;
 }
 }
 }
}

One thing to highlight regarding the Result control is how it binds different levels of data
from the LiveSearchResult data source to the ResultItem based on its associated control
template in use. The data-binding expressions reach into a different data objects when they
reference the Container.DataItem property depending on which ResultItem is referenced.
The StatusTemplate is bound to the top-level LiveSearchSearchResult class through the DataItem
property. The ItemTemplate and AlternatingItemTemplate are alternately bound to each
ResultElement class that makes up the search results. HeaderTemplate, FooterTemplate, and
SeparatorTemplate are not bound to any data source and have a null DataItem value.

Building the Result Control
To provide a pleasing UI experience out of the box and let the control render something when
it is blank or when it is data bound, we have three primary modes that the Result control oper-
ates in: blank, data binding, and postback. The blank mode is used for displaying a UI even
when the user fails to link the control to a data source. Data-binding mode is used when a data
source is provided and the user explicitly calls the DataBind method of the control. Postback is
the mode the control takes on when it is sent back to the server from a postback event and the
control hydrates its structure from ViewState.

The Blank Scenario

The default action of the Result control if you put it on a web form and leave it alone is triggered by
code in its override of the following RenderContents method. If a Boolean named searchConducted
is not set, it fires off a call to Result control’s CreateBlankControlHierarchy method:

protected override void RenderContents(HtmlTextWriter writer)
{
 // if no search, create a hierarchy with header and
 // footer templates only
 if (!searchConducted)
 {
 CreateBlankControlHierarchy();
 }

 // prep all template styles
 PrepareControlHierarchy();

 // render all child controls
 base.RenderContents(writer);
}

Cameron_865-2C12.fm Page 609 Friday, February 22, 2008 1:05 PM

610 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

After the call to the CreateBlankControlHierarchy method, the control next calls
PrepareControlHierarchy to ensure all styles are applied to any user-provided templates. Last,
the control calls the base class method of RenderContents to do its work of iterating through the
child controls and rendering them.

If you look at CreateBlankControlHierarchy, you see that it looks for the HeaderTemplate
and FooterTemplate templates and creates a ResultItem control to wrap them using the
CreateResultItem helper method. We examine CreateResultItem in just a bit, but here is
CreateBlankControlHierarchy:

private void CreateBlankControlHierarchy()
{
 if (HeaderTemplate != null)
 {
 ResultItem headerItem = CreateResultItem(-1, ResultItemType.Header, false,
 null);
 items.Add(headerItem);
 }

 if (FooterTemplate != null)
 {
 ResultItem footer = CreateResultItem(-1, ResultItemType.Footer,
 false, null);
 items.Add(footer);
 }
}

It adds the ResultItem control to an internal ArrayList collection. This is a publicly reach-
able collection that is exposed via a top-level Items property on Result, as shown in the following
code. Notice that we didn’t add the ResultItem controls to the Controls collection of Result in
CreateBlankControlHierarchy. This is handled by CreateResultItem, along with other things
such as data binding and raising item-related events.

private Collection<ResultItem> items = new Collection<ResultItem>();
public Collection<ResultItem> Items
{
 get
 {
 return items ;
 }
}

The items collection takes advantage of the List generic type removing the need to create
a custom strongly typed collection.

The DataBind Scenario

The next mode of creating child controls inside the Result control class focuses on what happens
when the Search control executes a search, sets the DataSource property of the Result control,
and invokes its DataBind method, as shown in the following code. The first task accomplished is
clearing out child controls that might have been put into the collection manually and any

Cameron_865-2C12.fm Page 610 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 611

information that might have been persisted to ViewState. We also set the all-important
searchConducted Boolean value to true, so the control knows it is not in a blank control situation.

public override void DataBind()
{
 base.OnDataBinding(System.EventArgs.Empty);

 Controls.Clear();
 ClearChildViewState();
 TrackViewState();

 searchConducted = true;
 CreateControlHierarchy(true);
 ChildControlsCreated = true;
}

CreateControlHierarchy is used by DataBind to load up the control content and execute
DataBind methods on each individual template. The Boolean value passed by DataBind is set to
true to indicate to CreateControlHierarchy that we are in a data binding scenario. We examine
the details of CreateControlHierarchy later in this chapter after we have covered our third mode,
which deals with a rendered Result control rehydrating at the beginning of postback.

The Postback Scenario

The Result control’s CreateChildControls method, shown in the following snippet, is called
when a server control needs to build its control structure. This could happen as part of the
blank control-building scenario or as part of postback from a client round-trip.

override protected void CreateChildControls()
{
 if (searchConducted == false &&
 ViewState["ResultItemCount"] != null)
 {
 CreateControlHierarchy(false);
 } }

The CreateChildControls method checks the searchConducted Boolean value to determine
whether it has been called as part of the data-binding scenario. If the page has been manually
data bound, we do not need to create the control hierarchy. We also check to see whether there
is content in the ViewState variable ResultItemCount. If this is present, the page is coming back
via postback, and we can call CreateControlHierarchy to have it repopulate the control structure
based on ResultItemControl and have child controls retrieve their former values from ViewState. If
the ViewState ResultItemCount variable is not present, we are in a blank control scenario, and
we let the code we have in RenderContents handle the blank mode situation.

Creating a Control Hierarchy for Data Binding or Postback
Most of the heavy lifting to build the composite structure of the Result control occurs in the
following CreateControlHierarchy for the data-binding and postback scenarios. This code is
typical of your run-of-the-mill data-bound control:

Cameron_865-2C12.fm Page 611 Friday, February 22, 2008 1:05 PM

612 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

private void CreateControlHierarchy(bool dataBind)
{
 Controls.Clear();
 SearchResponse result = null;

 // Result items
 items = new Collection<ResultItem>();

 int count = 0;

 if (dataBind == true)
 {
 if (DataSource == null)
 return;
 result = DataSource;

 // set ViewState values for read-only props
 ViewState["TotalResultsCount"] =
result.Responses[0].Total;
 ViewState["Offset"] = result.Responses[0].Offset;
 ViewState["Source"] = result.Responses[0].Source;

 count = result.Responses[0].Results.Length;
 ViewState["ResultItemCount"] = count;
 }
 else
 {
 object temp = ViewState["ResultItemCount"];
 if (temp != null)
 count = (int)temp;
 }

 if (HeaderTemplate != null)
 {
 ResultItem headerItem = CreateResultItem(-1,
ResultItemType.Header, false, null);
 items.Add(headerItem);
 }

 ResultItem statusItem = CreateResultItem(-1, ResultItemType.Status,
dataBind, result);
 items.Add(statusItem);

 // loop through and create ResultItem controls for each of the
 // result elements from the Live Search web service result
 ResultItemType itemType = ResultItemType.Item;
 for (int i = 0; i < count; i++)

Cameron_865-2C12.fm Page 612 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 613

 {
 if (separatorTemplate != null)
 {
 ResultItem separator =
 CreateResultItem(-1, ResultItemType.Separator, false, null);
 items.Add(separator);
 }

 LiveSearchService.Result searchResultItem = null;
 if (dataBind == true)
 {
 searchResultItem = result.Responses[0].Results[i];
 }

 ResultItem item = CreateResultItem(i,
 itemType, dataBind, searchResultItem);
 items.Add(item);

 // swap between item and alternatingitem types
 if (itemType == ResultItemType.Item)
 itemType = ResultItemType.AlternatingItem;
 else
 itemType = ResultItemType.Item;
 }

 // display pager if allowed by user and if results
 // are greater than a page in length
 if (DisplayPager == true && TotalResultsCount > PageSize)
 {
 ResultItem pager = CreatePagerResultItem();
 items.Add(pager);
 }

 if (FooterTemplate != null)
 {
 ResultItem footer = CreateResultItem(-1, ResultItemType.Footer,
false, null);
 items.Add(footer);
 }
}

If we are in data-binding mode based on the passed-in Boolean parameter, the Result
control examines the LiveSearchService.SearchResponse instance linked to the DataSource
property of itself. DataSource is strongly typed in the implementation of Result to prevent
someone from accidentally assigning a DataSet or other type of collection to it.

Cameron_865-2C12.fm Page 613 Friday, February 22, 2008 1:05 PM

614 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

/// <summary>
/// Data source which takes a SearchResponse to build display.
/// </summary>
[DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden),
 DefaultValue(null),
 Bindable(true),
 Browsable(false)]
public LiveSearchService.SearchResponse DataSource
{
 get
 {
 return dataSource;
 }
 set
 {
 dataSource = value;
 }
}

The CreateControlHierarchy code, when data binding, pulls key parameters from the data
source like the number of results, the offset, and the source result set. The count variable is set
to the size of the Results array returned to ensure accurate looping in the template creation
process. If we are not in a data-binding scenario, yet we are creating the control hierarchy, we
read ResultItemCount from the ViewState collection to set the count variable. Having a count is
all we need, because we go through a loop that creates the correct number of ResultItem controls
for each of the search results, and the controls then are able to pull their previous information
from ViewState.

When the code loops through the result set items, it creates the required template for each
item and data binds by calling the CreateResultItem method. As the result items are processed,
the HeaderTemplate, FooterTemplate, and SeparatorTemplates templates are checked for null
values, whereas the StatusTemplate and ResultItemTemplate templates are not. The reason for
this difference is that ResultControl has two prewired template classes as default templates for
the StatusTemplate and ItemTemplate if they are not specified by the user. You can see this by
examining the CreateResultItem method, which is responsible for creating the ResultItem
control instances that house the final template content.

Once we have looped through each ResultElement of the search query data set, we turn to
creating the paging structure. Here we call a different method to create the ResultItem instance
that houses the paging structure by calling the CreatePagerItem method. We also set up the
ViewState to remember the count of elements added so we can rehydrate them from ViewState
during postback.

Creating ResultItem Controls
CreateControlHierarchy offloads most of the work to the CreateResultItem method, as shown
in the following code. The CreateResultItem method is the true workhorse of the Result class.
It creates the major structures, adds them to the Controls collection, and manages events and
data binding.

Cameron_865-2C12.fm Page 614 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 615

private ResultItem CreateResultItem(int index, ResultItemType itemType,
 bool dataBind, object dataItem)
{
 ITemplate selectedTemplate;

 switch (itemType)
 {
 case ResultItemType.Header :
 selectedTemplate = HeaderTemplate;
 break;
 case ResultItemType.Status :
 if (StatusTemplate == null)
 {
 // if no StatusTemplate, pick up the default
 // template ResultStatusTemplate
 selectedTemplate = new ResultStatusTemplate();
 }
 else
 selectedTemplate = StatusTemplate;
 break;
 case ResultItemType.Item :
 if (ItemTemplate == null)
 {
 // if no ItemTemplate, pick up the default
 // template ResultItemTemplate
 selectedTemplate = new ResultItemTemplate();
 }
 else
 selectedTemplate = ItemTemplate;
 break;
 case ResultItemType.AlternatingItem :
 selectedTemplate = AlternatingItemTemplate;
 if (selectedTemplate == null)
 {
 // if no AlternatingItemTemplate, switch to Item type
 // and pick up ItemTemplate
 itemType = ResultItemType.Item;
 selectedTemplate = ItemTemplate;
 if (selectedTemplate == null)
 {
 // if that doesn't work, pick up the default
 // template ResultItemTemplate
 selectedTemplate = new ResultItemTemplate();
 }
 }
 break;

Cameron_865-2C12.fm Page 615 Friday, February 22, 2008 1:05 PM

616 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 case ResultItemType.Separator :
 selectedTemplate = SeparatorTemplate;
 break;
 case ResultItemType.Footer :
 selectedTemplate = FooterTemplate;
 break;
 default:
 selectedTemplate = null;
 break;
 }

 ResultItem item = new ResultItem(index, itemType, dataItem);

 if (selectedTemplate != null)
 {
 selectedTemplate.InstantiateIn(item);
 }

 OnItemCreated(new ResultItemEventArgs(item));
 Controls.Add(item);

 if (dataBind)
 {
 item.DataBind();
 OnItemDataBound(new ResultItemEventArgs(item));
 }
 return item;
}

The first task for CreateResultItem is to determine what type of ResultItem it is creating
using a switch statement. The end result of the process is grabbing the correct template from
the Result control’s template properties and assigning it to the selectedTemplate method variable.
For the Status and Item types, it also handles the case of a blank template by instantiating the built-
in default ResultStatusTemplate and ResultItemTemplate classes. If the AlternatingItemTemplate
property is blank, the Item type ResultItemTemplate default template is used.

After template selection, a brand-new ResultItem control is created and is passed its index
in the parent Result control’s Item collection, as well as its type and a potentially valid data
source. After the ResultItem is minted, it receives the template control content via the Instantiate
method of the ITemplate interface.

The final step is to fire the required events. Once the control is created, we raise an ItemCreated
event and add the control to the Controls collection. The final step is to call DataBind on the
ResultItem if we are in a data-binding scenario, which then raises an ItemDataBound event.

Creating the Child Pager Control
The Pager control is added to the Controls collection of the parent Result control in
CreatePagerResultItem. This special-purpose creation method creates a new ResultItem
control and adds a configured Pager control to it as follows:

Cameron_865-2C12.fm Page 616 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 617

private ResultItem CreatePagerResultItem()
{
 ResultItem item = new ResultItem(-1, ResultItemType.Pager, null);

 Pager pager = new Pager();
 pager.PageSize = PageSize;
 pager.PagerBarRange = PagerBarRange;
 pager.PagerLinkStyle = PagerLinkStyle;
 pager.TotalResultsCount = TotalResultsCount;
 pager.PageNumber = PageNumber;

 item.Controls.Add(pager);

 Controls.Add(item);

 return item;
}

Pager is configured based on information from the web service query and information that
is exposed by the parent Result control. The PageSize property is the number of entries listed
per page that are returned from the Live Search search results. PagerBarRange is the number of
pages to display in numeric form at the bottom of the page to go along with the Previous and
Next buttons, if applicable. PagerLinkStyle is of type ResultPagerLinkStyle declared as follows. It
determines whether text links are displayed or text with DHTML is displayed.

public enum ResultPagerLinkStyle
{
 Text = 0,
 TextWithDHTML
}

We don’t implement TextWithDHTML functionality for the Result control, but the ASP.NET
AJAX functionality in HighlightedHyperLink could be leveraged to add DHTML functionality to
the Pager’s page numbers by inheriting from LinkButton and performing the same steps used
with the HighlightedHyperLink to add DHTML functionality.

Notice that we don’t have to explicitly pass LiveSearchService.SearchResponse to Pager
in the CreatePagerResultItem method. It has code inside of it to deal with calculating and
displaying the correct page ranges based on the TotalResultsCount, PageNumber, and PageSize
property values.

Managing Paging
The Pager control that is part of the child control structure of a paging Result control will raise
the correct command events when a page link is clicked to change the page of results displayed.
The command event raised by the Pager control is intercepted by the parent Result control via
the use of the OnBubbleEvent method override:

Cameron_865-2C12.fm Page 617 Friday, February 22, 2008 1:05 PM

618 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

protected override bool OnBubbleEvent(object source, EventArgs args)
{
 // Handle events raised by children by overriding OnBubbleEvent.
 // (main purpose is to detect paging events)
 bool handled = false;
 CommandEventArgs cea = args as CommandEventArgs;

 // handle Page event by extracting new start index
 // and calling HandleSearch method, which does the
 // work of rebinding this control to the results
 // from the web service
 if (cea.CommandName == "Page")
 {
 StartIndex = Convert.ToInt32(cea.CommandArgument);
 HandleSearch();

 }

 return handled;
}

The OnBubbleEvent implementation in Result grabs the index of the new page to display
with the Result control and then calls HandleSearch, which actually talks to Live Search.
HandleSearch is similar to the method of the same name in the Search control, except that it
doesn’t have to look up a Result control; it simply sets the DataSource and calls DataBind on itself.

Styling the Result Control
After all of the child controls are created, either by CreateBlankControlHierarchy or
CreateControlHierarchy, the styles exposed by the Result control are applied. This is handled
in the RenderContents override discussed earlier. At the end of RenderContents, the code
invokes PrepareControlHierarchy to make this happen. It loops through all the ResultItem
controls and applies the appropriate Style object if the style was set on the Result control, as
shown here:

protected void PrepareControlHierarchy()
{
 // apply all the appropriate style attributes
 // to the items in the result output
 foreach (ResultItem item in this.Items)
 {
 if (item.ItemType == ResultItemType.Header)
 {
 if (HeaderStyle != null)
 item.ApplyStyle(HeaderStyle);
 }
 else if (item.ItemType == ResultItemType.Status)
 {

Cameron_865-2C12.fm Page 618 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 619

 if (StatusStyle != null)
 item.ApplyStyle(StatusStyle);
 }
 else if (item.ItemType == ResultItemType.Item)
 {
 if (ItemStyle != null)
 item.ApplyStyle(ItemStyle);

 }
 else if (item.ItemType == ResultItemType.AlternatingItem)
 {
 if (AlternatingItemStyle != null)
 item.ApplyStyle(AlternatingItemStyle);
 else if (ItemStyle != null)
 item.ApplyStyle(ItemStyle);
 }
 else if (item.ItemType == ResultItemType.Separator)
 {
 if (SeparatorStyle != null)
 item.ApplyStyle(SeparatorStyle);
 }
 else if (item.ItemType == ResultItemType.Pager)
 {
 if (PagerStyle != null)
 {
 Pager pager = (Pager) item.Controls[0];
 pager.ApplyStyle(PagerStyle);
 }
 }
 else if (item.ItemType == ResultItemType.Footer)
 {
 if (FooterStyle != null)
 item.ApplyStyle(FooterStyle);
 }
 }
}

Because we know there is only one instance of the Pager server control stored as a ResultItem,
we apply PagerStyle directly to this instance, as shown in the preceding code. Listing 12-6
shows the full source for the Result control.

Listing 12-6. The Result.cs Class File

using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.WebControls;

Cameron_865-2C12.fm Page 619 Friday, February 22, 2008 1:05 PM

620 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

using ControlsBook2Lib.CH12.LiveSearchControls.Design;
using LiveSearchService;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Determines search results pager style
 /// </summary>
 public enum ResultPagerLinkStyle
 {
 /// <summary>
 /// Render pager with text hyperlinks for search result navigation
 /// </summary>
 Text = 0,

 /// <summary>
 /// Render pager DHTML for page link buttons in pager.
 /// Not implemented but a place holder for extension
 /// </summary>
 TextWithDHTML
 }

 /// <summary>
 /// Result control displays the formatted results from a query of the
 /// Live Search search web service.
 /// </summary>
 [ParseChildren(true),
 ToolboxData("<{0}:result runat=server></{0}:result>"),
 Designer(typeof(ResultDesigner)),
#if LICENSED
 RsaLicenseData(
 "55489e7a-bff5-4b3c-8f21-c43fad861dfa",

"<RSAKeyValue><Modulus>mWpgckAepJAp4aU0AvEcGg3TdO+0VXws9LjiSCLpy7aQKD5V7uj
49Exh1RtcB6TcuXxm0R6dw75VmKwyoGbvYT6btOIwQgqbLhci5LjWmWUPEdBRiYsOLD0h2POX
s9xTvp4IDTKXYoP8GPDRKzklJuuxCbbUcooESQoYHp9ppbE=</Modulus><Exponent>AQAB
</Exponent></RSAKeyValue>"
),
 LicenseProvider(typeof(RsaLicenseProvider)),
#endif
 DefaultEvent("LiveSearchSearched")
]
 public class Result : CompositeControl
 {
 // constants
 private const int defaultPageSize = 10;
 private const int defaultPagerBarRange = 4;

Cameron_865-2C12.fm Page 620 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 621

 private const int defaultPageNumber = 1;

 // style property fields
 private Style headerStyle;
 private Style statusStyle;
 private Style itemStyle;
 private Style alternatingItemStyle;
 private Style separatorStyle;
 private Style pagerStyle;
 private Style footerStyle;
 private ResultPagerLinkStyle pagerLinkStyle =
 ResultPagerLinkStyle.TextWithDHTML;

 // Template property fields
 private ITemplate headerTemplate;
 private ITemplate statusTemplate;
 private ITemplate itemTemplate;
 private ITemplate alternatingItemTemplate;
 private ITemplate separatorTemplate;
 private ITemplate footerTemplate;

 private bool searchConducted;
 private SearchResponse dataSource;
 private Collection<ResultItem> items = new Collection<ResultItem>();

#if LICENSED
 private License license;
#endif

 /// <summary>
 /// Default constructor for Result control
 /// </summary>
 public Result()
 {
#if LICENSED
 // initiate license validation
 license =
 LicenseManager.Validate(typeof(Search), this);
#endif
 }

 /// <summary>
 /// Override bases Result control on div HTML tag
 /// </summary>
 protected override HtmlTextWriterTag TagKey
 {

Cameron_865-2C12.fm Page 621 Friday, February 22, 2008 1:05 PM

622 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 get
 {
 return HtmlTextWriterTag.Div;
 }
 }
 #region Dispose pattern

#if LICENSED
 private bool _disposed;
 /// <summary>
 /// Override Dispose to clean up resources.
 /// </summary>
 public sealed override void Dispose()
 {
 //Dispose of any unmanaged resources
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 /// <summary>
 /// You must override Dispose for controls derived from the License clsas
 /// </summary>
 protected virtual void Dispose(bool disposing)
 {
 if (!_disposed)
 {
 if (disposing)
 {
 //Dispose of additional unmanaged resources here
 if (license != null)
 license.Dispose();
 base.Dispose();
 }
 license = null;
 _disposed = true;
 }
 }
#endif
 #endregion

 #region Search properties
 /// <summary>
 /// Number of search results returned with query and displayed on page.
 /// </summary>
 [Description(
 "Number of search results returned with query and displayed on page."),
 Category("Search"), DefaultValue(defaultPageSize)]

Cameron_865-2C12.fm Page 622 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 623

 virtual public int PageSize
 {
 get
 {
 object size = ViewState["PageSize"];
 if (size == null)
 return defaultPageSize;
 else
 return (int)size;
 }
 set
 {
 ViewState["PageSize"] = value;
 }
 }

 /// <summary>
 /// Ending item index of search list results.
 /// </summary>
 [Browsable(true), DefaultValue(defaultPageNumber)]
 virtual public int PageNumber
 {
 get
 {
 object pageNumber = ViewState["PageNumber"];
 if (pageNumber == null)
 return defaultPageNumber;
 else
 return (int)pageNumber;
 }
 set
 {
 if (value < 1)
 value = 1;
 ViewState["PageNumber"] = value;
 }
 }

 /// <summary>
 /// Estimated total results count from query.
 /// </summary>
 [Browsable(false)]
 virtual public int TotalResultsCount
 {
 get
 {
 object count = ViewState["TotalResultsCount"];

Cameron_865-2C12.fm Page 623 Friday, February 22, 2008 1:05 PM

624 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 if (count == null)
 return 0;
 else
 return (int)count;
 }

 }

 /// <summary>
 /// Search query string.
 /// </summary>
 [Browsable(false)]
 virtual public string Query
 {
 get
 {
 object query = ViewState["Query"];
 if (query == null)
 return string.Empty;
 else
 return (string)query;
 }
 set
 {
 ViewState["Query"] = value;
 }
 }

 #endregion

 #region Appearance properties

 /// <summary>
 /// Display paging links at bottom of search results.
 /// </summary>
 [Description("Display paging links at bottom of search results."),
 Category("Appearance")]
 virtual public bool DisplayPager
 {
 get
 {
 object pager = ViewState["DisplayPager"];
 if (pager == null)
 return true;
 else
 return (bool)pager;
 }

Cameron_865-2C12.fm Page 624 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 625

 set
 {
 ViewState["DisplayPager"] = value;
 }
 }

 /// <summary>
 /// Style of Pager control link display.
 /// </summary>
 [Description("Style of Pager control link display."),
 Category("Appearance")]
 public ResultPagerLinkStyle PagerLinkStyle
 {
 get
 {
 return pagerLinkStyle;
 }
 set
 {
 pagerLinkStyle = value;
 }
 }

 /// <summary>
 /// Number of pages displayed in pager bar.
 /// </summary>
 [Description("Number of pages displayed in pager bar."),
 Category("Appearance"), DefaultValue(4)]
 virtual public int PagerBarRange
 {
 get
 {
 object range = ViewState["PagerBarRange"];
 if (range == null)
 return defaultPagerBarRange;
 else
 return (int)range;
 }
 set
 {
 ViewState["PagerBarRange"] = value;
 }
 }
 #endregion

Cameron_865-2C12.fm Page 625 Friday, February 22, 2008 1:05 PM

626 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 #region Miscellaneous properties
 /// <summary>
 /// Data source which takes a SearchResponse to build display.
 /// </summary>
 [DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden),
 DefaultValue(null),
 Bindable(true),
 Browsable(false)]
 public LiveSearchService.SearchResponse DataSource
 {
 get
 {
 return dataSource;
 }
 set
 {
 dataSource = value;
 }
 }

 /// <summary>
 /// Collection of child ResultItem controls
 /// </summary>
 [Browsable(false)]
 public Collection<ResultItem> Items
 {
 get
 {
 return items;
 }
 }
 #endregion

 #region Style properties
 /// <summary>
 /// The style to be applied to header template.
 /// </summary>
 [Category("Style"),
 Description("The style to be applied to header template."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true),
 PersistenceMode(PersistenceMode.InnerProperty),
]
 public virtual Style HeaderStyle
 {

Cameron_865-2C12.fm Page 626 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 627

 get
 {
 if (headerStyle == null)
 {
 headerStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)footerStyle).TrackViewState();
 }
 return headerStyle;
 }
 }

 /// <summary>
 /// The style to be applied to status template.
 /// </summary>
 [Category("Style"),
 Description("The style to be applied to status template."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true),
 PersistenceMode(PersistenceMode.InnerProperty),
]
 public virtual Style StatusStyle
 {
 get
 {
 if (statusStyle == null)
 {
 statusStyle = new Style();
 statusStyle.ForeColor = System.Drawing.Color.Blue;
 statusStyle.Font.Bold = true;
 if (IsTrackingViewState)
 ((IStateManager)statusStyle).TrackViewState();
 }
 return statusStyle;
 }
 }

 /// <summary>
 /// The style to be applied to item template.
 /// </summary>
 [Category("Style"),
 Description("The style to be applied to item template."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true),
 PersistenceMode(PersistenceMode.InnerProperty),
]

Cameron_865-2C12.fm Page 627 Friday, February 22, 2008 1:05 PM

628 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 public virtual Style ItemStyle
 {
 get
 {
 if (itemStyle == null)
 {
 itemStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)itemStyle).TrackViewState();
 }
 return itemStyle;
 }
 }

 /// <summary>
 /// The style to be applied to alternate item template.
 /// </summary>
 [Category("Style"),
Description("The style to be applied to alternate item template."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
NotifyParentProperty(true),
PersistenceMode(PersistenceMode.InnerProperty),
]
 public virtual Style AlternatingItemStyle
 {
 get
 {
 if (alternatingItemStyle == null)
 {
 alternatingItemStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)alternatingItemStyle).TrackViewState();
 }
 return alternatingItemStyle;
 }
 }

 /// <summary>
 /// The style to be applied to the separator template
 /// </summary>
 [Category("Style"),
 Description("The style to be applied to the separator template."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true),
 PersistenceMode(PersistenceMode.InnerProperty),
]

Cameron_865-2C12.fm Page 628 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 629

 public virtual Style SeparatorStyle
 {
 get
 {
 if (separatorStyle == null)
 {
 separatorStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)separatorStyle).TrackViewState();
 }
 return separatorStyle;
 }
 }

 /// <summary>
 /// The style to be applied to the pager template.
 /// </summary>
 [Category("Style"),
 Description("The style to be applied to the pager."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true),
 PersistenceMode(PersistenceMode.InnerProperty),
]
 public virtual Style PagerStyle
 {
 get
 {
 if (pagerStyle == null)
 {
 pagerStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)pagerStyle).TrackViewState();
 }
 return pagerStyle;
 }
 }

 /// <summary>
 /// The style to be applied to the footer template.
 /// </summary>
 [Category("Style"),
 Description("The style to be applied to the footer template."),

DesignerSerializationVisibility(DesignerSerializationVisibility.Content),
 NotifyParentProperty(true),
 PersistenceMode(PersistenceMode.InnerProperty),
]

Cameron_865-2C12.fm Page 629 Friday, February 22, 2008 1:05 PM

630 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 public virtual Style FooterStyle
 {
 get
 {
 if (footerStyle == null)
 {
 footerStyle = new Style();
 if (IsTrackingViewState)
 ((IStateManager)footerStyle).TrackViewState();
 }
 return footerStyle;
 }
 }
 #endregion

 #region Style and ViewState management
 /// <summary>
 /// Manual override of ViewState save method to put in custom
 /// styles for control templates
 /// </summary>
 /// <returns>Object array to persist to ViewState</returns>
 override protected object SaveViewState()
 {
 object baseState = base.SaveViewState();
 object headerStyleState = (headerStyle != null) ?
((IStateManager)HeaderStyle).SaveViewState() : null;
 object statusStyleState = (statusStyle != null) ?
((IStateManager)StatusStyle).SaveViewState() : null;
 object itemStyleState = (itemStyle != null) ?
((IStateManager)ItemStyle).SaveViewState() : null;
 object alternatingItemStyleState = (alternatingItemStyle != null) ?
((IStateManager)AlternatingItemStyle).SaveViewState() : null;
 object separatorStyleState = (separatorStyle != null) ?
((IStateManager)SeparatorStyle).SaveViewState() : null;
 object pagerStyleState = (pagerStyle != null) ?
((IStateManager)PagerStyle).SaveViewState() : null;
 object footerStyleState = (itemStyle != null) ?
((IStateManager)FooterStyle).SaveViewState() : null;

 object[] state = new object[8];
 state[0] = baseState;
 state[1] = headerStyleState;
 state[2] = statusStyleState;
 state[3] = itemStyleState;
 state[4] = alternatingItemStyleState;
 state[5] = separatorStyleState;

Cameron_865-2C12.fm Page 630 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 631

 state[6] = pagerStyleState;
 state[7] = footerStyleState;

 return state;
 }

 /// <summary>
 /// Manual override of ViewState load method to retrieve custom styles
 /// for control templates
 /// </summary>
 /// <param name="savedState">Object array retrieved from ViewState</param>
 override protected void LoadViewState(object savedState)
 {
 if (savedState != null)
 {
 object[] state = (object[])savedState;

 if (state[0] != null)
 base.LoadViewState(state[0]);
 if (state[1] != null)
 ((IStateManager)HeaderStyle).LoadViewState(state[1]);
 if (state[2] != null)
 ((IStateManager)StatusStyle).LoadViewState(state[2]);
 if (state[3] != null)
 ((IStateManager)ItemStyle).LoadViewState(state[3]);
 if (state[4] != null)

 ((IStateManager)AlternatingItemStyle).LoadViewState(state[4]);
 if (state[5] != null)
 ((IStateManager)SeparatorStyle).LoadViewState(state[5]);
 if (state[6] != null)
 ((IStateManager)PagerStyle).LoadViewState(state[6]);
 if (state[7] != null)
 ((IStateManager)FooterStyle).LoadViewState(state[7]);
 }
 }

 /// <summary>
 /// Build child control structure
 /// </summary>
 protected void PrepareControlHierarchy()
 {
 // apply all the appropriate style attributes
 // to the items in the result output
 foreach (ResultItem item in this.Items)
 {

Cameron_865-2C12.fm Page 631 Friday, February 22, 2008 1:05 PM

632 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 if (item.ItemType == ResultItemType.Header)
 {
 if (HeaderStyle != null)
 item.ApplyStyle(HeaderStyle);
 }
 else if (item.ItemType == ResultItemType.Status)
 {
 if (StatusStyle != null)
 item.ApplyStyle(StatusStyle);
 }
 else if (item.ItemType == ResultItemType.Item)
 {
 if (ItemStyle != null)
 item.ApplyStyle(ItemStyle);

 }
 else if (item.ItemType == ResultItemType.AlternatingItem)
 {
 if (AlternatingItemStyle != null)
 item.ApplyStyle(AlternatingItemStyle);
 else if (ItemStyle != null)
 item.ApplyStyle(ItemStyle);
 }
 else if (item.ItemType == ResultItemType.Separator)
 {
 if (SeparatorStyle != null)
 item.ApplyStyle(SeparatorStyle);
 }
 else if (item.ItemType == ResultItemType.Pager)
 {
 if (PagerStyle != null)
 {
 Pager pager = (Pager)item.Controls[0];
 pager.ApplyStyle(PagerStyle);
 }
 }
 else if (item.ItemType == ResultItemType.Footer)
 {
 if (FooterStyle != null)
 item.ApplyStyle(FooterStyle);
 }
 }
 }
 #endregion

Cameron_865-2C12.fm Page 632 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 633

 #region Template properties
 /// <summary>
 /// The content to be shown at header of control.
 /// </summary>
 [Browsable(false),
 DefaultValue(null),
 Description("The content to be shown at header of control."),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(ResultItem))
]
 public ITemplate HeaderTemplate
 {
 get
 {
 return headerTemplate;
 }
 set
 {
 headerTemplate = value;
 }
 }

 /// <summary>
 /// The content to be shown in status area below header template.
 /// </summary>
 [Browsable(false),
 DefaultValue(null),
 Description("The content to be shown in status area below header template."),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(ResultItem))
]
 public ITemplate StatusTemplate
 {
 get
 {
 return statusTemplate;
 }
 set
 {
 statusTemplate = value;
 }
 }

Cameron_865-2C12.fm Page 633 Friday, February 22, 2008 1:05 PM

634 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 /// <summary>
 /// The content to be shown with each item of the search result set.
 /// </summary>
 [Browsable(false),
 DefaultValue(null),
 Description("The content to be shown with each item of the search result set."),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(ResultItem))
]
 public ITemplate ItemTemplate
 {
 get
 {
 return itemTemplate;
 }
 set
 {
 itemTemplate = value;
 }
 }

 /// <summary>
 /// The content to be shown with alternating items in the search result set.
 /// </summary>
 [Browsable(false),
 DefaultValue(null),
 Description(
 "The content to be shown with alternating items in the search result set."),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(ResultItem))
]
 public ITemplate AlternatingItemTemplate
 {
 get
 {
 return alternatingItemTemplate;
 }
 set
 {
 alternatingItemTemplate = value;
 }
 }

Cameron_865-2C12.fm Page 634 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 635

 /// <summary>
 /// The content to be put between each item in the search result set.
 /// </summary>
 [Browsable(false),
 DefaultValue(null),
 Description(
 "The content to be put between each item in the search result set."),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(ResultItem))
]
 public ITemplate SeparatorTemplate
 {
 get
 {
 return separatorTemplate;
 }
 set
 {
 separatorTemplate = value;
 }
 }

 /// <summary>
 /// The content to be shown below search results at bottom of control.
 /// </summary>
 [Browsable(false),
 DefaultValue(null),
 Description(
 "The content to be shown below search results at bottom of control."),
 PersistenceMode(PersistenceMode.InnerProperty),
 TemplateContainer(typeof(ResultItem))
]
 public ITemplate FooterTemplate
 {
 get
 {
 return footerTemplate;
 }
 set
 {
 footerTemplate = value;
 }
 }
 #endregion

Cameron_865-2C12.fm Page 635 Friday, February 22, 2008 1:05 PM

636 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 #region Events and Event Handling
 public event EventHandler<LiveSearchSearchedEventArgs> LiveSearchSearched;
 /// <summary>
 /// Protected method for invoking LiveSearchSearched
 /// event from within Result control
 /// </summary>
 /// <param name="e">Event arguments including search results</param>
 protected virtual void OnLiveSearchSearched(LiveSearchSearchedEventArgs e)
 {
 EventHandler<LiveSearchSearchedEventArgs> evnt = LiveSearchSearched;
 if (evnt != null)
 evnt(this, e);
 }

 public event EventHandler<ResultItemEventArgs> ItemCreated;
 /// <summary>
 /// Protected method for invoking ItemCreated event from within Result control
 /// </summary>
 /// <param name="e">Event arguments</param>
 protected virtual void OnItemCreated(ResultItemEventArgs e)
 {
 EventHandler<ResultItemEventArgs> evnt = ItemCreated;
 if (evnt != null)
 evnt(this, e);
 }

 public event EventHandler<ResultItemEventArgs> ItemDataBound;
 /// <summary>
 /// Protected method for invoking ItemDataBound event
 /// from within Result control
 /// </summary>
 /// <param name="e">Event arguments</param>
 protected virtual void OnItemDataBound(ResultItemEventArgs e)
 {
 EventHandler<ResultItemEventArgs> evnt = ItemDataBound;
 if (evnt != null)
 evnt(this, e);
 }

 /// <summary>
 /// Handles bubbled up events from child controls to catch paging events
 /// from Pager control
 /// </summary>
 /// <param name="sender">Control which is source of event</param>
 /// <param name="e">Event arguments</param>
 /// <returns></returns>

Cameron_865-2C12.fm Page 636 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 637

 protected override bool OnBubbleEvent(object source, EventArgs args)
 {
 // Handle events raised by children by overriding OnBubbleEvent.
 // (main purpose is to detect paging events)
 bool handled = false;
 CommandEventArgs cea = args as CommandEventArgs;

 // handle Page event by extracting new start index
 // and calling HandleSearch method which does the
 // work of re-binding this control to the results
 // from the web service
 if (cea.CommandName == "Page")
 {
 PageNumber = Convert.ToInt32(cea.CommandArgument);
 HandleSearch();
 }
 return handled;
 }

 private void HandleSearch()
 {
 SourceRequest[] sourceRequests = new SourceRequest[1];
 sourceRequests[0] = new SourceRequest();
 sourceRequests[0].Source = SourceType.Web;
 sourceRequests[0].Count = PageSize;
 //Specifies the number of results to return from offset
 sourceRequests[0].Offset = PageSize * (PageNumber - 1);
 //start index for returned results
 //For paging, specify new offset to get next results.
 //so for count of 5, to get 6-10 specify offset of 5 for page 2
 sourceRequests[0].ResultFields = ResultFieldMask.All |
 ResultFieldMask.DateTime;

 SearchResponse searchResults =
 SearchUtility.SearchLiveSearchService(
 Query, sourceRequests);

 OnLiveSearchSearched(new LiveSearchSearchedEventArgs(searchResults));

 this.DataSource = searchResults;
 this.DataBind();
 }
 #endregion

 #region Control Creation/Rendering
 private ResultItem CreateResultItem(int index, ResultItemType
itemType, bool dataBind, object dataItem)

Cameron_865-2C12.fm Page 637 Friday, February 22, 2008 1:05 PM

638 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 {
 ITemplate selectedTemplate;

 switch (itemType)
 {
 case ResultItemType.Header:
 selectedTemplate = HeaderTemplate;
 break;
 case ResultItemType.Status:
 if (StatusTemplate == null)
 {
 // if no StatusTemplate, pick up the default
 // template ResultStatusTemplate
 selectedTemplate = new ResultStatusTemplate();
 }
 else
 selectedTemplate = StatusTemplate;
 break;
 case ResultItemType.Item:
 if (ItemTemplate == null)
 {
 // if no ItemTemplate, pick up the default
 // template ResultItemTemplate
 selectedTemplate = new ResultItemTemplate();
 }
 else
 selectedTemplate = ItemTemplate;
 break;
 case ResultItemType.AlternatingItem:
 selectedTemplate = AlternatingItemTemplate;
 if (selectedTemplate == null)
 {
 // if no AlternatingItemTemplate, switch to Item type
 // and pick up ItemTemplate
 itemType = ResultItemType.Item;
 selectedTemplate = ItemTemplate;
 if (selectedTemplate == null)
 {
 // if that doesn't work, pick up the default
 // template ResultItemTemplate
 selectedTemplate = new ResultItemTemplate();
 }
 }
 break;
 case ResultItemType.Separator:
 selectedTemplate = SeparatorTemplate;
 break;

Cameron_865-2C12.fm Page 638 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 639

 case ResultItemType.Footer:
 selectedTemplate = FooterTemplate;
 break;
 default:
 selectedTemplate = null;
 break;
 }

 ResultItem item = new ResultItem(index, itemType, dataItem);

 if (selectedTemplate != null)
 {
 selectedTemplate.InstantiateIn(item);
 }

 OnItemCreated(new ResultItemEventArgs(item));
 Controls.Add(item);

 if (dataBind)
 {
 item.DataBind();
 OnItemDataBound(new ResultItemEventArgs(item));
 }
 return item;
 }

 private ResultItem CreatePagerResultItem()
 {
 ResultItem item = new ResultItem(-1, ResultItemType.Pager, null);

 Pager pager = new Pager();
 pager.PageSize = PageSize;
 pager.PagerBarRange = PagerBarRange;
 pager.PagerLinkStyle = PagerLinkStyle;
 pager.TotalResultsCount = TotalResultsCount;
 pager.PageNumber = PageNumber;

 item.Controls.Add(pager);

 Controls.Add(item);

 return item;
 }

Cameron_865-2C12.fm Page 639 Friday, February 22, 2008 1:05 PM

640 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 private void CreateControlHierarchy(bool dataBind)
 {
 Controls.Clear();
 SearchResponse result = null;

 // Result items
 items = new Collection<ResultItem>();

 int count = 0;

 if (dataBind == true)
 {
 if (DataSource == null)
 return;
 result = DataSource;

 // set ViewState values for read-only props
 ViewState["TotalResultsCount"] =
result.Responses[0].Total;
 ViewState["Offset"] = result.Responses[0].Offset;
 ViewState["Source"] = result.Responses[0].Source;

 count = result.Responses[0].Results.Length;
 ViewState["ResultItemCount"] = count;
 }
 else
 {
 object temp = ViewState["ResultItemCount"];
 if (temp != null)
 count = (int)temp;
 }

 if (HeaderTemplate != null)
 {
 ResultItem headerItem = CreateResultItem(-1,
ResultItemType.Header, false, null);
 items.Add(headerItem);
 }

 ResultItem statusItem = CreateResultItem(-1, ResultItemType.Status,
dataBind, result);
 items.Add(statusItem);

 // loop through and create ResultItem controls for each of the
 // result elements from the Live Search web service result
 ResultItemType itemType = ResultItemType.Item;
 for (int i = 0; i < count; i++)

Cameron_865-2C12.fm Page 640 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 641

 {
 if (separatorTemplate != null)
 {
 ResultItem separator =
 CreateResultItem(-1, ResultItemType.Separator, false, null);
 items.Add(separator);
 }

 LiveSearchService.Result searchResultItem = null;
 if (dataBind == true)
 {
 searchResultItem = result.Responses[0].Results[i];
 }

 ResultItem item = CreateResultItem(i,
 itemType, dataBind, searchResultItem);
 items.Add(item);

 // swap between item and alternatingitem types
 if (itemType == ResultItemType.Item)
 itemType = ResultItemType.AlternatingItem;
 else
 itemType = ResultItemType.Item;
 }

 // display pager if allowed by user and if results
 // are greater than a page in length
 if (DisplayPager == true && TotalResultsCount > PageSize)
 {
 ResultItem pager = CreatePagerResultItem();
 items.Add(pager);
 }

 if (FooterTemplate != null)
 {
 ResultItem footer = CreateResultItem(-1, ResultItemType.Footer,
false, null);
 items.Add(footer);
 }
 }

 private void CreateBlankControlHierarchy()
 {
 if (HeaderTemplate != null)
 {
 ResultItem headerItem = CreateResultItem(-1,

Cameron_865-2C12.fm Page 641 Friday, February 22, 2008 1:05 PM

642 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

ResultItemType.Header, false, null);
 items.Add(headerItem);
 }

 if (FooterTemplate != null)
 {
 ResultItem footer = CreateResultItem(-1, ResultItemType.Footer,
false, null);
 items.Add(footer);
 }
 }

 /// <summary>
 /// Called by framework for composite controls to create control hierarchy
 /// </summary>
 override protected void CreateChildControls()
 {
 if (searchConducted == false &&
 ViewState["ResultItemCount"] != null)
 {
 CreateControlHierarchy(false);
 }
 }

 /// <summary>
 /// Binds search control results to control contents
 /// </summary>
 public override void DataBind()
 {
 base.OnDataBinding(System.EventArgs.Empty);

 Controls.Clear();
 ClearChildViewState();
 TrackViewState();

 searchConducted = true;
 CreateControlHierarchy(true);
 ChildControlsCreated = true;
 }

 /// <summary>
 /// Overridden to ensure Controls collection is created before external access
 /// </summary>
 public override ControlCollection Controls
 {

Cameron_865-2C12.fm Page 642 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 643

 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

 /// <summary>
 /// Override of base method of server controls that does
 /// rendering of HTML content
 /// between the outer div tags
 /// </summary>
 /// <param name="writer">Stream class for HTML output</param>
 protected override void RenderContents(HtmlTextWriter writer)
 {
 // if no search, create a hierarchy with header and
 // footer templates only
 if (!searchConducted)
 {
 CreateBlankControlHierarchy();
 }

 // prep all template styles
 PrepareControlHierarchy();

 // render all child controls
 base.RenderContents(writer);
 }
 #endregion
 }
}

Now that we have covered the Search and Result server controls, in the next section we
discuss the Pager control.

The Pager Control
The Pager control wraps the cumbersome logic of calculating page ranges in the pager bar and
determining whether or not to display a Previous or Next button. It takes the properties we
discussed earlier—PageSize, PagerBarRange, TotalResultsCount, and PageNumber—and builds a
composite child control structure to render the paging functionality. The interesting work it
does is centered on its CreateControlHierarchy implementation.

The actual scaffolding for the Pager control is an HTML table that has a row for text links.
You can break it down into the following sections: Results Page label, Previous link, page links,
and Next link. Figure 12-9 shows the pager at the beginning of the search results without a
Previous link displayed.

Cameron_865-2C12.fm Page 643 Friday, February 22, 2008 1:05 PM

644 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

Figure 12-9. A Pager control without a Previous link

Figure 12-10 shows the situation in which there are pages before and after the current page.

Figure 12-10. A Pager control with Previous and Next links

In the scenario in which there are no subsequent pages in the page range, as shown in
Figure 12-11, the Next link is omitted.

Figure 12-11. A Pager control without a Next link

Creating the Pager Results
The Pager control, like the Result and Search controls, is built using a composite control archi-
tecture. Because of this, it overrides the CreateControlHierarchy method to build up its HTML
table structure:

private void CreateControlHierarchy()
{
 table = new Table();

 TableRow textRow = new TableRow();
 textRow.VerticalAlign = VerticalAlign.Top;

 // insert localized "Page Results:" text
 CreatePagerResults(textRow, PagerLinkStyle);

The first part of this method adds the Results section:

private void CreatePagerResults(TableRow textRow,
ResultPagerLinkStyle style)
{
 TableCell cell;

 cell = new TableCell();

Cameron_865-2C12.fm Page 644 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 645

 ResourceManager rm = ResourceFactory.Manager;

 cell.Text = rm.GetString("Pager.resultsPageCell.Text");
 cell.Wrap = false;
 cell.HorizontalAlign = HorizontalAlign.Center;
 textRow.Cells.Add(cell);
}

Creating the Pager’s Previous Button
The next piece of code calculates the total number of pages based on the EndIndex and PageSize
values. The current page is also determined by looking at the StartIndex of the current web service
search and dividing it by PageSize:

// calculate the total number of pages based on the
// page size and the TotalResultsCount from the
// search service query
int numPages = (int) System.Math.Ceiling(
 (double) TotalResultsCount / PageSize);

The PageNumber value on Pager is provided by the Result control, so no calculation is required.
The end page is calculated through some simple math calculations, as shown here:

int endPage = 0;
int calculatedEndPage = (int)System.Math.Floor((double)
 TotalResultsCount / PageSize);
if ((calculatedEndPage - PageNumber) > PagerBarRange)
 endPage = PageNumber + PagerBarRange - 1;
else
 endPage = calculatedEndPage;

The following CreatePagerPreviousButton method has code to create the Previous link.
We use LinkButton for the text link as well.

private void CreatePagerPreviousButton(TableRow textRow,
 ResultPagerLinkStyle style, int prevIndex)
{

 TableCell cell;

 ResourceManager rm = ResourceFactory.Manager;

 cell = new TableCell();
 LinkButton prevButton = new LinkButton();
 prevButton.ID = "PrevButton";
 prevButton.Text = rm.GetString("Pager.prevButton.Text");
 prevButton.CommandName = "Page";
 prevButton.CommandArgument = prevIndex.ToString();
 cell.HorizontalAlign = HorizontalAlign.Right;

Cameron_865-2C12.fm Page 645 Friday, February 22, 2008 1:05 PM

646 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 cell.Controls.Add(prevButton);

 textRow.Cells.Add(cell);
}

Crucial to the functioning of the parent Result control are the LinkButton objects that are
configured to raise a specific command event named Page. The CommandArgument argument to
the event is set to the numeric index of the page and is received by the Result control in its
OnBubbleEvent override.

Creating the Pager’s Bar Pages
The next section of code in CreateControlHierarchy deals with the page numbers that are
directly displayed in the Results bar by the Pager control. The PagerBarRange property controls
the size of this bar. Inside the code, we loop through each page, creating its content by invoking
CreatePagerPageButton:

// loop through each page and spit out the page link
for (int pageNum = startPage; pageNum <= endPage; pageNum++)
{

 // insert Page number text
 CreatePagerPageButton(textRow, PagerLinkStyle,
 pageNum, (currentPage == pageNum));
}

The code in the following CreatePagerPageButton creates the link for each page of results:

private void CreatePagerPageButton(TableRow textRow,
 ResultPagerLinkStyle style, int pageNum, bool currentPage)
{
 TableCell cell;
 LiteralControl lit;

 cell = new TableCell();
 cell.HorizontalAlign = HorizontalAlign.Center;

 // add extra separation between page numbers
 // if text only paging is used
 if (style == ResultPagerLinkStyle.Text)
 {
 lit = new LiteralControl();
 lit.Text = " ";
 cell.Controls.Add(lit);
 }
 //For TextWithDHTML functionality, you can create a
 //HighlightedLinkButton class similar to the
 //HighlightedHyperlink created in chapter 9
 //and render that instead of the basic LinkButton

Cameron_865-2C12.fm Page 646 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 647

 //based on the configured ResultPagerLinkStyle
 LinkButton pageButton = new LinkButton();
 pageButton.ID = "page" + pageNum.ToString() + "Button";
 pageButton.Text = pageNum.ToString();
 pageButton.CommandName = "Page";
 pageButton.CommandArgument = pageNum.ToString();
 pageButton.CausesValidation = true;
 if (currentPage == true)
 pageButton.ControlStyle.Font.Bold = true;

 cell.Controls.Add(pageButton);
 textRow.Cells.Add(cell);
}

Creating the Pager’s Next Button
After we are done creating the page number links, we have code that is similar to the Previous
button code. However, this code creates the Next button with a call to CreatePagerNextButton:

// insert a next link if less than max number of pages
if (calculatedEndPage > endPage)
{
 // insert Next text
 CreatePagerNextButton(textRow, PagerLinkStyle, PageNumber + 1);
}

The code for CreatePagerNextButton is as follows:

private void CreatePagerNextButton(TableRow textRow,
 ResultPagerLinkStyle style, int nextIndex)
{
 TableCell cell = new TableCell();
 LiteralControl lit;

 cell = new TableCell();

 // add extra separation between page numbers
 // if text only paging is used
 if (style == ResultPagerLinkStyle.Text)
 {
 lit = new LiteralControl();
 lit.Text = " ";
 cell.Controls.Add(lit);
 }

 ResourceManager rm = ResourceFactory.Manager;

Cameron_865-2C12.fm Page 647 Friday, February 22, 2008 1:05 PM

648 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 LinkButton nextButton = new LinkButton();
 nextButton.ID = "nextButton";
 nextButton.Text = rm.GetString("Pager.nextButton.Text");
 nextButton.CommandName = "Page";
 nextButton.CommandArgument = nextIndex.ToString();
 cell.HorizontalAlign = HorizontalAlign.Center;
 cell.Controls.Add(nextButton);

 textRow.Cells.Add(cell);
}

Ensuring Pager’s Style Rendering
The Pager server control overrides the RenderContents methods for two primary reasons. First,
it ensures that all child controls are correctly created in a design-time situation. It does that by
having code that calls EnsureChildControls in the rendering override. Second, it ensures that
the PagerStyle property maintained by the Result control and specifically passed by the code
in its PrepareControlHierarchy implementation is rendered correctly as part of the internal
structure of the Pager control.

protected override void RenderContents(HtmlTextWriter writer)
{
 EnsureChildControls();

 PrepareControlHierarchy();

 base.RenderContents (writer);
}

It uses a PrepareControlHierarchy implementation to grab the Table control, which is the
major child structure, and applies its ControlStyle property to it if it has been set:

protected void PrepareControlHierarchy()
{
 // apply the Pager style attributes to the
 // table if they were specified by Result control
 if (this.ControlStyleCreated)
 table.ApplyStyle(this.ControlStyle);
}

At this point, we have a fully functional Pager control. Listing 12-7 presents the complete
class file.

Listing 12-7. The Pager.cs Class File

using System.Resources;
using System.Web.UI;
using System.Web.UI.WebControls;

Cameron_865-2C12.fm Page 648 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 649

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Pager control implements the paging functionality aggregated
 /// by the Result control
 /// </summary>
 internal class Pager : CompositeControl
 {
 private Table table;
 private ResultPagerLinkStyle pagerLinkStyle;
 private int pagerBarRange;
 private int pageSize;
 private int totalResultsCount;
 private int pageNumber;

 /// <summary>
 /// Pager is based on span tag
 /// </summary>
 protected override HtmlTextWriterTag TagKey
 {
 get
 {
 return HtmlTextWriterTag.Span;
 }
 }

 /// <summary>
 /// Number of search results returned with query and displayed on page.
 /// </summary>
 public int PageSize
 {
 get
 {
 return pageSize;
 }
 set
 {
 pageSize = value;
 }
 }

 /// <summary>
 /// Number of pages displayed in pager bar.
 /// </summary>
 public int PagerBarRange
 {

Cameron_865-2C12.fm Page 649 Friday, February 22, 2008 1:05 PM

650 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 get
 {
 return pagerBarRange;
 }
 set
 {
 pagerBarRange = value;
 }
 }

 /// <summary>
 /// Style of Pager control link display.
 /// </summary>
 public ResultPagerLinkStyle PagerLinkStyle
 {
 get
 {
 return pagerLinkStyle;
 }
 set
 {
 pagerLinkStyle = value;
 }
 }

 ///<summary>
 /// Current Page of search results.
 ///</summary>
 public int PageNumber
 {
 get
 {
 return pageNumber;
 }
 set
 {
 pageNumber = value;
 }
 }

 /// <summary>
 /// Estimated total results count from query.
 /// </summary>
 public int TotalResultsCount
 {

Cameron_865-2C12.fm Page 650 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 651

 get
 {
 return totalResultsCount;
 }
 set
 {
 totalResultsCount = value;
 }
 }

 private void CreatePagerResults(TableRow textRow,
 ResultPagerLinkStyle style)
 {
 TableCell cell;

 cell = new TableCell();

 ResourceManager rm = ResourceFactory.Manager;

 cell.Text = rm.GetString("Pager.resultsPageCell.Text");
 cell.Wrap = false;
 cell.HorizontalAlign = HorizontalAlign.Center;
 textRow.Cells.Add(cell);
 }

 private void CreatePagerPreviousButton(TableRow textRow,
 ResultPagerLinkStyle style, int prevIndex)
 {

 TableCell cell;

 ResourceManager rm = ResourceFactory.Manager;

 cell = new TableCell();
 LinkButton prevButton = new LinkButton();
 prevButton.ID = "PrevButton";
 prevButton.Text = rm.GetString("Pager.prevButton.Text");
 prevButton.CommandName = "Page";
 prevButton.CommandArgument = prevIndex.ToString();
 cell.HorizontalAlign = HorizontalAlign.Right;
 cell.Controls.Add(prevButton);

 textRow.Cells.Add(cell);
 }

Cameron_865-2C12.fm Page 651 Friday, February 22, 2008 1:05 PM

652 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 private void CreatePagerPageButton(TableRow textRow,
 ResultPagerLinkStyle style, int pageNum, bool currentPage)
 {
 TableCell cell;
 LiteralControl lit;

 cell = new TableCell();
 cell.HorizontalAlign = HorizontalAlign.Center;

 // add extra separation between page numbers
 // if text only paging is used
 if (style == ResultPagerLinkStyle.Text)
 {
 lit = new LiteralControl();
 lit.Text = " ";
 cell.Controls.Add(lit);
 }
 //For TextWithDHTML functionality, you can create a
 //HighlightedLinkButton class similar to the
 //HighlightedHyperlink created in chapter 9
 //and render that instead of the basic LinkButton
 //based on the configured ResultPagerLinkStyle
 LinkButton pageButton = new LinkButton();
 pageButton.ID = "page" + pageNum.ToString() + "Button";
 pageButton.Text = pageNum.ToString();
 pageButton.CommandName = "Page";
 pageButton.CommandArgument = pageNum.ToString();
 pageButton.CausesValidation = true;
 if (currentPage == true)
 pageButton.ControlStyle.Font.Bold = true;

 cell.Controls.Add(pageButton);
 textRow.Cells.Add(cell);
 }

 private void CreatePagerNextButton(TableRow textRow,
 ResultPagerLinkStyle style, int nextIndex)
 {
 TableCell cell = new TableCell();
 LiteralControl lit;

 cell = new TableCell();

 // add extra separation between page numbers
 // if text only paging is used

Cameron_865-2C12.fm Page 652 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 653

 if (style == ResultPagerLinkStyle.Text)
 {
 lit = new LiteralControl();
 lit.Text = " ";
 cell.Controls.Add(lit);
 }

 ResourceManager rm = ResourceFactory.Manager;

 LinkButton nextButton = new LinkButton();
 nextButton.ID = "nextButton";
 nextButton.Text = rm.GetString("Pager.nextButton.Text");
 nextButton.CommandName = "Page";
 nextButton.CommandArgument = nextIndex.ToString();
 cell.HorizontalAlign = HorizontalAlign.Center;
 cell.Controls.Add(nextButton);

 textRow.Cells.Add(cell);
 }

 private void CreateControlHierarchy()
 {
 table = new Table();

 TableRow textRow = new TableRow();
 textRow.VerticalAlign = VerticalAlign.Top;

 // insert localized "Page Results:" text
 CreatePagerResults(textRow, PagerLinkStyle);

 // if the page number greater than 1 you can put in a previous page
 // link
 if (PageNumber > 1)
 {
 // insert Previous text
 CreatePagerPreviousButton(textRow, PagerLinkStyle, PageNumber - 1);
 }

 int endPage = 0;
 int calculatedEndPage =
 (int)System.Math.Floor((double)TotalResultsCount / PageSize);
 if ((calculatedEndPage - PageNumber) > PagerBarRange)
 endPage = PageNumber + PagerBarRange - 1;
 else
 endPage = calculatedEndPage;

Cameron_865-2C12.fm Page 653 Friday, February 22, 2008 1:05 PM

654 CH AP T E R 1 2 ■ B U I L D I N G A C OM PL E X C O N T R OL

 // loop through each page and spit out the page link
 for (int pageNum = PageNumber; pageNum <= endPage; pageNum++)
 {

 // insert Page number text
 CreatePagerPageButton(textRow, PagerLinkStyle,
 pageNum,(PageNumber == pageNum));
 }

 // insert a next link if less than max number of pages
 if (calculatedEndPage > endPage)
 {
 // calculate the next index to link to
 int nextIndex = PageNumber + PagerBarRange;
 // insert Next text
 CreatePagerNextButton(textRow, PagerLinkStyle, PageNumber + 1);
 }

 // always display text links
 table.Rows.Add(textRow);

 Controls.Add(table);
 }

 /// <summary>
 /// Called by framework for composite controls to create control heirarchy
 /// </summary>
 override protected void CreateChildControls()
 {
 Controls.Clear();
 CreateControlHierarchy();
 }

 /// <summary>
 /// Overridden to ensure Controls collection is created before external access
 /// </summary>
 public override ControlCollection Controls
 {
 get
 {
 EnsureChildControls();
 return base.Controls;
 }
 }

Cameron_865-2C12.fm Page 654 Friday, February 22, 2008 1:05 PM

C HA P TE R 1 2 ■ B U IL D IN G A CO M P L E X CO N T R O L 655

 protected void PrepareControlHierarchy()
 {
 // apply the Pager style attributes to the
 // table if they were specified by Result control
 if (this.ControlStyleCreated)
 table.ApplyStyle(this.ControlStyle);
 }

 /// <summary>
 /// Overridden to ensure styles are properly applied
 /// </summary>
 protected override void RenderContents(HtmlTextWriter writer)
 {
 EnsureChildControls();

 PrepareControlHierarchy();

 base.RenderContents(writer);
 }
 }
}

This completes the first part of our discussion of the Live Search server control. In the next
chapter, we dive deeper into the implementation details and test the functionality of the control.

Summary
In this chapter, we focused on putting together a full-featured control based on the Live Search
web service. We covered the web service API and the design decisions that went into the control,
and we provided detailed discussion of the individual controls. The discussion included infor-
mation on building a control library in a strong-named assembly to allow it to deploy into the
global assembly cache (GAC) for easy machine-level deployment and to provide built-in tamper-
resistant facilities. We also demonstrated how to use the web.config configuration file system
for our own purposes by developing a custom configuration section for our control library.

We rounded out this chapter with a detailed discussion of the individual controls that
make up the Live Search control library. We also set the stage for the next chapter by imple-
menting configuration management for licensing and deployment. In the next chapter, we
finish our discussion of the Live Search control by covering design-time functionality, template
support, globalization, localization, and tools to assist with quality and deployment.

Cameron_865-2C12.fm Page 655 Friday, February 22, 2008 1:05 PM

Cameron_865-2C12.fm Page 656 Friday, February 22, 2008 1:05 PM

657

■ ■ ■

C H A P T E R 1 3

Packaging and Deployment

This chapter is second in our two-part discussion of the Live Search control. In the previous
chapter, we covered the design of each control, configuration management, and of course, the Live
Search API and the design decisions that went into the control to interact with the Live Search API.
In this chapter, we start off with a discussion of design-time support in the Live Search control and
then jump into the packaging and deployment using our Live Search control as an example. We
focus on the following topics for packaging and deploying server controls:

• Design-time support (data binding and templates)

• Testing the Live Search controls

• Licensing

• Implementing globalization and localization

• Using Visual Studio Code Analysis for Managed Code to check design decisions and
coding conventions

• Using XML comments in code to generate documentation

Designer Support
Oftentimes, what separates a good control from a great control is the design-time experience
for users of a server control, or any component for that matter. We covered design-time support in
detail in Chapter 11. In this section, we extend the discussion and cover the design-time support
built into the Live Search web control library to provide a pleasant UI when working with the
controls at design time.

Designers and Dummy Data Source
The designer support for the Live Search web control library centers on support for the two
primary controls that are visible and reachable in the design-time environment. Both Result
and Search have a designer built specifically for them. SearchDesigner is the simpler of the two.
As shown in Listing 13-1, it is a typical composite control designer that implements the bare
minimum to get it rendered correctly.

Cameron_865-2C13.fm Page 657 Thursday, February 21, 2008 2:22 PM

658 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Listing 13-1. The SearchDesigner.cs Class File

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.Design.WebControls;

namespace ControlsBook2Lib.CH12.LiveSearchControls.Design
{
 /// <summary>
 /// Designer for LiveSearch Lib Search control
 /// </summary>
 public class SearchDesigner : CompositeControlDesigner
 {
 /// <summary>
 /// Initialize the resources of the designer
 /// </summary>
 /// <param name="component">Component which the designer is linked to</param>
 public override void Initialize(IComponent component)
 {
 if (!(component is Control) && !(component is INamingContainer))
 {
 throw new ArgumentException(
 "This control is not a composite control.", "component");
 }
 base.Initialize(component);
 }

 /// <summary>
 /// HTML rendered when control has an "empty" configuration
 /// </summary>
 /// <returns>HTML string</returns>
 protected override string GetEmptyDesignTimeHtml()
 {
 return CreatePlaceHolderDesignTimeHtml(
 Component.GetType() + " control.");
 }

 /// <summary>
 /// HTML rendered when control has an "error" in its configuration
 /// </summary>
 /// <returns>HTML string</returns>
 protected override string GetErrorDesignTimeHtml(Exception e)
 {

Cameron_865-2C13.fm Page 658 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 659

 return CreatePlaceHolderDesignTimeHtml(
 "There was an error rendering the" +
 this.Component.GetType() + " control." +
 "
Exception: " + e.Source + " Message: " + e.Message);
 }
 }
}

ResultDesigner is more complex. Because it handles the large number of templates that
the Result control exposes, it provides visual template editing support for the following templates:
HeaderTemplate, StatusTemplate, ItemTemplate, AlternatingItemTemplate, SeparatorTemplate,
and FooterTemplate. Figure 13-1 shows the template menu options.

Figure 13-1. The ResultDesigner template editing user interface

The GetDesignTimeHtml method also uses a dummy data source instead of actually invoking
the Live Search web service in the designer. ResultDummyDataSource has a method named
GetLiveSearchSearchResults that takes as a parameter the page size so that it will create that
many elements in the result set. ResultDesigner queries the Result control for its PageSize
property value before invoking GetLiveSearchResults to make the design-time display more
reflective of the execution display.

Cameron_865-2C13.fm Page 659 Thursday, February 21, 2008 2:22 PM

660 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

The full code for ResultDesigner is shown in Listing 13-2, and the code for
ResultDummyDataSource is in Listing 13-3.

Listing 13-2. The ResultDesigner.cs Class File

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Web.UI;
using System.Web.UI.Design;

namespace ControlsBook2Lib.CH12.LiveSearchControls.Design
{
 /// <summary>
 /// Designer class for the Result server control
 /// </summary>
 public class ResultDesigner : ControlDesigner
 {
 TemplateGroupCollection templateGroupCol;

 /// <summary>
 /// Initialize the resources of the designer
 /// </summary>
 /// <param name="component">Component which the designer is linked to</param>
 public override void Initialize(IComponent component)
 {
 base.Initialize(component);
 if (!(component is Result) && !(component is INamingContainer))
 {
 throw new ArgumentException(
 "This control is not a Result control.", "component");
 }
 else
 SetViewFlags(ViewFlags.TemplateEditing, true);
 }

 /// <summary>
 /// Pointer to template editing menu items
 /// </summary>
 public override TemplateGroupCollection TemplateGroups
 {
 get
 {
 if (templateGroupCol == null)
 {
 // Get the base collection
 templateGroupCol = base.TemplateGroups;

Cameron_865-2C13.fm Page 660 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 661

 TemplateGroup templateGroup;
 TemplateDefinition templateDef;
 Result ctl;

 //Get reference to the component as Result
 ctl = (Result)Component;

 //Create Template Group
 templateGroup = new TemplateGroup("TemplateMenu Templates");

 //Status
 templateDef = new TemplateDefinition(this, "Status",
 ctl, "StatusTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Header
 templateDef = new TemplateDefinition(this, "Header",
 ctl, "HeaderTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Separator
 templateDef = new TemplateDefinition(this, "Separator",
 ctl, "SeparatorTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Item
 templateDef = new TemplateDefinition(this, "Item",
 ctl, "ItemTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Alternate Item
 templateDef = new TemplateDefinition(this, "AlternateItem",
 ctl, "AlternateItemTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 //Footer
 templateDef = new TemplateDefinition(this, "Footer",
 ctl, "FooterTemplate", false);
 templateGroup.AddTemplateDefinition(templateDef);

 // Add the TemplateGroup to the TemplateGroupCollection
 templateGroupCol.Add(templateGroup);
 }

 return templateGroupCol;
 }
 }

Cameron_865-2C13.fm Page 661 Thursday, February 21, 2008 2:22 PM

662 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 /// <summary>
 /// Determines if designer allows control to be resized in editor
 /// </summary>
 public override bool AllowResize
 {
 get
 {
 bool templateExists =
 null != ((Result)Component).HeaderTemplate ||
 null != ((Result)Component).StatusTemplate ||
 null != ((Result)Component).AlternatingItemTemplate ||
 null != ((Result)Component).ItemTemplate ||
 null != ((Result)Component).SeparatorTemplate ||
 null != ((Result)Component).FooterTemplate;

 return templateExists || InTemplateMode;
 }
 }

 /// <summary>
 /// Provides HTML for the visual designer to display
 /// </summary>
 /// <returns>HTML string based on rendering the
 /// control with a dummy data source</returns>
 public override string GetDesignTimeHtml()
 {
 Result control = (Result)Component;
 string designTimeHTML = null;

 // bind Result control to dummy data source
 // that has the appropriate page size
 control.DataSource =
 ResultDummyDataSource.GetLiveSearchResults(control.PageSize);
 control.DataBind();

 // let base class designer call Render() on
 // data-bound control to get HTML
 designTimeHTML = base.GetDesignTimeHtml();

 return designTimeHTML;
 }

 /// <summary>
 /// HTML rendered when control has an "error" in its configuration
 /// </summary>
 /// <returns>HTML string</returns>

Cameron_865-2C13.fm Page 662 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 663

 protected override string GetErrorDesignTimeHtml(Exception e)
 {

 return CreatePlaceHolderDesignTimeHtml(
 "There was an error rendering the TemplateMenu control." +
 "
Exception: " + e.Source + " Message: " + e.Message);
 }

 /// <summary>
 /// Checks to see if any templates have their content set to a non-empty value
 /// </summary>
 protected bool TemplatesExist
 {
 get
 {
 return (
 ((Result)Component).HeaderTemplate != null ||
 ((Result)Component).StatusTemplate != null ||
 ((Result)Component).ItemTemplate != null ||
 ((Result)Component).AlternatingItemTemplate != null ||
 ((Result)Component).SeparatorTemplate != null ||
 ((Result)Component).FooterTemplate != null
);
 }
 }

 /// <summary>
 /// Called when the component has been changed
 /// </summary>
 /// <param name="sender">Sender of the event</param>
 /// <param name="e">Event data including member that was changed.</param>
 public override void OnComponentChanged(
 object sender, ComponentChangedEventArgs ce)
 {
 if (ce.Member != null)
 {
 string memberName = ce.Member.Name;
 if (memberName.Equals("HeaderStyle") ||
 memberName.Equals("StatusStyle") ||
 memberName.Equals("ItemStyle") ||
 memberName.Equals("AlternatingItemStyle") ||
 memberName.Equals("SeparatorStyle") ||
 memberName.Equals("PagerStyle") ||
 memberName.Equals("FooterStyle"))

Cameron_865-2C13.fm Page 663 Thursday, February 21, 2008 2:22 PM

664 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 {
 OnStylesChanged();
 }
 }

 base.OnComponentChanged(sender, ce);
 }

 /// <summary>
 /// Override of method that is invoked when control styles change
 /// </summary>
 protected void OnStylesChanged()
 {
 //OnTemplateEditingVerbsChanged();
 }

 /// <summary>
 /// HTML rendered when control has an "empty" configuration
 /// </summary>
 /// <returns>HTML string</returns>
 protected override string GetEmptyDesignTimeHtml()
 {
 string text;

 if (!TemplatesExist)
 {
 text = "Click the arrow, select edit Template,
 then choose a template to modify.";
 }
 else
 {
 text = "Switch to HTML view to edit the control's templates.";
 }
 return CreatePlaceHolderDesignTimeHtml(text);
 }
 }
}

Listing 13-3. The ResultDummyDataSource.cs Class File

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Provides a fictional Data source to show control rendering of
 /// templates while control is in design-time mode
 /// </summary>

Cameron_865-2C13.fm Page 664 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 665

 public sealed class ResultDummyDataSource
 {
 private const int TotalResultsCount = 100;

 private ResultDummyDataSource()
 {
 }
 /// <summary>
 /// Returns a LiveSearchService.SearchResponse data set that is valid
 /// according to web service guidelines
 /// </summary>
 /// <param name="pageSize">
 page size of the LiveSearchService.SearchResponse set</param>
 /// <returns>LiveSearchService.SearchResponse instance
 with Service.resultElement
 /// entries present according to page size</returns>
 public static LiveSearchService.SearchResponse
 GetLiveSearchResults(int pageSize)
 {
 LiveSearchService.SearchResponse result = new
 LiveSearchService.SearchResponse();
 LiveSearchService.SourceResponse[] sr = new
 LiveSearchService.SourceResponse[TotalResultsCount];
 result.Responses = sr;
 sr.SetValue(new LiveSearchService.SourceResponse(), 0);
 result.Responses[0].Total = TotalResultsCount;
 result.Responses[0].Source = LiveSearchService.SourceType.Web;
 result.Responses[0].Offset = 0;
 // fill up 10 result elements
 result.Responses[0].Results = new LiveSearchService.Result[pageSize];
 for (int i = 0; i < pageSize; i++)
 {
 result.Responses[0].Results[i] = GetResult(i);
 }

 return result;
 }

 /// <summary>
 /// Returns a valid LiveSearchService.Result instance
 /// </summary>
 /// <param name="index">Index to help create title and url</param>
 /// <returns>Fully populated LiveSearchService.Result instance</returns>
 public static LiveSearchService.Result GetResult(int index)
 {

Cameron_865-2C13.fm Page 665 Thursday, February 21, 2008 2:22 PM

666 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 LiveSearchService.Result result = new LiveSearchService.Result();
 result.Title = "Result Control " + (index + 1);
 result.Url = "http://apress.com/resultcontrol" + (index + 1);
 result.Summary = "Summary";
 result.Description = "Description";
 result.CacheUrl = "http://apress.com/cached" + (index + 1);
 return result;
 }
 }
}

In the next section, we discuss the default template support provided in the Result
control.

Template Support in the Result Control
The Result control is able to display a decent stock Live Search look and feel even when dropped
directly from the Toolbox. This is achieved through the use of two templates, ResultStatusTemplate
and ResultItemTemplate, which are added to the control if the template structure is not set in
the .aspx page containing the control. To provide implementation of the default templates, the
template classes must implement the ITemplate interface and its InstantiateIn method. The
signature for this method is as follows:

public void InstantiateIn(Control container)
{}

The template is given the container in which to instantiate its controls. In
ResultStatusTemplate, we use InstantiateIn to add a Label control and a LiteralControl,
which represents an HTML break:

public void InstantiateIn(Control container)
{
 Label header = new Label();
 header.DataBinding +=new EventHandler(BindResultHeader);
 container.Controls.Add(header);
 LiteralControl lit = new LiteralControl();
 lit.Text = "
";
 container.Controls.Add(lit);
}

We also map the DataBinding event exposed by the Label control to BindResultHeader. This
allows us to later insert the correct information into our Label control when a data source is
attached to the StatusTemplate of the Result control in its data-binding process. BindResultHeader
uses a help method named GetResultControl, which is able to cast from the Label control
upward to get at the Result control. We then use the GetResult helper method to grab the
search result data from in the form of the LiveSearchResult class. The rest of the method is a
process of building up a string that depicts the range of the search results, the number of total
results, and the time it took for the query to happen. Listing 13-4 shows the full source code for
ResultStatusTemplate.

Cameron_865-2C13.fm Page 666 Thursday, February 21, 2008 2:22 PM

http://apress.com/resultcontrol
http://apress.com/cached

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 667

Listing 13-4. The ResultStatusTemplate.cs Class File

using System;
using System.Resources;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Default StatusTemplate implementation used by a
 /// Stock Live Result control without a StatusTemplate
 /// </summary>
 public class ResultStatusTemplate : ITemplate
 {
 /// <summary>
 /// Method puts template controls into container control
 /// </summary>
 /// <param name="container">Outside control container to template items</param>
 public void InstantiateIn(Control container)
 {
 Label header = new Label();
 header.DataBinding += new EventHandler(BindResultHeader);
 container.Controls.Add(header);
 LiteralControl lit = new LiteralControl();
 lit.Text = "
";
 container.Controls.Add(lit);
 }

 private Result GetResultControl(Control container)
 {
 ResultItem itemControl = (ResultItem)container.Parent;
 Result resultControl = (Result)itemControl.Parent;
 return resultControl;
 }

 private void BindResultHeader(object source, EventArgs e)
 {
 Label header = (Label)source;
 Result resultControl = GetResultControl(header);

 StringBuilder section = new StringBuilder();

 // get ResouceManager for localized format strings
 ResourceManager rm = ResourceFactory.Manager;

Cameron_865-2C13.fm Page 667 Thursday, February 21, 2008 2:22 PM

668 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 // Searched for: <searchQuery>
 section.Append(
 String.Format(
 rm.GetString("ResultStatusTemplate.SearchFor"),
 resultControl.Query));
 section.Append("
");

 // Result <StartIndex+1> - <EndIndex+1> of about
 // <TotalResultsCount> records
 // (accounting for zero based index)
 section.Append(
 String.Format(
 rm.GetString("ResultStatusTemplate.ResultAbout"),
 ((resultControl.PageNumber - 1) * (resultControl.PageSize)) + 1,
 resultControl.PageNumber * (resultControl.PageSize),
 resultControl.TotalResultsCount));
 section.Append(" ");

 header.Text = section.ToString();
 }
 }
}

ResultItemTemplate provides the default display for each item from the search results. The
control content added inside the container includes a hyperlink displaying the title field Live
Search Result and providing a hyperlink to the value of its URL field. It also adds a label to
display the snippet field and a label to display the URL field. It uses three separate data-binding
routines to accomplish the data loading: BindLink, BindSnippet, and BindUrl. Listing 13-5
presents the full source code.

Listing 13-5. The ResultItemTemplate.cs Class File

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Default ResultItemTemplate implementation used by a
 /// Stock LiveSearch Lib Result control without a ItemTemplate
 /// </summary>
 public class ResultItemTemplate : ITemplate
 {
 /// <summary>
 /// Method puts template controls into container control
 /// </summary>
 /// <param name="container">Outside control container to template items</param>

Cameron_865-2C13.fm Page 668 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 669

 public void InstantiateIn(Control container)
 {
 HyperLink link = new HyperLink();
 link.DataBinding += new EventHandler(BindLink);
 container.Controls.Add(link);
 container.Controls.Add(new LiteralControl("
"));

 Label snippet = new Label();
 snippet.DataBinding += new EventHandler(BindSnippet);
 container.Controls.Add(snippet);
 container.Controls.Add(new LiteralControl("
"));

 Label url = new Label();
 url.DataBinding += new EventHandler(BindUrl);
 container.Controls.Add(url);
 container.Controls.Add(new LiteralControl("
"));
 container.Controls.Add(new LiteralControl("
"));
 }

 private LiveSearchService.Result GetResultElement(Control container)
 {
 ResultItem item = (ResultItem)container;
 return (LiveSearchService.Result)item.DataItem;
 }

 private void BindLink(object source, EventArgs e)
 {
 HyperLink link = (HyperLink)source;
 LiveSearchService.Result elem = GetResultElement(link.NamingContainer);
 link.Text = elem.Title;
 link.NavigateUrl = elem.Url;
 }

 private void BindSnippet(object source, EventArgs e)
 {
 Label snippet = (Label)source;
 LiveSearchService.Result elem = GetResultElement(snippet.NamingContainer);
 snippet.Text = elem.Description;
 }

 private void BindUrl(object source, EventArgs e)
 {
 Label url = (Label)source;
 LiveSearchService.Result elem = GetResultElement(url.NamingContainer);
 url.Text = elem.Url;
 }
 }
}

Cameron_865-2C13.fm Page 669 Thursday, February 21, 2008 2:22 PM

670 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Toolbox Image Icons
After the controls are built, we can ensure a nice experience in the Toolbox used by Visual Studio
web forms when in design mode by adding Toolbox image icons. This task is accomplished by
putting a 16×16 bitmap file with the same name as the control and settings its Build Action property
in the Visual Studio Properties window to Embedded Resource. Once this is complete and the DLL
representing the control library is built, you can add the controls in the DLL into the Toolbox via the
Visual Studio Tools menu’s Customize Toolbox dialog box, as shown in Figure 13-2.

Figure 13-2. The Customize Toolbox dialog box

The end result of adding the new controls is a Toolbox tab like the one shown in Figure 13-3.

Figure 13-3. Toolbox icons for the Live Search controls library

Cameron_865-2C13.fm Page 670 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 671

In the next section, we put all the Live Search controls to work in a couple of demonstra-
tion web forms.

Testing the Live Search Controls
The default look and feel of the Live Search controls displays if you drag and drop the controls
onto a web form. Both the Search and Result controls require little configuration effort to provide
a pleasing display in the Visual Studio Control Designer, as shown in Figure 13-4.

Figure 13-4. The stock Search and Result controls in the Visual Studio Control Designer

The Default Look and Feel
The same default look and feel shown at design time is generated in the browser. Figure 13-5
shows the initial page with just the Search control rendering its output. Type in a search query,
and you can see the results in Figure 13-6.

■Tip Remember to replace the settings in the web.config file of the web application project that relate to
the Live Search Application ID as well as add the license file in order to get the samples shown in Figures 13-5 and
13-6 working.

Cameron_865-2C13.fm Page 671 Thursday, February 21, 2008 2:22 PM

672 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Figure 13-5. A blank Live Search search page

Figure 13-6. The result of a Live Search search query

Listings 13-6 and 13-7 contain the web form and the code-behind file, respectively.

Cameron_865-2C13.fm Page 672 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 673

Listing 13-6. The LiveSearchSearch.aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="LiveSearch.aspx.cs"
 Inherits="ControlsBook2Web.Ch12.LiveSearch"
 Title="Live Search Demo" %>

<%@ Register TagPrefix="ApressLive"
Namespace="ControlsBook2Lib.CH12.LiveSearchControls"
 Assembly="ControlsBook2Lib.CH12.LiveSearchControls" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">12</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Building a Complex Control</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Ch12 Live Search</h3>
 <ApressLive:Search ID="search" runat="server" RedirectToLiveSearch="false"
 Width="426px"
 ResultControl="Result"></ApressLive:Search>

 <ApressLive:Result ID="Result" runat="server" PagerStyle="TextWithDHTML"
 PagerBarRange="4"
 PageSize="8" PageNumber="1" PagerLinkStyle="Text">
 <HeaderStyle Font-Bold="True" ForeColor="Blue" BorderColor="Blue"></HeaderStyle>
 <StatusStyle Font-Bold="True" ForeColor="Blue"></StatusStyle>
 </ApressLive:Result>
</asp:Content>

Listing 13-7. The LiveSearchSearch.cs Code-Behind Class File

using System;

namespace ControlsBook2Web.Ch12
{
 public partial class LiveSearch : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 }
}

Cameron_865-2C13.fm Page 673 Thursday, February 21, 2008 2:22 PM

674 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Customizing the Live Search Controls’ Appearance
The Live Search controls we produced provide extensive support for customization through
styles, templates, and data-binding overrides. The next web form demonstration takes
advantage of all three features. The CustomLiveSearch web form implements its own version of
ItemTemplate, AlternatingItemTemplate, and StatusTemplate to show a numbered list of the
search results on the left side and a different color for each alternating row.

The work of keeping the item index is performed in the code-behind class file that links up
to events exposed by the Search and Result controls. It resets the resultIndex variable when
either Search or Result raises the LiveSearchSearched event. Then, on each ItemCreated event
raised by the Result control, it increments its counter and inserts the number at the head of the
ResultItem content for each row as part of the user interface. Figure 13-7 shows the result.

Figure 13-7. The result of the LiveSearch.aspx search query

Listings 13-8 and 13-9 show the web form and the code-behind file, respectively.

Cameron_865-2C13.fm Page 674 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 675

Listing 13-8. The CustomLiveSearch.aspx Page File

<%@ Page Language="C#" MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="CustomLiveSearch.aspx.cs"
Inherits="ControlsBook2Web.Ch12.CustomLiveSearch"
 Title="Custom live Search Demo" %>

<%@ Register TagPrefix="ApressLive"
Namespace="ControlsBook2Lib.CH12.LiveSearchControls"
 Assembly="ControlsBook2Lib.CH12.LiveSearchControls" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"
 Width="14px">12</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Building a Complex Control</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Ch12 Custom Live Search</h3>
 <ApressLive:Search ID="search" runat="server" ResultControl="Result"
 RedirectToLiveSearch="false"
 OnLiveSearchSearched="search_LiveSearchSearched"
 onlivesearchsearchedeventhandler="search_LiveSearchSearched">
 </ApressLive:Search>

 <ApressLive:Result ID="Result" runat="server" DisplayPager="true"
 OnItemCreated="Result_ItemCreated"
 OnLiveSearchSearched="Result_LiveSearchSearched"
 onlivesearchsearchedeventhandler="Result_LiveSearchSearched"
 onresultitemeventhandler="Result_ItemCreated" PagerLinkStyle="Text">
 <ItemTemplate>
 <a href="<%# ((LiveSearchService.Result)Container.DataItem).Url %>">
 <%# ((LiveSearchService.Result)Container.DataItem).Url%>

 <%# ((LiveSearchService.Result)Container.DataItem).Description%>

 </ItemTemplate>
 <ItemStyle Font-Size="X-Small" Font-Names="Arial" Font-Italic="True">
 </ItemStyle>
 <FooterStyle Font-Italic="True" Font-Names="Arial" Font-Size="X-Small">
 </FooterStyle>
 <PagerStyle Font-Bold="True" ForeColor="Red"></PagerStyle>
 <AlternatingItemStyle Font-Italic="True" Font-Names="Arial"
 Font-Size="X-Small" />

Cameron_865-2C13.fm Page 675 Thursday, February 21, 2008 2:22 PM

676 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 <HeaderTemplate>
 Search Results
 </HeaderTemplate>
 <StatusStyle Font-Bold="True" ForeColor="#CC9900"></StatusStyle>
 <HeaderStyle Font-Names="Arial" ForeColor="#339933" />
 <AlternatingItemTemplate>
 <a href=" <%# ((LiveSearchService.Result)Container.DataItem).Url %>">
 <%#((LiveSearchService.Result)Container.DataItem).Url %>

 <%# ((LiveSearchService.Result)Container.DataItem).Description%>

 </AlternatingItemTemplate>
 <StatusTemplate>
 Displaying entries
 <%# ((Result.PageNumber - 1) * (Result.PageSize)) + 1%>
 -
 <%# Result.PageNumber * (Result.PageSize)%>
 of about
 <%# Result.TotalResultsCount%>.

 </StatusTemplate>
 <SeparatorTemplate>
 <hr />
 </SeparatorTemplate>
 </ApressLive:Result>
</asp:Content>

Listing 13-9. The CustomLiveSearch.cs Code-Behind Class File

using System;
using System.Web.UI;
using ControlsBook2Lib.CH12.LiveSearchControls;

namespace ControlsBook2Web.Ch12
{
 public partial class CustomLiveSearch : System.Web.UI.Page
 {
 private int resultIndex;

 protected void Page_Load(object sender, EventArgs e)
 {
 }

Cameron_865-2C13.fm Page 676 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 677

 protected void search_LiveSearchSearched(object sender,
 LiveSearchSearchedEventArgs lse)
 {
 resultIndex = lse.Result.Responses[0].Offset;
 }

 protected void Result_LiveSearchSearched(object sender,
 LiveSearchSearchedEventArgs lse)
 {
 resultIndex = lse.Result.Responses[0].Offset;
 }

 protected void Result_ItemCreated(object sender, ResultItemEventArgs e)
 {
 ResultItem item = e.Item;
 if (item.ItemType == ResultItemType.Item ||
 item.ItemType == ResultItemType.AlternatingItem)
 {
 item.Controls.AddAt(0, new LiteralControl
 ((((Result.PageNumber - 1) * Result.PageSize) +
 item.ItemIndex + 1).ToString() + "."));
 resultIndex++;
 }
 }
 }
}

Now that we have demonstrated the fully functioning search and result server controls, in
the next section, we discuss how to add licensing support to a custom server control.

Licensing Support
We ignored two key aspects of the source code for the Search and Result controls to streamline
our discussion: globalization and licensing. We start the process by drilling down into licensing.
The licensing system that we provide for the Live Search control is based on the licensing
framework that is already in place for .NET.

Several core classes provide the architecture and base foundation for adding licensing to
components in the .NET Framework environment, as shown in Figure 13-8.

The primary class is the abstract LicenseProvider class, which ensures that a particular
component has the necessary licensing information. To do its job, the LicenseProvider class
relies on another abstract base class, the License class, to physically represent the licensing
information. LicenseProvider has a key abstract method called GetLicense that validates and
returns a License instance if it passes inspection. To link LicenseProvider to a component that
needs license validation, the LicenseProviderAttribute attribute is provided to attach at the
class level of the component. Once this is done, code is also manually added to the constructor
to kick off the license validation process through the Validate method of the LicenseManager class.

Cameron_865-2C13.fm Page 677 Thursday, February 21, 2008 2:22 PM

678 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Figure 13-8. The .NET licensing architecture

The .NET Framework provides a trivial implementation of the abstract LicenseProvider
class named LicFileLicenseProvider that provides a minimal licensing enforcement check.
The only check it performs is for the presence of a .lic file with a text string in it, but it serves
as a good starting point. We improve on this simple scheme in the following sections by writing
a custom implementation of LicenseProvider and other related licensing classes using more
advanced cryptographic techniques.

The RsaLicense License
The License class from the System.ComponentModel namespace represents the information
used to direct the behavior of the license validation system and control feature enablement.
For our licensing system, we rely on the following information stored in our custom license class:

• System.Type value of the control to which the license applies

• Globally unique identifier (GUID) for the particular build of the control for licensing
purposes

• Expiration date for the license

• Full key string from the license file

The resulting class is simple because it is primarily a structure for information transport.
Listing 13-10 shows the full code for our RsaLicense class.

Control LicenseProviderAttribute

LicenseManager

License

LicenseProvider

License
File

Cameron_865-2C13.fm Page 678 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 679

Listing 13-10. The RsaLicense.cs Class File

using System;
using System.ComponentModel;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// License class for server controls using RSA crypto
 /// </summary>
 public class RsaLicense : License
 {
 private Type type;
 private string licenseKey;
 private string guid;
 private DateTime expireDate;
 private bool _disposed;

 /// <summary>
 /// Constructor for RsaLicense control license class
 /// </summary>
 /// <param name="type">Type of server control to license</param>
 /// <param name="key">Full key value of license</param>
 /// <param name="guid">Guid for server control type build</param>
 /// <param name="expireDate">Date license expires</param>
 public RsaLicense(Type type, string key, string guid, DateTime expireDate)
 {
 licenseKey = key;
 this.type = type;
 this.guid = guid;
 this.expireDate = expireDate;
 }

 /// <summary>
 /// Full key value of license stored in license file
 /// </summary>
 public override string LicenseKey
 {
 get
 {
 return licenseKey;
 }
 }

 /// <summary>
 /// Server control type the license is bound to
 /// </summary>

Cameron_865-2C13.fm Page 679 Thursday, February 21, 2008 2:22 PM

680 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 public Type AssociatedServerControlType
 {
 get
 {
 return type;
 }
 }

 /// <summary>
 /// Guid representing specific build of server control type
 /// </summary>
 public string Guid
 {
 get
 {
 return guid;
 }
 }

 /// <summary>
 /// Expiration date of license
 /// </summary>
 public DateTime ExpireDate
 {
 get
 {
 return expireDate;
 }
 }

 /// <summary>
 /// You must override Dispose for controls derived from the License clsas
 /// </summary>
 public sealed override void Dispose()
 {
 //Dispose of any unmanaged resourcee
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!_disposed)
 {
 if (disposing)
 {
 //Dispose of additional unmanaged resources here

Cameron_865-2C13.fm Page 680 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 681

 //if (_resource != null)
 //_resource.Dispose();
 }

 // Indicate that the instance has been disposed.
 // Set additional unmanaged resources to null here
 //_resource = null;
 _disposed = true;
 }
 }
 }
}

License Cryptography
Now that we have reviewed the .NET representation of the licensing information, we next focus
on the cryptographic techniques used by our system to authorize use of our control. We present a
cursory review of public key cryptography and how it is used to secure the license file informa-
tion in a tamper-proof manner. For a more detailed look at cryptography features in the .NET
Framework SDK and for more information on this topic in general, please consult a text on
cryptography.

Public key cryptography is a popular technique in the world of cryptography that helps
with the traditional problem of exchanging private keys used for encryption and decryption.
Instead of using a single private key that is shared by both parties—which is subject to inter-
ception or loss because it must be distributed to both parties—you use two keys that have
different capabilities. Generally speaking, you can use one key to encrypt and the other key to
read without knowing the private key. Figure 13-9 illustrates the differences between public
and private key cryptography.

Figure 13-9. Public and private key cryptography

Cameron_865-2C13.fm Page 681 Thursday, February 21, 2008 2:22 PM

682 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

The asymmetric nature of the keys in public key cryptography provides us with the ability
to distribute one side of the keys without compromising the other, meaning that the public key
cannot be readily used to figure out the private key.

The general usage of public key cryptography falls into two patterns, encryption and digital
signature, as shown in Figure 13-10. In encryption, someone is able to send an encrypted message
using the public key that only the private key holder can read. A digital signature comes into
play when the holder of the private key encrypts something to prove possession of that key to
anyone holding the public key. This is traditionally the signature of a hash value to make that
process as computationally friendly as possible. This public key technology is the basis of
the technology we discussed earlier that is used by the .NET Framework to sign assemblies to
prevent tampering.

Figure 13-10. Public key cryptography usage patterns

We could have chosen a private key system for use with our control system. We moved
away from this for two reasons. First, we want to demonstrate how to use public key cryptog-
raphy in building control license schemes, and second, we want to solve the problem of how to
embed the key in the code without giving away the secrets to the operation. This is not to say
our approach is infallible or that private key techniques are any worse. Any technique chosen
can be broken with patience through a brute-force attack or similar means on the part of the
attacker. The purpose of encryption is to provide enough barriers to deter the effort for enough
time to make attack less likely.

The starting point with building the licensing system is to generate a public and private
key pair. An organization building a control library can use a tool such as the one we provide in
the sample code project to generate all the necessary data. The control provider then keeps the
generated private key in a secure location, so it is safe from loss and is not compromised. The
public key is inserted into the metadata of the control in an XML format for use as part of the

Cameron_865-2C13.fm Page 682 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 683

license validation process. We also take the extra step of inserting a GUID metadata value into
the control to give us a way to version licenses without having to continually regenerate public/
private key pairs.

The second process is the generation of the license file. It has the following format:

guid#expiration date#signature

The GUID matches up to the specific GUID that was embedded in the control library
metadata. The expiration date puts an upper bound on how long the control can be used
before the license is invalid. The signature of this licensing information is what makes the
license file valid and tamper-proof through public key cryptography.

To create the signature for the license file string, we run a byte code value that represents
the license data for the GUID and expiration data through the SHA-1 algorithm to generate a
hash value. This algorithm has a reasonable guarantee of a unique output for its input to prevent
someone from tampering to get the correct output value. For each change in the input, such as
a single character, the output bytes will vary wildly.

After the hash is calculated, it is signed with the RSA algorithm using the private key of the
control provider to protect the licensing values against tampering by including this digital
signature. The process of verifying integrity when the control is deployed also unlocks the
control functionality.

The process of validating the license file occurs in reverse order of the process for creating
the digital signature. The first action the control licensing code takes is to locate and read the
license file from a well-known location. In our case, we chose to put the license file into a direc-
tory of the web application for easy deployment. Once the licensing code locates the file, the
control licensing code takes the clear text portion of the license string to parse its value. If the
GUID in the license file equals the GUID in the metadata for the control and the expiration date
has not been met, the process continues with verification of the digital signature. To do the
verification, the licensing code calculates a hash of the clear text license key. After the hash is
completed, the licensing code reaches into the metadata of the control to find the public key
used to unlock the signature present in the license file. The public key is able to decrypt the
signature and check to make sure that the decrypted hash and the separately computed hash
are identical. If the two are equal, we make the assumption that the information the license file
contains is valid and the control is allowed to continue its normal execution process.

Generating the License
To make this process easy on the control developer, we include source code for a rudimentary
sample Windows Forms–based license generator that does the grunge work of creating the
license file and handling the cryptography. It also makes it easy to reverify previously gener-
ated license data. Figure 13-11 shows what the application looks like.

Cameron_865-2C13.fm Page 683 Thursday, February 21, 2008 2:22 PM

684 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Figure 13-11. The License Generator application

The application is fairly simple to use. Click the Generate License button to populate the
text box fields on the form with a new private/public key pair, a GUID, and a digital signature
based on the expiration date. Make sure to copy and paste the public and private keys to a safe
location for storage and use with the control building process. Click the Create Lic File button
once this initialization step has occurred to enable you to save the licensing data in the correct
.lic file format. Listing 13-11 shows the important code from the application.

Listing 13-11. The License Generator Application Code

private string GetLicenseText()
{
 return GUID.Text + "#" + Expires.Value.ToShortDateString() + "#";
}

private void btnGenLicense_Click(object sender, System.EventArgs e)
{
 GUID.Text = Guid.NewGuid().ToString();
 byte[] clear = ASCIIEncoding.ASCII.GetBytes(GetLicenseText());
 SHA1Managed provSHA1 = new SHA1Managed();
 byte[] hash = provSHA1.ComputeHash(clear);

 RSACryptoServiceProvider provRSA = new RSACryptoServiceProvider();
 PublicKey.Text = provRSA.ToXmlString(false);
 PrivateKey.Text = provRSA.ToXmlString(true);

 byte[] signature = provRSA.SignHash(hash, CryptoConfig.MapNameToOID("SHA1"));

 License.Text = GetLicenseText() +
 Convert.ToBase64String(signature,0,signature.Length);
}

Cameron_865-2C13.fm Page 684 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 685

The first thing the License Generator application does is create a new GUID. It then calls
GetLicenseText to get the clear text license string with the expiration date. Next, it passes this
as an array of bytes to SHA1Managed, the .NET-managed implementation of the SHA-1 hash
algorithm, to create byte array for the hash with its ComputeHash method.

The byte array hash is passed to RSACryptoServiceProvider, which is initialized shortly
afterward in the code. Notice how we use its ToXmlString methods to easily grab the newly
generated public and private keys that are created when RSACryptoServiceProvider is initial-
ized in a convenient-to-handle format.

The SignHash method on RSACryptoServiceProvider creates the digital signature needed
to ensure integrity and validate the license information. The resulting final license text is put
back together to include GUID, expiration date, and signature at the very end. The default
license file that is included with the source code for the book contains the following data after
all is said and done with the License Generator application (you can download the source code
from the Source Code/Download area of the Apress web site, http://www.apress.com):

55489e7a-bff5-4b3c-8f21-c43fad861dfa#12/12/2017#R9C0UxTZ4rU41A36WFjlM
x5ZjS9rwv4x6mTcNU3H0ocCkHqw/7ZWrIyhVChyZfBYmtYWGjgvJ2gipIWzEobmyqvc2z
Tff2i8cRg0KuxaeTl8rKffRPLcA0OV3SiXuOF93MCBWcoxwLU3kPHRcQEz9NBnB5jWYqo
lK9FKQ7dvIFE=

The RsaLicenseDataAttribute Custom Attribute
After the license data is generated, we bind some of the information to the control itself to
ensure linkage between the signature in the license file and the control. The important pieces
of information are the GUID and the public key. Instead of putting them in hidden fields inside
the control, we chose to store them in metadata that is easily accessible, because the public
information in them does not compromise the integrity of the license system.
RsaLicenseDataAttribute is a custom attribute that is built specifically for this purpose.

■Note You can override the control implementation and replace the custom License attribute with a new
value. One way to handle this situation is to make the Search and Result classes sealed. This requires
some additional code reworking to remove the virtual/protected modifiers from several of the methods. We do
not do this work here; rather, we leave it open for extension and further customization.

Listing 13-12 presents the full code for the custom attribute.

Listing 13-12. The RsaLicenseDataAttribute Class File

using System;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Custom attribute for annotating licensing data on LiveSearch Lib controls
 /// </summary>

Cameron_865-2C13.fm Page 685 Thursday, February 21, 2008 2:22 PM

http://www.apress.com):

686 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 [AttributeUsage(AttributeTargets.Class, Inherited = false,
 AllowMultiple = false)]
 public sealed class RsaLicenseDataAttribute : Attribute
 {
 private string guid;
 private string publicKey;

 /// <summary>
 /// Constructor for RsaLicenseDataAttribute
 /// </summary>
 /// <param name="guid"></param>
 /// <param name="publicKey"></param>
 public RsaLicenseDataAttribute(string guid, string publicKey)
 {
 this.guid = guid;
 this.publicKey = publicKey;
 }

 /// <summary>
 /// Guid representing specific build of server control type
 /// </summary>
 public string Guid
 {
 get
 {
 return guid;
 }
 }

 /// <summary>
 /// Public key representing specific build of server control type
 /// </summary>
 public string PublicKey
 {
 get
 {
 return publicKey;
 }
 }
 }
}

Next, we discuss how to apply licensing to the Search and Result custom server controls.

Adding Licensing to the Search and Result Controls
The RsaLicenseDataAttribute attribute is applied with the appropriate values to both the Search
and Result controls to provide the means of accessing the GUID and public key for validation.

Cameron_865-2C13.fm Page 686 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 687

We add LicenseProviderAttribute to link in our custom license provider, RsaLicenseProvider,
which we cover in a moment. We use the following code:

#if LICENSED
 RsaLicenseData(
 "55489e7a-bff5-4b3c-8f21-c43fad861dfa",

 "<RSAKeyValue><Modulus>mWpgckAepJAp4aU0AvEcGg3TdO+0VXws9LjiSCLpy7aQKD5V7uj
49Exh1RtcB6TcuXxm0R6dw75VmKwyoGbvYT6btOIwQgqbLhci5LjWmWUPEdBRiYsOLD0h2POX
s9xTvp4IDTKXYoP8GPDRKzklJuuxCbbUcooESQoYHp9ppbE=</Modulus><Exponent>AQAB</
Exponent></RSAKeyValue>"),
 LicenseProvider(typeof(RsaLicenseProvider)),
#endif

The LICENSED keyword is a conditional compilation constant available in the C# language
that allows the project to quickly and easily be compiled with or without licensing if needed.
The default setting for LICENSED is defined in the Visual Studio project that comes with this
book’s source code.

You can change this setting by going to the LiveSearchControls project in the Visual Studio
Solution Explorer, right-clicking, and selecting the Properties menu item to bring up the project
Properties dialog box. On the Build tab, look for the “Conditional compilation symbols” constants
section. Figure 13-12 shows what the dialog box for this build setting looks like. Remove LICENSED
from the list, and the code between #if and #endif will be ignored in the compile process.

Figure 13-12. Conditional compilation constant for licensing

Cameron_865-2C13.fm Page 687 Thursday, February 21, 2008 2:22 PM

688 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

The RsaLicenseProvider Class
The heart of the validation process exists inside the RsaLicenseProvider class. It inherits from
the base LicenseProvider class to implement the GetLicense method, which validates licensing
data and then returns a valid license if successful in that process. The signature for GetLicense
is as follows:

public override License GetLicense(LicenseContext context, Type type, object
 instance, bool allowExceptions)
{

The first parameter is an instance of LicenseContext that informs the LicenseProvider
implementation what the current environment is. We use it to determine whether the server
control is executing within a design-time environment. The Type parameter and the Object
parameter provide access to the control type and instance that is validated. AllowExceptions is
a Boolean that indicates whether LicenseProvider should throw a LicenseException to indicate
that the control was unable to obtain a valid license. In our code, this is ignored, and instead of
raising an exception, the code returns a null value. The full implementation for GetLicense is
as follows:

public override License GetLicense(LicenseContext context, Type type, object
instance, bool allowExceptions)
{
 string attrGuid = "";
 string publicKey = "";

 // pull licensing data (guid/publickey) from custom attributes
 // on the control
 RsaLicenseDataAttribute licDataAttr = GetRsaLicenseDataAttribute(type);
 if (licDataAttr == null)
 return null;
 publicKey = licDataAttr.PublicKey;
 attrGuid = licDataAttr.Guid;

 // if in Design mode create and return nonexpiring license
 // so design-time ASP.NET is always working
 if (context.UsageMode == LicenseUsageMode.Designtime)
 {
 return new RsaLicense(type, "", attrGuid, DateTime.MaxValue);
 }

 // check cache for cached license information
 RsaLicense license = licenseCache.GetLicense(type);
 string keyValue = "";
 if (license == null)
 {
 // check the license folder under the web root for a
 // license file and parse key data from it
 keyValue = LoadLicenseData(type);

Cameron_865-2C13.fm Page 688 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 689

 // validate the new license data key value
 DateTime expireDate = new DateTime();
 if (IsKeyValid(keyValue, publicKey, attrGuid, type, ref expireDate))
 {
 license = new RsaLicense(type, keyValue, attrGuid, expireDate);
 licenseCache.AddLicense(type, license);
 }

 }
 return license;
}

The first bit of code in GetLicense is responsible for grabbing the information from the
custom attributes. This is handled by the GetRsaLicenseDataAttribute helper method:

private RsaLicenseDataAttribute GetRsaLicenseDataAttribute(System.Type type)
{
 RsaLicenseDataAttribute licDataAttr;
 object[] attrs = type.GetCustomAttributes(false);
 foreach (object attr in attrs)
 {
 licDataAttr = attr as RsaLicenseDataAttribute;
 if (licDataAttr != null)
 return licDataAttr;
 }
 return null;
}

Once GetLicense retrieves the licensing information, it obtains the public key and GUID
value from the metadata and stores them in instance variables. Afterward, GetLicense checks
to see if the control itself is running in design-time mode and, if so, it creates a valid license to
permit the class to work in the designer.

After verifying that the server control is running in the design-time environment, GetLicense
checks whether the license is in a custom cache class that holds licenses based on the type of
the executing control. The cache class is named RsaLicenseCache and is based on a Hashtable
collection with strongly typed methods. This is a static field of RsaLicenseProvider to save on
the resource-intensive task of going to disk to examine and parse license information for each
control instance. If the license is in the cache, GetLicense returns immediately to save on
processing time. If not, GetLicense executes the validation process by examining the data in
the license file. LoadLicenseData is the method responsible for looking up the control information:

protected string LoadLicenseData(Type type)
{
 // format of license files in web app folder structure
 // web root\
 // license\
 // Apress.LiveSearchControls.lic

 string keyValue = "";

Cameron_865-2C13.fm Page 689 Thursday, February 21, 2008 2:22 PM

690 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 string assemblyName = type.Assembly.GetName().Name;
 string relativePath = "~\\license\\" + assemblyName + ".lic";
 string licFilePath = HttpContext.Current.Server.MapPath(relativePath);

 if (File.Exists(licFilePath))
 {
 // grab the first line that contains license data
 FileStream file = new FileStream(licFilePath,
 FileMode.Open, FileAccess.Read, FileShare.ReadWrite);
 StreamReader rdr = new StreamReader(file);
 keyValue = rdr.ReadLine();
 rdr.Close();
 file.Close();
 }

 return keyValue;
}

The location at which LoadLicenseData looks for the licensing information is a directory
named “license” off of the web application directory. It looks for a file with the same name as
the assembly but with a .lic extension. For our control library, this would be ControlsBook2Lib.
CH12.LiveSearchControls.lic.

After the code returns from GetLicense, we have the license string ready for verification.
The following IsKeyValid method takes care of this. If IsKeyValid returns true, GetLicense adds
the license to the cache and returns a valid instance to signify the process was successful. The
IsKeyValid method uses the String.Split method to separate the license string by the hash
mark character (#) and checks compliance by validating against the date timestamp and the
GUID returned from the control metadata:

protected bool IsKeyValid(string keyValue, string publicKey, string attrGuid,
System.Type type, ref DateTime expireDate)
{
 if (keyValue.Length == 0)
 return false;

 char[] separators = { '#' };
 string[] values = keyValue.Split(separators);
 string signature = values[2];
 string licGuid = values[0];
 string expires = values[1];

 // Convert the expiration date using the neutral
 // culture of the assembly(en-US)
 expireDate = Convert.ToDateTime(expires,
 DateTimeFormatInfo.InvariantInfo);

Cameron_865-2C13.fm Page 690 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 691

 // do a date comparison for expiration and make
 // sure we are matching control with right license data
 return (licGuid == attrGuid &&
 expireDate > DateTime.Now &&
 VerifyHash(publicKey, licGuid, expires, signature));
}

The IsKeyValid method then calls the VerifyHash method to perform the cryptographic
work that verifies the digital signature:

private bool VerifyHash(string publicKey, string guid, string expires,
 string signature)
{
 // recompute the hash value
 byte[] clear = ASCIIEncoding.ASCII.GetBytes(guid + "#" + expires + "#");
 SHA1Managed provSHA1 = new SHA1Managed();
 byte[] hash = provSHA1.ComputeHash(clear);

 // reload the RSA provider based on the public key only
 CspParameters paramsCsp = new CspParameters();
 paramsCsp.Flags = CspProviderFlags.UseMachineKeyStore;
 RSACryptoServiceProvider provRSA = new RSACryptoServiceProvider(paramsCsp);
 provRSA.FromXmlString(publicKey);

 // verify the signature on the hash
 byte[] sigBytes= Convert.FromBase64String(signature);
 bool result = provRSA.VerifyHash(hash, CryptoConfig.MapNameToOID("SHA1"),
 sigBytes);

 return result;
}

The SHA1Managed implementation of the SHA-1 hashing algorithm is used to create a
computed hash value on the contents of the license file. Once this is complete, an instance of
RSACryptoServiceProvider is initialized using the public key from the control metadata. The
VerifyHash and RSACryptoServiceProvider methods next verify that the signature in the license
file is valid according to the separately computed hash. The result of this check is returned
from RSACryptoServiceProvider.VerifyHash to IsKeyValid, which, in turn, notifies the parent
GetLicense of success or failure.

At this point, we have completed our discussion of license validation. Listings 13-13 and
13-14 contain the code for RsaLicenseCache and RsaLicenseProvider.

Listing 13-13. The RsaLicenseCache.cs Class File

using System;
using System.Collections;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{

Cameron_865-2C13.fm Page 691 Thursday, February 21, 2008 2:22 PM

692 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 /// <summary>
 /// Custom cache collection built on Hashtable for storing RsaLicense instances
 /// </summary>
 internal class RsaLicenseCache
 {
 private Hashtable hash = new Hashtable();

 public void AddLicense(Type type, RsaLicense license)
 {
 hash.Add(type, license);
 }

 public RsaLicense GetLicense(Type type)
 {
 RsaLicense license = null;
 if (hash.ContainsKey(type))
 license = (RsaLicense)hash[type];
 return license;
 }

 public void RemoveLicense(Type type)
 {
 hash.Remove(type);
 }
 }
}

Listing 13-14. The RsaLicenseProvider.cs Class File

using System;
using System.ComponentModel;
using System.Globalization;
using System.IO;
using System.Security.Cryptography;
using System.Text;
using System.Web;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{
 /// <summary>
 /// Custom license provider for LiveSearch Lib which use RSA crypto
 /// </summary>
 public class RsaLicenseProvider : LicenseProvider
 {
 static RsaLicenseCache licenseCache = new RsaLicenseCache();

 /// <summary>
 /// Called by LicenseManager to retrieve a license

Cameron_865-2C13.fm Page 692 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 693

 /// </summary>
 /// <param name="context">Context of request (design/runtime)</param>
 /// <param name="type">Control type needing license</param>
 /// <param name="instance">Control instance needing license</param>
 /// <param name="allowExceptions">true if a LicenseException should be thrown
 when the component cannot be granted a license; otherwise, false.</param>
 /// <returns></returns>
 public override License GetLicense(LicenseContext context, Type type,
 object instance, bool allowExceptions)
 {
 string attrGuid = "";
 string publicKey = "";

 // pull licensing data (guid/publickey) from custom attributes
 // on the control
 RsaLicenseDataAttribute licDataAttr = GetRsaLicenseDataAttribute(type);
 if (licDataAttr == null)
 return null;
 publicKey = licDataAttr.PublicKey;
 attrGuid = licDataAttr.Guid;

 // if in Design mode create and return non-expiring license
 // so design time ASP.NET is always working
 if (context.UsageMode == LicenseUsageMode.Designtime)
 {
 return new RsaLicense(type, "", attrGuid, DateTime.MaxValue);
 }

 // check cache for cached license information
 RsaLicense license = licenseCache.GetLicense(type);
 string keyValue = "";
 if (license == null)
 {
 // check the license folder under the web root for a
 // license file and parse key data from it
 keyValue = LoadLicenseData(type);

 // validate the new license data key value
 DateTime expireDate = new DateTime();
 if (IsKeyValid(keyValue, publicKey, attrGuid, expireDate))
 {
 license = new RsaLicense(type, keyValue, attrGuid, expireDate);
 licenseCache.AddLicense(type, license);
 }
 }
 return license;
 }

Cameron_865-2C13.fm Page 693 Thursday, February 21, 2008 2:22 PM

694 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 /// <summary>
 /// Method to look up custom licensing attribute on server control
 /// </summary>
 /// <param name="type">Control type for custom attribute lookup</param>
 /// <returns></returns>
 private RsaLicenseDataAttribute GetRsaLicenseDataAttribute(System.Type type)
 {
 RsaLicenseDataAttribute licDataAttr;
 object[] attrs = type.GetCustomAttributes(false);
 foreach (object attr in attrs)
 {
 licDataAttr = attr as RsaLicenseDataAttribute;
 if (licDataAttr != null)
 return licDataAttr;
 }
 return null;
 }

 /// <summary>
 /// Methods retireves license key from license file
 /// </summary>
 /// <param name="type">Control type to retrieve license data for </param>
 /// <returns></returns>
 protected string LoadLicenseData(Type type)
 {
 // format of license files in web app folder structure
 // web root\
 // license\
 // ControlsBook2Lib.LiveSearchControls.lic

 string keyValue = "";
 string assemblyName = type.Assembly.GetName().Name;
 string relativePath = "~\\license\\" + assemblyName + ".lic";
 string licFilePath = HttpContext.Current.Server.MapPath(relativePath);

 if (File.Exists(licFilePath))
 {
 // grab the first line which contains license data
 FileStream file = new FileStream(licFilePath,
 FileMode.Open, FileAccess.Read, FileShare.ReadWrite);
 StreamReader rdr = new StreamReader(file);
 keyValue = rdr.ReadLine();
 rdr.Close();
 file.Close();
 }

Cameron_865-2C13.fm Page 694 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 695

 return keyValue;
 }

 /// <summary>
 /// Method verifies the validaty of license key information
 /// </summary>
 /// <param name="keyValue">License key value</param>
 /// <param name="publicKey">Public key of version-specific control build</param>
 /// <param name="attrGuid">Guid of version-specific control build</param>
 /// <param name="type">Type of control being licensed</param>
 /// <param name="expireDate">Date license expires</param>
 /// <returns></returns>
 protected bool IsKeyValid(string keyValue, string publicKey, string guid,
 DateTime expireDate)
 {
 if (keyValue.Length == 0)
 return false;

 char[] separators = { '#' };
 string[] values = keyValue.Split(separators);
 string signature = values[2];
 string licGuid = values[0];
 string expires = values[1];

 // Conver the expiration date using the neutral
 // culture of the assembly(en-US)
 expireDate = Convert.ToDateTime(expires,
 DateTimeFormatInfo.InvariantInfo);

 // do a date comparison for expiration and make
 // sure we are matching control with right license data
 return (licGuid == guid &&
 expireDate > DateTime.Now &&
 VerifyHash(publicKey, licGuid, expires, signature));
 }

 /// <summary>
 /// Helper method to verify hash value in license key using RSA
 /// public key crypto
 /// </summary>
 /// <param name="publicKey">Public key of version-specific control build</param>
 /// <param name="guid">Guid of version-specific control build</param>
 /// <param name="expires">Date of expiration for license</param>
 /// <param name="signature">Signature value in license key used for verification
 </param>
 /// <returns></returns>

Cameron_865-2C13.fm Page 695 Thursday, February 21, 2008 2:22 PM

696 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 private bool VerifyHash(string publicKey, string guid, string expires,
 string signature)
 {
 // recompute the hash value
 byte[] clear = ASCIIEncoding.ASCII.GetBytes(guid + "#" + expires + "#");
 SHA1Managed provSHA1 = new SHA1Managed();
 byte[] hash = provSHA1.ComputeHash(clear);

 // reload the RSA provider based on the public key only
 CspParameters paramsCsp = new CspParameters();
 paramsCsp.Flags = CspProviderFlags.UseMachineKeyStore;
 RSACryptoServiceProvider provRSA = new RSACryptoServiceProvider(paramsCsp);
 provRSA.FromXmlString(publicKey);

 // verify the signature on the hash
 byte[] sigBytes = Convert.FromBase64String(signature);
 bool result = provRSA.VerifyHash(hash, CryptoConfig.MapNameToOID("SHA1"),
 sigBytes);

 return result;
 }
 }
}

Globalization and Localization
In this section of the chapter, we discuss issues surrounding developing server controls that
work nicely in an ASP.NET application that is localized to cultures other than those using U.S.
English. A key feature of a server control library is the capability to support modification tech-
niques that make it easy to deploy to the appropriate culture. Two key definitions crystallize
what needs to be done: globalization and localization. Globalization is the process of designing
an application so that it can be easily modified or updated to support different cultures. Local-
ization is the actual work it takes to modify the application for a specific culture. An application
designed with globalization in mind makes the localization process very easy.

The CultureInfo Class
The international support in .NET focuses on the CultureInfo class in the System.Globalization
namespace. The CultureInfo class stores information required by the rest of the .NET Frame-
work to correctly process string, numeric, and date formats, as well as load resources based on
current culture settings. To create an instance of the CultureInfo class, developers typically
invoke its constructor by passing in a culture string. The format of the string is a two-part struc-
ture based on the RFC 1766 format that contains a language and a country/region in a primary
two-digit format. The language is specified in lowercase letters, and the country/region is specified
in uppercase letters. An example for Spanish as spoken in Mexico follows:

CultureInfo culture = new CultureInfo("es-MX");

Cameron_865-2C13.fm Page 696 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 697

In order for code that is currently executing to use the settings of an instance of CultureInfo,
that CultureInfo instance must be assigned to the currently executing thread. The easiest way
to do this is to use the static helper method CurrentThread of the Thread class in the System.
Threading namespace:

Thread.CurrentThread.CurrentCulture = culture;
Thread.CurrentThread.CurrentUICulture = culture;

The demonstration code shows that the Thread class has both a CurrentCulture and a
CurrentUICulture property that can be assigned by an instance of CultureInfo. The instance
assigned to the CurrentCulture affects the formatting and comparisons of string, numeric, and
date formats. The CurrentUICulture property setting affects resources such as strings and images
that are loaded from assemblies. Setting both to the same value for a thread ensures that consistent
culture settings are applied.

The ResourceManager Class
A key consideration when designing ASP.NET controls that support localization is to ensure
that static control layouts accommodate for potential size changes due to language differences.
You should avoid hard-coding any textual values; instead, you should rely on a resource-based
approach. This approach supports localization with the side benefit of not requiring a full
recompile of a control library just to modify language support.

With that in mind, we switch to looking at a snippet of the Search control, which loads the
string for the Text property using the ResourceManager class:

// search button Text is localized
ResourceManager rm = ResourceFactory.Manager;
searchButton = new Button();
searchButton.Text = rm.GetString("Search.searchButton.Text");
searchButton.Click += new EventHandler(SearchButtonClick);
this.Controls.Add(searchButton);

The ResourceManager class exists in the System.Resources namespace and is responsible
for locating the correct resources requested based on the CurrentUICulture setting on the thread
that is executing. The preceding code indicates that the ResourceManager instance should retrieve
a string value that is identified by the name “Search.searchButton.Text”. Once it is located, the
string value is assigned to the Text property.

The ResourceManager instance created in the preceding code snippet is retrieved by a utility
class named ResourceFactory in the Live Search control library code. Listing 13-15 shows the full
listing for this utility class.

Listing 13-15. The ResourceFactory.cs Class File

using System.Reflection;
using System.Resources;

namespace ControlsBook2Lib.CH12.LiveSearchControls
{

Cameron_865-2C13.fm Page 697 Thursday, February 21, 2008 2:22 PM

698 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 /// <summary>
 /// Allows for efficient access to a single ResourceManager instance
 /// using a singleton type of factory pattern
 /// </summary>
 internal class ResourceFactory
 {
 private ResourceFactory()
 {
 }

 internal const string ResourceName =
 "ControlsBook2Lib.CH12.LiveSearchControls.LocalStrings";
 static ResourceManager rm;

 /// <summary>
 /// Retrieves static instance of ResourceManager class
 /// </summary>
 public static ResourceManager Manager
 {
 get
 {
 if (rm == null)
 {
 // Load the LocalStrings resource bound to the
 // main assembly or one of the language specific
 // satellite assemblies
 rm = new ResourceManager(ResourceName,
 Assembly.GetExecutingAssembly(), null);
 }
 return rm;
 }
 }
 }
}

ResourceFactory exists to provide easy, efficient access to an instance of the ResourceManager
class. It does this through a static factory method approach so that each time we go for a localized
resource we don’t have to pay the price of initializing an instance of ResourceManager. The code also
specifies the desired resource name for the ResourceManager instance:

internal const string ResourceName = "
ControlsBook2Lib.CH12.LiveSearchControls.LocalStrings";

The namespace of the control assembly is the prefix to the LocalStrings resource name.
To create this resource, we add a resource file named LocalStrings.resx to the control project.
LocalStrings.resx has an XML structure with a schema definition at the top and a data section
at the bottom for holding pertinent text strings needed to localize the controls’ textual output.
Listing 13-16 shows the complete LocalStrings.resx file.

Cameron_865-2C13.fm Page 698 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 699

Listing 13-16. The LocalStrings.resx Resource File

<?xml version="1.0" encoding="utf-8" ?>
<root>
 <xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="root" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 <xsd:element name="comment" type="xsd:string"
 minOccurs="0" msdata:Ordinal="2" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="type" type="xsd:string" />
 <xsd:attribute name="mimetype" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="resheader">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <resheader name="ResMimeType">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="Version">
 <value>1.0.0.0</value>
 </resheader>
 <resheader name="Reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>
 </resheader>
 <resheader name="Writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,
Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

Cameron_865-2C13.fm Page 699 Thursday, February 21, 2008 2:22 PM

http://www.w3.org/2001/XMLSchema

700 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

 </resheader>
 <data name="Search.searchButton.Text">
 <value>Search Live Search</value>
 </data>
 <data name="ResultStatusTemplate.SearchFor">
 <value>Searched for: {0}</value>
 </data>
 <data name="ResultStatusTemplate.ResultAbout">
 <value>Result {0} - {1} of about {2}.</value>
 </data>
 <data name="ResultStatusTemplate.QueryTook">
 <value>Query took about {0} seconds.</value>
 </data>
 <data name="Pager.nextButton.Text">
 <value>Next</value>
 </data>
 <data name="Pager.prevButton.Text">
 <value>Previous</value>
 </data>
 <data name="Pager.resultsPageCell.Text">
 <value>Results Page:&nbsp;</value>
 </data>
</root>

The controls that store values inside LocalStrings include the Search control and its button’s
Text property, and the Pager control and its Next/Previous buttons and Results text. The
ResultStatusTemplate template also uses LocalStrings to build its content for search results.

Culture Types and Localizing Resource Files
The LocalStrings.resx resource file is an embedded resource for the primary culture of the
assembly. To make this happen as part of the Visual Studio assembly build process, the Properties
window for the LocalStrings.resx file has its Build Action property set to Embedded Resource.
Figure 13-13 shows the compilation process and how it converts the .resx file to a binary resource
file before it embeds it in the assembly.

Figure 13-13. Compiling a resource file and embedding it in an assembly

The default culture for the LocalStrings resource is determined by the value of the
AssemblyCulture assembly-level attribute:

[assembly: AssemblyCulture("")]

Cameron_865-2C13.fm Page 700 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 701

The blank value specified in the control library code indicates the use of the invariant culture.
The invariant culture is the fallback culture that is used to resolve a lookup by ResourceManager
if no other culture is specified or a culture cannot be matched using available resources.

Because we want to provide more than just an English version of output for our controls,
we have to provide additional resource files that are localized for the cultures we want to support.
We do this by creating a resource file with the same resource name as LocalStrings but with a
language and/or culture/region as part of the filename right before the filename extension. To
add support for Spanish spoken in Mexico, we would use the following filename:

LocalStrings.en-MX.resx

When we specify the full culture with both the language and the country/region, the culture
we are targeting is called a specific culture. We can also specify just the language to create a
neutral culture, such as the following for neutral German support:

LocalStrings.de.resx

Once you have added the desired resource files to the project, you need to copy the XML
data section from the invariant culture resource file to ensure that the identifiers are the same.
Once you have the structure for the resource files in place, unless you have language specialists
on your staff, you will probably need the services of a translation agency. There are several
commercial vendors who will accept a .resx resource file and return a localized version for the
desired culture.

The data section for the Spanish as spoken in Mexico, es-MX, file translates to the following
content:

 <data name="Search.searchButton.Text">
 <value>Búsqueda Live Search</value>
 </data>
 <data name="ResultStatusTemplate.SearchFor">
 <value>Buscado para: {0}</value>
 </data>
 <data name="ResultStatusTemplate.ResultAbout">
 <value>Resultado {0} - {1} de alrededor {2}.</value>
 </data>
 <data name="ResultStatusTemplate.QueryTook">
 <value>Pregunta tomó sobre {0} segundos. </value>
 </data>
 <data name="Pager.nextButton.Text">
 <value>Después</value>
 </data>
 <data name="Pager.prevButton.Text">
 <value>Anterior</value>
 </data>
 <data name="Pager.resultsPageCell.Text">
 <value>Página De los Resultados:&nbsp;</value>
 </data>

Cameron_865-2C13.fm Page 701 Thursday, February 21, 2008 2:22 PM

702 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

The data section for the neutral German file looks like this:
 <data name="Search.searchButton.Text">
 <value>Suche Live Search</value>
 </data>
 <data name="ResultStatusTemplate.SearchFor">
 <value>Gesucht nach: {0}</value>
 </data>
 <data name="ResultStatusTemplate.ResultAbout">
 <value>Resultat {0} - {1} von ungefähr {2}.</value>
 </data>
 <data name="ResultStatusTemplate.QueryTook">
 <value>Frage nahm über {0} Sekunden.</value>
 </data>
 <data name="Pager.nextButton.Text">
 <value>Zunächst</value>
 </data>
 <data name="Pager.prevButton.Text">
 <value>Vorhergehend</value>
 </data>
 <data name="Pager.resultsPageCell.Text">
 <value>Resultat Seite:&nbsp;</value>
 </data>

Now that we have our resource files in place, we next explore how to incorporate the local-
ized resource files into a server control.

Satellite Assemblies and Resource Fallback
The localized resource files we add to the control project are not compiled by Visual Studio as
resources to be embedded in the primary assembly. Instead, they become part of what is called
a satellite assembly, which contains just the localized resources as part of its content. It does
this in an organized fashion using a specific file folder structure so the ResourceManager class
can find it. For the two preceding files, LocalStrings.en-MX.resx and LocalStrings.de.resx
are located in the folder structure shown in Figure 13-14.

The ResourceManager resource resolution process first attempts to take an exact match if it
is provided with a specific culture. An example of this type of specific culture string is “es-MX”.
In this case, there is a matching satellite assembly, so ResourceManager will pull the localized
text from it.

The globalization support has a fallback mechanism in the event that an exact match
cannot be found, as shown in Figure 13-15. If the fallback process cannot find an exact match,
it continues until it either finds a suitable neutral culture match or winds up with the invariant
culture in the main assembly. For example, if we specify a culture string of “fr-FR” for French
spoken in France, we would end up with the English string from the main assembly, because
we do not have a satellite assembly for the French language.

Cameron_865-2C13.fm Page 702 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 703

Figure 13-14. The satellite assembly folder structure

Figure 13-15. The resource fallback process in action, part one

If we specify a culture string of “de-AU” for German spoken in Austria, the ResourceManager
would miss on the specific culture but pick up the German neutral culture (de) satellite assembly,
as shown in Figure 13-16.

Figure 13-16. The resource fallback process in action, part two

Cameron_865-2C13.fm Page 703 Thursday, February 21, 2008 2:22 PM

704 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Setting Thread Culture in the Global.asax File
To test the localization features, you must configure ASP.NET to identify the desired culture
specified by the browser. This is best done in a centralized manner by overriding the Application_
BeginRequest event in the global.asax file, as shown here:

protected void Application_BeginRequest(Object sender, EventArgs e)
{
 // find the preferred culture from the browser
 string culture = HttpContext.Current.Request.UserLanguages[0];

 CultureInfo info = null;

 // check for a neutral culture of length 2 (i.e., de or es)
 if (culture.Length == 2)
 // use CultureInfo to convert from neutral to specific culture
 // so we can assign to both CurrentCulture and CurrentUI Culture
 info = CultureInfo.CreateSpecificCulture(culture);
 else
 info = new CultureInfo(culture);

 // set it for both formatting/comparisons (CurrentCulture)
 // and resource lookup (CurrentUICulture)
 Thread.CurrentThread.CurrentCulture = info;
 Thread.CurrentThread.CurrentUICulture = info;
}

The first thing the code does is look at the HTTP client request variables for culture infor-
mation that are available via the Request object’s UserLanguages array. The array is populated
from the web browser’s HTTP_ACCEPT_LANGUAGE HTTP request header, and it has culture values
that match those in RFC 1766, which is what the CultureInfo class expects. As a simplification
to the process, we take the first language in the array. More robust code could be written to
check if the site supported the first language and, if not, to walk along the array until a supported
language was found.

The language header is manually controllable in Internet Explorer to allow you to easily
test the localized resources built into the Live Search controls library. You control this by selecting
Tools ➤ Internet Options to open the Internet Options dialog box. At the very bottom of the
Internet Options dialog box is a Languages button. Click the Languages button to open another
dialog box that presents the language settings (see Figure 13-17).

The Language Preference box gives you the option of adding languages and prioritizing
the accepted languages in order. Now you can test different language settings.

Cameron_865-2C13.fm Page 704 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 705

Figure 13-17. Changing language settings in Internet Explorer

Once the culture setting is retrieved from the browser, the Application.BeginRequest
event handler checks to see if a specific culture with the language identifier is present. The
CurrentUICulture class property works with a neutral culture, and the CurrentCulture property
requires a specific culture to function correctly to do its formatting job, so we must account for
the differences. We use the static helper method on the CultureInfo class named
CreateSpecificCulture to do the conversion to a default specific culture from a neutral culture
that might be passed in from the browser. The end result is a culture such as “de” getting trans-
formed to “de-DE.” Lastly, we assign the culture to the currently executing thread for the web
application page to set up localized page rendering, which also sets the culture for the custom
server control.

Viewing a Localized Web Form
LocalizedLiveSearch.aspx is a slightly modified web form from our previous Live Search search
web form that has additional controls on it to show the current culture settings that the browser is
providing to the web server. It has code in it to check the Thread for the CurrentCulture and
display it in a Label control along with the current time to show the formatting differences:

Cameron_865-2C13.fm Page 705 Thursday, February 21, 2008 2:22 PM

706 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

private void Page_Load(object sender, System.EventArgs e)
{
 CultureLabel.Text = Thread.CurrentThread.CurrentCulture.DisplayName;
 DateTimeLabel.Text = DateTime.Now.ToLongDateString();
}

Figures 13-18, 13-19, and 13-20 show the results with different cultures for a search of
“football”. Notice how the button text and the status template change among cultures. Not
only is the UI localized the actual search results are localized as well. We achieve this by setting
the culture for the search to the current thread culture.

Figure 13-18. The English (en-US) culture and LocalizedLiveSearch.aspx

Cameron_865-2C13.fm Page 706 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 707

Figure 13-19. The Spanish (es-MX) culture and LocalizedLiveSearch.aspx

Figure 13-20. The German (de) culture and LocalizedLiveSearch.aspx

Cameron_865-2C13.fm Page 707 Thursday, February 21, 2008 2:22 PM

708 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

In Figure 13-21, notice that we fall back to the English invariant culture when a French
culture setting is applied.

Notice that, even though the server control UI is not localized, the search results are in
Figure 13-21. Listings 13-17 and 13-18 present the source code for the Localized Live Search
web form.

Figure 13-21. The LocalizedLiveSearch.aspx reverted back to English for a nonimplemented culture.

Listing 13-17. The LocalizedLiveSearch.aspx Page File

<%@ Page Language="C#"
MasterPageFile="~/MasterPage/ControlsBook2MasterPage.Master"
 AutoEventWireup="true" CodeBehind="LocalizedLiveSearch.aspx.cs"
 Inherits="ControlsBook2Web.Ch12.LocalizedLiveSearch"
 Title="Localized Live Search Demo" %>

<%@ Register TagPrefix="ApressLive"
 Namespace="ControlsBook2Lib.CH12.LiveSearchControls"
 Assembly="ControlsBook2Lib.CH12.LiveSearchControls" %>
<asp:Content ID="Content1" ContentPlaceHolderID="HeadSection" runat="server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ChapterNumAndTitle" runat="server">
 <asp:Label ID="ChapterNumberLabel" runat="server"

Cameron_865-2C13.fm Page 708 Thursday, February 21, 2008 2:22 PM

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 709

 Width="14px">12</asp:Label> <asp:Label
 ID="ChapterTitleLabel" runat="server" Width="360px">
 Building a Complex Control</asp:Label>
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="PrimaryContent" runat="server">
 <h3>
 Ch12 Localized Live Search</h3>
 Culture:<asp:Label ID="CultureLabel" runat="server"></asp:Label>
 Current Date/Time:<asp:Label
 ID="DateTimeLabel" runat="server"></asp:Label>

 <ApressLive:Search ID="search" runat="server" ResultControl="Result"
 RedirectToLiveSearch="false">
 </ApressLive:Search>

 <ApressLive:Result ID="Result" runat="server" PagerStyle="TextWithDHTML"
 PagerLinkStyle="Text">
 <StatusStyle Font-Bold="True" ForeColor="Blue"></StatusStyle>
 </ApressLive:Result>
</asp:Content>

Listing 13-18. The LocalizedLiveSearch.cs Code-Behind Class File

using System;
using System.Threading;

namespace ControlsBook2Web.Ch12
{
 public partial class LocalizedLiveSearch : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 CultureLabel.Text = Thread.CurrentThread.CurrentCulture.DisplayName;
 DateTimeLabel.Text = DateTime.Now.ToLongDateString();
 }
 }
}

This completes our discussion of globalization and localization. In the next sections, we
discuss a few tools that can help you write robust, .NET Framework–friendly custom server
controls.

Code Analysis for Managed Code
Code Analysis for Managed Code is the follow-on tool integrated with Visual Studio that super-
sedes FxCop. FxCop was developed by the .NET Framework team at Microsoft to help ensure

Cameron_865-2C13.fm Page 709 Thursday, February 21, 2008 2:22 PM

710 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

compliance with name and coding conventions. It consists of a robust desktop application
with a rules engine to check for common violations and errors. Code Analysis for Managed
Code in Visual Studio 2008 is a superset of FxCop functionality, but the original FxCop is still
available at http://ww.gotdotnet.com/team/fxcop.

You can configure Code Analysis for Managed Code to adjust the level of reporting it provides
or the guidance it offers. It is a great automated form of code review, and you can adapt it by
adding new rules to the system. Code Analysis is disabled by default. To enable it for a project,
right-click the project; select Properties; click the Code Analysis tab; and check the setting
Enable Code Analysis on Build. By default, all rules are enabled. While you can uncheck rules
up front, we recommend building the application with all rules enabled and then reviewing
each code analysis warning to decide whether or not to suppress it. Figure 13-22 displays the
Code Analysis settings area.

Figure 13-22. Code Analysis for Managed Code Settings

The best way to proceed is to enable Code Analysis up front when starting a new project,
so that you can address the warnings as you code. Otherwise, if you enable it for a large project
after the fact, you may see hundreds of new warnings and become discouraged. Even in this
case, the user interface is very straightforward to allow you to suppress rules and quickly work
through the warnings. We believe you will find it to be well worth your effort.

After enabling code analysis, the warnings appear in the Error List tool window when the
project is built. You can also run code analysis by right-clicking the project and selecting Run
Code Analysis in the context menu. You can force the messages to appear as errors if desired.
To suppress a rule after determining that it doesn’t apply or can be safely ignored, simply right-
click the warning, and click Suppress Message(s). We recommend centrally locating suppressed
warnings in one file, rather than throughout your project code, by choosing In Project Suppres-
sion File. Selecting this option results in the addition of a code file named GlobalSuppressions.cs
to the project. Figure 13-23 shows the Error List UI.

Cameron_865-2C13.fm Page 710 Thursday, February 21, 2008 2:22 PM

http://ww.gotdotnet.com/team/fxcop

C HA PT E R 1 3 ■ P A CK AG I N G A N D D E P LO Y M E N T 711

If you look at the GlobalSuppressions.cs file in the ControlsBook2Lib.CH12.
LiveSearchControls project, you will find several suppressed warnings. Some of them relate to
retrieving numbers and calling ToString. In some cases, a retrieved number or a DateTime
should be rendered in a localized way. In our case, none of the numbers would be different for
the supported cultures (primarily, they are single-digit page numbers), so this rule can be
suppressed.

Figure 13-23. Suppressing Code Analysis messages after review

Another example is a rule that detected the string “url” in the property UrlConfigElement.
It suggests adding support to take a parameter of type System.Uri as well as string. However,
this support is not needed in our case, because the primary input is the web.config text file.
These are just a couple examples of the type of checks that occur and why you may suppress
some warnings in your own application.

While static code analysis is not a silver bullet for bug-free code, it can be helpful with
finding unused local variables, obsolete methods, and so on, as well as informing the developer
of coding issues not previously known. Think of it as another tool in the toolbox that allows you
to approach your code from a different perspective. Odds are pretty good that you will find
useful tidbits that are well worth the time spent analyzing code.

Documentation
The downloadable code for this book has additional content for the source code listed in this
chapter, because it contains XML comments that were pared to shorten the chapter text. We
took advantage of the XML comment system built into the C# language and Visual Studio to
generate documentation for us once we were finished coding.

This functionality is configured by going into the Visual Studio project properties for the
Live Search controls library. Go to Configuration Properties; select the Build section; and look
for the XML Documentation File setting. We decided to generate an XML file with all the
comments named ControlsBook2Lib.CH12.LiveSearchControls.XML, as shown in Figure 13-24.
Now, when the project is built, Visual Studio will parse the XML comments out of the code and
insert it into our XML file.

Cameron_865-2C13.fm Page 711 Thursday, February 21, 2008 2:22 PM

712 CH AP T E R 1 3 ■ P AC KA G IN G AN D DE P L O Y M E N T

Raw XML is not the best documentation form, but many tools are available to generate
nice documentation from the XML file, such as the Visual Studio Power Toys, NDocs, or plain
old XSLT. Here is a link to Visual Studio Power Toys:

http://msdn2.microsoft.com/en-us/vstudio/aa718340.aspx

The key step is to keep up with the XML comments as you code. The MSDN documenta-
tion has information on what tags are available to make the comments as useful as possible.

Figure 13-24. The XML documentation file settings

Summary
In this chapter, we started off with a discussion of design-time support to include data binding and
template support. After testing out the Live Search control, we next covered how to implement
licensing as part of server control deployment. We also covered the globalization/localization
features available when building custom server controls and provided an example of how to
add these features to the Live Search control. Finally, we discussed the use of the XML comment
system in ASP.NET to generate documentation based on source code comments.

Cameron_865-2C13.fm Page 712 Thursday, February 21, 2008 2:22 PM

http://msdn2.microsoft.com/en-us/vstudio/aa718340.aspx

713

Index

■Symbols
: colon, in CSS style names, 125

[] brackets, enclosing attributes, 82

hash character, indicating id selectors, 125

. period, defining class selectors, 125

| pipe character, for menu link
separation, 270

; semicolon, separating properties, 125

@ symbol, for enabling verbatim strings, 356

■A
<a> tag, 357, 365

absolute positioning, 129, 133

ActiveXControls property, 497

Adapter suffix, 480

adapters, 40, 478–482

Adapters namespaces, 40, 478

adaptive control programming, 477–521

adaptive rendering functionality, 477

Add Service Reference feature, 579

Add Web Reference feature
(Visual Studio), 579

add_load() method, 420

AddAttribute() method, 68

AddAttributesToRender() method, 135, 137

custom Style classes and, 167

href attribute and, 369

AddParsedSubObject() method, 255, 275

AddStyleAttribute() method, 149, 167

AdRotator control, 28, 486

Advanced Repeater web form, 318–322

AdvancedDataRepeater, 322

AJAX (Asynchronous JavaScript and XML), 78.
See also entries at ASP.NET AJAX

Allin Consulting, 442

“Allow” properties, 443

AllowCustomerEditing property, 448

AlternateItemStyle property, 149

AlternatingItemTemplate template, 27, 326

CreateResultItem() method and, 616

CustCodeItemTemplate custom template
class and, 330

CustomLiveSearch (sample) web form
and, 674

mobile controls and, 492

Repeater control and, 283, 299, 604

ResultDesigner (sample) designer
and, 659

anonymous delegates, 186

AOL property, 497

AppendLiteralString() method, 275

AppID property, 581

Application property, 88

Application_BeginRequest event, 704

ApplicationInstance property, 88

ApplyStyle() method, 154

apress tag prefix, 55

apressuc tag prefix, 55

ArgumentOutOfRangeException, 375

ArrayList collection, 257, 260

ASMX Web Services, 579

asp: prefix, 503

Cameron_865-2INDEX.fm Page 713 Monday, February 25, 2008 2:53 PM

714 ■IN D E X

ASP.NET

request-processing architecture and, 85

state management and, 85–96

ASP.NET AJAX, 78–81

classes/interfaces of, 417

client-side scripts and, 347, 413–440

infrastructure of, 416–426

server controls and, 426–439

ASP.NET AJAX client script, 419

ASP.NET AJAX Control Toolkit, 78

ASP.NET SQL Server Registration Tool
(Aspnet_regsql.exe), 443

.aspx page, 11

mobile controls and, 484

templates and, 253

assembly attributes, Live Search (sample)
controls and, 585

assembly viewer, 587

Asynchronous JavaScript and XML (AJAX), 78

attributes

customizations and, 533

design-time, 82, 527

auditing, 85

authentication, 85

authorization, 85

AutoPostBack property, 184

■B
 tag, 124

BackColor property, 131

BackgroundColor property, 330

BackgroundSounds property, 497

bar pages, Pager (sample) control and, 646

base classes, 60, 282

basic (simple) controls, 21–25

BasicTemplateContainer control, 258, 259

Beta property, 497

bin directory, Live Search (sample) controls
and, 584

BindableAttribute, 83

BindLink routine, 668

BindSnippet routine, 668

BindUrl routine, 668

blank mode, Result (sample) control and, 609

.bmp files, 493

Bold property, 132, 139

BorderColor property, 131

BorderStyle property, 131

BorderWidth property, 131

 tag, 148

brackets ([]), enclosing attributes, 82

BrowsableAttribute, 83

browse mode, 455

.browser files, 479–482

Browser property, 149, 354, 497, 508

<browserCaps> tag, 495

browsers. See also
HttpBrowserCapabilities class

down-level browser support and, 147, 149

support for JavaScript and, 353

up-level browser support and, 149

BuilderMenu (sample) control, 273–278

source code for, 275

viewing, 278

BuildHeader() method, 72

BuildTable() method, 18, 57, 72

BulletedList control, AutoPostBack property
and, 184

Button control, 5, 12

as hyperlink, 207, 208

click handling and, 352

Confirm web form and, 369

events and, 183

postback mechanism and, 207–211

Cameron_865-2INDEX.fm Page 714 Monday, February 25, 2008 2:53 PM

715■I N D E X

Search (sample) control and, 596

SuperButton source code and, 217–223

■C
Cache property, 88

Calendar control, 28, 486

Callback (sample) web form, 396–404

CanCombineFormsInDeck property, 498

CanConvert . . . methods, 541

CanInitiateVoiceCall property, 498

CanRender . . . properties, 498

CanSendMail property, 498

Cascading Style Sheets. See CSS styling

case, of text, 426

CaseStyle property, 427

CategoryAttribute attribute, 83, 533

CDF property, 497

chapter numbers Controls Book 2 (sample)
web site, 4

chapter titles Controls Book 2 (sample) web
site, 4

CheckBox control, AutoPostBack property
and, 184

CheckBoxList control, 25

child content, ParseChildren attribute and,
254, 268–280

child controls, 149, 152

CreateChildControls() method and,
377, 381

events and, 384–392

INamingContainer interface and, 377

ChildrenAsProperties property, 255, 269

Choice element, mobile controls and,
493, 504

cHTML (compact HTML), 482, 505

class selectors, 125

Click event, exposing via Events
collection, 209

click event, 420

Click web form, 350

ClickLabel (sample) control, 348–352

ClickText property, 350

client callbacks, 395–412

Callback web form and, 396–404

StockNews (sample) control and, 404–412

client scripts, executing upon form
submission, 366–374

ClientID property, 398

ClientScript property, 354

ClientScriptManager class, 208, 354, 378

client-side behaviors, 426, 428–432, 435–439

client-side events

handling, 348–366

integrating with server-side events,
374–395

client-side scripts, 347–412

ASP.NET AJAX and, 413–440

events and, 374–395

preparing for rendering, 377–381

client-side state management, 89–108

techniques for, 96–108

view state and, 93–96

ClientValidationFunction property, 38

ClrVersion property, 497

CLSCompliantAttribute attribute, 585

Code Analysis for Managed Code tool, 709

code-behind mechanism, 45, 54

code for this book. See source code

CodeBehind attribute, 53

CodeFile attribute, 53

collection editors, 548

CollectionEditor class, 548

colon (:), in CSS style names, 125

Color Picker dialog box, 545

Color property, 330

COM+, 579

Cameron_865-2INDEX.fm Page 715 Monday, February 25, 2008 2:53 PM

716 ■IN D E X

Command control, mobile devices and, 485

command events, 211

exposing via Events collection, 211–224

RepeaterItem control and, 286–289

CommandArgument property, 212, 225

CommandEventArgs class, 211, 212

CommandName property, 211, 212

CommandSource property, 287

compact HTML (cHTML), 482, 505

complex controls, 577–655

Component class, 524

component editor dialog box, 550–555

component editors, 550–558

Component property, 559

ComponentDesigner class, 526, 559

ComponentModel namespace, 83, 295, 526

composite controls, 45, 61–63

custom styling for, 149

Pager control and, 224–236

TemplateMenu (sample) control and,
256–273

CompositeControl base class, 60, 69, 256,
444, 595

CompositeControlDesigner class, 256

CompositeDataBoundControl base class,
61, 334

composition, 45, 61

custom server controls and, 49

mobile controls and, 511

ComputeHash() method, 685

configSections element, 587

configuration sections, 579, 586–590

ConfigurationElement class, 589

ConfigurationSection class, 589

Confirm web form, 369–374

ConfirmedLinkButton control, 367, 369

Connect mode, 464

ConnectionString property, 448

ConnectionZone control, 463

container controls, mobile devices and, 487

ContainsListCollection property, 293

Content class, 43

content pages, 4

Content tag, 4

Context property, 86, 89, 245

control adapter framework, 477

control adapters, 40, 478–482

Control class, 1, 14, 123, 134

control styling and, 130

Dispose event/OnDispose method
and, 239

FormConfirmation control and, 366

control designers. See designers

@Control directive, 2

control events. See events

control execution life cycle, 185, 237–250

events and, 237–250

HTTP GET/POST mechanism and, 239

mobile controls and, 507–510

Control namespace, 60

Control property, 516, 480

control state, 94, 115–121, 246

control tags, parsing data from, 268–280

control tree, 11, 185, 237, 246

ControlAdapter base class, 478

ControlBuilder class, 273

ControlDesigner class, 527, 559

data-bound controls and, 568

TemplatedControlDesigner class and, 565

controls, 1–41, 43, 413–440

adapters for, 40, 478–482

adaptive behavior and, 477–521

adding events to, 191–198

basic (simple), 21–25

Cameron_865-2INDEX.fm Page 716 Monday, February 25, 2008 2:53 PM

717■I N D E X

checking rendered HTML and, 268

complex, 577–655

composite. See composite

custom. See custom controls

customizing behavior of, 526

data-bound, 281–345

events for. See events

extender, 417, 426

menu, 53, 256, 268–280

methods for, 9

mobile. See mobile controls

positioning, 129

properties for, 7

state management and, 102–108

styling for. See styling controls

table user, 55–60

techniques for building, 45–78

for web part development, 444–452

Controls Book 2 (sample web site), 2

controls library, separating from web
application, 62

Controls property, 72

ControlStyle property, 131, 149, 648

customizing ViewState and, 153

FancyLabel custom control and, 171

rendering output and, 155

converting server controls to web parts, 453

cookies, client-side state management
and, 90

Cookies property, 90, 497

CopyFrom() method, 167

Crawler property, 497

$create() method, 420

CreateBlankControlHierarchy() method, 609

_createBoundField() method, 451

CreateChildControlHierarchy() method, 224

CreateChildControls() method, 72, 150, 258,
289, 381

CompositeDataBoundControl and, 335

events and, 384

Result (sample) control and, 611

Search (sample) control and, 595

UpDown (sample) control and, 377

web parts and, 443, 448

CreateControlHierarchy() method, 270, 290

FooterTemplate and, 260

HeaderTemplate and, 258

hyperlinks and, 260

Pager (sample) control and, 643, 644

Result (sample) control and, 611–614

CreateControlStyle() method, 171

CreateEditorParts() method, 443

CreateItem() method

header section and, 292

RepeaterItem control and, 299, 300

CreateMenuItem() helper method, 260, 270

CreatePagerItem() method, 614

CreatePagerNextButton() method, 647

CreatePagerPageButton() method, 646

CreatePagerPreviousButton() method, 645

CreatePagerResultItem() method, 616

_createParameter() method, 451

CreateResultItem() method, 610, 614

CreateSpecificCulture() method, 705

CreateTemplateEditingFrame() method, 565

cryptography, 681

CSS absolute positioning, 129, 133

CSS cursor property, 166, 177

CSS selectors, 125, 140

CSS style properties, 124–134

Cameron_865-2INDEX.fm Page 717 Monday, February 25, 2008 2:53 PM

718 ■IN D E X

CSS styling, 60, 124

control adapters and, 482

web controls and, 24, 40

WebControls class and, 123

CssClass property, 131, 139

CSSFriendlyTutorial (Microsoft), control
adapters and, 482

culture, 584

culture types, localization and, 700

CultureInfo class, 696, 704

CultureInfo property, 581

Current property, 298

CurrentCulture property, 697, 705

CurrentThread() method, 697

CurrentUICulture property, 697, 705

cursor property, 166, 177

CursorStyle enumeration, 166–171

CustCodeFooterTemplate custom template
class, 326

CustCodeHeaderTemplate custom template
class, 326, 329

CustCodeItemTemplate custom template
class, 326, 330

custom controls, 49, 60–78, 253, 593–655

apress tag prefix for, 55

building, 60–78

client script execution upon form
submission and, 366–374

custom bitmap for, 573

licensing support for, 677–696

mobile, 504–521

Pager (sample) control and, 593, 643–655

Result (sample) control and, 593, 604–643

Search (sample) control and, 593, 595–604

styling, 149–181

techniques for building, 61–63

templates and, 253

vs. user controls, 50

custom designers, 526, 558–573

custom events, 198–207

custom style properties, 149–165

custom templates, 326, 329, 332–334

CustomCodeTemplates class, 329

Customer Information web form, 451

CustomerID property, 448

CustomerInfoWebPart web form, 466

CustomerInvoices custom control,
448–451, 453

CustomerInvoicesWebPart, source code for,
466–473

CustomerList custom control, 444–448, 453

CustomerListWebPart, source code for,
466–473

CustomField TextBox control, 38

customization at design time, 523–575

attributes and, 533

TitledThumbnail (sample) control and,
527–545

CustomLiveSearch (sample) web form,
674–677

CustomValidator control, 38, 39

■D
data binding, 281–345

base classes for, 282

Data . . . properties for, 291

data-bound control designers and, 568–573

DataSourceHelper class and, 292

mobile controls and, 492

Repeater control (replica) and, 283–318

routines for, 668

simple/complex, 282

templates and, 253, 281

data-binding mode

CreateControlHierarchy() method and,
611–614

Result (sample) control and, 610

Cameron_865-2INDEX.fm Page 718 Monday, February 25, 2008 2:53 PM

719■I N D E X

data-bound control designers, 568–573

data sources

data-bound control designers and,
568–573

dummy, 657–666

resolving, 292

data types, type converters and, 538

DataBind() method, 9, 13

Live Search controls and, 593, 598, 610

Repeater control and, 289

DataBinder.Eval() method, 28

Databound Repeater web form, 312

DataBoundControl base class, 60, 283, 289

DataBoundControlAdapter class, 478

DataBoundControlDesigner class, 283, 568,
569, 573

DataBoundLiteralControl control, 12, 13

DataField property, 569

DataGrid control, 25

buttons and, 211

custom styling and, 149

event bubbling and, 211

GridView control and, 116

DataItem property, 285, 301

DataList control, 25

DataMember property, 291, 569, 572

DataSet class, 293

DataSource control, web parts and, 444

DataSource property, 291, 572

DesignerSerializationVisibility attribute
and, 569

Live Search controls and, 593, 598,
610, 613

DataSourceHelper class, 292

DataSourceID property, 291

DataViewManager class, 293

DataViewSetting property, 294

DataViewSettingCollection, 294

Date_Selected() method, 30

Debug class, 245

debugging design-time code, 573

DefaultEvent attribute, 83

DefaultProperty property, 83, 269, 527

DefaultSubmitButtonLimit property, 498

DefaultValue attribute, 83, 527, 533

Delegate class, 186, 190

delegate keyword, 186, 190

DelegateImplementorClass class, 188

delegates, 186–190

custom events and, 199

event keyword and, 190

naming conventions for, 199

DescriptionAttribute attribute, 83, 527, 533

design mode, 455

design-time attributes, 82

design-time customizations, 523–575

for Live Search controls, 657–671

TitledThumbnail (sample) control and,
527–545

types of, 526

design-time environment services, 524

Design view

of custom table controls, 72

of MenuCustomControl controls, 63

of table user controls, 58

of user controls, 45, 50

designer verbs, 560–563

DesignerAttribute attribute, 526, 558, 560

designers, 558–573, 657–666

base classes for, 559

data-bound, 568–573

DesignerSerializationVisibility attribute,
273, 569

DesignerTransaction, component editors
and, 550, 558

Cameron_865-2INDEX.fm Page 719 Monday, February 25, 2008 2:53 PM

720 ■IN D E X

DesignOnlyAttribute, 83

DesignTimeData class, 573

DetermineRenderClientScript() method,
353, 377

device adapters, for mobile devices, 489, 495,
505–507, 515–519

mapping, 519

types of, 505

Device Update 2, 495

DeviceSpecific element, mobile controls
and, 493, 504

deviceUpdate.config file, 496

DHTML (dynamic HTML), 413, 617

DirectX 3D, server control rendering and, 523

Display mode, 464

Display property, 208, 226

Dispose() method, 245

control execution life cycle and, 239, 247

Unload event and, 247

document.getElementById method, 378

documentation, 711

DocumentContent property, 33

DoDefaultAction() method, 559

__doPostBack() method, 223, 370

downButton button, 382

DownButtonClick, 384

down-level browser support, 147, 149

downloads

Live Search API/Live Search samples, 578

source code for this book, 1, 711

DropDownList control, 7, 9, 12

collection editors and, 548

Repeater control (replica) template
and, 323

dummy data sources, 295–298, 657–666

DummyDataSource class, 295

DummyDataSourceEnumerator class, 298

dynamic HTML (DHTML), 413, 617

Dynamic Templates web form, 323–329

dynamic templates, 323–344

■E
ECMAScript, 413

EcmaScriptVersion property, 354, 497

EditItemStyle property, 149

EditorAttribute attribute, 83, 526

EditValue() method, 546

element selectors, 125

emulators, mobile web applications and,
487, 492

Enable3D property, 116, 119

EnableClientScript property, 35, 352

EnableViewState property, 116, 246

encapsulation. See composition

EnhancedSpreadSheet (sample) control, 335,
336–340

EnhancedSpreadSheetControl web form, 342

EnhancedSpreadSheetRow (sample) control,
335, 340

EnsureChildControls() method, 72, 151,
226, 648

environment services, 524

Error property, 88

event bubbling, 211

RepeaterItem control and, 286

OnBubbleEvent() method and, 228

SuperButton (sample) control and, 224

event keyword, 190

EventArgs base class, 190, 198, 286

EventHandler delegate class, 190

events, 9, 183–251

adding to controls, 191–198

child controls and, 384–392

control execution life cycle and, 237–250

custom, 198–207

declaring, 190

Cameron_865-2INDEX.fm Page 720 Monday, February 25, 2008 2:53 PM

721■I N D E X

invoking in controls, 191

naming, 190

.NET event architecture and, 185–191

Repeater control and, 302–312

Events collection

Click event, exposing via, 209

command events, exposing via, 211

Events property, 209, 227

ExpandableObjectConverter class, 545

extender controls, 417, 426

ExtenderControl class, 416, 426

Extensible Hypertext Markup Language
(XHTML), 482, 505

Extensions assembly, 416

■F
FancyLabel custom control, 166, 171–176

control adapters and, 480

ControlStyle property and, 171

FancyLabel Style web form, 174–178

FancyLabelStyle custom class, 166, 171, 174

filter element, 494

FindControl() method, 597

Flags property, 581

 tag, 124

Font property, 131, 526

FontInfo class, properties of, 132

Font-Name property, 139, 145, 147

footer section, 260

CreateControlHierarchy() method and,
292, 299

mobile user controls and, 503

FooterTemplate template, 27, 256–263, 268

CreateControlHierarchy() method
and, 299

mobile controls and, 492

Repeater control and, 283, 604

Result (sample) control and, 614

ResultDesigner (sample) designer
and, 659

ForeColor property, 131, 139

TypeConverter classes and, 144

UI type editors and, 526

Form control, mobile devices and, 487

<form> tag, 13, 347, 354, 366, 370

<form runat="server"> tag, 111, 357

FormConfirmation control, 366, 369

Frames property, 497

From class, 484

FxCop tool, 709

■G
GAC (Global Assembly Cache) deployment,

Live Search (sample) controls
and, 584

GatewayMajorVersion property, 498

GatewayMinorVersion property, 498

GatewayVersion property, 498

GDI+, server control rendering and, 523

GetCachedTemplateEditingVerbs()
method, 565

GetCallbackEventReference() method,
355, 396

GetCallbackResult() method, 396

GetChildControlType() method, 274

GetClientState()method, 99

GetDesignTimeHtml() method, 559, 659

GetEditStyle() method, 546

GetEmptyDesignTimeHtml() method, 559

GetEnumerator() method, 297

GetErrorDesignTimeHtml() method, 559

GetLicense() method, 677, 688–691

GetLicenseText() method, 685

GetLiveSearchSearchResults() method, 659

Cameron_865-2INDEX.fm Page 721 Monday, February 25, 2008 2:53 PM

722 ■IN D E X

GetNextPageText() method, 490

GetPageLabel() method, 490

GetPostBackClientHyperlink() method, 208

GetPostBackEventReference() method,
355, 369

GetPreviousPageText() method, 490

GetResolvedSelectedDataSource()
method, 569

GetResult() method, 666

GetResultControl() method, 666

GetRsaLicenseDataAttribute() method, 689

GetScriptDescriptors() method, 417, 418,
427, 433, 435

GetScriptReferences() method, 417, 426, 432

GetSelectedDataSource() method, 569

GetService() method, 524, 557

GetTemplateContent() method, 565

GetTitle() method, 13

GetWebResourceUrl() method, 355, 378, 394

Global Assembly Cache (GAC) deployment,
Live Search (sample) controls
and, 584

global.asax file, 704

globalization, Live Search (sample) controls
and, 696–709

GridView control, 25, 116

design-time capabilities of, 526

templates/data binding and, 281

web parts and, 444

■H
<h3> tag, 67

handlers, 87

HandleSearch() method

Result (sample) control and, 618

Search (sample) control and, 596–604

HasBackButton property, 498

hash character (#), indicating id
selectors, 125

<head> tag, 125, 126

header section, 258

CreateControlHierarchy() method and,
292–299

mobile user controls and, 503

HeaderTemplate template, 27, 257–263, 268

CreateControlHierarchy() method and,
292–299

mobile controls and, 492

Repeater control and, 283, 604

Result (sample) control and, 614

ResultDesigner (sample) designer
and, 659

Height property, 131

“Hello, World” web form, 2–7, 12

helper methods, 62

HideDisabledControlAdapter class, 478

HidesRightAlignedMultiselectScrollbars
property, 499

HierarchicalDataSourceControl base
class, 283

HierarchicalDataSourceView base class, 283

HighlightCssClass property, 433, 435

HighlightedHyperLink (sample) control,
432–439

HighlightedHyperLink client-side
component, 432, 435–426

HTML

content/appearance and, 124–130, 282

control adapters and, 482

control templates and, 254

device adapters and, 515

rendered/composite controls and,
61–63, 268

server control rendering and, 523

Cameron_865-2INDEX.fm Page 722 Monday, February 25, 2008 2:53 PM

723■I N D E X

HTML controls, 14–19

mappings and, 15, 21

vs. web controls, 40

HTML element selectors, 125

HTML hidden variables, client-side state
management and, 91

HTML tags

document styles and, 124

HTML 3.2 tags and, 147

mapped to HTML controls, 15

mapped to web controls, 21

Html32TextWriter class, 149

HtmlControlAdapter class, 516

HtmlControlDesigner class, 526

HtmlControls namespace, 14–19, 40, 60

HtmlForm control, 12

HtmlGenericControl control, 15, 19, 72

HtmlInputForm control, 91

HtmlInputText control, 18, 40

HtmlMobileTextWriter class, 516

HtmlTable control, 18

HtmlTableCell control, 18

HtmlTextWriter AddAttribute() method, 172

HtmlTextWriter class, 62, 65–69, 149

page adapters and, 479

Render method overrides and, 246

Write() methods of, 67

writing to output streams and, 109

HtmlTextWriterTag enumeration, 69, 134

HTTP GET mechanism, control execution
life cycle and, 239, 244

HTTP POST mechanism, control execution
life cycle and, 239, 247

HTTP_ACCEPT_LANGUAGE HTTP request
header, 704

HttpApplication class, 86

HttpApplicationFactory class, 86

HttpBrowserCapabilities class, 149, 354, 502

MobileCapabilities class and, 492, 495,
497–502

properties of, 497

HttpContext class, 86, 88, 92

HttpHandler class, 85–88

HttpModule class, 85

HttpRequest class, 92

cookies and, 91

HttpBrowserCapabilities class and, 149

HttpRuntime class, 86

HyperLink control, 260, 432

hyperlinks, 260–265

Button control as, 207, 208

HighlightedHyperLink (sample) control
and, 432–439

Pager control as, 233

SeparatorTemplate template and, 256, 268

SuperButton control as, 217

■I
<i> tag, 124

ICallbackEventHandler interface, 396

ICollection interface, 94

IComponent interface, 526

IComponentChangeService interface,
524, 557

IControlAdapter interface, 506, 510

ICustomerID interface, 463

ID property, 229

id selectors, 125

IDataSource-based controls, 290

IDataSourceProvider interface, 568, 569

IDesign interface, 559

IDesigner interface, 558, 560

IDesignerEventService interface, 524

IDesignerFilter interface, 524

Cameron_865-2INDEX.fm Page 723 Monday, February 25, 2008 2:53 PM

724 ■IN D E X

IDesignerHost interface, 525, 557

IDesignerOptionService interface, 525

IDictionary interface, 94

IDictionaryService interface, 525

IDisposable interface, 239

IDispose interface, 247

IEnumerable interface, 94, 292, 297, 569

IEventBindingService interface, 525

IExtenderControl interface, 417

IExtenderListService interface, 525

IExtenderProviderService interface, 525

IHelpService interface, 525

IHierarchicalDataSource interface, 283

IInheritanceService interface, 525

IListSource interface, 293, 569

Image control

mobile devices and, 486, 493

mouse rollovers and, 352–366

ImageButton control, click handling and, 352

ImageMetaData class, 532, 534, 542

ImageMetaDataConverter class, 542–545

ImageUrl property, 353, 493, 560

 tag, 357, 365

IMenuCommandService interface, 525

INamingContainer interface, 69, 229,
236, 256

child controls and, 377

Repeater control and, 289

RepeaterItem control and, 284

Increment property, 375, 384

inheritance, 44, 75–78

custom server controls and, 49

mobile controls and, 511

MobileControl class and, 511–519

Init event, control execution life cycle and,
238, 245

Initialize() method, 559, 565

InnerHtml property, 72

<input type="text"> tag, 109, 111

<input> tag, 62, 69, 114, 135, 137

InputBox control

custom styling for, 149, 155

LabelStyle property and, 163

InputBox Style web form, 158–163

LabelStyle property and, 164

TextBoxStyle property and, 165

InputType property, 499

InstantiateIn() method, 259, 329, 666

interfaces, delegates and, 186

internal keyword, 168

internationalization, 696–709

Internet Explorer, mobile devices and, 482

invoking events in controls, 191

IParserAccessor interface, 255, 273, 275

IPostBackDataHandler interface, 108, 191,
249, 383

IPostBackEventHandler interface, 213, 250

IReferenceService interface, 525

IResourceService interface, 525

IRootDesigner interface, 525

IsClientScriptBlockRegistered() method,
354, 356

IsClientScriptIncludeRegistered()
method, 355

IsColor property, 499

IScriptControl interface, 417, 432

ISelectionService interface, 525

IsEmpty property, 168, 172

IServiceContainer interface, 525

IServiceProvider interface, 524, 547, 557

ISite interface, 557

IsKeyValid() method, 690

IsMobileDevice property, 499

IsOnSubmitStatementRegistered()
method, 354

Cameron_865-2INDEX.fm Page 724 Monday, February 25, 2008 2:53 PM

725■I N D E X

IsStartupScriptRegistered() method, 354, 357

IStateManager interface, 94, 152

IsTrackingViewState() method, 153

IsValid property, 37, 39

Italic property, 132, 139

ItemCommand event, 211, 286, 302, 322

Advanced Repeater web form and, 322

Repeater control and, 283

ItemCreated event, 300, 302

Advanced Repeater web form and, 318

CustomLiveSearch (sample) web form
and, 674

Repeater control and, 283

ItemDataBound event, 300, 302

Advanced Repeater web form and, 318

Repeater control and, 283

ItemDetailsTemplate template, mobile
controls and, 492

ItemIndex property, 285

ITemplate interface, 258, 259, 323, 329–334

Instantiate() method of, 616

InstantiateIn() method of, 666

ITemplateEditingService interface, 564

Items property, 88, 302

ItemStyle property, 149

ItemTemplate property, 325

ItemTemplate template, 27, 326

CustCodeItemTemplate custom template
class and, 330

CustomLiveSearch (sample) web form
and, 674

mobile controls and, 492

Repeater control and, 283, 604

Result (sample) control and, 614

ResultDesigner (sample) designer
and, 659

ItemType property, 285

ItemWeight property, 506

ITypeDescriptorContext interface, 547

ITypeDescriptorFilterService interface, 525

ITypedList interface, 293

ITypeResolutionService interface, 525

IWindowsFormsEditorService interface, 524,
525, 548

■J
JavaApplets property, 497

JavaScript

browser support detection and, 353

ECMAScript and, 413

JavaScript Object Notation (JSON), 420, 437

JavaScript property, 497

JSON (JavaScript Object Notation), 420, 437

■L
Label control, 5, 12

changing style properties for via Web
Control Style web form, 139–147

InputBox control and, 149, 158

mobile devices and, 485, 503

ResultStatusTemplate (sample) template
and, 666

styling for, 134

UI type editors and, 548

Label Controls sample web form, 104

label controls, 102–107, 114

LabelStyle property, 149, 152, 163

layout, HTML tags and, 124

.lic files, 678

License class, 677

license cryptography, 681

LICENSED keyword, 687

LicenseException, 688

LicenseManager class, 677

LicenseProvider class, 677, 688

licensing support, for Live Search (sample)
controls, 677–696

Cameron_865-2INDEX.fm Page 725 Monday, February 25, 2008 2:53 PM

726 ■IN D E X

life cycle, 185

events and, 237–250

HTTP GET/POST mechanism and, 239

mobile controls and, 507–510

Lifecycle (sample) control, 239–250

Link control, mobile devices and, 485

<link> tag, 125, 140

LinkButton control, 207

click handling and, 352

Confirm web form and, 369

ConfirmedLinkButton control and, 368

List control, mobile devices and, 486

list controls, 25–28, 548

command events and, 211

mobile devices and, 486

ListBox control, collection editors and, 548

ListControl class, 548

ListControl control, AutoPostBack property
and, 184

literal controls, 13

LiteralControl class, 13, 259, 596

LiteralControl control, 12, 255, 261

data binding and, 331

ResultStatusTemplate (sample) template
and, 666

Live Search (sample) controls, 583, 595–604

architecture of, 593

building, 593–655

configuring search settings for, 586–592

customizing appearance of, 674–677

design-time support for, 657–671

globalization/localization and, 696–709

licensing support for, 677–696

packaging/deploying, 657–712

testing, 671–677

Visual Studio Toolbox image icons for, 670

Live Search web service, 578

LiveSearchLicenseKey, 587

LiveSearchResult class, 666

LiveSearchSearch (sample) web form, 672

LiveSearchSearched event, 597

LiveSearchWebServiceUrl, 587

Load event, control execution life cycle and,
238, 246

load event, 420

LoadAdapterState() method, 510

LoadControlState event

control execution life cycle and, 238, 249

SaveControlState() method and, 249

LoadControlState() method, 119

LoadDropDownList() method, 9

LoadLicenseData() method, 689

LoadPostBackData event, control execution
life cycle and, 249

LoadPostData() method, 109, 111, 114,
185, 383

control execution life cycle and, 238, 249

logic enhancement to, 192

RaisePostDataChangedEvent() method
and, 250

LoadPrivateViewState() method, 510

LoadRepeater() method, 325

LoadTemplate() method, 323, 325

LoadViewState event, control execution life
cycle and, 238, 249

LoadViewState property, 95

LoadViewState() method, 153

localization, Live Search (sample) controls
and, 696–709

LocalizedLiveSearch (sample) web form, 708

LocalStrings.resx file, 698, 700

Location class, 535, 538

LocationConverter class, 538–542

LocationConverter type converter, 538

lowercase text, 426

Cameron_865-2INDEX.fm Page 726 Monday, February 25, 2008 2:53 PM

727■I N D E X

■M
machine.config file, 495

configuration sections and, 587

mapping device adapters and, 519

MajorVersion property, 497

@Master directive, 2

master pages, 2

MasterPage class, 5, 43

MaximumRenderedPageSize property, 499

MaximumSoftkeyLabelLength property, 499

MaxLength property, 512

MaxValue property, 375

MCTextBox (sample) control, 512–521

Menu control, 178

menu controls, 53, 256, 268–280

MenuControlBuilder class, 274, 275

MenuCustomControl control, 62

MenuItemData class, 264

built-in type converter for, 548

hyperlinks and, 260

MenuItemDataCollectionEditor (sample)
collection editor, 549

MenuItems property, 269, 272, 278

MenuSeparatorTemplate template, 260

MergeStyle() method, 155, 164

MergeWith() method, 167

Message property, 367, 368

methods, 9, 191

Microsoft

CSSFriendlyTutorial, 482

Office SharePoint Server 2007, 442

MinorVersion property, 497

MinValue property, 375

mobile controls, 477, 482–491

creating, 488–491, 511

life cycle of, 507–510

property customizations and, 512

rendering and, 505

templates and, 491–494

mobile devices, mobile controls for, 482–491

Mobile Internet Toolkit, 477

Mobile namespace, 495

mobile: prefix, 503

MobileCapabilities class, 492, 495, 497–502

MobileControl class, inheritance and,
511–519

MobileControls namespace, 477, 484

MobileDeviceManufacturer property, 499

MobileDeviceModel property, 499

MobilePage class, 483

MOSS (Microsoft SharePoint Server 2007), 442

mouse events, image rollovers and, 352–362

mouseout event, 435

mouseover event, 435

MoveNext() method, 298

MSDomVersion property, 497

MSMQ, 579

MulticastDelegate base class, 186, 190

■N
name conflicts, preventing, 69

Name property, 40, 132

Names property, 132

Namespace namespace, 14

namespaces, 1, 13–40

AJAX-related, 416

Live Search (sample) controls and, 583

naming conventions

for control adapters, 480

for delegates, 199

for device adapters, 515

for events, 190

for tag prefixes, 55

for web parts, 453

NavigationalUrl property, 352

Cameron_865-2INDEX.fm Page 727 Monday, February 25, 2008 2:53 PM

728 ■IN D E X

NDocs, 712

.NET Framework

Add Service Reference feature and, 579

design-time architecture and, 523–527

design-time support and, 523

licensing support and, 677

mobile controls and, 482

Netscape, 3.04 version of, 147

new keyword, 168

NewValue property, 198

Next button, Pager (sample) control and, 647

NextPageText attribute, 490

NoHighlightCssClass property, 433, 435

NorthWind database

mobile devices and, 491

web part development and, 444

NumberOfSoftkeys property, 499

Numeric property, 512, 517

NumericUpDown Windows Forms
control, 374

■O
ObjectList control, mobile devices and,

486, 492

Office SharePoint Server 2007
(Microsoft), 442

OldValue property, 198

On- prefixed methods, 191, 201, 302, 597

onblur event, 348, 380

OnBubbleEvent() method, 228, 286

ItemCommand event and, 303

Result (sample) control and, 617

onclick event, 348, 384

OnClick() method, 210, 214

OnCommand() method, 213, 214

OnDataBinding() method, 290

OnDataSourceViewSelectCallback()
method, 290

OnInit() method, 118, 239

control adapters and, 479

Init event and, 245

Onion, Fritz, 476

OnItemCreated() method, 301

OnItemDataBound() method, 301

onKeyUp event, 428

OnLoad() method, 239, 246, 479

onmouseout event, 348, 358, 365

onmouseover event, 348, 358, 365

OnPageCommand method, 228

OnPreRender() method, 239, 246, 249

ClickLabel (sample) control and, 349

control adapters and, 479

DetermineRenderClientScript() method
and, 378

HighlightedHyperLink (sample) control
and, 432

RolloverImageLink (sample) control
and, 355

web parts and, 463, 476

onsubmit event, 347, 354, 369

OnTextChanged() method, 191, 201

OnUnload() method, 239

control adapters and, 479

Unload event and, 247

OnValueChanged event, 384

OnViewStateExpire() method, 510

OverImageUrl property, 352, 353

Overline property, 132

■P
page adapters, 479

Page class, 9–10, 14

ClientScriptManager class and, 354

IPostBackDataHandler interface and, 108

MobilePage class and, 483

Unload event and, 247

Cameron_865-2INDEX.fm Page 728 Monday, February 25, 2008 2:53 PM

729■I N D E X

@Page directive, 2, 12, 393

page handlers, 87

page life cycle, 185

events and, 237–250

HTTP GET/POST mechanism and, 239

Page_Load event, control execution life cycle
and, 237

Page_Load() method, 57

PageAdapter base class, 478, 479

PageCommand event, 224, 226

PageCommandEventArgs class, 226

PagedControl class, 487

PageDirection enumeration, 226, 235

PageHandlerFactory class, 87

PageLabel attribute, 490

pageLayout property, 129

PageNumber property, 617, 643

Pager composite control, 224–236

Pager (sample) control, 593, 643–655

LocalStrings.resx file and, 700

Result (sample) control and, 605

source code for, 648–655

PagerBarRange property, 617, 643, 646

PagerStyle class, 490

PagerStyle property, 648

Pager (sample) control and, 604

Result (sample) control and, 619

PageSize property, 617, 643

Paginate property, 487

pagination, mobile devices and, 487

Panel control, mobile devices and, 487, 511

ParseChildren attribute, 254

BuilderMenu control and, 274, 276

TagDataMenu control and, 268–273

parsing data from control tags, 268–280

partial page updates, 414

Password property, 512, 516

performance, web parts and, 476

PerformDataBinding() method, 289

PerformSelect() method, 290, 570

period (.), defining class selectors, 125

persistent state, 77

PersonalizableAttribute attribute, 442, 443

personalization, 442, 476

PhoneCall control, mobile devices and, 485

pipe character (|), for menu link
separation, 270

PlaceHolder control, 24

Platform property, 497

Pocket Internet Explorer for the Windows
Mobile Professional, 482

Postback Data sample web form, 111

postback mechanism, 92, 108–115

postback mode

CreateControlHierarchy() method and,
611–614

Result (sample) control and, 611

postbacks

__doPostBack() method and, 223

Button control and, 184

client callbacks and, 395–412

client script execution upon form
submission and, 366–374

DummyDataSource class and, 295

HTTP POST mechanism and, 239, 247

initiating/capturing, 207–211

IPostBackEventHandler interface and, 213

PreferredRendering . . . properties, 499

PreLoadImages property, 353

PrepareControlHierarchy() method, 154

Pager (sample) control and, 648

Result (sample) control and, 610, 618

PreRender event, control execution life cycle
and, 238, 246

Cameron_865-2INDEX.fm Page 729 Monday, February 25, 2008 2:53 PM

730 ■IN D E X

Previous button, Pager (sample) control
and, 645

PreviousPageText attribute, 490

PrivateViewState, 510

ProcessRequest() method, 86

properties, 7, 257

Properties window (Visual Studio),
533–537

UI type editors and, 545–550

property browser (Visual Studio), 533

ExpandableObjectConverter class
and, 545

ImageMetaData class and, 542

type converters and, 538

PropertyDescriptor class, 295

public key cryptography, 681

pushed-down images, 363

■Q
Query property, 581, 595, 597

■R
RAD (rapid application development)

environments, 523

RadioButtonList control, 25

RaiseBubbleEvent() method, 213, 228, 286

RaiseCallbackEvent() method, 396

RaisePostBackEvent event, 213, 238, 250

RaisePostDataChanged() method, 192, 201

RaisePostDataChangedEvent() method, 109,
111, 185

control execution life cycle and, 238, 250

TextBox control and, 192

UpDown control and, 384

rapid application development (RAD)
environments, 523

RedirectToLiveSearch property, 595, 597

@Register directive, 55, 484

RegisterArrayDeclaration() method, 354, 356

RegisterClientScriptBlock() method, 354, 356

RegisterClientScriptInclude() method, 355

RegisterClientScriptResource() method,
355, 378

RegisterOnSubmitStatement() method, 354,
366, 367

RegisterRequiresPostback() method, 383

RegisterScriptResource, 394

RegisterStartupScript() method, 354, 357

Render() method, 44, 67, 443

AddAttributesToRender() method
and, 136

control adapters and, 478, 479, 480

control execution life cycle and, 239, 246

custom controls and, 62, 72

HighlightedHyperLink (sample) control
and, 433

mobile controls and, 511, 516, 517

overriding, 154, 367

vs. RenderContents() method, 134

RenderBeginHyperlink()method, 479

RenderBeginTag() method, 68, 136, 149

RenderBigTag() method, 154

RenderChildren() method, 154, 479

RenderContents() method, 134, 135, 136, 443

Pager (sample) control and, 648

Result (sample) control and, 609, 618

rendered controls, 61–63

RenderEndTag() method, 69, 136, 154

RenderHeader() method, 67, 68

rendering, 61

adaptive rendering functionality and, 477

mobile controls and, 505

RenderMenuItem() method, 62

RendersBreak(s) . . . property, 499

RenderScripts() method, 397

RendersWmlDoAcceptsInline property, 500

RendersWmlSelectsAsMenuCards
property, 500

Cameron_865-2INDEX.fm Page 730 Monday, February 25, 2008 2:53 PM

731■I N D E X

RenderTable() method, 68

RenderTextBox() method, 517

repeated data binding, 282

Repeater class, 289, 292, 301, 329

data-bound designers and, 569

PerformSelect() method and, 570

Repeater control, 25, 27

architecture of, 289–312

event management and, 302–312

RepeaterDesigner class and, 568, 569

resolving data source and, 292

Result (sample) control and, 604

templates/data binding and, 281

Repeater control (replica), 283–322

advanced interaction with, 318–322

architecture of, 289–312

dynamic templates and, 323–329

event management and, 302–312

source code for, 303–312

testing, 312–318

RepeaterCommandEventArgs class, 286, 322

RepeaterCommandEventHandler
delegate, 287

RepeaterDesigner class, 289, 569–573

RepeaterItem control, 284–289, 298

accessing, 302

CreateItem() method and, 300

source code for, 287

request-processing architecture, 85

Request property, 88

Requests property, 581

RequiredMetaTagNameValue property, 500

Requires properties, 500

Reset() method, 168

ResolveDataSource() method, 293

resource fallback mechanism, 702

resource files, 698, 700

ResourceFactory utility class, 697

ResourceManager class, 697–700, 702

resources for further reading

asynchronous web parts, 476

attributes, 527

breaking changes, 584

control adapter framework, 478

CSS selectors, 126

HttpContext class, 88

JavaScript Object Notation, 420

mobile controls and, 483

user controls, building, 60

WCF, 583

web parts, 441

web services, 583

Resources namespace, 697

Response property, 88

Response.Write() method, 63

Response.WriteLine() method, 63

Responses property, 582

Result (sample) control, 593, 604–643

building, 609–614

child Pager control and, 616

designer for, 657

licensing support for, 686

modes for, 609–614

OnBubbleEvent() method and, 617

Search (sample) control and, 597

source code for, 619–643

styling, 618–643

template support for, 666–669

testing, 671–677

Result class, 582, 614

ResultControl property, 597

ResultDesigner (sample) designer, 659

ResultItem class, 593, 616, 605–609

Cameron_865-2INDEX.fm Page 731 Monday, February 25, 2008 2:53 PM

732 ■IN D E X

ResultItemTemplate template, 666

CreateResultItem() method and, 616

Result (sample) control and, 614

Results property, 593

results section, Pager (sample) control
and, 644

ResultStatusTemplate template, 666

CreateResultItem() method and, 616

LocalStrings.resx file and, 700

rich controls, 28–34

RolloverImage web form, 362–366

RolloverImageLink (sample) control,
352–366

client script code, rendering, 354–357

HTML code, rendering, 357–362

HTML output, analyzing, 365

source code for, 358–362

root controls, 13–40

RSACryptoServiceProvider() method,
685, 691

RsaLicense license, 678

RsaLicenseDataAttribute custom
attribute, 685

RsaLicenseProvider, 688–696

runat="server" attribute, 14

runtime

type converters and, 526, 558

UI type editors and, 526, 558

■S
samples. See source code

satellite assemblies, 702

SaveAdapterState() method, 510

SaveControlState() method

control execution life cycle and, 239, 246

TextBox3D control and, 119

SavePrivateViewState() method, 510

SaveViewState property, 95

SaveViewState() method, 153

control execution life cycle and, 238, 246

LoadViewState event and, 249

Screen . . . properties, 500

script registration methods, 354

ScriptBehaviorDescriptor, 419

ScriptControl class, 416

ScriptDescriptor, 418

ScriptingJsonSerializationSection class, 416

ScriptingSectionGroup class, 416

ScriptManager control, 413, 432

ScriptModule module, 416

ScriptReference class, 417

ScriptReference.Assembly property, 418

ScriptResourceHandler handler, 416

ScriptServiceAttribute class, 416

Search (sample) control, 593, 595–604

designer for, 657

licensing support for, 686

LocalStrings.resx file and, 700

ResourceManager class and, 697

source code for, 598–604

testing, 671–677

search settings, configuring for Live Search
(sample) controls, 586–592

SearchDesigner (sample) designer, 657

SearchRequest class, 581

SearchResponse class, 582, 593

SearchUtility (sample) class, 591, 597

second class style rule, 125

sectionGroup, 587

SelectedIndexChanged event, 452

selectedTemplate() method, 616

SelectionList control, mobile devices
and, 486

selectors, 125, 140

semicolon (;), separating properties, 125

Cameron_865-2INDEX.fm Page 732 Monday, February 25, 2008 2:53 PM

733■I N D E X

SeparatorTemplate template, 256–263, 268

mobile controls and, 492

Repeater control and, 283, 604

Result (sample) control and, 614

ResultDesigner (sample) designer
and, 659

SeparatorTemplateContainer, 258

server control events. See events

server controls, 1–41, 43. See also controls

custom. See custom controls

for web part development, 444–452

Server property, 88

server-side events, integrating with
client-side events, 374–395

server-side state management, 88

service handlers, 87

Session property, 89

SessionStateModule, 86

Set Style button, 144, 163

SetClientState()method, 100

Set-Cookie header, 90

SetLabelStyle routine, 163

SetTemplateContent() method, 565

SharePoint Server 2007, 442

ShowDialog() method, 524

SignHash() method, 685

SimpleSpreadsheetControl (sample) control,
334, 335

SimpleTextEditor (sample) UI type editor,
545–548

SimpleTextEditorDialog (sample) class, 546

SimpleUserControl (sample) control, 47, 414

Site property, 557

Size property, 132, 512, 516

source code, 1, 711

Advanced Repeater web form, 319

AJAX server controls, 79

attributes, in AssemblyInfo.cs file, 585

.browser files, 481

BuilderMenu control, 275

Button control, 217–223

Callback (sample) web form, 399–404

Click web form, 350

ClickLabel (sample) control, 349

client-side state management, 97

Confirm web form, 372

ConfirmedLinkButton control, 368

control adapters, 480

CreateChildControlHierarchy()
method, 224

custom events, 201–205

custom templates, 332–334

Customer Information web form, 451

CustomerInfoWebPart web form, 473–476

CustomerInvoices control, 448–451

CustomerList control, 444–448

Databound Repeater web form, 313–318

DataSourceHelper class, 294

delegates, 188

designers, 657, 660–664

dummy data sources, 664

DummyDataSource class, 295

dynamic templates, 324

Dynamic Templates web form, 327

EnhancedSpreadSheet (sample) control,
336–340

EnhancedSpreadSheetControl web
form, 342

EnhancedSpreadSheetRow (sample)
control, 340

FancyLabel custom control, 173

FancyLabel Style web form, 174

FancyLabelStyle custom class, 169

FormConfirmation control, 366

“Hello, World” web form, 5

Cameron_865-2INDEX.fm Page 733 Monday, February 25, 2008 2:53 PM

734 ■IN D E X

HighlightedHyperlink (sample)
control, 433

HighlightedHyperlink client-side
component, 435

HighlightedHyperlink web form, 438

HoverButton (sample) control JavaScript,
423–426

HoverButton web form, 420

HTML controls, 16

HTML device adapters, 515

ImageMetaData class, 534

ImageMetaDataConverter class, 542

InputBox control, custom styling for, 155

InputBox Style web form, 158

IPostBackDataHandler definition, 109

Label control, styling for, 134

Label Controls sample web form, 104

license generator, 684

Lifecycle (sample) control, 240–244

list controls, 26

Live Search (sample) web forms, 672,
674–677, 708

LiveSearchConfigSectionHandler
class, 589

LocalStrings.resx file, 698

Location class, 535

LocationConverter type converter,
538–541

master pages, 2

MCTextBox (sample) control,
512–515, 519

menu controls, 53–55

MenuControlBuilder class, 275

MenuCustomControl control, 62

MenuItemData class, 265

MenuItemDataCollectionEditor (sample)
collection editor, 549

OnBubbleEvent() method, 228

PageCommand class, 226

Pager control, 229, 648–655

Pager Event Bubbling web form, 233

Postback Data sample web form, 111

Repeater control (replica), 303–312

RepeaterCommandEventArgs class, 286

RepeaterDesigner class, 570

RepeaterItem control, 287

ResourceFactory utility class, 697

Result (sample) control, 619–643

ResultItemTemplate (sample)
template, 668

ResultStatusTemplate (sample)
template, 666

rich controls, 29

RolloverImage web form, 364

RolloverImageLink (sample) control,
358–362

RsaLicense license, 678

RsaLicenseCache, 691

RsaLicenseDataAttribute custom
attribute, 685

RsaLicenseProvider, 692–696

Search (sample) control, 598–604

SearchUtility (sample) class, 591

SimpleTextEditor (sample) UI type
editor, 546

SimpleTextEditorDialog (sample)
class, 546

SimpleUserControl (sample) code, 47, 414

StatefulLabel control, 103

StatelessLabel control, 103

StockNews (sample) control, 407–412

StyleCollectionDemo web form, 179

SuperButton control, 214, 217–223

table user controls, 55, 59

TableCompCustomControl controls, 69

TableCustomControl control, 65, 73

Tag Parsing Menu web form, 279

Cameron_865-2INDEX.fm Page 734 Monday, February 25, 2008 2:53 PM

735■I N D E X

TagDataMenu (sample) control, 271

TemplateContainers.cs, 264

TemplateMenu (sample) control, 261–264

TemplateMenu web form, 266

TemplateMenuDesigner (sample)
designer, 566

Textbox control, 109, 137, 192

TextBox web form, 194

TextBox3D web form, control state
and, 119

TextBox3d control, 75–77

TextCaseBehavior client-side
component, 428

TextCaseExtender (sample) control, 427

TextCaseExtender web form, 431

TextChangedEventArgs
class/TextChangedEventHandler
delegate, 199

TitledThumbnail (sample) control,
528–532

TitledThumbnailComponentEditor class
file, 555

TitledThumbnailComponentEditorDlg
class file, 551–555

TitledThumbnailDesigner designer, 562

UpDown (sample) control, 384–392

UpDown web form, 394

user controls, 47–49

validation controls, 35

Web Control Style web form, 140

web controls, 21

web parts, 466–476

WebControlStyle style sheet, 143

WebPartPageController control, 456–463

WML device adapters, 517

XML controls, 31

SourceRequest class, 581

SourceResponse class, 582, 593

span keyword, 125

 tag, 19, 78, 134

special characters, writing, 67

Split() method, 690

spreadsheets, controls and, 334

SqlDataSource control, 448

SqlPersonalizationProvider class, 443

state management, 85–122

client-side, 89–108

control execution life cycle and, 245–250

IStateManager interface and, 94

server-side, 88

StateBag class, 94

StatefulLabel control, 103, 480

StatelessLabel control, 102

static code analysis, 709

StatusTemplate template

CustomLiveSearch (sample) web form
and, 674

Repeater control and, 604

Result (sample) control and, 614

ResultDesigner (sample) designer
and, 659

StockNews (sample) control, 404–412

Strikeout property, 132

string type, type converters and, 538

strong-named assemblies, Live Search
(sample) controls and, 584

style, HTML and, 124–130

style attribute, 126

Style base class

AddAttributesToRender() method, 172

custom Style classes and, 166–181

custom styling and, 149

properties of, 131

StyleCollection class and, 178

styling mobile controls and, 490

Cameron_865-2INDEX.fm Page 735 Monday, February 25, 2008 2:53 PM

736 ■IN D E X

style properties, 124–134

CSS cascading and, 126

custom, 149–165

Visual Studio and, 127

Style property, 133

style rules, 125

<style> tag, 126

StyleCollection class, 178–181

StyleCollectionDemo web form, 178

StyleReference property, 490

StyleSheet control, 489

styling controls, 130–181

custom Style classes and, 166–181

Pager (sample) control and, 648–655

rendering output and, 154–158

Result (sample) control and, 618–643

StyleSheet control and, 489

WebControl class for, 130–149

SubmitPageButton control, 107, 114

SuperButton (sample) control, 207, 214–236.
See also Button control

as hyperlink, 217

command events and, 211, 224–236

Supports properties, 501

svcutil.exe utility, 580

■T
TabControl control, component editor

dialog box and, 550

<table> tag, 68

table user controls, 55–60

TableCompCustomControl control, 61

TableCustomControl control

via encapsulation, 69–72

via rendering, 65–69

Tables property, 497

Tag Parsing Menu web form, 278

tag parsing, 268–280

tag prefixes, 55

TagDataMenu (sample) control, 268–273

source code for, 271

viewing, 278

TagKey property, 134

TagName property, 134

TagPrefix attribute, 83, 585

TagWriter property, 149, 497

<td> tag, 69

template classes, 326

TemplateContainers.cs, 264

templated control designers, 564–568

TemplatedControlDesigner class, 565

TemplateGroupCollection class, 566

TemplateGroups property, 566

TemplateMenu (sample) control, 256–273

checking rendered HTML and, 268

source code for, 261–264

template editing and, 564

templates of, 256

viewing, 266

TemplateMenu web form, 266

TemplateMenuDesigner (sample) designer,
564, 566

templates, 27, 253–268

custom, 326, 329, 332–334

data binding and, 253, 281

dynamic, 323–344

editing, 266

ITemplate interface and, 323, 329–334

mobile controls and, 491–494

properties for, 257

Repeater control (replica) and, 283,
292–299

templated control designers and, 564–568

TemplateMenu (sample) control and,
256–273

Cameron_865-2INDEX.fm Page 736 Monday, February 25, 2008 2:53 PM

737■I N D E X

testing

Live Search (sample) controls, 671–677

localization features, 704

MCTextBox (sample) control, 519

mobile web applications, 487

Repeater control (replica), 312–318

Result (sample) control, 671–677

Search (sample) control, 671–677

text, HTML tags and, 124

text-decoration property, 148

Text property, 40, 102, 103, 151

control adapters and, 480

mobile controls and, 512

TextBox control, 5, 12, 40, 109–115

AutoPostBack property and, 184

changing style properties for via Web
Control Style web form, 139–147

events, adding to, 191–207

InputBox control and, 149, 158

mobile devices and, 485, 512–515, 521

Search (sample) control and, 595

styling for, 136

Textbox Render() method, 114

TextBox web form, 116, 194

TextBox_TextChanged() method, 10

TextBox3d control

mobile controls and, 511

control state for, 118–121

TextBox3d class, control state and, 116

TextBox3DControlStateDemo sample web
form, 116

TextBoxStyle property, 149, 152, 163

TextCaseBehavior client-side component,
426, 428–432

TextCaseExtender (sample) control, 426–432

TextCaseExtender web form, 431

TextCaseStyle enumeration, 427

TextChanged event, 10, 191–198

TextChangedEventArgs class, 199

TextChangedEventHandler class, mobile
controls and, 512

TextView control, mobile devices and, 485

Thread class, 697

TimeDesigner class, 416

title case, 426

Title property, 512, 517

TitledThumbnail (sample) control, 527–545

component editors and, 550, 558

designers and, 558, 560

UI type editors and, 545

TitledThumbnailComponentEditor (sample)
component editor, 555–558

TitledThumbnailComponentEditorDlg
(sample) component editor dialog
box, 550–555

TitledThumbnailDesigner designer, 558,
560, 562

Toolbox icon, 573

Toolbox image icons, 670

ToolboxBitmapAttribute attribute, 573

ToolboxData attribute, 83

top-level style properties, WebControl base
class and, 132, 171

ToString() method, 554, 711

TotalResultsCount property, 617, 643

ToXmlString() method, 685

<tr> tag, 69

trace functionality, 12

Trace() method, 245

Trace property, 89

Trace=True attribute, 12

TrackViewState() method, control execution
life cycle and, 238, 245

transfer controls, mobile devices and, 485

TransformSource property, 33

Cameron_865-2INDEX.fm Page 737 Monday, February 25, 2008 2:53 PM

738 ■IN D E X

TreeView control, 404, 550

type converters, 526, 538–545

Type property, 497

TypeConverter class, 95, 144, 526

TypeConverterAttribute attribute, 83, 526

TypeDescriptor class, 538

■U
UI (user interface), templates and, 253–268

UI namespace, 60

UI type editors, 526, 545–550

UITypeEditor class, 526, 546

Underline property, 132, 139, 144

UniqueID property, 109, 111, 377

Unload event, 245

control execution life cycle and, 247

vs. Dispose() method, 247

up-level browser support, 149

upButton button, 382

UpButtonClick, 384

UpdatePanel control, 78, 414, 416

UpdatePanelDesigner class, 416

UpdateProgress control, 79

UpdateProgressDesigner class, 416

updates, mobile devices and, 495

UpDown (sample) control, 374–395, 511

NumericUpDown Windows Forms
control and, 374

rendering and, 377–381

source code for, 384–392

ValueChanged event and, 382

UpDown web form, 392

__UpDown_Check() method, 380

uppercase text, 426

URL strings, client-side state management
and, 90, 101

UrlConfigElement property, 711

URLs, processing via HttpHandler, 87. See
also hyperlinks

user controls, 5, 43

apressuc tag prefix for, 55

building, 52–60

features of, 46

mobile, 502–504

technique for building, 45–49

vs. custom controls, 50

user input, validation controls for, 34–40

user interface (UI), templates and, 253–268

User property, 89

UserControl class, 5, 14, 43, 55

UserLanguages array, 704

utilities

ASP.NET SQL Server Registration
Tool, 443

Code Analysis for Managed Code, 709

for generating documentation, 712

FxCop tool, 709

svcutil.exe, 580

■V
Validate() method, 677

validation controls, 34–40

ValidationSummary control, 37

Value property, 40, 375

ValueChanged event, 382

VBScript property, 497

vehicle data (sample) display, 396–404

verbatim strings, @ symbol enabling, 356

Verbs collection, 443

Verbs property, 559, 560

VerifyHash() method, 691

VerifyRenderingInServerForm() method,
111, 357, 367

Version property, 497

Cameron_865-2INDEX.fm Page 738 Monday, February 25, 2008 2:53 PM

739■I N D E X

versioning, Live Search (sample) controls
and, 584

ViewState

advantages of, 95

client-side state management and, 93

control execution life cycle and, 237

control state and, 115

customizing, 153, 249

disabling, 115

mobile controls and, 507

page adapters and, 479

SaveControlState() method and, 246

SaveViewState() method and, 246

SubmitPageButton control and, 107

tracking changes in, 152

type converters and, 541

__VIEWSTATE hidden form field, 94

virtual protected methods, 191

Visible property, 487, 504

VisibleWeight property, 506

Visual Studio

Add Service Reference feature and, 579

Add Web Reference feature and, 579

Code Analysis for Managed Code tool
and, 709

debugging design-time code and, 573

design-time support and, 524

mobile controls and, 482

Properties window of, 533–537

property browser of, 533

style properties and, 127

Toolbox image icons and, 670

Visual Studio Designer, 8

Visual Studio Power Toys, 712

Visual Web Developer Express Edition, 524

■W
W3CDomVersion property, 497

.wbmp files, 493, 504

WCF (Windows Communication
Foundation), 579

web browsers. See browsers

Web Control Style web form, 139–147

web controls, 20–40

design-time architecture and, 523

vs. HTML controls, 40

WebControl namespace, 60

WebControls namespace, 20–40, 131

web forms

“Hello, World”, 2–7, 12

custom controls on, 72

menu user controls on, 54

MenuCustomControl controls on, 63

mobile, 484–488

table user controls on, 57

testing Live Search (sample) controls and,
671–677

web parts, 60, 441–477

connecting, 463, 476

converting server controls to, 453

development tips for, 476

source code for, 466–476

WebParts namespace, 40, 60

Web Resource system, 378

web service proxy, wrapping in utility
class, 591

Web Services Description Language
(WSDL), 579

web services, Live Search and. See entries at
Live Search, 577

web sites

Controls Book 2 (sample), 2

web-part-based, 442

Cameron_865-2INDEX.fm Page 739 Monday, February 25, 2008 2:53 PM

740 ■IN D E X

web.config file

Live Search (sample) controls and, 586

mobile web applications and, 494

web part personalization and, 443

WebControl base class, 123–149

AddAttributesToRender() method, 172

control styling and, 130–149

ControlStyle property and, 131

rendering and, 134

Style property and, 133

WebControlAdapter base class, 478, 480

WebControlStyle style sheet, 139, 144

WebForm_DoCallback() method, 399

WebPart base class, 442

WebPart controls

common overrides for, 443

creating, 443–476

WebPart suffix, 453

WebPartManager control, 453, 464

WebPartPageController control, 464,
455–463, 476

WebParts namespace, 40

WebPartsPersonalization class, 443

WebPartZone control, 453

Width property, 131

Win16 property, 497

Win32 property, 497

Windows Communication Foundation
(WCF), 579

Windows Explorer assembly viewer, 587

Windows Forms-based (sample) license
generator, 683

Windows Forms controls, 523, 526

Windows Mobile Standard editions, 482

Windows Presentation Foundation
controls, 523

WML (Wireless Markup Language), 482, 505

WML deck/card format, 484

WML device adapters, 517

WmlControlAdapter device adapter, 506

WmlFormAdapter device adapter, 506

WmlMobileTextWriter class, 517

WmlMobileTextWriter device adapter, 506

WmlPageAdapter device adapter, 506

Write() method, 63, 67

WriteBeginTag() method, 67

WriteEndTag() method, 68

WriteFullBegin() method, 68

WriteLine() method, 63, 245

WSDL (Web Services Description
Language), 579

WSE, 579

■X
XHTML (Extensible Hypertext Markup

Language), 482, 505

XML

comments/documentation and, 711

Live Search (sample) controls search
settings and, 586

XML controls, 31–34

XML data sources, 31–34

XmlHttp functionality, 419

XmlHttpRequest class, 395, 399

XSLT, 712

XSLT style sheets, 31–34

XslTransform class (deprecated), 33

■Z
ZoneTemplate control, 453

Cameron_865-2INDEX.fm Page 740 Monday, February 25, 2008 2:53 PM

	Pro ASP.NET 3.5 Server Controls and AJAX Components
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Authors

	Server Control Basics
	Source Code
	The Heart and Soul of ASP.NET
	A .NET Framework fiHelo, WorldflWeb Form
	Control Properties
	Control Methods
	Control Events
	The Web Page As a Control Tree
	The Root Controls
	The System.Web.UI Namespace
	System.Web.UI.HtmlControls Namespace
	An HTML Controls Demonstration

	The System.Web.UI.WebControls Namespace
	Simple Controls
	A Simple Controls Demonstration
	List Controls
	A List Controls Demonstration
	Rich Controls
	A Rich Controls Demonstration
	Rich Controls and XSLT
	An XML Control and XSLT Demonstration
	Validation Controls
	A Validation Controls Demonstration
	System.Web.UI.WebControls.Adapters Namespace
	System.Web.UI.WebControls.WebParts Namespace

	Web Controls vs. HTML Controls
	Summary

	Encapsulating Functionality in ASP.NET
	Packaging Content in ASP.NET
	Inheritance
	Encapsulation

	Comparing the Control-Building Techniques
	User Controls
	Custom Server Controls
	Building a User Control
	The MenuUserControl User Control
	Using the MenuUserControl User Control
	The TableUserControl User Control
	Using the TableUserControl User Control

	Building a Custom Control
	Which Base Class?
	Rendered or Composite Control?
	Using the MenuCustomControl Server Control
	The TableCustomControl Server Control via Rendering
	Using the Custom Table Controls
	Inheriting from an Existing Server Control

	ASP.NET AJAX
	ASP.NET AJAX UpdatePanel Server Control
	ASP.NET AJAX UpdateProgress Server Control

	Using Design-Time Attributes
	What’s an Attribute?
	Common Design-Time Attributes

	Summary

	ASP.NET State Management
	ASP.NET Request-Processing Architecture
	HttpHandler

	ASP.NET and Server-Side State Management
	The Context Object
	Server-Side State Considerations

	ASP.NET and Client-Side State Management
	URL Strings
	Cookies
	HTML Hidden Variables
	ViewState
	The StateBag Class and the IStateManager Interface
	State Data Management
	Compression and Integrity
	Ease of Use

	A Client State Workshop
	Reading the Client State
	Getting the URL State
	ASP.NET Server Controls and State
	The StatelessLabel Server Control
	The StatefulLabel Server Control
	Comparing the Labels
	Setting the Label Control State
	Testing Control ViewState

	Form Post Data and ASP.NET Controls
	The IPostBackDataHandler Interface
	The Textbox Control
	Using the Textbox Control

	ASP.NET Control State
	ViewState Is Now Application User State
	New TextBox3d Demonstration Web Form
	Adding Control State to TextBox3D

	Summary

	The WebControl Base Class and Control Styles
	Customizing the Appearance of Controls
	HTML: Content and Appearance
	Styling Using Tags
	Styling Using Cascading Style Sheets
	Style Properties and Visual Studio

	WebControl and Control Styling
	WebControl’s ControlStyle Property
	WebControl Top-Level Style Properties
	The Style Property
	A New Rendering System
	A Styled Label Control
	The AddAttributesToRender() Method
	A Styled TextBox Control
	The Web Control Style Web Form
	Styles, HTML 3.2, and Down-Level Browsers
	Down-Level Browser Style Rendering Behind the Scenes

	Custom Styling
	The Styled InputBox Control
	LabelStyle and TextBoxStyle
	Customizing ViewState
	Rendering the Output
	The InputBox Style Web Form
	Applying the LabelStyle and TextBoxStyle Settings

	Creating a Custom Style Class
	The CursorStyle Enumeration
	The FancyLabel Control
	Rendering the FancyLabel Control
	The FancyLabel Style Web Form
	The StyleCollection Class

	Summary

	Server Control Events
	Events and ASP.NET Controls
	The Need for Events in ASP.NET
	The .NET Framework Event Model
	Delegates
	Working with Delegates

	Events
	System.EventHandler Delegate
	Invoking an Event in a Control

	Adding an Event to the TextBox Control
	Enhancing the TextBox Control with a TextChanged Event
	Using the TextBox Control on a Web Form

	Creating a Custom Event
	Creating a TextChangedEventArgs Class
	Creating a TextChangedEventHandler Delegate
	Adding an Event to the CustomEventTextBox Control
	Using the CustomEventTextBox Control on a Web Form

	Capturing Postback with the Button Control
	Rendering the Button
	Exposing a Click Event and the Events Collection
	Command Events and Event Bubbling

	Exposing the Command Event
	Capturing the Postback via IPostBackEventHandler
	Using the SuperButton Control on a Web Form

	Composing the SuperButton Control into a Composite Pager Control
	Building the Pager Child Control Hierarchy
	Defining the PageCommand Event
	Exposing the PageCommand Event from the Pager Control
	Capturing the Bubbles via OnBubbleEvent
	The INamingContainer Interface
	Using the Pager Control on a Web Form

	Control Life Cycle
	Plugging Into the Life Cycle
	The Lifecycle Server Control
	Life Cycle and the HTTP Protocols GET and POST
	Init Event
	TrackViewState Method
	Load Event
	PreRender Event
	SaveViewState Method
	SaveControlState Method
	Render Method
	Unload Event
	Dispose Method

	HTTP POST Request via Postback
	LoadViewState Method
	LoadControlState Method
	LoadPostBackData Method
	RaisePostDataChangedEvent Method
	RaisePostBackEvent Method

	Summary

	Server Control Templates
	Customized Control Content
	Using Control Templates
	The ParseChildren Attribute
	A Menu Control with Templates
	The Template Properties
	Creating the Header Section
	Creating the Footer Section
	Creating the Hyperlink Section
	Viewing the TemplateMenu Control
	Checking the Rendered HTML

	Parsing Data from the Control Tags
	The TagDataMenu Control
	The BuilderMenuControl
	Viewing the Tag Parsing Menu Controls

	Summary

	Server Control Data Binding
	Customized Control Content
	Control Data Binding
	DataBinding Base Class Options
	The Repeater Control
	The RepeaterItem Container Control
	Command Events and the RepeaterItem Control
	The Repeater Control Architecture
	Repeater Control Event Management

	Data Binding with the Repeater Control
	Advanced Interaction with the Repeater Control

	Using Dynamic Templates
	The Dynamic Templates Web Form
	Implementing the ITemplate Interface
	CompositeDataBoundControl
	CompositeDataBoundControl Mechanics
	The EnhancedSpreadsheetControl

	Summary

	Integrating Client-Side Script
	Client-Side Script Server Control Scenarios
	Handling Client-Side Events
	The Click Web Form
	Handling Mouse Events for Image Rollovers
	JavaScript Detection
	Rendering Client Script Code
	Rendering the HTML Code

	The RolloverImage Web Form
	Analyzing the Rollover HTML Output

	Running a Client Script When a Form Is Submitted
	The FormConfirmation Control
	The ConfirmedLinkButton Control
	The Confirm Web Form

	Integrating Client-Side and Server-Side Events
	The UpDown Server Control
	Key Properties: MinValue, MaxValue, Increment, and Value
	Accessing UpDown Child Controls
	Preparing the Script for Rendering
	Creating the Child Controls
	The ValueChanged Event
	Retrieving the Data
	Handling Child Control Events

	The UpDown Web Form

	Client Callbacks
	Client Callbacks API
	The Callback Web Form
	The StockNews Callback Control

	Summary

	ASP.NET AJAX Controls and Extenders
	ASP.NET AJAX
	Partial Page Updates
	SimpleUserControlAJAX Demonstration

	ASP.NET AJAX Extensibility
	The GetScriptReferences Method
	The GetScriptDescriptors Method
	ASP.NET AJAX Client Script
	HoverButton Example

	ASP.NET AJAX Server Controls
	The TextCaseExtender Control
	The TextCaseBehavior Client-Side Component
	The HighlightedHyperLink ASP.NET AJAX Server Control
	The HighlightedHyperlink Client-Side Component

	Summary

	Other Server Controls
	Web-Part-Based Web Site Development
	Web Part Development
	Web Part Infrastructure
	Creating Web Parts
	The Server Controls
	Converting to WebPart Controls
	The WebPartPageController Server Control
	Connecting Web Parts
	Wiring Up the Page

	Web Part Development Tips

	Adaptive Control Behavior
	Nonmobile Adaptive Behavior
	Control Adapters
	The PageAdapter Base Class
	The WebControlAdapter Base Class

	Mobile Controls Overview
	Working in Visual Studio 2008
	Mobile Controls Quick Primer
	System.Web.UI.MobileControls Controls

	Browsing Mobile Web Forms
	Customizing and Implementing Mobile Controls
	The StyleSheet Control
	The StyleSheetExternal Mobile Web Page

	Templates and Device-Specific Choices
	The DeviceSpecific.aspx Mobile Web Page
	Templates
	The DeviceSpecific and Choice Elements
	Filter Attribute and deviceFilters Configuration
	MobileCapabilities, browserCaps, and Device Update 2
	Custom Device Adapters and Mobile Controls

	New Capabilities in MobileCapabilities

	User Controls
	Mobile User Controls
	Miniaturizing the Header and Footer
	Hosting the Header and Footer User Controls

	Custom Controls
	Rendering the Mobile Control
	Device Adapters

	The Mobile Control Life Cycle
	Mobile Control and Adapter Interaction
	Managing ViewState

	Inheritance
	Composition
	Inheriting from MobileControl
	The MCTextBox Control
	The HTML Device Adapter
	The WML Device Adapter
	Mapping Device Adapters

	Testing MCTextBox

	Summary

	Design-Time Support
	Professional Quality
	Design-Time Architecture
	Environment Services Overview
	Customizing Component Behavior

	Attributes
	The TitledThumbnail Control
	The TitledThumbnail Control at Design Time
	The Properties Window

	Type Converters
	The LocationConverter Class
	The ImageMetaDataConverter Class

	UI Type Editors
	The SimpleTextEditor Editor
	The Collection Editor

	Component Editors
	The Component Editor Dialog Box
	The Component Editor Class

	Custom Designers
	The Control Designer and Designer Verbs
	The Templated Control Designer
	The Data-Bound Control Designer
	The IDataSourceProvider Interface
	The RepeaterDesigner Class
	The DesignTimeData Class

	Miscellaneous Design-Time Items
	The Toolbox Icon
	Debugging Design-Time Development

	Summary

	Building a Complex Control
	The Problem Domain
	The Live Search Web Service
	Web Services Description Language and .NET Web Service Proxies

	Creating the Control Library Project
	Strong-Named Assemblies and Versioning Attributes
	Bin Directory or Global Assembly Cache Deployment
	Additional Assembly Attributes

	Configuring the Search Settings
	Crafting the Configuration Section XML
	Registering the Configuration Section
	Building a Configuration Section Handler Class
	Wrapping the Web Service Proxy in a Utility Method

	Designing the Control Architecture
	The Search Control
	Handling the Search

	The Result Control
	The ResultItem Control
	Building the Result Control
	The Blank Scenario
	The DataBind Scenario
	The Postback Scenario

	Creating a Control Hierarchy for Data Binding or Postback
	Creating ResultItem Controls
	Creating the Child Pager Control
	Managing Paging
	Styling the Result Control

	The Pager Control
	Creating the Pager Results
	Creating the Pager’s Previous Button
	Creating the Pager’s Bar Pages
	Creating the Pager’s Next Button
	Ensuring Pager’s Style Rendering

	Summary

	Packaging and Deployment
	Designer Support
	Designers and Dummy Data Source
	Template Support in the Result Control
	Toolbox Image Icons

	Testing the Live Search Controls
	The Default Look and Feel
	Customizing the Live Search Controls’ Appearance

	Licensing Support
	The RsaLicense License
	License Cryptography
	Generating the License
	The RsaLicenseDataAttribute Custom Attribute
	Adding Licensing to the Search and Result Controls
	The RsaLicenseProvider Class

	Globalization and Localization
	The CultureInfo Class
	The ResourceManager Class
	Culture Types and Localizing Resource Files
	Satellite Assemblies and Resource Fallback
	Setting Thread Culture in the Global.asax File
	Viewing a Localized Web Form

	Code Analysis for Managed Code
	Documentation
	Summary

	Index

