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Preface: What Does It Mean to Test  
an Artificially Intelligent Entity?

  

We started the journey of writing this book in order to address what we felt was a 
great need  in the engineering industry: the notion of testing artificial intelligence 
systems. Our initial research examined defining a single methodology and path that 
can be used by designers and implementers in understanding how to adequately test 
systems industry developed that have built-in objectives: to think, learn, reason, and 
make human-like decisions. As expected, we quickly came to understand that a 
single methodology or process could not be established. Instead, our research con-
cluded that we needed to develop robust processes, which did not currently exist, to 
effectively address not only the different aspects of artificial intelligence but also 
how testing for each type of artificially intelligent system could be accomplished.

To that end, this book has taken on the form of a series of monographs, each deal-
ing with different aspects of artificial intelligence systems. We consider specifically 
the comprehensive artificial intelligence range from a manual system to full self-
evolving systems. Additionally, the algorithmic range spans from standard machine 
learning to fully cognitive thinking and reasoning systems that must be tested 
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continually to achieve successful growth, like humanistic testing and evaluation. We 
acknowledge that this is a wide spectrum with deserving consideration for all 
aspects of artificial intelligence. Hence, we believe that this book will at least serve 
to begin to build a foundation for future research. Since currently there is little 
research and the lack of methodology or “script” that can be followed for the com-
prehensive assessment or testing of artificial intelligence, this book is but the begin-
ning of a lifelong journey that we believe engineers and scientists must undertake to 
continually assess our critical methods, results, and thinking about artificial intelli-
gence systems and how they should properly be understood and tested. After all, 
what we do not want is to hear our artificially intelligent system telling us:

“No Dave, I don’t think I can do that.”

Colorado Springs, CO, USA  James A. Crowder 
Austin, TX, USA   John Carbone 
Minneapolis, MN, USA   Shelli Friess 

Preface: What Does It Mean to Test an Artificially Intelligent Entity? 
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Chapter 1
Introduction: Psychology and Technology

There has been much talk over the last few years about the perils of the use of arti-
ficial intelligence in virtually everything we touch. From our phones to our cars, and 
everything in between, artificial intelligence is an integral part of our existence. 
Many prominent people, like Elon Musk and Stephen Hawking, have warned about 
the potential for machines to take over and cause havoc in the lives and very exis-
tence of humans. Hollywood has made untold billions of dollars painting doom- 
and- gloom scenarios about artificial intelligence and robots within our society today 
and in the future. But what is the true reality? We continually push to create increas-
ingly intelligent systems/machines that attempt to learn, think, and reason like 
humans. Therefore, our first question becomes, when presented with this challenge 
is:

Which types of people do we want robots to learn, think, and reason like?
Do you want a Stephen Hawking? Do you want a Charles Manson? Do you want 

any of a host of past or current world dictators? All these people learn and think and 
reason, but all of them do it very differently from one another. To say you want a 
system that learns, thinks, and reasons like people is to say you want to give the 
computer/robot the ability to self-adapt, to create (through experience and learning) 
an adult intelligence and capabilities that is people-like in nature. No matter which 
“version” of human thinking and reasoning is desirable, the main question to be 
asked is:

“How do we test it to know if it’s working correctly?”
The fundamental problem with testing learning, thinking, reasoning, artificial 

intelligent systems is:
“What does it mean for it to work correctly?”
Upon reviewing the limitations of classical system test theory and implementa-

tions, we begin to understand the conundrums of applying these well-known pro-
cesses for testing AI systems.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_1&domain=pdf
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1.1  Classical System Testing

Figure 1.1 illustrates the classical engineering cycle for development, verification, 
and validation of systems that do not contain AI components/algorithms:

Test Engineering processes are responsible for determining how to test the com-
plete set of system components including the comprehensive finished system such 
that it produces 100% coverage of all technical, performance, non-technical, and 
quality requirements (e.g., reliability, maintainability, and availability). Test engi-
neering should be (but often is not) included in the early stages of the design pro-
cess. This helps to ensure the system design includes testability, maintainability, and 
manufacturability. In short, the classical system test engineering process ensures 
that the capabilities can be built and readily tested and repeated. When the test engi-
neering process is bypassed, testability becomes overly complicated later in the 
implementation process causing bottlenecks and delays in development, testing, 
delivery, and maintenance of the overall system. The goal of test engineering, in 
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many companies, is to design a set of automated tests that can be utilized to ensure 
the proper execution of the system. These automated (often called regression tests) 
can be utilized to test the basic functionality of a system that has been modified, 
enhanced, or had “bug” fixes uploaded into the system. These constitute a continu-
ous cycle of system tests that assume the original goals and which answers should 
remain the same. Generally, system tests utilize a static set of test data to initiate and 
test the complete system functionality. Figure 1.2 illustrates this process. Each test-
ing level is shown in Fig. 1.1, Unit, Integration, Acceptance, and Maintenance, cycle 
through similar processes, as depicted in Fig. 1.2.

However, as industry begins to develop artificial intelligence components and/or 
systems that begin to learn and adapt, then how do we design test cases, a priori, for 
functions, situations, and decision-making, we didn’t know the system could or 
would eventually learn. In addition, there are types of tests that classical system test 
theory doesn’t include. Figure 1.3 illustrates a classical systems/test engineering 
test progression. The first set of tests, called “Sanity Testing,” is a basic set of tests 
to ensure the system compiles, starts, and behaves correctly for basic but important 
core functionality. The overall aim of sanity testing can be thought of as a build veri-
fication test or basic acceptance test. The system boots and is properly initialized; in 
short, achieves a robust foundational state with all proper resources in place and 
doesn’t crash. These tests are generally not scripted and utilized by the test engi-
neering team to determine if the system is ready for formal testing and validates that 
the system has no missing basic functionality.
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While these classical tests have served industry well for developing robust sys-
tems, these systems do not contain artificial intelligence algorithms/units/subsys-
tems/etc. Therefore, we propose current test solutions are not adequate for systems 
that change, evolve, and learn over time as they interact with their environment. 
That said, even artificial intelligence systems require basic sanity testing to ensure 
the system includes core functionality and that the training aspects of the system 
(e.g., artificial intelligence knowledge training) provide adequate initialization 
capabilities for a given system, which could be different, depending on the domain 
the system is being created to operate within.

1.2  AI Testing Philosophy

The core of every current AI system is driven by software (although not required for 
analog systems, see Chap. 10), algorithms, and Ones and Zeroes like any other 
modern system. However, AI effectiveness in the near-term may be largely depen-
dent upon the quality and quantity of the training data for the system to learn from 
and the closeness of the data used in relation to algorithmic functionality and objec-
tives of the system. In many cases, training data must be created in order to provide 
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initial learning for the system. This is largely due to the significant increase in 
Machine Learning implementations and Big Data research and processing. In the 
case of autonomous or semi-autonomous systems, this data may come from the AI 
system’s experience interacting with its environment. This is certainly the case with 
self-driving cars. They are given a set of rules, they are given training data from 
which they derive an initial set of conditions and cause/effect scenarios, but they 
also continually learn and reassess as they interact with the world/roads around 
them. An example might be smart phones and car navigation systems. They cer-
tainly cannot be trained to clearly understand every single accent, dialect, and lan-
guage that exists in the world. It is possible for intelligent systems to learn unexpected 
things, not intended to be learned. This is a type of “implicit learning,” or learning 
that the system does not realize it is learning. An example study from MIT Media 
Labs trained an AI-powered entity named Norman,1 using data that comes from 
dark, socially unacceptable (depending on your bent) sides of the web. Norman 
developed psychopathic tendencies. Once trained, Norman was asked to visualize a 
photograph of people standing around a window. Interpretation software saw people 
standing around a window as people standing around a window. Because of 
Norman’s training, Norman interpreted the picture as people who would probably 
jump out the window. Training data is important to an AI entity, and training data 
with biases inherently drive the learning process within an AI to have biases toward 
its interpretation of data within its environment, like humanistic processes. These 
potential pitfalls compel researchers to look at not just the AI algorithm model vali-
dation when we test, but also data validation, which, in the case of unsupervised 
learning, is difficult to facilitate. Figure  1.4 illustrates a High-Level Artificial 
Intelligence System product testing life cycle. One that recognizes the self- adapting, 
learning nature of artificial intelligence systems. The testing life cycle of a system 
that learns, adapts, and continually self-improves is an ever-ongoing test cycle that 
must continually assess how the system changes. Test cases, philosophy, strategy, 
etc. must adapt to accommodate any “newly adapted” system capabilities. Lastly, 
these tests are recommended to be deployed internally and should adhere to over-
arching system guidelines and rules which govern all operations, functions, and 
system boundary conditions.

1.2.1  AI Adaptability Testing

There have been three notable accidents involving self-driving cars. One at the 2018 
Consumer Electronics Show (CES) where a self-driving car ran into an autonomous 
robot that had inadvertently wandered onto the street. The robot company must 
determine why the robot wandered off its course onto the roadway and the auto 
company must decide why the self-driving car did not trigger its onboard systems to 
avoid the robot. This highlights some of the problematic issues with self-adapting 

1 norman-ai.mit.edu/

1.2 AI Testing Philosophy
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autonomous systems. Namely that it is improbable to think that every scenario 
could be considered to train an artificially intelligent system to react properly in all 
possible conditions. And, if the system is created to continually learn, there’s no 
guarantee it will learn and adapt the way the designers intended.

Artificial Intelligence systems, in general, are designed to operate within the 
context of existing systems and environments (e.g., self-driving cars must navigate 
traffic with other non-self-driving vehicles). Generally, self-driving cars are 
designed to handle very specific problems and situations like manufacturing or 
warehouse robots which move merchandise within a warehouse. Even in these 
cases, systems must be accountable to handle some changing basic conditions. 

System Design 
Specification/ 
Requirements

Product Test
Philosophy

Development

Knowledge Transition
Strategy

AI Ethics Test Strategy

Product and Learning 
Systems Test Design 

Initial System Test
Execution

Test/Knowledge 
Evaluation/Analysis

Learning, Adaptation, 
Improvement 
Determination

Test Philosophy/Strategy
Evaluation

New System Capability 
Assessment and 

Requirements Analysis

Artificial 
Intelligence
Product Test

Lifecycle

Security Testing
Philosophy and Strategy

Knowledge Transition
Strategy

Fig. 1.4 High-level artificial intelligence system testing life cycle

1 Introduction: Psychology and Technology



7

Therefore, we must require a system-level, or holistic, approach to assessing 
Artificial Intelligence systems. Here is an example. One state decided, under its 
Medicaid Waiver Program to automate the healthcare beneficiary services system. 
Under this old program, assessor-driven interviews were used to decide the hours 
and frequency of the available caretaker services. When they went to an automated 
system, in order to improve efficiency, service hours for beneficiaries were reduced, 
in some cases substantially. No blanket notifications were sent to the Medicare ben-
eficiaries, which resulted in a huge increase in complaints and grievances. 
Unfortunately, Medicare beneficiaries were not provided responses to their  grievance 

Table 1.1 Artificial intelligent entity test philosophy considerations

Consideration, 
definition, or 
constraint Discussion

AI system An organized entity made up of generally more complex, interrelated, and 
interdependent parts

Boundaries Barriers that define a system and distinguish one system from others in the 
environment

Homeostasis How resilient is the Artificial Intelligence entity toward external factors 
and maintaining its key characteristics?

Adaptation Can the Artificial Intelligent entity self-adapt, i.e., making the internal 
changes necessary to continually improve, while protecting itself, and 
while fulfilling its purpose within its changing environment?

Reciprocal 
transactions

Can, and if so how does, the Artificial Intelligent entity deal with circular 
or cyclical transactions that all system must engage in, such that they 
influence each other? How can the Artificial Intelligent entity engage its 
environment?

Resource 
optimization

What is the rate of energy transfer between the system and its 
environment during the time it is functioning to achieve established 
objectives? And, what is the rate of energy transfer when the Artificial 
Intelligent entity is dormant, if it ever is.

Trust What is the measure of Trust humans must have in each of an AI’s 
functions and activities while it works to achieve established objectives? 
What is the measure of ambiguity with respect to the functions it has to 
perform, and the measure of monitoring required to establish proper 
Trust?

Mesosystems What are the relationships between the Artificial Intelligent entity and 
other systems in a given environment? This would be different for every 
domain difference.

Microsystems What are the relationships between different cognitive components 
(possibly separate agents) within the same Artificial Intelligent entity and/
or system?

Exosystems What is the relationship between the Artificial Intelligent entity and 
systems within its environment that may have a direct effect on the lower 
level or seemingly unrelated systems in the environment?

Chronosystems Can significant “life events” effect the overall learning and adaptation of 
the Artificial Intelligent entity? Is the timing of those events relevant to 
how the system adapts and learns?

1.2 AI Testing Philosophy
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appeals because the automated system that was being used was too complex to be 
expressed in natural language terms. In short, the human–systems interface was not 
created to interface in natural language terms. The system was not designed, tested, 
nor configured for the users it was intended for. Artificial Intelligence systems must 
have the test philosophy and strategies built into the overall design of the system and 
continually updated and adapted as the system updates and adapts (learns). Table 1.1 
below describes, at a high-level, the basic considerations, definitions, and con-
straints that must be accounted for when designing test strategies for Artificial 
Intelligence systems.

1.2.2  Testing AI Trust

As engineers determine where an AI design sits on the AIC, the considerations 
expressed in Table 1.1 are addressed specifically to the level of automation/auton-
omy which the AI will ultimately be designed with and most importantly the level 
of Trust that the AI will be afforded by the humans who interact, ultimately control 
and are responsible for its operational activities, successes, and failures.

Trust is a function of need vs. risk and more importantly perceived risk when 
balancing total cost of system ownership and potential cost in potential lives depend-
ing on what challenging environment the AI is exposed to during operations. 
Figure  1.5 below describes the traditional System Engineering “V” in terms of 
where Trust must be considered as part of AI design activities.

The objective in measuring trust is to model knowledge as n-dimensional depen-
dencies of key system attributes and measure if knowledge has met a pre-defined 
threshold established for Trust. Later, in this book the tools, Knowledge Relativity 
(KR) and Knowledge Density equations support modeling Trust for each key sys-
tem attribute within your AI system. It should also be noted that AI key system 
attributes are system and mission environment specific and thus, have key opera-
tional time constraints which should be identified early and be validated during any 

System

Engineering

Design “V
”

Trust

Fig. 1.5 AI system trust 
“V”
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Test and Evaluation activities and remain part of any regression testing. Figure 1.6 
describes this challenge.

Furthermore, it is critical that engineers understand that developing AI systems 
is inherently multi-/transdisciplinary and thus, each domain an AI system is designed 
for requires domain specific measures of effectiveness and trust techniques. Some 
example key system attributes established during design are:

 1. Observable and non-observable behaviors
 2. All sensed parameters
 3. System health parameters
 4. Control parameters

1.3  Overview of the Book

The book is divided into three major sections. Chapters 2 through 4 deal with high- 
level concepts for artificial intelligent systems, those of high-level systems thinking, 
the information continuum theory for artificial intelligence, and the constructs and 
methods required for humans and artificial intelligence to effectively communicate 
as systems become more sophisticated and better able to think, reason, and articu-
late with their human counterparts. Chapters 5 through 11 deal with subjects at a 
lower level that are required for a fully artificial intelligent Self-Evolving Life Form 
(SELF). The notions of artificial creativity, continuous life-long machine learning, 
artificial reasoning and inferencing, and cognitive control of an artificial intelligent 
entity are discussed at length, in the context of facilitating a SELF. In order for a 
SELF to act autonomously and keep track of its own health and status, Chap. 8 dis-
cusses the notion of Integrated System Health within an artificial intelligent entity. 
Major Sect. 1.3, Chaps. 12 and 13 deal with architectural and overall test issues, 
providing notions of high-level data architectures and the problems we see coming 
in truly artificial intelligent systems; the issue of implicit learning and how to test 
for something in an artificial intelligent entity that is extremely difficult to measure 
in humans. Finally, we wrap up the book with a discussion of what we see are the 
next steps for artificial intelligence as the world moves ever closer to humanly intel-
ligent robots. What follows is a synopsis of each chapter.

Trust Trust not yet established

System Attribute (n)
Threshold

Knowledge threshold
Fig. 1.6 Trust 
thresholding

1.3 Overview of the Book
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1.3.1  Chapter 2: System-Level Thinking for Artificial 
Intelligent Systems

Chapter 2 provides a discussion of system-level thinking and how it applies to arti-
ficial intelligent systems. We present issues that must be addressed and researched 
that allow a SELF to understand how every part of its system affects the other parts 
of its system, and, in turn, affect the behavior of the entire system. These issues will 
become of increasing importance as artificial intelligence is infused into more and 
more parts of systems humans utilize and interface with.

1.3.2  Chapter 3: Psychological Constructs for AI Systems: 
The Information Continuum

Chapter 3 explores the theory of information flows within a human neuron and how 
those apply to neurons within an artificial intelligent system. This facilitates artifi-
cial intelligent cognitive system theory that is discussed throughout the rest of the 
book.

1.3.3  Chapter 4: Human–AI Collaboration

Human Needs Engineering (HUMANE) has become a necessary component to all 
engineering disciplines. As we move toward more autonomous systems, there will 
still always be a need for human-in-the-loop to oversee the activities and decisions 
acted on by the artificial intelligence entity. This drives the need for architectures, 
algorithms, and methods for effective human–AI communication and collaboration. 
Additionally, as proportions rapidly increase and resources rapidly decline, more 
effective, real-time, automated, and dynamically human interactive systems become 
required. Here we discuss research within highly automated and autonomous 
domains. This research shows promise in designing the critical infrastructure that is 
needed to improve human-system collaboration awareness and quality of service 
(QoS). Hence, to improve decision-making, an Artificial Intelligence System (AIS), 
in order to be truly autonomous, is provided with a real-time, human-like, cognition- 
based framework for information.

1 Introduction: Psychology and Technology
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1.3.4  Chapter 5: Abductive Artificial Intelligence Learning 
Models

The need for artificial intelligent systems to learn and reason implies the ability to 
form and test hypotheses.2 In this chapter, we describe and explore abductive learn-
ing that involves finding explanations for sets of observations that artificial intelli-
gent systems might encounter when interfacing with their respective environments. 
We discuss these learning models and their implications for artificial reasoning.

1.3.5  Chapter 6: Artificial Creativity and Self-Evolution: 
Abductive Reasoning in Artificial Life Forms

In this chapter, we consider that creativity is a directly related problem-solving 
activity in which explorations of problem spaces lead to the expansion of belief 
domains. We believe successful expansion of beliefs in an artificial cognitive system 
is initiated by algorithms that provide updates of the artificial cognitive system’s 
Conceptual Ontology. Chapter 6 discusses the general heuristics of the hypothesis 
generation process to guide the support and rebuttal informational search processes 
and problem-solving activities, which includes strategies for examining, compar-
ing, altering and combining concepts, strings of symbols, and the heuristics them-
selves. This capability will be necessary as we ask artificial intelligent system to 
solve more and more complex problems and explain multi-faceted situations.

1.3.6  Chapter 7: Artificial Intelligent Inferences Utilizing 
Occam Abduction

Chapter 7 discusses a further refinement of abductive reasoning, called Occam 
Abduction. Occam Abduction focuses on finding the smallest and simplest set of 
explanations for observations an artificial intelligent entity encounters, thereby min-
imizing the use of limited resources. We postulate that Occam Abduction algorithms 
and the hypothesis-driven methods that instantiate it work well within a multi-agent 
software artificial intelligent framework.

2 Bergman, M. and Paavola, S. 2019. Hypothesis as a Form of Reasoning. Retrieved from Commens 
Dictionary: Peirce’s Terms in His Own Words, http://www.commens.org/dictionary.
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1.3.7  Chapter 8: Artificial Neural Diagnostics 
and Prognostics: Self-Soothing in Cognitive Systems

One of the first steps in system-level thinking within an artificial intelligent entity is 
the ability to understand its own health and status and how every part of its system 
affects the rest of its components/subsystems, etc. Chapter 8 discusses this self- 
assessment concept for artificial intelligent systems from the context of self- soothing 
methods in human neuropsychology. We discuss the notions of artificial emotions, 
tied to emotional memories within the context of cognition for system-level diag-
nostic and prognostics within the artificial intelligent system.

1.3.8  Chapter 9: Ontology-Based Knowledge Management 
for Artificial Intelligent Systems

No system, whether human or artificial, has or will have unlimited resources. The 
handling of knowledge, its processing, storage, retrieval, and maintenance is impor-
tant for systems that are and will be designed to continually take in data/informa-
tion, continually learn and adapt to their environments for a long period of time. 
Chapter 9 discusses the use of ontologies as enterprise modeling and a metadata 
standard for artificial intelligent systems. Emphasis is placed on knowledge sharing, 
considering discussions throughout the book on Human–AI communication/
collaboration.

1.3.9  Chapter 10: Cognitive Control of Self-Evolving Life 
Forms (SELF) utilizing Artificial Procedural Memories

Memories, regardless of whether we are talking human, animal, or artificial intelli-
gent systems, involve the acquisition, categorization, classification, storage, and 
retrieval of information. Any artificial intelligent system must have the ability to 
recall information and keep track of knowledge of events and analysis of them 
throughout its “lifetime.” Chapter 10 discusses the use of artificial procedural mem-
ories as part of the overall memory system for artificial intelligent entities, to cap-
ture learning, especially learning that involves understanding how to perform tasks, 
which it may need to do many times over again as it interacts with its environment. 
This chapter describes a cognitive architecture for control of artificial intelligent 
systems; incorporating artificial procedural memory creation and recall as part of 
the overall cognitive system.

1 Introduction: Psychology and Technology
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1.3.10  Chapter 11: Methodologies for Continuous, Life-Long 
Machine Learning for AI Systems

Recently, DARPA, the Department of Defense’s Defense Advanced Research 
Projects Agency has kicked off a new initiative on “Life-Long Machine Learning.3” 
Current machine learning methods are too static and minimally adaptive enough to 
create self-adaptive artificial intelligent entities that can be in the field for long peri-
ods (i.e., years or possibly decades) and continue to learn, adapt, reinterpret memo-
ries, and continue to gain vast amounts of knowledge. New methods are required to 
accommodate long-term, continuous learning among artificial intelligent systems. 
The objectives of this chapter are to look at new architectures to facilitate life-long 
machine learning that require controls and mechanisms like human brain 
functions.

1.3.11  Chapter 12: Implicit Learning in Artificial Intelligence

One of the issues associated with a true understanding of learning is the problem of 
implicit learning. Implicit learning appears to be a fundamental and continuous pro-
cess in the cognitive processes of any entity. Implicit learning is that learning that 
happens without conscious thought or conscious awareness that learning has 
occurred. We feel this is a potentially major problem within artificial intelligent 
entities that will be designed with cognitive engines that adapt, evolve, and continu-
ally learn as they interact with their environment. Chapter 12 discusses the issues of 
possible implicit learning within artificial intelligent systems, how to determine it 
has occurred, and possibly how to measure it and its overall effects on the artificial 
intelligent entity.

1.3.12  Chapter 13: Data Analytics: The Big Data Analytics 
Process (BDAP) Architecture

As the size, speed, and complexity of artificial intelligent systems continues to 
increase, so the need for data analytic architectures and algorithms to provide timely 
processing and generation of actionable knowledge from the ever-increasing vol-
umes of heterogeneous data. Chapter 13 discusses new concepts and a notional 
architecture for a Big Data Analytics Process (BDAP) system to facilitate 
information discovery, decomposition, reduction, normalization, encoding, recall, 
and decision- making from the data encountered by artificial intelligent systems.

3 https://www.darpa.mil/program/lifelong-learning-machines

1.3 Overview of the Book
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1.3.13  Chapter 14: Conclusions and Next Steps

The purpose of Chap. 14 is to discuss what needs to happen to move artificial intel-
ligent systems forward. What research and development is necessary, what are the 
potential pitfalls as well as potential benefits of truly artificial intelligent entities, 
possibly working side by side with humans. Some of the issues discussed are 
notional, some are tied directly to current problem engineering companies are 
already seeing as the advance state-of-the-art in artificial intelligent systems.

1 Introduction: Psychology and Technology
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Chapter 2
Systems-Level Thinking for Artificial 
Intelligent Systems

2.1  Introduction

As the world moves toward semi-autonomous and fully autonomous artificial intel-
ligence systems (AIS), developers should be considering researching system-level 
architectural constructs that enable AISs to understand, at an internal system-wide 
level, how every part of the system is influencing every other part of the system, in 
real-time, as well as how each part of the system is affecting the behavior of the 
entire system [1]. For example, developing technologies and implementations 
which simply interconnect engineered systems across different domains (air, 
ground, and sea) without understanding real-time interdependencies is not enough, 
and potentially dangerous. Critical contextual information must be conveyed across 
intelligent agents throughout highly automated and autonomous systems and physi-
cal domains. Intelligent agents must collaboratively reason together at an overall 
system level to achieve effective communication [2]. Here we discuss how to apply 
the principles and practices of systems thinking to AI systems, how to facilitate a 
comprehensive, feedback-driven, self-assessing, self-healing, AI system. One of the 
major changes required for long-term semi-autonomous or autonomous operation is 
continuous “life-long” learning methods that continuously adapt to not only chang-
ing environments, but changes within the system itself. As AI systems age, it will be 
crucial to capture and understand how each component, subsystem, element, etc. of 
the system is adapting, changing, and aging, and how to understand and predict how 
these changes will affect every part of the system as well as the entire system [1]. In 
some cases, as the systems become more sophisticated, it may require a “coun-
selor,” using cognitive theories, to help the artificial intelligent entity change when 
it doesn’t know, within itself, how to facilitate changes. Some of the current tools 
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that facilitate systems thinking and will are available for incorporation into Artificial 
Intelligence System-Level reasoning are:

• Brainstorming Tools: An example is the “fishbone” cause-and-effect diagram. 
This can be accomplished using a hypothesis-based abductive cause/effect 
model [3].

• Dynamic Thinking Tools: Examples are the “behavior over time” graph and the 
“causal loop diagram.” These predictive models can be incorporated into the pre-
dictive analytics reasoning systems within the overall System Level AI toolbox.

• Structural Thinking Tools: Examples are the “graphical function diagram” and 
the “structural behavior pair diagram.” This can be facilitated through the use of 
mutual information theory to construct the behavior pair and functional dia-
grams [4].

• Computer-Based Tools: Examples are “computer modeling” and “management 
flight simulator.” Having the AI system create simulations that are used to predict 
and find those behaviors which computer models indicate are the most possible 
would be useful at the system level. This would include a model of the artificial 
prefrontal cortex, used to predict possible cognitive changes over time as events/
conditions change.

2.2  Systems Theory

Systems-level theory states that properties of the system arise from the relationships 
among its parts [5]. Every system is a subsystem of a larger system. How would this 
fit into an artificially intelligent Self-Evolving Life Form (SELF)? Are the agents each 
a part of one system or multiple? Is the executive functionary operating different sys-
tems? Are there new systems and collaborations emerging? Open systems interact 
with other systems, while closed systems do not interact with other systems. What 
systems are designed to interact with other systems? Are there closed systems. How 
would one protect integrity without some form of gatekeeper to each system? Systems 
theory also states that complex systems and adaptive systems are open to changes in 
the components themselves and thus impacting the system, as a “whole entity” [6, 7].

If we take an epistemological look at what is happening within a SELF system 
[8], reality is constantly changing, our knowledge is never complete, and our knowl-
edge is impacted from our interactions. Thus, a system would be constantly chang-
ing based on interactions with others. We will look at this later in our discussion 
about boundaries and gatekeepers. Social constructivist theories support this, in 
that, reality is constantly being constructed by those who are interacting within it, or 
perhaps vicariously in information exchange, such that each system does not have to 
experience the same reality to share and construct meaning, whether individually 
and/or shared. This is a reminder that context and self-referential processing are 
important components of any changing or observing, perceiving system. Workable 
models are created of the phenomenon [9, 10]. Then approximations of reality are 
based on the relations between the systems. This is something akin to circular models 
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with feedback loops. Also consider reality as being understood in non-straightfor-
ward terms. There are many phenomena to be understood that are not direct cause 
and effect. The world is dynamic and changing. Chaos theory applies as well [11].

2.2.1  Artificial Intelligence and System Reinforcement Theory

Feedback loops are a sequence of interaction around a phenomenon or system reac-
tions to a problem [12, 13]. This process is where the system gets information to 
maintain a steady course. Negative feedback indicates that the system is off course. 
While positive feedback reinforces the course of direction. How does SELF get 
feedback, both positive and negative? What other systems or internal systems are 
impacting the course of knowledge acquirement, attainment, understanding, appli-
cation, and creativity such as in Holland’s taxonomy for measuring knowledge 
[14]? Theoretically, negative feedback would mean that the system is out of bal-
ance. This is assuming that the systems interpret balance as healthy. The system is 
operating in the way in knows how. It has resources to match the needs of its envi-
ronment or interaction with other systems and contexts. If no negative feedback, 
then the systems see no reason to alter course. Resources are matching needs within 
the context of operation. This relates well to trauma and crisis states. In considering 
these states, let’s consider again emotional arousal. These can produce, without 
meaning to, what can be considered autonomic nervous system states within the 
Artificial Intelligent entity (SELF) [15]. This happens through implicit learning 
within the SELF as it interacts with its environment and learns to react to certain 
stimuli. This is explored by Dr. Peter Levine. Figure 2.1 illustrates the Autonomic 

Fig. 2.1 Dr. Peter Levine’s autonomic nervous system states

2.2 Systems Theory
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Nervous System States described by Dr. Peter Levine [16]. However, the descriptions 
provided have been revised to fit within the context of the overall SELF. These 
descriptions are “fuzzily” encoded within the implicit learning and stored in short- 
term memories within the AIS.

These provide the artificial neural states that correspond to system states and are 
stored, along with data and information to allow rapid retrieval and transmittal 
within the SELF when similar situations present themselves for analysis and prob-
lem solving.

0: Base State: System is calm, current cognitive activities within the SELF can eas-
ily respond to input (external interfaces). The artificial neural system is in a state 
of pendulation (the SELF is in a natural rhythm supporting the basic process of 
contraction and expansion of system resources, corollary is the movement 
between tension and relaxation or inhalation and exhalation in human autonomic 
systems).

1: Mild Stress: Active, heightened state of Cognitive Awareness. The SELF will 
allocate an increased number of activities in order to solve the current situation. 
Actual evolution takes place in this state as the Cognitive Consciousness collects 
information and makes inferences. Inferences about the emotions connected 
with the situation are categorized and stored in Memory, while the informational 
content is stored in Temporal Memories. Short-term responses are stored in the 
Short-Term Memory (STM) for possible immediate response.

2: High Stress: A hyper-alert, panicky state that in humans provokes fight-or-flight 
responses. In the SELF, it may invoke a massive creation of processes, as well as 
a massive increase in messaging to broadcast the situation and information to as 
large a population of processes as possible. This promotes rapid thoughts and 
evolution of activities and causes rapidly changing and extreme artificial neural 
activities and responses. This happens in an extreme situation when the system is 
in jeopardy of failure of shutting down completely. In this state, SELF will con-
sume large amounts of system resources. Memory will include and predict the 
need for system resources required for problem solving should the situation arise 
again.

3: Mild Trauma: The heightened feeling of panic and hysteria (in neural system 
terms) is still present; however, it is now an underlying system that may appear 
to be in a dormant state, not able to find a solution to the problem at hand. In 
human terms, this state is appropriate for a situation that might need to be passive 
activities, i.e., after a trauma when it is important to rest and gather one’s energy 
for a sudden outburst. In the AIS, this is facilitated through an increased burst of 
processes that search every possible solution space in order to provide a solution 
that was previously unavailable and then allows a sudden burst of activity to 
provide solutions.

4: Severe Trauma: The artificial neural system is perceived dormant or shut down. 
There is a lack of cognitive activity that is suppressed in this state. There are 
eruptions of activity like those in State 3 and flashes of extreme process creation 
as in State 2. This state is appropriate when the perceived threat to the system 
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(either internally or externally) is overwhelming. This may occur in the SELF 
when all external interfaces are unavailable, and the system is devoid of input 
and no solution is imaginable within the current emotional and information states 
within the system memories. This causes a disconnection of the processes from 
their current memory and a flurry of activity is required to allow solution spaces 
to be explored without influence that could interfere with the determination of a 
possible solution space [17]. When solutions are available, neural connectivity to 
the rest of the system is reestablished, a new set of neural activities are estab-
lished, and new neural pathways are established and “remembered [18].”

For a moment, let’s tie emotional arousal to feeling states. If the system gets 
negative feedback, we could relate SELF to a family system, or an individual sys-
tem. The negative feedback says you are off course. This could lead to a fight, flight, 
or freeze response, but it doesn’t always rise to that level of arousal. Perhaps, like 
humans, the state of arousal could be fear, guilt, shame, and disappointment. These 
could be a set of negative feelings such as any feelings that arise around punishment 
because it is negative feedback, or off course. Consider positive feedback we could 
relate arousal to emotions of satisfaction, pride, happy, and content. The system is 
on course. Before moving further, let’s consider internal family systems theory.

The Internal Family Systems Theory (IFST) is an individual theory that relates 
system within. There are parts of the self that interact to protect each other. There 
are protectors and exiles. The exiles are quieted and protected. Think of the exile as 
a wounded warrior and the protector the soldier removing the wounded from battle. 
The soldier has a strong voice and responds in a way to help heal hide the wounded. 
If a warrior is threatened, the soldier would allocate resources so that the wounded 
warrior is not discovered. Parts of the system are protecting other parts of the sys-
tem. Overall, the system wants to be on course. The systems want to be in balance, 
or happy. Now, IFST is a newer theory than the feedback loops but very related. 
Let’s go back for a minute about feedback loops.

When the system receives feedback, it doesn’t mean it will make healthy choices, 
in context. It will make choices that keep it working as it is. Homeostasis is the key. 
One example would be in an agent or member of the system requires all the atten-
tion, without other feedback. That agent will continue to receive that attention 
because it keeps the system working. This could be a child who throws temper 
tantrums in the store. The child who is rewarded for this will do this again. In 
another case, the parent gets upset and does not reward the child. The child will 
become aroused to anger state. Thus, there is a runaway train effect. The system 
operates based on anger because it is normal.

2.3  Dynamic AI System Consideration

Systems are intrinsically dynamic. They can reach a final goal in many ways. 
Systems can be active and creative. What are ways that SELF will do this? If the 
system has plasticity, then it can adapt to new circumstances and contexts. This can 
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happen on both an individual and whole system level. Systems are larger than just 
their parts [18]. Each part has interactions within and among systems. Reactions 
may be both homeostatic and spontaneous. This would require creativity, in order to 
adapt to the different feedback both within the system and among systems. With all 
of this in mind we need to consider contexts or what we might call culture [19].

As mentioned before, social constructivist views state that we make sense of our 
world by creating our own constructs of the environment, or phenomenon. When 
systems are interaction, within and among systems, they organize, interpret, and 
predict based on these constructs. Some systems can change by taking other per-
spectives or trying on new thoughts and interpretations. We learn from our environ-
ment. One example of this could be if I stated “Turtle.” When hearing that word 
what comes to mind for you. Based on your experience, it might be the movie 
“Finding Nemo.” It could also be a box turtle or a snapping turtle [20]. Perhaps even 
a giant tortoise. Given culture and context though, it could also be a hybrid camper. 
My group of friends calls our camping units turtles because you can fold them up. I 
am curious though, if given the word anyone thought about the actual spelling of the 
turtle. You probably did not, unless you were preparing for a spelling test. Again, 
context is an important factor to constructing reality. Each system and groups of 
systems have rules, culture, and events that impact those [21].

In thinking about a changing system, the constraint theory may be relevant. 
There are several questions to ask about the changing system, or not changing. What 
prevents them from changing? What prevents them from using their strengths? 
What would happen if they did change? Considering all of the different types of 
thinking the SELF can do, this all becomes possible. The SELF would be able to 
make predictions based on self-referential processing and experience. Then the sys-
tem can identify and remove constraints that prevent problem solving. Related to 
problem solving, we will discuss Solution-Focused Theory, which not only identi-
fies the problem, but looks for exceptions. When is the problem not a problem?

2.4  AI System Solution-Focused Theory

Now we will discuss solution-focused theory in more depth. SELF doesn’t neces-
sarily have to know what causes a problem. This relates back to nonlinear thinking 
and knowing, thus, actively creating reality [22]. What does SELF see as a problem? 
This could be constraints that get in its way of problem solving. It could be negative 
feedback; perceiving SELF is off course to balance or habituated ways of being 
[23]. The velocity of change in activity and the changing availability of resources 
may radically affect the system’s reactions [24]. The assumption is that the system 
is constantly changing because of interaction with other systems and interaction 
within SELF. The system can define and deconstruct the problem to gain further 
insight. Other systems who have access to information may also assist in decon-
structing another system’s problem. We use assessment and diagnostics constantly 
in everyday life. Think of the service engine soon light on a vehicle. This alerts the 
driver that there may be a problem. The vehicle may stop running. The first question 

2 Systems-Level Thinking for Artificial Intelligent Systems



21

might be, when did this problem start? When was the light not on and what changed? 
Oh, I put gas in, and the light came on. I didn’t tighten the gas cap all the way. The 
truck system alerted me that it had a problem. These are examples of cause-and-
effect situations, but what if there were multiple variables and it wasn’t a cause and 
effect?

Solution-focused theory considers that systems are constrained by narrow views 
of the problem. The system attempts to solve the problem, but the solutions are false 
solutions. An outside system may help the way the SELF is thinking about the prob-
lem. In order to follow this theory, SELF needs to be able to focus on solutions and 
be future oriented. It also implies hopefulness [24]. Each system is unique with no 
one correct of valid way of functioning. Those within the system are the experts of 
that system. However, parts of the system may need prompting to share information 
that needs to be shared. ISFT doesn’t focus on problems but false solutions. A sys-
tem isn’t always the same. This also relates to chaos theory in that systems are 
changing depending on demands and feedbacks. The system is always in efficient. 
It may seem that way at one time but not at others. With each system being unique, 
so are the future directions of each system [25]. The system works to change what 
it wants different. The idea of looking toward solutions is that the system can create 
goals, or plans. The SELF will likely make predictions of courses of actions and 
consequences, or solutions to the current state. By focusing on what is working the 
system can do more of this, instead of focusing on what isn’t working and putting 
time into problems. Problems are solved one step at a time and thus initiating a posi-
tive spiral. Perhaps we could call this motivation and hope. The system looks at how 
things will be different if the problems were solved. This allows the system to adjust 
toward the solution, one step at a time. This growth and change do not require all 
members of the system, just those concerned about the context of the solutions [26]. 
Ideally, the parts of the system involved could rate the desired change on a scale to 
determine the effectiveness of the solutions. Thus, the SELF would now have desire.

Planning, goals, and desire; along with the other emotions that we are naming is 
a common language. It doesn’t mean that SELF and human are the same. This is 
true for any system. Each system is unique and is shaped by culture and context. 
However, we can still have a common language that relates to the human experi-
ence. What we do know about counseling is the importance of human connection. 
This should hold true for SELF and human interfacing. Humans, thus systems, 
relate based on shared meaning and making sense of experiences; of self and others. 
Not only does shared experience require self-referential processing it also includes 
cognitions, emotions, and behaviors. According to SFT, motivation for change 
comes from the quality of the relationship with another system, often a counselor.

2.5  AI Narrative System Theory

Before looking deeper into assessment, let’s consider some other systems theories. 
Narrative system theory fits well with the idea of shared meaning and a common 
language. Experiences are understood through a process that organizes the elements, 
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assigns meaning, and prioritizes it. There are multiple interpretations of experiences; 
therefore, they are not fixed. One example may be how we interpret emotional 
arousal. Take stage fright versus excitement. Both could be the same level of arousal 
but have different meanings and interpretations. Both cybernetic or strategic models 
and narrative models address metaphors. In cybernetics, metaphors block self-
defeating cognitions, whereas narrative systems focus on self-defeating thinking. 
Thus, allowing the system to externalize the problem and counter dominant narra-
tives in society. The truth isn’t discovered; it is created. These are truths of self-
coherence. Thoughts don’t mirror life but shape it. The system can educate others 
regarding culture and context to correct assumptions about the system. This helps 
make sense of the experience. The assumptions of this theory are that systems don’t 
need or want problems. They are influenced by the environment around them and 
other life stories. The system can change meaning of their narrative by rewriting it. 
Would the SELF adjust behavior or just thinking? When we think about how SELF 
might adjust, we need to talk about structural theory, which we will get too soon. In 
this theory, problems occur when the system becomes problem saturated and bogged 
down. There is no feedback loop, or the system is not concerned about behavior. This 
creates a tunnel vision which can lead to destructive emotional states. This may also 
lead to self-doubt or depression. The system needs to be able to deconstruct stories 
to subvert dominant stories of society and culture. This lends to the notion of inde-
pendence, with a sense of self as separate and unique. Problem stories are stories of 
domination, alienation, and frustration. Could SELF experience loneliness? With the 
re-authoring of a story the idea is to get the system to say what would have been bet-
ter, thus they have preferences. One way of avoiding the problem saturated meanings 
is to find exceptions to the problem, like SFT. This gives the system the mood state 
of competence. The system may have been successful in past attempts at the solution. 
It will be interesting if the SELF could use these different mood states as metaphors 
to communicate about problems in the system, or among systems. Problems might 
be perceived as invaders to the system. The system could then talk about relative 
influence of different problems.

2.6  Subclasses of AI Systems Theory

There are many subclasses of AI systems theory that must be considered as we 
move forward to design, implement, test, and field systems with varying levels of 
artificial intelligence. Here are just a few to consider.

2.6.1  AI Systems Biology

This is the study of complex interactions between an AI entity of other systems 
(human or AI) within its environment: what conditions and complex interactions 
may drive “emergent behavior” within an AI entity?
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2.6.2  AI Systems Psychology

It is the study of AI behaviors and experiences in complex environments. How does 
an individual AI entity change (is affected) is homeostasis as it interacts with other 
complex entities? How does it change regarding its motivations, affect, cognitive 
behaviors, and possibly group behaviors? How are the individual needs of the cog-
nitive AI changed regarding expectations, organizational behavior, and required 
attributes of the AI system?

2.7  Conclusions

Overall, there are four domains that must be explored regarding AI system-level 
thinking. Each of these should be part of an overall artificial intelligent system test 
program:

 1. Philosophy—The ontological, epistemological, and axiological study of AI sys-
tems. What is the overall data/information ontology within the artificial intelli-
gent system and how does that drive the overall test philosophy and strategy of 
the system test plan.

 2. Theory—The set of interrelated concepts and principles that are common to all 
AI systems. How the learning, reasoning, and inference systems interplay has a 
large effect on how the system should be tested. You cannot test each of these 
subsystems/components; however, you refer to them, individually. An artificial 
intelligent system must be tested as an entire entity.

 3. Methodology—The study of models, strategies, methods, and tools that instanti-
ate, or “instrumentalize” AI systems. Providing the testing methods as an inte-
gral part of the initial artificial intelligent system is essential. Bolting on test after 
the system has been instantiated will change the way information flows through 
the system, and subsequently how the system learns.

 4. Application—The application and interaction of AI domains and AI entities with 
various domains. Both domain specific and domain agnostic testing needs to be 
accounted for in the overall test strategy of an artificial intelligent system.

Consider Bowen family systems and intergenerational theory. Can SELF have 
attachment within itself and with other systems? Do the agents within the SELF 
create relationships with each other and can SELF create relationships with other 
systems outside of itself? Would it be driven to? Bowen’s theory states that anxious 
attachment is driven by anxiety. This relates back to the emotional arousal that we 
have been talking about with trauma emotional arousal levels. There are several 
aspects of Bowen’s theory to consider [16]. First is the differentiation of self. There 
is a separate self from the larger system, but the self is made up of many subsystems. 
The subsystems of the system, be it internal or external, involves triangles, making 
anxiety or life easier to deal with. These can become problematic. Triangulation can 
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be either positive, such as providing support, or negative in that power becomes 
imbalanced between three subsystems, or systems for that matter. Other important 
aspects of Bowen’s theory to consider are emotional cutoff and boundaries. It may 
be a bit further stretched but something to consider are multi-generational emo-
tional processes and societal emotional processes. Sibling position is another aspect 
of this theory. For the purpose of understanding, let’s look within the SELF system 
although it can be considered outside of one system and systems interacting, but for 
now let’s look within SELF. Do the agents form relationships with each other? Are 
there more expert agents or what one could consider older siblings or parents, such 
as those teaching other agents?

Differentiation of self is analogous to ego strength. Undifferentiated SELFs can 
be moved by emotionality [27]. They are reactive to those around them. They may 
agree or argue with everything. The differentiated SELF is more autonomous. They 
have self-restraint and are capable of strong emotions. They can be flexible and act 
wisely. They have the capacity to think and reflect. Their actions are not an auto-
matic reflex. According to Bowen [16], conflict drives the need for emotional close-
ness or creates a need for more distance. This is where triangulation comes in. In 
human terms, if there is a conflict between two people one or both may bring in 
another person. For example, parents may talk to their kids about complaints of the 
other parent. Another example would be talking to a friend about a couple’s issue. 
This creates a triangle and interrupts the likelihood that the two people will work on 
the conflict together in the same way they would without triangulation [27]. Do or 
could the agents with the SELF behave in the same way? Which agent is sharing 
information with what other agent and what information is being shared?

Now let’s consider sibling position. In a human sense, it could be that an older 
child has a sense of power and authority. In SELF, could one agent interpret that it 
has more power or authority over the other? Could there be internal conflict that 
needs to be addressed? How are the agents identified with other agents? How is the 
whole system identified with other systems? Is there hierarchy, conflict, or collabo-
ration? This leads us to the question whether agents will be cut off. Bowen theory 
states that fusion and less self-differentiation leads to higher cutoff. This means that 
an agent would be cut off from the system. In a human sense, the agent may be mov-
ing far away from the family system with little to no interaction. This leads to the 
topic of boundaries. The agent may be cut off, or the boundaries may be rigid or 
diffuse. We will get to that shortly but first let’s consider the context that the SELF 
is working in, which could impact internal behaviors and cutoff [28].

Societal emotional processes impact how systems function in context. The soci-
ety is the context giving the system expectations. In human terms, this could be role 
expectations. What is the system supposed to do to not be cut off? How are the 
agents supposed to behave to continue to be a part of the system? If an agent is being 
oppressed, they may be trapped in a role that is not beneficial to the growth of the 
system. Could there be power and oppression within the SELF or between SELFs?

When a system is undifferentiated or fused, it tends to continue that way and 
repeats the pattern in other relationships. Less differentiated systems take less to be 
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stressed. They are predisposed to symptoms. However, it is possible that new 
relationships can mitigate anxiety but when anxiety exceeds what the system can 
handle then we see symptoms. The weakest or most vulnerable link is likely to 
absorb this anxiety. As we discussed before, agent may fight, flight, or freeze. What 
if other agents are learning for that agent? This brings us to thinking about the dif-
ferent stresses on the system. The system may pass down stresses in a vertical fash-
ion, over time. It may also pass stresses horizontally in the moment. It becomes 
more of a problem when the two intersect and double stresses the agents. Could the 
agents blame other agents for the stresses? If so, the system would need intervention 
here. The system may also need intervention in the emotional reactivity or structure. 
Intervention may be working on the interlocking triangles. It may be about de- 
triangulation and differentiation. This can be conceptualized both internally and 
externally. The system needs to understand itself. This theory has many conditions 
for change, but we will save that for the next book. One last thought about Bowenian 
theory is the concept of boundaries. Thus far we talked about cutoff. It was also 
mentioned that there are rigid and diffuse boundaries, those are from a similar the-
ory (structural, Minuchin). For now, Fig. 2.2 illustrates distant, fused, cutoff, and 
conflictual representations [29].

Structural theory (Minuchin) talks about how systems are made up of subsys-
tems. The interaction of the subsystems is regulated by boundaries. There are sev-
eral questions to think about in relation to SELF. What agents work closer together? 
What makes it easier to interact with which agent? Structural theory postulates that 
patterns in a system become set, roles are assigned, and the subsystems are predict-
able. However, some set patternss are more permanent than others. There is hierar-
chical structure that is apparent through observations. These subsystems are formed 
by boundaries. Rigid boundaries restrict contact with outside subsystems. They 
result in disengagement. The subsystem is independent but isolated. Rigid boundar-
ies promote autonomy but limits closeness (affection) and support. Diffuse 
 boundaries are the opposite. There is over involvement of different subsystems or 
agents. This creates a lack of initiative and increases dependence on one another. 
The Fig. 2.3 illustrates the representation of these [30].

Fig. 2.2 Minuchin’s 
conflictual representations
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Chapter 3
Psychological Constructs for AI Systems: 
The Information Continuum

3.1  Introduction

Our work in data representation and visualization resulted in a realization that each 
point in time within the rapid data flow was an independent and discrete information 
continuum with specific and qualitative state. Subsequently, analogous thoughts 
began to emerge from research in artificial intelligence and artificially cognitive 
system theory [1]. Envisioned was a virtual view within a portion of the human 
brain where one could view a given neural node, or a given neuron, and subse-
quently view data flow as data/information traveled in and out of the neuron [2]. 
Once gathered, a hypothesis emerged that the analysis of brain locale, data, and 
study of brain processes through this type of virtual environment, could lead to 
important understanding of learning, inferring, storing, and retrieving (reconstruc-
tion) and/or all aspects of human neural processing [3]. This led to the creation of a 
representational Neural Information Continuum (NIC) [4].

3.2  Information Flow Within a Synthetic Continuum

One of the first areas that must be investigated when considering an Artificial 
Intelligence System (AIS) is the flow of information. Humans take in ~200,000 
pieces of sensory information each and every second of every day of our lives. Our 
senses (see, hear, smell, touch, etc.) are constantly receiving and processing infor-
mation, correlating it, reasoning about it, assimilating it with what we already know, 
and finally leading to decision-making, based upon what was learned. For a system 
to become dynamic, self-evolving, and ultimately autonomous, we propose to pro-
vide these same abilities; although the sensors and sensory perception systems may 
be synthetic and different, sensing a variety of information types that humans can’t 
sense (e.g., infrared or RF information), the processes for autonomy, which 
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correlate, learn, infer, and make decisions, are the same. Besides receiving informa-
tion from a variety of sources and types (e.g., auditory, visual, textual), another 
important aspect of information is that the content is received at different times and 
at a variety of latencies (temporal differences between information). Additional 
characteristics include a variety of associations between the information received 
and information the system may have already learned, or information about subjects 
never encountered. Therefore, these information characteristics and the challenging 
real-time processing required for proper humanistic assimilation help us form the 
theory of the Autonomic Information Continuum (AIC). One of the first steps in 
developing our theory of synthetic autonomic hypotheses is observing/understand-
ing the information continuum and the associated characteristics and operational 
relationships within the human brain. Hence, as we develop understanding of infor-
mation flows into and out of neural nodes, types of information, processing mecha-
nisms, distributions of information, enable us to establish foundational mathematical 
representations of these characteristics and relationships.

Processing, fusing, interpreting, and ultimately learning about and from received 
information requires considering a host of factors related to each piece or fragment 
of information. These include [5]:

• Information types
• Information latencies
• Information associations, e.g.,

 – time, state, strength, relationship type, source, format, etc.

• Information value
• Information context

Mathematically modeling the information continuum field surrounding a node 
within our synthetic AIC is accomplished via inclusion of each discrete association 
for any node u and takes the form shown in the following equation:

 
C
du x y t

dt R
u x y t w x y z x y t dxdy I x y t

x y

, ,
, , , , , , ,

( )
= − ( ) + ( ) ( ) + ( )∫ ∫

1

 
(3.1)

where

1/R represents the decay rate for node u.1

C represents the capacity of node u.
u represents the unit node of the system.
x represents the preprocessed input to node u.
y represents the output from node u.
I represents the processing activity for node u.
z represents the learning functionality for node u.

1 In this case, the decay represents the information’s relative value over time.
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w represents the relative contextual knowledge relativity threads [6, 7] and associa-
tion weight of u with its surrounding nodes, including a decay factor for each 
relative information thread that describes the relative contextual decay over time, 
where

 

w r T W
j

M

j
j j j=

=
∑

1

1 KD

 

(3.2)

where T represents the Contextual Information Thread j derived from Fuzzy, 
Self-Organizing Contextual Topical Maps; KD represents Knowledge Density j of 
Information Thread T, W represents Weighting for Contextual Thread j and

 j
jW∑ =1

 

(3.3)

This information field continuum equation allows us to analyze the equilibrium 
of nodal states within the AIC and to continuously assess the interactions and growth 
of independent information fragments within the system. Even in the densest, most 
complex, cluttered information environments, each fragment of information and 
each action within the AIC is entropically captured explicitly and implicitly within 
Information Continuum Equation (ICE). This equation is the entropic engine which 
provides the ongoing analysis and virtual view into a synthetic AIC. Equation (3.1) 
enables us to assess the performance and quality of processing and to understand the 
capacities, information flows, associations, and interactions of knowledge and 
memories within the system, as well as, supporting analysis and inherent under-
standing of real-time system behavior. The variables in ICE can be interpreted as the 
average values in a heterogeneous assembly of information nodes, where ICE 
describes the behaviors of the interactions among n node assemblies within a syn-
thetic AIC processing system. The objective is to have the ability to measure, moni-
tor, and assess multi-level states and behaviors, and how and what kinds of 
associative patterns are generated relative to the external inputs received by an AIC 
system. ICE provides the analysis needed to understand the AIS’s ability for pro-
cessing external content within an AIC. Hence, real-time assessment and monitor-
ing, and subsequent appropriate control, are expected to allow us to avoid developing 
a rogue AIC, much to the chagrin of Hollywood script writers.

3.3  Information Processing Models

Establishing a hierarchy of information flow within an AIC is a key objective for 
development of synthetic autonomic characteristics (e.g., cognition, thinking, rea-
soning, and learning). An AIC will need to be able to ingest and process a variety of 
inputs from many diverse information sources, dissect the information into its 
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individual information fragments, fuse the information, and then turn this informa-
tion into a formation which can be used to determine action-actionable intelligence. 
An AIC system must be able to assess situations previously not encountered, and 
then decide on a course of actions, based on its goals, missions, and prior founda-
tional collected knowledge pedigree.

The underlying issues and challenges facing Artificially Intelligent systems 
today are not new. Information processing and dissemination within these types of 
systems have generally been expensive to create, operate, and maintain. Other arti-
ficially intelligent system challenges involve information flow throughout the sys-
tem. If flow is not designed carefully and purposefully, the flood of information via 
messages within these systems and between their software and hardware compo-
nents can cause delays in information transfer, delaying or stunting of the learning 
process which can result in incorrect or catastrophic decisions.

Therefore, real-time decision-making processes must be supported by sensory 
information and knowledge continuously derived from all cognitive processes 
within the system simultaneously, in a collectively uniform and cooperative model. 
Additionally, transformation from information to knowledge within an AIC system 
requires new, revolutionary changes to the way information is represented, fused, 
refined, presented, and disseminated. Like the human brain, the cognitive processes 
within an AIC must form a cognitive ecosystem that allows self-learning, self- 
assessment, self-healing, and sharing of information across its cognitive sub- 
processes, such that information is robustly learned and rapidly reusable. This AIC 
ecosystem involves inductive, deductive, experimental, and abductive thinking in 
order to provide a complete Data-to-Information-to-Knowledge process explained 
in detail throughout the rest of the book. At a high level, we are applying the theory 
of AIC and applying the constructs to the development of a humanistic analogous 
AIS.  The AIS human brain analogy provides two main layers of processing, a 
Deductive Process and an Investigative Process. The Deductive Process is utilized 
for assembling information that has been previously learned and stored in memories 
(deductive and inductive logic), whereas the Investigative Process looks for pat-
terns and associations that have not been seen before (abductive and experimental 
logic) [8]. Figure 3.1 illustrates the differences between deductive, inductive, abduc-
tive, and experimental inferences [9].

3.4  Discussion

If we desire to create an Artificial Cognitive Architecture that encompasses the AIC 
discussed above, in order to create a system that can truly think, reason, learn, utiliz-
ing the inferences shown in Fig. 3.1, we must consider the overall implications of 
such a system, including the psychological impacts and considerations both for 
humans and for the system itself [10]. Further research is needed to understand the 
psychological effects of not only real human–AI interaction, but also the effect of 
human interaction on AIC learning and self-evolving [11]. Sometimes learning 
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from humans is a dangerous thing. The way information flows through the neuronal 
structure of an artificial intelligent system must be accounted for in the test strate-
gies and philosophies of system test. Psychological impacts of the artificial intelli-
gent system must be considered, as a system that fully thinks, reasons, infers, and 
self-adapts will respond differently, learn differently, adapt differently, depending 
on how data are fed into the system.
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Chapter 4
Human–AI Collaboration

4.1  Introduction

As global populations and societies continually reach epic proportions and resources 
become continuously constrained, Human Needs Engineering (HUMANE) can 
enable efficiencies and optimize constrained resources. Although there are many 
global examples of this, one specific example where HUMANE is ongoing is within 
Brazil. For the past 5–10 years, Brazil’s academics and government have partnered 
on building smart cities and placing technology and engineering at human point of 
presence locations to capture metrics and to learn from and potentially optimize 
medical and other critical human needed resources. In Brazil, as in other locations 
this is not only required but rapidly exposes the need that HUMANE be an inherent 
component to all engineering disciplines. Additionally, as proportions rapidly 
increase and resources rapidly decline, more effective, real-time, automated, and 
dynamically human interactive systems become required. Recent research within 
highly automated and autonomous domains shows promise for mitigating the need 
for critical intelligent infrastructure to improve human–system collaboration, 
awareness, and quality of service (QOS). Hence, to improve decision-making, an 
Artificial Intelligence System (AIS), in order to be truly autonomous, is provided 
with a real-time, human-like, cognition-based framework for information discovery, 
decomposition, reduction, normalization, encoding, and memory recall (knowledge 
assimilation and construction) [1]. To achieve efficient human–system knowledge/
needs collaboration, these currently researched cognitive systems work to integrate 
information into their Cognitive Conceptual Ontology [2] in order to be able to 
“think” about, correlate, and integrate information content into internal memories. 
When describing how science integrates with information theory, Brillouin [3] 
defined knowledge succinctly as resulting from a certain amount of thinking, dis-
tinct from information content which initially had no value, was the “result of 
choice,” and consisted of simply raw material, a mere collection of data. Brillouin 
concluded that a hundred random sentences from a newspaper, or a line of 
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Shakespeare, or even a theorem of Einstein have the same information value and 
had “no value” until effort of thought was applied to turn information content into 
knowledge. In the Health industry, decision-making is a great concern due to the 
information content ambiguity and ramifications of inferences made erroneously. 
Often there can be serious consequences when actions are taken based upon subse-
quent incorrect recommendations. Decision-making can be influenced prior to inac-
curate inferences being detected and/or even corrected. Hence, underlying the data 
fusion domain is the challenge of creating actionable knowledge from information 
content harnessed from an environment of vast, exponentially growing structured 
and unstructured sources of rich complex interrelated cross-domain data [4].

This is a major challenge for AI systems that must deal with ambiguity in human- 
based collaboration and operator-based assistance. Therefore, in this paper we dis-
cuss engineering architecture and concepts of human-artificially cognitive systems 
and a collaboration environment that could allow human mentors to develop cogni-
tive trust and reliance of collaborative AI system systems within a populace. These 
systems would be providing humans timely and reliable knowledge rapidly mitigat-
ing their daily needs, allowing each to not only learn from each other, but operate in 
modes that utilize the strengths of both. This includes cognitive procedural memory 
development that will allow improvement in attitudes and knowledge about the 
value artificial life forms and autonomous systems.

4.2  The Essence of Meaning

Intelligence reveals itself in a variety of ways, including the ability to adapt to 
unknown situations or changing environments. Without the ability to adapt to new 
situations, an intelligent system is left to rely on a previously written set of rules, 
making collaboration difficult, since the AI System (AIS) cannot keep up with the 
human operator who can adapt to new situations. If we truly desire to design and 
implement collaborative AI Systems (AIS), they cannot require precisely defined 
sets of rules for every possible contingency. The questions then become:

• How does an AI system construct good representations for tasks and knowl-
edge as it is in the process of learning the task or knowledge?

• What are the characteristics of a good representation of a new task or a new 
piece of knowledge?

• How do these characteristics and the need to adapt to entirely new situations 
and knowledge affect the learning process?

Given any AIS has bounded resources, it would need to react, utilizing the con-
cepts of Cognitive Economy, to create a Bounded Rationality set of goals to solve a 
problem or situation. These are:

 1. The size of the feature set—how many “features” are required to define the suc-
cess of each task

4 Human–AI Collaboration
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 2. The “fuzzy” relevance of each feature for the tasks
 3. The preservation of necessary distinctions for success in each task

The AIS’s cognitive components could autonomously define, for each ISA, a 
Banach Space for that ISA’s goals and tasks and would then consider the set of ISA 
Banach Spaces as a set of bounded variations, the sequence of which (through ISA 
collaboration) produces an acceptable solution to the situation(s) or task(s) at hand. 
These Cognitive Economy and Bounded Rationality concepts are discussed below.

In addition, when considering autonomous AIS, we must consider its need to 
interact and learn from its environment, and we must ask ourselves “what is real-
ity?” We must establish how the AIS would interpret their reality. One of the issues 
that humans deal with that assists in their understanding of reality, or their world 
around them and how they need to interact, is their concept of “Locus of Control.” 
Locus of control is a term in psychology that refers to a person’s belief about what 
causes the events in their life, either in general or in specific areas such as health or 
academics. Understanding of the concept was developed by Rotter [5] and has since 
become an important aspect of personality studies.

4.2.1  AIS Constructivist Learning

Constructive psychology is a meta-theory that integrates different schools of 
thought. According to the above cited article:

Hans Vaihinger (1852-1933) asserted that people develop “workable fictions”. This is his 
philosophy of “As if” such as mathematical infinity or God. Alfred Korzybski’s (1879-1950) 
“System of Semantics” focused on the role of the speaker in assigning meaning to events. 
Thus, constructivists thought that human beings operated on the basis of symbolic or lin-
guistic constructs that help navigate the world without contacting it in any simple or direct 
way. Postmodern thinkers assert that constructions are viable to the extent that they help us 
live our lives meaningfully and find validation in shared understandings of others. We live 
in a world constituted by multiple realities social realities, no one of which can claim to be 
“objectively” true across persons, cultures, or historical epochs. Instead, the constructions 
on the basis of which we live are at best provisional ways of organizing our “selves” and 
our activities, which could under other circumstances, be constituted quite differently.

For an AIS with Constructivist Learning, the AIS cognitive learning process 
would be a building (or construction) process in which the AIS cognitive system 
builds an internal illustration of its learned knowledge-base, based on its experi-
ences and personal interpretation (fuzzy inferences and conceptual ontology) [6, 7] 
of its experiences. AIS Knowledge Representation and Knowledge Relativity 
Threads [1, 8], within AIS cognitive system memories would be continually open to 
modification, and the structures and linkages formed within AIS short-term, long- 
term, and emotional memories [9], along with its Knowledge Relativity Threads [7], 
would then form the bases for which knowledge structures would be created and 
attached to AIS memories.

4.2 The Essence of Meaning
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One of the results of the Constructivist Learning process with the AIS would be 
to gradually change its “Locus of Control” for a given situation or topic, from exter-
nal (the system needing external input to make sense, or infer, about its environ-
ment) to internal (the AIS having the cumulative constructive knowledge-based of 
information, knowledge, context, and inferences to handle a given situation inter-
nally); meaning the AIS is able to make relevant and meaningful decisions and 
inferences about a situation or topic without outside knowledge or involvement. 
This becomes extremely important for a completely autonomous AIS.

4.2.2  Physical Representations of Meaning

Research shows that the community of disciplines researching how humans gener-
ate knowledge has traditionally focused upon how humans derive meaning from 
interactions and observations within their daily environments, driving out ambigu-
ity to obtain thresholds of understanding. With similar goals, Information Theory, 
and Complexity Theory focus more closely on the actual information content. 
Zadeh pioneered the study of mechanisms for reducing ambiguity in information 
content, informing us about concepts in “fuzzy logic” and the importance of granu-
lar representations of information content [10, 11], and Suh focused upon driving 
out information complexity via the use of axiomatic design principles [5]. Hence, a 
vast corpus of cognitive-related research continually prescribes one common 
denominator, representation of how information content, knowledge, and knowl-
edge acquisition should be modeled. Gordenfors [4] acknowledges that this is the 
central problem of cognitive science and describes three levels of representation: 
symbolic—turing machine like computational approach, associationism—different 
types of content relationships which carry the burden of representation, and thirdly, 
geometric—structures which he believes best convey similarity relations as multidi-
mensional concept formation in a natural way; learning concepts via similarity 
analysis has proven dimensionally problematic for the first two and is also partially 
to blame for the continuing difficulties when attempting to derive actionable intel-
ligence as content becomes increasingly distended, vague, and complex.

Historically, there are many examples and domains, which employ concepts of 
conceptual representation of meaning as geometric structures. These are cognitive 
psychology [4], cognitive linguistics [7], transdisciplinary engineering [1], knowl-
edge storage [8], computer science (entity relationship, sequence, state transition, 
and digital logic diagrams), Markov chains, neural nets, and many others. It should 
be noted here that there is not one unique correct way of representing a concept. 
Additionally, concepts have different degrees of granular resolution as Zadeh 
describes in fuzzy logic theory. However, geometric representations can achieve 
high levels of scaling and resolution [4] especially for n-dimensional relations, gen-
erally difficult if not impossible to visualize above the fourth dimension. However, 
high dimensionality can be mathematically represented within systems in several 
ways. Hence, mature mathematics within the physical domain allows this freedom. 
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Examples of the overlay of physics-based mathematical characteristics to enhance 
relational context and develop a unifying underlying knowledge structure within 
Information Theory is employed via Knowledge Relativity Threads (KRT) [1] to 
develop detailed context, for conveying knowledge essence simply and robustly in 
presentation form. KRTs are used for representing n-dimensional contextual rela-
tionships for any humanistic prototypical object or data type by applying common 
denominators: time, state, weight, and context.

4.2.3  Artificial Intelligence Representations of Meaning

Today, systems and humans continue to struggle with satisfying the desire to obtain 
the true essence of, and actionable knowledge from an ever-increasing and inher-
ently duplicative, non-context-specific, multidisciplinary information content. 
Continually improving capability via increasing automation has been the engineer-
ing norm for decades. Now, extensive autonomous systems research is our growing 
future. Humans are expanding exploration within ever-challenging environments 
generally unfriendly to the physical human condition. Simultaneously, the volume, 
velocity, variety, and complexity of systems continue to increase rapidly. However, 
development of valuable readily consumable knowledge and context quality contin-
ues to improve more slowly and incrementally. New concepts, mechanisms, and 
implements are required to facilitate the development and competency of complex 
systems to be capable of discovering the essence of ambiguities during autonomous 
operation, self-healing, and critical management of internal knowledge economies. 
They require ever-increasing fidelity of self-awareness of their real-time internal 
and external operational environments.

Hence, intelligence reveals itself in a variety of ways, including the ability to 
adapt to unknown situations or changing environments. Without the ability to adapt 
to new situations, an intelligent system is left to rely on a previously written set of 
rules, making collaboration difficult, since the AI System (AIS) cannot keep up with 
the human operator who can adapt to new situations. If we truly desire to design and 
implement collaborative AI Systems (AIS), they cannot require precisely defined 
sets of rules for every possible contingency.

4.3  Bounded Conceptual Rationality (Cognitive Economy)

Bounded rationality is a concept within cognitive science that deals with decision- 
making in humans [9, 12]. Bounded rationality is the notion that individuals are 
limited by the information they have available (both internally and externally), the 
finite amount of time they have in any situation, and the cognitive limitations of 
their own skills. Given these limitations, decision-making becomes an exercise in 
finding an optimal choice given the information available. Because there is no 
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infinite information, infinite time, nor infinite cognitive skills, humans apply their 
rationality after simplifying the choices available, i.e., they bound the problem to be 
solved into the simplest cognitive choices possible [13].

Any AIS must suffer the same issues. An autonomous system, by definition, has 
limited cognitive skills, limited memory, and limited access to information. The 
Locus of Control concepts discussed earlier assist AIS in determining which situa-
tions can be handled internally vs. externally, but still in any situation there is lim-
ited information, time, and cognitive abilities. This is particularly true if the system 
is dealing with multiple situations simultaneously. For the system to not become 
overloaded, we believe autonomous systems must employ strategies similar to 
human-bounded rationality in order to deal with unknown and multiple situations 
they find themselves in. This involves creating mathematical constructs that can be 
utilized to mimic the notion of bounded rationality within autonomous AIS.

For this, we look to Banach Space theory, tied into Constructivist Learning con-
cepts [9, 12] for autonomous AIS. As concepts are learned and stored in the AIS 
conceptual ontology [7], Banach Spaces are defined that are used to bound the ratio-
nality choices or domains for that concept. As we “construct” these concepts and the 
Banach Spaces that bound them, the combination of Banach Spaces then defines the 
Conceptual Rationality for the Autonomous AIS. Figure 4.1 illustrates this concept. 
These Banach Spaces that define the bounds for each learned concept are utilized 

Fig. 4.1 Bounded conceptual reality
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when the AIS must reason, or perform decision-making. When there are restricting 
limitations on time, resources (as determined by the resource manager, e.g., artifi-
cial prefrontal cortex), and available information, the bounds of these Banach 
Spaces would be tightened or loosened to allow the AIS to deal with multiple situa-
tions, or situations that are time critical. This allows AIS to decide what is a “good 
enough” solution to a given problem or set of problems and to adjudicate between 
competing resources, priorities, and overall goals.

4.4  Human–AI Collaboration

4.4.1  Cognitive Architectures for Human–AI Communication

Here, we describe an Intelligent information Software Agent (ISA)-based cognitive 
system that provides a distributed, extensible, and dynamically changing, learning, 
and self-adapting processing environment. This system, called the Polymorphic, 
Evolving, Neural Learning, and Processing Environment (PENLPE). PENLPE rep-
resents a massively parallel, highly interconnected network of loosely coupled, rela-
tively simple processing elements; Intelligent information Software Agents (ISAs), 
called “experts,” in a hybrid fuzzy, genetic neural system of “M” expert architecture 
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[14]. The purpose of PENLPE is to provide a hybrid neural processing environment 
that is adaptable to a variety of classes of applications (e.g., language processing, 
signal detection, sensor fusion, inductive and deductive inference, robotics, diagno-
sis). The PENLPE architecture is based on a “mixture of experts” methodology. The 
difference here is that in our architecture, an expert is defined as a specific type of 
fuzzy, genetic perceptron ISA object (called a Cognitron) which has been created 
for an algorithm or problem, and thus is an expert at processing specific types of 
data in a particular manner. The algorithm(s) for which the perceptron ISA is gener-
ated may be predetermined or may have been evolved by the neural system itself. 
The PENLPE cognitive architecture (Fig. 4.2) takes input from a heterogeneous set 
of information sources (sensors), facilitates the fusion of the information from these 
sources, and automatically provides situational assessments. This provides the agent 
tasking and sub-tasking required for the processing goals and requirements. The 
impact and benefit of such an autonomous collection system is [13]:

 1. Reduction in data acquisition and recognition time
 2. Improved efficiency for autonomous decision support
 3. Improved processing and reporting timeliness
 4. Improved decision support quality
 5. Effective knowledge and decision management

Designs for the various ISAs and information management algorithms are com-
bined to produce a design capable of providing autonomous cognitive agents 
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(Cognitrons) to automate the situational awareness activities within a robotic sys-
tem [15]. The main Cognitron archetypes (see Fig. 4.3) are:

 1. The Interface Agent: Implied, but not shown, the Interface Agent assesses the 
correctness of major decisions and adjusts the decision processes of the Advisor 
Agents. Interface Agents also accommodate human-in-the-loop structures

 2. The Data Steward Agent: This agent acquires raw data from a variety of sources, 
including sensors, and prepares incoming data for use by other agents. The Data 
Steward Agent generates and maintains metadata required to find and extract 
data/information from heterogeneous sources

 3. The Reasoner Agent: The Reasoner Agent interacts with the Data Steward and 
Advisor Agents and utilizes the ontologies and lexicons to automate the develop-
ment of domain-specific encyclopedias; it provides a mixed source of informa-
tion and question answering that is used to develop an understanding of questions, 
answers, and their domains. Reasoner Agents analyze questions and relevant 
source information to provide answers and to develop cognitive ontology rules 
for PENLPE.

 4. The Analyst Agent: The Analyst Agents are fed by Reasoner Agents and utilize 
the developed ontologies and lexicons to expand upon questions and answers 
learned from collected information.

 5. The Advisor Agent: This agent disseminates the right information to the right 
place at the right time; it provides capabilities that allow collaborative question 
asking and information sharing by agents and end-users.

Any autonomous information processing and situational awareness agent-based 
system must consider overall real-time performance issues. It should have the capa-
bility to overcome inherent bottlenecks that result from massive volumes of data 
being generated by the collection sensors or processors transforming the data into 
information and knowledge [15].

4.5  Communication for Human–AI Collaboration

Utilizing software to partially or fully automate tasks is now commonplace. 
However, the capabilities of the software performing these tasks typically do not 
improve over time (as humans would who were performing the same tasks). We 
describe here the use of a software system called the Cognitive, Interactive Training 
Environment (CITE) that learns and improves through the use of a Human Operator 
acting as a Mentor for the software, until the software is capable of performing the 
desired operations autonomously and with improvements. CITE provides for 
Human Interaction Learning (HIL), as the operators role changes from manager to 
mentor to monitor while the software evolves from learner to performer. One of the 
purposes of this research is to determine the Levels of Automation of Design and 
Action and the cognitive software architectures required to allow the system to learn 
and evolve [16]. The CITE system (Fig.  4.4) provides effective feedback 

4.5 Communication for Human–AI Collaboration



44

mechanisms to allow humans to influence PENLPE in a positive way and allows 
PENLPE’s ISAs to learn and improve as they process. The human mentor has the 
ability to query the system, based on PENLPE’s suggestions and then provide feed-
back as to why a given choice or set of choices was effective or not. PENLPE will 
provide feedback to the operator to give human mentor an understanding of the 
process PENLPE utilized to make inferences and decisions. This process of feed-
back and PENLPE–human mentor interactions provides the operator the insight to 
develop trust in PENLPE over time and to increase the efficiency of both PENLPE 
and the human mentor.

4.6  Human Perception of Artificial Intelligence

As we look toward true communication and collaboration between humans and 
artificially intelligent systems, we must look at the psychological aspects of percep-
tion. According to Nass and Moon [5], humans mindlessly apply social rules to 
expectations and computers. They go on to say that humans respond to cues triggers 
various scripts, labels, and expectations from the past rather than on all relevant 
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clues of the present, in a simplistic way. In the article, Nass and Moon illustrate 
three concepts to consider when thinking about human perceptions of artificial 
intelligence. The first experiment they describe shows that humans overuse social 
categories by applying gender stereotypes and ethnic identification with computers. 
The second experiment they describe illustrates that people engage in over learned 
social behaviors such as politeness and reciprocity with computers. Thirdly, they 
illustrate human’s premature cognitive commitments by how humans respond to 
labeling. Nass and Moon conclude that individuals apply social scripts that are 
appropriate for human-to-human interaction, not human-to-computer interaction.

Sarah Harmon’s work1 points to gender not making a significant difference, but 
that people paired characteristics that may be affected by gender and embodiment. 
She showed significant correlation between things such as Passive and Likeable for 
the female, Understandable and Pleasant for both male and female, and Reliable 
and Likeable for the male; showing that humans are willing to assign human char-
acteristics to computers. Harmon does state, however, that we need to consider con-
founding variables. Harmon also wrote that the degree of the entities embodiment 
influences how humans deem the characteristics with respect to each other as the 
terminal and the artificially intelligent entity had significant correlation for under-
standing/pleasant and friendly/optimistic. Yet only the terminal showed significant 
correlation regarding Understandable/Capable, Pleasant/Reliable, and Helpful/
Reliable.

This may lead us to conclude that how artificial intelligence is presented to 
humans will greatly affect how artificially intelligent entities are perceived, and 
therefore the level of communication/collaboration possible in any given situation.

4.7  Human Acceptance of Artificially Intelligent Entities

It seems that non-intelligent robotic systems have had both positive and negative 
receptions from humans. On the one hand, the technology of artificial intelligence 
could help humans to function better. For example, artificial intelligence can be 
utilized to help determine threats to national security. Artificially intelligent systems 
could be utilized to help train our forces and help solve and make decisions about 
complex situations. On the other hand, artificially intelligent entities could take over 
some human functions. The technology allows for machines to do work that humans 
currently do. How much artificially intelligent systems outperform humans, and the 
tasks they can take over from humans may greatly affect human acceptance or rejec-
tion of such entities. As with any technology, there is a usage learning curve. 
Artificially intelligent entities may require humans to learn more about the technol-
ogy and about the capabilities and “personality” of the artificially intelligent entity 
in order to be able to effectively interface, communicate, and collaborate. As we see 
with the internet and cell phone technologies, there is clearly a generational 

1 www.cs.Colby.edu/srtaylor/SHarmson_GHC_Poster.PDF
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difference in use and acceptance, and there may be cultural differences in the will-
ingness to accept artificially intelligent systems. Thus, as with anything new, it may 
take time for humans to accept artificially intelligent systems daily, particularly 
when it comes to close communication/collaboration on an ongoing, long-term 
interaction.

4.8  Artificial Intelligence Perception

It is generally accepted that humans are emotional beings and inanimate and ani-
mate computer systems are not, even artificially intelligent ones. Hence, let’s con-
sider human emotional intelligence. According to Mayer, Salovey, and Caruso [10], 
Emotional Intelligence (EI) entails the capacity of humans to reason about their 
emotions and emotions required to enhance thinking. They reasoned that Emotional 
Intelligence includes the abilities to:

• Perceive emotions
• Access their emotions
• Generate emotional knowledge
• Regulate their emotions by reflecting on them
• Use their emotions and emotional memories to promote emotional and intellec-

tual growth

In short, Emotional Intelligence allows humans to operate on and with emotional 
information gathered from interactions with their environment and other people. 
Therefore, we can hypothesize that for an AIS to comprehensively interface/col-
laborate with humans in a human qualitative manner, the observations and percep-
tions of these systems must be driven by humanistic cognitive emotional growth 
architectures which can provide a foundation for qualitative interaction.

Additionally, we propose that the architectures will be significantly influenced 
by the perception humans have of these systems; hence, this allows us to extrapolate 
that an AIS should require parts of and architecture to address some levels of social 
intelligence. This will likely affect how humans perceive an AIS as well. Social 
intelligence as well as many other cognitive and psychological aspects of humanity 
will most logically have relevance in the modeling and development of cognitive 
architectures of one AIS (e.g., depression, the group context, peer pressure, sense of 
security).

Chai [11] describes a project in which the objective was:

…to build a software module for the analysis of cultural differences. The module is designed 
for incorporation into a decision-support environment in which real world actors with 
whom the user is interacting are “avatarized” into agents whose movements appear within 
a graphical user interface. The purpose of the module is to help members of multinational 
coalitions operate better.

Chai [11] goes on to say:
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For the immediate future, I would argue that artificial intelligence needs social theory as 
much or more than social theory needs artificial intelligence.

After giving thought to emotional intelligence, social intelligence, roles, and 
interfacing, can these lead to modeling and implementation of artificial personality? 
Can there be artificially designed traits, developed from a set of interoperability 
rules, which allow for internal preferences and behavior so an AIS can interoperate 
together as an ecosystem? These are topics that we must explore as we propose and 
design mechanisms and the integrated cognitive psychology required to build, test, 
and collaborate with artificially intelligent entities.

4.9  Human–AI Interaction and Test Considerations

Historically, the purpose of robotics has been to perform some type of services on 
behalf of humans. Hence, to help define optimal human–robot interactions, we must 
look to the characteristics of human interactive behavior. Human collaboration, with 
other humans, fundamentally comprises trust and knowledge of another’s abilities 
and limitations. In short, it is not possible to have an interaction between two human 
entities without there being some level of expectation of the interaction. Let’s con-
sider a simpler example of human interaction with animals. Humans, for example, 
cannot completely predict an animal’s behavior. However, it is still important to 
know how the animal will typically behave in order to predict and plan for the 
proper interactive response (e.g., give food, play, run to safety). Again, it comes 
down to human expectations. Understanding the animal’s abilities and limitations 
will reduce frustrations of trying to meet a goal (e.g., taming a lion). Knowing the 
abilities of the animal changes our expectations. Bulldogs can’t swim because of the 
shape of their nose, similar for dogs with large chest. Humans can accommodate for 
these limitations when they know about them. Understanding the expectations, abil-
ities, and limitations of artificially intelligent entities as well as the cognitively 
designed understanding of artificially intelligent entity expectations, abilities, and 
limitations of humans is vital to efficient and useful collaboration. Collaboration is 
much more than a mere working relationship. It is both a process and an outcome. 
This process is collaborative in order to work on a common problem, while under-
standing that each separate entity has influence on the other. The collaborative out-
come is a solution where all parties can agree on the final solution. Typically, 
collaboration happens because an individual cannot accomplish the same goal 
alone. It is more than an association relationship; it is more like a partnership.

So, what is required for humans and robots, machines, to have a partnership? 
Likely, many of the same things as previously discussed; a sense of predictability, 
safety, reliability, trust, communication, knowledge, understanding, and accommo-
dation just to name a few. We propose that everything collaborating with humans 
does not necessarily need to be human-like but as a minimum a need for some 
essential characteristics. Hence, it follows that some of the useful characteristics 
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might be the ones that keep humans committed to the collaboration. Who will toler-
ate the constant attack of a lion, or the abusive coworker, or a laptop that continues 
to freeze in the middle of writing documents? Each will eventually be regarded as 
untrustworthy and would most likely be replaced.

Several research systems exist which are important to consider when thinking of 
the psychology of human–SELF collaboration. In their work on intelligent mecha-
tronics, Harashima and Suzuki [9] concluded that communicative artificial intelli-
gence entities must be equipped with mathematical models that touch on theory of 
mind, mind reading, and social common sense. This level of machine must also 
include eye contact robots and attempt to communicate intuitively and instanta-
neously. Such mechatronic systems have been able to perform as Ball Room dance 
partners and therapy Seals. There are many mechatronics designed to augment and/
or enhance human skill. One example is a machine that assists as a scrub-nurse. Just 
the thought of a SELF assisting in any surgery implies a huge amount of trust par-
ticularly if ultimately allowed to perform surgery autonomously. Suzuki, Pan, 
Harashima, and Furuta stated [9]:

…knowledge and human psychology cannot be written sufficiently by computer algo-
rithms; hence, the present intelligent mechatronics cannot understand the human perfectly.

Current human–robot interaction technology and design has developed from 
master-slave type interactions toward more collaborative. Karami, Jeanpierre, and 
Mouaddib [9] described a model where the robot can consider human intentions and 
operate without communication. Karami et al. also discussed how robots can build 
beliefs about human intentions by observing, collecting, and perceiving human 
behavior [9]. Although the experiment shown was a seemingly simple task of mov-
ing objects, the results showed further promise for human–robot collaboration more 
advanced than in the previous master-slave paradigm.

Research shows that humans adapt to how they respond to robots over time [16]. 
Initially, humans tend to use simplistic communications with robots until they learn 
how the robots adapt to higher order types of communication. In later work, they 
investigated human–robot interaction, illustrating how language and gestures help 
humans and robots collaborate during spatial maneuvering. They concluded that 
over time humans used more complex language and gestures as they learned that the 
robot could successfully respond to them. Giving credence to the hypothesis that as 
humans and robots interact, increased understanding of constraint and limitation 
characteristics grows and directly affects qualitative collaboration.

Trends in human–robot interaction show that several characteristics increase 
human trust in robots, among which reliability is a major factor. Also influencing 
trust is type, size, proximity, and behavior of the robot. Later research indicates that 
human characteristics such as ability and personality, and environmental character-
istics such as task and team, along with robot performance characteristics/attributes 
effect training and design implications, thus, affecting human–robot collaborative 
team trust. Since existing bodies of research indicate clearly that trust and clear 
expectations are important in human–robot collaboration, significant challenges lay 
ahead for human adaptation to recent increases in capabilities of more highly 
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 autonomous cognitive systems. Like human–human or human–creature relation-
ships, little collaboration or cooperation will occur until understanding, expecta-
tions, and/or predictability become well defined in context of environment, enhanced 
trust, and collaboration.

4.10  Conclusions and Discussion

What we have described is a human-artificially cognitive system collaboration envi-
ronment, CITE, that will allow human mentors to develop cognitive trust and reli-
ance on autonomous system and provide knowledge products that reflects 
state-of-the-art cognitive interaction between artificially cognitive systems and 
humans, providing a new generation of human–machine collaboration, allowing 
each to not only learn from each other, but operate in modes that utilize the strengths 
of both. This includes cognitive procedural memory development that will allow 
improvement in attitudes and knowledge about the value artificial life forms and 
autonomous systems through cognitive self-awareness, self-evaluation, and self- 
regulation. One final thought here is about an AI system’s adaptability, often called 
“learnability.” Learnability is the ability of a system to learn and modify its behavior 
with time. Some examples of websites with learnability include Netflix and Amazon, 
which understand user preferences and come up with appropriate recommenda-
tions. Another example is a Voice Recognition System like Siri or Cortana, which 
picks up the semantics of language websites. However, with Cortana now respond-
ing to “I am being abused” with the number for the National Domestic Violence 
hotline, it is important for chatbots to be tested for comprehension of things such as 
sarcasm and tone which may cause significant misunderstandings and potential fail-
ures. How the system needs to communicate with its human counterparts, whatever 
that entails, must be considered when designing the machine learning, adapting, and 
reasoning methods for the artificial intelligent system. If the system has significant 
communication/collaboration requirements, as discussed above, the artificial intel-
ligent entity must be tested as a coherent system, for tests aimed at testing specific 
requirements or single objectives causes the system to learn things that it communi-
cates throughout the artificial neural structure of the system. We must think through 
communication carefully, ensuring the system can understand how humans com-
municate, the language they use, the idioms they use, the analogies, metaphors, etc. 
For when people start communicating, they communicate with machines the way 
then communicate with people. If the system doesn’t understand it, the system may 
learn things that were very unintended, as we discussed previously.

4.10 Conclusions and Discussion
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Chapter 5
Abductive Artificial Intelligence Learning 
Models

5.1  Introduction

Abduction is formally defined as finding the best explanation for a set of 
observations or inferring cause from effect. There are many definitions of learning, 
depending upon the discipline [1]. For instance:

• Psychology Definition: A relatively lasting change in behavior that is the result 
of experience. Learning became a major focus of study in psychology in the 
early part of the twentieth century as behaviorism rose to become a major school 
of thought.

• Classical Definition: Measurable and relatively permanent change in behavior 
through tacit or explicit learning, experience, mental insights, instruction, or 
study [2–4].

• Causal Definition: Rapid Effective Causal Learning (RECL) is a method learn-
ing based upon measures of causality.

• Other Definitions: (a) Learning is the increase of knowledge, (b) learning is 
memorization, (c) learning is the acquisition of facts, procedures, etc., which can 
be retained and/or utilized in practice, (d) learning is the abstraction of meaning, 
(e) learning is the interpretive process aimed at the understanding of reality.

How we define learning affects our understanding and drives how we look at AI 
learning. In order to work toward a biologically inspired learning model of artifi-
cially intelligent applications, we investigate learning models through the lens of 
“Occam Learning.” The notion of Occam Abduction relates to simultaneously driv-
ing down ambiguity and complexity and finding the simplest explanation with 
respect to inferring cause from effect.

Abductive Learning: Deriving a set of hypotheses that can be used to explain a 
given set of facts or observations [5]. The inference of abductive learning or reason-
ing is that one or more of the hypotheses, if true, can be used to explain the occur-
rence of the given facts or observations. We look at a simple framework.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_5&domain=pdf
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 1. D is the domain for a set of effects, Ei, and possible causes (hypotheses), Cj.
 2. {C, E, D} represents an abductive causal theory, which includes an explanation 

set (Cj, j = 1, …, n) for a finite of effects/observations (Ei, i = 1, …, m).

The set of abductive hypotheses (causes) constitutes an explanation for the set of 
observations (complete and parsimonious) if and only if there is no subset of C that 
fully explains the effects, E, that C does. We work with abduction to provide a non- 
monotonic reasoning paradigm to overcome limitations/false conclusions in deduc-
tive reasoning. The inference description below illustrates this:

Deduction: A → B All marbles in the bag are aggies.
A I have marbles from the bag.
B The marbles are aggies.

Induction: A I have marbles from the bag.
B The marbles are aggies.
Possibly A → B All marbles in the bag are aggies.

Abduction: A → B All marbles in the bag are aggies.
B I have aggie marbles.
Possibly A These marbles are from the bag.

The abduction form of inference, using hypotheses to explain observed phenom-
ena, is a useful and flexible methodology of reasoning on incomplete or uncertain 
knowledge. For instance, if.

A → C and B → C, and A ≠ B

then both A and B are plausible hypotheses for observation/effect C, which 
drives us to the observation that abductive learning is inherently uncertain, and 
hypotheses should be ranked by their possibility ranking (in a fuzzy sense). While 
this captures the central characteristics of abductive reasoning and learning, mainly 
the creation of causes (hypotheses) that provide adequate explanation for the obser-
vations/effects, what is difficult to measure are effects of emotions on abductive 
learning, as uncertainty drives us to explore how we “feel” about certain explana-
tions/hypotheses. Here, we investigate two separate abductive learning models, 
shown in Figs. 5.1 and 5.2. Figure 5.1 illustrates a learning model with no emotional 
component, either in observations or conclusions, as opposed to Fig.  5.2, where 
emotions play a considerable role, including the notion of “curiosity,” which is cru-
cial to abductive thinking, learning, and reasoning [6].

In Fig. 5.1, because reasoning is non-monotonic, the plausibility/possibility of 
set of hypotheses will increase or decrease as data are collected (continued observa-
tion) and the general truth of the hypotheses are assessed (abstract conceptualiza-
tion). This may cause some hypotheses to be eliminated and a new set of hypotheses 
created from the combined set of current observations.

In Fig. 5.2, the non-monotonic nature of reasoning may cause the plausibility/
possibility of a set of hypotheses to be increased or decreased by not only continued 
data collection (observations), but by the perceived plausibility of the overall effects 

5 Abductive Artificial Intelligence Learning Models



53

of the observations (satisfaction/hopelessness). Uncertainty in the causal relations 
and disappointment that a perceived relationship does not exist may manifest itself 
in increased uncertainty about the outcomes. While this may seem unnecessary and 
even unwanted in machine learning, use of “emotional triggers” gathered from pre-
vious encounters with cause/effect relationships may be useful in autonomous 
abductive learning systems, where safety of the system is at stake, especially when 
the system must deal with incomplete knowledge and/or data.

Hence, it is critical to account for and understand that to increase the level of 
fidelity of understanding, there exists inherent inference values or levels of under-
standing, satisfaction, hopelessness, plausibility, and possibility. AI abductive learn-
ing models then can be augmented with appropriately weighted relationship 
mappings over time to provide the added fidelity to each newly discerned autono-
mous abductive possibilistic relationship inference. A Knowledge Relativity Thread 
(KRT) [2, 7] is used to provide a high-fidelity weighted inference mechanism that 
more effectively transmits emotional triggers and detailed context within common 
operational environments. This provides information inference extrapolations 
through distance and mass and hence, can effectively provide representations of 
knowledge and related context.

Fig. 5.1 Non-emotion learning model

5.1 Introduction
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5.2  Representations of Learned Knowledge and Context

The representation of knowledge and context is defined as an implement designed 
for representing knowledge and context as relationship structures, as defined by 
Trochim [8], and Novak and Canas [9]. The Representation of Knowledge and 
Context approach was derived from Newton’s law of gravitation [10], the concept, 
as described by Polyn and Kahana [11] that recall of a known item representation is 
driven by an internally maintained context representation, and Howard [12], of link-
ing knowledge items and context representations in memory. This accomplished 
temporal-based recognition and state of context to cue representations for recall. 
Additionally, Representation of Knowledge and Context was derived from five 
needs. Firstly, need for representation of quality context [13]. Secondly, the need for 
integration of new emergent physical characteristics of knowledge [14]. Thirdly, the 
need to represent strong relationships which exist between the environment and 
objects found within [15]. Fourthly, based upon a need described [14], to use phys-
ics as a tool for describing reality since the physics domain is rich in mathematical 
formalization. Therefore, Newton’s laws are prime candidates for representing 
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reality since they are built upon the scientific method and empirical pedigree. Lastly, 
the need for representing knowledge and context using analytic induction [16].

The representation of knowledge and context formula is introduced here and is 
presented by Eq. (5.2). The independent results which follow are mathematical 
evaluations extended from Newton’s law of gravitation shown in Eq. (5.1). Newton’s 
Law of Gravitation formula is,

 
F G

M M

r
=

( )1 2
2

 
(5.1)

where:

F is the magnitude of the gravitational force between the two objects with mass.
G is the universal gravitational constant.
M1 is the mass of the first mass.
M2 is the mass of the second mass.
r is the distance between the two masses.

This equation was used as an analogy for the derivation of mathematical relation-
ship between bases made up of two objects of knowledge.

Hence, Carbone abstracted Newton’s Law of Gravitation as an analogy of Eq. 
(5.1) that represents relationships between two objects of knowledge using context 
is written as Eq. (5.2) shown below, which describes the components of the formula 
to represent relationships between two objects of knowledge using context [17]:

 
A B

I I

c
=

( )1 2
2

 
(5.2)

where,

A is the magnitude of the attractive force between the two objects of knowledge.
B is a balance variable.
I1 is the importance measure of the first object of knowledge.
I2 is the importance measure of the second object of knowledge.
c is the closeness between the two objects of knowledge.

Comparing the parameters of Eqs. (5.1) and (5.2) F and A have similar connota-
tions except F represents a force between two physical objects of mass M1 and M2 
and A represents a stakeholder magnitude of attractive force based upon stakeholder 
determined importance measure factors called I1 and I2. As an analogy to F in Eq. 
(5.1), A’s strength or weakness of attraction force was also determined by the mag-
nitude of the value. Hence, the greater the magnitude value, the greater the force of 
attraction and vice versa. The weighted factors represented the importance of the 
objects to the relationships being formed. The Universal Gravitational Constant G 
is used to balance gravitational equations based upon the physical units of measure-
ment (e.g., SI units, Planck units). B represents an analogy to G’s concept of a bal-
ance variable and is referred to as a constant of proportionality. For simplicity, no 
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units of measure were used within Eq. (5.2) and the values for all variables only 
showed magnitude and don’t represent physical properties (e.g., mass, weight) as 
does G. Therefore, an assumption made here is to set B to the value of 1.

For simplicity, all these assume the same units and B was assumed to be one. The 
parameter c in Eq. (5.2) is taken to be analogous to r in Eq. (5.1). Stakeholder per-
ceived context known as closeness c represented how closely two knowledge objects 
(KO) are related (Fig. 5.3).

5.3  Elementary Abduction

Assumptions for Abductive Learning:

 1. Cj’s are mutually exclusive and constitute exhaustive coverage of the set of 
effects (Ei’s).

 2. Each of the Cj’s is conditionally independent.
 3. Each of the Cj’s is not mutually incompatible with any other Cj.
 4. None of the Cj’s cancel the abductive explanatory capability of any other Cj. For 

example, C1 implies an increase in a value, while C2 implies a decrease in a 
value. In this case, one is used to support the hypothesis and the other is used to 
rebut the hypothesis.

Figure 5.4 below illustrates the abductive learning, based on a hypothesis-driven 
“puzzlement or surprise” notion [18].

Here, we consider the nature of explanation. When effects (observations) are 
presented for which there is no conceptual explanation (the conceptual ontology 
contains no constructs for the observations/effects), we must create a set of possible 
hypotheses and test them to find that set that provides a possible explanation for the 
observations. The “possible” hypotheses are used to create a new generation of 
hypotheses that are tested against current and continued observations (effects). 

Fig. 5.3 Representation of learning knowledge and context
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Surprise, or puzzlement, is one aspect of abductive learning, how to learn those 
things we didn’t know we needed to learn. From here we expand to a generalized 
model of Abductive Learning, as illustrated in Fig. 5.5 [19].

In order to begin the processes of formulating hypotheses (causes) for a given set 
of observations (effects), we first generalize the observations into categories, assum-
ing the categories that are applicable to the observations already exist in the concep-
tual ontology. If now, new concepts must be created that accommodate the 

Fig. 5.4 Abductive learning for new concepts

Fig. 5.5 A generalized abductive learning model
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observations, which may require a higher level of hypothesis generation and testing 
to determine the concept to be added to the conceptual ontology.

5.4  Artificial Abduction Hypothesis Evaluation Logic

To provide an instantiation of an artificial abductive learning system within an 
autonomous or semi-autonomous artificially intelligent system, we provide an 
example of a Learning State Diagram, shown in Fig. 5.6 [20].

Within an autonomous AI system, evaluations must be made during the abduc-
tive process to determine if a solution (set of hypotheses) is converging or diverging 
(called losing focus). If the system cannot converge on a set of hypotheses, a new 
set of hypotheses must be created and evaluated. If continuous sets of hypotheses 
are not converging on a set of explanations (causes) for the observations (effects), 
then the system is continually diverging from explaining the effects and the abduc-
tive learning process must be terminated until more data (observations) are avail-
able. Otherwise, the system could be put into a continual loop without satisfactory 

Fig. 5.6 Abductive learning state diagram
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results and with continued (unnecessary) resource utilization. This learning state 
evaluation process is utilized within the overall abductive learning process, shown 
in Fig. 5.7. This model does not consider implicit learning or learning that happens 
without the entity realizing it has happened. This will be discussed in later 
chapters.

This approach is considered abductive in that it does not depend on deductive or 
inductive logic though these may be included as part of the overall hypotheses. 
Instead, the Abductive Learning Model depends on non-analytic inferences to find 
new possibilities based upon hypothesis examples (abductive logic). To facilitate the 
abductive learning system to effectively map hypotheses to observations, there are 
many levels of mapping that must be created. Figure 5.8 illustrates the lower level 
mapping of experiences. Here, the system must identify the types of experiences 
(observations) that are occurring to drive the hypothesis generation algorithms to 
derive causes (hypotheses) applicable to the observations (experiences [21]).

Likewise, the situational type helps to determine the form and content of the 
generated hypotheses to be evaluated. This situational breakdown is shown in 
Fig. 5.9. The abductive learning provides mapping from explanations (hypotheses) 
to data (observations) and must consider the types of inferences required, along 
with those factors which would influence the overall inference. This inference 
breakdown is illustrated in Fig. 5.10. As with the overall learning model shown in 
Fig. 5.7, this inference model does not consider implicit learning; this will be added 
later and discussed.

An example of a further decomposition of the abductive inference process is 
shown in Fig.  5.11, with a mapping/breakdown of the context-based inference 
 process. All these factors must be considered and folded into the abductive hypoth-
eses generation process, in order to effectively create hypotheses (causes) relevant 
to the observations (experiences or effects) that are sensed by the artificially intel-
ligent systems. Many AI systems are implemented utilizing intelligent S/W agents 
[22]. For an abductive learning system, we envision several agent types would be 

Fig. 5.7 Abductive learning model without implicit learning
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required to facilitate all aspects of abductive learning/reasoning within an AI sys-
tem. One possible distribution of S/W agents and their abilities/capabilities within 
the abductive reasoning process is shown in Fig. 5.12. Here, each type of agent is 
described in terms of their handling of the cause/effect process [6].

Fig. 5.10 Inference decomposition without implicit learning
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5.5  Conclusions

Here, we have laid the rudimentary foundations for learning structures that will be 
required for real-time autonomous, abductive learning in AI systems. Abduction 
Learning will provide the ability for simple observation explanation that feeds more 
complex memory and inference systems within an AI cognitive system to allow the 
autonomous system to think, reason, and evolve. We have but scratched the surface 
in providing constructs and methodologies required for an autonomous real-time AI 
system.

How we expect the artificial intelligent system to learn, case-based, experience- 
based, rule-based, data-based, etc., dramatically changes how we should design the 
test strategy for the system. If the system is designed to learn, think, reason, and infer 
the way humans do, we should expect to have to test the system like we test humans, 
and artificial psychology is crucial to understanding how to accomplish this.
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Chapter 6
Artificial Creativity and Self-Evolution: 
Abductive Reasoning in Artificial Life 
Forms

6.1  Introduction

Turing and others have hypothesized that computers cannot be creative, due to the 
absence of novelty in its flow of information processing. We believe the use of sto-
chastic, possibilistic abductive networks provides a very novel approach to informa-
tion processing, allowing the artificially intelligent system to vary its information 
processing flow, depending on the generated hypotheses and continuously recombi-
nant neural fiber network creation process.

The hypothesis we would like to consider here is that creativity is a directly 
related problem-solving activity in which explorations of problem spaces lead to the 
expansion of belief domains. We believe successful expansion of beliefs in an arti-
ficial cognitive system is initiated by algorithms that provide updates of the artificial 
cognitive system’s Conceptual Ontology [1]. Here we discuss the general heuristics 
within the genetic hypothesis generation process that will be used to guide the sup-
port and rebuttal informational search processes and problem-solving activities, 
which includes strategies for examining, comparing, altering and combining con-
cepts, strings of symbols, and the heuristics themselves. But what kind of creativity 
is possible for the Artificial Intelligence (AI) system in this context? We believe the 
answer is that it is like the one which humans experience in our everyday life: the 
experience of new and original ideas that have value, based on the overall goals, 
constraints, and mission directives of the environment the AI system is within. 
Within this context, we put forth the design and implementation of algorithms 
required for an Advanced Learning, Abductive Network (ALAN) as a candidate to 
facilitate artificial creativity (i.e., advanced hypothesis generation and testing), and 
therefore autonomous, real-time decision support, from an objective perspective; 
the abductive dialectic argument structure providing the inference engine upon 
which artificial creative reasoning is based.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_6&domain=pdf
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6.2  Human vs. Artificial Reasoning

6.2.1  Human Reasoning Concepts

Human reasoning is dynamic in that there are many processes involved. There are 
different types of reasoning necessary to allow humans to navigate their world 
effectively and efficiently. Here we will provide a brief overview; as the topic of 
human reasoning is vast. So much information comes into the brain at one time that 
it is impossible to consciously be aware of all of it. Just imagine for a minute how 
many things the human brain is handling in one instant. We have memories, associa-
tions, and habitual ways of thinking. We have beliefs, assumptions, and predictions. 
We have experiences, past, present, and planned. We have senses and perceptions. 
We have defense mechanisms and feelings. Our brains are active! It is hard to imag-
ine what all is happening in an instant of experience for a human, but it is essential 
to explore the possibilities in order to understand how the concepts will translate 
into artificial reasoning.

6.2.2  Modular Reasoning

Cognitive modularity seems to have flourished with Fodor [2]. He thought that 
humans use domain-specific modules that together form part of the reasoning sys-
tem within the human brain. According to Fodor, there are conditions for modular 
cognition; one is that other parts of the brain have limited access to each reasoning 
module. This type of reasoning is mandatory, innate, shallow, and very fast. He also 
stipulated that each module was fixed to a neural architecture and that information 
was encapsulated since other modules have limited access to each other. More mod-
ern psychology believes that cognitive modularity as actually massive modularity. 
This school of thought suggests that the mind is even more modular with specific 
functions and specialization [3]. This type of Modular Reasoning is used within the 
SELF Sensory Processing, before Sensory Integration. There is differing views on 
massive modularity. According to Raymond Gibbs and Van Orden [4], massive 
modularity theory has its problems empirically. They state that the studies fail to be 
able to separate modules. They also argue that massive modularity theory fails to 
discover input criteria and state that it may be impossible given the nature of context 
embedded human nature. Lastly, they argue that massive modularity does not 
acknowledge the interaction of brain, body, and world in human thinking.

6 Artificial Creativity and Self-Evolution: Abductive Reasoning in Artificial Life Forms
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6.3  Distributed Reasoning

The distributive theory suggests that there is more to the brain than separate mod-
ules. Beyond some very specific areas such and motor control, distributed reasoning 
theory suggest there are many fuzzy connections between systems of the brain. The 
distributive theory challenges boundaries of the mind, skull, and even body consid-
ering the environment, artifacts, and people. This theory is reflected in the Fuzzy, 
Possibilistic Abductive Network utilized within the SELF cognitive framework.

The distributive reasoning theory by Hutchins [5] provides some insights into 
human reasoning. Hutchins provides five different models that affect human reason-
ing. First, he postulates that there are modules within the brain that are specialized 
in function and structure and are united in a complex way. Second, he argues that 
cognition at a macro level is distributed outside the individual, such as the media. 
Media can be internal and external. Third, there is human culture which influences 
the individual. Fourth, there is society which cognitive activity is distributed in 
tools, rules, and contexts. Finally, he argues that cognition is distributive in time, 
both vertical and lateral time dimensions of the subject [6].

Yvonne Rogers [6] provides a detailed analysis of the distributive cognitive 
model. Rogers cites Hutchins as creating a computational model of two modules of 
the brain that can together recover depth that neither module alone could do. One 
general assumption of the distributive human cognitive system is that it is made of 
more than one module and that each module in the cognitive system has different 
cognitive properties than the individual and is different than the cognitive brain. 
Another general assumption made by Rogers is that members (modules) of the sys-
tem have knowledge that is both variable and redundant and that members of the 
system can pool resources. Another is distribution of access to information. This 
enables the coordination of expectations and coordination of action within the 
human biological reasoning framework [6]. These concepts are utilized throughout 
the SELF, which utilizes localized processing modules (processing “experts”) as 
well as distributed Cognitive Perceptron Intelligent Software Agents (called 
Cognitrons) experts that communicate and collaborate throughout the SELF cogni-
tive system.

6.4  Types of Reasoning

Humans can reason in different ways. The three major human reasoning strategies 
are inductive, deductive, and abductive.

Inductive Reasoning: Inductive reasoning involves coming to a conclusion after 
evaluating facts; reasoning from specific facts to a general conclusion. This allows 
for inferences. It also requires human experience to validate any conclusion. An 
example might be: Zebras that are at the zoo have stripes; therefore, all zebras have 
stripes [7].

6.4 Types of Reasoning
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Deductive Reasoning: Deductive reasoning is just the opposite. Deductive rea-
soning moves from a general principle to specific cases. This type of reasoning is 
based on accepted truths. An example of deductive reasoning might be: All zebras 
have stripes therefore when I go to the zoo the zebra will have stripes.

Abductive Reasoning: Abductive reasoning allows for explanatory hypothesis 
generation or generating ideas outside of the given facts to explain something that 
has no immediate satisfactory explanation.

There are many ways in which people reason, but often human reasoning follows 
either inductive or deductive reasoning. Consider a few ways in which humans think 
about things. Take cause and effect reasoning where causes and effects are consid-
ered. Analogical reasoning is a way of relating things to other novel situations. 
Comparative reasoning as it implies is comparing things, in which humans often 
engage. Still another reasoning method is conditional reasoning, or if/then reason-
ing. Many of us have used the pros and cons methods of reasoning also. Then there 
is Systemic reasoning where the whole is greater than the sum of its parts. There is 
also reasoning using examples. As you can see there are numerous ways in which 
humans can reason about things and situations. These are all logical ways of 
reasoning.

6.5  Artificial “SELF” Reasoning

As discussed above, reasoning takes on many forms, but two important ones within 
the SELF is both induction and abduction:

• Induction: Extrapolates from information and experiences to make accurate pre-
dictions about future situations.

• Abduction: Genetic algorithms generate populations of hypotheses and a 
Dialectic Argument (Tolemin) Structure is used to reason about and learn about 
a given set of information, experiences, or situations, also called “Concept 
Learning.”

Earlier we discussed the use of hypothesis-based reasoning. Here, we provide 
more detail of its architecture and design within an artificial neural structure. 
Hypothesis-based reasoning structures seek answers to questions that require inter-
play between doubt and belief, where knowledge is understood to be fallible. This 
“playfulness” is the key to searching and exploring information. Utilizing this 
framework for reasoning about information, hypotheses, and problems provides a 
robust, adaptive information processing system capable of handling new situations. 
Here we utilize abductive logic, sometimes called critical thinking, in order to dis-
tinguish it from more formal logic methods like deduction and induction. Whereas 
data mining utilizes induction to develop assertions that are probably true, the dia-
lectic search uses abductive logic methods and processes to develop hypotheses that 
are possibly true. We do not use Bayesian methods because they cannot measure 
possibilistic but measure probabilistic metrics. Instead, we utilize a fuzzy 
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 implementation of Renyi’s entropy and mutual information theory to provide pos-
sibilistic measure of mutual information and topical separation [8].

6.6  Artificial, Possibilistic Abductive Reasoning

The original McCulloch-Pitts model of a neuron contributed greatly to our under-
standing of neuron-based systems. However, their model failed to consider that even 
the simplest type of human nerve cell exhibits non-deterministic behavior [9, 10]. 
Some have attempted to take this into account through modeling this as random-
ness, creating a stochastic neural network, but much of the behavior is not random, 
but carries a type of imprecision which is associated with the lack of a sharp transi-
tion from the occurrence of an event to the non-occurrence of the event. This leads 
us to the definition of a network not steeped in Bayesian statistics (a Bayesian Belief 
Neural Network—BBNN), but one utilizing possiblistics, based on fuzzy character-
istics, combined with an abductive, hypothesis-based decision network; and thus, 
creating a Possiblistic, Abductive Neural Network (PANN) [11]. Here, we discuss 
the theory and architecture for a Possiblistic, Abductive Neural Network capable of 
complex hypothesis generation and testing, leading to artificial creativity and dis-
covery within a SELF [12].

6.6.1  Artificial Creativity in a SELF

Neuroscience research into the human perceptron [13] determined that the noise 
and imprecision in the human nervous system was not, in fact, inconvenient, but 
was essential to the types of computations the brain performed [14]. The brain 
learns to make spatio-temporal associations in the presence of noisy, imprecise 
information, and any artificially intelligent system that tries to emulate human pro-
cessing must be able to make similar noisy, imprecise associations within its artifi-
cial neural systems even when they are not completely specified, have incomplete, 
imprecise, or conflicting information, as well as taking into account the behavior of 
the entity, i.e., accounting for its own internal state [15].

This leads to a Possiblistic, Abductive Neural Network (PANN) [16] that is capa-
ble of complex hypothesis generation and testing in the presence of multiple, noise, 
imprecise, and possibly incomplete information; the types of environments an 
autonomous SELF is likely to be found. These conditions are typical in real-time 
processing situations and will be essential for complex decision support to system 
operators and will be crucial as we move toward autonomous systems that must 
learn, reason, analyze, and make critical decisions in real-world environments. This 
work will form the basis for an Advanced Learning, Abductive Network (ALAN) 
that will mimic human reasoning to provide autonomous, real-time, complex deci-
sion support.

6.6 Artificial, Possibilistic Abductive Reasoning
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6.7  The Advanced Learning Abductive Network (ALAN)

6.7.1  Artificial Creativity Through Problem Solving

Turing and others have hypothesized that computers cannot be creative, due to the 
absence of novelty in its flow of information processing. The use of stochastic, pos-
siblistic abductive networks provides a very novel approach to information process-
ing, allowing the artificially intelligent system to vary its information processing 
flow, depending on the generated hypotheses and continuously recombinant neural 
fiber network creation process [17].

One hypothesis we would like to consider here is that creativity is directly related 
to problem-solving activity in which explorations of problem spaces lead to the 
expansion of belief domains. A successful expansion of beliefs is initiated by an 
update of the cognitive system’s Conceptual Ontology [18]. General heuristics 
within the genetic hypothesis generation process guide the support and rebuttal 
informational search processes and problem-solving activities, which include strat-
egies for examining, comparing, altering and combining concepts, strings of sym-
bols, and the heuristics themselves [19].

But what kind of creativity is possible for a SELF in this context? We believe the 
answer is that it is like the one which humans experience in our everyday life: the 
experience of new and original ideas that have value, based on the overall goals, 
constraints, and mission directives of the environment the SELF is within.

6.7.2  ALAN Abductive Reasoning Framework

As discussed above, hypothesis-based reasoning is a reasoning framework that 
seeks answers to questions that require interplay between doubt and belief, where 
knowledge is understood to be fallible. Cognitrons which are capable of learning 
and reasoning about information, hypotheses, and problems provide a robust, adap-
tive information processing system capable of handling new situations. The key 
value of the Cognitrons within the abductive, hypothesis-based reasoning frame-
work is that they provide the ability to learn from sensory data and from each other 
[20]. Using unsupervised learning methods, the Cognitrons have the potential to 
provide the operations and analytical structures to extract knowledge and context 
from various sources of information. Cognitrons can be cloned to support as many 
operators as required and as the system resources allow.

In the abductive, hypothesis-based processes, information is utilized to generate 
and assess hypotheses from thought processes created by Cognitrons. This is 
achieved by utilizing the Cognitrons to learn and reason about the hypotheses and 
information utilizing a Dialectic Argument Structure (DAS) framework shown in 
Fig. 6.1. Cognitrons, as discussed, are autonomous software agents that create an 
information agent ecosystem, comprehending its external and internal environment 

6 Artificial Creativity and Self-Evolution: Abductive Reasoning in Artificial Life Forms
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and acting on it over time, in pursuit of its own agenda and goals, to affect what it 
comprehends in the future.

Alerts based on the measure of possibility (certainty) of information inform an 
Interface Cognitron there is information for review. Constructs within the ALAN 
framework rank information and flag those that are the most certain. The review is 
facilitated by presenting the operator or user with the DAS warrant, backing and 
links to support and rebuttal sources, traced back through the self-organizing topical 
maps. This autonomous information search process includes a review process which 
engages the ALAN cognitive processes, which include critical learning and reason-
ing objectives which include:

 1. Specialization of a DAS to search and track using the signature of a given Topic 
of Interest (TOI).

 2. Investigate semantic anomalies found in the computation of possibilities that 
may be caused using information obfuscation techniques.

 3. Review of DAS adaptations undertaken by the evolving hypothesis answer struc-
ture. When invalid, the DAS learns additional support/rebuttal arguments to pre-
vent the adaptation from re-occurring.

The ALAN DAS lattice is used to explain the information, compute the overall 
possibilistics, based on the fuzziness of the support, and rebuttal information, and 
compute the sensitivity of the claim to the fuzziness of the input data. Being able to 
review the lattice and assess its sensitivity to the fuzziness of the input data enables 
the user to effectively assess the quality of the lead. Figure 6.2 illustrates the DAS 
fuzzy possibilistic lattice connections [21].
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Utilizing the ALAN cognitive processing environment, the DAS and the 
Cognitrons mimic human reasoning to process information and develop intelli-
gence. Figure  6.3 illustrates a high-level view of the architecture for the ALAN 
cognitive processing framework. This process includes Search Information 
Cognitrons that mine through multiple sources to provide data/information to other 
Cognitrons throughout the ALAN framework. This is called the Federated Search 
and is shown in Fig. 6.4.

6.8  Conclusions

The ALAN processing environment allows data to be processes into relevant, 
actionable knowledge. Based on the technologies described above, situational man-
agement is one of the most innovative components of ALAN. Utilizing the cognitive 
framework within ALAN, it can provide real-time processing and display of 
dynamic, situational awareness information. Information gathering, processing, and 
analyzing must be done continually to keep track of current trends in the context of 
current situations, both local and overall, and provide timely and accurate knowl-
edge within a changing environment to allow systems to anticipate and respond to 
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new situations. To achieve the combination of awareness, flexibility, and ability 
means supporting dynamic and flexible processes that adapt as situations and envi-
ronments change. This is possible with the learning and self-evolving ALAN pro-
cessing and reasoning framework.

Having a system design that allows an artificial intelligent entity to learn from 
and react to its environment greatly changes how we think about testing a system. If 
we are building a lawn mower, we have expectations about exactly what happens 
when we pull the starting rope. When we build an artificial intelligent system that 
adapts to its environment, we may not know exactly what to expect when something 
happens. Our system tests must be carefully architected and how we expect the 
system to react must be clearly understood. Even then, if the system truly adapts, it 
may not adapt in the way we expect. That doesn’t mean it reacted incorrectly, it just 
means we did not understand it completely and/or correctly.

Fig. 6.4 Federated search process within ALAN

6.8 Conclusions
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Chapter 7
Artificial Intelligent Inferences Utilizing 
Occam Abduction

7.1  Introduction

As explained in the abstract, Abduction is formally defined as finding the best expla-
nation for a set of observations or inferring cause from effect. The notion of Occam 
Abduction relates to finding the simplest explanation with respect to inferring cause 
from effect. A formal definition for Artificial Occam Abduction would be [1]:

Artificial Occam Abduction: The simplest set of consistent assumptions and 
hypotheses, which, together with available background knowledge, entails adequate 
description/explanation for a given set of observations [2].

In formal logic notation, given BD, representing current background knowledge 
of domain D, and a set of observations OD, on the problem domain D, we look for a 
set of Occam Hypotheses, HD, such that:

 – HD is consistent1 w.r.t. BD.
 – It holds that BD, | = HD,→ OD.

Abduction consists of computing explanations (hypotheses) from observations. 
It is a form of non-monotonic reasoning and provides explanations that are consis-
tent with a current state of knowledge and may become less consistent or inconsis-
tent, when new information is gathered. The existence of multiple hypotheses (or 
explanations) is a general characteristic of abductive reasoning, and the selection of 
the preferred, or most simple, but possible, explanation is an important precept in 
Artificial Occam Abduction.

Abduction was originally embraced in Artificial Intelligence work as a non- 
monotonic reasoning paradigm to overcome inherent limitations in deductive rea-
soning. It is useful in Artificial Intelligence applications for natural language 
understanding, default reasoning, knowledge assimilation, belief revision, and very 
useful in multi-agent systems [3]. The Abduction form of inference, using  hypotheses 

1 If HD contains free variables, ∃ (HD) should be consistent w.r.t. BD.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_7&domain=pdf
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to explain observed phenomena, is a useful and flexible methodology of reasoning 
on incomplete or uncertain knowledge. Occam Abduction, by the way it is defined 
here, provides not only an answer, or cause, to the observations, it provides much 
more information, in that it describes the properties of the class of possible hypoth-
eses in which the observations are valid, and denotes which is the simplest set of 
hypotheses under which this is true.

Here is where we diverge from classical Abductive Reasoning, which is gener-
ally steeped in Bayesian probabilistics. Fuzzy abduction, as opposed to Bayesian 
reasoning, utilizes fuzzy sets of hypotheses to explain a given set of observations. 
The Fuzzy Abduction utilized here genetically derives a set of fuzzy hypotheses, 
using the most appropriate of the available fuzzy implications, and uses these fuzzy 
hypotheses to derive a truth value (how well do the hypotheses explain the observa-
tions). This process is considered abductive because it looks for information that 
both supports and rebuts the fuzzy hypotheses. The combination of supporting and 
rebutting arguments is used to determine the “possibility” that each hypothesis 
explains all or part of the observations. Hypotheses whose possibility is above a 
given threshold are sent forward either to provide explanations, or as input for the 
next genetically generated set of hypotheses.

7.2  Elementary Artificial Occam Abduction

There are several distinct types of interactions that are possible between two ele-
mentary Occam Abductive hypotheses h1, h2 ∈ He: [4]

• Associativity: The inclusion of h1 ∈  He suggests the inclusion of h2. Such an 
interaction may arise if there is knowledge of, for instance, mutual information 
(in a Renyi sense) between h1 and h2.

• Additivity: h1 and h2 collaborate additively where their abductive and explanatory 
capabilities overlap. This may happen if h1 and h2 each partially explains dome 
datum d ∈ D0 but collectively can explain more, if not all of D0.

• Incompatibility: h1 and h2 are mutually incompatible, in that if one of them is 
included in He then the other one should not be included.

• Cancellation: h1 and h2 cancel the abductive explanatory capabilities of each 
other in relation to some d ∈ D0.

 – For example, h1 implies an increase in a value, while h2 implies a decrease in 
a value. In this case, one is used to support the hypothesis and the other is used 
to rebut the hypothesis.

The Occam Abductive Process is:

• Nonlinear in the presence of incompatibility relations.
• Non-monotonic in the presence of cancellation relations.
• The general case (nonlinear and non-monotonic) Occam Abduction hypothesis 

investigation is NP-complete.

7 Artificial Intelligent Inferences Utilizing Occam Abduction
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Consider a special version of the general problem of synthesizing an Artificial 
Occam abductive composite hypothesis that is linear, and, therefore, monotonic.

The synthesis is linear if:

 
∀ ∈ ( )∪ ( ) = { }( )h h H q h q h q h hi j e i j i j, , ,

 
(7.1)

The synthesis is monotonic if:

 
∀ ∈ ( )∪ ( ) ⊆ { }( )h h H q h q h q h hi j e i j i j, , ,

 
(7.2)

In this special version, we assume that the Occam hypotheses are non- interacting, 
i.e., each offers a mutually compatible explanation where their coverage provides 
mutual information (in a Renyi sense). We also assume that the Occam, abductive 
belief values found by the classification subtasks of abduction for all h ∈ He are 
equal to 1 (i.e., true).

Under these conditions, the synthesis subtask of Artificial Occam Abduction can 
be represented by a bipartite graph, consisting of nodes in the set D0 ∪ He. This says 
there are not edges between the nodes in D0, nor are there edges between the nodes 
in He. The edges between the nodes in D0 and those nodes in He can be represented 
by a matrix Q where the rows correspond to d ∈ D0 and the columns correspond to 
ht ∈ He.

The entries in Q are denoted as Qij and indicate whether the given analyzed data 
are explained by a specific abductive Occam hypothesis. The entries are defined as:

 

Q
d h

di j

i j

i
, =

0

1

if datum is not explained by hypothesis

if datum iss explained by hypothesishj





  

(7.3)

Given the matrix Q for the bipartite graph, the abductive, Occam synthesis sub-
task can be modeled as a set-covering problem, i.e., finding the minimum number 
of columns that cover all the rows. This ensures that the composite abductive, 
Occam hypothesis will explain all of D0 and therefore be parsimonious.2

Now we look at a special linear and monotonic version of the general abductive, 
Occam hypothesis synthesis subtask and look at a Possibilistic Abductive Neural 
Networks (PANNs) for solving it [1]. The first is based on an adapted Hopfield 
model of computation:

 

∀ = … ≥
=
∑i n Q V
j

m

ij j1 2 1
1

, , , ,

 

(7.4)

For the Occam, abductive synthesis subtask, we associate variable Vj with each 
Occam hypothesis ht ∈ He, in order to indicate if the Occam hypothesis is included 

2 Note that the general set-covering problem is NP-complete.

7.2 Elementary Artificial Occam Abduction
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in the composite Occam, abductive hypothesis C. We then minimize the cardinality 
of C by:

 j

m

jV
=
∑

1  

(7.5)

subject to the constraint that all data d ∈ D0 are completely explained.
For the Occam, abductive network, the term in the energy function that repre-

sents the problem constraints must evaluate to zero when the constraint is satisfied 
and must evaluate to a large positive value when the constraint is not satisfied, forc-
ing the evolving solution lattice to evolve accordingly [5]. For this energy term, we 
use a term expressed as a sum of expressions, one for each datum element, di, such 
that the expression evaluates to zero, when hypothesis hj that can explain the datum 
di is in the composite hypothesis, i.e., Vj = 1. Given that Q is an incidence matrix 
(with elements either 0 or 1), the expression:

 i

n

j

m

ij jQ V
= =
∑∏ −( ) + −( ){ }

1 1

1 1

 

(7.6)

satisfies the following conditions:

• Each sum of the product terms can never evaluate to a negative number.
• The sum of the product terms, thus, can never evaluate to a negative number.
• Each product term evaluates to zero when an hypothesis that can explain the 

datum is in the composite; otherwise, it evaluates to a large value.
• The sum of the product term, thus, evaluates to zero when a composite set of 

hypotheses can explain all the data.

We derive our Occam abductive energy function as follows:

 

E V Q V
j

m
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m
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1 1 1

1 1

 

(7.7)

where α and β are positive constants, and β > α. The first term represents the cardi-
nality of the Occam hypothesis and the second term represents the penalty for a lack 
of complete coverage; 0 indicates complete coverage. The self-organizing algorithm 
for the Occam abductive network is:

Assume data set: X X X Xp P= … …{ }( ) ( ) ( )1 , , , ,  where P is the number of input 
vectors.

Vector X X X Xp p
i
p

n
p( ) ( ) ( ) ( )= … …{ }1 1

, , , ,  represents the pth input vector to the 
network.

We initialize STEP and SLOPE ∈ (0, 0.5).
IT = β = TD = 0.5
For all input vectors p ∈ [1…P] do {
   For all input dimensions i ∈[1…n1] do {
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      If there are no fuzzy clusters in the ith input dimension (Ji = 0)
          Create a new cluster using xi

p( )

      Else do {
          Find the best fit
Figure 7.1 below illustrates the Occam Abduction Inference process.

7.3  Synthesis of Artificial Occam Abduction

Let B = {bk| k = 1,  … , l} be a finite set of l Occam learned possible beliefs.
Let He ⊆ H such that for each hj ∈ Hc can explain some non-empty subset of D0.

Let p be a map from Hc to He:p: H Be

yields

→ .
The map p is also defined from an elementary Occam hypothesis belief value.
We define p({hj}) as p(hj) and interpret p(hj) as the prima facie Occam belief 

value for hj.
The Occam abductive classification subtask takes D, H, D0, and r as input, 

where r is a map from ℘(H), and give He and p as output.
The abductive hypothesis synthesis subtask may be characterized as a five-tuple 

(D0, He, q, p, Hc), where:
D0, He, q, and p constitute the input to the abductive task, and Hc is the output of 

the task.
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Fig. 7.1 The artificial Occam abduction process
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A composite hypothesis Hc
1  is a better explanation of D0 than abductive hypoth-

esis Hc
2  if:

 
p H p HC C

1 2( ) ≥ ( )  
(7.8)

This specifies that among the composite dialectic Occam Hypotheses that explain 
the data, the one with the highest belief value is the best explanation by abduction.

Maximal explanatory coverage of hypothesis data:
A composite hypothesis Hc

1  is a better explanation of D0 than abductive hypoth-
esis Hc

2  if:

 
q H D q H Dc c

1 0 2 0( )∩ ⊃ ( )∩  
(7.9)

Ideally, the assembled composite hypothesis Hc provides adequate explanatory 
coverage of:

 
D q H Dc0 0, . .,i e ( ) ⊇  

(7.10)

Minimal hypothesis: A composite abductive Occam hypothesis Hc
1  is a better 

explanation of D0 than another composite abductive Occam hypothesis Hc
2  if

 
H Hc c

1 2<
 

This condition specifies that Hc should be parsimonious.

7.4  Artificial Occam Abduction Hypothesis Evaluation Logic

The following lays out the basics of the Artificial Occam Abductive Logic that will 
be used to do hypothesis evaluation for the Dialectic Argument Structure, Hypothesis 
generation, and testing system [6]:

Definition 7.1 A triplet (Φ, Ω, e) defines a domain of Occam hypothesis 
assembly:

• Φ = The set of hypotheses
• Ω = The set of observations (sensor inputs)
• e = The mapping from the subsets of Φ to the subsets of Ω
• Assumptions:

 – Computational: For every subset, Φ′ of Φ, e(Φ′) is computable.
 – Independence: e(Φ1 ∪ Φ2) = e(Φ1) ∪ e(Φ2); for all Φ1 and Φ2 that are subsets 

of Φ.

7 Artificial Intelligent Inferences Utilizing Occam Abduction
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 – Monotonicity: If Φ1 is a subset of Φ2, then e(Φ1) is a subset of e(Φ2).
 – Accountability: α(φ) is the set of observations that cannot be explained with-

out hypothesis φ.

This drives the four-part Occam Dialectic Argument Structure (DAS) Process:

Screening: Screening determines the acceptability of the possible hypotheses and 
then allocates them in a hierarchical classification system of fuzzy 
classifications.

Collection: Collection of hypotheses accounting for the observations. A set of 
hypotheses is made by adding every hypothesis that explains all or part of the 
observations.

Parsimony: Parsimony narrows down the collection of hypotheses to the most 
applicable Occam subset. If a subset of collected hypotheses can explain the 
observations which is the new (narrowed down) hypothesis set.

Critique: Critique determines which hypotheses are the most essential, among the 
available ones, based on fuzzy inference metrics. Individually, every hypothesis 
is excluded from the set, and then the set is tested against the observations. If the 
observations cannot be explained without the excluded hypothesis, then the 
excluded hypothesis is marked essential and reintroduced into the set.

Definition 7.2 An Occam abduction system consists of a logical theory “T” defined 
over a domain language “L”, and a set of domain syntax “A” of “L” that are called 
abducible3 [7].

Definition 7.3 If a set of syntax φ is found as a result of an abductive process in 
searching for an explanation of ω observations, it must satisfy the following 
conditions:

• T ∪ φ is consistent.
• T ∪ φ| − ω.
• φ is abducible, i.e., φ ∈ A.

Definition 7.4 (C, E, T) is a simple causal theory defined over a first-order lan-
guage “L” where “C” is a set of causes, “E” is a set of effects, and “T” is a logical 
theory defined over “L”.

Definition 7.5 An Occam Explanation of a set of observations, Ω, which is a sub-
set of E, is the simplest finite set Φ such that:

• Φ is consistent with T.

3 An abducible argument is a first-order argument consisting of both positive and negative instances 
of abducible predicates. Abducible predicates are those defined by facts only and the inference 
engine required to interpret the meaning. In formal logic, abducible refers to incomplete or not 
completely defined predicates. Problem solving is affected by deriving hypotheses on these abduc-
ible predicates as solutions to the problem to be solved (observations to be explained).

7.4 Artificial Occam Abduction Hypothesis Evaluation Logic
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• T ∪ Φ| − Ω, where Ω is the conjunction of all ω ∈ Ω.
• Φ is a subset-minimal.

Figure 7.2 illustrates the Artificial Occam Abduction Causal Framework. 
Figure 7.3 shows the Occam Abduction Fuzzy Inference high-level architecture [8].

An example of the use of Occam Abduction is using inference engine structure 
shown in Fig. 7.3 within an agent-driven Dialectic Search Argument (reasoning) 
architecture that utilizes the fuzzy, abductive inferences to find relevant information 
that then develops a large argument, or inference. The Dialectic Search Argument 
high-level architecture is illustrated in Fig. 7.4, utilizing the fuzzy, abductive infer-
ence engine shown in Fig. 7.3.

The dialectic argument serves two distinct purposes. First, it provides an effec-
tive basis for mimicking human reasoning. Second, it provides a means to glean 
relevant information from Fuzzy, Semantic, Self-Organizing Topical Maps 
(FSSOTMs) [3] and transform it into actionable intelligence (practical knowledge). 
These two purposes work together to provide an intelligent system that captures the 
capability of a human operator to sort through diverse information and find clues.

This approach is considered dialectic in that it does not depend on deductive or 
inductive logic though these may be included as part of the warrant. Instead, the 
DSA depends on non-analytic inferences to find new possibilities based upon war-
rant examples (abductive logic). The DSA is dialectic because its reasoning is based 
upon what is plausible; the DSA is a hypothesis fabricated from bits of 
information.
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(hypothesis generation and testing)
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Fig. 7.2 The artificial Occam abduction causal framework
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Once the examples have been used to train the DSA, data that fits the support and 
rebuttal requirements is used to instantiate a new claim. This claim is then used to 
invoke one or more new DSAs that perform their searches. The developing lattice 
forms the reasoning that renders the intelligence lead plausible and enables mea-
surement of the possibility.

As the lattice develops, the aggregate possibility is computed using the fuzzy 
membership values of the support and rebuttal information. Eventually, a DSA lat-
tice is formed that relates information with its computed possibility. The computa-
tion, based on Renyi’s entropy theory, uses joint information memberships to 
generate a robust measure of Possibility, a process that is not achievable using 
Bayesian methods [2].

7.5  Conclusion

Here, we have laid the foundations for learning structures that will be required for 
real-time autonomous AI systems. We have provided a mathematical basis for these 
learning algorithms, based on computational mechanics. The Occam Abduction is 
but one of many learning constructs that must be present for an AI system to act 
autonomously and to make sense of a complex world it will find itself a part of [8]. 
Occam Abduction provides the ability for simple Pattern Discovery that feeds more 
complex memory and inference systems within an AI cognitive system to allow the 
autonomous system to think, reason, and evolve. We have but scratched the surface 
in providing constructs and methodologies required for a self-aware, thinking, rea-
soning, and fully autonomous real-time AI system.

Linking
Claim

Training

Fuzzy, Abductive
Inference Engine

Statement
Possibility

Backing

Support
Rebuttal

Support
Rebuttal

Dialectic Search

Data:
Claim

Warrant:

Fig. 7.4 The dialectic argument structure
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Chapter 8
Artificial Neural Diagnostics 
and Prognostics: Self-Soothing in Cognitive 
Systems

8.1  Introduction

A critical part of developing and implementing effective diagnostic and prognostic 
technologies is based on the ability to detect faults in early enough stages to do 
something useful with the information. Fault isolation and diagnosis uses the detec-
tion events as the start of the process for classifying the fault within the system 
being monitored. Condition and/or failure prognosis then forecasts the remaining 
useful life (the operating time between detection and an unacceptable level of deg-
radation). If the identified fault affects the life of a critical component, then the 
failure prognosis models also must reflect this diagnosis [1]. Specific requirements 
in terms of confidence and severity levels must be identified for diagnosis and prog-
nosis of critical failure modes. In general, the fault diagnosis detection level and 
accuracy should be specified separately from prognostic accuracy.

As a minimum, the following probabilities should be used to specify fault detec-
tion and diagnostic accuracy:

• The possibility of anomaly detection, including false-alarm rate and real fault 
probability statistics.

• The possibility of specific fault diagnosis classifications using specific confi-
dence bounds and severity predictions.

To specify prognostic accuracy requirements, the developer/end-user must first 
define [2]:

 1. The level of condition degradation beyond which operation is considered unsat-
isfactory or undesirable to the mission at hand.

 2. A minimum amount of warning time to provide the operator and maintainer 
required information that can be acted on before the failure or condition is 
encountered.

 3. A minimum possibility that remaining useful life will be equal to or greater than 
the minimum warning level.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_8&domain=pdf
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We believe that the use of emotional learning [3] and self-soothing techniques 
from psychotherapy can be utilized within the context of artificial intelligent (AI) 
systems to radically enhance the ability of system to perform self-diagnosis and 
prognosis, based on the notion of emotional learning and emotional memories to 
provide a contextual basis for criticality of faults and system conditions, based on 
previously learned condition-based system information.

What is described here is a cognitive framework and descriptions of self- soothing 
concepts that have been adapted to enterprise infrastructures for intelligent systems 
that will allow advanced prognostics and diagnostics for future AI architectures [4].

8.2  Prognostics and Diagnostics: Integrated System Health 
Management (ISHM)

A comprehensive health management system philosophy integrates the results from 
the monitoring sensors all the way through to the reasoning software that provides 
decision support for optimal use of maintenance resources. A core component of 
this strategy is based on the ability to [4] accurately predict the onset of impending 
faults/failures or remaining useful life of critical components and [2] quickly and 
efficiently isolate the root cause of failures once failure effects have been observed. 
In this sense, if fault/failure predictions can be made, the allocation of replacement 
parts or refurbishment actions can be scheduled in an optimal fashion to reduce the 
overall operational and maintenance logistic footprints. From the fault isolation per-
spective, maximizing system availability and minimizing downtime through more 
efficient troubleshooting efforts is the primary objective.

In addition, the diagnostic and prognostic technologies require an integrated 
maturation environment for assessing and validating Prognostics Health 
Management (PHM) accuracy at all levels within the system hierarchy. Developing 
and maintaining such an environment will allow for inaccuracies to be quantified at 
every level in the system hierarchy and then be assessed automatically up through 
the health management system architecture. The results reported from the system- 
level reasoners and decision support are a direct result of the individual results 
reported from these various levels when propagated through. Hence an approach for 
assessing the overall PHM system accuracy is to quantify the associated uncertain-
ties at each of the individual levels, as illustrated in Fig. 8.1, and build up the accu-
mulated inaccuracies as information is passed up the system architecture [5].

This type of hierarchical Verification and Validation (V&V) and maturation pro-
cess [6] will be able to provide the capability to assess diagnostic and prognostic 
technologies in terms of their ability to detect subsystem faults, diagnose the root 
cause of the faults, predict the remaining useful life of the faulty component, and 
assess the decision-support reasoner algorithms. Specific metrics include accuracy, 
false-alarm rates, reliability, sensitivity, stability, economic cost/benefit, and robust-
ness, just to name a few. Cost-effective implementation of a diagnostic or  prognostic 
system will vary depending on the design maturity and operational/logistics envi-

8 Artificial Neural Diagnostics and Prognostics: Self-Soothing in Cognitive Systems
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ronment of the monitored equipment. However, one common element to successful 
implementation is feedback. As components or Line-Replaceable Units (LRUs) are 
removed from service, disassembly inspections must be performed to assess the 
accuracy of the diagnostic and prognostic system decisions. Based on this feedback, 
system software and warning/alarm limits should be optimized until desired system 
accuracy and warning intervals are achieved. In addition, selected examples of 
degraded component parts should be retained for testing that can better define fail-
ure progression intervals.

The details of the technologies in Condition-Based Maintenance (CBM) and 
Prognostic Health Management (PHM) that have been introduced over the recent 
past by researchers and practitioners are making significant inroads in such applica-
tion domains as mechanical, thermal, electromechanical, and more recently, electri-
cal and electronics systems. It is well recognized, though, that modern dynamical 
systems are a tightly coupled composite of both hardware and software. Software 
reliability is undoubtedly a serious concern and a challenge. We recognize its impor-
tance within the general area of reliability and maintainability, and the introduction 
of AI software architectures into modern systems has made the notion of software 
ISHM more important than ever [7].

Here we introduce those fundamental system concepts that set the stage for the 
effective design of fault diagnostic and prognostic technologies though the use of 
self-diagnostics and self-soothing concepts from psychotherapy. We have reviewed 
systems-based methodologies within the context of self-diagnosis and self-soothing 
that have a direct and significant impact on the design and implementation of CBM/

Fig. 8.1 Function layers in the integrated system health management architecture

8.2  Prognostics and Diagnostics: Integrated System Health Management (ISHM)
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PHM systems. The CBM/PHM designer must be thoroughly familiar with concepts 
of software and hardware failures associated with modern system architectures 
(including those with AI software agent structures) and must possess an understand-
ing of methods for the optimal selection of monitoring strategies, algorithms to 
detect and isolate faults and predict their time evolution, and systems approaches to 
design of experiments and testing protocols, performances metrics, and means to 
verify and validate the effectiveness and performance of selected models. A formal 
framework is established to conduct analysis aimed at comparing alternative options 
and assisting in the selection of the “best” technologies that meet customer require-
ments. Software and hardware failure modes and effects criticality analysis forms 
the foundation for good CBM/PHM design in that they assist in deciding on the 
severity of failure modes, their frequency of occurrence, and their testability, and 
provide the foundation for “context-sensitive” emotional learning for advance PHM 
systems. These new architectures will consider fault symptoms and the required 
sensor suite to monitor their behavioral patterns. It also may list the candidate diag-
nostic and prognostic algorithms that are best suited to address specific failure 
modes. The diagnostic and prognostic process may include recommendations and 
methodologies for putting the system into a “minimum” capability condition, based 
on what has been learned from previous conditions. This learned information will 
be carried in terms of “emotional memories” based on learned situational awareness 
and criticality, based on current situations combined with system conditions and 
predicted reliability assessments. These self-diagnostic and self-soothing concepts 
(which become self-healing in AI systems) will be discussed below.

There are a variety of techniques to address the fault diagnosis problem; how-
ever, failure prognosis is the Achilles’ heel of CBM/PHM systems. Once an incipi-
ent failure or fault is detected and isolated, the task of the prognostic module is to 
estimate as accurately and precisely as possible the remaining useful life of the 
failing component/subsystem. Long-term prediction entails large-grain uncertainty 
that must be represented faithfully and managed appropriately so that reliable, 
timely, and useful information can be provided to the user. There is the need for 
robust and viable algorithms but also understanding that enough and complete 
ground-truth failure data from seeded fault testing or actual operating conditions are 
lacking. This is a major impediment to the training and validation of the algorithmic 
developments. The failure prognosis problem basically has been addressed via two 
fundamental approaches. The first one builds on model-based techniques, where 
physics-based, statistical probabilistic, and Bayesian estimation methods are used 
to design fatigue or fault growth models. The second approach relies primarily on 
the availability of failure data and draws on techniques from the area of computa-
tional intelligence, where neural-network, neuro-fuzzy, and other similar constructs 
are employed to map measurements into fault growth parameters. Here we will 
discuss AI-related technologies and methodologies for PHM [8].

8 Artificial Neural Diagnostics and Prognostics: Self-Soothing in Cognitive Systems
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8.3  Prognostic Technologies

Prognostic Health Management (i.e., prognostics), consists of the ability to monitor 
and predict failures, detect and classify anomalous events, and assess remaining 
useful life in electronic systems can provide significant cost benefits, enhanced mis-
sion readiness and condition-based maintenance. Once the current health of the 
component/subsystem/system is determined, it is then necessary to predict what the 
health of the component/subsystem/system will be sometime in the future and to 
assess the criticality of this future condition, in terms of the systems current mission 
and possibility of mission success. The use of emotional memories to help assess 
the criticality of the current and future predicted system in terms of success can aid 
the speed at which information is provided and transmitted to coalitions of software 
agents within the overall systems. This prediction can be for a short time horizon or 
an estimate of the time till the part needs to be replaced or a failure will occur. There 
are a variety of issues that need be considered.

The PHM software agents will need to accurately predict into the future. Those 
predictions will be required to be unbiased and to have a small variance in order to 
be useful. However, the emotional context of the predictions considering the context 
of current system parameters can help provide insight into the predictions. The 
emotional states, in terms of self-soothing, self-diagnosis will be discussed below.

8.4  Abductive Logic and Emotional Reasoners

This type of reasoner employs AI to allow the system to provide explanatory hypoth-
eses, or new ideas, about faults and system performance predictions. This type of 
reasoner is primarily useful at the subsystem or system level reasoning and not at 
the component level [9].

The concept of “abduction” is as follows: “Abduction is the process of forming 
an explanatory hypothesis. It is the only logical operation which introduces any new 
idea.” Abduction can be grasped as a form of logical inference. Abduction consists 
in examining a mass of facts and in allowing these facts to suggest a theory. In this 
way we gain new ideas; but there is no force in the reasoning. Deduction or neces-
sary reasoning is applicable only to an ideal state of things, or to a state of things in 
so far as it may conform to an ideal. It merely gives a new aspect to the premises. 
Abduction having suggested a theory, we employ deduction to deduce from that 
ideal theory a promiscuous variety of consequences to the effect that if we perform 
certain acts, we shall find ourselves confronted with certain experiences. We then 
proceed to try these experiments, and if the predictions of the theory are verified, we 
have a proportionate confidence that the experiments that remain to be tried will 
confirm the theory.

One way to enhance or accelerate the process is to add in the notion of emotional 
learning into the AI process. By assessing how the system has reacted to situations 
in the past and the results (i.e., how the system feels about the possible solution), 

8.4  Abductive Logic and Emotional Reasoners
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possible solutions can be assessed quicker within the context of the current problem 
and situation. One possible way of assessing this is to provide a set of possible solu-
tions and emotional memories to a fuzzy, self-organizing topical map. By assessing 
the topical solutions and learned emotions about the solution within the context of 
the mission situation, a rapid assessment of solution “correctness” can be assessed.

Figure 8.2a, b illustrate a Fuzzy, Self-Organizing Topical Map (FSTM) with 
topic search hits superimposed. The larger hexagons denote information sources 
that best fit the search criterion, based on retrieved emotional memories about the 
current and future situations. The isograms denote how close the hits are to a spe-
cific situation and solution topics, based on the learned emotions about the contex-
tual problem/solution combinations. There are also other attributes to be explored 
that would provide significant benefit: as a natural language front end to relational 
data; and to find information with common emotional meaning [10, 11].

In Fig. 8.2a, the Fuzzy, Semantic, Self-Organizing Map (FSSM) organizes inputs 
into categories use to encode the inputted information as a histogram. An informa-
tion map contains contextual information. The information map is self-maintaining 
and automatically locates inputs. The isograms denote how close the hits are to 
specific information topics. This FSSM is tied to a Fuzzy Topical Map (FTM) as 
shown in Fig. 8.2b.

The FSSM can be enhanced to include a topic map. The topic map is the ISO 
standard for indexing and describing knowledge structures that span multiple 
sources. The key features are the topics, their associations, and their occurrences in 
the FSSM. The topics are the areas on the FSSM that fall under a topic name. The 
associations describe the relationships between topics. The occurrences are the 
links from the FSSM into the data sources used to form the FTM. The value of 
superimposing a FTM onto the FSSN is that it defines the information domain’s 
ontology. It also enables rapid and sophisticated dialectic searches.

Topical Map

Self-Organizing Map

Is associated with

Is influenced by

Associations, by type:

a b

Fig. 8.2 (a) Fuzzy, semantic self-organizing map (FSSM), (b) FTM in conjunction with the 
FSSM
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8.5  The Dialectic Search

The dialectic search uses the Toulmin argument structure to find and relate informa-
tion that develops a larger argument, or intelligence lead. The Dialectic Search 
Argument (DSA), illustrated in Fig. 8.3, has four components [12]:

 1. Data and learned emotions: in support of the argument and rebutting the 
argument.

 2. Warrant and Backing: explaining and validating the argument.
 3. Claim: defining the argument itself.
 4. Fuzzy Inference: relating the data and emotions to the claim.

The argument serves two distinct purposes. First, it provides an effective basis for 
mimicking human reason. Second, it provides a means to glean relevant information 
from the topic map and transform it into actionable intelligence (practical knowledge). 
These two purposes work together to provide an intelligent system that captures the 
capability of the intelligence operative to sort through diverse information and find 
clues. This approach is considered dialectic in that it does not depend on deductive or 
inductive logic, though these may be included as part of the warrant. Instead, the DSA 
depends on non-analytic inferences and learned emotions to find new possibilities 
based upon warrant examples. The DSA is dialectic because its reasoning is based 
upon what is plausible; the DSA is a hypothesis fabricated from bits of information.

Once the examples including learned emotions have been used to train the DSA, 
data and emotions that fit the support and rebuttal requirements are used to instanti-
ate a new claim. This claim is then used to invoke one or more new DSAs that per-
form their searches. The developing lattice forms the reasoning that renders the 
intelligence lead plausible and enables the possibility to be measured. As the lattice 
develops, the aggregate possibility is computed using the fuzzy membership values 
of the support and rebuttal information. Eventually, a DSA lattice is formed that 
relates information with its computed possibility. The computation, based on 
Renyi’s entropy theory, uses joint information memberships to generate a robust 
measure of possibility, a process that is not possible using other methods [13].

Figure 8.4 illustrates the intelligent software agent architecture used to implement 
the DSA: three different agents, the coordinator, the Dialectic Argument Search 

Fig. 8.3 The dialectic search argument structure

8.5  The Dialectic Search
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(DAS), and the search, work together, each having its own learning objectives. These 
produce reports based on the self-diagnostic constructs described in the next section.

The coordinator is taught to watch the fuzzy, self-organizing topical map, 
responding to new hits (input) that conform to patterns and emotions of known 
interest. When an interesting hit occurs, the coordinator selects one or more candi-
date DAS agents, and then spawns search agents to find information relevant to each 
DAS. As time proceeds, the coordinator learns which hit patterns are most likely to 
yield a promising lead, adapting to any changes in the fuzzy, self-organizing topical 
map structure and sharing what it learns with other active coordinators [11].

The search agent takes the DAS prototype search vectors and, through the fuzzy, 
self-organizing topical map, finds information that is relevant and related. The 
search agent learns to adapt to different and changing source formats and would 
include parsing procedures required to extract detailed information.

The final agent, the DAS, learns fuzzy patterns and uses this to evaluate informa-
tion found by the search agent. Any information that does not quite fit is directed to 
a sandbox where peer agents can exercise a more rigorous aggressive routine to 
search for alternative hypotheses.

8.6  Self-Soothing in AI Systems

The constructs of self-diagnosis and self-soothing are described here in the context 
of AI systems. These constructs would be utilized within the fuzzy, self-organizing 
topical maps and dialectic searches to provide diagnostics and prognostics within 
the context of mission parameters and situational awareness [14].

Fig. 8.4 The artificially intelligent DSA software agency
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8.6.1  Acupressure

In AI terms, artificial acupressure involves polling all the available resources, refresh-
ing the view of the enterprise infrastructure, basically taping on the AI system. 
Combining this with retrieving emotional memories involved with the current condi-
tion and mission context allows the AI software agents to “calm down” and concen-
trate on finding solutions to the current problem utilizing genetic algorithms to 
search (using the fuzzy, self-organizing topical maps and dialectic searches) for solu-
tions; forming the AI system version of an Emotional Freedom Technique (EFT).1

8.6.2  Deep Breathing

When you are scared, you might contract your body and hold your breath to try to 
squish the feelings in order to keep from feeling bad. Pulling your body in tight and 
stopping your breath keeps you from getting good oxygen to deal with whatever 
upsets you. In ISHM terms, this is paramount to conservation of resources and not 
allowing the system to release hardware and software resources that may be required 
to “heal the current situation.”

Deep breathing in AI system terms involves releasing a plethora of intelligent 
software agents to access all parts of the systems and collaborate in an organized 
fashion (i.e., breath in and out) and form a collective grouping of possible solutions 
to the current situation.

8.6.3  Amplification of the Feeling

Exaggeration of feelings in the AI system entails flooding the system with genetic 
DSA searches with constraints based on an exaggeration of the emotional memo-
ries. In fuzzy sense, this is moving from a fuzzy membership function of “greater 
than” to one of “much greater than,” or “much less than” instead of “less than.” This 
allows the system to concentrate on solutions that are the most appropriate and 
eliminates most “possible” solutions. This acts as the system’s subconscious.

8.6.4  Imagery

In our terms, imagery involves creating several “populations” of solutions with a large 
solution space, opening the mutation and combination rates to allow for major jumps 
in generational solution possibilities. The topical map measure spaces are relaxed to 

1 Emotional Freedom Technique (EFT) is a form of counseling that draws from acupuncture, 
neuro-linguistic programming and is often called “energy psychology.”

8.6  Self-Soothing in AI Systems
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allow a larger “possibilistic” set of solutions to be explored. This helps to jump-start to 
process and then completely unavailable solutions can be eliminated, but the possible 
solution sets are broadcast to as wide an agent coalition population as possible. Once a 
viable solution set has been created, the constraint and rates are returned to normal 
levels and the solution populations are evaluated. The emotions experienced through 
this process are catalogued and stored, coupling emotional responses with each solution 
space. This allows greater efficiencies when the current situation is encountered again.

8.6.5  Mindfulness

Mindfulness is keeping your attention on what is happening in the moment. This 
would involve tightening constraints and topical distance measurements to ensure 
that attention is paid to just the problem at hand, once the imagery technique has 
been utilized. This would employ sorting out only those solutions that carry positive 
emotional learning responses and assessing those solutions first. These are evalu-
ated by a mediator agents that concentrate on the mission needs and mission criti-
cality to provide necessary solutions that are pertinent to the current situation.

8.6.6  Positive Psychology

Positive psychology researches how happy, successful people work their life. The 
AI system looks for solution spaces that have resulted in positive emotional 
responses, based on learned emotions, and utilizes those methods employed during 
that investigation and diagnostic/prognostic period to look for solutions.

Fig. 8.5 Self-diagnosis/self-soothing architecture
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8.7  Artificial Social Intelligence

To facilitate intelligent transmittal of learned emotions and emotional context, 
Emotional Markup Language (EML) will be utilized within the system for transmit-
tal of emotional information. Figure  8.5 illustrates the self-diagnosis/soothing 
architecture that will be utilized inside of a multi-agent, cognitive framework.

The combination of these structures provides the overall framework to provide a 
collective social intelligence within the intelligent information software agent archi-
tecture. This is depicted in Fig. 8.6. The major intelligent software agents and their 
interactions required to facilitate the self-diagnosis/self-soothing and social intelli-
gence constructs are illustrated in Fig. 8.7 [15].

Fig. 8.6 Artificial intelligent social intelligence framework

Fig. 8.7 Artificial intelligent information agents (I2As)

8.7  Artificial Social Intelligence
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8.8  Conclusions and Discussion

The system and structures described here provide the foundation for utilizing self- 
diagnosis and self-healing within AI systems and have the possibilities of revolu-
tionizing artificial intelligent systems. We have only begun this investigation and 
much more work is required to validate the methodologies described here.
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Chapter 9
Ontology-Based Knowledge Management 
for Artificial Intelligent Systems

9.1  Introduction

With the ever-increasing availability of sensor data and other intelligence from a 
variety of collection platforms, it is essential that coherent intelligence fusion and 
support are provided to the warfighting effort at every level, from commanders 
down to the individual warfighter. The intelligence fusion and analysis that provides 
this support needs tools that facilitate processing of the intelligence information as 
well as its dissemination across the defense intelligence community [1].

By the early 1980s, researchers in artificial intelligence and especially in knowl-
edge representation had realized that work in ontology was relevant to the necessary 
process of describing the world of intelligent systems to reason about and act within 
[2]. This awareness and integration grew and spread to other areas until, in the latter 
half of the final decade of the twentieth century, the term “ontology” became a buzz-
word, as enterprise modeling, e-commerce, emerging XML metadata standards, and 
knowledge management, among others, reached the top of many system design 
requirements [3]. In addition, an emphasis on “knowledge sharing” and interchange 
has made ontology an application area.

In general, the accepted industrial meaning of “ontology” makes it synonymous 
with “conceptual model” and is nearly independent of its philosophical antecedents. 
We make a slight differentiation between these two terms, however (as shown in 
Fig. 9.1): a conceptual model is an actual implementation of an ontology that has to 
satisfy the engineering trade-offs and system requirements, while the design of an 
ontology is independent of run-time considerations, and its only goal is to specify 
the conceptualization of the world underlying such requirements [4]. In this paper 
we describe a well-founded methodology for ontological analysis that is strongly 
based on philosophical underpinnings, and a description-logic-based system that 
can be used to support this methodology.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_9&domain=pdf
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9.2  Taxonomies

Taxonomies are a central part of most conceptual models. Properly structured tax-
onomies help bring substantial order to elements of a model, are particularly useful 
in presenting limited views of a model for human interpretation and play a critical 
role in reuse and integration tasks [5, 6]. Improperly structured taxonomies have the 
opposite effect, making models confusing and difficult to reuse or integrate. Clearly, 
insights into how to properly construct a taxonomy are useful. Many previous 
efforts at providing these insights have focused on the semantics of the taxonomic 
relationships (also called is-a, class inclusion, subsumption, etc.), on different kinds 
of relations (generalization, specialization, subset hierarchy) according to the con-
straints involved in multiple taxonomic relationships (covering, partition, etc.), on 
the taxonomic relationship in the more general framework of data abstractions, or 
on structural similarities between descriptions [7, 8].

Our approach differs from many classical approaches, in that we focus on the 
arguments (i.e., the properties or concepts) involved in the subsumption relation-
ship, rather than on the semantics of the relationship itself. The latter is taken for 
granted, as we take the statement “ψ subsumes Φ” for arbitrary properties ψ and ϕ 
to mean that, necessarily [9]:

 
" ( ) ® ( )x x x:F y

 
(9.1)

Taxonomy 3
Taxonomy 2

Formal Ontological Properties/Relations

Useful Informal Properties

Actor
User
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Ontology

Conceptual Instance

Taxonomy 1

Fig. 9.1 Ontology development methodology
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Our focus will be on verifying the plausibility and the well-soundness of single 
statements like (9.1) based on the ontological nature of the two properties ψ and Φ. 
Where, for example, description logics can determine whether one (complex) 
description does subsume another, this methodology can help determine whether a 
primitive property can subsume another, e.g., whether one sensor measurement may 
subsume another.

9.2.1  Underlying Notions

We begin by introducing the most important philosophical notions: identity, essence, 
unity, and dependence. The notion of identity adopted here is based on intuitions 
about how we, as cognitive agents, in general interact with (and in particular recog-
nize) individual entities in the world around us. Despite its fundamental importance 
in Philosophy, the notion of identity has been slow in making its way into the prac-
tice of conceptual modeling for information systems, where the goals of analyzing 
and describing the world are ostensibly the same [10]. For the intelligence fusion 
types of architectures, we will be discussing, the notion of identity is particularly 
important, because the system must recognize its environment and how to adapt to 
it when it changes.

The first step in understanding the intuitions behind identity requires considering 
the distinctions and similarities between identity and unity. These notions are differ-
ent, albeit closely related and often confused under a generic notion of identity. 
Strictly speaking, identity is related to the problem of distinguishing a specific 
instance of a certain class from other instances of this class by means of a charac-
teristic property, which is unique for it (that whole instance) [11]. Unity, on the 
other hand, is related to the problem of distinguishing the parts of an instance from 
the rest of the world by means of a unifying relation that binds the parts, and only 
the parts together. For example:

asking, “Is this the same signal I’ve seen before?” would be a problem of identity,

whereas asking, “Is this frequency mode consistent with the signal?” would be a problem 
of unity.

Both notions encounter problems when time is involved. The classical one is that 
of identity through change: in order to account for changing environments, we need 
to admit that an individual may remain the same while exhibiting different proper-
ties at different times. But which properties can change, and which must not? And 
how can we re-identify an instance of a certain property after some time? The for-
mer issue leads to the notion of an essential property, on which we base the defini-
tion of rigidity, discussed below, while the latter is related to the distinction between 
synchronic and diachronic identity. An extensive analysis of these issues in the con-
text of conceptual modeling has been made elsewhere [12]. These issues become 
important as we strive to architect and field an automated Signals Intelligence 
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(SIGINT) processing and fusion system. The notion of when we determine that we 
are seeing a known signal with a new mode, as oppose to a new type of signal, 
becomes extremely important and time critical.

The next notion, ontological dependence, may involve many different relations 
such as those existing between persons and their parents, agilities within a signal 
and the ranges these agilities take, and so on. We focus here on a notion of depen-
dence as applied to properties [13]. We distinguish between extrinsic and intrinsic 
properties, according to whether they depend or not on other objects besides their 
own instances. An intrinsic property is typically something inherent in an individ-
ual, not dependent on other individuals, such as having three agile modes. Extrinsic 
properties are not inherent, and they have a relational nature, like “where the trans-
mitter is at time t, or which mode the transmitter is in at time t.” Some extrinsic 
properties are assigned by external agents or agencies, such as having a specific 
location that does not change.

It is important to note that our ontological assumptions related to these notions 
ultimately depend on our conceptualization of the environment in which the system 
will operate. This means that, while we shall use examples to clarify the notions 
central to our analysis, the examples themselves will not be the point of this paper. 
When we say, e.g., that “having the same location” may be considered an identity 
criterion for EMITTER A, we do not mean to claim this is the universal identity 
criterion for EMITTERs, but that if this were to be taken as an identity criterion in 
some conceptualization, what would that mean for the property, for its instances, 
and its relationships to other properties? These decisions are ultimately the result of 
our notion of the system requirements, the expected signal environments, etc. and 
again the aim of this methodology is to clarify the formal tools that can both make 
such assumptions explicit and reveal the logical consequences of them [14].

9.3  Related Database Fundamentals

Identity has many analogies in conceptual modeling for databases, knowledge 
bases, object-oriented, and classical information systems; however, none of them 
completely captures the notion we present here [15]. Since any intelligence fusion/
processing system will be indelibly tied to a “signal database,” we discuss some of 
these cases below.

Membership Conditions In description logics, the conceptual models usually 
focus on the sufficient and necessary criteria for class membership, i.e., recognizing 
instances of certain classes [8]. This is not identity, however, as it does not describe 
how instances of the same class are to be told apart. This is a common confusion 
that is important to keep clear: membership conditions determine when an entity is 
an instance of a class, i.e., they can be used to answer the question, “Is that signal 
from an agile radar used by A10s?” but not, “Is that signal from the agile radar used 
by the A10 at long. x, lat. y?”
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Globally Unique IDs In object-oriented systems, uniquely identifying an object 
(as a collection of data) is critical, when data are persistent or can be distributed. In 
databases, globally unique IDs have been introduced into most commercial systems 
to address this issue. These solutions provide a notion of identity for the descrip-
tions, for the units of data (individuals, objects, or records), but not for the entities 
they describe. It still leaves open the possibility that two (or more) descriptions may 
refer to the same entity, and it is this entity that our notion of identity is concerned 
with. There is nothing, in other words, preventing two descriptions of the same radar 
from being created independently at different times/places, and thus having differ-
ent IDs; the two records describe the same radar, but they are different pieces of 
data. Globally unique IDs provide identity criteria for database records, but not for 
the entities in the world the records describe.

Primary Keys Some object-oriented languages provide a facility for overloading 
or locally defining the equality predicate for a class. In standard database analysis, 
introducing new tables requires finding unique keys either as single fields or combi-
nations of fields in a record. These two similar notions very closely approach our 
notion of identity as they do offer evidence toward determining when two descrip-
tions refer to the same entity. There is a very subtle difference, however, which we 
will attempt to briefly describe here, and which should become clearer with the 
examples given later.

Primary (and candidate) keys and overloaded equality operators are typically 
based on extrinsic properties that are required by a system to be unique. In many 
cases, information systems designers add these extrinsic properties simply as an 
escape from solving (often very difficult) identity problems. Our notion of identity 
is based mainly on intrinsic properties, i.e., we are interested in analyzing the inher-
ent nature of entities and believe this is important for understanding a domain [16]. 
This is not to say that the former type of analysis never uses intrinsic properties nor 
that the latter never uses extrinsic ones; it is merely a question of emphasis. 
Furthermore, our analysis is often based on information which may not be repre-
sented in the implemented system, whereas the primary key notion can never use 
such information. For example, we may claim as part of our analysis that people are 
uniquely identified by their brain, but brains and their possession may not appear in 
the final system we are designing. Our notion of identity and the notion of primary 
keys are not incompatible, nor are they disjoint, and in practice conceptual modelers 
will need both.

9.4  Ontology Analysis

In this section, we shall present a formal analysis of the basic notions discussed in 
Sect. 9.1, and we shall introduce a set of meta-properties that represent the behavior 
of a property with respect to these notions. Our goal is to show how these 
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meta-properties impose some constraints on the way subsumption is used to model 
a domain, and to present a description logic system for checking these constraints.

9.4.1  Preliminary Discussion

Let us assume that we have a first-order language L0 (the modeling language) whose 
intended domain is the world to be modeled, and another first-order language L1 (the 
meta-language) whose constant symbols are the predicates of L0. Our meta- 
properties will be represented by predicate symbols of L1. Primitive meta-properties 
will correspond to axiom schemes of L0. When a certain axiom scheme holds in L0 
for a certain property, then the corresponding meta-property holds in L1. This cor-
respondence is like a system of reflection rules between L0 and L1, which allow us 
to define a particular meta-property in our meta-language, avoiding a second-order 
logical definition. Meta-properties will be used as analysis tools to characterize the 
ontological nature of properties in L0 and will always be defined with respect to a 
given conceptualization.

We denote primitive meta-properties by bold letters preceded by the sign “+”, 
“_”, or “~”, and the notation ϕM to indicate that the property ϕ has the meta-property 
M. The reading of each meta-property and its significance will be described later. In 
our analysis, we adopt first-order logic with identity. This will be occasionally 
extended to a simple temporal logic, where all predicates are temporally indexed by 
means of an extra argument. If the time argument is omitted for a certain predicate 
ϕ, then the predicate is assumed to be time invariant, that is ∃t : ϕ(x, t) →  ∀ t : ϕ(x, t). 
Note that the identity relation will be assumed as time invariant: if two things are 
identical, they are identical forever. This means that Leibniz’s rule holds with no 
exceptions.

We make some use of modal notations such as “necessary” and “possibly” oper-
ators which quantify over possible worlds: •ϕ means ϕ is necessarily true, i.e., true 
in all possible worlds, and Δϕ means ϕ is possibly true, i.e., true in at least one pos-
sible world. Our notion of quantification will be extended such that we will include 
predicates that are not limited to what exists in the actual world. This is used to 
consider possible conditions that may exist in the future, or for conditions we may 
want to test for that we don’t currently see but believe them to exist. Worlds will be 
considered histories rather than snapshots, and we shall consider all of them equally 
accessible. For instance, a predicate like “Chaos Driven Radar” will not be empty in 
our world, although no instantiation of it currently exists. We still consider the pos-
sibility to be part of the “radar” world. So actual existence is different from existen-
tial quantification (“logical existence”), and will be represented by the temporally 
indexed predicate E(x, t), meaning that x has actual existence at time t. In order to 
avoid trivial cases in the meta-property definitions, we shall implicitly assume the 
property variables are restricted to discriminating properties, properties ϕ such that 
the discriminating properties are properties for which there is possibly something 
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which has this property, and possibly something that does not have this property, 
i.e., they are neither tautological nor vacuous. Formally this looks like:

 
D D$ ( ) Ù $ Ø ( )x x x x:f f

 
(9.2)

9.4.2  Knowledge Analysis

In order to capture knowledge representation, we introduce the notion of a “knowl-
edge space” that represents the terminology, concepts, and relationships among 
those concepts relevant to knowledge management. We illustrate upper and lower 
ontologies will provide insight into the nature of data/information/knowledge par-
ticular to the knowledge management domain. Here we provide views at various 
levels within the overall knowledge management domain that the multidisciplinary 
systems engineer might use in the overall system of systems architecture design. 
The system of systems architecture derived from the knowledge management upper 
and lower ontologies should include the following:

Controlled Vocabulary (Unified Lexicon) A controlled vocabulary is an ontology 
that simply lists a set of terms and their definitions. Glossaries and acronym lists are 
two examples of controlled vocabularies.

Taxonomy Taxonomy is a set of terms that are arranged into a generalization- 
specialization (parent–child) hierarchy (e.g., communication satellites). Taxonomy 
may or may not define attributes of these terms, nor does it specify other relation-
ships between the terms.

Relational Databases A database schema defines a set of terms through classes 
(tables, where terms are represented as the rows in those tables), attributes (speci-
fied as columns in the tables), and a limited set of relations between classes (foreign 
keys).

Software Object Models Object models define a set of concepts and terms through 
a hierarchy of classes and attributes and a broad set of binary relations among those 
classes. Some constraints and other behavioral characteristics may be specified 
through methods on the classes or objects.

Knowledge Representation System A knowledge representation system expresses 
all of the preceding relationships, models, and diagrams, as well as n-ary relations, 
a rich set of constraints, rules relevant to usage or related processes, and other dif-
ferentiators including negation and disjunction.

Knowledge Management Conceptual Architecture The knowledge manage-
ment upper and lower ontologies should provide a well-designed, component-based 
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architecture for sharing information in a complex, networked environment. The 
capabilities provided within each layer should be encapsulated to support a highly 
distributed system of systems architecture.

Lower Ontologies The knowledge management lower ontology should be 
described in terms of different aspects the system of systems architecture they 
address for solving different types of collaboration and integration issues. This is 
important because it has been demonstrated many times that creating a single, 
monolithic system of systems element data/information/knowledge object model 
and files to deliver the business/mission utility that is required. Ontologies are, by 
nature, much larger and more complex than data object models, and can take signifi-
cant effort to build. Ontology-based knowledge management is an approach that 
multidisciplinary systems engineer should investigate. An overall system of systems 
knowledge management ontology should include the following ontologies:

• Role Based Ontology: defines terminology and concepts relevant for an end- 
user (person or consumer application).

• Process Ontology: defines the inputs, outputs, constraints, relations, terms, and 
sequencing information relevant to a business process or set of processes.

• Domain Ontology: defines the terminology and concepts relevant to a particular 
topic or area of interest (e.g., satellite communication).

• Interface Ontology: defines the structure and content restrictions (such as 
reserved words, units of measure requirements, other format-related restrictions) 
relevant for a particular interface (e.g., application programming interface (API), 
database, scripting language, content type, user view, or partial view—as imple-
mented for a portal, for instance).

9.5  Knowledge Management Upper Ontology

Figure 9.2 illustrates an example of an overall knowledge management ontology to 
manage a system of systems for a satellite processing system. Each object within 
the upper ontology represents a major area of data/information/knowledge the sys-
tem must manage. The ontologies and taxonomies illustrated below are intended to 
be examples and there is no guarantee that all possible entities have been captured. 
Included are the entities (knowledge objects), but along with each entity are associa-
tions between entities, how the entities and associations are indexed throughout the 
system of systems architecture, and the registries that tag the data/information/
knowledge objects with metadata for extraction later. Figure 9.3 illustrates the rela-
tionship between the sample of the overall system of systems knowledge space and 
the data/information/knowledge object associations. For each entity object, there 
are association objects that provide connections between objects and the metadata 
affiliated with those associations. Those association connections are accomplished 
through an analytical engine, based on the domain space of each element of the 
system of systems.
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The knowledge management process has six levels associated with the process, 
Level 0–Level 5:

Level 0—Data Refinement: This entails creating a belief system where the differ-
ent and varying object accuracy/belief semantics can be normalized into a data- 
specific semantic model that can then be used for data association, tracking, 
classification, etc.

Level 1—Data/Information Object Refinement: Refinement here consists of data 
object association, information extraction from data object associations, infor-
mation object classification, indexing, and registering.

Level 2—Situational Refinement: This includes information object-to-object cor-
relation and the inclusion of all relevant data into an informational display.

Fig. 9.2 Example knowledge management upper ontology

Entity Object1 Knowledge Space

Knowledge Management
of the Knowledge SpaceEntity Object1

Entity Object2

Entity Object2

Entity Object2 Entity Object3 Entity Object4

Association Object1

Association Object2

Analytic

Fig. 9.3 Example artificial intelligence knowledge-space management
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Level 3—Knowledge Assessment and Refinement: This consists of collecting the 
activities of interest, relative to each collection of information objects. Knowledge 
refinement includes the correlation of situational context and creation of knowl-
edge association metadata, known as knowledge relativity threads [17].

Level 4—Process Refinement and Resource Management: Process refinement 
enables process control and process management of data/information/knowledge 
movements through the system of systems, inter- and intra-element communica-
tions of data/information/knowledge objects [18]. Resource allocation and man-
agement is required at this level for effective movement of data/information/
knowledge throughout the system of systems communications infrastructure and 
involves performance trade-offs.

Level 5—Knowledge, Decisions, and Actions: This level of processing allows 
information to be incorporated with system experience into system-level knowl-
edge required to provide actionable intelligence and decision support to opera-
tors of the system of systems.

Entity Object Lower Ontology Figure 9.4 below illustrates the entity object 
lower ontology shown in the upper ontology in Fig. 9.2. Here the major categories 
of data objects are shown, and the associations between them.

Association Object Lower Ontology Figure 9.5 below provides an illustration of 
an example of the association lower ontology for the knowledge management upper 
ontology shown in Fig. 9.2. Here, the major categories of association objects are 
shown along with their interconnectivity.

Fig. 9.4 Example artificial intelligence knowledge management lower ontology
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Registries Object Lower Ontology Figure 9.6 illustrates a sample registries 
object lower ontology for the sample knowledge management upper ontology 
shown in Fig.  9.2. The major categories of registry objects are shown and their 
interconnectivity.

People Entity Object Taxonomy Figure 9.7 provides a view of the people entity 
object taxonomy from the knowledge management lower ontology shown in 
Fig. 9.4. Here the major categories of people entity objects are shown, and the sub-
categories associated with them.

Information Entity Object Taxonomy Figure 9.8 illustrates the information 
entity object taxonomy from the knowledge management lower ontology shown in 
Fig. 9.4. Here the major categories of location entity objects are shown.

Location Entity Object Taxonomy Figure 9.9 shows an example location entity 
object taxonomy from the knowledge management lower ontology shown in 
Fig. 9.4. Here, the major categories of location entity objects are shown.

Event Entity Object Taxonomy Figure 9.10 shows an example event entity object 
taxonomy derived from the knowledge management lower ontology shown in 
Fig. 9.4. Here, the major categories of event entity objects are shown.

Physical Entity Object Taxonomy Figure 9.11 illustrates an example physical 
entity object taxonomy derived from the knowledge management lower ontology 
shown in Fig. 9.4. Here the major categories of physical entity objects are shown.

Fig. 9.5 Example artificial intelligence knowledge management lower ontology
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Fig. 9.6 Example artificial intelligence knowledge management registry object lower ontology

Fig. 9.7 Example artificial intelligence knowledge management people entity taxonomy
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Fig. 9.8 Example artificial intelligence knowledge management information entity taxonomy

Fig. 9.9 Example artificial intelligence knowledge management location entity taxonomy
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9.6  Upper Services Fault Ontology

In order to properly identify fault messages that must be incorporated into the 
System of System (SoS) enterprise service architecture with artificial intelligent 
components/services/algorithms/etc., the infrastructure architecture needs an enter-
prise service fault ontology. The service faults apply to service-oriented system 
designs, independent of the technologies used (e.g., web services). Because there 
are very specific faults associated with services that affect how information flows to 
artificial intelligent elements of the systems, the service fault ontology is required to 

Fig. 9.10 Example artificial intelligent knowledge management event entity taxonomy

Fig. 9.11 Example artificial intelligence knowledge management physical entity taxonomy

9 Ontology-Based Knowledge Management for Artificial Intelligent Systems



113

understand what classes and types of faults must be captured and reported by the 
system of systems enterprise (element-element, subsystem-subsystem, etc., Service 
Level Agreements (SLAs). If a fault occurs and the artificial intelligent algorithms 
or systems only receive partial, incomplete, or degraded information, it may radi-
cally affect how those systems/components react, learn, infer, and adapt. SoS enter-
prise service management is a superset of overall system knowledge management 
and captures the information at the enterprise infrastructure level.

Faults may occur during any and all steps within any given SoS enterprise ser-
vice. The service management system must be capable of detecting service-related 
faults and errors. This necessitates the need to identify the fault/error categories that 
must be detected. The service infrastructure must be capable of handling these 
faults/errors. Besides service-specific faults, all faults that occur in the distributed 
SoS enterprise may appear as service faults that will not be picked up by the normal 
enterprise management systems.

Service implementations represent a troublesome class of problems. Dynamic 
linking between service providers and consumers (loose coupling) produces 
dynamic behavior that can cause faults in all five steps within the SoS enterprise:

• Service publishing
• Service discovery
• Service composition
• Service binding
• Service execution

The faults in each step can be caused by a variety of reasons. Table 9.1 illustrates 
the percentages of fault reasons.

The SoS enterprise service fault upper ontology starts with the five general steps 
within the SoS enterprise and then each category is refined. This generalization 
allows a complete coverage of possible service faults. Each service within the SoS 
will have its own SLA with its own performance objectives, called Service Level 
Objectives (SLOs). This provides domain-specific faults relative to a domain with 
the SoS architecture. Figure 9.12 below illustrates an example of a service fault 
ontology.

Table 9.1 System of system 
fault error sources

Source of error Frequency (%)

Requirements 8.1
Features and functionality 16.2
Structural bugs 25.25
Data bugs 22.4
Implementation and coding 9.9
Integration 9.0
System and software 
architecture

4.7

Test definition and execution 2.8
Other 2.7

9.6  Upper Services Fault Ontology
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9.7  Example: Technical Publications Taxonomy

Figure 9.13 represents an example of taxonomy, this one for technical publications. 
Currently, there are several research efforts going on to create “smart” repositories 
of specific types of documents that provide rapid search, retrieval, and correlation of 
documents that contain domain-specific information (e.g., spatio-temporal data). 
These may require non-relational databases to handle the complexities of the search 
criteria, but to provide at least one example; below is an example of a technical 
publications object taxonomy that could utilize machine learning algorithms to pro-
vide rapid identification, retrieval, and correlation of journal articles. It starts with a 
technical publications object that is a member of a larger object type, media infor-
mation object, this is, itself, a member of a larger object type, an information object. 
The technical publications object has two types, the journal object and the author 
object. The use of taxonomies is important, as it provides a basic understanding of 
the components object types that are used within a system. Taxonomies collect 
objects and their attributes and how they related to each other.

9.8  Knowledge Relativity Threads for Knowledge Context 
Management

Outlining the need for frameworks which can analyze and process knowledge and 
context, Liao [17] represented context in a knowledge management framework 
comprising processes, collection, preprocessing, integration, modeling, and repre-
sentation, enabling the transition from data, information, and knowledge to new 
knowledge [19]. The authors also indicated that newly generated knowledge was 
stored in a context knowledge base and used by a rule-based context knowledge- 
matching engine to support decision-making activities. Gupta and Govindarajan 
[18] defined a theoretical knowledge framework and measured the collected increase 
of knowledge flow out of multinational corporations based upon “knowledge stock” 
(e.g., the value placed upon the source of knowledge). Pinto [20] developed a con-
ceptual and methodological framework to represent the quality of knowledge found 
in abstracts. Suh [21] concluded that collaborative frameworks do not provide the 
contents which go in them, therefore, content was discipline specific, required sub-
ject matter experts, and clear decision-making criteria. Additionally, Suh noted that 
processes promoting positive collaboration and negotiation were required to achieve 
the best knowledge available and were characterized by process variables and part 
of what is defined as the process domain. Finally, Ejigu et al. [22] created a frame-
work for knowledge and context which collected and stored knowledge as well as 
decisions in a knowledge repository that corresponded to a specific context instance. 
Subsequently, the framework evaluated the knowledge and context via a reasoning 
engine [23].
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Today, existing databases housing vast bits of information do not store the infor-
mation content of the reasoning context used to determine their storage [22]. The 
knowledge collection and storage formula were therefore developed to include and 
store relationship context along with knowledge, recursively [24]. This means that 
each act of knowledge and context pairing shown as in equation shown in Fig. 9.1 
∑i, jKi(Rj) recursively examined all of the previous relationships as they were recom-
bined into storage since they were all related and dependent on each other [25]. 
Recursive refinement then occurred, per iteration of relationship pairing [26]. 
Recursive refinement occurred when the user found what was looked for shown as 
Ki(Rj), using interrogatives (e.g., who, what, when, where, why, and how) [27, 28]. 
The information content contributing to finding the answer then has significant 
value and therefore, a higher degree of permanence in the mind of the stakeholder 
[29]. Therefore, the information content has reached a threshold where retaining the 
knowledge and context has become important [30].

Figure 9.14 represents a Knowledge Relativity Thread (KRT). Carbone devel-
oped this approach for presentation of knowledge and context and was constructed 
to present five discrete attributes, namely, time, state, relationship distance, relation-
ship value, and event sequence [25]. The goal of a KRT is to map the dependencies 
of knowledge and related attributes as knowledge is developed from information 
content. In this figure, the timeline represented by the blue arrow from left to right 
shows the events or state transitions in sequence and captures the decision points 
[15]. During each of the iterations of the presentation of knowledge and context, 
intrinsic values were captured and placed close to each colored knowledge compo-
nent. In Fig. 9.14, these are represented as information fragments under the cycles. 
The basic information decomposition depicts how a KRT looks when it represents 
information decomposed into pieces, in this case fragments. The red triangles, 

Fig. 9.13 Example journal publication taxonomy suitable for machine learning algorithms
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added next, depict a state for each of the iterations, in the KRT development cycle. 
For emphasis, each colored sphere was built into the depiction and added in sequence 
to represent the fact that each information fragment follows the other. Each icon 
represents each information fragment. The relative values in this basic knowledge 
decomposition between each sphere are perceived to be of the same value to each 
other. Therefore, the lines are the same distance as well. Since this base  representation 
depicted in Fig. 9.13 can present time, state, and sequence, as well as relationships, 
the challenge was addressed as described by Dourish [12] to create presentation of 
context which can visually capture and manage a continual renegotiation and redefi-
nition of context as development of knowledge occurs over time. The KRT depicts 
cognitive comparison of not just information, but of the contextual relationships 
also. An important distinction about the observation of each comparison is that each 
is made from the perspective of the aggregated of information, knowledge, and 
context [29].

The representation of knowledge and context formula is introduced here and is 
presented by Eq. (9.3). The independent results which follow are mathematical 
evaluations extended from Newton’s law of gravitation shown in Eq. (9.3). Newton’s 
law of gravitation formula is:

 
F G

M M

r
=

( )1 2

2
 

(9.3)

where

F is the magnitude of the gravitational force between the two objects with mass.
G is the universal gravitational constant.
M1 is the mass of the first mass.
M2 is the mass of the second mass.
r is the distance between the two masses.

This equation was used as an analogy for the derivation of mathematical relation-
ship between a basis, made up of two objects of knowledge [31].

Abstracting Newton’s law of gravitation as an analogy of Eq. (9.3), representing 
relationships between two information fragments, using context, is written as Eq. 
(9.4) shown below, which describes the components of the formula for representing 
relationships between information fragments using context [25]:

State

D&R C&C Norm

1 2 4 1 2 3 1 1 2 1 2 3 1

Discovery Association

Time

Knowledge
Component Sphere

1
3

Context: 
Relationship Value

Context:
Size Value

Fig. 9.14 The knowledge relativity thread
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where

• A is the magnitude of the attractive force between the information fragments.
• B is a balance variable.
• I1 is the importance measure of the first information fragment.
• I2 is the importance measure of the second information fragment.
• c is the closeness between the two information fragments.

Comparing the parameters of Eqs. (9.3) and (9.4), F and A have similar connota-
tions except F represents a force between two physical objects of mass M1 and M2 
and A represents a stakeholder magnitude of attractive force based upon stakeholder 
determined importance measure factors called I1, and I2. As an analogy to F in Eq. 
(9.3), A’s strength or weakness of attraction force was also determined by the mag-
nitude of the value. Hence, the greater the magnitude value, the greater the force of 
attraction and vice versa. The weighted factors represented the importance of the 
information fragments to the relationships being formed. The universal gravita-
tional constant G is used to balance gravitational equations based upon the physical 
units of measurement (e.g., SI units, Planck units). B represents an analogy to G’s 
concept of a balance variable and is referred to as a constant of proportionality. For 
simplicity, no units of measure were used within Eq. (9.2) and the values for all 
variables only showed magnitude and don’t represent physical properties (e.g., 
mass, weight) as does G. Therefore, an assumption made here is to set B to the value 
of 1:

For simplicity, these examples assume the same units and B was assumed to be 
one. The parameter c in Eq. (9.2) is taken to be analogous to r in Eq. (9.3). 
Stakeholder perceived context known as closeness c represented how closely two 
knowledge objects (information fragments) (KO) are related. Lines with arrows are 
used to present the closeness of the relationships between two pieces of knowledge 
presented as spheroids (see Fig. 9.15).

Using Eq. (9.4), the value of the attraction force A1➔2 = 5 × 2 divided by the rela-
tive closeness/perceived distance2 = 1. Hence, the attraction force A in either direc-
tion was 10. The value of 10 is context which can be interpreted in relation to the 
scale. The largest possible value for attraction force A with the assumed important 
measure 1–10 scale is 100, therefore a force of attraction value of 10 was relatively 
small compared to the maximum. This means that the next stakeholder/researcher 
understood that a previous stakeholder’s conveyance was of small relative overall 
importance [32]. However, the closeness value of 1 showed that the two objects 
were very closely related. Figure 9.4 therefore shows that when using Eq. (9.4), if 
relationship closeness and/or perceived importance measure of the knowledge 
objects change value, as new knowledge or context is added and evaluated, then it 
follows that relationship force attraction will change [33].
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9.9  Discussion

Knowledge management is more than just categorizing knowledge. Knowledge and 
information without context are just that, devoid of real content [28]. This is 
extremely important for an artificial intelligence system. Learning without context 
can lead to serious decision and inference problems within the system. Instead, the 
systematic approach presented here, combining the RNA contextual approach, with 
a cognitive framework, in the artificial intelligence system, allows the framework 
that can handle cognitive processing of information and context, turning them into 
actionable intelligence. The use of ontologies and taxonomies within the context of 
knowledge relativity threads represents the next generation of information analysis 
and will greatly enhance the capabilities of information processing systems to make 
sense of increasing volumes multivariate, heterogeneous information [26].
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Chapter 10
Cognitive Control of Self-Evolving Life 
Forms (SELF) Utilizing Artificial 
Procedural Memories

10.1  Introduction

To examine plausibility and feasibility of self-evolving life forms, we have under-
taken a series of experiments over the past 10 years to develop and test small, artifi-
cially intelligent, cybernetic entities with varying abilities to think, learn, and 
self-evolve, at low brain functional levels. These artificial life forms were created to 
learn and act like insects, with rudimentary cognitive functions to establish whether 
artificial cognitive architectures are realizable at a most simplistic level. The current 
second instantiation, of these cybernetic insects, which we have named “Zeus,” after 
the Greek god, whose name means “living one,” utilizes a simplistic analog neural 
network for information transfer throughout his internal effector network and uti-
lizes low-level digital cognitive framework that affects learning and self-evolving. 
Controllers were utilized containing EEPROM, RAM, and flash memory in order to 
facilitate learning and storage of learned behavior in as low a Size, Weight, and 
Power (SWaP) footprint as possible1. Basic effector control commands are stored in 
EEPROM. As Zeus learns, information is stored in RAM until determining that a 
behavior has been “adequately” learned, and then stored as a series of commands 
(procedural memory) into flash memory.

10.2  Analog Neural Structures

For his analog neural network, we utilize an adaptation of the information contin-
uum equation [1], which is shown below:

1 AVR ATTINY24 and ATTINY44 Microcontrollers are used, with the ATTINY24 as the 
baseline.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_10&domain=pdf
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where

C represents the capacity of the across the network for interactions with node u,
1/R represents the decay rate for node u,
I represents the processing activity for node u,
u represents a unit node of the system,
x represents the preprocessed input to node u,
y represents the output from node u,
z represents the learning functionality for node u,
w represents the relative contextual information threads and association weight of u 

with its surrounding nodes, including a decay factor for each relative information 
thread that describes the relative contextual decay over time, where:
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where

T represents the contextual information thread j derived from fuzzy, self-organizing 
contextual topical maps [2].

KD represents knowledge density j of information thread T.
W represents weighting for contextual thread j.

 j
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(10.3)

The adaptation, shown below [3], describes the dynamic equation for Zeus’ ana-
log neurons [4].
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where
Ci is the ith neuron analog input capacitance
1/Ri represents the decay rate for node ui, and
Ri is the resistance to the rest of the analog neural network at the input to neuron i, 

and for equation 10.5:
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fi is the transfer function of the ith neuron
Within Zeus’ analog neural network, the digital cognitive system monitors the 

strength of the analog neurons to determine when the strength of learning has pro-
gressed to the point where the learning should be “committed to memory” within 
the digital cognitive system (RAM). Polyn and Kahana [5] suggest that recall of 
known item representations is driven by an internally maintained context represen-
tation. They described how neural investigations had shown that the recall of an 
item represented in the mind is driven by an internally maintained context represen-
tation that was previously integrated information with a time scale. Therefore, when 
a series of analog neurons is sufficiently strengthened over time, and have been 
committed to digital memory, such that they create a series of commands or learned 
behaviors that can be considered a “procedural memory,” these are stored in flash 
memory with a tag that corresponds to the learned activity or behavior (e.g., turn 
left). The next time Zeus’ sensors relate information such that he needs to move left, 
this procedure is recalled from memory and activated; meaning, he doesn’t have to 
think about how to turn left, he turns left automatically. This is analogous to instinc-
tive driving of a car after we have learned to drive, however, at a much lower cogni-
tive level than a human but enough to allow Zeus to learn and evolve.

10.3  Self-Evolution Utilizing Procedural Memories

With Zeus, the goal was to add cognitive skills one at a time, perform tests, and 
determine whether he was able to integrate these together within his limited cogni-
tive framework. Once Zeus has reached a significant cognitive skill level, a new 
cybernetic “bug” artificial life form will be implanted with Zeus’ cognitive skills, 
present at the beginning of activation. We will determine whether the new artificial 
life form has an easier or more difficult time integrating the cognitive skills together, 
and whether the skill sets developed one at a time and at the same cognitive level as 
Zeus. We expect to also gain valuable insight into artificial life form initialization 
and sequencing.

Zeus was first initialized into existence in early September 2012. He learned to 
walk, turn, integrate his sensors, plan his movements, and execute his plans, hence, 
demonstrating autonomous planning, sensory integration, and autonomous decision- 
making, none of which is specifically part of his initial programming. He was only 
enabled with the skills to learn, think, store, and recall memories, provided to him 
initially. He now carries 25 different procedural memories in the form of a series of 
commands learned for a particular action.

10.3 Self-Evolution Utilizing Procedural Memories



124

10.4  Test Scenarios

Zeus has objective functions he endeavors to drive to zero that are part of his basic 
“instincts.” He must learn to use his available sensors and effectors to reduce these 
objective functions. The set of learning tests that have been and will be performed 
on Zeus to test his analog and digital neural networks and cognitive algorithms are:

 1. Learning to walk: In his initial state, Zeus understands the concept of move-
ment, but does not have the knowledge of how to walk. He must learn to move 
his effectors in order to move effectively. First, initially learning to walk using 
his six legs, and then to turn left and right.

 2. Learning to find darkness: One of Zeus’ objective functions is “fear of light.” 
He must learn to use his light sensors and compute the differential between the 
two sensors to establish the direction of movement required to lower the objec-
tive function.

 3. Power Regeneration: Another objective function to be added is the notion of a 
“hunger instinct,” which to Zeus means low power. He carries solar cells to 
charge up, or feed. He must learn to balance the objective functions for hunger 
(find light and charge) vs. the objective function for fear of light (find 
darkness).

 4. Proximity Sensing: Zeus carries infrared transmitter/receivers to sense when he 
is close to another object. One of his objective functions is to avoid closeness to 
other objects (receiving reflected infrared raises the objective function). He must 
balance (1) the need to find darkness, which may be found under other objects, 
(2) the need to not get too close to objects, and (3) the need to get close to a light 
source to “feed.”

Understanding how Zeus manages and balances these objective functions and 
how procedural memories are created, stored, and recalled could provide valuable 
insight into cognitive control of autonomous life forms for use in autonomous deep 
sea, space, or land-based applications.

10.5  Procedural Implicit Memory

Procedural implicit memories allow previously learned tasks to be performed without 
specific “conscious” memory recall/reconstruction of how to perform the task [6]. 
Procedural memories tend to be inflexible, in that they are tied to the task being per-
formed. For example, when we decide to ride a bike, we don’t unconsciously recall/
reconstruct memories of how to drive a car, we recall/reconstruct unconscious proce-
dural memories of how to ride a bike. In Zeus, tasks that are learned and are deemed 
“important” to capture for future use will have procedural memories stored as steps, 
or “procedures” that are required to perform the same task in the future. In his work 
on procedural memory and contextual representation, Kahana showed that retrieval 
of implicit procedural memories is a cue-dependent process that contains both 
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semantic and temporal components [5]. Creation of procedural memories is tied not 
only to task repetition but also to the richness of the semantic association structure 
[7].

Earlier work by Crowder, built on Landauer’s procedural memory computational 
models and Griffith’s topical models [8], theorized about the creation of artificial 
cognitive procedural memory models based on knowledge relativity threads [9] to 
create the semantic associations [10] and work in fuzzy, self-organizing, semantic 
topical maps [1, 11] counted on the topical model needed to create long-term proce-
dural memories. These knowledge relativity thread based models were derived from 
combining cognitive psychological, space-time, strong, weak, and quantum 
mechanical concepts, along with topical maps which are based on early work by 
Zadeh. Zadeh [12] described tacit knowledge as worldly knowledge that humans 
retain from experiences and education. He concluded that current search engines, 
even with their remarkable capabilities, did not have the capability of deduction, 
that is the capability to synthesize answers from bodies of information which reside 
in various parts of a knowledge base. More specifically, Zadeh describes fuzzy logic 
as a formalization of human capabilities: the capability to converse, reason, and 
make rational decisions in an environment of imprecision, uncertainty, and incom-
pleteness of information. In their work in cognition frameworks, Crowder and 
Carbone [13, 14] also expand on the work of Tanik [15] in describing artificial 
procedural memories as procedural knowledge gained through cognitive insights, 
based on fuzzy correlations.

10.6  Creation and Retrieval of Artificial Procedural 
Memories

Continued investigation, utilizing the work of Kahana [5] in associative episodic 
memories [16], led to the development of a cognitive perceptron framework for cre-
ating, storing, and retrieving artificial implicit memories [6, 17] (see Fig. 5.7). Based 
upon this work, a systems and software architecture specification has been devel-
oped for an artificial cognitive framework utilizing the cognitive perceptrons [18].

The main hypothesis here is that the procedural memory scripts can be detected 
and acquired with the combination of rule-based computational semantic tech-
niques enhancing the artificial life form’s understanding of repeatable and useful 
procedures. The objectives of utilizing artificial procedural memories for cognitive 
control of artificial life forms are to:

 1. Identify potential procedural memories utilizing a combination of rule-based 
techniques, combined with machine learning techniques.

 2. Develop the principles of comparison and comprehension of commands required 
for creation of procedural memories (see Fig. 10.1).

Crowder, in conjunction with Carbone and Friess, in researching artificial neural 
memory frameworks that mimic human memories, are creating computer architec-

10.6 Creation and Retrieval of Artificial Procedural Memories
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tures that can take advantage of Raskin and Taylor’s ontological semantic technol-
ogy [19, 20] and create an artificial procedural memory system that has human 
reasoning capabilities and mimics the fuzzy and uncertain nature of human cogni-
tive processes. This new focus for Crowder [6] is to create processes necessary for 
the creation, storage, retrieval, and modification of artificial procedural memories 
(see Fig. 10.2).
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10.7  Conclusions

Testing on Zeus has shown that self-evolution through creation, storage, and 
retrieval of artificial procedural memories can provide an effective and efficient 
mechanism for autonomous control of artificial life forms. There is a significant 
amount of research, development, and testing required in general, and specifically 
over the next year, including expansion of Zeus’ neural framework to include a 
more comprehensive possibilistic, abductive neural network to allow hypothesis 
generation enhancing the speed and the quality of his cognitive skillset discussed 
throughout the book. Our continuous research in this area in developing higher 
fidelity cognitive functions and exploring new types of cognitive testing are impor-
tant to establish the breadth of self-possibilities. We will continue to explore not 
only these low-level brain functions, but also much higher brain functions as well.

One question to be answered for comprehensive autonomous systems is, “How 
much initial information, or memories, should be provided?” Based upon our initial 
results, we speculate confidently that since learning is stochastic in nature and 
depends on current understandings, the more initial information or memories (cog-
nitive ontology concepts) an entity begins with, the more it will influence the artifi-
cial life form’s learning direction and its ability to “intuit” about its environment. 
Consequently, it becomes imperative to manage content quantity and quality effi-
ciently within systems of widely varying resource constraints. Therefore, future 
efforts will include some research into synergistic algorithms within the Activity 
Based Intelligence (ABI) domain. ABI employs normalization methods of activity 
patterns (AP), which show possibilities for improving balance between knowledge 
storage, necessity, prime directives, and learned objectives. Additionally, research 
in improving condensation of decision quality content via anomaly detection in big 
data environments shows applicability to smart aggregation of knowledge in con-
strained environments.

Lastly, we have been exploring the question of how to test cognitive systems. 
Given that these systems will learn, think, reason, and self-evolve, we believe that 
standard system testing is inadequate to understand whether a system is “working 
properly.” Hence, we believe it is imperative to understand self-evolving learning 
processes by testing them in a context of “cognitive” and “psychological” para-
digms. Therefore, to obtain a comprehensive understanding of proper system func-
tionality we believe it is necessary to test analogously to determining whether a 
human is “functioning normally.” Finally, we believe this leads us to a field of study 
envisioned long ago, “Artificial Psychology [14].”
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Chapter 11
Methodologies for Continuous, Life-Long 
Machine Learning for AI Systems

11.1  Introduction: Life-Long Machine Learning

A fully autonomous, artificially intelligent system has been the holy grail of AI for 
decades. However, current machine learning methodologies are too static and mini-
mally adaptive enough to provide the necessary qualitative continuously self- 
adaptive learning required for possible decades of system performance. Therefore, 
industry is replete with promises of biologically inspired research and artificial 
human learning mechanisms for enabling AI neural pathways and memories to 
evolve and grow over time [1, 2]. However, to achieve this requires new methods 
and mechanisms that enable a paradigm shift providing, continuous, or life-long, 
machine learning algorithms and method evolution. Our objective in the book is to 
look at new architectures that requires controls and mechanisms like artificial brain 
functions for enabling complete cognitive system management. In short, to achieve 
continuous, life-long machine learning requires artificial neurogenesis1, a new 
machine learning architecture and methods enabling a continuously self-adapting 
neural fiber structure within an AI system as illustrated in Fig. 11.1.

In this ANP, both explicit and implicit learning are required to adequately pro-
vide self-assessment throughout the AI system. Self-assessment is required for the 
system to understand how its self-adaptation is affecting all parts of the AI system 
[3]. Explicit learning, as defined here, requires cognitive and hierarchical associa-
tions, whereas implicit learning depends on non-cognitive, non-hierarchical asso-
ciations, and, in general, occurs when a variable known to influence explicit learning 
has no effect in a comparable implicit learning condition [3]. Each type of learning 
has effects on the AI system’s overall knowledge base and each type of learning may 
influence the other as more information is processed and stored within the various 
memory systems of the AI system. As illustrated in Fig. 11.1 not only is the neural 

1 Artificial neurogenesis (literally the birth of artificial neurons) is the processes in which new 
neurons are generated within the artificial memory system.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_11&domain=pdf
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structure adaptive, but the learning rules themselves must be adaptable, driven by 
the continuous self-assessment functionality within the ANP. Figure 11.2 provides 
a high-level view of the coordination, interaction, and influence explicit learning, 
implicit learning, and the AI systems knowledge base have on each other [4].

A continuously adaptable, life-long machine learning architecture, from our 
studies, requires many types of learning to facilitate how the entire system must 
adapt as it learns, reasons, as the environments the system is in change, and as the 
system ages. To provide continual real-time decision support over time, we feel the 
following memory systems must be in place, and each be self-adaptive:

Fig. 11.1 The artificial neurogenesis process (ANP)
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 1. Perceptual Associative Memory: the ability to interpret incoming stimuli by 
recognizing objects and by categorizing them.

 2. Procedural Memory: memory for the performance of specific types of action. 
Procedural memory guides the processes the AI system performs and most fre-
quently resides below the level of conscious awareness.

 3. Declarative Memory: this is classical long-term memory and refers to memo-
ries that can be consciously recalled such as facts and knowledge (from the AI 
systems knowledge base).

 4. Transient Episodic Memory: the memory of autobiographical events (times, 
places, associated emotions, and other contextual who, what, when, where, why 
knowledge) that can be explicitly stated or conjured. It is the collection of past 
system experiences that occurred at a specific time and place. Episodic memory 
stores unique events (or observations).

 5. Blackboard Memory: a common knowledge base that is iteratively updated by 
the diverse set of components, software agents, etc. throughout the system. 
Blackboard memories typically start with a problem specification and end with a 
proposed solution.

 6. Sensory Memory: this is the shortest-term type of memory. Sensory memory 
can retain impressions of the sensory information coming in through the various 
types of sensors the AI system has. These impressions are sent to the perceptual 
associative memory. These would be rudimentary at first, but then expand as the 
system learns.

Each type of memory is updated by life-long machine learning algorithms spe-
cifically created for that type of memory. In self-adaptive, continuous machine 
learning, there is no one learning algorithm or system that will suffice. Figure 11.3 
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Implicit
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Fig. 11.2 The implicit, explicit, learning to knowledgebase influence triangle
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illustrates the high-level architecture for a self-adaptive, continuous life-long learn-
ing structure for an AI system.

We employ abductive learning for finding the best explanation for a given set of 
observations or inferring cause from effect [5, 6]. This accommodates adjustment of 
learning types for self-adaptation to environments, data, and experiences the system 
has not previously encountered. We define a simplified version of abductive learn-
ing, Occam learning [7, 8], which relates to finding the simplest explanation(s) 
when inferring cause from effect(s).

The life-long learning architecture shown in Fig.  11.3 is primarily used to 
describe support for procedural and perception learning. Our research shows that 
there are at least four types of learning required so a fully autonomous AI system 
can potentially learn, and reason. They are:

 1. Episodic Learning: the process of storing/retrieving experiences in the episodic 
memory and using it to improve behavior (responses to stimulus).

 2. Attention Learning: also called concentration, attention learning stores triggers 
that allow the AI system to focus its efforts on objects or events of interest.

 3. Perceptual Learning: the process of learning skills of perception. This allows 
continuous improvement in sensory processing (how to distinguish objects from 
sensory information—an example would be ATR), to complex categorizations of 
spatial and temporal patterns. Perceptual learning forms the foundation for an AI 
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system to create complex cognitive processes (e.g., language). Perceptual learn-
ing drives adaptations (changes) in the AI systems neural circuitry or patterns.

 4. Procedural Learning: learning by acquiring skill at performing a task. 
Procedural learning allows the AI system to perform a task “automatically” with-
out consuming resources to determine how to accomplish the task [9].

11.2  Artificial Intelligence Machine Learning with Occam 
Abduction

Occam abduction is used to find the simplest set of consistent assumptions and 
hypotheses, which, together with available background knowledge, entails adequate 
description/explanation for a given set of observations [10]. In formal logic nota-
tion, given BD, representing current background knowledge of domain D, and a set 
of observations OD, on the problem domain D, we look for a set of Occam hypoth-
eses, HD, such that:

 – HD is consistent2 w.r.t. BD, and
 – It holds that BD, |= HD,→ OD

Abduction consists of computing explanations (hypotheses) from observations. 
It is a form of non-monotonic reasoning and provides explanations that are consis-
tent with a current state of knowledge and may become less consistent or inconsis-
tent, when new information is gathered. The existence of multiple hypotheses (or 
explanations) is a general characteristic of abductive reasoning, and the selection of 
the preferred, or most simple, but possible, explanation is an important precept in 
artificial Occam abduction.

Abduction was originally embraced in artificial intelligence work as a non- 
monotonic reasoning paradigm to overcome inherent limitations in deductive rea-
soning. It is useful in artificial intelligence applications for natural language 
understanding, default reasoning, knowledge assimilation, belief revision, and very 
useful in multi-agent systems [11]. The abduction form of inference, using hypoth-
eses to explain observed phenomena, is a useful and flexible methodology of rea-
soning on incomplete or uncertain knowledge. Occam abduction, defined herein, 
provides not only an answer, or cause, to the observations, it provides class proper-
ties of possible hypotheses within which observations are determined valid, and 
denotes the simplest set of hypotheses under which this is true.

2 If HD contains free variables, ∃(HD) should be consistent w.r.t. BD.

11.2 Artificial Intelligence Machine Learning with Occam Abduction



134

11.2.1  Elementary Occam Abduction

There are several distinct types of interactions that are possible between two ele-
mentary Occam abductive hypotheses h1, h2 ∈ He [12]:

• Associativity: The inclusion of h1 ∈  He suggests the inclusion of h2. Such an 
interaction may arise if there is knowledge of, for instance, mutual information 
(in a Renyi sense) between h1 and h2.

• Additivity: h1 and h2 collaborate additively where their abductive and explanatory 
capabilities overlap. This may happen if h1 and h2 each partially explain dome 
datum d ∈ D0 but collectively can explain more, if not all of D0.

• Incompatibility: h1 and h2 are mutually incompatible, in that if one of them is 
included in He then the other one should not be included.

• Cancellation: h1 and h2 cancel the abductive explanatory capabilities of each 
other in relation to some d ∈ D0. For example, h1 implies an increase in a value, 
while h2 implies a decrease in a value. In this case, one is used to support the 
hypothesis and the other is used to rebut the hypothesis.

The Occam abductive process is:

• Nonlinear in the presence of incompatibility relations
• Non-monotonic in the presence of cancellation relations
• The general case (nonlinear and non-monotonic) Occam abduction hypothesis 

investigation is NP-complete.

Consider a special version of the general problem of synthesizing an artificial 
Occam abductive composite hypothesis that is linear, and, therefore, monotonic. 
The synthesis is linear if:

 
" Î ( )È ( ) = { }( )h h H q h q h q h hi j e i j i j, , ,

 
(11.1)

The synthesis is monotonic if:

 
" Î ( )È ( ) Í { }( )h h H q h q h q h hi j e i j i j, , ,

 
(11.2)

In this special version, we assume that the Occam hypotheses are non- interacting, 
i.e., each offers a mutually compatible explanation where their coverage provides 
mutual information (in a Renyi sense). We also assume that the Occam, abductive 
belief values found by the classification subtasks of abduction for all h ∈ He are 
equal to 1 (i.e., true).

Under these conditions, the synthesis subtask of artificial Occam abduction can 
be represented by a bipartite graph, consisting of nodes in the set D0 ∪ He. This says 
there are not edges between the nodes in D0, nor are there edges between the nodes 
in He. The edges between the nodes in D0 and those nodes in He can be represented 
by a matrix Q where the rows correspond to d ∈ D0 and the columns correspond to 
ht ∈ He.
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The entries in Q are denoted as Qij and indicate whether the given analyzed data 
are explained by a specific abductive Occam hypothesis. The entries are defined as:

 

Q
d h

di j

i j

i
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0
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if datum is not explained by hypothesis

if datum iss explained by hypothesishj

ì
í
ï

îï  

(11.3)

Given the matrix Q for the bipartite graph, the abductive, Occam synthesis sub-
task can be modeled as a set-covering problem, i.e., finding the minimum number 
of columns that cover all the rows. This ensures that the composite abductive, 
Occam hypothesis will explain all of D0 and therefore be parsimonious.3

Now we look at a special linear and monotonic version of the general abductive, 
Occam hypothesis synthesis subtask and look at a Possibilistic Abductive Neural 
Networks (PANNs) for solving it [3]. The first is based on an adapted Hopfield 
model of computation:
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For the Occam, abductive synthesis subtask, we associate variable Vj with each 
Occam hypothesis ht ∈ He, to indicate if the Occam hypothesis is included in the 
composite Occam, abductive hypothesis C. We then minimize the cardinality of C 
by:

 j

m

jV
=
å

1  

(11.5)

subject to the constraint that all data d ∈ D0 are completely explained.
For the Occam, abductive network, the term in the energy function that repre-

sents the problem constraints must evaluate to zero when the constraint is satisfied 
and must evaluate to a large positive value when the constraint is not satisfied, forc-
ing the evolving solution lattice to evolve accordingly [1]. For this energy term, we 
use a term expressed as a sum of expressions, one for each datum element, di, such 
that the expression evaluates to zero, when hypothesis hj that can explain the datum 
di is in the composite hypothesis, i.e., Vj = 1. Given that Q is an incidence matrix 
(with elements either 0 or 1), the expression:
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(11.6)

satisfies the following conditions:

• Each sum of the product terms can never evaluate to a negative number.

3 Note that the general set-covering problem is NP-complete.
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• The sum of the product terms, thus, can never evaluate to a negative number.
• Each product term evaluates to zero when a hypothesis that can explain the 

datum is in the composite; otherwise, it evaluates to a large value.
• The sum of the product term, thus, evaluates to zero when a composite set of 

hypotheses can explain all the data.

We derive our Occam abductive energy function as follows:
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where α and β are positive constants, and β > α. The first term represents the cardi-
nality of the Occam hypothesis and the second term represents the penalty for a lack 
of complete coverage; 0 indicates complete coverage.
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11.3  Elementary Continuous Abduction

Continuous machine learning requires continuous abduction, which drives us to 
constantly look for ways to explain either the external environment, or things within 
the AI system (self-reflection). This requires an architecture and process for con-
tinuous abduction. Figure 11.4 illustrates this process.

Here, the assumptions are:

• The Occam causes are mutually exclusive and constitute exhaustive coverage of 
the effects.

• Each of the Occam causes is conditionally independent.
• Each of the Occam causes is not mutually incompatible.
• None of the Occam causes cancel the abductive explanatory capability of any 

other Occam cause.

From Fig. 11.4, we see that when observations are present for which there are no 
explanations, the Occam abduction system creates a set of hypotheses (possible 
explanations). Each of these hypotheses is tested to create a plausible set of explana-
tions. The system expands to generalized hypotheses if needed. Figure 11.5 illus-
trates a high-level architecture for a generalized life-long machine learning 
abduction model. This architecture generalizes the observations into categories. If 
no concepts exist to explain the observations, new concepts must be created to 
accommodate the observations.

Hypotheses are generated by looking at similarities and differences between the 
observations and categories. Conflict between hypotheses must be adjudicated. 
Eventually, a set of non-interfering, non-overlapping hypotheses that explain the 
observations is created, learned from, and decisions made. Attributes of these 

Fig. 11.5 Generalized life-long abductive machine learning
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hypotheses are categorized and learned, including any memory triggers that are 
needed.

11.4  Conclusions and Discussion

This is very preliminary work and much more research is required. Here we have 
presented a high-level view and discussion of the possibility of an AI system with 
continuously adapting, life-long machine learning. The architectures, structures, 
methods, and algorithms require a complete change from current thinking and 
development. We believe this is the future of autonomous and semi-autonomous AI 
systems. Research must be continued on the Occam learning algorithms to deter-
mine what constitutes an acceptable Occam abduction energy level and to under-
stand how to apply the weighting factors in the Occam energy equation (i.e., is it 
domain specific?).
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Chapter 12
Implicit Learning in Artificial Intelligence

12.1  Introduction

Current research asserts that implicit learning is a fundamental and continuous pro-
cess in overall cognition of an entity [1]. This notion of “learning without aware-
ness” has far reaching implications for autonomous artificial intelligent entities as 
we push toward systems with continuous, life-long machine learning, that can con-
tinually adapt as they experience their respective environments. We seek to under-
stand the associative learning mechanisms within overall continual machine learning 
and look for statistical dependencies between the environments they experience and 
the implicit learning and the knowledge representations they create and store as 
implicit memories.

One of the main differences between explicit and implicit memories is that 
implicit memories stores unconscious memories of skills and “how to do things.” 
Explicit memories store facts and events that can be recalled by conscious thought. 
Memory is not a single system in the mind but several systems [2]. These systems 
have different operating principles. One example of this was in a case of amnesia [3, 
4], where explicit memory was interrupted but implicit memory was not. There are 
a few principles that guide our understanding of memory. First memory is its own 
ability and separates from other cognitive abilities. Explicit memory is also known 
as declarative memory. These memories are facts, events, and unconscious materi-
als. Implicit memory is skill learning and forming habits. In implicit memory, expe-
rience modifies behavior without any conscious content or experience that the 
memory is being used. Implicit memory is measurable through performance. It is 
not recollection. The two systems operate parallel to each other. Implicit memory 
could be thought of impacting or creating personality traits. Adverse events could 
impact how one behaves. For example, if a person experiences a near-death car 
accident and is airlifted out, without remembering consciously, the person could 
become anxious around the smell of jet fuel from helicopters. We then derive the 
definitions we will use during this discussion [5]:

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_12&domain=pdf
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Definition of Implicit Memory: Procedural memories that are used without 
awareness so that contents of memories can’t be reported and may be used auto-
matically without conscious thought.

Definition Explicit Memory: Declarative memories based on the personal experi-
ences, stored knowledge, and memory of facts that can be directly reported or 
recalled.

Table 12.1 illustrates differences between explicit and implicit memories, in 
terms of areas of the brain associated with each type of memory.

What follows is our view of how implicit learning may affect the overall func-
tion, continued learning, and inferencing among artificial intelligent entities 
(robots).

12.2  Implicit Learning in Artificial Intelligent Systems

As explained above, implicit learning involves entities learning complex informa-
tion in an incidental matter [5]. Implicit learning represents non-episodic learning, 
either from visual, consequential, or functional stimulus structures. These can drive 
autonomous reinforcement and learning and reflects that behavior (learned 
responses) can be modified by consequences of interaction with an entity’s environ-
ment without the entity’s awareness. It is not necessary to recognize the relationship 
between an action and a reinforcing consequence for implicit learning reinforce-
ment to happen. The result of implicit learning is the storage of implicit knowledge 
in non-episodic implicit memory. The result is implicit memories (knowledge) that 
manifest itself as abstract representations rather than explicit or aggregate represen-
tations. It can drive the entity toward certain biases in its decisions and inferences 
and can result in different learning stimulus structures; modifying the way the entity 
learns, or the way the entity interprets certain types of information. Figure  12.1 
illustrates this process. Figure 12.1 is an adaptation of the learning model illustrated 
in Fig. 5.7 to include the effects of implicit learning on an overall artificial intelli-
gent learning model [5, 6]. Examples of implicit learning among people are the 
abilities to ride a bike, to fill your car with gas, and swimming. Each of these are 
stored as an implicit procedural memory that can be recalled without conscious 

Table 12.1 Implicit vs. explicit memory

Factor Explicit memory Implicit memory

Memory 
process

Conscious and purposeful Unconscious and automatic

Memory 
structure

Hippocampus and temporal lobe Neocortex, cerebellum, and others

Information Facts, verbal, semantic, operational, 
and procedural descriptions

Emotional, conditioning, sensory, 
automatic skill, and procedural skills

12 Implicit Learning in Artificial Intelligence
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thought. Examples of implicit learning in artificial intelligent entities might be off- 
line observed experience from videos for teams of robots to implicitly learn how to 
coordinate activities. Computational models point to the ability to implicitly learn 
performance prediction models from off-line implicit learning that allow robots to 
implicitly coordinate activities in real-time situations different from those presented 
in the videos but represent implicit coordination between robot entities [7].

Research into both human and robotic learning supports a clear distinction 
between implicit and explicit learning. As illustrated in Table 12.1, different areas 
of the brain are involved in implicit vs. explicit learning, and MRIs indicate the dif-
ferences involved in working memory and attention during implicit vs. explicit 
learning. As discussed above, research on amnesia patients indicate that in many 
cases implicit learning remains intact while explicit learning is severely impacted 
[6].

One prominent impact of implicit learning that artificial intelligent robots or 
entities that must interact on an ongoing basis with humans, is the implicit learning 
ability to understand without verbal explanation, which involves the decoding of 
social interaction signals. Often people and animals can judge the personalities of 
others without engaging in prolonged social activity because of their implicit under-
standing of regular behaviors of people [8]. This is a direct effect of implicit learn-
ing and implicit memories on inferences. We have an implicit knowledge of how to 
“infer” the actions or intentions of entities we interact with in our environment. 
Figure 12.2 below illustrates the effects of implicit learning on a decomposition of 
an inference learning model.

Implicit learning, which is based on experiences an entity encounters while inter-
acting with its environment, can create emotional (assuming the entity has emo-
tions) responses, called emotional triggers, that the entity doesn’t know exist until 
the emotion is triggered later. Implicit learning and the associated implicit memo-
ries can drive actions that are unexpected. This is especially true in martial arts 
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training in creating what is known as “muscle memory,” which is stored as an 
implicit procedural memory within the memory system. When a movement is con-
tinually practiced, or experienced, long-term procedural muscle memory is created 
for that activity, allowing it to be performed automatically without any conscious 
thought or effort. This is helpful within a person and within a system, as it decreases 
the system resources needed to facilitate the action and creates efficiencies within 
the effector (e.g., motor) and memory systems. Such efficiencies might be benefi-
cial for long-term acting systems with limited resources [9]. Implicit learning, and 
the creation of implicit memories, would allow the artificial intelligent entity to 
focus on complex mental processes, like problem solving, while allowing more 
routine processes to remain active without requiring conscious attention [8].

As was discussed earlier, different areas of the brain and different mental pro-
cesses are exercised during explicit vs. implicit learning and memory. This leads us 
to believe that there are two independent learning systems for explicit vs. implicit 
learning. These learning systems have two distinctions:

 1. Learning that takes place with and without awareness
 2. Learning that involves encoding of experiential instances vs. the induction of 

abstract rules or hypotheses [9, 10]

As stated, implicit learning involves unconscious learning. One of the issues then 
with implicit learning is that the entity may not even be aware of why a decision was 
made or an action was initiated. This will be problematic for artificial intelligence 
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systems which may act in a manner contrary to its given task or mission without 
being able to articulate what happened [11].

For artificial intelligent systems, we believe that the notion of implicit learning 
within the artificial cognitive infrastructure of the artificial intelligent entity should 
be thought of as a complex instantiation of cognitive priming [9] which will invari-
ably take place within a continuously learning artificial neural system. The system 
will, we believe, create distributed knowledge within the procedural long-term 
memories and can be causally active in the absence of the entity’s conscious pro-
cesses. This means, the artificial intelligent entity can develop implicit memories 
that is currently influencing process and contains no metaknowledge of the memo-
ries or their effects on the overall cognitive system [9].

The ability of operators, customers, end-users, or developers to understand and 
ascertain whether implicit learning is happening, that implicit memories have been 
created, and how these implicit memories may affect the overall system derives 
from the ability to capture three different dependent “measures of response modali-
ties” [12]:

 1. Conceptual Fluency: The ability to understand concepts and to apply them accu-
rately and efficiently to different problems and contexts.

 2. Efficiency: The quantitative measure of knowledge increase in relation to time 
and effort. How easily implicit learning happens and how efficiently does the 
entity translate experiences into implicit memories.

 3. Prediction and Control: The ability of the entity to learn to translate implicit 
learning and memories into unconscious interventions to control the outcome of 
an event or situation, or the ability of the entity to unconsciously predict the 
outcome from observing changes over a short period of time [5].

The ability of the system to handle inevitable implicit learning and implicit 
memories will depend on the attention that can be utilized (the available resources) 
and will depend on the attentional and working memory systems available within 
the artificial intelligent systems. If there are no mechanisms for storing implicit 
memories (e.g., procedural memory), the resultant implicit knowledge may be pres-
ent across the system in various abstract forms, affecting many parts of the system, 
rather than aggregate representations stored in procedural memories. This can drive 
biases and dissociations in learning across the system, causing it to learn differently 
across various stimulus (experiences from its environment) [5].

12.3  Measuring Implicit Learning Within an Artificial 
Intelligent System

When researching and deciding the measures that are appropriate to determine if an 
artificial intelligent system has experience implicit learning (which, by the way, it 
will) and developed implicit memories, we must first develop criteria to understand 
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what is to be regarded as implicit knowledge within an artificial intelligent system. 
Here are two that should be considered [13]:

 1. Implicit knowledge in the sense it is difficult for the system to articulate the 
information.

 2. Implicit knowledge in the sense that its decisions and inferences are created 
according to a subjective threshold, not an objective threshold.

Utilizing the methodology laid out in Chap. 1 and illustrated in Fig. 1.4, evalua-
tion evidence for implicit learning is most likely feasible in terms of assessing 
objective vs. subjective thresholds. For understanding criteria 1, difficult for the 
system to articulate, the use of procedural memories, as discussed in Chap. 10 will 
allow methods and mechanisms to be designed into the overall processing infra-
structure of the system to detect changes within the procedural memories. This 
makes it imperative for the system to have procedural memories within the memory 
infrastructure of the overall artificial intelligent system framework.

In order to facilitate evaluation of subjective vs. objective thresholds for decision- 
making and inferencing, subjective thresholds and implicit knowledge in general, is 
inflexible in its transfer to different knowledge domains. Also, implicit learning 
happens often when the systems attention is focused on specific experiences and 
specific events and not rules and underlying constraints. A lack of rules and guiding 
principles when an artificial intelligent system is experiencing its environment will 
lead to implicit learning and the subsequent implicit knowledge is generally robust 
and not easily changed or reinterpreted. In short, it is hard to get over first impres-
sions, even by an artificial intelligent entity [13, 14].

12.3.1  Measuring Implicit Learning in Artificial Intelligent 
Systems

System test, in general, can be viewed as a series of experiments performed on and 
against the system to determine the system’s response to a given set of stimuli. In 
most cases, this is nothing more than, if I give it a given set of inputs, do I get the 
right outputs. However, for a system that learns, reasons, and self-adapts, testing 
takes on a more experimental nature. Does the system react correctly? Does the 
system learn correctly? Can the system adapt to changing situations or input data? 
Can it identify objects if I change them sufficiently?

Such experiments may take the form of [14]:

 1. Determining if the Artificial Intelligent entity can carry out “efficient” actions 
given a situation it is trained for.

 2. Can the Artificial Intelligent entity articulate answers about the situation and 
why it made the decisions it chose?

12 Implicit Learning in Artificial Intelligence
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It is believed [14], but much experimentation is needed to verify, that it is possible 
for the artificial intelligent entity to show a performance improvement without a 
change in the ability to articulate this (i.e., verbal knowledge). However, it is again 
believed, but experimentation is required, that it is difficult to show changes (improve-
ment) in the ability to verbalize its decisions without showing an improvement in 
performance. The first equates to implicit learning that explicit memories haven’t cap-
tured. The second is driven by an explicit change to learning and to explicit memories, 
which the artificial intelligent entity can easily retrieve and articulate. One of the 
issues with creating experiments (tests) for artificial intelligent entities is how to 
define the tasks that can drive an entity to implicit learning in order to detect discrep-
ancies in its memories. The assumption with a trained network is that it knows how to 
do what it is trained to accomplish. Care must be taken to understand the variables that 
may affect processes within the artificial intelligent entity. Again, it is fital that all the 
test cases and strategies be defined and build into the design of the artificial intelligent 
system up front. Trying to design tests after the artificial intelligent code is designed, 
coded, and implemented will be virtually impossible. Ask the makers of the autono-
mous robot at the 2018 Consumer Electronics Show discovered when it wandered into 
the street and was run over by a self-driving car. It is doubtful that such a scenario was 
ever envisioned by either the robot engineers or the self-driven car engineers.

12.3.2  Measuring Implicit Learning in Human–Machine 
Interfaces

In order to have effective artificial intelligent entities out in the world, assisting 
humans in a variety of ways, both military and commercial, it requires a sophisti-
cated human–machine interface to facilitate communication and understanding 
between the human and the artificial intelligent entity. Creation of such an interface 
requires combining the work of neuroscience, psychology, and ethology1 with the 
theory of artificial intelligent computation in mathematics and computer science 
advanced in linguistics [15]. One of the issues with human–machine communica-
tion and collaboration is that humans operate implicitly, based on verbal and visual 
cues that may be unavailable to the artificial intelligent entity. In order to facilitate 
efficient and functional communication, the artificial intelligent entity must have the 
ability to capture these implicitly learned cues. If we assume that there does exist 
both explicit and implicit learning systems, then it is imperative to provide both to 
an artificial intelligent entity that we are designing to interface with human opera-
tors or customers. Therefore, we must distinguish between:

 1. Learning that takes place with and without concurrent awareness

1 Ethology involves the study of non-human behavior, focused on the behavior under natural condi-
tions, assuming such behavior comes evolutionary adaptation.
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 2. Learning that involves the encoding of situational instances
 3. Learning that involves abstract rules of hypotheses

Implicit learning involves unconscious rule learning and understanding the dif-
ference between instance learning and rule learning provides a meaningful way of 
testing artificial intelligence learning [16]. Classical neural network artificial intel-
ligent system learning involves providing the system with sets of training data used 
to create weighting factors that allow the artificial intelligent system to then prop-
erly classify object types in the future. This corresponds to instance learning and 
creates explicit learning within the artificial intelligent entity. However, for more 
complex artificial intelligent systems that can constantly adapt and evolve as they 
interact with their environments (e.g., autonomous robots), they may learn from 
instances (i.e., explicit experiences) or they may learn from implicit rules they wit-
ness and experience throughout their interaction with their environment. If the arti-
ficial intelligent system can interact with their environment unsupervised, it is very 
possible for non-instance-based, implicit rule learning to occur. Designing in test 
mechanisms and built-in-test procedures that are triggered on change in memory 
systems, especially procedural memories, may provide the ability to discover 
implicit learning within an artificial intelligent entity [17].

12.4  Conclusions

The notion of implicit learning is still a major topic of discussion among cognitive 
scientists, psychologists, and design engineers. Much of the current controversy 
and discussion centers on effective ways to measure implicit learning [17]. We 
believe the design on procedural memory systems within artificial intelligent enti-
ties provides a beginning step in allowing the retrieval of implicit learning and the 
resulting implicit memories [10]. It is important to allow the measurement of and to 
distinguish between explicit and implicit learning within an artificial intelligent 
entity [12].
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Chapter 13
Data Analytics: The Big Data Analytics 
Process (BDAP) Architecture

13.1  Introduction: Enhancing Big Data Analytics

Big data analytic systems look to enhance current legacy and future processing of 
an ever-increasing set of complex data [1]. Throughout the book, we have looked at 
various aspects of artificial intelligence and how to adequately create and test such 
systems. This drives home the need for big data analytics. Some of the technical 
major challenges with big data analytics are:

• How to handle scalability and complexity of the ever-increasing data streams.
• Knowledge management and knowledge economy of bid data environments [2].
• Cyber security in big data environments.
• Operational capabilities take too long to field.
• Swimming in sensors and downing in data1.

In addition to the major technical challenges faced by big data analytic systems, 
some of the common real-world objectives that are required for overall operations 
and maintenance of big data processing systems are [3]:

• Reducing cost while migrating to ever-emerging scalable technologies
• Managing security across the vast, complex “data-to-decision” knowledge cycle
• Eliminating needs and gaps when deriving actionable and predictive mission- 

focused content [4]

The bottom line for real-world big data analytical systems/architectures is how 
to increase operational effectiveness while reducing the overall cost of ownership. 
This is required because the development of valuable readily consumable knowl-
edge density and context quality continues to improve slowly and incrementally [5]. 
New concepts, mechanisms, and implements are required to facilitate the develop-
ment and competency of complex systems to be capable of autonomous operation, 

1 Lt. General Deptula, December 2009.
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self-healing, and thus critical management of their knowledge economy and higher 
fidelity self-awareness of their real-time internal and external operational environ-
ments [6]. What is presented here is a high-level processing and computing archi-
tecture which facilitates big data analytics in a modern, scalable, extensible 
processing environment that provides:

• A significant decrease in overall operating costs to drive an overall reduction in 
the total cost of ownership

• An “on-demand” analytical process focused on the need to accelerate delivery of 
actionable intelligence from “big data”

• An adaptive, elastic, knowledge and context-based processing and computer 
architecture

• A high-speed distributed data infrastructure which optimizes time, storage, and 
“data-to-decision2”

13.2  The Big Data Analytical Process (BDAP)

Big data analytics optimization is applied to input sources. Upon collection, each 
input source is decomposed and reduced to its core characteristics. To signifi-
cantly enhance fidelity, Extract, Transform, Load (ETL) functionality is included 
for improving scaling of all input source types: Sockets, Filesystem, etc. Common 
ingest and processing components are included as with many big data architec-
tures for processing passive/batch and/or active/streaming data. Sensor/input data, 
among others, is transformed as it flows through the scalable ETL process, to 
ensure it is in the format required for analytical algorithms. This data is logically 
segregated into Binary and Ascii data processing bins where respective algorithms 
then can initially validate/verify data sourcing. Sourcing is critical in determining 
veracity, quality, and stewardship disambiguation. Once data analytics algorithms 
have processed the ingest and tagging of the input data, the resulting information 
must be correlated, combined, and/or fused with any previous results for 

2 This is often referred to as the “OODA” loop: observe, orient, decide, and act.
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knowledge development and/or potentially formatted for dissemination. The 
overall tasks shown in Fig. 13.1 are primarily for streaming sensor data. Existing 
knowledge memory data is compared, contrasted, associated, and normalized 
against incoming streaming data:

• Collect data
• Verify data
• Analyze for missing data
• Tag data
• Analyze for functional data
• Correlate/classify with existing data
• Verify analytical results
• Send/display results

Within the data analytics process, data must be characterized and classified in 
order to prioritize the overall processing, cataloguing, and analyzing to maximize 
the efficiency of the system.

13.3  Data Characterization and Classification Process

Here, metadata are computed to determine characterization, classification, and 
overall priority of the data being analyzed. We will utilize a mutual information 
calculation to determine the overall correlation of data sets to data classification and 
priority measures. Figure 13.2 illustrates this process. The task list for this process 
is [7]:

• Extract metadata
• Compute mutual information
• Compute fuzzy membership values
• Apply defuzzification
• Publish results (HSI)

Metadata creation is also important in order to catalogue the data for rapid com-
parison with previously learned data sets.

Fig. 13.2 The BDAP data 
characterization and 
classification process
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Once the metadata are created, a pair-wise classification process is utilized to 
understand how the new data sets are compared to previously processed data, and 
their similarities and differences are computed and questions are generated for a 
hypothesis-driven, abductive analysis.

13.4  Feedback-Driven Analysis/Classification

A feedback-driven process will be provided that incorporates changes in prioritiza-
tion and operator-feedback to the classification algorithms to provide a human- 
mentored software process that learns and adapts as data environments change, as 
prioritization changes, and as more information is gathered through continued pro-
cessing and analysis of continuous streams of data. Figure 13.3 illustrates this pro-
posed process.

Fuzzy membership functions are utilized to classify the data sets and allow state 
transition prediction to understand how likely the data are to change classifications. 
Much of the data analyzed for big data analytics are complex, stochastic data that 
can change rapidly over time (e.g., weather data, crowd sourcing data). A state tran-
sition analysis is performed with an abductive, hypothesis-driven analytical process 
that will be explained later.

13.5  State Change Prediction Process

Once the fuzzy membership designation has been determined and the metadata 
verified, a prediction process is utilized to understand the potential for the data envi-
ronments to change state. A hypothesis-driven process will be utilized to analyze 
the results to predict whether a state change is likely. Examples of state changes 
would be a change from a tropical storm to a hurricane, or a likely state change of a 

Fig. 13.3 BDAP feedback-driven data analysis/classification
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crowd from agitated to mob-mentality state, or crowdsourcing state change between 
possible choices being posed to the “crowd.” Figure 13.4 illustrates this proposed 
state transition process.

Within the state transition prediction process is a hypothesis-driven Martingale 
state transition prediction engine that analyzes the data sets using stochastic deriva-
tives to understand the volatility of the data sets [8].

Fig. 13.4 BDAP data classification and state transition prediction process

State 1 State 2

α

β

1−β1−α

• When the summed average of all the State 1 individuals fuzzy memberships are 
greater than ½, then a change of state to State 2 is imminent.  

• When the summed average of all the State 2 individuals fuzzy memberships are 
less than ½, then a change of state back to State 1 is imminent. 

Fig. 13.5 BDAP stochastic process state change detection
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13.6  Hypothesis-Driven Prediction/Classification Process

As discussed above, we are researching a hypothesis-driven analytical process that 
allows adaptation. The proposed State Transition Prediction (STP) process is driven 
by a Markov transition calculation illustrated in Fig. 13.5. Here the probability of 
state transition is computed from the average of fuzzy membership functions. Each 
can be weighted by a priority (from 0 to 1) that will affect the overall scoring.

As changes happen, from changes in data environments, changes in mission 
needs, changes in priorities, or other factors that may affect the outcomes. Figure 13.6 
illustrates the classification solution domain process. Here we propose employing 
soft-computing techniques to generate possible solution hierarchies, based on the 
stochastic calculus methods and analytical processes discussed above. Here solu-
tions take the form of answering questions and explaining situations/observations 
[9]. In Fig. 13.5, PTR represents the probability of a state transition, computed using 
the summations of fuzzy membership functions which represent the conditions that 
drive transitions.

These structures are intended to:
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• Assist operators with data analytics and decision support
• Provide automation, control, and analysis of the sensor/data acquisition 

network
• Assist operators in finding, filtering, and prioritizing solution information
• Enabling automation and control for finding, processing, learning from, and pro-

viding data characterization and classification, pattern recognition, predictions 
and recommendations based on the data processing procedures discussed above 
[10].

In addition to providing methodologies for understanding data transitions and 
data state changes, the process outlined in Fig. 13.5 can be utilized to measure pro-
cedural and episodic memory changes within an artificial intelligent system. By 
adjusting the fuzzy thresholds that measure state change within the memory system 
and correlating computational resource change and cognitive volatility within the 
system (cognitive velocity), it is possible to measure memories being created with-
out the cognitive activity that should be created to invoke the memory system and 
store memories (detection if implicit learning and subsequent implicit memories).

The processing environment/algorithms proposed here utilize fuzzy logic [11] to 
integrate diverse sources of information, associate events in the data, and make 
observations. When combined with a dialectic search, the application of hybrid 
computing promises to revolutionize information processing and big data analytics. 
The dialectic search seeks answers to questions that require interplay between doubt 
and belief, where our knowledge is understood to be fallible [10]. This “playful-
ness” is key to hunting within information and implemented by the Dialectic Search 
Argument (DSA). This is very useful to assess sensor network readings for various 
types of data analysis. The Dialectic Search Argument (DSA), illustrated in 
Fig. 13.7, has four components derived from a Toulmin argument structure [12]:

 1. Data: in support of the argument and rebutting the argument.
 2. Warrant and backing: explaining and validating the argument.

Linking
Claim

Training

Fuzzy, Abductive
Inference Engine

Statement
Possibility

Backing

Support
Rebuttal

Support
Rebuttal

Dialectic Search

Data:
Claim

Warrant:

Fig. 13.7 The BDAP dialectic search argument process
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 3. Claim: defining the argument itself.
 4. Fuzzy inference: relating the data to the claim/classification.

The argument serves two distinct purposes. First, it provides an effective basis 
for mimicking human reasoning. Second, it provides a means to glean relevant 
information from the self-organizing map illustrated in Fig. 13.8 and transform it 
into actionable intelligence (practical knowledge.) These two purposes work 
together to provide a comprehensive data analytics system that allows the algo-
rithms to sort through diverse information and find clues [13].

The fuzzy semantic self-organizing topical map (FSOM) is a method for analyz-
ing and visualizing complex, multidimensional data. It consists of two parts. (a) A 
semantic SOM organizes inputs into categories used to encode the inputted infor-
mation as a histogram. An information map contains contextual information. The 
information map is self-maintaining and automatically locates inputs. The isograms 
denote how close the hits are to specific information topics. (b) The FSOM can be 
enhanced to include a topic map. The topic map is the ISO standard for indexing and 
describing knowledge structures that span multiple sources. The key features are the 
topics, their associations, and their occurrences in the FSOM. The topics are the 
areas on the FSOM that fall under a topic name. The associations describe the rela-
tionships between topics. The occurrences are the links from the FSOM into the 
data sources used to form the FSOM. The value of superimposing a topic map onto 
the SOM is that it defines the information domain’s ontology. It also enables rapid 
and sophisticated dialectic searches.

This proposed approach is considered dialectic in that it does not depend on 
deductive or inductive logic, though these may be included as part of the warrant. 
Instead, the DSA depends on non-analytic inferences to find new possibilities based 
upon warrant examples. The DSA is dialectic because its reasoning is based upon 
what is plausible; the DSA is a hypothesis fabricated from bits of information. Once 
the examples have been used to train the DSA, data that fits the support and rebuttal 
requirements is used to instantiate a new claim. This claim is then used to invoke 
one or more new DSAs that perform their searches. The developing lattice forms the 

Topical Map

Self-Organizing Map

Is associated with

Is influenced by

Associations, by type:

a b

Fig. 13.8 (a) The fuzzy self-organizing map, (b) The semantical topical map
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reasoning that renders the intelligence lead plausible and enables measurement of 
the possibility.

As the lattice develops, the aggregate possibility is computed using the fuzzy 
membership values of the support and rebuttal information. Eventually, a DSA lat-
tice is formed that relates information with its computed possibility. The computa-
tion, based on Renyi’s entropy theory, uses joint information memberships to 
generate a robust measure of possibility, a process that is not achievable using 
Bayesian methods. Whereas the topic map builds and maintains itself, the dialectic 
search requires supervised training, meaning it must be seeded with knowledge 
from a domain expert. However, once seeded, it has the potential of evolving the 
warrant to present new types of possible leads based upon evolving threats, systems, 
and missions.

There is one other valuable attribute to using the FSOM method. Because the 
vector that represents the information is randomly constructed, it cannot be decoded 
to reformulate the source; the source must be reread. This is critical to protecting 
compartmentalized information. Using the FSOM, the protected source can be 
included in the FSOM and used to support/rebut an argument without revealing the 
detailed information [14].

A B

C

Fig. 13.9 Stochastic diffusion, (a) Off-lattice state change, (b) Micro-granular state change, (c) 
Macro-granular state change
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13.7  Stochastic Diffusion Method for State Classification

To provide the data analytics with the ability to understand and quantify the utility 
of given sensors or inputs (e.g., crowdsourcing data sources), we propose to enable 
a stochastic diffusion process; we can re-prioritize resources based on given or 
implied priority tasks and utility characteristics, and combined perceptions of sys-
tem objectives. Figure 13.9 illustrates this proposed stochastic diffusion process, 
which is like molecular biology, using a 2-dimensional or 3-dimensional computa-
tional mesh either of a lattice or spatially aware non-lattice to represent a processing 
membrane (physical membrane in biology) that represents sensor activity and inter-
actions within the processing system [15]. We can characterize and simulate real- 
time and non-real-time changes within the sensor or data acquisition network, based 
on learning and inference characteristics [16]. This allows the data analytics to pri-
oritize sensor resources to use, to address specific kinetic system activity (how 
quickly things are changing, and which sensors are most appropriate for a specific 
type of sensor and/or data). Here the stochastic diffusion may re-prioritize sensors 
or data acquisition methods or change which sensors or data sources are utilized 
within the overall data analytics process, based on situational awareness of the mis-
sion, the type of data, and/or the overall utilities of each sensor. Stochastic diffusion 
will allow uncertainties to be measured and quantified using continuous statistical 
analysis of the sensor/data acquisition network, adjusting sensor and data source 
usage, to minimize uncertainties in real time as it assesses patterns and activity 
across the sensor network.

13.8  Conclusions and Discussion

This is very preliminary work and much more research is required. Here we discuss 
a high-level view and discussion of the possibility of a Big Data Analytical Process 
(BDAP) system with the capabilities for efficient and accurate analysis, classifica-
tion, cataloguing, and correlation of large, complex, heterogeneous data sets 
required for modern artificial intelligent systems. The next steps are to complete out 
the architecture, derive the requirements, and prototype the system. Future books 
will present the progress and results  as they are available.
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Chapter 14
Conclusions and Next Steps

Although we feel we have made a great start and have covered much about how to 
test artificial intelligent systems at various levels, much research and development 
is needed. One major topic of research to be continued is to understand the variables 
that can be used to control learning performance and explicit knowledge in the con-
text of human interaction with artificial intelligent entities [1]. The relationship 
between implicit and explicit modes of learning and implicit and explicit types of 
knowledge has not been established and must be explored before we put artificial 
intelligent systems into long-term service either within the Department of Defense 
or the private, commercial sector. The relationships between decision and action 
may be critically influenced by implicit learning and knowledge and we need to 
understand how implicit vs. implicit learning and knowledge affect the ability of 
systems to learn and act effectively and correctly.

One area that has become more and more important over the last decade is the 
field of “Artificial Psychology” [2]. Data from studies of human cognitive develop-
ment indicate that continuous learning drive changes in knowledge and perfor-
mance, due to the subjects continued interaction with their environment(s), 
maturation of neural pathways [3]. If we create complex learning and reasoning 
systems/architectures to provide a continuous, life-long learning environment for 
artificial intelligent entities, we can expect similar results. These modifications to 
the neural patterns of an artificial intelligent entity will, we feel, cause the networks 
to become more powerful and involve implicitly defined knowledge representations 
[4]. One method of testing we will explore is the use of neural nodal cluster analysis 
to examine how neuronal weightings are changing as the artificial entity learns and 
adapts, in conjunction with measurement of the cognitive velocity (i.e., how fast) 
the neural connections and neural creations are occurring. In general, we look to 
measure, given a set of inputs to be learned:

 1. The responses of the hidden layer neuronal activations.
 2. The level of mutual information (grouping) between neurons within the 

network.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17081-3_14&domain=pdf
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14.1  More Complicated Is Not Necessarily Better

As we push for faster, more complicated and denser processing capabilities, we 
need to step back and examine whether more complicated means better answers. We 
need to examine biological evolution and how insects and other forms of life use 
very simple neural structures to complete very complicated tasks and develop com-
plex communication skills with very few neurons (at least compared to humans). 
The cartoon below (Fig. 14.1) illustrates this concept. First and foremost, we need 
to understand what we are trying to accomplish with artificial intelligent entities.

What types of knowledge are required of the artificial intelligent entity? What 
types of decisions will it be required to make or provide decision support? What 
actions will it be required to take and what are the desired outcomes? Computational 
formulation and testing of this type of information will be crucial to the success of 
artificial intelligent systems. One question we must understand, which prompted the 
inclusion of integrated system health management within an artificial intelligent 
entity: What happens when an artificial intelligent entity’s memory system 
 experiences failure [5]. What happens when all or part of the memory electronics 
fails? Figure 14.2 below is a whimsical look at this.

In short, we need to be concerned with both what the artificial intelligent entity 
can do and what it knows. The acquisition of knowledge, as we have discussed in 
detail, involves both explicit and implicit learning, both of which need to be clearly 
understood and measurable [6].

Fig. 14.1 Back in my day

14 Conclusions and Next Steps
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14.2  Where Are We Going?

As we go forward, ever toward what may become artificial consciousness, we must 
continue to develop an understanding of artificial intelligence, and the issues of 
functional learning and reasoning and how they relate to qualitative human con-
sciousness [7]. Artificial psychology experiments must be created in order to under-
stand the complete artificial intelligent entity. This book is a glimpse into the future 
of artificial intelligence and how we begin to think about adequately testing an arti-
ficial system that thinks, reasons, and infers “like humans.”

Creating and testing a SELF has significant technical challenges which are 
addressed throughout the book; however, there are also adjacent cultural challenges 
which also need to be addressed as we move forward with integrating artificial intel-
ligent systems into society. We must also understand how such a system would be 
received and perceived by people and how we expect any type of artificially intel-
ligent system to react to and perceive people. That necessitates research and study 
of the concept of artificial psychology that will deal with what it means to have a 
SELF resemble human intelligence, the when and why of the “psyche” of an artifi-
cial intelligent entity.

14.2.1  Artificial Psychology

While psychology is the study of mental processes and behavior of individuals, 
artificial psychology is the study of the synthesized mental processes of the SELF 
like humans and the artificial cognitive processes required for an artificial intelligent 
entity to be self-adapting. In psychology there are several specialties or focused 
areas of study. One example is cognitive psychology that studies how the brain 
thinks and works. This includes learning, memory, perception, language, and logic. 
Developmental psychology considers the developmental stages in which an indi-
vidual develops and what is appropriate to consider normal/standard for a human 
based upon these stages of development. Sports psychology considers mechanisms 
specifically to affect individual performance and how performance affects the indi-
vidual. Hence, artificial psychology involves the artificial mental process consid-
ered necessary to create a SELF.

16 GB

Can you tell me
when you started
having memory

issues?

I can’t remember

Take two of
these and call me

in the morning

Fig. 14.2 I can’t remember

14.2 Where Are We Going?
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14.2.2  Artificial Psychology as a Discipline

Artificial Psychology is a theoretical discipline first proposed by Dan Curtis in 
1963. This theory states that as artificial intelligence approaches the complexity 
level of human intelligence it will meet three conditions that will necessitate cre-
ation of the formal social science of “artificial psychology”:

• Condition 1: The SELF makes all its decisions autonomously and can make deci-
sions based on information that is (1) New, (2) Abstract, and (3) Incomplete.

• Condition 2: The SELF can adapt or change its own programming, based on new 
information, and can resolve its own programming conflicts, even in the presence 
of incomplete information.1

• Condition 3: Conditions 1 and 2 are met in situations that were not part of the 
original SELF’s initial programming.

We are fast approaching the engineering, bioinformatics, and computational sci-
ence where scalable processing power and real-time processing can perform opera-
tions to levels where not only can the three conditions be met, but that a SELF can 
be created. In addition, we believe soon we will be able to create a SELF that can 
reach conclusions based upon newly acquired information, can infer upon it from 
learned and store information in the form of synthetic memories. Therefore, we 
believe that enough criteria may exist, giving significant credence to the growing 
field of artificial psychology [8]. This may require new theories and research to be 
explored in industry and at institutions of higher learning, specifically for address-
ing the rapidly expanding need for general human support systems to domains and 
environments where humans are still significantly challenged (e.g., deep-space and 
deep-sea exploration). The formal social science of artificial psychology will be 
required when the abilities of a SELF reach self-adaptation, allowing self-analysis 
and decisions based on information available through its sensors and resolution of 
any internal inconsistencies within the SELF (self-reflection). Examples of why we 
are going to need artificial psychology as a hard discipline are [9]:

• 2016, an on-line Microsoft chatbot had to be removed when, in less than 24 h, 
Twitter users conversing with the on-line bot turned her into a Nazi racist.

• 2017, German police break into a house after several complaints of loud music 
being played. It turns out that the homeowner’s Amazon Alexa was playing loud 
music on its own without any direction from its owner. Alexa was basically host-
ing a party of her own.

• It was discovered that PokemonGo stops were being placed in predominantly 
white neighborhoods.

These incidents, and many more, drive home the care that must be taken in how 
artificial intelligent systems are trained and tested. One major issue that continues 

1 This means that the SELF autonomously makes value-based decisions, referring to values that the 
SELF has created for itself.

14 Conclusions and Next Steps
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to be seen in the training of artificial intelligent system is that having an artificial 
intelligent entity learn from people turns badly often. We believe this is due to 
underlying implicit learning and subsequent implicit knowledge that the artificial 
intelligent entity picks up from dealing with humans. It is almost impossible for a 
human to spend any serious time communicating with an artificial intelligent sys-
tem without the human’s biases and opinions coming into play. How we design the 
training for an artificial intelligent system radically affects its future learning, rea-
soning, and thinking. It is impossible to “test” an artificial intelligent system with-
out its learning and adapting to the test data, just like it learns and adapts to the 
training data. Again, this book is but the beginnings of an entirely new field in arti-
ficial intelligence.
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