

SECRETS OF A
CYBER SECURITY

ARCHITECT

http://www.taylorandfrancis.com

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A N A U E R B A C H B O O K

Brook S. E. Schoenfield

SECRETS OF A
CYBER SECURITY

ARCHITECT

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Brook S. E. Schoenfield
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-4199-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have
been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copy-right.com
http://www.copy-right.com
http://www.taylorandfrancis.com
http://www.crcpress.com

Author Note

All references to Securing Systems throughout the book are from:

Schoenfi eld, B. (2015). Securing Systems: Applied Security Architecture and Th reat Models. Boca
Raton, FL: CRC Press.

All references to Core System Security throughout the book are from:

Schoenfi eld, B. (2014). Applying the SDL Framework to the Real World. In Ransome, J. and
Misra, A. Core Software Security: Security at the Source, Ch. 9, pp. 255–324. Boca Raton,
FL: CRC Press.

Trademarks Covered in This Book

Cisco and Infosec are registered trademarks of Cisco Systems, Inc. and/or its affi liates in the United
States and certain other countries.

FACEBOOK is a registered trademark of FACEBOOK in Menlo Park, CA.
LinkedIn is a registered trademark of LinkedIn Corporation in Sunnyvale, CA.
IOActive is a registered trademark of IOActive, Inc., in Seattle, WA.
ISO is a registered trademark of the International Organization for Standardization in Geneva, Switzerland.
Linux is a trademark of Torvalds, Linus in Boston, MA.
Microsoft and Windows are trademarks of Microsoft Corporation in Redmond, WA.
MITRE is a registered trademark and ATT&CK is a trademark of MITRE Corporation in Bedford, MA.
SOC 2 is a registered trademark of the American Institute of Certifi ed Public Accountants in New York, NY.

http://www.taylorandfrancis.com

vii

Dedication

Th is book is dedicated to the many security architects with whom I’ve worked and from whom
I’ve learned: mentors, mentees, peers, students, comrades, friends. Th e InfoSec architecture
team at Cisco (circa 2000–2011) and McAfee’s Product Security Champions (2012–2018)
deserve my special gratitude. Collectively, we’ve contributed to a discipline known now as
“security architecture.” Herein lie the many fruits harvested from our discussions, speculation,
and philosophizing; the trials and successes we’ve shared; and your many insights. Th ank you.

http://www.taylorandfrancis.com

ix

Contents

Author Note/Trademarks Covered in This Book v

Dedication vii

Contents ix

List of Figures and Tables xiii

Foreword xv

Preface xvii

Acknowledgments xxiii

About the Author xxvii

Chapter 1 The Context of Security Architecture 1
1.1 Omnipresent Cyber War 1
1.2 Know the Threat Actors 5

1.2.1 Useful Exploits Don’t Die 15
1.3 Everything Can Become a Target 16
1.4 Warlords and Pirates 20
1.5 What Is the Scope of a Security Architect? 22

1.5.1 Are There Really Two Distinct Roles? 22
1.6 Essential Technique 26

1.6.1 Threat Modeling: An Essential Craft 26
1.6.2 Architecture Is Primary 28

1.7 Aiming Design Toward Security 29
1.7.1 What Is Secure Software? 29
1.7.2 Secure Design Primer 30

1.8 Summary 31

x Secrets of a Cyber Security Architect

Chapter 2 What Is Security Architecture, and Why Should I Care? 33
2.1 Defi ne Security Architecture 33

2.1.1 Software Security 34
2.1.2 Security Architecture Practices 34

2.2 Relevant Knowledge Domains 35
2.3 More About Architecture 38
2.4 Architectures of Security 40
2.5 Architecture as a Part of Cyber Security 41
2.6 Security Architecture in Software Development 42
2.7 Generally, Experience Is a Teacher 44
2.8 Introducing Attack Methods 45
2.9 Speaking of Defense 47
2.10 More Precise Defi nition 48
2.11 Summary 49

Chapter 3 Architecture, Attacks, and Defenses 51
3.1 Yes, Exploit Details, But 51
3.2 Security Architects Must . . . 52
3.3 Understanding Categories of Attacks 53
3.4 Attack Knowledge for Defense 55
3.5 Example: Heartbleed Analysis 57

3.5.1 Heartbleed Technical Analysis 60
3.6 Analyze to Defend 66
3.7 Turn Off TLS? 69
3.8 Security Architecture Analyses 70

3.8.1 Some Cheap Risk Concepts 72
3.8.2 JGERR Risk Rating 72
3.8.3 At Base: Threat Model 73

3.9 Threat Modeling Defi nition 73
3.9.1 Alternate Defi nition 74
3.9.2 When Is My Threat Model Done? 74

3.10 Summary 76

Chapter 4 Culture Hacking 79
4.1 Team Tourism 79

4.1.1 Build and Maintain Trust 81
4.1.2 Don’t Squander Infl uence 84

4.2 Threat Modeling: Just Do It 86
4.2.1 “Trust Developers?” 87
4.2.2 Threat Model Training Is for Everyone 88

4.3 More Culture Hacks 89
4.3.1 Nimble Governance 90
4.3.2 Build Skills by Sharing 93
4.3.3 What to Do About “It Depends” 93

Contents xi

4.3.4 Is the Threat Model Finished? 94
4.3.5 Create a Security Contract 97
4.3.6 Threat Models Are Not Additive! 99
4.3.7 Audit and Security Are Not the Same Thing 100

4.4 From Program to Transformation 103
4.4.1 Pro-Social Modeling 103
4.4.2 Leaders Must Get Challenged 104
4.4.3 Hack All Levels 105
4.4.4 Coding Is Fraught with Error 108
4.4.5 Effective Secure Coding Training 109
4.4.6 Make Validation Easy 110

4.5 Summary 112
4.5.1 We All Can Use Some Feedback 114

Chapter 5 Learning the Trade 115
5.1 Attack Knowledge 116
5.2 Which Defenses for What System? 123
5.3 Threat Modeling: The Learning Method 126

5.3.1 How to Escalate for Management Decision 128
5.4 To Accelerate: Cross Pollinate 130
5.5 Build a Community of Practice 131
5.6 Support Learners’ Errors 134
5.7 Facilitate as Much as Lead 137
5.8 Summary 137

Chapter 6 Problem Areas You Will Encounter 141
6.1 What Does a Mature Practice Look Like? 141

6.1.1 Do We Add Value? 141
6.1.2 The War Is Over 142
6.1.3 Optimum Tool Use 142
6.1.4 You Know That You’re Maturing When 144
6.1.5 “Nothing Proves Architecture Like Nothing” 145
6.1.6 Get It in Writing! 147

6.2 Typical Problems Programs Encounter 147
6.2.1 Scale 147
6.2.2 Assessments Take Too Long 150
6.2.3 Late Engagement 156
6.2.4 Skill Churn 161
6.2.5 Exceptions 163
6.2.6 Fostering Innovation 164

6.3 Dealing with Chaotic Elements 166
6.3.1 There Are Differences 167
6.3.2 Translate and Generalize 168

6.4 Summary 170

xii Secrets of a Cyber Security Architect

Appendix A Heartbleed Exposure, What Is It Really? 173

Appendix B Developer-Centric Security 177

Appendix C Don’t Substitute CVSS for Risk: Scoring System Infl ates
Importance of CVE-2017-3735 179

Appendix D Security Architecture Smart Guide 185

Appendix E Threat Modeling’s Defi nition of Done 203

References 207

Index 213

xiii

List of Figures and Tables

Figure 5.1 MITRE ATT&CK™ Matrix 119

Figure 5.2 CAPEC Mechanisms of Attack 121

Figure 5.3 ATT&CK Headers Combined with CAPEC Categories 121

[Figure 11.3 Multitenant Data Encapsulations (from Securing Systems)] 169

Table 1.1 Summarized Threat Attributes 13

Table 1.2 High-Level Threat Agent Attribute Matrix 14

Table 4.1 Summation of Actions Described in This Chapter 112

Table 5.1 Organization Hierarchy and Potential Impact Relationship 130

Table 5.2 Summation of Actions Described in This Chapter 138

Table 6.1 Summation of Actions Described in This Chapter 170

http://www.taylorandfrancis.com

xv

Foreword

Th is week’s news includes that indicted Iranian hackers are still hard at work, a disruptive
cyber event impacted the US power grid, and a high-school dropout hacked a million devices.
It included brand-name companies in the headlines for security failures. And it looked very
much like other weeks.

Many of the systems whose security failed had compliance checklists. Products were sub-
jected to penetration testing, or ethical hacking, or dynamic testing. And they still failed,
because the security approach their creators used didn’t address the unique requirements of the
systems being built and deployed.

Security architecture is a set of structures for thinking about what we’re working on,
what can go wrong, and, most importantly, what are we doing about them? We’re infusing
security into the things we work on. We’re building features and worrying about the proper-
ties. Th e distinction is like this: a deadbolt is a security feature, and the steel it’s made from
has properties. If the steel of the deadbolt is brittle; if the receiver isn’t well mounted; if the
doorframe is weak, then the deadbolt will not deliver on the security goals for the door.
(Incidentally, my book on threat modeling is largely focused on what can go wrong, and as
such complements this one.)

Our software, like other things we build, has many interfaces to the world, and attackers
can pick and choose which ones to examine or attack.

For years, security has shown up as designs are fi nalized, and then complained about those
designs. It hasn’t delivered the security that our society needs, and it hasn’t led to eff ective
collaboration.

Architecture, like security, has a bit of a bad name amongst software engineers. Too often,
it’s people who can’t code, won’t make tradeoff s, and don’t ship, but do object—endlessly. Like
any aspect of software, architecture and security can be done well or poorly.

Th e book that you hold in your hands is about doing it well, but that’s not quite right. I
don’t care much about doing it well, in and of itself, and I don’t think Brook does either. I
care about helping the people I’m working with make better products, which includes ship-
ping and includes shipping with appropriate security. Let me be clear about what appropriate
means here: it means that the folks who make product decisions have the information they

xvi Secrets of a Cyber Security Architect

need to make those decisions. Sometimes you’re happy with the result, other times not, but you
shouldn’t be surprised by the security problems systems have once they ship.

Of course, I prefer to make things I can be proud of, and so I want to do things well, and I
hope you want the same. Th is book is about how to do that for security.

Adam Shostack
September 17, 2019

Seattle, WA

xvii

Preface

Context

As I wrote in Securing Systems, “It is a plain fact that as of this writing, we are engaged in a cyber
arms race of extraordinary size, composition, complexity, and velocity.” Securing Systems, p. 5

Th ere are more than three billion* people who use the Internet and whose lives are inter-
twined with their digital devices. Th ese connected people’s medical, fi nancial, and other per-
sonal data is spread out over hundreds if not thousands of systems run by a multitude of
organizations, many of whom do not necessarily have the data owners’ best interest at heart.
Pandora’s† cyber box has long since been opened, and the box’s “demons” have been loosed
upon the digital world. Indeed, most of us participants are attempting to get on with our lives,
making our way through the digital battle zone. A few of you readers may actually be engaged
in the cyber war in some professional or other capacity. But for the vast majority of us cyber-
citizens, we are the collateral damage to confl ict that has little to do with us on a personal level.

Like most war zones, in addition to the combatants, there always seem to be those out to
make a profi t amid the chaos. Th ere be pirates and warlords on these Internet seas, Matey. I
think that the current state of aff airs may be comparable to the 300 or so years when inter-
national commerce was highly dependent upon sea trade, approximately from the late 1500s to
the middle of the 19th century, the so-called “golden age of piracy.”

Not that we don’t have sea pirates today; of course we do. But, during the golden age
of piracy, shipping, which, as the main form of transport underpinning international com-
merce, was never safe from marauding pirates. City states were funded through piracy; piracy
made signifi cant contributions to the tax basis of several nations. Piracy, or more properly, the

* According to the United Nations population estimates, in 2020, there will be near to 7.8 billion people
on planet Earth. Please see https://population.un.org. Estimates of Internet users vary from 3.2 to 4.4.
Please see https://en.wikipedia.org/wiki/Global_Internet_usage and https://internetworldstats.com/
stats.htm for examples of estimates.

† Pandora, the Greek mythological character, not Pandora™, the music streaming company.

https://population.un.org
https://en.wikipedia.org
https://internetworldstats.com
https://internetworldstats.com

xviii Secrets of a Cyber Security Architect

privateer, served as a way to fortify a nation’s navy in times of war. At the same time, privateers
provided a needed boost in state revenue at the expense of a nation’s enemies.*

Th e age of piracy seems entirely analogous to the Internet Age’s quasi-state “cyber armies”
who attack, and sometimes plunder, digital commercial interests. As Dmitri Alperovitch so
wryly noted in 2011,

“I divide the entire set of Fortune Global 2,000 fi rms into two categories: those that know
they’ve been compromised and those that don’t yet know.”†

In other words, any organization with valuable data has been and will be attacked, prob-
ably successfully, at some point and with some damage. And, don’t all digitally connected
organizations have at least some data that can be considered “valuable”? If the data is not
intellectual property on which revenue is based, then the personal records of customers or
employees will be valuable to digital attackers. For so-called non-governmental organiza-
tions (NGOs), strategic plans or the names of operatives in countries in which any dis-
agreement with the local government raises suspicion or even sanction may be considered
valuable to those charged with preventing dissent. Can we declare that in the Age of the
Internet, no data is safe, no data is without value to attackers? On some days, this may seem
to be close to a truism. Isn’t this comparable to the golden age of piracy, when no ship in
transit was safe?

Th ere’s a great deal of money to be made through theft and fraud of one kind or another
on the Internet, which I liken to the great oceans of times past. And, there are large organiza-
tions and single actors who understand that “there’s a sucker born every minute”‡—that is, a
few billion unwitting potential victims to fl eece. A great advantage for these attackers is that,
mostly, the pirate does not have to come into physical contact with the victim. Many, if not
most, successful attacks are relatively§ anonymous. Which, one has to admit, is a big advantage
for attackers.

We, the Internet connected,¶ are the targets of all this cyber attack activity rather constantly
and continuously.

Of course, government cyber armies practice defensive maneuvers. Th at is to be expected.
Unfortunately, most government defense eff orts are not focused on protecting you and me or
the many independent or commercial organizations that hold our data as we blissfully go about
our digital lives. In the USA, where I live, certainly the federal government is highly concerned
about protecting not only its own resources, but also the nation’s critical infrastructure. Still,
despite the deep concern, most of that actual day-to-day protecting is done by the organiza-
tions, public and private, who run the infrastructure, not by the government. You may have

* Th is historical reference is drawn from my reading of historical analysis presented within Pirate
Utopias: Moorish Corsairs & European Renegadoes (Wilson, 2004).

† Alperovitch, 2011.
‡ Inconclusively attributed to P. T. Barnum.
§ As of this writing, retrieving any identifying information from sophisticated attacks requires expert

forensic analysis. Th e information retrieved is often quite piecemeal, at best. Th ere may be pointers to
the identities of attackers, but often there is no direct link from attack to person.

¶ About half or so of Earth’s human inhabitants do not use the Internet at the time of this writing. I
always try to bear this in mind.

Preface xix

read newspaper accounts about the diffi culties and gaps in those protections. Sadly, my profes-
sional opinion is that these media descriptions are more or (often) less accurate. I’m willing to
bet that the USA’s enemies are keenly aware of the situation. Many nations’ infrastructure is
equally at risk; the USA is not alone in this.

Cyber Defenders

To whom or what may a non-technical cyber-citizen turn?
During my 30+ year high-tech career, so called “computer security,” “information secu-

rity,” or “cyber security” has grown from a fl edgling group of interested amateurs who tried
to squeeze in some security work alongside their busy, high-tech day jobs into a full-blown
industry of thousands of professionals.

Many security companies have tried to steer clear of jingoistic association. Th e big vendors
often have customers in any number of governments, some of whom at any particular moment
will be in active cyber confl ict with each other. It seems an interesting turn of events that secu-
rity companies have to maintain a certain level of cyber neutrality in order to succeed. It turns
out that refusing to take sides is just good security business.

Computer security companies off er a dizzying array of technologies, products, and ser-
vices, many of which are marketed through some variation of “solves your security problems.”
Unfortunately, not.*

Part of the problem is that “security” is ill-defi ned and highly overloaded. Most security
products handle some portion of the computer security challenge. No product I know of comes
close to being a total package solution, taking care of all an organization’s or person’s computer
security needs, soup to nuts. Why? Because security is a big, messy, multivariate, multidi-
mensional arena. A reasonable “defense-in-depth” requires many technologies; smart, highly
skilled people; and deep and broad analysis—all of which must come together into some sort
of functioning whole, that whole often termed “a security architecture.”

Why “Security Architecture”

Architecture:

* Full disclosure: As of this writing, I work for one of these “security companies.” My comments do not
represent the opinions of my employer.

† Source: ISO/IEC/IEEE 42010:2011
‡ Th e Open Group, n.d.

1. Th e fundamental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution.†

2. Th e structure of components, their inter-relationships, and the principles and guidelines
governing their design and evolution over time.‡

xx Secrets of a Cyber Security Architect

“Traditionally, security architecture consists of some preventive, detective and corrective con-
trols that are implemented to protect the enterprise infrastructure and applications.” *

 “It is not possible to build a space ship without vision, goals, and specifi c objectives, which
are expressed in large-scale and also highly specifi c plans. Cyber security is much the same
thing, which is where the practice of security architecture comes into play.

 “One defi nition of security architecture might be, ‘applied information security.’ Or per-
haps, more to the point of this work, security architecture applies the principles of security to
system architectures.” Securing Systems, p. 14

* Ghaznavi-Zadeh, 2017.

My previous defi nition probably assumes far too much to be useful unless one is already
familiar with information security and the practice of architecture. By “system architectures”
I meant to include any system that requires digital security, be it the architecture of a discrete
application or program, a library or application programming interface (API), a global cloud,
an organization’s digital assets, etc. Th ough my defi nition may have suffi ced for the purposes
of a book on threat modeling, it still feels a bit too opaque, and I fear that it excludes some
important aspects.

Th is book is about security architecture. My goal is to refrain from theory and focus instead
on practice. You will not fi nd much theory in this book. I hope that I have provided just
enough theory to place the materials into suffi cient context for full understanding. For a deeper
explanation, I point the reader to any number of books on security architecture, including my
own, Securing Systems, although that book was also intended to remain grounded in the practi-
cal and proven rather than being overly theoretical.

Good security architects have dozens of tricks of their trade in their kips. Herein, you will
fi nd my tips and tricks, as well as myriad tried and true bits of wisdom that my colleagues have
been gracious enough to share with me.

I want to give these to you, the practitioner, to ease your way. Th is work can be hard, com-
plex, certainly frustrating. Seasoned architects know how to surmount individual, team, and
organizational resistance. Th ey know how to express security requirements in ways that will
make the requirements more palatable and, thus, get them accomplished.

Great security architects tend also to be masters of compromise, negotiation, and confl ict
management. In general, the people for whom I have the highest respect are consummate col-
laborators, as interested in understanding as providing their own solutions. Th e vast majority
of practitioners with whom I’ve had the privilege and honor of working have been and con-
tinue to be high-integrity individuals who want the best for their organizations and typically,
also, through their work, for the world at large. Of course, each of us gets to defi ne “best” for
ourselves.

Book Contents

Th e fi rst chapter of the book is focused on what security architecture is and the areas of exper-
tise a security architect will need in practice. Th e second chapter delves into the relationship

Preface xxi

between attack methods and the art of building cyber defenses. Security people must become
familiar with the many diff erent ways that human actors attack systems. For some branches
of digital security, the understanding of attack mechanisms must be deep and thorough. For
other areas—say, people managers and executives—perhaps only a glancing understanding of
attack methods is required, although often, these roles require a thorough understanding of the
potential organizational harm that may result from successful attacks of one kind or another.

For the security architect, the level of understanding will be more holistic. Each class of
attack involves a particular type of technical manipulation. Security architects typically must
have enough computer science background to understand the basic mechanism of manipula-
tion. Alongside this, an eff ective security architect will further have a command of the mecha-
nisms that will thwart each class of relevant attack. Plus, the architect will understand both
the eff ects of system attack on the system under attack and the potential repercussions to the
organization.

Still—this is important, and we will delve into this in some detail—a security architect will
typically not be required to hold the details of every variation of each class of attack, and not
required to command the specifi c technical details by which a particular instance of a class of
attacks will exercise a particular vulnerability. Th is level of detail is often irrelevant to imple-
menting a defense.

Th is isn’t to suggest that security architects cannot master the details of a particular attack;
usually, they will have to have explored at least one example of each type of attack in order to
understand its mechanism suffi ciently. And, of course, people move around. Th ere are plenty
of security architects who were once penetration testers and penetration testers who are com-
petent security architects. Th e point is, the exact assembler language to exploit each of a collec-
tion of particular heap overfl ows is not required for the memory be handled in a secure fashion
by a programmer. Th e literature and other training is full of examples of how memory is to be
handled correctly.

Importantly for this book’s tips and tricks to make as much sense as possible, Chapter 3
(Architecture, Attacks, and Defences) will explore the required attack knowledge set in some
detail—that is, why to use attacks and how to derive a set of mitigations and defenses.

Chapter 4, Culture Hacking, is a tour of the approaches, tricks, and yes, even a few manipu-
lations that have proven successful for practicing security architecture in the face of the sorts of
challenges most will meet. I also include bits about starting, maturing, and running eff ective
security architecture programs. At least, these things have worked for me and quite a few of the
people with whom I’ve worked. Your mileage, of course, may vary.

In Chapter 5 (Learning the Trade), the secrets of the trade revealed herein will be set out in
a series of short snippets, each hopefully delivering a bit of wisdom that can be applied as you,
the reader, practice security architecture.

Finally, in Chapter 6, I’ve tried to set down, as best that I can, a lot of the tricks that I’ve
used to surmount typical problems. Lucky for me, I get to interact with a lot of practicing secu-
rity architects. My network has provided me with strong anectodal evidence that most pro-
grams will encounter many, if not all, of the challenges that I list in Chapter 6 as they mature.
While not at all scientifi c, I’ve become convinced that there are milestone problems that crop
up for nearly every program. I hope that it would be helpful if I listed these and then provided
my methods for tackling them, for whatever worth you may get from these.

xxii Secrets of a Cyber Security Architect

Th ere are a few previously published pieces in the Appendices following the chapters that
have been referenced during the text. I provide these to fi ll in any questions you may have, and
for reference.

It is my sincere hope that Secrets of a Cyber Security Architect provides you a fun read, some
insight, and also that it’s organized well enough to be a desk reference as you proceed through
your security architecture career and practice.

 — Brook Schoenfi eld
 August, 2019

xxiii

 Acknowledgments

Hopefully, Secrets of a Cyber Security Architect is not a work of fi ction. Th e people mentioned
herein by name are most assuredly actual people, though a few are sadly no longer living. Th is
book concerns itself with practices that work versus practices that have proven counterproduc-
tive. Th e ideas, as Adam Shostack so wisely quips, “are abstract.” As such, this is a human work,
perhaps all to human? Unavoidably, the book is as much about people as technical matters.

Th ere are, indeed, a number of fairly technical discussions here, as may be expected. Still, a
great deal of the book is devoted to how people enact the abstract, how we move abstractions
expressed through the practice of security architecture from ideas to working software that
performs useful human functions and, at the same time, exhibits protective properties. With
any luck, this book will help avoid adversary exploitation of software weaknesses that result in
harm to the users and owners of the software. Make no mistake, adversaries are humans, too:
adaptive, creative humans. Which brings us back to the very humanness that must underlie
security architecture.

As I noted in the dedication to this work, hundreds of people at all skill levels contributed to
this work. Without those who’ve tolerated me enough to try to learn from me, who’ve humored
the many blind alleys that have eventually led to the teaching methods I employ today, this
book would most certainly not exist. Whatever success my current methods have is due in large
part to participants’ patience, endurance, and persistence.

I arrived at Cisco in 2000 an extensively experienced software programmer, designer, and
technical lead. Unfortunately, I was a rather less skilled security practitioner than I had believed
about myself before I met people who were steeping themselves in cyber security. Th anks to
Gil Daudistil and Doug Dexter for extending both their professional support and personal
friendship, so that I survived that fi rst year on Infosec’s architecture team. Th e WebArch team,
Steve Acheson, Laura Lindsey, Catherine Blackader Nelson, and Rakesh Bharania, may have
hazed me a bit, yes. But they also pushed me to extend my skills. All remain treasured friends.

Th e Cisco Infosec identity management working group, circa 2001–2002, lead by Michele
Guel, and including Steve Acheson, Steve Wright, Sergei Rousakov, and myself, grappled with
what was at that time a huge paradigm shift: identity as an organization’s “security perimeter.”*

* At that time, cyber security defense focused on network protections.

xxiv Secrets of a Cyber Security Architect

It was through that eff ort that I began to fi nd my feet as a security architect. We produced
formative results that are just now gaining recognition close to 20 years later.

Having left the safety of a small software company to jump into the roiling waters of Big
IT and Big Tech at Cisco, I was completely unprepared for the large number of highly skilled,
highly motivated, high-integrity people with whom I’ve had the privilege to interact for the
last 20 odd years. Th ere is not space to name them all. Th at so many of my co-workers would
become dear friends is the unexpected bonus of our shared passion to make people’s digital
lives just a wee bit safer. Or as John Stewart quipped one time when we were waiting for a plane
to a conference at which we were both speaking, “Simply make the Internet work.” Word!

John wrote one of the most lyric and beautiful Forwards I’ve ever read for my last book,
Securing Systems. Th anks for your leadership. You guided what had been a dysfunctional orga-
nization to excellence. Th anks for your friendship. Obviously, thanks for being willing to stick
your name onto my book. And, thanks for a few rides to the train, too. Th ose were important
conversations, I think? At least, I carry them with me.

Without managers who see the value in playing a “long game,” who’ve consistently seen
the value of building a team fi rst before focusing on delivery, much of what’s in this book
would not ever have been tried. Rob Rolfson, Michelle Koblas, Nasrin Rezai, the incomparable
Dr. James Ransome, Scott “Chopper” Walker, Steve Mori.

Th anks are due to the fi rst WebArch team that I led wherein we tried out the foundational
concepts that through refi nement blazed a trail to the material in this book. Vinay Bansal,
Justin Tang, Ove Hanson each need to be acknowledged. Plus, there were a few project man-
agers in that period who organized and supported the work: Caroline Th rasher, Ferris Jabri,
Julian Soriano, and Dan Burke. Aaron Sierra helped me validate that the techniques also work
for product security and cloud architectures.

Th e threat modeling exercises from which conclusions and suggestions herein are drawn
have been greatly improved in collaboration with Damilare Fagbemi, who ran around Ireland
and the United States co-teaching, and then incorporating class feedback into the class. A
couple of other contributors to the class are Luis Servin, David Wheeler, Sun Lee, and Tania
Skinner (though she may not realize the importance of her critique and validation).

James Ransome and I spent a couple of months in front of a whiteboard refi ning what we
knew about software security and identifying that which we didn’t. Th e proven ideas were then
captured in Core Software Security, Chapter 9. Since publication of that book, we each keep
honing those seminal concepts as well as fi nding new ones, a few of which are presented in this
book, and most of which will be in our next.

No technical book should complete without technical review. Th e ideas presented here have
received signifi cant review from peers and then have been proven through practice; much of
the practicing must be credited to the security architecture leaders of the programs I’ve led.
Th ere are too many peers to name: you know who you are.

Some of this work has been previously published in various forms: books, booklets, presen-
tations, papers, posts. Along the way, specifi c technical reviews were provided by Jack Jones
(risk), Izar Tarandach (security architecture and threat modeling), Blake E. Strom (unorthodox
use of ATT&CK), Cedric Cochin and Raj Samani (posts covering various discreet subjects),
Jon King and Celeste Fralick (continuing inspiration).

Acknowledgments xxv

Th is book has been immeasurably improved through suggestions from Adam Shostack.
Th anks to Adam for contributing his Forward, as well.

Th ank you to the MITRE® Corporation for allowing me to reprint several of their copy-
righted materials.

No book can move forward without the support of the publisher and publishing team: John
Wyzalek for confi dence in the concept. I apologize that the fi rst draft took so long: sometimes
the book I set out to write is not the book that emerges through my process. Th anks are due
to Th eron Shreve and his staff at Derryfi eld Publishing, with special acknowledgment for the
diligence of copyeditor and typesetter Susan Culligan, who also provided signifi cant project
management.

Finally, but no less important is my daughter, Allison, who follows in Da’s footsteps as a
security architect. Dinner conversations invariably descend into technical discussions. She then
continues to further prove these ideas through her work. My spouse, Cynthia, must lastly be
mentioned. For one thing, she puts up with these technical discussions at the dining table. “It’s
the alien-speak, again.” You have, with this one, suff ered through the pain of writing fi ve books
about computer security. Without your humor, insight, and forbearance, none of this would
unfold. Th ank you.

http://www.taylorandfrancis.com

xxvii

About the Author

Brook S. E. Schoenfi eld is the author of Securing Systems: Applied Security Architecture and
Th reat Models* and Chapter 9: Applying the SDL Framework to the Real World, in Core
Software Security: Security at the Source.† He has been published by CRC Press, SANS Institute,
Cisco, SAFECode, and the IEEE. Occasionally, he even posts to his security architecture blog,
brookschoenfi eld.com.

He is the Master Security Architect at a global cyber security consultancy, where he leads
the company’s secure design services. He has held security architecture leadership positions
at high-tech enterprises for nearly 20 years, at which he has trained and coached hundreds of
people in their journey to becoming security architects. Several thousand people have taken his
participatory threat modeling classes.

Brook has presented and taught at conferences such as RSA, BSIMM, OWASP, and SANS
What Works Summits on subjects within security architecture, including threat models,
DevOps security, information security risk, and other aspects of secure design and software
security.

Brook lives in Montana’s Bitterroot Mountains. When he’s not thinking about, practicing,
writing about, and speaking on secure design and software security, he can be found telemark
skiing, hiking, and fl y fi shing in his beloved mountains, exploring new cooking techniques, or
playing various genres of guitar—from jazz to percussive fi ngerstyle.

* Schoenfi eld, 2015.
† Schoenfi eld, 2014.

http://brookschoenfield.com

http://www.taylorandfrancis.com

1

Chapter 1

The Context of Security
Architecture

1.1 Omnipresent Cyber War

At the time of this writing, those of us participating in the digital (online) world are living in an
unprecedented age. Never before in human history have machines and the energy used to drive
them performed so much of the labor required to sustain human life.

Consider for a moment mechanizations used for farming: tractors that pull tillers that can
prepare hectares of soil for planting. Compare that to an 18th-century farmer who would hitch
a draft animal to a plow, turning a single furrow at a time. Now even seed can be dispersed from
a device pulled by the tractor.

What was once strictly the domain of human labor, perhaps including animal strength, can
now be accomplished with the right equipment by one determined person.

Th at is not to say that farming cannot be accomplished by human labor alone, nor to say that
it isn’t by the many subsistence farmers still active on Planet Earth; certainly, people continue to
farm with a stick or utilize animal power, if available and aff ordable.

I make this digression simply to illustrate the profound changes that have occurred over
the last few hundred years in nearly every domain of human production, including informa-
tion processing. Th e Computer Age (also called the Information Age and the Digital Age) has
blossomed to magnify technology’s reach and infl uence, for a computer can control a formally
manual manufacturing process.

Lots of skilled and unskilled jobs have been replaced, and more are on the block. Perhaps
truck/lorry drivers might be next? Anheuser-Busch has already delivered a load of beer with an
automated truck.*

* Isaac, 2016.

2 Secrets of a Cyber Security Architect

In the context of farming, imagine that many (perhaps most?) farmers on the planet embed
cheap moisture sensors in their soil, which they could monitor from their mobile phone. Since
cell towers have long since leap-frogged land-line infrastructures in the Th ird World, there are
mobile services available to many fairly remote areas. It is conceivable that even relatively poor
people may have mobile phones in the near future.* Th is isn’t idle speculation; I had this precise
conversation with a principal of Th e Climate Corporation in 2015.

Computers are being adapted to either perform or assist with tasks, both new and old, at a
dizzying and increasing rate; computers are everywhere surrounding us. Th ose of us living in the
connected world are surrounded by an aura of radio frequencies the like of which has never been
experienced, so far as we know. Th is bombardment with radio waves at many frequencies at the
same time constitutes an unfolding experiment in human (and our animal companions’) tolerance
for radio transmissions. [Time will tell if we can actually tolerate the bombardment or what the
eff ects may be. Perhaps evolution will step in with a genetic mutation for radio wave tolerance?]

I believe that we’ve really only scratched the surface in this transformation.† It is likely that
computation capabilities will increase dramatically (quantum computation?) while at the same
time size and power requirements will drop. Sensors of nearly everything sensible by computers
will surround us, just as some futurists have imagined.‡ It is quite likely that computers will
start to write computer programs—at least, those parts of programs that are suffi ciently deter-
ministic and formulaic to be programmed algorithmically or heuristically (at least to start). [It
is certainly within the realm of possibility that machine learning or artifi cial intelligence might
be applied to the generation of software algorithms.]

I can imagine a digital world far more complex and rich than exists today, which is far
beyond what I imagined possible 40 years ago, when I was introduced to programming. A great
deal has changed. I think that far more is in front of us than behind. Our lives are incredibly
dependent upon computers and the software that they run.

We also know that the software we depend upon is riddled with errors, whose correctness
cannot be automatically proven (that is to say that at this moment, the Turing Proof still holds
true). Which brings us squarely to the security problem those of us in the connected world must
face, every day, sometimes many times a day: Th ere be pirates on these digital waters, Matey.

Our ability to develop complex software vastly exceeds our ability to prove its correctness or test
it satisfactorily within reasonable fiscal constraints . . . complex software is difficult to write
and to test, and will therefore contain numerous unintentional ‘bugs’[.] It would be extremely
difficult and expensive to determine with certainty that a piece of software is free of bugs[.]
Given the relatively small amounts of funding allocated for developing and testing . . . software,
we may safely consider it as effectively impossible.§

A couple of quotes from the Forwords to Securing Systems may help to illustrate our digital
dependence:

* Ogundeji, 2015.
† Osborne, 2018.
‡ For instance, the nano digital world imagined in Neal Stephenson’s Diamond Age (Stephenson, 1995).
§ Rivest and Wack, n.d., pp. 3–4.

The Context of Security Architecture 3

“We are struggling as a security industry now, and the need to be successful is higher than it has
ever been in my twenty-five years in it. It is not good enough just to build something and try and
secure it, it must be architected from the bottom up with security in it, by professionally trained
and skilled security architects, checked and validated by regular assessments for weakness, and
through a learning system that learns from today to inform tomorrow. We must succeed.” *

* John N. Stewart SVP, Chief Security & Trust Offi cer Cisco Systems, Inc.
† Dr. James F. Ransome, CISSP, CISM.
‡ Please see brookschoenfi eld.com/?p=219 for more discussion on THE HOME DEPOT’s large breach.
§ WebTitan, 2017.

“Virtually every aspect of global civilization now depends on interconnected cyber systems to
operate. A good portion of the money that was spent on offensive and defensive capabilities
during the Cold War is now being spent on cyber offense and defense. Unlike the Cold War,
where only governments were involved, this cyber challenge requires defensive measures for
commercial enterprises, small businesses, NGOs, and individuals.” †

Failure to understand that the dependence that we have not just on our obvious digital
devices—smart phone, laptop, tablet, fancy fi tness bling on your wrist—but also on a matrix
of interconnection tying all these devices and billions more together will land you in the
hot seat; consider what happened to THE HOME DEPOT®, whose management actively
resisted understanding their business’s interconnectivity.‡ When THE HOME DEPOT’s
security folk pointed out the glaring weaknesses in the company’s cyber defenses, an execu-
tive is quoted as declaring, “we sell hammers, not computers.” Th e sad truth is that even a
hammer and nail company must still account for its digital operations, which nearly always
imply maintaining a cyber security defense posture. Th e breach occurred in 2014. By 2017,
that breach had cost the company $179 million.§ Not exactly chump change, even for a
global corporation.

For more than three billion out of the seven billion people on this planet, we have long since
passed the point at which we are isolated entities who act alone and in some measure of uncon-
nected global anonymity. For most of us, our lives depend not just upon technology itself,
but also on the capabilities of innumerable, faceless business entities and those entities’ digital
systems that act upon our digital behalf.

Consider the following common, but trivial,
example: When I swipe my credit card at the pump
to purchase petrol, that transaction passes through
any number of computation devices and applica-
tions operated by a chain of business entities. Th e
following is a typical scenario (an example fl ow—
but not the only one, of course):

• Th e point-of-sale device itself (likely supplied
by a point-of-sale provider) (see inset)

• Th e networking equipment at the petrol sta-
tion (see inset next page)

My friend and former colleague Lucy
McCoy wrote the communications code
in the first generation of gas pump pay-
ment terminals. At that time, terminals
communicated via modem and phone
line. She was a serial communications
wiz. I remember the point-of-sale ter-
minal laid out in her lab area. Lucy has
since passed away. She was a brilliant
engineer; she gave my code the best
testing that any code I’ve written has
ever received.

http://brookschoenfield.com

4 Secrets of a Cyber Security Architect

• Th e station’s Internet provider’s equipment (networking, security, applications—you have
no idea!)

• One or more telecom company’s networking infrastructure across the Internet backbone
• Th e point-of-sale company or their proxy
• More networking equipment and Internet providers
• A credit card payment processor
• Th e card issuer who must validate the card and

agree to pay the transaction for me

* http://brookschoenfi eld.com/?p=219

And so on . . . all just to fi ll my fuel tank. It’s seamless
and invisible—the communications between entities
usually bring up an encrypted tunnel, although the
protection off ered is not as solid as you may hope; it
is invisible and seamless, except when the processing
is not so invisible, such as during a compromise and
breach. [On a trip through Idaho several years ago,
a fuel pump in a remote station from which I fueled
had a card skimmer attached to it. My credit card was
then used for fraudulent activity.]

Every one of these invisible players has to have good enough security to protect me, and you,
if you also use some sort of payment card for your petrol.*

Th e foregoing is one of many examples:

• Medical gear and the networks that support them.
• Your fi nancial institution’s systems (where your “deposits” are really just digital data).
• Th e 100–200 processors in your car, with the stack of software that runs on them.
• Your Bluetooth headset—a Linux computer, as is that webcam watching your front door.
• Your smart TV—another Linux computer, as is your printer, the thermostat, Alexa, Echo;

even your landline’s handset may very well be another Linux system.

Is there nothing sacred? Probably not. And all of it is attack surface if there’s anything worth
stealing, learning, coercing, infl uencing, misusing, or disrupting to be found. Such has become
the nature of the Connected World: it’s all attackable given suffi cient motivation.

Th e art of security architecture plays a part in the dance between adversaries and defenses.
Th e security architect attempts to align defenses to expected attacks. As we shall see in Chapter 3,
Attacks and Defenses, the security architect seeks to understand relevant attackers, their meth-
ods, and their goals. At the same time, they must also understand how particular types of attacks
work such that appropriate defense mechanisms can be specifi ed, implemented, and deployed.

Security architects may be thought of as software and system architects who specialize in
attacks and defenses, who are profi cient enough with architecture techniques to specify defenses
as part of the structure of a system or software architecture.

I don’t believe that our present and future digital security rests solely on this one discipline;
that would be incredibly arrogant and also quite unfair to the many other disciplines that have
emerged within the digital security space, such as:

The transactions have to get from sta-
tion to payment processing, right? Who
runs those cable modems and routers
at the station? Could be the Internet
provider, or maybe not. I run my own
modem/routers/switches at home to
which I have sole admin access. An em--
ployee might easily slip a router under
their control between terminals and
provider; who’s to know? You don’t walk
up to the payment kiosk and demand to
see the routing gear, do you?

http://brookschoenfield.com

The Context of Security Architecture 5

• Exploit and vulnerability research
• Analysis of the dynamics of the threat landscape and human adversaries (“threat research”)
• Malware analysis
• Incident response
• Risk analysis
• Defensive programming
• Vulnerability and error discovery tools and automation
• Constructing easier-to-secure programming languages and environments
• Th e defensive software industry
• Management of the problem space’s complexity
• And so forth

* NIST, 1996.
† One recent example of such weaponization is SpookFlare 2.0, available from public GitHub servers

for download at https://github.com/hlldz/SpookFlaref6e0>

Still, as was noted in NIST 800-14 in 1996,* if we cannot uncover appropriate security
requirements during system design cycles, we have already lost an important—nay, key—
opportunity. We leave ourselves with the diffi cult (and usually far more expensive) challenge to
amend insecure software late in the game, perhaps even after deployment. Th at is the essence
of this book: to add to a growing body of practice and, I hope, wisdom about what security
architecture is, why it’s important, and how to practice it successfully.

In the following chapters, sections, and pages, I hope by collecting some of the bits and
pieces that I’ve found useful into one volume, I can contribute in some small way to the art and
science, the practice of this thing that’s become known as “security architecture,” to which I’ve
given some of the best of my professional life and quite a bit of my thinking.

Some of the following has been pulled from other works of mine. To that material, I’ve
added additional thoughts and learnings derived since those publications. I’ve also tried to
augment ideas that I’ve touched on in passing with greater depth. Let me know what you fi nd
useful, as always.

1.2 Know the Threat Actors

Attack and the subsequent “compromise”—that is, complete control of a system on the Internet—
is utterly pervasive: constant and continual. And this has been true for quite a long time. Many
attackers are intelligent and adaptive. If defenses improve, attackers will change their tactics to
meet the new challenge. At the same time, attack methods that were once complex and techni-
cally challenging are routinely “weaponized”: turned into point-and-click tools that the relatively
technically unsophisticated can easily use.† Th is development has exponentially expanded the
number of attackers. Th e result is a broad range of attackers, some highly ingenious alongside the
many who can and will exploit well-known vulnerabilities if these are left without remediation.

Th e chance of an attempted attack of one kind or another is certain. Th e probability of a web
attack is 100 percent; systems are being attacked and will be attacked regularly and continually.
Most of those attacks will be “doorknob rattling”—reconnaissance probes and well-known,

https://github.com

6 Secrets of a Cyber Security Architect

easily defended exploit methods. But out of the fi fty
million attacks each week that most major websites
must endure (see inset), something like one or two
within the mountain of attack events will likely be
highly sophisticated and tightly targeted at that
particular set of systems. And the probability of a
targeted attack goes up exponentially when the web
systems employ well-known operating systems and
execution environments.

A web server listening for connections from the Internet must remain open to all Internet
traffi c [unless IP address restrictions are put into place such that only some networks or even
particular hosts can access the web server], which means that any attacker can probe the inter-
face, at least at the network protocol level, if not deeper. Th e constant doorknob- rattling sweeps
of the Internet will surely fi nd and investigate whatever interfaces are open and available to
unrestricted traffi c.

Once an interested attacker fi nds and catalogs the open HTTP port, then the fun really
begins. Like web vulnerability scanners, the attacker will probe every reachable page with every
attack variation possible. Th ese probes (and possibly downloads of portions of the site) will be
unrelenting. To prevent restriction of the attacker’s address, they may use multiple addresses or
even shift attacking addresses on the fl y (e.g., fast fl ux DNS).

In contrast, security architects must use their understanding of the currently active threat
agents and their techniques in order to apply these appropriately to a particular system. Whether
a particular threat agent will aim at a particular system is as much a matter of understanding,
knowledge, and experience as it is cold hard fact. Considering the potential eff ects of threat
agents and their capabilities to attack any particular system is an essential activity within the art
of threat modeling. Hence, a security assessment of an architecture is an act of craft that wields
engineering as the tool set.

Although in practice the order in which we consider diff erent aspects of attacks and defenses
doesn’t materially aff ect the quality of the output, let’s start with threat agents (actors, adversar-
ies). Th e goals and capabilities of each type of actor profoundly aff ect how deep and thorough
a defense must be. I explained this in Securing Systems at some length: some actors seek a quick
return on eff ort. Others will work on a compromise until successful, no matter the time and
cost. Some adversaries mean to cause harm, some mean to cause no harm, and some don’t care
about what harm may ensue, so long as a goal is achieved.

Th ere are other dimensions to consider. I’ve settled on fi ve areas:
1. Final goal of the attacker
2. Technical ability
3. Risk tolerance
4. Work factor
5. Activity level
Th ere’s nothing sacred about my categories. Th ese threat actor attributes are the ones that

allow me to set priorities when analyzing a system. If you don’t like these or see holes in my
thinking, then by all means use your own categories.

Fifty million is a number given to me by
intrusion analysts at a major high-tech
company. At these levels, it doesn’t
really matter if the number is more
like 30 million or even 100 million. The
number of attacks overwhelm even
the best staff unless they have signifi-
cant automation.

The Context of Security Architecture 7

After years of refi ning the matrix, years of teaching threat modeling to diverse groups of
people (from groups of a few individuals to 120 participants), and several years of having par-
ticipants in my sessions build their own matrices, this set of categories seems to work fairly well.
Still, I remain open to other approaches. Th ere is probably a better way; if you fi nd a system that
works better for you, please let me know.

Below, I briefl y explain each of these threat actor attributes or behavioral dimensions:

• Goal. Many successful compromises depend on the successful execution of a set of
exploits, one after the other. From reconnaissance, to establishment of a presence, to privi-
lege escalation, on through establishment of command-and-control and persistence, none
of these is typically the ultimate goal of an adversary [except for vulnerability hunters
and security researchers, who may be satisfi ed with establishing proof that an exploitable
condition exists in isolation]. For real-world attackers, the adversary is after something;
perhaps stealing credentials or controlling the host so that it may be employed as part
of a botnet, stealing information, disrupting operations, or just plain and simple theft of
money or other assets—attackers have many goals. In order to identify which assets may
be valuable to the set of attackers who are likely adversaries, it helps to understand what
results diff erent classes of attackers expect to achieve.

• Technical ability. Not every class of attacker wishes to employ highly sophisticated,
resource-intensive techniques. For a moment, ignore the potential for any attacker to be
highly sophisticated and to have access to powerful compute resources; there are classes of
attackers who, even if they had such resources at their disposal, might not bring them to
bear simply because it’s too expensive. For this reason, it’s useful to understand the sorts of
technical capabilities, the sort of exploits, that a particular class of adversary is likely to use.

• Risk tolerance. What I mean by this attribute is how willing or unwilling a particular
attacker may be to getting caught or to having the attack discovered and when. Spies tend
to be highly secretive. Th e best outcome is if the activity is never uncovered or, if discov-
ered, that it is diffi cult to attribute to any particular group or state, and the goal of the
action should certainly be obscured as much as possible. Cyber criminals without a doubt
know that once your account has been drained, you will notice. Th e thief doesn’t care that
you fi nd out, only that the thief doesn’t get caught—or at least, only low-level participants
in a crime organization get caught; the upper level management must be protected, usually
at all costs. On the other hand, security researchers are generally not breaking any laws, so
they expect to publish the results with no risk. Security researchers may then be thought
of as having zero risk tolerance.

• Work factor. Th is attribute is an estimation of how hard a particular class of adversaries
will work toward achieving their goal. For instance, the United States National Security
Agency had, at one time, a $60 billion so-called “black budget.” Th at seems to me to be an
enormous amount of resources to apply to any particular cyber action. I assume that other
major powers have similar budgets. Contrast this with a cybercrime business that needs to
maximize the amount of profi t from each operation. As I noted in Securing Systems, cyber
criminals tend to focus on the poorly defended, spending as little on research and develop-
ment of new techniques as possible. Th is is a vastly diff erent approach than would be taken
by a well-funded superpower’s off ensive cyber activities.

8 Secrets of a Cyber Security Architect

Th e foregoing categorization is entirely stereotypic. It must be understood that an individual
actor can be an outlier; it is important to know that aggregating behaviors as I’m doing implies
beyond any doubt that some threat agents in each group will not fi t the profi le in one manner
or another.

Th e advantage of stereotyping and aggregating is to allow us to step away from a widely held
fallacy of practice: that every actor is either a creative, innovating genius or a so-called “script
kiddie” of no signifi cant technical capability. Th ere is a continuum of capabilities and clusters
of attributes into which particular actors tend to fall. Even technically sophisticated actors may
have very good reasons for using readily available, well-known, and understood exploits: new
vulnerability discovery and subsequent exploit development for that vulnerability is expensive.
When trying to maximize profi t, businesspeople try to minimize research and development. As
a profi t-seeking business, cybercrime is no diff erent from any other profi t-seeking enterprise.

Along with the fallacy of either unlimited technical capability or zero knowledge comes
another: it is widely believed that every vulnerability/exploit pair is equally valuable to every
actor. As I demonstrated in a series of analyses published on McAfee’s Securing Tomorrow blog
in November 2017,* vulnerabilities fi rst must off er an attacker something of attacker-value that
will advance toward the attacker’s ultimate goal.

My classic example is a buff er overfl ow requir-
ing high privileged access before it can be exercised
(see inset). A buff er overfl ow allows the attacker to
execute code of the attacker’s choosing. However,
having obtained high system privileges, attackers can
already execute code of their choosing. Th ey have
no need to exploit yet another condition. With high
privileges, not only can code be executed, but the
attacker has access to all of the monitoringand

logging capabilities on the system, such that their code can be hidden (with whatever facilities
are available) and persisted through restarts of the operating system. Th ere is no value to further
exploitation of memory; the attacker already owns all memory on the system.

Once an attacker can insert her/him/themself into the kernel, it’s “game over.” Th e attacker
has the run of the system to perform whatever actions and achieve whatever goals are intended by
the attack. For system takeover, the kernel is the target. Th e highest operating system privileges
typically allow access to the kernel. Hence, high privileges generally mean that the system’s kernel
is “owned”—or in the parlance, “pwned”: compromised, under the control of the attacker.

Th e foregoing is basic risk analysis that every security practitioner ought to be able to per-
form. Still, I have seen precious few methodologies for including attacker value in the risk
analysis equation. Th at’s why I like the term “impact” vs. “loss.” Impact is broader, such that
it includes the possibility that an attacker has moved one step closer to their goal rather than
focusing solely on the harm if the attacker should ultimately be successful.

Neither of these fallacies serve defense well, because they are both demonstrably untrue and
create a situation (or mindset, unfortunately rather widely held) that implies that all issues must
be defended against equally well (or worse, “fi xed immediately”!).

* Schoenfi eld and Quiroa, 2017.

This is not a hypothetical example. I
have entered into discussions many
times with security professionals who
didn’t seem to understand the under-
lying lack of attacker value of addi-
tional memory manipulation after an
attacker has gained full control of an
operating system.

The Context of Security Architecture 9

Because few organizations and few systems can be successfully built and maintained to
defend against every possible and imagined attack, the practitioner is thus rendered ineff ective
as a direct result of the two misconceptions expressed above. Th at is, smart engineers will see
through “all or nothing” arguments as technically invalid and impossible. Smart engineers want
to know where to place the most effi cacious defenses; they want to have solid reasons for imple-
mentation before they will agree to implement anything. When a security practitioner insists
upon defenses that seem unreasonable to those who must implement them, then security’s
infl uence has been squandered. I have seen it over and over again; once developers no longer
trust security, they will evade security requirements as often as they can.

Please don’t mistake my meaning. It is possible to make mistakes and then to admit error. In
fact, doing so builds the required trust between security and developers. Th at is very diff erent
from insisting on defenses that have little chance of being tested by real attackers simply because
it feels safer to a security practitioner or because some book or standard said that these defenses
were “always required for every situation.” As far as I know from my 20 years of security prac-
tice, there is no “always” in defenses; each defense is contextual.

It’s just not true that every nation-state cyber army is gunning for every connected person. Th ere
are distinctions, and applying these distinctions allows us to focus on the most likely attacks, at the
most likely levels of sophistication, from actors who have readily observable levels of risk tolerance
and who will expend varying levels of eff ort to achieve goals. Th e astute defender usually needn’t
pay attention to everything, all the time—which is in any case an impossible charge (see inset).

If I pull my fi ve threat actor attributes together into a set of four attack pre-conditions, I
come up with the following:

• Th ere must be active, motivated threat agents who are interested in attacking systems of
the sort under assessment.

• Th e attack methods required must lie within the technical capabilities of the attacker and
be well enough understood by the attacker to be useful.

• Th e attack must not expose the attacker to negative consequences beyond the attacker’s
tolerance for exposure.

• Th e eff ort needed to complete the attack must
be less than the expected rewards of success.

Still, and nonetheless, if successful compromise
by an attacker has no impact or loss to the owner of
the system—the organization whose goals the sys-
tem is intended to further—or the system’s users,
then there can be no risk. Without impact, there
can be no risk to an organization, even in the face of
an easy-to-exploit condition.

In the foregoing discussion, three often over-
looked attributes of an attack emerge:

• Impact
• Attacker value
• Required eff ort

Except perhaps defenders whose adver-
saries include dedicated nation-state
actors. For this select set, the defender
must implement as much as possible,
knowing that every defense will likely
eventually fail against the onslaught
of highly resourced and sophisticated
adversaries. The concept in this case is
to slow the attacker down sufficiently
that there may be time to catch the
attack as it unfolds. In addition, each
defense should add detail to the
emerging picture of the attack, even
as it may fail.

10 Secrets of a Cyber Security Architect

Th e fi rst two, impact and attacker value, are not necessarily equivalent, although sometimes
that which an attacker intends is, in fact, the impact to the victim: bank accounts drained,
services disrupted. Sometimes, though, the relationship between the value of an exploit and the
attacker’s ultimate goal is more tenuous.

Consider the formation of the Mirai camera botnet* that was used to disrupt Internet com-
munications through a DNS service distributed denial of service (DDOS) attack. Compromise
of each Mirai camera quite likely was not even noticed by the camera’s owner. Th e camera
appeared to be functioning in whatever capacity for which it was installed.

Although the controller of the botnet (the “attacker”) could capture images from cameras
and may very well have, there is no indication that owners of the cameras were particularly
inconvenienced, even during the DDOS attack.

Th e victim of the attack seems to have been a company called DYN, whose DNS services
were disrupted. Alongside DYN were some users of a few major Internet services in select
regions. Very likely, some of those who couldn’t access FaceBook® during the attack owned one
or more of the cameras causing the attack.

Still, the loss of trust in DYN’s services and lost advertising revenues to Facebook are the
organizational costs, while inconvenience from prevention of use of services would be another
impact. Th ese are quite disconnected from compromise of tens of thousands of Mirai’s under-
lying Linux® operating system—which was the attacker value: controlling thousands of Internet-
connected Linux devices.

To focus on either impact or attacker value in isolation without considering the other attri-
butes paints an incomplete picture. We must understand whether an attack scenario will help
advance the attacker’s goals. And, we also must consider whether attacker success will aff ect
something that system stakeholders care about protecting.

Th e third item above, “required eff ort,” can often help us to understand the attacker’s work/
reward ratio. How much is a successful attack going to deliver for the eff ort?

For exploits that require a great deal of setup and perhaps are only a stepping stone, the
reward has to justify the entire set of actions. Plus, if any of the preconditions are generally
unknown to attackers, they will need time to discover these for themselves (unless all the neces-
sary steps and preconditions get published in a research paper).

In the Mirai camera case, the eff ort was next to nothing: the default password was well
known. Th e password was used via a well documented protocol (SSH) to access the camera at
high privilege. Setting up the botnet was only a matter of discovering eligible targets [At which,
it must be said, attackers, professional bug hunters, penetration testers, and security researchers
are all very good. Th ese all use an intersecting and constantly improving suite of tools, tools
which are readily available, often open source].

In contrast, the WiFi authentication attacks named “KRACK Attacks” (Key Reinstallation
Attacks) discovered by Mathy Vanhoef, published in October of 2017,† require fairly deep
understanding of the intricacies of WiFi’s WPA2 key interchanges. As I wrote in my blog just
after publication of the new technique:

“However key reinstallation depends on either working with the inherent timing of a Wi-Fi
during a discreet, somewhat rare (in computer terms) exchange or the technique depends upon

* Fruhlinger, 2018.
† Vanhoef, 2017.

The Context of Security Architecture 11

the attacker forcing the vulnerable exchange through some method (see below for examples).
Both of these scenarios take a bit of attacker eff ort, perhaps more eff ort than using any one of
the existing methods for attacking users over Wi-Fi?”*

Whenever a new attack’s value overlays existing, well-known, perhaps already weaponized
eff orts, then the attack’s eff ort versus gain equation becomes important. Is the new attack
method easier or harder? Is it more easily coded into a repeatable, automated form (“weapon-
ized”)? Is it harder or easier to detect? Does the new method extend in some way the reach of
the attacker?

Attacker eff ort to pull off a successful KRACK seems to have been greater than the use of any
number of other, readily available methods. So far (up to this writing), KRACK doesn’t seem to
have received much threat actor usage, as interesting as it may be from a computer science and
security perspective. Of course, such research can lead to much tighter security implementa-
tions, which is precisely what has happened in this case; my thanks to Mr. Vanhoef for excellent
research.

Th e foregoing examples, I hope, help to clarify dimensions that can be used to understand
attackers and how they work, as well as to analyze and qualify issues as they arrive—these activi-
ties, I believe lie within the expertise that security architects must master.

As we consider diff erent threat agents, their typical methods, and most importantly the goals
of their attacks, I hope that you’ll see that some attacks are irrelevant against some systems:
these attacks are simply not worth consideration. Th e idea is to fi lter out the noise such that the
truly relevant, the importantly dangerous, get more attention than anything else.

An astute reader might question why I have proposed yet another threat system?
Th e answer is simple: extant methods such as the Diamond Method,† MITRE’s CRITS,‡

and the UCO ontology,§ to name a few, are focused on the problem of analyzing artifacts of an
attack or an attack campaign.

Th ese existing approaches are useful, certainly; I encourage readers to follow the references.
Th ere’s a great deal to be learned from the study that’s been put into helping analysts fi gure out
what threat actors are doing and why. An attack might be a singleton, perhaps highly targeted,
or it might be one part of a campaign against numerous targets. When reacting to a potential
attack, and for researchers who are trying to attribute attacks to particular actors, graphing
malware samples, targets, period of attack, originations, etc. (please see any of the references,
above) will be critical.

But for security architecture, it is suffi cient, I believe, to know that such attacks occur and
to generalize about what diff erent classes of attackers seek. Th at is the knowledge set that is
wielded to assess the potential for successful compromise:

• What does the attacker ultimately want to achieve?
• What are the attacker’s methods, both known and probable?
• How are the attacker’s methods applied to vulnerabilities, both known and potential?

* http://brookschoenfi eld.com/?tag=kracks-attacks
† http://www.activeresponse.org/wp-content/uploads/2013/07/diamond.pdf
‡ https://crits.github.io
§ https://github.com/ucoProject/UCO

http://brookschoenfield.com
http://www.activeresponse.org
https://crits.github.io
https://github.com

12 Secrets of a Cyber Security Architect

• How will a successful attack aff ect assets, users, owners, and ultimately the organization
that must be protected?

• What steps can be taken to thwart attack? Th at is, what are the best defensive measures
against likely attacks?

Th ese are the questions that need to be answered by security architects. We have to be con-
versant with those attacks that will be levied against systems under analysis, and the sorts of
defenses that have been eff ective against such attacks. Th is is a set of knowledge that overlaps
something like MItre’s CRITS, but which must do two diff erent things:

1. Attacks must be grouped into methods that obtain attacker intermediate or ultimate
goals and their targets.

2. Th e security architect makes an educated guess, as highly informed a guess as possible,
about what might happen; security architecture is meant to be proactive—before attack,
not during or after.

Th ere is guesswork involved—hopefully before entering the real world of probing for cyber
weakness—that is, before attackers begin to probe the system under analysis. Plus, threat modeling
will be improved markedly through a feedback loop between the informed guesses used during the
threat modeling analysis and validation (or not) of the guesses by penetration testing (see inset).

Th reat modeling and penetration testing might
be considered bookend techniques for a robust and
mature software security practice. Th reat modeling
(really, any and all architecture analysis for security,
whatever it may be called, started at an early stage of
structural conception) is an up-front analysis meant
to strongly infl uence the structure (architecture) and
design of systems as they are being built and imple-
mented. Penetration testing “proves” the security
posture that was intended to be built.

Can you perhaps see how these two activities would
infl uence each other? Penetration testers, at the very
least, must understand the visible and accessible archi-
tecture of a system in order to probe its defenses and
identify its weaknesses. If weaknesses are found, then
the threat model must be updated to account for any missing defenses that then can be added.

Penetration testers act as a proxy for real-world adversaries. Hopefully, before the system is
exposed to adversaries, penetration testers can fi nd any holes in the required defenses so that
those holes can be plugged enough to suffi ciently resist attacks by those who intend to damage
the system and/or its owners.

Th reat modelers—that is, security architects—must understand attackers, their tech-
niques, and their goals (both short-term and ultimate). Th ese so-called “guesses” must be
made suffi ciently accurately such that defenses will be built as the system is being built.
Th is early analysis is an attempt to avoid so-called “bolt-on” additions of security defenses
after implementation, or worse, after go-live, or worse still, after compromise. “Built-in” is

These two processes—threat model-
ing and penetration testing—are too
often conducted by separate entities
who are not working in concert. It
was Eoin Carroll, in his capacity as a
Senior Security Architect at McAfee,
who helped me to understand the
importance of tying these activities
tightly together. Threat models can
and should be proved through testing
of many sorts. Please see Chapter 9
in Core Software Security for more
about the use of various software
security testing techniques.

The Context of Security Architecture 13

much cheaper than bolt-on. Built-in will presumably fi t the overall plan of the system (its
architecture).

Hence, the foregoing is the purpose of my high-level tables; they provide a quick reference
frame for making stronger guesses.

Table 1.1 Summarized Threat Attributes

Threat Agent Goals
Risk

Tolerance Work Factor Methods

Cyber criminals Financial Low Low to medium Known proven

Industrial spies Information and
disruption

Low High to extreme Sophisticated and
unique

Hacktivists Information,
disruption, and
media attention

Medium to
high

Low to medium System admini-
stration errors and
social engineering

Table 1.1, copied from Securing Systems, and its completion in Table 1.2 are meant to assist in
the previously described process of analytical educated guessing (see inset). Security architecture
should be applied before the system is completely implemented, if possible, while there is still
room for change (to account for new defenses). Th us, the analyst is, in my humble opinion,
greatly aided by bearing in mind just who will attack, why, and what techniques they are likely
to employ in their eff orts. Since these are (highly) educated guesses, it is, again, in my humble
experience, not necessary to fully understand each attacker’s strengths and weaknesses in detail;
a stereotypic picture of types of attackers is generally all that is required, such as in the tables
presented herein.

Penetration testing against a complete or nearly complete system can then test the security
architect’s guesses, as my friend and colleague Eoin
Carroll likes to say. Eoin has shown me that there’s a
natural feedback loop between a security architect’s
threat model and a subsequent penetration test. Th e
penetration test can prove that the threat model has
been thorough enough. Or, if it has not, whatever
penetrations (that is, successful attack tests) have
occurred must improve the threat model.

In Securing Systems, I examined in some depth three types or classes of threat agents:

1. Cyber criminals
2. Industrial spies
3. Hacktivists

I did not complete the matrix, because Securing Systems was meant to be as much a series of
exercises in threat modeling analysis as a defi nitive work on security architecture knowledge and
patterns. I left the remainder of the matrix as an exercise for the reader.

In Securing Systems, I dive deeply into
the threat modeling process, hope-
fully putting flesh onto the bare bones
laid out in this book. Readers are
encouraged to peruse any of the six
full system analyses contained in that
work for more information.

14 Secrets of a Cyber Security Architect

As I began to incorporate some of the new mate-
rial that I developed from Securing Systems into my
classes {see inset next page], I brought the exercise of
building a threat agent matrix as a part of the course-
work. Very quickly, class participants requested a
completed matrix.

In my classes, I hand out the matrix after each
team has completed their very own threat agent
attribute table for themselves, and after each team
has presented their matrix to the other teams.
Th e exercise seems to be quite powerful, in that
it gets everyone in the class thinking about who

Table 1.2 High-Level Threat Agent Attribute Matrix

Threat Agent Goals
Technical

Ability
Risk

Tolerance
Work
Factor Activity Level

Cybercrime Monetary Low (known
proven)

Low to
medium

Low Very high,
continual

Industrial
espionage

Information Medium to
medium-high

Low Medium Low. For enter-
prises, medium

Nation-states Information
disruption

Very high Very low Very high Medium but
constant

Law enforce-
ment/gov-
ernment
compliance

Compliance
information

Medium None—they
are the law

Medium Intermittent

Insider Monetary Varies Low None Occasional

Insider Revenge Varies Very high None Occasional

Usage abusea Unauthorized use Low Low Low Constant

Hacktivists Media attention
for cause

Low to medium Used to be
high, now
much lower

Medium Intermittent

Hackers Status Often very low Low Low Low

Security
Researcher

Career
enhancement

High None High Medium

a I’m indebted to my students who added this important adversary, users who seek to obtain more services
than those for which they’ve contracted. Users are not in the same technical category as cyber criminals,
though their acts may be criminal, depending upon the jurisdiction. They aren’t generally making a living
through their attempts to enhance their services. They often simply feel entitled to “more.” Consider
abusers seeking more content streaming than that for which they’ve paid.

Damilare Fagbemi, Senior Security
Architect at Intel, Inc., helped refine
the third version of the threat mod-
eling class that I continue to give.
Damilare delivers a similar class for
Intel. We regularly discuss our various
teaching discoveries and challenges.
Damilare’s continuing support has
been critical to whatever success my
threat modeling classes achieve. His
contributions remain vital, not just to
our classes, but to the industry as a
whole.

The Context of Security Architecture 15

their adversaries are and what are their typical attributes. Th e very act of considering these
problems sets up participants with the correct mindset to play adversary to systems under
consideration.

Because the exercise has proven so eff ective, I’m quite hesitant to put a completed threat agent
matrix into a published work. Th e matrix has to be a “living” document; the cyber adversary
threat landscape is dynamic and constantly changing. Classes of actors and their typical attri-
butes are going to change over time. In no way should Table 1.2 be considered canonical.

Plus, your experience with your adversaries may be diff erent than mine. Please take Table 1.2
as a suggestion on how this problem might be approached, an attempt to build a high-level
picture of types of threat actors, what each type’s stereotypical goals are, and something about
their capabilities and tolerances. Please do not take my threat agent matrix as gospel. Instead,
treat the matrix as a pointer, as an exercise in assigning some order for a dynamic and somewhat
opaque problem space. Make your own table; decide upon attributes that bring order to your
threat landscape.

1.2 Useful Exploits Don’t Die

In fact, it may be said that, “Old exploits don’t die, they just fade away,” with ever diminishing
use. Unfortunately, as a defender, one can never toss an aging and seemingly forgotten exploit
technique into the dustbin of history. Attackers will use anything at hand—old, new, whatever.
Just because many target systems have been upgraded to plug a vulnerability doesn’t imply that
there aren’t existing systems that are still vulnerable. For many attacker goals, a step forward
may be achieved via a single, vulnerable system.

Importantly, not much seems to completely disappear from the Internet. Old machines,
running long unsupported, end-of-life software get sold, donated, or given away. Th ese sys-
tems still remain connected somewhere, and thus remain potential victims of exploits suppos-
edly long past. Th e grim reality is that these systems and their pirated knockoff s make up some
part of the complete Internet demographic, often being used in poorer areas and/or by less
knowledgeable people.

It may be impossible for users’ systems at the bottom of this chain of reuse to fi x the existing
vulnerabilities on their systems since much or even all of the software on the systems may be
past support—long past. Th at is, the makers of the software no longer fi x issues, even newly
discovered issues. Th e owners of the systems are often just out of luck.

Th e nasty truth of this situation is that there always remains a vulnerable population against
whom old exploits may successfully be employed. So, why should the builders of exploit kits
(“EK” in security parlance) remove old exploits? Th ere’s no compelling reason to.

Th us, EK are additive. New exploits are added, but old ones are not removed. EK are the
workhorses of attackers; some EK are maintained by the developers of the adversarial world.
[Some EK are maintained by security researchers for the benefi t of researchers and penetration
testers. Th at does not prevent these EK from also being used by adversaries.] Th e developers
may not use their kits against victims; their business model is as a support to actual attackers.
Attackers well supplied with already programmed—that is, pre-canned, also called “weapon-
ized”—exploit code are then freed up to concentrate on their attack campaigns rather than
mucking about identifying code to exercise particular vulnerabilities.

.1

16 Secrets of a Cyber Security Architect

Attackers work within their own rich ecosystem of researchers, developers, service off erings,
consultants, etc., which mirrors the legal software business ecosystem. It’s a strange and com-
plex digital world that we live in.

1.3 Everything Can Become a Target

I’ve been declaring for years that, “whatever can be
engineered by humans can be reverse engineered by
humans.” Th at is, in this context, whatever protec-
tions we build can ultimately, with enough resources,
time, and eff ort, be undone (see inset). Th is is an
essential piece of the probability puzzle when calcu-
lating or rating computer security risk. Th e fact that
the attackers can learn, grow, and mature, and that

they will rapidly shift tactics, indicates a level of heuristics to the defense of systems: expect the
attacks to change, perhaps dramatically.

A (hopefully) informative example of the above truism might be taken from a pair of proces-
sor (CPU) issues named Spectre* and Meltdown.†

As Adam Shostack, author of Th reat Modeling: Designing for Security,‡ so succinctly put it:
“Th e back and forth of design and critique is not only a critical part of how an individual design
gets better, but fi elds in which such criticism is the norm advance faster.”

Th e Spectre/Meltdown issues are the result of just such a design critique process as Shostack
describes in the pithy quote given above (see inset).

Let’s look at some of the headlines from before
the offi cial issue announcement by the researchers:

Th e Register: Kernel-memory-leaking Intel processor
design fl aw forces Linux, Windows redesign.§

Wired Magazine: A Critical Intel Flaw Breaks
Basic Security for Most Computers.”¶

Th ere were dozens of these headlines (many merely repeating the fi rst few, especially, Th e
Register’s), all declaiming a “fl aw” in CPUs. I want to draw the reader’s attention to the word
“fl aw.” We shall dig into the applicability of that designation to these particular issues in order
to highlight a constructive dialog that should occur around designs as our understanding of
the design’s security posture matures over time. Th e Register reporting was based largely upon
speculation that had been occurring among the open source community supporting the Linux
Kernel following a couple of changes that had been made to kernel code. It was clear that
something was amiss, likely in relation to something in CPUs; concerned observers were
guessing what the motivation for those code changes might be.

* Kocher, P., Genkin, D., Gruss, D. et al., 2018.
† Lipp, Schwarz, Gruss et al., 2018.
‡ Shostack, 2014
§ Leyden and Williams, 2018.
¶ Greenberg, 2018.

My assertion lies at the heart of modern
cryptography. Cryptographic strength
is measured in “work-years” to decrypt
without the keying materials. The
assumption being that there is no
encryption that cannot be undone,
given sufficient time and resources.

In my humble experience, Adam is par-
ticularly good at expressing complex
processes briefly and clearly—one of his
many gifts as a technologist and leader
in the security architecture space.

The Context of Security Architecture 17

It may help to step back just a moment from Spectre/Meltdown details to see how a
report of issues is typically (though far from always) handled. One approach is known as
“responsible disclosure.” But not all researchers believe in responsible disclosure (more on
that below). Th e supposedly “responsible” process involves embargoing (preventing from
inadvertent revelation) the existence of the issues and their technical details until a fi x can be
readied by those responsible to produce fi xes. Th at is, issues are to be kept secret until users
can be protected.

If the facts of the issues’ existence—or worse, the technical details—are made known ahead
of the availability of a fi x, then attackers have a terrible advantage. Attacks can proceed without
even the hope of a direct defense. Hence, the “responsible” in “responsible disclosure”: don’t
give attackers any help.

How anyone could argue with the logic of responsible disclosure is beyond me, frankly,
though I’ve listened to arguments against it. Th ese make no sense to me, except from what
appears to be a self-righteous and/or completely disconnected perspective. “Do no harm” is one
of my main aspirational dictums in life. However, there are those who believe otherwise, who
believe in immediate, “zero day” disclosure, users’ protections be damned.

Th ere appears to me to be some sense that so-called “full disclosure” is the only weapon
researchers have to somehow force software makers to deliver fi xes. Having lived on the other
side of that argument, I can assure my readers (at least) that any honest software maker (I
wouldn’t work with dishonesty) often has many business drivers with which to contend. Plus,
not every fi x is a few lines of code. If a major product needs to be redesigned, there isn’t any way
to deliver a “fi x” immediately. Spectre and Meltdown actually fi t into this case: they are artifacts
of design decisions not easily remedied with a few lines of code.

Th ere is so much arrogance on each side of this debate that I cannot see a reasonable solu-
tion emerging any time soon. A few researchers routinely disparage developers as incompetents
whose software shouldn’t be made available—even comparing developers to dogs (yes, that has
happened at major security conferences). Some on the other side routinely disparage legitimate
and highly valuable research as the product of a few “yahoos” who lack a moral compass or are
even “criminals.” Th ere seems no likely meeting of minds between these poles.

I’ve set out the context in which researchers and designers exist in order to frame the impor-
tant dialog between security research aimed at discovering new attack techniques and the
designers of the systems and protocols upon which that research is carried out. As Adam noted
so wryly, achieving solid designs, even great ones, and most importantly, resilient designs in the
face of omni present attack requires a dialog, an interchange of constructive critique. Th at is
how Spectre and Meltdown were discovered and presented.

Neither of this collection of (at the time of announcement) new techniques involved exercis-
ing a fl aw—that is, a design error; in other words, the headlines quoted just above were errone-
ous and rather misleading [although salacious headlines apparently increase readership and thus
advertising revenue. Hence, the misleading but emotion-plucking headlines].

Speculative execution and the use of kernel mapped user memory pages by operating systems
were intentional design choices that had been working as designed for more than 10 years.
Taken together, at least some of the increases in CPU performance over that period can directly
be tied to these design choices.

Furthermore, and quite importantly to this discussion, these design choices were made
within the context of a rather diff erent threat landscape. Th at is, consider my matrices above.

18 Secrets of a Cyber Security Architect

Some of the actors didn’t really exist, or at least, were not nearly as active and certainly not as
technically sophisticated circa 2005 as they are at the time of this writing (2019).

If I recall correctly (and I should be able to remember, since I was the technical lead for
Cisco’s web infrastructure and application security team at that time), in 2005, network attacks
were being eclipsed by application-focused attack methods, especially web attack methods.

Today, web attacks are very “ho, hum,” very run of the ordinary, garden variety. But in 2005,
when the fi rst speculative execution pipelines were being put into CPUs, web applications were
targets of choice at the cutting edge of digital security. Endpoint worms and gaining entrance
through poor network ingress controls had been security’s focus up until the web application
attack boom (if I may title it so?). Th e web application was fast displacing these concerns as
attackers shifted to targets that were always available via the Internet.

Indeed, as we learned at the time, attacks hidden within web application messages might get
shuttled through applications to richer internal and backend systems, as web front ends were
being attached to existing backend resources. It took a few successful compromises to under-
stand that a web application that passes data through defenses to other systems has to act as the
“fi rewall”—the message protection layer for those secondary and tertiary systems laying behind
web layers, perhaps deep within the supposedly protected layers of an organization’s network.

In other words, the threat landscape changed dramatically over the years since the initial
design of speculative execution CPUs, as it must continue to evolve. Alongside the changes in
types of attackers as well as their targets, attacker and researcher sophistication has grown, as
has the available toolset for examining digital assets—that is, systems, software, hardware; 2018
is a diff erent security world than 2005. I see no end to this curve of technical growth in my
crystal ball.

Th e problem is, when threat modeling in 2005, one looked at the attacks of the past, those
of moment, and tried to project from this knowledge to those of the foreseeable future. Ten or
12 years seems an awfully long horizon of prescience, especially when considering the rate at
which technical change continues to take place.

Still, as new research begins to chew at the edges of design, I believe that the wise and
diligent practitioner revisits existing threat models in light of developments. If I were to fault
the CPU and operating system makers whose products are subject to Spectre or Meltdown, it
would be for a failure to anticipate where research might lead as research has unfolded. CPU
threat modelers could have taken into account advances in research indicating unexpected uses
of cache memory that contains remnants of a speculative execution branch. Such examination
of the unfolding train of research might very well have led those responsible for updating CPU
threat models to a potential for something like Spectre and Meltdown.

Was there such research? Indeed, there was, with publications starting three years previous
pointing perhaps somewhat indirectely toward the new techniques. Spectre and Meltdown are
not standalone discoveries but stand on a body of CPU research that had been ongoing and
published regularly for several years.

As I wrote for McAfee’s Security Matters blog in January of 2018, “Meltdown and Spectre
are new techniques that build upon previous work, such as ‘KASLR’ and other papers that
discuss practical side-channel attacks. Th e current disclosures build upon such side-channels
attacks through the innovative use of speculative execution . . . An earlier example of side-
channel based upon memory caches was posted to Github in 2016 by one of the Spectre/

The Context of Security Architecture 19

Meltdown researchers, Daniel Gruss.”* Reading these earlier papers, it appears to me that some
of the parent techniques that would be used for the Spectre and Meltdown breakthroughs could
have been read (should have been read?) by CPU security architects in order to re-evaluate the
CPU’s threat model. Th at previously published research was most certainly available.

Of course, hindsight is always 20/20; I had the Spectre and Meltdown papers in hand as I
reviewed previous research. Going the other way might be more diffi cult.

Spectre and Meltdown did not just spring miraculously from the head of Zeus, as it were.
Th ey are the results of a fairly long and concerted eff ort to discover problems with, and thus,
hopefully, improve, the designs of modern processors. Indeed, the researchers engaged in
responsible disclosure, not wishing to publish until fi xes could be made available.

To complete our story, the driver that tipped the researchers to an early, zero-day disclosure
(that is, disclosure without available mitigations or repairs) were the numerous speculative (if
you’ll forgive the pun) journalism (see headlines quoted above) that gained traction based upon
misleading, at best, or simply wrong conclusions. Claiming a major design “fl aw” in millions of
processors is certainly a reader-catching headline. But, unfortunately, these claims were vastly
off the mark, because no fl aw existed in the CPU or operating system designs.

While it may be more “interesting” to imagine a multi-year conspiracy to cover up known
design issues by evil CPU makers, no such cover up and conspiracy appears to have taken place.

Rather, in the spirit of responsible disclosure, the researchers were waiting for mitigations to
be made available to customers; CPU manufacturers and operating system coders were heads
down at work fi guring out what appropriate mitigations might be, and just how to imple-
ment these with the least amount of disruption (see
inset). None of these parties was publicly discussing
just why changes were being made, especially to the
open source Linux kernel.

Which is precisely what one would expect:
embargo the technical details to foil attackers and
to protect users. Th ere is actually nothing unusual
about such a process unfolding; it’s all very normal
and typical, and unfortunately for news media, quite banal. [Disclosure: I’ve been involved in
numerous embargoed issues over the years.]

What we see through the foregoing example about Spectre and Meltdown is precisely the
sort of rich dialog that should occur between designers and critics (researchers, in this case).

Designs are built against the backdrop and within the context of their security “moment.”
Our designs cannot improve without collective critique among the designers; that such dialog
remains internal to an organization, or at least a development team, is essential. I have spoken
about this process repeatedly at conferences: “It takes a village to threat model.”

But, there’s another level, if you will, that can be achieved for greater constructive critique.
Once a design is made available to independent critics—that is, security researchers—research
discoveries can and, I believe, should become part of an ongoing re-evaluation of the threat
model—that is, the security of the design. In this way, we can, as an industry, reach for the
constructive critique called for by Adam Shostack.

* Gruss, Maurice, Fogh et al. 2016.

As a part of my role at the time, I was
privy to the embargoed details of
Spectre and Meltdown before the
researchers’ disclosure. Hence, I was
aware of how engaged at least one
CPU manufacturer was in developing
fixes for the issues.

20 Secrets of a Cyber Security Architect

1.4 Warlords and Pirates

“A former FBI offi cial says the sprawling Russian black-market forum for illegal hacking and
fraud services known as Infraud Organization—its motto was “In Fraud We Trust”—was oper-
ated like a ‘dark-web cousin of major commercial marketplace sites.’ Th e offi cial said it shows
one thing: that we’re clearly not just fi ghting solo hackers at this point.” *

Cybercrime, as I have been saying for some time, is a business. Although there are single
practitioners, lone wolves, much of the activity is a part of larger crime organizations’ busi-
ness model.

No matter how comfortable any organization is with its current security posture, everyone
should remember that sophisticated adversaries will be studying current practices for weaknesses,
continually poking at these on a regular basis. In other words, attackers are intelligent and adaptive.

Th e wise security practitioner will also keep abreast of the development of analysis tools. In
my fi rst response to a security incident (I think it was circa 1992 or 1993), there were virtu-
ally no tools that might be applied beyond those used to develop software, source and assem-
bly debuggers, binary fi le editors, etc. I ended up removing a worm by manually rewriting a
Macintosh executable’s process jump table (the off sets in the binary fi le at which various func-
tions happened to be stored after the linking process). Luckily, by that time, I possessed enough
computer science understanding to fi gure out how the worm was propagating and how to stop
the propagation.

Today’s toolset makes my 1993 collection look like paleolithic stone tools by comparison.
One can stop a binary for which one has no source code upon any logic condition. Tools will
attempt to decompile the code back to a reasonable approximation of the original source code.
One can inject code into the binary and run scripts based upon data conditions, poke and prod
the code and data nearly as one wishes. It’s a completely diff erent ballgame, aff ording attackers
and researchers far more access, far more information than we dared to dream might be possible
in the foreseeable future back in 1993.

We felt lucky enough when we could get source debugging to help us fi gure out coding
problems. Today, that’s almost a given, even if the decompilation is merely an approximation.
Th e available tools are rich in functionality and deep in analysis in the hands of a skilled techni-
cian. To paraphrase myself, “Any software that can be engineered by humans can be reversed by
humans.” Th ose of us on the defensive side must understand the level of adversary sophistica-
tion brought against our defenses.

 Given a rich set of available resources, it should be no surprise that some humans would wish to
take advantage of others. Humans have been taking advantage of other humans ever since the fi rst
band of humans fi gured out that stealing from their neighbors, and quite possibly, getting those
neighbors to do much of the dirty work of life (we call it “slavery” today) was easier than eking
out a living through some labor-intensive combination of hunting, gathering, horticulture, animal
stewardship—whatever the local mix might be. I’ll opine that thieving is as much a human activity
as is toil; humans seem to me to be quite good at inventing a rationale as to why theft has moral
validity: “We’re civilized, they aren’t,” “We’re civilizing them,” “We’re smarter,” “We’re ‘humans’,
they aren’t”—pick your favorite justifi cation; they’ve all been tried. Cybercrime seems to be yet
another in the long series of opportunistic, if highly amoral (to my sense), manner of getting.

* Vaas, 2018.

The Context of Security Architecture 21

To me, cybercrime seems precisely analogous to piracy. Or rather, cybercrime may very
well be the 21st century’s version of piracy. Cybercrime attacks have the same opportunistic,
hit-and-run quality. Th e Internet is a common resource, big enough to off er a similar type of
anonymity as was once provided by the oceans. Th ere are safe-haven localities that are loath
to prosecute cyber criminal activity, just as there once existed pirate cities, ports, enclaves, and
islands where stolen goods could be traded and some much-needed rest and relaxation could
be had for sea-tired crews.

Analogously, pirates also formed teams, partnerships, even navies under the command of a
single leader. We have exactly that scenario today: major criminal networks retain cybercrime
divisions. Th ese criminal enterprises can garner signifi cant revenue; it’s big (criminal) business.*†

But cybercrime activity is not limited solely to criminal networks. Or rather, the distinction
between crime for purely business gain and that for national interest is fuzzy at best for some
countries and some gangs.

“Th e North Korean government uses a shadowy network of cyberactors to conduct fi nancial
crimes on behalf of Kim Jong Un’s regime that have attempted to steal over $1.1 billion in
‘particularly aggressive’ attacks on global banks.” ‡

North Korea may be at the far side of a continuum between purely state-sponsored crime
and purely business driven. Still, other countries have made use of purely criminal enterprises,
quasi-governmental groups, and so forth; the picture is indeed fuzzy (see inset). If the attacking
organization is large enough, I think of these as governed by a “warlord”—that is, by a person
or persons who maintain a private, non-governmental army which is used for the enrichment
of the warlord and her/his/their retainers.

Th e upshot for those of us not aligned with a
warlord or pirate navy, not conducting governmen-
tal or quasi-governmental cyber operations, is that
we’re the collateral damage of a very confusing mix
of governments and gangs sometimes operating
independently and sometimes coordinating. Ugh.
It’s not pretty.

Most importantly, these actors have at their disposal:

• Weaponized attack code
• Exploit kits (EK)
• A rich and robust vulnerability and exploit development tool set
• A burgeoning knowledgebase on cyber attack techniques
• A fl ourishing marketplace in exploits and cyber attack services

Which all comes together to make a defender’s life “interesting,” at best. Welcome to my
world, and the world of what Gary Berman (entrepreneur and comic book author) calls, Th e
Cyber Heroes, those who’ve dedicated themselves to protecting “us” from becoming further col-
lateral damage in an ongoing cyber war (even if not all involved are state actors).

* Ismail, 2015.
† FBI, 2019.
‡ Cohen, Marquardt, and Crawford, 2018.

The current picture is again analogous
to the famous pirates of the Barbary
Coast during the 17th–19th centuries.
Governments along the North African
Mediterranean coast offered shelter
to pirates or even allowed their own
navies to pirate so long as the tax on
pirated booty was properly paid.

22 Secrets of a Cyber Security Architect

1.5 What Is the Scope of a Security Architect?

Security architecture—that is, the application of information security to systems—may be
called the art of securing systems. As we will see in Chapter 2,* security architecture applies a
particular set of knowledge to systems—relevant attacks and the defenses that will mitigate or,
hopefully, prevent those attacks that seem relevant from succeeding.

1.5.1 Are There Really Two Distinct Roles?

In Securing Systems, I made a distinction between the practice of security architecture as applied
to systems that aren’t to be a part of an organization’s protections and to those that are intended
to form a defense. In practice, this distinction exists, and practitioners sometimes, perhaps
often, specialize in one side of the art or the other. Th at is, security architects might be special-
ists in building an organization’s defenses and reactive structures, the organization’s security
architecture. Alternatively, an architect might specialize in analyzing systems to identify security
needs, security requirements that should be built in order to protect the system and its organiza-
tion’s goals for that system.

For instance, Th e Open Group proposed a number of security reference architectures (see
inset) that directly address an organization’s need for sound advice on how to build a set of
defenses that rest on strong and battle-tested security principles.

As far as I know, Th e Open Group’s only off ering in the system analysis arena is Factor
Analysis of Information Risk (FAIR): a risk standard that can be applied to systems, and really,
any digital security problem.

Risk Must Be Fundamental

Surely, every system analysis for security, threat
model, should be based upon a solid risk methodol-
ogy such as FAIR, which is my personal favorite as
well as the theoretical basis for Just Good Enough
Risk Rating (JGERR),† authored by myself and
Vinay Bansal (Distinguished Engineer at Cisco
Systems, Inc.). JGERR may be thought of as a
quick-and-dirty child of FAIR meant for the dozens
of quick risk ratings that usually come up during
threat modeling.

Whatever approach a security architect chooses to
base risk ratings upon, it must have a fi rm theoretic
basis. Too often, risk is measured by the discomfort
of the analyst, which leads to mushy, inconsistent

* Chapter 3 will provide an analysis of attacks and defenses for a well-known vulnerability, Heartbleed
to put the technical fl esh on the bones of what is presented in Chapter 2.

† JGERR is described in some depth in Securing Systems, Chapter 4.

The last time I checked the progress
of The Open Group’s reference archi -
tectures for security, these had been
integrated into a set of enterprise
reference architectures. I believe that
this is an important step, reflecting
how the enterprise security archi-
tect should approach the problem
of a security architecture: as a key
component of the enterprise’s archi-
tecture—“enterprise” in this use
should be taken as equal to “orga-
nization of sufficient size to warrant
an organization architecture,” which
is a much broader categorization
than the commonly used definition
of “enterprise.”

The Context of Security Architecture 23

risk ratings, which then may propagate into poor organization risk metrics, usually infl ating the
metrics, leading to a sense of an increased, perhaps unreal amount of risk being carried.

Teams subject to poor risk rating methods may “shop” for the best rating, because they don’t
trust the higher, perhaps infl ated ratings. Or, as Jack Jones (author of FAIR) once told me,
executives may feel inclined to accept nearly every risk in the absence of solid and consistent
risk assessment.

Readers can probably draw the line from poor risk rating to organizational distrust of secu-
rity architecture, maybe even all of the security function? Certainly, organizational friction lies
down that slippery slope. As you may see, choice of risk rating methodology is a critical com-
ponent for any mature and robust security practice; Th e Open Group is to be applauded for
standardizing FAIR and making it available to organizations.

Still, risk assessment is only one portion of the security architecture of systems large and
small, of system assessment for security. Since Th e Open Group hasn’t had much help in this
area, the vacuum has been fi lled by materials from the Open Web Application Security Project
(OWASP),* SAFECode,† and similar organizations. Of course, a few practitioners have tried to
set down their thoughts, methods, and experiences for threat modeling in a few books, includ-
ing yours truly (please see bibliography).

I’ve personally lived both of these roles in my career; the distinction exists, but I wonder if
this distinction is more an artifact of organization structures rather than a real divergence in
practice.

Analyzing a discreet system or set of systems performing a particular function indeed requires
a diff erent focus from thinking through the structure of an organization’s entire security imple-
mentation. Still, in both instances, one must consider the sorts of attacks most likely to occur
and how these will be prevented, or if successful, dealt with. Th e art which ties both these
strands together is the art which we have proposed here to lie at the heart of security architec-
ture: attacks and their defenses.

It seems to me that the diff erent specialties in security architecture appear to be more a diff er-
ence in kind, in degree, in scope, rather than some fundamental split in practice. Both analyses
must base themselves fi rmly upon solid risk methodology. Both must understand the desired
risk posture of the organization as well has have a reasonable feel for the amount of risk the
organization is willing to carry (“risk tolerance”).

Again: Attacks and Defenses

For system assessment, one must consider attacks relevant to that system in the context of the
security architecture, if any, that may surround that system. To build a security architecture for
an organization, the security architect must consider the attacks to which any and all systems of
the organization may be subject. Th is organization analysis should be more holistic to the threat
landscape in which the organization exists.

On the other hand, every system analysis must be holistic to that system. Th e details of exist-
ing network protections, incident response capabilities, access controls, etc. will be taken into
account in both analyses, what I called “Mitigations” in the “ATASM” mnemonic (Architecture,

* OWASP.org
† Th e author is a co-author of SAFECode’s Th reat Modeling Guide

http://OWASP.org

24 Secrets of a Cyber Security Architect

Th reats, Attack Surface, Mitigations): the existing
protections. Such protections would be a part of the
organization’s security architecture. I hope that you
see that these two seemingly distinct practices are
really views of the same coin from its diff erent faces.

Th e analysis that leads one to the contextually
relevant attacks, let’s call that “threat modeling”
for the sake of discussion, is best done as an early
part of any development process, as well as being
an ongoing conversation as architectures, designs,
and implementations evolve. Certainly, there is very
little that an architectural risk assessment of a sys-
tem can do if the system cannot be changed (see inset). Consequently, threat modeling is an
activity that starts early in the development cycle.

Patterns, Standards, and Context

Th e art of architecture involves the skill of recognizing and then applying abstract patterns
while, at the same time, understanding any local details that will be ignored through the
strict and infl exible application of patterns. Any unique local circumstances are also important
and will have to be attended to properly. It is not that locally specifi c details should be com-
pletely ignored; rather, in the interest of achieving an “architectural” view, these implementa-
tion details are overlooked until a broader view can be established. Th at broader view is the
architecture.

Th ere is a dance between adhering to standards and fostering innovation. New technolo-
gies come along that disrupt standards. Th ese innovations may provide signifi cant benefi t if
adopted. Usually, there are early adopters who help prove the usefulness and benefi ts (or not)
of new technologies. Th e successes of the early adopters help to drive adoption through an
organization.

“Computer security exists as an attribute, an emerging property (or not!) of systems that
exist within an extremely rapidly changing context, that is, digital technology. It is simply too
diffi cult to anticipate all circumstances, external and internal, in a policy at this time. Rather,
policy becomes the bedrock to which many systems can mostly conform. Th e standards that
set out how the policy will be enacted create an easy path, a reasonably secure path that can be
followed. At the same time, policy and standards help to defi ne areas and situations that will
require creativity—those systems, connections, technologies that are necessary, but which can-
not conform: the exceptions to standards. Sometimes, these exceptions will reduce the security
posture. Sometimes, exceptions will off er an opportunity to mature security in new ways or
open opportunities to adopt new technologies.” Securing Systems, p. 354

Imagine an organization that insists upon strict adherence to a standard of one application
server per application. Th at was a very durable model in the mid-2000s. Th at model forced
an operating system and application server sandbox around each application (or set of inter-
operating “applications”). In the days before proven web application fi rewalls and in the con-
text of poor understanding by developers of secure web coding techniques, strictly separating

I do not mean to imply that the risk
assessment portion of a threat model
of a production system that has no
further intended changes is useless.
Risk assessment can help an organiza-
tion build a picture of risk “debt”—the
risks that have already been taken and
are carried forward. At the very least,
building this risk knowledge may help
make better decisions about what fur-
ther risk to add to existing risks car-
ried forward.

The Context of Security Architecture 25

applications at a level below the application code made a lot of security sense. At the very
least, a compromised application couldn’t disrupt other applications; the sandbox prevented the
attacker from breaching each application’s sandbox boundaries.

One of the downsides engendered by an application server sandbox was that providing each
single application with its own, individual application server required a rather large investment
in virtual machines on top of signifi cant physical server resources. Th at was the cutting-edge
model at the time. Th ere was no cloud into which to expand; clouds as we now know them
didn’t exist.*

If an organization insisted upon never allowing any new technologies beyond the model
described above, that organization would have missed containerization completely. DevOps
tooling tends to be built around containers and/or clouds (which also can off er highly con-
tainerized solutions). Consider just those two developments: Th ey’ve greatly disrupted the
architectures and methods by which we deploy web applications. Th e movement to serverless
architectures is a currently (as of this writing) unfolding disruption.

Failure to account for experimentation with new and disruptive technologies is a massive
error in the service of a surer security path. It is my strong experience and opinion that, along-
side standards that make the “easy path the secure path,”† the mature—actually, the wise—
organization provides for experimentation with new, potentially disruptive technologies and
techniques.

However, the wise security architect will bear in mind that sometimes a developer does not
follow the easy path to security but employs a new technology in a place where it is not needed
or does not really fi t. Th e developer insists upon the use of the inappropriate technology so that
it may be included on her, his, their resume. Th is use case has nothing to do with the fi tness
of the technology or the “easy” path; the use is intended to enhance the programmer’s career.

Identifying an inappropriate application of a technology can be tricky. One of the obvious
giveaways is if the requested technology will have obvious negative eff ects. For instance, many
years ago, when web services using SOAP (Simple Object Access Protocol [XML protocol]) were
in vogue, I found a few teams using them when doing so might add signifi cant performance
degradation. SOAP calls must all occur in ASCII (American Standard Code for Information
Interchange). Binary data must be converted to ASCII for transmission over SOAP and then
converted back to binary after communication. Th at may make perfect sense for transactions
that occur at human pace, but it’s a huge performance hit for data exchanges meant to proceed
as quickly as computers can process them.

ASCII conversion can cause data to balloon up to eight times larger. So, such a conver-
sion should be thought through thoroughly. It’s particularly troubling when both sides of the
web service, client and server, are to be located on the same machine, when the SOAP server
is implementing a simple, atomic Application Programming Interface (API). SOAP services
should be transactional, not atomic, if possible.

Th ese were all red fl ags to me that somehow the proposed design didn’t make sense. After
all, simply linking a library, either statically as a part of the executable or dynamically, would be
orders of magnitude faster. Data could be exchanged with a library in its binary form without

* Or rather, clouds as we use them today were in consideration, a few were being designed.
† As Steve Acheson so sagely advised me many years ago.

26 Secrets of a Cyber Security Architect

any conversions. When reviewing a design that
screams, “there is a simpler, more eff ective way that
is well understood,” the security architect may well
have encountered one of these situations in which
there is another reason (often that cannot be named
safely) for making poor choices.

When my “Spidey sense” is screaming that
something doesn’t make sense, I’ve now learned to
step back from security issues to question what the
reason might be for doing something that obviously
doesn’t make design sense. Quite often, the designer
has ulterior motives, like trying to squeeze in tech-
nologies that will bolster her or his resume.

What does one do in such a situation? I question
directly the choice and my reasons why it appears
to be odd or just plain wrong, why there appears to
be an easier or more elegant solution. Sometimes,
that’s eff ective. But, in some organization cultures
(highly empowered at the team level) there may be
nothing one can do about it.

If reasoning with the team fails, one can always
go up the team’s management chain. Also, the
executives who are sponsoring the development, or
who are the customer, may wish to understand that
I have serious concerns about the way the software
is designed. I’ve won internal awards for exposing

poor design choices (see inset).
As always, analysis and discernment are critical: I don’t want to stop useful experimentation

with new, promising technologies. At the same time, if something doesn’t seem right, I believe
it’s my duty to question choices, even if I must step beyond the scope of security.

At the most essential, all security architecture activity can be reduced to analysis of attacks,
rated by solid risk rating, leading to defenses, as we shall hopefully see in the next section and
throughout this book in various ways.

1.6 Essential Technique

1.6.1 Threat Modeling: An Essential Craft

Attacks and their defenses are the value proposition that security architects bring to the design
and implementation of software—that is, development, engineering, or research and develop-
ment. Over the years, “threat modeling” has gone by various names:

• Architecture risk assessment (ARA)
• Architecture review or security architecture review

It’s one thing to blow the whistle on
a situation that one believes might
expose the organization to poor per-
formance or higher costs. It’s quite
another when dealing with those
who are solely working for personal
benefit. That is, when one is working
with those of low moral standard, who
lack integrity, proceed with caution!
Exposing people of this nature to
management can be tricky; one may
expect such individuals to protect
themselves with every tool they can
muster. An unmask must be thought
through; who protects the person?
Who are my allies and what is their
relation, if any, to the project in ques-
tion? I do try to prevent great harm
from taking place. But I also try to
remember that low-integrity people
may move to something new soon
enough to give me a greater hand
to undo damage, or they may fail of
their own accord. This situation hasn’t
arisen often in my 30+ years in high
tech, but it has come up a few times,
which has been a great teacher about
organization politics.

The Context of Security Architecture 27

• Security architecture assessment
• Security engineering
• [Secure] design review
• Secure design checkpoint
• Security requirements

And quite possibly, a few other terms that are, by now, lost in the mists of time.
Although practitioners are certainly free to disagree with my collapsing all the above terms into

one analysis that in their processes seem quite distinct, I came to realize how threat modeling analy-
sis actually rather completely underlies what appear to be diff erent analyses. Th reat modeling is the
method that practitioners must apply no matter at what point in development a security analysis is
taking place, no matter whether completed or initial or infl ight a project or eff ort may be.

For a couple of years, my duties as a Principal Engineer for software security at Intel®
included sitting on Intel’s software security review panel, SAFE (Security Architecture Forum).
We reviewed projects from initial concept through the completion of the design. At Intel, there
are several review stops for security; more or less the same body of people would engage across
projects and at these diff erent review points during development.

Of course, I was a full participant, attempting to apply my best understanding of security
architecture to each project as it came before the SAFE board. At the same time, as I often do,
I was a participant observer, considering what I heard during the interactions between devel-
opment teams and board members, assessing the effi cacy of our process (or not) as reviews
proceeded. I found the experience of watching my peers—that is, other Principle Engineers—
practice security architecture very enlightening—
not only to refi ne my own craft, but also in stepping
back from the content of the work to observe how
we do what we do. Th e projects ranged across myr-
iad and often vastly diff erent architecture types,
projects at every stage of development, using nearly
every type of software development methodology
(waterfall, Agile, Extreme, etc.) (see inset). SAFE
would typically interact with two to four projects
each week of the year. Th at’s a lot of projects in any
given month, quarter, or year to observe and from
which to learn.

As I watched the SAFE review process unfold, it
became crystal clear to me that no matter at what
stage or in which review point we board members
were with a project, in order to complete the review, we were all threat modeling in our heads,
call the review what you will. Th is was quite a revelation.

What diff ered was the level at which the threat model analysis occurred.
For instance, during an offi cial threat model review, we had to dig deep, to attempt to cover

every credible attack via every reachable attack surface (exposure) and fi nd reasonable, work-
able, implementable defenses that could be built by the team presenting their project.

However, if a project had just been initiated, the level of threat modeling was vastly diff erent.
All we needed was to think through a few gross possibilities in order to derive the very broad

I encourage every serious practitioner
to work at a really large development
organization at least once in a career.
First, one gets to rub shoulders with
some of the very best in each dis-
cipline. Further, one learns how to
meet the challenges of scale: huge
projects combining the work of many
sub-teams, application of security
methods to vastly different develop-
ment approaches, and, perhaps most
importantly, finding the essences that
lie beneath or at the heart of varied
expressions of technique and process.

28 Secrets of a Cyber Security Architect

security requirements and to understand the risk posture that the eff ort would need in its usage
and deployment context.

Th e architecture assessment phase in the Intel Secure Development Lifecycle (SDL) is
intended to identify those eff orts that will require deeper security analysis, while at the same
time passing those eff orts whose security architecture needs will likely be (comparatively) minor.
Th e threat model analysis for this review needs only to determine the credibility of a signifi -
cantly impactful successful attack. One credible attack that might cause Intel’s or the product’s
stakeholders signifi cant harm is all that was required to fl ag the project for further engagement.
Th e analysis technique is threat modeling, nevertheless.

I don’t mean overstate the importance of threat modeling, call it what you will. Rather, as I’ve
written and as I hope that you see in succeeding chapters in this book, security architects must
wield attacks and their defenses as a primary knowledge set that is applied to software systems.
Th reat modeling lies at the heart of the practice of security architecture.

But threat modeling is not the only skill that is applied. Security architects, as I have written,
must fi rst and foremost be architects.

1.6.2 Architecture Is Primary

“I would suggest that architecture is the total set of descriptive representations relevant for
describing something, anything complex you want to create, which serves as the baseline for
change if you ever want to change the thing you have created.”*

I would go further than Zachman to state that understanding, ability to discuss, and potential
change are the benefi ts derived from architecture.

To understand a thing, we must be able to describe it in simple enough terms to grasp it;
to discuss it intelligently, we must be able to name its parts, explain their function and their
interactions. Th at is what architecture aff ords us through the clever and judicious application
of abstraction. I like to explain that architecture is a practice whose main tool is abstraction.

In order to reduce complexity suffi ciently for comprehension, architects abstract structures
for analysis while obscuring detail which may mask underlying structure or which is not rele-
vant to structural comprehension. Th is is abstraction: drawing out some information in favor of
other information that is unnecessary. Identifying and (conceptually) manipulating structures
is the goal; abstraction is the technique of architecture.

Hence, security architects must be skilled in highlighting those structures that have security
implications (typically, functions of a system, its software units of implementation, often called
“components,” and the communications between these structural elements). Like any architect,
we may obscure or elide (leave out) extraneous detail that is unnecessary to understanding and
analysis (the analysis is often threat modeling). By the application of judicious abstraction,
security architects are no diff erent than any other type or level of system, software, integration,
or enterprise architect.

Because the nature of the analysis (attacks and defenses) is diff erent, what structure is
abstracted and what detail eliminated may diff er, even radically, from that which is useful to
* Zachman, 2007.

The Context of Security Architecture 29

architects charged with other aspects of a system’s developing architecture. But the mental pro-
cess is the same, even if the working diagram diff ers.

1.7 Aiming Design Toward Security

Although any particular branch of architectural analysis may be focused on diff erent results,
there is one aspect of the practice of architecture that must be precisely the same: We all have
to have a fi rm and precisely communicable idea about what must be achieved by a system. In
order to architect, we have to know what we are building, what goals we are trying to achieve.

1.7.1 What Is Secure Software?

In the practice of security architecture, we must then understand what software security looks
like. What are the behaviors that secure systems must exhibit? How is a “secure system” defi ned?

Over the years that I’ve been practicing, as I open a discussion about security with develop-
ment teams, I’ve noticed that quite often (not every time, but regularly), team members will
immediately jump to one of four aspects of software security:

• Protection of data (most often via encryption techniques)
• Implementations errors (most often, coding securely)
• Authentication and/or authorization of users of the system
• Network-level protection mechanisms

Th is set of responses has been remarkably stable for the last nearly 20 years, which is interest-
ing to ponder all by itself. Despite the dramatic shift in attacker capabilities and techniques over
the last 20 years—a huge shift in attacker objectives—developers seem to be thinking about
one of the above aspects of the security picture. I don’t know why development has not kept
pace with the expansion of adversarial thinking, but apparently it hasn’t (though, of course, my
evidence here is completely anecdotal and not at all scientifi cally validated).

Lately in my threat modeling classes (and sometimes other presentations), I’ve been polling
my audiences about what jumps fi rst to mind when I say, “software security.” Not surprisingly,
members of my audiences typically fi nd themselves considering one of the above categories
unless a participant has broader security exposure. My informal polls underline a need to estab-
lish a baseline defi nition of just what software security must include, the fi eld’s breadth, its scope.

To address the challenge that development teams often lack a suffi ciently complete picture of
what software security entails, as well as to provide a set of secure design goals, I came up with
the following secure software principles. “Secure” software must:

• Be free from implementation errors that can be maliciously manipulated: ergo, vulnera bilities
• Have the security features that stakeholders require for intended use cases
• Be self-protective; resist the types of attacks that will likely be attempted against the software
• In the event of a failure, must “fail well”—that is, fail in such a manner as to minimize

consequences of successful attack
• Install with sensible, “closed” defaults

30 Secrets of a Cyber Security Architect

Th e foregoing are the attributes that “secure software” displays, to one extent or another, as
it runs. Th ese principles are aspirational, in that no running system will exhibit these behaviors
perfectly; these cannot be implemented to perfection. Indeed, so far as exploitable conditions
are concerned, whether from implementation, from a failure to identify the correct security
requirements, or a failure to design what will be implanted correctly, software, at its current
state of the art, will contain errors—bugs, if you will. Some of those errors are likely to have
unintended security consequences—that is, vulnerabilities allowing adversaries leverage or
access of one kind or another. Th is truism is simply a fact of building software, like it or not.

Th en there is the matter of security context and desired security defensive state: a system or
organization’s security posture. Not every system is expected to resist every attack, every adver-
sary, every level of adversary sophistication and level of eff ort that can be expended (given the
universe of various threat agents; please see my discussion of adversary types elsewhere in this
book as well as in Securing Systems).

Hence, presence and robustness of the above secure software behaviors must vary, system to
system, implementation to implementation.

Still, I expect software to account for the above behaviors, even if by consciously accepting
the risks generated by a considered absence or weakness of one or more of the principles given
above. My software principles are meant to drive secure design decisions, to be goals to reach
for. None of these principles is built as stated. Th ese principles don’t tell you how to protect a
credential that must be held by a system. Rather, from these principles, design choices can be
evaluated. Th ese are guideposts, not design standards.

1.7.2 Secure Design Primer

We know with fair certainty that credentials (secrets) that are placed in the binary executable of
software are relatively easy to uncover, given today’s reverse engineering tools. For commercial
software whose distribution involves execution within third-party environments—say, com-
mercial, off -the-shelf (COTS) software that is run by the purchaser, distributing a secret tucked
away in the static data of an executable—has proven to be a very poor design choice.

Such packaged secrets are routinely discovered by both attackers and researchers. Once held
by an attacker (whether through discovery or published research), the attacker then has the
ability to wield the secret successfully against whatever challenge it was meant to protect. If
there are 10,000 copies of that executable in use, attackers can undo at least some aspect of the
security for all 10,000 of those installations. Unfortunately, this design mistake happens far too
often, with the resulting consequences.

How do our secure software principles apply? If programmers have coded the credential into
the binary with correct language semantics (easily coded—for most languages, this is just a dec-
laration), then there is no “implementation error.” Th is is a design error. It’s a failure to have the
security features that stakeholders expect—that is, credentials have suffi ciently been protected.

Furthermore, attempting to “hide” a secret as static data in an executable isn’t self-protective.
Quite the reverse, given the binary exploration and execution analysis tools that exist today.

Often this design miss assumes that the credential is “safe enough,” so the use of the creden-
tial (which is legal) and the actions taken after the challenge has been passed will not be moni-
tored; there is no failure—the credential is working as expected, but in the hands of adversaries.

The Context of Security Architecture 31

So the “fail well/fail closed” principle doesn’t really apply. It would depend upon the installation
and confi guration sequences of the software as to whether the placement of the credential in the
binary is a “sensible, closed default.”

I hope that the preceding trivial example demonstrates how the software security principles are
meant to provide appropriate targets for deriving a secure architecture. Th e design patterns that
will achieve these results require quite a bit more detail, which then must be applied in context.

A high-level set of secure design patterns and their application can be found in IEEE Center
For Secure Design’s “Avoiding the Top 10 Software Security Design Flaws.”* Th is booklet is free,
under Th e Creative Commons license. (Disclosure: I’m one of the the co-authors.†) Th e design
patterns discussed in the booklet are:

• Earn or give, but never assume, trust
• Use an authentication mechanism that cannot be bypassed or tampered with
• Authorize after you authenticate
• Strictly separate data and control instructions, and never process control instructions

received from untrusted sources
• Defi ne an approach that ensures all data are explicitly validated
• Use cryptography correctly
• Identify sensitive data and how they should be handled
• Always consider the users
• Understand how integrating external components changes your attack surface
• Be fl exible when considering future changes to objects and actors

Each of the design patterns explained in the booklet is meant to fulfi ll one or more of the
software security principles listed above. First, we defi ne how we intend secure software to
behave (secure software principles) and then set out the means through which those aims are to
be achieved (secure design patterns). With software security principles and design patterns, we
know what we are to build when we wish to build “secure software.”

1.8 Summary

We’ve explored the societal context of an unfolding “Computer Age” and the eff ects on the
people in what I call the “connected life.” Th is context points to a need for a general improve-
ment in computer security if we are not to fall prey to cyber pirates, warlords, and armies.
In order to build suffi cient security into software, there exists a specifi c job role: the security
architect. Th is book attempts to address what security architecture practice is, what we do
(essentially, threat modeling) and how we do it, and to off er a few tricks of the trade achieved
through many mistakes and missteps, a great deal of help from brilliant practitioners, and a
lot of diligent practice.

* IEEE, 2014.
† Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny Dhillon, Christoph Kern,

Tadayoshi Kohno, Carl Landwehr, Gary McGraw, Brook Schoenfi eld, Margo Seltzer, Diomidis
Spinellis, Izar Tarandach, and Jacob West.

32 Secrets of a Cyber Security Architect

Th e following chapters examine more closely the art and some considerable computer sci-
ence of attacks and defenses. As well, I will try to off er suffi cient views of security architecture
such that it may fi nally be more fi rmly defi ned. Once in command of what security architecture
might actually be, the remainder of the book will concern itself with the practice thereof, from
the perspective of the learner, the practitioner, and the strategist. I hope that these explanations
will prove useful to your practice.

33

Chapter 2

What Is Security Architecture,
and Why Should I Care?

2.1 Defi ne Security Architecture

In Securing Systems, I defi ned security architecture as applied information security: “Security
architecture applies the principles of security to system architectures” (p. 14).

Further: “Th ere has been an emerging trend to codify the techniques and craft used by secu-
rity professionals. Th ese disciplines have been called ‘security engineering,’ ‘security analysis,’
‘security monitoring,’ ‘security response,’ ‘security forensics,’ and most importantly for this
work, ‘security architecture.’ It is security architecture with which we are primarily concerned.
Security architecture is the discipline charged with integrating into computer systems the secu-
rity features and controls that will provide the protection expected of the system when it is
deployed for use.” (p. 6)

Th at defi nition was intended solely to provide a basis for describing a particular practice
within the wider set of practices commonly attributed to security architecture, Architecture
Risk Assessment (ARA) and Th reat Modeling. Th reat modeling is indeed a core tool for secu-
rity architects as well as being a key task within a Secure Development Lifecycle (SDL, or
Secure Software Development Life Cycle, S-SDLC).*

* Schoenfi eld, 2014. pp. 255–324.

34 Secrets of a Cyber Security Architect

2.1.1 Software Security

An SDL is a holistic methodology for producing software that exhibits the following attributes*:

* Th e secure software attributes’ (more properly: design principles) wording has been updated some-
what from Schoenfi eld, B. (2014). Applying the SDL Framework to the Real World (Ch. 9). In Core
Software Security, pp. 322.

1. Be as free as humanly possible from errors that can be manipulated intentionally—for
example, be free of vulnerabilities that can harm customers or our brand.

2. Have those security features that customers require for their intended use cases.
3. Be self-protective; resisting the types of attacks that will be promulgated against the

software.
4. “Fail well” in the event of a failure. Th at is, fail in such a manner as to minimize conse-

quences of successful attack.
5. Install with sensible, “closed” defaults.

Security architecture as defi ned in Securing Systems
is the practice concerned with attributes 2–5, above
(see inset). Usually, security architecture tasks are per-
formed during the architecture and design portions of
the SDL—that is, early in development, before cod-
ing or in the early stages of coding, before any integra-
tions that may be required to put the system together,
and well before the validation of the near complete
implementation (see inset below). For iterative devel-
opment life cycles, like Agile, architecture and design
work may extend and run parallel with coding and
even testing. Security architecture practices may also
iterate as a part of the architecture and design work.

2.1.2 Security Architecture Practices

Th ere are other aspects of security architecture.
As I noted when defi ning security architecture as
it applies to threat modeling, beyond the security
aspects of a system architecture, architecture prac-
tices can (should!) be applied to the building of a
security infrastructure or a set of security services.

A security infrastructure might include network
boundaries and zones of relative trust. It would nor-
mally include the placement of fi rewalls, intrusion
prevention systems (IPS), exfi ltration eavesdrop-
pers, technology watching for data loss events (DLP), anti-malware (AM) protections on end
points, a security information event management system (SIEM) to collect and process the

Of course, design issues can be vul-
nerabilities, too. Therefore, security
architecture may actually deal with all
five principles. If we assume that “free
from vulnerabilities” is concerned pri-
marily with implementation errors,
then Principles 2–5 cover the areas
that a practice of architecture focused
on security will most likely address.
In computers, demarcation between
areas is fuzzy. There is no hard-and-
fast separation of scope at this con-
ceptual level.

Of course, when developing software
through any iterative methodology like
SCRUM Agile, an architecture may change
during the iterations. Architecture changes
may take place through some or much of
the iterations. Architecture changes,
whether through iteration, feature request,
or what-have-you, will normally trigger
a re-evaluation of the security require-
ments of the system under development.

What Is Security Architecture and Why Should I Care? 35

information generated by these other devices, public key infrastructure (PKI) to provide keys
for encryption services, etc.

Each security “tool” (so-called) is, in and of itself, a complex system. Each is often deployed,
one at a time and perhaps ad hoc, and disconnected from other, disparate security tools. But
security tools are collectively much more powerful and synergistic if deployed as an intercon-
necting and interacting architecture. It is designing the panoply of security tools as a single,
cohesive, interlocking set of protections (which should usually overlap), as a defense-in-depth,
as a set of security services that will support an enterprise architecture; that is one of the two
main tasks for a security architect, each a focus of the set of practices commonly known as
security architecture.

Indeed, a security architect can provide an enterprise architecture with a cohesive set of
security capabilities. Th e capabilities thus specifi ed support the mission of the enterprise and its
various functions with suffi cient protections and controls to bring the enterprise architecture
to the organization’s desired security posture. An enterprise security architecture must be a key
supporting component of any comprehensive enterprise architecture.

In order to accomplish this task, the security architect must be conversant with enterprise
architecture theory and practice, as well as the specifi c enterprise architecture with which
to work. Alongside skill in understanding and manipulating enterprise architectures, a secu-
rity architect charged with designing required security functions must also be familiar with a
gamut of security technologies and methodologies. Th e security technology and methodologies
will be combined into a cohesive enterprise security architecture.*

2.2 Relevant Knowledge Domains

Whether building a cohesive set of security functions or analyzing non-security systems to
achieve a desired security posture, all successful practitioners within any of security archi-
tecture’s domains must have a working knowledge of the sort of attacks that may potentially
be leveled at the object of the analysis: enterprise, organization, systems, what-have-you.
Understanding of relevant attacks is one of the key knowledge domains that security architects
wield, no matter the object of security architecture.

In order to manipulate system structures (architecture) to build appropriate defense, the
security architect must have suffi cient understanding of the following:

• Attackers and their typical methods (“threat landscape”†)
• Th e attacks themselves and what they achieve
• Chaining exploits to access particular system targets
• Th e system targets of attack (vulnerabilities) and attackers’ ultimate attack goals
• Th e programming patterns, design patterns, and security features and controls that will

interrupt or prevent attacks

* See Th e Open Group, 2011, for an example of enterprise security thinking.
† Sometimes referred to as the “threatscape.”

36 Secrets of a Cyber Security Architect

Indeed, knowledge of a threat landscape and understanding of the exploitation of various
types of conditions of the typical objects of attack by particular attack actors is required in
order to build any kind of defense or to build a security architecture, a set of services, that will
monitor for and then assist detection of ongoing attacks. Th e level of detail at which attacks
must be understood varies depending upon the domain and the systems under analysis. In
order to build an enterprise security architecture, general types of attack classes are required. In
order to secure a kernel-level device driver, a great deal more specifi city of particular, relevant
attacks is required. Still, attacks and exploits are a common currency for security architects.

Without knowledge of attacks, there simply is no way to specify what must be done in order
to respond, whether the security architect is focused on building systems and infrastructure
that provide security services or is charged with assessing non-security systems to identify risk
and provide security requirements for that system. Attacks are the mental currency that glues
other, also required knowledge domains together into the whole known as security architec-
ture. Knowing how an organization or system is likely to be attacked is the seed from which
a security architect starts her, his, or their mental practice, no matter to which problems the
practice is applied.

To provide an enterprise security architecture implies that a security architect must under-
stand not only digital security, but also software, system, and enterprise architecture. Th is is
no small undertaking; Th e Open Group has certifi ed a few Enterprise Security Architects.
Beyond the Open Groups certifi ed Enterprise Security Architects, few people have held the
title at organizations. Generally, in my experience, if this position is fi lled (usually by a very
senior security architect), an organization’s Enterprise Security Architect will work very closely
with one or more of that organization’s Enterprise Architects and will be a key contributor to
the enterprise architecture. We will return to the connection between enterprise architecture
and security architecture a little later.

Security architecture as it applies to non-security systems encompasses more than threat
modeling. One may think of security architecture as the application of information security
practices to digital systems (as I proposed in Securing Systems). It is more properly the inter-
section of a number of disciplines:

• Information security, and especially, the application of security controls
• A study of existing and potential threat actors (“threat agents”)
• Digital attack types and exploits, which must include the nature of vulnerability and misuse
• Risk as it relates to software and digital systems
• Applied cryptography (at least at an architectural level)
• Software development practices
• Computer languages and their compilation and execution
• Software interactions with underlying hardware
• Software design
• Software and system architectures
• Communication and data exchange protocols
• Computer network structures and packet routing
• Data storage mechanisms and protocols
• Runtime and execution models and environments
• Operating systems

What Is Security Architecture and Why Should I Care? 37

• Central processing unit (CPU) execution, and machine language execution in general
• Random access memory (RAM) usage and misusage

In fact, it may be said that security architecture may encompass most aspects of information
security as well as a fair sampling from computer science.

Th e above may seem an imposing list. A typical security architect may specialize in several
of the above areas of computer science but she, he, or they must be conversant in all the areas of
information security listed above and will at least have a working knowledge of the other areas;
the competent security architect will usually know when she/he/they are out of their depth and
must seek the help of one or more experts.

For instance, in order to protect data in storage, one must have a working knowledge of how
fi le systems work, where the fi le driver comes into play as a part of an operating system, and at
least a glancing understanding of how the bits actually get written into storage.

Likewise, in order to protect a running application, one must have a working knowledge of
the operating system under which the application will run, its services and security features,
and its weaknesses, as well as the format of a loadable and executable fi le; how memory is
accessed, allocated, and deallocated from the language in which the program was written; how
the runtime stack works; what is the relationship between multiple programs running at the
same time; even the details of concurrency, such as semaphores, inter-process communications,
execution privileges, and runtime boundaries.

I hope that through these two simple examples, you will begin to grasp the complexity of
the problem space. We haven’t even touched on the subtleties of large-scale, multi-tenant cloud
systems. If you’re curious about the sorts of challenges in an analysis of such a system, please
turn to the cloud example in Securing Systems, Chapter 11. Let it suffi ce for the moment to
note that the list given above attempts to defi ne the
scope and domains that security architecture may
need to put into play in order to accomplish the task
of defi ning what security is required for a system or
an organization. Th e work may proceed from high-
level structural requirements down to the details of
design and implementation (see inset).

Let me then broaden the defi nition given above
drawn from Securing Systems: Security architecture applies the principles of security to system
architectures.

If the art of ARA and threat modeling is applied information security, then security archi-
tecture is the modeling of complex systems in order to divine their security properties and structures
and then to specify these security properties and structures so that they may be implemented.

Th is broader defi nition leaves the security architect free to be an architect, to model things
in the abstract that will eventually become digital systems and software. Indeed, if architecture
is a practice concerned with modeling complex things, then security architecture is the model-
ing of digital security.

Th e scope of “digital security” for our defi nition must include systems intended to deliver
digital security as well as the digital security of any computer system or set of systems. We must
further refi ne our working defi nition because we don’t know what digital security consists of.
Digital security is meant to encompass any possible exploitable weaknesses of a computer system

“Structure” and “architecture” are used
nearly interchangeably in this work.
I use both of these terms in the hope
that readers new to architecture better
understand the arena in which architec-
ture provides a key tool of analysis.

38 Secrets of a Cyber Security Architect

and the potential defenses for those exploitable conditions. If you prefer, digital security will be
the preservation of the classic security triad, Confi dentiality, Integrity, and Availability (CIA).

Digital (or computer, if you will) weaknesses and their defenses are the basic language of
information security. Security architecture deals with these in a structural manner rather than
delving into each particular weakness’s technical details.

Th erein lies a defi ning diff erence between security testing and security architecture. In, say,
penetration testing, the technical details of each vulnerability and its exploitation become very
important; attempts to exploit vulnerabilities to demonstrate potential attack is the primary
goal of a penetration tester. Th e penetration tester must be able to identify potential attack
surfaces and then skillfully apply appropriate exploit techniques in order to test defenses (or
the lack thereof).

Instead, at the structural level, for the purpose of modeling, types of weaknesses and their
exploitation techniques can typically be grouped together into general classes. Again, the
architect deals in structures and patterns and employs abstraction to identify, represent, and
manipulate them. Exploitable conditions might be grouped into memory overrun attacks or
browser scripting attacks. Th e details of each variant or sub-variant of attack groupings are not
particularly useful when analyzing a system for potential attacks (threat modeling).

2.3 More About Architecture

Stepping back from the problems of security for a moment, it may be worth delving just a little
into the practice of architecting software systems. Th e more complex a thing becomes, the
more pieces it has, the more variables, the more it can be broken down from the whole into
its parts (“parts” being undefi ned, or in fact, multiply defi ned, depending upon who is tak-
ing apart the whole and who needs to know precisely what). In fact, the moment something
becomes too complex for a person to hold in her, his, or their mind, the thing under consider-
ation will require the application of architecture to it.

Architecture is an abstraction of that which must be understood or modeled in any particu-
lar moment of understanding. “Understanding” in this context means any number of human
processes for which architecture will be a tool: building something, planning something,
maintaining something, changing something, and destroying or taking something apart.

Architecture is a tool for reducing the complexity and “noise” generated by a thing’s details
so that its structure may be understood, communicated, built, and changed. Architecture is
the human mind’s playground when designing, implementing, and changing complex things.
From the point at which an architecture solidifi es, it then is a plan for and map to the structure
of a “thing.”

Which brings us to the matter of abstraction and use. When drawing or painting, the art-
ist does not see the object that is drawn during the drawing process. Instead, in order to get a
representation of a three-dimensional object, one must perceive those shapes that occur as the
eye reads light as light hits the object. One must focus on visible edges of the subject, contours
of light and dark that come from shadow and superimposition, one object over another, fore-
ground object to background object. Th at is, the lights and shadows must be captured accu-
rately if one is to represent what one sees. Th us, one does not see a face, or a tree: one abstracts

What Is Security Architecture and Why Should I Care? 39

the shifts between light and dark, between shades of color. Often, these are seen as shapes. Th e
artist records the shapes as seen, making sure that they are placed accurately and in size scale
to each other. A representation thus emerges out of this process.*

Similarly, when modeling something complex, one must focus on parts of the whole, while
ignoring, for the moment, other detail. Th is is the process of abstraction. Some details are rep-
resented while others are ignored and not represented. Abstraction is precisely what we do in
architecture. We aggregate things based on some organizing principle—say, the concepts that
make up a business, or those blocks of function that have some major input or output, or by
technologies.

In fact, as I noted in Securing Systems, the practice of enterprise architecture off ers us some
standard views to help us understand computer systems (p. 58).

Of course, there’s nothing real about a software system; it’s all ones and zeros. Th ose pretty
windows being shown on your computer display with their wonderful drop shadows are just a
trick of the eye as groups of bits are moved around in the graphics memory that then get dis-
played as coloured shapes. Th e eye, being the wonderful instrument that it is, perceives these
bits as three-dimensional objects, which we then manipulate with our pointing device. Our
brain is fooled into a visual paradigm that allows us to work with our ones and zeros in some
organizing manner. Th is visual tromp l’oeil is an abstraction with which our brains interact as
somehow being real.

Luckily, there are levels of abstraction employed to generate useful digital system architec-
ture views. In enterprise architecture there is a conceptual view, a functional and/or logical
view, the technical view, and perhaps various physical views. Each of these views has some-
thing meaningful to off er the architect; none of these views has primacy. At a conceptual view,
an architect can get a sense of all the domains that must interact successfully within a complex
business. A conceptual view may provide a wonderful conduit for businesspeople to interact
with architects about how they want to organize the major processes of the business. In fact,
I’ve heard it said that an architecture is a conduit for communication. In my experience, this is
one of the primary functions of architecture: to facilitate constructive interaction. Each of the
other views similarly provides a necessary abstraction with which to work.

Architecture then becomes a tool for hiding details that obscure the overall structure.
Further, architecture off ers us a playground in which we may manipulate pieces of the
structure with little physical penalty or cost. In a software system, structures might be
the APIs, technologies, data and method objects, libraries, and other code bodies that will
make up the system. It’s a way of organizing what could be a mess of “spaghetti.” And
nearly every experienced software developer has had the pain of dealing with the messy
spaghetti of code such that the system becomes unmaintainable—that is, not understand-
able and fragile when changed.

At a coarser grain of abstraction, the solutions architect will play with the component sys-
tems that eventually will be integrated into a larger and more complex system, which will
deliver some important piece of the organization’s digital presence and functioning.†

* Edwards, 1989.
† Of course, there are other dimensions through which a digital architect adds value. Please see

Rosen, 2008, for more.

40 Secrets of a Cyber Security Architect

2.4 Architectures of Security

Th e above examples are exactly analogous to what a security architect must do. Th e security
architect understands the fl ows, components, and data of an integrated solution in order to
bring the solution to a known and (hopefully) provable security posture.*

Th e attack surfaces and controls to protect the attack services, the defense-in-depth, can be
modeled through architecture, as described above. All the pieces or components of the digital
defense of an organization can be modeled, just as the conceptual and logical architectures of an
enterprise can be modeled. Th e security view is yet another view used to model the security infra-
structure that will support the enterprise architecture. Just as the networking team will have to
model the networks that will be used, so the security architect must model the security systems.

Of course, security architecture is concerned both with the security systems—a security
infrastructure, if you will—while at the same time, security architecture also encompasses any
digital system’s security posture.

“System” might be enterprise level, solution level, or distinct software application. Th ere
exists a special domain of the security architect which lies beyond the modeling of security
systems; that domain is the understanding of how to apply digital security to systems that are
not designed for security purposes at all. Neither of these tasks is primary; they are each a part
of the domain typically termed security architecture.

In smaller or fl atter organizations, a security architect might have to do it all. In such a situ-
ation, there may not be architects who specialize in one or the other of these domains. Most
security architects that I know have at least a working knowledge of both domains, even if they
have specialized in one side or the other.

In order to craft a defense-in-depth for a system, one must understand many diff erent types
of attacks, network on up through message layers. In addition, one must understand the types
of controls that one must apply for these various classes of attacks. Th us, seasoned security
architects get pretty familiar with security infrastructures, even if they work largely on discrete
software packages, or at the solution’s level on complex integrations of systems.

Because security is the “cross functional domain,” security architects typically have to move
up and down the Open Systems Interconnection (OSI) model† with fl uidity. Indeed, it’s hard
to be eff ective without understanding what fi rewalls and network segments do as security treat-
ments, while at the same time understanding that many attack patterns fl ow right through
these because the attacks are encapsulated within the legal message boundaries of the protocols.

One cannot secure a standard web application without an understanding of network attacks
and protections, moving all the way up the OSI model to message-based and URL-based attacks
and their mitigations in the application layer. Alongside these fundamental attack and defense
mechanisms, it is likely one will need an understanding of authentication and authorization sys-
tems (access controls), perhaps shared storage problems, usually databases, web protocols, and
scripting languages, which then bring into scope script interpreters and browser architectures.
Web applications are an exceedingly well understood portion of the security architect’s domain,
which is why I often use them as an example. Th ere are other types of system architectures that
are not so well understood, not so readily documented as web applications have been.

* I defi ned these terms in Securing Systems. I will more fully explain them later in this work.
† Microsoft, 2014.

What Is Security Architecture and Why Should I Care? 41

2.5 Architecture as a Part of Cyber Security

Th ere are many excellent books that explain in great detail how CIA make up practical infor-
mation security. “Protect, detect, and correct” is a short descriptor for how information secu-
rity attempts to deliver CIA. CIA is abundantly described throughout books, articles, blogs,
webcasts, and numerous other sources.*

Essentially, there exist three domains through
which CIA of systems can be achieved. CIA is the
goal, though of course there is no perfection in secu-
rity, and certainly not in computing altogether (sse
inset). Computer security in general and security
architecture specifi cally exist in an uncertain world
full of ambiguity, ambivalence, and, typically, multi-
ple confl icts of priority as practitioners are faced with
limited resources (see inset below). Still, we are trying
to protect information from disclosure and the infor-
mation and the systems that handle it from unwanted
change. Plus, we have to keep the systems up and
running if we are to use them as intended: CIA.

In order to achieve CIA, we can build protections
into systems and also surround them with protec-
tions. We try to have running systems report their
security state such that if there is an incident, we can
detect it as fast as possible (detection). Which natu-

rally leads to correction: thwarting an attack and then bringing compromised systems back to
the intended state: protect, detect, correct.

Security architecture is primarily concerned
with protection and the mechanisms used to detect
attacks. Generally, analysis for detection falls to a
diff erent branch on the tree of information security:
incident response.

One may think that correction lies entirely
within the sphere of incident response, but it does not. At the very least, backups, build
systems, deployment methods all have a structural component. Th e structure must be
thought through for security, like any other aspect which will aff ect a system. Th us, secu-
rity architecture has a play within the correct sphere, as well. As I expressed throughout
Securing Systems, every structure connected to and interacting with any system under
analysis has the potential to change the system’s security posture. Deployment systems are
no diff erent from other functions integrated into a complex system.

Often, as a security incident unfolds, there will be hand-off s, perhaps multiple hand-off s,
between incident response and security architecture. Th e incident may highlight a weakness
in architecture or design, which then must be reworked for more strength and resistance. In

* Tipton, 2000; Intel, 2015.

The Turing Halting Proof implies that we
cannot prove that any computing sys-
tem is error free. My conclusion is a small
leap from the point of the proof itself.
Still in practice, that is what Turing’s
proof indicates: There is no way to ensure
system perfection (or any other state);
the problem is undecidable. The fact that
most computer languages are Turing
Com plete makes the problem of defense
difficult, because in order to be useful,
computer languages must express any
particular problem with near infinite
variety. (That’s not the direct meaning
of Turing Completeness in a language,
but rather, Turing Complete languages
provide near infinite expression, which
then makes computer defense diffi-
cult.) (Maruoka, 2011; Fuller, 2008)

Prioritizing has the potential to test
every dimension of your capability: tech -
nical, communication, conflict manage-
ment, influence, collaboration, even
organization politics. It’s not the for
the faint of heart!

42 Secrets of a Cyber Security Architect

fact, Cisco® Systems’ 2005 loss of its customer password fi le* did, in fact, engender a number
of changes in architecture as well as security architecture practice. Th at is, incident response
fosters security architecture changes. I was the Senior Security Architect technical lead for
Cisco’s web applications and infrastructure during the password incident and its several years
of aftermath. Several programs still employed at Cisco (so my spies tell me) came directly out
of the security architecture changes required by that single incident.

I don’t think it makes sense for me to reiterate all the material that’s available on CIA or
protect, detect, correct. If you’re unsure about standard information security practices, I sug-
gest that the material in this book will make more sense if you are at least glancingly familiar
with the theory and practice of information security.

Particularly, one must have a working knowledge of the sorts of technologies and activities
that protect CIA. Familiarity with approaches such as protect, detect, and correct put meat on
the bones of just how CIA can be maintained. As of this writing, there exists a wealth of mate-
rial on these concepts that is available, both freely and commercially.

2.6 Security Architecture in Software Development

Likewise, there is a plethora of literature that thoroughly describes and explains basic computer
science, computer memory usage by loadable programs, stacks and heaps, operating system and
program loaders, boot sections and boot code, basic input/output system (BIOS) code, hard disk
accesses, networking protocols and TCP/IP implementations. I see no reason to regurgitate that
here. A security architect must have a grounding in the principles and practices of computer sci-
ence as well as software development. Otherwise, the uninformed or ill-prepared architect will
be a signifi cant disadvantage both when analyzing systems and when prescribing treatments.

First, software engineers, in my experience, tend to be a suspicious lot. When people without
understanding of and skill in software development make pronouncements, software develop-
ers will quite often dismiss whatever might be said out of hand. Developers require faith that
the person speaking knows at least something about the development of software, computer
languages, compilers and linkers, development environments, and most importantly, debug-
ging software programs.

Development teams typically need to know that suggestions and requirements are made
from some fi rm grounding in the rigors of developing software. A security architect doesn’t
necessarily have to be the most brilliant or skilled developer in the room by far. But the archi-
tect had better understand the technical underpinnings of developing software. At the design
level, the computer science part of security architecture must include software design and
software architectures.

Personally, as of this writing, I’ve held a security architect title for approximately 18 or 19
years. Th e last software project for which I was programming was early in my security archi-
tecture career.†

* Leyden, 2005.
† A PERL tool for identifying UNIX log entries with potential security implications that was

originally created by Gil Daudestil.

What Is Security Architecture and Why Should I Care? 43

Even though my C/C++ skills are woefully out of date, I can still read code when I have
to. I may not know all the details of the most current Java API, but I know how Java works.
I do understand what byte code is, and the virtual processor that lives inside the Java execu-
tion environment (JRE). I have debugged hundreds of thousands of lines of code down to the
assembly, even machine instructions; I’ve called hardware directly, and written code for operat-
ing system drivers and kernels.

Th ough my skills may be out of date, I still have an understanding of what developers face
when designing, writing, and testing code. Th is gives me suffi cient credibility that cannot be
bought—it can only be earned. When a security person wants to get into security architecture—
especially software security architecture or application security—if they have no background in
development, that’s the fi rst place I’m going to suggest that they start gaining some experience.

Th ere are of course, far too many domains within computer science for any single person
to master them all. Still, above I’ve listed those domains that are most important for security
architecture.

Beyond writing and debugging code, for the security architect, a fi rm grasp of software
architectures and software design is essential. Although it is true that designing large, inte-
grated systems is somewhat diff erent from building the architecture of a single application
or process, still, I personally think that gaining skill for architecting complex integrations
provides a fi rm start from software architecture and not the other way round. Once familiar
with the concepts of objects, modularization, data hiding, API building, atomization, transac-
tions, service level agreements (SLA), functional layering, and the like, the architectural pat-
terns employed within solid software architectures
can be applied to system architectures at just about
any level.

Besides, as we’ve noted, architecture is at least
partially about abstraction. And good software
architecture is the practice of abstraction. Th e
rigor of building a software architecture that can
be ported relatively painlessly to diff ering operat-
ing systems because it is strongly layered to off er
abstraction through hiding operating system ser-
vices (see inset 1) provides a good basis for under-
standing how to abstract concepts, components, or
logical functions at whatever level appropriate to
solve the problems at hand.

Th ose without a strong background in software
design will likely struggle (see inset 2) more than
those who have had it, because analysis of architec-
tures proceeds from the internal construction of a
particular piece or component of software on up to
complex, global cloud integrations.

Perhaps I’m simply biased, because that’s how
I learned. Still, of the hundreds of architects with
whom I’ve worked, and the literally thousands whom

1. A system that could not easily be
ported would directly embed calls to
the operating system API wherever
they were going to be called—native
and local OS services get called
directly from wherever and all over.
There would be no bottleneck rou-
tines. OS API calls would not be hid-
den (“covered”) behind generalized
functions such that local services are
abstracted into typical services that
are provided by most OSs. A portable
application abstractly calls generalized
services such that calling functions
within the application need not under-
stand the underlying details of each
particular OS. I have built just such sys-
tems; the learning was invaluable.



2. This is a generalization, of course.
Any particular individual will be unique
and thus may not “struggle” much
even though that individual has little
software development background.

44 Secrets of a Cyber Security Architect

I’ve trained, it is those who come from software development and have a working capability in
software design who progress into security architecture the fastest.

Th at is not to say that every software architect is automatically a great system architect.
System architects often have broad understanding of many domains, databases, shared storage,
network boundaries and trust zones, hosting and system administration, large-scale network-
ing, alongside some level of business acuity that allows a solutions architect to translate busi-
ness need into functions, components, technologies. Still, I want to underline that the ability
to manipulate the abstractions of architecture have been learned by those who can design scal-
able, performant, sustainable, maintainable software architectures.

2.7 Generally, Experience Is a Teacher

Of course, studying the theory and practice of software architecture and design, solutions
architecture, or enterprise architecture will be valuable and contribute capabilities to one’s
security architecture bag of tricks. However, in my experience as a security architect, as a
trainer of security architects, and a mentor to dozens, if not hundreds, of security architects, I
can state that there is no substitute for direct experience. I’m attempting to explain here some
of the key knowledge that successful security architects tend to have at their command. Every
great security architect with whom I’ve worked has also been a competent software as well as
system architect. Th e vast majority have written software and been through the gauntlet of
inevitable serious issues once their software was deployed and used. Th at’s an important data
point to consider. All of these stellar practitioners had spent some considerable time writing
and designing software and designing systems small and large.

Th e gating factor in becoming a security architect is generally not gaining suffi cient security
knowledge. Although information security is certainly a domain worthy of study and is as deep
and broad as any, perhaps more so being the “cross domain” or “matrix domain,” gathering
the security specifi cs in a particular context generally doesn’t take that long, even for someone
fairly new.

Th e more diffi cult piece will be understanding the implications of various choices at various
levels of abstraction of an architecture. Hence, in my humble experience, it’s much easier to
train a good solutions architect security than it is to train someone that has done a good deal
of security but has no software architecture or system architecture experience.

I do not mean to disparage the skills of information security practitioners. However, the
practice of testing software for vulnerabilities, or responding to incidents, or even building
a vulnerability scanner are not the same as creating system structures that are resilient to
change—that is, architecting complex systems. Even being a Chief Information Security
Offi cer (CISO) does not make use of the same skills as manipulating processes and technolo-
gies at various levels of abstraction (though, of course, some security architects do become
CISOs).

Manipulation of processes and technologies are the domain of the system or solutions archi-
tect. A security architect has to understand what this process is as well as be conversant in
manipulating such things at various levels of abstraction. Otherwise, the security architect
doesn’t have a method for understanding how to build a defense-in-depth that will be in sync

What Is Security Architecture and Why Should I Care? 45

with the system under analysis. “In sync” here means a defense that utilizes the available secu-
rity services, if any, and takes into account both the strengths and weaknesses of the structure
of the system being analyzed. Th at is, in sync means not “ivory tower,” not theoretical, but
rather, grounded in current realities. And this is true whether the security architect is assessing
systems that are not for security or building security infrastructures and systems. Both require
a fi rm grasp of the practice of software and system architecture.

2.8 Introducing Attack Methods

Attack methods, which are also commonly known as exploitation techniques, are the place
at which computer science meets security architecture. Th e eff ective security architects with
whom I’ve worked seem to carry an almost encyclopedic catalog of attack types that they can
quickly and appropriately apply to the systems they want to defend. When analyzing systems,
even in the very early stages of conception, knowing the types of attacks that a system will
endure, against which it must defend and perhaps recover, allows the architect to imagine what

kinds of defenses will need to be built.
Very early in a new development process, when

the system may still be entirely conceptual, any
broad-brush security feature requirements can be
identifi ed. Such requirements might, for instance,
be authentication and authorization, or encryption
in transit and for sensitive storage. As development
progresses, the requirements, now including secu-
rity requirements, will be fl eshed out into specifi c
architecture elements and then precise designs (see
inset). As the development process unfolds, threat
modeling—the process to identify specifi c attacks

aimed at particular points in the system (“attack surfaces”)—requires knowledge of both
attack mechanisms as well as mechanisms to thwart the attacks (defenses or controls).

Each attack type is then mentally connected to particular groupings of threat actors and
associated to types of attack surfaces. By maintaining a thorough and up-to-date knowledge
of active threat actors, making use of particular exploitation techniques to be exercised on par-
ticular interfaces, a security architect can quickly, perhaps almost preternaturally, home in on
the most important areas of concern that are ripe for protection during an analysis. To do this,
the practitioner needs to know which threat actors are most active, why, and how the attackers
might go after a system of the type under analysis.

But the foregoing does not, in fact, imply that each good security architect needs to carry
around the equivalent of the Common Weakness Enumeration (CWE) catalog.* Most impor-
tantly, few mere mortals have that much brain space (though it would not surprise me if
some brilliant practitioner had CWE nearly memorized [see inset on next page]). But also, a
detailed understanding of each attack variation is simply unnecessary in order to practice. Th is

* MITRE, n.d.

Though I’ve used the words, “early”
and “later,” these should not be taken
to indicate a preference for any par-
ticular SDLC methodology, Waterfall,
Agile, what-have-you. Even highly iter-
ative development still must identify
what must be built before it is built,
should map out structure that then is
designed, all of which can be happen-
ing in parallel with other development
tasks, iteratively.

46 Secrets of a Cyber Security Architect

is where security architects and penetration testers
completely part company.

In order to penetration test, one must understand
the intimate relationship between attack detail and
vulnerability. Th ere is no getting around this neces-
sity; it is precisely this set of knowledge through
which a penetration test is performed. Th e tester has
to uncover potential attack surfaces (same as secu-

rity architecture’s threat modeling process). But at this point, specifi c attacks are used in order
to categorically prove specifi c weaknesses. Potential areas of weakness are discovered through
threat modeling; specifi c weaknesses are proved in penetration testing.

In order to protect a system, one does not need in-depth knowledge of attack detail.
Exploitation techniques can be grouped at a higher level; the details are insignifi cant when
building defenses. Take the case of stack buff er overfl ow as an example: stack overfl ows have
been well understood since at least the point at which I began the fi rst software security
role of my career within cyber security. In order to prove that a buff er overfl ow exists in an
executing program’s stack, a tester needs to line up precisely the instructions required for
that CPU, at memory locations determined by the stack at that moment of execution, such
that the return pointer will get overwritten, changing the course of execution to code of the
attacker’s choosing.

To prevent a stack buff er overfl ow, a security architect needs none of the foregoing detail,
but instead will be concerned with whether tainted (attacker controlled) data will be pro-
cessed by the function that contains the overfl ow opportunity. An architectural analysis will
focus on the fl ow of data toward the overfl ow, the rewriting of the function in which the
overfl ow may occur such that the function becomes
self-protective, and perhaps methods for removing
potential attacks within the data before it reaches
any potential points of vulnerability. Th e security
architect most certainly must have a solid grasp on
how stack overfl ows work in general. (See inset.) But
the specifi cs of each overfl ow are not relevant at all.

At Intel® Security in 2013, I had the privilege to
assist Catherine Blackader Nelson when she developed a catalog of attacks, weaknesses, and
their most common mitigations at the architectural level (rather than the often unconnected
details of each). Unfortunately, that work is held by Intel, and I cannot reprint it here. It was
seminal work that I have never seen anywhere else and is sorely needed. I hope that Catherine
or someone else gives us all a much-needed catalog of attack types matched with vulnerability
classes and appropriate treatments.

Still, Chapter 3: Attacks and Defenses, will dive into more depth on this important prob-
lem: the intersection between attack and weakness at an architectural level. It is the essential
problem that a security architect must grasp. Security architecture is the point at which
attackers and defenders meet; an attack surface is the battleground of cyber war in which
exploit meets either undefended weakness ripe for exercise or suffi cient defense to prevent
exploitation. Th e intersection between exploit, point of attack, and weakness is the heart of

At the beginning of my career, I was
introduced to an Apple engineer who
had all the operation codes in Apple
II and III monitors memorized. He felt
that assembly language was “too high
level.” Humans are capable of amazing
mental feats.

I do encourage every security architect
to play around with one or two exam-
ples of every attack that will be rele-
vant to systems that will be analyzed.
My time spent proving Cisco Infosec’s
first C language secure coding guide
has been invaluable to me.

What Is Security Architecture and Why Should I Care? 47

building defenses. Without this knowledge, a secu-
rity architect cannot practice. What I have tried to
describe can be expressed as a kill chain, or what
I term, “credible attack vector,” as described in
both Just Good Enough Risk Rating (JGERR) (see
inset) and Chapter 4 of Securing Systems.

Chapter 5: Learning the Trade will off er some
potential avenues for acquiring appropriate level
attack scenario knowledge. I’ve been working through
various exercises in my classes that participants seem
to fi nd useful. I’ve tried to make use of public refer-
ences that are available to every practitioner. Please see that chapter for more clues on how to
build a more extensive catalog of attack types.

I unfortunately cannot reproduce Catherine’s threat and treatments catalog, as it belongs
exclusively to Intel; that work cannot be reproduced without express permission. Instead, I will

lamely attempt to capture the essence of an archi-
tectural view of credible attack vectors and typical
treatments. Th is book will not attempt to set out a
complete catalog of exploitations and treatments in
their appropriate context at an architectural level.
Th at book is yet unwritten, though it should be.
Instead, I’ll focus on why we work at a more abstract
level, what amount of detail and understanding will

suffi ce, and how one puts this information to use as a security architect. Th at explanation has
also not yet been published, so far as I know, anywhere but in this work. For the testing minded,
there are numerous works available providing detail on hacking techniques (see inset).

2.9 Speaking of Defense

Attacks by themselves are not the complete security architecture skill picture. A skilled security
architect must also know how to prevent successful attacks. Th e other side of the attack coin is
the face of defense. Th e complete security architecture cycle involves planning for attack and
specifying those defenses that will either prevent particular attacks or, at the very least, make
the prosecution of the attack suffi ciently diffi cult as to either prevent success or at the very least,
slow an attack down enough to catch the compromise before it has been completed.

It is industry wisdom that fi rewalls must be deployed at network ingress from the Internet.
I suppose that a practitioner could just accept this “wisdom” at face value. But what attacks
will a fi rewall prevent? Which will be slowed down? What type of attacks walk right through
a fi rewall and must be prevented in some other fashion? A security architect specifying a
fi rewall must know the answers to these questions. Because even so-called “next-generation”
fi rewalls are not a panacea (despite what some fi rewall vendors may claim). Certain types of
traffi c can be prevented. But other types, including traffi c that contains attack code, will be

There are even certifications for pen-
etration testing. I will note that reading
the very first edition of Hacking Exposed
allowed me to at least get started prac-
ticing security architecture. Without an
understanding of attack technique, a
practitioner will be lost (McClure, 1999).

Just Good Enough Risk Rating was
published by The Sans Institute as
one of their first in their Smart Guide
series. However, SANS terminated the
Smart Guide project and removed all
of the content. Interested readers can
find the JGERR Smart Guide posted
at my blog: http://brookschoenfield.
com/?page_id=271. JGERR is thoroughly
described in Chapter 4 of Securing
Systems.

http://brookschoenfield.com
http://brookschoenfield.com

48 Secrets of a Cyber Security Architect

routed right through a fi rewall and onto internal networks, potentially to be seen by humans
or automated processing.

It is the matrix of attacks against vulnerability classes paired to their particular defenses that
a security architect wields, not only when analyzing networks, systems, or groups of systems,
but also when building infrastructures. In fact, one usually doesn’t simply build security infra-
structure out of whole cloth. Rather, one analyzes an organization to determine its required risk
posture. One analyzes existing infrastructure and systems in light of the organization’s security
posture. Th e to-be-built infrastructure then is a product of this analysis; the infrastructure is
meant to provide suffi cient defense and security services such that the organization can meet
its required security posture while also growing, changing, and adding and removing systems.

Th ere is an interplay between existing and potential attacks and the defense-in-depth. Few
organizations can aff ord to defend against everything. Furthermore, no defense is fl awless.
Because particular attacks require particular treatments (whether a security control or some
other methodology meant to prevent weakness), each defense-in-depth will include standard
and accepted defenses, while at the same time being a unique collection or even having unique,
one-off defenses and treatments.

In sum, we might say that security architecture is the practice of identifying potential attack
methods and then specifying a defense-in-depth against those identifi ed attacks.

2.10 More Precise Defi nition

How digital systems’ structures respond to attacks is the practice of security architecture.
Th e “how” and the “respond” in the defi nition above encompass an entire set of defense

controls and maneuvers: prevention, ignoring, resisting, slowing down, and failing well when
under attack. Th e “defensive” part of security architecture is a combination of technologies and
techniques for tossing away apparent attacks (obviously erroneous input), preventing access to
attackers, mitigating attacks (e.g., input validation or parameterization), resistance by closing
down a portion of a system that is under attack, and slowing the pace of an attack so that it
can be discovered more easily. For example, a common technique for slowing attacks is to use
an entirely diff erent method of communication or protocol between each component or layer
in an architecture as messages are forwarded onward through the system.

Th e “how” can even be validated, at least for known attack types. Th at’s what vulnerability
scanners, web vulnerability scanners, fuzz testing, and the panoply of tools wielded by penetra-
tion testers aim to assess: what a system under test will do when faced with an attack.

In simple terms, security architecture tries to build systems that respond well to (oftentimes,
by ignoring) digital attacks. Penetration testing, and really, all forms of security testing, aim to
prove the security architecture of a system.

Th e goal is to make attack response predictable as well as preventive or at least resistant.
Given the foregoing defi nition, we end up being close to the coarse-grained defi nition I gave

in Securing Systems: “Security architecture is applied information security” and quoted at the
beginning of this chapter. Th at is, security architecture is the application of the practices of
information security to systems and organizations. Information security encompasses protect-
ing, detecting, and reacting to cyber attack.

What Is Security Architecture and Why Should I Care? 49

As we have seen, there are many aspects to the practice of security architecture. Of course,
there’s a great deal of basic computer science. As we noted above, one cannot understand many
attack types without a working knowledge of computers and computer languages and the basic
tools of producing software. Plus, security architecture is a branch of software and/or system
architecture. Architecture is a manipulation of structure and detail through abstraction.

What makes security architecture a separate discipline or a subdiscipline of system architec-
ture is the understanding of technical attacks and technical defenses. A security architect must
have an ability to forecast the attacks that are coming her, his, or their way and also must know
the correct treatments for classes of attacks. Th is is the knowledge domain that is the specialty
of the security architect.

Attack categories and defense treatments are the currency of security architecture; a security
architect must connect the dots from threat actors through each type of actor’s techniques to
network and system attack points, thinking through how each defense will stop or slow down
the attack, and how attacks may be identifi ed as they progress. To perform these analyses, a
working knowledge of many domains within computer science as well as the semantics of
attack techniques and attack identifi cation must be pulled together into a logical whole: the
security architecture.

Along the way, the analysis may also have to grasp socio-economic and political drivers in
diverse cultures and countries in order to understand the motivations and goals of diff ering
classes of attackers (threat agents/actors). Plus, the analysis will be fl awed without an under-
standing of the organization’s goals and risk tolerance and the place that each system that
may be attacked will play to achieve organization goals. Along with the computer science,
there’s a dash of political science, a bit of sociology, and some psychology stirred up with a
decent feel for risk assessment. It’s a heady mix that will test the limits of most practitioners
from time to time.

2.11 Summary

In the next chapter, we will examine how attack and defense helps to defi ne a security archi-
tecture. We will take a complex example attack and system in order to learn through example.

After Chapter 3 on attacks for architecture analysis, the remainder of this book contains
what I hope are useful techniques, tricks, pitfalls, and perhaps the occasional bit of wisdom
that my colleagues have shared with me or that I may have gained through dint of the many
mistakes that I’ve made. Many of these are extracted from my earlier works, the diff erence here
being that you won’t have to dig through long explanations about SDL (or S-SDLC) or threat
modeling techniques to fi nd the bits and pieces that I included therein.

Instead, I hope that by consolidating these tricks, by extricating them from other contexts,
they will be far more accessible, and thus useful in their own right.

Th is work is concerned with many aspects of security architecture and its practice. Some of
the tips and tricks herein do pertain primarily to system assessment. But others are more general
in that they apply to the practice of security architecture—not just to that portion of security
architecture that involves ARA and threat modeling—that is involved in the secure design of
systems and the organizational context in which a maturing security architecture practice thrives.

http://www.taylorandfrancis.com

51

Chapter 3

Architecture, Attacks, and
Defenses

It’s no secret that cyber security professionals are interested in all aspects of cyber attacks. In a
very real way, understanding attacks underpins the practice of cyber security. What does not
get discussed very much, if at all, is exactly what each specialty in the profession needs both to
know about attacks and to learn from them.

3.1 Yes, Exploit Details, But

A quick survey of books, presentations, white papers, and even whole conference agendas will
reveal a deep fascination with the technical details of exploiting vulnerabilities. Th e extant
literature is so full of this information that it nearly drowns out other aspects of working with
attacks, perhaps even drowns out the many other aspects of practicing cyber security. In fact,
there is so much literature in every conceivable media about attack details, one might almost
conclude that attack details make up the sum total of all of cyber security. Th ey don’t, by a
very wide margin.

Th ere are a couple of classes of cyber security professionals for whom the specifi c mecha-
nisms of each exploitation are of great value:

• Penetration testers
• Implementers of technologies such as vulnerability scanners and of those protections that

must prevent specifi c attacks—for instance, a so-called “application fi rewall” or “web
application fi rewall”

• Security researchers who are trying to push the edges of cyber security knowledge

52 Secrets of a Cyber Security Architect

You may notice in the list above that security architects are not among those who must delve
into the details of each exploitation? As in other roles within cyber security, security architects
must understand attack mechanisms, because knowledge about exploitation techniques pro-
vides indispensable information to choose appropriate defenses.

But, importantly, security architects are not required to understand the details of each indi-
vidual exploitation. Herein lies an important diff erence between the goals of the roles listed
above and the goals of the security architect. A security architect must be intimately familiar
with the general mechanism of attack for each class of attacks against which that security archi-
tect’s scope will be required to defend.

3.2 Security Architects Must . . .

Let’s unpack this subtle diff erence a little bit more. A competent security architect will under-
stand the computer science behind the mechanism through which an attacker exploits each
particular type of vulnerability. “Type” or “class” means the general mechanism by which a
vulnerability may be exploited. Buff er overfl ows are exploited by a set of particular manipula-
tions. Th e specifi cs of any particular buff er overfl ow aren’t all that useful.

Nevertheless, it is critical to understand that an attacker can bury within a legally encap-
sulated message a precise series of central processing unit (CPU) instructions that will aim,
through the overfl ow condition, to place the fl ow of code execution under the attacker’s con-
trol. Furthermore, it is critical that a security architect understand that there are mechanisms
for encoding, and thus hiding or obscuring, such a set of instructions from potential protec-
tive measures. Th e precise sequence of instructions for any particular overfl ow are not really
relevant for the purposes of building an appropriate defense—for the purposes of crafting
appropriate security requirements to prevent this type of attack from succeeding.

Th e exact sequence of assembly language instructions required for any particular exploita-
tion as tied to a particular memory location or misuse in a particular program are not required
in order to fi x the error allowing the vulnerability or to prevent the vulnerability from being
exercised. Or, in the language of Web attacks, the exact sequence of SQL commands and col-
lection of characters required to exploit a particular database through a particular program
input are rarely required of a security architect.

To understand SQL injections suffi ciently, the security architect has to understand how
SQL commands are entered into program input and then passed to a database where they will
be executed. Th e defending architect must understand how diffi cult it is to try and search for
every potential set of characters that might get interpreted as SQL, because of course, SQL is
a Turing Complete language. Furthermore, that security architect must also understand that
even with highly normalized data, the potential to prevent abnormal database responses in
program code will be near impossible.

Typically, SQL injection is prevented through so-called “parameterization” of database
inputs. Th at is, the application has the canonical form for each query it will make on the user’s
behalf programmed into it, or in its local confi guration store. Th e application has no need for
a user’s specifi c SQL commands, while at the same disallowing any set of characters that looks
like SQL. Instead, the application only uses the legal and allowed SQL queries that have been

Architecture, Attacks, and Defenses 53

programmed into it. Whatever the defensive strategy employed against SQL injection, the
details of a particular SQL injection are actually not particularly useful.

In my experience, in order to become familiar enough with attack types, most practitioners
will have had to somehow become comfortable with the exact details of one or more examples
of each type of exploitation. Working through a source work like one of the Hacking Exposed *
series will be invaluable. When I got hired at my second security job, I felt that I really didn’t
have a good understanding of the prevalent attack mechanisms at that time. So, on the way to
and from work, I read the fi rst edition of Hacking Exposed. Th e book provided a good grounding
for what I was being asked to do at that time—a grounding into the attack patterns of the day.†

Slightly later, as Cisco® Infosec’s fi rst application security architect, I was given the assign-
ment to generate Infosec’s fi rst set of secure coding guidelines in Perl and C/C++. I didn’t write
the C/C++ guides and I worked from earlier, existing Perl guides that had been generated out-
side of Infosec.‡ Still, I got to “prove,” that is, code and then test, each example of coding error
in order to make sure that every example within the guidance was, in fact, correct.§

Having previously read Hacking Exposed ¶ cover to cover and then being given the time
to test many examples of attacks gave me a basic understanding of precisely what mistakes
allow exploitation and just how those vulnerabilities can be exercised. Th is training has proved
invaluable and has allowed me to build my software security career on a fi rm grounding. (As
I’ve noted previously, I’d had years of intense programming and design experience upon which
to draw. Among my prior experiences had been identifying network attacks from network
captures and cleaning up worms and viruses manually.)

Today, there are many books similar, competing, and complimentary to the Hacking Exposed
series. I’d guess that reading any of the available hacking books—that is, those focused on
attack types or penetration testing techniques—will off er similar instruction.

3.3 Understanding Categories of Attacks

What was remaining in my education was to up-level specifi c attack details into “classes” of
attacks. Nobody told me that I would have to make this generalization. But, I wasn’t eff ective
without understanding that a buff er overfl ow is not the same as allowing an attacker to run a
system call, which is not the same as an SQL injection, though all of these usually are exercised
via injection of attacker controlled data and may, then, all be members of a class of attacks that
are often known as “injection attacks,” or attacks involving “tainted data”—data that has not
yet been cleaned and validated programmatically, after reception (from whatever source). In
other words, there are classes and super classes of attack types.

* McClure, 1999.
† Th at is, about 20 years ago.
‡ Someone in engineering had provided a set of Perl secure coding guidance from which I worked. At

that time, I was new to the Perl language.
§ I also presented the guidelines numerous times for a few years.
¶ I have no fi nancial stake in the Hacking Exposed series of books. To sell copies of these is not my

point. At the time, the fi rst edition was revolutionary, as at that time no one had previously collected
examples and explanations of most of the active attack types.

54 Secrets of a Cyber Security Architect

For some attacks, there are preconditions without which that particular class of attacks may
be irrelevant. For instance, SQL injection cannot take place except in the presence of an SQL
language processor somewhere in the chain of data fl ow. Furthermore, the attacker must have
a mechanism and vector through which to get attacker-controlled data to that SQL processor.

Likewise, if memory is not being programmatically handled, buff er overfl ows are much less
likely. Th e C languages allow direct manipulation of program memory. Overfl ows are always a con-
cern. Th e Java language hides these details from applications (except for native calls), thus, overfl ows
are not much of a concern when working within a well-behaved and fully patched Java runtime.

Both of the above examples are injections, to be sure. Exercise of vulnerable conditions will
almost always involve tainted input data (i.e., attacker-controlled data passed through to the
vulnerable condition). By understanding the class of attack as an architectural pattern rather
than as a specifi c attack, one can actually quite quickly build a set of relevant attacks and dis-
count others for any particular system under analysis. Th is is the art of security architecture.
Th e technique being employed is one of the key analyses that make up threat modeling.

My book Securing Systems was my attempt to explain what threat modeling is and how one
goes about doing it. Th reat modeling is the main analysis technique by which attack types are
considered against digital systems (though one can threat model nearly any system, architec-
ture, set of processes, situation, or organization). Security architects, whether they think about
threat modeling formally or not, whether they think in terms of architecture or not, must iden-
tify the set of attacks that have potential for harm in order to build an appropriate collection
of defenses—that is, threat model.

Understanding the “architectural” aspects of the relevant attacks for any particular sys-
tem or set of systems is the bridge between the required knowledge of who might attack,
how prevalent those attacks may be within the relevant period under analysis, and what those
attackers might be hoping to gain through the attacks. In other words, from the knowledge
of the attack, one then can walk back through a tree or mind map to identify likely threat
agents, threat agent activity level, the likely attacker’s technical sophistication, attacker goals,
and any other information that may come in handy (please see my discussion of threat agents
in Securing Systems, Chapter 2, and continued in this work, Chapter 1, Th e Context of Security
Architecture).

An understanding of each class of attack’s technical mechanisms is critical in order to under-
stand what I call “system objective.” Th e system objective will be the technical steppingstone or
pivot through which the attacker’s ultimate goals are achieved. In the Chapter 5, Learning the
Trade, there’s more detail about methods for acquiring suffi cient attack knowledge.

Except for security researchers whose goal is to prove a particular attack can be successful,
attackers generally are after something tangible, such as stealing passwords, gaining access to
accounts, exfi ltrating information, using a computer for further attacks, sending spam, storing
illegal digital content, and the like.

In order to take over a machine so that it can be used without the knowledge of its ordinary
user or owner (for instance, as part of a botnet), an attacker will have to piece together one or
more steppingstones, system objectives, such that the attacker will gain suffi cient privileges on
the host and its operating system in order to install command and control software that will
persist across restarts (reboots). Th e goals are the attacker’s “intentions” to be gained through
prosecution of technical “mechanisms.” (Please see Chapter 5: Learning the Trade, for a deeper

Architecture, Attacks, and Defenses 55

explanation of these. Readers may also wish to play with MITRE’s ATT&CK Navigator™
[referenced in Chapter 5], which visualizes many well-known attack trees.)

For instance, a vulnerability that allows “code of attacker’s choosing” isn’t actually suffi cient
until that exploitation can be coupled with an escalation of privileges in order take control of an
operating system (and thus, the host). (In a scenario in which the attacker is starting at a high
level of privilege, escalation is not needed.) In a situation in which the victim is not running at
suffi cient privileges to install high-privilege software, an attacker must not only execute code,
but also fi nd a way to increase privileges such that the attacker’s command-and-control software
can be installed and run. In this trivial example, an attacker might need to exploit as many as
three or four system objectives in order to successfully gain persistent control of the machine:

• Find a way to deliver the attack code payload
• Get the payload to run on the victim’s machine
• From the “code of the attacker’s choosing” payload, exploit a second vulnerability that

increases privilege level above that of the operating system’s current user
• Establish communications with the attacker
• Potentially download additional code for permanence across restarts

3.4 Attack Knowledge for Defense

Understanding system objectives and chains of system objectives executed sequentially is key to
building a robust set of defenses. Defenses are generally against one or more classes of attacks.
Th ere is no one-to-one (1:1) mapping of defense to attack (the relationship should be charac-
terized as many-to-many, usually notated as “M:N”). All potential cases exist: single defense
against single attack, single defense against several attacks, two or more defenses against a
single attack, and many to many. Understanding and then preventing system objectives is the
art of cyber security defense. (Of course, cyber security defense exists throughout the protect,
detect, and react cycle. We are focusing solely on security architecture for identifying and
designing defenses, whether these be security infrastructure or for particular systems.)

Obviously, if there is no vulnerability to be exploited, that is the cleanest, most intuitive
defense. Without a weakness to exploit, there is no steppingstone to attacker goals. However, it
must be remembered that not all failures are technical. Social engineering requires no technical
weakness; a human is “engineered,” tricked into allowing the attacker to achieve the attacker’s
goals. Because a person’s trust can be abused, humans are the vulnerability that, sadly, “cannot
be patched.”

Much has been written about the prevention of vulnerability, including my own off ering in
Core Software Security ; preventing weaknesses when developing software comprises the subject
of Chapter 9: SDL in the Real World. Vulnerability prevention must be a key aspect of soft-
ware security, and thus, of those security architects concerned with software security.

Of course, one aspect of architecture is planning for the unforeseen. Because software
almost always contains undiscovered errors, one must plan for the “unknown, unknown.” It
is also useful to consider that any particular part of a defense will fail, because software errors
sometimes cause failure even in security software.

56 Secrets of a Cyber Security Architect

Still, it remains that software has vulnerabilities, and will continue to have for the foresee-
able future. Th e plain truth of it is, human endeavor is fi lled with errors, and software creation
and implementation are a human endeavor. Whether the vulnerabilities are caused through
poor design choices or through implementation, there will be errors even after the most robust
secure development lifecycle (SDL, or secure software development life cycle, S-SDLC), with
equally rigorous validation. “To err is human . . . ,” as Alexander Pope so famously wrote.*

A security architect must assume that at least one vulnerability of the sort that commonly
occur in any particular language, execution environment, and operating system will escape
past testing. Each class of vulnerabilities can be exploited with one or more known sets of
exploit techniques.

Although new attack techniques do arise and will have to be understood and then defended,
variations on a known technique usually don’t require new defense techniques. By understand-
ing exploitation techniques and their system objectives, a defense can be built to stop or at least
delay exploitation of potential weakness types that typically appear in particular systems and
collections/integrations of systems (as in an enterprise’s collection of systems). Th e mental trick
is to assume that typical weaknesses known to have appeared in the past will appear in the
future. Th at is, all software has bugs.

As I wrote above, each attack type and its system objective are the bridge between attack and
defense. Without knowledge about attack types for particular deployments of systems, one is
basically tilting at windmills or trying to defend against everything.

As of the writing of this book, there are attackers who are as sophisticated and dedicated
as any collection of computer scientists that exist. Some of these attackers also have access to
signifi cant computer resources. Please consider those nation-states who have the computer
capacity to build nuclear weapons (supercomputers). Consider a nuclear-capable state that also
executes computer attacks against their foes. Most well-funded commercial organizations are
not going to have the computer security resources to match such attackers, much less organiza-
tions with far less resources at their disposal.

If an organization needs to defend against well-funded nation-state attackers, a diff erent
strategy will have to be employed; the usual collection of computer defenses won’t be suffi cient
(although that doesn’t mean these can be skipped!). Alongside a strong cyber defensive posi-
tion, such an organization must also monitor systems and defenses carefully, searching for the
needle in the haystack, for the one in a million signal that indicates that a sophisticated attack
is under way.

Should any sign appear from within monitored traffi c, events, and alerts, the organization’s
incident response team will need to react rapidly and decisively. Th at is, the organization can-
not rely solely on its “protect” dimension, but in addition, must be skilled at “detect” and then
ready to “react” immediately.

Incident monitoring and response typically exists within a diff erent security domain than
security architecture (though there are no hard and fast rules; your organization may diff er).
Still, identifying that suffi cient monitoring technology and process are in place is often one
of the defenses that security architects may require; detect and react capabilities are especially
critical against attackers whose technology and resources may exceed, or even far exceed, those
of the organization being defended.

* Johnson, 1836.

Architecture, Attacks, and Defenses 57

Understanding the types of attacks that nation-states may employ, from common to one-of-
a-kind, allows the security architect to consider all the defenses that may be required, from the
usual, such as fi rewalls, network zones, access controls, input validation, etc., on to exfi ltration
and anomalous behavior monitoring, to even requiring a crack incidence response function.

If one knows that at least one nation’s cyber attackers regularly intercept common car-
rier shipments of routing equipment to replace the vendor’s BIOS or fi rmware code with the
attacker’s intelligence gathering code (a real example!), then one must prepare for equipment
to arrive to customers already in the control of that nation’s intelligence organization. Because
that particular nation’s intelligence agency is likely to have suffi cient resources to hide its com-
promise of systems in transit, then the vendor being compromised could institute a validity
check of router fi rmware at the fi nal destination. Such an action might be one of the only
methods available that could uncover such a clever compromise. In reading media reports of
this particular compromise, no such BIOS validity check was put into place.*

Th e vendors being compromised apparently had no idea their shipments to foreign powers
were delivered as tools of one nation’s intelligence agency. Th e usual panoply of digital secu-
rity methods and tools would have been near useless in the foregoing example. Th at’s because
the routers in question would not reveal the streams of data going to the intelligence. Th e spy
agency activities were hidden, not found within the logs of data on the router.

One might take a guess that traffi c from routers existing outside a compromised organiza-
tion or government’s fi rewall would be completely invisible. However, one might see odd,
unexpected streams to unknown destinations from routers existing within the fi rewall perim-
eter. However, a clever intelligence agency is likely to understand the details of TCP/IP rout-
ing such that the destination can be hidden until the compromised traffi c gets outside any
fi rewall, intrusion or extrusion sensors, or other equipment. Plus, with terabytes or even pet-
abytes of data going in all diff erent directions, traffi c monitors must be very careful about what
is being actively watched. Mostly, security operations watch what’s coming in plus selective
outbound traffi c. Th e nation-state might easily hide its intelligence gathering in plain sight.
Typical methods aren’t going to work without fairly specifi c understanding of what might take
place—that is, attack methods.

I hope that the foregoing example, taken from the real world, helps to explain how an
appropriate defense requires knowledge of the threat agent as well as the attack kill chain. An
attacker with a completely unique and unexpected methodology has a big advantage, as we
have seen in the nation-state intelligence gathering example given above. Nobody knew. So,
nobody could defend appropriately.

3.5 Example: Heartbleed Analysis

Each part of the attack equation must be understood in order to build eff ective and appro-
priate defenses. Let’s take apart the famous “Heartbleed” vulnerability from 2014. By using
Heartbleed as an example, I want to show more precisely the sort of human and technical
information that is required to structure (i.e., architect) and design systems for security. Along

* Eadicicco, 2014.

58 Secrets of a Cyber Security Architect

the way, I hope to show what sorts of knowledge are unnecessary, as well. With the follow-
ing explanation, I hope that you, the reader, can get a better feel for the types of analyses that
security architects provide, no matter to what the discipline is applied.

When confronted with a new attack, what does the security architect need to know?
Th e Heartbleed “bug” was announced April 7, 2014. Co-discovered by Neel Mehta of

Google® and engineers at Codenomicon®, after announcement, there was a media frenzy, and
aff ected websites’ security and maintenance teams went into high gear in order to respond to
headlines such as, “‘Heartbleed’ bug undoes Web encryption, reveals Yahoo passwords.”* Th ere
was a great deal of hyperbole; there was an industry sense that Heartbleed was an Internet crisis
that demanded response—immediate response. A few choice headlines and quotes follow:

“Scramble to fix huge ‘ heartbleed’ security bug” —BBC News Technology, April 8, 2014

“The Heartbleed Hit List: The Passwords You Need to Change Right Now” —Mashable,
April 8, 2014†

“Security researchers have uncovered a fatal flaw in a key safety feature for surfing the Web,”
—CNN.com, CNN.com, April 11, 2014: 5:46 PM ET ‡

Note the word “fatal” in the last quote, implying that Internet cryptography had failed,
perhaps completely.

“Heartbleed” (a term coined by Codenomicon
to describe the issue) was an implementation error
introduced into the OpenSSL set of cryptography
software that is widely used by websites and within
commercial and open source software and systems.
One of its most useful functions [though the set of
libraries and programs off ers many cryptographic
functions] is a reasonably dependable implementa-
tion of Transport Layer Security (TLS). Indeed, OpenSSL has at times been considered “the”
reference implementation of TLS (although it has its quirks, as do other TLS implementations).

When a browser (client) opens a connection to a website (server), or really, any type of
client-to-server TCP/IP connection, one or the other side can request that the communications
proceed encrypted. If the encryption request is accepted, a TLS connection is instantiated.

Th ere are several methods for encrypting communications, though by far the most com-
mon is TLS, which is relatively transparent to either party. Th e “HTTPS” URI designator in
a browser’s site URL makes a request to instantiate TLS protection. If a website provides TLS
for a particular page (URL), then the TLS will start for the connection.

Th e connection is between exactly two parties; there are no multi-party TLS connections.
Th e two parties do not have to have a true client/server relationship; they may exchange data
equally once a connection has been created. Still, the terms client and server derive from the fact
that in TCP/IP (and thus, TLS, which rides on top of TCP/IP [Actually, TLS is encapsulated

* Shankland, 2014.
† http://mashable.com/2014/04/09/heartbleed-bug-websites-aff ected/#cA_kSeXnGkqb
‡ Jose Pagliery, “Heartbleed bug: What you need to know,” http://money.cnn.com/2014/04/09/tech

nology/security/heartbleed-bug/

As of this writing, named, often even
branded, vulnerabilities are a regular
occurrence; security folk perhaps are
inured to the practice. Heartbleed was
the first vulnerability to be branded
and essentially marketed, given a web-
site and press releases.

http://mashable.com
http://money.cnn.com
http://money.cnn.com

Architecture, Attacks, and Defenses 59

within TCP messages, which are encapsulated within IP messages.]) one party (client) must
make the fi rst request to the other party (server or listener) to open the connection. HTTP,
having a request/response semantic, always implies a client/server relationship.

“Transparent” in this context implies that an application requiring encryption (and authen-
tication, as well) doesn’t need to understand and then direct the details of setting up and
maintaining the encrypted tunnel over the life of the communications; once instantiated, pro-
gramming proceeds like other TCP/IP connection mechanisms (often referred to as a “socket”).
A few programmatic calls will generally suffi ce. Furthermore, today’s operating systems and
cryptographic implementation packages take care of most of the details for the calling program
without the caller needing to program those details (data and function “hiding”).

Using a package such as OpenSSL allows programmers to concentrate on application func-
tionality rather than being experts in TLS and cryptography in general. OpenSSL and equiva-
lent packages take care of most of the specifi cs.

Once opened, TLS provides for a “keepalive heartbeat” message to be sent at periodic inter-
vals to the other side of the connection, which must respond, thus allowing each side of the
connection to verify that the connection is still functioning (still “alive”).

“Sending HeartbeatRequest messages allows the
sender to make sure that it can reach the peer and
the peer is alive.”*

A computer programmer making use of (“call-
ing,” including the OpenSSL functionality within
a piece of software) OpenSSL would specify that
heartbeats take place or not and may confi gure the
periodicity (though there is a default period [see
inset]). But the calling program does not issue heart-
beat messages. Th ese are taken care of down within

the bowels of OpenSSL.
Heartbeat messages do not occur rapidly; they

are small and relatively infrequent, in “computer
network” time. Commonly, a keep alive may be
sent every several seconds (see inset) (1–60 seconds
is typical). We shall use this common expectation
about periodicity to our advantage later in the
analysis.

Given the preceding TLS heartbeat facts, let’s now proceed to understand what Heartbleed
is, assess its risk, and then try to fi gure what an astute security architect might do in defense.

Th e most obvious defense will be to fi x the error; these usually come as patches, upgraded
software, a new revision of OpenSSL that then must be rolled into production services. [Often
updating software in production can be diffi cult, a “non-trivial” task.] In practice, it often takes
some length of time before there is a patch available. However, in this case, the Heartbleed
announcement was coordinated with an upgrade (though the coders didn’t get it completely
“right,” introducing a new security issue into the fi rst patch, which then later necessitated a
second patch before Heartbleed had been fi xed).

* Seggelmann & Williams, 2012.

“HeartbeatRequest messages SHOULD
only be sent after an idle period that is
at least multiple round-trip times long.
This idle period SHOULD be configu-
rable up to a period of multiple minutes
and down to a period of one second. A
default value for the idle period SHOULD
be configurable, but it SHOULD also be
tunable on a per-peer basis.” *

For readers who are not fairly familiar
with computer time periods, a second
is an eon to a computer—that is, quite a
long time. A second is longer than most
computer-to-computer exchanges of
messages take.

60 Secrets of a Cyber Security Architect

But these types of production services are notoriously diffi cult to perturb; it may take hours,
days, weeks, even months to get the new software installed and running. Hence there may be
a signifi cant period of exposure. What are the correct steps to take, if any? Any decent security
practitioner is going to ask her, him, or themself that question. Answering those questions
involves, as I wrote above, understanding the attack, what it can impact, how serious the
impact will be, and what may be done to prevent that impact. Th at is the art of security archi-
tecture, in my experience.

Before we proceed with the analysis, I want to give you an example of how security architect
responded in the heat of the moment (not me). As we analyze, from time to time, consider his
actions in order to place the analysis into context. After the analysis, we’ll examine his actions
in light of the analysis. See what you think. Did he “do the right thing”? Or was his a major
goof up? Or somewhere in between?

Imagine a rather large organization with a signifi cant web presence. Th at set of web func-
tions takes sensitive data from its customers transmitted over the Internet; the organization has
millions of customers. During the “high” season for that organization’s function, the personal
data from tens of millions of customers is regularly,
sometimes repeatedly, exchanged over the Internet.
Consider the Internet absolutely untrustworthy and
dangerous (which it is).

Th e security architect with web responsibility for
our example organization responded to Heartbleed,
as he told me, within “10 minutes” of deliberation.
He turned off TLS until he had a trustworthy, non-
vulnerable version installed (see inset).

Let us proceed.

3.5.1 Heartbleed Technical Analysis

Th e Heartbleed error was an implementation error. Th is is perhaps the fi rst important data
point for analysis. If the error had been in the TLS protocol (and in fact, there had been a seri-
ous protocol error announced about six weeks before Heartbleed’s announcement), then most
if not all TLS implementations would be vulnerable.

Indeed, protocol errors tend to take a lot longer to fi x. Why? Because the standards body
responsible for the protocol has to meet and come to agreement about the error and its fi x. Th ey
then have to draft a new specifi cation, which then is approved. Th en, protocol implementers
will have to incorporate the new specifi cation into their implementation. All in all, protocol
changes can be a rather lengthy process (that is, months at best; often years).

Contrast the foregoing with an implementation error: One can fi gure out what’s wrong with
the code, rewrite the error to fi x it, test it, and then release the fi x. Th e error will most likely
be confi ned to a single implementation, or at worst a subset of the implementations. (Th is can
happen when there has been a broad misunderstanding by implementers of the offi cial specifi ca-
tion, or in cases in which something that hasn’t yet been specifi ed but is widely implemented is
discovered to be vulnerable to exploitation for unintentional behavior [see inset on next page].)

I can reveal neither the identity of the
architect nor that of the organization.
I ask for you the reader to trust me
that this happened, that the architect
related his response as I’ve given it,
here. Even if the story were fictional,
which it is not so far as I know, read-
ers may still consider this example as
hypothetically worthy of reflection.

Architecture, Attacks, and Defenses 61

Th at is, Heartbleed was confi ned entirely to
OpenSSL, and indeed particular versions, not every
release that was in the fi eld.

So what was it, really? Heartbleed was a buff er
over read. An attacker can read whatever memory
happens to lie just above the buff er allocated by
OpenSSL for a TLS Heartbeat response packet.

“Th e problem here is that the OpenSSL heart-
beat response code does not check to make sure that the payload length fi eld in the heartbeat
request message matches the actual length of the payload.”*

Th is class of attacks can be put into the larger structural bucket, Elevation of Privileges.
Th e attacker doesn’t have permission to read memory beyond certain limits. In this case, an
attacker should have no ability to see any memory beyond that allocated for minimal 19-byte
TLS Heartbeat response. But, because of a failure to check the size of the request, the attacker
was given the capability to read memory with addresses above the end of the limit given in the
heartbeat specifi cation.

In case the reader does not have a clear picture about these allocations and deallocations, let
me digress a little. (Th ose readers who are familiar with program memory can skip to the next
paragraph.) In OpenSSL, as in most dynamic programs, when building a particular structure,
say a TLS heartbeat response, the fi rst thing that the program does when it receives a valid TLS
Heartbeat is to allocate just enough memory for the response packet. Th en, the appropriate
and valid data items are placed in the correct positions within the packet. It is then passed to
a function that will send the packet over the network connection. Once given to that function
(or the function completes, depending upon whether the function copies the packet or not),
the packet—that is, the memory used to construct the packet—may be deallocated. In pro-
gramming parlance, the memory is “freed”—returned to the memory pool from which it was
allocated. Th at memory pool, for most operating systems and loadable program types, will be
the running program’s “heap.”

Th e heap is just an area of readable and writable memory that can be allocated and deal-
located in chunks of whatever size may be required. When a program is loaded, the operating
system gives the program a heap. For some executable types, the heap is given by the execut-
able; in other types, a virtual heap address space is given, though the actual memory may be
much smaller. Th e heap can then grow to its maximum. Th e starting heap size and its maxi-
mum are operating system, language, runtime environment defi ned.

In the case of a TLS Heartbeat Reply, the size is expected to have a payload of at least 19
bytes. “Th e total length of a HeartbeatMessage MUST NOT exceed 2 1̂4 or max_fragment_
length when negotiated as defi ned in [RFC6066].”†

Th e maximum size of a TLS heartbeat is given in binary in the specifi cation. In decimal, it
is 16381. What should happen when the response packet is allocated for OpenSSL to allocate
3 bytes for the packet header plus whatever size is requested by the sender of the Heartbeat, so
long as that size is less than or equal to 16381.

* Chandra, 2014.
† RFC 6520, 2012.

At a time in my career when I had been
writing TCP/IP code, there was an
unspecified part of the TCP protocol
that many implementations coded in
a unique and local manner. That lack
of specification turned out to be an
exploitable denial of service (DOS).

62 Secrets of a Cyber Security Architect

OpenSSL Heartbleed allowed an attacker to specify a size of up to 16 thousand (K) bytes
(the size of the maximum packet, sent in a 2-byte integer [A signed, 2-byte integer is 32767,
while unsigned maximum would be 65535. But only a 16383 maximum is allowed—that is,
214.]). In the OpenSSL code, OpenSSL aborted the process into which it is linked with an error
if it received a Heartbeat with a request that was greater than 16383.

Th ere existed a signifi cant error in the code after the packet was allocated. Vulnerable
OpenSSL fi lled in only the fi rst 16 bytes of the packet—not even ‘max_fragment_length’, as
specifi ed in RFS 6520, quoted above. Rather, the size of the return is hardcoded as 16 bytes (18
total including the header). So, attackers can retrieve over 16 thousand bytes from within the
program heap that had not been overwritten by the heartbeat response routine before being
returned.

Apparently, even some of the published analyses of the error were incorrect. Consider the
following statement:

“Th en, OpenSSL will uncomplainingly copy 65535 bytes from your request packet, even
though you didn’t send across that many bytes:”*

You’ll note the larger number given by Paul Dicklin in the quote, 65535. 65535 is the
value of a 2-byte unsigned integer. While the length fi eld is 2 bytes, the conclusion isn’t true,
because OpenSSL would abort the whole process when confronted with a request over 16383!
[Th e off ending OpenSSL code calls the C programming language macro “OPENSSL_assert,”
which covers the OpenSSLDie() function, which exits to the operative system.]

Th e point of the analysis above is that whatever data happened to occupy the memory above
the 16 bytes fi lled in by OpenSSL would be returned to the attacker unchanged up to the
maximum size allowed, or whatever value was sent with the Heartbeat request. “Unchanged
memory” in the context of a Heartbleed response means that the response contains whatever
bits and pieces of data that chunk of memory happened to contain from the previous purpose
for which it had been used; for instance, it might contain part of a decrypted message stream
or a decryption key which then would be returned to the attacker within the overly extended
heartbeat response packet.

Despite some of the media declarations during the crisis, the Heartbleed error only aff ected
the confi dentiality of data, and only data that was in memory at the moment when the exploit
was prosecuted. (We shall examine this in greater detail below.)

Th ere was no possibility for the attacker to change data in memory. Nor was there any capa-
bility for the attacker to inject data or computer instructions via the Heartbleed mechanism.
Th is last—an ability to inject code into a running program—is usually the most serious type
of error. In the hands of a sophisticated attacker, allowing that attacker “code of the attacker’s
choosing” often implies a complete compromise, if not in the fi rst code injection, then cer-
tainly as the attack proceeds step by step. Importantly, no such capability was given to attackers
with Heartbleed.

Now, of course, if usernames and passwords happened to get returned, an attacker could
then simply log into an account and gain access to whatever the password protected. Depending
upon what goodies might have been “heartbled,” the attacker’s next step might be quite signifi -
cant. Th is level of privilege escalation is not a foregone conclusion in this case.

* Ducklin, 2014.

Architecture, Attacks, and Defenses 63

In other words, expressing this in terms of the classic “CIA” (confi dentiality, integrity, avail-
ability), Heartbleed directly aff ected confi dentiality only. And, as we shall see, there were limits
to the exposure, even at that.

In my blog post written during the crisis, “Heartbleed Exposure, What Is It Really?,” I
wrote:

“. . . getting a random bit is different than requesting an arbitrary memory location at the dis-
cretion of the attacker. And that is a very important statement to hold in mind as we respond
to this very serious situation.” *

Indeed, the discoverer of HeartBleed, Neel Mehta, tweeted, “Heap allocation patterns make
private key exposure unlikely.” †

Whether or not Neel Mehta was indeed correct is a subject of some debate at this point.
Still, early on, it seemed to Neel that while this bug was serious, it probably wouldn’t bring
down the Internet.

Once security researchers began to run tests, there were claims of fi nding sensitive items such
as TLS session keys or user passwords. Other test runs were not so successful. Unfortunately, as
of this writing, most of those test reports seem to have been removed from the Internet; I could
no longer fi nd their references as I prepared this book. Hopefully, through the below analysis,
it will become clear why results varied considerably.

Why would Neel Mehta say what he said?
In order to understand, we have to understand how memory is organized in running pro-

grams, and more particularly in programs that use OpenSSL. It turns out that there’s more
than one answer to that question. A key concept to hold is that Heartbleed is a fi shing expedi-
tion, not a precision read.

For the operating systems that are relevant to this discussion, a typical executable program
has a memory area allocated to it called “the heap,” as previously described above. As new
chunks of memory are required, heap memory is allocated for each use, and then, if the appli-
cation is reasonably well behaved, when whatever actions have been completed with that bit of
memory, the program (the code) deallocates, frees the memory for future reuse. [At least, the
memory should be released. “Use after free” is a programming error and can result in a vulner-
ability, as well.] As the program runs, over time, areas in the heap are used and then returned.

Since the size of each allocation varies tremendously from a couple of bytes to big chunks
of memory sized up to the limit of the heap, the same memory is written into, overwritten,
chunked up, put back together into a larger chunk, broken into smaller pieces, and so forth.

Th e longer a program runs (this is a function of time), the more bits and pieces of data will
collect in the heap and then become fragmented over the length of the run. As I wrote in my
April 17, 2014, blog post,‡ “it’s a jumble sale.” Approximately 16 thousand bytes was the largest
chunk a Heartbleed would return. Th e contents of that chunk will be a mishmash of all the
data uses that just happened to be allocated from that particular space above (at progressively
higher memory addresses) the running length of the program. Th e fi rst 16 bytes would have

* Schoenfi eld 2017, April 17
† Mehta, 2014, April 8
‡ http://brookschoenfi eld.com/?p=213

http://brookschoenfield.com

64 Secrets of a Cyber Security Architect

been “padded”—that is, fi lled in by OpenSSL when the Heartbeat Reply was constructed. Th e
number of bytes read without permission is as many as 16383 – 16 = 16367.

Data in the heap is not completely random. Running programs are not random executions,
reads, and writes of memory. In fact, the whole point of coding is predictable behavior. So,
patterns in the heap do emerge. But these patterns are highly dependent upon a particular
operating system, a particular use of OpenSSL, a particular allocation of memory to the pro-
gram, and so forth. Without careful and consistent observation over a fairly extensive running
time, it would be fairly diffi cult to get much precision about what data might be at any par-
ticular memory address at any particular moment. Hence, requesting memory above a predict-
able location into the unpredictable area (that is, the area above the actual allocation for the
Heartbeat response) is not a precision exploit. One retrieves what one retrieves.

Particularly, in the case of OpenSSL, where
the attacker is interested in a particular stream of
decrypted traffi c, or, even better, a session’s encryption
key, there’s no way to ensure that the data retrieved
via Heartbleed will pertain to the target TLS session.
Th e data returned could be anything, including bits
and pieces from other parts of the program that has
included the OpenSSL library. (See inset)

Of course, if an attacker can execute thousands, tens
of thousands, millions of Heartbleeds, the attacker is
quite likely to retrieve a pretty big sample of the pro-
gram’s heap, if not nearly the whole of the heap. In
possession of just about all the data garbage left within
freed portions of the heap, the attacker would have
quite a large part of that program’s running data.

A common use of OpenSSL on the Internet has the library conducting multiple sessions
at the same time: perhaps hundreds, conceivably thousands. In my reading of the OpenSSL
specifi cation, there is no tie between a heap in a session: all sessions use the same heap unless
the calling program, the program using OpenSSL, confi gures an option to allocate a separate
heap per session. I have found only one potential example of this architecture. In general, mul-
tiple sessions are handled on the program’s single, combined heap. One heap.

Th e exception to my statement about one heap is NGNX,* an open source, multi-threaded,
event-driven web server. It’s widely used to manage large numbers of concurrent web requests.

NGNX has a confi gurable capability to allocate pools of memory to each thread. When
OpenSSL is used with NGNX and pools of memory, each connection gets its own “heap,” or
memory area, from which to allocate.† A Heartbleed error in the context of individual connec-
tion memory implies that the Heartbeat response will reveal only data related to that connec-
tion, as opposed to data from any connection and across multiple connections, which is what
happens when there is only one heap in use across connections. As I’ve written, many uses of
OpenSSL use a single heap across all sessions. (See inset on next page.)

* https://nginx.org/en/
† Please also see https://www.nginx.com/blog/nginx-and-the-heartbleed-vulnerability/

In the case of routers and other net-
work equipment, almost all the func-
tioning of the “program”—that is, the
router—will be the traffic. But in the
case of some more business or other
non-traffic–related functionality, much
memory will contain the business
data rather than network exchanges.
That could be a boon to the attacker,
as other interesting items might be
retrieved—say, database credentials,
addresses of whatever systems to
which the target happens to connect,
etc. Or, returned data may consist of a
mess of unrelated calculations.

https://nginx.org
https://www.nginx.com

Architecture, Attacks, and Defenses 65

Th e above implies that for most OpenSSL use
cases, any particular over read (exercise of the Heart-
bleed error) is going to get data from any of the ses-
sions that have existed since the program started and
the heap was initialized at program startup, with the
caveat that a previous session’s data has not yet been
overwritten by a subsequent usage. As I explained,

above, the data from each session is held in the common pool: the heap.
In order to be useful to the attacker, the data might need to be carefully sorted into sessions

(if enough session information is retrieved upon which to sort). Even more sophisticated pars-
ing, winnowing, and analysis [parsing, sorting, winnowing, analyzing data is sometimes called
“munging.”] are very likely to be required in order to fi nd useful patterns and to establish some
useful level of coherency from any large collection
of data via Heartbleed (see inset). It’s a fi shing expe-
dition without a fi sh-fi nding device or a seasoned
fi shing guide.

Just like fi shing: sometimes one fi nds and lures
the fi sh, other times, not so lucky. [Astute readers
might guess that I do sometimes fi sh.]

“‘We were able to scrape a Yahoo username &
password via the Heartbleed bug,’ tweeted Ronald
Prins of security fi rm Fox-IT, showing a censored
example. Added developer Scott Galloway, ‘Ok, ran my heartbleed script for 5 minutes, now
have a list of 200 usernames and passwords for yahoo mail.’”*

So, however Yahoo had set up its TLS implementation using OpenSSL, it was apparently fairly
easy to get useful data. Or, perhaps Ronald Prins from Fox-IT just got lucky. (See quote, above.)

OpenSSL has a number of buff er confi guration settings beyond the simplistic analysis that
I’ve given up to this point. A program can confi gure OpenSSL to build a private set of buff ers.
Th ese would be drawn from the heap at initialization. Th e reserved buff ers would then be used
on a Last In First Out (LIFO) basis, thus bypassing the program’s heap allocation and deal-
location routines.

When OpenSSL uses its own pool of buff ers, a Heartbleed is more likely to grab data rel-
evant to TLS connections. Th is situation is more advantageous to an attacker interested in
compromising TLS/SSL connections. Please see Ted Unangst’s explanation for a more thor-
ough analysis of private buff er pools.†

It should be noted that if a Heartbleed over read occurs on the highest addressed private
buff er in the OpenSSL pool, the extra data will most likely get returned from the active heap,
just as I’ve already explained.

Once again, NGINX can make use of alternate memory schemes. Th e wise defender would
be careful to fully understand exactly which memory confi guration options are in use before
deciding what, if any, mitigations one might employ against an issue like Heartbleed.

* Shankland, 2014.
† http://www.tedunangst.com/fl ak/post/analysis-of-openssl-freelist-reuse

There is also an OpenSSL configuration
to allocate a pool of memory specifi-
cally for OPenSSL’s private use during
initialization. In that case, a Heartbleed
response would return solely OpenSSL
data.

I don’t intend to imply that deriv-
ing coherency is impossible. It most
certainly is possible. But an attacker
would have to collect sufficient data
for the patterns to emerge, for an
analysis to be successful. Analyzing
random bits of memory data tends
to be a fairly complex and non-trivial
problem in computer science.

http://www.tedunangst.com

66 Secrets of a Cyber Security Architect

As I’ve written before, without knowing the details of operating system and runtime envi-
ronment—in this case, the details of heap management and perhaps process or thread memory
assignment—there is no way to accurately assess the risk of the issue.

Another key piece of information will be what data is being transmitted over the encrypted
sessions. For instance, if after the TLS session is instantiated, a user name and password are
sent over the TLS encrypted tunnel, then it is possible that the decrypted password will be sit-
ting somewhere on the heap, which might then end up among the bytes not overwritten (the
fi rst 16) in a Heartbeat reply.

If there is no authentication or if authentication is provided by X.509 certifi cates, there will
be no password. Th e certifi cates, or parts of them, might get returned. Even the encryption/
decryption keys (session keys) are in memory somewhere. Th e session keys aren’t usually in the
pool of memory available for allocation, as they are in use for the duration of an active session,
and thus, marked “in use”—that is, unavailable to be used for an allocation.

Remember that the SSL heartbeat requests a par-
ticular size of return. Th us, the extra bytes returned
are still returned from blocks marked “available”
and should not return memory chunks marked
“in use.” Th e Heartbleed error did not allow read-
ing of unavailable memory, only facilitating a read
of memory that had been previously freed or never
used. For a properly running program without a
memory allocation/deallocation bug (see inset),
only available memory could be retrieved via the
Heartbleed error.

Once the session is ended, the keys will be
released back to the heap’s available pool. But since keys are not reused, but are generated anew
for each session, the old, disused keys are not valid and should be of little attacker value. (Th is
is perhaps why Neel Mehta thought that session keys were unlikely to get revealed.)

3.6 Analyze to Defend

“You have to get inside the attacker’s head. What is the attacker going to get out of it?”*
As we begin to consider defenses, I’ll point out something that is perhaps obvious: Any TLS

Heartbeat request that requests an out-of-specifi cation value greater than 16,383 bytes is not
only outside the specifi cation (quoted above) but is clearly invalid. In fact, such a request is a
dead giveaway of something amiss.

We also know that values greater than 16,383 will cause OpenSSL to exit (kill the running
program) with an error. So, requesting an illegal value won’t cause a Heartbleed.

Requesting 16,381 bytes is legal. Vulnerable OpenSSL only fi lls in the fi rst 16 bytes. Th is is
a perfectly legal request that must pass any specifi cation validity check. So, checking size isn’t
going to demonstrate a Heartbleed attack.

* Grobman, 2016.

It should be noted that applications
sometimes have bugs in the way that
they allocate and then deallocate mem-
ory. A specific type of memory issue
is a “use after free” bug. Plus, it is not
unknown for a language’s memory han-
dling routines to have bugs as well. It
is possible that a buggy application or
language library, or operating system,
might return memory marked “in use.”
No permutation of a memory bug is
impossible.

Architecture, Attacks, and Defenses 67

In order to identify encrypted Heartbleed attempts, the TLS would have to be terminated
and then passed along to the recipient program by the security software (intrusion prevention
or detection software or device).

But there is another odd semantic that might be a giveaway for detection: TLS Heartbeats
come at a fairly slow rate, in computer terms. A heartbeat each minute is fairly typical.

Th e simplest defensive response to prevent Heartbleed is to turn off TLS Heartbeat support.
Th at might cause some of a website’s longer running connections to have to be re-instantiated,
which users might fi nd somewhat annoying. Still, data would remain encrypted and thus
protected. No Heartbleed may be exploited, as all TLS Heartbeat requests would be rejected.

And, indeed, many sites did exactly this; they turned off Heartbeats until the site’s OpenSSL
could be updated.

In situations in which deployment of OpenSSL confi guration of the Heartbeat is under
the control of those who deploy OpenSSL, it will be relatively straightforward to turn off
TLS Heartbeat. Unfortunately, one typical TLS strategy is to deploy a separate TLS termina-
tion function, often on a piece of dedicated hardware such as a dedicated switch or plug-in to
which TLS traffi c is routed for TLS termination and then sent on to its destination decrypted.
Another typical termination architecture will be in multifunction, often very large load bal-
ancer hardware.

When these architectural choices have been implemented, deployers may have little or no
control over the confi guration of OpenSSL, because OpenSSL may be packaged as part of
the product. OpenSSL’s confi guration options may not be exposed to the hardware admin-
istrator. Perhaps many TLS confi guration options, like Heartbeats, may not be exposed for
customer use.

In fact, unless equipment owners have studied carefully the various software licenses that
have been included, deployers or site owners may have no idea that OpenSSL is the TLS
implementation within a product. In these cases, the Heartbeat may be turned on by default,
or even be turned on exclusively, because it is quite common to use TLS Heartbeat to prevent
inadvertent loss of idle connections over time.

In a case in which the state of the TLS Heartbeat function is not under the control of the
deployer or system owner, as described above, turning off the Heartbeat function in response
to Heartbleed may not be an option.

Th e only recourse may be to contact the manufacturer of the product about whether it
uses OpenSSL, how OpenSSL is used, and whether the manufacturer is going to respond to
Heartbleed, and how fast. Th at, unfortunately, is a pretty powerless situation.

It’s not easy to change a large website’s architecture; it certainly cannot be done quickly in
response to a major security incident such as Heartbleed. Th e security team responsible for the
website is then at the mercy of its product manufacturers. Th e only recourse is to hound the
manufacturer for a solution.

“. . . [T]he Internet layer does not guarantee that all packets will take the same route, and
therefore there is no guarantee that they will arrive in the same sequence and time intervals as
they were sent, or that they will arrive at all.”*

If I were in such a situation (in my actual response to Heartbleed, I was not, although
perhaps my IT security colleagues might have been), I might have been tempted to consider

* Doyle, 1998.

68 Secrets of a Cyber Security Architect

turning TLS off . Such a drastic decision would have to take into account the types of data that
would be exposed to a hostile Internet and to Internet routes that cannot be guaranteed, who
my customers are, the risk posture of my company/organization, etc.

Such decisions shouldn’t be taken lightly, nor in the heat of the moment. It’s always useful to
remember that it takes attackers a little while to begin exploiting a brand-new issue, even when
example exploitation code is freely available. Th at lag between announcement and malicious
exploitation can be used to perform the kind of analysis that I’ve set out above.

One of the diffi culties with identifying anomalous Heartbleed traffi c patterns will be those
connections that placed the TLS Heartbeat within the encrypted tunnel. As of this writing,
there is no agreed-upon specifi cation to proxy TLS traffi c, say for security software that must
examine the decrypted traffi c before passing it on to its destination. In fact, a proxy is consid-
ered an insecure break of the basic principles of the TLS protocol.

If you have ever been trying to connect to a site that uses HTTPS, perhaps through a hotel
or café network where you fi rst respond to a landing page that requests agreement to condi-
tions of use, you may have noticed your browser throwing up a warning that a site or certifi cate
is invalid or the site may be insecure. Th at warning is a well-written TLS implementation’s
response to a mismatch between certifi cates from an expected site and the certifi cate that has
been off ered to your TLS client (for instance, your browser or mail client).

It is an error in TLS for the client to receive anything except a server certifi cate that matches
the Internet protocol (IP) address of the server tied to that particular certifi cate. When the
authentication certifi cate does not match in some way, or particular portions of the certifi cate
attributes and form are invalid or don’t apply to the server from which it is supposed to have
come, a well-written TLS client will throw an error, as it must.

Perhaps you see the problem?
Th e TLS protocol is specifi cally written to prevent a man in the middle from inserting

itself between a valid server and a valid client. Hence, there is no supported manner, or even
an elegant hack, to proxy a TLS connection. Basically, the server-side TLS termination has
to be legal, and in general, that’s how security products that perform some function on TLS
encrypted traffi c work. For more information, please see Olaf Bonordon’s work with IEEE’s
Industry Connections Group (ICSG) on TLS traffi c inspection for security.*

My point from the preceding explanation is that if OpenSSL is confi gured to place the TLS
Heartbeat within the encrypted tunnel, it will be very diffi cult to identify Heartbeats occurring
in some improper fashion: too fast, requesting overrun buff ers, at some unexpected frequency
or rate, identifying returned buff ers that have excess data. All those defi nitive signatures of
Heartbleed exploitation will take place within the encrypted tunnel such that security software
cannot decrypt the traffi c. An intrusion detection system (IDS) that has not terminated the
TLS traffi c I order to decrypt it will have no ability to identify signs of malicious traffi c.

If traffi c is confi ned to those architectures for which TLS has been terminated by a security
function, then that function will also have the ability to identify Heartbleed traffi c patterns.

Obviously, in the fi rst day or two after the announcement of Heartbleed, few if any secu-
rity products had had time to build identifi cation such as I’ve listed above into their products.
Further, as has been explained, many deployment architectures, especially those in which the

* Bonardon, 2018.

Architecture, Attacks, and Defenses 69

IDS is given a “tap” of promiscuous traffi c out of the line of routing (to the side of the actual
traffi c exchange), then that IDS will be next to useless to identify a Heartbleed attack.

Let’s recap the main points of the preceding analysis:

• Heartbleed does not give an attacker the ability to execute code of the attacker’s choosing.
• Th e data returned through exploitation is not precisely random, but it is not ordered,

either.
• Th e data returned cannot be chosen by the attacker.
• Depending upon memory confi guration, exposed data could be across many TLS con-

nections or be tied exclusively to a single connection.
• In the case of data from many connections, an attacker must analyze the data in order to

tie particular data to particular connection and may have to reorder data to make it useful.
• Data might be very near to random bits and pieces with no respect to protocol or message.
• Th e issue is tied directly to TLS Heartbeat function: when TLS Heartbeat is turned off ,

then no Heartbleed exploitation is possible.
• Except for very slow exploitation, the exploitation of Heartbleed tends to generate anoma-

lous traffi c patterns.
• Diff erent memory architectures and diff erent OpenSSL connection use patterns generate

very diff erent Heartbleed data returns.

In essence, an attacker either has to get lucky or possess signifi cant details about a particular
architecture and that architecture’s use of OpenSSL in order to understand and analyze the
data returned through a Heartbleed.

Revisiting the security architect story that introduced the analysis, do you believe his defense
was the best defensive move possible (made after 10 minutes of deliberation)?

3.7 Turn Off TLS?

Was that security architect correct to remove TLS encryption protections for all of his cus-
tomers’ sensitive data as it crossed a hostile and dangerous Internet during his organization’s
busiest period? Or, was his choice a gross error? Do you think that 10 minutes is suffi cient time
to carefully analyze, as we have done, to understand reasonably well just what exploitation of
Heartbleed might potentially impact?

Without knowing my own architecture, what can be exploited, the impacts to my organization,
the control I have over the equipment and its confi guration, I would be shooting in the dark. It
took, if I recall correctly, about four to fi ve hours to complete my initial investigation of Heartbleed
in order to understand it well enough to make informed decisions. Th e practice of security archi-
tecture depends upon attack and defense analysis similar to the preceding Heartbleed example.

Th e discipline of security architecture involves bringing together knowledge about how
threat agents go about the business of malicious attacks and for what purposes, the computer
science of attack types, mitigations, and defenses that will specifi cally prevent or stymie exploi-
tation of particular attack types, impact analysis, which then must feed into some sort of rea-
sonably rigorous risk analysis methodology.

70 Secrets of a Cyber Security Architect

We have already examined in a previous chapter the knowledge domains that will allow a
person to bring together an analysis similar to the foregoing Heartbleed analysis provided in
this chapter. Given the requisite background knowledge, I have here listed the key domains of
knowledge that a security architect brings to bear in order to assess and to respond appropri-
ately to an attack. I used the famous Heartbleed attack as an example analysis so that readers
can understand a security architecture analysis. If you’re not familiar with Heartbleed, much
has been written about it; it should be fairly easy to gather suffi cient knowledge to follow my
analysis, above. And of course, the reader is free to check my work. It’s always possible that
I’ve misunderstood something, or simply made a mistake in explaining the details. Any such
mistakes are obviously mine alone.

Still, I hope that the foregoing helps readers understand just how the form and impact of
attacks are the currency of a security architect’s practice. You will perhaps notice that there are
key technical details:

• Th e semantics of the TLS Heartbeat
• Th e precise type of issue that will be exploited (in this case, buff er overrun)
• Patterns in program memory allocation pools (heaps) and memory allocation and deal-

location patterns
• Th e semantics of TLS client/server authentication

In order to properly analyze this issue, we had to understand how the Heartbleed attack
works within the TLS protocol and within the program that has included OpenSSL.

However, I hope you also see that I didn’t have to write exploitation code, nor did I have to
exploit Heartbleed for hours or days with my own Heartbleed code in order to complete this
analysis. Th e details of the specifi c exploitation are not required and may even be unimportant.

Security architects operate at a somewhat higher level of understanding than, say, penetra-
tion testers. A security architect must piece together computer science understanding about
operating systems and loadable programs against types of attacks like a buff er overrun.

Peppered into each analysis will be required understanding of (or investigation and research
into) the relevant protocols and message exchanges. Further, a working knowledge of how IDS
and TLS proxies function, as well as some working knowledge of typical website architecture
patterns, were brought to the analysis. Th e purposes of defensive technologies and how these
are placed within an architecture allow appropriate defenses or mitigations to be deployed. All
of this comes together in the analysis, generally, before action is taken.

3.8 Security Architecture Analyses

I hope through my little ruminations on Heartbleed, you, my reader, now have a better under-
standing of what security architecture is and the sorts of analyses that a security architect might
provide. Th rough the rest of this book, I hope to off er the security architect useful tidbits I have
either been taught, picked up, or learned through the schooling given by my mistakes and errors.

It is my sincere hope that my analysis of Heartbleed has provided a suffi cient example such
that what a security architect does and does not need to understand about an attack has been

Architecture, Attacks, and Defenses 71

explained. As with other aspects of the architecture disciplines, we are interested in struc-
tural understanding; some details of the attack are important. But, typically, an architecturally
focused analysis doesn’t require the precise code for exploitation. In fact, often times, it is more
useful to understand what kind of attack it is, what the attack achieves, and the context in
which the attack will be prosecuted and defended.

We have to know what the attacker is going to get out of exploitation, what will be lost
by defenders, and what defenses are appropriate. It is this last—appropriate defenses—where
technical understanding of the attack comes into play. As I’ve written before, there is no one-
to-one mapping between each technical defense in any particular type of exploit. It is poten-
tially a many-to-many relationship.

Precision when building defenses is one of my goals, and I believe this is so for the vast
majority of security architects. Why? Because were always working with limited resources, and
no defense is perfect. We need to build “just good enough.” We can never build “perfectly for-
tifi ed.” Th rough understanding attacks, we can be more specifi c when building an appropriate
defense in depth.

I’ll note that I learned a great deal from studying the very fi rst Heartbleed example code that
was publicly posted. Th e code had been posted in the afternoon of April 7, 2014 (six hours after
we’d started our response). But at the time that fi rst bit of example exploit code did not give me
all the information that I required for an in-depth analysis.

I spent several days gathering every test result, both internal and externally published, that
I could lay my hands on. It was important to understand the predictability or randomness of
results of exploitation.

At the same time, I read the RFC specifi cation for TLS heartbeat, so that my analysis was
grounded in what was supposed to have been taking place versus what Heartbleed forced
OpenSSL into doing. My blog post to explain the risks (included in its entirety as Appendix A)
was published internally at the end of the week. Later, our Public Relations department asked
me to re-publish externally, which I did to my personal blog on April 17. In other words, I spent
hours over several days researching Heartbleed so that I could off er as realistic an assessment of
the risks as I could manage, as well as decide what defensive measures might be best put into
place. Maybe I’m just slow?

As I noted above, the foregoing technical analysis of Heartbleed to discover the appropriate
set of responses (defenses) are an example of threat modeling: what can the attacker do and
how do we prevent those attacks. No matter what else we may call it, the most common term
used today for this process is threat modeling.

In practice, when practitioners are performing an Architectural Risk Analysis (ARA) or an
initial or fi nal Security Review (SR) in their heads, the reviewers will be threat modeling as a
part of the analysis:

• Who’s going to attack this system?
• To achieve what purposes?
• With what techniques?
• Th rough what vectors?
• Exercising what potential conditions?
• Causing what harm?

72 Secrets of a Cyber Security Architect

3.8.1 Some Cheap Risk Concepts

I summarize the terms in this way (as I wrote in Chapter 4 of Securing Systems and the Just
Good Enough Risk Rating [JGERR] Smart Guide*):

Th reat Agent uses Exploit through Exposure of Vulnerability causing Impact
Expressed in this way, in order for there to be a successful attack, the following terms each

must be true:

* http://brookschoenfi eld.com/?page_id=271
† https://blog.opengroup.org/2017/01/24/what-is-open-fair/
‡ https://www.fi rst.org/cvss/
§ https://resources.infosecinstitute.com/qualitative-risk-analysis-dread-model/#gref)

• Th reat Agent
• Exploit
• Exposure
• Vulnerability

Th e exercise of the attack vector, also called a “Kill Chain,” which I term—when all condi-
tions exist—a Credible Attack Vector (CAV), must also have an impact—that is, cause some
sort of harm.

Given a Credible Attack Vector, it’s likelihood scales arithmetically, the magnitude of the
harm to give a risk rating:

CAV * Impact = Risk Rating
Which is how JGERR works.

3.8.2 JGERR Risk Rating

JGERR style risk rating for threat models was covered
in Securing Systems, Chapter 4. It’s important to note
that JGERR has generated thousands of risk ratings at
multiple organizations by the time of this writing (see
inset). Th e accumulated body of ratings demonstrates
the usefulness of not only the method, but its results.
You may consider JGERR to be “fi eld tested.”

JGERR is based on Factor Analysis of Information
Risk (FAIR).† Although JGERR is highly simplifi ed from
FAIR. JGERR is not intended to replace risk calculation
methods such as FAIR, but rather to make up for the
shortcomings of CVSS (Common Vulnerability Scoring
System‡) and DREAD (Damage, Reproducibility,
Exploitability, Aff ected users, Discoverability§), which
are often employed to substitute for risk. Please
see Appendix C, Amending CVSS and DREAD, for
a proposal to increase the eff ectiveness of CVSS and
DREAD through assessing “attacker value.”

I do not mean to imply that JGERR is the
One True risk rating system. Although
I have ample proof that it works and
some certainty that JGERR is based
on sound principles (FAIR), there exist
other systems equally workable. When
I arrived at my current employer, I was
delighted to see that they had been rat-
ing risk in a manner similar to JGERR for
years. It doesn’t matter how you divide
up the terms that will make up a like-
lihood of exploitation, as long as the
important factors are covered (listed in
the above). Likelihood has many com-
ponents. It is important to understand
what these are and to factor them into
your rating calculation. Don’t ever aver-
age your rating components, whatever
factors you use.

http://brookschoenfield.com
https://blog.opengroup.org
https://www.first.org
https://resources.infosecinstitute.com

Architecture, Attacks, and Defenses 73

3.8.3 At Base: Threat Model

Whatever risk calculation or rating system one may employ, a successful attack consists of a
set of conditions which all must be met in order to be successful. Call these a kill chain or
CAV—the name doesn’t matter; how one divides the conditions is less important than the
understanding that a set of conditions must all be met or an attack cannot proceed.

When threat modeling, one must build the set of CAVs for that system. Any attack which
cannot meet all the conditions in the CAV (or kill chain, if you prefer) can be discounted com-
pletely, or at least, its immediate importance reduced. Any attacks that do meet all the condi-
tions must be prioritized; the defenses for these will thus be the most important to implement
the soonest. Th at is the art of threat modeling in a nutshell.

When I was a Principal Engineer at Intel®, Inc., I
was a member of Intel’s software “SAFE” (Security
Architecture Forum) review panel. Intel’s Secure
Development Lifecycle (SDL) has a number of panel
review checkpoints to ensure that designs are secure—
that suffi cient “security” will be built into software.

No matter which SAFE review activity we hap-
pened to be engaged in, I found myself threat mod-
eling the software under review. Th e depth of threat
modeling required for the review would change
depending upon the review and the amount of the
design that had so far been completed or under-
stood. But the analysis was (is) the same: fi nd the relevant, likely attacks, then think through
the appropriate defenses. Th at is, I was threat modeling.

Interestingly, though I did not directly question my panel counterparts, from their ques-
tions, from the comments, it became clear to me that everyone else on the panel was also threat
modeling. Hence, it became obvious that threat modeling is the analysis technique through
which we practice security architecture. Th at is, we call applying attacks and building defenses
“threat modeling.”

Architecture, as I have written in Securing Systems and in this work, is the practice of organiz-
ing structures of complex systems (digital or otherwise). For security architecture, our “special
sauce,” as it were, is applying relevant attacks and appropriate defenses. Th e analysis technique
is threat modeling. In the above examples, in essence, we have been threat modeling.

3.9 Threat Modeling Defi nition

Th e formal threat modeling defi nition I’ve been using is:
“Th reat modeling is a technique to identify the attacks a system must resist and the defenses

that will bring the system to a desired defensive state.”
“System” in the above defi nition should be taken inclusively to mean any organization,

architecture, system, set of processes, whether manual or digital.
My defi nition highlights a few key points. First, threat modeling is not a design or an archi-

tecture, it is an analysis technique. Next, its purpose is identifying attacks and defenses. Th ird,

At Intel, one may think of Principal
Engineer and other organizations’ Dis-
tinguished Engineer as being essen-
tially equivalent. A peer jury process is
employed to grant or deny the title; a
candidate must demonstrate that she/
he/they already exhibit the required
leadership behaviors in their work.
Principal Engineer at Intel is not an
honorific, but rather, a recognition and
expectation of technical leadership.

74 Secrets of a Cyber Security Architect

and this is key, the defenses bring the system to its “desired defensive state.” Th at is, not to
bring the system to an ivory tower security perfection (which, of course, doesn’t actually exist
in the real world, anyway).

In order to complete a threat model, one must fi rst understand what defensive state a sys-
tem’s stakeholders expect the system to achieve. To put that in a diff erent way, a priori to
analyzing the attacks and specifying the defenses, the analyst must understand against what
the system must defend and to what level—what is commonly termed its “security posture.”

3.9.1 Alternate Defi nition

Th e Continuous Th read Modeling Initiative, coming out of the Autodesk®, Inc. security team,
defi nes threat modeling as:

“A conceptual exercise that aims at understanding what characteristics of a system’s design
should be modifi ed in order to minimize the security risk for the owners, users, and operators
of the system.”*

Th is defi nition focuses on the results of identifying the right set of defenses to “minimize the
security risk.” But at the defi nition’s heart, there seems to be an equivalence set:

* Tarandach and Schoenfi eld, 2019

• “technique” = “conceptual exercise”
• “identify the attacks . . . and . . . defenses” = “characteristics of a system’s design should

be modifi ed”
• “desired defensive state” = “minimize risk”

I hope that there’s not a lot of disagreement about the essential characteristics of the threat
modeling process. As explained above, it’s a mental exercise (often aided by diagrams and lists),
aimed at enumerating under/unmitigated security risks, which then help to identify a set of
defenses, or “modifi cations to a system’s design,” that will bring the system to an acceptable
level of security risk. Th e analysis usually involves considering various attack scenarios.

In Securing Systems, I proposed that the best way to understand a system’s security posture is
via a risk analysis, not just of a system, but of the organization fi elding the system, expectations
of the users of the system, and the owners of the system: the system’s stakeholders. Th is was
covered as “Strategy” within the “Th ree S’s” in Chapter 2 of Securing Systems.

From the understanding of stakeholder risk tolerance, one may then derive the security pos-
ture of a system, its “desired defensive state”—that is, the appropriate defenses that will resist
those attacks against which the system and its stakeholders will defend.

I hope that in this chapter, we’ve covered “attacks a system must resist” suffi ciently through
the explanation and analysis already given above.

3.9.2 When Is My Threat Model Done?

Th ere remains one further aspect to threat modeling that we must cover that was not explicitly
explained in Securing Systems: when is a threat model complete?

Architecture, Attacks, and Defenses 75

Th e answer to that question is “never,” unfortunately. But, the model is “never complete” so
long as changes are being made to the structures of a system. Still, there are points at which one
may confi dently say, “we’ve done enough at this point,” what those who work in Agile software
development term, “Defi nition of Done”—a threat modeling defi nition of done. I wrote the
following post for IOActive’s Blog. It will, I hope, explain the defi nition of done (DoD) for
threat modeling.

“Th reat modeling is a qualitative analysis through which architecture and design choices are
made based upon attack and defense analysis. Th is is a creative process that must have bound-
aries surrounding that analysis if it is to arrive at a completion.

“Th e constraints within which attack enumeration must be made are as follows:

• Th e risk tolerance of the organization owning/fi elding the system
• Th e risk tolerance of the system’s users (if any)
• Th e capabilities, goals, expended eff ort, and risk tolerances of the enumerated set of threat

agents who will wish to attack
• Th e trust/risk profi les of the system’s components, including infrastructure(s) and external

entities
• Th e runtime/execution environment(s)
• Th e existing defenses (including infrastructure defenses and services)
• Th e highest sensitivity of data fl owing through and being processed
• Th e probability of a particular attack scenario being low enough to be discounted

“While somewhat creative, a threat model must be grounded in hard data. Obviously, those
active attacks that can be exercised against the system under analysis will be applied.

“Furthermore, an analyst also applies relevant past exploit/vulnerability pairs even if such
vulnerabilities have not yet been found in the system. It’s important to understand that even
the most rigorous testing, as Edsger Dijkstra so famously quipped, “proves the system has bugs,
not that it doesn’t.” If there have existed exploitable vulnerabilities in any component within
the system under analysis, even though fi xed in the versions included, then the analysis must
assume that at least some similar issues will likely be found in those components at some point
in the future.

“An analyst may stop enumerating attacks when:

• Th e attack scenarios seem demonstrably more complex than other methods of compro-
mise that are easier and more readily available.

• Th e required preconditions to an attack scenario lie well outside the range of normal or
typical confi guration and usage.

• Signifi cant inside assistance (for externally-originated attacks) is required to proceed.
(Insider threat is a special category that requires careful analysis across an organization.
It rarely should be tackled one system analysis at a time. Separation of duties are often
determined on a per-system, per-function, or per-privilege basis.)

• Where no exploit exists for a particular vulnerability, or the vulnerability is not exposed
for remote exercise or research (it’s important to periodically revisit the threat model in
light of new developments).

• Attack scenarios start to border on the ridiculous, the strained, or the dubious, or depend
upon computer technologies that have yet to be invented (i.e., “science fi ction”).

76 Secrets of a Cyber Security Architect

“An analyst may stop specifying defenses when:

* Th e post has not been published by IOActive at the time of this writing. It will be in the future. Please
check https://ioactive.com/resources/blogs for publication. (See Appendix E for complete post.)

• Each defense has some overlap of protection
with at least one other defense

• Each signifi cant attack vector is covered at
least partially by more than a single defense (see
inset)

“Although threat modeling has a signifi cant qual-
itative aspect, there are defi nite signs when the anal-
ysis has reached its completion state, that is, a threat
modeling defi nition of done (DoD).”*

While a threat model is never complete until a
system stops changing, there are, to my mind, clear indications that a round of analysis can be
considered complete enough to build the “desired defensive state” (as given in the formal threat
model defi nition, above). Only when structure changes, when adding or changing:

• Components or functions
• Assets
• Use cases
• Lines of communication or data fl ows
• Trust boundaries or levels of trust/distrust
• Shifting the exposure of potentially vulnerable components

Some of my colleagues also prefer to revisit threat models at some periodic basis, say every
six months or a year. Personally, I don’t see the need for this if the above triggers haven’t
occurred within the time period. However, if in a given situation it isn’t crystal clear that every-
one understands the threat model review triggers, then perhaps a review of the model, when it
hasn’t already been revisited from one of the trigger changes, will provide an additional level
of catch-all review.

“Review” of the threat model is used consciously by me. Once a threat model has been
built, one needn’t start from scratch. In practice, analyzing how a set of changes adds attacks
or requires a diff erent or changed set of defensives, in light of the changes being made to the
system, is all that is usually required.

A threat model review might conclude that no additional security changes need be made. Or,
new security requirements for the added or changed structures might be generated. Th e review
process can be quite short; I’ve been in reviews that took less than half an hour, depending upon
the availability of the required information and the complexity of the system under analysis.

3.10 Summary

I hope that in this chapter, you’ve seen that security architecture is the practice of applying
relevant, likely attacks to systems. Th is application exercise is employed in order to generate the

For more stringent security postures,
each attack scenario must be miti-
gated. “Significant” is meant to mean
those attack vectors whose successful
exercise will cause significant harm.
It also implies attack vectors that are
considered “credible”—that is, there
is sufficient evidence that the attack
vector can be exercised by an active
threat actor should a weakness that
can be exploited be released or reach
production.

https://ioactive.com

Architecture, Attacks, and Defenses 77

required set of defenses that will bring a system to a “desired defensive state.” An understand-
ing of attacks and defenses lies at the heart of the practice of security architecture.

However, security architecture is not generally concerned with the details of each exploita-
tion technique. Rather, we are concerned with types of exploitations, with classes of attacks.
In Chapter 5, Learning the Trade, we’ll explore some publicly available resources to help both
with what the attacks are, and with the problem of organizing these in some form so that they
can be applied in a consistent and repeatable manner. For this chapter, I hope that it’s suffi cient
to understand what the process is.

 Architecture is about structure. Security architecture practices applying attacks and defenses
to structures. Th is application is to determine what defenses will need to be employed to resist
the attacks.

Th e primary technique of analysis employed to practice security architecture is threat
modeling.

http://www.taylorandfrancis.com

79

Chapter 4

Culture Hacking

“It’s not policy, it’s culture hacking.”

Noopur Davis, to the author at McAfee Inc., 2014*

Fortunately or unfortunately, depending on the reader’s viewpoint and preferences, a fair
amount of practicing security architecture, or just plain architecture—or really, any technical
leadership role—is about culture and people, not about purely technical matters. Complex
projects typically employ multiple teams, each taking responsibility for some portion or func-
tionality of the whole. Teams must interact both within the team and with any other teams;
everyone involved must coordinate their eff orts: schedules, outputs, and, most importantly,
component parts’ interoperation and integration of the software pieces that each sub-eff ort is
building.

4.1 Team Tourism

An entire project will develop its own working style. Likewise, each team will begin to defi ne
its team boundaries, expectations, interaction styles—basically, a team subculture of its very
own. Even use of language will take on some dialect; on tech teams, this is most noticeable by
the way in which common acronyms and other technical terms become understood by every
member of the team, though to an outsider, it may seem like “alphabet soup.”

Due to the organic formation of group-think, of team work style, the ability of anyone who
must infl uence the team’s eff orts from outside that team must involve some cultural awareness
in order to have eff ect. As I wrote in Securing Systems (pp. 180–183):

* Davis, 2014. [Ms. Davis is Senior VP of Product Security at Comcast Inc.]

80 Secrets of a Cyber Security Architect

“Th e fi rst act is to understand the architecture. Most likely, those presenting the archi-
tecture to you will be thinking about how the system works, what it’s intended for,
how it will be used correctly. Th is is very diff erent from the way a security architect
must approach architecture. Architects interested in implementing a system focus on
‘use cases.’ In a security assessment, the security architect focuses on ‘misuse cases.’ Th is
distinction is quite important.

“Because we’re examining the system for security vulnerabilities and weaknesses, there
is a confl ict of interest built in to the assessment. Th e people on the other side of the
table are concerned with correctness, concerned with implementing the requirements
and specifi cations that have been gathered and which are supposed to defi ne the system,
its boundaries, its goals, and intentions. Th e implementing team may have been living
with this system for some time? Th ey may even have developed their own language of
acronyms and aliases that help them speak in shorthand. Implicit within the acronyms
are the assumptions that they’ve already made. If the security assessor, the security archi-
tect has been a part of the team, this will not be a problem: everyone will be speaking the
same language. Th at is, unfortunately, not the usual situation.

“On the other hand, quite often the security architect is working with a number of
projects, maybe more than a few*? She or he will not have been a part of the forming
of the team, will not be party to the assumptions embedded in the acronym-speak to
which the team have become accustomed. It may seem to the team that the security
architect has been injected into a smooth and running process. Th e team’s collective
understanding and the jargon that represents that understanding, the acronyms, system
names, aliases, and such represent a cognitive, shared team reality. Meanwhile, the secu-
rity architect assigned to a running project might feel like she’s stumbling about in an
unknown country, trying to make sense of a partially understood dialect?

“You, the security architect, must work within the parameters of the shared reality
of which you may not be a part and into which you’ve been thrown. You might wish to
step carefully across this boundary? At the very fi rst meeting, there may be considerable
tension in the room. Obviously, a warm and friendly demeanor won’t hurt. But beyond
that, it may be useful to ask folks to slow down and explain the jargon terms to which
they’ve grown accustom.

 “By understanding the team assumptions and by unpacking the team’s unique brand
of jargon and acronyms, you can begin to enter into their mindset; they may even start
to see you as a part of their team (if you’re lucky). And being a part of the implementing
team is the powerful position, though this may seem counterintuitive. Workgroups tend
to defend their boundaries. Th ey spent a lot of time building relationships and trust.
Th ose carefully crafted relationships and the trust that has been earned will often be
defended against all comers, no matter how friendly are the intentions of the outsider.
Nobody likes to have their ‘good thing' perturbed.

“You may be entering a team ‘space‘ where you have not been given the relationship
and trust that the team have collectively developed? And in fact, depending upon what
experiences team members may have had with security folk in the past, you could well

* At one time, I was assigned to review 130 projects simultaneously.

Culture Hacking 81

be at a defi cit? You may feel that you have the expertise, that you’ve been nominated
by your organization to represent security, that you’re empowered to drive security into
systems, and you represent the policy and standards to which systems and development
teams must conform. While that may be true, a human working group develops bound-
aries. Th ere is already a process in place with which team members are more or less com-
fortable. Basically, they have something ongoing into which you are being interposed.
Th e sooner that the team perceive you as a fellow member and not an interruption, the
sooner you will have constructive conversations about the security needs of the system.
Outsiders may very well be resisted by those who feel that they must defend team bound-
aries. Insiders, members of the team, are the people who are most likely to receive the
benefi t of active listening and constructive dialogue. Try to make the assessment not
about winning and losing but rather about a collaboration for the good of all.”

How we, the security specialist, enter into a running, well-defi ned team “mind” matters! In
fact, our interactions, the sensitivity with which we conduct our business—especially early on
in an engagement—greatly infl uences not just success with that team, but our future ability
to infl uence at all. Awareness of the pre-existing levels of team cohesion can, at the very least,
allow one to be sensitive to being in someone else’s “home,” on the team’s turf, as it were. I per-
sonally also attempt to establish some small bit of personal connection and understanding with
a few of the individuals on the team to ease any tension and to place some working ground
upon which we can build trust.

I try to be just a little bit vulnerable about myself. But, the other side of that openness is
to avoid taking up too much of people’s time and attention: A little is good, but it’s very easy
to cross over into too much. One or two humorous quips are fi ne; letting folks know that
today has been going well or not and why can sometimes bridge into relationship quickly. But
attempting to be the “class clown” is tiresome, as is endless descriptions of one’s troubles.

Recipients may feel as though their attention is being abused or that they must take care of
anyone who seems too demanding or veers off subject for extended periods of time. It’s always
a balancing act for me; I don’t always get it right on either side—reserved or revealing. Hence,
I always try to pay attention to how others are reacting, to their attention or lack thereof, to
conversational engagement. If I’ve overdone it, I shut up for a while, to let others control the
interaction unless I have something critically important that must be expressed immediately
(say because I might fail to expose a potentially serious risk).

Asking questions nearly always establishes trust. But the questions must be accompanied by
an authentic desire to hear and validate responses. People’s manipulation detectors (often quite
unconscious) are usually very keen; I fi nd that engineers as a group are particularly sensitive to
social manipulations. Authenticity matters, too. If I ask something, I require of myself to listen
attentively and without judgment to the answers. Th at one practice, above all, builds deep and
abiding trust.

4.1.1 Build and Maintain Trust

My friend Martin Nystrom (author and Director, Product Management Security at Cisco)
demonstrated the power of seeking answers authentically when we were both on the same

82 Secrets of a Cyber Security Architect

security architecture team. Th e tougher things got, the more emotionally laden the discussion
became, Martin had a practice of stepping back to seek from others their opinions. In this way,
he teased out disagreements that otherwise might have remained hidden, simmering behind
the scenes to derail solutions.

If there’s magic in the world, this one technique, entered into in the spirit of reaching for the
best agreements and solutions, is it. Listen as much as speak, maybe more? Perhaps it’s better to
call it practice rather than technique? However you wish to name it, seeking others’ knowledge
and viewpoint establishes and then builds trust that can underpin the team’s navigating dif-
fi cult challenges, while at the same time building greater cohesion, rather than less. It’s “culture
hacking” at the interpersonal level at its best.

Importantly, diff erent cultures and, within those, varying individuals have very diff erent
tolerances and boundary expectations. I don’t need to win over everyone, though. If I can build
a tipping point of trust and connection, then the most introverted, reserved, even suspicious
person will at least interact, which, after all, is all that is required.

At an organizational level, we may have to shift perceptions and misconceptions about
security in general or about security architecture in particular. Having recently been hired by a
company to lead security architecture, I was told that a past administration had declared that
“all changes must be threat modeled.” Upon hearing this, I immediately knew that I’d have to
dig myself out of this hole, since any reasonably competent engineer knows that every change
made to any system does not have security implications. Some do, and many do not. Plus, the
level of security importance also varies. Engineers know this implicitly. A mandate requiring
any valueless eff ort will cause that mandate to fail.

Lots of changes have no security needs whatsoever (think of user interface colors or text
placements). Some changes will follow previously established security requirements that don’t
require any additional consideration. Hence a command that “every change be threat mod-
eled” is obviously erroneous. Whoever declared this probably lost credibility and infl uence
with those to whom the command was aimed.

Apparently, upon hearing that “every change” had to be “threat modeled,” a manager at
that organization then asked if he and his staff might then learn the technique. He was told,
“Sorry, that’s only for the security architects.” Upon hearing this, I knew that I and my security
architecture program were in serious trouble with these folks. Th ey’d long since decided that
security architects don’t know what they’re talking about and won’t help; that security archi-
tects prefer to keep control of activities that seemed to the developers to be irrelevant, at least
some of the time.

My guess (though I didn’t ask it then) was that most of the folks in that room did have some
experience threat modeling and had been doing it, at least informally, for a while. Once trust
had been reestablished, those very same developers told me about the analyses that they’d been
doing to fi gure out what security controls to build—their skill levels ranged from experienced
to beginners. Once freed from obviously silly mandates, folks were willing to learn more, to
improve their practices.

Freeing developers from a nonsensical mandate that was presented with no support or train-
ing and as a closely held secret technique is an example of what Noopur terms, “culture hack-
ing.” Get rid of anything that is seen as an impediment. Recraft (and sometimes, rebrand) what
must be done, so that its value will be readily apparent to those who must execute.

Culture Hacking 83

I proposed a manifest for a diff erent approach to software security in 2013: “Developer-Centric
Security.” Th e manifest is presented in Appendix B, Developer-Centric Security, page 177.

Th e previous security architects in my story (above) failed to see their work as being at least
partially about culture; they failed to fi nd out just what developers already knew and perhaps
were doing about security. Most importantly, they failed to enlist the help of the very people
who would have to build security into the software.

Instead, that previous security team alienated developers. Th at is something I try very hard
not to do (please see Appendix B).

How did I build trust? I listened, fi rst and foremost. I acknowledged eff orts that had been
made in good faith (no matter the skill applied). I focused fi rst on attacks to which I could off er
convincing examples and which directly applied to the technologies being built. In this way, by
tightly focusing on demonstrable problems, I gained the developers’ trust that I wasn’t making
up attacks—but instead that I was applying valuable knowledge, that I was trying to address
problems of obvious importance.

Th is is one of my “tricks of the trade”: Don’t sweat the small stuff , especially at fi rst. Focus
on changes that will off er obvious improvements to existing design work. I’m never afraid to
say, “It seems like you’ve already covered the most important attacks,” if I believe that this is
indeed true. Validating developers’ existing eff orts for security delivers a huge boost for a pro-
gram. When these folks start to feel recognized, included, valuable, they become one’s allies in
the work, both execution of software security, but also as culture change agents.

“We must make a lot of predictions to be able to show calibration.”

Ryan McGeehan*

Another trick that I’ve seen build trust over time (again, this is culture hacking) is to make
the low and medium risk issues visible, but not to make a big deal of them. I write short assess-
ments of these minor issues for decision makers, as a “For Your Information” (FYI). I don’t
fi ght about getting minor issues fi xed immediately; I just write an exception for it with a date
for completion that makes sense, given the risk rating. Once there’s a reasonable fi x plan and
decision makers accept the plan, I move on. As Ryan McGeehan puts it, this is a “calibration”
that one’s risk ratings can be trusted.†

Development teams appreciate fair risk rating and inclusion in scheduling and prioritization.
From experience, I will tell you, over time, if many issues are rated low or medium as one

might intuitively expect, co-workers and decision makers build a great deal of trust that the
person rating the issues is not attempting to infl ate ratings in order to force action. Repeated
reasonableness about the exigencies of resourcing and schedules demonstrates a willingness to
understand development problems and to work with business necessities.

Th en, when a really critical issue comes up, everyone knows that the person rating it (me,
let’s say) isn’t infl ating scores, isn’t pushing just to win. People trust the fairness of the rating
because assessments have been understandable in the past. Th us, the one time I really feel the

* McGeehan, 2019.
† McGeehan, ibid.

84 Secrets of a Cyber Security Architect

need to push garners a great deal more weight, a lot more infl uence, based on the trust already
established about ratings.

4.1.2 Don’t Squander Infl uence

People sometimes ask me how I gain so much infl uence. As Nooper says, “It’s culture hacking.”*
I spend a lot of time building suffi cient trust such that folks understand that I’m on their side.
Plus, I don’t waste my infl uence on matters of lesser consequence, so that if I must press hard,
my partners know that it’s for very good reason, which I make sure I can articulate clearly, in
both technical and business terms.

As I wrote in Securing Systems (pp. 122–125):

“Th ere is obviously a technical impact that occurs from the exercise of most vulner-
abilities. In our XSS examples, the technical impact is the execution of a script of the
attacker’s choosing in the context of the target’s browser. Th e technical impact from a
heap overfl ow might be the execution of code of the attacker’s choosing in the context of
an application at whatever operating system privileges that application is running. Th ese
technical details are certainly important when building defenses against these attacks.
Further, the technical impact helps coders understand where the bug is in the code, and
technical details help to understand how to fi x the issue. But the technical impact isn’t
typically important to organizational risk decision makers. For them, the impact must
be spelled out in terms of the organization’s objectives. We might term this ‘business
impact,’ as opposed to ‘technical impact.’

“Continuing with the two examples that we’ve been considering, let’s examine a cou-
ple of business impacts. As was explained earlier, an XSS attack is usually an attack via a
web site targeting the user of that web site. Th e goal of the attacker will be something of
value that the user has: his identity information, her account details, the user’s machine
itself (as a part of a botnet, for instance). Th e attacker is attempting to cause the user to
unwittingly allow the attacker to do something to the user or to the user’s machine. Th ere
are too many possibilities to list here. For a security architect who is trying to assess the
risk of an XSS to an organization, it is probably suffi cient to understand that the user
of the web site is being attacked (and possibly hurt) through a mechanism contained on
the web site. Th e organization’s web site is the vector of attack, linking attacker to target.

“From the web site owner’s perspective, a web site becomes a tool in service to an
attacker. Th e attacks are directed at the web site’s users, that is, the organization’s users.
For example, consider an organization off ering an open source project, providing a set of
executable binaries for various operating systems (the ‘application’) and the source code
to which developers may contribute. Most open source project sites also foster a sense of
community, a web site for interaction between users and coders. So, there’s usually some
sort of messaging, discussion forums, and search function. All the above functions are
off ered besides static and dynamic web content about the project.

* Davis, 2014.

Culture Hacking 85

“Open source projects often don’t have ‘leaders’ so much as leadership. But imagine, if
you will, that those who take responsibility for the project’s web site must consider XSS
vulnerability, which I’m sure, many must. What is the business impact of letting attack-
ers target the users of the project’s web site?

“I would guess that such a site might be able to sustain an occasional user being tar-
geted, since success of the attack is not guaranteed, given an up-to-date, security sand-
boxed browser. Further, if the site does not require the user to turn on site scripting in
their browser, users are free to use the site in a more secure manner, less vulnerable to
XSS.

“But if I were responsible for this site, I would not want to squander my user confi -
dence upon XSS attacks from my web site. Put yourself, just for a moment, in the shoes
of the people dedicating their time, usually volunteered, to the project. I can well imagine
that it is precisely user confi dence that will make my project a success. ‘Success’ in the
open source world, I believe, is measured by user base, namely, the number of users who
download and use the application. And success is also measured through the number
of code contributions and contributors, and by the level of activity of code and design
discussion. If users do not feel safe coming to the project’s web site, none of the foregoing
goals can be met.

“Hence, the business impact of an XSS to an open source project is loss of user and
contributor confi dence and trust. Further, if the web site is buggy, will users have confi -
dence that the application works properly? Will they trust that the application does not
open a vulnerability that allows an attack on the user’s machine? I’m guessing that user
confi dence and user trust are paramount and must be safeguarded accordingly.

“Now, we can assess the risk of an XSS bug within the context of the organization’s goals.
And we can express the impact of a successful attack in terms that are applicable to a
given open source project: ‘business impact.’

“Let us now consider the heap overfl ow case above. Like XSS, an overfl ow allows the
attacker to run code or direct an application’s code to do something unintended (such as
allowing the attacker to write to the password store, thus adding the attacker as a legiti-
mate user on the system). Heap overfl ows occur most often in programs created with lan-
guages that require the programmer to directly handle memory. Th e word ‘application’
covers a vast array of software scenarios, from server-side, backend systems to individual
programs on an endpoint, laptop, desktop, smart phone, what-have-you. Apple’s iOS
phone operating system, a derivative of the Mac OS X, is really a UNIX descendant,
‘under the covers’; iOS applications are written in a derivative of the C programming
language. Because the universe of applications written in memory handling languages is
far too vast to reasonably consider, let us constrain our case down to an endpoint applica-
tion that executes some functionality for a user, has a broad user base (in the hundreds of
millions), and is produced by a company whose mission is to produce broadly accepted
and purchased software products. Examples might be Microsoft or Adobe Systems. Each
of these companies produces any number of discreet applications for the most popular
platforms.

“A heap overfl ow that allows an attacker to misuse a widely distributed application
to attack a user’s machine, collect the user’s data, and ultimately, to perhaps control a

86 Secrets of a Cyber Security Architect

user’s machine really is not much diff erent, in a technical aspect, from XSS. Th e attacker
misuses an application to target the user’s endpoint (and, likely, the user’s data). Th e dif-
ference is one of scale. Scripts usually run in the security sandboxed context of the user’s
browser. Applications run directly on the operating system at the privilege level of the
logged-in user. For broadly distributed applications, privilege might be restricted (typi-
cally on enterprise-supplied computers). But most users run personally owned computers
at “administrator” or some similar high level of privilege. If the attacker can execute her
or his code at this level, she or he has the “run of the box,” and can do with the computer
whatever is desired. Users are thus at great risk if they use their computers for sensitive
activities, such as fi nances and medical information. In addition, at this level of privilege,
the computer might be used by the attacker to target other computers, to send spam (per-
haps through the email accounts of the user?), or to store illegal digital materials.

“I believe that it isn’t too much of a leap to imagine the business impact to an Inde-
pen dent Software Vendor (ISV) from a widely distributed heap overfl ow that allows
execution of code of the attacker’s choosing. Again, the ISV is staring at a loss of customer
confi dence, in the software, in the brand, in the company itself.”

* Eoin Carroll is a Senior Security Researcher and was for many years a technical leader within our
security architecture team.

4.2 Threat Modeling: Just Do It

One of my big discoveries since writing Securing Systems has been the power of introducing
threat modeling throughout a development practice at any organization. I like to say that, “If
there’s magic in software security, teaching everyone threat modeling is it.” When my dear
friend Eoin Carroll* told me about the eff ects of hanging a hard copy of a team’s threat model
up on the wall in each development team’s Agile stand up (meeting) room, I just had to start
experimenting with making threat models more widely available.

What Eoin observed was that as individuals and teams thought about how to implement
new features (user stories), they would glance up at the threat model to consider whether or not
the item would have security implications. In other words, making the threat model accessible
changed the behavior of teams such that security had become an integral part of implementa-
tion thinking: Th ese teams had developed a “culture of security” because the threat model
was present to consider. Th at is, one simple change to the development process had fostered a
turnaround in thinking about security. Th at is the essence of “culture hacking.”

Before Eoin posted these threat models, a security practitioner had to be present in the room
in order to get teams to consider security. With the threat model available, the teams started to
take responsibility for security themselves; they felt empowered and motivated.

Th at doesn’t mean that each team was now expert in security such that they no longer
needed Eoin and his teammates. As I’ve outlined previously in this work, security architects are
expected to bring a set of specialties to software development that others lack, to wit: relevant
attacks and their defenses.

Culture Hacking 87

Still, my own experience (and I haven’t talked with Eoin about this) suggests that over time,
security patterns repeat. Every new item to be built isn’t wholly unique; requirements that were
applied to previous implementations will be applied over and over again. As software security
specialists and development teams build a working relationship, the same or very similar secu-
rity requirements come up repeatedly. Smart teams (and which development teams are not
“smart”? I haven’t met many “dumb” ones) will apply the known patterns themselves.

In fact, when I was at Cisco®, my counterpart IT architects (with whom I’d worked for years)
and I used to joke when in meetings about who would say what had become obvious and usual
for us? I could speak to typical IT requirements just as they could articulate for me many usual
security requirements. “Do you want to say it or should I?” was a common question at meetings
with new application development teams.

Th ere’ve been few places in my career where I’ve seen one small process change have this
much eff ect—as in, making a project’s or a product’s threat model available to everyone
involved in building it.

Before Eoin’s revelation, like most security architects, I always had performed threat mod-
eling with the subject matter experts of a team, usually the most senior architects. Most of
the team were excluded; the threat modeling process was essentially opaque to everyone but
the most senior developers. Most especially, auxiliary personnel such as project managers or
product managers were excluded, not because they weren’t important in the overall scheme
of building software, but because threat modeling was seen as a highly technical activity that
shouldn’t waste the time of people not directly involved.

In fact, a past administration for one of the software security programs that I led had told
development teams that threat modeling was only for “senior security architects” and that the
results needed to be highly restricted (please read the story in the preceding section). I had to
dig myself out of that misconception hole for the fi rst six months of that job, because, once
development teams felt excluded, they decided that threat modeling had nothing to do with
what they did on a day-to-day basis and could be completely ignored. Not the ideal situation
to produce well-designed, secure software.

4.2.1 “Trust Developers?”

I will admit to you, the reader, that it’s true that the results of the threat model, the security
requirements, especially those requirements not yet built or perhaps delayed for later imple-
mentation, may be quite sensitive. Th at’s the reason that many security practices hold threat
models close, treat them as highly sensitive, and thus not sharable to development teams. I’d
be willing to bet that this is the argument put forth by that past administration on why they
didn’t want to share threat models or the process of deriving models.

Dr. James Ransome, Ponemon Fellow, author, and all-round great guy, and I have talked
about this problem a great deal. He and I have worked together twice to build and then run
software security programs.* Th e chink in the armor of protectionism around threat models
is that the development team have and hold the code! Please consider this carefully: Th ey
don’t need the threat model in order to destroy the software for which development teams are

* James would provide management leadership and I would provide technical leadership for the programs.

88 Secrets of a Cyber Security Architect

responsible. If the team were to go rogue, they could usually insert all manner of awful things
into the code, like backdoors or malicious code.

Th ere are checks against collusive teams doing bad things (please see some of my public
talks on secure development or take a look at my chapter in Core Software Security). Still, even
the best run governance process ultimately relies on people, some of whom may not have the
organization’s best interests at heart. As James likes to say, “If you can’t trust developers with
the code, who can you trust?” It’s a truism.

Th e way that we have handled this problem is to remind developers of their awesome respon-
sibility to the company, that their success is tied to keeping the company’s intellectual property
from leaking out, including any sensitive security situations. Repeat regularly, through diff er-
ent media and presentation channels, but don’t be such a nag that the message becomes part of
the background noise of the job.

Nothing’s perfect; someone will post some code or a sensitive project name probably for no
other reason than that person is inexperienced or wildly proud of what they’re doing. Handling
these mistakes is part of security’s role.

4.2.2 Threat Model Training Is for Everyone

To my point, introduce threat modeling and a project’s threat model to everyone. At the same
time, remind them that the model and, especially, its unimplemented results are confi dential
and not to be shared with those who don’t need to know—particularly, outside the organi-
zation. Attackers can have a fi eld day with a threat model, so it needs to be protected from
inadvertent release.

What we discovered running around our global development centers is that when you
include everyone, you get better threat models. One reason for this should be obvious but is
often missed: Th reat models are best when done holistically. A single missed or passed-over
detail might very well miss an important attack vector or important impacts.

Let me off er an example from real life. We were examining a gateway product. Th e team had
already done a rather thorough threat model. All I had to do was to review the results. Because
I included everyone at that review, one of the more junior members of the team mentioned
that the underlying operating system that had been chosen for this gateway, which would be
delivered along with the product, had its SSH server running. Th e SSH server came with a
published, default password. Th is is the way that the operating system was confi gured by its
vendor in order to make debugging during development easier.

Because the team was highly focused on the functionality of the product, they’d forgotten
to think about the entire run time stack (which is a point I make repeatedly in Securing Systems:
One must include the run time or risk leaving attack surfaces undefended). Th is gateway might
have been shipped with exactly the problem that allowed the Mirai Botnet to be formed and
which had resulted in the famous DYN attack. Th at is, cameras deployed all over the world
had SSH running with a published default password. Th e rest is history.

If we hadn’t had everyone in the room, it’s quite likely that during the review we would
have missed this key piece of information—this readily available attack point that needed to
be defended. In my presentations I like to say, “A threat model is a crossroads of many diff erent
domains and a collection of subject matter experts. Absence of any one of these can mean that

Culture Hacking 89

the threat model is incomplete.” Th at gateway’s threat model is a perfect example of exactly
this point.

Just as important as the completeness of the threat model is the culture hack that inclusivity
off ers us. Here’s where the “magic” comes in.

Based upon hundreds of threat model classes taught at sites spanning the globe, I have
observed that, once participants play at mentally attacking a system and identifying defences
against those attacks, they come away with an integral sense of why software security is so
critical. Participants gain an appreciation of the importance of the entire Secure Development
Lifecycle (SDL or S-SDLC) (however that SDL may be expressed within their organization).
For most participants, the shift towards a culture of security is profound, as long as they’ve
gotten the chance to participate in the threat modeling process. As I noted above, if there’s
any magic in software security, it is allowing everyone to participate in building threat models,
in learning the process, and in making threat models accessible throughout the development
process and to everyone involved, even nontechnical roles.

To add to my exhortation to include even non-technical roles, I spoke at an internal security
architecture event for Daimler, AB. Carsten Scherr runs Daimler’s security architecture pro-
gram, and Luis Servin is one of the technical leaders. Th ey invited the security architects from
throughout their supply chain to attend. Brilliant!

Inviting the architects from throughout their supply chain aligns security architecture prac-
tice of the third parties on whose security Daimler’s products must depend. Th e inclusion
of these key people means that each of the companies that attended now understand what
Daimler expects from products whose security posture must aff ect the overall posture of prod-
ucts as they go into service. As we have seen in examples in this book, a threat model must be
taken holistically, without respect to whomever may be responsible for any particular portion
of an integration.

Carsten and Luis have realized that they cannot bring Daimler’s products to their “desired
defensive state,” cannot bring their highly integrated products to the required security posture
without the full participation of each of the suppliers whose products’ security postures are
going to contribute or detract from the overall posture.

So why not include everyone who must be involved in any discussions on how things must
be done? I’ve never seen any company take such holistic care for their supply chain before. To
my mind, this sort of out-of-the-box, inclusive thinking is what we, the industry, need to climb
out of the design problems that we apparently keep creating. Include everyone! Really!

Participatory threat modeling is culture hacking—hacking development culture toward a
culture of security.

4.3 More Culture Hacks

Th ere are other culture hacks that achieve a similar shift:

• Accessible security architects
• An open process that has been built in collaboration with those who must enact it (i.e.,

developers)

90 Secrets of a Cyber Security Architect

• Integrating secure development practices into the organic fl ow of development
• Building trust between functions, maintaining that trust over time and through confl icts

Basically, what I’ve outlined in the preceding bullets is the essence of what I’ve termed
Developer-Centric Security, whose manifesto is given in Appendix B.

Although I try to practice developer-centric security throughout my programs, the one prac-
tice that hacks a development organization toward a culture of security the fastest and the
easiest is unmasking and demystifying threat modeling. Among the many things that you may
do, start there and keep it up. Let me know about your results.

4.3.1 Nimble Governance

Some readers may fi nd themselves disturbed by the idea of allowing beginners to perform
threat models. After all, the whole purpose of a threat model is to identify those defenses that
more obvious approaches such as using the various vulnerability and code security scan tools
cannot fi nd.

I’ve already made the point that there are special skills that security architects bring to the
work—often signifi cant skills that take years to develop. And now I am asserting that even
rank beginners ought to be allowed into the process.

Suggesting that beginners threat model may seem inconsistent on my part, but it’s not,
really.

First, one of the subject matter experts who should be included in a threat model process
is an experienced security architect who is familiar with the types of technologies that will be
used in the system under analysis. Th e security architect should also have a working knowledge
of the sorts of attacks that have been successful against these technologies and what defenses
are typically used to thwart or slow these attacks. Th at is the best programmatic approach I
know of.

Unfortunately, there aren’t enough skilled security architects available for every threat
model, which is one reason I’ve written this book (and Securing Systems before it). Th ose of us
with some skill have to learn how to share it and to teach others. Still, as of this writing, there
is a severe shortage of people with suffi cient skill, call them what you will.

In many organizations with which I’ve worked, or about which I know, the strategy then
is to throw the skilled folk at so-called “critical” systems. Critical in this regard has no defi ni-
tive industry meaning and is usually locally determined based on budget, revenue generation,
data sensitivity, and a host of other factors. Th e point is, the skilled folk can’t be everywhere,
especially in really large engineering organizations in which there are many diff erent develop-
ment teams and many diff erent project threads. Some criteria or other are used to fi nd a line
above which the project will get security architecture engagement and below which it will not.

Another strategy will be to highly over-resource the few skilled architects such that they
drop into a project and make some security requirement pronouncements which, supposedly,
must be adhered to, no matter what else changes during development. Unyielding require-
ments play havoc with iterative development methodologies that depend upon experiment,
learn, then pivot based upon what’s been learned. Th at, of course, causes no end of security/
development friction.

Culture Hacking 91

Th e two strategies above are not mutually exclusive and, thus, can be used in conjunction.
No matter what mix of critical and drop-in is used, there’s a guarantee that some threat models
will not get done or won’t receive the attention that they deserve, which leads to missed security
requirements.

If we allow neophytes to threat model, we are also guaranteed to miss security requirements.
One way or another, requirements are going to be missed. For those eff orts which do not
receive a threat model or which receive only a cursory analysis, isn’t it better if the neophytes
at least try? Most likely, they will identify more security requirements than if they had ignored
secure design altogether.

In fact, this gets to what I call the rule of “zero versus one.” If a design has no attack and
defense analysis, then zero security requirements will be identifi ed, if you see what I mean. Th e
outcome is going to be relatively insecure.

If we introduce threat modeling to development teams, then they will try. If they fi nd a
single additional requirement that brings the design one step closer to its intended security
posture, isn’t that a win over nothing?

Th e other side of this approach is that every time developers practice threat modeling, they
are going to improve. Plus, they will be integrating security thinking into their standard prac-
tice, as a way of working, as a part of their skillset. Th reat modeling becomes one of developers’
“always do it” tools. Th ey’ll get better at identifying more requirements, and thus there will be
continuous improvement in security posture over time.

I cannot see the downside here, not in the long term. Th e trick is to prevent really bad
things from happening. Th at’s where governance comes in as a safety net to prevent the truly
catastrophic from going forward and where a program can most eff ectively deploy its most sea-
soned security architects as reviewers. Reviews take a lot less time than a threat model analysis.

I covered this in Securing Systems, pp. 372–373:

“. . . peer review of assessments and threat models is essential. Responsibility can be
overwhelming. By sharing that responsibility, architects can relieve some of the stress
that responsibility may cause. Furthermore, the weighty decisions that must be made, the
thoroughness that must be applied, the ease with which one can miss an attack surface
or vulnerability are all mitigated by having several people look over the results of the
assessment. It’s just too easy to make a mistake, even for the most experienced architects.
For the less experienced or junior practitioners, peer review can help fend off catastrophe.

“What does a peer review process look like? When does an assessment require peer
review? Who should perform the peer review?

“For large, complex, and challenging systems, there’s probably no substitute for a formal
governance review. A common approach for this is to place senior and leader architects
onto an architecture review board. Th e large or critical systems must pass through the
review board and get approved before they can proceed. Sometimes, the review board will
also have a checkpoint before deployment into production. Th is checkpoint helps to ensure
that projects that haven’t met their deliverables can’t move to production to the harm of
the organization. A senior security architect will be part of the formal review board and
have a ‘no’ vote if there is a signifi cant risk that hasn’t been suffi ciently mitigated.

“On the other hand, forcing every project, no matter how small, through a formal
review board can quickly create a bottleneck to the velocity of project delivery. I’ve seen

92 Secrets of a Cyber Security Architect

this happen too many times to count. Th e desire to have every project get checked by the
most trusted and experienced architects is laudable and comes from the very best inten-
tions. But unless an organization has an army of truly experienced architects to deploy,
requiring every project to be reviewed by a small group of people who are generally over-
extended already is going to bring project delivery to a near standstill.

“Instead, some other form of review that is more lightweight and nimble needs to be
found. I’ve had success with the following approach.

“I may be criticized for being too trusting. Certainly, considering some organization’s
missions, my approach will be too lightweight. But in the high-tech organizations in
which I’ve worked, we have established a process whereby if the architect is unsure about
an assessment for any reason, she or he must fi nd a senior architect (senior to that archi-
tect), and an architect who is not involved in the project, to provide the required peer
review of the assessment or analysis.

“Th is process does presume that architects will seek peer review. Architects have to
perceive peer review as valuable and not a hindrance. If the security architects understand
the responsibility that they hold for the organization, my experience is that security archi-
tects generally like to receive some additional assurance on their assessments when they
feel at all uneasy about what they’ve found.

“I’ve used this same process four times now, at four diff erent organizations. Th ose
organizations were relatively similar, I admit. Still, in my experience, this works pretty
well and catches most mistakes before serious harm takes place. One has to build a cul-
ture of support and collaboration or this approach cannot work. It is lightweight and
dexterous enough not to interfere overly much with project delivery. And this lightweight
peer review process does assume a level of competence of the architect to understand
what is in her or his profi ciency and what does not. We also encourage architects to seek
subject matter expertise as a regular course of their assessments. Nobody knows it all.”

Th e essence of my lightweight governance approach is peer review by one reviewer with
more experience and one independent reviewer. If these cannot agree, then escalate to the next
level of experience or seniority.

Th e fi nal say, of course, belongs to management. But I’ve only seen these reviews get to
management twice in nearly 15 years over four diff erent organizations. It doesn’t come to that
among people who trust each other and have trust built from working through diffi cult techni-
cal questions.

For the most senior folks, they must turn to their peers, if there are any, or the next level
down in the seniority or skill hierarchy. No one is above peer review; no threat model completes
without a review. At the time I wrote Securing Systems, peer reviews might have been skipped
in situations in which the threat model owner felt that the analysis lay completely within her/
his/their scope of practice and knowledge set. Further experience shows that this lightweight
review process is highly eff ective and quite nimble. Today, every model goes through a review.

Th e advantage of the technical leader turning to the most skilled is that it establishes a
culture of peer review. Th e senior person models what she/he/they expect from everyone else.
Also, it’s great training for one to become the next senior security architecture technical leader.

In other words, performing peer reviews is great training. Just as code reviews make a great
coder, threat mode reviews make a great threat modeler.

Culture Hacking 93

4.3.2 Build Skills by Sharing

Analyzing problems outside of one’s comfort areas expands one’s practice. Exposure to new
architecture problems helps a practitioner to see the patterns that underlie project detail and
which recur regularly across apparently distinct projects.

Th is organic learning opportunity is a driving reason for my emphasis on fi nding someone
who’s independent of the project under review. Th e very fact that the reviewer is unfamiliar
lends a fresh eye to catch things to which one has grown too accustomed to appreciate. But the
other side of that coin is training. For the reviewer, examining architectures, technologies, and
security problems outside one’s customary scope is the single most skill-building activity that
I’ve seen. It’s an accelerator toward security architecture competency.

Using my governance approach thus frees scarce security architects to grapple with the most
diffi cult and complex problems, rather than having to continually repeat the same old, tired
requirements over and over to each team. At the same time, this process ensures that every
threat model will receive at least some level of assurance that it’s been done to the best of avail-
able abilities and at least some level of independent review. Plus, this approach builds skills at
all levels for continuous improvement in an organic and natural manner.

Finally, it’s wickedly fast: It takes little eff ort to gather two other people and go over an anal-
ysis, often taking just 15 to 30 minutes. And who doesn’t have 30 minutes to give to improving
the work and skill of teams? If a preferred reviewer is not available, one can choose alternates,
so there’s almost no delay; peer review by a senior and an independent is nimble; it can be done

iteratively as a threat model changes because it’s so
lightweight. I’ve seen this work four times now at
diff erent organizations, across diff erent portfolios,
and with up to 5,000 developers; I’m pretty con-
vinced that it’ll work for most organizations, while
at the same time empowering (and freeing) develop-
ment teams to take responsibility for secure design.

4.3.3 What to Do About “It Depends”

If I’m to truly practice developer-centric security, then one of the points of the manifesto is to
fi t naturally into the development process as it is experienced by developers and driven by any
organizing staff , commonly called “project managers.” Being not the most organized person in
the world, and often spread out over numerous projects all running concurrently, I have found
project managers to be a great boon to my ability to be useful to developers. Th is is true both
for the project managers who can tie me into the unfolding process at key moments, if I can
articulate those key moments to them clearly enough. But also, my own project managers on
the security side have helped me prioritize and ensure that background tasks actually get some
time beneath the barrage of interjections, incidents, and other time requests. To all the won-
derful project managers who helped me, I give you a hearty thank you!

Th e downside of managing time in the development process is that activities such as threat
modeling can seem like a terribly open-ended activity. When does it start? How long will it
take? When can we say we’ve done enough? Is it secure yet?

Admittedly, all my roles have been at
high-tech firms. I believe most of my
“tricks of the trade,” including light-
weight governance as proposed in this
section, will work nearly everywhere. If
it doesn’t, tell me why.

94 Secrets of a Cyber Security Architect

And unfortunately, as I noted in Securing Systems, the best answer is too often, “It depends.”
Sadly, the dependencies are often not in control of the very person who’s trying to manage

time, resources, and budget: the project manager. Or really, anyone tasked with keeping a
development project moving toward its goals, toward completion of whatever cycle of changes
are bundled into this, the “project.” Th e sense of open endedness, of opaque dependencies that
haven’t been articulated well, is often anathema to people who take pride in organizing things.
Hence, there is a built-in friction between security architecture and its inquisitive activities and
the need to deliver stuff on time and under budget.

So what to do in the face of this built-in confl ict?
One of the ways that I’ve dealt with this problem, besides building relationship and trust

between project management and security (the obvious soother), is to take the threat model,
this open-ended analysis, and deliver it in discrete phases. As the fi rst structures of new soft-
ware are being thought through, if I can get engagement at that time (a diff erent problem),
I don’t try to do a complete threat model. Instead, I try to ensure that the high-level security
requirements have been recorded. If there is any structure to work with at that point, I note any
defenses that are going to be obvious for the structure as it’s known at that moment.

I check in as the structure—that is, the architecture—is taking shape to add to the threat
model for what is known at each check-in. In this way, I’m ahead of the details of implementa-
tion, even though neither the architecture nor the threat model are actually complete.

Implementers can be working with the security requirements that are already known. Th is
is particularly helpful when working with iterative methodologies. Th e very nature of iterative
development means one doesn’t have to know all the details up front, but rather enough to get
started.

An iterative approach, of course, means that the security architect can’t just drop in in one
fell swoop, deliver all the security requirements, and check in again just before go-live. I haven’t
found that that approach works very well under any software development methodology, any-
way. So I don’t recommend it. However, it does mean that the security architect has to be facile
about dropping into a project, analyzing what can be assessed, and then perhaps parachuting
into some other, completely diff erent project and doing precisely the same. One has to become
adept at task switching, and not everyone is good at that. Frankly, I just try to keep good notes
to remind myself about where I was the last time I was involved. Plus, here’s where my friends,
the project managers, can help.

If the project management function is fairly mature, the project managers will be talking
with each other about their various resources and their challenges. Th ey can organize security
engagements, along with whatever other engagements need facilitation.

Th ings are more problematic where whatever project management function exists does so
solely for the project to which it is assigned; there’s little coordination between projects. In that
situation, I have to rely on my good note taking and my ability to schedule between projects so
that one project’s engagement doesn’t overlap too terribly with others’.

4.3.4 Is the Threat Model Finished?

Another problem with which the security architect will have to contend is when the threat
model is completed enough.

Culture Hacking 95

I wrote the following for my employer, IOActive®’s, blog. I’ve gotten a lot of questions about
when a threat model is complete. I hope to help people understand that it isn’t actually an
open-ended process that, like some types of security research, must fi nd issues, no matter how
potentially tortured the conditions of attack might be. You might consider the following as a
“Defi nition of Done” for threat modeling.

* NATO, 1969.

“Th reat modeling is a process used by development teams and security architects to
identify probable attack scenarios, which in turn help to defi ne the set of defenses that
a system must have (its ‘security requirements’). Th reat modeling remains one of secure
design’s most important analytic tools.

“Th reat modeling is a qualitative analysis through which architecture and design
choices are made based upon attack and defense analysis. Th is is a creative process that
must have boundaries surrounding the analysis if it is to arrive at a completion.

“Th e constraints within which attack enumeration must be made are as follows:

• Th e risk tolerance of the organization owning/fi elding the system
• Th e risk tolerance of the system’s users (if any)
• Th e capabilities, goals, expended eff ort, and risk tolerances of the enumerated set of

threat agents who will wish to attack
• Th e trust/risk profi les of the system’s components, including infrastructure(s) and

external entities
• Th e runtime/execution environment(s)
• Th e existing defenses (including infrastructure defenses and services)
• Th e highest sensitivity of data fl owing through and being processed
• Th e probability of a particular attack scenario being low enough to be discounted

“While somewhat creative, a threat model must be grounded in hard data. Obviously,
those active attacks that can be exercised against the system under analysis will be applied.

“Furthermore, an analyst also applies relevant past exploit/vulnerability pairs, even if
such vulnerabilities have not yet been found in the system. It’s important to understand
that even the most rigorous testing, as Edsger Dijkstra so famously quipped, “shows the
presence, not the absence, of bugs.”* If there have existed exploitable vulnerabilities in any
component within the system under analysis, even though fi xed in the versions included,
then the analysis must assume that at least some similar issues will likely be found in
those components at some point in the future.

“An analyst may stop enumerating attacks when:

• Th e attack scenarios seem demonstrably more complex than other methods of com-
promise that are easier and more readily available.

• Th e required preconditions lie well outside the range of normal or typical confi gura-
tion and usage.

• Signifi cant inside assistance (for externally originated attacks) is required to pro-
ceed. (Insider threat is a special category that requires careful analysis across an
organization. It rarely should be tackled one system analysis at a time. Separation
of duties is often determined on a per-system, per-function, or per-privilege basis.)

96 Secrets of a Cyber Security Architect

• Where no exploit exists for a particular vulnerability, or the vulnerability is not
exposed for remote exercise or research (it’s important to periodically revisit the
threat model in light of new developments).

• Attack scenarios start to border on the ridiculous, the strained, or the dubious,
or depend upon computer technologies that have yet to be invented (i.e., “science
fi ction”).

“An analyst may stop specifying defenses when:

• Each defense has some overlap of protection
with at least one other defense.

• Each signifi cant attack vector is covered at
least partially by more than a single defense
(see inset).

“Although threat modeling has a signifi cant
qualitative aspect, there are defi nite signs when the analysis has reached its completion
state, that is, a threat modeling defi nition of done (DoD).”*

* Th e post has not been published by IOActive at the time of this writing. It will be in the future. Please
check https://ioactive.com/resources/blogs for publication. Expected future post in 2020.

In short, a threat model isn’t about dreaming up every imaginable attack scenario, even
those that have never existed, or involve fl ights of fancy and science fi ction. One extrapolates
from a set of attacks that have been successful against technologies to be used or built in the
system under analysis. Th at is, if C and C++ language programs often have memory errors, a
threat model may assume that eventually similar memory errors will crop up or be discovered
in this system’s code.

Th at’s not a huge jump. And there’s nothing science fi ction about it. It’s very hard to get all
the exploitable memory conditions out of a C language program, even with the most diligent
set of SDL activities and tests. Th is is demonstrably true; all one has to do is look at the occa-
sional memory issues that still occasionally get discovered in any of the major software house’s
code and then must be patched. Most of these companies have had an SDL for quite some
time and are typically quite mature about their security testing for such issues. Nevertheless,
memory issues do leak into releases.

Th e same may be extrapolated for web programs. Under even the best circumstances, an
occasional issue will leak out. Th erefore, it’s prudent to extrapolate from relevant successful
web attack knowledge when threat modeling a web program. We can presume that the web
program may have such issues, if not presently, then sometime in the future, and which then
will require defenses.

Th at is, as I said above, the threat model analysis extrapolates from known successful attack
types against the technologies and architecture under analysis.

We don’t have to go digging around for unknown attack types. Th ere are plenty to apply.
I tend to like to stay at the attack scenario level. One doesn’t really need a specifi c example
except if an engineer believes that I’m making the whole thing up. It’s handy to have relevant

For more stringent security postures,
each attack scenario must be mitigated.
“Significant” means those attack vec-
tors whose successful exercise will
cause significant harm. It also implies
attack vectors that are considered
“credible”—that is, there is sufficient
evidence that the attack vector can be
exercised by an active threat actor.

https://ioactive.com

Culture Hacking 97

examples of successful attacks. Better, if those attacks have been against the company or the
technology at hand. However, a few choice examples help to put the fl esh on the bones for
engineers who might be suspicious that one is making this up out of whole cloth.

If you’re following along here, you may see that having applied the set of known, successful
attack scenarios and then coming up with a reasonable set of defenses that will at the very least
slow down an attacker enough to be caught, if not make the attack scenario too expensive or
too diffi cult to exercise, leads to the completion of the threat model.

Of course, if structure is changed, technologies are added or taken away, new lines of com-
munication are built, more sensitive data processed, or new attacks using previously unknown
methods are discovered, these events should trigger a reevaluation of the threat model in light
of the changes. So in some sense, our prototypical project manager is correct in that the threat
model really is never done. However, for any particular set of changes, I believe there is a very
defi nite completion point that can be articulated at least reasonably well.

4.3.5 Create a Security Contract

In a well-run project, the facilitator (often a project manager) will do their utmost to make
sure that time is managed carefully, just like any other limited resource available to the project.
Th at’s not a bad thing in and of itself. Nobody likes to have their time wasted; nobody wants to
sit around in a meeting that has to do with subjects that don’t concern them. Productive people
usually have plenty to do and not enough time to do it.

However, too often the way that time is managed to maximize productivity and minimize
waste can get in the way of the kind of information exchange and discussion that is required
to handle tricky architecture subjects like security (or any of the other “*ilities” with which a
complex project must contend).

In an eff ort to be effi cient, quite often items such as data interchange, API details, class defi -
nitions, or libraries are presented in a way that makes discussion over security expectations get
lost. For those of you who are survivors of inter-project, inter-component meeting discussions,
let me run a scenario for you and see if it feels relatively familiar.

Imagine that you’re in a meeting and it’s time to implement the connection between two
components, each of which has been under development by a diff erent team. Each side needs
to understand the interface and expectations and the assumptions are made by the other side.
An architect has been asked to present the interface. She/he/they have put together some slides
describing the details that have been developed and which will be expected in order to inte-
grate. As is typical for engineers who are not used to presenting, the slides are basically the
documentation for the API scrunched down into bullets (as many bullets as will fi t on a slide).
Th is isn’t a presentation at a major conference, so no one’s expecting an entertaining fl ow or
any jokes. “Just the facts, ma’am.”

Often the inexperienced presenter, perhaps an architect, goes through the slides, probably
mostly reading them off in trying to explain what they mean. Quite often, the presenter will
have forgotten that they’re speaking to other people, and might start to speak almost to them-
selves, quietly. Th e people who need to know what these facts are have probably already read a
couple of the slides and may have decided that they pretty much already “get” the requirements.

98 Secrets of a Cyber Security Architect

So the listeners start to read email, or start to code, or whatever other task is more interesting
than listening to someone quietly read their own slides.

Exactly 20 minutes will have been allotted for the presentation, which the diligent facilita-
tor will pay close attention to. When the presentation completes, much of it will not have been
heard. Plus, because time is limited, the facilitator can check the box that everyone now has all
the required knowledge.

Th en the other side presents their interchange expectations and technical details in much
the same way with much the same results. Th e fi rst side, having read the slides before the meet-
ing, also stopped paying attention after a few minutes and do something else that seems more
useful and a whole lot more engaging.

Somewhere in these two presentations will have been some kind of expression of whatever
security requirements and, more importantly, security expectations are held by each side. Th ese
details, critical to security, may well have been buried in with all the other requirements and
are expressed in a way that they don’t really tell the participants what the assumptions are.
Once the 20 minutes are up, discussion stops, and the agenda moves on to other topics.

I have seen exactly this thing hundreds of times. Unfortunately, I have also seen the result:
misunderstanding of the expectations which invalidate each side’s threat model. I believe I out-
lined the case above of a gateway that passes messages from untrusted sources which have not
been validated straight on through to a component behind it. In such a situation, the consumer
of the messages must take care to validate whatever data are passed or there’s an opportunity
to pass exploits into the consuming component.

If both sides of our hypothetical gateway and consumer haven’t actually discussed what I
call “the security contract”—that is, that the gateway expects the consuming component to
provide its own self protection—then we just have coded a potentially delightfully exploitable
condition. We have failed to implement input validation in our communications.

Although I’ve never measured it precisely, a good number of the worst design issues with
which I’ve been involved that have turned into security incidents or risk exceptions have
occurred from precisely the scenario I’ve outlined above: both sides of a communication or an
interchange haven’t had suffi cient time to really go over their security assumptions with each
other. Th ough time has been managed effi ciently, the process has not allowed for discovery,
investigation, discussion, true security understanding.

Interestingly, if I can get the presenting architects to sit down casually and informally, very
quickly these smart people fi gure out that they had diff erent assumptions—“centimeters to
inches.” I don’t think there’s anything wrong with managing time carefully; like most other
people, I hate having my time wasted. And, I’ll admit to getting bored listening to the tech-
nical details of something that I think I already pretty much understand. I’m not trying to
demonize anyone with my little disquisition here.

But it does seem to me that we must also leave time for unstructured discussion in order to
avoid these situations from getting out of hand and turning into an incident. An adjunct to this
discussion about security assumptions will be explicit documentation devoted to the security
controls implemented as well as the assumptions made: a security contract.

1. Make our security assumptions and requirements for interchange a formal document,
the security contract that we expect consumers and communicators to understand and

Culture Hacking 99

to adhere to. Th is should probably be a formal document that goes right along with the
documentation of an API, a library, a class, or an object.

2. Schedule time after the presentations for some open-ended discussion between the pre-
senters. Ensure that at least one of the topics that have been given time for discus-
sion will be the security requirements of the interchange and the security expectations
and assumptions of each component. Th is discussion is not completed until everyone
involved walks away with a full understanding of the other side’s security.

With these two culture hack additions, the necessary understanding for ensuring that com-
ponent threat models are pieced together properly can take place. Sometimes there’s no short-
cut for open and honest dialogue. With all due respect to the wonderful project managers who
helped me stay productive and on task, sometimes overly careful time management can be an
impediment instead of a help. A little loose conversation can sometimes solve a multitude of
problems.

If the sort of focused but less highly facilitated discussion isn’t possible to arrange, or as a
support of such a discussion, a component’s “security contract” can be drafted. Th is document
declares precisely what a component off ers for protection, its security assumptions as to what
sort of attacks it will or will not defend (this can be very general; it’s not a restatement of the
threat model, although the security contract relies on the threat model). Th e security contract
must state what assumptions the components communications make about the other side.

Security contracts are very useful in situations in which the developers of a component will
never meet or interact with their consumers. Consider a product that’s a gateway. If the product
is sold as a gateway, and there are going to be thousands of purchasers, there is no way that
the developers are going to talk to each and every purchaser, to be involved in each and every
installation.

In these less personal situations, a security contract for the component becomes critical.
Th ose who will use the component (gateway) need to know what security they’re getting,
and what security they are not going to inherit by using the product. In these situations, I
insist that teams create a short security document that describes what the component defends
against, and what it expects from other parts of systems into which it will be integrated. Such
a document—a security contract, if you will call it that—can avoid a lot of angry customers.

I still think that a holistic eye on whether all the components will interoperate together
securely is actually the complete threat model. Th reat modeling is always hampered when
confi ned to narrow views. Its particular requirement is analyzing the whole, because the model
cannot merely be the sum of its constituent parts.

4.3.6 Threat Models Are Not Additive!

With the above in mind, absolutely narrowing down the scope of complex projects to work-
able pieces makes sense. With a big proviso: Th reat models are not additive! When the pieces
come together, the whole is diff erent from each piece by itself; the total threat model is not a
simple sum of all the sub-models. Th at was a big mistake that a big company at which I used
to work made regularly: everything was just an “ingredient”—if the ingredient has already had
its threat model, just add the models together.

100 Secrets of a Cyber Security Architect

Let me reuse the example already given. A gateway product is “just passing messages
through,” so it doesn’t examine the content being passed. Th at’s fi ne. Th at gateway must pro-
tect itself from everything that it might receive except that which may lie within the message
content.

Let’s suppose that the receiving component perfoms some analytic data processing on the
body of those messages that had been passed through the gateway cited above. Th e consumer’s
threat model is focused on second-layer threats, on insider and administrative protections,
which makes sense when the consumer is taken in isolation.

If we simply put these two models together, then we have just missed an important vector of
attack via the message traffi c. Attacks destined for the processing engine (the consumer) have
no mitigation between these two components; the gateway assumes that the processor is taking
care of data cleansing, while the processor assumes that the gateway only passes valid messages.
Perhaps you leapt ahead and identifi ed the problem easily? Yet, I cannot count the number of
times that I’ve seen precisely this mistake being made.

Th e gateway passes untrusted message traffi c. Th erefore, its security contract with message
receivers is that the message content cannot be trusted. Both components must be analyzed
together, holistically, as a single, integrated system. Otherwise, message receiver beware.

4.3.7 Audit and Security Are Not the Same Thing

Th e larger the organization, the more likely it is that one is going to run into pretty divergent
perspectives. Sometimes, my security architect’s perspective might run smack dab up against
a confl icting, maybe even incompatible, view. Th is is perhaps one of the biggest challenges
facing those of us who pursue organizational transformation—those of us who are culture
hackers.

Let me give an example. One of my dear friends (who shall not be named to protect her
privacy), a recognized expert in her fi eld, comes out of a compliance background. We dis-
agree greatly about the nature of compliance and security. She believes that achieving strong
compliance delivers appropriate security. I do not fi nd this to be true, because standards and
regulations often make assumptions about the nature of the problem space, assumptions
about whom the standard applies to, about how the target organizations are structured,
about whom the standard addresses, and about solutions sets. Because of the amount of time
it takes to create, draft, and ratify a standard (years), the threat landscape and solution sets
may have moved signifi cantly since the codifi cation of the language in the standard: these
are rarely up to date.

Imagine a standard that assumes that software security is about building applications.
Already, organizations that create embedded software or clouds might readily believe that
“application security” doesn’t include the software that these other organizations are building.
Further, imagine that the standard always addresses i nformation technology (IT) whenever the
implementing organization is named. Many organizations do not build product software in
their IT function, but rather, in their research and development or engineering functions. May
they then believe that the standard is not intended for their software?

I didn’t make the above up. In fact, draft 1 of ISO 27034 had exactly the problems described
in the preceding paragraph. Th ese issues crept in despite the fact that ISO 27034 was intended

Culture Hacking 101

to cover software security in general, not just IT software delivery, not confi ned to applications
only. Oops? I think so.*

Th e truth is, writing general standards is hard. Assumptions that change the scope can
creep in rather too easily. Standard drafters might assume that everyone already knows what
“penetration testing” is, so there’s no need to defi ne it. Th at’s what the fi rst and second revisions
of Payment Card Industry Data Security Standard (PCI) did. But, unfortunately, there is no
standard defi nition of penetration testing, and PCI didn’t point to a particular defi nition as
the one to which the standard refers. In fact, companies pass PCI audits of their penetration
testing requirement with a wide range of testing, all the way from periodic vulnerability scans,
through application vulnerability testing, to manually driven attempts to break in (which is the
common, industry accepted defi nition of “penetration testing”). Th e three test examples I just
gave vary greatly in the results that they deliver.

To achieve compliance, the goal is to meet a specifi c set of predetermined requirements:
what’s been codifi ed into the language of the standard or regulation. Th ese could be for regula-
tion such as GDPR† or HIPAA‡, or a standard such as I SO® 27001 or S OC 2®.

Unfortunately, some requirements of a standard might very well be irrelevant to the situ-
ation to be secured. In fact, this happens a lot. Or, as in GDPR, the requirement might be
so vague as to be essentially meaningless. As an example, take Article 32, which purportedly
describes what security measures are required:

* http://www.iso27001security.com/html/27034.html
† European Union Global Data Protection Regulation.
‡ Health Insurance Portability and Accountability Act.
§ Gen. Data Protection Regulation 2016/679, Article 32. European Union, http://www.privacy-

regulation.eu/en/article-32-security-of-processing-GDPR.htm

“ARTICLE 32: Security of Personal Data - Security of Processing
“Article 32 of the GDPR, which requires ‘controller and the processor shall implement
appropriate technical and organizational measures to ensure a level of security appropri-
ate to the risk’

“(a) the pseudonymization and encryption of personal data;
“(b) the ability to ensure the ongoing confi dentiality, integrity, availability, and resil-

ience of processing systems and services;
“(c) the ability to restore the availability and access to personal data in a timely manner

in the event of a physical or technical incident;
“(d) a process for regularly testing, assessing and evaluating the eff ectiveness of tech-

nical and organizational measures for ensuring the security of the processing.”§

If we take (c), anyone who’s practiced any security knows that the point is CIA: Confi dentiality,
Integrity, and Availability. Th is statement is so general as to be essentially meaningless.

Like California’s SB 1386, the encryption line doesn’t set forth any of the implementation
patterns for encryption to provide real protection. Would it be enough to implement transpar-
ent, hard disk encryption, where the keying material is available to the logged in user?

As I remember, one of the dodges that less than fully honest and forthright companies
started to use in order to protect themselves from breach notifi cation under SB 1386 was to use

http://www.iso27001security.com
http://www.privacy-regulation.eu
http://www.privacy-regulation.eu

102 Secrets of a Cyber Security Architect

transparent disk encryption. Any legal reader of the storage would get decrypted information:
Th at’s what “transparent” means. However, although this measure provides near zero runtime
security benefi t, it meets the legal defi nition of “data must be encrypted.” We might start to
see organizations try similar legal dodges in the GDPR space, as well. Line (a) doesn’t tell us
anything about the diffi culties that must be met for robust, protective encryption. One could
legally claim that simply having some sort of encryption meets the intent of the law. But is it
security? No.

My friend insisted that being compliant automatically delivered appropriate security. I hope
I’ve proved to you in the examples above that this is not at all true. Still, we had to not only
work together, but to be eff ective together. Somehow, we had to fi nd a way that our diff erences
didn’t hinder eff ectiveness.

How does one go about that?
I can’t tell you that I have a never-fail secret to share to meet the challenge of wildly diver-

gent perspectives such as compliance versus security. I struggle with this probably is much as
any other person who routinely works with a wide range of smart and often rather opinionated
people.

What I look for are places in which we are attempting to reach the same goal, only from
varying routes. I listen carefully for areas of resonance, for areas of alignment. It may be when
actually trying to get something done that a confl icting philosophy is irrelevant. It may be that
it’s merely a matter of semantics or articulation. I try really hard not to get too hung up about
the way things are expressed so long as security requirements are met.

In the case of my friend, if she insisted upon expressing things with a line from some regula-
tion or standard, so long as implementers understood the security needs to be met, what does
it matter?

By being malleable around expression, I can focus on the objective. Only in a case in which
there’s a confl ict in what must actually be accomplished do I want to enter into a need for con-
fl ict resolution, negotiation, and compromise. Often enough, all roads actually do lead to the
Rome of appropriate security implementation. Or, if a regulatory requirement really is inappro-
priate, or worse, irrelevant, there is always the “out” of carefully documenting the insignifi cant
likelihood and impact from failing to comply. Most of the standards and regulations allow for
a statement of noncompliance given in business risk terms. Done well enough, risk assessments
off ered in place of compliance will usually pass audit.

Th ere’s also usually a possibility for “compensating controls.” Compensating controls are
alternative defenses that achieve a CIA protection similar to t hose that a standard requires. For
instance, a compensating set of controls for encryption of data at rest would be something like
the following set of controls:

• Highly restricted network segment.
• Access requires multi-factor authentication.
• Strict, need-to-know only restrictions for privileged access.
• When access has been granted it would only be allowed for a limited period.
• Th e grant occurring through a formalized process employing separation of duties between

grantor and grantee.
• Any access to the storagte requires that all high privileged actions will be logged and then

monitored by an independent group (not the grantee).

Culture Hacking 103

Th e above controls would compensate for encryption of data at rest. If properly documented,
these are likely to pass an audit and to be defensible in court as “encryption of personal data”
and an “ability to ensure the ongoing confi dentiality, integrity”, as GDPR requires.

4.4 From Program to Transformation

“[A] sense of participation in something new and interesting is infectious. Rather than
trying to be personally charismatic (I’m not!), I make the program, the work, charismatic.
People like to have a little fun, enjoy a little creativity at work. Security architecture is so
complex, and there are so many variables to getting things done, it’s a perfect test bed for
innovation. As I’ve stressed above, mistakes are going to happen anyway. If I can keep
disasters from happening, while at the same time, I’m willing to try diff erent ways of
achieving ends even if these have some risk of failing, this invitation to play attracts sup-
porters and helps to build towards a tipping point to a successful, self-sustaining security
architecture program.” Securing Systems, p. 363.

Th ere’s something intrinsically attractive about an eff ort that appears to be making a diff er-
ence, that’s going somewhere, that’s demonstrating signifi cant progress. Although I must be an
enthusiastic cheerleader, I fi nd that it’s critical to demonstrate the objectives that the program
wishes to achieve early and often.

If there is a need to increase secure design practice, probably through active threat model-
ing, then I need to threat model in order to help teams identify their security requirements.
Start with the work at hand and establish a zeal to immediately get some results on the board,
as it were. Astute teams will see the value delivered and wish to also gain those advantages.
Delivering actual work as soon as humanely possible also starts to attract those who are curi-
ous about techniques, who may wish to add these to their technical bag of tricks. I get out and
deliver right away. Word gets around.

I also need to share the process of threat modeling; I need to teach it to anyone who wants
to learn. I need to encourage people to try to threat model their projects. And then I need to
be of help if they ask me to refi ne the threat model or to check their work. It’s important to be
encouraging; it’s very important to make stuff happen so that it’s obvious to anyone who cares
to look that there is a program underway and it’s starting to have some impact. Th ere is both
delivery and modeling the culture that we wish to birth.

4.4.1 Pro-Social Modeling

I hold myself to the standard of modeling the behavior that exemplifi es the culture that I’m
trying to create. Of course, I’m not always successful; I’m sometimes more inconsistent than
I wish to be. Still, despite my failings, I do fi nd that striving for the culture I want to move
toward helps others intuitively grasp what were all reaching for.

• If I want people to listen, I must listen well.
• If I want authentic discussions, then I have to enter into discussions authentically.
• If I want people to be open to fresh ideas, I must embrace creative and innovative approaches.

104 Secrets of a Cyber Security Architect

• If we are to successfully negotiate confl ict, I have to put aside my own fears, my own
biases, and try to negotiate confl ict acceptably to all sides.

• If I want it to be acceptable to make mistakes, then I must admit gracefully when I’m
wrong.

* Zeigler, Welling, and Shakelford, 2015.

Modeling behavior remains an important tool for creating the culture that you want to
bring about.

“Th e basic idea underlying social learning accounts of prosocial behavior is that people teach
others to behave in prosocial ways by . . . modeling prosocial forms of conduct.”*

Of course, I cannot claim to model every behavior that a team needs in order to become
eff ective, certainly not anywhere near 100%. It turns out that modeling failure is as important
as modeling the change that is sought—both are needed for eff ective culture hacking. Th at’s
because we are obviously all humans with limitations and challenges, just as much as we may
be eff ective and incisive.

When someone with authority, someone in any leadership position, whether perceived or
organizationally empowered, shows a willingness to admit mistakes, acknowledge failure to
enact their own aspirations, and does so authentically, this is a powerful act. Doing so makes
it safe for others to admit error, to focus on problems and solutions, rather than hiding or
worse, so-called “blame-storming”—fi nding as much fault as possible, accusing and defend-
ing. Acknowledging misjudgment is a powerful hack, just as much as it’s authentic leadership
and plain old good manners. It’s another type of “pro-social modeling.”

4.4.2 Leaders Must Get Challenged

Sometimes when undertaking complex analyses, it’s hard to know that one has missed some-
thing important, misunderstood some technical aspect, or gone down a fruitless path. As I
wrote above, peer review is an essential governance technique for everyone, including the most
experienced personnel. It can be a challenge to fi nd someone who has the skill and insight to
review a technical leader’s work. Perhaps the following example, taken from Securing Systems
(p. 365), will illustrate this particular culture hack.

“If I’m starting from scratch, I have to fi nd that fi rst person. Th is is harder if the work
is already piling up, the architectures are complex, and the velocity is rapid. I’ve had two
situations exactly like this. My fi rst team member will be key to an ability to add lots
of diff erent skills sets, experience, and approaches. Th at fi rst person’s temperament and
communication skills are as important as the candidate’s technical skill.

"One of the fi rst additions to the team must foster a spirit of lively interchange directed
towards synthetic and creative solutions. Th is interchange must demonstrate that dis-
agreement does not mean a loss of relationship, but rather a strengthening of trust. If the
two of us can set an example of motivation, engagement, and an ability to work through
confl ict, this will create an environment conducive to diversity. Although it’s great to get
a fi rst or second addition who is your equal, as long as these people are open to learning,
and to being personally empowered, I believe that the right template will be set.

Culture Hacking 105

"At one job, I had to build a team from absolute zero; I was the only member of the
team, though the work was enough for fi ve to eight architects. My fi rst hire did not fi t
the above profi le; that person deferred to my experience far too often to foster an engaged
and empowered atmosphere. We then brought in a very junior person to train, which
made matters worse.

"Understanding this unfolding dynamic, and how it would stunt the growth of the
group, I begged my management for a senior person. I then talked a friend of mine, Ove
Hansen, who is a very experienced security architect into joining the team. I knew Ove
could fi nd the holes in my logic and that Ove wouldn’t hesitate to challenge my ideas
(though professionally and politely, of course). Within about six weeks of bringing Ove
onto the team, the dynamic of the group shifted to lively discussions and synthetic solu-
tion sets. Th e team needed an example; they needed a sign that disagreement with me
was not only tolerated but would be encouraged.”

I hope that you can see how important it is to carefully consider central team composi-
tion. In my experience, the dynamics and composition of the central team (if there is one)
greatly infl uence how everyone associated and working with security architecture will behave.
Not only do individuals model pro-social behaviors, but also any established body of security
architects who model behaviors for those who may represent security architecture from within
development teams, as well. It will be the working relationships of the most experienced secu-
rity architects that establish the norms for everyone.

But a central team isn’t suffi cient for hacking one’s way toward a developer-centric culture of
security. Diff erent levels of an organization are called upon for the various angles of the shift.

“For a practice such as the security architecture . . . , support and, ultimately, buy-in
will need to come from the organizational decision makers, the grassroots, and across
your network. Th at is, building a network of support, even when it’s relatively few in
number—upwards, across, and downwards—will greatly accelerate adoption and fol-
low through for your security assessment program. Even with relatively few numbers of
supporters, the organization will achieve that ‘tipping point’ that spells success for the
entire program. Communications are important. Repeated communication will likely be
a necessity.” Securing Systems, p. 362.

4.4.3 Hack All Levels

Executives of course are important; without executive buy-in and support even the best inten-
tioned and run eff ort will fail: Eventually, there will be resistance somewhere in the organiza-
tion. Designing then building security costs money, time, resources, focus, eff ort. Somewhere
along the way, some teams will meet resource challenges, trade-off s between security work
and some, usually many, other competing requirements. While elsewhere in this work, Core
Software Security, and Securing Systems, I’ve presented various ways to deal with those chal-
lenges, nevertheless, it is inevitable that there will be resistance to security—perhaps, down-
right rebellion. Th is must be expected.

When it is not obvious what should be done, when agreement cannot be reached as to
whether to put off a security requirement against something more pressing, the usual approach

106 Secrets of a Cyber Security Architect

will be to escalate. Th ose escalations sometimes end up in front of executives, and that is the
point at which one fi nds out whether the executives are only giving lip service to security or if
they will stand up for it.

Th is is not to say that supportive executives will decide in favor of security every time. I’ve
never seen that. Sometimes, there are very good business reasons to put off security. Th at is
always an executive prerogative.

However, if said executive always decides against security, then one knows where one really
stands—nowhere, to be exact. A supportive executive will consider, will hear all sides, will take
all the risk factors into account. Sometimes, it will be a matter of when to complete required
security, not whether to do it at all. Sometimes, the executive will decide to prioritize security
against other risk factors. Th at is as it should be. I don’t expect to win—winning is not the
attitude to cultivate for these escalations. Security risk needs to be fully acknowledged and
validated. Th at’s all I’m looking for in these situations. Th at’s enough; I consider that executive
support. When security is consistently undermined or disregarded, that is a clear lack of sup-
port. Without that support, much of an organization will follow suit. It may be time to look
for a diff erent organization.

Executive support is more than communicating how important security is to an organiza-
tion. It’s also standing up for security, making time for the hard decisions, making those hard
decisions based upon the best information that can be had at that moment.

I learned fairly early on after assuming a technical leadership security role that mid-manage-
ment were going to make or break my eff orts. Typically, minor, low, even medium risks will be
decided by mid-management—in most organizations, the directors or equivalents. If the risk
is not catastrophic to the entire organization or is confi ned to a particular set of functions or
teams, mid-management will often handle the issue.

Plus, directors often set priorities for their groups. If a director wishes to undermine secu-
rity initiatives, at least for their teams, they can do it. In large, complex organizations, mid-
management may have wide degrees of infl uence. Knowing whether they support, don’t care,
or are actively resisting is crucial, which is why one of the fi rst things I do at a new organization
is to have a chat with each of the relevant directors. Plus, I observe what they do as security
requirements and security tasks are introduced.

Critical questioning is fi ne; that equals engagement. Engagement is a sign of support,
although it might not feel that way when one is subject to a sharp director interrogation. As
long as the enquiry seems to be about making the work better, about making security work
with all the other factors that go into producing good software, that rings as support to me.

Again, just like executives, if, when push comes to shove, teams are consistently allowed to
put security tasks off , to deprioritize security requirements, then that’s either passive aggres-
sion or active resistance. I want to identify resisters. I can’t meet their issues without actively
uncovering them.

So that’s one of my hacks: Find out what the issues are, perhaps what is being protected, and
then I can start to craft solutions that don’t ruin what’s already been built. A great deal of the
time, in functional organizations, resistance is about protecting one or more “things” that are
working well.

One cannot always predict what one might threaten when one begins a program of culture
change. Resistance is an invitation to investigate, to learn. Mid-management has the power to

Culture Hacking 107

change, but also to resist. It is in this layer that I have often uncovered processes or methods
that I must take into account in order to be successful.

For years, security architecture had been trying to improve the way that Transport Layer
Security (TLS) certifi cate private keys had been stored. At that organization, it wasn’t terrible,
but it wasn’t great either. Private keys were stored using operating system user privileges on the
machines where the certifi cates were validated. Th ose hosts’ accesses were quite restricted. Still,
an attacker gaining those privileges would then have access to an important corporate messag-
ing conduit. We wanted the private keys to be stored elsewhere and then retrieved strictly for
validation, then removed.

Years went by; we (security) could never fi gure out why we couldn’t get any traction; there
were a million excuses. One day, I got to talking to the senior IT architect who was in charge of
the whole system and the process. It turned out that junior engineers were tasked with creating
the certifi cates; they had to have access rights to the system on which the certifi cates would be
created. It was convenient and effi cient to have the private keys local to the certifi cate valida-
tion. Th ere were no funds for a solution like a h ardware security module (HSM) purpose built
for these sorts of operations.

Once I fully understood the need for junior engineers who probably didn’t fully understand
either the system on which the certifi cates would be used or the details of X509 certifi cates in
general, I had the reasons for the protective, balky behavior.

Frankly, I don’t remember the particulars that we worked out. But I made sure that the
junior people would continue to function effi ciently. Th ose separate certifi cate servers were
running inside of six weeks (which was really fast, in those days, this being long before readily
available cloud services).

No matter what the solution actually encompassed, one of the key requirements was not to
break something that IT needed to keep working properly. Th at hadn’t been apparent until
I took the time to investigate the whole problem, not just the security needs. A solution that
included both security and IT then became acceptable to all involved and went forward quickly
and easily. Th is was a powerful lesson to me in looking beyond resistance to what needed to be
accomplished in order to be successful for all involved.

Occasionally, in large organizations, one will meet someone who is playing for themself
alone. Th at is an entirely diff erent problem than resistance that has credible reasons. Each of us
must work with those of low integrity as best we can. I have my approaches, but these might
not work for others. I’m not a psychologist; I don’t have pat answers for these sticky situations.
Luckily, in my career, these horrible situations have been few and far between. Generally, I
can assume that resistance is based upon organizational needs, not personal power dynamics.

In any event, mid-management, especially in large organizations, is a key player in actually
getting security done. Th ese important players must not be ignored.

Finally, I accept assistance or support from everyone and anyone at any level. Sometimes
management and, especially, executives don’t have a full understanding of what my friend
Dr. James Ransome calls, “ground truth”—that is, what is actually going on in development
teams. To move a software organization toward a culture of security, ground truth is critical.
Without it, I guarantee that executive pronouncements, mid-management directives, strategy
statements, S ecurity Development Life cycle (SDL) documents, policies, standards, processes,
and methods will fl ounder.

108 Secrets of a Cyber Security Architect

One of the most important things that I can do is to talk to developers and observe how they
are actually developing software, because if the SDL directly contradicts or interferes with the
development process, it cannot work. Smart developers will fi nd a way around anything that
slows them down or that they perceive as lacking value.

On the other hand, if something—anything—seems to help build better software, gets
more bugs out quicker, the vast majority of developers with whom I’ve worked will embrace
that task, that tool, that activity rapidly and with little resistance. It often comes down to per-
ceived utility.

In my threat modeling classes, when I have a mix of developers and security practitioners,
I often play a little game. I ask the developers how they feel when security requirements are
included early in the development process. To a person (so far) the developers in my classes
uniformly claim that they love getting as many requirements, security and otherwise, as early
in the process as possible so that they know what they are to build.

Th en I ask the developers how they feel when they get their security requirements after most
of whatever they’re building is completed. “Bleh!” Th ey hate it! Rework! Schedules not met.
Time wasted building the wrong stuff . “Yech! Security interjections are terrible.”

I then ask the security folks how they feel when they’re invited to participate in shaping
requirements early. Again, uniformly, security folk love that. How about two days before go-
live or production deployment? “Yech!” What can be accomplished so late in the game? Nearly
nothing of any real importance.

I can then point out that the people in the class have the power to end this problem, right
there, right then. Developers, when you have a new eff ort, invite security in. Security, when
you’re called in late, point out to developers how dysfunctional that is, how security cannot be
architected after everything is complete.

In other words, security has to fi t into the development process. But that fi t cannot be
accomplished by one expertise or the other; it must be accomplished by working together.
Th is is why security must interact with grassroots developers directly. We must understand
the entire project or eff ort process. Whatever security tasks (the SDL, essentially) need to
be accomplished must fi t within the processes and methods that will be used to build the
software.

4.4.4 Coding Is Fraught with Error

One of the challenges that I’ve seen over and over again is the demand that people “code
securely.” Training programs are instituted. Coders take the courses, but mistakes keep occur-
ring. Secure code analysis tools are purchased and integrated into build systems, but prevent-
able vulnerabilities still leak out into releases. Why?

My fi rst realization, thinking back to my own coding, is that coding mistakes happen.
Period. Th e truism that coding mistakes will occur must be the ground upon which every part
of solutions must stand.

Th ere are two situations that increase the likelihood of coding errors, security and otherwise:

1. When coding something new, innovative, or creative
2. When coding really boring, rote, run-of-the-mill aspects

Culture Hacking 109

Obviously, whenever we try something new, we are bound to make errors. Th is is expected
when learning to play a musical instrument. Why do we expect a diff erent result when coding
innovative algorithms?

Sometimes, when I’m in front of developers, I ask them if they’ve ever fi nished a piece of
code that they felt was implemented very well. Th en, when a bug has appeared in the fi eld,
perhaps six months after release, have they taken a look at the code, only to realize that it’s very
wrong? I get a lot of chuckles and knowing nods from my question. It’s certainly happened to
me. Many programmers have experienced something similar, because it’s easy to miss some
detail of logic or side-eff ect. It’s possible to pass even rigorous testing regimes and still have
coded a nasty bug. Many of us who’ve written signifi cant amounts of code have dealt with
these issues and many more: Th e library our code depends upon doesn’t behave the way that
we thought it did, or the way that the documentation claims.

Many years ago, I had to write an i nfra-red (IR) driver for one of the Consumer versions of
Windows® (before Windows migrated to the NT device driver model). IR is incredibly time
sensitive. I chased inconsistent behavior for months before I realized that the time function in
that version of Windows was unreliable. Sometimes my code got called in the correct periodic-
ity, but a lot of the time, it did not. When I changed the code to rely on a hardware clock, it
fi nally worked as expected.

Th is is just one example of how, given complex systems, depending upon huge volumes of
code, all prone to errors, can appear to be written correctly, but still misbehave. Software bugs
are legion. I think that it’s fairly safe to assume that any reasonably complex piece of code will
have a few errors in it. Some of the unintended behavior will likely have security implications.
Furthermore, the newer the code, the more likely it is that the code will have mistakes in it,
some of which will be vulnerabilities.

Th e other situation that can foster errors is boredom. When coding commercially, there
are generally standards about how the code is to be written, where the comments go, etc. One
very typical task will be to “cover” a library (say open source software) that implements needed
functionality. Cover in this context means to build functions calling the library to implement
the needed functionality. Th ere are a host of code structure reasons for doing it this way, rather
than calling the code directly. For one thing, if the library needs to be swapped for a another,
only the covering routines need changing, not all the places in the code where the functionality
will be used.

However, setting up a bunch of covering routines to an organization’s standards is not the
most interesting task. It’s a job that needs doing, and it needs to be done well. However, it
doesn’t take a computer scientist to write a bunch of cover routines. Hence, this task can be
quite boring: setting up the standard class or method or function headers multiple times. It’s
mostly boilerplate. Boring work leads to mistakes, just as innovative work can.

4.4.5 Effective Secure Coding Training

Whatever the reasons, software mistakes happen, and happen regularly and repeatedly. What
can be done about it?

Obviously, we can train people to generate more secure code in the fi rst place. But do those
fi ve-day, secure coding classes really improve things? Maybe. Chris Romeo, CEO of Security

110 Secrets of a Cyber Security Architect

Journey, and I have talked quite a bit about what might constitute highly eff ective training.
Th ere are two problem areas:

1. People need to practice what they learn in order to integrate the knowledge into their
coding.

2. Diff erent programming languages and systems have fairly diff erent security requirements.

It’s more cost eff ective for trainers to deliver several days of training in a block rather than on
demand. So instructor-led trainings have tended to be multi-day aff airs. But that makes it hard
for coders to integrate each technique into the code that they write. Class exercises are all well
and good, but they might not match closely enough
to what participants are actually writing.

Plus, each training has to be general enough to
cover a range of situations and programming lan-
guages. Th at means that some of the work for some
attendees will very likely be irrelevant.

Chris and I have discussed very short webinars,
15–30 minutes, focusing on a single area of secure
coding, in a particular language, for a particular
set of coding problems. Th en, let the learners go off
and apply what they’ve learned to their code, try to
recognize the approach or lack thereof when review-
ing others’ code. Th e focus should be on practical
application until the learners have integrated the knowledge into their skills. Th at is how most
people learn: Do a single new thing until it’s understood and integrated. Apply what has been
learned until it becomes a part of what one does.

I’ve spoken to a few training companies about such an approach. We’ll see if this works bet-
ter than the fi ve-day cram.

Still, people will forget, will mis-apply, just plain make errors. As I wrote, above, that’s a
given.

4.4.6 Make Validation Easy

Th at’s where tools such as static analysis come in. Just like a compiler checks to see if the code
is syntactically correct, so static analysis can check to see if there are potential security errors in
the code. Th at should be a big help. Where does this go wrong?

One of the problems is that many (most) static analysis tools, and especially the commercial
ones, are sold through broad coverage of types and variations of possible errors. But, lots of the
checks aren’t all that reliable. Although some types of errors might be found with very high
confi dence (say, 80% or 90%), many of the checks have a much lower confi dence level. Th e
tools then rely on a human to fi gure out whether or not there really is an error.

Plus, these tools benefi t from a lot of confi guration and tuning. Th ey often need to be told
about some of the details of the code and its standard libraries. Mostly, one cannot just add the
tool to the build chain and expect reasonable results.

I once attended a master class in jazz
improvisation from Kenny Werner. In
response to a question about how to
practice, Kenny cited learning studies
that demonstrate that people quickly
become overwhelmed when they try
to learn more than one thing at a time.
This results in slow or even no progress.
Practice a single thing until it can be
done well, then apply it until it becomes
part of one’s repertoire. In coding, as in
jazz improvisation, it’s the same.

Culture Hacking 111

When I got to one organization, one team had a backlog of 72,000 static analysis fi ndings.
Another team there had 46,000. I’ll bet astute readers can guess what those teams did with all
those errors? Absolutely nothing. Th ere were too many fi ndings to begin to deal with any of
the results; it would take years of work to winnow through that many fi ndings, at the expense
of actually generating any code.

Th e tool had not been tuned to the code base. It was not confi gured correctly. Th e two
teams I mention simply turned on “all checks” and then, when there were too many fi ndings
with which to deal, they perceived the static analysis tool as useless. Security demanded that
they add the tool. But its results were too noisy to be useful.

Th ere is a solution to this problem, and this is precisely what we did at that organization.
We confi gured that rather complex commercial tool to render only high confi dence results.
Most of these tools can be confi gured to deliver everything. But they can also be confi gured to
analyze only for fi ndings of high confi dence. Once the two teams began to get valuable results,
they became our model for all the other teams. Within a year, all the teams were fi nding great
value in their static analysis because they focused on high confi dence results fi rst. Teams were
free to experiment with confi dence settings beyond the basics. Each team reached its own toler-
ance for tool noise. Security issues decreased signifi cantly.

Th e other approach that I think helps is giving programmers as much security checking, as
early in their coding process as possible. Nearly all the commercial static analysis tools as of this
writing have a desktop version or option that allows coders to check their work as they code.
Th is is very powerful because of a typical cultural expectation.

Generally, diligent programmers expect errors in their code as they’re working on it. Any
tool that can fi nd errors (without generating too many incorrect fi ndings and not requiring too
much confi guration and tuning) will usually be appreciated and integrated.

But there’s a mental shift that happens when a programmer believes that the code is stable
and correct. Code that has been released to the next stage of the development process (which
varies depending upon the development methodology) can be a bit “out of sight, out of mind.”
Often, the programmer has moved on to other problems. Th ere can be a bit of “prove to me
that there’s an error” once code has left the programmer’s purview and moved on.

Hence, testing that occurs after a programmer commits code as “correct” may be a little
too distant from the coding process. Whereas, tools that can integrate into the coding process,
that fi nd errors during coding, generally receive greater programmer attention. Hence, I like
to get at least some security checking onto the coders’ desks, into their i ntegrated development
environment (IDE), early in the coding process. Even if the checks are less rigorous than those
that can be placed within a later build process, still, early identifi cation of security mistakes is
more organic than massive sets of fi ndings later on.

Get secure coding analysis tools into the coding cycles. Th en, perform a more thorough
check during build. From experience, that seems to work the best. However it’s done, these
complex tools need to be properly confi gured and tuned to the code base that they will analyze.
Otherwise, one is likely to end up with a lot of low confi dence fi ndings that hide errors that
really should be fi xed—that is, so-called “noisy” fi ndings (72,000 potential errors!).

Fitting analysis tools into the development process so that they deliver recognizable coding
value is a powerful security culture hack, because coders start integrating security checks into
their work as a matter of course. Plus, it’s a powerful training tool, since after making the same

112 Secrets of a Cyber Security Architect

mistake a few times, most programmers will learn to think about that problem as they code
and stop making it repeatedly.

In my experience, training and code checking tools go hand in hand, supporting each other.
When they work together, it’s yet another culture hack. It’s a hack that happens at the grass-
roots, where actual development takes place.

After a while, some of the more skilled programmers will want to increase their security
skills. Out of these will come the next generation of security engineers, architects, and even
teachers. Once a program has matured to the point at which it becomes self-sustaining and
regularly spawns new generations of architects and teachers, that’s a sign, to me, that culture
has been transformed into a culture of security.

4.5 Summary

When threat modeling becomes a normal part of software design, when secure code analysis,
both automated and manual, have become the expected norm, when testing regimes include
vulnerability analysis and abuse cases, these are the signs that a development culture has shifted
to include security as one of the things that needs to be implemented.

Th at doesn’t mean that every security problem has been solved. Th ere will always be a mix
of varying skill levels from beginner to expert. Vulnerabilities will be missed by even the most
rigorous testing regimes. Sometimes, security will have to take a back seat to other business
necessities. New teams will be so busy ramping up that they will forget to enact security or will
simply be too inexperienced to do it well enough.

Still, after many of the hacks that I’ve suggested in this chapter have been implemented and
have become part of development’s “wood work”—part of the fabric, as it were—there usually
is a safety net for catching these exceptions, rather than security being the exception. I’ve been
a part of such transformations a few times. It is from those experiences that the hacks in this

Table 4.1 Summation of Actions Described in This Chaptera

Do Don’t

Integrate into the shared viewpoint and jargon
of development teams. Become a part of the
team, engage, understand challenges.

Drop security requirments onto developers, then
disappear.

Listen to understand. Ask questions to get at
roots of confl ict.

Dominate and insist upon “security's way or the
highway.”

Build support to a tipping point. Try to win every confl ict.

Give visibility to low and medium risks in a brief
and easy-to-consume manner.

Waste infl uence on minor issues.

Jettison unworkable processes. Continue because, “we’ve always done it this way.”

Start with attack scenarios for which there are
convincing, ready examples.

Begin by enforcing security requirements with-
out fi rst explaining each requirement’s support-
ing attack scenarios.

continues on next page

Culture Hacking 113

Do Don’t

Introduce threat modeling to everyone who
has any role whatsoever in developing soft-
ware: imagining, defi ning, generating, validat-
ing, deploying, managing, coordinating, or
supporting.

Restrict threat modeling to security practitioners
only, or just to the technical leaders and security
people.

Review threat model after structural or security
changes.

Mandate “threat model every change.”

Trust developers. Treat developers like wayward children.

Engage throughout the cycles of development
iteration.

Don’t interject point-in-time requirements and
then expect that these cannot be changed in
subsequent iterations.

Let developers fi nd as many security require-
ments as they can.

Assume that only the security expert will provide
a threat model.

Expose learners to problems outside of their
usual scope.

Isolate practitioners to their well-known
problems.

Include one senior and one independent
reviewer for a nimble governance process.

Drive all changes through formal review boards
that then become a bottleneck.

Iterate the threat model alongside increas-
ing specifi city of requirements, structure, and
design.

Avoid point-in-time, all-at-once threat models
performed after the architecture has been
completed.

Stop threat modeling when attack scenarios and
defenses move to the tortured and fantastical.

Insist upon ivory tower, textbook sets of
defenses.

Generate explicit “security contracts” for each
component that will interact with other com-
ponents. The contract must describe mitiga-
tions, assumptions, and any unhandled threats,
especially those that may be vectored through
to partner components.

Rely on API presentations as completed threat
models. Threat models are not additive, they
must be considered holistically.

Audit for compliance, not for security posture. Base security posture on successful compliance
audits.

Model security and interaction behaviors. Claim behavioral perfection.

Reward team empowerment. Expect smart people to agree and conform.

Build support at all levels; accept all offers of
assistance.

Expect executive mandate to build a culture of
security.

Account and mitigate for implementation errors. Expect perfect coding.

Make implementation validation easy, accessi-
ble, and integrated into natural developer fl ows.

Rely on a single validation form, type, tool, and
single point in the development process.

a Table 4.1 is supplied in the hope that its summary statements provide a quick reference to the tips and
tricks that I’ve outlined in this chapter.

Table 4.1 Summation of Actions Described in This Chapter (cont.)

chapter have been drawn. Th ese things work; at least, they’ve worked for me—most of them
more than once. I hope that they help you with your secure culture transformations, too.

114 Secrets of a Cyber Security Architect

4.5.1 We All Can Use Some Feedback

Th ere remains one more hack to note:

“In my communication plan, I include obtaining peer and grassroots evaluation and
feedback. I don’t necessarily take every bit of feedback exactly as it is expressed. But even
wild accusations and projections often have a kernel or grain of truth hiding within
them. In this way, I can tailor the program to the organization’s needs more precisely.”
Security Systems, p. 362.

Although I’ve got a few tricks up my sleeve by now, these must always be tempered by the
situation on the ground. Smart people prefer to have some control over things that aff ect their
lives at work. Sometimes, the details matter quite a bit. So, each time I’ve attempted one of
these transformations, I’ve tried to work with local needs, to work in local requirements, to
build upon any successes I can fi nd. Feedback and participation are key to success: I try to
remain open to new ideas, new approaches, to give some sense of participation in shaping
transformations to those with whom I’m working.

By working iteratively, we can try things, even things that I think, in the moment, might
not work well. After all, we can always change it! We might learn something. We might fi nd a
new hack that’s more eff ective. Why not? It’s not as if all security problems have been solved.
Th ere’s plenty of culture hacking work yet to do.

115

Chapter 5

Learning the Trade

As I’ve written previously, the tried and true training method for security architects has been
to “shadow”—that is, follow—a seasoned security architect as she/he/they go about their daily
tasks. Th at method does work for some, but the method has a couple of drawbacks.

What if you’ve just been appointed or hired as the only security architect for an organiza-
tion? Th ere will be no one to shadow. I’ve been asked for pointers multiple times by people in
precisely this position.

What if you dislike the person to whom you’ve been assigned, or their style is radically dif-
ferent from yours? A person must have extraordinary confi dence and sense of self to transcend
feelings of alienation, feelings of antipathy, such that, despite these barriers, one still has a
learning experience. Many people (even talented ones) will simply give up or close down, thus
negating potential for growth.

Consider that there are many diff erent ways to present material for learning. Th e presenta-
tions may or may not correspond to learning styles, which may or may not be based in sound
research.* Nevertheless, “Th ere may be evidence that
indicates that there are some ways to teach some
subjects that are just better than others.”†

Although shadowing might be one avenue of
learning, I believe that we must develop others along-
side this timeworn method if we are to train the hun-
dreds, nay, thousands of security architects required
to fi ll existing and future demands (see inset).

In this chapter, I hope to share a few tools, a
few tricks for accelerating the security architecture
learning process.

* Please see https://cft.vanderbilt.edu/guides-sub-pages/learning-styles-preferences/
† Cerbin, 2011

“Employment of information security
analysts is projected to grow 28 per-
cent from 2016 to 2026, much faster
than the average for all occupations.
Demand for information security ana-
lysts is expected to be very high, as
these analysts will be needed to create
innovative solutions to prevent hack-
ers from stealing critical information
or causing problems for computer net-
works.” (Bureau of Labor Statistics, n.d.)

https://cft.vanderbilt.edu

116 Secrets of a Cyber Security Architect

5.1 Attack Knowledge

One of the hardest areas in security architecture to acquire is a set of attacks and those typical
attack scenarios that will apply to the architectures at hand. By now, in this book, I hope that
you’ve seen, maybe even become convinced, that without knowledge of attacks, and knowledge
at an applicable level, one cannot practice security architecture. Attack knowledge—relevant
attack knowledge, at the right level of depth (attack types, not exploit details)—lies at the heart
of the “art.” To facilitate this learning, I’ve been experimenting with a few resources, which I
will outline in this section.

Th e MITRE® Corporation has sponsored a col-
lection of adversarial attributes called ATT&CK™,*
which groups the steps and techniques of known,
multi-step attacks, such as various Advanced Per sis-
tent Th reat (APT) and ransomware campaigns. One
can go to the ATT&CK Navigator† and select one
or several known campaigns, and the Navigator will
highlight—that is, show in visual form—the vari-

ous techniques that were known to have been employed by that campaign.
ATT&CK, like most of the tools, analysis sys-

tems, and ontologies that I’ve seen, is focused on
the problem of attack analysis intended for use by
incident responders—the analysis that must be done
when presented with one or more indicators of com-
promise (IoC). Based upon my classes, I now believe
that ATT&CK can prove useful for security architecture practitioners to familiarize them-
selves with the tools, tactics, and procedures (TTP) that make up a multi-step attack scenario.

Beyond the details of multi-step attacks, glancing through the high-level categories (the
column headings in the of ATT&CK matrix in Fig. 5.1 on page 119) may off er a useful
mental classifi cation system of the various types (and, implicitly, the attacker’s desired eff ects)
of attacks, without which, as I’ve noted, no security architect can practice. ATT&CK may off er
a leg up for beginners, as well as fi lling in attack categories and exploit types for those who are
more experienced.

I’ve been using ATT&CK’s column headers in my threat modeling classes. (My addition of
ATT&CK column headers is relatively new. I hesitate to declare it a success. Still, I off er this
new experiment in case it may help.) Class participants often know one or a few attack types
before they attend the class. As they practice applying attacks to systems (threat modeling
the fi ctitious systems we use as examples in the class), glancing through ATT&CK’s column
headers helps participants go beyond what they know. Th e column headers are a prompt for
consideration of attacks with which class participants are less familiar.

ATT&CK could provide an industry-wide organizing principle, which is presently lack-
ing. Many threat modeling programs rely upon Swiderski and Snyder’s S TRIDE‡ (Spoofi ng,

* ATT&CK™ may be found at: https://attack.mitre.org/wiki/Main_Page
† https://mitre.github.io/at tack-navigator/enterprise/
‡ Swiderski and Snyder, 2004.

Two of my colleagues, Christiaan Beek
and Ismael Valenzuela, have contrib-
uted ATT&CK “templates”—that is,
details of attacks. Each of them helped
me understand how ATT&CK works,
what it’s useful for.

Reactive attack analysis is the process
whereby responders analyze IoC for
TTP of an unfolding attack in order to
stop the attack and to find appropri-
ate responses.

https://attack.mitre.org
https://mitre.github.io

Learning the Trade 117

Tampering, Repudiation, Information disclosure, Denial of service, Elevation of privilege)
method, which may have been the fi rst enterprise-wide threat modeling approach; it was
invented and used at Microsoft®.

STRIDE is interesting for a few reasons:

* https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)
† https://social.technet.microsoft.com/wiki/contents/articles/285.elevation-of-privilege-the-game.aspx

• It was the fi rst published attempt to make threat modeling accessible to development
communities.

• It fi nally gave security and development some common language to discuss potential
attacks.

• It’s easy to understand, especially for developers with little security knowledge.
• It has become security industry “folklore,” in that nearly everyone who’s had any experi-

ence of threat modeling has heard of it.
• STRIDE is often treated as though it were a canonized standard; it isn’t and has never

been.

However, STRIDE has some signifi cant prob-
lems when taken beyond its intended purpose: an
initial opening for developers to grasp the impor-
tance of considering how their software may be
attacked. STRIDE provides a gateway to the art
of threat modeling software that is currently under
development.

Most importantly, STRIDE is far from comprehensive; a glance through the ATT&CK col-
umn headers ought to show the range of attack types that may have to be considered. STRIDE
is fairly tightly focused on application and operating system development for developers of
these types of software. STRIDE may be less applicable to other types of software.

Because of STRIDE’s prevalence, threat model fi ndings are often couched in STRIDE
terms. I’ve seen numerous models in which the many complex attack vectors that have been
considered are tortured into conforming to one or more of the six STRIDE categories. Why
is this even useful? (In my experience, conforming all attacks to STRIDE provides zero value
and may, in fact, obscure details necessary to build eff ective defenses).

Plus, impacts (Information Disclosure) are mixed with techniques: Spoofi ng. Th e DREAD
rating system* (Damage, Reproducibility, Exploitability, Aff ected, Discoverability) is supposed
to take care of ratings; risk rating is not supposed to be implicit in the STRIDE collection. But
in practice there’s a mental confl ation with STRIDE that makes evaluating risk more diffi cult;
even fi nger-to-the-wind guesses are hampered by intermixing technique with impact.

However, STRIDE does provide something that the ATT&CK headers don’t: an indication of
the technical things that attackers do to systems. Th inking about this problem, I had been casting
about for this next level of classifi cation for a couple of years.

One excellent place in which one may play with technical attacks is Adam Shostack’s card
game, “Elevation of Privilege.”† I believe that when Adam teaches, he has participants play the
game. We used it a bit in the fi rst term of Michele Guel’s National Cybersecurity Award (2011)–
winning education class, Security Knowledge Empowerment (SKE), at Cisco (Michele Guel

I had a great conversation with Frank
Swiderski about the broad adoption
and durability of STRIDE. It was never
intended to become an industry stan-
dard. It was a beginning, and a good
one (in my opinion).

https://en.wikipedia.org
https://social.technet.microsoft.com

Credential Access
Network

Account Manipulation

Bash History

Brute Force

Credential Dumping

Credentials in Files

Credentials in Registry

Exploitation for
Credential Access

Forced Authentication

Hooking

Input Capture

Input Prompt

Kerberoasting

Keychain

LLMNR/NBT-NS Poisoning
and Relay

Password Filter DLL

Private Keys

Securityd Memory

Two-Factor Authentication
Interception

Execution Persistence Privilege Escalation Defense Evasion
Scheduled Task Binary Padding

Launchctl Access Token Manipulation

Local Job Scheduling Bypass User Account Control

LSASS Driver Extra Window Memory Injection

Trap Process Injection

AppleScript DLL Search Order Hijacking

CMSTP Image File Execution Options Injection

Command-Line Interface Plist Modification

Compiled HTML File Valid Accounts

Control Panel Items Accessibility Features BITS Jobs

Dynamic Data Exchange AppCert DLLs Clear Command History

Execution through API AppInit DLLs CMSTP

Execution through
Module Load

Application Shimming Code Signing

Dylib Hijacking Compiled HTML File

Exploitation for
Client Execution

File System Permissions Weakness Component Firmware

Hooking Component Object Model
HijackingGraphical User Interface Launch Daemon

InstallUtil New Service Control Panel Items

Mshta Path Interception DCShadow

PowerShell Port Monitors Deobfuscate/Decode Files
or InformationRegsvcs/Regasm Service Registry Permissions Weakness

Regsvr32 Setuid and Setgid Disabling Security Tools

Rundll32 Startup Items DLL Side-Loading

Scripting Web Shell Execution Guardrails

Service Execution .bash_profile and .bashrc Exploitation for
Privilege Escalation

Exploitation for
Defense Evasion

Signed Binary
Proxy Execution

Account Manipulation

Authentication Package SID-History Injection File Deletion

Signed Script
Proxy Execution

BITS Jobs Sudo File Permissions
ModificationBootkit Sudo Caching

Source Browser Extensions File System Logical Offsets

Space after Filename Change Default
File Association

Gatekeeper Bypass

Third-party Software Group Policy Modification

Trusted Developer Utilities Component Firmware Hidden Files and Directories

User Execution Component Object
Model Hijacking

Hidden Users

Windows Management
Instrumentation

Hidden Window

Create Account HISTCONTROL

Windows Remote
Management

External Remote Services Indicator Blocking

Hidden Files and Directories Indicator Removal
from ToolsXSL Script Processing Hypervisor

Kernel Modules
and Extensions

Indicator Removal on Host

Indirect Command Execution

Launch Agent Install Root Certificate

LC_LOAD_DYLIB Addition InstallUtil

Login Item Launchctl

Logon Scripts LC_MAIN Hijacking

Modify Existing Service Masquerading

Netsh Helper DLL Modify Registry

Office Application Startup Mshta

Port Knocking Network Share Connection
RemovalRc.common

Redundant Access NTFS File Attributes

Registry Run
Keys / Startup Folder

Obfuscated Files
or Information

Re-opened Applications Port Knocking

Screensaver Process Doppelgänging

Security Support Provider Process Hollowing

Shortcut Modification Redundant Access

SIP and Trust Provider
Hijacking

Regsvcs/Regasm

Regsvr32

System Firmware Rootkit

Systemd Service Rundll32

Time Providers Scripting

Windows Management
Instrumentation Event

Subscription

Signed Binary
Proxy Execution

Signed Script
Proxy ExecutionWinlogon Helper DLL

SIP and Trust Provider
Hijacking

Software Packing

Space after Filename

Template Injection

Timestomp

Trusted Developer Utilities

Virtualization/Sandbox
Evasion

Web Service

XSL Script Processing

Initial Access
Drive-by Compromise

Exploit Public-Facing
Application

External Remote Services

Hardware Additions

Replication Through
Removable Media

Spearphishing Attachment

Spearphishing Link

Spearphishing via Service

Supply Chain Compromise

Trusted Relationship

Valid Accounts

Impact
Data Destruction

Data Encrypted for Impact

Defacement

Disk Content Wipe

Disk Structure Wipe

Endpoint Denial of Service

Firmware Corruption

Inhibit System Recovery

Network Denial of Service

Resource Hijacking

Runtime Data Manipulation

Service Stop

Stored Data Manipulation

Transmitted Data
Manipulation

© 2019 The MITRE Corporation. All rights reserved. Matrix current as of May 2019.

Command and Control
Commonly Used Port

Communication Through
Removable Media

Connection Proxy

Custom Command and
Control Protocol

Custom Cryptographic
Protocol

Data Encoding

Data Obfuscation

Domain Fronting

Domain Generation
Algorithms

Fallback Channels

Multiband Communication

Multi-hop Proxy

Multilayer Encryption

Multi-Stage Channels

Port Knocking

Remote Access Tools

Remote File Copy

Standard Application Layer
Protocol

Standard Cryptographic
Protocol

Standard Non-Application
Layer Protocol

Uncommonly Used Port

Web Service

Exfiltration
Automated Exfiltration

Data Compressed

Data Encrypted

Data Transfer Size Limits

Exfiltration Over Other
Network Medium

Exfiltration Over Command
and Control Channel

Exfiltration Over Alternative
Protocol

Exfiltration Over
Physical Medium

Scheduled Transfer

Collection
Audio Capture

Automated Collection

Clipboard Data

Data from Information
Repositories

Data from Local System

Data from Network
Shared Drive

Data from Removable Media

Data Staged

Email Collection

Input Capture

Man in the Browser

Screen Capture

Video Capture

Lateral Movement
AppleScript

Application Deployment
Software

Distributed Component
Object Model

Exploitation of
Remote Services

Logon Scripts

Pass the Hash

Pass the Ticket

Remote Desktop Protocol

Remote File Copy

Remote Services

Replication Through
Removable Media

Shared Webroot

SSH Hijacking

Taint Shared Content

Third-party Software

Windows Admin Shares

Windows Remote
Management

Discovery
k Sniffing

Account Discovery

Application Window
Discovery

Browser Bookmark
Discovery

Domain Trust Discovery

File and Directory Discovery

Network Service Scanning

Network Share Discovery

Password Policy Discovery

Peripheral Device Discovery

Permission Groups Discovery

Process Discovery

Query Registry

Remote System Discovery

Security Software Discovery

System Information
Discovery

System Network
Configuration Discovery

System Network
Connections Discovery

System Owner/User
Discovery

System Service Discovery

System Time Discovery

Virtualization/Sandbox
Evasion

 Figure 5.1 MITRE ATT&CK™ Matrix (Source: Reproduced with permission of The MITRE Corporation)

120 Secrets of a Cyber Security Architect

is Cisco Distinguished Engineer and 2011 National
Cyber-Security Award Winner).* Playing the game,
or at the very least, glancing through the cards, can
provide a pretty comprehensive (if not always up to
date) introduction to the techniques that attackers
employ. Elevation of Privilege, to my mind, puts the
meat on the bones of STRIDE.

However, I’ve found that there are too many
cards to use when actually threat modeling a system. (Although, I wonder if Adam Shostack
uses the cards in some eff ective manner in his threat modeling classes?) As far as I know,
Elevation of Privilege wasn’t meant for building attack scenarios; it’s a teaching tool, for which
it works admirably. However, if running through the deck helps threat modelers identify rel-
evant attack possibilities, then please, by all means, use any and all tools available.

Th e C ommon Vulnerability Enumeration (CVE) isn’t about attack types, it’s an enumera-
tion of all known (and reported!) individual exploitable conditions. Not the right information
for threat modeling. Th ese are not vulnerability types, but rather, vulnerability instances.

Th e Common Weakness Enumeration (CWE) is at the wrong level of granularity. CWE
lists each particular case and variation of exploitable weakness. When I work through CWE,
I fi nd that I quickly descend into the weeds. Th ose “weeds” are critically important to under-
stand, at least for a few examples, or one may not pick appropriate defensive measures. But, as
I’ve stated, security architecture wields classes of attack, not their details.

I had high hopes for MITRE’s C ommon Attack Pattern Enumeration and Classifi cation
(CAPEC) when Alan Paller (SANS Institute™) introduced me to it in 2008 or 2009. Th ough
I was excited by the prospects, I found myself lost in the details of software weaknesses. Again,
this was somewhat of a disappointment, and I left CAPEC to follow its useful course, whatever
that might be.

In the intervening years, I’ve come to realize just how important an organization (of some
kind) of attack types must play in threat modeling, particularly. None of us can carry around
an encyclopedic listing of every weakness detail. Nor do we have the time to be running
through long enumerations in order to ensure that we’ve covered the correct bases—that is,
applied a comprehensive set of appropriate attack types to a system. Most practitioners, myself
included, develop an internal organization that fosters far more rapid application of the right
attacks to the right attack points and technologies. But, as I’ve already written, building an
internal organization is a slow process—too slow.

After beginning to apply ATT&CK’s column headers, I once again took a look at CAPEC’s
highest-level categories. A light went on: ATT&CK headers coupled to CAPEC top-level cat-
egories (Mechanisms of Attack) might just provide the set of relevant information to make
threat modeling easier. And that’s how I present these to my classes: ATT&CK column headers
and CAPEC’s categories linked together.

ATT&CK’s column headers provide attacker intentions. CAPEC’s categories provide the
methods to achieve those intentions (see Fig. 5.2).

In Figure 5.3, I’ve drawn arrows between “Initial Access” and a couple of the techniques that
attackers use to gain access to systems: “Collect and Analyze Information,” then “Engage in
Deceptive Interactions.” Th ese two mechanisms don’t comprise the universe of “Initial Access”

Michele, Vinay Bansal, and I were the first
instructor team. Please see John Stewart’s
blog post about the program at https://
blogs.cisco.com/security/baking-
security-into-the-culture-at-cisco-–-a-
tip-of-the-hat-to-the-security-knowl
edge-empowerment-team

https://blogs.cisco.com
https://blogs.cisco.com
https://blogs.cisco.com
https://blogs.cisco.com

Learning the Trade 121

techniques, but they are commonly employed.* Likewise, “Execution” is gained through “Inject
Unexpected Items” and “Manipulate Data Structures” (again, not an exhaustive set).

In order to keep Figure 5.3 readable, I used only two arrows and linked directly from only
three of the categories. Th e relationships are more complex than those shown here. Still, I hope
that this simple graphic demonstrates visually how ATT&CK column header intentions are
achieved through the mechanisms (techniques) in CAPEC.

Figure 5.3 ATT&CK Headers Combined with CAPEC Categories

When building defenses, we want to prevent or increase the cost of prosecuting the mecha-
nisms, thus preventing or slowing down ATT&CK’s (attacker’s) intentions (column headers).
In order to build the correct set of defenses, it’s helpful to understand what the attacker is
* A more comprehensive listing of Initial Access techniques can be found by perusing attacks that have been

added to ATT&CK Navigator.

Figure 5.2 CAPEC Mechanisms of Attack

122 Secrets of a Cyber Security Architect

trying to achieve (intentions). Preventing successful prosecution of the mechanisms becomes
the purpose of each defense. Defenses, as we have seen previously, are not tied one-to-one (1:1)
to exploits. Some defenses close off several mechanisms, whereas others may solely warn that an
attack technique has been tried. Nevertheless, without understanding the actual mechanisms
(and sometimes, the details in the branches that lie within each high-level category’s tree of
entries), one will be forced to guess.

“Encryption is secure; maybe we should encrypt data in motion.” Unfortunately, such state-
ments too often are made during development. Instead, wouldn’t it be useful to know that data
are moving over untrusted networks? Or not? And that attackers might “Collect and Analyze
Information” by “Subvert(ing) Access Control”? Now we know that bi-directionally authen-
ticated TLS might be worth consideration as a defense mechanism. Th e attacker will have to
“Engage in Deceptive Interactions” (Man in the Middle), which will raise errors on both sides
of the connection if the X.509 certifi cates tendered during a TLS authentication exchange are
being handled correctly. My sincere hope is that these two readily available resources, when
combined in this somewhat unexpected manner, might provide that bit of organization and
insight—the guidance necessary to properly identify those attacks that systems will need to
resist. I’m using this paradigm regularly in my threat modeling classes; anecdotal evidence sug-
gests that the approach is proving useful to attendees.

Taking an example that was given in Chapter 3, Architecture, Attacks, and Defenses, let’s
re-examine it through the lens of ATT&CK and CAPEC.

“In order to take over a machine so that it can be used without the knowledge of its ordinary
user or owner (for instance, as part of a botnet), an attacker will have to piece together one or
more steppingstones, system objectives, such that the attacker will gain suffi cient privileges on
the host and its operating system in order to install command and control software that will
persist across restarts (reboots). Th e goals are the attacker’s ‘intentions’ to be gained through
prosecution of technical ‘mechanisms.’

"For instance, a vulnerability that allows ‘code of attacker’s choosing’ isn’t actually suffi cient
until that exploitation can be coupled with an escalation of privileges in order take control of
an operating system (and thus, the host). (In a scenario in which the attacker is starting at a
high level of privilege, escalation is not needed.) In a situation in which the victim is not run-
ning at suffi cient privileges to install high-privilege software, an attacker must not only execute
code, but also fi nd a way to increase privileges such that the attacker’s command-and-control
software can be installed and run. In this trivial example, an attacker might need to exploit as
many as three or four system objectives in order to successfully gain persistent control of the
machine:

1. Find a way to deliver the attack code payload.
2. Get the payload to run on the victim’s machine.
3. From the ‘code of the attacker’s choosing’ payload, exploit a second vulnerability that

increases privilege level above that of the operating system’s current user.
4. Establish communications with the attacker.
5. Potentially download additional code for permanence across restarts.”

Of course, one may dig into ATT&CK to fi nd the techniques used in each category
(Intentions or System Objectives). Mitre’s ATT&CK Navigator contains templates for many

Learning the Trade 123

of the most well-understood attack sequences. By selecting a named campaign such as “APT1,”
the Navigator will highlight those TTP that the APT1 attackers employed. Exploration of
well-known attacks could off er invaluable insight into how attacks proceed. It should be obvi-
ous through taking a look at just a few of Navigator’s attack templates how multi-step attacks
advance. An understanding that attacks often comprise a string or collection of exploitations
is important, perhaps key.

In parallel, I believe that it is useful for practitioners to understand at least a few of the
techniques described in each of the CAPEC mechanism trees. CAPEC entries describe the
technical details used in each mechanism. By understanding in computer science terms (as
we did in Chapter 3), we can more readily derive the right defenses to prevent or at least slow
down the attacks.

A bit of study of both ATT&CK and CAPEC, I hope, might shorten the learning curve
about attacks without which security architecture cannot be practiced. Combining the two
organizing principles—ATT&CK highlighting that which attackers need to accomplish and
CAPEC the techniques to achieve these goals—seems to help my class participants to widen
their understanding of attacks. With these resources in hand, perhaps learners won’t need to
“shadow Brook for a year”!

5.2 Which Defenses for What System?

As we’ve seen previously, once we identify the attacks that we believe will be levied against a
system, the next task is to build the best set of appropriate defenses. But how does one acquire
this knowledge set?

One might take a “follow-the-herd” approach. Th ere are plenty of standards one could
follow: just do everything in the standard, as well as everything humanly possible. Venerable
NIST 800-53 (revision 53ARev4*) contains 170 controls. Implementing each of these might be
a way to play it safe, to avoid additional analysis. But it would be expensive to implement each
of 800-53’s controls well, probably prohibitively so. Plus, without additional analysis, there’s no
way to know which controls apply and which might be irrelevant in context.

NIST 800-53 is a hodgepodge of nearly everything that comprises information security’s
controls and processes. AC-5, Separation of Duties, is a design principle aimed at foiling
fraudulent and collusive behavior. Th e idea is that it’s harder to get a group of people to act
fraudulently, especially when the group is not particularly cohesive. AC-7, within the same
control family, Unsuccessful Logon Attempts, is a common abuse indicator: when attackers are
attempting to brute force a password, there will be an unusual number of unsuccessful logons.
Th e control is to limit the number of attempts, usually within some given time period.

For a very small company, separation of duties doesn’t make much sense. Everyone already
knows what everyone else is doing. A person behaving poorly will often get caught by the other
principals, who usually watch each other’s actions pretty closely. I call that “eyeball-to-eyeball
security.” It works reasonably well in small, tightknit, closely coordinating teams. Besides,

* https://nvd.nist.gov/800-53/Rev4/impact/HIGH

https://nvd.nist.gov

124 Secrets of a Cyber Security Architect

during the startup phase it is very typical for each person of the very small founder team to
fulfi ll multiple organization roles. Th ere aren’t enough people to “separate” the duties between.
But eyeball-to-eyeball security doesn’t work well at all at enterprise scale, where formal separa-
tion of duties access policies apply.

Although a standard like 800-53 sets out a universe of information security typical prac-
tices, it does nothing to defi ne what applies to particular contexts.

Still, I believe that in order to apply defenses appropriately, a practitioner would need to
understand the function of just about every control named within NIST 800-53 and similar
standards. Such standards, at the very least, set out the well-understood universe of stuff that
people do to secure their organizations.

Something like the BSIMM™ (Building Security In Maturity Model)* software security
measurement is also an example of follow-the-herd. In the case of BSIMM, the measurement is
of companies that take software security seriously enough to pay for a BSIMM assessment. It’s
not (yet) a measurement of the universe of what organizations in general do or do not do. It’s
not a random sampling of organizations; there is no attempt at generating a statistically valid
sample (though, to be sure, the designers have put a lot of thought into how to measure what
they measure). BSIMM’s measurement is of companies willing to pay for a BSIMM measure-
ment—ergo, companies that care about software security.

I don’t mean to imply that BSIMM tells us nothing. It tells us what companies that have
suffi cient resources already dedicated to software security are doing and evaluates how mature
those practices are. Th at is certainly valuable: what do the leaders do and how mature are they
at doing what they do?

What BSIMM does not tell us is how eff ective their software security programs have been
at preventing harm from security incidents caused by issues in software that the measured
companies have built or deployed. Is what BSIMM companies do eff ective? Since the total list
of BSIMM companies is not public, there’s no way to match known incidents against BSIMM
participants.

Only a few BSIMM companies have granted permission to be named on the BSIMM web-
site.† Without data on which companies have been through a BSIMM assessment, it’s impos-
sible to accurately correlate BSIMM participation to security incident occurrence. Measuring
companies’ software security eff ectiveness is actually trickier, because many incidents do not
get reported publicly.

Still, in a back-of-the-napkin investigation of large security breaches, only two of the named
BSIMM companies, JP Morgan Chase and Sony Pictures, had reported breaches. Both of
these breaches were in 2014 and may very well have motivated these two companies to improve
their software security practices, resulting in them joining BSIMM. From public sources, I
cannot tell.‡

Although it seems quite possible that simply investing in software security, which I believe is
clearly apparent by an investment into a BSIMM measurement, will generate suffi cient security

* https://www.bsimm.com/about.html
† https://www.bsimm.com/about/membership.html
‡ If I knew anyone who was at one of these two fi rms, I wouldn’t be able to relate what they may have

told me, anyway. All BSIMM conferences (I’ve attended three and spoken at two) are strictly held
under a Non-Disclosure Agreement (NDA).

https://www.bsimm.com
https://www.bsimm.com

Learning the Trade 125

practices and technology to keep one off the front pages, actually, that’s not true. A company
that was a member of a security-sharing forum to which I represented my employer for six
years had a huge breach 10 years later. I remember them sharing their program. At the time,
it seemed to me that they were taking security pretty seriously. Perhaps security was defunded
after that. Th at particular Chi ef Information Security Offi cer (CISO) had long since left the
concern for another role. I suppose I’ll never know for sure.

But just maybe, the practices outlined in BSIMM constitute a fair sample of reasonable
software security practices.

My point in all of the foregoing is that we do have examples of what organizations try. We
do have pretty concrete descriptions of the sorts of controls that at least NIST thinks make up
a robust security program. Familiarity with a few of the available standards might help some-
one new to defenses build the requisite knowledge to apply particular defenses to particular
security needs.

When Michele Guel invited me to help teach her fi rst SKE course, we based the course
around the SANS Institute’s introduction to information security course materials. Th e mate-
rials for the course appeared to me to cover a comprehensive collection of security situations
and controls. If I recall correctly, course participants felt that they’d gained a fair amount of
security knowledge, although, apparently, the homework that I’d added as security architec-
ture practice was named “the hardest material in the course.” Oops. Still, SKE did win that
award. Michele keeps running the course. As an alternate approach to shadowing an experi-
enced practitioner, surely there are similar courses available beyond what SANS off ers.

A quick web search for Massively Open Online Course (MOOC) returns dozens of hits
(I provide two example listings in the references*). Th ere appear to be lots of off erings avail-
able to the willing student. I make no representation as to which MOOC might be any good.
Obviously, a lot of MOOCs are for-profi t operations. Buyer beware, always. Still, today, it’s
not that hard to fi nd an introductory course in information security. Any decent survey course
must include typical security controls and their application. Probably, for those living near to a
university, college, or other post–high-school institution, such institutions also off er some intro
to cyber security that might prove useful.

One other public resource may be worth considering. Each individual attack pattern in
MITRE’s CAPEC collection has a set of preconditions that must be met before the attack
pattern can be exploited successfully. Although each attack pattern’s preconditions aren’t them-
selves defences, any tactic or control that removes a precondition is, in fact, a defense against
that attack pattern. I suggest that if there is any doubt about what defenses may counter a
particular attack, a study of the preconditions listed in its CAPEC entry may point toward the
right set of defenses.

Whatever the media, one must eventually learn those controls (NIST 800-53 listing or
similar) that will apply to the systems one will be analyzing. To be honest, depending upon the
situation, I’ve been called upon to analyze controls that have included:

• Network restrictions
• Traffi c analysis

* https://www.mooc-list.com/tags/information-security
 https://www.coursera.org/courses?query=information%20security

https://www.mooc-list.com
https://www.coursera.org

126 Secrets of a Cyber Security Architect

• Memory protections
• Operating system privileges
• Coding practices
• Testing strategies
• Boot loaders
• Disk protections
• Network storage confi gurations
• Website confi gurations
• Administrative controls and restrictions
• Monitoring and logging

(Th e above list should not be considered exhaustive.)
Basically, I’ve dealt with a potpourri of the length and breadth of information security

practices. Eventually, I fear that if one examines enough systems and organizations, one will
encounter just about everything described in NIST 800-53 and similar at one point or another.
I don’t think that there’s a quick path to such exposure. I’m lucky to have always had brilliant
practitioners around me who could help me to understand the problems and help craft reason-
able solutions within each diverse context.

Still, at today’s level of engineering practice, please bear in mind that no substitute exists for
peer review and mentorship. I off er the above as adjuncts and potential accelerators to readers’
learning curves.

5.3 Threat Modeling: The Learning Method

As we have seen, attacks and their defenses provide a key foundation for security architecture,
perhaps all of information security. I’ve discovered that practice in identifying relevant attacks,
then applying these to defendable situations in order to fi gure out the appropriate defenses, is
one of the best educational opportunities existing. When we shadow an experienced practitio-
ner, that’s what we’re observing. As we attempt our fi rst few analyses, in essence, this is what
we’re learning: attacks and defenses.

Hence, empowering learners to analyze their systems turns out to be the single most impor-
tant practice that we can off er. Th e plus side is that nearly everyone who participates will get
something out of the experience, even if many of them don’t go on to pursue a security archi-
tecture role. As I noted previously, threat modeling practice provides a huge hack toward a cul-
ture of security, particularly for development organizations. If there’s any magic in the world
(and readers will have to decide for themselves on this point), practicing threat modeling may
be one of the best—though of course, there’s no actual magic in this. Rather, it’s opportunity.

Th e “magic,” such as it may be, seems to lie within an opportunity to see systems as the
attacker sees them. I don’t know who coined the phrase “think like an attacker.” Still, that
simple directive isn’t enough. Most developers are too busy trying to think like their users, like
the owners of the systems they’re building, even trying to think in the way that a machine will
interpret the code they’re generating. Adding one additional, “think like a . . .” doesn’t really
help much and may be perceived as yet another burden laid at the feet of taxed developers.

Learning the Trade 127

But, taking time out for attack analysis does, indeed, help. It’s even more useful if there’s
some structure to the analysis. I believe that this may be why STRIDE has been so readily
adopted. STRIDE, despite its shortcomings, provides a structure to attack analysis. Structure,
I believe, is the critical component. It perhaps doesn’t really make much diff erence what struc-
ture is used, so long as there’s a life raft for at-sea developers to cling to.

It also helps to include a diverse set of experiences when threat modeling, so long as the
experts or more experienced leave suffi cient room for everyone to try his/her/their hand at the
analysis. If everyone gets some opportunity to try, the inclusion of folks who have more skill
allows learners to observe discrimination between science fi ction scenarios and relevant ones. It
allows learners to refl ect upon their attempts in contrast to those with more skill, but in a safe
way, hopefully without someone telling them that they’ve made errors.

Most people can identify their own misconceptions just fi ne without pointing fi ngers.
Shame doesn’t make a very good learning environment. A lively and honest dialectic over the
analysis is usually suffi cient for learning to occur.

Obviously, if an organization is allowing learners—some of whom are completely new and
perhaps as yet clueless—to threat model systems that are going to be subjected to attack, there
has to be some amount of check to ensure that systems have an appropriate set of defenses.
Mistakes will be made.

I’ve already described a lightweight governance model of peer review in this book (Chapter 4:
Culture Hacking). Review boards, in my experience, too often turn into PhD oral exami-
nation-like experiences that close learning down far more than assist. Th ese sorts of board
reviews can also be terribly infl ating for the board members as they try to fulfi ll their due
diligence responsibilities. Although there is probably a place for architecture review boards for
enterprise-wide changes or the truly innovative and very complex, review boards, when applied
to most eff orts, have too many poor side eff ects, including becoming a bottleneck process
through which otherwise nimble eff orts get slowed. I’m not a big fan of these, having sat on
many during any number of the programs in which I’ve worked.

Instead, I’ve been able to refi ne the governance review process described in this book: one
person with more experience and one person who’s independent of the eff ort, who hopefully
knows little about the system under review.

If the peer review committee can’t agree, they get another more experienced person, until
the most senior technical security leader is included. If they can’t agree (and this has occurred
maybe twice in all my years doing it this way), then the decision is escalated to management.

What I’ve used and hopefully described well enough in this book works. Th reat models get
completed while still fostering maximum learning opportunities. Besides, this process is fast.
Most reviews take less than an hour, often more like 30 minutes. Th at’s because all the leg work
has already been completed, most of the attack scenarios have been defi ned, most of the attack
surfaces cataloged, most defenses described. Experienced practitioners can glance through the
completed materials quickly to identify any important misses.

By including someone independent in the reviews (and the original analysis, if possible;
see the next section), eff ective cross-training occurs. Also, backup of personnel and knowl-
edge occurs such that if some horrible accident should befall the original threat modelers,
there’s still someone around who’s familiar with the system and its security who can pick up
the thread.

128 Secrets of a Cyber Security Architect

Th rough analysis inclusion coupled to lightweight review techniques, organizations gain
the maximum training and culture change benefi ts from threat modeling. However, there is a
caveat to which organizations must attend: everyone involved has to understand that a threat
model is one of the most sensitive analyses that will be generated. Th reat models, and especially
under-mitigated attack scenarios, are most certainly not social media candidates! “Loose lips
sink ships.” Or, at least, loose threat model “lips” off er attackers the very information that is
required for successful system attack.

I fi nd it’s important to reiterate this message on sensitivity and the need for discretion regu-
larly, repeatedly, and in multiple forms through multiple media channels. Process has incred-
ible entropy, unfortunately. I’ve found that after a couple of generations, the folks enacting the
process will not have had the reasons for its existence communicated well, if at all. A clever
project manager or line manager will ask, “Why are we doing this extra thing that takes time
and eff ort? It seems pointless.” Which is why it’s critical to regularly and repeatedly re-explain
the purposes of established processes.

Long after a peer review governance process has matured, long since nearly every devel-
opment team threat models as a matter of course, someone with infl uence will eventually
question the effi cacy of the work, will want to remove the task from required activities. It’s
inevitable. Th e wise program leader will have been keeping track of the defenses discovered
during threat modeling and then implemented. Such statistics will ensure that those who ques-
tion can be shown hard proof demonstrating effi cacy. Th ere is always churn. Always, there are
counter-infl uences that will need to be addressed.

In any event, I’ve learned that threat modeling may be one of the most eff ective security train-
ings that exist.* Perhaps that’s because participants have to put more of their security knowledge
to use during an analysis. Th reat modeling is a training opportunity as well as a culture shifter.
Don’t allow anxious security folks to hold your organization’s threat modeling prisoner. Get
everyone involved for maximum benefi t. At the same time, build some sort of check on the
results to ensure that the fewest possible misses and mistakes leak into production or release.

 5.3.1 How to Escalate for Management Decision

I’ve mentioned issue escalation a number of times up to this point but haven’t yet explained
what it is, why it’s important, or how to perform successful management escalations.

At the outset, it is important to understand that the need to escalate to management, oft en
to executives for risk decision making, is not a failure. Escalations are an organic, expected
result of a mature and robust security architecture program. Escalations must never be wielded
as a punishment whenever there arises some confl ict between security needs and other business
drivers. In fact, escalation to management for decisions is a useful and much needed tool to
work through apparently intractable confl icts.

I expect the architects who deliver security in my programs to occasionally fi nd themselves in
confl ict with the people who produce software or who maintain software services (infrastructure
and production). In the course of building and maintaining security, an issue will arise that must
be dealt with immediately (or very soon) but for which the people charged with implementing the

* Th e other security training that I’ve observed to be highly eff ective is security assessment of third parties.

Learning the Trade 129

change haven’t planned and don’t have suffi cient resources to address. Th ese confl icts shouldn’t
come up very often, but I can guarantee that they will arise from time to time.

Practitioners who never have any escalations may not be standing up for security strongly
enough. On the other hand, someone who is constantly in serious confl ict with their develop-
ment counterparts is very likely wasting precious security infl uence on matters which could be
easily handled through negotiation and perhaps the grant of a time-limited exception.

I prefer to reserve escalations for issues that have been assessed as having high potential for
exploitation and/or high damage. In other words, those high-risk items for which we cannot
fi nd a suitable solution to suffi ciently protect a system and its organization are candidates for
escalation. But there’s no need for an escalation when everyone agrees on a solution. Escalation
is for the (hopefully) rarer situation on which we cannot agree.

Th e underlying requirement for eff ective escalation must be that security will have absolute
authority to rate risk. With that authority comes grave responsibility to rate risk fairly and
consistently. In Securing Systems, Chapter 4, I off ered a risk rating system based upon Factor
Analysis of Information Risk (FAIR), an Open Group Standard. Whatever you use, your risk
process must apply to a broad range of issues, be based upon fi rm risk methodology, and be
repeatable and consistent.

Repeated infl ation of risk ratings will earn the practitioner or program distrust and dis-
missal by the people who must make decisions based upon the ratings. One of my best tricks is
to make managers who might be a part of escalations in the future aware of the many low and
medium ratings I make. Visibility and transparency of ratings, especially of relatively minor
issues, builds trust in the rating system’s fairness and consistency. Th e visibility mechanism can
be a simple “FYI” email; these notices don’t have to be fancy or particularly formal.

Th en, when a truly dangerous situation arises, those involved, having seen many reasonable
ratings, will know intuitively that a higher risk rating is not an attempt at winning an argu-
ment, but rather, the rater’s (my) considered, professional opinion about the importance of the
issue at hand.

Further, it really helps to be able to back up a rating with a technical description of the
eff ects of the issue, as well as being imperative for executive decision makers that potential
damage (impact) be well explained in business terms. Chapter 4 of Securing Systems describes
these needs in a fair amount of detail. If you have any doubt, please refer to that.

Having arrived at a defensible risk rating, and having determined that further interaction
with implementers and their direct management will not arrive at a suitable solution, it’s time
to escalate. I keep contentious arguments with development teams, project managers, develop-
ment managers, etc. to no more than two attempts to arrive at a consensus. A couple of, “yes,
no, yes, no” interchanges is suffi cient. I don’t need to waste further time in lobbying, cajoling,
begging for something diff erent; it’s already clear to me that we’re stuck.

It’s important that I never let those whose role is to meet budgets and deliver to a schedule
decide a serious security issue’s resolution. Th at’s because there is a built-in confl ict of interest:
these people’s bonuses, their promotions largely depend upon meeting the schedules that have
been decided. Unless a line manager has near saintly understanding, she/he/they are typically
going to refuse anything that gets in the way of agreed-upon delivery. Th at’s their job! I would
have it no other way. Because of this, though, they aren’t the right people to make decisions
that may aff ect, sometimes signifi cantly, their precious schedule and budget.

130 Secrets of a Cyber Security Architect

Th e aim is to escalate to the person in the management chain who holds responsibility for
the failure to fi x’s potential impact. In small organizations, this might be the CEO, Executive
Director, Executive Committee, Security Committee, etc. Th at is, the escalation might have to
go to the top. Th is is also true when a large company’s brand is at stake.

For impacts that have been assessed at a group or business unit scope, the leader of the unit
will be the correct choice for escalation, and so on down the management chain: the appropri-
ate level within management will be directly proportional to the scope of the impact. Please
see Table 5.1 for possible escalation levels. Because organizations vary widely as to the scope of
such titles as Director and Vice President, it’s impossible in a general explanation such as this
to give you, the reader, a better guide than “scope of impact.” Level depends upon the amount
of organization hierarchy and how that hierarchy is built.

Table 5.1 Organization Hierarchy and Potential Impact Relationship

Chief Executive Offi cer Critical brand or organization revenue impact

Vice President Division or product line impact

Director Group or product impact

Impacts limited to a single application can probably be decided by whoever has responsibility
for services that the application delivers to the organization. Th ese decision makers are some-
times known as the system’s “owner” or “customer”. Damage that might impede a business unit
or functional group will necessarily go to that group’s leader(s). As I wrote above, damage to
the organization has to be decided by someone who can speak for the organization as a whole.

An additional benefi t derived from working through escalations with decision makers will
be a better understanding of the organizational risk tolerance. You may remember that risk
decisions can’t be made well without a grasp of organization risk tolerance. Working through
escalations provides a view into which risks are worth taking and which are not. Over time and
after repeated escalations, most security architects get a pretty clear idea about organizational
risk tolerances. Th at knowledge then can be applied when rating risks to determine which
items may need escalation. Th ere’s defi nitely a feedback loop between risk rating and orga-
nization risk decisions. It’s worth paying attention to how these infl uence each other in order
to escalate the correct issues and to rate accurately for the organizational context in which an
issue resides.

5.4 To Accelerate: Cross Pollinate

One of the biggest accelerators of skill that I’ve found is working on problems outside of the
areas in which one feels most skilled. Th at is, if someone has been focused on, say, endpoint
applications, then any opportunity to work on operating system problems or cloud approaches
and technologies provides learning benefi t that may never be had from continuing to go deeper
and deeper into the subtleties of application development.

“Outside” problems don’t have to be entirely orthogonal to one’s expertise. It will be harder
for most application developers to leap completely into network architectures than to try and

Learning the Trade 131

understand the issues of applications that have to be multi-tenant and horizontally scaled (per-
haps elastically) versus what the person is already familiar with.

No matter how far away from current expertise the leap into new territory, the very act
of considering new issues helps most people begin to separate implementation detail from
structural patterns. As I’ve tried to articulate, understanding structure coupled to an appropri-
ate amount of abstraction to obscure irrelevant detail is a critical technique of the practice of
architecture.

In the same way, application of access controls will have various implementations, depend-
ing upon many factors, including organization and business context, desired security posture,
trust placed into those entities granted access, the technologies available, and so forth. But
access control serves the same general (architectural) purposes: to tie behavior to an object or
entity and, perhaps, to reduce attack surface. By working with diff ering contexts, most people’s
minds develop perception both to the specifi cs and to a generalized pattern. It is generalized
patterns that broaden our skills.

Or, to put it more bluntly: opportunities to analyze lots of diff erent architectures increases
analysis skill dramatically.

To accelerate the overall skill level of a security architecture program, one of the main tasks
will be to give the security architect(s) lots of chances to work on architectures, especially threat
models, with which they are unfamiliar.

If you want dramatic skill increases, cross-pollinate. Break down silo walls. Give people
lots of chances to grapple with problems with which they are currently unfamiliar. Th is single
undertaking is a powerful accelerator.

Th e other benefi t will be a mounting sense of community. As learners build skill while inter-
acting with new people, they build trust in each other. New lines of relationship get formed.
Th e network of shared practices increases. Th is instills a sense of shared purpose, builds a
community of practice. Working across project lines shouldn’t be the only vector of shared
practice. Still, sharing across knowledge areas builds upon other community practices you may
introduce. Th e sense of contribution and execution together is a powerful community builder.

5.5 Build a Community of Practice

Inviting team outsiders to review isn’t the only method for creating a community of practice.
What are other methods? And why is a community of practice important?

A sense of community fosters belief in the shared purpose. For those who are motivated to
contribute to something worthy of their time, something of substance, contribute to some-
thing that serves a grander purpose, a belief in a shared purpose can be very motivating and
sustaining. Others may be more motivated by that very sense of shared purpose and support.
I also fi nd that when people see something happening, things actually being accomplished,
joining becomes very attractive. Building community scratches each of these itches.

Communities also off er signifi cant opportunities to increase skill and to integrate new skills
through sharing with others. Th is aspect of “learning the trade” shouldn’t be overlooked when
creating an environment that fosters learning and creativity. While not every engineer likes to
share, some can can be encouraged to share what they know. Th e act of explaining to someone

132 Secrets of a Cyber Security Architect

else why something does or doesn’t work and how it can be accomplished is a key method for
the integration of knowledge already acquired.

One of my main strategic initiatives is the creation of community. Th is is another powerful
culture hack. Total team learning accelerates through the dynamics of shared sense of pur-
pose and community. But also, as my friend Vinay Bansal (Vinay Bansal is a Distinguished
Engineer at Cisco Systems, Inc.) once said to me, “Brook, we could move mountains together.”
Just the simple knowledge that others are going to support you when you’re challenged or
make a mistake, that you trust others to help you fi nd the best solution to complex problems,
that you can share your trials and tribulations, your joys and successes, makes most of us more
resilient and oftentimes stronger.

But community doesn’t simply spring forth without putting in some directed eff ort. It may
be that engineers, many of whom tend toward introversion, can be a fairly diffi cult population
with which to form community. Participants will have to stop working with their computers
in order to interact. Following is a list of many of the techniques that I’ve used to foster a sense
of community:

• Create a space for a community.
• Make sharing a safe activity.
• Share both successes and failures.
• Problem solve together.
• Allow diverse and even confl icting opinions.
• Meet regularly and predictably.
• Communicate to the community through multiple channels.
• Off er regular improvement training as a part of the space for the community.
• Model active listening.
• Give the community decision-making power over items which aff ect the community.

Th e community space can be virtual; I’ve created virtual community spaces fi ve times, as of
this writing. A community space can really help to establish trust, relationships, and a bond of
shared experience. It helps to meet face to face from time to time. However, in-person meetings
will usually be rare treats; most people in software development and security, at least currently,
are used to working with people who are remote and are comfortable with virtual meeting
environments. So long as the meetings commonly off er value to attendees, people will attend
regularly. Th e key is that the community space exists and recurs predictably.

How does one create a sense of value in a recurring meeting? I won’t claim that I have a pat-
entable technique that always works. And, regrettably, sometimes at the virtual team meetings,
one just has to take care of administrative business, which can be a community disintegrator
(unfortunately). When I have signifi cant business on the agenda, I always try to balance it with
something of interest.

A great technique that I learned from another sphere entirely is to begin meetings with a
short skill-building presentation or exercise. Nearly always, threat modeling a piece of a team’s
software draws lots of interest. If my community members are at least partially drawn from
development teams, then one of their current projects makes a great subject of wide interest.

Th e team will present their architecture. Th en, the entire community gets to analyze the
architecture for attacks and defenses. Th ese discussions become quite interactive, sometimes

Learning the Trade 133

confl ictual, which is fi ne so long as polite and professionally focused on the work at hand.
Lots of participants have an opportunity to analyze and to speak. Dialogues between two
people who don’t agree should quickly be ended in favor of letting others try their hand at
the analysis.

Th e presentations could also be about new pilots or experiments, new technologies, new
processes that teams have invented, including strengths and pitfalls of the processes. If these
presentations are kept short and to the point, they will be of interest to at least part of the
community.

It’s hard to fi nd subjects that are of interest to everyone. Presentations about new process
mandates and existing process or tool changes are often of reasonably broad interest, gener-
ally receiving strong engagement—the point being that by off ering some opportunity for skill
building and knowledge transfer, while every presentation will not be of interest to every par-
ticipant, over time and through variety, many of the presentations are likely to be signifi cantly
engaging.

Shared problems are another important community builder. But, long reports of everything
that each team is doing are boring, disengaging, and ultimately community killing. My strong
advice is to avoid agendas packed with each team reporting in. Engineers go through plenty
of those on multi-team projects in which periodic reports must be a part of the process. Th ey
don’t need to do that in the security architecture community space.

Instead, open a regular and predictable time for any member to bring an issue for which
they’d like help. Th is agenda item should be relatively unstructured. It also must be safe; I’ll
explain what I mean by “safe” below.

If there’s an organizational history of emotional baggage around speaking up, or even nega-
tive consequences from bringing up problems, then the facilitator will have to address that
history directly. I don’t mean going over the history; I mean soliciting contributions, and then
honoring these in some meaningful manner.

Dialoging—that is, when two or three participants go back and forth, essentially disagree-
ing with each other, or repeating the same, confl ictual points—must be interrupted, usually
with a simple act of thanking the speakers for bringing up the problem and then asking others
for opinions. If everyone else remains quiet, then I will ask if anyone else cares about the issue.
If the speakers or just a few participants are the only ones concerned, then the facilitator can
move the agenda item or problem to a meeting just with those concerned, taking the confl ict
out of the community space. Or, if other participants remain silent, ask them why. Th is never
fails to illicit contributions beyond those who’ve been taking up all the verbal space in the
meeting. Sometimes, when quiet folks speak up, the group gets to hear an entirely new view
that creatively opens a problem/solution set up. Responses to, “Why are you not participat-
ing?” can be very revealing.

However one chooses to facilitate confl icts and grandstanding, it’s important that the facili-
tator remembers that the larger goal is not necessarily to solve problems, but rather, to create
community trust and solidarity. Solutions may actually be better generated by a smaller group.

If a small group is going to be spun off to work on a particular problem, I make sure that
the problem scope is understood. I also try to ensure that every viewpoint, even those quite
divergent, is represented in the makeup of the group—as well as a couple of members who
don’t have a strong stake in any particular perspective. Th e group can then report back to the

134 Secrets of a Cyber Security Architect

entire community when it has a proposal. Th e proposal will then be discussed, and perhaps
eventually agreed to (or amended) by the entire community.

As I wrote above, any decision which aff ects the way that software is developed or the way
that security is to be achieved should get community input and agreement. Th is establishes a
shared sense of purpose, as well as some sense of control over how the work should be done.

I will note that even if I believe a particular way of executing a task is less than perfect, or
maybe might not work as believed, I will still let the community decide and try. Th ere’s noth-
ing like grappling with the consequences of a decision for learning. Plus, meeting the challenge
as a community builds that necessary sense of shared task and shared responsibility: “We are
all in this together.”

Many years ago, two of our team members proposed a risk rating system that averaged the
various risks. Our technical lead at the time, Steve Acheson, recognized the problem. But,
being an experienced leader, he let the rest of us collect erroneous ratings until we could gather
from the data that the arithmetic was incorrect: all of our ratings tended into a bell curve
towards a center—the average. Doh!

Steve’s leadership demonstrates just what I’m describing: even when it’s an obvious error, the
learning, as a group experience, may be more important than a period of incorrect results. I play
a long game, just as Steve showed me so very long ago. I focus on long-term relationship goals
and am often willing to sacrifi ce short-term gains in favor of community-related, strategic goals.

Establishing an empowered community of practice will deliver far more benefi ts than wor-
rying over some poor arithmetic, as a team experiments, iterates, learns from the doing, and
then pivots toward better solutions.

Th ere is one caveat to the dreamy, people-oriented strategic description I’ve laid out just
above. If your management is not 100% on board with the strategy, problems will ensue. As
soon as I’ve received a technical leadership role, I go over my long-term community-building
strategy with my direct management and their managers. Everyone needs to support the strat-
egy or signifi cant problems, likely misunderstandings, will occur. My fi rst task is to ensure that
we are aligned both with the strategy and the fact that along the way, there will be inevitable
errors.

• Are we all willing to take those risks?
• At what level of risk should I use my infl uence to avert impacts?
• What level of poor decision making can we tolerate?
• What should I prevent with my leadership power and infl uence?

Once we have collectively answered these questions, I’m better armed to lead as well as to
facilitate. I then have guidance on when to listen, when to let the community proceed, and
when I need to step in and prevent negative impacts. Answering the above questions with my
management allows the strategy to unfold rather more smoothly than might otherwise happen.

5.6 Support Learners’ Errors

I noted in the community-building section that mistakes are going to be made; errors are a
natural process of learning, and there has to be some room for making mistakes in the course

Learning the Trade 135

of learning. Of course, mistakes are not confi ned to learning situations; everybody makes
errors, whether of judgment, fact, analysis, or poor data composition.

One of the most eff ective ways to create a safe space for errors is to acknowledge my own. I
have a number of stories about major errors I’ve made, whether involving programming, struc-
turing things (architecture), or just poor judgment. If I’m in a leadership position and readily
share my own failings, others will tend to feel safer based upon my authenticity. Th is is also a
great technique for establishing bonds of trust: if I want the trust of developers, I’ll often tell a
story that highlights the diffi culty of getting code right, because any experienced programmer
has had to suff er through their own coding mistakes. We’ve all been there, done that. Admitting
my own errors rarely fails to establish some sense of resonance, of shared experience among us,
especially if I can generalize my error to the sorts of things that we are all likely to mess up.

Beyond the shared experience, it is critical for people to feel safe when seeking help. No
matter the issue, it’s important to focus on the problem and potential solutions—if there are
no ready solutions, at least fi nd reasonable approaches for gathering any required information
so that we are trending toward potential solutions. So-called “blame storming” is useless. After
all, everybody screws up sometimes.

Although having noted the uselessness of blame, if there’s tension in the room around how
a diffi cult situation has come about, if I had any part in it at all, I will tend to take all the
responsibility for what has occurred.

I’ll admit that this is somewhat of a manipulative tactic on my part. First, by taking all
the blame, the group can move on to what we’re going to do about it. Second, this is another
community builder. Th e typical result is a bit odd and perhaps counterintuitive. Probably the
sociologists or psychologists can tell us why this is—is it human empathy? Even so, for many
people, once one person takes responsibility, other folks begin to see their part as well. By my
taking all responsibility, I’ve made it safe for everyone to think about how they contributed to
the situation. It’s also very trust building for people to admit they’ve made an error or contrib-
uted to a diffi cult problem, so long as everyone is treated with respect. It may seem illogical,
but taking responsibility for problems is very trust building in practice.

Occasionally, there will be someone who’s more interested in blame than in problem solv-
ing. By my taking responsibility, I smoke these folks out. I need to know who they are,
because they will stand in the way of community; people who are more interested in blame
can be community challenges or even roadblocks. If I know who those people are, I can
work around them and they don’t get in the way of my trust-building strategy. Th ey expose
themselves, because other community members will be taking responsibility for their part in
a problem while the blamers are busy pointing fi ngers. Don’t you want to know about those
whose interests are not aligned with your community of practice, with building great, highly
motivated teams? I do.

It must be noted that anyone who continues to make mistakes, and especially the same
errors repeatedly, also must be dealt with. I’ve heard many a really great leader say something of
the order of, “It’s okay to make mistakes. Just don’t make the same mistake twice.” I fi nd that
a little too strict. It can often take a few errors of more or less the same type to learn enough
to avoid them.

Anecdotally, observing the many security architects with whom I’ve worked, it isn’t all that
uncommon to make similar errors more than once. However, if someone repeatedly makes the

136 Secrets of a Cyber Security Architect

same errors, the other members of the community
or their team will notice. Continual errors will have
to be dealt with, potentially by the team. Someone
with repeating errors will be a drag on the team’s
performance. I don’t think there’s any way to avoid
that really dreadful management experience of telling
someone they aren’t working out.

I try not to think of the person as a failure or a
mess up; rather, I prefer to think that the person
may simply be in the wrong role. As I’ve noted in
Chapter 2, where I detail the skills required in the
practice of security architecture, one must com-
municate and infl uence—people skills. Security
also involves the mental ability to see structures
and relationships, to identify patterns among the details that make up complex software.
Architecture requires an ability to understand structure and to grasp relationships between
components as well as the more obvious aptitude for logic and linear fl ow (see inset). Th ese
consist of two disparate thinking styles. Among the many people with whom I’ve worked,
a fair sampling have struggled with the architectural requirement to map complex systems.
Personally (and this is just my opinion, for what it’s worth), I think perhaps the folks who’ve
struggled with the structural and abstraction demands of security architecture may very well
have been in the wrong role. At least, I prefer to be generous, so that’s the way I want to look
at this problem.

Occasionally there are people who don’t really seem to care or who are not operating with
the same integrity that the vast majority with whom I’ve been privileged to work. Th is may
show up in repeated errors, often of omission as much as comission. One just has to face the
dreadful task of asking them to leave so as not to drag everybody else down with them. I will
say that the technical teams that I been a part of and have led are very attuned to this sort
of behavior, even if they can’t articulate what’s wrong. Dysfunctional behavior makes teams
dysfunctional. Unfortunately, however, it has to be faced. It’s the downside of a leadership or
management role. But happily, for me this is been extraordinarily rare. I mention it only for
completeness.

While, as I’ve noted, repeated errors, especially if they are similar, is a red fl ag that some-
thing is wrong and must be attended to, errors continue to be a natural byproduct of learning
and practicing complex skills such as those in security architecture. If we don’t make a place for
people to make mistakes, acknowledge them, hunt for solutions, and learn from them, we have
failed in creating an environment that fosters learning, creativity, and innovation.

To paraphrase the famous saying,* “Wisdom comes from experience. Experience comes from
making lots of mistakes.” Whatever wisdom I may have gained is most certainly a byproduct
of the many errors I’ve made.

* Terry Pratchett: Wisdom comes from experience, and experience often comes as a result of lack of
wisdom. (https://inspire99.com/wisdom-comes-from-experiencebut-experience-is-lack-of-wisdom/)

As I understand these two mental
activities, the processing resides in dif-
ferent hemispheres of the human brain.
Linear logic is processed in the left
half, while mapping, relationship, and
structural abstraction is performed on
the right side. Individuals are typically
stronger in one mode or the other; few
are “ambidextrously” equal in brain
processing modes. An architect must
be able to work in both modes. More
people, I think, are stronger with left-
brain processing. Fewer individuals are
stronger with right-brain activities.

https://inspire99.com

Learning the Trade 137

5.7 Facilitate as Much as Lead

Instead of starting with policies and standards, instead of starting by issuing mandates, the fi rst
order of business is to build relationships, trust, a body and sense of shared practice. Hopefully,
above, I’ve explained the benefi ts from these and how I go about fostering them.

One of the things that I learned facilitating large consensus meetings many years ago is the
power that can be gained for the group if leadership isn’t about making decisions, but rather,
empowering the group to make them. For me, facilitation is actively guiding a group through
a solution-seeking process toward the best decisions that we can collectively make. During that
process, one of my focuses will be to ensure that most of the participants who have an interest
get a chance to shape decisions. Th is is literally actively ensuring diversity.

Many years ago, when I was rebuilding a team which had suff ered a lot of loss in a very short
time, I focused fi rst on establishing team relationships and trust. Th at means that I facilitated
decisions and did not try to make any except the most urgent or most technically diffi cult myself.
A new member of that team who came from a very diff erent leadership style later said to me that
he thought I didn’t know how to lead because I rarely made decisions. However, a number of
years later, when he saw the results of that careful and intentional team building, he acknowl-
edged to me that, though he thought at the time that I seemed to be clueless, in fact, “you built
a home for us.”

If I could hand just one technique to other security architecture leaders, it would be my
dictum to facilitate at least as much as lead; to listen at least as much as to speak; to use one’s
leadership in the service of the group; to use one’s leadership to foster participation, along the
way making sure that the quietest voices, the most uncertain voices, also have space and time
to participate. Th is has been the greatest acquired skill that I brought to my leadership. And,
whatever skill I may have as a facilitator, this has been the one key leadership skill upon which
whatever success my teams have achieved has been built.

I feel so very lucky that I learned these facilitation skills so many years ago and that every
single one of my managers (save one) have seen the benefi ts of my practice and not just allowed
me to carry on, but rather have encouraged me to apply my facilitation skills to our collective
work. It is one of the great joys of my career to see great teams come together and do amazing
things.

5.8 Summary

I cannot promise the reader that each of the techniques described in this chapter will work for
you. One security architect, many years ago, accused me of having a “cult of personality.” Not
sure exactly what that means; but most certainly each of us is one of a kind. Each of us must
work with our own skills, limitations, and challenges.

In this chapter, I’ve tried to set out the things I attempt to do to create an environment in
which the people I work with can grow into the very best security architects they can be, or
at least fi nd that they’re not suited to the work and move on to something where they can be
eff ective. Some of the items I’ve listed here very likely depend upon my particular strengths

138 Secrets of a Cyber Security Architect

Do Don’t

Encourage learning through mentors Train exclusively via mentorship.

Offer learning opportunities through multiple
learning styles.

Force all training via a single pedagogy or teach-
ing/learning approach.

Build threat model attack scenario knowl-
edge through public resources such as
Mitre’s ATT&CK™ Navigator™ and CAPEC™
categories.

Rely exclusively on security expert knowledge
when threat modeling.

Build effective threat model attack scenarios
by considering both attacker intention for each
attack step, and also the technical mechanism
used to achieve the intention.

Empower and support learners to analyze sys-
tems for attacks and their defenses.

Restrict threat modeling to experts.

Let security personnel hold threat modeling
prisoner.

Use threat model reviews as a training opportu-
nity. Include at least one person not familiar with
the system under analysis.

Force all threat model reviews through an
expert-laden, manual review board.

Record threat model requirements that have
been implemented.

Measure security architecture effi cacy by num-
ber of projects completed.

Escalate key risk decisions to an organization
level that has suffi cient scope and accountability
for the potential impacts.

Allow people charged with implementation
and delivery to rate and make important risk
decisions.

Give security practitioners absolute fi nal author-
ity to rate risk.

Infl ate risk ratings in order to force favourable
decisions.

Give security architects opportunities to analyze
systems outside of their usual purview.

Isolate learners strictly to their usual systems and
away from other practitioners.

Build a community of security architecture
practice: share successes, failures, challenges.
Agree on processes. Give time for unscripted
exchange, build trust and a shared sense of
responsibility

Admit to errors to model safety for mistakes and
fi nding solutions.

Pretend to never make mistakes, and don’t
defend or excuse leaders’ errors.

Use one’s leadership in the service of building
collective skill and shared responsbility.

Make all the decisions for everyone else.

a Table 5.2 is supplied in the hope that the table’s summary statements provide a quick reference to the
tips and tricks that I’ve outlined in this chapter.

Table 5.2 Summation of Actions Described in This Chaptera

and, shall I say, “madness”? But others listed here anyone can do. Try these things, whatever
seems to apply to your situation, and see what works for you. Feel free to let me know what
worked, what didn’t work, what you don’t understand or seems mysterious—what I haven’t
explained well enough for you to try. I’d like to be the best technical leader that I can be; I
assume that you want to be the best security architect and leader that you can be. Th ese are the
things that I’ve done out of which great teams have formed who then have executed powerfully.

Learning the Trade 139

Perhaps I’ve just been lucky to have worked with such amazing people that despite anything
I may have done the team members would’ve unifi ed eff ectively anyway? Having trained liter-
ally hundreds of security architects, I am beginning to think that at least a few of these things
might help create a benefi cial environment for the teams that I’ve been privileged to lead. Your
mileage, as always, may vary. Best of luck in your journey.

http://www.taylorandfrancis.com

141

 Chapter 6

Problem Areas You
Will Encounter

6.1 What Does a Mature Practice Look Like?

Th e most obvious result one might expect from a mature security architecture practice has got to
be “better”—that is, more secure, the program regularly producing readily securable designs. But
since “more” and “readily” are subjective, non-quantifi able qualities, there seems to be a lack of
defi nition of “mature” and an inability to measure “security built in from the start of projects.”

Luckily, it isn’t completely true that measurement is entirely squishy; I proposed a few mea-
sures in Core Software Security and Securing Systems which I will reiterate below. Still, I do
expect that over time, software’s ability to resist attack will improve. Let me share my experi-
ence of that change fi rst before diving into skill and programmatic markers of maturity.

6.1.1 Do We Add Value?

As I’ve written in Securing Systems, one of the fi rst signs that a security architecture program is
gaining traction will be that the program’s clients—that is, software developers, research and
development, and engineers—regularly seek security architects’ help.

“My fi rst measurement for the program itself, and for each security architect, is whether the
architect is being included in the relevant architectural discussions? In short, are architects being
invited back repeatedly by the teams? Are security architects sought after? Do people call them
when there are issues to solve? When they have security questions?” Securing Systems, p. 378

142 Secrets of a Cyber Security Architect

You will know that your architects are successfully providing value because those who
develop your software will be reaching out, regularly. Th is is a bellweather of both individual
performance and program eff ectiveness.

6.1.2 The War Is Over

As partnership grows, the battle over whether or not security is important, whether to enact the
Secure Development Life Cycle (SDL), should disappear. Th at doesn’t mean that there will be
no confl ict! Confl ict between competing business needs is normal, healthy, and, frankly, inevi-
table. Below, I address some tricks that I use to manage confl ict for the benefi t of all, rather
than sliding into endless frictions around, “Is security really necessary?”

Still, the change that should manifest in a mature program will be when confl icts are not
about whether security is important or not; confl icts won’t take place about whether any par-
ticular SDL task is eff ective or not. [Although, as I noted in a previous chapter, it is seemingly
inevitable that someone will question each of the SDL’s activities, at some point or other, even
long after they’ve become well established.] Instead, when confl ict arises, it will be about the
security work itself: Is a particular solution or course the best or most appropriate? When
should we schedule a fi x or mitigation? Out of a number of possible treatments, which one
provides enough benefi t for the eff ort involved?

Th ese are the sorts of discussions that we must have. No utopia exists where these issues
don’t come up. At least, I haven’t yet had the pleasure of working in that organization. Plus,
security folk don’t necessarily have the fullest business picture; that’s why it is essential that we
keep an open mind and open ears to understand and incorporate the other business pressures
that must be attended to. Th ese sorts of hard decisions are why software security is a collabora-
tive sport and will remain so for the foreseeable future.

You know that your program has gained some maturity when you no longer have any
(many?) fi ghts over whether security itself is the issue, whether or not security is among the
important attributes that an organization’s software must exhibit.

6.1.3 Optimum Tool Use

At fi rst, most programs will try to tackle so-called “low hanging fruit”—that is, the easy
issues. Quite often, easy issues will also be those that automated tools, such as static or dynamic
analysis for security, will fi nd (see Core Software Security for more information about these
kinds of tools).

But one of the biggest problems I’ve continually encountered is that the tools haven’t been
sold to nor set up for the development process: they’ve been aimed at security. But security
mustn’t be the sole users or controllers of these types of tools. I know that I’m being quite
heretical with my approach. Th at is, I do everything in my power to acquire eff ective tools that
will at least solve some issues easily and without much noise or friction. Th en I hand the tools
over to development while teaching teams how to use them. Th en we, security people, get out
of the way and let development take it from there, trusting that they want to fi nd bugs as much
as anyone else.

Problem Areas You Will Encounter 143

A common phrase among application security teams is, “Trust but verify.” It’s that “but” in
the phrase that rankles me and which I believe to be completely wrong-headed. If you must
verify someone’s work, then you don’t really trust them to verify their own.

As I’ve pointed out numerous times in this work and others, there’s no way to ensure that
one’s code is bug free without trying to verify its correctness. Programmers already know this,
deep in their bones. Verifi cation is part and parcel of producing working software. Why not
give developers workable tools to verify the security implementation too? I propose, “Trust and
verify.” Th e “and” changes the phrase from distrust to a partnership.

Unfortunately, security tooling, as I’ve said from many a presentation stage since somewhere
around 2007, can be wickedly diffi cult to confi gure and tune to eliminate or reduce false posi-
tives and results that require human analysis to validate. Instead, I’ve proven several times that
if the tools return mostly high-confi dence results, developers will adopt tools readily.

My friend Ryan Ware (Senior Security Researcher at Intel®, Inc.) once ran a series of side-by-
side comparisons of well-regarded, commercial static analysis tools on a Linux kernel project.
He couldn’t get a better result than 15 percent fi delity—the remainder of the fi ndings were
false positives. Th at is a terrible result, frankly.

To fully understand Ryan’s experiments, one must take into account that operating system
kernels must do a lot of strange things that applications don’t need to do (the kernel does them
for the application). Th ose strange or unexpected actions often look quite similar to security
issues. Kernels also usually must perform a fair number of very dangerous things; that is the
nature of system code. Kernels are notoriously diffi cult to secure. So it’s not all that surprising
that tools written for general software might have diffi culties with the odd code that often
winds up in a kernel. Still, the point here is that even after signifi cant tuning the tools specifi -
cally for that kernel’s code base, tool fi delity was quite low.

I’ve gotten much higher fi delity out of static analyzers. But that is only after I abandoned the
security team approach, which typically sets the tools up to fi nd as many issues as possible (for
due diligence reasons). When security dictates the tool “policy,” or set of checks, they typically
choose the broadest collection of checks. Th at makes sense when the people who will qualify
the results have signifi cant skill in identifying actual issues and are getting paid to perform that
task; security code reviewers and security researchers often have those skills. As a result, the
tools generate a lot of noise, but the noise isn’t that much of a problem for security profession-
als who have the skills to winnow out false positives and to validate low-confi dence fi ndings.

However, the typical developer doesn’t have the skill to qualify the real issues versus the false
positives. Th at’s why we want our code run through an analysis tool in the fi rst place: there just
aren’t that many supremely talented secure coders. Although most developers are willing to
learn something about secure coding, they likely won’t have the time or the interest to become
gurus. Hence, I’ve recommended for a long time that coders also get help from security tools.
But, many of these tools return thousands of fi ndings every time they’re run over a complex
build. Developers typically don’t have time to go through those thousands of results to fi nd the
ones that actually need to be fi xed.

Th is is where security’s approach and development’s needs are wildly divergent. Development
wants to quickly identify any issues that the tool can actually fi nd with high confi dence. In
most tools, that is a very diff erent set of checks than the wide net security teams tend to cast
with security tools.

144 Secrets of a Cyber Security Architect

My big learning in this area was sometime around 2004 or 2005. We had a huge portfolio
of web applications, very few of which had been scanned for web issues. Another architect
and I met twice a week for months, racking our brains over how we might start identifying
vulnerabilities within thousands of applications and then managing somehow to get the fi nd-
ings fi xed. One day, after one of our meetings when we had discarded yet another concept,
I had a realization that it was the high-confi dence
fi ndings we needed to chase. Once we’d identifi ed
a tool to implement, it took just about fi ve minutes
to fi gure out what the set of high-confi dence checks
would have to be. Th at program, called Baseline
Application Vulnerability Assessment (BAVA) is still
running successfully. I’ve based every tool imple-
mentation I’ve done since 2005 on BAVA’s obvious
success. (See inset.)

Coming into a subsequent leadership role, the teams had been running static analysis on
their code for a few years. But, because most teams had not tuned the analyses, one team had
72,000 fi ndings, and another 46,000. Can you, my reader, guess how many the development
teams actually fi xed?

If you guessed “zero,” you would be correct. No development team has time to pore
through thousands of fi ndings searching for the few really important ones. However, when
I left that role, every team was getting useful results from the code analyzer that had once
been ignored. Th e trick was to get the vendor to tell me that tool’s set of checkers returning
the highest fi delity results. In that tool’s case, it has a set that’ll deliver at least 85 percent or
better real issues (that is, a false positive rate of ≤15%). Th at level of noise is tolerable for most
development teams.

Once coders start getting some eff ective assistance in fi nding coding issues out of a tool,
they start to learn secure coding from their mistakes, just like learning other coding patterns
and semantics from compiling and other tests. Often, I see development teams then start to
play with the aggressiveness of the checkers, until they fi nd a workable balance between fi nding
issues and tolerable noise.

Give development control over the tool’s policy or rule set. Start them with a known set
of high-confi dence checkers. If they never stray from that, at least those issues will always
be removed from the code. But, after teams have confi dence that the tool delivers real value,
they’ll play with settings to fi nd the optimum balance between issues and noise.

Security must give up control of this resource and, instead, empower development teams
to verify security (trust and verify), just like developers must verify other aspects of the code
they generate. Security departments will have to trust that developers will do their best. First,
we have to train coders how to code securely and then give them security tools that generate
valuable results.

6.1.4 You Know That You’re Maturing When

With help from decent, well-confi gured tooling that fi ts organically within the natural devel-
opment workfl ow, in multiple organizations I’ve seen the number of relatively easy-to-fi nd

Hilariously, I proposed the name “BAVA”
as a joke. We also had a deeper, manual
analysis, which we dubbed, “DAVA,”
so I made a joke about doing the
“BAVA, DAVA dance.” Perhaps unfor-
tunately, the name has stuck through
these 15 years, as of this writing.

Problem Areas You Will Encounter 145

issues decrease. At several of my jobs, we kept metrics on issues; we could correlate successful
tool implementation against a decrease of these issues in released software.

Another feedback loop will be what external researchers fi nd. As our tool strategy unfolded,
external bug reports stopped fi nding many of the obvious issues. Reports were rarer, fi nding issues
much more diffi cult to identify—the sorts of issues that tools cannot fi nd (i.e., design issues). For
code bases with a long history, many of those design issues will be within the legacy code, designed
against an earlier threat landscape which will have typically contained fewer and less sophisticated
exploitation techniques, since attack techniques are continually added and improved.

As coders fi nd and remove the issues discovered through tightly confi gured and tuned anal-
ysis tools, I’ve seen a dramatic shift in the sorts of issues that arrive through external reports
(that is, from security researchers and bug hunters). Analysis tools that have been focused on
high confi dence tests will likely be fi nding many of the issues that are easier to identify. Issues
that are trickier to identify—those issues that require complex analysis—are the types of issues
whose identifi cation tends to be more diffi cult to automate. Hence, in general, high-confi dence
tests will be focused on the easiest-to-identify issues (though this is a broad generalization, not
a hard and fast rule).

Because of the correlation between ease of identifi cation with ease to automate and a higher
analysis fi delity, the result will be that, at fi rst, a code analysis program will be removing
easier-to-fi nd issues. As a result, externally originating issue reports should refl ect the gains
being made in code security over time. A maturing program ought to see a decrease in external
reports of simple-to-fi nd issues. Over time, researchers will have to work harder; the issues
being reported will gain complexity and technical diffi culty.

Of course, a few simple issues will continue to be missed by testing, thereby getting released
in production software. We have already covered the basic fact of software development life: a
few bugs will inevitably get missed by even the most rigorous testing regimen. However, the
easy-to-fi nd issues will decrease as a software security program matures. Plus, complexity and
technical sophistication of issue reports by penetration testers and security researchers should
increase as the program matures.

In fact, this is exactly what I’ve seen over time in my programs: as development teams
become more successful at removing issues for themselves and at designing for the security
principles revisited below (and explained previously in this book), those who probe the soft-
ware for issues have to look harder—often a lot harder. Th e replacement of easy-to-fi nd issues
with more challenging ones is a measurement of a maturing software security program.

6.1.5 “Nothing Proves Architecture Like Nothing”
A program that quickly addresses the easy-to-fi nd issues, using as much automation as pos-
sible, leaves itself time to develop a secure design (security architecture) program. As I’ve noted,
security architecture takes time. Plus, the results will take a relatively long period to manifest.
I like to quip that, “Nothing proves an architecture like nothing.” What I mean is, over the
life of a system,

• If it’s had a minimum of incidents.
• If it’s resisted most known attacks, and the successful ones haven’t caused a great deal of

damage.

146 Secrets of a Cyber Security Architect

• If the system design has been fl exible enough to accommodate most of the changes neces-
sary to fulfi ll the system’s goals, security and otherwise.

Th en one may safely say that one has reaped “the long tail of architecture.” [“Th e long tail
of architecture” is a phrase coined by my friend Srikanth Narasimhan, Cisco® Distinguished
Engineer.] Nothing horrible has happened. Nothing happening doesn’t occur by accident;
nothing terrible occurs because the system was architected and designed well. One of my
favorite presentations phrases is, “Nothing proves architecture like nothing.” Th at is to say,
we’ve reaped the long tail of architecture over the lifetime of a system when there have been no
major incidents, security or otherwise.

As I noted at the beginning of this chapter, measurement of mature programs can be tricky.
Taking my little architecture joke at face value, one might think that one is measuring “noth-
ing.” But nothing could be further from the truth (if you’ll pardon a play on words?)

We can measure architecture success in the negative:

• Th ere have been a low number of major security incidents over the lifetime of a system
(or better, none).

• Expected attacks have been thwarted.
• New, unanticipated attack techniques have been slowed down suffi ciently to be stopped

before major damage.
• Successful exploitations have been contained to minor impact.

I have helped with systems on major web platforms that have delivered the above results. I
know that achieving “nothing” is within the realm of the possible. Experience suggests that
such results were achieved through diligent and coherent architecture practices such as I’ve
suggested in this book.

I want to repeat my software security principles. Th ese principles defi ne the behavior that
secure software will exhibit:

• Be as free as humanly possible from errors that can be maliciously manipulated—ergo,
vulnerabilities.

• Have the security features that stakeholders require for the intended use cases.
• Be self-protective; resist the types of attacks that are expected to be aimed at the software.
• In the event of a failure, software must “fail well”—that is fail in such a manner as to

minimize consequences of successful attack.
• Install with sensible, “closed” defaults.

You will see the above principles begin to emerge in the behavior of your software as the
security requirements that you specify get implemented and begin to populate your software
releases. As your software exhibits these behaviors more and more over time, then you have
achieved an understanding of security architecture as well as having achieved a practice of
applying information security to systems.

Contrary to what most users and even many developers assume, security is a systems
property emerging from the totality of system behavior. When the software produced in
conjunction with your security architecture program exhibits the above behaviors, then I
suspect that your program is relatively mature. Th at doesn’t mean that all problems are
solved, of course.

Problem Areas You Will Encounter 147

6.1.6 Get It in Writing!

“Security architects who document their recurring patterns, who provide the solutions to those
patterns, and who help to get those solutions built into the available services and software from
which projects may draw will increase the scale and velocity at which the organization’s devel-
opment teams can operate.” Securing Systems, p. 331

I don’t like repeating the same security requirements over and over again. I have known
practitioners who believe that repeatedly demanding that developers hue to a company’s policies
and standards is the essence of their role. I would fi nd that boring work, personally. I want to
document the standard methods and technologies thoroughly; I want standard services, say an
authentication system that is part of the application infrastructure, to become ridiculously easy
to implement such that, as Steve Acheson used to say, “[M]ake the secure path the easy path.”

6.2 Typical Problems Programs Encounter

In this chapter, I hope to explain to you what I have done to meet some of the typical problems
I encounter. What I fi nd validating is that as I speak with other security architects whose pro-
grams are well underway, the same set of issues comes up, over and over again. While your set of
challenges may not match mine exactly, I think you’ll fi nd at least a few of yours described here.

• Scaling to large or complex development portfolios
• Assessments taking too long, negatively impacting development schedules
• Visibility into what’s been completed and into challenges
• Governance for consistency and completeness
• Quality control
• Late engagement
• Friction with developers; developers not cooperating
• Isolation and “battle fatigue”

I shall try to address each of these areas in turn, though maybe not as linearly as I’ve
presented them, since there are profound dependencies. Th e problem-to-solution set do not
map 1:1.

6.2.1 Scale

As I’ve noted already in this book and others, there is a defi cit of experienced cyber security
personnel. Th ere exist far fewer candidates then there are jobs. And the situation has existed
for quite a long time. When I was asked to take up Cisco Infosec®’s fi rst application security
architect role, they had been looking to fi ll the position for about 18 months. Th at was in early
2001. Th ings haven’t changed much in the intervening years.

Hence, attempting to build an army of security architects through hiring is likely to take
quite a long time. Even hiring a small team will take a signifi cant time, perhaps as long as it
took to fi nd me to fi ll Cisco’s application security architect role. Perhaps longer, because there
are more positions now than there were then. Of course, there are more practitioners, as well.

148 Secrets of a Cyber Security Architect

Still, my LinkedIn® account receives requests for security architects every week, sometimes
every day. One of my dearest friends in the industry has already spent months trying to build
a 60-member security architecture team. It can be a very long haul, indeed.

At Cisco, it soon became pretty obvious to me that we weren’t going to fi nd all the architects
we needed. Plus, in hiring contractors for such a key role, there’s often signifi cant ramp-up
time to get a feel for an organization’s risk tolerance, the existing services and limitations of
the infrastructure, an organization’s policies and standards, application delivery mechanisms,
and the rest of the complexities of designing, generating, and deploying software. In Securing
Systems, I called this information, “the Th ree S’s.” In my humble experience, it’s impossible to
threat model unless the analysis is grounded in the Th ree S’s. Contractors quite often can’t
come up to speed fast enough within their contract period, even if they are massively experi-
enced. Th at was our experience at Cisco.

For the foregoing reasons, Michelle Koblas and I racked our brains for some other way to get
the staffi ng that we needed. I wrote a bit about the story in my blog, “brookschoenfi eld.com”:

* Th at is, power to enforcement security policy and standards.
† http://brookschoenfi eld.com/?page_id=217

“Teams of empowered, decentralized ‘partner’ security architects spread across a
development organization and integrated into delivery teams. Certainly, a few organiza-
tions have had ‘security champion’ programs. Th ese are not the same thing, at all. Th e
original idea here was to train, empower, mentor, coach, and create a community of
security architects by capitalizing on the interest and skills of an existing system/software
architecture practice.

“I originally pitched the concept to Michelle Koblas in 2002 or perhaps it was early
2003?—Ferris Jabri program managed the fi rst successful team with me and Cisco
Infosec’s ‘Web Arch’ team. Kudos go to Michelle (originally), Nasrin Rezai, and John
Stewart for strongly supporting the original experiment. Enterprise Architecture kept
telling us that we had to wait. Ferris literally said, ‘We’re just going to do it, Brook.’ We
then proved the concept admirably. Th anks for your fi ne leadership, Ferris.

“A key diff erentiator is empowering each virtual team member as a formal part of the
security organization. Th at is, each member has the policy powers* for security and must
perform the due diligence role typically reserved to Infosec. Th ese are not simply ‘red fl ag’
spotters, but fully functional security architects. Such a program has to accompany the
empowerment with training, mentoring, continued coaching, and support. In fact, with-
out ongoing support and air cover for hard prioritization and risk decisions, the virtual
team will ultimately fail. Another key diff erence is the creation of a community of sup-
port among the partner team. Participation is a critical factor, as well as an inducement
to perform the work (beyond having ‘security’ on one’s resume).”†

As I noted at my blog, there’s a big diff erence between mandating that a development team
member report about security issues and concerns to a central security team and empowering
one or more members of the development team to become the team’s security architect.

When the approach is to appoint someone, the designated person quite possibly doesn’t
want to do the job. Importantly, the security role may quite likely place that person in confl ict

http://$$$�brookschoenfield.com�:
http://brookschoenfield.com

Problem Areas You Will Encounter 149

with the rest of their team. Furthermore, if the appointed security eye isn’t given power, infl u-
ence, or skills, they aren’t being given much incentive to carry out the role. I might go so far
as to suggest that someone whose job is to watch others might be considered a spy by those
others. Th at role doesn’t really sound very appealing, and too often, isn’t to the appointed “spy.”

At the other end of the spectrum, what I’ve done four times now is actually off er the neces-
sary training and support for development team members to become security experts in vari-
ous areas, one of which we hope will be a path to becoming a security architect for their team.

We do everything possible to empower the developer security architect. We empower
them to enforce standards and policies. We empower them to escalate risks for decisions. But,
because escalations might bring an on-team member into confl ict with their own manage-
ment, we don’t hesitate to pick up tricky escalations and run with them for our satellite security
architects. In this way, the people fulfi lling this role are both empowered and protected; we
never want to place one of our security architects in confl ict with their own management.

Th e “carrot” for people who pick up this role is that they can truthfully claim that they have
fulfi lled the role of security architect. Because for many organizations security is a premium skill,
there is often a bump in pay somewhere in the near to medium future for these people. People
who have fulfi lled the satellite security architect role as I’ve outlined here actually have performed
the work. A signifi cant number of them continue on to become security architect leaders.

Of course, not everyone who goes through the program and does the security architecture
work chooses to continue in security as a career. Th at’s okay. If they’ve gained nothing else,
they will bring their security knowledge to whatever role they may fulfi ll in the future of their
career. Generally, that will be a win in whatever roles they fi ll.

Th ere are couple of challenges that satellite programs will tend to encounter. Th e foremost
is that as people go through the program, fulfi ll the role, they will be hired away into other
organizations. Th ere will be staff turnover. I learned the hard way that my program would have
to account for some staff churn. Which also means that there are always new people to train.

I’ll take up the visibility problems below.
It was John Stewart (CSO of Cisco Systems, Inc.) who taught me that on an annual basis

or so, one must reinvigorate the empowerment of the program with executives. His tactic is to
thank directors and vice presidents for their support of the program; this works perfectly while
maintaining the critical management relationships that are necessary in complex organizations.

Unfortunately, occasionally there will be an executive or director with signifi cant infl uence
and power who doesn’t want to support the program. Th at’s where my executive’s support will
be critical. Without that, any diffi cult director can wreak havoc, at least in their department
or group. We avoid placing our satellite architects in the line of this kind of fi re. Th e central
group has to take over in order to protect the people that the program depends upon to execute
the work.

I don’t have any magic pills or silver bullets to give you that will ameliorate damage that an
uncooperative director can cause. Th e best I can off er is to quickly push this up to supportive
executives higher in any organizational hierarchy. It is really a management problem, not a
security or security architecture problem.

I can never forget the time that I was trying to advise a director who was questioning why
her teams had to execute the company’s required SDL tasks assigned to them. At a meeting to
discuss her team’s SDL tasks, she said to me, “Did I give you permission to speak?” Th at had

150 Secrets of a Cyber Security Architect

never happened before and has never happened since. I don’t think she realized that I was one
of the CSO’s most senior security architects. Nevertheless, at most high-tech jobs, we simply
don’t treat each other in this manner. A high-tech workplace isn’t a hierarchical classroom. We
are cooperating together to fi nd the best solutions given business realities. Problem solving usu-
ally requires collaborating very closely and considering very diverse viewpoints.

Luckily, my manager was also in the meeting and immediately used our private chat session
to assure me that the director’s behavior was severely out of line. Th at misbehavior was esca-
lated up at least to the Vice President level at the company. Th e director left the company not
very long after that. I didn’t try to fi nd out if it was because of what she had done to me par-
ticularly. But as I say, in those sorts of situations about all you can do is enlist your supportive
executives’ help. At least they can give you cover so you can get your job done.

6.2.2 Assessments Take Too Long

As the pace of software delivery increases, security tasks, especially tasks depending upon
human analysis such as threat modeling, may be seen as too time intensive to complete.

“With DevOps, you have to move super-fast. Th ere can be no ‘manual’ in that process. If
you don’t have automation, you’ll never be successful.”*

Th ere may be resistance to performing any human analyses, which get described as “old
fashioned” or even unnecessary. Curiously, developers just might be right! Whether or not
manual analysis will be necessary depends upon architecture and technology stability.

Consider the situation in which engineering is adding to or changing the processing of an
existing architecture and platform. Let’s say that the structure of the system and its technology
dependencies haven’t changed and aren’t going to be for the foreseeable future. Let’s also assume
that a thorough threat model has already been completed. With that completed threat model,
the system’s security requirements are understood. Let’s assume that the requirements generated

through the threat model have already been imple-
mented. Let’s also say current development is dili-
gently implementing those security requirements or
standards that must be coded (see inset). Finally, let’s
assume that the build and deployment systems have
also had their security worked out and implemented.

In the case I’ve outlined in the previous para-
graph, I don’t see a reason to perform any additional threat modeling analysis. None of the
triggers for review have fi red. From a threat modeling standpoint, the only trigger that might
require further analysis would be some kind of signifi cant shift in the threat landscape—a
never-before-seen attack technique that applies to the system under development.

Shy of some shift in threats or technologies, developers would be correct to argue that
manual threat modeling under these circumstances won’t be fruitful. I didn’t make this situa-
tion up. I actually threat modeled in a situation as described. Th ere were no additional security
requirements. Nor should that organization have further analyzed their system. Nothing about
the threat model was changing.
* Romeo, n.d.

Requirements like never using mem-
ory after it’s been freed and ensuring
that memory copies cannot exceed the
receiving buffer’s length are usually
coded, not consumed as a service or
implemented within infrastructure.

Problem Areas You Will Encounter 151

For situations where security architecture will add value, there are ways to speed analyses up.
Th e triggers for a threat model or threat model review are:

• Architecture (development) is new; there’s no existing threat model. [And the develop-
ment will require a security posture. Not all development has security requirements.]

• Architecture (structure) changes (adding, changing, removing functions or components).
• Adding/removing/changing a security feature or implementation.
• Adding or changing code whose function is believed to be critical.

As my friend (and terrifi c security architect) Chris Romeo said in the quote above, every-
thing that can be automated should be.

If development is constrained to a well-understood and defended set of technologies, lan-
guages, infrastructures, and platforms, I believe there’s signifi cant benefi t to automate at least
part of the threat modeling process. Th e security requirements can be scoped and bounded
such that many basic requirements will be identical for sets of applications—maybe all.

As an example, imagine generating new business logic for applications that will run in a
carefully designed and managed cloud platform. In this case, the application programmers
will be defended, as least in part, by what’s been
built into the platform. Because applications will be
generated to fi t within a set of standards, much of
the security architecture analysis should have been
spent on making the “easy path the secure path.”

Cisco Infosec’s Web Architecture team (Web Arch) built our systems and processes in
exactly this manner: web application teams had to implement a limited set of security require-
ments that were well defi ned. Th e easiest path to deployment had the fewest security needs
because a great deal of what was required was already built into the infrastructure into which
web applications were typically deployed. Because application teams were only responsible for
a few security requirements, developers were relieved of the burden of implementing most of
the required security controls. Much security defense was simply inherited or consumed. Use
of services such as authentication were a check box at deployment; appropriate confi guration
fi les were auto-generated by the deployment infrastructure.

In the above example, developers aren’t required to perform a great deal of analysis, par-
ticularly manual analysis. In a tightly constrained environment, hewing to standards will take
care of a lot of, perhaps most, ongoing security needs. In such systems, questionnaires/surveys
about use cases and technology uses will be suffi cient for much new development. Commercial
requirements tools might help generate the needed requirements surveys. I personally know of
three very successful implementations of commercial requirements survey tools for precisely
this purpose. Th ese three implementations are at major, Fortune 1000 companies.

Where development is less constrained, but there are still well-understood patterns, perhaps
because various implementation elements can be reused (let’s call them “ingredients”), auto-
mation might still be applied, at least for those systems that will be consumed by additional
development as ingredients.

At the time of this writing, there are two commercial threat modeling tools that allow users
to enter architecture patterns (visually) and then attach security requirements to these. Both of
the commercial tools come with deep and broad libraries of typical architecture patterns and the

Steve Acheson encouraged me to
design for “make the easy path the
secure path” in 2001. As far as I know,
he originated this design principle.

152 Secrets of a Cyber Security Architect

ideal set of defenses for those patterns.* As far as I know, each tool has a signifi cant collection of
customers. Th at alone indicates to me that threat modeling automation is coming of age.

In the afterward of Securing Systems, I mentioned that there existed at that time a new com-
mercial tool. Now there are two, both with a customer base. Th ough each tool is signifi cantly
diff erent from the other, some feature convergence has occurred. To me, that demonstrates a
maturing of the market, as customers come to understand what features they will need for a
successful implementation. I fi nd this very hopeful. It is obvious from the tools’ successes that
a market for threat modeling automation exists and can be met.

Alongside the commercial off erings, there are three open source or freely available threat
modeling tools available. (See inset.) Whether one
or more of these will get the development attention
that’s required to capture suffi cient architecture pat-
terns and their defenses remains to be seen.

Microsoft®’s Th reat Modeling Tool (TMT) is
freely available. However, my experience among the
120 (or so) security architects in my last team sug-
gests that TMT’s results are often idealized and lack
context. I have not counted the number of times
that a security architect new to threat modeling has generated a TMT threat model, only to
be overwhelmed by the number of TMT fi ndings. She/he/they will then bring me the results
through which we’ll prioritize the fi ndings that will provide real-world protections, versus
the many that aren’t contextually impactful. Th is is only my personal experience. My senior
security architects would each have also had to perform such reviews. My guess (and it’s only a
guess) is that too many insignifi cant fi ndings is a typical result from even simple TMT threat
models. Hence, while TMT provides a gateway into threat modeling analysis, its results tend
to produce too much noise to be taken without further analysis and prioritization.

My present opinion is that at least the commercial tools off er signifi cant help wherever:

• Typical architecture patterns similar to those already included in the tool are employed
(these can then be consumed without further confi guration).

• Th ere is a discreet enough set of unique patterns that these can be input into a tool within
some reasonable period of time (that is, before the patterns become obsolete).

• Th ere exists a discreet enough set of locally built or defi ned defenses that these can be
reasonably input into the tool (similar to architecture patterns, above).

As I’ve been saying in some of my conference presentations, why do we need to keep reiterat-
ing obvious and well-known defenses, like those that have been part of coding and architecture
standards for a long time? For instance, OWASP (Open Web Application Security Project) has
generated dozens of excellent web application programming and design documents describing
how to prevent typical web vulnerabilities. A threat modeling analysis isn’t required to identify
these; they’ve been identifi ed for years. Nearly every reasonably complex web presence will
need to deal with most if not all of the issues contained in the OWASP materials.

We know for certain that a default, unhardened operating system should never be con-
nected to the Internet. Continually repeating that hosts must be hardened isn’t necessary. Th e
* Disclosure: I’m friends with the founders of each of the companies, but have no fi nancial interest in either.

There are also two open source tools
that deal with other aspects of threat
model automation: automatically trig-
gering reviews via UML changes and
automating test scripts based upon
threat model requirements. I believe
both of these are also useful in a
DevOps development shop.

Problem Areas You Will Encounter 153

 Center for Internet Security (CIS) hardening guides have been there for years; there is no need
to invent a new, local hardening guide (except for an entirely new operating system that CIS
hasn’t yet seen).

Plus, these sorts of requirements will be a part of the commercial threat modeling tools, will
be included in content for some of the survey tools, and may even have been captured by one
or more of the open source or free tools. Security architects shouldn’t, in my humble opinion,
have to repeat such well-known security practices, ad nauseum. Th at’s not where I want to
spend my analysis time.

Using these kinds of standards or tools that include these standards will surely speed develop-
ment, perhaps immensely for those projects using typical architectures. We must, if I may off er
a strong opinion, relieve the burden of manual, one-at-a-time analysis from development teams
wherever and however we can. Th ere are still plenty of tricky security problems to go around!

“‘While many development teams resist embarking on a threat modeling eff ort, there’s no
need to delay. As with many aspects of DevOps, starting quickly and integrating often are the
keys to success,’ said NCC’s Michlin. ‘Th reat modeling can be done in a half-day session, and
it will give both developers and operations teams more insight into the project.’”*

I would add to Ms. Michlin’s wise observation to ease threat modeling analysis through the
artful inclusion of threat model tools whenever investment in time and/or money will return
on the investment (as described above).

Reserve manual analysis for diffi cult, atypical, and unique problems. Either purchasing
or documenting the well understood will eliminate unnecessary analysis to improve velocity
and agility. Besides, repeating “escape your web inputs” and “validate the adherence of your
messages to expectations” is boring: these security defenses are well described in multitudes of
literature, standards, and in all the tools. As Cristoph Kern did at Google®, make it impossible
to release code that doesn’t adhere to the obvious security standards.

Instead, let’s focus on one-of-a-kind problems and designing build/deployment systems that
ensure defensive code. Th at will surely be faster.

What do I mean by “unique” or “one of a kind”? Imagine that you have a customer authen-
tication system that was built in 2004 (15 years ago, as of this writing). In 2004, computer virii
and worms were a major focus. Web attacks encapsulated within application messages were a
cutting edge in the threat landscape. Reverse engineering tools were nowhere as powerful as
they are today; network packet capture was a state-of-the-art security analysis technique (it still
is, but tools have matured signifi cantly).

Imagine that you’re the security architect who identifi es several credible attack scenarios
against this legacy mechanism. But you are constrained by business’s need to continue to use a
great deal of the business technology that depends upon the customer identifi ers. You are given
no grand investment to redo the entire suite of systems. Still, in your professional opinion, by
today’s standards, the authentication system is weak; you believe that you are one customer
compromise, perhaps two, from the authentication system’s failure.

I didn’t make the foregoing example up; I encountered a very similar situation a few
years ago.

Situations like my example that don’t conform to standard problem patterns are where
a security architect can be of enormous help. Finding improvements each of which will
* Michlin, n.d.

154 Secrets of a Cyber Security Architect

signifi cantly increase the overall robustness of the authentication system, but none of which is
outside the capabilities and the budget of the developers working on the service, is (and was)
an interesting challenge (see inset).

At the same time, I could raise the risk of leaving things as they were. I could (and did)
advocate for building a much more resilient set of services in parallel to making incremental
improvements to the legacy (existing) system.

Presumably, assigning an experienced security architect who would both advance the state
of the art against a changing threat landscape while
also helping to build services resistant to the broader
range of attacks that had become possible over the
life of the legacy system proved worthwhile for the
organization. Problems like these are where experts
can most profi tably be applied. Th ere isn’t a tool in
existence that can perform this analysis; it’s got to
be a human (at least at today’s state of the art).

How can we improve the velocity of security assessment? We must eliminate needless man-
ual processes in favor of collections of well-understood engineering patterns. My comment is
nothing more than standard engineering practice. Where there’s a proven method or tech-
nique, describe it, then apply it. It doesn’t really matter how the knowledge is packaged: a
standard, a book or other literature, a training course, within a commercial or open source
tool. Th e point is, we can increase the speed of what we do if we don’t rely on human analysis
to repeatedly identify that which we already understand to be required.

Th ere is one fi nal comment about speed I’d like to make: threat modeling doesn’t have to
take a long time. As I’ve noted in this book, if an inexperienced team fi nds just one require-
ment that signifi cantly improves a security posture, this is a win and should be celebrated as
such. Th is implies that threat models needn’t be the long, exhaustive exercise often promul-
gated by software security programs. Rather, get developers thinking about credible attack
scenarios. Over time, they will likely get better at the analysis, identify more scenarios that
apply, and thus identify more security requirements.

Th ese early analyses can be short and discreet. Start with those well-understood and well-
described attacks against similar technologies and systems. Most developers are familiar with at
least a few of these. When threat modeling is performed as a group activity, the analysis benefi ts
from varying team member’s attack knowledge. Th ey’ll consider more attack types. I’ve seen this
pooling of attack knowledge play out again and again in my participatory threat model classes.

Importantly, threat modelers needn’t invent new attacks. Apply those attacks that have been
successful in the past against systems similar to the system under analysis. Plus, detailed knowl-
edge about how each attack works isn’t necessary. Th reat modeling works best when types of
attacks, classes of attacks, are considered (as I’ve described in Chapter 5, Learning the Trade).

Th us, threat modeling doesn’t require a penetration tester’s knowledge of attacks. It’s enough
to know that memory conditions can be manipulated in C and C++ (or any language directly
handling memory addresses), or that there have been virtual guest escapes to take over the host
running the virtual environments. We don’t need the details because the next exploit will be
somewhat diff erent, anyway.

Finally, in order to assure some quality and completeness, make a practice of peer review (as
described in this book and Securing Systems). Th ese reviews are really short! From experience,

For the example customer authentica-
tion system, the incremental improve-
ments that were implemented were
additional entropy used to construct
the identifier, an update to its crypto-
graphic strength, and improvements
to the strength of storage protections.

Problem Areas You Will Encounter 155

I can tell you that a two-hour review is quite long. Usually, for many systems, the review is 30
minutes, an hour at most. Nearly everyone can devote an hour to helping teams complete their
threat models.

Th us, where human analysis must be applied, it can be kept quite manageable and discreet.
“It makes no diff erence if, for example, a threat model is produced as the result of a whiteboard

session with the development team, is written out as a narrative in a Microsoft Word document,
or is produced with the use of a specialized tool, such as the SDL Th reat Modeling Tool.”*

Unless compliance requires a particular, formal threat modeling document to be archived,
in my experience, allowing teams to use their most organic approaches will encourage teams
to actually build threat models. Requiring that teams produce some long, exquisitely detailed
document that no one actually reads or works from only discourages the analysis that we need
them to perform.

“In my experience, the minimum documentation necessary to prove that a security assess-
ment has taken place, and to achieve implementation of the security requirements, will be the
security requirements document. If nothing else is produced, the requirements document can
even imply a threat model. Th at is, the security requirements document can stand as evidence
not only of the assessment, but of the threat model from which the requirements were derived.”
Securing Systems, pp. 369–370

My opinion and experience have not changed since writing Securing Systems: the most
important document generated by a threat model, at least for the purposes of developing secure
software, will be the security requirements document.

It’s also handy to have some sort of visual indication of the system’s structure (data fl ow
diagram or logical architecture). For more complete documentation, I also like to list the attack
scenarios that have been considered credible. If there’s a requirement to capture risks from
threat modeling, then a risk assessment of the likelihood and potential impacts from each cred-
ible attack scenario is also useful.

Other than for compliance to some regulation, I don’t fi nd further documentation neces-
sary. A picture of a white board with a list of attack scenarios with estimates for occurrence and
impact ought to be suffi cient to document what’s been considered; the security requirements
speak for themselves.

Keeping documentation lightweight and natural to the analysis will speed things up, some-
times considerably. Years ago, my friend Eoin Carroll would spend weeks on graphing the various
layers of each project’s threat model. Most teams no longer have the luxury of waiting that long for
results. His threat model diagrams set my high bar for understandability and clarity—they were
absolutely amazing documents. But they weren’t easy to generate. Besides, in iterative develop-
ment processes, the threat model is subject to change as development proceeds. One doesn’t want
to spend too long on the documentation because it may be obsolete before it’s been completed.

For velocity:

• Make the easy path the secure path.
• Use standards wherever possible; automate the use of standards.
• Apply expertise only to those problems requiring it.
• Integrate with the natural fl ow of development.
• Keep documentation appropriately lightweight.

* Microsoft, n.d.

156 Secrets of a Cyber Security Architect

6.2.3 Late Engagement

I hear from security architects about being engaged with projects toward the end of the eff ort,
sometimes very close to release of the software, go-live, or production. At every security confer-
ence and every class, architects will complain of the same late engagement problem. I can speak
to the ongoing problem from personal experience, just as much as from hearing my colleagues
in other organizations complain about it.

In fact, one of my stock jokes for secure design or security architecture presentations is to
remark about development teams asking, “Bless my project before go-live.” I often get a lot of
nodding heads and quite a few chuckles from the security folk. Anybody who’s been around for
a while has experienced this problem at least some of the time, if not regularly and repeatedly.
Based not on scientifi c, but rather entirely anecdotal, evidence, late engagement appears to me
to be rampant. At nearly every consultation with experienced architects, they ask me what to
do about recurring too-late engagement.

Th is problem is at least in part a function of too much separation between the security prac-
titioners and the development eff ort. Cultivating security architects who are more closely tied
to each development eff ort, or better, placed on each development team, will allow security
tasks to more closely follow the development process organically. Hence, a satellite program is
one of the ways to address this problem.

Of course, the satellite program must train and support these new security architects so that
they understand what security tasks (SDL*) are appropriate to execute throughout the develop-
ment process. Failure to help the satellite architects understand the entire SDL will continue to
create problems such as late engagement.

But there’s another trick I use which has never failed to end a vicious cycle of late engage-
ment, at least with the team with whom I’ve engaged. Let’s say that a team comes to me a
short time before the development cycle will end. Th ey ask me to create a threat model. At that
point, if the team is completing testing, the code has already been frozen, and the design has
been implemented, so the only good a threat model can provide is to identify under-mitigated
risks that will go into production. It is generally highly unlikely that production release will be
halted, even in the face of a major security miss.

What I do is ask the team and their management what they will do if we were to identify a
nasty security risk or problem. Will they hold their release so that the issue can be addressed?
Will they ask for an exception? Would they be willing to put such a security item onto the top
of development tasks for the next release? I get the team to grapple with this problem before I
perform any analysis whatsoever.

Somehow, thinking through the situation the team created by engaging with me late causes
them to consistently engage early from then on. Th is has never failed to change the dynamic.

Th en, we agree on the timing of any SDL tasks for the next and future revisions. Once hav-
ing been through a fi re of their own making, I’ve never seen a team that continues to engage
too late. See if this works for you.

Many times, when I’ve tried to engage early, I’m told by the architects of a team that they
haven’t “fi nished the architecture yet. We’ll engage when it is complete.” Th ere is an awful
* Please see my chapter, Th e SDL In the Real World, in Core Software Security for more information

about SDL tasks and where they best fi t during a development process.

Problem Areas You Will Encounter 157

myth that threat modeling cannot be done until all the structures of a system have been set.
Unfortunately, after all the structure has been set is far too late. Building a model with the
potential to change the architecture after a great deal of hard work has been put into thinking
that structure through should seem obvious to my readers, I would hope.

Th e model has a huge potential to add elements, possibly to move them, possibly to think
through connections and data storage. If the security analysis occurs after all the other work,
then either it invalidates that eff ort, or whatever schedules and budgets have been based in the
work are very likely to change, and not in a good way: more stuff to be built.

As I say in my classes, “Start the threat model as soon as there’s suffi cient structure to
analyze.” Even a couple of functions, when put together, will probably require some security
thinking. Th reat modeling must iterate as a key part of any architecture or design work. It’s fi ne
when using any of the iterative development processes to allow the model to iterate right along
with, as a part of, the ongoing unfolding of the software.

Th reat modeling is rarely that useful when performed exactly once, at a particular point in
time. Th at’s because throughout development, things change regularly, sometimes constantly.
Modeling once, too early, and continuing structural change will be missed. I’ve already noted
the pitfalls of attempting to threat model too late (above). Further, when we freeze the threat
model, this hamstrings the ability of developers to meet problems—security problems included.

Ultimately, a frozen list of security requirements that cannot be amended as a part of the
creation and implementation process will ultimately not get built at all. I learned this lesson the
hard way early on as team after team in pre-production reviews would tell me that my frozen
requirements could no longer be built as described because of other changes to the software
that occurred throughout development.

Instead, today, I advise iterating security just like anything else that’s been required. As
teams learn about how to implement, security implementation is likely to improve, just like
other parts of the software. Of course, this works a lot better with satellite security practitioners
embedded in the team who can respond to changing conditions as they occur. Another point
in favor of satellite software security architects.

Obviously, by starting security analysis right alongside other early thinking, early engage-
ment, that long-sought ideal will automatically be achieved. But I like to get started even earlier!

When I was asked to provide technical leadership for Cisco’s web products, there was very
little engagement except for infrastructure improvements. Th ere had been little formal security
architecture practice, though at least one of the products had security-savvy people on each
key team. It sounds perhaps worse than it was. Actually, I learned a lot from those people; they
invented some truly innovative security solutions. Even so, my task was to build a formal secu-
rity architecture practice, an SDL, and to fi gure out how to make it work with these products
(of which there were eventually nine).

Curiously, one of the product’s sales team was encountering a lot of questions about the
product’s security that they couldn’t answer. To respond to those security questions, the sales-
people started to invite me to their customer meetings when these were focused on our prod-
uct’s security. I believe I interacted with around 50 enterprise customers over a period of about
six months.

Th ose sales meetings often included the product’s product managers, those people respon-
sible for guiding the direction of product development. As our product managers began to

158 Secrets of a Cyber Security Architect

understand my role and the value I was bringing to these customer interactions, they started
to engage me and my team as they were defi ning each set of new requirements. I call those the
“high-level security requirements.”

Once security architecture was routinely engaged early by product management, our tim-
ing problems disappeared. Since high-level requirements were included with eff ort descriptions
from product management to development, continuing security engagement was organic from
the beginning of eff ort on through the development process. Our engagement timing prob-
lem had been solved through a profound demonstration of value up front, even before formal
development began.

Th at early in the requirements process, requirements don’t have to be particularly specifi c.
I tend to think of these high-level requirements as security strategy statements. What security
building blocks will need to be architected and then designed to achieve the organization’s and
the system’s security goals? What security features will the system’s stakeholders expect? At
this early stage, there’s no need to identify particular implementations. Th at will be done later,
during architecture discussions.

Of course, requirements such as “product will be secure” are absurd. I’m not making this
requirement up: I’ve seen that exact sentence in a product requirements document more than
once, I’m afraid to say.

Early on, knowing that authentication and authorization will be required is probably
enough. It may be obvious that data will cross untrusted networks and thus require protection
(usually, encryption). Really early on, it was suffi cient to identify the sorts of security features
that stakeholders will require and not much else. It’s pretty simple, really. Th e important thing
is that security engagement will have already begun before a single architecture diagram has
been drawn or a single line of new code written. Th at’s truly early engagement.

If you can hook into product management, you will solve your early engagement problems.
But gaining their trust may take some eff ort. I got lucky through that series of customer
meetings. In subsequent roles, I’ve been forced to work harder at building relationships with
my product managers such that early engagement unfolds naturally as a part of the product
management process.

Ultimately, an appropriate timing for security engagements will end up being a relationship
problem. Development teams are very good at overlooking anything that doesn’t make engi-
neering sense. Th ey are good at disinviting anyone who takes more eff ort than the value they
deliver. Th is tendency to ignore is why just mandating rules doesn’t usually solve many of these
problems, particularly the timing ones.

Executives can declare repeatedly that security engagement will be early. Policies can be
drafted explicitly demanding early engagement. Th e SDL can get published with specifi c activ-
ity timings. And yet, I’ve seen far too many organizations that have done each of these and still
complain of late engagement—engagement so late that nothing can be done for the develop-
ment eff ort except to get exceptions and waivers approved.

I still believe that a mature organization will document its SDL clearly and then set expecta-
tions for execution of the various tasks in the SDL as clear as humanly possible. But the ensu-
ing collateral that results from drafting an SDL is for reference, not culture change. In my very
humble experience, relationships and trust, not policy mandates, deliver early engagement.

Please take a look at Chapter 4, Culture Hacking.

Problem Areas You Will Encounter 159

• Empower a community of practitioners.
o Corollary: Accept all off ers of help.

• Build a community of practice for practitioners. Th e practices will be based upon the SDL.
• Off er obvious value through the behaviors you want to encourage.

o Corollary: Reward the behaviors you intend.
• Use my consequences trick (described above) on teams that keep operating in the old way

(i.e., engaging late). Ensure that those teams understand how you can’t help them as well
as you might have (or at all).

Problems such as late engagement don’t change quickly. I fi nd that I have to play a long
game, continually working toward the culture changes that foster security while addressing
behavior that cannot work, including too late security engagement.

Isolated Security Practitioners

Sometimes security practitioners, especially those who are “federated”—that is, assigned to a
security role from outside the security team—feel alone. It can be a very lonely role, having to
call out security problems as a lone voice among others who aren’t focused on security and may
even experience security as a blockage to getting other priorities accomplished.

Th ose security people who don’t report into a central security team have dual responsibili-
ties. It’s important to understand a couple of potential confl icts:

• Th e person’s manager may not understand the security role well, or at all. Th e manager
may have little understanding of the value to security of the person’s work.

• Others on the development team may experience security needs as one person’s opinions,
not as a required set of functions and activities assigned to every development eff ort.

• In order to meet budgets and schedules, development managers may try to silence the
security person, since security requirements may impact deliverables.

• Th e security person may feel confl icted when there’s disagreement: their manager and
team versus security. A person involved in such a confl ict is likely to believe that they are
caught in a crossfi re and have divided loyalties.

Any of the above experiences can lead to feelings of alienation and isolation on the part of
security practitioners, especially so-called “satellite” or “federated” security architects.

One-way communication from a central security team to their satellites will not help any
of the above situations. One-sided communications instead are likely to increase a sense of
isolation, of being forgotten, of being asked to sit in an organizational “hot seat” for secu-
rity’s sake.

In my humble experience, one of the best methods to address isolation is the formation and
sustenance of a community of practice, as described above and in Chapter 5, “Learning the
Trade.” If there is a vital community, practitioners are supported, interact regularly with their
peers, solve individual and collective problems together, and generally come to understand that
each is not alone and can get help whenever needed.

Importantly, I try to remind everyone who has a security due diligence role for the orga-
nization to avoid wasting precious infl uence on issues of low impact (i.e., lower-risk items).
Low-risk issues are prime candidates for the use of exceptions. I like to say that “exceptions are

160 Secrets of a Cyber Security Architect

my friends” and “exceptions are my favorite tool.” When a development team refuses to fi x an
issue, for whatever reason, off ering an exception normally will transform the interaction from a
disagreement to problem solving, from “you must fi x” versus “no we won’t,” to “when can this
get fi xed and how will we fi x?”

Exceptions are a tool to maintain relationships and trust in the face of divergent priori-
ties and interests. Performing the duties of a satellite security architect puts practitioners into
confl ict with their teams—the very people with whom the security architect must get along
if she/he/they are to be eff ective. Th e security architect must have infl uence in order to foster
open-minded exploration of risks and development priorities. Hence, one of the main tasks
for those who are building and running a federated security architecture program will be to
protect satellite security architects’ infl uence.

Obviously, coaching satellites on people skills must be a part of the program. In addition,
tactical use of exceptions will make an end-run around the built-in confl icts of interest inher-
ent in a federated approach in which security practitioners are appointed from within develop-
ment team members.

Managing contentious escalation is another technique that we’ve used to protect security
architects from confl icts with their own teams and management chains. When a member of
the federated team must stand up for a security fi x while their own manager, perhaps even
the management chain, are resisting, this can be deadly for the security architect, since her/
his/their employee performance rating and perhaps bonus all depend upon the goodwill of
the manager. While we would hope that managers are mature enough to understand that
their employee is merely performing assigned duties, quite unfortunately, I’ve seen far too
many managers that believe that the employee is supposed to agree with whatever the manager
believes. Disagreement on the part of the security architect can adversely aff ect eligibility for
promotions and other advancement and perquisites that the manager controls.

A solution to this built-in diffi culty will be for the central team to take over the situation.
In this way, the manager and her/his/their employee
will no longer be in confl ict. Generally, the central
security architecture team will have a diff erent man-
agement chain and thus, will be independent of any
direct line-management pressure to conform.

Because at least some members of the central
team will be independent and perhaps relatively
more senior in the organization hierarchy, these

people are in a much better position to escalate for management priority decision making or
risk assumption. Th ere is no confl ict of interest because the central team will have been hired
to identify signifi cant issues, to seek solutions, and to raise risks for appropriate decisions.
Basically, this is just the sort of thing (beyond technical leadership) that senior team members
have been tasked with.

A senior central team member (senior security architect) can identify a correct decision
maker. Th ey will then interact with that person(s) to seek appropriate priority, resource alloca-
tion, and risk determination for the issue that’s being escalated. In this way, the satellite secu-
rity architect has been protected from any side-eff ects from trying to do the right thing around
a security issue that has become contentious.

When setting up a security architec-
ture organization, it is critical to con-
sider the necessity for management
independence of at least some secu-
rity architects, usually the central team
or the most experienced resources
who will lead the program.

Problem Areas You Will Encounter 161

Please see Section 5.3.1, How to Escalate for Management Decision (on page 128), for
more information on management escalations.

6.2.4 Skill Churn

If you make sharing, mentorship, and teaching a requirement for promotion, these will become
organic. Each successive generation of security architects will take a cue from their ancestor
architects to nurture the next generation, and so on through successive generations of security
architects.

Even in an organization that incentivizes loyalty and cultivates long-term employment,
there will be people who leave. No matter how careful hiring practices are, some number of
candidates won’t work out for one reason or another; it’s a fact of hiring that not every person,
even when appearing to be qualifi ed, can perform each role’s responsibilities well enough, can’t
seem to grow into some particular role. Security architecture, as you may have seen in earlier
chapters of this book, requires technical capabilities, business understanding, and a strong dose
of interpersonal skill.

Th e following story, quoted from Securing Systems (pp. 374–375), I hope will highlight the
error of believing that every senior engineer must then become an architect.

“At one organization that I worked for, as their architecture practice began to mature,
management and HR made what I consider to be a fatal mistake. Since architects are gen-
erally more senior than engineers (though not always), HR (and engineering) assumed that
the technical growth path was from engineer to architect for everyone. Since in order to be
a competent architect it’s usual for a person to have been an engineer for quite some time,
it seemed intuitive that as engineers matured, they would move on to architecture. Th e
new technical growth path at that company, in attempting to account for the emergence
of architecture, went from engineer to architect to senior architect to enterprise architect.

“But there’s a fl aw in that logic: Not every person is comfortable with the kind of
horizontal thinking that architecture typically requires. In fact, plenty of people become
engineers because they like the linearity that engineering typically applies. I’m not saying
that architecture doesn’t require linear thinking. It does! But architecture also requires
patterning, relationships between components, lots of abstractions. Plenty of engineers
simply aren’t comfortable with the amount of ambiguity that occurs in the practice of
systems architecture. For long periods of time, you don’t know the details of many of
those little boxes in the diagram. You have to be comfortable with that.

“Furthermore, as I stated above, architects tend to be leaders, which means, to be
blunt, architects have to work with other people. Other people have to like working with
an architect. Th ere are a great deal of ‘people skills’ involved in a typical architecture role.
Th ere are plenty of engineers who don’t particularly enjoy working with lots of people
and, even more so, with people who disagree with each other and with that engineer. I
like to say, ‘If you don’t like working with people, security architecture is not for you.’

“At the organization that I described, as soon as the architecture role was opened up as
the single technical growth path, one unit immediately promoted fi fty engineers to the
architect role. Many of these engineers had been in line for promotion for quite a long

162 Secrets of a Cyber Security Architect

time. Once the architect role opened up, it seemed natural to management to move these
engineers upward in the new growth path.

“You can perhaps see the problem. A number of those people, although perfectly won-
derful engineers, weren’t very good at thinking about complex relationships and fl ows
between systems. And a number of the same set of individuals didn’t like interacting with
people all that much. For a few years, it was a mess.

“In that situation, there were numerous ‘architects’ who didn’t have the capability, per-
haps not the aptitude, for what the architect role requires. And remember, these people
were senior to a lot of the engineers with whom they were working. Th at means that even
though architecture decisions might not be the best possible solutions, those working
underneath these new architects might have to implement something that was not ideal.
Indeed, some of the engineers could see the mistakes being promulgated by the new
architects, which led to a loss in confi dence in the architecture practice.

“Th is one mistake caused a three-year halt in the development of what eventually
was an industry-leading enterprise architecture practice. It took several years to fi lter out
those folks who would never gain the right skills or who didn’t have the temperament,
while at the same time having to wait for the development of those who would take the
places of the poorly promoted lot.

“Since our security architecture program depended upon the capabilities of the
enterprise architecture program, our growth and maturity was somewhat stymied
for those same three years. Indeed, we had to deal with a good deal of disruption
and outright incompetence during that time. It wasn’t fun. Not everyone can be an
architect. Not every security person will be successful as a security architect. Th e les-
sons from those three years are burned into the way that I select candidates for the
architecture role.”

One of the tasks that a security architecture leader or manager must face is the eventual
need to help someone who isn’t working out to fi nd another role somewhere else. Which means
that a new person will have to be found to fi ll the vacancy.

At the same time, as security architects grow in skill and experience, they will be off ered
positions elsewhere. Security architecture is a very competitive career space at the time of this
writing. A job change can often be accompanied with inducements such as additional salary
and increased organization level. Th ese can be very hard to pass up: signifi cantly more money,
equity in a fast-growing company, and a bump in level, say from Manager level to Senior
Manager, or even to Director or Principle Architect/Engineer. People will move on no matter
how Human Resources tries to remain competitive and no matter how much people like work-
ing for an organization and with a particular leadership.

Hence, in my experience, a program must continue to invite new people in, then to train
them. Experienced people need to be given expanding scopes of responsibility and authority,
as well as greater technical challenges. It’s important to maintain explicit and implicit paths
to growth.

Th is includes the top technical position. Of the four programs that I’ve built, I’ve left each
one better than I found it. I’ve attempted to groom at least two people who could step into my
shoes should something sudden happen to me. And, I’ve purposely stepped aside so that one of
those people could try their hand in the top leadership position.

Problem Areas You Will Encounter 163

While my strategy might not work for everyone, my leaving allows the next technical leader
to try her/his/their hand as a leader; it removes any “glass ceiling” from preventing growth. It
might be hard on an organization and program in the moment, but if I’ve done my job cor-
rectly, although there will be a shift in style to a new leader, the program should survive and
function into the future.

My point is that there must be a possible and visible growth path for everyone, or skill loss
will be too high for the program to maintain and survive.

Also, by fostering generations of teachers and mentors, the program can organically deal
with the inevitable churn that security programs today must face.

6.2.5 Exceptions

Exceptions are your friends! Th ey should never be used as punishment or as retribution.
Exceptions are one of the powerful tools that security has to meet the inevitable confl icts that
will occur between business drivers, development objectives, and security demands. Th ese dif-
fering needs must and will come into confl ict from time to time. Th e wise security architect
must prepare. Usually, the solution set can include an exception to relieve friction and to shift
the discussion to solutions.

Exceptions are agreements, with management sign-off , to allow a risk to exist for a specifi ed
period, by the end of which a mitigation will be released. More importantly, exceptions are a key
to moving from a win/lose confl ict to a win/win solution. Development gets to put off immedi-
ate work on the basis of a fi rm promise to complete the needed security fi x within an agreed-to
time period. Th e conversation moves from “Yes you will/no we won’t” to “How can this be fi xed
and when can that fi x be completed?” Th e second conversation is the one I want to have.

Furthermore, I know, in point of fact, that there are many times that needed security changes
cannot be delivered immediately due to other contingencies. Th e important variables to factor
into decisions are risk without mitigation, the expected reduction in risk from mitigation, the
diffi culty of fi x, any expected business gain from the mitigation (even as watery as customer
goodwill), and resources required to complete the work. Once these have been estimated, a
reasonable balance between immediate risk taking and eventual fi x can usually be found.

I’ve already described the process for escalation in this chapter. Th e same rules apply for
exceptions: the deciders probably shouldn’t be those who are directly biased toward a par-
ticular decision (development mangers, project managers, product managers, developers, etc.).
Deciders have to be high enough in the organization to have a broad view and to have the
authority to take on risk for the scope of the potential impacts. I’m never afraid to escalate
upward to fi nd an appropriate level for decision making.

Even minor exceptions build trust, as I’ve already described. I keep these really simple and
fast, so that decision makers aren’t deluged with insignifi cant problems. Often a quick phone
call with an email documenting risks is suffi cient for low-risk issues.

 At the end of the day, using exceptions to move conversations to solutions rather than argu-
ments is a powerful tool that I’ve wielded to great eff ect for many years. Granting exceptions
demonstrates to partners that I’m willing to negotiate fairly, compromise, and, most impor-
tantly, to understand their problems and to factor those into our mutually agreed upon solu-
tions. Th at process—that is, using exceptions—has proven to be an eff ective tool to establish

164 Secrets of a Cyber Security Architect

successful relationships that are strong enough to meet the really big challenges that will even-
tually show up in the form of a critical security issue.

6.2.6 Fostering Innovation

One of the frictions that may frequently arise between security needs and developers will be a
desire by developers to explore new techniques and technologies. Often, when a new approach
is “hot,” developers will want to get that technology into production as soon as possible; also,
if developers implement the new technology, they will do so, ad hoc, organically, perhaps
without much of an overarching plan or architecture. And there is a tendency to assume trust,
both of the tool’s capabilities as well as everyone involved, giving a broad swath of people high
privileges for convenience sake.

From a security perspective, every unknown change must be considered as potentially risky
until proven otherwise. After all, security people typically have a due diligence responsibility to
their organizations to either mitigate harmful risk to conform to the organization’s risk tolerance
or to make unmitigated risks visible to decision makers. A risk, once identifi ed, cannot be simply
left unattended. Security’s role is to bring digital risks to within organizational tolerances.

Developers are apt to perceive security’s hesitancy as standing in the way of perfectly legiti-
mate exploration intended to improve things. Which is, as far as I’m concerned, a reasonable
objective. Still, a lot of unintended damage can be done by a developer or anyone else. Th ere’s
truth in both positions in this case, hence the resulting organizational friction when this con-
fl ict appears.

People should be exploring new technologies. At the time of this writing, new programming
languages have been developed, new technologies to build, deploy, and maintain software are
invented or improved almost daily. Th e aggressive pace of innovation is especially marked for
software running in virtual environments, often hosted where cloud services are high lever-
aged. Recently, there has been a nearly relentless creation of new software appearing to off er
greater automation potential.

DevOps off ers a philosophic shift and also softens the technical diff erences between writing
software and operating software. Th e philosophic shift is that writing software and running it
is a deep partnership which has a common goal: successful software that behaves as intended
(and, presumably, specifi ed).

It used to be that the skill set for developing software was fairly distinct from that of
operations. Writing and testing code diff ers from observing the metrics and behavior of that
same code. Whereas operations people usually wrote some automation, the complexity and
algorithms were diff erent and orders of magnitude less complex than many that have to be
employed to produce commercial software. Th e languages were diff erent: scripting and shell
languages for administration versus third-generation, structured programming languages used
to produce applications or operating systems.

But that wall has collapsed. For instance, operations folks use Python; lots of commer-
cial code is written in Python, to name just a single scripting language in wide use today.
Furthermore, new DevOps tools code operations rather than having to script them or manu-
ally perform tasks, as these used to be accomplished. DevOps folks have to code; it’s just that
the code does operational things like build loadable images, start the images, test out new code

Problem Areas You Will Encounter 165

in a subset of cloud instances, etc. DevOps breaks down old distinctions that are no longer
applicable between coder and administrator. Everybody codes; they just solve diff erent prob-
lems with software.

Hence, DevOps’ implementation of new technologies may appear to security to be nearly
relentless; every time I turn around, it seems that there’s two or three new tools of which I’ve
never heard and that may present more attack surface. If the DevOps implementers fail to care-
fully consider security when choosing and deploying new technologies and tools, then the oppor-
tunity to introduce unprotected attack surface is very high. Security folk know this, in their
bones, live and breathe the consequences, daily. It should be no surprise that the natural reaction
to this pace of innovation might be to try and slow it, to try to get just a bit of control around it.

I don’t think that just saying, “No, you can’t try that new technology,” works very well.
Th ere are good reasons to architect our build and deploy systems. I hope that I’ve articulated
well enough security reasoning for architecture versus organic growth in this and other works.

To relieve this friction, that inevitable tension between innovation and improvement and
the need to have time to design security appropriately, there must be a space in which experi-
ments can proceed unhindered.

One solution might be to provide an experimentation space for each developer to play in.
Th at space might be a sandbox provided by a cloud provider. I’ve seen this work eff ectively, at
least, anecdotally.

At the same time, innovators probably also need a facsimile of production to which to bring
likely candidates that have been discovered and qualifi ed through developer exploration. Since
the facsimile environment wouldn’t have production data and could be well isolated to avoid
leakage, its security control might be considerably looser than environments used for actually
building, deploying, and running software for business or customer use. In this way, that long-
sought-after experimentation space could be fostered with minimal security implications.

Th e facsimile environment mustn’t also be one of the test environments. Otherwise, there
will be confl icts of interest between use of the resources for tests and unfettered (or lightly
constrained) experimentation. Also, every part of the build and deploy chain will usually have
security requirements. Th ese needs will very likely get in the way of innovative play. Th e fac-
simile play area needs to remain reserved for the purpose of experimentation, I believe. It will
drift from facsimile every time a new technology is introduced, so it really wouldn’t be suitable
for dual purposes.

Th e other necessity has been expressed elsewhere, by many others, so I don’t believe this is
anything new or revelatory: management must budget time for research and exploration for
every developer. You can’t discover if you haven’t time.

Th ere is another key to ensure that innovation actually occurs. Experimenters must share
everything that’s been learned—the good, the bad, the ugly. If a tool or new technology appears
to be promising, everyone will want to know about it. Planning for potential inclusion will be
seeded by the learning gained through experiments. At the same time, if experimentation dem-
onstrates that something isn’t going to be benefi cial, others won’t want to waste time repeating
the same experiments. A regular, periodic, predictable forum for reporting on experiments not
only highlights interesting new technologies, but also generates the excitement necessary to
support potential changes to production services.

Th e whole point is to encourage use of new tools, but in a safe way.

166 Secrets of a Cyber Security Architect

6.3 Dealing with Chaotic Elements

It’s a plain fact that at work, we have to collaborate with people with whom we probably
wouldn’t interact given complete freedom of association. Even the best hiring managers occa-
sionally bring people in who behave unpredictably, for whatever reason.

Personally, and this probably just stylistic, I rather enjoy working with people whose thought
processes are unique, even idiosyncratic. Sometimes, similarly unique emotional styles might
be coupled to idiosyncratic and original analysis. I’m willing to take others’ idiosyncrasies if
they are willing to work around mine.

Whatever your stylistic preferences, the larger your team, your organization, the more likely
you’re going to have to deal with people who sometimes appear to be a chaotic element—that
is, unpredictable in the workplace.

Obviously, if someone is signifi cantly hurting the ability of a team to deliver, that’s a man-
agement problem. Other works deal with this situation in detail. I won’t address how to man-
age workplace behavior problems here.

However, there is a single type of destructive behavior that I believe does merit a comment.
A person who is working solely for their own benefi t and advancement, who believes that pro-
motion is a win/lose competition, who sabotages others can be very diffi cult and destructive to
the community spirit I’ve outlined in this book. My dear friend and mentor, Roddy Erickson
advised me many years ago not to give disruptive, dishonest people my authenticity. Th ey will
wield as a weapon whatever honesty and vulnerability is given them. [Roddy Erickson no lon-
ger works in technology. He had worked on the early DARPANET and was one of my early
programming and computer science mentors.]

Th e problem I fi nd with ignoring such destructive and dishonest behavior is that I’ve seen
such people turn on anyone who is achieving success beyond what the competitor can toler-
ate. I’ve seen some truly gifted people become embroiled in terrible personnel wars that were
entirely manufactured to destroy their work. Becoming a target can severely impact one’s abil-
ity to get things accomplished.

My method, once I realize that a workmate is not functioning with integrity, is to appear
to them that I’m their strong supporter. I don’t actually have to do much; words of support are
often suffi cient to convince such people to direct their aggression elsewhere. Th en, I proceed
with my own objectives.

Quite often, such people have over-promised what they can deliver. Th e lack of delivery will
often result in one of two things: the whole charade crashing down on the destructive person
and they leave, or (and I’ve seen this several times), the person declares victory on the fi rst suc-
cessful milestone and uses that as a stepping stone for their own advancement to a diff erent
role, leaving the mess for others to clean up.

I’ve watched such people go from architect through the grades to vice president in the space
of a few years. Th is can be a very “successful” strategy, if what one is after is title and status.
Th at’s not my defi nition of success. But at least the destructive behavior disappears on its own
volition. Good riddance.

In any event, if your career lasts long enough, you are likely to run into unique, idiosyncratic
people, at least a couple of whom may well lack integrity. I fi nd that it’s useful to smoke these
out in order to protect myself and my programs from their path of destruction.

Problem Areas You Will Encounter 167

6.3.1 There Are Differences

We have to stop jumping from threat modeling to penetration testing to secure coding as
though these are all equivalent. Th ey are not. Each of these activities is a discreet dimension of
software security, especially when software security is considered as a wholistic problem. Each
technique at this state of the art is quite distinct from the others.

• Th reat modeling. In this work, I’ve tried to explain that threat modeling is an analysis
used to uncover likely attacks, rate the relative risk from successful compromise, and, based
upon that analysis, build defenses intended to prevent or dissuade attackers, or, at the very
least, slow attackers down suffi ciently to discover the attack before serious damage occurs.

• Penetration testing. Penetration testing refers to manual security testing, usually by a
highly skilled tester who employs, as close as possible, the same tactics, techniques, and
processes (TTP) as those that real-world adversaries will use.

• Secure coding. Securing coding and its corollary verifi cation steps such as manual code
review and static analysis for security testing (SAST) is concerned with not introducing
unintentional eff ects into code as it is written, which will allow attackers some leverage to
prosecute their goals—that is, vulnerabilities.

I was listening to a presentation by (supposedly) software security thought leaders at a major
conference. Even these purported experts substituted these three activities as though they were
equivalent, rather than addressing distinctly diff erent problem areas of software security. It
appears as though there is still considerable confusion, despite works such as Core Software
Security, for which I drafted a chapter, which explains the detailed diff erences between the
many activities and tasks that make up a robust and rigorous software security program.

I hope you, the reader, see that each of the foregoing approaches provides a signifi cant addi-
tion to releasing self-protective software. But these address diff erent aspects of the problem space:

• Identifying the security requirements that should be built before these have been
implemented

• Ensuring that what is coded doesn’t also create attacker leverage
• Proving that the security requirements are functioning as intended and providing addi-

tional assurance that no unintended behavior has leaked through secure coding activities

Th reat modeling happens early in development and continues so long as changes are made
to structures and design.

Static analysis won’t identify most design issues. It’s focused on code quality, implementa-
tion errors.

Penetration testing is intended to off er some proof both that the threat model was correct
and that any security analysis techniques have not left something important unaddressed.
It takes place very late in a development lifecycle, when a system is nearly complete or even
after release.

It is a major error to confuse these important techniques. Worse is the tendency to believe
that software security can be handled with any particular approach by itself. Software security
is a multi-dimensional, multi-variate problem whose challenges must be addressed by a collec-
tion of overlapping techniques and analyses that must be enacted throughout a development
process, whatever that process may be.

168 Secrets of a Cyber Security Architect

6.3.2 Translate and Generalize

“Customers never come with problems; they always come with solutions.”

—Joerg Reichelt, Senior Security Architect, Cisco Systems, Inc.

My friend Joerg Reichelt captures one of the key problems for anyone who must translate
customer/client feedback into stuff that will actually get built—that is, requirements. It is a
truism that changes will too often be off ered as, “Here’s what I want you to build,” rather than,
“I need . . .” Particularly, security folk will often want encryption everywhere data is stored
or exchanged, typically not thinking through the thorny problems of key protection, which
today is the more diffi cult problem: we have encryption standards that, at least until quantum
computing fulfi lls its promises, appear to be quite suffi cient to achieve reasonable confi dential-
ity protection.

One of the skills that we must acquire is the ability to translate backwards from the cus-
tomer’s solution to a customer need. Take for example, a customer request of a Software as a
Service (SaaS) that all cloud processing for that customer be encrypted by the customer’s keys,
which the customer will hold.

I’ve heard this very encryption request multiple times over the years. Such a solution honors
the due diligence responsibility to maintain confi dentiality throughout the exposure that must
occur as a result of allowing sensitive data beyond security controls under the direct governance
of an organization. Intuitively, encryption appears to be the ideal solution.

First, data cannot be processed if it is encrypted and the keys are not available to decrypt.
Furthermore, if data must be decrypted at every stage of processing, the processing time
required for decryption will be signifi cant, probably far too costly, especially when considering
the performance cost of retrieving keying materials. Plus, will the customer even trust the SaaS
to handle the keys at all, even if only using a customer key once to produce an intermediary
key for the processing?

Th e translated request is for careful protection of confi dentiality during SaaS processing.
Th at’s what the customer wants. Encryption is their solution. Obviously, if the data must be
processed in some fashion, there will have to be compensating controls such that confi dential-
ity is appropriately protected.

In Securing Systems, I off ered a design paradigm for confi dentiality protection for precisely
the confi dentiality during SaaS processing problem:

“Similar to network encapsulation, each tenant in a multitenant application will be assigned
either a header preceding data or a header and footer surrounding data. Th e encapsulation
identifi es which tenant the data belong to and ensures that each tenant’s fl ows remain separated
during processing. Only a particular tenant’s data may fl ow through a chain of processing
intended for that tenant just as a single TCP message will be routed to a single IP address and a
unique TCP port number. Th e encapsulation must be designed such that no tenant’s data can
be mistaken for another’s. Figure 11.3 represents this data encapsulation visually.

“Usually, the tag that identifi es the tenant is a token tied to the tenant’s account, not the
actual tenant name or other public or well-known identifi er. In this way, the application has no
notion of tenant identity. Th e tag is ‘just a number.’ Some other, separate process is used to tie
processing to the tenant. “Better than using ‘just a number,’ perhaps a predictable number, is to

Problem Areas You Will Encounter 169

introduce unpredictability—that is, entropy into the calculation of the tag token. In this way,
should the application be breached and one or more fl ows become compromised, the attacker
will have more diffi culty associating an unpredictable number to the vendor’s clients.

“A step above utilizing a high-entropy token would be to add a bit of indirection into the
tag. A separate store might associate a client account to the hash. A second temporary storage
(perhaps in memory?) would associate the tag token to the hash. At this point, an attacker must
breach the hash-to-client store and the token-to-hash store. Th ese should be kept in segregated
processing units, perhaps separate network segments? Capture of the fl ows delivers nothing
but a bit of data that is being processed. Wiring that data back to a client would require several
more attacks, each successful.

“I’ve seen a data store that used the above scheme to store customer data fi les. Although the
fi les were all comingled on disk, they were stored under the token name. Th ere were tens of
thousands of individual fi les, each named by some high-entropy number. Th e number-to-hash
store resided outside the data layer. Th e hash-to-client store was in yet another layer.

“At this company there was 24×7 monitoring of data administrator activity. An alert would
be generated should any customer fi le be accessed by an administrator account (administrators
had no business reason to look at customer fi les).

“Essentially, administrators who had access to the client/hash store didn’t have data access.
Data administrators couldn’t access the client key. In this way, customers were protected from
each other, from the accidental comingling of data, and from accidental or malicious adminis-
trator access. A shared application must be designed to keep tenants’ data separated suffi ciently,
both in processing and storage.” Securing Systems, page 316–317

Not only must a specifi c solution be understood as a request to address a problem or miss-
ing requirement, but also, it often occurs that the analyst must generalize from one particular
customer or client’s problem to a solution that will address multiple customer needs (many of
which may have been communicated as specifi c solutions which address only that customer’s
needs). One must scry into the particular and specifi c, the local and unique, for that which
will enhance functionality across user or customer needs. I often ask myself, “What missing or
incomplete function underlies or enables all of these requests?”

In the above example, the customer request was generalized into a need for robust data
separation during processing and storage whose controls include separation of duties, data
encapsulation techniques, cryptographic hashes, and indirection such that attack cost is raised
signifi cantly for both external attackers and privileged insiders. But the data remain processable
and highly performant, reaping the benefi ts of SaaS while also providing confi dentiality. Th e
customer request has been translated and generalized. What’s been built is not specifi cally what’s
been requested, but rather what can be built to achieve the result: confi dential and processable.

Figure 11.3 Multitenant Data Encapsulations

170 Secrets of a Cyber Security Architect

6.4 Summary

Table 6.1 Summation of Actions Described in This Chaptera

Do Don’t

Consider whether or not a security architect is
actively included in development team meetings
by invitation.

Measure security architect performance by the
number of projects completed or the number of
requirements generated.

Establish a baseline suite of tests for each
security validation tool, in which each baseline
test produces high confi dence, low false positive
results.

Attempt to lower risks by demanding that
developers use an overly broad set of each
tool’s tests, especially when these are known
to produce signifi cant false positives or whose
results will require concerted human analysis
and security expertise to validate.

Give developers the ability to add tool tests
above the baseline. Let them fi nd a workable
balance between tool aggressiveness and noise
in the results.

Keep track of the types and complexity of exter-
nally reported issues.

Rely on external bug report totals or CVSS
scores in place of risk analysis.

Measure the lack of attack success and impact. Equate number of attack attempts or number of
vulnerabilities to “risk.”

Measure the effectiveness (or lack) of a security
architecture program by counting successful
exploitations.

Make the secure path the easy path: automate
consumption of security services and document
repeating requirements.

Waste skilled resources on repeating the same
security requirements over and over again.

Scale up to demand by training internal people
to become security architects.

Attempt to hire large security architecture
teams.

Hire a few security architecture leaders who are
also passionate about teaching.

Empower “satellite” security architects as local
members of Infosec/security.

Ask satellite people to become security spies on
their teammates.

Invigorate and empower the program by annu-
ally thanking executives for their support.

Waste time on disruptive, oppositional
mid-management.

Take over escalations when carrying forward will
place the satellite person in confl ict with their
own management.

Review threat models based upon changes that
have security implications.

Waste time threat modeling stable systems
(when a thorough threat model’s requirements
have been implemented).

Employ threat modeling automation for repeat-
ing and stable architectures whose requirements
are well understood.

Relay solely upon threat modeling automation
for complex, one-of-a-kind, and innovative
analysis.

Threat model attack scenarios known to have
been successful against similar systems and
technologies.

Fantasize about attacks that require techniques
not yet invented.

Keep threat model documentation appropriately
lightweight.

Waste time on visually stunning, detailed threat
model documents unless there is a business
reason for them.

(continues on next page)

Problem Areas You Will Encounter 171

Do Don’t

Shift consequences from too-late security
engagement to developers and their manage-
ment chain.

Attempt to solve secure design issues after a
development cycle is nearly complete.

Allow the threat model to grow and refi ne
throughout and as a part of design work.

Rely on interjected, single point-in-time threat
modeling analysis, especially performed after
architecture has been considered complete.Collaborate with product management and

similar functions as new development is still in
ideation.

Create and maintain a security architecture com-
munity of practice.

Rely on top-down, central Infosec-to-others
communication channels.

Grant tactical exceptions to shift confl icts over
development priorities.

Establish a possible and visible growth path for
every security architect, at all levels of skill.

Assume that every engineer will mature into an
architect.

Provide spaces in which engineers can experi-
ment, innovate, and try new technologies.
Encourage use of new tools, but in a safe way.

Make innovation so diffi cult and constrained
that experimentation isn’t worth the effort or
experimentation occurs sub rosa, evading poli-
cies to prevent it.

Pretend to support efforts by low-integrity
people who work only for their own advance-
ment and sabotage others.

Get into confl icts with low-integrity individuals if
at all possible.

Generalize customer feature requests into
changes that will benefi t a collection of
customers.

Accept customer feature requests as given with-
out further analysis.

a Table 6.1 is supplied in the hope that the table’s summary statements provide a quick reference to the tips
and tricks that I’ve outlined in this chapter.

You may not encounter all of the above problems. Still, I discuss organizations’ problems
on a regular basis. I see the same problems crop up over and over again. Indeed, it may be true
that as a program matures, at least some of what I’ve outlined must appear as a result of the
maturation process.

I hope that solutions that have proved useful to my programs help you to craft your most
eff ective program; let the foregoing be a starting point for surmounting your challenges. Please
let me know how well these work, or not.

Table 6.1 Summation of Actions Described in This Chapter (cont.)

http://www.taylorandfrancis.com

173

Appendix A

Heartbleed Exposure,
What Is It Really?
Posted on April 17, 2014, at http://brookschoenfi eld.com/?p=213

 “Heap allocation patterns make private key exposure unlikely.”

Neel Mehta, discoverer of Heartbleed

In the media, there’s been a lot of discussion about what might be exposed from the heartbleed
OpenSSL attack. It is certainly true that very sensitive items can be exposed. And over thou-
sands of test runs, sensitive items like private keying materials and the like have been returned
by the heartbleed buff er overread.

A very strong case can be made for doing exactly as industry due diligence suggests. Teams
should replace private keys on servers that had been vulnerable, once these are patched. But
should every person on the Internet change every password? Let’s examine that problems by
digging into the details of exactly how heartbleed works.

First, heartbleed has been characterized as an “overfl ow” error: “Heartbleed is basically a
buff er-overfl ow vulnerability”. Th is unfortunately is a poor descriptor and somewhat inaccu-
rate. It may make better media copy, but calling heartbleed an “overfl ow” is a poor technical
description upon which to base a measured response.

Heartbleed is not a classic buff er overfl ow. No fl ow control or executable code may be
injected via heartbleed. A read of attacker chosen memory locations is not possible, as I will
explain, below. A better descriptor of heartbleed is a “buff er over-read”. Unintentionally, some
data from memory is returned to the attacker. To be precise, heartbleed is a data leak, not a
fl ow control error.

In order to understand what’s possible to disclose, it’s key to understand program “heap”
memory. Th e heap is an area of memory that programs use to store data. Generally speaking,

http://brookschoenfield.com

174 Secrets of a Cyber Security Architect

well-written programs (like OpenSSL) do not to put executable code into heap (that is, data)
memory[1]. Because data and execution are separated, the attacker has no way through this
vulnerability to execute code. And that is key, as we shall see.

As a program runs, bits of data, large and small, temporary and more or less permanent for
the run, are put into the heap[2]. Typically, data are put wherever is convenient at the moment
of allocation, depending upon what memory is available.

Memory that’s been deallocated gets reused. If an available piece of memory happens to be
larger than a requested size, the new sized piece will be fi lled with the new data, while adjacent
to the new data will remain bits and pieces of whatever was there previously.

In other words, while not entirely random, the heap is fi lled with bits and pieces of data, a
little from here, a little from there, a nice big chunk from this session, with a bit left over from
some other session, all helter-skelter amongst each other. Th e heap is a jumble; taking random
bits from the heap may be considered to be like attending a jumble sale.

Now, let’s return to heartbleed. Th e heartbleed bug returns whatever happens to be on the
heap just above the 16 bytes that are required for the TLS heartbeat packet. Th e attacker may
request as much as 64K bytes. Th at’s a nice big chunk of stuff from the heap; make no mistake
about it. Anything might be in there. At the very least, decrypted data intended for application
processing will be returned to the attacker[3]. Th at’s certainly bad! It breaks the confi dential-
ity supposedly gained through the TLS encryption. But getting a random bit is diff erent than
requesting an arbitrary memory location at the discretion of the attacker. And that is a very
important statement to hold in mind as we respond to this very serious situation.

An analogy to Heartbleed might be a bit like going fi shing. Sometimes, we fi sh where we
can clearly see the fi sh (mountain streams) or signs of fi sh (clearer lakes), or with a “fi sh fi nder”
appliance, that identifi es fi sh under the surface when the fi sh aren’t visible.

Heartbleed is a lot more like fi shing for fi sh that are deep in a turbulent lake with no fi sh
fi nding capability. Th e fi sher is guessing. If she or he guesses correctly, fi sh for dinner. If not,
it’s a long day holding onto the fi shing rod.

In the same manner, the attacker, the “fi sher” as it were, doesn’t know where the “fi sh”, the
goodies are. Th e bait (the heartbleed request) is cast upon the “lake” (the program heap) in the
hopes that a big fi sh will “bite” (secret “bytes” will get returned).

Th e attacker can heartbleed to her or his heart’s content (pun intended). Th at is, if left undis-
covered, an attacker can continuously pound the other side of the connection with heartbleeds,
perhaps thousands of times. Which means multiple chunks of memory will be returned to the
attacker, as the heap allocates, deallocates, and moves data around.

Lots of diff erent heap chunks will get returned. Th ere will likely also be overlap between the
chunks that are returned to the attacker. Somewhere within those memory chunks are likely
to be some sensitive data. If the private key for a session happens to be in one of those chunks,
it will be exposed to the attacker. If any particular session open through the OpenSSL library
happens to a contain a password that had been transmitted, it’s been exposed. It won’t take an
engineering genius to do an ASCII dump of returned chunks of memory in order to go poking
about to fi nd interesting bits.

Still, and nonetheless, this is hunting for goodies in a bit of a haystack. Some people are
quite good at that. Let’s acknowledge that outright. But that’s very diff erent than a directed
attack.

Appendix A: Heartbleed Exposure, What Is It Really? 175

And should a wise and prepared security team, making good use of appropriate security
tools, notice a heartbleed attack, they will most likely kill the connection before thousands of
buff ers can be read. Heartbleed over any particular connection is a linear process, one packet
retrieved at a time. Retrieving lots of data takes some time. Time to respond. Of course, an
unprotected and unaware site could allow many sessions to get opened by an attacker, each
linearly heartbled, thus revealing far more of what’s on the heap than a single session might.
Wouldn’t you notice such anomalous behaviour?

It’s important to note that the returns in the heartbleed packets are not necessarily tied to
the attackers’ session. Again, it’s whatever happens to be on the heap, which will contain parts
of other sessions. And any particular heartbleed packet is not necessarily connected to the data
in a previous or subsequent packet. Which means that there’s no continuity of session nor any
linearity between heartbleed retrievals. All session continuity must be pieced together by the
attacker. Th at’s not rocket science. But it’s also work, perhaps signifi cant work.

I’ll reiterate in closing, that this is a dangerous bug to which we must respond in an orderly
fashion.

On the other hand, this bug does not give attackers free reign to go after all the juicy targets
that may be available on any host, server, or endpoint that happens to have OpenSSL installed.
Whatever happens to be on the heap of the process using the OpenSSL library and that is
adjacent to the heartbeat buff er will be returned. And that attack may only occur during a TLS
session. Simply including the vulnerable library poses no risk, at all. Many programs make use
of OpenSSL for other functionality beyond TLS sessions.

Th is bug is not the unfettered keys to the kingdom, unless a “key to the kingdom” just hap-
pens to be on the heap and happens to get returned in the over-read. What gets returned is
entirely due to the distribution of the heap at the moment of that particular heartbeat.

Cheers,
 /brook

Th ese assertions have been demonstrated in the lab through numerous runs of the heartbleed attack
by a team who cannot be named here. My thanks to them for confi rming this assessment. Sorry for
not disclosing.

Notes
[1] Th ere are plenty of specialized cases that break this rule. But typically, code doesn’t run from the

heap; data goes onto the heap. And generally speaking, programs refrain from executing on the heap
because it’s a poor security practice. Let’s make that assumption about OpenSSL (and there’s nothing
to indicate that this is NOT true in this case), in order to make clear what’s going on with heartbleed.

[2] Th e libraries that support programs developed with the major development tools and running on the
major operating systems have sophisticated heap management services that are consumed by the run-
ning application as it allocates and deallocates memory. While care must be exercised in languages
like C/C++, the location of where data end up on the heap is controlled by these low-level services.

[3] Th at is, intended for the application that is using OpenSSL for TLS services.

http://www.taylorandfrancis.com

177

Appendix B

 Developer-Centric Security
Previously published at http://brookschoenfi eld.com/?page_id=256

Security practitioners, implementers of at Secure Development Life Cycle (SDL), I urge you
ask yourself the following question:

What am I doing to enable developers to innovate securely while they are designing
and writing software?

Th e developer-centric manifesto attempts to crystalize this question into the follow precepts:

• Enable development teams to be creative and to innovate
• Ensure that developers have as much specifi city as possible to “deliver security correctly”
• Build tools for developers to check for correctness
• Deeply participate such that security earns its “rightful place”
• “Prove the value” of security processes and tools

As I wrote in Core Software Security, developers, development teams must execute the SDL.
Delivery of security is not executed by security people. Besides, there aren’t enough of us to
scale to the tens of thousands of developers who design, code, and validate the millions of lines
of code upon which we in the Internet Age depend.

We can let security’s dependence on developer execution lead to ever more restricting poli-
cies, standards, and mandates – but in doing so, we strangle the very innovation that is our
collective lifeblood, organizational mandates, and upon which we have become dependent.

Or, we can

• Th ink like an attacker and a developer—thus providing the bridge between security and
development

• Consider how to become part of existing work fl ows—thus avoiding creativity crushing
interjections

• Become deeply engaged in the process, become supporters not stoppers
• Listen, always listen—sometimes, security might just be wrong

http://brookschoenfield.com

178 Secrets of a Cyber Security Architect

Th e basic idea behind developer-centric security is that trying something new engenders
mistakes and errors. Bugs and/or design fl aws are inevitable. Security ought help to fi nd the
errors, ought to help refi ne designs, rather than wagging a nagging fi nger about having made
mistakes.

For instance, imagine if security code analyzers ran “like a compiler”. Imagine that the
results could be trusted like those from an industrial-grade compiler, that is the results had
very high confi dence. And, imagine if security analysis was trivially easy to integrate into the
developer’s workfl ow. Th at would be a start and a fairly radical departure from the tools of
today (though, as of this writing, some vendors are fi nally reaching towards this ideal).

Let’s start a movement. You have an open invitation to contribute, refi ne, and practice
developer-centric security.

179

 Appendix C

Don’t Substitute CVSS for
Risk: Scoring System Infl ates
Importance of CVE-2017-3735

Previously published at https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/dont-substitute-
cvss-for-risk-scoring-system-infl ates-importance-of-cve-2017-3735/ by McAfee Labs on Nov 24, 2017
Th is blog was co-written by Brook Schoenfi eld and Damian Quiroga

I am a wry observer of vulnerability announcements. CVE-2017-3735—which can allow a
small buff er overread in an X.509 certifi cate—presents an excellent example of the limitations
of the Common Vulnerability Scoring System (CVSS). Th is scoring system is the de facto
security industry standard for calculating and exchanging information about the severity of
vulnerabilities. Th e problem is that CVSS is used for far more than it was intended.

For many organizations, security tools, and risk assessments, a CVSS score has become the
security industry’s shorthand substitute for risk scoring and impact rating. In fact, many orga-
nizations measure their ongoing risk posture by counting the number of unfi xed vulnerabilities
and their associated CVSS scores.

Th e McAfee Product Security Incident Response Team (PSIRT) uses CVSS Version 3.0
as an important tool to assess vulnerabilities. McAfee PSIRT augments CVSS with other risk
analysis techniques, similar to Microsoft PSIRT’s Exploitability Index and Security Update
Severity Rating System.

CVSS is useful, but must not be confused with deeper risk assessment. Strictly relying
on CVSS for vulnerabilities such as OpenSSL’s CVE-2017-3735 is likely to cause incident
responders to focus their organizations’ resources on patch cycles that may be unnecessary. In

https://securingtomorrow.mcafee.com
https://securingtomorrow.mcafee.com

180 Secrets of a Cyber Security Architect

addition, PSIRT credibility and infl uence may be squandered on low-impact, low-probability
issues. Due to the sheer volume of issues being discovered and reported, PSIRT must remain
focused on those that have a high probability of exploitation and whose organizational impact
or attacker value make them worthy of exploitation.

But as we shall see from the following analysis, a vulnerability itself, taken out of context,
cannot be equated to risk. Furthermore, CVSS has an inherent problem in that the impact is
averaged against the exploitability: From the attacker’s perspective, this is a mistake, because
threat actors exploit vulnerabilities to suit their goals, not just because something is easy.

For those readers whose sole interest is assessing OpenSSL CVE-2017-3735, this issue, I
believe, should be rated as a low to very low risk. Although easy to perform, exploitation does
not off er an attacker much of value. Th e most likely impact will be cosmetic within a text
display. Plus, the code in which CVE-2017-3735 occurs is not called from OpenSSL’s protocol
and cryptographic functions,[1] but is rather confi ned to the display of an X.509 certifi cate,
typically for users consumption. (Certifi cate display does not take place as a part of typical
cryptographic functions.)

Taking either of the competing published CVSS scores for this vulnerability, 5 or 7.5, at
face value is misleading. Without further analysis, one might be tempted to raise the risk from
CVE-2017-3735 beyond its rather minor impact. Th at is why I decided to investigate further,
including reading the off ending module’s code on GitHub. Th e CVSS measure of CVE-2017-
3735 provides a situation where accurate scoring does not match the likelihood of exploitation
and increases the score above what a risk analysis would probably reach.

Although it is true that attackers must choose exploits that lie within their technological
capabilities—namely, exploits that are easy enough to ensure success—the fi rst concern will
nearly always be, “What will the exercise of this vulnerability achieve for me?”

In other words, what matters is the impact or result from the exploitation that is key to
choosing a particular attack, not its relative ease or diffi culty. If a vulnerability advances the
attacker’s goals, then it will be considered for use. If there is nothing to gain, the vulnerability
will not be exploited.

Limits to CVSS

Attackers exploit vulnerabilities that further their goals: Th at is a key point when assessing
the potential for harm of any vulnerability. In this analysis, we will take a closer look at CVE-
2017-3735 for its potential value to attackers. Along the way, we will also examine some of the
limitations of CVSS as it applies to this vulnerability.

I do not mean to assert that CVSS is not an important tool for assessing vulnerabilities.
I have worked with CVSS since before Version 1 was published; CVSS is key to prioritizing
initial responses to vulnerabilities as they are released. CVSS may comprise one component of
a robust risk rating method or approach.

I like to characterize CVSS as “potential severity.” A CVSS score, when fairly calculated,[2]
can indicate what any vulnerability might harm. CVSS scores are particularly useful for triage,
before a deeper analysis.

Appendix C: Don’t Substitute CVSS for Risk 181

Th e McAfee PSIRT makes use of CVSS as a core component of incident response, just as
many organizations PSIRTs do. As a CVE Numbering Authority, McAfee PSIRT must calcu-
late a CVSS score for every published vulnerability. In practice, nearly every potential issue is
scored as a critical foundation of PSIRT’s robust risk assessment.

Still, despite the importance of CVSS to vulnerability triage, it is a mistake to confuse a
CVSS score with a risk rating, as we shall see.

CVE-2017-3735 has had two competing CVSS scores published.[3] Th e diff erence is in the
rating of the impact: Integrity = High or Integrity = Low, resulting in a combined score of
either 7.5 or 5.3 (in CVSS Version 3.0). In either case, both scores earn the exploitability rating
of 10, because the issue may be exploited over a network without authentication.

• CVSS = 7.5 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N (From: https://nvd.
nist.gov/vuln/detail/CVE-2017-3735)

• CVSS = 5.3 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N (From: https://nvd.
nist.gov/vuln/detail/CVE-2017-3735)

How can there be two CVSS calculations? Why is one calculation High and one Low? Plus,
is Integrity the correct impact parameter?

We can answer these questions by analyzing what the vulnerability allows.
Th e vulnerability is a buff er overread. An attacker may read one more byte from program

memory than should be allowed. Th e attacker’s advantage of the unallowed access is directly
related to where that extra byte exists. After looking at the code on GitHub, it appears all buf-
fers in that module are allocated from program heap memory. Although running programs can
exhibit macro patterns in their heap allocations and deallocations, generally, we can assume
that any allocation may reside wherever it is convenient for the program memory manager to
grab a piece of memory suffi ciently large to support the request. Th is introduces an element of
entropy (randomness) into any particular allocation. Each allocation may come from any por-
tion of heap memory; there is no guarantee of a particular address.

Because a particular address cannot be guaranteed, an overread will get whatever bytes hap-
pen to be larger than that allocation’s required size.

Whichever data happen to be at that address is what the overread vulnerability will retrieve.
Buff er overread exploitation can be a fi shing expedition; there are no guarantees of the data
retrieved, though there may be macro patterns in programs in which runtime processing is
relatively consistent from run to run. Th e data returned depends on how lucky the attacker is.
We saw the same situation in the Heartbleed overread vulnerability.

Just One Byte

For CVE-2017-3735, the overread is precisely a single byte. Th at is a very small payoff for the
attacker, especially considering that there is no guarantee of what that byte might contain.

Furthermore, even if this were not an overread but rather an overfl ow (which it is not), a
single byte is not enough space for malicious code to allow an attacker to exit to a command
shell. A buff er overread does not allow an attacker to push code into a program heap. It allows
an attacker only to retrieve data (a single byte) that the attacker should not have reached.

https://nvd.nist.gov
https://nvd.nist.gov
https://nvd.nist.gov
https://nvd.nist.gov

182 Secrets of a Cyber Security Architect

Although we may be surprised some day by a clever attacker’s ingenious use of a single byte,
today we see no way that anyone can benefi t.

If CVE-2017-3735 allows an attacker to retrieve only a single byte, then why have CVSS
scorers used the Integrity impact rather than Confi dentiality? Heartbleed, a heap buff er over-
read that returned nearly 64KB to the attacker, impacted Confi dentiality. Attackers retrieved
data they should not have been able to access. Yet CVE-2017-3735 has been scored on Integrity.
Th ere is a clue alongside the description.

Because I do not have access to the graph of code calls to the vulnerable IPAddressFamily
routines, I cannot confi rm the following educated guess. However, typical cryptographic and
protocol implementations do not dump certifi cates to text; primarily users do. Which indicates
that an attacker does not retrieve the extra byte. Instead, the extra byte is converted to text in
the IPAddressFamily certifi cate extension’s human-readable dump. Th us the integrity of the
text representation of an X.509 certifi cate has been impacted. With this understanding of the
impact, scorers have used Integrity rather than Confi dentiality.

If the attacker retrieves the text dump, is there a way to track back from various text irregu-
larities to the value of the extra byte? I have not looked at a range of dumps to confi rm or deny.
Perhaps this is either not possible or not a productive approach.

If there is any way to retrieve the data byte, then the proper CVSS score would have to be
Confi dentiality = Low rather than None, which would increase the CVSS score to either 6.5 or
8.2, depending upon Integrity’s value, Low or High.

A CVSS score of even 5.3 gives a luster of importance to CVE-2017-3735 that it does
not deserve. Any of the potentially higher scores suggest the wrong direction, which is prob-
ably why scorers refrained from including the potential for a confi dentiality impact. Still, we
should analyze this score to understand the strengths and limitations of CVSS. If scored for all
impacts and the ease of exploitation at 6.5, CVSS indicates that this is an important vulner-
ability that should be addressed in a timely manner. Yet if my analysis is correct, CVE-2017-
3735 should not move to the top or even middle of anyone’s work queue. Patch it in due time,
through scheduled update cycles. Nothing more.

Th e potential impact from CVE-2017-3735 is probably not signifi cant in the vast majority
of OpenSSL’s use cases. Integrity = Low, maybe Confi dentiality = Low, too. Attacker utility =
None.

In fact, the most often published description for CVE=2017-3735 indicates the trivial nature
of any impact: “Th e most likely result would be an erroneous display of the certifi cate in text
format.” (See References.[4])

After reading this analysis, I hope it is clear that CVSS fails to account for the complete
situation with respect to CVE-2017-3735.

Unequal Weights

As we mentioned, the exploitability and impact scores are each weighted equally (actually, aver-
aged). From the attacker’s view, this is inaccurate.

Attackers do not equally exploit every vulnerability. More important, attackers do not
choose to exploit a vulnerability simply because it is easy to exploit. Th ey have no time for that;

Appendix C: Don’t Substitute CVSS for Risk 183

attackers are trying to achieve their goals, whatever those may be. Anyone prioritizing vulner-
ability responses needs to keep this in mind as we analyze.

Th e following published description for CVE-2017-3735 is, at the very least, misleading
and erroneous, considering the single-byte heap buff er overread aff ects only a user-initiated
text dump:

“Successfully exploiting this issue will allow attackers to bypass security restrictions and
perform unauthorized actions; this may aid in launching further attacks.”

Th ere are no “security restrictions” involved in a certifi cate transformed to text. Further, a
single byte is insuffi cient to enable “launching further attacks” even if the issue were more than
an overread: Th e attacker cannot gain control of program memory through this fl aw.

Quite often, organizations have hundreds or thousands of vulnerabilities to examine. To
which should they respond fi rst? Which response should get the most resources? Which of the
perhaps dozens of vulnerabilities announced in any week or month can be allowed to remain
open in the face of limited resources?

Th ese are fundamental questions that every organization must answer, probably every day.
One way to prioritize is to begin assessing the potential impact to the organization and the
potential utility to the attacker. Th ese two dimensions are more important than how easy or
diffi cult a vulnerability is to exploit, although that also important information once we deter-
mine that a vulnerability is signifi cant.

Calculating CVSS helps practitioners identify those items that warrant deeper analysis.
Unfortunately, due to the way that a CVSS base score is averaged across the exploitability and
the impact dimensions, CVSS in some instances fails to suffi ciently assess risk, especially in
cases where utility to an attacker appears to be relatively insignifi cant.

Th e McAfee PSIRT uses CVSS as a critical tool for triaging vulnerabilities and for gauging
response times. Still, CVSS is no substitute for a deeper risk analysis when it is warranted.

Notes

1. We did not have access for this analysis to an OpenSSL code graph, which would have
allowed a defi nitive examination of calls to the vulnerable code. However, it appears
from a cursory examination that the module is primarily called upon user instigation,
from command-line tools, not during protocol processing.

2. Th ere are numerous cases of scores being infl ated or defl ated to fi t the agenda of the
scorer. How can cross-site scripting scores range from 1.8 to 9? Th at seems impossible,
but a simple search will return that range of scores from Mitre’s CVE data.

3. Vendors may calculate alternate scores for their products, which will be dependent upon
particular vendor circumstances.

4. One published description seems to vary considerably. Th e following does not seem to
match our reading of the code or the behavior of a single-byte heap buff er overread:
“Successfully exploiting this issue will allow attackers to bypass security restrictions and per-
form unauthorized actions; this may aid in launching further attacks.”

http://www.taylorandfrancis.com

Security Architecture Smart Guide:
Just Good Enough Risk Rating: A proven method for rapid risk
assessment

Brook Schoenfield, Enterprise Security Architect, Autodesk, Inc
Vinay Bansal, Senior Security Architect, Cisco Systems, Inc

1. Problem

Information security and risk departments are typically charged with assessing the
information security risk of systems. The result of these assessments is generally
some sort of risk rating that can be used to set priorities and make decisions about
what exposures to accept and which to mitigate.

However, in the absence of a body of long-term actuarial data covering the many
variety of information security incidents and losses, assigning risk values has been
fraught with individual interpretations and stylistic variations. Indeed, the risk
avoidance appetite of the assessor can greatly influence the rating of risk. This
leads to experienced practitioners delivering different, perhaps wildly different
risk ratings about the same system. Further, risk ratings for information security
risk typically lack repeatability and do not generate comparative values.

There has been a general lack of agreement about which variables must be
included within an information security risk calculation. Th problem

is further complicated by products that offer “risk calculations” based
on only 1 or 2 of the required terms1. For instance, “risk” might be based upon
threat and exposure, or vulnerability and hypothetical impact (usually of the worst
case possible). The misuse of the term “risk” does not help the practitioner sort
through myriad data points to calculate a repeatable and quantified risk
measurement.

A number of risk models have been put forward in order to address these
problems. Some of these are very easy to use, but do not address the basic
problems stated above. Other methods assume that data has been gathered about
assets, values, vulnerabilities, threat, and exposure that would be encyclopedic for
any but the smallest organization. Such an effort is typically beyond the capability
of an enterprise information security team who are typically faced with constantly
changing inventories, newly arriving vulnerabilities, incomplete knowledge of
threats. Other vendors have offered risk presentation systems. Several that the
authors have investigated do not, in fact, rate risk. Rather, these methodologies
address some portion of what must constitute a risk rating. For example, a method
may only address attack types. Products for storing “risk” often require a
significant investment not only to purchase, but to gather and assess risk, as well
as requiring significant data entry demands. Once an investment has been made in
one of these tools, the effort to keep the assessments updated is a nontrivial and
constant task.

What is needed is a reasonably robust, fairly lightweight, inexpensive way to gain
repeatability and consistency in risk ratings across practitioners and assessed
systems. This guide explains Cisco’s Just Good Enough Risk Rating (JGERR)
1 The arithmetic for these calculations is also typically nonexistent or inappropriate. The
authors have seen canned ratings for each vulnerability found, simple addition, and even
averages over the terms.

tool. JGERR has been in use for 8 years. It is used enterprise-wide at Cisco
Systems Incorporated for web infrastructures and applications and for assessing
risk for new extranet connections. It is in use by more than 40 practitioners, day in
and day out. While far from perfect, JGERR combines knowledge from several
leading risk rating methodologies into a methodology that can be used in the
absence of a sufficient base of statistical data about information security
incidences and losses. JGERR can be implemented for any area within
information security. It is lightweight and easy to use.

The methodology presented in this guide does not claim to calculate true risk. It is
the authors’ belief that the commonly promulgated equation2 for insurance risk is
currently impossible to calculate with any surety in all but the most narrow
information security circumstances. JGERR provides instead, a risk rating result
that can be used in the absence of an ability to calculate risk accurately.
The rating results are intended for prioritization in order to bring risk within a
desired posture. The results should also be useful by management to understand
gross risk trends, as well as provide some basis for tracking the work of the
assessors3.

2. Scope

The risk rating methodology described in this guide may be applied to any
discreet area for which information security risk assessment and rating is required.

To apply this methodology, it is recommended that the area to which the method
is applied be well enough bounded such that the question set that is developed in
the implementation is specific enough to deliver meaningful and comparable
results within that arena. The questions upon which ratings are based can become
so generic as to not capture meaningful results. Further, the more generic the
questions get phrased, the more interpretation is required in order to answer them.
Implementations must balance generality versus specificity such that results
provide an opportunity for sufficient repeatability.

For instance, the example given here does not purport to apply to every area
within the broad range of information security risk assessments. Rather, the

2 Risk = Probability * Annualized Loss. There simply is not enough data about the dollar
value of losses and how often these occur over a wide enough population in order to
calculate the standard risk equation.
3 On this last point, care must be taken to remember that not every project or system will
have a lower risk rating at its end from when it started. There are many reasons for risk
rating to increase during the development of a system; the increase can even be dramatic.
Despite the foregoing caution, most projects moving through a mature risk practice will
have either a flat risk rating from beginning to end or will have ratings lowered through
the project development lifecycle as information security controls are applied.

questions were developed specifically to address risk and loss areas of web
infrastructures and applications. These questions make assumptions about the
security controls that have been built into the local environments on which
applications are deployed. Indeed, applications that hew to these standards will
generally have a lower residual (unmitigated) risk than applications that have
been deployed on one-off environments where security control compromises have
been made.

These factors must be taken into account in this methodology. Organizational
assumptions about what is more risky and what is less become embedded into the
rating form. This is a natural part of capturing practitioner and tribal knowledge
into the form’s questions and into the ratings.

Implementation of this method is best scoped to a particular area of assessment.
Multiple discreet versions of the questionnaire may be applied to the various areas
that come under assessment. Using unique, focused instances of the method for
each discreet area of assessment still allows the risk results to be comparable
across the areas.

2.1. Sector
[X] General (Potentially applies to all sectors)
[] Government
[] University

2.2. Security Practice Domain
[X] Architecture
[X] Engineering
[] Operations
[X] Risk Management

2.3. What functions does it pertain
• Risk assessment and risk rating

3. Known Risks

Any attempt to capture tribal and/or practitioner knowledge is always limited by
the capture process, which is, by its very nature, insufficient. The very act of
distilling wide experience into a set of questions will always miss something.
Further, corner cases are hard to capture. And, decisions must be made about
priority, importance, and inclusion/exclusion. Information security is such a broad
field, that something will always be left out, either intentionally or
unintentionally.

There is a risk when applying this method that risks will be missed. That is why
there is a “thumb on the scale” area built in for an experienced risk assessor to add
in additional factors not canonized within the questions that have been included in
the rating. Still, giving assessors this capability also then brings with it a risk of
mis-use in order to force particular result scenarios. That is, if risk is rated high,
an engineer or architect might force a set of security controls that overly reflect
her/his personal risk appetite. To combat this abuse of power, the authors have
insisted in practice that any “thumb on the scale” additional risk receive positive
peer review before being used in the resultant risk rating. The details of the peer
review process are beyond the scope of this guide.

There is a risk that unconscious assumptions about what is risky and what is
preferable can creep in and rig this rating system towards higher or lower ratings
results. In fact, the first two versions of this methodology had exactly these
problems. Getting these assumptions to be more conscious and apparent in the
questions was a part of the refinement of the method.

It is crucial that the ratings from the two values being calculated be kept separate
in order for ratings to approximate a risk calculation. Threat, vulnerability, and
exposure can be mixed together in questions, but must not be mixed into
questions for impact and loss value. These two calculate different values whose
arithmetic properties must be clearly separated. That is, the questionnaire dealing
with the impact analysis must not include any assumptions about what is less or
more vulnerable, what the threat landscape is, nor the controls in place. Impact
questions must be solely about loss, though they do not have to be about monetary
values only, since the results will ultimately be rated. However, this method will
work fine if assumptions about threats, exposure, and vulnerability are conflated
into the “technical” analysis questionnaire and rating. The conflation, as long as
it’s understandable, deliberate, and captures organizational understandings, will
not harm the method’s results.

4. Prerequisites

It is assumed that any organization contemplating use of this solution already has
in place an information security risk assessment practice.

Typically, risk assessments are applied to:
• Applications and similar new projects
• Changes to running systems
• Infrastructures to support operations
• Etc.

It is assumed that the organization has at least a few experienced risk assessors
who have practiced within the area to which the method will be applied.

While this methodology does not require any investment in tools or products, it
does require an investment in time and attention of those who will distill the local
risk knowledge, the organizational information security policies and standards,
the risk practice, and the organization’s risk posture preferences into the questions
to be used during assessment and rating. In our experience this is a part time task
which took the originators and practitioners not more than 20-40 hours, stretched
over a period of 2 months. In addition, in the two successful implementations with
which the authors are familiar, there are periods of peer review, comment, and
refinement stretching over a few weeks and additional hours before the
methodology is ready for production use. While not trivial, this effort should be
within the reach of most information security departments.

Once canonized and put into use, the questions and ratings should be reviewed at
least once each year against organizational, threat, and vulnerability changes.

It is assumed that an organization already has the following information security
processes:

• An information security team
• A risk assessment practice

5. Required Artifacts
a) A risk rating spreadsheet whose questions capture assessors’

understandings about what is risky and what is safer for a particular area.
This artifact is developed by the assessment team(s) before being used4.

b) An architecture diagram of all the components to be used for any system
under assessment

c) Data flow diagram across all components of the a system under
assessment

d) Data sensitivity rating of the most sensitive data within each flow and to
be handled by each component of the a system under assessment

e) Information Security Policies
f) Organizational technical standards to which systems must comply

6. Step-by-Step Problem Solution
The risk rating calculated by this methodology uses 2 terms: an estimated attack
vector and a scaled size of impact. These 2 terms are multiplied in order to get the
risk rating.

4 Capturing and rating local and industry practice into a series of rated questions is a non-
trivial task. Doing so is likely to take several iterations. Senior risk assessment staff,
along with project management will probably need to be assigned to this task.

The estimated attack vector is actually a combination of several fundamental
components that are typically combined within the term representing probability.
Since, as has already been stated, Information risk assessors do not have the
statistical data to estimate true probability, we must calculate a number between 0
and 1 to replace true probability term. And that number must represent as many of
the factors from which probability might be calculated as we can estimate in a
repeatable fashion. The good news is that experienced risk assessors do this every
day as mental arithmetic. The difficult part is teasing this information out from
mental arithmetic. Gathered attack vector knowledge is transformed into a series
of discreet questions, each of which has a multipart, scaled, series of responses:
multiple-choice questions, essentially.

For Cisco’s web application assessments, a five bucket scale was chosen.

Both terms used to calculate the risk rating are 1 based. There is no 0 loss and
there is no 0 probability – there is always some loss value and some risk.

The scale for the attack vector term is:

And the scale for impact is:

Impacts are summed for an impact rating of

Each of the 5 choices is evenly distributed5 across the range, 1-10, with
appropriate arithmetic to calculate the attack vector term, 0-1 (see below for
details).
1. 1
2. 3.25
3. 5.50
4. 7.75
5. 10

In the following table, our definitions for each term that must be expressed in the
attack vector term for the risk rating. It is the authors’ assumptions that each of
these situations without the presence of the other conditions is not risk. There
seems to be a good deal of confusion amongst security practitioners about what

5 There is nothing special about this distribution. The scale might be biased low or high,
as required. The actual number distribution is less important than the consistency of use.
In fact, Cisco’s distribution was biased high for years.

risk actually means. Some methodologies equate threat to risk, in others,
vulnerability is equated to risk, the assumption being that the very worst exposure
and threat preexist simply because the exposure and risk are known to exist
somewhere. This of course, is the safest course. But it does not get us closer to
calculating risk for a particular situation. That is why we insist upon the existence
of an exploit of the vulnerability (“exploit”), a threat agent that is motivated and
has sufficient access to exploit the vulnerability, and that the vulnerability is
exposed enough for the threat agent to exploit it. In other words, each of these
factors is dependent upon the presence the other factors before an information
security attack can be promulgated.

Exclude6 vulnerabilities that are not exposed or do not in the present or the
foreseeable future have a motivated threat capable of exploiting the vulnerability.
Doing so will help to keep the questionnaire short and focused on the area that is

6 The authors do not mean to suggest that vulnerabilities that cannot be exploited should
not be attended. That is a matter of organization policy and standard. We are suggesting
that in order to keep the risk questionnaire lightweight, it is good practice to focus on
prioritized attack vectors as defined here.

under assessment. We believe that this is critical to the success of the
methodology. It is important to bear in mind that it is quite possible and even
preferable to build multiple questionnaires, one for each area of technical
expertise and assessment.

In this method, the business impact questionnaire is designed to be completed by
a project manager working for the business that is driving a project. The
questionnaire should be easily understandable by a project manager or other non-
technical person. We removed as much information security jargon as we could.
We ask questions that the project manager will likely know or which he/she can
easily get answered by the sponsors of the project.

The attack vector, or “technical” questionnaire is designed for a trained
information security assessor. This person may not have deep risk assessment
skill. But the person will have a working knowledge of the sort of attacks that are
currently being promulgated against systems in the domain under consideration.
The assessor will have some understanding of the typical controls that are built
into underlying infrastructure and the kind of controls that are typically required
for applications. Further, the assessor should understand how these typical
controls are applied to particular architectural patterns. Due to this pre-requisite
training, we were able to generalize the technical questions considerably, as well
as to shorten the questionnaire.

In order to build our questionnaires, we use the following process:

• Distill assessor expertise
• Document typical exceptions to standards
• Transform knowledge into assessment questions
• Scale (bucket-ize) responses
• Gather impact scenarios

o Repeat transformation and scale
o As for attack vector term

6.1. Distill Assessor Expertise

Interview your current experts who assessed typical projects coming through the
area of focus of the questionnaire.

• What typical vulnerabilities do they look for?
• Which vulnerabilities to exclude?
• What threats are considered the most important?
• What are the typical exploits of the most important threats?
• One of the greatest weaknesses contained within local infrastructures

in systems?
• What is protected particularly well?

• Which types of vulnerabilities are not exposed to active threats that are
currently or projected to attack your systems?

Don't limit yourself to the questions posed in this guide. The object of this
process is to discover and document the accumulated knowledge base from
your experts. What are they most concerned about? What are they least
concerned about because there's enough extant mitigation to discount
successful compromise? And, it is important to gather understanding of what
lies between these 2 extremes in relation to your systems. Those attack vectors
that lie between the two poles (presented above) will become the buckets, the
questionnaire choices that you will rate in order to generate the threat,
vulnerability, exploit, and exposure combined term. You are trying to distill
your attack vectors from worst to best-case scenarios.

6.2. Document Typical Exceptions To Standards

An additional gold mine of technical understanding are the security exceptions
written for projects. Repeating exceptions indicate areas of weakness that
aren’t well defended. Those types of exceptions written only once generally
indicate the inability or unwillingness of a particular project to meet
organizational standards. These tend to be local. However, exceptions that
occur repeatedly can point to areas where compliance is too difficult or
expensive. As such, these point to weaknesses in the defense-in-depth
capabilities7. These can be captured into the questionnaire.
If your infrastructures are fairly mature in that they deliver basic security
controls to the hosted systems, you may choose to simply note whether
exceptions exist as one of your questions. Your buckets (multiple choice
responses) could then list the types of exceptions from none to most risky.

6.3. Transform Knowledge Into Assessment Questions

Each question does not have to encapsulate an entire attack vector’s
composite terms. One question may model active threats that have got some
level of access. While another question might focus on exposed vulnerabilities
at which you know there are active attack attempts.

For instance, if you have a population of unremediated cross-site script errors
and you have a business driver to protect your web visitors from the effects of
these attacks, then one question might focus on the presence of these
vulnerabilities. Or, you might combine all input validation attacks into a
question. Or, you may simply ask (as we did), “Are there known

7 Not only should these exception types be included in the questionnaire, these also make
a case for a change in security direction to close the holes, to make it easier for systems to
comply. After all, an organization creates its standards for good reason, presumably.

vulnerabilities exposed in the application?” In this way, you can generalize all
vulnerabilities.

At Cisco, the person answering the attack vector questions is always a security
assessor who has had significant training. Hence, we were able to generalize
the questions against the assumption that the responder is familiar with typical
web based attack patterns. Your questionnaire may have to be more specific
depending on what assumptions you can make about the responder/assessor.

Cisco’s Web application Attack Vector (technical exposure) questionnaire
uses the following questions:

1. How much exposure to attack is there?
2. Are there known vulnerabilities in the application/project or associated
infrastructure?
3. Are mitigation or workaround (“hardening”) techniques implemented
to minimize the risks or vulnerabilities inherent in the infrastructure?
4. To what degree do you suspect deployment of this application/project
in its current form would increase the security risk to other systems,

applications, resources or projects in the event of a successful
compromise?
5. How is entitlement accomplished?
6. How much security review has this application/project been through?

The authors stress that you must not mix impact with attack vector. The two
terms’ questions must remain distinct in order to generate a value that
reasonably equates to risk. As written above, the two terms cannot be mingled
or the calculation loses its ability to mimic a statistically based risk
calculation. Cisco chose to use separate worksheets, filled in by different
persons in order to achieve this separation of terms. None of the questions
representing attack vector mention the size of the impact. And the questions
describing possible impacts do not describe any of the terms that are
combined for an attack vector.

6.4. Scale (Bucket-ize) Responses

In order to derive buckets for your questions, start with binary choice:

• What is the best case situation in relation to the question being asked?
• What is the worst case that can be encountered?

For the sample question, “How much exposure to attack is there?”, placement
within an environment completely out of control or knowledge of Cisco and
its security team was deemed the worst case scenario. This condition was then
combined with a situation where serious inability to apply required security
controls might exist: where a formal executive signed risk assumption has
occurred into the follow worst case response:

• Offsite with an unreviewed ASP or other 3rd party, or contains significant
exceptions or risk assumption.

Likewise, the best-case scenario is:

• Purely internal on a InfoSec-approved architecture

Having arrived at best and worst cases, degrees of exposure are filled in to
derive the intervening series of buckets that fit the scale.

1. How much exposure to attack is there?
a. Offsite with an unreviewed ASP or other 3rd party, or contains

significant exceptions or risk assumption
b. Internet Facing on a non-hardened or unknown architecture and/or

without layering or with significant exception or risk assumption
c. Internet Facing on an InfoSec-approved standard architecture
d. Purely internal on a non-standard architecture or has exceptions
e. Purely internal on a InfoSec-approved architecture

The responses are then put through the following calculation to create a
composite attack vector rating:

6.5. Gather Impact Scenarios

To build a list of impact assessments, repeat the attack vector process, this
time focusing on the types of business impacts that successful security
compromises can have. Stress business terms. These must include financial
impact. But we believe that the list of impacts must also include dimensions
that are difficult to quantify.
Cisco’s Web application focused business impact questionnaire contains the
following questions:

1. What is the value of this application to company, i.e how much money
will it save or bring in to the company in a fiscal year?

2. What critical company systems would the failure of this application
impact?

3. What audience would be affected because of an interruption or
compromise?

4. Does this project deal with any of the following personally identifying
information (i.e. are there any privacy issues)?

5. What is the expected future lifetime of the system

6. Rate the criticality on this application for the continuing operation of
your business.

7. Disruption of this application would have what sort of effect on the
company’s customers?

Again, as in the attack vector questionnaire, decide how many buckets will be
useful (Cisco uses 5 for both sets of assessment questions). Choose the best-
case scenario as the minimum value and the worst impact as the maximum.
Then, fill in the buckets in between as ordinals of impact.

Following is Cisco’s first impact question with it associated responses. We
ask the project manager or business sponsor to estimate with a best guess the
appropriate value8.

1. What do you estimate the dollar damage to company would be if the
data was modified, stolen, destroyed, or subject to unauthorized
disclosure?

a. A) Catastrophic (>=$400 million)
b. b) Serious loss ($50-400 million)
c. c) Significant Loss ($5-50million)
d. d) Loss ($500K to 5 million)
e. e) Minor loss <= 500,000 USD

As Cisco has grown, so the impact bucket ordinal responses have had to be
revised. It is our working theory that as long as the scale remains the same, the
bucket sizes can be changed to meet changing circumstances of expansion or
decrease.

Arithmetic for deriving a 5 bucket distribution between 1 and 10 is as follows:

1 is a minimal loss, while 10 defines a maximum loss. Responses are scaled to
5 buckets, giving 4 divisions between 1 and 10, or

The algorithm derives the following scale:

8 An experienced project assessor can often spot inflated or deflated impact estimates
based upon experience with systems of a similar type and size. Choosing the appropriate
level of impact is sometimes a dialog between assessor and business sponsor. The
responses on the impact sheet should be cross-checked for appropriateness to the overall
system under assessment.

1. 1
2. 3.25
3. 5.50
4. 7.75
5. 10

Every loss to a system will have impact, no matter how trivial. The least total
impact is 10 (1 * 10 responses). The greatest impact (catastrophic) is 100 (10
* 10 responses).

6.6. Combine Terms

The risk rating is then

Or, precisely in the Cisco spreadsheet:

Where:

In the spreadsheet, the total is color coded to make it easy for the assessor to
spot those assessments that will require action and those that signal projects of
less information security interest.

6.7. Additional Factors Outside the Questionnaire

Obviously, no short questionnaire can cover all of a complex domain for
which risk assessment is performed. JGERR has built in a place for risk
factors understood by the risk assessor but that fall outside of the questions
that are being asked. Additional factors may be discovered during a security
review. Or, the system under review may contain components that fall outside
the typical scope of analysis. We call these “risk multipliers”. In order to
account for corner-case situations, there are four generic, open-ended fields
into which the risk assessor may place a “finger on the scale” to increase the
risk rating.

Including a space for the unforeseen and the corner case came from literally
thousands of applications of the methodology. Over time, it became apparent
that an experienced assessor has a more holistic understanding of risk that any

automation. Somehow, that experience had to be incorporated into the risk
rating

However, including an open-ended space with which to influence risk ratings
is a tremendous responsibility that cannot be taken lightly. Therefore, only
trained assessors are allowed to add additional factors. Further, the following
conditions must be met before an additional risk factor can be added to the
score:

• Additional risk factors must be formally documented
• Additional risk factors must be justified in writing
• Additional risk factors require peer review of at least 2 other assessors

o One of the peer reviewers must be at the most senior level
o One of the peer reviewers must be outside the sub-team

directly involved in the business area of the project

If there is consensus that there is an additional factor that cannot be scored
through the questionnaire and there is consensus about the size of the addition,
then the additional factor is accepted.

7. Recommended Project Gate Initiation Point
At Cisco, risk assessments are performed upon Security Architecture engagement and
just prior to go-live. The engagement may begin either before9 the Execute Commit
project gate or just after, when formal architecture and design work begins.

8. Other Smart Guides Referenced
None at this time.

9 On particularly complex, critical and high-risk projects, earlier security engagement is
preferred in order to identify security issues as early as possible. But such early
engagement is typically not required for more standard projects.

9. Industry Standards Referenced

• ISO 13335-1

10. Public Domain Tools Referenced
• None at this time.

11. Taxonomy/Definitions

12.Other Materials Referenced
 CVSS: Vulnerability, exposure, some impact: technically focused
 Microsoft Threat Modeling: Exploit, exposure, some threat modeling
 Bruce Schnier’s attack tree methodology
 FAIR: Contributes significantly to Just Good Enough Risk Rating.
 The Security-specific Eight Stage Risk Assessment Methodology
 LAVA

13.Publication Date, Version, Authors, and URL where to find
document

Date Version Author
2011/09/11 0.1d Brook S.E. Schoenfield

Vinay Bansal
2012/02/07 1.1b Brook S. E. Schoenfield

Vinay Bansal
Michele Guel

1. Other Contributors to the Methodology
• Rakesh Bharania & Catherine Blackadder Nelson, concept originators
• Vinay Bansal & the Cisco “Web Arch” team
• Jack Jones & FAIR
• John and Ann-Marie Borrelli & the KnowledgeConnect Security Sharing Forum

participants
• An unnamed trust researcher at RSA 2002
• The Information Security Risk Methodology working group at Cisco Systems, Inc:

o Doug Dexter
o Marc Passey
o Richard Puckett
o Jim Borne
o Brook Schoenfield

203

Appendix E

Threat Modeling’s
Defi nition of Done
Awaiting publication by IOActive, Inc. blog at https://ioactive.com/resources/blogs/

I’m frequently asked, “How do you know if a threat model is complete?”
Unfortunately, threat model analyses can become quite non-linear, often recursive, despite

our best eff orts to torture the process into a sequence of discreet steps. It might seem, on the face
of it, that an analysis might go on forever, taking into consideration ever more complex, laby-
rinthine, even baroque attack scenarios. Th e fact is that while an analyst can defi nitely play the
“what if” game nearly forever, after a certain point there’s little payback for the additional eff ort.

A threat model exercise is as much a journey through guesses fi rmly based on study and
experience as it is an exercise in applying engineering certainties. In other words, the analysts’
imaginations are an important input to the process. Th is is why setting boundaries around
attack scenarios is critical to limiting fl ights of paranoid fantasy; there must be exit criteria for
the threat model if other development tasks are to be addressed*.

It’s important to understand that threat modeling represents a perceived attack tree and col-
lection of defenses for an ongoing, “living” system. Systems exist in an ecosystem that is subject
to changes – sometimes sea changes.

System structures change; threat actors are creative and adaptive; research opens new tech-
niques of attack. Each of these can and should trigger a threat model review†. In a sense, a
threat model is never “done,” since change is constant.

Still, for any particular threat model exercise, guidelines do exist to determine when “enough
is enough.”

* Some of the other development tasks will likely depend upon the output of the threat model.
† “Review” is my carefully chosen word, and does not indicate a complete rework. Th e model may be

reviewed with consideration to changes in the inputs to the model.

https://ioactive.com

204 Secrets of a Cyber Security Architect

My defi nition of threat modeling is “a technique to identify the attacks a system* must resist,
and the defenses that will bring the system to a desired defensive state.” Whether you like that
defi nition or not, it suggests built in constraints to an analysis:

Identify attacks that a system must resist
Identify the defenses that will bring the system to a desired state
In my defi nition, “must resist” implies an enumeration of relevant attacks. Th is is a con-

strained list, not an open-ended enquiry. “Relevant” in this context indicates that some types
of attacks won’t or can’t be considered against the system under analysis.

It may be useful to point out that exploits are specifi c to computer language, often also
memory utilization, operating system, even component and version or build of that compo-
nent. Indeed, exploits tend to match vulnerabilities one-to-one. If any of the contextual condi-
tions change, a new exploit has to be generated.

With defenses, there are also limits. Many systems needn’t defend against every potential
attack, even if building a comprehensive and complete defense was possible given most orga-
nizations’ resource limits.

One of the most important rules for building defenses is that any three (sometimes even
two) well-placed persons can circumvent any technical control†, so that number makes for a
very natural constraint: don’t attempt to prevent 3+ individuals from circumventing security
controls where the individuals hold an ability to add their privileges together in collusion. It’s
a waste of time. In such circumstances, stick with the standard practice of separation of duties.
Couple that separation of duties alongside monitoring of those actions that have a potential
for collusive behavior. Th at’s about the best one can manage against privileged actors working
together to circumvent security controls.

“Desired state” in the threat modeling defi nition cited above indicates that near-perfect
security may not be necessary. Depending upon the fi elding organization’s risk tolerance and
the business context of the system, sophisticated attacks might not be relevant, that is, the
organization does not feel a need to protect against such attacks. Th is should be an obvious
stopping point for a threat model analysis: attacks requiring high technical sophistication and/
or high complexity need not be defended against.

While recent events have certainly pointed towards a world where any digital system might
be a target of any actor, there often exist limits beyond which an organization need not go.

* “System” is defi ned broadly, encompassing any collection of digital and human processes that taken
together provide a complete set of the functions under analysis. A system could be:

 • A piece of code intended as a part of the bootloader (in which case, the threat model would neces-
sarily also include all the bootloader code for the machine).

 • A set of processes running in user space on an operating system (in order to create a proper threat
model, a system must include those operating system functions that provide the infrastructure
and runtime upon which the application is loaded and runs.

 • A set of globally distributed cloud-based services.
 • An enterprise and all of its infrastructure, digital functions, etc.
 Th e term “system” is meant to be inclusive, such that whatever digital processes are being threat mod-

eled are categorized as a system.
† Th e fact that manipulation or impersonation of persons with the right set of permissions can circum-

vent technical controls was the premise of the long-running television series, “Mission Impossible.”
Th e later series of movies don’t hinge on this same gambit, however.

Threat Modeling's Defi nition of Done 205

For instance, consumer anti-malware software typically does not protect against highly tar-
geted, sophisticated, state-sponsored attacks. Th at’s because the consumers who count on these
products would at the worst be collateral damage to some other target. And indeed, those who
can count on being a state agency target don’t usually rely on consumer-grade software for their
protection. Hence, when threat modeling such software, the analyst may discount nation-state
attackers and their technically astute techniques, focusing instead upon cybercrime, which has
a rather diff erent exploitation model and risk tolerance.

Even sophisticated attackers have their limits. Amongst the exploits leaked from the NSA
and CIA in April 2017 (“Shadow Brokers” leak) was a piece of code that identifi ed the pres-
ence of a particular anti-malware vendor’s products. If the product was running, the attack did
not proceed. Apparently, compromise against this defense was too much trouble, even for the
USA’s premier spy agency.

Th e constraints for attack enumeration are as follows:

* However, an understanding of the mechanism of exploitation of at least one example of each particu-
lar type of attack helps to identify appropriate defensive measures.

† CVE-2019-5736 is a guest escape for Linux containers that was announced February 11, 2019.
Failure to account for the possibility of such a vulnerability left many implementations vulnerable.
Th ose implementations that used a specifi c defense were not vulnerable.

• Th e risk tolerance of the organization owning/fi elding the system
• Th e risk tolerance of the system’s users (if any)
• Th e capabilities, goals, expended eff ort, and risk tolerances of the enumerated set of threat

agents who will wish to attack
• Th e trust/risk profi les of the system’s components, including infrastructure(s) and external

entities
• Th e runtime/execution environment(s)
• Th e existing defenses (including infrastructure defenses and services)
• Th e highest sensitivity of data fl owing through and being processed
• Th e probability of a particular attack scenario being low enough to be discounted (prob-

ability might rise over time as new attack techniques are identifi ed)

While somewhat creative, a threat model must be grounded in hard data. Obviously, those
active attacks that can be exercised against the system under analysis will be included.

Furthermore, an analyst draws attack scenarios from relevant past exploit/vulnerability pairs
even if such vulnerabilities have not yet been found in the system. It’s important to understand
that even the most rigorous testing, as Edsger Dijkstra so famously quipped, “proves the system
has bugs, not that it doesn’t.” If there have existed exploitable vulnerabilities in any component
within the system under analysis or within similar components and technologies, even though
these conditions have already been fi xed, then the analysis must assume that at least a few
similar issues will likely be found at some point in the future.

Th e analyst need not worry about particular exploit details*. Instead, it’s suffi cient to know
that, for example, there are numerous forms of web input injection that allow an attacker to mis-
use a web server’s content to attack the web server’s users (such as Cross-Site Scripting attacks).

Another example would be consideration of attacks that can escape a virtual runtime environ-
ment (that is, a virtual machine or container) to take control of the host operating environment†(a

206 Secrets of a Cyber Security Architect

hypervisor or operating system). Th is attack scenario is called a “Guest Escape” attack. Nearly
every virtual runtime has experienced at least one guest escape vulnerability. Failure to account
for the eventual appearance of a guest escape leaves open the potential for harm at the point in
the future when such a vulnerability has been discovered.

Th e above scenarios are not fi ctional. Such attacks have been successful recently. While we
may wish to gaze into our crystal balls for future attack types, the here-and-now threat land-
scape off ers adversaries plenty of opportunity for malfeasance; a threat model must account
for that set of known attacks whose exploitable conditions have been found in the past in the
technologies under analysis.

An analyst may stop enumerating attacks when:

* For more stringent security postures, each attack scenario must be mitigated. “Signifi cant” is meant
to mean those attack vectors whose successful exercise will cause signifi cant harm. It also implies
attack vectors that are considered “credible;” that is, there is suffi cient evidence that the attack vector
can be exercised by an active threat actor.

• Th e attack scenarios seem demonstrably more complex than other methods of compro-
mise that are easier and more readily available

• Th e required preconditions lie well outside the range of normal or typical confi guration
and usage

• Signifi cant inside assistance (for externally-originated attacks) is required to proceed.
(Insider threat is a special category that requires careful analysis across an organization.
It rarely should be tackled one system analysis at a time. Separation of duties are often
determined on a per-system, per-function, or per-privilege basis.)

• Where no exploit exists for a particular vulnerability, or the vulnerability is not exposed
for remote exercise or research (it’s important to periodically revisit the threat model in
light of new developments)

• Attack scenarios start to border on the ridiculous, the strained, or the dubious, or depend
upon computer technologies that have yet to be invented (i.e., “science fi ction”)

An analyst may stop specifying defenses when:

• Each defense has some overlap of protection with at least one other defense
• Each signifi cant* attack vector is covered at least partially by more than a single defense

Admittedly, the criteria for completing a threat model are qualitative, as they will be for the
foreseeable future. Still, the above set of guidelines and constraints can help to defi ne some
sense of completion, and provide the ability to declare “enough is enough” when an analysis
bumps against one or more of these barrier conditions.

It’s important to remember that a threat model exists within a context of constant change.
Hence, in a very real sense, a threat model is a living analysis of a system being implemented
or running within the dynamic context of maintenance, updates, and changing threat condi-
tions. As such, “completion” can be seen as the end of a threat modeling exercise or review; a
threat model can rarely serve its purpose as a one-time exercise.

However, these very real boundaries, when met, signal that a round of analysis has reached
a termination point – a “defi nition of done.”

207

References

Alperovitch, D. (2011, August 2). Revealed: Operation Shady RAT. McAfee, Inc. White Paper.

Greenberg, A. (2018, January 3). A Critical Intel Flaw Breaks Basic Security for Most Com -
puters. Wired Magazine. Retrieved from https://www.wired.com/story/critical-intel-fl aw-
breaks-basic-security-for-most-computers/

Bonardon, O. (2018) Retrieved from https://docbox.etsi.org/Workshop/2018/201806_etsi
securityweek/middlebox/s03_joint_efforts/encrypted_traffic_inspection_mcafee_
bonorden.pdf

Bureau of Labor Statistics. (n.d.). US Dept. of Labor Statistics for Job Class “Security Analyst.”
Retrieved from https://www.bls.gov/ooh/computer-and-information-technology/information-
security-analysts.htm

Cerbin, W. (2011). Understanding Learning Styles: A Conversation with Dr. Bill Cerbin. Inter-
view with Nancy Chick. UW Colleges Virtual Teaching and Learning Center.

Chandra, B. (2014, May 13). A Technical View of the OpenSSL “Heartbleed” vulnerability, Ver-
sion 1.2.1. A Security on DeveloperWorks Community Whitepaper. ibm.biz/dwsecurity.
Retrieved from https://www.ibm.com/ developerworks/community/fi les/basic/anonymous/
api/library/38218957-7195-4fe9-812a-10b7869e4a87/document/ab12b05b-9f07-
4146-8514-18e22bd5408c/media

Cohen, Z., Marquardt, A., and Crawford, J. (2018, October 3, 12:44 PM ET). North Korean
Hackers Tried to Steal over $1 Billion, Report Says. CNN. Retrieved from https://www.
cnn.com/2018/10/03/politics/north-korea-hackers-cybercrimes/index.html

Doyle, J. (1998). Routing TCP/IP, Vol. I, Cisco Press, MacMillan Technical Publishing, p. 41.

Ducklin, P. (2014, April 8). Anatomy of a Data Leakage Bug—Th e OpenSSL “Heartbleed”
Buff er Overfl ow. Naked Security by Sophos. Retrieved from https://nakedsecurity.sophos.
com/2014/04/08/anatomy-of-a-data-leak-bug-openssl-heartbleed/

Eadicicco, L. (2014, May 15). Photos of Th e NSA’s Secret Workshop Where It Intercepts
Packages and Plants Bugs in Electronics. Business Insider. Retrieved from https://www.
businessinsider.com/nsa-tao-intercepting-packages-2014-5

https://www.wired.com
https://docbox.etsi.org
https://www.bls.gov
https://www.bls.gov
http://ibm.biz
https://www.ibm.com
https://www.cnn.com
https://www.cnn.com
https://nakedsecurity.sophos.com
https://nakedsecurity.sophos.com
https://www.businessinsider.com
https://www.businessinsider.com
https://www.wired.com
https://docbox.etsi.org
https://docbox.etsi.org
https://www.ibm.com
https://www.ibm.com

208 Leading Megaprojects: A Tailored Approach

Edwards, B. (1989). Drawing on the Right Side of the Brain. Tarcher-Perigree.

FBI. (2019, April 22). 2018 Internet Crime Report, Federal Bureau of Investigation, Cyber
Division. Retrieved from: https://pdf.ic3.gov/2018_IC3Report.pdf

Fruhlinger, J. (2018). Th e Mirai Botnet Explained: How Teen Scammers and CCTV Cam-
eras Almost Brought Down the Internet. Retrieved from https://www.csoonline.com/
article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-
almost-brought-down-the-internet.html?

Fuller, M. (2008). Software Studies: A Lexicon, p. 170. MIT Press.

Ghaznavi-Zadeh, R. (2017). ISACA Journal, Vol. 4. Retrieved from https://www.isaca.org/
Journal/Archives/2017/Volume-4/Pages/enterprise-security-architecture-a-top-down-
approach.aspx?utm_referrer=&utm_referrer=

Grobman, M. (2016, November 3). Focus Keynote, Chief Technology Offi cer (CTO), McAfee,
Inc. Focus Conference, Las Vegas NV.

Gruss, D., Maurice, C., Fogh, A., et al. (2016). Prefetch Side-Channel Attacks: Bypassing
SMAP and Kernel ASLR. Graz University of Technology, G DATA Advanced Analytics.
Retrieved from: https://gruss.cc/fi les/prefetch.pdf

IEEE (2014). Avoiding the Top 10 Software Security Design Flaws. IEEE Center for Secure
Design, p. 2. Retrieved from https://cybersecurity.ieee.org/blog/2015/11/13/avoiding-the-
top-10-security-fl aws/

Intel. (2015). Protect, Detect, Correct: Security Connected for Healthcare Providers. Intel Secu-
rity. Retrieved from http://www.mcafee.com/us/resources/brochures/br-protect-detect-
correct-security-connected-healthcare.pdf

Isaac, M. (2016, October 25). Self-Driving Truck’s First Mission: A 120-Mile Beer Run. New York
Times. Retrieved from https://www.nytimes.com/2016/10/26/technology/self-driving-
trucks-fi rst-mission-a-beer-run.html

Ismail, N. (2018, April 24). Global Cybercrime Economy Generates over $1.5TN, According
to New Study. Tech Nation. Retrieved from https://www.information-age.com/global-
cybercrime-economy-generates-over-1-5tn-according-to-new-study-123471631/

Johnson, S. (1836). Th e Poetical Works of Alexander Pope, Esq., to Which Is Prefi xed: A Life of the
Author, Vol. 1, p. 89. J. Gladding & Co.

Kocher, P., Horn, J., Fogh, A., et al. (2018). Spectre Attacks: Exploiting Speculative Execution.
Retrieved from https://spectreattack.com/spectre.pdf

Leyden, J. (2005, August 3, 15:37). Cisco Portal Password Security Compromised. Precautionary
Reset Fails to Run Smoothly. Retrieved from https://www.theregister.co.uk/2005/08/03/
cisco_password_security_fl ap/

Lipp, M., Schwarz, M., Gruss, G., et al. (2018). Meltdown: Reading Kernel Memory from
User Space. Retrieved from https://meltdownattack.com/meltdown.pdf

Maruoka, A. (2011). Concise Guide to Computation Th eory, p. 167. Springer-Verlag.

https://pdf.ic3.gov
https://www.csoonline.com
https://www.csoonline.com
https://www.csoonline.com
https://www.isaca.org
https://www.isaca.org
https://www.isaca.org
https://gruss.cc
https://cybersecurity.ieee.org
https://cybersecurity.ieee.org
http://www.mcafee.com
http://www.mcafee.com
https://www.nytimes.com
https://www.nytimes.com
https://www.information-age.com
https://www.information-age.com
https://spectreattack.com
https://www.theregister.co.uk
https://www.theregister.co.uk
https://meltdownattack.com

References 209

McClue, S. (1999, September 10). Hacking Exposed: Network Security Secrets & Solutions.
Computing. McGraw-Hill.

McGeehan, R. (2019, April 23). Describing Vulnerability Risks. Medium.com. Retrieved from
https://medium.com/@magoo/describing-vulnerability-risks-3a78c2e352d8

Mehta, N. (2014, April 8, 1:08 pm). Twitter.

Michlin, I. (n.d.) DevOps Trainer and Principal Security Consultant at NCC Group, quoted
by Robert Lemos. Th reat Modeling and DevOps: 3 Lessons from the Front Lines.
Tech Beacon. Retrieved from https://techbeacon.com/security/threat-modeling-devops-
3-lessons-front-lines

Microsoft. (n.d.) Simplifi ed Implementation of the SDL. Microsoft SDL documentation,
p. 6. Retrieved from: https://download.microsoft.com%2Fdownload%2FF%2F7%2F
D%2FF7D6B14F-0149-4FE8-A00F-0B9858404D85%2FSimplifi ed%2520Implemen
tation%2520of%2520the%2520SDL.doc&usg=AOvVaw3UCYwxZwcaPbQoTPkFL
Q1Q

Microsoft (2014, June 13). Th e OSI Model’s Seven Layers Defi ned and Functions Explained,
Rev. 2. Microsoft Inc. Retrieved from https://support.microsoft.com/en-us/kb/103884)

MITRE. (n.d.). CWE-888: Software Fault Pattern (SFP) Clusters. MITRE Corporation.
Retrieved from https://cwe.mitre.org/data/graphs/888.html

NATO. (1969, October). NATO Science Committee. Software Engineering Techniques.
Report on a Conference Sponsored by the NATO Science Committee, p. 16. Quote
from Edsger Dijkstra, Rome, Italy. Retrieved from http://homepages.cs.nci.ac.uk/brian.
randell/NATO/nato 1969.PDF

NIST 800-14 in 1996. Retrieved from https://csrc.nist.gov/publications/detail/sp/800-14/archive/
1996-09-03

Ogundeji, O. A. (2015, August 18). Google Launches Android One Smartphone Program
in Africa. PCWorld. Retrieved from https://www.pcworld.com/article/2972741/android/
google-launches-android-one-phone-in-africa.html

Osborne, C. (2018, January 23). Artifi cial Synapse Creation Makes Brain-on-a-Chip Tech Closer to
Reality. Retrieved from: http://www.zdnet.com/article/artifi cial-synapse-creation-makes-
brain-on-a-chip-tech-closer-to-reality/#ftag=RSSbaff b68

Romeo, C. (n.d.) CEO of Security Journey. Quoted by Vijayan, J. 6 DevSecOps Best Prac-
tices: Automate Early and Often. Tech Beacon. Retrieved from https://techbeacon.com/
security/6-devsecops-best-practices-automate-early-often

Rosen, M. (2008, October 1). 10 Key Skills Enterprise Architects Must Have to Deliver Value.
Retrieved from https://www.cutter.com/article/10-key-skills-enterprise-architects-must-
have-deliver-value-469471

Schoenfi eld, B. (2014). Applying the SDL Framework to the Real World. In Ransome, J. and
Misra, A. Core Software Security: Security at the Source, Ch. 9, pp. 255–324. Boca Raton,
FL: CRC Press.

http://Medium.com
https://medium.com
https://techbeacon.com
https://techbeacon.com
https://download.microsoft.com%2Fdownload%2FF%2F7%2F
https://support.microsoft.com
https://cwe.mitre.org
http://homepages.cs.nci.ac.uk
http://homepages.cs.nci.ac.uk
https://csrc.nist.gov
https://csrc.nist.gov
https://www.pcworld.com
https://www.pcworld.com
http://www.zdnet.com
https://techbeacon.com
https://techbeacon.com
https://www.cutter.com
https://www.cutter.com
http://www.zdnet.com
https://download.microsoft.com%2Fdownload%2FF%2F7%2F
https://download.microsoft.com%2Fdownload%2FF%2F7%2F

210 Leading Megaprojects: A Tailored Approach

Schoenfi eld, B. and Quiroga, D. (2017, November 24). Don’t Substitute CVSS for Risk:
Scoring System Infl ates Importance of CVE-2017-3735. Securing Tomorrow McAfee
Blog. Retrieved from https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/dont-
substitute-cvss-for-risk-scoring-system-infl ates-importance-of-cve-2017-3735/

Schoenfi eld, B. (2015). Securing Systems: Applied Security Architecture and Th reat Models. Boca
Raton, FL: CRC Press.

Seggleman, R., Tuexin, M., and Williams, M. (2012, February). Request for Comment
RFC 6520 “Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension.” ISSN: 2070-1721. Retrieved from https://tools.ietf.org/
html/rfc6520

Shankland, S. (2014, April 8, 2:55 am pdt). “Heartbleed” Bug Undoes Web Encryption,
Reveals Yahoo Passwords. Retrieved from https://www.cnet.com/news/heartbleed-bug-
undoes-web-encryption-reveals-user-passwords/

Shankland, S. (2014, April 8, 2:55 am pdt). Cost of a Retail Data Breach: $179 Million
for Home Depot. WebTitan. Retrieved from https://www.webtitan.com/blog/cost-retail-
data-breach-179-million-home-depot/

Shostack, A. (2014). Security Engineering: Computers versus Bridges. Adam Shostack and Friends.
https://adam.shostack.org/blog/2018/04/security-engineering-computers-versus-bridges/

Stephenson, N. (1995) Th e Diamond Age. Bantam Books.

Swiderski, F. and Snyder, W. (2004, July 14). Th reat Modeling. Microsoft Professional. Microsoft
Press.

Tarandach, I. and Schoenfi eld, A. (2019, May 30). Continuous Th reat Modeling Handbook.
continuous-threat-modeling/Continuous_Th reat_Modeling_Handbook.md, GitHub.
Retrieved from https://github.com/Autodesk/continuous-threat-modeling/blob/master/
Continuous_Th reat_Modeling_Handbook.md)

Th e Open Group. (2011). An Example of Enterprise Security Th inking Can Be Found in
Open Enterprise Security Architecture. Retrieved from https://publications.opengroup.
org.G112

Th e Open Group. (n.d.) Th e Open Group TOGAF Standard, Version 9.2. Retrieved from https://
pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html

Tipton, H. F. (2000, October 20). Information Security Management Handbook, 4th Edition,
Vol. 2, p. 581. Boca Raton, FL: CRC Press.

Vaas, L. (2018, February 26). In Fraud We Trust—Cybercrime Org Bust Shows We’re Fight-
ing Pros. Naked Security by Sophos. Retrieved from https://nakedsecurity.sophos.com/
2018/02/26/in-fraud-we-trust-cybercrime-org-bust-shows-were-fi ghting-pros/

Vanhoef, M. (2017). Key Reinstallation Attacks: Breaking WPA2 by Forcing Nonce Reuse.
[Discovered by Mathy Vanhoef of imec-DistriNet, KU Leuven]. Retrieved from https://
www.krackattacks.com/

https://securingtomorrow.mcafee.com
https://securingtomorrow.mcafee.com
https://tools.ietf.org
https://tools.ietf.org
https://www.cnet.com
https://www.cnet.com
https://www.webtitan.com
https://www.webtitan.com
https://adam.shostack.org
https://github.com
https://github.com
https://publications.opengroup.org.G112
https://publications.opengroup.org.G112
https://pubs.opengroup.org
https://pubs.opengroup.org
https://nakedsecurity.sophos.com
https://nakedsecurity.sophos.com
https://www.krackattacks.com
https://www.krackattacks.com

References 211

Williams, C. (2018, January 2). Kernel-Memory-Leaking Intel Processor Design Flaw Forces
Linux, Windows Redesign. Th e Register. Retrieved from https://www.theregister.co.uk/
2018/01/02/intel_cpu_design_fl aw/

Wilson, P. L. (1995, 2004). Pirate Utopias: Moorish Corsairs & European Renegadoes. AbeBooks.

Zachman, J. A. (2007). Foreword. In: Handbook of Enterprise Systems Architecture in Practice.
(P. Saha, Ed.) pp. xv–xvi. IGI Global.

Zeigler-Hill, V., Welling, L. M., and Shackleford, T. K. (Eds.). (2015). Evolutionary Perspectives
on Social Psychology Evolutionary Psychology, p. 231. Springer International Publishing.

https://www.theregister.co.uk
https://www.theregister.co.uk

http://www.taylorandfrancis.com

213

*ilities, 97

A
abstraction, xxiii, 28, 38, 39, 43, 44, 49,

131, 136, 161
abstract patterns, 24
access control, 23, 40, 57, 122, 131
Acheson, Steve, xxiii, 25, 134, 147, 151
activity level, 6, 14, 54
actor, ix, xviii, xxi, 1, 2, 5–15, 18, 21, 22,

31, 36, 44, 45, 49, 72, 76, 90, 96, 102,
106, 129, 131, 148, 163, 204

administrative controls, 126
advanced persistent threat (APT), ix–xiii,

xx–xxiv, xxvii, 1–5, 8–12, 20, 22, 28,
32, 33, 37, 38, 46–55, 70–79, 85, 88,
100, 112–116, 122, 123, 127, 129,
136–138, 141, 142, 146, 147, 152–
164, 167–171

adversaries, xxiii, 4–9, 12, 14, 15, 20, 30,
167, 205

Agile, 5, 27, 34, 39, 45, 75, 86
Alexa, 4, 56
Alperovitch, Dmitri, xviii
anti-malware, 34, 203
API. See application programming interface
application programming interface (API), xx,

5, 8, 16, 24, 25, 39, 43, 56, 59, 97, 99,
104, 108, 113, 114, 120, 148, 169

application security, 18, 23, 43, 53, 100,
143, 147, 152

applied cryptography, 36
APT. See advanced persistent threat
ARA. See architecture risk assessment
architecture patterns, 70, 151, 152
architecture practice, x, 31, 34, 42, 49, 77, 89,

125, 138, 141, 146, 148, 157, 161, 162
architecture risk assessment (ARA), xvii,

xviii, xxiii–xxv, 4–6, 12, 17, 20, 24–39,
44, 45, 48, 49, 52, 55, 61–64, 67, 68,
71, 74, 75, 80, 85, 87, 91, 94, 95, 100,
102, 107, 122–124, 129, 131, 136,
146, 150, 154, 156, 166–169

architecture, threats, attack surfaces,
mitigations (ATASM), 23

architecture views, 39
assembly, 20, 43, 46, 52
ATASM. See Architecture, Threats, Attack

Surfaces, Mitigations
atomic, 25
ATT&CK, v, xiii, xxiv, 55, 116–123, 138
ATT&CK Navigator, 55, 116, 121, 122
attacker, xv, xviii, 4–20, 25, 29, 30, 35,

45–49, 52–57, 61–72, 84–88, 97,
107, 116, 117, 120–123, 126, 128,
138, 167, 169, 173–177, 180–183,
206

attack methods, x, xxi, 5, 9, 18, 45, 48, 57

INDEX

214 Secrets of a Cyber Security Architect

attacker intentions, 120
attacker value, 8–10, 66, 72, 180
attacks and their defenses, 23, 26, 28, 86,

126, 138
authentication, 10, 29, 31, 40, 45, 59, 66–70,

102, 122, 147, 151–154, 158, 181
authorization, 7, 29, 40, 45, 158
automated truck, 1

B
bank, 10, 21
Bansal, Vinay, xxiv, 22, 120, 132
basic input, 42
basic input/output system (BIOS), 42
Beek, Christian, 116
binary executable, 30
BIOS. See basic input/output system
Blackader Nelson, Catherine, xxiii, 46
blame storming, 135
Bluetooth, 4
Bonordon, Olaf, 68
boot code, 42
boot loaders, 126
boot sections, 42
botnet, 7, 10, 54, 84, 88, 122
bottleneck, 43, 91, 113, 127
browser, 38, 40, 58, 68, 84–86
BSIMM. See Building Security In Maturity

Model
buffer overflow, 8, 46, 52–54, 173
bugs, 2, 30, 56, 66, 75, 95, 108, 109, 142,

145, 178, 205
Building Security In Maturity Model

(BSIMM), xxvii, 124, 125
business acuity, 44
byte code, 43

C
C, 175, 179, 181
CAPEC. See Common Attack Pattern

Enumeration and Classification
career, xix, xxii, 14, 23–27, 42, 46, 53, 61,

87, 107, 137, 149, 162, 166
Carroll, Eoin, 12, 13, 86, 155

CAV. See credible attack vector
cell towers, 2
Center For Secure Design, 31
central processing unit (CPU), 16–19, 37,

46, 52
CEO. See Chief Executive Officer
Chief Executive Officer (CEO), 109, 130
Chief Information Security Officer (CISO),

44, 125
CIA. See confidentiality, integrity, and

availability
CISO. See Chief Information Security

Officer
client, 25, 58, 59, 68, 70, 141, 168, 169
client-to-server, 58
Climate Corporation, 2
cloud, xx, xxiv, 25, 37, 43, 100, 107, 130,

151, 164, 165, 168
code, xv, xxvii, 3, 8, 11, 15–25, 30, 39, 42,

43, 46, 47, 52–63, 68–71, 84–92, 96,
98, 108–112, 122, 126, 135, 143–145,
150–153, 156, 158, 164–167, 173–
183, 205

code of the attacker’s choosing, 8, 46, 55, 62,
69, 84, 86, 122

Codenomicon, 58
coders, 19, 59, 84, 108–111, 143–145
coding, xi, 20, 24, 29, 34, 46, 52, 53, 64,

108–113, 126, 135, 143, 144, 152, 167
Cold War, 3
collateral damage, xvii, 21, 203
collect and analyze information, 120, 122
command and control, 54, 122
commercial, off-the-shelf (COTS), 30
Common Attack Pattern Enumeration and

Classification (CAPEC), xiii, 120–125,
138

common vulnerability enumeration (CVE),
xii, 120, 181–183

common weakness enumeration (CWE), 45,
120

community of practice, xi, 131, 134, 135,
159, 171

community space, 132, 133

Index 215

compilation, 20, 36
compiler, 42, 110, 178
compiling, 144
compliance, xv, 14, 100–102, 113, 155
compromise, xviii, xx, 4–12, 18, 25, 41, 47,

57, 62, 75, 95, 102, 116, 153, 163,
167, 169, 205, 206

computation device, 3
Computer Age, 1, 31
computer language, 36, 41, 42, 49, 202
computer science, xxi, 11, 20, 32, 37, 42–45,

49, 52, 65, 69, 70, 123, 166
confidentiality, integrity, and availability

(CIA), vii, xi, xvii, xviii, xix, xxv, 2–4,
7, 10–13, 16–23, 27, 30, 36–45,
49–60, 63, 68, 73, 75, 81, 83, 86–90,
93, 95, 101–113, 117, 123, 128–131,
135, 136, 139, 143, 150–155, 159,
164–171, 205

conflict, xvii, xix, xx, 41, 80, 90, 94, 100–
104, 112, 128, 129, 132, 133, 142,
148, 149, 159, 160, 163–165, 170,
171

conflict of interest, 80, 129, 160
connected life, 31
connected people, xvii
connected world, 2, 4
constructive critique, 17, 19
container, 25, 203
containerization/containerized, 25
control, xx, 1, 4–10, 18, 23, 31–36, 40,

45–48, 52–57, 67, 69, 81, 82, 85, 94,
98, 101–103, 114, 122–126, 131, 134,
142, 144, 147, 151, 160, 165, 168,
169, 173, 183, 204, 205

COTS. See commercial, off-the-shelf
CPU. See central processing unit
credential, 7, 30, 31, 64
credible attack, 27, 28, 47, 72, 153–155
credible attack vector (CAV), 47, 65, 72, 73,

128, 134
credit card, 3, 4
criminal networks, 21
Cross-Site Scripting (XSS), 84–86, 183, 205

cross-training, 127
CVE. See common vulnerability

enumeration
CWE. See common weakness enumeration
cyberactors, 21
cyber army, 9
cyber-citizen, xvii, xix
cybercrime, 7, 8, 14, 20, 21, 205
Cyber Heroes, 21
cyber war, ix, xvii, 1, 21, 46

D
Damage, Reproducibility, Exploitability,

Affected, Discoverability (DREAD),
72, 117, 136

DARPANET, 166
database, 40, 44, 52, 64
data loss events, 34
data loss prevention (DLP), 34
David, Nooper, 84
DDOS. See Distributed Denial of Service
debug, 20, 42, 43, 88
decompilation, 20
defense, x, xi, xviii, xix, xxi, xxiii, 3–9, 12,

13, 16–23, 26–28, 32, 35–41, 44–59,
66, 69–77, 84, 86, 90, 91, 94–97,
102, 113, 117, 121–128, 132, 138,
151–153, 167, 204–206

defense-in-depth, xix, 35, 40, 44, 48
defensive software industry, 5
Definition of Done (DoD), xii, 75, 76, 95,

96, 101, 102, 203, 206
deployment system, 41, 150, 153
developer-centric, xii, 83, 90, 93, 105, 177, 178
development environment, 42, 111
development teams, 27, 29, 42, 81, 83,

87, 90–95, 105, 107, 112, 129, 132,
144–147, 153, 156, 158, 177

DevOps, xxvii, 25, 150–153, 164, 165
Digital Age, 1
digital devices, xvii, 3
digital systems, 3, 36, 37, 48, 54
digital world, xvii, 2, 16
director, 81, 106, 130, 149, 150, 162

216 Secrets of a Cyber Security Architect

disk protections, 126
Distinguished Engineer, 22, 73, 120, 132,

146
Distributed Denial of Service (DDOS), 10
diversity, 4, 104, 137
DLP. See data loss prevention
DNS. See Domain Name Service
DoD. See Definition of Done
Domain Name Service (DNS), 6, 10
drawing, 28, 38
driver, 1, 17, 19, 36, 37, 43, 49, 109, 128, 163
due diligence, 127, 143, 148, 159, 164, 168,

173
dyn, xv, 3, 5, 9, 10, 15, 25, 61, 84, 88, 105,

107, 132, 142, 156

E
early adopter, 24
Echo, 4
EK. See exploit kit
Elevation of Privilege, 61, 117, 120
emotional baggage, 133
end-of-life software, 15
Engage in Deceptive Interactions, 120, 122
enterprise, xx, xxvii, 3, 8, 14, 21, 22, 28, 35,

36, 39, 40, 44, 56, 86, 116, 117, 124,
127, 148, 157, 161, 162

enterprise architecture, 35, 36, 39, 40, 44,
148, 162

Erickson, Roddy, 166
escalation, 7, 55, 62, 106, 122, 128–130,

149, 160–163, 170
exception, xi, 24, 64, 83, 98, 112, 129,

156–160, 163, 171
executable, 20, 25, 30, 37, 61, 63, 84, 173,

174
Executive Committee, 130
executive, xxi, 3, 4, 7, 12, 23, 26, 105–107,

113, 128–130, 149, 150, 158, 170
exfiltration, 34, 57
exploit, ix, x, xxi, xxiii, 5–10, 15, 21, 30,

35–38, 45–47, 51–56, 60–64, 67–72,
75–77, 95–98, 116, 117, 120–125, 129,
145, 146, 154, 170, 180–183, 204–206

exploitation techniques, 38, 45, 46, 52, 56,
145

exploit kit (EK), xv, xvii, xxv, 4–8, 11, 14,
15, 20, 21, 27, 37, 60, 71, 81, 82, 92,
105, 107, 116, 135, 137, 141, 144,
148, 155, 160

exposure, xii, 6–9, 27, 29, 60, 63, 72, 76, 93,
126, 168, 173

eXtensible Markup Language (XML), 25
eyeball-to-eyeball security, 123, 124

F
Factor Analysis of Information Risk (FAIR),

xvii, xxiii, 2, 4, 7, 10, 19, 22, 23, 30,
37, 44, 57, 59, 64–67, 70, 72, 79, 83,
94, 106, 109, 110, 117, 125, 129, 132,
136, 143, 163, 164

Fagbemi, Damilare, xxiv, 14
FAIR. See Factor Analysis of Information

Risk
farmers, farming, 1, 2
fast flux DNS, 6
FBI. See Federal Bureau of Investigation
Federal Bureau of Investigation (FBI), 20, 21
feedback, xi, xxiv, 12, 13, 114, 130, 145, 168
final goal, 6
financial institution, 4
firewall, 18, 24, 34, 40, 47, 48, 51, 57
friction, 23, 90, 94, 142, 147, 163–165
fuel, 4
fuzz test, 48

G
gangs, 21
gas, 3
gas pump, 3
GDPR. See Global Data Protection

Regulation
Global Data Protection Regulation (GDPR),

101–103
Google, 58, 153
governance, x, 4, 88–93, 104, 113, 127, 128,

147, 168
graphics memory, 39

Index 217

ground truth, 107
Guel, Michele, xxiii, 117, 125

H
hacker, xv, 14, 20, 100, 115
Hacktivist, 13, 14
Hansen, Ove, 105
hard disk, 42, 101
hardware security module (HSM), 107
harm, xxi, xxiii, 6, 8, 17, 26, 28, 34, 54, 71,

72, 76, 91, 92, 96, 124, 164, 180, 206
Health Insurance Portability and

Accountability Act (HIPAA), 101
heap, x, xxi, 2, 13, 42, 61–66, 70, 72, 84–86,

173–175, 181–183
Heartbeat, 59–71, 174, 175
HeartbeatRequest, 59
Heartbleed, x, xii, 22, 57–71, 173–175, 181,

182
HIPAA. See Health Insurance Portability and

Accountability Act
horizontally scaled, 131
HSM. See hardware security module
HTTP. See Hypertext Transport Protocol
HTTPS. See Hypertext Transport Protocol

Secure
Hypertext Transport Protocol (HTTP), xvii,

4–6, 11, 12, 47, 58, 59, 63–65, 68, 72,
76, 96, 101, 115–117, 120, 123–125,
136, 148, 173, 177

Hypertext Transport Protocol Secure
(HTTPS), xvii, 5, 6, 11, 12, 58, 64,
68, 72, 76, 96, 115–117, 120, 123–
125, 136, 179, 181, 203

I
ICSG. See Industry Connections Group
Idaho, 4
IDE. See integrated development

environment
IDS. See intrusion detection system
IEEE, xix, xxvii, 31, 68
impact, xiii, xv, 4, 5, 8–10, 28, 60, 69–72,

84–88, 102, 103, 117, 123, 129, 130,

134, 138, 146, 147, 152, 155, 159,
163, 166, 170, 179–183

implementation error, 29, 30, 34, 58, 60,
113, 167

inappropriate technology, 25
incident, xv, 5, 20, 23, 41–44, 56, 67, 93,

98, 101, 116, 124, 145, 146, 179, 181
Indicator of Compromise (IoC), 116
industrial espionage, 14
industrial spies, 13
Industry Connections Group (ICSG), 68
Information Age, 1
information processing, 1
Infraud, 20
In Fraud We Trust, 20
initial access, 120, 121
inject unexpected items, 121
innovation, xi, 24, 103, 136, 164, 165, 171,

177
Insider, 14, 75, 81, 95, 100, 169, 204
integrated development environment (IDE),

xii, xv, xviii–xxv, 1–76, 79–117,
120–138, 142–171

Intel, xviii, 2–5, 14, 16, 20, 27, 28, 41, 46,
47, 57, 73, 88, 143

Internet, xvii, xviii, xxiv, 4–6, 10, 15, 18, 21,
47, 58, 60, 63, 64, 67–69, 152, 153,
173, 177

Internet Provider (IP), 4
Internet Service Provider (ISP), 1, 3, 7, 17,

18, 21, 30, 35, 39, 44, 52, 56, 136
intrusion detection system (IDS), 68–70
intrusion prevention system (IPS), xix–xxiii,

18, 21, 34, 49, 80, 81, 105, 113, 121,
128, 132, 136–138, 149, 158–164,
171

IoC. See Indicator of Compromise
IPS. See intrusion prevention system
ISP. See Internet Service Provider
issue, 4, 8, 11, 15–19, 26, 34, 44, 58, 59,

65–70, 75, 83, 84, 95–100, 106,
109–112, 124, 128–135, 141–148,
152, 156, 159, 160, 163, 164, 167,
170, 171, 180–183

218 Secrets of a Cyber Security Architect

J
Jabri, Ferris, xxiv, 148
Java, 43, 54
Java Execution Environment (JRE), 43
JGERR. See Just Good Enough Risk Rating
Jones, Jack, xxiv, 23
JRE. See Java Execution Environment
jump table, 20
Just Good Enough Risk Rating (JGERR), x,

22, 47, 72

K
keepalive, 59
Kern, Christoph, 153
kernel, 8, 16–19, 36, 43, 114, 143
kill chain, 47, 57, 72, 73
Kim Jong Un, 21
Koblas, Michelle, xxiv, 148

L
landline, 4
law enforcement, 14
library, xx, 25, 64, 66, 99, 109, 174, 175
linker/linking, 20, 25, 42, 84
Linux, 4
listener, 59, 98
long tail of architecture, 146
loss, 1, 8–10, 34, 42, 67, 85, 86, 104, 137,

162, 163

M
Mac, 1, 2, 15, 20, 25, 37, 39, 43, 54, 55, 62,

84–86, 100, 107, 122, 126
machine instruction, 43
Macintosh, 20
malware, 5, 11, 34
Man in the Middle, 68, 122
Manipulate Data Structures, 121
Massively Open Online Course (MOOC),

125
McAfee, vii, 8, 12, 18, 79, 179–183
McCoy, Lucy, 3
Mechanisms of Attack, xiii, 120, 121
medical gear, 4

Mehta, Neel, 58, 63, 66, 173
Meltdown, 16–19
memory, xxi, 8, 16–18, 37–39, 42, 46, 52,

54, 61–66, 69, 70, 85, 96, 126, 150,
154, 169, 173–175, 181, 183, 204

memory location, 46, 52, 63, 174
memory protections, 126
message, 5, 9, 18, 40, 48, 52, 59–62, 69, 70,

88, 98, 100, 128, 153, 168
message layer, 40
Michlin, 153
mid-management, 106, 107, 170
Mirai camera, 10, 88
MITRE®, xxv, 116
mobile phone, 2
modem, 3, 4
modularization, 43
module, 107, 181, 183
monitoring and logging, 126
MOOC. See Massively Open Online Course
multitenant, xiii, 168, 169

N
Narasimhan, Srikanth, 146
National Cybersecurity Award, 117
NDA. See non-disclosure agreement
negotiation, xx, 102, 129
network, xxi, xxiii, 3–6, 18, 21, 23, 29, 34,

36, 40–44, 47–49, 53, 57–61, 64, 68,
102, 105, 115, 122, 125, 126, 130,
131, 153, 158, 168, 169, 181

network boundaries, 34, 44
networking, 3, 4, 40–44
networking equipment, 3, 4
networking team, 40
network restrictions, 125
network storage configurations, 126
new technology, 25, 164, 165
NGO. See non-governmental organization
NIST 800-14, 5
NIST 800-53, 123–126
non-disclosure agreement (NDA), v, xix, xxiv,

6–9, 18, 22–26, 30, 31, 34, 37–44,
48, 51, 58, 60, 74–76, 79–85, 91, 95,

Index 219

98–103, 107–110, 113, 117, 123–126,
129, 132, 133, 137, 147–155, 158, 168

non-governmental organization (NGO),
xviii, xix, 3, 4, 18–21, 24, 36, 81, 101,
103, 148, 151, 156, 157

North Korea, 21

O
object, xv, xx, 25, 29, 31, 35–39, 43, 54–56,

84, 99, 102, 103, 122, 131, 163–166
ontology, 11
OpenSSL, 58–71, 173–175, 180, 183
Open Systems Interconnection (OSI), 40
Open Web Application Security Project

(OWASP), 23, 152
operating system privileges, 8, 84, 126
OSI. See Open Systems Interconnection
OWASP. See Open Web Application Security

Project
owned, 8, 10, 86

P
Paller, Alan, 120
Payment Card Industry Data Security

Standard (PCI), 101
payment terminal, 3
PCI. See Payment Card Industry Data

Security Standard
penetration test, xv, xxi, 10–15, 38, 46–48,

51, 53, 70, 101, 145, 154, 167
persistence, xxiii, 7
petrol, 3, 4
phone line, 3
piracy, xvii, xviii, 19, 21
pirate, ix, xvii, xviii, 2, 15, 20, 21, 31
PKI. See public key infrastructure
point-and-click, 5
point-of-sale (POS), xii, xvii, xx, xxi, xxiv, xxvii,

2–30, 34–41, 47, 48, 52, 53, 56, 60–76,
80–93, 96, 99–117, 120–135, 141–171

POS. See point-of-sale
Principle Engineer, 27
printer, 4
private key, 63, 107, 173, 174

program loader, 42
program management, 4, 10
programmers, 30, 59, 109–112, 143, 151
programming, xx, 2, 5, 25, 35, 42, 53,

59–63, 85, 110, 135, 152, 164, 166
programming languages, 5, 110, 164
project management, xxv, 3–12, 94
project manager, xxiv, 5, 6, 87, 93, 94, 97,

99, 128, 129, 163
pro-social, xi, 103–105
protect, detect, and correct, 41, 42
protection, xix, xxiii, 4, 16–18, 22–24, 29,

33–35, 40, 41, 45, 51, 58, 69, 76, 87,
96–102, 126, 152, 154, 158, 168, 205,
206

public key, 35
public key infrastructure (PKI), 35
pwn(ed), 8

Q
Quiroga, Damian, 179

R
R&D. See research and development
radio frequencies, 2
radio transmissions, 2
radio waves, 2
RAM. See random access memory
random access memory, 37
Ransome, James, xxiv, 87, 107
ransomware, 116
RCE. See remote code execution
Reichelt, Joerg, 168
required effort, 9, 10
research, 3–20, 26, 30, 51, 54, 58, 63, 70,

71, 75, 86, 95, 96, 100, 115, 141–145,
165, 201, 206

research and development (R&D), 7, 8, 12,
26, 100, 141

researchers, 7, 10, 11, 15–20, 30, 51, 54, 58,
63, 143, 145

resistance, xx, 41, 48, 105–108, 150
resume, 25, 26, 92, 96, 148
return pointer, 46

220 Secrets of a Cyber Security Architect

review board, 91, 113, 127, 138
Rezai, Nasrin, xxiv, 148
risk, x, xii, xix, xxiv, xxvii, 5–16, 22–30, 33,

36, 47–49, 59, 66–75, 81–88, 91, 95,
98, 101–103, 106, 112, 117, 128–130,
134, 138, 148, 149, 154–156, 159,
160, 163, 164, 167, 170, 175, 179–
183, 204, 205

risk analysis, 5, 8, 69, 71, 74, 170, 179, 180,
183

risk methodology, 22, 23, 129
risk posture, 23, 28, 48, 68, 179
risk rating, x, 22, 23, 26, 47, 72, 83, 117,

129, 130, 134, 138, 180, 181
risk tolerance, 6–9, 13, 14, 23, 49, 74, 75,

95, 130, 148, 164, 204, 205
Romeo, Chris, 109, 151

S
SAFE. See Security Architecture Forum
SAFECode, xxvii, 23
SANS Institute, xxvii, 47, 120, 125
Scherr, Carsten, 89
Schoenfield, Allison, xxv, 208
scripting, 38, 40, 85, 164, 183, 205
script interpreter, 40
script kiddie, 8
SDLC. See Secure Development Life Cycle
secure design, ix, xxvii, 27–31, 49, 91–95,

103, 145, 156, 171
Secure Development Life Cycle (SDLC),

142, 177
Secure Software Development Life Cycle

(S-SDLC), 33, 56
secure software principles, 29–31
Securing Tomorrow, 8
security architecture assessment, 27
Security Architecture Forum (SAFE), 27, 73
security assessment, 6, 80, 105, 128, 154,

155
Security Committee, 130
security context, 30
security design, 31
security engineering, 27, 33

security forensics, 33
Security Information Event Management

System (SIEM), 34
security infrastructure, 34, 40, 45, 48, 55
security knowledge empowerment (SKE),

117
security monitoring, 33
security posture, 12, 16, 20, 24, 30, 35, 40,

41, 48, 74, 76, 89, 91, 96, 113, 131,
151, 154

security practitioner, xxiii, 8, 9, 20, 44, 60,
86, 108, 113, 138, 156–160

security research(er), 7, 10, 14–19, 51, 54,
58, 63, 86, 95, 143, 145

security response, 33
security tools, 35, 143, 144, 175, 179
sensors, 2, 57
separation of duties, 75, 95, 102, 123, 124,

169, 204, 206
serial communication, 3
server, 5, 6, 16, 24–27, 58, 59, 64, 68, 70,

85, 88, 107, 175
serverless, 25
service level agreement (SLA), 43
Servin, Luis, xxiv, 89
shared purpose, 131
Shostack, Adam, xvi, xxiii, xxv, 16, 19, 117,

120
SIEM. See Security Information Event

Management System
Simple Object Access Protocol (SOAP), 25
SKE. See security knowledge empowerment
SLA. See service level agreement
small business, 3
smart TV, 4
SOAP. See Simple Object Access Protocol
socket, 59
software architecture, 4, 42–44, 148
software design, 36, 42–44, 112
software development, x, 27, 33, 36, 42–44,

56, 75, 86, 94, 132, 145
Software Development Life Cycle, 33, 56
software engineers, xv, 42
software errors, 55

Index 221

software security, 177
software security principles, 31, 146
solutions architect, 39, 44
solutions architecture, 44
Spectre, 16–19
Spoofing, Tampering, Repudiation,

Information Disclosure, Denial
of Service, Elevation of Privilege
(STRIDE), 116, 117, 120, 127

SQL, 52–54
SQL injection, 52–54
S-SDLC. See Secure Software Development

Life Cycle
SSL. See Secure Socket Layer
stack, xvi, xxiii, xxv, 4, 16, 19, 37, 42, 46,

56, 88, 117, 120
standards, 24, 25, 30, 60, 81, 100–102, 107,

109, 123–125, 137, 147–155, 168,
177

state actors, 9, 21
state-sponsored, 21, 203
static analysis, 110, 111, 143, 144, 167
static analyzer, 143
Stewart, John, xxiv, 120, 148, 149
storage, 36, 37, 40, 44, 45, 102, 126, 154,

157, 169
supply chain, 89
Swiderski, Frank, 117
system analysis, 22, 23, 75, 95, 206
system assessment, 23, 49
system objectives, 54–56, 122

T
tactics, 5, 16, 116, 167
tactics, techniques, and processes (TTP),

116, 123, 166
Tarandach, Izar, xxiv, 31, 210
TCP. See Transmission Control Protocol
technical capability, 8
telecom company, 4
testing strategies, 126
The Open Group, xix, 22, 23, 35, 36
The Register, 16
thermostat, 4

think like an attacker, 126, 177
Third World, 2
threat actor, ix, 5–11, 15, 36, 45, 49, 76, 96
threat agent, xiii, 6–15, 30, 36, 49, 54, 57,

69, 72, 75, 95
threat landscape, 5, 15–18, 23, 35, 36, 100,

145, 150, 153, 154, 206
threat modeling, 203–206
threatscape, 35
tipping point, 82, 103, 105, 112
TLS. See Transport Layer Security
toolset, 18, 20
traffic analysis, 125
training, x, xi, xxi, 53, 82, 88, 92, 93,

108–112, 115, 127, 128, 132, 138,
148, 149, 154, 170

transaction, 3, 4, 25, 43
Transmission Control Protocol (TCP), 42,

57–61, 168
Transport Layer Security (TLS), 58, 107
trust zones, 44
TTP. See tactics, techniques, and processes
Turing Proof, 2

U
ultimate goal, 7–12, 54
Unangst, Ted, 65
unsuccessful logon attempts, 123
URL, 40, 58
usage abuse, 14

V
Valenzuela, Ismael, 116
vendor, xix, 47, 57, 86, 88, 144, 169, 183
virtual machine (VM), 25, 205
virtual processor, 43
VM. See virtual machine
vulnerability, 173, 174, 179–183, 203, 204
vulnerability scanner, 6, 44, 48, 51

W
Ware, Ryan, 143
warlord, ix, xvii, 20, 21, 31
weaponize, 5, 11, 15, 21

222 Secrets of a Cyber Security Architect

web application, 18, 23–25, 40, 42, 51, 144,
151, 152

Web Arch, 148, 151
web attack, 5, 18, 52, 96, 153
webcam, 4
web protocol, 40
website/web site, 6, 58, 67, 70, 84-85, 124
website configurations, 126
Wi-Fi, 10, 11
work factor, 6, 7, 13, 14

X
X509 certificate, 107
XML. See eXtensible Markup Language
XSS. See Cross-Site Scripting

Y
Yahoo, 17, 58, 65

Z
Zeus, 19

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Author Note/Trademarks Covered in This Book
	Dedication
	List of Figures and Tables
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1 The Context of Security Architecture
	1.1 Omnipresent Cyber War
	1.2 Know the Threat Actors
	1.2.1 Useful Exploits Don’t Die

	1.3 Everything Can Become a Target
	1.4 Warlords and Pirates
	1.5 What Is the Scope of a Security Architect?
	1.5.1 Are There Really Two Distinct Roles?

	1.6 Essential Technique
	1.6.1 Threat Modeling: An Essential Craft
	1.6.2 Architecture Is Primary

	1.7 Aiming Design Toward Security
	1.7.1 What Is Secure Software?
	1.7.2 Secure Design Primer

	1.8 Summary

	Chapter 2 What Is Security Architecture, and Why Should I Care?
	2.1 Define Security Architecture
	2.1.1 Software Security
	2.1.2 Security Architecture Practices

	2.2 Relevant Knowledge Domains
	2.3 More About Architecture
	2.4 Architectures of Security
	2.5 Architecture as a Part of Cyber Security
	2.6 Security Architecture in Software Development
	2.7 Generally, Experience Is a Teacher
	2.8 Introducing Attack Methods
	2.9 Speaking of Defense
	2.10 More Precise Definition
	2.11 Summary

	Chapter 3 Architecture, Attacks, and Defenses
	3.1 Yes, Exploit Details, But
	3.2 Security Architects Must...
	3.3 Understanding Categories of Attacks
	3.4 Attack Knowledge for Defense
	3.5 Example: Heartbleed Analysis
	3.5.1 Heartbleed Technical Analysis

	3.6 Analyze to Defend
	3.7 Turn Off TLS?
	3.8 Security Architecture Analyses
	3.8.1 Some Cheap Risk Concepts
	3.8.2 JGERR Risk Rating
	3.8.3 At Base: Threat Model

	3.9 Threat Modeling Definition
	3.9.1 Alternate Definition
	3.9.2 When Is My Threat Model Done?

	3.10 Summary

	Chapter 4 Culture Hacking
	4.1 Team Tourism
	4.1.1 Build and Maintain Trust
	4.1.2 Don’t Squander Influence

	4.2 Threat Modeling: Just Do It
	4.2.1 “Trust Developers?”
	4.2.2 Threat Model Training Is for Everyone

	4.3 More Culture Hacks
	4.3.1 Nimble Governance
	4.3.2 Build Skills by Sharing
	4.3.3 What to Do About “It Depends”
	4.3.4 Is the Threat Model Finished?
	4.3.5 Create a Security Contract
	4.3.6 Threat Models Are Not Additive!
	4.3.7 Audit and Security Are Not the Same Thing

	4.4 From Program to Transformation
	4.4.1 Pro-Social Modeling
	4.4.2 Leaders Must Get Challenged
	4.4.3 Hack All Levels
	4.4.4 Coding Is Fraught with Error
	4.4.5 Effective Secure Coding Training
	4.4.6 Make Validation Easy

	4.5 Summary
	4.5.1 We All Can Use Some Feedback

	Chapter 5 Learning the Trade
	5.1 Attack Knowledge
	5.2 Which Defenses for What System?
	5.3 Threat Modeling: The Learning Method
	5.3.1 How to Escalate for Management Decision

	5.4 To Accelerate: Cross Pollinate
	5.5 Build a Community of Practice
	5.6 Support Learners’ Errors
	5.7 Facilitate as Much as Lead
	5.8 Summary

	Chapter 6 Problem Areas You Will Encounter
	6.1 What Does a Mature Practice Look Like?
	6.1.1 Do We Add Value?
	6.1.2 The War Is Over
	6.1.3 Optimum Tool Use
	6.1.4 You Know That You’re Maturing When
	6.1.5 “Nothing Proves Architecture Like Nothing”
	6.1.6 Get It in Writing!

	6.2 Typical Problems Programs Encounter
	6.2.1 Scale
	6.2.2 Assessments Take Too Long
	6.2.3 Late Engagement
	6.2.4 Skill Churn
	6.2.5 Exceptions
	6.2.6 Fostering Innovation

	6.3 Dealing with Chaotic Elements
	6.3.1 There Are Differences
	6.3.2 Translate and Generalize

	6.4 Summary

	Appendix A: Heartbleed Exposure, What Is It Really?
	Appendix B: Developer-Centric Security
	Appendix C: Don’t Substitute CVSS for Risk: Scoring System Inflates Importance of CVE-2017-3735
	Appendix D: Security Architecture Smart Guide
	Appendix E: Threat Modeling’s Definition of Done
	References
	Index

