

Implementing
Enterprise Cyber Security

with Open-Source Software
and Standard Architecture

Volume II

RIVER PUBLISHERS SERIES IN DIGITAL SECURITY
AND FORENSICS

Series Editors:

ANAND R. PRASAD
Deloitte Tohmatsu Cyber LLC, Japan

R. CHANDRAMOULI
Stevens Institute of Technology, USA

ABDERRAHIM BENSLIMANE
University of Avignon, France

PETER LANGENDÖRFER
IHP, Germany

The “River Publishers Series in Security and Digital Forensics” is a series of
comprehensive academic and professional books which focus on the theory and
applications of Cyber Security, including Data Security, Mobile and Network Security,
Cryptography and Digital Forensics. Topics in Prevention and Threat Management
are also included in the scope of the book series, as are general business Standards in
this domain.

Books published in the series include research monographs, edited volumes,
handbooks and textbooks. The books provide professionals, researchers, educators,
and advanced students in the field with an invaluable insight into the latest research
and developments.

Topics covered in the series include:­

• Blockchain for secure transactions
• Cryptography
• Cyber Security
• Data and App Security
• Digital Forensics
• Hardware Security
• IoT Security
• Mobile Security
• Network Security
• Privacy
• Software Security
• Standardization
• Threat Management

For a list of other books in this series, visit www.riverpublishers.com

http://www.riverpublishers.com

Implementing
Enterprise Cyber Security

with Open-Source Software
and Standard Architecture

Volume II

Editors

Anand Handa
C3i Center, Indian Institute of Technology, Kanpur, India

Rohit Negi
C3i Center, Indian Institute of Technology, Kanpur, India

S. Venkatesan
Indian Institute of Information Technology, Allahabad, India

Sandeep K. Shukla
C3i Center, Indian Institute of Technology, Kanpur, India

River Publishers

Published 2023 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark

www.riverpublishers.com

Distributed exclusively by Routledge
605 Third Avenue, New York, NY 10017, USA

4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Implementing Enterprise Cyber Security with Open-Source Software and
Standard Architecture / by Anand Handa, Rohit Negi, S. Venkatesan, Sandeep
K. Shukla.

© 2023 River Publishers. All rights reserved. No part of this publication may

be reproduced, stored in a retrieval systems, or transmitted in any form or by

any means, mechanical, photocopying, recording or otherwise, without prior

written permission of the publishers.

Routledge is an imprint of the Taylor & Francis Group, an informa

business

ISBN 978-87-7022-795-7 (print)

ISBN 978-87-7022-962-3 (paperback)

ISBN 978-10-0092-238-7 (online)

ISBN 978-1-003-42613-4 (ebook master)

While every effort is made to provide dependable information, the

publisher, authors, and editors cannot be held responsible for any errors

or omissions.

http://www.riverpublishers.com

Contents

Preface	 xiii

List of Figures	 xv

List of Tables	 xix

List of Contributors	 xxi

List of Abbreviations	 xxiii

I	 Web Application Security 1

1	 OWASP G0rKing – Exploiting the Hidden Aspects of Google’s

Search Capabilities 3

Vishal Soni and Neelakshi Sahni
1.1 Introduction . 4

1.2 Literature Survey . 4

1.2.1 What is google dorking? 4

1.2.2 A brief history of dorking 5

1.3 Purpose . 5

1.4 Objective . 6

1.4.1 Types of crawling 6

1.5 Technical Details . 6

1.5.1 Google dorking techniques 7

1.6 Project SaUR0N – One Tool to Search Them All 8

1.6.1 Project deliverables 8

1.7 Project Requirements Packages 9

1.8 DorkingGuide – Tool User Manual 10

1.9 The Tool – G0rKing aka SaUR0N 10

1.9.1 For simple google dorking (search) 11

v

vi	 Contents

1.9.2 For URL probing
1.10 Dorking Queries .

1.10.1 Guide .

12

13

13

1.11 Best Practices and Learnings
1.12 Website Security and Best Practices
1.13 Tool: SaUR0N .

21

22

22

1.14 GitHub Repository . 23

2	 OSS Known Vulnerability Scanner – Helping Software

Developers Detect Third-Party Dependency Vulnerabilities

in Real Time 25

Om Mishra and Ria Sarkar

2.1 Introduction . 26

2.2 Background
2.3 Problem Statement

.

.
27

28

2.4 Tool Architecture . 28

2.5 Tool Implementation .

2.5.1 Components and their implementations
2.6 Deployment .

2.6.1 Enterprise deployment
2.6.2 Standalone deployment

2.7 Tool Validation and Result

29

31

32

32

33

33

2.8 Conclusion . 33

2.9 Acknowledgments . 34

II Malware Analysis	 35

3	 Detecting Malware using Machine Learning
Partha Majumdar, Shyava Tripathi, Balaji Annamalai,
Senthil Jagadeesan, and Ranveer Khedar
3.1 Introduction .

37

38

3.2 Detecting Malware in JPEG Files

3.2.1 JPEG file structure
39

39

3.3
3.2.2 EXIF tags .
Dataset .

39

40

3.3.1 Dataset split – train and test set 40

3.4 Feature Extraction Strategies 42

Contents vii

3.4.1	 Strategy I: (using the length of the tags

as features) . 42

3.4.2	 Strategy II: (forming TF-IDF) 43

3.5 Working of the System . 43

3.6 Building the Model . 43

3.6.1	 Constants used . 43

3.6.2	 Functions used to extract EXIF tags from JPEG

files . 44

3.6.3	 Example of EXIF tags 47

3.6.4	 Unique keys extraction for all files 47

3.6.5	 Preparation of data frame for creating TF-IDF 48

3.6.6	 Forming the TF-IDF 50

3.6.7	 Handling the imbalanced datasets 51

3.6.8	 Development of decision tree model 52

3.6.9	 Development of random forest model 57

3.7 Conclusions on the Model 60

3.8 Creating the Web Service 61

3.9 Creating a Simple Client Application 66

3.10 Sample of a Sophisticated Client Application 67

3.11 Detecting Malware in ELF Files 67

3.12 About ELF Files . 68

3.12.1	 ELF file header . 68

3.12.2	 Program header . 69

3.12.3	 Section information 69

3.12.4	 ELF dataset . 70

3.12.5	 Distribution of dataset 71

3.13 Feature Engineering and Machine Learning Classification . . 71

3.14 Building the Model . 73

3.14.1	 Constants used . 73

3.14.2	 Functions used to extract information from ELF

files . 73

3.15 Extract the Unique List of Keys for All the Files 84

3.16 Create a Data Frame . 85

3.17 Random Forest Model Generation 88

3.18 Outcomes from the Model 94

3.19 Creating the Web Service 94

3.20 Conclusion . 103

3.21 Acknowledgments . 104

viii Contents

4	 New Age Attack Vectors – JPEG Images Machine Learning-

based Solution for the Detection of Malicious JPEG Images 105

Shankar Kashamshetty and Kunal Chawla
4.1 Introduction . 106

4.2 Background . 106

4.2.1 JPEG file structure 107

4.3 Related Work . 107

4.4 Methodology . 109

4.4.1 Input JPEG images 109

4.4.2 JPEG reader . 110

4.4.3 Data preparation 110

4.4.4 Machine learning model 111

4.5 Model Evaluation . 111

4.5.1 Evaluation metrics 111

4.5.2 JPEG image detection 112

4.6 Conclusion . 113

4.7 Acknowledgments . 113

5	 Live Monitoring of Malware Attacks on Cloud using Windows

Agent-based Solution 115

Sheetal A. Suvarna
5.1 Introduction . 116

5.1.1 About malware . 116

5.1.2 Types of malware 117

5.1.3 Fileless malware 117

5.2 Background . 118

5.2.1 Procmon . 118

5.3 Project Approach . 119

5.3.1 Detection engine – agent development 120

5.3.2 Analysis engine . 122

5.3.3 Classification engine 128

5.3.4 Reporting with ELK 128

5.4 Deployment Architecture 129

5.4.1 Product tool architecture (benefits of the agent) . . . 130

5.5 Product Future Enhancements 130

5.6 Conclusion and Future Directions 131

5.7 Acknowledgments . 132

Contents ix

6	 Malware also Needs “Attention” 133

Atharv Singh Patlan, Som Vishwas Tambe, Yathartha Goswami,
Nitesh Kumar, Anand Handa, and Sandeep K. Shukla
6.1 Introduction . 133

6.2 Related Work . 135

6.3 Proposed Methodology . 137

6.3.1 Datasets . 137

6.3.2 Methodology . 138

6.3.2.1 API call level understanding – Word2Vec . 140

6.3.2.2 Function and binary file level understanding

– attention 140

6.3.3 Network architecture 142

6.4 Experiments and results . 143

6.4.1 Experimental setup 143

6.4.2 Results . 144

6.4.2.1 Dataset 1 144

6.4.2.2 Dataset 2 145

6.5 Conclusion . 146

III IDS	 149

7	 Implementation of an Intrusion Detection System and Decep­
tion Technologies using Open Source Tools for Small Businesses 151

Purushartha Srivastava and Kalpesh Seludkar

7.1 Introduction . 152

7.2 Tool Setup and architecture 152

7.2.1 Central management server (CMS) 153

7.2.1.1 OpenDistro for elasticsearch 154

7.2.1.2 Wazuh manager 154

7.2.1.3 Suricata 154

7.2.1.4 Nginx reverse proxy 155

7.2.2 Endpoints or honeypots 155

7.2.2.1 Cowrie honeypot 155

7.2.2.2 WordPress honeypot 155

7.2.2.3 Honeypot dionea 156

7.2.2.4 Honeypot mailoney 156

7.2.2.5 Wazuh agent 157

x Contents

7.3 Implementation of Tools 157

7.3.1	 Create droplet on digital ocean 157

7.3.2	 Deploying Wazuh with open Distro for

Elasticsearch . 158

7.3.3	 Installing Filebeat 161

7.3.4	 Installing Kibana 163

7.3.5	 Installing Nginx as a reverse proxy 163

7.3.6	 Installing Suricata on CMS 165

7.3.7	 Integration with IP repudiation feeds 168

7.3.8	 Configuring the CDB lists 168

7.4 Honeypots . 169

7.4.1 WordPress honeypot deployment and

configuration . 169

7.4.2 Mailoney honeypot deployment and

configuration . 171

7.4.3
 Cowrie honeypot deployment and configuration . . . 172

7.4.4
 Dionaea honeypot deployment and configuration . . 174

7.4.5
 Deploying Wazuh agents on honeypot systems . . . 174

7.4.5.1	 Configuration for logs forwarding from

honeypot’s server to Wazuh manager . . . 176

7.4.6
 Installing Suricata on honeypot server 177

7.4.7
 Custom rules . 178

7.4.8
 Centralized configuration 180

7.4.9
 Log data collection 180

7.4.10
 Security configuration assessment 181

7.4.11
 File integrity monitoring 182

7.4.12
 VirusTotal integration 182

7.4.13
 Slack . 184

7.4.13.1 Integration with Slack 184

7.4.14
 Configuration on Wazuh server 185

7.5 Result
 . 186

7.5.1
 Geolocation of attacks 186

7.5.2
 Top usernames . 186

7.5.3
 Top attacker countries 187

7.5.4
 Top 10 attacker machine IPs 187

7.5.5
 Attacks for MySQL servers 188

7.5.6
 Top signatures-based attempts 188

7.5.7
 Top 10 attempted passwords 188

7.6 Conclusion and future work 190

Contents xi

8 Attack Vector Analysis with a New Benchmark 193

Ashish Ranjan Yadav and Rohit Negi
8.1 Introduction . 194

8.2 Background and Related Work 197

8.2.1 Application hardening 198

8.2.2 Operating system hardening 198

8.2.3 Server hardening 198

8.2.4 Database hardening 199

8.2.5 Network hardening 200

8.3 Threat Vector and Attack Surface 200

8.3.1 Attack surface . 201

8.3.2 Attack vector . 202

8.3.3 Hardening steps . 203

8.3.4 During installation 204

8.3.5 Updates and upgrades 204

8.3.6 File systems . 205

8.3.7 Users, groups and authentication 207

8.3.8 Warning banners 208

8.3.9 Configuring crons 209

8.3.10 User shell configuration 211

8.3.11 USB devices . 212

8.3.12 Uncommon network protocol 213

8.3.13 Kernel hardening 215

8.3.14 Compilers . 215

8.3.15 Additional tools to enhance hardening index 216

8.4 Post Hardening . 218

8.5 Results . 218

8.6 Conclusion and Future Work 221

IV Honeypot 223

9 Stealpot Honeypot Network 225

Amardeep, Om Prakash Mishra and Sanjeev Kumar Sumbria
9.1 Introduction . 225

9.1.1 Problem Statement 228

9.2 Methodology . 229

9.3 Architecture: Keeping It Simple and Straightforward 230

9.3.1 Components . 230

xii Contents

9.3.2	 Honeypots: Ubuntu 18.04 as the base OS, deployed at

four different regions across the globe 230

9.3.3	 Other components/integration 231

9.4 Conclusion . 234

References 237

Index 243

About the Editors 245

Preface

The Interdisciplinary Center for Cyber Security and Cyber Defense of Critical
Infrastructures (C3i Center) at Indian Institute of Technology Kanpur, India,
in association with Talent Sprint, organized the Cohort-3 of a six-month
long advanced cybersecurity training program from Feb 2021 to August
2021. Through this program, we trained approximately 50 IT professionals
from various domains and MNCs in India and abroad. The rigorous training
program offered weekly live training sessions, homework, quizzes, projects,
and a final capstone team project. The participants were motivated to learn
various new cybersecurity domains and apply the lessons learned to develop
cybersecurity solutions or architectures from open-source tools. The course had
IT professionals with substantial experience from different industry segments.
Being experienced, most of them accepted the challenge of developing tools by
learning and utilizing, modifying, and integrating available security solutions
from the open-source domain.

This book has nine chapters describing the projects that participants took
as capstone projects. The book explains in detail the tools and methodologies
used in developing them using open-source tooling to obtain common cyber
defense, malware analysis tools, automation for self-penetration testing, and
vulnerability assessment. The book has four categories of chapters that describe
the methodologies of developing tools for – malware analysis using machine
learning, deploying honeypots, Intrusion Detection Systems (IDS), and web
application security.

We thank all the contributors to this book. We must thank Mrs. Debjani
Mukherjee of Talent Sprint for her contribution to proofreading all the chapters.
We also thank all the professionals participating in the Talent Sprint advanced
certification program offered by C3i Center at IIT Kanpur. We especially thank
all those who readily agreed to contribute chapters for the book despite their
busy professional schedule. We thank Mr. Rohit Agarwal, Mr. U. Prasad, and
Dr.Santanu Paul from Talent Sprint for enabling the course continuously for six
months throughout all weekends. Finally, we thank Prof. Manindra Agrawal
for supporting the program, the IIT Kanpur Center for Continuing Education

xiii

xiv Preface

(CCE) staff, and the head of CCE for their cooperation in offering this training
program. We also thank Mr. Nitesh Kumar, Mr. Subhasis Mukhopadhyay,
and other member staff at the C3i center for their sustained help from the
background during the training period and beyond.

We hope this book will be helpful to many, and we plan to develop similar
books for future cohorts of trainees joining through this program.

List of Figures

Figure 1.1 Linux terminal showing the starting banner for
Project SaUR0N. 8

Figure 1.2 Home page of the website sauron.in. 9
Figure 1.3 Project SaUR0N starting banner (select option 1 for

Google dork search). 11
Figure 1.4 Confirmation message about saving the results as a

text file. 12
Figure 1.5 Using the dork search query/string. 12
Figure 1.6 Confirmation about the number of search results to

save. . 12
Figure 1.7 Project SaUR0N starting banner (Select option 2 or

URL Probing). 13
Figure 1.8 To save the results, say “y” and then provide the

name for the file. To proceed without saving the
results, select “n”. 13

Figure 1.9 Enter the URL domain to be probed (without www).
For example, you can enter sauron.in. 13

Figure 2.1 Workflow of developed open-source vulnerability
scanner . 27

Figure 2.2 SaaS architecture of the OSS known vulnerability
scanner . 30

Figure 2.3 Technologies and tools used to develop the tool. . . 31
Figure 2.4 Live dashboard report generated following scanning

of the software code. 33

Figure 3.1 Confusion matrix of predictions on training data
using model developed using Decision Tree
algorithm. 53

Figure 3.2 Confusion matrix of predictions on test data using
model developed using Decision Tree algorithm. . . 54

xv

xvi List of Figures

Figure 3.3 Confusion Matrix of Predictions on Training Data
using model developed using Random Forest
algorithm . 59

Figure 3.4 Confusion matrix of predictions on test data using

model developed using Random Forest algorithm. . 60

Figure 3.5 Client application user interface. 67

Figure 3.6 Structure of the ELF files. 68

Figure 3.7 Confusion matrix of predictions on training data

of ELF files using model developed using Random
Forest algorithm. 90

Figure 3.8 Confusion matrix of predictions on test data of ELF

files using model developed using Random Forest
algorithm. 95

Figure 4.1 JPEG image possible markers, their hexadecimal
code, and their definition/purpose. 108

Figure 4.2 Malicious JPEG architecture. 109

Figure 4.3 Model performance comparison. 112

Figure 4.4 JPEG image detection. 112

Figure 5.1 Fileless Javascript. 117

Figure 5.2 Project Milestone. 120

Figure 5.3 Product flow chart. 121

Figure 5.4 Windows agent using Procmon analyzing the events. 121

Figure 5.5 Detection phase overview. 122

Figure 5.6 Analysis overview. 122

Figure 5.7 Reporting engine overview. 129

Figure 5.8 Future enhancements. 130

Figure 5.9 Future enhancements. 131

Figure 6.1 Sentence dependency graph in english. 139

Figure 6.2 An API call graph. As can be seen, its structure is

very similar to that in Figure 6.1. 139

Figure 6.3 API call sequences, and their respective 10 closest

API functions. 142

Figure 6.4 Pipeline for our model. 143

Figure 7.1 Architecture of proposed work. 153

Figure 7.2 DigitalOcean dashboard. 158

Figure 7.3 Kibana login console. 165

List of Figures xvii

Figure 7.4 Suricata available request 167

Figure 7.5 WordPress honeypot. 171

Figure 7.6 Mailoney honeypot. 172

Figure 7.7 Wazuh Kibana dashboard agent tab. 175

Figure 7.8 Deploy new agent. 175

Figure 7.9 New agent install and enroll process. 176

Figure 7.10 Custom rules. 178

Figure 7.11 File integrity monitoring with VirusTotal

integration. 183

Figure 7.12 Slack Incoming Webhook setting. 185

Figure 7.13 Received attacks on honeypot servers over the

globe. 186

Figure 7.14 Top attempted usernames. 187

Figure 7.15 Top attacker countries. 187

Figure 7.16 Top attacker machines IPs. 188

Figure 7.17 Top executed SQL statements. 189

Figure 7.18 Top signatures-based attempts on honeypot and CMS

servers. 189

Figure 7.19 Top attempted passwords. 190

Figure 8.1 Overview of proposed work. 196

Figure 8.2 Attack surface. 201

Figure 8.3 Common attack vectors. 202

Figure 8.4 Mount options in /etc/fstab file. 206

Figure 8.5 Lynis output before and after defining mount points. 207

Figure 8.6 Lynis output before and after user, group, and

authentication. 208

Figure 8.7 Content of /etc/issue,/etc/issue.net. 209

Figure 8.8 Lynis output before and after configuring banner

message. 209

Figure 8.9 Lynis output before and after setting permissions on

cron. 211

Figure 8.10 Lynis output before and after setting UMASK value. 212

Figure 8.11 Lynis output before and after setting USBGuard. . . 214

Figure 8.12 Lynis output before and after setting parameters in

/etc/sysctl.conf. 216

Figure 8.13 Hardening index of apt packages. 220

Figure 8.14 Hardening index of 100 popular Ubuntu softwares. 221

Figure 8.15 Hardening score of 66 participants. 222

xviii List of Figures

Figure 9.1 Responses per country/region. 227

Figure 9.2 Organizations by type. 228

Figure 9.3 MHN console. 229

Figure 9.4 Architecture diagram. 230

Figure 9.5 Snippet of the Trigger script for uploading to

VirusTotal. 231

Figure 9.6 Code for making API call to VirusTotal. 231

Figure 9.7 Curl command to upload content from VT output

file on Dionaea in json format into the Elasticsearch

for indexing, analysis, and dashboard. 232

Figure 9.8 IOCs captured within minutes of powering on. . . . 232

Figure 9.9 Attack report. 232

Figure 9.10 Attack report. 233

Figure 9.11 Sample IOCs for malware uploaded on Dionaea. . . 233

Figure 9.12 Malware uploaded to Dionaea. 234

Figure 9.13 Malware visualization. 234

List of Tables

Table 2.1

Table 2.2

Table 2.3

Metric groups used by the CVSS to generate a vulnera­
bility score.
Metric groups used by the CVSS to generate a vulnera­
bility score.
Validation result of tool.

29

30
33

Table 3.1
Table 3.2
Table 3.3

Final dataset.
Distribution of files.
Final distribution of valid ELF files.

70
70
72

Table 4.1 Possible marker/features from JPEG images. 110

Table 6.1

Table 6.2

Table 6.3

Attention visualization for API call sequence. The first
column gives an example of a sentence in English. . .
Results of experiments on Dataset 2 [60] on various
models. The best results on each malware type are in
bold. The precision of the results is upto two decimal
places for consistency with the reported results in the
literature.
Results of experiments on Dataset 1 [13] on various
models. The best results for each metric are in bold. .

141

144

145

Table 8.1
Table 8.2

Table 8.3

Table 8.4

Hardening index with scenario.
Hardening index post-installing Ubuntu official reposi­
tory apt packages .
Hardening index post-installing 100 popular Ubuntu
software.
Observations obtained for 66 participants.

217

220

221
221

xix

https://taylorandfrancis.com

List of Contributors

Annamalai, Balaji, Independent Researcher;
E-mail: Balajiannamalai@hotmail.com

Chawla, Kunal, Cyber Security Consultant;
E-mail: kunaalchawla@yahoo.com

Goswami, Yathartha, Under Graduate Researcher, C3i Center, Indian
Institute of Technology, Kanpur, India

Handa, Anand, Post-Doctoral Fellow, C3i Center, Indian Institute of
Technology, Kanpur, India; E-mail: anand@c3ihub.iitk.ac.in

Jagadeesan, Senthil, Independent Researcher;
E-mail: jj_senthil75@yahoo.co.in

Kashamshetty, Shankar, Independent Researcher;
E-mail: kshankar14@gmail.com

Khedar, Ranveer, Independent Researcher;
E-mail: ranveerkhedar@gmail.com

Kumar, Nitesh, Senior Project Engineer, C3i Center, Indian Institute of
Technology, Kanpur, India; E-mail: niteshkr@cse.iitk.ac.in

Majumdar, Partha, E-mail: partha.majumdar@hotmail.com

Mishra, Om, Independent Researcher, E-mail: mishra.om@live.com

Mishra, Om Prakash, Chief Solutions Architect, Canum Infotech, India;
E-mail: om@canuminfotech.com

Negi, Rohit, Senior Vice President (R&D) and Lead Engineer, C3i Center,
Indian Institute of Technology, Kanpur, India; E-mail: rohit@cse.iitk.ac.in

Patlan, Atharv Singh, Under Graduate Researcher, C3i Center, Indian
Institute of Technology, Kanpur, India; E-mail: atharvsp@iitk.ac.in

Sahni, Neelakshi, HOD-Computer Dept, CCA School, Sector 4, Gurgaon,
Haryana, India; E-mail: neela.creative2020@gmail.com

xxi

mailto:Balajiannamalai@hotmail.com
mailto:kunaalchawla@yahoo.com
mailto:anand@c3ihub.iitk.ac.in
mailto:jj_senthil75@yahoo.co.in
mailto:kshankar14@gmail.com
mailto:ranveerkhedar@gmail.com
mailto:niteshkr@cse.iitk.ac.in
mailto:partha.majumdar@hotmail.com
mailto:mishra.om@live.com
mailto:om@canuminfotech.com
mailto:rohit@cse.iitk.ac.in
mailto:atharvsp@iitk.ac.in
mailto:neela.creative2020@gmail.com

xxii List of Contributors

Sarkar, Ria, Independent Researcher; E-mail: riasarkar1999@gmail.com

Seludkar, Kalpesh, Independent Researcher;
E-mail: kseludkar13@gmail.com

Shukla, Sandeep K., Professor & Program Director, C3i Center, Indian
Institute of Technology, Kanpur, India; E-mail: sandeeps@cse.iitk.ac.in

Singh, Amardeep, Program Head Cyber Security, eclerx services Ltd., India;
E-mail: amardeepsg@gmail.com

Soni, Vishal, Founder, SVS Datalytics, Udaipur, Rajasthan, India;
E-mail: soni.vs@gmail.com

Srivastava, Purushartha, Independent Researcher,
E-mail: purusharthasrivastava1993@gmail.com

Sumbria, Sanjeev Kumar, Independent Researcher;
E-mail: sam288037@gmail.com

Suvarna, Sheetal A., Independent Researcher, E-mail: sheetalasu­
varna@gmail.com

Tambe, Som Vishwas, Under Graduate Researcher, C3i Center, Indian
Institute of Technology, Kanpur, India; E-mail: somvt@iitk.ac.in

Tripathi, Shyava, Independent Researcher;
E-mail: shyava.tripathi8@gmail.com

Yadav, Ashish Ranjan, Independent Researcher;
E-mail: aryadav@cse.iitk.ac.in

mailto:riasarkar1999@gmail.com
mailto:kseludkar13@gmail.com
mailto:sandeeps@cse.iitk.ac.in
mailto:amardeepsg@gmail.com
mailto:soni.vs@gmail.com
mailto:purusharthasrivastava1993@gmail.com
mailto:sam288037@gmail.com
mailto:sheetalasu-varna@gmail.com
mailto:sheetalasu-varna@gmail.com
mailto:somvt@iitk.ac.in
mailto:shyava.tripathi8@gmail.com
mailto:aryadav@cse.iitk.ac.in

List of Abbreviations

AIDE Advanced intrusion detection environment
API Application programming interface
AUC Area under the ROC curve
BMP Bitmap image file
BYOD Bring your own device
CDB Constant database
CFHC Coastal family health center
CIS Center for internet security
CNN Convolutional neural network
CPE Common platform enumeration
CSV Comma-separated values
CUPS Common unix print system
CVE Common vulnerabilities and exposures
CWE Common weakness enumeration
DCCP Datagram congestion control protocol
DGCNN Dynamic graph convolutional neural network
DHCP Dynamic host configuration protocol
DNS Domain name system
ELF Executable and linkable format
ELK Elasticsearch, Logstash, and Kibana
EXIF Exchangeable image file format
FIM File integrity monitoring
FPR False-positive rate
GHDB Google hacking database
HIDS Host intrusion detection system
IDS Intrusion detection system
IOC Indicator of compromise
IoT Internet of things
JFIF JPEG file interchange format

xxiii

xxiv List of Abbreviations

JPEG Joint photographic experts group
LAMP Linux, Apache, MySQL, and PHP
LDAP Lightweight directory access protocol
LSTM Long short-term memory
MA Modified availability
MAC Modified attack complexity
MAV Modified attack vector
MC Modified confidentiality
MHN Modern honeypot network
MI Modified integrity
MPR Modified privileges required
MS Modified scope
MSME Micro, small and medium enterprises
MUI Modified user interaction
NFS Network file system
NMHC Northwestern memorial healthCare
NVD National vulnerability database
OEM Original equipment manufacturer
OSINT Open-source intelligence
OSS Open-source software
OWASP Open web application security project
PAM Pluggable authentication modules
PPA Personal package archive
RBAC Role-based access control
RDBMS Relational database management system
RDS Reliable datagram sockets
ROC Receiver operating characteristic
RPC Remote procedure call
SaaS Software as a service
SCA Security configuration assessment
SCP Secure copy protocol
SCTP Stream control transmission protocol
SFTP Secure file transfer protocol
SIEM Security incident and event management
SMOTE Synthetic minority oversampling technique
SNMP Simple network management protocol

List of Abbreviations xxv

SSH Secure shell
TF-IDF Term frequency-inverse document frequency
TIPC Transparent inter-process communication
Tmpfs Temporary file storage filesystem
TNR True negative rate
TPR True positive rate
VLAN Virtual local area network

https://taylorandfrancis.com

Part I

Web Application Security

1

https://taylorandfrancis.com

1

OWASP G0rKing – Exploiting the Hidden

Aspects of Google’s Search Capabilities

Vishal Soni1 and Neelakshi Sahni2

1SVS Datalytics, Udaipur, Rajasthan, India
2CCA School, Sector 4, Gurgaon, Haryana, India
E-mail: soni.vs@gmail.com; neela.creative2020@gmail.com

Abstract

Cyberattacks have become a common norm, and therefore it has become
extremely important for organizations to keep their digital assets secured.
Organizations may often unknowingly expose their critical resources exposed
on the Internet without even knowing about it. While hosting and services
online, some sensitive information like user credentials or configuration files
may be left unattended, leading to crawling and indexing by search engines.
Such ignorance may lead to exposure to critical information. Penetration
testing allows organizations to test their online assets, such as websites, hosted
applications, content, databases, etc., across the networks against any kind
of internal or external threats. This also allows organizations to proactively
identify and secure any loopholes that may lead to unauthorized access. This
chapter will address the design and implementation of such a utility tool, that
can help organizations proactively audit and protect their digital assets by
performing penetration testing. With the help of such a tool, organizations can
perform vulnerability scans and penetration testing at a regular internal level
to identify any known vulnerabilities and ensure that their digital assets are
secured.

3

mailto:soni.vs@gmail.com
mailto:neela.creative2020@gmail.com

4 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

1.1 Introduction

Conducting regular penetration testing can help organizations in identifying
the exposed resources and securing such vulnerabilities. Pentesters can
carry out reconnaissance or open-source intelligence (OSINT) gathering
to proactively find such exposures before any other outsider does. OWASP
G0rKing (formerly called Project SaUR0N [56]) is an open-source tool that
can automate reconnaissance by using the Google dork search process. The
objective of G0rKing is to automate the Google dorking process and offers a
way to save the results in a text file for easy reference and reporting purposes.
It can also automate the process of checking one URL against multiple dorks
and can hence provide a quick health check. This fully functional command­
line-based tool is available for users to perform reconnaissance tests for any
website. It can be customized and fine-tuned to search for any specific type of
vulnerability or resources. It can be used to search for any already indexed and
publicly available information across the Internet. It also offers a way to save
the results in a text file for easy reference and reporting purposes. Featured
highlight: The official OWASP leadership team has agreed to take this project
into their umbrella, and they have included it into their repository [62].

1.2 Literature Survey

1.2.1 What is google dorking?

When searching, you often collect as much information as possible about a
topic. Advanced search techniques can help to find answers to the questions
(search). For example, you are searching for a company’s tax return, informa­
tion that may not appear on their websites or show up when you do a regular
web search.

Google dorking is a technique used by various organizations, security
auditors, news agencies, investigating agencies, tech-savvy criminals to
question search engines to find hidden information that might be available on
public websites. As this technique is used by various search engines, we can
simply refer to dorking. Dorking helps searchers to reveal the results that are
not visible in the normal regular search. It helps searchers to dive deeper and
refine their searches in web pages and online documents. Dorking does not
need any technicality, it works using a few search techniques and using them
across several search engines.

Google dorking requires a system with an Internet connection, appropriate
use of search function, with appropriate use of operators which will help you

1.4 Objective 5

to deepen your search results. To google dork, dorkers require perseverance,
vision, diligence, and success is the end result.

1.2.2 A brief history of dorking

Johnny Long, aka j0hnnyhax [49], was a pioneer of dorking. He first posted
his definition of the newly coined term, GoogleDork, in 2002. Since then, its
meaning has evolved to include other usages.

In a 2011 interview, Johnny Long said: “In the years I have spent as a
professional hacker, I have learned that the simplest approach is usually the
best. As hackers, we tend to get down into the weeds, focusing on technology,
not realising there may be non-technical methods at our disposal that work as
well or better than their high-tech counterparts. I always kept an eye out for
the simplest solution to advanced challenges.”

To dork or not to dork: Using the full potential of the search engines,
dorking can uncover information on websites as well as various threats that
they could hold. This could even include a password-protected file or folder
that was to be hidden but now is vulnerable. Dorking expands the search
horizon and can be an eye-opener to the information that was of general use
but is not available and now could be visible through search engines.

Be Aware! If the Techie’s are using Google dorking as a searching method,
then few words of caution before they start!

1. Certain legal issues which could be taken care of which are involved
while viewing pages and files, even if they are publicly available on the
server.

2. Though search on various search engines is free but at some stage
downloading some web pages or files can be prosecuted, especially
under the Computer Fraud and Abuse Act in the USA.

3. The search queries are scrutinized and saved by search providers and the
government, but a word of caution! These can be used against you in the
future as they are very well docketed.

1.3 Purpose

G0rKing was created as the Capstone Project delivery for the completion of
the COHORT-3 course and certification. COHORT-3 was offered through the
joint initiative of C3i Center (IIT, Kanpur) and Talentsprint in the year 2021.
The course title is “Advanced Certification Program in Cyber Security and
Cyber Defense.”

6 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

1.4 Objective

The objective of G0rKing is to automate the Google dorking process and offers
a way to save the results in a text file for easy reference and reporting purposes.
It can also automate the process of checking one URL against multiple dorks
and can hence provide a quick health check.

How does Google dorking work?
Google uses the process called crawling to index new or latest pages.

The program that does the crawling is called Googlebot. Googlebot uses an
algorithmic process wherein computer programs determine which sites to
crawl, and how many pages to fetch from each site. In Google dorking, the
search engines crawl various data links, index page titles, web page contents,
and store the information which will serve the purpose of search queries
efficiently. Here the crawlers will bring various information out to the public,
although the content owners did not intend to reveal it. The main aim of
Google dorking is to locate useful information using techniques that are
already provided by the search engine but in different ways.

1.4.1 Types of crawling

There are two types of crawling used by Googlebots. They are as follows –
Deep crawl: When Googlebots fetches a page, it selects all the links

appearing on the page and adds them to a queue for further crawling. By
collecting all the links, Googlebots covers a wide reach of the web.

Fresh crawl: Google keeps scanning and rescanning the popular and
frequently changing web pages regularly. This is done at a rate highly
proportional to how often the content of the pages changes.

Advantages: There are various advantages of Google dorking. Google
dorking is effective as it indexes vast amounts of information in numerous
formats, and that collection of data or information is growing every minute.
Google can also index images, videos, all sorts of file types such as PDF, PPT,
etc. All the information provided by Google is stored in large numbers, and
we only need to know how to search for that data.

1.5 Technical Details

Google dorking resources: There are numerous resources about the process
of Google dorking, but one of the best resources is about Google Hacking
Database (GHDB). The GHDB is a collection of Google hacking search terms
that allows the search of sensitive data hosted on any server or web application.

1.5 Technical Details 7

The GHDB was launched by Johnny Long in the year 2000, with an aim to
serve penetration testers. In 2010, GHDB was adopted as a part of exploit-
db.com. At that time, its scope was also increased beyond the Google search
engine and included other search engines including Microsoft Bing. In simple
terms, any user can refer to the GHDB to create search engine queries, which
could find insecure web resources, such as configuration files or databases,
which have been intentionally or unintentionally indexed by the search engine.

1.5.1 Google dorking techniques

Some of the Google dorking techniques are as follows:
Site mapping: To find every web page Google has crawled for a specific

site, use the site: operator. Consider the following query:

1 s i t e : http ://www. mic ro so f t . com

This query searches for the word Microsoft, restricting the search to the
http://www.microsoft.com website. How many pages on the Microsoft web
server contain the word Microsoft? According to Google, all of them!. Google
searches not only the content of a page but the title and URL as well. The word
Microsoft appears in the URL of every page on http://www.microsoft.com.
With a single query, an attacker gains a rundown of every web page on a site
cached by Google.

Finding directory listings: Directory listings provide a list of files and
directories in a browser window instead of the typical text and graphics mix
generally associated with web pages. These pages offer a great environment for
deep information gathering. Several alternate queries provide more accurate
results:

1 i n t i t l e : index . o f ‘ ‘ parent d i r e c to ry ’ ’
2 i n t i t l e : index . o f name s i z e

These queries indeed provide directory listings by not only focusing on
the index in the title, but on keywords often found inside directory listings,
such as parent directory, name, and size. This search can be combined with
other searches to find files or directories located in directory listings.

Versioning: Obtaining the web server software/version. The exact version
of the web server software running on a server is one piece of information
an attacker needs before launching a successful attack against that web
server. If an attacker connects directly to that web server, the HTTP (web)
headers from that server can provide this essential information. It’s possible,
however, to retrieve similar information from Google’s cache without ever

http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com

8 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

connecting to the target server under investigation. One method involves using
the information provided in a directory listing. For example:

1 a n t i t l e : index . o f s e r v e r . at

This query focuses on the term index of in the title and server at appearing
at the bottom of the directory listing. This type of query can also be pointed at
a particular web server.

1.6 Project SaUR0N – One Tool to Search Them All

Project SaUR0N, now officially adopted by OWASP foundation as Project
G0rking [62], is an open-source tool [10] to automate the Google dork
search process. It can be used to search for any already indexed and publicly
available information across the Internet. Pentesters and security researchers
can use this tool to find security holes in the code of a website or associated
resources accessible online. It uses the advanced operators available with
the Google search engine. Figure 1.1 shows the Linux terminal for Project
SaUR0N.

1.6.1 Project deliverables

• Project website [56] for hosting the educational content.
• Google, PyFiglet, and TQDM for basic requirements of the tool [10].
• Google dorking usage and easy reference in a text file.
• G0rKing aka SaUR0N is a Google dorking tool written in Python3.

Figure 1.1 Linux terminal showing the starting banner for Project SaUR0N.

1.7 Project Requirements Packages 9

Figure 1.2 Home page of the website sauron.in.

One of the aims of the project was to promote awareness about the overall
concept and importance of reconnaissance and automate the reconnaissance
process by using the Google dork search process. The project website [56]
was created to spread this awareness by educating the users about Google
dorking. The “Home Page” of the websites introduces the users to the concept
of Google dorking through an easy-to-understand video. Then it describes how
Google dorking works. It then covers content about various types of crawling
used by Google, namely Deep crawl and Fresh crawl. The homepage finally
tells about the advantages of Google dorking. Figure 1.2 shows the webpage
of website sauron.in.

The “Technical Details” section of the website talks about the Google
Hacking Database (GHDB), and various techniques for Google dorking, which
includes site mapping, finding directory listings, and versioning. The “Project
SaURON” page describes all the key attributes of the project and covers the
process of running the project. Finally, “Meet the Team” page provides a brief
introduction about the core team members involved in the project.

1.7 Project Requirements Packages

For its operations, the tool has some dependencies on three custom-built
packages. These packages (Google, PyFiglet, and TQDM) are available on the
same GitHub repository. A brief description is provided in this section.

10 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

Google: Python bindings to the Google search engine. Developers can use
the Python package “google” to get results of Google searches from within
the Python scripts. In case of multiple results, the package provides the entire
list. The official link for the independent package: https://pypi.org/project/goo
gle/#description.

PyFiglet: Pure-Python FIGlet implementation. The FIGLet program is
used to create large characters out of ordinary screen characters. It accepts
ASCII text as input and renders it in ASCII art fonts. The official link for the
independent package: https://pypi.org/project/pyfiglet/.

TQDM: Fast, extensible progress meter. This project allows developers
to display a smart progress meter for any command in execution. Searching
Google for several specific keywords and metadata may often be time taking,
and the progress bar provides an indication of the expected time duration. The
official link for the independent package: https://pypi.org/project/tqdm/.

1.8 DorkingGuide – Tool User Manual

The project deliverables also include a usage manual, that provides the list and
explanation of Google dorking queries. Like most search engines, Google’s
search engine is also programmed to accept several advanced “filters” or
“prefix operators” to fine-tune its searchers. This user manual provides the
list of these filters and prefix operators that can be used to perform advanced
searches across the web.

1.9 The Tool – G0rKing aka SaUR0N

G0rking is an open-source tool written in Python3. This makes it compatible
with most of the Linux flavors available in the market. This is a command­
prompt-based tool to help automate Google dorking. This is available on the
GitHub repository, and available to everyone for download for free. Users can
use this tool for two purposes: for performing Google dork searches, and for
URL probing. Details about these are provided in later sections.

Installation prerequisites: Installation of this tool requires a few package
files, which are listed in the document titled “requirements.txt” available in
the same GitHub repository.

Operation: Running this tool requires no specific skill. Once installed,
the tool provides on-screen instructions about the expected inputs in simple
English language.

https://www.pypi.org
https://www.pypi.org
https://www.pypi.org
https://www.pypi.org

1.9 The Tool – G0rKing aka SaUR0N 11

How to run? The entire process of installation and execution can be
performed using the below commands on your Linux terminal.

1 $ g i t c l one https : // github . com/BlueVirtualNerds /SaUR0N
2 $ cd SaUR0N
3 $ pip3 i n s t a l l - r requ i rements . txt
4 $ python3 sauron

The above commands will download the project from its Github repository,
install the packages required for the project, and then finally run the project.
The project can be executed for the following two purposes:

• Simple Google dork searches: In this, users provide some search
criteria, like a keyword or some metadata, and the project scans the
web to find out all the web resources meeting the specified search criteria.

• URL probing: In this, the user can provide a specific URL, and the tool
performs a scan on that URL to identify any known vulnerabilities or
exposed resources related to that URL.

1.9.1 For simple google dorking (search)

When executed, the project provides three options to choose. For a simple
Google dork search, users need to select option 1 in the starting banner screen.
Figure 1.3 shows the corresponding banner.

While performing a web scan, the tool provides an option to save all the
results into a file for a later probe. Saving the results has been kept optional, as
the results may often include sensitive resources and links, which may lead to

Figure 1.3 Project SaUR0N starting banner (select option 1 for Google dork search).

https://www.github.com

12 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

Figure 1.4 Confirmation message about saving the results as a text file.

Figure 1.5 Using the dork search query/string.

actual exploitation of the data. If the user wishes to save the search results, they
are asked to provide a name for the file. Figure 1.4 shows the corresponding
confirmation banner.

Users are requested to provide the search string or query, and other relevant
parameters. For example, a user may wish to scan all the web resources, and
search for all the PDFs (filetype:pdf), which have the word “Security Report.”
More possible options are provided in the “Dorking Queries” section below.
Figure 1.5 shows the corresponding confirmation banner about the number of
search results to be saved.

The tool then asks users to enter the number of search results to be
scanned/displayed. In the case where a high number of search results are
expected, restricting the number of results could help save time and resources
out of lengthy processing.

As soon as this is done, the tool starts scanning for the matching patterns
specified in the search query and then displays or saves the results, based on
the chosen options.

1.9.2 For URL probing

For URL probing, user’s need to select option 2 in the starting banner screen.
Figures 1.6–1.8 show the corresponding banners for option 2. Similar to the
process during simple Google dorking for search, the tool provides an option
to save all the results into a file for a later probe. If the user wishes to save the
results, they can say “y” and then provide the filename to be saved. The tool
then asks for the URL that the user wishes to probe.

Figure 1.6 Confirmation about the number of search results to save.

1.10 Dorking Queries 13

Figure 1.7 Project SaUR0N starting banner (Select option 2 or URL Probing).

Figure 1.8 To save the results, say “y” and then provide the name for the file. To proceed
without saving the results, select “n”.

Figure 1.9 Enter the URL domain to be probed (without www). For example, you can enter
sauron.in.

As soon as this is done, the tool starts scanning for the resources related to
the provided domain name and then displays or saves the results, based on the
chosen options.

1.10 Dorking Queries

When framing the search queries, users can choose among the long list of
keywords and flags.

1.10.1 Guide

Cache: If you include other words in the query, Google will highlight those
words within the cached document. For instance, [cache:www.google.com

http://www.google.com

14 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

web] will show the cached content with the word “web” highlighted. This
functionality is also accessible by clicking on the “Cached” link on Google’s
main results page. The query [cache:] will show the version of the web page
that Google has in its cache. For instance, [cache:www.google.com] will
show Google’s cache of the Google homepage. Note there can be no space
between the “cache:” and the web page URL. The following listing shows the
corresponding results.

1 l i n k : The query [l i n k :] w i l l l i s t webpages that have l i n k s

to the s p e c i f i e d webpage . For in s tance , [l i n k :www. goog le

. com] w i l l l i s t webpages that have l i n k s po in t ing to the

Google homepage . Note the re can be no space between the
" l i n k : " and the web page URL.

2 - ­
3 r e l a t e d : The query [r e l a t e d :] w i l l l i s t web pages that are "

s im i l a r " to a s p e c i f i e d web page . For in s tance , [r e l a t e d
:www. goog l e . com] w i l l l i s t web pages that are s im i l a r to
the Google homepage . Note the re can be no space between
the " r e l a t e d : " and the web page URL.

4 - ­
5 i n f o : The query [i n f o :] w i l l present some i n fo rmat ion that

Google has about that web page . For ins tance , [i n f o :www.
goog l e . com] w i l l show i n fo rmat ion about the Google
homepage . Note the re can be no space between the " i n f o : "
and the web page URL.

6 - ­
7 de f i n e : The query [d e f i n e :] w i l l prov ide a d e f i n i t i o n o f the

words you ente r a f t e r i t , gathered from var i ous on l i n e
sou r c e s . The d e f i n i t i o n w i l l be f o r the e n t i r e phrase
entered (i . e . , i t w i l l i n c lude a l l the words in the
exact order you typed them) .

8 - ­
9 s t o ck s : I f you begin a query with the [s t o ck s :] operator ,

Google w i l l t r e a t the r e s t o f the query terms as s tock

t i c k e r symbols , and w i l l l i n k to a page showing s tock

i n fo rmat ion f o r those symbols . For in s tance , [s t o ck s :

i n t c yhoo] w i l l show i n fo rmat ion about I n t e l and Yahoo .

(Note you must type the t i c k e r symbols , not the company

name .)

10 - ­

http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com

1.10 Dorking Queries 15

11 s i t e : I f you i n c lude [s i t e :] in your query , Google w i l l
r e s t r i c t the r e s u l t s to those webs i t e s in the given
domain . For in s tance , [he lp s i t e :www. goog le . com] w i l l
f i nd pages about help with in www. goog le . com . [he lp s i t e :
com] w i l l f i nd pages about help within . com URLs . Note
the re can be no space between the " s i t e : " and the domain
.

12 - ­
13 a l l i n t i t l e : I f you s t a r t a query with [a l l i n t i t l e :] , Google

w i l l r e s t r i c t the r e s u l t s to those with a l l o f the query
words in the t i t l e . For in s tance , [a l l i n t i t l e : goog l e

search] w i l l re turn only documents that have both "
goog l e " and " search " in the t i t l e .

14 - ­
15 i n t i t l e : I f you i n c lude [i n t i t l e :] in your query , Google

w i l l r e s t r i c t the r e s u l t s to documents conta in ing that
word in the t i t l e . For in s tance , [i n t i t l e : goog l e search]

w i l l re turn documents that mention the word " goog l e " in
t h e i r t i t l e , and mention the word " search " anywhere in

the document (t i t l e or no) . Note the re can be no space
between the " i n t i t l e : " and the f o l l ow i n g word . Putting [
i n t i t l e :] in f r on t o f every word in your query i s
equ iva l en t to putt ing [a l l i n t i t l e :] at the f r on t o f your

16 - ­
17 query : [i n t i t l e : goog l e i n t i t l e : s earch] i s the same as [

a l l i n t i t l e : goog le search] .
18 - ­
19 a l l i n u r l : I f you s t a r t a query with [a l l i n u r l :] , Google w i l l

r e s t r i c t the r e s u l t s to those with a l l o f the query
words in the URL. For in s tance , [a l l i n u r l : goog le search
] w i l l re turn only documents that have both " goog l e " and
" search " in the URL. Note that [a l l i n u r l :] works on

words , not URL components . In pa r t i cu l a r , i t i g no r e s
punctuat ion . Thus , [a l l i n u r l : f oo /bar] w i l l r e s t r i c t the
r e s u l t s to pages with the words " foo " and "bar" in the

URL, but won ’ t r e qu i r e that they be separated by a s l a s h
within that URL, that they be adjacent , or that they be
in that pa r t i c u l a r word order . There i s cu r r en t l y no

way to en f o r c e the se c on s t r a i n t s .
20 - ­

http://www.google.com
http://www.google.com

16 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

21 i n u r l : I f you i n c lude [i n u r l :] in your query , Google w i l l
r e s t r i c t the r e s u l t s to documents conta in ing that word
in the URL. For in s tance , [i n u r l : goog le search] w i l l
re turn documents that mention the word " goog l e " in t h e i r
URL, and mention the word " search " anywhere in the

document (u r l or no) . Note the re can be no space between
the " i n u r l : " and the f o l l ow i n g word . Putting " i n u r l : "

in f r on t o f every word in your query i s equ iva l en t to
putt ing " a l l i n u r l : " at the f r on t o f your query : [i n u r l :
goog le i n u r l : s earch] i s the same as [a l l i n u r l : goog le
search] .

22 - ­
23 Nina Simone i n t i t l e : " index . o f " " parent d i r e c t o r y " " s i z e " "

l a s t modi f i ed " " d e s c r i p t i o n " I Put A Spe l l On You (mp4 |
mp3 | av i | f l a c | aac | ape | ogg) - i n u r l : (j sp | php | html | aspx | htm |
c f | shtml | l y r i c s - realm |mp3- c o l l e c t i o n) - s i t e : . i n f o

24 B i l l Gates i n t i t l e : " index . o f " " parent d i r e c t o r y " " s i z e " "
l a s t modi f i ed " " d e s c r i p t i o n " Microso f t (pdf | tx t | epub | doc
| docx) - i n u r l : (j sp | php | html | aspx | htm | c f | shtml | ebooks |
ebook) - s i t e : . i n f o

25 parent d i r e c t o r y /appz/ - xxx - html -htm -php - shtml ­
opendivx -md5 -md5sums

26 parent d i r e c t o r y DVDRip - xxx - html -htm -php - shtml ­
opendivx -md5 -md5sums

27 parent d i r e c t o r y Xvid - xxx - html -htm -php - shtml - opendivx
-md5 -md5sums

28 parent d i r e c t o r y Gamez - xxx - html -htm -php - shtml - opendivx
-md5 -md5sums

29 parent d i r e c t o r y MP3 - xxx - html -htm -php - shtml - opendivx ­
md5 -md5sums

30 parent d i r e c t o r y Name o f S inger or album - xxx - html -htm ­
php - shtml - opendivx -md5 -md5sums

31 f i l e t y p e : c on f i g i n u r l : web . c on f i g i n u r l : f t p
32 "Windows XP Pro f e s s i o n a l " 94FBR
33 ext : (doc | pdf | x l s | tx t | ps | r t f | odt | sxw | psw |

ppt | pps | xml) (i n t e x t : c o n f i d e n t i a l s a l a r y | i n t e x t : "
budget approved") i n u r l : c o n f i d e n t i a l

34 ext : (doc | pdf | x l s | tx t | ps | r t f | odt | sxw | psw |
ppt | pps | xml) (i n t e x t : c o n f i d e n t i a l s a l a r y | i n t e x t : "
budget approved") i n u r l : c o n f i d e n t i a l

35 ext : i n c "pwd=" "UID="
36 ext : i n i i n t e x t : env . i n i
37 ext : i n i Vers ion =. . . password
38 ext : i n i Vers ion =4 .0 . 0 . 4 password
39 ext : i n i eudora . i n i
40 ext : i n i i n t e x t : env . i n i

1.10 Dorking Queries 17

41 ext : l og " Software : Microso f t I n t e rn e t In format ion Se r v i c e s
* .* "

42 ext : l og " Software : Microso f t I n t e rn e t In format ion
43 ext : l og " Software : Microso f t I n t e rn e t In format ion Se r v i c e s

* .* "
44 ext : l og \" Software : Microso f t I n t e rn e t In format ion Se r v i c e s

* .*\ "
45 ext :mdb i n u r l : * .mdb i n u r l : fpdb shop .mdb
46 ext :mdb i n u r l : * .mdb i n u r l : fpdb shop .mdb
47 ext :mdb i n u r l : * .mdb i n u r l : fpdb shop .mdb
48 f i l e t y p e :SWF SWF
49 f i l e t y p e :TXT TXT
50 f i l e t y p e :XLS XLS
51 f i l e t y p e : asp DBQ=" * Server . MapPath(" * .mdb")
52 f i l e t y p e : asp "Custom Error Message" Category Source
53 f i l e t y p e : asp + " [ODBC SQL"
54 f i l e t y p e : asp DBQ=" * Server . MapPath(" * .mdb")
55 f i l e t y p e : asp DBQ=\" * Server . MapPath(\ " * .mdb\")
56 f i l e t y p e : asp "Custom Error Message" Category Source
57 f i l e t y p e : bak c r e a t e ob j e c t sa
58 f i l e t y p e : bak i n u r l : " h ta c c e s s | passwd | shadow | h tu s e r s "
59 f i l e t y p e : bak i n u r l : \ " h tac c e s s | passwd | shadow | h tu s e r s \"
60 f i l e t y p e : conf i n u r l : f i r e w a l l - i n t i t l e : cvs
61 f i l e t y p e : conf i n u r l : prof tpd . PROFTP FTP s e r v e r c on f i gu r a t i on

f i l e r e v e a l s
62 f i l e t y p e : dat "password . dat
63 f i l e t y p e : dat \"password . dat \"
64 f i l e t y p e : eml eml +in t ex t : " Subject " +in t ex t : "From" +in t ex t : "

To"
65 f i l e t y p e : eml eml +in t ex t : \ " Subject \" +in t ex t : \ "From\" +

i n t e x t : \ "To\"
66 f i l e t y p e : eml eml +in t ex t : " Subject " +in t ex t : "From" +in t ex t : "

To"
67 f i l e t y p e : i n c dbconn
68 f i l e t y p e : inc i n t e x t : mysql_connect
69 f i l e t y p e : i n c mysql_connect OR mysql_pconnect
70 f i l e t y p e : l og i n u r l : "password . l og "
71 f i l e t y p e : l og username putty PUTTY SSH c l i e n t l o g s can r e v e a l

usernames
72 f i l e t y p e : l og "PHP Parse e r r o r " | "PHP Warning" | "PHP Error "
73 f i l e t y p e :mdb i n u r l : use r s .mdb
74 f i l e t y p e : ora ora
75 f i l e t y p e : ora tnsnames
76 f i l e t y p e : pass pass i n t ex t : us e r i d
77 f i l e t y p e : pdf "Assessment Report" nessus
78 f i l e t y p e : pem i n t ex t : pr i va t e

18 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

79 f i l e t y p e : p r op e r t i e s i n u r l : db i n t e x t : password

80 f i l e t y p e : pst i n u r l : " out look . pst "

81 f i l e t y p e : pst pst - from - to - date

82 f i l e t y p e : reg reg +in t ex t : " defaultusername " +in t ex t : "

de fau l tpassword "

83 f i l e t y p e : reg reg +in t ex t : \ " defaultusername \" +in t ex t : \ "

de fau l tpassword \"

84 f i l e t y p e : reg reg +in t ex t : Ãć? WINVNC3Ãć?

85 f i l e t y p e : reg reg +in t ex t : " defaultusername " +in t ex t : "

de fau l tpassword "
86 f i l e t y p e : reg reg HKEY_ Windows Reg i s t ry export s can r e v e a l
87 f i l e t y p e : reg reg HKEY_CURRENT_USER SSHHOSTKEYS
88 f i l e t y p e : s q l " i n s e r t i n t o " (pass | passwd | password)
89 f i l e t y p e : s q l (" va lue s * MD5" | " va lue s * password" | " va lue s

* encrypt ")

90 f i l e t y p e : s q l (\ "passwd va lue s \" | \"password va lue s \" | \"

pass va lue s \")

91 f i l e t y p e : s q l (\ " va lue s * MD\" | \" va lue s * password\" | \"

va lue s * encrypt \")

92 f i l e t y p e : s q l +"IDENTIFIED BY" - cvs

93 f i l e t y p e : s q l password

94 f i l e t y p e : s q l password

95 f i l e t y p e : s q l " i n s e r t i n t o " (pass | passwd | password)

96 f i l e t y p e : u r l +inu r l : " f tp :// " +i nu r l : " ;@"

97 f i l e t y p e : u r l +inu r l : \ " f tp ://\ " +i nu r l : \ " ;@\"

98 f i l e t y p e : u r l +inu r l : " f tp :// " +i nu r l : " ;@"

99 f i l e t y p e : x l s i n u r l : " emai l . x l s "

100 f i l e t y p e : x l s username password emai l
101 index o f : i n t e x t : Gal l e ry i n Conf igurat ion mode
102 index . o f p a s s l i s t
103 index . o f perform . i n i mIRC IRC i n i f i l e can l i s t IRC

usernames and
104 index . o f . dcim
105 index . o f . password
106 i n t e x t : " - FrontPage - " ext : pwd i n u r l : (s e r v i c e | authors |

admin i s t r a to r s | use r s)
107 i n t e x t : ""BiTBOARD v2 . 0 " BiTSHiFTERS Bu l l e t i n Board"
108 i n t e x t : "# - FrontPage - " ext : pwd i n u r l : (s e r v i c e | authors |

admin i s t r a to r s | use r s) "# - FrontPage - " i n u r l : s e r v i c e .
pwd

109 i n t e x t : "#mysql dump" f i l e t y p e : s q l
110 i n t e x t : "#mysql dump" f i l e t y p e : s q l 21232

f297a57a5a743894a0e4a801fc3
111 i n t e x t : "A syntax e r r o r has occurred " f i l e t y p e : ihtml
112 i n t e x t : "ASP. NET_SessionId" "data source="

1.10 Dorking Queries 19

113 i n t e x t : "About Mac OS Personal Web Sharing "
114 i n t e x t : "An i l l e g a l cha rac t e r has been found in the statement

" - " prev ious message"
115 i n t e x t : "AutoCreate=TRUE password=*"
116 i n t e x t : "Can ’ t connect to l o c a l " i n t i t l e : warning
117 i n t e x t : " C e r t i f i c a t e Prac t i c e Statement" f i l e t y p e :PDF | DOC
118 i n t e x t : " C e r t i f i c a t e Prac t i c e Statement" i n u r l : (PDF | DOC)
119 i n t e x t : "Copyright (c) Tektronix , Inc . " " p r i n t e r s t a tu s "
120 i n t e x t : "Copyright Âľ Tektronix , Inc . " " p r i n t e r s t a tu s "
121 i n t e x t : "Emerg iso f t web app l i c a t i o n s are a part o f our"
122 i n t e x t : "Error Diagnos t i c In format ion " i n t i t l e : "Error

Occurred While"
123 i n t e x t : "Error Message : Error l oad ing r equ i r ed l i b r a r i e s . "
124 i n t e x t : " Es t ab l i s h i ng a s e cu re In t eg ra t ed Lights Out s e s s i o n

with" OR i n t i t l e : "Data Frame - Browser not HTTP 1 .1
compatible " OR i n t i t l e : "HP In t eg ra t ed Lights ­

125 i n t e x t : " Fata l e r r o r : Cal l to undef ined f unc t i on " - r ep ly - the
- next

126 i n t e x t : " F i l l out the form below complete ly to change your
password and user name . I f new username i s l e f t blank ,
your o ld one w i l l be assumed . " - edu

127 i n t e x t : "Generated by phpSystem"
128 i n t e x t : "Generated by phpSystem"
129 i n t e x t : "Host Vu ln e r ab i l i t y Summary Report"
130 i n t e x t : " Hos t ingAcce l e ra to r " i n t i t l e : " l o g i n " +"Username" - "

news" -demo
131 i n t e x t : " IMai l Server Web Messaging" i n t i t l e : l o g i n
132 i n t e x t : " I n c o r r e c t syntax near "
133 i n t e x t : " Index o f " /" chat / l o g s "
134 i n t e x t : " Index o f /network" " l a s t modi f i ed "
135 i n t e x t : " Index o f /" +. htac c e s s
136 i n t e x t : " Index o f /" +passwd
137 i n t e x t : " Index o f /" +password . txt
138 i n t e x t : " Index o f /admin"
139 i n t e x t : " Index o f /backup"
140 i n t e x t : " Index o f /mail "
141 i n t e x t : " Index o f /password"
142 i n t e x t : " Mic roso f t (R) Windows * (TM) Vers ion * DrWtsn32

Copyright (C) " ext : l og
143 i n t e x t : " Mic ro so f t CRM : Unsupported Browser Vers ion "
144 i n t e x t : " Mic roso f t Âľ Windows * âĎć Vers ion * DrWtsn32

Copyright Âľ" ext : l og
145 i n t e x t : "Network Host Assessment Report" " In t e rn e t Scanner "
146 i n t e x t : "Network Vu ln e r ab i l i t y Assessment Report"
147 i n t e x t : "Network Vu ln e r ab i l i t y Assessment Report"

20 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

148 i n t e x t : "Network Vu ln e r ab i l i t y Assessment Report"
æĲňæŰĞæİěèĞł pc007 . com

149 i n t e x t : "SQL Server Driver] [SQL Server] Line 1 : I n c o r r e c t
syntax near "

150 i n t e x t : "Thank you f o r your order " +r e c e i p t
151 i n t e x t : "Thank you f o r your order " +r e c e i p t
152 i n t e x t : "Thank you f o r your purchase " +download
153 i n t e x t : "The f o l l ow i n g r epor t conta in s c o n f i d e n t i a l

i n fo rmat ion " vu l n e r a b i l i t y - s earch
154 i n t e x t : "phpMyAdmin MySQL-Dump" "INSERT INTO" - " the "
155 i n t e x t : "phpMyAdmin MySQL-Dump" f i l e t y p e : txt
156 i n t e x t : "phpMyAdmin" " running on" i n u r l : "main . php"
157 intextpassword | passcode) intextusername | us e r i d | user)

f i l e t y p e : csv
158 intextpassword | passcode) intextusername | us e r i d | user)

f i l e t y p e : csv
159 i n t i t l e : " index o f " +myd s i z e
160 i n t i t l e : " index o f " e t c /shadow
161 i n t i t l e : " index o f " htpasswd
162 i n t i t l e : " index o f " i n t e x t : connect . i nc
163 i n t i t l e : " index o f " i n t e x t : g l oba l s . i nc
164 i n t i t l e : " index o f " master . passwd
165 i n t i t l e : " index o f " master . passwd 007 çŤţèĎŚèţĎèőŕ
166 i n t i t l e : " index o f " members OR accounts
167 i n t i t l e : " index o f " mysql . conf OR mysql_config
168 i n t i t l e : " index o f " passwd
169 i n t i t l e : " index o f " people . l s t
170 i n t i t l e : " index o f " pwd . db
171 i n t i t l e : " index o f " spwd
172 i n t i t l e : " index o f " user_carts OR user_cart
173 i n t i t l e : " index . o f *" admin news . asp con f i gv i ew . asp
174 i n t i t l e : ("TrackerCam Live Video") | ("TrackerCam Appl i ca t ion

Login") | ("Trackercam Remote") - trackercam . com
175 i n t i t l e : ("TrackerCam Live Video") | ("TrackerCam Appl i ca t ion

Login") | ("Trackercam Remote") - trackercam . com
176 i n u r l : admin i n u r l : u s e r l i s t Generic u s e r l i s t f i l e s

1 {

2 i n u r l : php?=id1

3 i n u r l : index . php? id=

4 i n u r l : t r a i n e r s . php? id=

5 i n u r l : buy . php? category=

6 i n u r l : a r t i c l e . php?ID=

7 i n u r l : play_old . php? id=

8 i n u r l : declarat ion_more . php? decl_id=

9 i n u r l : pageid=

10 i n u r l : games . php? id=
11 i n u r l : page . php? f i l e=
12 i n u r l : newsDetai l . php? id=
13 i n u r l : g a l l e r y . php? id=
14 i n u r l : a r t i c l e . php? id=
15 i n u r l : show . php? id=
16 i n u r l : s t a f f_ id=
17 i n u r l : newsitem . php?num=
18 i n u r l : t r a i n e r s . php? id=
19 i n u r l : buy . php? category=
20 i n u r l : a r t i c l e . php?ID=
21 i n u r l : play_old . php? id=

1.11 Best Practices and Learnings 21

and inur l : index . php? id=

22 i n u r l : declarat ion_more . php? decl_id=

23 i n u r l : pageid=

24 i n u r l : games . php? id=

25 i n u r l : page . php? f i l e=

26 i n u r l : newsDetai l . php? id=

27 i n u r l : g a l l e r y . php? id=

28 i n u r l : a r t i c l e . php? id=

29 i n u r l : show . php? id=

30 i n u r l : s t a f f_ id=

31 i n u r l : newsitem . php?num=

32 }

Listing 1.1 Use of the popular search string to find vulnerable websites.

For additional details and examples, one can refer to ‘‘https://github.com
/BlueVirtualNerds/SaUR0N/blob/main/DorkingGuide’’

1.11 Best Practices and Learnings

Following all possible security best practices had been the main strategy
followed during the development of project SaUR0N. Since its inception,
all the processes and deliverables of this project are provided due to secu­
rity considerations. For managing all the project-related documentation,
a dedicated centralized repository was created on Google Drive, having
restricted access only for the core members of the team and the teachers
and mentors. All the team meetings were properly documented right from the
beginning.

In the same manner, all the deliverables of this project are provided with
proper security considerations. In the same manner, all the deliverables of this
project are provided with proper security considerations.

https://www.github.com
https://www.github.com

22 OWASP G0rKing - Exploiting the Hidden Aspects of Google’s Search

1.12 Website Security and Best Practices

All the web-facing assets like a website stand directly in the front line
of cyberattacks and therefore need extra security considerations. During
development, it is easy to miss out on certain aspects, which may result
in chaos later. Therefore, several organizations and professionals recommend
using some mature web-development framework or platform, instead of
developing everything from scratch. Well-established cybersecurity frame­
works are backed by a strategic approach. They are an outcome of detailed
research on security aspects and are often developed while considering cyber
incident response plans and application security checklists in mind. For the
development of enterprise-size applications or a heavy-use e-commerce portal,
a strategic approach is needed, but for small-sized websites with limited
capabilities, a reliable web framework sufficiently provides all the required
security norms.

Therefore, when developing the website [56] for Project SaUR0N, we used
the Wix IaaS, a reliable vendor that takes care of security aspects and follows
the security norms. This way, we were able to enjoy a secure web-hosting
space, where infrastructure-related security aspects were handled by experts
in that domain.

The website uses SSL certification to provide an extra layer of security
to its content. It also implements the latest version of TLS (TLS 1.3), which
provides several enhancements over its previous version (TLS 1.2) in terms
of performance and security. For additional security, regular backups were
taken of the website data. Additionally, third-party vulnerability assessments
were performed, which helped in identifying any technical security loopholes
like the use of old versions or components. Due to the use of a third-party
framework for development, there were some restrictions on the customization
of cookies, which could have resulted in some risks. However, the entire
website was designed to work with HTTP read-related operations (GET
requests) only. By not using any write-related operations (POST requests)
to the server, several vulnerabilities related to cookies were taken care of.

1.13 Tool: SaUR0N

Project SaUR0N tool is written in Python, which is considered one of the safest
languages. The high severity vulnerabilities in the past 5 years are 15% on
average, the lowest among the other languages. Additionally, we used proper
tricks and development guidelines to ensure security. The tool has been kept

1.14 GitHub Repository 23

open-source for everyone to review and find and fix bugs. The tools provide
an option to the users if they wish to save sensitive data about vulnerabilities
or not. This allows users to avoid any risks in case they wish not to save
their search results. The tool is fully customizable. Users are provided with
an option to add more queries as per the requirements for the URL probe
part.

1.14 GitHub Repository

Project SaUR0N is an open-source work, and its entire code and libraries
are available on GitHub for anyone to review (https://github.com/BlueVir
tualNerds/SaUR0N). While working with GitHub, all standard guidelines
were followed. During the development phase, the project repository was
secured via 2FA. The credentials were shared using one-time read messaging
services, in which messages carrying sensitive information (in our case
credentials) were destroyed after one-time use. For any users visiting the
GitHub project directly (and not via the project’s education website) the
Readme.md provides all the necessary details. This project is also having an
active security policy (SECURITY.md), inviting contributions from all users,
and provides warnings about any possible misuse of the tool and associated
risks and accountabilities.

The GitHub repository is also using CodeQL – the code analysis engine
developed by GitHub. This helps in automating the security checks of the
hosted code. In case there is any vulnerability or risk identified, the build
will automatically fail, thus securing the system from any supply chain-kind
attacks.

Future prospects: In the future, it can include a scoring mechanism (like
VirusTotal) to quantify the risk. The same functionalities can be delivered via
an API-based and a GUI-based offering in the future. Moreover, after adoption
by the OWASP foundation, there are enormous ways in which this project can
be taken further.

https://www.github.com
https://www.github.com

https://taylorandfrancis.com

2

OSS Known Vulnerability Scanner – Helping

Software Developers Detect Third-Party

Dependency Vulnerabilities in Real Time

Om Mishra and Ria Sarkar

Canum Infotech, India
E-mail: mishra.om@live.com; riasarkar1999@gmail.com

Abstract

A major problem every developer is facing today is the unavoidable dependen­
cies on external pieces of codes. Current state of software industries shows
that 98% of all applications rely on some form of open-source dependency and
84% of these contain vulnerabilities. Additionally, the average time taken for
open-source vulnerability detection is around 22 years. The fact that OWASP
considers this among their top 10 vulnerabilities ever since 2013 represents
the severity of this issue. CVE databases are maintained, which contain in
them a list of publicly known cybersecurity vulnerabilities. Currently, the
number of open-source dependency checkers are only compatible with a few
languages. On the other hand, commercial tools may be too expensive for start­
up companies to use. To address this problem, our aim with this application is
to develop a solution that will scan all open-source libraries used in software
development, check the national vulnerability database’s CVE database to
find any known vulnerabilities and alert the developer in real time. We have
developed the core features that can solve this problem in a very simple way
by developing a standalone version with three components: a scanner that
runs on the developer’s machine and collects the evidence of use of any open-
source libraries, an analyzer which processes the output generated by the
scanner and checks for any vulnerabilities by calling NVD’s CVE API and
a dashboard to show the results generated by the analyzer. The software is

25

mailto:mishra.om@live.com
mailto:riasarkar1999@gmail.com

26 OSS Known Vulnerability Scanner – Helping Software Developers Detect

currently compatible with projects made using Maven and Gradle and is hosted
locally on the user’s system. The error rates were found to be low, with a false
positive of 0% and a false negative of 5%.

Keywords: Open-source vulnerability scanner, open-source software (OSS),
OWASP, National Vulnerability database (NVD), Common Vulnerabilities
and Exposures (CVE), Common Vulnerability Scoring System (CVSS).

2.1 Introduction

Dependencies are external pieces of codes used in a software to implement
a given functionality. More often than not, software development involves
reusing these existing pieces of codes. There are significant advantages of
using dependencies during software development. These range from the gross
reduction of time and resources needed such as elimination of the need
to write and test every functionality from scratch to being able to create
complex codes for highly specific applications easily by incorporating existing
pieces of software codes. It also reduces code redundancy and facilitates
sharing of software codes between developers through platforms such as
GitHub. Software dependencies can be of two types. Direct dependencies
are those that are directly called upon by the software to directly enable
a particular functionality of the software. On the other hand, indirect or
translative dependencies are those that are called upon by direct dependencies
of the software instead of the software itself. While a developer may be aware
of the direct dependencies associated with their software codes, the translative
dependencies often go unnoticed.

The security risks associated with utilizing dependencies in a software
code makes these vulnerabilities among the most exploited in the information
and technology sector. Dependency on external pieces of codes can lead to
accidental flaws such as the use of untested codes, implementing them in a
manner different than that intended by the developer, or using older versions
of a code. However, more dangerous are intentional vulnerabilities that can
get incorporated through the use of compromised or malicious codes such as
introducing backdoors leading to unauthorized access. As the name suggests,
it also causes a dependency of the software on external code, meaning that
the independence of the software to function as intended by the developer is
greatly reduced and always relies on the status of these external and often
uncontrollable sources.

The open-source vulnerability scanner scans the source code to collect the
evidence of using any OSS library.Once the concreate evidence is established,

2.2 Background 27

Figure 2.1 Workflow of developed open-source vulnerability scanner

it will further scan for all transitive dependencies and prepare a list.Once the
OSS library list is prepared the tool will start checking NVD for any known
vulnerability. It fetches all details of the vulnerability from different sources
to prepare the dashboard. Figure 2.1 shows the information flow.

2.2 Background

Information technology has exploded in the past two decades. However, with
such advancements, significant security threats are following. In today’s world,
writing every aspect of a code from scratch is not only resource-intensive and
counterintuitive but also impractical and, in many cases, impossible if one
wants to create an industry standard product. The advantages and widespread
use associated with external dependencies alongside the threats they pose
make these a necessary evil in the process of software development. It is
therefore essential to identify and mitigate the risks associated with the use of
external dependencies through the use of proactive preventive measures such
as dependency management procedures. To combat this problem, Common
Vulnerabilities and Exposures (CVE) databases are maintained, which contain
in them a list of publicly known cybersecurity vulnerabilities [59].

The CVE database is maintained by the MITRE organization and is aimed
to identify, define, and catalog publicly disclosed cybersecurity vulnerabil­
ities. There is one CVE Record for each vulnerability in the catalog. The
vulnerabilities are discovered then assigned and published [58]. The scoring
system of the CVE database generates a score using the Common Vulnerability
Scoring System (CVSS). CVSS consists of three metric groups: base, temporal,
and environmental. The base group represents the intrinsic qualities of a
vulnerability that are constant over time and across user environments, the

28 OSS Known Vulnerability Scanner – Helping Software Developers Detect

temporal group reflects the characteristics of a vulnerability that change
over time, and the environmental group represents the characteristics of
a vulnerability that are unique to a user‘s environment. The base metrics
produce a score ranging from 0 to 10, which can then be modified by scoring
the temporal and environmental metrics [32]. Tables 2.1 and 2.2 explain the
three metric groups, their associated components, and metric value of each
component.

2.3 Problem Statement

The current state of software industries shows that 98% of all applications
rely on some form of open-source dependency and 84% of these contain
vulnerabilities. Additionally, the average time taken for open-source vul­
nerability detection is around 22 years [2]. The severity of this issue is
represented by the fact that the open web application security project or
OWASP, the leading non-profit organization formed to improve security of
software, considers this among their top 10 vulnerabilities ever since 2013,
wherein vulnerable and outdated components is ranked as the sixth most
critical web application security risk in 2021 [1]. To make matters worse,
the number of open-source dependency checkers currently available is only
compatible with a few languages [5].

2.4 Tool Architecture

OSS known vulnerability scanner contains three major components which are
as follows:

Scanner: The scanner walks the files and directories specified in command
line parameter and collects list of OSS dependencies direct and transitive.

Analyzer: The analyzer searches the CVE database and prepare vulnerable
OSS library list. It also analyzes the vulnerability and fetch other details from
external source to suggest possible fixes.

Report dashboard: The reporter generates a vulnerability report in the
form of a live dashboard.

The application follows the SaaS architecture and only the scanner
component resides on either developer system as IDE plugin or on CI
(continuous integration) server. The scanner sends the list of OSS library
for analysis to cloud hosted application. Figure 2.2 shows the architecture of
OSS vulnerability scanner.

2.5 Tool Implementation 29

Table 2.1 Metric groups used by the CVSS to generate a vulnerability score.

Metric Submetric Value Description

Attack
Vector (AV)

Network (N)
Adjacent (A)
Local (L)
Physical (P)

Context of exploitation. The value will be larger
the more logically and physically remote
an attacker can be in order to
exploit the vulnerable component.

Attack
Complexity (AC)

Low (L)
High (H)

Conditions that must exist in order to exploit
the vulnerability. The base score is greatest
for the least complex attacks.

Privileges
Required (PR)

None (N)
Low (L)
High (H)

The level of privileges an attacker must
possess before successfully exploiting
the vulnerability. The base score is greatest
if no privileges are required.

User
Interact (UI)

None (N)
Required (R)

Requirement for a human user, other
than the attacker. The base score is
greatest when no user interaction is required.

Base

Scope (S)
Unchanged (U)
Changed (C)

Whether a vulnerability in one vulnerable
component impacts resources in components
beyond its security scope, the subjects and
objects under the jurisdiction of a single
security authority. The base score is greatest
when a scope change occurs.

Confidentiality (C)
High (H)
Low (L)
None (N)

Impact to the confidentiality of the
information resources managed by a
software component due to a successfully
exploited vulnerability. The base score is
greatest when the loss to the impacted
component is highest.

Integrity (I)
High (H)
Low (L)
None (N)

Impact to integrity of a successfully
exploited vulnerability. Integrity refers
to the trustworthiness and veracity
of information. The base score is greatest
when the consequence to the impacted
component is highest.

Availability (A)
High (H)
Low (L)
None (N)

Impact to integrity of a successfully
exploited vulnerability. Integrity refers
to the trustworthiness and veracity
of information. The base score is greatest
when the consequence to the impacted
component is highest.

2.5 Tool Implementation

This section covers how the various components are implemented and deployed
for actual usage. The tool is implemented having three different components
as mentioned in Section 2.4. Figure 2.3 shows the various technologies

30 OSS Known Vulnerability Scanner – Helping Software Developers Detect

Table 2.2 Metric groups used by the CVSS to generate a vulnerability score.

Metric Submetric Value Description

Temporal

Exploit
Code
Maturity (E)

Not Defined (X)
High (H)
Functional (F)
Proof of Concept (P)
Unproven (U)

Likelihood of the vulnerability being attacked,
and is typically based on the current state
of exploit techniques, exploit code
availability, or active, “in-the-wild”
exploitation. The more easily a
vulnerability can be exploited, the higher the vulnerability score.

Remediation
Level (RL)

Not Defined (X)
Unavailable (U)
Workaround (W)
Temporary (T)
Official Fix (O)

The availability of a remediation ­
an official patch or update against
known vulnerabilities. The less
official and permanent a fix,
the higher the vulnerability score.

Report
Confindence (RC)

Not Defined (X)
Confirmed (C)
Reasonable (R)
Unknown (U)

The degree of confidence in the
existence of the vulnerability and
the credibility of the known technical details.
The more a vulnerability is
validated by the vendor or
other reputable sources, the higher the score.

Environmental

Security
Requirements
(CR, IR, AR)

Not Defined (X)
High (H)
Medium (M)
Low (L)

These metrics enable the analyst to
customize the CVSS score depending
on the importance of the affected
IT asset to a userâ ̆A ́ Zs organization,
measured in terms of confidentiality,
integrity, and availability.

Modified
Base
Metrics

Same as
Base Metrics

These metrics enable the analyst to override
individual base metrics. Includes modified attack
vector (MAV), modified attack complexity (MAC),
modified privileges required (MPR), modified user
interaction (MUI), modified scope (MS),
modified confidentiality (MC),
modified integrity (MI), Modified Availability (MA)

Figure 2.2 SaaS architecture of the OSS known vulnerability scanner

and tools used in our work. The component-wise implementations are as
follow:

2.5 Tool Implementation 31

Figure 2.3 Technologies and tools used to develop the tool.

2.5.1 Components and their implementations

Scanner: Scanner component is written in Kotlin [4] and its four variants
make it suitable for various needs:

Command line utility: The simplest form of the scanner is a command
line utility. To invoke the scanner, enter the following command in command
shell: java -jar scanner.jar [project path]. This scanner can be added with
various plugins as follows:

• Maven plugin: Just add the scanner as Maven plugin and it will
automatically trigger when Maven build is invoked.

• Gradle plugin: Just add the scanner as Gradle plugin and it will
automatically trigger when Gradle build is invoked.

• Jenkin plugin: Just add the scanner as Jenkin plugin and add the build
job in Jenkin configuration file. Scanner will be invoked as per the
configured stage in pipeline job.

32 OSS Known Vulnerability Scanner – Helping Software Developers Detect

Analyzer: The analyzer component can be hosted as SaaS application
or on-premise.The analyzer is invoked as API call and takes the list of OSS
libraries as input (in JSON format). The analyzer first look for CPE (Common
Platform Enumeration) by grouping the vendor, product, and version of each
OSS library and once the CPE is confirmed it looks for the CVE entry in NVD
database. Each CVE entry contains:

• Description of the vulnerability or exposure,
• Common Vulnerability Scoring System (CVSS) score,
• List of the affected platforms identified by their Common Platform
Enumeration (CPE).

The analyzer then prepares the report in JSON format as a result outcome.
Dashboard: A live reporting system was created using JavaScript, CSS,

and HTML languages using the Visual Studio software [51]. The dashboard
takes the output of the scanner in the form of the JSON object file and generates
a live dashboard listing and comparing the total number of dependencies
found. A vulnerability analyser depicts the total number of dependencies
found and the relative proportion of high-risk ones through an intuitive pie
chart. Additionally, a list of all the vulnerable dependencies found in the
code is generated and displayed, containing all the important details that the
developer might need such as the vulnerability score, risk category, description,
links to the associated CVE, and CWE databases wherein the developer may
find possible solutions such as an alternate dependency or an updated version
of the code with higher security.

Figure 2.4 depicts the report generated after analysing a vulnerable
software code downloaded from github. Out of the total 15 dependencies,
nine had no known vulnerabilities, one posed a low-risk threat, two were
medium and high-risk threats while one dependency was critically vulnerable.

2.6 Deployment

2.6.1 Enterprise deployment

The key challenge for enterprise deployment was how to assure the enterprise
that no source code/IP is shared to our SaaS-hosted server. To ensure that we
developed the scanner component as a plugin for IDE like eclipse, IntelliJ, etc.
The scanner just looks for the OSS library and only send the list of libraries to
the SaaS component. The SaaS component do check the vulnerability from
NVD database. The NVD database is mirrored for faster analysis and its
periodically sync every 2 hours.

2.8 Conclusion 33

Figure 2.4 Live dashboard report generated following scanning of the software code.

Table 2.3 Validation result of tool.

No. of projects scanned False positive False negative
115 0 6

2.6.2 Standalone deployment

It is also possible to host entire application as on-premise offering if enterprise
policy does not allow the cloud-based SaaS offering. Here are the components
(scanner, analyzer, and dashboard) hosted in interned or in developer machine
itself.

2.7 Tool Validation and Result

We validated the application by scanning 115 OSS projects downloaded from
GitHub and analyzing the result manually. The result was very impressive and
shown in Table 2.3.

2.8 Conclusion

The developed OSS known vulnerability scanner was found to be a reliable
solution for software developers. It provides an alternative to expensive
commercially available software for small-and medium-size enterprises as

34 OSS Known Vulnerability Scanner – Helping Software Developers Detect

well as independent developers to help increase the security of their products
by identifying and reporting exploitable vulnerabilities present in the software
code based on the Common Vulnerabilities and Exposures database. The
scanner currently supports software codes written using the Maven and
Gradle platforms but can easily be modified to incorporate other programming
languages. The low-false positive and false-negative results have proven the
tool to be capable of generating reliable and valid results.

2.9 Acknowledgments

The authors are grateful to the Indian Institute of Technology, Kanpur, India
and TalentSprint for providing this opportunity.

Part II

Malware Analysis

35

https://taylorandfrancis.com

3

Detecting Malware using Machine Learning

Partha Majumdar, Shyava Tripathi, Balaji Annamalai,

Senthil Jagadeesan, and Ranveer Khedar

E-mail: partha.majumdar@hotmail.com; shyava.tripathi8@gmail.com;
Balajiannamalai@hotmail.com; jj_senthil75@yahoo.co.in;
ranveerkhedar@gmail.com

Abstract

The threat of malware looms large in today’s world. It is of paramount
importance that malware detection strategies evolve at an appropriate speed.
The recent boost in exchange of images on social media as well as popularity
of IoT devices are significant contributors of the current malware landscape.
The present-day malware detection products are based on intensive manual
effort and thus consume a lot of time to detect malware. It is a burning need to
be able to detect malware in less time. This will not just save time and thus
negate malicious intent of malware developers; it will also save a lot of money
involved in malware detection.

Training machines to detect malware can significantly reduce the time
required to detect malware. These techniques can be reasonably reliable
because by following a consistent process, all but the outliers can be detected.
Once machines can be made to learn the process of detecting malware,
the time required to detect malware will reduce drastically. Also, as the
manpower required in the process of malware detection using machines will
be a fraction of what is required now, the net cost of detecting malware will
reduce drastically.

In this chapter, we develop and evaluate two machine learning classifiers,
the former capable of detecting malicious JPEG files with 99.9% accuracy
and the latter capable of detecting and classifying malicious ELF files into
malware categories with 87% accuracy.

37

mailto:partha.majumdar@hotmail.com
mailto:shyava.tripathi8@gmail.com
mailto:Balajiannamalai@hotmail.com
mailto:jj_senthil75@yahoo.co.in
mailto:ranveerkhedar@gmail.com

38 Detecting Malware using Machine Learning

Keywords: Malware, machine learning, JPEG, ELF, detection, classification,
TF-IDF, Random Forest, confusion matrix, web service, Python.

3.1 Introduction

Malware threats continue to soar in numbers and diversify in functionality
owing to the opportunities provided by technological advances. The attack
surface is widening enormously everyday with the rise in data exchange and
the highly personal interaction of technology with people’s lives.

One very ubiquitous file exchanged by people across the globe are images.
The advent of social media has boosted the exchange of images. JPEG is the
most widely used image format, utilized by almost everyone, from individuals
to schools and large enterprises. JPEG files, if exploited, could serve as a
terrifying attack vector because of their extensive platform compatibility and
expansive usage. JPEG files have many components that can be infected. This
chapter deals with one such component, the EXIF (Exchangeable Image File
Format) tags. EXIF tags are introduced into JPEG files in 2010 and are used
to store meta data about the image stored in the JPEG file. A JPEG file with
tampered EXIF tags is very difficult for users of the image file to detect. This
is the incentive for malware developers to embed their malicious code in the
EXIF tags. JPEG files can be cleaned of malware by converting the JPEG files
to BMP files. BMP files do not store the EXIF tags present in the JPEG files.

Another increasingly exploitable attack surface in today’s rapidly evolving
malware landscape is that of Linux-based IoT (Internet of Things) devices
and thus Linux binary files. The rise of connected objects with the evolution
and revolution of IoT has led to a massive influx of Linux-based malware and
attacks targeting IoT devices. The increasing number of Linux malware can
be attributed to the infrequent patching, use of default passwords and almost
negligible isolation of these devices which makes them extremely vulnerable
to exploitation. Manual malware analysis is ineffective due to large number
of such cases and so detection models based on machine learning approaches
could serve valuable results. In this chapter, we propose two different machine
learning solutions.

• In the first part, we present a machine learning solution aimed at
efficiently detecting malicious JPEG files with an accuracy of 99.9%. The
algorithms used are Decision Tree & Random Forest algorithms.

• In the second part, we introduce a machine learning solution based on the
Random Forest algorithm, capable of detecting and classifying malicious
ELF files into malware categories of Trojan, Backdoor, Virus, DDOS,
and Botnet.

3.2 Detecting Malware in JPEG Files 39

3.2 Detecting Malware in JPEG Files

The project tries to demonstrate that malware can be detected through
supervised machine learning. Using machine learning for malware detection
[39] has technical and commercial benefits. This is because malware detection
in the current context is about constantly researching for new signatures
developed by hackers and programming for detecting these signatures in files.
This process is effort intensive and time intensive. The result is an expensive
process for malware detection. If the machine could be made to detect malware,
not only will the process of malware detection become less expensive due to
less human effort involved, but the time required to detect new malware will
reduce drastically.

3.2.1 JPEG file structure

JPEG files are compressed files used to store images. The JPEG files can be
identified by a marker 0xFFD8 at the start of the file [33].

The information in the JPEG files can be classified into two types-Image
Data and EXIF tags. EXIF tags are added to JPEG file format in 2010. The
Image Data of JPEG files have the following segments:

1. Header
2. Quantization tables
3. Frame information

The Header segment contains the following data:

1. Identifier (OxJFIF for JPEG, etc.)
2. Version
3. Units
4. Density
5. Thumbnail

The frame information is a series of Huffman encoded tables containing
the bit pattern of the image.

The important thing to note is that if any of above values is tampered with,
the JPEG file will not render appropriately. So, the developers of malware do
not tamper with this part of JPEG files to introduce malware.

3.2.2 EXIF tags

EXIF tags provide additional information to the JPEG files. The EXIF tags
can be altered programmatically to alter the nature of the image stored in

40 Detecting Malware using Machine Learning

the JPEG files. For example, by altering the EXIF tag BrightnessValue, the
brightness of the image can be altered. Similarly, by altering the EXIF tags
ExifImageHeight and ExifImageWidth, the size of the image can be altered.

EXIF tags provide the facility for photograph editors to make enhance­
ments/alterations to an image stored as a JPEG File. As these are values which
can be altered, the developers of malware alter these tags to introduce their
spurious code. One way to clean an infected JPEG file is to convert the JPEG
file to a BMP file. BMP files can only contain the image information and does
not support any EXIF tags. Converting to BMP files gets rid of the EXIF tags
and thus the JPEG files get cleaned of malware. A JPEG file may contain
EXIF tags or may not contain EXIF tags. JPEG files created before 2010 do
not contain EXIF tags. If a JPEG file does not contain EXIF tags, then it can
be safe to state that the JPEG file can be considered as a clean file.

So, for malware analysis, we need concentrating only on JPEG files which
contain EXIF tags.

3.3 Dataset

The initial data for this project is obtained from C3i Lab of IIT, Kanpur. IITK
provided 3124 clean JPEG files and 278 JPEG files with malware. As the
total number of files are less, 2763 JPEG files are collected from our libraries
of photographs. These files are transferred using Google Drive. Transferring
using Google Drive is a round of check to ensure that these files are clean as
Google Drive discards any JPEG files containing a malware. As the number of
JPEG files containing malware is less, C3i Lab of IIT, Kanpur is approached.
C3i Lab provided another 160 JPEG files containing malware. So, the total
dataset contained 5887 clean JPEG files and 438 JPEG files with malware.

3.3.1 Dataset split – train and test set

To create the training set and test set, it is required that files be picked up at
random and assigned to each set. To randomly pick up files, a shell script is
written as shown in Listing 3.1.

1 l i n e s I n F i l e=$ (wc - l < l s t . txt)
2 echo $ l i n e s I n F i l e
3 n_line=0
4 n_f i l eRequi red=60
5 whi le read l i n e
6 do
7 ((n_line == n_f i l eRequi red)) && break

3.3 Dataset 41

8 rnd=$ ((1 + $RANDOM % $ l i n e s I n F i l e))
9 sed -n "${rnd}p" l s t . txt >> randomList . txt

10 ((n_line++))
11 done < l s t . txt

Listing 3.1 FileMover.sh script.

The way this shell script is used is as follows:

1. All the files of a particular type are placed in a separate directory. For
example, all the benign files are placed in a directory called clean_jpeg,
all the malware files are placed in the directory malicious_files.

2. The list of files in each directory is created using the ls command and
stored in a file called lst.txt (ls > lst.txt).

3. As we needed 10% of the files for the test set, the n_fileRequired
variable in the script is set to the desired number. For example, 600
is about 10% of the total clean JPEG files. So, for the set of clean JPEG
files, n_FileRequired could be set to 600.

4. Once the setting is made in the script as per Step 3, the shell script is run
(sh FileMover.sh). (It is also possible that execute permission could have
been given to the file FileMover.sh using the command chmod u+x and
the file could have been run directly on the shell as FileMover.sh).

5. Running the command in Step 4 created the file randomList.txt. This
file contained the names of the files randomly selected.

6. The file randomList.txt is updated in vi editor to create the move script
for moving the files. The following commands are issued to generate the
script.

1 a . <Esc >:1 , $s /^/mv"/

2 b . <Esc >:1 , $s /$/" \ . \ . \ / Test \/Clean/

7. The updated file randomList.txt is run to move the files by issuing the
command sh randomList.txt. This created a directory called Test or
Clean for the clean JPEG files for the test set.
Note: The directory Test had to be created at the appropriate location
prior to executing Step 6.

8. These steps are repeated for all the types of files. So, now there are two
sets of files of each type – one for training and one for testing.

Out of the total dataset, 5398 clean JPEG files and 415 malicious JPEG
files are used for the training set and remaining, 292 clean JPEG files and 22
malicious JPEG files are used for the testing set.

42 Detecting Malware using Machine Learning

3.4 Feature Extraction Strategies

The initial part of the project involves finding reliable libraries that can
help in parsing the JPEG files. After parsing the JPEG files, we see two
significant discoveries that not all the JPEG files in the obtained dataset are
JPEG files and that many of the JPEG files did not contain EXIF tags [16].
Both these reasons reduced the dataset. This discovery also led to the following
conclusions:

1. If the file is not a valid JPEG File, the software would just reject these
files as not a part of the scope for this product.

2. If the file is a valid JPEG file but doese not contain EXIF tags, then the
file will be classified as benign. (This is because in almost all cases it is
not possible to transmit malware in a JPEG File without editing the EXIF
tags).

3. Some of the JPEG files containing malware are found to be not JPEG files.
It is possible as the file becomes damaged while it is being manipulated.
The signature identifies JPEG files from the header information present
in the JPEG files.

4. The other observation is that few of the malicious files in the dataset
are found that do not contain any EXIF tags. A check is performed by
uploading these files to Google Drive. The files got uploaded to Google
Drive. However, when we tried to download these files from Google
Drive, they were reported as errors.

5. Out of the JPEG files containing malware, one file is found that the
Python program can not parse because the image size is beyond what
Python allows to read. It can not be concluded whether this is a malicious
file.

6. Not all the JPEG files contain the same set of tags.

3.4.1 Strategy I: (using the length of the tags as features)

Once the tags are extracted from the JPEG files, we create a unique list of tags
found across all the JPEG files. A data frame is formed with each of these
tags as columns. The length of each tag in every JPEG file is determined. If
a tag is not available in a JPEG File, the corresponding column in the data
frame is assigned a value of zero. So, now there is a data frame containing
only numbers. A Logistic Regression model is developed using this data frame.
The accuracy obtained through this model is 56%. A Random Forest model is
trained using the same data frame. The Random Forest model performed

3.6 Building the Model 43

slightly better with an accuracy of 58%. Also, we prepare an artificial
neural network using Tensor Flow API, and the model gives an accuracy of
about 72%.

3.4.2 Strategy II: (forming TF-IDF)

In Strategy II, we have decided to use TF-IDF (term frequency-inverse
document frequency) over the tags. A string is formed by concatenating all
the tags available in each JPEG file then TF-IDF is created from these strings.
After making the TF-IDF, the Decision Tree model is trained. This model gives
an accuracy of 98.9% during training. This result encourages a Random Forest
model to be created using the same TF-IDF. Both models’ performance results
are the same. This work only contains the model developed using strategy II.

3.5 Working of the System

The model must deploy on any server to which the web server has access. The
model may reside on a server different from the web server because the model
may need to be rebuilt from time to time. Now, rebuilding the model requires
a machine with more RAM and virtual memory. The model for this project is
built on a device having 64 GB RAM and a 2 TB Hard Disk.

The system starts when the web server is started. The web server first loads
the model and then listens on a port for the Client. One should always keep the
web server running so that the Client can contact it. For this to happen, the web
server is started using the nohup command. nohup command ensures that the
web server keeps running even if the user who started the web server logs out
of the system. Once the web server is up and running, the Client Application
can call the web server’s IP and port and then send files for evaluation.

3.6 Building the Model

In this section, we discuss the code used to build the model.

3.6.1 Constants used

The following constants are used in the code. Constants used in the code are
as follows ­

1 # Constants
2 FILE_NAME_COLUMN_NAME = ' F ileName '

44 Detecting Malware using Machine Learning

3 FILE_TYPE_COLUMN_NAME = ' Fi leType '

4 TAG_STRING_COLUMN_NAME = ' TagString '

5 NUMERIC_COLUMN_IDENTIFIER = 'AAA'

6 BENIGN_FILE = 0

7 FILE_WITH_MALWARE = 1

3.6.2 Functions used to extract EXIF tags from JPEG files

The following three functions are used to extract the EXIF tags from the JPEG
files.

extractTagsFromADirectory: This function takes a single file name or
a set of file names and returns the tags extracted from all the JPEG files
as a List. Along with the tags found in the set of JPEG files, this function
returns the number of valid JPEG files, number of invalid JPEG files and
the number of JPEG files which contained no tags. This function calls the
functions JPEGFileFeatureExtractorToDictionary() and isImageFile().

1 import glob

2

3 de f extractTagsFromADirectory (inputDi rec to ry) :

4 # Declare Counters

5 numberOfValidFiles = 0

6 numberOfInva l idFi les = 0

7 numberOfFilesWithoutTags = 0

8

9 # Create an Empty L i s t to hold a l l the f e a t u r e s o f a l l the

f i l e s

10 returnValue = []
11

12

13 # Loop through a l l the f i l e s in the Input Direc to ry
14 f o r f i l e in glob . g lob (inputDi rec to ry) :
15 # Create an empty Dict ionary
16 oneF i l eFeature s = {}
17

18 t ry :
19 # Read the f i l e and ex t r a c t the f e a t u r e s
20 f i l e F e a t u r e s = JPEGFileFeatureExtractorToDictionary (f i l e)
21

22 # I f the F i l e had some f e a tu r e s , then c r ea t e an entry f o r
the f i l e

23 i f l en (f i l e F e a t u r e s . keys ()) > 0 :
24 # Write the F i l e Name
25 oneF i l eFeature s [FILE_NAME_COLUMN_NAME] = f i l e

3.6 Building the Model 45

26

27 # Add the F i l e Features to the main Dict ionary
28 oneF i l eFeature s . update (f i l e F e a t u r e s)
29

30 # Add the entry to the r e turn value
31 returnValue . append (oneF i l eFeature s)
32 numberOfValidFiles = numberOfValidFiles + 1
33 e l s e :
34 #Check i f the f i l e i s a va l i d Image F i l e
35 i f i s ImageF i l e (f i l e) :
36 numberOfFilesWithoutTags = numberOfFilesWithoutTags + 1
37 e l s e :
38 numberOfInva l idFi les = numberOfInva l idFi les + 1
39 except :
40 # Check i f the f i l e i s a va l i d Image F i l e
41 i f i s ImageF i l e (f i l e) :
42 numberOfFilesWithoutTags = numberOfFilesWithoutTags + 1
43 e l s e :
44 numberOfInva l idFi les = numberOfInva l idFi les + 1
45

46 re turn (returnValue , numberOfValidFiles ,
numberOfInval idFi les , numberOfFilesWithoutTags)

JPEGFileFeatureExtractorToDictionary: This function takes one
JPEG file as input and returns all the EXIF tags in the JPEG file in a Dictionary
as output.

1 from PIL import Image

2 from PIL . ExifTags import TAGS

3

4 de f JPEGFileFeatureExtractorToDictionary (imageFi l e) :

5 #Declare an empty Dict ionary

6 returnValue = {}

7

8 # Read the image data us ing PIL

9 image = Image . open (imageFi le)

10

11 # Extract EXIF data
12 ex i f d a t a = image . g e t e x i f ()
13

14 # I t e r a t i n g over a l l EXIF data f i e l d s
15 f o r tag_id in ex i f d a t a :
16 # Get the tag name and the a s s o c i a t ed data
17 tag = TAGS. get (tag_id , tag_id)
18 data = ex i f d a t a . get (tag_id)
19

46 Detecting Malware using Machine Learning

20 # Decode bytes
21 i f i s i n s t a n c e (data , bytes) :
22 data = data . decode (' i so8859 -1 ')
23

24 returnValue [tag] = data
25

26 re turn returnValue

isImageFile: This function takes a file as an input and returns TRUE if the
file is a JPEG file and returns FALSE if the file is not a JPEG file.

1 from PIL import Image
2

3 de f i s ImageF i l e (imageFileName) :
4 returnValue = True
5

6 t ry :
7 img = Image . open (' . / ' + imageFileName) # open the image f i l e
8 img . v e r i f y () # v e r i f y that i t i s an image
9

10 except (IOError , SyntaxError) as e :
11 returnValue = False
12

13 re turn returnValue

Using these functions, the features from the benign JPEG files and the
JPEG files containing malware are extracted as shown in Listing 3.2.

1 #Code f o r Extract ing the f e a t u r e s from the JPEG F i l e s

2

3 ben ignFi l eFeatures , numValidFiles , numInval idFi les ,

numFilesWithoutTags = extractTagsFromADirectory (" . / Data/
c lean_jpeg /* . j *")

4 pr in t ("Val id JPEG F i l e s = %d\ nInva l id Image F i l e s = %d\nJPEG
F i l e s without Tags = %d" % (numValidFiles ,

numInval idFi les , numFilesWithoutTags))

5

6 Valid JPEG F i l e s = 4582

7 I nva l i d Image F i l e s = 0

8 JPEG F i l e s without Tags = 816

9

10 malwareFi leFeatures , numValidFiles , numInval idFi les ,
numFilesWithoutTags = extractTagsFromADirectory (" . / Data/
ma l i c i o u s_ f i l e s /*")

11 pr in t ("Val id JPEG F i l e s = %d\ nInva l id Image F i l e s = %d\nJPEG
F i l e s without Tags = %d" % (numValidFiles ,

numInval idFi les , numFilesWithoutTags))

3.6 Building the Model 47

12

13 Valid JPEG F i l e s = 400
14 I nva l i d Image F i l e s = 12
15 JPEG F i l e s without Tags = 3

Listing 3.2 Feature extraction for malicious and benign files.

3.6.3 Example of EXIF tags

Listing 3.3 shows an example of EXIF tags available in JPEG files.

1 ' GPSInfo ' : 1108 ,

2 ' Reso lut ionUnit ' : 2 ,

3 ' Ex i fO f f s e t ' : 204 ,

4 'Make ' : ' Apple ' ,

5 'Model ' : ' iPhone 4S ' ,

6 ' Software ' : ' 9 . 3 . 5 ' ,

7 ' Or i entat i on ' : 1 ,

8 'DateTime ' : ' 2017 :09 : 07 16 : 03 : 42 ' ,

9 ' YCbCrPositioning ' : 1 ,

10 ' XResolution ' : 72 . 0 ,
11 ' YResolution ' : 72 .0

Listing 3.3 EXIF tags example.

3.6.4 Unique keys extraction for all files

From the last step, we have two dictionaries containing all the tags extracted
from all the clean JPEG files and from all the JPEG files containing malware.
Now, a list of all the unique tags is prepared. Another significant aspect noticed
is that there are some tags which are numeric. Since a data frame can not have
a column name containing only numbers, these tags are prefixed with a fixed
string. The list of unique tags extraction code is given in Listing 3.4.

1 f e a t u r eL i s t = s e t ()

2

3 f o r i in ben ignF i l eFeature s :

4 f o r k in i . keys () :

5 i f type (k) == i n t :

6 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (k))

7 e l s e :

8 f e a t u r eL i s t . add (k)

9

10 f o r i in malwareFi leFeatures :
11 f o r k in i . keys () :

48 Detecting Malware using Machine Learning

12 i f type (k) == i n t :

13 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (k))

14 e l s e :

15 f e a t u r eL i s t . add (k)

Listing 3.4 unique tags extraction.

Once the feature list is prepared, it can be viewed by viewing the set
featureList. The important aspect is that this feature list is required when the
features are extracted from the test dataset and/or from the dataset of the JPEG
files which need evaluating when the system is in production.

3.6.5 Preparation of data frame for creating TF-IDF

To form the TF-IDF, we need a string for each JPEG file containing the details
of the extracted EXIF tags. However, we need to only consider the features
that we have shortlisted in the Section 3.6.2. To be able to do this, we use the
following function and apply it on the benign files dataset and the malicious
files dataset.

1 #Function f i l lDataInDataFrame ()
2 import pandas as pd
3

4 de f f i l lDataInDataFrame (f ea tu r eD i c t i ona ry ,
5 # Create an Empty DataFrame ob j e c t
6 df = pd . DataFrame ()
7

8 f o r record in f e a tu r eD i c t i ona ry :
9 # Create an empty Dict ionary

10 oneRecord = {}
11

12 # Create an empty s t r i n g
13 r e co rdS t r i ng = ""
14

f i l eType) :

15 # Loop through a l l the f e a t u r e s in a record
16 f o r k in record . keys () :
17 # Extract the value f o r the key and append to the record

s t r i n g
18 # This w i l l be used f o r TFID
19 # Add a SPACE between each tag value
20 # Do not i n c lude F i l e Name
21 i f k != FILE_NAME_COLUMN_NAME:
22 i f k in f e a t u r eL i s t :
23 r e co rdS t r i ng = r e co rdS t r i ng + s t r (r ecord [k]) + " "
24

3.6 Building the Model 49

25 # Add the record s t r i n g as a s eparate column in the record
26 oneRecord [TAG_STRING_COLUMN_NAME] = r e co rdS t r i ng [: - 1]
27

28 # Add column to mark Dependent Column as F i l e Type
29 oneRecord [FILE_TYPE_COLUMN_NAME] = pd . to_numeric (f i l eType ,

downcast=' i n t e g e r ')
30

31 # Add the Record to the Data Frame
32 df = df . append (oneRecord , ignore_index=True)
33

34 re turn df

This function can be used to prepare the data frame to contain all the
features extracted from all the JPEG files in the training dataset as shown
in Listing 3.5. Each record of the data frame will be labeled as Benign, or
Malware based on the file from which the features are extracted.

1 #Code to prepare the data frame o f c l a s s i f i e d f e a t u r e s

2 import pandas as pd

3

4 benignFileDF = f i l lDataInDataFrame (ben ignFi l eFeatures ,

5 BENIGN_FILE)

6

7 malignantFileDF = f i l lDataInDataFrame (malwareFi leFeatures ,

8 FILE_WITH_MALWARE)

9

10 df = pd . concat ([benignFileDF , malignantFileDF] , ignore_index
=True)

11

12 df [FILE_TYPE_COLUMN_NAME] = pd . to_numeric (df [
FILE_TYPE_COLUMN_NAME] , downcast=' i n t e g e r ')

Listing 3.5 Data frame construction using all JPEG files.

The next step is to eliminate the CHR(0) from the records from the overall
data frame. This is because if the program encounters a CHR(0), the reading
of the record will terminate at that point.

1 # Code to remove CHR(0)

2 dfTFID = df [[TAG_STRING_COLUMN_NAME, FILE_TYPE_COLUMN_NAME

]] . copy ()

3

4 dfTFIDClean = pd . DataFrame ()

5 f o r i in dfTFID . index :

6 dfTFIDClean . l o c [i , TAG_STRING_COLUMN_NAME] = dfTFID . i l o c [i ,

0] . r ep l a c e (chr (0) , ' ')

50 Detecting Malware using Machine Learning

7 dfTFIDClean . l o c [i , FILE_TYPE_COLUMN_NAME] = dfTFID . i l o c [i ,

1]

8

9 dfTFIDClean [FILE_TYPE_COLUMN_NAME] . value_counts ()
10

11 0 4582
12 1 400
13 Name : FileType , dtype : i n t64

3.6.6 Forming the TF-IDF

TF-IDF (term frequency-inverse document frequency) is a statistical measure
that evaluates how relevant a word is to a document in a collection of
documents. It is done by multiplying two metrics – how many times a word
appears in a document and the inverse document frequency of a word across a
set of documents. In this case, each JPEG file is a document in the collection,
and each tag in each JPEG file is a term.

You notice that there are 64,774 features in our dataset after forming the
TF-IDF. The TF-IDF is stored in an array with each element of the array
corresponding to a JPEG file in the same order as we formed the data frame. It
creates the set of independent variables for our machine learning model. The
independent variables are stored in the variable X. The dependent variable
is the FILE-TYPE set as recorded while loading the JPEG files (remember
that the clean JPEG files are stored in a separate directory, and all these files
are read as a set and marked as benign. Similarly, all the JPEG files with
malware are stored in a different directory and read as a set and marked as
MALWARE).

1 #Code to form the TF- IDF

2 from sk l e a rn . f e a tu r e_ext rac t i on . t ex t import Tf i d fVe c t o r i z e r

3

4 t f i d f c o n v e r t e r = Tf i d fVe c t o r i z e r (max_features=90000 , min_df

=1, max_df=0.7)

5 X = t f i d f c o n v e r t e r . f i t_trans fo rm (dfTFIDClean . TagString) .

toar ray ()

6

7 y = dfTFID . FileType

8

9 # Save the Dec i s i on Tree Model to a f i l e

10 import p i c k l e
11

12 p i c k l e . dump(t f i d f c o nv e r t e r , open (" . / TFIDFConverter" , 'wb '))
13

3.6 Building the Model 51

14 X. shape
15

16 (4982 , 64774)
17

18 y . value_counts ()
19

20 0 4582
21 1 400
22 Name : FileType , dtype : i n t64

Note that we need to save the TF-IDF converter object to a file. This object
will be used by the web server to create the TF-IDF for the new files which
have to be evaluated by the model.

3.6.7 Handling the imbalanced datasets

We have 4582 clean JPEG files and 400 JPEG files with malware. So, our
dataset is imbalanced as we have more than 10 times the number of clean
JPEG files compared to the number of JPEG files with malware. Imbalanced
datasets will cause algorithms like Random Forest and Decision Tree (and most
other algorithms) not to function properly. We can understand this specifically
in the case of the Random Forest algorithm. We know that in the Random
Forest algorithm, the datasets are split both vertically and horizontally at
random [9]. A separate decision tree model then analyzes each split. When
we have smaller data points for one set of data, one or more of the horizontal
splits may get data from only one class. It will cause those decision trees
not to be able to see both types of data. Thus, the classifications will not be
proper.

To resolve the problem of the imbalanced dataset, we oversample the
dataset. Oversampling means that we try to increase the number of data points
in the class, which has a smaller number of data points similar to the number of
data points in the other set with more data points. For oversampling, SMOTE
(Synthetic Minority Oversampling Technique) algorithm is used.

1 #Code to over - sample us ing SMOTE

2 import imblearn as ib

3

4 oversample = ib . over_sampling .SMOTE()

5 X, y = oversample . f i t_resample (X, y)

6

7 X. shape

8

9 (9164 , 64774)

52 Detecting Malware using Machine Learning

10

11 y . value_counts ()
12

13 0 4582
14 1 4582
15 Name : FileType , dtype : i n t64

Notice that after applying SMOTE, we have 9164 data points in our dataset
and there are 4582 data points for clean JPEG files and 4582 data points for
JPEG files with malware.

3.6.8 Development of decision tree model

We implement the model using the Decision Tree algorithm as shown in
Listing 3.6.

1 #Code to form the c l a s s i f i c a t i o n model us ing Dec i s i on Tree

Algorithm

2 from sk l e a rn . model_se lect ion import cross_val_score

3 from sk l e a rn . model_se lect ion import RepeatedStrat i f i edKFold

4 from sk l e a rn . t r e e import Dec i s i o nT r e eC l a s s i f i e r

5

6 # I n s t a n t i a t e the Dec i s i on Tree Model

7 modelDT = Dec i s i o nT r e eC l a s s i f i e r ()

8

9 # Evaluate the model

10 cv = RepeatedStrat i f i edKFold (n_sp l i t s =10, n_repeats=3,

random_state=1)
11 s c o r e s = cross_val_score (modelDT , X, y , s c o r i ng=' roc_auc ' ,

cv=cv , n_jobs=-1)
12 pr in t ('Mean ROC AUC: %.5 f ' % s c o r e s . mean ())
13

14 Mean ROC AUC: 0.99347
15

16 # Create the Dec i s i on Tree Model
17 modelDT . f i t (X, y)
18

19 # Save the Dec i s i on Tree Model to a f i l e
20 import p i c k l e
21

22 p i c k l e . dump(modelDT , open (" . / DTModelMalwareDetection" , 'wb ')
)

Listing 3.6 Decision Tree model.

3.6 Building the Model 53

Notice that the model has an accuracy of 99.347% on the training data
when we generate the cross-validation score. Now our model is ready, let us
test the model on the training dataset. Given Listing 3.7 shows the code for
making prediction using the model on the training dataset. Figure 3.1 and
3.2 show the corresponding confusion matrices generated using training and
testing data, respectively.

1 #Code to make p r ed i c t i o n s on the t r a i n i n g data s e t us ing the
model c reated us ing Dec i s i on Tree Algorithm

2

3 from sk l e a rn import metr i c s

4 import matp lo t l i b . pyplot as p l t

5 import seaborn as sns

6

7 # Make the p r ed i c t i o n s

8 y_pred = modelDT . p r ed i c t (X)

9

10 # Generate the Confusion Matrix
11 cm = metr i c s . confusion_matrix (y , y_pred)
12

13 # Plot the Confusion Matrix
14 ax = p l t . subplot ()
15 sns . heatmap (cm, annot=True , fmt=' g ' , ax=ax) ;
16

17 ax . s e t_x labe l (' Pred ic ted l a b e l s ') ;

Figure 3.1 Confusion matrix of predictions on training data using model developed using
Decision Tree algorithm.

54 Detecting Malware using Machine Learning

Figure 3.2 Confusion matrix of predictions on test data using model developed using Decision
Tree algorithm.

18 ax . s e t_y labe l (' True l a b e l s ') ;
19 ax . s e t_ t i t l e (' Confusion Matrix ') ;
20 ax . xax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;
21 ax . yax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;
22

23 pr in t ("\n\nConfusion C l a s s i f i c a t i o n Report\n")
24 pr in t (metr i c s . c l a s s i f i c a t i o n_ r e p o r t (y , y_pred))
25 Confusion C l a s s i f i c a t i o n Report
26

27 p r e c i s i o n r e c a l l f1 - s c o r e support
28 0 1 .00 1 .00 1 .00 4582
29 1 1 .00 1 .00 1 .00 4582
30 accuracy 1 .00 9164
31 macroavg 1 .00 1 .00 1 .00 9164
32 weighted avg 1 .00 1 .00 1 .00 9164

Listing 3.7 Decision Tree model prediction.

Now, we test the model on the test dataset. Before we make predictions
on the test dataset, we construct the data from the test dataset suitable for the
model. Listing 3.8 shows the necessary code to prepare the test dataset before
predictions can be made for the same.

Now we have the test dataset, which can be used to make predictions using
the Decision Tree model. Listing 3.9 states the mechanism to make predictions

3.6 Building the Model 55

on the test dataset and check the results. We see that we get an accuracy of
92.805% on the test dataset.

1 #Code to prepare the t e s t data s e t be f o r e p r ed i c t i o n s can be
made on them

2 # Read the data f o r the Benign F i l e s

3

4

5

6 tes tCleanFeatures , numValidFiles , numInval idFi les ,

numFilesWithoutTags = extractTagsFromADirectory (" . / Data/
Val idat ionSet - Clean /* . j *")

7 pr in t ("\nBENIGN FILES\n - - - - - - - - - - - - \ nValid JPEG F i l e s = %d\
nInva l id Image F i l e s = %d\nJPEG F i l e s without Tags = %d"
% (numValidFiles , numInval idFi les , numFilesWithoutTags)

)
8

9 BENIGN FILES
10 - - - - - - - - - - - ­
11 Valid JPEG F i l e s = 117
12 I nva l i d Image F i l e s = 0
13 JPEG F i l e s without Tags = 175
14

15

16 # Form the data frame
17 testCleanDF = f i l lDataInDataFrame (tes tCleanFeatures ,

BENIGN_FILE)
18

19 # Read the data f o r the f i l e with Malware
20 testMalwareFeatures , numValidFiles , numInval idFi les ,

numFilesWithoutTags = extractTagsFromADirectory (" . / Data/
Val idat ionSet - Mal i c ious /*")

21 pr in t ("\nMALWARE FILES\n - - - - - - - - - - - - - \ nValid JPEG F i l e s = %d
\ nInva l id Image F i l e s = %d\nJPEG F i l e s without Tags = %d
" % (numValidFiles , numInval idFi les , numFilesWithoutTags
))

22

23 MALWARE FILES
24 - - - - - - - - - - - - ­
25 Valid JPEG F i l e s = 22
26 I nva l i d Image F i l e s = 0
27 JPEG F i l e s without Tags = 0
28

29

30 # Form the data frame

56 Detecting Malware using Machine Learning

31 testMalwareDF = f i l lDataInDataFrame (testMalwareFeatures ,
FILE_WITH_MALWARE)

32

33 # Combine the 2 data frames formed above
34 testDF = pd . concat ([testCleanDF , testMalwareDF] ,

ignore_index=True)
35 testDF [FILE_TYPE_COLUMN_NAME] = pd . to_numeric (testDF [

FILE_TYPE_COLUMN_NAME] , downcast=' i n t e g e r ')
36

37 # Create data f o r TFID
38 testTFIDDF = testDF [[TAG_STRING_COLUMN_NAME,

FILE_TYPE_COLUMN_NAME]] . copy ()
39

40 # Clean the data
41 testTFIDClean = pd . DataFrame ()
42 f o r i in testTFIDDF . index :
43 testTFIDClean . l o c [i , TAG_STRING_COLUMN_NAME] = testTFIDDF .

i l o c [i , 0] . r ep l a c e (chr (0) , ' ')
44 testTFIDClean . l o c [i , FILE_TYPE_COLUMN_NAME] = testTFIDDF .

i l o c [i , 1]
45

46 # Drop NULL Values
47 testTFIDClean = testTFIDClean . dropna ()
48 testTFIDClean [FILE_TYPE_COLUMN_NAME]= pd . to_numeric (

testTFIDClean [FILE_TYPE_COLUMN_NAME] , downcast=
49 ' i n t e g e r ')
50 testTFIDClean [FILE_TYPE_COLUMN_NAME] . value_counts ()
51

52 0 117
53 1 22
54 Name : FileType , dtype : i n t64
55

56

57 # Create the TFID
58 X_test = t f i d f c o n v e r t e r . t rans form (testTFIDClean . TagString) .

toar ray ()
59 y_test = testTFIDClean . FileType

Listing 3.8 Prepare test data.

1 #Code to make p r ed i c t i o n s on the t e s t data and eva luate the
r e s u l t s

2

3 # Make the p r ed i c t i o n s

4 y_pred_test = modelDT . p r ed i c t (X_test)

5

3.6 Building the Model 57

6 # Generate the Confusion Matrix

7 cm = metr i c s . confusion_matrix (y_test , y_pred_test)

8

9 # Plot the Confusion Matrix

10 ax = p l t . subplot ()
11 sns . heatmap (cm, annot=True , fmt=' g ' , ax=ax) ;
12

13 ax . s e t_x labe l (' Pred ic ted l a b e l s ') ;
14 ax . s e t_y labe l (' True l a b e l s ') ;
15 ax . s e t_ t i t l e (' Confusion Matrix ') ;
16 ax . xax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;
17 ax . yax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;

Listing 3.9 Prediction on test data.

3.6.9 Development of random forest model

Training the model using Random Forest algorithm is like creating the model
using the Decision Tree algorithm. We use the data that we already prepared
in the Section 3.6.6. Listing 3.10 shows the code for the classification model
generation using Random Forest classifier.

1 #Code to form the c l a s s i f i c a t i o n model us ing Random Forest

Algorithm

2 from sk l e a rn . model_se lect ion import cross_val_score

3 from sk l e a rn . model_se lect ion import RepeatedStrat i f i edKFold

4 from sk l e a rn . ensemble import RandomForestClass i f i e r

5

6 # I n s t a n t i a t e the Dec i s i on Tree Model

7 modelRF = RandomForestClass i f i e r ()

8

9 # Evaluate the model

10 cv = RepeatedStrat i f i edKFold (n_sp l i t s =10, n_repeats=3,

random_state=1)
11 s c o r e s = cross_val_score (modelRF , X, y , s c o r i ng=' roc_auc ' ,

cv=cv , n_jobs=-1)
12 pr in t ('Mean ROC AUC: %.5 f ' % s c o r e s . mean ())
13

14 Mean ROC AUC: 0.99995
15

16 # Create the Random Forest Model
17 modelRF . f i t (X, y)
18

19 # Save the Random Forest Model to a f i l e
20 import p i c k l e

58 Detecting Malware using Machine Learning

21

22 p i c k l e . dump(modelRF , open (" . / RFModelMalwareDetection" , 'wb ')
)

Listing 3.10 Classification using Random Forest model.

Notice that the model has an accuracy of 99.995% on the training data
when we generate the cross-validation score. We now test this model on the
training dataset as shown in Listing 3.11.

1 #Code to make p r ed i c t i o n s on the t r a i n i n g data s e t us ing the
model c rea ted us ing the Random Forest

2 from sk l e a rn import metr i c s

3 import matp lo t l i b . pyplot as p l t

4 import seaborn as sns

5

6 # Make the p r ed i c t i o n s

7 y_pred = modelRF . p r ed i c t (X)

8

9 # Generate the Confusion Matrix

10 cm = metr i c s . confusion_matrix (y , y_pred)
11

12 # Plot the Confusion Matrix
13 ax = p l t . subplot ()

Algorithm

14 sns . heatmap (cm, annot=True , fmt=' g ' , ax=ax) ;

15

16 ax . s e t_x labe l (' Pred ic ted l a b e l s ') ;

17 ax . s e t_y labe l (' True l a b e l s ') ;

18 ax . s e t_ t i t l e (' Confusion Matrix ') ;

19 ax . xax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;

20 ax . yax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;

21

22 pr in t ("\n\nConfusion C l a s s i f i c a t i o n Report\n")

23 pr in t (metr i c s . c l a s s i f i c a t i o n_ r e p o r t (y , y_pred))

24

25 Confusion C l a s s i f i c a t i o n Report
26

27 p r e c i s i o n r e c a l l f1 - s c o r e support
28 0 1 .00 1 .00 1 .00 4582
29 1 1 .00 1 .00 1 .00 4582
30 accuracy 1 .00 9164
31 macroavg 1 .00 1 .00 1 .00 9164
32 weighted avg 1 .00 1 .00 1 .00 9164

Listing 3.11 Random Forest model prediction using training data.

We can use the same test data we prepared in Section 3.6.7 to test our
Random Forest model. The code shown in Listing 3.12 states the mechanism

3.6 Building the Model 59

Figure 3.3 Confusion Matrix of Predictions on Training Data using model developed using
Random Forest algorithm

to make predictions on the test dataset using the model created using Random
Forest algorithm and check the results. We see that we get an accuracy
of 92.805% on the test dataset. Figure 3.3 and3.4 show the corresponding
confusion matrices generated using training and testing data.

1 #Code to make p r ed i c t i o n s on the t e s t data and eva luate the
r e s u l t s

2 # Make the p r ed i c t i o n s

3 y_pred_test = modelRF . pr ed i c t (X_test)

4

5 # Generate the Confusion Matrix

6 cm = metr i c s . confusion_matrix (y_test , y_pred_test)

7

8 # Plot the Confusion Matrix

9 ax = p l t . subplot ()

10 sns . heatmap (cm, annot=True , fmt=' g ' , ax=ax) ;
11

12 ax . s e t_x labe l (' Pred ic ted l a b e l s ') ;
13 ax . s e t_y labe l (' True l a b e l s ') ;
14 ax . s e t_ t i t l e (' Confusion Matrix ') ;

60 Detecting Malware using Machine Learning

15 ax . xax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;
16 ax . yax i s . s e t_ t i c k l a b e l s ([' Benign ' , 'Malware ']) ;

Listing 3.12 Random Forest model prediction using testing data.

Figure 3.4 Confusion matrix of predictions on test data using model developed using Random
Forest algorithm.

3.7 Conclusions on the Model

We see that both the models developed demonstrate a similar accuracy in
training and testing. The significant aspect of the model is that the number of
false positive are either missing or very minimal. So, the model takes away
maximum risk from the users of the model. However, we notice that we get
more than 99% accuracy on the training dataset. The accuracy drops of about
92% on the test dataset. So, we can conclude that the model suffers from
overfitting. The overfitting can be attributed to the complexity of the model.
So, the model has a high variance.

We can solve the overfitting problem by conducting a principal component
analysis (PCA) on the extracted features before forming TF-IDF. This will
help in simplifying the model and thus the variance will reduce.

3.8 Creating the Web Service 61

3.8 Creating the Web Service

Now we have our model, we can develop the web service through which the
model can be accessed by any client. Creating a web service will allow any
kind of client application to be able to use the model. Listing 3.13 shows the
code for the web service. The web service takes a file as an input. The web
service evaluates whether the file is a valid JPEG file. For every valid JPEG
file, the web service reports whether the file contains virus or is a clean JPEG
file.

1 #Code f o r the Web Se rv i c e

2 #!/ usr /bin /env python

3 # -* - coding : UTF-8 -* ­
4

5 import pandas as pd

6 import os

7 import cherrypy

8 import p i c k l e

9 from PIL import Image

10 from PIL . ExifTags import TAGS
11 import glob
12

13 c on f i g = {
14 ' g l oba l ' : {
15 ' s e r v e r . socket_host ' : ' 1 2 7 . 0 . 0 . 1 ' ,
16 ' s e r v e r . socket_port ' : 8080 ,
17 ' s e r v e r . thread_pool ' : 8 ,
18 ' s e r v e r . max_request_body_size ' : 0 ,
19 ' s e r v e r . socket_timeout ' : 60
20 }
21 }
22

23 c l a s s App :
24

25 de f __init__(s e l f) :
26 s e l f . RFmodel = p i c k l e . load (open
27 (' RFModelMalwareDetection ' , ' rb '))
28 s e l f . DTmodel = p i c k l e . load (open
29 (' DTModelMalwareDetection ' , ' rb '))
30 s e l f . TFTDFconverter = p i c k l e . load (open
31 (' TFIDFConverter ' , ' rb '))
32 s e l f . f e a t u r eL i s t = p i c k l e . load (open (' FeatureL i s t ' ,

' rb '))
33 s e l f .FILE_NAME_COLUMN_NAME = ' FileName '
34 s e l f .FILE_TYPE_COLUMN_NAME = ' FileType '

62 Detecting Malware using Machine Learning

35 s e l f .TAG_STRING_COLUMN_NAME = ' TagString '
36 s e l f .NUMERIC_COLUMN_IDENTIFIER = 'AAA'
37

38

39 de f i s ImageF i l e (s e l f , imageFileName) :
40 returnValue = True
41

42 t ry :
43 img = Image . open (imageFileName) # open the image

f i l e
44 img . v e r i f y () # v e r i f y that i t i s an image
45 except (IOError , SyntaxError) as e :
46 returnValue = False
47

48 re turn returnValue
49

50 de f extractTagsFromAFile (s e l f , i npu tF i l e) :
51 t ag sAva i l ab l e = True
52

53 # Create an Empty L i s t to hold a l l the f e a t u r e s
54 returnValue = []
55

56 # Create an empty Dict ionary
57 oneF i l eFeature s = {}
58

59 t ry :
60 # Read the f i l e and ex t r a c t the f e a t u r e s
61 f i l e F e a t u r e s = s e l f .

JPEGFileFeatureExtractorToDictionary (i npu tF i l e)
62

63 # I f the F i l e had some f e a tu r e s , then c r ea t e an
entry f o r the f i l e

64 i f l en (f i l e F e a t u r e s . keys ()) > 0 :
65 # Add the F i l e Features to the main

Dict ionary
66 oneF i l eFeature s . update (f i l e F e a t u r e s)
67

68 # Add the entry to the re turn value
69 returnValue . append (oneF i l eFeature s)
70 e l s e :
71 t ag sAva i l ab l e = False
72

73 except :
74 t ag sAva i l ab l e = False
75

76 re turn (returnValue , t ag sAva i l ab l e)

3.8 Creating the Web Service 63

77

78 de f JPEGFileFeatureExtractorToDictionary (s e l f , imageFi l e
) :

79 #Declare an empty Dict ionary

80 returnValue = {}

81

82 t ry :

83 # read the image data us ing PIL

84 image = Image . open (imageFi le)

85

86 # ex t r a c t EXIF data

87 ex i f d a t a = image . g e t e x i f ()

88

89 # i t e r a t i n g over a l l EXIF data f i e l d s

90 f o r tag_id in ex i f d a t a :

91 # get the tag name

92 tag = TAGS. get (tag_id , tag_id)

93 data = ex i f d a t a . get (tag_id)

94 # decode bytes

95 i f i s i n s t a n c e (data , bytes) :

96 data = data . decode (' i so8859 -1 ')

97

98 #pr in t (tag)

99 returnValue [tag] = data

100 except :
101 pass
102

103 re turn returnValue
104

105 de f f i l lDataInDataFrame (s e l f , f e a tu r eD i c t i ona ry) :
106 # Create an Empty DataFrame ob j e c t
107 df = pd . DataFrame ()
108

109 f o r record in f e a tu r eD i c t i ona ry :
110 # Create an empty Dict ionary
111 oneRecord = {}
112

113 # Create an empty s t r i n g
114 r e co rdS t r i ng = ""
115

116 # I n i t i a l i s e a l l the columns
117 f o r colName in s e l f . f e a t u r eL i s t :
118 oneRecord [colName] = pd . to_numeric (0 ,

downcast=' i n t e g e r ')
119

120 # Loop through a l l the f e a t u r e s in a record

64 Detecting Malware using Machine Learning

121 f o r k in record . keys () :
122 # Extract the value f o r the key and append

to the record s t r i n g
123 # This w i l l be used f o r TFID
124 # Add a SPACE between each tag value
125 # Do not i n c lude F i l e Name
126 i f k != s e l f .FILE_NAME_COLUMN_NAME:
127 i f k in s e l f . f e a t u r eL i s t :
128 r e co rdS t r i ng = r e co rdS t r i ng + s t r (r ecord

[k]) + " "
129

130 # Add the record s t r i n g as a s epara t e column in
the record

131 oneRecord [s e l f .TAG_STRING_COLUMN_NAME] =
r e co rdS t r i ng [: - 1]

132

133 # Add column to mark Dependent Column as Benign
F i l e

134 oneRecord [s e l f .FILE_TYPE_COLUMN_NAME] = pd .
to_numeric (0 , downcast=' i n t e g e r ')

135

136 # Add the Record to the Data Frame
137 df = df . append (oneRecord , ignore_index=True)
138

139 re turn df
140

141 de f prepareF i l eForAna ly s i s (s e l f , imageFileName) :
142 returnValue = 0
143 X = None
144

145 t e s tFeature s , t ag sAva i l ab l e = s e l f .
extractTagsFromAFile (imageFileName)

146 i f t ag sAva i l ab l e == False :
147 returnValue = -1
148 e l s e :
149 testDF = s e l f . f i l lDataInDataFrame (t e s tFea tu r e s)
150 testDF [s e l f .FILE_TYPE_COLUMN_NAME] = pd .

to_numeric (testDF [s e l f .FILE_TYPE_COLUMN_NAME] , downcast=
' i n t e g e r ')

151 testTFIDDF = testDF [[s e l f .TAG_STRING_COLUMN_NAME
, s e l f .FILE_TYPE_COLUMN_NAME]] . copy ()

152

153 testTFIDClean = pd . DataFrame ()
154 f o r i in testTFIDDF . index :

3.8 Creating the Web Service 65

155 testTFIDClean . l o c [i , s e l f .
TAG_STRING_COLUMN_NAME] = testTFIDDF . i l o c [i , 0] . r ep l a c e (
chr (0) , ' ')

156 testTFIDClean . l o c [i , s e l f .
FILE_TYPE_COLUMN_NAME] = testTFIDDF . i l o c [i , 1]

157

158 testTFIDClean = testTFIDClean . dropna ()
159 testTFIDClean [s e l f .FILE_TYPE_COLUMN_NAME]= pd .

to_numeric (testTFIDClean [s e l f .FILE_TYPE_COLUMN_NAME] ,
downcast=' i n t e g e r ')

160

161 X = s e l f . TFTDFconverter . trans form (testTFIDClean .
TagString) . toar ray ()

162

163 re turn X, returnValue
164

165 @cherrypy . expose
166 de f upload (s e l f , u f i l e) :
167 upload_path = os . path . normpath (' . / data/ ')
168 up load_f i l e = os . path . j o i n (upload_path , u f i l e .

f i l ename)
169 s i z e = 0
170

171 returnValue = 0
172

173 with open (upload_f i l e , 'wb ') as out :
174 whi le True :
175 data = u f i l e . f i l e . read (8192)
176 i f not data :
177 break
178 out . wr i t e (data)
179 s i z e += l en (data)
180

181 # Check whether F i l e i s an Image F i l e
182 i f (s e l f . i s ImageF i l e (up l oad_f i l e) == False) :
183 returnValue = -1 # Not a JPEG F i l e
184 e l s e :
185 X, f i l e S t a t u s = s e l f . p r epareF i l eForAna ly s i s (

up load_f i l e)
186 i f f i l e S t a t u s == - 1 :
187 returnValue = -2 # JPEG F i l e does not have

any tags
188 e l s e :
189 returnValue = s e l f . DTmodel . p r ed i c t (X) [0]
190

191 out = ' ' '

66 Detecting Malware using Machine Learning

192 returnValue : {}

193 l ength : {}

194 f i l ename : {}

195 mime - type : {}

196 ' ' ' . format (returnValue , s i z e , u f i l e .

f i l ename , u f i l e . content_type , data)
197

198 re turn out
199

200

201 i f __name__ == '__main__ ' :

202 cherrypy . qu i c k s t a r t (App() , ' / ' , c on f i g)

Listing 3.13 Webservice code.

3.9 Creating a Simple Client Application

Listing 3.14 shows the code for a simple client application which can test one
JPEG file at a time using the web service created in Section 3.8.

1 #Code f o r a s imple Cl i ent Appl i ca t ion

2 #!/ usr /bin /env python

3 # -* - coding : UTF-8 -* ­
4

5 import r eque s t s

6 import glob

7

8 u r l = ' http : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 / upload '

9

10 f o r f i l e in glob . g lob (' . / Data/ Val idat ionSet - Clean /* . j * ') :

11 f i l e s = { ' u f i l e ' : open (f i l e , ' rb ') }

12 r = r eque s t s . post (ur l , f i l e s=f i l e s , v e r i f y = False)

13 pr in t (r)

14 pr in t (r . t ex t)

15

16 f o r f i l e in glob . g lob (' . / Data/ Val idat ionSet - Mal i c ious /* ') :

17 f i l e s = { ' u f i l e ' : open (f i l e , ' rb ') }

18 r = r eque s t s . post (ur l , f i l e s=f i l e s)

19 pr in t (r)

20 pr in t (r . t ex t)

21 }

Listing 3.14 Simple client application code.

http://www.127.0.0.1:8080

3.11 Detecting Malware in ELF Files 67

3.10 Sample of a Sophisticated Client Application

Figure 3.5 shows the user interface of a sophisticated client application which
calls the web service mentioned in Section 3.19. This client application resides
on a Windows machine. The application watches a particular directory on the
machine. Whenever a new file is created or modified on the directory being
watched, this client application picks up the file and sends to the web service
for evaluation. If the web service reports that input file contains malware, the
client application moves the file to a directory set for quarantine.

3.11 Detecting Malware in ELF Files

Malware can be defined as any malicious program that intends to cause damage
to a computer, server, client, or computer network. Malware [81] can be
categorized and classified into different types, depending on its functionality.
The five malware categories classified by the proposed model are listed below:

• Backdoor: Malicious software capable of opening unauthorized access
to remote systems.

• Botnet: A botnet is a network of compromised systems that allow a
hacker to control them remotely and execute commands.

• DDOS: A DDOS malware can launch distributed denial-of-service
attacks by bombarding victim machine(s) with unnecessary packets and
thus rendering the machines unresponsive to legitimate requests.

Figure 3.5 Client application user interface.

68 Detecting Malware using Machine Learning

• Trojan: A trojan is any kind of malware which disguises itself as
something legitimate and misleads users of its true intent.

• Virus: Malicious code capable of replicating itself by inserting its own
code into other programs is termed as a virus.

3.12 About ELF Files

First, we need to discuss the structure of the ELF files. This is because the
project starts with extracting information from the ELF files. Without this
information, it will be impossible to build any kind of model for classifying
the files as good or malware [80]. The information in the ELF files can be
broadly classified into three types of data: data in the File Header, data in the
Program Header, and data in the Sections. The ELF files have one File Header,
one Program Header, and many Sections of information. Figure 3.6 shows the
structure of the ELF files.

3.12.1 ELF file header

Every ELF file has the first 2 bytes as 0x7F. By checking these 2 bytes, we can
determine whether a file is a valid ELF file or not. The ELF file Header defines
whether to use 32- or 64-bit addresses. The header contains three fields that are
affected by this setting and offset other fields that follow them. The ELF header
is 52 or 64 bytes long for 32-bit and 64-bit binaries respectively. The ELF file

Figure 3.6 Structure of the ELF files.

3.12 About ELF Files 69

Header contains information on the target operating system. This information
is stored in 1-byte. The target operating system can be any flavour of Unix
like Solaris, HP-UX, NetBSD, Linux, etc. There is also a byte in the ELF
file Header which states the version of the target operating system.There is a
2-bytes information on the type of ELF file in the ELF file Header. The type
of ELF file can be an executable,dynamic linked library, Core dump, etc.There
is a 2-byte information on the type of machine for which the ELF file has been
built. The information can be SPARC, Intel 80860, NEX, Power PC, Digital
Alpha, Hitachi, etc.After all this information, there is 4-byte pointer to where
the process should start execution. This is a very vulnerable point in the ELF
file. The malware designers try to alter this pointer to point the program to the
memory location where the malware developers induct their code.Then, there
is a 4-byte pointer to the Program Header. This is also a vulnerable point in
the ELF files for the same reason discussed above.Following this, there is a
4-byte pointer to the Section Header table. This is also a vulnerable point in
the ELF files for the same reason discussed above.Following this is a 4-byte
pointer to the Section Header table. Then, there is a 2-byte pointer to the size
of the ELF file Header. This value needs to be 64 bytes for 64-bit format and
52 bytes for the 32-bit format.There is some more information like the number
of entries in the Program Header, the size of the Section Header, etc.

3.12.2 Program header

The program header table tells the system how to create a process image.
It is found at file offset e_phoff, and consists of e_phnum entries, each
with size e_phentsize. The layout is slightly different in 32-bit ELF vs
64-bit ELF, because the p_flags are in a different structure location for
alignment reasons.The first information in the Program Header is the type
of the segment-whether the segment is a loadable segment, or a dynamically
linkable information, or an interpretable information, or auxiliary information,
etc.The rest of the information in the Program Header are flags of 1 byte or 2
bytes. I can be assumed that tampering this information will not be of interest
for the malware developers.

3.12.3 Section information

There are many sections in an ELF file. Each section is for a specific type
of information. The types of sections can be for a Program data, Symbol
table, String table, Symbol Hash table, Dynamic Linking Information,

70 Detecting Malware using Machine Learning

Dynamic Linker Symbol table, Array of Constructors, Array of Destruc­
tors, etc. For each section, there is information regarding whether the section
is writable, or executable, might be merged, contained null-terminated strings,
etc. Then, there is information regarding the various addresses for the different
information. So, this is a section where various information can be altered by
makers of malware.

3.12.4 ELF dataset

The most critical component of this project is the data on which the model is
trained. The difficulty is to obtain appropriate data. The malicious ELF files
are obtained from McAfee Research Unit in India through connections of the
author with the director of the center. The good ELF files are collected from
various systems. The final dataset contained files as provided in the Table 3.1.

So, the dataset contained 2315 benign ELF files and 3428 malicious ELF
files. As we can see that there are reasonable number of files in each category.
Also, the dataset is reasonably balanced. So, no special treatment is done
for balancing the data. Once the data is obtained, it is required to create the
training set and testing set. It is planned that 90% of the data would be used as
the training set and 10% of the data would be used as the test set.

Table 3.1 Final dataset.

Benign 2,315

Malicious

Backdoor 744
Botnet 782
DDOS 799
Trojan 508
Virus 595

TOTAL 3,428

Table 3.2 Distribution of files.

File type Training set Test set
Benign 2,078 237

Malicious Backdoor 676 68
Botnet 713 69
DDOS 725 74
Trojan 461 47
Virus 539 56

TOTAL 3,114 314

3.13 Feature Engineering andMachine Learning Classification 71

3.12.5 Distribution of dataset

The distribution of dataset used for training and testing the model is given in
Table 3.2.

Listing 3.15 shows the function which is used to check whether the
available files are valid ELF files.

1 #Python Function to t e s t whether a F i l e i s a va l i d ELF F i l e

2 from e l f t o o l s . e l f . e l f f i l e import ELFFile

3 de f i sELFFi le (f i l e) :

4 ' ' ' Function Name : i sELFFi le

5 Purpose : To check whether a f i l e i s an ELF F i l e

6 Input Parameters :

7 1 . f i l e : F i l e to be checked

8 Output Parameters :

9 1 . Boolean : True i f F i l e i s an ELF Fi l e , False

otherwi se
10 ' ' '
11 with open (f i l e , ' rb ') as e l f f i l e :
12 returnValue = True
13

14 t ry :
15 ELFFile (e l f f i l e) # The con s t ruc to r o f the

ELFFile c l a s s checks whether the magic number f o r an ELF
F i l e e x i s t s in the provided f i l e

16

17 except :
18 returnValue = False
19

20 f i n a l l y :
21 e l f f i l e . c l o s e ()
22

23 re turn returnValue

Listing 3.15 ELF check functions.

The final distribution of valid ELF files is as given in Table 3.3.

3.13 Feature Engineering andMachine Learning

Classification

It is first required to extract features of the ELF files. All the information in
the File Header, Program Header, and Section Information are not numeric
data. There are many textual data as well. As almost all the textual data is
available in binary form, it is not possible to make any sort of transformation

72 Detecting Malware using Machine Learning

Table 3.3 Final distribution of valid ELF files.

File type Training set Test set
Benign 2,038 222

Malicious

Backdoor 589 62
Botnet 616 61
DDOS 642 71
Trojan 369 40
Virus 452 48

TOTAL 2,668 282

like one-hot encoding, label encoding, etc., on this textual data. So, decision is
to only use the numeric data extracted for the purpose of building the model.

As can be seen from the code provided in the subsequent section, more
than 2500 features are extracted from the available ELF files (i.e., for each
file, there are more than 2500 distinct pieces of information). So, every ELF
file in the training set and the test set and the subsequent files to be tested
could be evaluated on more than 2500 features available in the file (It needs
noting that it is quite possible that all the files to be tested (whether in the test
set or otherwise) may not contain all the features used in the training of the
model). However, before a file is evaluated using the model, it is necessary to
transform the file into a format so that all the features of the file are available
as a vector.

The model needed is a Multi-Class Classification model. To build the
model, many algorithms are tried including Multi-Level Logistic Regression,
Support Vector Machine, Decision Trees. Finally, Random Forest algorithm
is selected as the model built using Random Forest Algorithm produced the
maximum accuracy.

To test the efficacy of the model, the confusion matrix is used. Confusion
matrix gives a precise idea of the percentage of False-positives. We know that
True-positives and false-Positives are the desirable results. The True-negatives
are not desirable. However, they are less risky as if a file not containing a
malware is classified as a file containing a malware, the system does not face
any harm. The main concerns are the False-positives where a file containing a
malware is classified as a benign file.

The model built using the Random Forest algorithm produces the least
number of False-positives on both the training set and test set. Further, it is
seen that the accuracy achieved on the training set is 99%. While the accuracy
achieved on the test set is 87%. So, it concludes that the model has a certain
degree of overfitting. However, it can be reasonably argued that the model does

3.14 Building the Model 73

not suffer from a bias.To overcome the overfitting, the number of features used
to build the model could be reduced using techniques like principal component
analysis, etc. This has been kept as a future work on this project.

3.14 Building the Model

Now we discuss the code used to build the model.

3.14.1 Constants used

The following constants are used in the code.

1 #Constants used in the code

2 # Constants

3 EMPTY_SECTION_NAME_SUBSTITUTE = "S"

4 FILE_NAME_COLUMN_NAME = " FileName "

5 FILE_TYPE_COLUMN_NAME = ' FileType '

6 NUMERIC_COLUMN_IDENTIFIER = "N"

7 MALWARE_SECTION_NAME_PREFIX = "M"

8

9 BENIGN_FILE = 0

10 BACKDOOR_FILE = 1
11 BOTNET_FILE = 2
12 DDOS_FILE = 3
13 TROJAN_FILE = 4
14 VIRUS_FILE = 5

3.14.2 Functions used to extract information from ELF files

The following five functions are used to extract the information from the ELF
files.

extractInformationFromADirectory: This function takes a single file
name or a set of file names and returns all the information extracted from all
the ELF files as a list. The following listing shows the corresponding code.

1 #Function extractInformationFromADirectory ()

2

3 import glob

4

5 de f extractInformationFromADirectory (inputDi rec to ry) :

6 # Declare Counters

7 numberOfValidFiles = 0

8 numberOfInva l idFi les = 0

74 Detecting Malware using Machine Learning

9 numberOfFilesWithNoFileHeader = 0
10 numberOfFilesWithNoProgramHeader = 0
11 numberOfFilesWithNoSections = 0
12

13 # Create an Empty L i s t to hold a l l the f e a t u r e s o f a l l
the f i l e s

14 returnValue = []
15

16 # Loop through a l l the f i l e s in the Input Direc tory
17 f o r f i l e in glob . glob (i nputDi rec to ry) :
18 # Create an empty Dict ionary
19 oneF i l eFeature s = {}
20

21 t ry :
22 # Read the f i l e and ex t r a c t the f e a t u r e s
23 f i l eF e a t u r e s , va l idFlag , hasFi leHeader ,

hasProgramHeader , hasSec t i ons = Ext r a c tF i l eDe t a i l s (f i l e)
24 i f (va l idF lag and l en (f i l e F e a t u r e s . keys ()) > 0) :
25 numberOfValidFiles = numberOfValidFiles + 1
26

27 # Add the F i l e Features to the main
Dict ionary

28 oneF i l eFeature s . update (f i l e F e a t u r e s)
29

30 # Add the entry to the re turn value
31 returnValue . append (oneF i l eFeature s)
32 e l s e :
33 i f hasFi leHeader == False :
34 numberOfFilesWithNoFileHeader =

numberOfFilesWithNoFileHeader + 1
35 e l s e :
36 i f hasProgramHeader == False :
37 numberOfFilesWithNoProgramHeader =

numberOfFilesWithNoProgramHeader + 1
38 e l s e :
39 i f hasSec t i ons == False :
40 numberOfFilesWithNoSections =

numberOfFilesWithNoSections + 1
41 e l s e :
42 numberOfInva l idFi les =

numberOfInva l idFi les + 1
43

44 except :
45 # Check i f the f i l e i s a va l i d ELF F i l e
46 i f i sELFFi le (f i l e) :
47 pass

3.14 Building the Model 75

48	 e l s e :
49 numberOfInva l idFi les = numberOfInva l idFi les

+ 1
50

51 re turn (returnValue , numberOfValidFiles ,
numberOfInval idFi les , numberOfFilesWithNoFileHeader ,
numberOfFilesWithNoProgramHeader ,
numberOfFilesWithNoSections)

ExtractFileDetails: This function takes a single ELF file and returns
all the information of the ELF file. The following Listing 3.16 shows the
corresponding function.

1 #Function Ext r a c tF i l eDe t a i l s ()

2 de f Ext r a c tF i l eDe t a i l s (f i l e) :

3 ' ' ' Function Name : Ext r a c tF i l eDe t a i l s

4 Purpose : To ex t r a c t the d e t a i l s o f a l l the

i n fo rmat ion o f an ELF F i l e .

5 The i n fo rmat ion in a ELF F i l e i s s to r ed as

F i l e Header , Program Header and Sect i on In format ion .

6 There i s one s e t o f i n fo rmat ion f o r F i l e

Header and Program Header .

7 However , the re can be many s e c t i o n s in an

ELF F i l e .

8 Input Parameters :

9	 1 . f i l e : A F i l e from which the i n fo rmat ion has

to be ex t rac t ed .
10 The f i l e may be a va l i d ELF F i l e or not

a va l i d ELF F i l e .
11 Output Parameters :
12	 1 . A Dict ionary conta in ing the a t t r i b u t e s as the

key and t h e i r va lue s as the value .
13 In case , no i n fo rmat ion can be ext rac ted from

the ELF F i l e or the f i l e i s not a va l i d ELF Fi l e , an
empty d i c t i ona ry i s returned .

14	 2 . Boolean value i n d i c a t i o n whether the prov ide s
f i l e was a va l i d ELF F i l e or not .

15 True i s the prov ide was an ELF Fi l e , False
otherwi se .

16 ' ' '
17 returnValue = {}
18 val idELFFi le = True
19 hasFi leHeader = True
20 hasProgramHeader = True
21 hasSec t i ons = True
22

76 Detecting Malware using Machine Learning

23 t ry :
24 with open (f i l e , ' rb ') as e l f f i l e :
25 t ry :
26 eF i l e = ELFFile (e l f f i l e)
27

28 # Extract the F i l e Header In format ion
29 f i l eHead e r = ExtractFi l eHeader (eF i l e)
30 i f (l en (f i l eHead e r) > 0) :
31 returnValue . update (f i l eHead e r) # Add the

a t t r i b u t e s to d i c t i ona ry
32 e l s e :
33 hasFi leHeader = False
34 r a i s e Exception ()
35

36 # Extract the Program Header In format ion
37 segmentDeta i l s = ExtractSegmentDeta i l s (eF i l e

)
38 i f (l en (segmentDeta i l s) > 0) :
39 returnValue . update (segmentDeta i l s) # Add

the a t t r i b u t e s to d i c t i ona ry
40 e l s e :
41 hasProgramHeader = False
42 r a i s e Exception ()
43

44 s e c t i o nDe t a i l s = Ext ra c tSe c t i onDe ta i l s (eF i l e
)

45 i f (l en (s e c t i o nDe t a i l s) > 0) :
46 returnValue . update (s e c t i o nDe t a i l s) # Add

the a t t r i b u t e s to d i c t i ona ry
47 e l s e :
48 hasSec t i ons = False
49 r a i s e Exception ()
50

51 except :
52 val idELFFi le = False
53

54 f i n a l l y :
55 e l f f i l e . c l o s e ()
56 except :
57 pass
58

59 re turn (returnValue , val idELFFile , hasFi leHeader ,
hasProgramHeader , hasSec t i ons)

Listing 3.16 Extract File details.

3.14 Building the Model 77

ExtractFileHeader: This function takes a single ELF file and returns all
the information from the File Header of the ELF file. The following Listing
3.17 shows the corresponding function.

1 #Function ExtractFi l eHeader ()

2 def ExtractFi l eHeader (e l f f i l e) :

3 ' ' ' Function Name : ExtractFi l eHeader

4 Purpose : To ex t r a c t the F i l e Header o f the ELF F i l e .

5 Input Parameters :

6	 1 . e l f f i l e : A va l i d ELF F i l e from which the

Segment i n fo rmat ion has to be ex t rac t ed

7 Output Parameters :

8	 1 . A Dict ionary conta in ing the a t t r i b u t e s as the

key and t h e i r va lue s as the value
9 In case , the ELF F i l e has no F i l e Header , an

empty d i c t i ona ry i s returned (This i s not po s s i b l e f o r

va l i d ELF F i l e s)

10 ' ' '
11 returnValue = {} # Dict ionary to hold the unique

a t t r i b u t e s the header
12

13	 # The header i n fo rmat ion can be obtained as a d i c t i ona ry
.

14	 # However , the re are some d i c t i o n a r i e s i n s i d e t h i s
d i c t i ona ry .

15	 # So , we c r e a t e a f l a t s t r u c tu r e tak ing out a l l the
unique a t t r i b u t e s and form a d i c t i ona ry .

16	 f o r key , value in e l f f i l e . header . i tems () :
17 # I f the value f o r the key i s a d i c t i onary , then

loop through a l l the a t t r i b u t e s o f t h i s d i c t i ona ry to
c o l l e c t the f e a t u r e s .

18 # The approach i s s i m p l i s t i c as I do not go f o r a
r e c u r s s i v e f unc t i on as i t i s known that the re can be
only one ad i t i o n a l l e v e l o f d i c t i ona ry .

19 # TODO: There i s some hardcoding here . Will be
removed l a t e r .

20 i f key == " e_ident " :
21 f o r ins ideKey , i n s ideVa lue in value . i tems () :
22 i f ins ideKey == "EI_MAG" :
23 pass
24 e l s e :
25 returnValue [ins ideKey] = i n s ideVa lue
26 e l s e :
27 returnValue [key] = value
28

78 Detecting Malware using Machine Learning

29	 re turn returnValue

Listing 3.17 Extract File Header.

ExtractSegmentDetails: This function takes a single ELF file and returns
all the information from the Segment Header of the ELF file. The following
Listing 3.18 shows the corresponding function.

1 #Function ExtractSegmentDeta i l s ()

2 de f ExtractSegmentDeta i l s (e l f f i l e) :

3 ' ' ' Function Name : ExtractSegmentDeta i l s

4 Purpose : To ex t r a c t the d e t a i l s o f a l l the segments

in the ELF F i l e .

5 The segment i n fo rmat ion i s the Program

Header o f a ELF F i l e .

6 Input Parameters :

7	 1 . e l f f i l e : A va l i d ELF F i l e from which the

Segment i n fo rmat ion has to be ex t rac t ed

8 Output Parameters :

9	 1 . A Dict ionary conta in ing the a t t r i b u t e s as the

key and t h e i r va lue s as the value
10 In case , the ELF F i l e has no segments , an

empty d i c t i ona ry i s returned (This i s not po s s i b l e f o r
va l i d ELF F i l e s)

11 ' ' '
12 returnValue = {} # Dict ionary to hold the unique

a t t r i b u t e s o f a l l the segments
13

14	 # Check i f any segment i n fo rmat ion e x i s t s in the f i l e
15	 # I f i t does , c o l l e c t a l l the i n fo rmat ion o f a l l the

a t t r i b u t e s in a l l the segments
16	 i f (e l f f i l e . num_segments () > 0) :
17 p r e f i xD i c t = {} # Dict ionary to hold the unique

segment a t t r i b u t e s f o r a l l the segment names
18

19 # Each ELF F i l e may have one or more number o f
segments

20 # Loop through a l l the segments
21 f o r segment in e l f f i l e . i ter_segments () :
22	 p r e f i x = ""
23

24 # In each segment , the re can be one or more
number o f a t t r i b u t e s

25 # The a t t r i b u t e "p_type" conta in s the segment
name

26 # Under each segment , the a t t r i b u t e s may be
d i f f e r e n t from the other segments

3.14 Building the Model 79

27 f o r a t t r i b u t e in segment . header :
28 # The segment name i s s to r ed in the

a t t r i b u t e "p_type"
29 # So , we p r e f i x the segment name to a l l the

other a t t r i b u t e s to unique ly i d e n t i f y each a t t r i b u t e f o r
a l l the segments

30 i f (a t t r i b u t e == ' p_type ') :
31 c t r = 0
32 p r e f i x = segment . header [a t t r i b u t e]
33 # Here we check i f 2 or more segments

have the same name
34 # I f the re are 2 or more segments with

the same name ,
35 # then each o f the segments are unique ly

i d e n t i f i e d by addng a running counter to the end o f the
segment name

36 whi le True :
37 i f p r e f i x in p r e f i xD i c t :
38 c t r = c t r + 1
39 p r e f i x = (segment . header [

a t t r i b u t e] + " - " + s t r (c t r))
40 e l s e :
41 break
42

43 p r e f i xD i c t [p r e f i x] = 1 # Keep a note o f
the segments proce s sed so f a r

44 e l s e :
45 # Create a key as the "<segment name>-<

a t t r i b u t e name>"
46 # And add i t to the unique l i s t o f

a t t r i b u t e s
47 key = p r e f i x + " - " + a t t r i b u t e
48 returnValue [key] = segment . header [

a t t r i b u t e]
49

50 re turn returnValue

Listing 3.18 Extract Segment details.

ExtractSectionDetails: This function takes a single ELF file and returns
all the information from all the Sections of the ELF file. The following Listing
3.19 shows the corresponding function.

1 #def Ext ra c tSe c t i onDe ta i l s (e l f f i l e) :

2 ' ' ' Function Name : ExtractSegmentDeta i l s

3 Purpose : To ex t r a c t the d e t a i l s o f a l l the segments

in the ELF F i l e .

80 Detecting Malware using Machine Learning

4 The segment i n fo rmat ion i s the Program
Header o f a ELF F i l e .

5 Input Parameters :
6 1 . e l f f i l e : A va l i d ELF F i l e from which the

Segment i n fo rmat ion has to be ex t rac t ed
7 Output Parameters :
8 1 . A Dict ionary conta in ing the a t t r i b u t e s as the

key and t h e i r va lue s as the value
9 In case , the ELF F i l e has no segments , an

empty d i c t i ona ry i s returned (This i s not po s s i b l e f o r
va l i d ELF F i l e s)

10 ' ' '
11 returnValue = {}
12

13 # ELF F i l e s with malware conta in Sect i on Names which
have been tampered .

14 # I f such a Sect i on Name i s found , then we s t o r e the
tampered Sec t i on Name as a f e a t u r e .

15 # To be ab le to s t o r e the se in unique a t t r i bu t e s , we s e t
a counter ac ro s s the f i l e .

16 malwareSectionNameCounter = 0
17

18 # Check i f any s e c t i o n i n fo rmat ion e x i s t s in the f i l e
19 # I f i t does , c o l l e c t a l l the i n fo rmat ion o f a l l the

a t t r i b u t e s in a l l the s e c t i o n s
20 i f (e l f f i l e . num_sections () > 0) :
21 # I t e r a t e through a l l the s e c t i o n s and gather the

a t t r i b u t e s .
22 f o r s e c t i o n in e l f f i l e . i t e r_ s e c t i o n s () :
23 # Every s e c t i o n has a name .
24 # Sect i on Name has to be a va l i d ASCII s t r i n g .
25 # I s the Sec t i on Name conta in s non - ASCII

charac te r s , then the f i l e has been tampered .
26 i f a l l ((ord (char) > 32 and ord (char) < 128) f o r

char in s e c t i o n . name) :
27 sectionName = s e c t i o n . name
28 e l s e :
29 # In case the Sec t i on Name conta in s non -

ASCII charac te r s , we s t o r e the Sect i on Name as a
f e a t u r e s in out data s e t

30 malwareSectionNameCounter =
malwareSectionNameCounter + 1

31 sectionName = MALWARE_SECTION_NAME_PREFIX +
s t r (malwareSectionNameCounter)

32 returnValue [sectionName] = s e c t i o n . name
33

3.14 Building the Model 81

34 # Att r ibute s o f a l l the s e c t i o n s may have the
same name .

35 # So , s e c t i on name w i l l be p r e f i x ed to the
a t t r i b u t e name to form the key f o r the d i c t i ona ry .

36 sectionName = sectionName . l s t r i p (' . ') # Remove
l e ad ing dot (' . ') from the s e c t i o n name

37 sectionName = sectionName . l s t r i p ('_ ') # Remove
l e ad ing under score s ('_') from the s e c t i o n name

38 sectionName = sectionName . r ep l a c e (' . ' , ' - ') #
Remove a l l the dots (' . ') and r ep l a c e with a dash (' - ')

39 sectionName = sectionName . s t r i p ()
40

41 i f l en (sectionName) == 0 :
42 sectionName = EMPTY_SECTION_NAME_SUBSTITUTE
43

44 # Every s e c t i o n has a header .
45 # I t e r a t e through a l l the a t t r i b u t e s in the

header o f the s e c t i o n .
46 # The a t t r i b u t e s o f the s e c t i o n header are

p r e f i x ed by the s e c t i o n name to form the a t t r i b u t e name .
47 f o r key , value in s e c t i o n . header . i tems () :
48 attributeName = sectionName + " - " + key
49 returnValue [attributeName] = value
50

51 re turn returnValue

Listing 3.19 Extract Section details.

Using these functions, the features from the benign ELF files and the ELF
files containing malware are extracted as shown in Listing 3.20.

1 #Code f o r Extract ing the f e a t u r e s from the ELF F i l e s
2 ben ignFi l eFeatures , nVal idF i l e s , n Inva l i dF i l e s ,

nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,

nFi lesWithNoSect ions = \

3 extractInformationFromADirectory ("Data/benign_ELF/*")

4

5 pr in t ("BENIGN FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e

Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

6 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,

nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

7

8 BENIGN FILES :

9 Valid - 2038

10 I nva l i d - 30
11 No F i l e Header - 0

82 Detecting Malware using Machine Learning

12 No Program Header - 0
13 No Sec t i on s - 10
14

15 backdoorFi leFeatures , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

16 extractInformationFromADirectory ("Data/malware_ELF/Backdoor
/*")

17

18 pr in t ("BACKDOOR FILES :\ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

19 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

20

21 BACKDOOR FILES :
22 Valid - 589
23 I nva l i d - 36
24 No F i l e Header - 0
25 No Program Header - 1
26 No Sec t i on s - 50
27

28 botnetF i l eFeature s , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

29 extractInformationFromADirectory ("Data/malware_ELF/Botnet /*"
)

30

31 pr in t ("BOTNET FILES :\ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

32 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

33

34 BOTNET FILES :
35 Valid - 616
36 I nva l i d - 64
37 No F i l e Header - 0
38 No Program Header - 0
39 No Sec t i on s - 33
40

41 ddosFi l eFeatures , nVal idFi l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

42 extractInformationFromADirectory ("Data/malware_ELF/Ddos/*")
43

3.14 Building the Model 83

44 pr in t ("DDOS FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e Header
- %d\nNo Program Header - %d\nNo Sec t i on s - %d" % \

45 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

46

47 DDOS FILES :
48 Valid - 642
49 I nva l i d - 74
50 No F i l e Header - 0
51 No Program Header - 0
52 No Sec t i on s - 9
53

54 t r o j anF i l eFea tu r e s , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

55 extractInformationFromADirectory ("Data/malware_ELF/Trojan /*"
)

56

57 pr in t ("TROJAN FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

58 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

59

60 TROJAN FILES :
61 Valid - 369
62 I nva l i d - 46
63 No F i l e Header - 0
64 No Program Header - 0
65 No Sec t i on s - 46
66

67 v i ru sF i l eFea tu r e s , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

68 extractInformationFromADirectory ("Data/malware_ELF/Virus /*")
69

70 pr in t ("VIRUS FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

71 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

72

73 VIRUS FILES :
74 Valid - 452
75 I nva l i d - 29
76 No F i l e Header - 0

84 Detecting Malware using Machine Learning

77 No Program Header - 0
78 No Sec t i on s - 58

Listing 3.20 Extract Features from all files.

3.15 Extract the Unique List of Keys for All the Files

From the last steps, we have six dictionaries containing all the attributes
extracted from all the clean ELF files and from all the ELF files containing
malware. In this step, a list of all the unique attributes is prepared. Listing 3.21
shows the code for creating the set of unique features.

1 #Code f o r c r e a t i n g the s e t o f unique f e a t u r e s ac r o s s a l l

f i l e s in the t r a i n i n g data s e t

2 f e a t u r eL i s t = s e t ()

3

4 f o r i in ben ignF i l eFeature s :

5 f o r k in i . keys () :

6 i f type (k) == i n t :

7 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (

k))

8 e l s e :

9 f e a t u r eL i s t . add (k)

10

11 f o r i in backdoorFi l eFeatures :
12 f o r k in i . keys () :
13 i f type (k) == i n t :
14 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (

k))
15 e l s e :
16 f e a t u r eL i s t . add (k)
17

18 f o r i in botne tF i l eFea tu r e s :
19 f o r k in i . keys () :
20 i f type (k) == i n t :
21 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (

k))
22 e l s e :
23 f e a t u r eL i s t . add (k)
24

25 f o r i in ddosF i l eFeature s :
26 f o r k in i . keys () :
27 i f type (k) == i n t :
28 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (

k))

3.16 Create a Data Frame 85

29 e l s e :
30 f e a t u r eL i s t . add (k)
31

32 f o r i in t r o j anF i l eFea tu r e s :
33 f o r k in i . keys () :
34 i f type (k) == i n t :
35 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (

k))
36 e l s e :
37 f e a t u r eL i s t . add (k)
38

39 f o r i in v i r u sF i l eF ea tu r e s :
40 f o r k in i . keys () :
41 i f type (k) == i n t :
42 f e a t u r eL i s t . add (NUMERIC_COLUMN_IDENTIFIER + s t r (

k))
43 e l s e :
44 f e a t u r eL i s t . add (k)

Listing 3.21 Code for creating the set of unique features.

3.16 Create a Data Frame

Now we create a data frame containing all the keys and values for all the files
in the training dataset. To be able to do this, we use a function as shown in
Listing 3.22.

1 #Function f i l lDataInDataFrame ()

2 import pandas as pd

3

4 de f f i l lDataInDataFrame (f ea tu r eD i c t i ona ry , p_featureList ,

f i l eType) :

5 # Create an Empty DataFrame ob j e c t

6 df = pd . DataFrame ()

7

8 f o r record in f e a tu r eD i c t i ona ry :

9 # Create an empty Dict ionary

10 oneRecord = {}
11

12 # I n i t i a l i s e a l l the columns
13 f o r colName in p_featureL i s t :
14 oneRecord [colName] = pd . to_numeric (0 , downcast=

' i n t e g e r ')
15

16 # Loop through a l l the f e a t u r e s in a record

86 Detecting Malware using Machine Learning

17 f o r k in record . keys () :
18 # Extract the column name from the record
19 i f type (k) == i n t :
20 extractedColumnName =

NUMERIC_COLUMN_IDENTIFIER + s t r (k)
21 e l s e :
22 extractedColumnName = k
23

24 # Check i f the column name e x i s t s in the f e a t u r e
l i s t

25 i f extractedColumnName in p_featureL i s t :
26 # Extract the value f o r the key and s t o r e in

the Dict ionary
27 i f ((type (record [k]) == i n t) | (type (record [

k]) == f l o a t)) :
28 oneRecord [extractedColumnName] = pd .

to_numeric (record [k] , downcast=' i n t e g e r ')
29 e l s e :
30 oneRecord [extractedColumnName] = record [

k]
31

32 # Add column to mark Dependent Column as per the
provided F i l e Type

33 oneRecord [FILE_TYPE_COLUMN_NAME] = pd . to_numeric (
f i l eType , downcast=' i n t e g e r ')

34

35 # Add the Record to the Data Frame
36 df = df . append (oneRecord , ignore_index=True)
37

38 re turn df

Listing 3.22 Data frame generation function.

Now we use this function to prepare the data frame with labeled data the
corresponding code is shown in Listing 3.23.

1 #Code to prepare the data frame o f c l a s s i f i e d f e a t u r e s

2 benignFileDF = f i l lDataInDataFrame (ben ignFi l eFeatures ,

f e a tu r eL i s t , BENIGN_FILE)

3

4 backdoorFileDF = f i l lDataInDataFrame (backdoorFi leFeatures ,

f e a tu r eL i s t , BACKDOOR_FILE)

5

6 botnetFileDF = f i l lDataInDataFrame (botnetF i l eFeature s ,

f e a tu r eL i s t , BOTNET_FILE)

7

3.16 Create a Data Frame 87

8 ddosFileDF = f i l lDataInDataFrame (ddosFi l eFeatures ,

f e a tu r eL i s t , DDOS_FILE)

9

10 trojanFi leDF = f i l lDataInDataFrame (t ro j anF i l eFea tu r e s ,
f e a tu r eL i s t , TROJAN_FILE)

11

12 virusFi leDF = f i l lDataInDataFrame (v i ru sF i l eFea tu r e s ,
f e a tu r eL i s t , VIRUS_FILE)

13

14 # Form a s i n g l e data frame o f a l l the l a b e l l e d data
15 df = pd . concat ([benignFileDF , backdoorFileDF , botnetFileDF ,

ddosFileDF , trojanFileDF , virusFi leDF] , ignore_index=
True)

16

17 df [FILE_TYPE_COLUMN_NAME] = pd . to_numeric (df [
FILE_TYPE_COLUMN_NAME] , downcast=' i n t e g e r ')

Listing 3.23 Data frame preparation.

Now the data frame is ready. However, as we had done for JPEG File
features, we remove any presence of CHR(0) so that reading the data is not
truncated by the presence of CHR(0).

1 #Code to remove CHR(0)

2 # Remove NULL charac t e r from a l l the St r ing

3 f o r c o l in df . columns :

4 i f df [c o l] . dtypes == ' ob j e c t ' :

5 df [c o l] . r e p l a c e (chr (0) , ' ' , i np l a c e = True)

6

7 df [FILE_TYPE_COLUMN_NAME] . value_counts ()

8

9 0 2038

10 3 642
11 2 616
12 1 589
13 5 452
14 4 369
15 Name : FileType , dtype : i n t64

As a last step for data preparation, we only retain the columns in the above
formed data frame where the data type is numeric. Then, we can create the data
frame of independent variables and the data frame of the dependent variable.

After we have done that, we save the list of columns. This is because we
will need extract information for only these columns (or features) from the
test dataset and/or from the data provided during production run.

88 Detecting Malware using Machine Learning

1 #Code to r e t a i n the numeric columns

2 dfClean = df . s e l ec t_dtypes ([np . number])

3

4 X = dfClean . copy ()

5 X = X. drop ([FILE_TYPE_COLUMN_NAME] , ax i s = 1)

6 y = dfClean [FILE_TYPE_COLUMN_NAME]

7

8 import p i c k l e

9 p i c k l e . dump(X, open (" . /XColumns" , 'wb '))

3.17 Random Forest Model Generation

Creating the model using Random Forest algorithm for ELF file classification
is like creating the model using the Random Forest algorithm for JPEG files.
Listing 3.24 shows the code for Random Forest model generation.

1 # Code to form the c l a s s i f i c a t i o n model us ing Random Forest

Algorithm

2 from sk l e a rn . model_se lect ion import cross_val_score

3 from sk l e a rn . model_se lect ion import RepeatedStrat i f i edKFold

4 from sk l e a rn . ensemble import RandomForestClass i f i e r

5

6 # I n s t a n t i a t e the Dec i s i on Tree Model

7 modelRF = RandomForestClass i f i e r ()

8

9 # Create the Random Forest Model

10 modelRF . f i t (X, y)
11

12 # Save the Random Forest Model to a f i l e
13 import p i c k l e
14

15 p i c k l e . dump(modelRF , open (" . / RFModelELFMalwareDetection" ,
'wb '))

Listing 3.24 Classification model using Random Forest.

We test the results for the model on the training dataset as shown in
Listing 3.25.

1 #Code to make p r ed i c t i o n s on the t r a i n i n g data s e t us ing the
model c rea ted us ing the Random Forest Algorithm .

2

3 from sk l e a rn import metr i c s

4 import matp lo t l i b . pyplot as p l t

5 import seaborn as sns

3.17 Random Forest Model Generation 89

6

7 # Make the p r ed i c t i o n s

8 y_pred = modelRF . p r ed i c t (X)

9

10 # Generate the Confusion Matrix

11 cm = metr i c s . confusion_matrix (y , y_pred)

12

13 # Plot the Confusion Matrix

14 ax = p l t . subplot ()

15 sns . heatmap (cm, annot=True , fmt=' g ' , ax=ax) ;

16

17 ax . s e t_x labe l (' Pred ic ted l a b e l s ') ;

18 ax . s e t_y labe l (' True l a b e l s ') ;

19 ax . s e t_ t i t l e (' Confusion Matrix ') ;

20 ax . xax i s . s e t_ t i c k l a b e l s ([' Benign ' , ' Backdoor ' , ' Botnet ' ,

'DDOS' , ' Trojan ' , ' Virus ']) ;
21 ax . yax i s . s e t_ t i c k l a b e l s ([' Benign ' , ' Backdoor ' , ' Botnet ' ,

'DDOS' , ' Trojan ' , ' Virus ']) ;
22

23 pr in t ("\n\nConfusion C l a s s i f i c a t i o n Report\n")
24 pr in t (metr i c s . c l a s s i f i c a t i o n_ r e p o r t (y , y_pred))
25

26 Confusion C l a s s i f i c a t i o n Report
27

28 p r e c i s i o n r e c a l l f1 - s c o r e support

0 1 .00 1 .00 1 .00 2038
1 0 .96 0 .99 0 .98 589
2 1 .00 0 .97 0 .99 616
3 0 .99 1 .00 0 .99 642
4 0 .93 0 .96 0 .94 369
5 0 .98 0 .94 0 .96 452

accuracy 0 .99 4706
macro avg 0 .98 0 .98 0 .98 4706

 weighted avg 0 .99 0 .99 0 .99 4706

29

30

31

32

33

34

35

36

37

38

39

Listing 3.25 Model results using training dataset.

Now, we test the model on the test dataset. Before we can make predictions
on the test dataset, we must make the data from the test dataset suitable for
being used by the model. Listing 3.26 shows the necessary code to prepare the
test dataset before predictions can be made for the same.

1 #Code to prepare the t e s t data s e t be f o r e p r ed i c t i o n s can be
made on them

90 Detecting Malware using Machine Learning

Figure 3.7 Confusion matrix of predictions on training data of ELF files using model
developed using Random Forest algorithm.

2 ben ignTestF i l eFeatures , nVal idFi l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

3 extractInformationFromADirectory ("Data/TestData/benign_ELF/*
")

4

5 pr in t ("BENIGN FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

6 (nVal idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

7

8 BENIGN FILES :
9 Valid - 222

10 I nva l i d - 10
11 No F i l e Header - 0
12 No Program Header - 0
13 No Sec t i on s - 5
14

15 backdoorTestFi leFeatures , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

3.17 Random Forest Model Generation 91

16 extractInformationFromADirectory ("Data/TestData/malware_ELF/
Backdoor/*")

17

18 pr in t ("BACKDOOR FILES :\ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

19 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

20

21 BACKDOOR FILES :
22 Valid - 62
23 I nva l i d - 2
24 No F i l e Header - 0
25 No Program Header - 1
26 No Sec t i on s - 4
27

28 botnetTestF i l eFeatures , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

29 extractInformationFromADirectory ("Data/TestData/malware_ELF/
Botnet /*")

30

31 pr in t ("BOTNET FILES :\ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

32 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

33

34 BOTNET FILES :
35 Valid - 61
36 I nva l i d - 6
37 No F i l e Header - 0
38 No Program Header - 0
39 No Sec t i on s - 2
40

41 ddosTestFi l eFeatures , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

42 extractInformationFromADirectory ("Data/TestData/malware_ELF/
Ddos/*")

43

44 pr in t ("DDOS FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e Header
- %d\nNo Program Header - %d\nNo Sec t i on s - %d" % \

45 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

46

92 Detecting Malware using Machine Learning

47 DDOS FILES :
48 Valid - 71
49 I nva l i d - 3
50 No F i l e Header - 0
51 No Program Header - 0
52 No Sec t i on s - 0
53

54 t ro janTes tF i l eFeature s , nVa l idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

55 extractInformationFromADirectory ("Data/TestData/malware_ELF/
Trojan /*")

56

57 pr in t ("TROJAN FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

58 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

59

60 TROJAN FILES :
61 Valid - 40
62 I nva l i d - 3
63 No F i l e Header - 0
64 No Program Header - 0
65 No Sec t i on s - 4
66

67 v i ru sTes tF i l eFea tu r e s , nVal idF i l e s , n Inva l i dF i l e s ,
nFilesWithNoFileHeader , nFilesWithNoProgramHeader ,
nFi lesWithNoSect ions = \

68 extractInformationFromADirectory ("Data/TestData/malware_ELF/
Virus /*")

69

70 pr in t ("VIRUS FILES : \ nValid - %d\ nInva l id - %d\nNo F i l e
Header - %d\nNo Program Header - %d\nNo Sec t i on s - %d" %
\

71 (nVa l idF i l e s , n Inva l i dF i l e s , nFilesWithNoFileHeader ,
nFilesWithNoProgramHeader , nFi lesWithNoSect ions))

72

73 VIRUS FILES :
74 Valid - 48
75 I nva l i d - 4
76 No F i l e Header - 0
77 No Program Header - 0
78 No Sec t i on s - 4
79

80 # Form the data frame

3.17 Random Forest Model Generation 93

81 columnsInModel = X. columns

82

83 benignTestFileDF = f i l lDataInDataFrame (

ben ignTestFi l eFeatures , s e t (columnsInModel) , BENIGN_FILE
)

84

85 backdoorTestFileDF = f i l lDataInDataFrame (

backdoorTestFi leFeatures , s e t (columnsInModel) ,

BACKDOOR_FILE)

86

87 botnetTestFi leDF = f i l lDataInDataFrame (

botnetTestF i l eFeatures , s e t (columnsInModel) , BOTNET_FILE

)

88

89 ddosTestFileDF = f i l lDataInDataFrame (ddosTestFi l eFeatures ,

s e t (columnsInModel) , DDOS_FILE)

90

91 trojanTestFi leDF = f i l lDataInDataFrame (

t ro j anTes tF i l eFea ture s , s e t (columnsInModel) , TROJAN_FILE

)

92

93 virusTestFi leDF = f i l lDataInDataFrame (v i ru sTes tF i l eFea tu re s ,

s e t (columnsInModel) , VIRUS_FILE)

94

95 # Combine the data frames formed above

96 dfTest = pd . concat ([benignTestFileDF , backdoorTestFileDF ,

botnetTestFileDF , ddosTestFileDF , trojanTestFi leDF ,
virusTestFi leDF] , ignore_index=True)

97

98 testDF [FILE_TYPE_COLUMN_NAME] = pd . to_numeric (testDF [

FILE_TYPE_COLUMN_NAME] , downcast=' i n t e g e r ')

99

100 # Clean the data
101 f o r c o l in dfTest . columns :
102 i f dfTest [c o l] . dtypes == ' ob j e c t ' :
103 dfTest [c o l] . r ep l a c e (chr (0) , ' ' , i np l a c e = True)
104

105 # Create the X and y data frames
106 X_test = dfTest . copy ()
107 X_test = X_test . drop ([FILE_TYPE_COLUMN_NAME] , ax i s = 1)
108 Y_test = dfTest [FILE_TYPE_COLUMN_NAME]

Listing 3.26 Code to prepare test data.

Listing 3.27 states the mechanism to make predictions on the test dataset
using the model created using Random Forest algorithm and check the results.

94 Detecting Malware using Machine Learning

We see that we get an accuracy of about 89% on the test dataset. Figures 3.7
and 3.8 show the corresponding confusion matrices generated using training
and testing data, respectively with Random Forest classifier for ELF files.

1 #Code to make p r ed i c t i o n s on the t e s t data and eva luate the
r e s u l t s

2 # Make the p r ed i c t i o n s

3 y_pred_test = modelRF . p r ed i c t (X_test)

4

5 # Generate the Confusion Matrix

6 cm = metr i c s . confusion_matrix (y_test , y_pred_test)

7

8 # Plot the Confusion Matrix

9 ax = p l t . subplot ()

10 sns . heatmap (cm, annot=True , fmt=' g ' , ax=ax) ;
11

12 ax . s e t_x labe l (' Pred ic ted l a b e l s ') ;
13 ax . s e t_y labe l (' True l a b e l s ') ;
14 ax . s e t_ t i t l e (' Confusion Matrix ') ;
15 ax . xax i s . s e t_ t i c k l a b e l s ([' Benign ' , ' Backdoor ' , ' Botnet ' ,

'DDOS' , ' Trojan ' , ' Virus ']) ;
16 ax . yax i s . s e t_ t i c k l a b e l s ([' Benign ' , ' Backdoor ' , ' Botnet ' ,

'DDOS' , ' Trojan ' , ' Virus ']) ;

Listing 3.27 Model results using testing dataset.

3.18 Outcomes from the Model

We see that both the models developed demonstrate a dissimilar accuracy in
training and during testing. We notice that we get about 99% accuracy on the
training dataset. The accuracy drops of about 89% on the test dataset. So, we
can conclude that the model suffers from overfitting. The overfitting can be
attributed to the complexity of the model. So, the model has a high variance.
We can solve the overfitting problem by conducting a principal component
analysis (PCA) on the extracted features. This will help in simplifying the
model and thus the variance will reduce.

3.19 Creating the Web Service

Now that we have our model, we can create the web service through which
the model can be accessed by any client. Creating a web service will allow
any kind of client application to use the model.

3.19 Creating the Web Service 95

Figure 3.8 Confusion matrix of predictions on test data of ELF files using model developed
using Random Forest algorithm.

Listing 3.28 shows the code for the web service. The web service takes
a file as an input. The web service evaluates whether the file is a valid ELF
file. For every valid ELF file, the web service reports whether the file contains
virus or is a clean ELF file. In case the ELF file is found to have a malware,
the web service reports the kind of malware available in the ELF file.

1

2 Code f o r the Web Se rv i c e

3

4 #!/ usr /bin /env python

5 # -* - coding : UTF-8 -* ­
6

7 import pandas as pd

8 import os

9 import cherrypy

10 import p i c k l e
11 # For ELF F i l e Feature Extract ion
12 from e l f t o o l s . e l f . e l f f i l e import ELFFile
13 from e l f t o o l s . e l f . segments import Segment
14

15 c on f i g = {
16 ' g l oba l ' : {
17 ' s e r v e r . socket_host ' : ' 1 2 7 . 0 . 0 . 1 ' ,

96 Detecting Malware using Machine Learning

18 ' s e r v e r . socket_port ' : 8080 ,
19 ' s e r v e r . thread_pool ' : 8 ,
20 ' s e r v e r . max_request_body_size ' : 0 ,
21 ' s e r v e r . socket_timeout ' : 60
22 }
23 }
24

25 c l a s s App :
26

27 de f __init__(s e l f) :
28 s e l f . RFmodel = p i c k l e . load (open
29 (' RFModelELFMalwareDetection ' , ' rb '))
30 s e l f . f e a t u r eL i s t = p i c k l e . load (open (' FeatureL i s t ' ,

' rb '))
31 s e l f .EMPTY_SECTION_NAME_SUBSTITUTE = "S"
32 s e l f .FILE_NAME_COLUMN_NAME = "FileName"
33 s e l f .FILE_TYPE_COLUMN_NAME = ' Fi leType '
34 s e l f .NUMERIC_COLUMN_IDENTIFIER = "N"
35 s e l f .MALWARE_SECTION_NAME_PREFIX = "M"
36

37 def ExtractFi l eHeader (s e l f , e l f f i l e) :
38 returnValue = {} # Dict ionary to hold the unique

a t t r i b u t e s the header
39

40 # The header i n fo rmat ion can be obtained as a
d i c t i ona ry .

41 # However , the re are some d i c t i o n a r i e s i n s i d e t h i s
d i c t i ona ry .

42 # So , we c r e a t e a f l a t s t r u c tu r e tak ing out a l l the
unique a t t r i b u t e s and form a d i c t i ona ry .

43 f o r key , value in e l f f i l e . header . i tems () :
44 # I f the value f o r the key i s a d i c t i onary , then

loop through a l l the a t t r i b u t e s o f t h i s d i c t i ona ry to
c o l l e c t the f e a t u r e s .

45 # The approach i s s i m p l i s t i c as I do not go f o r
a r e c u r s s i v e f unc t i on as i t i s known that the re can be
only one ad i t i o n a l l e v e l o f d i c t i ona ry .

46 # TODO: There i s some hardcoding here . Will be
removed l a t e r .

47 i f key == " e_ident " :
48 f o r ins ideKey , i n s ideVa lue in value . i tems () :
49 i f ins ideKey == "EI_MAG" :
50 pass
51 e l s e :
52 returnValue [ins ideKey] = i n s ideVa lue

e l s e : 53

3.19 Creating the Web Service 97

54 returnValue [key] = value
55

56 re turn returnValue
57

58 de f ExtractSegmentDeta i l s (s e l f , e l f f i l e) :
59 returnValue = {} # Dict ionary to hold the unique

a t t r i b u t e s o f a l l the segments
60

61 # Check i f any segment i n fo rmat ion e x i s t s in the
f i l e

62 # I f i t does , c o l l e c t a l l the i n fo rmat ion o f a l l
a t t r i b u t e s in a l l the segments

63 i f (e l f f i l e . num_segments () > 0) :
64 p r e f i xD i c t = {} # Dict ionary to hold the uniq

segment a t t r i b u t e s f o r a l l the segment names
65

66 # Each ELF F i l e may have one or more number o
segments

67 # Loop through a l l the segments
68 f o r segment in e l f f i l e . i ter_segments () :
69 p r e f i x = ""
70

71 # In each segment , the re can be one or mo
number o f a t t r i b u t e s

72 # The a t t r i b u t e "p_type" conta in s the
segment name

73 # Under each segment , the a t t r i b u t e s may
d i f f e r e n t from the other segments

74 f o r a t t r i b u t e in segment . header :
75 # The segment name i s s to r ed in the

a t t r i b u t e "p_type"
76 # So , we p r e f i x the segment name to a

the other a t t r i b u t e s to unique ly i d e n t i f y each a t t r i b u
f o r a l l the segments

77 i f (a t t r i b u t e == ' p_type ') :
78 c t r = 0
79 p r e f i x = segment . header [a t t r i b u t e
80 # Here we check i f 2 or more

segments have the same name
81 # I f the re are 2 or more segments

with the same name ,
82 # then each o f the segments are

unique ly i d e n t i f i e d by addng a running counter to the
end o f the segment name

83 whi le True :
84 i f p r e f i x in p r e f i xD i c t :

the

ue

f

re

be

l l
t e

]

98 Detecting Malware using Machine Learning

85 c t r = c t r + 1
86 p r e f i x = (segment . header [

a t t r i b u t e] + " - " + s t r (c t r))
87 e l s e :
88 break
89

90 p r e f i xD i c t [p r e f i x] = 1 # Keep a note
o f the segments proces sed so f a r

91 e l s e :
92 # Create a key as the "<segment name

>-<a t t r i bu t e name>"
93 # And add i t to the unique l i s t o f

a t t r i b u t e s
94 key = p r e f i x + " - " + a t t r i b u t e

95 returnValue [key] = segment . header [

a t t r i b u t e]

96

97 re turn returnValue

98

99 de f Ext ra c tSe c t i onDe ta i l s (s e l f , e l f f i l e) :

100 returnValue = {}
101

102 # ELF F i l e s with malware conta in Sect i on Names which
have been tampered .

103 # I f such a Sect i on Name i s found , then we s t o r e the
tampered Sec t i on Name as a f e a t u r e .

104 # To be ab le to s t o r e the se in unique a t t r i bu t e s , we
s e t a counter ac r o s s the f i l e .

105 malwareSectionNameCounter = 0
106

107 # Check i f any s e c t i o n i n fo rmat ion e x i s t s in the
f i l e

108 # I f i t does , c o l l e c t a l l the i n fo rmat ion o f a l l the
a t t r i b u t e s in a l l the s e c t i o n s

109 i f (e l f f i l e . num_sections () > 0) :
110 # I t e r a t e through a l l the s e c t i o n s and gather

the a t t r i b u t e s .
111 f o r s e c t i o n in e l f f i l e . i t e r_ s e c t i o n s () :
112 # Every s e c t i o n has a name .
113 # Sect i on Name has to be a va l i d ASCII

s t r i n g .
114 # I s the Sec t i on Name conta in s non - ASCII

charac te r s , then the f i l e has been tampered .
115 i f a l l ((ord (char) > 32 and ord (char) < 128)

f o r char in s e c t i o n . name) :
116 sectionName = s e c t i o n . name

3.19 Creating the Web Service 99

117 e l s e :
118 # In case the Sec t i on Name conta in s non -

ASCII charac te r s , we s t o r e the Sect i on Name as a
f e a t u r e s in out data s e t

119 malwareSectionNameCounter =
malwareSectionNameCounter + 1

120 sectionName = s e l f .
MALWARE_SECTION_NAME_PREFIX + s t r (
malwareSectionNameCounter)

121 returnValue [sectionName] = s e c t i o n . name
122

123 # Att r ibute s o f a l l the s e c t i o n s may have
the same name .

124 # So , s e c t i on name w i l l be p r e f i x ed to the
a t t r i b u t e name to form the key f o r the d i c t i ona ry .

125 sectionName = sectionName . l s t r i p (' . ') #
Remove l e ad ing dot (' . ') from the s e c t i o n name

126 sectionName = sectionName . l s t r i p ('_ ') #
Remove l e ad ing under score s ('_') from the s e c t i o n name

127 sectionName = sectionName . r ep l a c e (' . ' , ' - ')
Remove a l l the dots (' . ') and r ep l a c e with a dash
(' - ')

128 sectionName = sectionName . s t r i p ()
129

130 i f l en (sectionName) == 0 :
131 sectionName = s e l f .

EMPTY_SECTION_NAME_SUBSTITUTE
132

133 # Every s e c t i o n has a header .
134 # I t e r a t e through a l l the a t t r i b u t e s in the

header o f the s e c t i o n .
135 # The a t t r i b u t e s o f the s e c t i o n header are

p r e f i x ed by the s e c t i o n name to form the a t t r i b u t e name .
136 f o r key , value in s e c t i o n . header . i tems () :
137 attributeName = sectionName + " - " + key
138 returnValue [attributeName] = value
139

140 re turn returnValue
141

142 de f Ext r a c tF i l eDe t a i l s (s e l f , f i l e) :
143 returnValue = {}
144 val idELFFi le = True
145 hasFi leHeader = True
146 hasProgramHeader = True
147 hasSec t i ons = True
148

100 Detecting Malware using Machine Learning

149 t ry :
150 with open (f i l e , ' rb ') as e l f f i l e :
151 t ry :
152 eF i l e = ELFFile (e l f f i l e)
153

154 # Extract the F i l e Header In format ion
155 f i l eHead e r = s e l f . ExtractFi l eHeader (

eF i l e)
156 i f (l en (f i l eHead e r) > 0) :
157 returnValue . update (f i l eHead e r) # Add

the a t t r i b u t e s to d i c t i ona ry
158 e l s e :
159 hasFi leHeader = False
160 r a i s e Exception ()
161

162 # Extract the Program Header In format ion
163 segmentDeta i l s = s e l f .

ExtractSegmentDeta i l s (eF i l e)
164 i f (l en (segmentDeta i l s) > 0) :
165 returnValue . update (segmentDeta i l s) #

Add the a t t r i b u t e s to d i c t i ona ry
166 e l s e :
167 hasProgramHeader = False
168 r a i s e Exception ()
169

170 s e c t i o nDe t a i l s = s e l f .
Ext ra c tSe c t i onDe ta i l s (eF i l e)

171 i f (l en (s e c t i o nDe t a i l s) > 0) :
172 returnValue . update (s e c t i o nDe t a i l s) #

Add the a t t r i b u t e s to d i c t i ona ry
173 e l s e :
174 hasSec t i ons = False
175 r a i s e Exception ()
176

177 except :
178 val idELFFi le = False
179

180 f i n a l l y :
181 e l f f i l e . c l o s e ()
182 except :
183 pass
184

185 re turn (returnValue , val idELFFile , hasFi leHeader ,
hasProgramHeader , hasSec t i ons)

186

187 de f i sELFFi le (s e l f , f i l e) :

3.19 Creating the Web Service 101

188 with open (f i l e , ' rb ') as e l f f i l e :
189 returnValue = True
190

191 t ry :
192 ELFFile (e l f f i l e) # The con s t ruc to r o f the

ELFFile c l a s s checks whether the magic number f o r an ELF
F i l e e x i s t s in the provided f i l e

193

194 except :
195 returnValue = False
196

197 f i n a l l y :
198 e l f f i l e . c l o s e ()
199

200 re turn returnValue
201

202

203 de f f i l lDataInDataFrame (s e l f , f e a tu r eD i c t i ona ry) :
204 # Create an Empty DataFrame ob j e c t
205 df = pd . DataFrame ()
206

207 f o r record in f e a tu r eD i c t i ona ry :
208 # Create an empty Dict ionary
209 oneRecord = {}
210

211 # I n i t i a l i s e a l l the columns
212 f o r colName in s e l f . f e a t u r eL i s t :
213 oneRecord [colName] = pd . to_numeric (0 ,

downcast=' i n t e g e r ')
214

215 # Loop through a l l the f e a t u r e s in a record
216 f o r k in record . keys () :
217 # Extract the column name from the record
218 i f type (k) == i n t :
219 extractedColumnName = s e l f .

NUMERIC_COLUMN_IDENTIFIER + s t r (k)
220 e l s e :
221 extractedColumnName = k
222

223 # Check i f the column name e x i s t s in the
f e a t u r e l i s t

224 i f extractedColumnName in s e l f . f e a t u r eL i s t :
225 # Extract the value f o r the key and

s t o r e in the Dict ionary
226 i f ((type (record [k]) == i n t) | (type (

record [k]) == f l o a t)) :

102 Detecting Malware using Machine Learning

227 oneRecord [extractedColumnName] = pd .
to_numeric (record [k] , downcast=' i n t e g e r ')

228 e l s e :
229 oneRecord [extractedColumnName] =

record [k]
230

231 # Add the Record to the Data Frame
232 df = df . append (oneRecord , ignore_index=True)
233

234 re turn df
235

236 de f prepareF i l eForAna ly s i s (s e l f , ELFFileName) :
237 returnValue = 0
238 X = None
239

240 t e s tFeature s , val idELFFile , hasFi leHeader ,
hasProgramHeader , hasSec t i ons = s e l f . Ex t r a c tF i l eDe t a i l s (
ELFFileName)

241 i f val idELFFi le == False :
242 returnValue = -1
243 e l i f hasFi leHeader == False :
244 returnValue = -2
245 e l i f hasProgramHeader == False :
246 returnValue = -3
247 e l i f hasSec t i ons == False :
248 returnValue = -4
249 e l s e :
250 testDF = s e l f . f i l lDataInDataFrame (t e s tFea tu r e s)
251

252 # Remove NULL charac t e r from a l l the St r ing
253 f o r c o l in testDF . columns :
254 i f testDF [c o l] . dtypes == ' ob j e c t ' :
255 testDF [c o l] . r e p l a c e (chr (0) , ' ' , i np l a c e

= True)
256

257 re turn testDF , returnValue
258

259 @cherrypy . expose
260 de f upload (s e l f , u f i l e) :
261 upload_path = os . path . normpath (' . / data/ ')
262 up load_f i l e = os . path . j o i n (upload_path , u f i l e .

f i l ename)
263 s i z e = 0
264

265 returnValue = 0
266

3.20 Conclusion 103

267 with open (upload_f i l e , ' b ') as out :
268 whi le True :
269 data = u f i l e . f i l e . read (8192)
270 i f not data :
271 break
272 out . wr i t e (data)
273 s i z e += l en (data)
274

275 # Check whether F i l e i s an Image F i l e
276 i f (s e l f . i sELFFi le (up load_f i l e) == False) :
277 returnValue = -1 # Not an ELF F i l e
278 e l s e :
279 X, f i l e S t a t u s = s e l f . p r epareF i l eForAna ly s i s (

up load_f i l e)
280 i f f i l e S t a t u s < 0 :
281 returnValue = f i l e S t a t u s
282 e l s e :
283 returnValue = s e l f . RFmodel . p r ed i c t (X) [0]
284

285 out = ' ' '
286 returnValue : {}
287 l ength : {}
288 f i l ename : {}
289 mime - type : {}
290 ' ' ' . format (returnValue , s i z e , u f i l e .

f i l ename , u f i l e . content_type , data)
291

292 re turn out
293

294

295 i f __name__ == '__main__ ' :
296 cherrypy . qu i c k s t a r t (App() , ' / ' , c on f i g)

Listing 3.28 Web service for ELF.

3.20 Conclusion

We find that it is possible to rely on machine learning models for detecting
malware. This work demonstrates the detection of malware in JPEG files and
ELF files. A similar strategy can be used for other file types like Windows
Executable files, PDF files, etc. One can improve the accuracy of the models
discussed in this work if a given dataset is available for building the model.

104 Detecting Malware using Machine Learning

The dataset used in this work can be stated as a small dataset for creating
a commercial product for malware detection. One can further improve the
models by creating models using neural networks.

3.21 Acknowledgments

We would like to thank Professor Sandeep K. Shukla for approving this project
and encouraging us to study this subject.

4

New Age Attack Vectors – JPEG Images

Machine Learning-based Solution for the

Detection of Malicious JPEG Images

Shankar Kashamshetty and Kunal Chawla

E-mail: kshankar14@gmail.com; kunaalchawla@yahoo.com

Abstract

Cyberattacks against individuals, businesses, and organizations have increased
in recent years. Cybercriminals are always looking for valuable vectors to
distribute malware to victims to initiate an attack. Millions of people use
images every day, and many users believe images are safe for use; still, various
images can hold a malicious payload and execute unsafe actions. JPEG is the
trendy image format, mainly due to its lossy compression. It is used by nearly
everybody, from persons to large organizations, and almost every device (e.g.,
digital cameras, smartphones, social media, etc.). As of their safe reputation,
enormous use, and high possibility for exploitation, JPEG images are used
by cybercriminals as an attack vector. Although machine learning methods
are useful at identifying known and unknown malware in different domains,
machine learning techniques have not been used overall to find malicious JPEG
images. This work presents a malicious JPEG detector using machine learning.
It extracts discriminative yet straightforward features from the JPEG file
structure and leverages them with a machine learning classifier to discriminate
between benign and malicious JPEG images. We evaluated malicious JPEGs
extensively on a real-world representative collection of 156,818 images which
contains 12,255 (91.44%) benign and 1805 (8.55%) malicious images. The
results show that malicious JPEG, when used with the LightGBM classifier,
demonstrates the highest detection capabilities, with an area under the receiver
operating characteristic curve (AUC) of 95%, true positive rate (TPR) of 95%,
and a very low false-positive rate (FPR) of 8%.

105

mailto:kshankar14@gmail.com
mailto:kunaalchawla@yahoo.com

106 New Age Attack Vectors – JPEG Images Machine Learning-based

Keywords: JPEG, image, malware, detection, machine learning, features.

4.1 Introduction

Cyberattacks have increased a lot, targeting individuals, businesses, and
organizations in the previous few years. Cyberattacks typically consist of
unsafe actions such as stealing confidential information, spying or monitoring,
and causing damage to the victim. Attackers may be aggravated by philosophy,
unlawful intention, a wish for publicity, etc. Attackers continuously look for
new and efficient methods to commence attacks and distribute a malicious
payload. Documents or files shared by the Internet have frequently served to
achieve this. As executable files (i.e., EXE) are identified as risky, attackers
are progressively using non-executable files (e.g., PDF, Docx, etc.) that are
wrongly measured to be harmless for many users. Some non-executable files
permit an attacker to run arbitrary malicious code on the target machine when
the file is opened. JPEG is the most well-liked image format. Almost all
individuals, small and large organizations use JPEG on various platforms.

In November 2016, it was reported that attackers used Facebook Messenger
to spread the infamous Locky ransomware via JPEG images. In August 2017,
it was reported that SyncCrypt ransomware was spread using JPEG images. In
December 2018, Trend Micro, an enterprise cybersecurity company, reported
that cybercriminals used memes (JPEG images) on Twitter for conveying com­
mands to malware. In December 2019, researchers from the Sophos security
company published a comprehensive report on the MyKings cryptomining
botnet that lurks behind a seemingly innocuous JPEG of Taylor Swift.

The ability to detect malicious JPEG images has great importance as
individuals and businesses widely use JPEG images. Existing endpoint defense
solutions which are based on signatures (e.g., antivirus) can only detect known
malware. In contrast, in recent years, machine learning (ML) algorithms have
demonstrated their ability to detect both known and unknown malware in
various domains, particularly for detecting malware on multiple types of files.
This work presents a machine learning-based solution for efficiently detecting
unknown malicious JPEG images.

4.2 Background

In this section, we provide background material related to our research and
technical information regarding the structure of a JPEG image. Since the
JPEG file structure is complicated, we only present the basic information

4.3 Related Work 107

needed to enable the reader to comprehend and understand the proposed
malicious JPEG solution offered in this research. The format of JPEG images
is comprehensively described in the JPEG File Interchange Format (JFIF)
specification.

4.2.1 JPEG file structure

JPEG stands for Joint Photographic Experts Group, which has become the most
popular image format. In 1992, JPEG became an international standard for
compressing digital still images. JPEG files usually have a filename extension
of .jpg or .jpeg. A JPEG image file is a binary file which consists of a
sequence of segments. Segments can contain other segments hierarchically.
Each segment begins with a two-byte indicator called a “marker.” The markers
help divide the file into different segments. A marker’s first byte is 0xFF
(hexadecimal representation); the second byte may have any value except
0x00 and 0xFF. The marker indicates the type of data stored in the segment.
Segment types are assigned names based on their definition or purpose; for
example, 0xFFD9 is EOI, and 0xFFFE is COM. Segment types 0xFF01 and
0xFF0 -0xFF9 consist entirely of the two-byte marker; all other markers are
followed by a two-byte integer indicating the size of the segment, followed by
the payload data contained in the segment.

The very first marker we care about is FFD8. It tells us that this is the start
of the image. If we do not see it, we can assume this is not a JPEG file. Another
equally important marker is FFD9. It tells us that we have reached the end of
an image file. Every marker, except FFD0 to FFD9 and FF01, is immediately
followed by a length specifier, giving that marker segment’s length. The image
file start and end markers are always two bytes long each.

Figure 4.1 presents the possible markers, their hexadecimal code, and their
definition/purpose. The work [38] provides more details about JPEG image,
structure, each marker and its purpose.

4.3 Related Work

This research looks for related work that aims to detect malicious images
and JPEG files using machine learning. However, we could not find any
papers that apply machine learning to detect malicious JPEG images. It is
important to emphasize that we only refer to images that contain malware
or malicious code as malicious images. Therefore, the domain of adversarial
image detection (e.g., [63], [30], [34], [45], and [23]) is different from this

108 New Age Attack Vectors – JPEG Images Machine Learning-based

Figure 4.1 JPEG image possible markers, their hexadecimal code, and their definition/pur­
pose.

work’s domain. The difference between adversarial images and malicious
images lies in the part of the images that are altered to transform an original
image into an adversarial or malicious image. Adversarial images are created
by intentionally designing the pixels of the original image in such a way that
a machine learning model will misclassify the image. In contrast, malicious
JPEG images store the malicious mechanism in some metadata fields outside
the pixels section; usually, the pixels are not changed to maintain the image’s
authenticity.

Kunwar et al. [44] proposed a theoretical framework that is aimed to
detect the presence of data or code in JPEG images (without the use of
machine learning). Their framework has three phases: steganography analysis,
extraction of the embedded file, and uploading the extracted file to an online
scanning tool such as VirusTotal or Metascan. However, the chapter does not
describe any experiments performed to evaluate the framework or present any
detection results on a real-world dataset.

In addition, we identified a study [47], which proposed an authentication
method for JPEG images that can distinguish legitimate operations (e.g.,
compression) from malicious operations. However, “malicious” in the context
of this work does not mean that the image carries malicious code as a payload.

4.4 Methodology 109

Instead of that, the image is not authentic and has been manipulated. In
addition, the work does not apply machine learning methods.

Most of the works on JPEG images focused on steganography methods,
steganography analysis (steganalysis) methods, or adversarial images. How­
ever, this work focuses on the detection of malicious JPEG images. The
solutions [54] and [17] provide approaches using machine learning methods
for the detection of malicious JPEG images.

4.4 Methodology

In this section, we present the core working of our work, the machine learning-
based solution for detecting malicious JPEG images. Malicious JPEG detector
receives a JPEG image as input. The malicious JPEG detector pre-processes
the image and extracts the planned features into a vector of features. The JPEG
reader inspects the file statically and navigates through the JPEG image file
structure to extract the features. The features are then transferred to a machine
learning-based model, which outputs a classification (benign/malicious) for
the input image. Figure 4.2 presents malicious JPEG architecture and solution
building blocks. Malicious JPEG solution building blocks are as follows:

4.4.1 Input JPEG images

Our research uses around 12,255 JPEG images, including 11,207 benign files
and 1048 JPEG files. This imbalance dataset has a 92:8 ratio for benign to

Figure 4.2 Malicious JPEG architecture.

110 New Age Attack Vectors – JPEG Images Machine Learning-based

malicious files, respectively, representing real-world scenarios. Images are
collected from the IIT Kanpur corpus and can be extracted from VirusTotal.
This module provides JPEG files to the next module JPEG reader.

4.4.2 JPEG reader

The JPEG reader is implemented in Python that inspects the JPEG files one
by one statically, without viewing the image (which requires executing image
viewer software that itself might have a vulnerability). The code traverses
through the image file structure/markers from Start of Image (SoI) to End of
Image (EoI) markers to extract information, i.e., Length of Marker and Image
data size. Table 4.1 shows possible marker details and hexadecimal codes.
This module generates around 33 features for each image. The author [38]
provides a code snippet to extract markers information from JPEG images.

4.4.3 Data preparation

The data preparation phase performs the following actions:
• Check outliers–Checks distribution and make sure all numeric features
are within limits.

Table 4.1 Possible marker/features from JPEG images.

Marker name Hexadecimal code Definition
AP Pn 0xFFE0–0xFFEF Reserved for application used
COM 0xFFFE Comment
DAC 0xFFCC Define arithmetic conditioning table(s)
DHP 0xFFDE Define hierarchical progression
DHT 0xFFDC Define Huffman table(s)
DNL 0xFFDC Define number of lines
DQT 0xFFDB Define quantization table(s)
DRI 0xFFDD Define restart interval
EXP 0xFFDF Expand reference image(s)
JPG 0xFFC8 Reserved for JPEG extensions
JPGn 0xFFF0–0xFFFD Reserved for JPEG extensions
RES 0xFF02–0xFFBF Reserved

RSTm 0xFFD0–0xFFD7 Restart with modulo 8 counter m
SOFn 0xFFC0-3,5-7,9-B, D-F Start of frame
SOS 0xFFDA Start of scan
TEM 0xFF01 For temporary use in arithmetic coding
SOI 0xFFFD8 Start of Image
EOI 0xFFD9 End of Image

4.5 Model Evaluation 111

• Exploratory analysis–Univariate analysis and bivariate analysis to
understand JPEG malware correlation with features.

• Check multicollinearity and feature elimination–Verify any same
features using Pearson correlation and eliminate duplicate features.

• One Hot Encoding–Convert all categorical features to binary features
using One Hot Encoding.

• New features creation–Apply different statistical aggregations on var­
ious features, such as the number of times each marker occurred, the
minimum length of the marker, and the maximum length of the marker.

This module generates 60 features and target features that define the image
as malware or not benign for all 12,255 images.

4.4.4 Machine learning model

This module split the image dataset into 70:20:10 ratios as train, test, and
validation datasets. Train data is used to train, and test data is used to tune the
training model during grid search. Validation data set is used to test fine-tuned
model to check final performance.

The experiments utilize the following commonly used, high-performing
classic and nonlinear machine learning classifiers: Random Forest, LightGBM,
and Deep Learning MLP classifier. We select these classifiers as they perform
well on highly imbalanced datasets. In our preliminary experiments, we
examine classifiers from families other than the decision tree family, such as
Logistic Regression and Naïve Bayes. However, they do not provide good
results; therefore, we do not include them in our evaluation.

We applied the above-mentioned machine learning classifiers with Python
using the following packages: LightGBM, Random Forest, and MLP
Classifier. Grid search and cross-validation are used for hyperparameter
tuning and validation of all classifiers. This module saves fine-tuned ML
models for the prediction/detection of images.

4.5 Model Evaluation

4.5.1 Evaluation metrics

For evaluation purposes, we have calculated each classifier’s true positive
rate (TPR) and the false-positive rate (FPR). The TPR and FPR are the most
important metrics in the domain of malware detection. A viable detection
system must maintain a high TPR (representing the system’s ability to detect

112 New Age Attack Vectors – JPEG Images Machine Learning-based

Figure 4.3 Model performance comparison.

positive samples (malicious) successfully) and a low FPR (the system’s
capability of avoiding false alarms for negative samples–benign). Note that
since our dataset is highly imbalanced, it is essential to use the TPR and
FPR metrics instead of the well-known accuracy metric. They represent
the classifier’s accuracy and false-positives for the minority class only, i.e.,
malicious. In addition, we measured the area under the receiver operating
characteristic (ROC) curve, or the AUC, precision, recall, and F1-score of the
machine learning classifiers trained and tested on different datasets. Figure 4.3
shows the model performance using various measures.

4.5.2 JPEG image detection

JPEG reader extracts features from JPEG images and pre-trained outputs the
classification as benign or malicious. As shown in Figure 4.4 input image
passes through the JPEG solution, which includes a JPEG reader that extracts
features from JPEG images, and a saved pre-trained machine learning model

Figure 4.4 JPEG image detection.

4.7 Acknowledgments 113

is used to predict given input files as benign or malicious. Figure 4.4 shows
the architecture of JPEG image detection.

4.6 Conclusion

Malicious JPEG, a machine learning-based solution, can detect unknown
malicious JPEG images efficiently with 95% accuracy and only an 8% of
false-positive rate. Best results are achieved using the LightGBM model.
The AUC, TPR, TNR, and FPR are 95%, 93%, 92%, and 8%, respectively.
This chapter presents JPEG, a machine learning-based solution for efficient
detection of unknown malicious JPEG images. To the best of our knowledge,
there is very little research to offer a machine learning-based solution explicitly
tailored for detecting malicious JPEG images. Malicious JPEG extracts ten
discriminative but straightforward features from the JPEG file structure. It
leverages them with a machine learning classifier to discriminate between
benign and malicious JPEG images.

4.7 Acknowledgments

We would like to thank IIT Kanpur for providing access to their malware
collection for academic use and guidance for implementation.

https://taylorandfrancis.com

5

Live Monitoring of Malware Attacks on

Cloud using Windows Agent-based Solution

Sheetal A. Suvarna

E-mail: sheetalasuvarna@gmail.com

Abstract

Live monitoring malware for attacks in a highly regulated environment
is imperative to prevent potential cybersecurity attacks. It requires many
security levels to be deployed to analyze the behavior of more sophisticated
malware. In modern days, there are hybrid methods for monitoring such
malware by isolating virtual machines from the production environment or
even deploying an agent-based solution. In many circumstances, the situation
would be devastating to both the client and the organization; however, in
many instances, the recovery seems minimal, and the loss of reputation is
irrevocable. Furthermore, the frontline of defense needs to be built around a
well-rounded system to circumvent the attacks. One can take arms with the
sea of troubles stemming from malware attacks. In addition, robust defense-in­
depth topology aids clear progression for malware analysis. In our work, we
develop an agent for monitoring the malware attacks in near-real-time. This
Windows agent-based malware monitoring on the cloud platform captures
the snapshot. This analysis of signature-based anomalies provides security
professionals insight into making informed decisions. The situation is far
simpler to pick the open-source technologies and build the stack required to
create the forerunner for malware classification and detection. The objective
of the product is to build an agent-based open-stack product for malware
classification and detection. Actionable research has shown Windows is one of
the favourite places for malicious attackers, with over 83% of attacks last year.
Another objective is to build on the cloud. The visual dashboard of the cynical

115

mailto:sheetalasuvarna@gmail.com

116 Live Monitoring of Malware Attacks on Cloud using Windows

process changes gets monitored on the production systems. It performs the
following operations: capturing snapshots of all processes every 10 seconds,
detecting and classifying potential malware based on its severity, and shipping
the logs to the ELK stack for further analysis.

Keywords: Malware, malware analysis, anomalies, trojan, indicators of
compromise, cuckoo, anti-evasion, sandbox, log analyzer, classification.

5.1 Introduction

Malware is a software that could be created by big business criminals purely to
destroy files and make modest financial gains with an illegal intent. Parallelly,
malware analysis is a study to understand the behavior, origin, and functionality
while gathering the information without prior permission. All the while,
malware development has become more sophisticated, with greater measures
being taken by malware developers to check the authenticity of the operating
environment before executing an attack, often described as context-aware
malware or sandbox evasion in big, medium, and small businesses. We need
to look at another set of averting, like IOC databases aid the malware analysts
as they grapple with newer malware variants. In this work, we discuss the
methodology and combination of open-source tools to detect and analyze
potential malware along with visual representation on the cloud. It helps the
SOC or security management team to interpret and take timely action to
mitigate or avoid the risk depending on the severity of the damage a malware
could cause to the environment.

5.1.1 About malware

There is a misguided assumption about malware that they are not a virus. It is
a software regardless of how it works. Conversely, a virus is a specific type of
malware that can self-replicate into different forms. Malware could be spyware,
ransomware, etc., [81] that would damage the network or a targeted system.
With the transformational epoch of digitalization, malware have been evolving
since 1971. The maiden malware was “creeper,” which was not created to
damage the target, on the contrary, was used as a guessing game that moved
from one system to another as an experiment, creation of ideated “reaper” to
catch the creeper. There are some contentious discussions around which was
the maiden malware and shall continue to argue its grounds.

5.1 Introduction 117

5.1.2 Types of malware

• Ransomware – this disables the victim’s access to the data until a ransom
is paid.

• Bots – this could launch a large flood of attacks.
• Worms – this replicates itself and spreads to a particular network.
• Adware – this type flashes unwanted advertisements.
• Spyware – this collects the user behavior and the patterns without the
knowledge of the user.

• Trojans – this is designed to damage, disrupt, steal, or in general, inflict
some other harmful action on your data or network.

• Mobile malware – this one damages the mobile devices.
• Keyloggers – this monitors the keyloggers of the users without their
knowledge.

• Rootkits – this gives attackers remote access to victim’s system.
• Fileless malware [43] – this one alters the files which are native to the
operating system.

5.1.3 Fileless malware

Persistent attacks on fileless malware are one of the latest versions of
attacks. Its functionality attacks are based on a few parameters like the
infection method, configuration data, injection data, and persistence method.
It falls under the malware category of memory-resident malware such as
SQL slammers, code red, poweliks, lurks, Windows registries malware like
PowerWare and kovter, and rootkit, namely phase bot. The fileless malware
can hide its location to make difficulties in the detection process by traditional
AV solutions and the security analyst. The target could be both organizations
or individuals. It is a rising trend to compromise a targeted system to avoid
downloading malicious executable files, usually to disk; instead, it uses the
capability of web exploits, macros, scripts, or trusted admin tools. For example,
this could include an infection mechanism and legitimate system tools.

Figure 5.1 Fileless Javascript.

118 Live Monitoring of Malware Attacks on Cloud using Windows

5.2 Background

Windows is the target of 83% of all malware attacks [69] because it is the
most common operating system. Similarly, it has more than 50% of 660
security gaps in Windows 10. The extent of damage we have experienced in
the few years is exponentially increasing with the pandemic situation since the
online usage and the users have tremendously increased. The effort involved
in the escape activities needs to be backed up both money- and skill-wise to
grapple with the constant battles of red and blue hat professionals. At this rate,
cybercriminals may create 160 million malware programs this year. Building
a robust threat intelligence system is a kernel of truth. When this turmoil
foments in the operating system, the damage shall be unfathomable to recover.
There are 43 million new malware programs, which means 4.2 malware
programs are developed every second. We must not subvert adversaries of
Windows OS; instead, we take proactive measures to lessen the malware
attacks and reduce the time to trigger the remediation strategies when it occurs.
Windows operating system is vulnerable to the majority of the attacks and
needs additional effort from the organization to keep the environment safe.

Therefore, there was a compelling reason to develop a Windows agent to
extract information from the host which are as follows:

• Process and system calls
• Process tree
• File and registry
• Events and logs
• Process ID and name of the process
• System performance
Again a program should analyze the information captured by the agent,

identify the suspicious activities based on the integrated IOC and classify its
severity based on defined risk criteria. The summarized information could be
presented to a security administrator in security operations center in a visual
dashboard to further investigations.

Hindsight shows the considerable damages caused and soon can fan out
based on various observations, recovery, and post facto programs arising from
threat attacks. The Procmon utility helps to extract such information from the
system to develop an agent for Windows.

5.2.1 Procmon

It comes with abundant advantages to monitoring the processes on the systems.
It shows the real-time file system, and it is an advanced monitoring tool

5.3 Project Approach 119

indispensably used by millions, if not zillions. Procmon stems from Windows
Sysinternals utilities and legacy Filemon and Regmon, and it is part of the
Microsoft TechNet website. Broadly, it is used to track the system and any
software activity, precisely to track the process or application that accesses a
registry key or a file.

• Procmon operations: It brings a lot of individuality to perform
operations which are as follows:

– Advanced logging architecture scales to a prodigious extent,
– setting non-disclosure filters helps in avoiding data loss;
– Image path, session ID, command lines can be identified effortlessly,
– The root cause of the operation can be easily identified with the
thread stacks,

– Process tree displays all the inter-connected processes to quick
traceability.

Installation of this agent would bring unstoppable awesomeness to a
highly regulated environment or systems while being ready for malware
attacks.

• Features of Procmon: It has two legacy Sysinternals utilities, Filemon
and Regmon. It also contains extensive enhancements, including rich
and non-destructive filtering, comprehensive event properties such as
session IDs and user names, reliable process information, logging to
a file, and full thread stacks with integrated symbol support for each
operation. This tool is used as a malware hunting toolkit. This tool is
fundamentally open-source, and its Windows Sysinternals utility is both
powerful and inexpensive. Integration with IOC databases and VirusTotal
will create a strong influential network for an in-depth analysis of large
data processing servers.

5.3 Project Approach

The flow of our work is shown in Figure 5.3. This project is dissected into four
parts, the first being the detection and then analysis, followed by classification
and reporting. Figure 5.2 shows the milestones of our work. The four phases
are as follows:

• Detection engine – Agent development
• Analysis engine
• Classification engine
• Reporting with ELK

120 Live Monitoring of Malware Attacks on Cloud using Windows

5.3.1 Detection engine – agent development

The flow chart in Figure 5.2 depicts the entire process flow to gain the following
objectives of the product. The infinite loop ensures real-time monitoring, and
the timer of 10 seconds keeps comparing with the previous snapshot against
the signature-based anomalies. The log event captures any process changes,
Regkey, and File systems like file modification or directory modification. This
log file is then mapped with all the system events to output a final log for the
analysis phase. In the analysis phase, potential malware and its severity are
provided for actionable decision-making.

Figure 5.4 shows the working of the agent developed. Figure 5.5 shows
the overview of the detection engine. Windows agent installed on the host
machine captures real-time events at the kernel level using process monitor
and detects the possible anomalies in the client machine by capturing the
processes snapshot. It tracks the incorrect permissions on a file registry key,
registry keys or values that are missing or even misnamed, and the required
application if missing. We can view registry, file system, process and network
activity in the Process Monitor tool. The agent uses Procmon and other native
utilities to take snapshots every 10 seconds, capturing all mercurial anomalies
and eventually shipping them to the cloud platform to trigger the analysis
engine.

Figure 5.2 Project Milestone.

5.3 Project Approach 121

Figure 5.3 Product flow chart.

Figure 5.4 Windows agent using Procmon analyzing the events.

122 Live Monitoring of Malware Attacks on Cloud using Windows

Figure 5.5 Detection phase overview.

Figure 5.6 Analysis overview.

5.3.2 Analysis engine

Figure 5.6 depicts the overall structure of the analysis engine working. The
analysis process is initiated based on the time limit that is set on the agent, and
there are two methods for this approach which are as follow:

5.3 Project Approach 123

• Replacing the snapshots when a new snapshot is taken, by doing this,
not only the space required would be lesser but also the prediction of the
process to zero down the actual process that caused the attack, especially
for the last process that was executed.

• Creating multiple snapshots with a criterion whether last 10 or 20
snapshots, these snapshots are available in the form of the CSV files.
This solution provides elaborate information to identify the source or
even the time the malware was introduced. The analysis engine analyzes
data and stores data against IOCs defined upon identifying in moves to
the next phase for classification.

IOC analysis engine determines whether the data is malicious or not. After
submitting the data, the threat level is assessed with the processes running
on the windows machine. Comparatively, the time is taken to identify the
threat, and the response may be drastically reduced with the IOC analysis.
This stellar contribution to the community and the IOC database would be
beyond reproach.

1 from i o import Str ingIO

2 import pandas as pd

3 import sys

4

5 de f r e a d_ i o c f i l e (path , d e l im i t e r = None) :

6 with open (path) as r e a d f i l e s :

7 i f d e l im i t e r :

8 re turn r e a d f i l e s . read () . s p l i t (d e l im i t e r)

9 re turn r e a d f i l e s . read () . s p l i t l i n e s ()

10 # s earch_st r ing = []
11 # i f d e l im i t e r == ' nl ' :
12 # with open (path , ' r ') as r e a d l i n e s :
13 # f o r i in r e a d l i n e s :
14 # i f i != '\n ' :
15 # s earch_st r ing . append (i)
16 # i f d e l im i t e r == ' , ' :
17 # with open (path , ' r ') as r e a d l i n e s :
18 # f o r i in r e a d l i n e s :
19 # f o r item in i . s p l i t (' , ') :
20 # i f item != '\n ' :
21 # s earch_st r ing . append (item)
22 # r e turn s earch_str ing
23

24 de f csv_ana lys i s (input) :
25

124 Live Monitoring of Malware Attacks on Cloud using Windows

26 #C:\\ Python_project \\csv_compare\\ dr ive - download -20210730
T053152Z -001\\ IOC_rootmalware . txt

27

28 backdoorIOCl ist = r e a d_ i o c f i l e ('C:\\ Python_project \\
csv_compare\\ dr ive - download -20210730T053152Z -001\\
bckdor_fulacs_procIOC . txt ' , ' , ')

29 adwareBorwserIOClist = r e a d_ i o c f i l e ('C:\\ Python_project
\\csv_compare\\ dr ive - download -20210730T053152Z -001\\
adware_browser . txt ' , ' , ')

30 d i l e r s_proc IOCl i s t= r e a d_ i o c f i l e (C:\\ Python_project \\
csv_compare\\ dr ive - download -20210730T053152Z -001\\
dilers_procIOC . txt ' , ' , ')

31 dwlodrs_spwr_ProcIOC = r e a d_ i o c f i l e ('C:\\ Python_project
\\csv_compare\\ dr ive - download -20210730T053152Z -001\\
dwlodrs_spwr_ProcIOC . txt ' , ' , ')

32 trojanIOC = r e a d_ i o c f i l e ('C:\\ Python_project \\
csv_compare\\ dr ive - download -20210730T053152Z -001\\
trojanIOC . txt ' , ' , ')

33 IOC_rootmalware= r e a d_ i o c f i l e ('C:\\ Python_project \\
csv_compare\\ dr ive - download -20210730T053152Z -001\\
IOC_rootmalware . txt ')

34 IOC_userlevel = r e a d_ i o c f i l e ('C:\\ Python_project \\
csv_compare\\ dr ive - download -20210730T053152Z -001\\
IOC_userlevel . txt ')

35

36 # pr in t (backdoorIOCl ist)
37 # pr in t (adwareBorwserIOClist)
38 # pr in t (IOC_userlevel)
39 # pr in t (IOC_rootmalware)
40 # pr in t (trojanIOC)

1 #/home/ sh e e t a l /Desktop/Logs/
2 path = sys . argv [1]
3

4 #f i l e_path = [os . path . abspath (p1) f o r p1 in os . l i s t d i r (
path)]

5 #c s v f i l e s = glob . g lob ('C:\\ Python_project \\csv_compare
* . csv ')

6 # input = r eque s t s . get (' http :// l o c a l h o s t :8000/ snapshot .
csv ')

7 pr in t (type (input . content))
8

9 df = pd . read_csv (Str ingIO (input . content . decode ()))
10

11 df [' adwareBorwserIOClist ']=df [' Process Name '] . i s i n (
adwareBorwserIOClist)

http://www.localhost:8000
http://www.localhost:8000

5.3 Project Approach 125

12 df [' d i l e r s_proc IOCl i s t ']=df [' Process Name '] . i s i n (
d i l e r s_proc IOCl i s t)

13 df [' dwlodrs_spwr_ProcIOC ']=df [' Process Name '] . i s i n (
dwlodrs_spwr_ProcIOC)

14	 df [' trojanIOC ']=df [' Process Name '] . i s i n (trojanIOC)
15	 df [' root_priv ']=df [' Path '] . i s i n (IOC_rootmalware)
16	 df [' IOC_userlevel ']=df [' Path '] . i s i n (IOC_userlevel)
17

18	 # f o r f i l e s in c s v f i l e s :
19	 # df = pd . read_csv (f i l e s)
20	 # df [' adwareBorwserIOClist ']= df [' Process Name '] . i s i n

(adwareBorwserIOClist)
21	 # df [' d i l e r s_proc IOCl i s t ']= df [' Process Name '] . i s i n (

d i l e r s_proc IOCl i s t)
22	 # df [' dwlodrs_spwr_ProcIOC ']= df [' Process Name '] . i s i n

(dwlodrs_spwr_ProcIOC)
23	 # df [' trojanIOC ']= df [' Process Name '] . i s i n (trojanIOC)
24	 # df [' root_priv ']= df [' Path '] . i s i n (IOC_rootmalware)
25	 # df [' IOC_userlevel ']= df [' Path '] . i s i n (IOC_userlevel)
26

27

28	 df . to_csv (' f i n a l . csv ')

1 import csv

2 import glob

3 import os

4 import pandas as pd

5

6 de f write_to_csv (row_to_write) :

7 with open (' f i n a l . csv ' , ' a ') as output_f i l e :

8 csv . wr i t e r (output_f i l e) . writerow (row_to_write)

9

10

11

12 de f check_regkey (check_csvstr ing , i o c _ l i s t) :

13 f o r s earch_st r ing in i o c_ l i s t :

14 i f s earch_st r ing in check_csvstr ing :

15 re turn True

16 re turn False

17

18

19 de f check_IOCs (csv_matching_col , s e a r ch_s t r i ng_ l i s t) :

20 # with open (csv_matching_col , ' r ') as r e ad l i n e :

21 f o r l i n e in csv_matching_col :

22 f o r s earch_st r ing in s e a r ch_s t r i ng_ l i s t :

23 i f s earch_st r ing i n l i n e :

126 Live Monitoring of Malware Attacks on Cloud using Windows

24 re turn True
25 re turn False
26

27 de f r e a d_ i o c f i l e (path , d e l im i t e r) :
28 s earch_st r ing = []
29 i f d e l im i t e r == ' n l ' :
30 with open (path , ' r ') as r e a d l i n e s :
31 f o r i in r e a d l i n e s :
32 i f i != ' \n ' :
33 s earch_st r ing . append (i)
34 i f d e l im i t e r == ' , ' :
35 with open (path , ' r ') as r e a d l i n e s :
36 f o r i in r e a d l i n e s :
37 f o r item in i . s p l i t (' , ') :
38 i f item != ' \n ' :
39 s earch_st r ing . append (item)
40 re turn s earch_st r ing
41

42 #//home// sh e e t a l //regKey_IOCs//IOC_rootmalware . txt
43

44 backdoorIOCl ist = r e a d_ i o c f i l e (' //home// sh e e t a l //regKey_IOCs
//bckdor_fulacs_procIOC . txt ' , ' , ')

45 adwareBorwserIOClist = r e a d_ i o c f i l e (' //home// sh e e t a l //
regKey_IOCs//adware_browser . txt ' , ' , ')

46 d i l e r s_proc IOCl i s t= r e a d_ i o c f i l e (' //home// sh e e t a l //
regKey_IOCs// dilers_procIOC . txt ' , ' , ')

47 dwlodrs_spwr_ProcIOC = r e a d_ i o c f i l e (' //home// sh e e t a l //
regKey_IOCs//dwlodrs_spwr_ProcIOC . txt ' , ' , ')

48 IOC_rootmalware= r e a d_ i o c f i l e (' //home// sh e e t a l //regKey_IOCs
//IOC_rootmalware . txt ' , ' n l ')

49 IOC_userlevel = r e a d_ i o c f i l e (' //home// sh e e t a l //regKey_IOCs//
IOC_userlevel . txt ' , ' , ')

50

51 pr in t (IOC_rootmalware)
52

53

54 #/home/ sh e e t a l /Desktop/Logs/
55 path = ' /home/ sh e e t a l /Desktop/Logs/ snapshot4 . csv '
56

57 #f i l e_path = [os . path . abspath (p1) f o r p1 in os . l i s t d i r (path)
]

58 c s v f i l e s = glob . g lob (' /home/ sh e e t a l /Desktop/Logs /* . csv ')
59 #c s v f i l e s =
60 #pr in t (f i l e_path)
61 f o r f i l e s in c s v f i l e s :
62 df = pd . read_csv (f i l e s)

5.3 Project Approach 127

63 # pr in t (df)

1 import os
2 from f l a s k import Flask , request , r e d i r e c t , url_for ,

send_from_directory
3 from werkzeug . u t i l s import secure_f i l ename
4 import Compare_IOC_analysis
5

6 UPLOAD_FOLDER =' upload '
7 ALLOWED_EXT = ' csv '
8

9 app = Flask (__name__)
10

11 de f a l l owed_f i l e e x t (f i l ename) :
12 re turn f i l ename [- 3 :] . lower () in ALLOWED_EXT
13

14 @app . route (' / ' , methods=['GET' , 'POST '])
15 de f up load_f i l e () :
16 i f r eque s t . method =='POST ' :
17 f i l e = r eque s t . f i l e s [' f i l e s ']
18 i f f i l e and a l l owed_f i l e e x t (f i l e . f i l ename) :
19 pr in t (' ** found f i l e ' , f i l e . f i l ename)
20 f i l ename = secure_f i l ename (f i l e . f i l ename)
21 f i l e . save (os . path . j o i n (app . c on f i g ['UPLOAD_FOLDER

'] , f i l ename))
22 re turn ur l_for (' up loaded_f i l e ' , f i l ename=

f i l ename)
23 re turn
24 ' ' '
25 <!doctype html>
26 <t i t l e >Upload new FIle </ t i t l e >
27 <h1>Upload new Fi l e </h1>
28 <form ac t i on="" method=POST enctype=mult ipart /form - data>
29 <p><input type=f i l e name=f i l e >
30 <input type=submit value=Upload>
31 </form>
32 ' ' '
33

34 @app . route (' / uploads/<f i l ename>')
35 de f up loaded_f i l e (f i l ename) :
36 re turn send_from_directory (app . c on f i g ['UPLOAD_FOLDER'] ,
37 f i l ename)
38 i f __name__ == '__main__ ' :
39 app . run (host = ' 0 . 0 . 0 . 0 ' , port =5001 ,debug=True)

128 Live Monitoring of Malware Attacks on Cloud using Windows

5.3.3 Classification engine

The theme is the built-in logic and vectors identified in the analysis phase in
this phase. They result from the IOC sample database used for the project.
In the absence of classification, the question becomes curly to resolve the
attack. Many problems stem from the way classification logic is defined. If
there are many false positives, security analysts are busy fixing the false-
positives, which means the actual vectors lose their importance. If managed
well, classification could reduce redundant efforts for security analysts. We
define various labels for the attacks based on different scenarios; these are as
follows:

1. High – an indicator of critical action the malware is executing, like
connecting to the command center.

2. Medium – an action that can adversely affect the host or the network.
3. Low – an indicator of less intrusive but malicious activity by the malware.
4. Suspicious – defined for generic criteria for suspicious files.
5. Malicious – file or code delivered over the network to infect the host.
6. Dangerous – program or file that may cause severe damage to the

computer intentionally.

Classification acts as an ability to recognize the earlier detected similar
features between the processes. The abstract group would have to be segregated
according to their behavior, signature, and traits. Perhaps, this is the most
less altruistic advantage to focus the available time for the security focal to
remediate on recovery strategies or the extent of the research required to
reduce the impact of such malicious activities. A few approaches to reduce the
malicious activities are defined as isolation, confinement, jail, disconnecting
from the production environment or redirecting to a different server, especially
the vaccine approach to simulate the upheaval substance in production servers.
With varying levels of success, classification profoundly impacts the post facto
strategies for the organization.

5.3.4 Reporting with ELK

Figure 5.7 shows the overview of the reporting phase. Reporting helped in
providing insights into the right priorities at the right time. At the onset, it
offers essential details that could be used to develop future forecasts and
improve decision-making. Besides, regular reporting enables businesses to
measure and compare potential malware and increase their own customized
IOC list that could be added to the existing resources. To clarify, periodical

5.4 Deployment Architecture 129

Figure 5.7 Reporting engine overview.

reporting produces massive hindsight for future enhancements, and mainly
they help channel the investments on the business-critical mission.

Elasticsearch [48] is an analytical engine based on Apache Lucene. It is
an open-source search engine. It is used as a tool for log management and
analytics for indexing and storing data. It is armed with HTTP RESTful API,
enabling accelerated search in almost real-time. It is developed on Java and
supports other languages like Python, C#, Ruby, and PHP.

Logstash is an open-source log aggregator and processor that works by
reading data from many sources and sending it to one or more destinations
for storage or stashing – in this case, when using ELK for data analytics, to
Elasticsearch. This data is massaged and processed, and well-shaped for a
structural view. It comes with ready-to-use filters, codecs, and can process
extensive data.

While Kibana is also an open-source analysis and visualization engine
that works on top of Elasticsearch and Logstash, this is the most preferred
tool for visualization. It helps ease the complexity of data into meaningful
patterns and trend analysis. Although there may be many other tools, ELK
is not just a buzzword, it is a well-known and preferred tool with numerous
plugins too!

5.4 Deployment Architecture

The proposed approach assures continued motivation, securing and achieving
the goal, and meeting the deadline without compromising the quality of work.
There is no statistical illusion but statistical absoluteness. It has been put
through the test, and the economic values this could bring to the organization
to improve security standards are enormous.

130 Live Monitoring of Malware Attacks on Cloud using Windows

5.4.1 Product tool architecture (benefits of the agent)

Product tool architecture denotes the product features and the relationship
between features and functionalities. The schematic representation of the
Windows agent monitors local services. It then reports any issues, and this
can be installed on multiple machines as it displays real-time file system
and process/thread activity registry files. Several benefits of this agent are as
follows:

• High-quality software
• Light-weight agent
• No lock-in with vendors
• Offline payload analysis
• Scaling and abundance support
• Regulatory and compliance

5.5 Product Future Enhancements

Cloud deployment for such a complex environment will provide additional
insights for SOC team analysis and response based on the server deployment
size and geographical spread. Docker image of the agent, detection, analysis,
classification, and respective reporting engines are the first set; also, applying
machine learning models will provide higher accuracy to refine the greater
prediction precision. UI (user interface)based parameters allow customization,
depending on the risk appetite. In Parallel, Lambda functions and events queues
in the cloud-native architecture reduce cost and gives a reliable system for
ease of management. Figure 5.8 shows the idea about the future enhancement
plan.

For example, Azure is the cloud-native architecture. The Windows agent
can be installed in cloud virtual machines to monitor the host Windows servers
or Windows endpoints. Azure file storage can be used for the event logs storage,
with the Azure machine learning engine accuracy can be improvised. Multiple
clusters can be deployed in the Azure function like analysis, classification, and

Figure 5.8 Future enhancements.

5.6 Conclusion and Future Directions 131

reporting clusters as shown in Figure 5.9. Cloud deployment provides greater
customisation and faster response to nascent but scaling threats.

5.6 Conclusion and Future Directions

In conclusion, predicting and preparing for malware attacks is wiser to combat
the production system carnage that comes along with malware attacks. As
the digital realm becomes ever more entwined with the physical, there has
been a growing trend for a military-style lexicon concerning cyberattack. It
has a technological step-change that can significantly influence and change the
world of work as they knew before our proposed work. In our work, Windows
agent is a lightweight open-source software and could be deployed on both
Windows server and Windows endpoint. Since this is highly flexible, it can
be integrated with many IOC databases for identifying anomalies. It would
be best suited for the highly regulated environment that processes sensitive
personal information (SPI). The insights this agent could provide cannot be
trivialized. For many attackers, the easiest path forward is running out of
the runway, and as forerunners, we need to analyze the trends and patterns
constantly.

Experts consider a large-scale retrofit of malware IOC’s signature database
to provide a forerunner for further improvements for the ever-evolving malware
attacks. Understanding the markets for future malware trends depicts the most
vulnerable health care, financial sectors, and supply chain attacks, where threat
actors will continue to leverage vendors and sub-contractors. Assuming the
presumes of historical data, deploying robust malware prevention tools avoids

Figure 5.9 Future enhancements.

132 Live Monitoring of Malware Attacks on Cloud using Windows

large financial loss and goodwill for any-sized organization. It is found that
malevolent activities could initially be developing, but scaling, the newer the
variants, the remediation could be just a band-aid solution.

5.7 Acknowledgments

I would like to thank Professor Sandeep Shukla, Professor Rohit Negi,
Professor Anand Handa, Professor Venkatesan, in collaboration with Indian
Institute of Technology, Kanpur, C3i Center and learning partner TalentSprint
for approving this project and encouraging me to study this subject.

6

Malware also Needs “Attention”

Atharv Singh Patlan, Som Vishwas Tambe, Yathartha Goswami,

Nitesh Kumar, Anand Handa, and Sandeep K. Shukla

C3i Center, Indian Institute of Technology, Kanpur, India
E-mail: atharvsp@iitk.ac.in; somvt@iitk.ac.in; niteshkr@cse.iitk.ac.in;
anand@c3ihub.iitk.ac.in; sandeeps@cse.iitk.ac.in

Abstract

Malware continues to pose a deeply evolving challenge to the world of security.
There is an ongoing fight between attackers and malware analysts. Traditional
malware detection methods require a lot of time and human resources. We turn
to machine learning-based solutions for the problem in the hand of identifying
malicious programs. In this chapter, we analyze the malicious properties
present within the API call sequence patterns of the programs. We use API
fragments and LSTM-based model with attention layers for classification. We
present our experimental results on two publically available datasets. Our
method based on API fragments and techniques like attention gives better
performance than other works that adopt similar techniques after comparing
the experiments.

Keywords: Malware, machine learning, natural language processing.

6.1 Introduction

There has been a lot of research on malware analysis and classification of
malware. This topic is of interest among many researchers, and various tools
and techniques are developed for it. There already exists a lot of literature
on tackling the problem of malware detection and malware classification.
However, the malware remains a severe problem to individuals, companies
and organisations as attackers continuously use it as a tool to get confidential

133

mailto:atharvsp@iitk.ac.in
mailto:somvt@iitk.ac.in
mailto:niteshkr@cse.iitk.ac.in
mailto:anand@c3ihub.iitk.ac.in
mailto:sandeeps@cse.iitk.ac.in

134 Malware also Needs “Attention”

information or perform attackers on the other machine. Malware analysis can
be performed using static or dynamic analysis techniques. Though static anal­
ysis techniques are powerful and accurate but the attackers hide the program’s
main intent through techniques like obfuscation, which leads to failing most
of the static analysis techniques. The attackers are becoming clever daily and
have even deployed techniques like polymorphism to reorder the codes and
create multiple virus variants. This demands for developments of techniques
that are less cumbersome and more adaptable to changes in the programs.

Deep learning has seen a significant rise in almost every field like
image processing, audio recognition, language translation and whatnot. Even
seemingly unrelated fields like software engineering have started deploying
these techniques nowadays. Since machine learning has the remarkable ability
to facilitate the task of feature extraction from low-level data, many scholars
have naturally resorted to machine learning techniques for detecting malware.
In studies like [41], people have used image processing techniques to classify
malware. The authors in [76] used API call sequences to detect malware.
In [55] uses signal processing techniques and NLP methods to handle the
assembly code and building a model using LSTMs. These methods have
definitely shown the effectiveness of deep learning in this field, but they still
suffered from being unstable and getting easily disturbed.

We chose to study the programs dynamically and hence extract out the
behavior of the program during execution. This chapter explored this problem
using a machine learning perspective and tried different techniques for the
same. Here, we have explored the idea to combine techniques of NLP with
malware analysis.

Our method is used on programs made for the Windows platform by
extracting the API execution sequences. To exploit the local malicious
properties present in a program, we cut the API sequence into smaller API
fragments and worked on them. We generate word embeddings for many API
calls in our approach and then use these embeddings to generate sequences
(sentences) of these calls. We use the analogy from English vocabulary and
practice frameworks like Word2Vec to prepare the required embeddings. Using
such a technique allows us to generate semantically valid embeddings for each
API call, which naturally helped us in the process employed ahead. We use
two layers of LSTMs and two layers of attention in our model. Since an API
call can be highly correlated to a previous API call in a different fragment, so
we use the attention layers to help us model the relation between API calls
present in different fragments. This embedding represents the program and
operates as an input for the machine learning classifiers. The chapter also

6.2 Related Work 135

discusses the further classification of the program into the type of malware
class using binary classification.

We are experimenting on multiple datasets it indicates that our technique
is stable and produces good results even with only a few thousand samples in
hand. The approach used in this chapter of combining LSTMs with attention
network outperforms the other works that use similar strategies. Our approach
is stable toward techniques like obfuscation since we are using API calls at
the very heart of our proposed approach. Furthermore, using the model on a
binary for prediction is also relatively easy since it just involves extraction of
API sequences which can be automated using analysis systems like Cuckoo
Sandbox [31].

Our work contributes as follows:

• Use the analogy of language vocabularies and using Word2Vec like
models to generate embeddings that made sense semantically and
naturally helped achieve good results.

• Analyze the local malicious properties by converting them into fixed-
length API fragments.

• Continuing with the analogy with language, we used NLP models like
LSTMs to locally utilize the features/knowledge present in the API
sequences.

• Combining the normal LSTMs with attention layers to get the correlations
present between calls globally.

• Our work demonstrates the effectiveness of LSTM models and techniques
like attention in malware analysis which can be taken up and explored
further for research.
The paper is structured into the following sections further. Section 6.3

discusses the current literature present for this field, Section 6.4 explains the
proposed model in detail and provides theoretical significance of the method,
Section 6.5 provides experimental evidence to validate our idea, and finally,
Section 6.6 concludes the chapter.

6.2 Related Work

It has been quite a few ages since the start of the era of the development
of malware. Nowadays, attackers have become more clever in preparing
these malicious programs, and there is endless competition between malware
developers and malware analysts. The speed of malware development is
relatively high, and everyday malware developers come up with new and
more sophisticated ways. The malware being developed in recent times is

136 Malware also Needs “Attention”

highly complex and uses obfuscation techniques, which makes it extremely
difficult to analyze such programs. Malware can be analyzed using either
behavior-based or signature-based techniques. The signature-based techniques
though being fast, lose their effectiveness against obfuscation techniques and
the behavior-based techniques since they require observing the behavior take a
lot of time and make the task much more cumbersome for the analyst. Thus, the
detection of malware using traditional approaches like heuristic-based, graph-
based, entropy-based, etc., is not possible. To tackle this ever-growing field
of malware development, analysts need to learn from the malware program’s
behavior. Thus, machine learning provides a solution to develop classification
models to get ahead of the new variants of malware.

Malware analysis techniques fall mainly under these two broad categories.
• Static malware analysis
In this analysis, various static features of a program like hash values,
opcodes, strings, and PE header information are extracted without
executing the program. The malicious programs are disassembled using
tools like IDA Pro, Capstone, Radare, etc. and then assembly code is
examined to get the execution flow of the file and patterns present in the
file for detecting some signs of malicious activity. This type of analysis
suffers from the drawback of being highly time-consuming and much
more complicated. Techniques deployed by developers like obfuscation
such as code encryption, reordering instructions, dead code insertion
further make the analyst’s task much harder.

• Dynamic malware analysis
In this technique, the malware is executed on the host system by making
virtual environments and then logging the program’s activities. Various
activities of the program like file system operation, process generation
and execution, API calls, and network activities are observed. Based on
them, the file is classified as benign or malicious. The files which can not
be analyzed using static analysis techniques can be analyzed using this
technique.

Since the traditional methods suffer from the requirement of a significant
workforce and time, we turn to machine learning-based approaches. Machine
learning-based methods are highly generalizable and do not require much
manual work. Machine learning can even learn some features that are too
difficult or can not be extracted manually because of its ability to learn. In [76],
the authors use the assembly file of the program (produced by the disassembler)
and convert the assembly bytecodes into pixel features and then use CNNs
to learn. Although this deploys the program information, an attacker can still

6.3 Proposed Methodology 137

confuse the classifier by inserting external assembly functions. The authors in
[84] use SVM to build a malware detection framework based on the concept
of supervised learning and achieve good results. In [7], the authors use the
API calls appearing made by the program. Their method relies on a single
malicious API that could appear on a series of call sequences, and only the
exact API sequence is harmful.

Many researchers use the graph-based analysis techniques [18][37][61].
The authors in [37] use graph-based techniques as well as deep learning
techniques for malware analysis. The authors in [15] use the concept of
clustering based on a given binary’s family dependency graph. The authors
in [65] use deep learning to create embeddings for malware based on their
API call graphs. In [82], the authors use high-level features of extracted
behavior graph using stacked autoencoders. This method is precise and has
the disadvantage of working on the whole sample while malicious fragments
are only partial, which affects the prediction of malicious behavior.

The authors in [74] analyze the API attributes and propose a map color
method based on categories and occurrence time for a unit time the API
executed and then use CNNs for classification. In [83], the authors proposed a
new statistical method that is based on extra information addition and removal
and hence led to reduction of the length of API call sequences. These sequences
are then fed to LSTMs for training. Researchers also explore ways to extract
features using machine learning techniques. In [6], the authors explore ways
of extracting features from the frequency of API and compare them with other
neural networks. The methods based on API call sequences are accurate. Still,
they suffer from long execution sequences appearing in the program while
the actual malicious part is a tiny portion of the total code. The method of
extracting efficient sequences is explored in [46], but they only retain the
sequential nature of the code execution. In [50], authors tackle the problem
of finding similarity between two binary functions by producing the function
embeddings through a self-attentive neural network. They also provided ways
to detect malware by comparing the given program with a program known to
be malicious.

6.3 Proposed Methodology

6.3.1 Datasets

We use namely two datasets in our experiments. The first dataset is collected
from Oliveira et al. [13]. It consists of 42,797 malware API call sequences

138 Malware also Needs “Attention”

and 1079 benign API call sequences. We use this to train our network for
binary classification by splitting the dataset into 1079 examples of malware
and benign classes, which we split in a 7:3 train to test ratio. The dataset
consists of the first 100 API call sequences of various program files created
for running in the Windows Operating System.

The second dataset we use is collected from Catak et al. [60] which
features 7107 malware API call sequences across eight categories, namely
Trojan, Backdoor, Downloader, Worms, Spyware Adware, Dropper, Virus.
We use this dataset for our eight-way classification experiments. The dataset
consists of unfiltered API call sequences of various malicious programs created
for attacking the Windows Operating System. The API call sequences are of
diverse lengths, varying from a length of just 10 to a maximum of 400K API
calls. The sequences also consist of repeating calls.

Due to the almost similar natures of all the categories from the execution
standpoint and the wide variety in API calls, we consider Dataset 2 a more
challenging dataset than Dataset 1.

6.3.2 Methodology

The methodology pursued by us aims to employ the ideas of natural language
processing to the problem of malware detection, as highlighted by us earlier,
and we make use of API calls used by malware to perform this task.

Our main motivation for using this approach is the similarities we find
in how the API calls are arranged in any binary file and how the words are
arranged in any document in a natural language.

For example, consider any sentence from a document in the English
language and any function from a Windows executable. Just like the sentence
is composed of words, the function is composed of API calls. Furthermore,
consider the natural language dependency graph [14] of a sentence in the
English language such as “I saw the boy who lives here” displayed in the
Figure 6.1. The structure and connections of the generated graph are very
similar to the structure of the API call graph generated from API call sequences,
which is shown in Figure 6.2. It is intuitive as different API calls in the call
graph should be related in purpose and operate upon the results of the previous
API call, similarly as words in a sentence are related and operate upon the
context till the previous word.

Thus we decided to capture this intuition of modeling API call sequences
as a human language with the help of natural language processing techniques.
Our approach first tries to judge the functionality of different API calls by

6.3 Proposed Methodology 139

boy

the

who

lives

here

I

saw

nsubj

nsubj

dobj

det

ref

rcmod

ref

dobj

Figure 6.1 Sentence dependency graph in english.

NTCreateFile

NTCreateFile

NTCreateSection

NTMapValueOfSection

NTWriteFile

Sequence
Dependence

Data Dependence

Sequence
Dependence

Sequence
Dependence

Sequence
Dependence

Data
Dependence

Data
Dependence

Figure 6.2 An API call graph. As can be seen, its structure is very similar to that in Figure 6.1.

finding related API calls in the entire corpus, like building up a vocabulary of
words.

Subsequently, we establish relations at a function and binary file-level
(sentence and document level for a language). That is, we use methods to
train our classifier such that it understands what different API calls (words)
represent when presented in a specific order to form a function (sentence).
Further, it needs to understand how the various functions (sentences) combine
to form the binary file (document). We employ Word2Vec and LSTMs with an
attention mechanism.

140 Malware also Needs “Attention”

6.3.2.1 API call level understanding – Word2Vec
To get a semantic understanding of the API call sequences, we use Word2Vec
[52]. Word2Vec is a popular method to generate meaningful representations
and understand the semantics of words and sentences and use it mainly for
natural languages by working on their inherent properties and structures. It
figures out the relation between different words and observing the similarities
in the structure of natural language sentences and API call sequences. We
apply the same to generate embeddings for various API calls and thus use it to
perform malware analysis.

The usage of Word2Vec allows us to measure the relationship between
different API calls at a word level in terms of a natural language.

6.3.2.2 Function and binary file level understanding – attention
To understand what the API calls and their corresponding functions represent
when they occur in a particular order. It is necessary to understand the context
in which they occur because it is possible that the same set of instructions
when arranged in one order, lead to a harmless file (which might not work
correctly) and dangerous malware. It is very similar to human languages,
where words and sentences, when arranged in different orders, lead to different
meanings.

We make use of attention [75] for this purpose of taking into consideration
the context of the different API calls and functions, along with the LSTM
layers. It offers a performance gain and helps in highlighting parts of sentences
that are of higher relevance and learn the semantics irrespective of the order in
which words, or phrases, occur.

We showcase our intention through Table 6.1. The first column shows a
sentence in the English language, and the words highlighted in [29] according
to their attention score related to the task given. We give three more examples
from our dataset [13] and the tasks being the functionality of the API
calls. We take three tasks – Cryptography, System Metrics, and Resource
Handling. The sentences are the 10-length sequences picked up directly from
the dataset. For Cryptography, CryptAcquireContextW, CryptCreateHash,
and CryptHashData are all examples of functions which are related to a
cryptograhic module which performs operations for authentication, encoding,
or encryption. In the System Metrics task, GetSystemMetrics is the API
function from Windows User Controls header file Winuser.h which provides
system metrics, for example, the width of a cursor in pixels, or the number of
display monitors on a desktop. The Resource Handling task also accurately

6.3 Proposed Methodology 141

Table 6.1 Attention visualization for API call sequence. The first column gives an example
of a sentence in English.

Task: Cleanliness Task: Cryptography Task: System metrics Task: Resource handling

Not CryptAcquireContextW GetSystemMetrics LoadResource
the NtOpenKey
 NtClose DrawTextExW

cleanest NtQueryValueKey
 GetSystemMetrics GetSystemMetrics

rooms NtClose
 NtAllocateVirtualMemory FindResourceExW

but NtOpenKey
 LdrLoadDll LoadResource

bed NtClose
 LdrGetProcedureAddress GetSystemMetrics

and LdrGetProcedureAddress LdrGetDllHandle DrawTextExW

bathroom CryptCreateHash FindResourceExW
 LdrGetDllHandle

was LdrGetProcedureAddress LoadResource
 FindResourceExW
clean CryptHashData FindResourceExW
 LoadResource

highlights the LoadResource and FindResourceExW functions which are used
to handle resources in the memory.

Firstly, to get a representation of the relationship between the API calls
at a function level, we model the functions as separate sentences and feed
them into an LSTM with an attention layer on top. The output is a vector
representation of a function which is formed by applying self-attention on the
constituent API calls of the function.

It is to be noted that the API call sequences obtained are usually wildly
varying in length and have a lot of repetitions, which makes it difficult for
them to be modeled as ordinary length sentences as found in human language.
Thus we preprocess the API calls by allowing only a set number of consecutive
repetitions of the same API call.

Further, we used the N-gram model and considered fixed-length sequences
of these API calls equivalent to one sentence of a human language. N-grams
constitute words, which makes N-grams sentences.

Subsequently, to establish a relationship between the different functions
and thus in the entire Binary file, we use a second LSTM layer with attention,
which works similarly to the previous LSTM layer, however, working with
vectors representing functions and not individual API calls. The output of
these two layers is a vector representation of the entire binary file, which
considers the order and contexts of its constituent API calls and functions.
Thus, it is an accurate representation of the properties of the file, much like
the embeddings produced by NLP models when a human language document
is passed through them.

. . .

SetFilePointerEx StartServiceW
Control Flow

NtWriteFile
	
GetFileSizeEx
	
SetEndOfFile
	
SetFileTime
	

MoveFileWithProgressW
	

SetFileAttributesW
	

NtReadFile
	
SetFilePointer
	
GetTempPathW
	

DeleteFileW
	

OpenServiceW

OpenSCManagerW

NtGetContextThread

GetVolumePathNameW

InternetOpenA
	

InternetSetOptionA
	

CreateProcessInternalW

InternetOpenW

InternetConnectA
	

InternetConnectW

Figure 6.3 API call sequences, and their respective 10 closest API functions.

142 Malware also Needs “Attention”

6.3.3 Network architecture

We train a custom Word2Vec model, as mentioned earlier. Word2Vec helps
us in getting embeddings for a completely new vocabulary of API call
sequences. We train the Word2Vec model on Dataset 1[13]. Figure 6.3 shows
a small snippet of an API call sequence. We present two API calls, namely
SetFilePointerEx and StartServiceV, and the top 10 closest API calls calculated
by measuring the cosine similarity between the embeddings generated by our
trained Word2Vec model. As observed in both the examples indicated in Figure
6.3, the functions found closest are quite related to the ones being compared.
For instance, StartServiceW is an API function to start a service, and the two
most similar API functions found are OpenServiceW and OpenSCManagerW.
These functions open an existing service, establish a connection to the service
control manager, and open the specified service control database. Similarly,
SetFilePointerEx also gives us closely related functions such as NTWriteFile
which writes data to an open file, and SetEndOfFile which sets the physical file
size for the specified file to the current position of the file pointer. It verifies the
fact that Word2Vec successfully train a model which identifies the semantics
between API calls.

In total, we experiment with two varieties of models. One of them is the
vanilla flavor, which contains two stacked LSTM layers with two linear layers.
In the second one, we attach an attention layer after each LSTM layer, which
we hypothesize will enable the representations to incorporate more relevant
and dominant API calls/sequences in the vector-space representations. This
will be passed to further layers to give us more meaningful and accurate
representations, hence delivering better results in identifying newer and fresh
malware.

. . .

6.4 Experiments and Results 143

Binary
File

Extract API
calls from
Binary

CryptAcquireContextW

GetSystemMetrics

LoadResource

NtOpenKey

NtClose

Preprocess
(Max 4

consecutive
repetitions)

Word2Vec
Embeddings

LS
TM
 w
ith
 A
tte
nt
io
n

LS
TM
 w
ith
 A
tte
nt
io
n

Li
ne
ar

Figure 6.4 Pipeline for our model.

With the above setup, we conduct experiments for both binary and eight-
way classification.

Furthermore, our model consists of an embedding layer that shares the
weights of the custom-trained Word2Vec model, from which we use the
embeddings v ∈ Rk . As mentioned above, we experiment with models
consisting of two stacked LSTM layers. The model with attention has single
attention layers succeeding each of the LSTM layers, after which follows a
batch normalization layer and two dense layers, which are common in both of
the models above.

Figure 6.4 shows the pipeline of our approach in which one may automate
the process using Cuckoo Sandbox before preprocess (Max 4 consecutive
repetitions) block. After the preprocess (Max 4 consecutive repetitions) block,
one may automate all the steps using our approach.

6.4 Experiments and Results

6.4.1 Experimental setup

For the conduction of experiments, we use two variants of our model
architecture as described in Network Architecture subsection of Proposed
Methodology section. We use a dropout rate of 0.2 in both our LSTM layers
and an N-gram size of 10 for our experiments. The length for N-gram was
chosen for reasons as referred to in [40]. We use the Adam optimizer with
default configuration for training. The word embedding size is set to 20, as
this value is giving us the maximum cosine similarity between related API
calls.

We conduct experiments by first freezing the Word2Vec embeddings,
pre-training the deep layers, and then unfreezing the Word2Vec layers for
fine-tuning to learn more robust features. In case any unknown API calls are
encountered in the input, they are given a < UNK > tag and are assigned
embeddings equal to the average of all embeddings corresponding to the
known API calls.

144 Malware also Needs “Attention”

Table 6.2 Results of experiments on Dataset 2 [60] on various models. The best results on
each malware type are in bold. The precision of the results is upto two decimal places for
consistency with the reported results in the literature.

Model Adware Backdoor Downloader Dropper Spyware Trojan Virus Worm Average

Adaboost [28] 0.76 0.52 0.69 0.57 0.41 0.51 0.74 0.57 0.60
Decision Tree [11] 0.45 0.40 0.51 0.37 0.11 0.16 0.41 0.78 0.40
kNN [77] 0.70 0.57 0.67 0.45 0.32 0.32 0.62 0.49 0.52
RF [12] 0.48 0.62 0.52 0.35 0.17 0.16 0.80 0.58 0.42
2-layer LSTM [35] 0.77 0.56 0.59 0.44 0.42 0.28 0.68 0.45 0.52

Ours (no Attention) 0.84 0.77 0.83 0.84 0.80 0.71 0.92 0.82 0.82
Ours (Attention) 0.94 0.85 0.96 0.87 0.84 0.77 0.96 0.88 0.88

In order to conduct ablation studies and showcase the advantages of using
attention for malware classification, we also present results without using the
attention mechanism after the LSTM layers. We perform our experiments,
modeling them as classification problems. For Dataset 1 [13], we classify the
samples as either malware or benign.

Similarly, we report the results using Dataset 2 [60]. Even this dataset is a
multi-class dataset, and we report the results as a binary classification problem
– performing classification as class 1 to be Trojan and 0 for other class once,
then in the next iteration, classifying the samples as class 1 to be Backdoor
and 0 for rest, and so on. We report the results in this fashion to be consistent
with the existing literature using this dataset and the relatively small quantity
of samples of each class available.

Evaluation metrics: The datasets we use are mostly unbalanced and
generally lean more toward one category than the other. For example, for
Dataset 2, as we are modeling it as a binary classification problem, the number
of samples with label 0 is approximately seven times that of those with label 0.
Thus along with accuracy, we need to report class-wise metrics such as Recall
to display our model’s robustness and classification abilities.

We also report the same metrics for Dataset 1 along with the Precision and
F1-score. However, we use the same number of test samples for both classes
in this dataset to maintain consistency with results in the literature.

6.4.2 Results

6.4.2.1 Dataset 1
It is necessary to make the number of training and testing samples equal for
Dataset 1, which is highly imbalanced, as described in Datasets subsection
to perform experiments. Thus, we randomly sample 1079 data points from

6.4 Experiments and Results 145

Table 6.3 Results of experiments on Dataset 1 [13] on various models. The best results for
each metric are in bold.

Method F1-score Precision Recall Accuracy

1-Layer DGCNN [13] 0.9076 0.8879 0.9283 0.9105
2-Layer DGCNN [13] 0.9201 0.9216 0.9186 0.9244
LSTM [35] 0.8738 0.8542 0.8932 0.8727

Our approach (no Attention) 0.9586 0.9508 0.9667 0.9583
Our approach (Attention) 0.9697 0.9586 0.9810 0.9693

malware, take all the 1079 data points from the benign category, and then
randomly divide these in the ratio of 7:3 in the train to test data. The remaining
samples from malware class are discarded as they result in an imbalance in
training. This exact procedure is followed by the original paper presenting the
dataset, [13], which ensures experimental consistency.

We compare the results of both methods with and without attention with the
results presented by [13], that is, using 1 and 2 layer deep graph convolutional
neural networks and a two-layer LSTM. The results using various evaluation
metrics are shown in Table 6.3.

As see in the results present in Table 6.3, our methods far outperform
the results of the methods reported in [13]. We also report the accuracy of a
two-layer LSTM method. We feed-forward the outputs from the first LSTM to
the second without using any N-grams and concatenating them before being
passed as input in the second LSTM layer. The results on a single-layer LSTM
come out to be even lower than the DGCNN results. It shows that using just the
recurrent properties of LSTM is not enough to ensure enough attention paid to
the inputs and the context in the API calls is taken care of by the network.

Our results are also visibly better when using attention with our method,
as compared to without it. It shows that using just Word2Vec embeddings is
not enough to ensure that the network utilizes the context-dependence of the
API calls. We need a dedicated attention mechanism to ensure that the context
is utilized.

6.4.2.2 Dataset 2
Dataset 2 is relatively complicated, as mentioned in Datasets subsection.
The API calls in this dataset are repeating in nature and also are varying
significantly in length. Thus, it is important to preprocess this dataset.

146 Malware also Needs “Attention”

We observe that the significant variation in lengths from 10 to 400K is
mostly due to repetitions. If we removed any two consecutive calls to the same
API function, it resulted in a maximum length of 345 API calls. Thus, to test
the effectiveness of our formulation, we allowed a small amount of repetition
in which we let a maximum of four consecutive calls to the same API function
to get our final data points. In contrast, excessive repetitions are removed, and
the first distinct function call took its place after all the repeats.

Subsequently, we obtain a dataset where the maximum length of the input
is 485, while the shortest length stays at 10. In order to ensure good results
and make sure that this high variation in lengths does not cause a problem in
classification, we trim the API call sequences to a maximum length of 200.

Following these preprocessing methods allow us to get our final dataset
to conduct experiments. We again use this dataset in a binary classification
setting for comparing with other results available in the literature. Thus to
perform experiments on one class, we labeled all the samples belonging to
that class as 1 and the remaining samples as 0. We use an 8:2 ratio train-test
split, ensuring that the number of samples with label 1 and 0 are equal in the
training and testing data to demonstrate our performance better.

We compare the results of both of our methods with the results present
in [60], which uses a simple two-layer feedforward LSTM, learning the
embeddings while training. We also compare our results with popular machine
learning algorithms which do not utilize deep feature extraction layers, using
TF-IDF vectors as the embeddings. The results are presented in Table 6.2. We
report the class-wise accuracy as it is a multi-class dataset.

As we see in Table 6.2, both our methods perform much better than
the other methods in all the tasks and have a significant boost in the
mean performance per class. Our methods also perform very well on the
harder classification tasks in this dataset: Spyware and Trojan (which have
significantly less recall values when the other methods are used).

Similar to Table 6.3, our attention-based method performs better than the
method without attention, even in Table 6.2.

6.5 Conclusion

In this work, we explore a way for analyzing the maliciousness in the program
using the API call sequences present in that. We utilize the inherent structure
of these API call graphs by looking at their similarity with the dependency
graphs of the English language. It hints us to go for the domain of natural
language processing naturally.

6.5 Conclusion 147

Hence, we design an NLP-based detection framework for the detection
of malicious programs. Modeling the API segments in the English language
sentences and then learning the features using techniques like “Attention”
and NLP models like LSTMs help us produce better results than previous
work adopting similar methods. The experimental results also show that our
approach is stable and efficient across different datasets. Our work effectively
explores the application of NLP-based techniques in the malware analysis
field, which can have important significance on future researches in this field.
In future work, one may explore more complex NLP-based primitives like
transformers instead of LSTMs and deploying the method as a practical
application is also a potential future work after optimizing the technique
and pipeline further.

https://taylorandfrancis.com

Part III

IDS

149

https://taylorandfrancis.com

7

Implementation of an Intrusion Detection

System and Deception Technologies using

Open Source Tools for Small Businesses

Purushartha Srivastava and Kalpesh Seludkar

E-mail: purusharthasrivastava1993@gmail.com; kseludkar13@gmail.com

Abstract

Small businesses are considered the backbone of any country’s economy.
Therefore, keeping functioning the business is very crucial to ensure economic
growth. We all know how today’s business giants, Google, Amazon, and
Apple, started as small startups and where they are today. Today, almost
all businesses are being run and operated through the Internet. It exposes
a business to various vulnerabilities and threats. A study says that small
businesses fall victim to ransomware attacks every 14 seconds, and 60% of
small businesses go out of business within six months of a cyber Attack. So,
what if a business goes out of business at the startup phase? We might lose
the next business giant. Our proposed model is to implement the network
and host-based intrusion detection system and deception technologies, i.e.,
Honeypots. All implementations are done using open-source tools to provide
cost-efficient but effective solutions to small businesses who either do not
have a cybersecurity budget or lack cybersecurity knowledge and expertise.
We deployed Cowrie Honeypot, WordPress Honeypot, Mailoney Honeypot,
and Dionaea Honeypot to publish the common services on the Internet. We
deployed Suricata network intrusion detection system (NIDS) for network
traffic analysis and network-based intrusion detection. Wazuh is deployed
on each honeypot to detect host-specific threats and misconfigurations. A
centralized management server (CMS) is built on Elasticsearch Cluster that

151

mailto:purusharthasrivastava1993@gmail.com
mailto:kseludkar13@gmail.com

152 Implementation of an Intrusion Detection System and Deception Technologies

indexes and stores all the logs from all honeypots and forwards them to Wazuh
Manager for event correlation and trigger alerts in case of any cyberattack or
anomaly detected.

7.1 Introduction

The Internet is growing fast in terms of users, data, and connected devices, and
this rapid growth has increased people’s dependency on the Internet. There
are around 200 billion devices connected to the Internet in the present cyber
world, and the number is expected to increase as remote work has become
more commonplace after the COVID-19 pandemic. It increases the attack
surface and opens opportunities for hackers and ransomware, which means
that cybersecurity has become the most important than ever in today’s Internet
world. The number of cyberattacks varies from day to day and is increasing
consistently.

It is hard to build proper controls and monitoring mechanisms to prevent all
cyberattacks. All large-and medium-scale companies usually have dedicated
budgets and resources for cybersecurity, but small businesses consider this as
an unnecessary cost until a cyberattack impacts them.

Technologies evolve day by day as similar attackers apply attacks with
new strategies. We always try to find the intention of the attacker and
what strategies/tools they employ to attack systems. Knowing the attacker’s
intentions and strategies can mitigate the threat at the earliest. All the gathered
information always helps to prevent attacks and protect the business.

This work describes how such small-scale businesses can deploy different
honeypots resembling their technology stacks for gathering and analyzing
threat intelligence data. This study provides insight into the honeypot deploy­
ment on the cloud with different geolocation, building real-time analytics capa­
bilities and using HIDS and NIDS. It will help to analyze the real-time attacks
on our honeypots and enhance the cybersecurity of the production system.

7.2 Tool Setup and Architecture

This section describes the high-level architecture of our work. It includes an
introduction to the tools and technology we have used in this work. We have
used draw.io [3] application to draw our project architecture diagram. Draw.io
is a free diagramming application to draw diagrams and create flowcharts
within the browser. It has a rich set of shapes, including software, servers,
networking shapes, and Icons.

7.2 Tool Setup and Architecture 153

Figure 7.1 Architecture of proposed work.

We used Digital Ocean [36] cloud platform to host central management
server (CMS) and honeypot servers. Digital Ocean is a cloud infrastructure
provider that allows to create virtual private servers (also known as droplets).
Each droplet is an individual virtual machine (VM) which is easy to deploy,
manage, and scalable. We utilized the droplets to host different honeypots at
different data centers located in different locations globally, though easy to
manage from a single web-based UI. Digital Ocean platform has SSD-based
virtual machines to optimize the performance at the most affordable cost. It
is possible because of the hourly and monthly payment option, which helps
manage the expense based on the requirement.

Our work architecture is divided into two parts – central management
server (CMS) and endpoints or honeypots, as highlighted in Figure 7.1.

7.2.1 Central management server (CMS)

The central management server (CMS) is the main component of this project.
It has several sub-components, such as the Elasticsearch, the centralized
data storage for all logs from all endpoints and honeypots forwarded by the
Wazuh agent. Wazuh manager collects the logs and performs normalization
and enrichment on logs. The filebeat agent then transports the enriched logs

154 Implementation of an Intrusion Detection System and Deception Technologies

to Elasticsearch for indexing. Kibana is the web interface to view the logs
and create visualization and dashboard for better understanding. The wazuh
manager performs event correlation and threat intelligence and triggers an
alert when it detects an anomaly or cyberattack, which is then forwarded to
the Slack notification. Various CMS components are as follows:

7.2.1.1 OpenDistro for Elasticsearch
Open Distro for Elasticsearch [8] is an open-source tool which combines
the OSS distributions of Elasticsearch and Kibana with a large number
of open-source plugins. These plugins play an important role in the OSS
distributions.

7.2.1.2 Wazuh manager
The wazuh manager analyzes the data received from honeypots and endpoints,
processes events through decoders and rules, and uses threat intelligence to
look for well-known IOCs (indicators of compromise). A single wazuh man­
ager analyzes data from hundreds or thousands of endpoints and can be scaled
when set up in cluster mode. The manager is also used to manage the agents,
configuring and upgrading them remotely when necessary. Additionally, the
server can send commands or instructions to the agents to trigger a response
when a threat is detected. There are two different options for deploying wazuh
which are as follows:

• All-in-one deployment: Wazuh and Open Distro for Elasticsearch are
installed on the same host.

• Distributed deployment: Each component is installed on a separate host
as a single-node or multi-node cluster. This type of deployment provides
high availability and scalability of the product, and it is convenient for
large working environments.

7.2.1.3 Suricata
We know that most security issues are successfully detected by inspecting
a server’s network traffic. It is where a NIDS (Network intrusion detec­
tion system) can provide additional insight into the network [72]. Suricata
is one such NIDS solution, which is open-source and can be quickly
deployed. Because Suricata can generate JSON logs of NIDS events, it
integrates perfectly with Wazuh. We installed Suricata on CMS and all
honeypot servers to capture live network traffic and analyze the traffic for
cyberattack.

7.2 Tool Setup and Architecture 155

7.2.1.4 Nginx reverse proxy
A reverse proxy works on behalf of a server, intercepting traffic and routing
it to a separate server. There are several reasons you might want to install a
reverse proxy. One of the main reasons is privacy. A reverse proxy can help
balance loads between servers and improve performance if you have multiple
servers. As a reverse proxy provides a single point of contact for clients, it
can centralize logging and report across various servers. Nginx can improve
performance by serving static content quickly and passing dynamic content
requests to Apache servers [66].

7.2.2 Endpoints or honeypots

A honeypot is a server configured to detect an intruder by mirroring a real
production system. It is configured as an ordinary server doing work, but this is
a trap for an attacker. Honeypots are the best way to learn more about how the
attacker exploits different services. Capture and monitor attacker activity
in an isolated environment and gather information about attacker tactics
and techniques. There are two types of honeypots, high-interaction and low-
interaction. These types are defined based on the honeypot system’s protocol
services or interaction level when the attacker interacts with the system as they
would any regular server operating system, to capture much information about
the attacker’s techniques, known as high-interaction honeypots.

In low-interaction honeypots, we emulated services with a limited subset
of the functionality attacker would expect from a server, with the intent of
detecting sources of a hacker’s activity. We capture a minimal amount of data
in low-interaction honeypots. We have deployed various honeypots in this
work which are as follows:

7.2.2.1 Cowrie honeypot
Cowrie honeypot is implemented to emulate a vulnerable SSH and Telnet
server. This honeypot is implemented to capture the attacker’s technique
which they applied to access the SSH server.

7.2.2.2 WordPress honeypot
WordPress honeypot invites attackers to perform an attack on the WordPress
website configured on LAMP. It detects probes for plugins, themes, and other
common files used to fingerprint a WordPress installation. We include the
following component in WordPress honeypot:

156 Implementation of an Intrusion Detection System and Deception Technologies

• Web Server Apache: The Apache HTTP server is an open-source web
server that is cross-platform software and freely available on the Internet,
released under Apache License 2.0. It comes under Apache Software
Foundation, and it is developed and maintained by an open community
of developers. The Apache HTTP server is the most popular HTTP client
on the web. Apache is a component of the most common web application
stacks, LAMP or Linux, Apache, MySQL, and PHP, which are used as a
web server, and this is needed for a web application stack to deliver web
content.

• Database MySQL: MySQL is also the most popular component of
LAMP, and it is an open-source relational database management system
(RDBMS). A database stores data into one or more data tables and set­
up the relationship between tables, such as one-to-one, one-to-many
relations. We use relational databases to maintain a large amount of data
and access the expected records. Structure query language is used to
create, update, and fetch the records from relation databases and control
users to access relational databases.

• PHP: PHP stands for Hypertext Preprocessor. PHP is one of the most
widely used server-side scripting languages for web application devel­
opment. Popular websites like Facebook, Wikipedia, Yahoo, etc. It is a
scripting language used to develop static and dynamic web pages and
applications.

7.2.2.3 Honeypot dionea
Dionaea honeypot is implemented to emulate vulnerable services like FTP,
HTTP, SMB, etc., capture the attacker’s behavior and collect binaries
transferred to the server by intruders.

7.2.2.4 Honeypot mailoney
Mailoney honeypot is used for the SMTP service, written in Python. Some
modules or types provide custom modes to fit your needs, like open_relay,
postfix_creds, and schizo_open_relay.

• open_relay: We will attempt to log full-text emails attempted to be sent,
it is just an open relay.

• Postfix_creds: This module logs credentials from login creds attempts.
• schizo_open_relay: This module logs everything and supports the
functionality of open relay and postcreds.

7.3 Implementation of Tools 157

We have configured two Windows 10 machines to capture and analyze the
logs. We have installed Wazuh agent on both systems to forward all logs to
Wazuh manager. It will include Windows event logs, service logs, network
logs, scan installed applications, and Windows update logs.

7.2.2.5 Wazuh agent
The Wazuh lightweight agent is designed to perform several tasks with the
objective of detecting threats and, when necessary, trigger automatic responses.
The agent’s core capabilities are as follows:

• Log and events data collection
• File and registry keys integrity monitoring
• Inventory of running processes and installed applications
• Monitoring of open ports and network configuration
• Detection of rootkits or malware artifacts
• Configuration assessment and policy monitoring
• Execution of active responses

The Wazuh agents run on many different platforms, including Windows,
Linux, Mac OS X, AIX, Solaris, and HP-UX. They can be configured and
managed from the Wazuh server.

7.3 Implementation of Tools

In this section, we see the implementation of individual components we
discussed in the tool architecture Section 7.2 and how we integrated the
components to detect real-world intrusions.

7.3.1 Create droplet on digital ocean

We created droplets on a DigitalOcean cloud platform for every honeypot
server and CMS. By following the steps, one can create DigitalOcean droplet.

• Logging in to DigitalOcean: Sign up or login to DigitalOcean platform
using the link https://cloud.digitalocean.com/login. Once logged in, go to
DigitalOcean dashboard, then click on Create button to initiate droplet
creation. The dashboard is shown in Figure 7.2.

• Choosing an image: Next, we choose an image of the “64-bit Ubuntu
16.04" OS for CMS and honeypots servers both.

https://www.cloud.digitalocean.com

158 Implementation of an Intrusion Detection System and Deception Technologies

Figure 7.2 DigitalOcean dashboard.

• Choosing a size: Then, we choose the amount of RAM and storage space
according to our need. We used 16 GB RAM and 320 GB storage images
for CMS.

• Adding backups: Then, we can automatically enable backups and a
snapshot of the live system, and this image can restore the existing
droplet or create a new one according to need.

• Choosing a data center region: We choose the data center reason.
• Select SSH keys: We use SSH key-based authentication, which provides
more security and convenience.

• Finalizing and creating: We provide any hostname to your newly
created droplet [20].

7.3.2 Deploying Wazuh with open Distro for Elasticsearch

This section shows how to install Elasticsearch, Wazuh manager, Filebeat, and
Kibana on the newly created droplet.

Installing Wazuh manager: The Wazuh installation on CMS starts with
adding the Wazuh repository and installing the necessary packages for the
installation [21].

1 # apt i n s t a l l cu r l apt - t ransport - https unzip wget l ibcap2 ­
bin so ftware - p r ope r t i e s - common l sb - r e l e a s e gnupg

2

3 I n s t a l l the GPG key :
4 # cu r l - s https : // packages . wazuh . com/key/GPG-KEY-WAZUH | apt

- key add ­

https://www.packages.wazuh.com

7.3 Implementation of Tools 159

5

6 Add the r e po s i t o r y :

7 # echo "deb https : // packages . wazuh . com/4 . x/apt/ s t ab l e main"

| t e e - a / e t c /apt/ sourc e s . l i s t . d/wazuh . l i s t
8

9 Update the package i n fo rmat ion :
10 # apt - get update
11

12 I n s t a l l the Wazuh manager package :
13 # apt - get i n s t a l l wazuh - manager
14

15 Enable and s t a r t the Wazuh manager s e r v i c e :
16 # sy s t emct l daemon - r e l oad
17 # sy s t emct l enable wazuh - manager
18 # sy s t emct l s t a r t wazuh - manager

Installing Elasticsearch:

1 I n s t a l l E l a s t i c s e a r c h OSS and Open Dist ro f o r E l a s t i c s e a r c h :
2 # apt i n s t a l l e l a s t i c s e a r c h - o s s o p e n d i s t r o f o r e l a s t i c s e a r c h

Configuring Elastic search:

1 Run the f o l l ow i n g command to download the c on f i gu r a t i on f i l e
/ e tc / e l a s t i c s e a r c h / e l a s t i c s e a r c h . yml :

2 # cu r l - so / e tc / e l a s t i c s e a r c h / e l a s t i c s e a r c h . yml https : //

packages . wazuh . com/ r e s ou r c e s /4 .2/ open - d i s t r o /

e l a s t i c s e a r c h /7 . x/ e la s t i c s ea rch_a l l_ in_one . yml

Elasticsearch users and roles: running the commands will add users in
Wazuh Kibana plugin.

1 Run the f o l l ow i n g commands to add the Wazuh use r s and r o l e s

in Kibana :

2 # cu r l - so / usr / share / e l a s t i c s e a r c h / p lug in s /

opend i s t ro_secur i ty / s e c u r i t y c o n f i g / r o l e s . yml https : //

packages . wazuh . com/ r e s ou r c e s /4 .2/ open - d i s t r o /

e l a s t i c s e a r c h / r o l e s / r o l e s . yml

3

4 # cu r l - so / usr / share / e l a s t i c s e a r c h / p lug in s /

opend i s t ro_secur i ty / s e c u r i t y c o n f i g / roles_mapping . yml

https : // packages . wazuh . com/ r e s ou r c e s /4 .2/ open - d i s t r o /

e l a s t i c s e a r c h / r o l e s / roles_mapping . yml

5

6 # cu r l - so / usr / share / e l a s t i c s e a r c h / p lug in s /

opend i s t ro_secur i ty / s e c u r i t y c o n f i g / in t e rna l_use r s . yml

https : // packages . wazuh . com/ r e s ou r c e s /4 .2/ open - d i s t r o /

e l a s t i c s e a r c h / r o l e s / in t e rna l_use r s . yml

https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com

160 Implementation of an Intrusion Detection System and Deception Technologies

• wazuh_user: It is created for users who need read-only access to the
Wazuh Kibana plugin.

• wazuh_admin: It is recommended for users who need administrative
privileges.
These users created by running the above commands can be used to log
in to Kibana console, but they are protected, and modification cannot be
done from the Kibana console. One must run a security admin script to
modify or add new users or roles.
Certificates creation: Remove the demo certificates.

1 # rm / e tc / e l a s t i c s e a r c h /esnode - key . pem / e tc /
e l a s t i c s e a r c h / esnode . pem / e tc / e l a s t i c s e a r c h / kirk - key .
pem / e tc / e l a s t i c s e a r c h / k i rk . pem / e tc / e l a s t i c s e a r c h /
root - ca . pem - f

2

3 # cu r l - so ~/wazuh - cert - t o o l . sh https : // packages . wazuh .
com/ r e s ou r c e s /4 .2/ open - d i s t r o / t o o l s / c e r t i f i c a t e ­
u t i l i t y /wazuh - cer t - t o o l . sh

4

5 # cu r l - so ~/ in s t an c e s . yml https : // packages . wazuh . com/
r e s ou r c e s /4 .2/ open - d i s t r o / t o o l s / c e r t i f i c a t e - u t i l i t y /
i n s tances_a io . yml

6

7 Run the wazuh - cer t - t o o l . sh to c r e a t e the c e r t i f i c a t e s :
8 # bash ~/wazuh - cer t - t o o l . sh
9

10 Move the E l a s t i c s e a r c h c e r t i f i c a t e s to t h e i r

cor re spond ing l o c a t i o n :

11 # mkdir / e tc / e l a s t i c s e a r c h / c e r t s /
12 # mv ~/ c e r t s / e l a s t i c s e a r c h * / e tc / e l a s t i c s e a r c h / c e r t s /
13 # mv ~/ c e r t s /admin* / e tc / e l a s t i c s e a r c h / c e r t s /
14 # cp ~/ c e r t s / root - ca* / e tc / e l a s t i c s e a r c h / c e r t s /
15

16 Enable and s t a r t the E l a s t i c s e a r c h s e r v i c e :
17 # sy s t emct l daemon - r e l oad
18 # sy s t emct l enable e l a s t i c s e a r c h
19 # sy s t emct l s t a r t e l a s t i c s e a r c h
20

21 Run the E l a s t i c s e a r c h secur i tyadmin s c r i p t to load the
new c e r t i f i c a t e s i n fo rmat ion and s t a r t the c l u s t e r :

https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com
https://www.packages.wazuh.com

7.3 Implementation of Tools 161

22 # export JAVA_HOME=/usr / share / e l a s t i c s e a r c h / jdk / && / usr
/ share / e l a s t i c s e a r c h / p lug in s / opend i s t ro_secur i ty /
t o o l s / secur i tyadmin . sh - cd / usr / share / e l a s t i c s e a r c h /
p lug in s / opend i s t ro_secur i ty / s e c u r i t y c o n f i g / -nhnv ­
c a c e r t / e tc / e l a s t i c s e a r c h / c e r t s / root - ca . pem - c e r t /
e t c / e l a s t i c s e a r c h / c e r t s /admin . pem - key / e tc /
e l a s t i c s e a r c h / c e r t s /admin - key . pem

23

24 Run the f o l l ow i n g command to ensure that the

i n s t a l l a t i o n i s s u c c e s s f u l :

25 # cu r l -XGET https : // l o c a l h o s t :9200 -u admin : admin -k

26

27 An example re sponse should l ook as f o l l ow s :

28 Output

29 {

30 "name" : "node -1 " ,

31 "cluster_name" : " e l a s t i c s e a r c h " ,

32 " c luster_uuid " : "tWYgqpgdRz6fGN8gH11flw" ,

33 " ve r s i on " : {

34 "number" : " 7 . 1 0 . 2 " ,

35 " bu i ld_f l avor " : " os s " ,

36 "build_type " : "rpm" ,

37 "build_hash" : "747 e1cc71def077253878a59143c1f785afa92b9

" ,
38 "build_date " : " 2021 -01 -13T00 : 42 : 12 . 435326Z" ,
39 "bui ld_snapshot " : f a l s e ,
40 " lucene_vers ion " : " 8 . 7 . 0 " ,
41 "minimum_wire_compatibil ity_version" : " 6 . 8 . 0 " ,
42 "minimum_index_compatibility_version" : " 6 . 0 . 0 - beta1 "
43 } ,
44 " t a g l i n e " : "You Know, f o r Search "
45 }

7.3.3 Installing Filebeat

Filebeat is the central management server tool that forwards alerts and archived
events to Elasticsearch Cluster.

1 I n s t a l l the Fi l eb ea t package :
2 # apt - get i n s t a l l f i l e b e a t
3

4 Download the precon f i gu r ed F i l ebea t c on f i g u r a t i on f i l e :
5 # cu r l - so / e tc / f i l e b e a t / f i l e b e a t . yml https : // packages . wazuh

. com/ r e s ou r c e s /4 .2/ open - d i s t r o / f i l e b e a t /7 . x/

f i l ebeat_al l_in_one . yml

https://www.localhost:9200
https://www.packages.wazuh.com
https://www.packages.wazuh.com

162 Implementation of an Intrusion Detection System and Deception Technologies

6

7 Download the a l e r t s template f o r E l a s t i c s e a r c h :

8 # cu r l - so / e tc / f i l e b e a t /wazuh - template . j son https : // raw .

g i thubuse rcontent . com/wazuh/wazuh /4 .2/ ex t en s i on s /
e l a s t i c s e a r c h /7 . x/wazuh - template . j s on

9 # chmod go+r / e tc / f i l e b e a t /wazuh - template . j s on
10

11 Download the Wazuh module f o r F i l eb ea t :
12 # cu r l - s https : // packages . wazuh . com/4 . x/ f i l e b e a t /wazuh ­

f i l e b e a t - 0 . 1 . ta r . gz | ta r - xvz -C / usr / share / f i l e b e a t /
module

13

14 Copy the E l a s t i c s e a r c h c e r t i f i c a t e s i n to / e t c / f i l e b e a t / c e r t s
:

15 # mkdir / e tc / f i l e b e a t / c e r t s
16 # cp ~/ c e r t s / root - ca . pem / e tc / f i l e b e a t / c e r t s /
17 # mv ~/ c e r t s / f i l e b e a t * / e tc / f i l e b e a t / c e r t s /
18

19 Enable and s t a r t the F i l eb ea t s e r v i c e :
20 # sy s t emct l daemon - r e l oad
21 # sy s t emct l enable f i l e b e a t
22 # sy s t emct l s t a r t f i l e b e a t
23

24 To ensure that F i l ebea t i s s u c c e s s f u l l y i n s t a l l e d , run the
f o l l ow i ng command :

25 # f i l e b e a t t e s t output
26

27 An example re sponse should l ook as f o l l ow s :
28 Output
29 e l a s t i c s e a r c h : https : / / 1 2 7 . 0 . 0 . 1 : 9 2 0 0 . . .
30 parse u r l . . . OK
31 connect ion . . .
32 parse host . . . OK
33 dns lookup . . . OK
34 addre s s e s : 1 2 7 . 0 . 0 . 1
35 d i a l up . . . OK
36 TLS . . .
37 s e c u r i t y : se rver ’ s c e r t i f i c a t e chain v e r i f i c a t i o n i s enabled
38 handshake . . . OK
39 TLS ve r s i on : TLSv1 . 3
40 d i a l up . . . OK
41 t a l k to s e r v e r . . . OK
42 ve r s i on : 7 . 1 0 . 2

https://www.raw.githubusercontent .com
https://www.packages.wazuh.com/4.x/filebeat/wazuh�filebeat-0.1.tar.gz
https://www.packages.wazuh.com/4.x/filebeat/wazuh�filebeat-0.1.tar.gz
https://www.raw.githubusercontent .com
https ://www.127.0.0.1:9200

7.3 Implementation of Tools 163

7.3.4 Installing Kibana

Kibana is a web interface for visualizing the events, alerts, and archives events.

1 To i n s t a l l the Kibana package :
2 # apt - get i n s t a l l op e nd i s t r o f o r e l a s t i c s e a r c h - kibana
3

4 Download the Kibana c on f i gu r a t i on f i l e :
5 # cu r l - so / e tc /kibana/kibana . yml https : // packages . wazuh . com

/ r e s ou r c e s /4 .2/ open - d i s t r o /kibana /7 . x/kibana_all_in_one .
yml

In the /etc/kibana/kibana.yml file, the setting server.host has a default value
of 0.0.0.0, which means the Kibana interface can be accessed from anywhere
outside. This value can be changed for a specific IP. In our case, we have
changed it to 69.55.54.251.

1 Create the / usr / share /kibana/data d i r e c t o r y :

2 # mkdir / usr / share /kibana/data

3 # chown -R kibana : kibana / usr / share /kibana/data

Now, install the Wazuh Kibana plugin. The installation of the plugin must
be done from the Kibana home directory as follows:

1 # cd / usr / share /kibana

2 # sudo -u kibana / usr / share /kibana/bin /kibana - p lug in i n s t a l l

https : // packages . wazuh . com/4 . x/ u i / kibana/wazuh_kibana

- 4 . 2 . 3_7 . 1 0 . 2 - 1 . z ip

3

4 Copy the E l a s t i c s e a r c h c e r t i f i c a t e s i n t o / e tc / kibana/ c e r t s :

5 # mkdir / e tc /kibana/ c e r t s

6 # cp ~/ c e r t s / root - ca . pem / e tc /kibana/ c e r t s /

7 # mv ~/ c e r t s / kibana* / e tc /kibana/ c e r t s /

8 # chown kibana : kibana / e tc /kibana/ c e r t s /*

9

10 Enable and s t a r t the Kibana s e r v i c e :
11 # sy s t emct l daemon - r e l oad
12 # sy s t emct l enable kibana
13 # sy s t emct l s t a r t kibana

7.3.5 Installing Nginx as a reverse proxy

In this section, we will see how to install and configure the Nginx server as a
reverse proxy [57].

1 To i n s t a l l Nginx from Defau l t Repo s i t o r i e s :

2 # sudo apt - get update

https://www.packages.wazuh.com/4.x/filebeat/wazuh�filebeat-0.1.tar.gz
https://www.packages.wazuh.com/4.x/filebeat/wazuh�filebeat-0.1.tar.gz
https ://www.packages .wazuh.com

5

10

15

20

25

30

35

40

164 Implementation of an Intrusion Detection System and Deception Technologies

3 # sudo apt - get i n s t a l l nginx
4

Once the i n s t a l l a t i o n completed , to s t a r t Nginx :
6 # sudo sy s t emct l s t a r t nginx
7

8 And to c on f i gu r e i t to s t a r t at the time system boot , enable
Nginx s e r v i c e us ing :

9 # sudo sy s t emct l enable nginx

11 To check Nginx i s running :

12 # sudo sy s t emct l s t a tu s nginx

13

14 Now we w i l l c on f i gu r e i t as a Reverse Proxy .

16 Fir s t , we need to un l ink the Defau l t Conf igurat ion F i l e . To
do that :

17 # sudo unl ink / e t c /nginx/ s i t e s - enabled / d e f au l t
18

19 c r e a t e a new c on f i gu r a t i on f i l e :
sudo v i / e tc /nginx/ s i t e s - a v a i l a b l e / reverse_proxy . conf

21

22 Edit the c on f i gu r a t i on f i l e with any ed i t o r and add below
c on f i gu r a t i on block . We w i l l ensure to r e d i r e c t HTTP
t r a f f i c to HTTPS

23

24	 s e r v e r {
l i s t e n 80 de fau l t_se rve r ;

26	 server_name _;
27	 re turn 301 https : // $host$request_ur i ;
28	 }
29	 s e r v e r {

l i s t e n 443 ;
31	 s s l on ;
32	 s s l _ c e r t i f i c a t e / e tc /nginx/ c e r t . c r t ;
33	 s s l_c e r t i f i c a t e_key / e tc /nginx/ c e r t . key ;
34	 access_log /var / log /nginx/ reve r s e - a c c e s s . l og ;

er ror_log /var / log /nginx/ reve r s e - e r r o r . l og ;
36	 l o c a t i o n / {
37	 proxy_pass https : / / 6 9 . 5 5 . 5 4 . 2 5 1 : 5 6 0 1 ;
38	 }
39	 }

41 Now, we w i l l l i n k and a c t i v a t e the new Conf igurat ion F i l e .
To do that , run :

42 ln - s / e tc /nginx/ s i t e s - a v a i l a b l e / reverse_proxy . conf / e tc /
nginx/ s i t e s - enabled / reverse_proxy . conf

https ://www.69.55.54.251:5601

7.3 Implementation of Tools 165

Figure 7.3 Kibana login console.

43

44 Test the new c on f i gu r a t i on :
45 # sudo s e r v i c e nginx c o n f i g t e s t
46

47 Restart the NGINX s e r v i c e :
48 # sudo s e r v i c e nginx r e s t a r t

Once the Nginx service is started, now you can access the Kibana console
over https from your browser at https://69.55.54.251 as shown in Figure 7.3.

One can now log in to Kibana console with the wazuh_user or
wazuh_admin user we have created during the Installing Elasticsearch section.

7.3.6 Installing Suricata on CMS

We have installed Elasticsearch, Wazuh manager, and Kibana on central
management server. Wazuh is undoubtedly one of the best host intrusion
detection system (HIDS), but that’s not enough. We want our intrusion
detection system (IDS) to capture network traffic and identify network-based
intrusions. For that, we will use Suricata, which is a network intrusion detection
system (NIDS) [68].

1 I n s t a l l dependenc ies by running the f o l l ow i ng command :

https://www.69.55.54.251:5601

166 Implementation of an Intrusion Detection System and Deception Technologies

2 # apt - get i n s t a l l l i b p c r e 3 l i bpc r e3 - dbg l i bpc r e3 - dev bui ld -

e s s e n t i a l l ibpcap - dev \

3 l i bne t1 - dev l ibyaml -0 -2 l ibyaml - dev pkg - c on f i g z l i b 1 g z l i b1g
- dev \

4 l ibcap - ng - dev l ibcap - ng0 make l ibmagic - dev \

5 l i bn s s 3 - dev l i b g eo ip - dev l i b l u a 5 . 1 - dev l i b h i r e d i s - dev

l i b event - dev \

6 python - yaml ru s t c cargo

7

8 Now, we w i l l i n s t a l l Sur i ca ta from Ubuntu PPA. The OISF

maintains a PPA su r i c a ta - s t ab l e f o r Ubuntu . To use i t :

9 # sudo add - apt - r e p o s i t o r y ppa : o i s f / su r i ca ta - s t ab l e
10 # sudo apt - get update
11 # sudo apt - get i n s t a l l s u r i c a t a
12

13 Enable and s t a r t the Sur i ca ta s e r v i c e :
14 # sy s t emct l daemon - r e l oad
15 # sy s t emct l enable s u r i c a t a
16 # sy s t emct l s t a r t s u r i c a t a

Configure Suricata on CMS Server: Once the Suricata is installed and
running, we first need to update the available ruleset. To do that, run the
following command:

1 # sudo su r i c a ta - update

suricata-update is the official way to update and manage rules for
Suricata. The command will download the ruleset into /var/lib/suricata/rules/
(Please note down the location, you can tweak or disable the available rule
whenever required) [73].

Automatically updating rulesets
Updating the ruleset manually every time is not a practical solution. Still,

at the same time, it is essential to keep the rulesets up to date so that Suricata
can detect intrusions. To achieve the goal, we will take help from the cron job
that executes suricata-update every Sunday at 00:00.

Open the terminal and enter the crontab -e command to do that. In the next
windows, add the following line:

1 # 0 0 * * SUN su r i c a ta - update

One of the cool things about Suricata is that it offers using other rule-
sets with suricata-update. To see the available ruleset, run the following
command:

1 # sudo su r i ca ta - update update - s our c e s

7.3 Implementation of Tools 167

Then have a look at what is available:

1 # sudo su r i ca ta - update l i s t - s ou r c e s

Figure 7.4 shows the available ruleset with Suricata. One can enable any
ruleset easily but want to keep an eye on the license part. The ruleset with
license as commercial is not a free one and might need to put a secret code
to enable the ruleset, which gets from the vendor after making payment. In
contrast, one can enable a free ruleset with suricata-update.

For example, to enable the oisf/trafficid ruleset, you can run following
command:

1 # sudo su r i ca ta - update enable - source o i s f / t r a f f i c i d
2 # sudo su r i ca ta - update
3 # sy s t emct l r e s t a r t s u r i c a t a

To see the currently active rulesets, use list-enabled-sources. Once you
have identified and configured the correct ruleset, Suricata is ready to identify
and protect the network from the external entity. Still, before that, we need
to define our internal and external networks. One can do it by editing

Figure 7.4 Suricata available request

168 Implementation of an Intrusion Detection System and Deception Technologies

the Suricata configuration file, which is located at the following location
/etc/suricata/suricata.yaml:

1 # nano / e tc / s u r i c a t a / s u r i c a t a . yaml

Under the var section, you will need to change some critical variables such
as HOME_NET and EXTERNAL_NET. By this time, Suricata is all set
to flag detection. Still, we want to forward the traffic captured by Suricata to
Wazuh manager for correlation and display the alerts on Kibana dashboard.
By default, Suricata writes alerts to /var/log/suricata/eve.json and the Wazuh
agent does not monitor the location by default. To forward the Suricata logs to
Wazuh manager, we have to add the following lines:

1 <l o c a l f i l e > c on f i gu r a t i on block in /var / o s s e c / e t c / o s s e c . conf
f i l e :

2 <l o c a l f i l e >
3 <log_format>json </log_format>
4 <loca t i on >/var / log / s u r i c a t a / eve . j son </loca t i on >
5 </ l o c a l f i l e >

Restart Wazuh manager service to apply the changes and that’s it:

1 # sy s t emct l r e s t a r t wazuh - manager

7.3.7 Integration with IP repudiation feeds

IP reputation feeds are the reputation score system of an individual IP address,
which businesses can use to detect risk or fraud associated with any IP. There
are various open-source services for the IP reputation. For this project, we
used IP feeds by FireHOL. FireHOL has several IP reputation feeds, but we
used alienvault_reputation feeds. One can find more information from the
source [26].

7.3.8 Configuring the CDB lists

To create the IP reputation database, we use a CDB list (constant database), a
feature offered by Wazuh which can be used to create a list of any dynamic
entity like users, file hashes, IPs, or domain names [79]. First, we must convert
the blacklist format into the CDB list format. The format of the CBD list is
key: value. We can take the help of a python script to do the work. The Python
script will put the IP as the key, and the value will be empty. Note that the
empty lines must be removed. Now, we download or pull the blacklist from
FireHOL [42].

7.4 Honeypots 169

1 # sudo wget https : // raw . g i thubuse rcontent . com/ f i r e h o l /
b l o c k l i s t - i p s e t s /master / a l i envau l t_reputa t i on . i p s e t -O /
var / o s s e c / e t c / l i s t s / a l i envau l t_reputa t i on . i p s e t

Now, we use the Python script provided by Wazuh community to convert
it into a CDB list format:

1 # sudo wget https : // wazuh . com/ r e s ou r c e s / i p l i s t - to - c d b l i s t . py
-O /var / o s s e c / e t c / l i s t s / i p l i s t - to - c d b l i s t . py

2 # sudo chmod +x /var / o s s e c / e t c / l i s t s / i p l i s t - to - c d b l i s t . py
3 # sudo /var / o s s e c / e t c / l i s t s / i p l i s t - to - c d b l i s t . py /var / o s s e c /

e t c / l i s t s / a l i envau l t_reputa t i on . i p s e t /var / o s s e c / e t c /
l i s t s / b l a c k l i s t - a l i e n v au l t

4 # sudo rm - f /var / o s s e c / e t c / l i s t s / a l i envau l t_reputa t i on .
i p s e t

5 The Python s c r i p t w i l l generate the b l a c k l i s t - a l i e n v au l t .
Now, be f o r e us ing the generated l i s t , we need to compi le

the l i s t :
6 # sudo /var / o s s e c /bin / ossec - make l i s t s

After compiling, the list the file blacklist-alienvault.cdb will be generated.
Remember, here we are using the default directory for CDB lists: /var/os
sec/lists and the newly created list must be defined in the /var/ossec/etc
/ossec.conf file. To do that, we need to add below configuration block in the
/var/ossec/etc/ossec.conf file:

1 <ru l e s e t >

2 <l i s t >/etc / l i s t s / b l a c k l i s t - a l i e nvau l t </ l i s t >

3 </ru l e s e t >

Using the CDB list in the rules:
As we have generated the list, we can start using our list in rules to get

alerts. One can check the Custom Rules Section for that. Please restart the
Wazuh manager service to apply the changes:

1 # sy s t emct l r e s t a r t wazuh - manager

7.4 Honeypots

7.4.1 WordPress honeypot deployment and configuration

Figure 7.5 shows the WordPress honeypot deployed.

1 I n s t a l l Apache : Run f o l l ow i ng commands f o r apache s e r v e r
c on f i gu r a t i on \ c i t e { d i g i t a l o c e an14 }

2 sudo apt - get update

https://www.raw.githubusercontent.com
https://www.wazuh.com/resources
https://www.raw.githubusercontent.com
https://www.wazuh.com/resources
https://www.wazuh.com/resources

5

10

15

20

25

30

35

40

170 Implementation of an Intrusion Detection System and Deception Technologies

3 sudo apt - get i n s t a l l apache2

4 Apache2 - v e r s i on

Sudo s e r v i c e apache2 s t a tu s

6

7 I n s t a l l Database 'MySQL ' : Run f o l l ow i ng commands f o r MySQL

s e r v e r c on f i gu r a t i on

8

9 sudo apt i n s t a l l mysql - s e r v e r

sudo mysq l_secure_ins ta l l a t i on

11 Mysql - v e r s i on
12 Sudo s e r v i c e mysql s t a tu s
13

14

I n s t a l l PHP' : Run f o l l ow i ng commands f o r PHP on web s e r v e r
\ c i t e { l i nux i z e 1 5 }

16 sudo apt update
17 sudo apt i n s t a l l php l ibapache2 -mod- php
18 php - v e r s i on
19 sudo apt i n s t a l l phpmyadmin php - mbstring php - g e t t ex t

sudo phpenmod mbstring
21	 sudo sy s t emct l r e s t a r t apache2
22

23 I n s t a l l wordpress : Run f o l l ow i n g commands f o r
web s e r v e r \ c i t e { tecmint16 }

24	 wget - c http :// wordpress . org / l a t e s t . t a r . gz
ta r - xzv f l a t e s t . ta r . gz

26	 sudo rsync - av wordpress /* /var /www/html/
27	 sudo chown -R www- data :www- data /var /www/html/
28	 $ sudo chmod -R 755 /var /www/html/
29	 mysql -u root -p

mysql> CREATE DATABASE wp_myblog ;
31	 mysql> GRANT ALL PRIVILEGES ON wp_myblog . * TO

Wordpress on

'
your_username_here '@' l o c a l ho s t ' IDENTIFIED BY
your_chosen_password_here ' ;

32 mysql> FLUSH PRIVILEGES ;
33 mysql> EXIT ;
34 sudo mv wp- con f ig - sample . php wp- c on f i g . php

36 MySQL s e t t i n g s - You can get t h i s i n f o from
37 /* The name o f the database f o r WordPress */
38 de f i n e ('DB_NAME' , ' database_name_here ') ;
39 /** MySQL database username */

de f i n e ('DB_USER' , ' username_here ') ;
41 /** MySQL database password */
42 de f i n e ('DB_PASSWORD' , ' password_here ') ;
43 /** MySQL hostname */

your web host .

http://www.wordpress.org/latest.tar.gz

7.4 Honeypots 171

44 de f i n e ('DB_HOST' , ' l o c a l h o s t ') ;
45 /** 	 Database Charset to use in c r e a t i n g database t ab l e s .
46 */ de f i n e ('DB_CHARSET' , ' u t f 8 ') ;
47 /** 	 The Database Co l l a t e type . Don ' t change t h i s i f in doubt

.
48 */ de f i n e ('DB_COLLATE' , ' ') ;
49 $ sudo sy s t emct l r e s t a r t apache2 . s e r v i c e
50 $ sudo sy s t emct l r e s t a r t mysql . s e r v i c e

Figure 7.5 WordPress honeypot.

7.4.2 Mailoney honeypot deployment and configuration

Figure 7.6 shows the mailoney honeypot deployed.

1 g i t c l one https : // github . com/phin3has /mailoney \ c i t e {
mailoney17}

2 sudo apt update
3 apt 	 i n s t a l l -y python3 python3 - pip
4 mkdir -p /opt/mailoney
5 / usr /bin /pip3 i n s t a l l - r requ i rements . txt [WORKDIR /opt/

mailoney]
6 mkdir -p /var / log /mailoney
7 touch /var / log /mailoney/commands . l og
8 Python mailoney . py [- h] [- i <ip address >] [- p <port >] - s

mai l s e rv e r - t open_relay

https://www.github.com

172 Implementation of an Intrusion Detection System and Deception Technologies

Figure 7.6 Mailoney honeypot.

7.4.3 Cowrie honeypot deployment and configuration

1 sudo apt - get update && sudo apt - get upgrade -y
2 sudo apt - get i n s t a l l g i t python - v i r t ua l env l i b s s l - dev l i b f f i

- dev bui ld - e s s e n t i a l l ibpython3 - dev python3 - minimal
authbind v i r tua l env

3 Create a new user r e s p on s i b l e f o r running the cowr ie
honeypot

4 $ sudo adduser cowr ie
5 Now we need to de l e t e the password f o r the user . This way

nobody w i l l be ab le to s i gn i n to the user , but we can
s t i l l switch to the user with the su command :

6 $ sudo passwd -d cowr ie
7 Switch user to the newly c r ea ted cowr ie user and change

d i r e c t o r y to the i t s home f o l d e r :
8 $ sudo su cowr ie
9 $ cd

10 c l on ing the cowr ie r e po s i t o r y in the user .
11 g i t c l one http : // github . com/ cowr ie / cowr ie
12 cd cowr ie
13 Now we w i l l setup a v i r t u a l environment so that we can

i n s t a l l our Honeypot
14 v i r tua l env - - python=python3 cowrie - env
15 source cowrie - env/bin / a c t i v a t e
16 I n s t a l l some r equ i r ed python packages to the v i r t u a l

environment :
17 (cowrie - env) $ pip i n s t a l l - - upgrade pip
18 (cowrie - env) $ pip i n s t a l l - - upgrade - r requ i rements . txt

There are ways an attacker may use to figure out that they are inside a
Cowrie honeypot. The most notable sign is that there is only one directory
under /home named richard. Another sign is that the server is using the
hostname srv04 [19]. First, we need to change the hostname, which is done in

http://www.github.com

7.4 Honeypots 173

Cowrie’s configuration file. Installing the configuration file of Cowrie inside
the virtual environment is as follows:

1 (cowrie - env) $ cd /home/ cowr ie / cowr ie / e t c

2 (cowrie - env) $ cp cowr ie . c f g . d i s t cowr ie . c f g

3 (cowrie - env) $ nano cowr ie . c f g

4 Remove the # from the f o l l ow i n g l i n e and s e t hostname :

5 # hostname =

6 While we are in the c on f i g f i l e , we can a l s o update Cowrie

to l i s t e n to port 22 d i r e c t l y . Remove the # from the
f o l l ow i ng l i n e and change 2222 to 22 :

7 # l i s t en_por t = 22
8 Go down to the f o l l ow i ng l i n e , and do the same - change 2222

to 22 :
9 l i s t en_endpo in t s = tcp : 2 2 : i n t e r f a c e =0.0 . 0 . 0

10 Save and e x i t .
11 Exit from the v i r t u a l environment and from the user cowr ie
12 (cowrie - env) $ deac t i va t e
13 $ e x i t

We have configured Cowrie to listen on port 22. However, this collides
with two security issues:

• Only privileged users may listen on ports below 1024,
• A privileged user should not execute the Cowrie honeypot [27].

The solution to this dilemma is Authbind, which lets us override the first
rule to let our unprivileged Cowrie user listen on port 22 directly:

1 $ sudo apt - get i n s t a l l authbind

2 $ sudo touch / e tc /authbind/byport /22

3 $ sudo chown cowr ie : cowr ie / e tc / authbind/byport /22

4 $ sudo chmod 770 / e tc /authbind/byport /22

5 Change the execut ion f i l e o f Cowrie to r e f l e c t that i t i s

going to use Authbind :

6 $ sudo nano /home/ cowr ie / cowr ie / bin / cowr ie

7 Change the f o l l ow i ng from ‘ ‘ no ’ ’ to ‘ ‘ yes ’ ’ :

8 AUTHBIND_ENABLED=no

9 Switch back i n to the user cowr ie again , because root should

not s t a r t cowr ie :
10 $ su cowr ie
11 Star t Cowrie and e x i t back to the o r i g i n a l user :
12 $ /home/ cowr ie / cowr ie / bin / cowr ie s t a r t
13 $ e x i t
14 Some u s e f u l p l a c e s to know about
15 Cowrie :
16 Logs : /home/ cowr ie / cowr ie / l og

174 Implementation of an Intrusion Detection System and Deception Technologies

17 Captured b i n a r i e s : /home/ cowr ie / cowr ie / d l
18 Playback f i l e s : /home/ cowr ie / cowr ie / l og / tty

7.4.4 Dionaea honeypot deployment and configuration

SSH into your honeypot and begin with the following commands to ensure
that the distribution is up-to-date [24]:

1 $ sudo apt - get update

2 $ sudo apt - get d i s t - upgrade

3 $ sudo apt - get i n s t a l l i n o t i f y - t o o l s

Make sure that the necessary tools are available in order to easily manage
personal package archive (PPA) resources:

1 $ sudo apt - get i n s t a l l so ftware - p rope r t i e s - common

2 g i t c l one https : // github . com/DinoTools / dionaea . g i t

3 cd Dionaea

4 sudo apt - get i n s t a l l bui ld - e s s e n t i a l cmake check cython3

l i b c u r l 4 - openss l - dev libemu - dev l i b ev - dev l i b g l i b 2 . 0 - dev
l ibloudmouth1 - dev l i b n e t f i l t e r - queue - dev l i b n l -3 - dev

l ibpcap - dev l i b s s l - dev l i b t o o l l ibudns - dev python3 . 8
python3 . 8 - dev python3 - bson python3 - yaml python3 - boto3
f onts - l i b e r a t i o n -y

5 sudo apt - get i n s t a l l libemu - dev

6 mkdir bu i ld

7 cd bu i ld

8 cmake -DCMAKE_INSTALL_PREFIX:PATH=/opt/ dionaea

9 make

10 sudo make i n s t a l l
11 The new honeypot can be found in the d i r e c t o r y /opt/Dionaea
12 sudo /opt/ dionaea /bin / dionaea s t a r t
13 Dionaea :
14 Logs : /opt/ dionaea /var / dionaea
15 Captured b i n a r i e s : /opt/ dionaea /var / dionaea / b i n a r i e s
16 Se s s i on t r a n s c r i p t s : /opt/ dionaea /var / dionaea / b i s t reams /YYYY

-MM-DD

7.4.5 Deploying Wazuh agents on honeypot systems

The Wazuh agent is multi-platform and runs on the hosts that the user wants
to monitor. It communicates with the Wazuh manager, sending data in near
real-time through an encrypted and authenticated channel [78].

https://www.github.com

7.4 Honeypots 175

Figure 7.7 Wazuh Kibana dashboard agent tab.

Deploying Wazuh agents on Linux systems:

• Log in to Kibana console using wazuh_admin user,
• Click on Wazuh App and click on Agents tab in Wazuh App as shown in
Figure 7.7,

• In the Agent panel, click on the deploy new agent as shown in Figure 7.8,
• Choose the operating system on which you want to install the agent,
• Type the Wazuh server address,
• Copy the command shown in Figure 7.9. Go to the endpoint on which you
want to install the agent and run the command in terminal or command
prompt depending on OS,

• Running the command will install the agent on the honeypot system, and
it will get enrolled on the Wazuh App under agent tab.

Figure 7.8 Deploy new agent.

176 Implementation of an Intrusion Detection System and Deception Technologies

Figure 7.9 New agent install and enroll process.

7.4.5.1 Configuration for logs forwarding from honeypot’s server
to Wazuh manager

To enable log forwarding, add the following configuration block in the
ossec.conf file located at /var/ossec/etc/ on honeypot server. In the
ossec.conf file look for < ossec_config > section and add the following
configuration block there.

1 <l o c a l f i l e >

2 <local_format>apache</local_format>

3 <loca t i on >var / l og /apache2/ e r r o r . l og </loca t i on >

4 </ l o c a l f i l e >

5

6 <l o c a l f i l e >

7 <local_format>apache</local_format>

<loca t i on >var / l og /apache2/ ac c e s s . l og </loca t i on > 8

7.4 Honeypots 177

9 </ l o c a l f i l e >
10

11 <l o c a l f i l e >
12 <local_format>json </local_format>
13 <loca t i on >var/ l og /mysql/ e r r o r . l og </loca t i on >
14 </ l o c a l f i l e >
15

16 <l o c a l f i l e >
17 <local_format>json </local_format>
18 <loca t i on >var/ l og /mysql/mysql . l og </lo ca t i on >
19 </ l o c a l f i l e >
20

21 <l o c a l f i l e >
22 <local_format>sys log </local_format>
23 <loca t i on >var/ l og /mailoney/commands . l og </loca t i on >
24 </ l o c a l f i l e >
25

26 <l o c a l f i l e >
27 <local_format>json </local_format>
28 <loca t i on >var/ l og /mysql/ e r r o r . l og </loca t i on >
29 </ l o c a l f i l e >

7.4.6 Installing Suricata on honeypot server

Before installing Suricata, one should install Suricata’s dependencies. One can
install all the required dependencies by running the following command:

1 apt - get i n s t a l l l i b p c r e 3 l i bpc r e3 - dbg l i bpc r e3 - dev bui ld -
e s s e n t i a l l ibpcap - dev \

2 l i bne t1 - dev l ibyaml -0 -2 l ibyaml - dev pkg - c on f i g z l i b 1 g z l i b1g
- dev \

3 l ibcap - ng - dev l ibcap - ng0 make l ibmagic - dev \

4 l i bn s s 3 - dev l i b g eo ip - dev l i b l u a 5 . 1 - dev l i b h i r e d i s - dev

l i b event - dev \

5 python - yaml ru s t c cargo

6 I n s t a l l Sur i ca ta from Ubuntu PPA

7 For Ubuntu , the OISF maintains a PPA su r i ca ta - s t ab l e that

always conta in s the l a t e s t s t ab l e r e l e a s e \ c i t e {
a t l a n t i c 2 2 } .

8 To use i t :

9 sudo add - apt - r e p o s i t o r y ppa : o i s f / su r i c a ta - s t ab l e

10 sudo apt - get update
11 sudo apt - get i n s t a l l s u r i c a t a
12 Enable and s t a r t the Sur i ca ta s e r v i c e :

178	 Implementation of an Intrusion Detection System and Deception Technologies

13 sy s t emct l daemon - r e l oad
14 sy s t emct l enable s u r i c a t a
15 sy s t emct l s t a r t s u r i c a t a

Figure 7.10 Custom rules.

7.4.7 Custom rules

In this section, we will learn to create custom rules on Wazuh manager or edit
Wazuh’s existing rules as per need or requirement. It can be achieved using
the Wazuh Kibana plugin on the Kibana console.

Using Wazuh Kibana plugin interface

• Login to the Kibana console and open the Wazuh Kibana plugin interface.
• Then goes into the management tab and selects the rules. Then click on
custom rule on the right side of the page as shown in Figure 7.10.

• Here, you have to click on add new rule file, and you can create a new
rule with GUI. With a web interface, you will get an error message
automatically if the XML syntax is not correct.

• Once we finish writing the rule, we have to click on Save file to confirm
and then click on Restart now to restart the Wazuh manager service.

Adding custom rules for IP reputation feeds
We have created an IP_Reputation.xml rule file at /var/ossec/etc/rules/

IP_Reputation.xml.
following is the custom rule:

1

2 <group name="ipreputat i on ,">
3

4 <ru l e id ="120100" l e v e l ="13"> <! - - P lease note the l e v e l
here , we have mentioned to push a l e r t s from and above
l e v e l 13 dur ing Slack i n t e g r a t i on - - ! >

5	 <if_group>web | attack | a t tacks | Honeypot | sshd | i d s | s u r i ca ta
</if_group>

7.4 Honeypots 179

6	 <l i s t f i e l d="src_ip " lookup="address_match_key">etc /
l i s t s / b l a c k l i s t - a l i e nvau l t </ l i s t >

7	 <des c r i p t i on >The Source IP i s in Al i envau l t black l i s t
.</ de s c r i p t i on >

8 <mitre>

9 <id>T1110</id>

10 <id>T1037</id>

11 </mitre>

12 </ru le>

13

14 <ru l e id ="120102" l e v e l ="13">
15 <if_group>web | attack | at tacks | Honeypot | sshd | i d s | su r i ca ta

</if_group>
16 <l i s t f i e l d="dst_ip" lookup="address_match_key">etc /

l i s t s / b l a c k l i s t - a l i e nvau l t </ l i s t >
17 <des c r i p t i on >The Dest inat i on IP i s in Al i envau l t black

l i s t .</ de s c r i p t i on >
18 <mitre>
19 <id>T1110</id>
20 <id>T1037</id>
21 </mitre>
22 </ru le>
23

24 </group>

Adding custom rules to detect Cowrie honeypot events. This is an
example rule for Cowrie honeypot cowrie.login.failed events.

1

2 <group name="sshd ,">

3

4 <ru l e id ="120000" l e v e l ="15">

5 <match>cowrie . l o g i n . f a i l e d </match>

6 <des c r i p t i on >Cowrie SSH Login Fai l ed
 Attempt</

de s c r i p t i on >

7 <mitre>

8 <id>T1190</id>

9 <id>T1110</id>

10 </mitre>
11 <group>authent i ca t i on_fa i l ed , i nva l i d_ log in </group>

12 </ru le>

13

14 <ru l e id ="120001" l e v e l ="15">

15 <match>cowrie . command . input</match>

16 <des c r i p t i on >Cowrie SSH Explo i t Detected</de s c r i p t i on >

17 <mitre>

18 <id>T1190</id>

180 Implementation of an Intrusion Detection System and Deception Technologies

19 <id>T1110</id>

20 </mitre>

21 <group>exploit_attempt , Honeypot</group>

22 </rule >

23

24 </group>

Similarly, you can create custom rules for following Cowrie events:

• cowrie.client.fingerprint : If the attacker attemps to log in with an SSH
public key this is logged here.

• cowrie.login.success : To detect successful authentication.
• cowrie.client.size: Width and height of the users terminal as communi­
cated through the SSH protocol.

• cowrie.session.file_upload: File uploaded to Cowrie, generaly through
SFTP or SCP or another way.

• cowrie.session.connect: New connection
• cowrie.client.version: SSH identification string
• cowrie.client.kex : SSH key exchange attributes
• cowrie.session.closed : Session closed
• cowrie.log.closed: TTY Log closed
• cowrie.direct-tcpip.request : Request for proxying via the honeypot
• cowrie.direct-tcpip.data: Data attempted to be sent through direct-tcpip
forwarding

7.4.8 Centralized configuration

Centralized configuration is again a Wazuh feature using that we can manage
and configure Wazuh agents remotely. The centralized configuration file
agent.conf located at /var/ocssec/etc/shared/default on Wazuh manager.

We used the centralized configuration feature for log data collection from
every honeypot and endpoints, security configuration assessment, file integrity
monitoring and VirusTotal integration.

7.4.9 Log data collection

We have configured the log analysis engine to monitor Suricata logs files. To
make it work, edit the file in Wazuh manager /var/ossec/etc/shared/default/a­
gent.conf.

You can add the below block of configuration at the end of your agent.conf
file and make it look like this:

7.4 Honeypots 181

1

2 <l o c a l f i l e >

3 <loca t i on >/var / log / su r i c a t a / eve . j son </loca t i on >

4 <log_format>json </log_format>

5 </ l o c a l f i l e >

Note that whenever you make any change in the agent.conf file, it is
required to check for any configuration errors to avoid unintentional changes.
You can confirm the configuration is valid by running verify-agent-conf present
at /var/ossec/bin/verify-agent-conf on Wazuh manager.

1 # /var / o s s e c /bin / ve r i f y - agent - conf

Once the configuration changes validation has been completed, the Wazuh
manager pushes the configuration files to all the agents. To do that, restart the
Wazuh manager service.

1 # sy s t emct l r e s t a r t wazuh - manager

7.4.10 Security configuration assessment

The security configuration assessment (SCA) module is a set of predefined
policies for system hardening and configuration guidelines. The policies are
specific to the operating system the Wazuh agent has been installed and
running.

The SCA predefined policies are based on CIS benchmarks. (add the URL
as the reference here https://www.cisecurity.org/cis-benchmarks/)

To enable the SCA module, add the following block in Centralize
Configuration file /var/ossec/etc/shared/default/agent.conf present on Wazuh
manager:

1

2 <sca>

3 <enabled>yes</enabled>

4 <scan_on_start>yes</scan_on_start>

5 <in t e r va l >12h</in t e r va l >

6 <skip_nfs>yes</skip_nfs>

7 </sca>

To allow SCA policies to be pushed on any Wazuh agent remotely, we
will have to configure it to accept the remote command and run the following
command on all honeypot servers. This configuration change is mandatory.

1

2 # echo " sca . remote_commands=1" >> /var / o s s e c / e t c /
l o ca l_ in t e rna l_opt i on s . conf

https://www.cisecurity.org

182 Implementation of an Intrusion Detection System and Deception Technologies

7.4.11 File integrity monitoring

The file integrity monitoring (FIM) module monitors selected files or directo­
ries and triggers alerts when any change is observed. By default, file integrity
,monitoring looks for selected directories and files depending on the host’s
operating system.

The FIM module is beneficial, and there are different use cases based on
the configuration, but we will discuss the real-time monitoring we have used
here.

Configuring real-time monitoring
We configured dionaea honeypot to capture the malicious files dropped

by an attacker when he connects to dionaea honeypot. We used the real-time
monitoring feature to watch for the directory where the malicious files were
dropped. The real-time monitoring in the FIM module will trigger an alert as
soon as it detects any new file. The real-time monitoring can be configured by
real-time attribute.

Please note that the real-time attribute only works for directories and
not with files. To enable the real-time monitoring for the dionaea binaries
directory, add the below configuration block in the Centralized Configuration
file /var/ossec/etc/shared/default/agent.conf present on Wazuh manager:

1

2 <syscheck>
3 <d i r e c t o r i e s check_al l="yes " r e a l t ime="yes">/opt/ dionaea /

var / dionaea / b ina r i e s </d i r e c t o r i e s >
4 </syscheck>

7.4.12 VirusTotal integration

File integrity monitoring module watches for any modification or addition
in a directory. This feature can be used to detect files with a malicious
verdict by integrating it with the VirusTotal platform. File integrity monitoring
permanently stores the hash of the file and triggers alerts when any new file is
added or changes are made to the original file. After the VirusTotal integration
is enabled, the FIM alert then makes an HTTP POST request to the VirusTotal
using the VirusTotal API to look for the extracted hash in the VirusTotal
database as shown in Figure 7.11. To enable the VirusTotal integration, add the
following configuration block in /var/ossec/etc/ossec.conf file on your Wazuh
manager.

1 <in t eg ra t i on >
<name>v i r u s t o t a l </name> 2

1

7.4 Honeypots 183

3 <api_key>API_KEY</api_key> <! - - Replace with your
VirusTotal API key - ->

4 <group>syscheck </group>
5 <alert_format>json </alert_format>
6 </in t eg r a t i on >

Figure 7.11 File integrity monitoring with VirusTotal integration.

If you do not have your VirusTotal API key, you can get your
public or private API key by signing up to VirusTotal Community.
(https://www.virustotal.com/gui/join-us).

After applying the configuration, restart the Wazuh manager service:

sy s t emct l r e s t a r t wazuh - manager

Now, to see the VirusTotal alerts in Kibana dashboard, enable the
VirusTotal module in Wazuh App. To do that,

• Log in to Kibana and navigate to Wazuh App > Wazuh Settings >
Modules

• Scroll down to Threat Detection and Response section
• Enable the VirusTotal module here.

Once enabled, we can see alerts in the VirusTotal dashboard.

Terms of Service
VirusTotal’s Terms of Service specify the two ways the VirusTotal API

may be used:
Public API
This method uses a free API with many of VirusTotal’s functionalities.

However, it has some significant limitations, such as: the request ratio

https://www.virustotal.com

184 Implementation of an Intrusion Detection System and Deception Technologies

limitation to no more than four requests per minute, and low priority access
of requests done by this API for the VirusTotal engine. The VirusTotal
documentation indicates that users who run a honey client, honeypot, or
any other automation that provides resources to VirusTotal are rewarded with
a higher request rate quota and special privileges when performing the calls to
the API.

Private API
VirusTotal also provides a premium private API where the user’s Terms

of Service limit the request rate and the total number of queries allowed.
Apart from that, it provides high priority access for requests and additional
advantages.

It is essential to understand which configuration file takes precedence
between ossec.conf and agent.conf when the central configuration is used.
When the central configuration is utilized, the local and the shared config­
uration are merged. However, the ossec.conf file is read before the shared
agent.conf, and the last configuration of any setting will overwrite the previous.

7.4.13 Slack

Slack is a great messaging tool widely used worldwide because of its capabil­
ities like messaging in channels, forwarding notifications, and integrating
third-party tools. Wazuh manager provides a webhook method to allow
integration with Slack. This integration forwards the alerts generated on Wazuh
manager to the Slack channel, which will trigger a notification on the mobile
or laptop.

7.4.13.1 Integration with Slack
To start the integration process, start with the Wazuh’s Integrator Daemon,
which will allow Wazuh manager to connect to external APIs of Slack [71]:

Sending messages using Incoming Webhooks
Slack’s Incoming Webhook is the simple way to post messages in Slack

channel. Create a new Incoming Webhook to forward alerts to Slack channel.

• Navigate to this URL: https://api.slack.com/apps?new_app=1
• Login to Slack account if one sees You’ll need to sign in to your Slack

account to create an application. message on screen
• We will get a new window to create a Slack App.
• In the app name field, give your application a meaningful name.
• In the Development Slack Workspace field, select your Slack workspace.
• Click Create App button.

https://www.api.slack.com

7.4 Honeypots 185

Figure 7.12 Slack Incoming Webhook setting.

Enable Incoming Webhooks: After creating the App, it will redirect to
the settings page. On the settings page, select the Incoming Webhooks feature
[70] as shown in Figure 7.12. Then, click the activate Incoming Webhooks
toggle to switch it on.

Now that Incoming Webhooks are enabled, refresh the page, and some
extra options will appear automatically. Scroll down and click on add new
webhook to workspace button. We will redirect to the app settings page, and
here we will get our webhook URL for the selected workspace section. The
webhook URL should look something like this:

1 https : // hooks . s l a ck . com/ s e r v i c e s /XXXXXXXXXX/XXXXXXXXXX/
XXXXXXXXXXXXXXXXXXXXXXXX

7.4.14 Configuration on Wazuh server

The integrations are configured on the Wazuh manager’s /var/ossec/etc/
ossec.conf file. To configure an integration, add the following configuration
block inside the < ossec_config > section:

1 <in t eg ra t i on >
2 <name>s lack </name>
3 <hook_url>https : // hooks . s l a ck . com/ s e r v i c e s / . . . </ hook_url>

<! - - Replace with your Slack hook URL - ->
<alert_format>json </alert_format> 4

https://www.hooks.slack.com
https://www.hooks.slack.com
https://www.hooks.slack.com

186 Implementation of an Intrusion Detection System and Deception Technologies

5 <l ev e l >13</ l e v e l > <! - - P lease note that only a l e r t s with
the s p e c i f i e d l e v e l or above are pushed to Slack .
Allowed value i s from 0 to 16 - - >

6 </in t eg r a t i on >

After enabling the Daemon and configuring the integrations, restart the
Wazuh manager service to apply the changes: systemctl restart wazuh­
manager

7.5 Result

7.5.1 Geolocation of attacks

We have deployed our honeypot servers in different locations over the globe,
like Germany, India, etc. and received multiple attacks on our honeypot
service from various places where we found China is the most active
and attacking country on the globe. Figure 7.13 shows the corresponding
statistics.

7.5.2 Top usernames

In our study, we found attackers are attempting with the most common user’s
name during the brute force attack, so we should avoid these usernames in
account creation action. Figure 7.14 shows the top usernames accessed.

Figure 7.13 Received attacks on honeypot servers over the globe.

7.5 Result 187

Figure 7.14 Top attempted usernames.

7.5.3 Top attacker countries

In our study, we observed that China is one of the most attacker countries
globally. We received different types of multiple attacks on our honeypot
servers. The United States is the second most active and attacker country.
Figure 7.15 shows the details for the top countries that accessed our honeypots.

7.5.4 Top 10 attacker machine IPs

As we already saw in the previous result, China is the most active attacker
country globally. All top 10 attacking machines belong to China, and we

Figure 7.15 Top attacker countries.

188 Implementation of an Intrusion Detection System and Deception Technologies

Figure 7.16 Top attacker machines IPs.

received 43.137% attacks from 49.88.122.71 (Attacker IP) on our honeypot
servers. Figure 7.16 shows the corresponding results.

7.5.5 Attacks for MySQL servers

WordPress honeypot server is running LAMP architecture, so we received
almost all major SQL statements on our honeypot server where attackers try
to get the data from the database. We observed most executable SQL is “INIT
DB wordpress”. Figure 7.17 shows the various SQL statements.

7.5.6 Top signatures-based attempts

Suricata inspects the live network traffic and detects signature-based attacks.
We found port 443 is the most attempting port number by the attacker, where
we received approx 0.13k attacks. Figure 7.18 shows the top signature-based
attempts.

7.5.7 Top 10 attempted passwords

In our study, we found attackers are attempting with the most common user’s
password during the brute force attack, so we should avoid these passwords
in account creation action and follow OWASP guidelines for better password
selection. Figure 7.19 shows the top attempted password.

7.6 Conclusion and Future Work 189

Figure 7.17 Top executed SQL statements.

Figure 7.18 Top signatures-based attempts on honeypot and CMS servers.

190 Implementation of an Intrusion Detection System and Deception Technologies

Figure 7.19 Top attempted passwords.

7.6 Conclusion and Future Work

Our study explained deception technologies and implemented low, medium,
and high interaction honeypots on clouds. It developed HIDS and NIDS on
top of it using open-source tools like Wazuh, Suricata, Open distro, etc. Our
goal is to understand the attacker’s intention and how they are working to
lure intruders toward the production system. We discovered their security
flaws to help small-or medium-scale industries at a feasible cost. Real-
time threat analytics will help organizations monitor real-time attacks and
protect their system according to the business requirement of the product. We
have analyzed cyber threat intelligence using honeypot logs collected from
DigitalOcean clouds. The data is analyzed using the Open Distro stack for
log data visualization. It is worth noting that Open Distro uses Elasticsearch,
which helps to identify various types of cyber incident events through Wazuh.
It has become apparent in the present time; attackers are constantly targeting
honeypots. Most of the attacks are similar as attackers attempt to gain full
access to the system. This study into honeypot logs for cyber threat intelligence
is valuable as it can be used to identify and mitigate future cyberattacks related
to your business logic. The main advantage of using honeypot logs for threat
intelligence is that there is no impact on the production system. This kind
of analysis could always help build future IDS and IPS for production. The
implementation of deception technology and intrusion detection system gives

7.6 Conclusion and Future Work 191

us ability to go beyond the traditional signature-based approach for intrusion
detection.

We have used Suricata to capture and analyze network traffic in this
work. We know about the Suricata’s network detection capabilities, but we
want to extend the scope to prevent the intrusions at the perimeter level
using Suricata’s prevention system. Because Suricata can work as intrusion
prevention system and help prevent the environment from known network
attacks and anomalies. Similarly, the Wazuh can block the attacks using the
active response feature present in Wazuh. The active response allows the
Wazuh agent to run commands on the end system, and we can use this feature
to write a custom script to block IP or perform any other action. We planned to
configure Suricata to block network attacks and Wazuh to block host anomalies
as and when detected.

In this work, we discuss different honeypots and managing them is a
challenge in the real world. We experience that honeypots are getting down
due to a rapid increase in traffic or exploit attempts. We missed the attacker
footprints until the time we brought up the honeypot manually. To deal with
such unavoidable circumstances, we have planned the honeypot orchestration.
We want to automate the deployment and management of honeypot using the
Kubernetes orchestration framework.

Last but not least, we plan to improve the detection capabilities of our
work by adding machine learning-based detection. A signature-based intrusion
detection system comes with the risk of missing the attack or anomaly for
which we do not have a signature in the database. However, with ML-based
detection, we can analyze the traffic’s patterns or behavior and trigger detection
based on the confidence value about any uncertain attack. Combining the
deception technology and the ML-based detection will help capture and
analyze zero-day attacks and vulnerabilities. We can train the ML model
again, and this will be a continuing process till we achieve accuracy.

https://taylorandfrancis.com

8

Attack Vector Analysis with

a New Benchmark

Ashish Ranjan Yadav and Rohit Negi

C3i Center, Indian Institute of Technology, Kanpur, India
E-mail: aryadav@cse.iitk.ac.in; rohit@cse.iitk.ac.in

Abstract

Gone are the days when Linux users assumed Windows was the main target
of hackers. Apart from Windows-based systems, Linux-based devices are
becoming a more valuable target. Attackers are working on new ways to
compromise Linux-based distributions on supercomputers, cloud servers,
and various IoT devices. The crypto mining virus Lemon Duck recently
compromised Linux systems using SSH brute-force assaults. A port scanning
module of the malware searches for internet-connected Linux computers
listening on the 22 TCP ports used for SSH remote login. It has become
critically important to keep a close check on the application, network devices,
firewalls, and configuration changes in the system. Any minor configuration
changes that do not adhere to security norms can open the system to attacks. To
improve the cybersecurity posture of the current system, we have implemented
system hardening as a technique to reduce the system’s attack surface. With
the increasing size of the organization and the number of users, it has
become difficult for a system admin to monitor each system manually for
the security audit. This work will enable the system admin to monitor the
system configuration and security audit in near real-time, thus enhancing the
current cybersecurity posture.

193

mailto:aryadav@cse.iitk.ac.in
mailto:rohit@cse.iitk.ac.in

194 Attack Vector Analysis with a New Benchmark

8.1 Introduction

Servers are always present at the most prominent IT security risk. They store
and process every business information, from business operation data to critical
user information to financial records. Most of the application and database
security is dependent on how secure the server is. Hence IT security teams
need to implement sophisticated methods that build strong security postures
to stay ahead of the threat actors. It is understandable why most businesses
prioritize server security over other aspects of their IT infrastructure. Most of
the bounty that threat actors intend to steal is stored on servers.

Most of the servers are protected by firewalls, and IDS is configured to
enhance the security posture further. Servers are sometimes left unsecured,
leaving them vulnerable to massive attacks. In November, CISOMAG pub­
lished a report on how security researchers uncovered an open Elasticsearch
server with 1.2 billion unique data records. The server housed more than four
gigabytes of data without password security or authentication.

PgMiner botnet attacks in December 2020 happened by launching brute-
force assaults against Internet-accessible PostgreSQL databases, according
to researchers at Palo Alto Networks’ Unit 42. The botnet selects a public
network range at random and then searches all IP addresses for systems with
the PostgreSQL port (port 5432) accessible online. If PgMiner detects an active
PostgreSQL server, the botnet switches from scanning to brute-force mode,
where it shuffles through a huge list of passwords to guess the credentials
for the default PostgreSQL account as, “postgres.” Suppose the owner of a
PostgreSQL database forgets to disable or change this user’s credentials. In that
case, the hackers gain access to the database and utilize the PostgreSQL COPY
from PROGRAM functionality to escalate their access from the database app
to the underlying server, allowing them to take control of the entire OS.

A privilege escalation vulnerability was reported in the default Ubuntu
Linux installed in January 2019. It was caused by a flaw in the snapd API,
which is a standard service. Any local user could exploit this vulnerability to
get immediate root access to the machine.

Patients’ personal information was compromised due to a cyberattack at
Mississippi’s Coastal Family Health Center (CFHC). Patients’ confidential
medical information from Northwestern Memorial HealthCare (NMHC)
providers may have been exposed due to a data breach at a third-party provider.
Unknown individuals got unauthorised access to a database controlled by
Elekta, a cloud-based platform that manages Illinois’ legally mandated cancer
reporting. A third-party cloud provider was attacked, exposing 190,000

8.1 Introduction 195

patients’ data at US healthcare organizations. In May 2020, criminals took
control of Blackbaud’s servers and encrypted some of the company’s data in a
ransomware assault.

A server admin is generally responsible for hosting a new application and
updating the system with the latest security patches. Sometimes installing new
packages and updating the system might open some backdoor to exploit the
system and make the system vulnerable and prone to attack. Most places focus
on securing the network and firewall but not on the application and packages.
We focus on securing the system with vulnerable packages and updates with
our work. We have implemented system hardening on the system and given
near real-time feedback on system hardening scores with the help of the lynis
tool.

Before installing any package or updates on the server, the packages are
first installed on a sandboxed hardened Linux system. Based on the score
returned user can proceed with the installation on a real system or discard the
installation.

Configuring an OS securely, creating rules and policies, updating it to
control the system securely, and deleting superfluous apps and services are all
examples of hardening the OS. It reduces a computer OS’s vulnerability to
threats and mitigates potential dangers.

System hardening is changing system configuration and state to reduce
system vulnerability. The main goal of hardening is to minimize the system’s
attack surface. It comprises tools and a set of practices to minimize the threat
vector of the system. Hardening a system does not ensure that the system will
not be attacked or vulnerability-proof. It reduces the system’s risk vector to
a greater extent to protect it from well-known attacks. No system is entirely
secure, and there is always a chance for improvement. With our work, we are
not claiming our system to be unbreachable.

Our work is based on the Linux system. Linux system comprises of Linux
kernel and operating system. Linux system is already considered safe as
most Linux distribution comes up with various security-related tools, and
many security features are built into the kernel. Linux systems are infinitely
configurable, and even a small configuration change can significantly impact
security. Hence we should go very carefully with the changes we are making
to the system as a lack of understanding can lead to unintentional exposure.

We have used the lynis tool to measure the system hardening index for our
work. Lynis is a security audit tool for operating systems like Linux, macOS, or
Unix-based systems. It scans the system for system hardening and compliance
testing.

196 Attack Vector Analysis with a New Benchmark

The idea is to create a Ubuntu sandbox using oracle VMBOX. System
hardening steps are performed on the ubuntu VM to get a score of 96.
Whenever a user tries to install some package on the host machine, the package
will be first installed inside the sandbox. Sandbox will install the package and
will check the lynis score post-installation. A decrease in lynis score means
the package is making changes to the system that compromises the system’s
security. After returning the lynis score, it is up to the user to proceed with
the installation. If the installation does not affect the lynis score, the package
is not affecting the system hardening and is safe to use on the host machine.
Hence, this work reduces the host system’s attack surface by first installing the
package on the sandbox and checking the score rather than directly installing
the package on the host.

A similar idea is also imposed while purging or removing packages.
The purge/remove operation will be first performed inside the sandboxed
environment. Based on the returned lynis score, the action will be taken in
a real environment. There might be the case that removing or purging any
package will reduce the hardening index and make the system vulnerable to
attacks. Hence, verifying the effects of purging or removing any package on
the system is crucial. Figure 8.1 gives the overall idea of our work.

Our objective is to improve the current cybersecurity posture of the system
by hardening the OS and giving time to time evaluation and validation of the
hardening index. It helps identify vulnerabilities that arise by installing any
new package to the system. Lynis’s score returns the host post-installation of a
package on the VM. It ensures real-time hardening resistance of the system.
OS hardening reduces the attack surface to a greater extent, protecting the
system from most known attacks and potential attackers. There is a reduction
in the hardening index if there are any old or upgradable packages available

Figure 8.1 Overview of proposed work.

8.2 Background and Related Work 197

for the system. It ensures updated and secure infrastructure. System hardening
is performed as per the suggestion from the CIS benchmark and additional
information provided by the lynis. Hence, creating a new benchmark on top of
the existing CIS benchmark.

8.2 Background and Related Work

System hardening is the set of practices through which attack surface and
attack vectors can be reduced to enhance the security of servers and computer
systems. System hardening involves closing system loopholes frequently used
by the attackers to access the system and access sensitive user information.

System hardening involves deleting or disabling useless applications,
protocols, file systems, ports, permissions, and other features that might put
the system at risk of attack. Potential attackers will not be able to obtain access
to the system.

Implementing system hardening reduces the potential doorways to the
system an attacker might use to gain access to the system and exploit
the system. System hardening involves securing computer applications and
operating systems, firmware, databases, networks, and other system features
that attackers might use to exploit the system. System hardening can be attained
in various ways:

• Application hardening
• Operating System hardening
• Server hardening
• Database hardening
• Network hardening

The attack surface is all possible weak spots and backdoors in the system or
network that attackers can exploit to compromise or access critical information.
These vulnerabilities can arise due to several reasons, some of which are as
follows:

• OEM.
• Unpatched or outdated software and firmware vulnerabilities.
• Default and hard-coded passwords.
• Users install password in plain text.
• Loosely configured networking devices like routers, switches along with
unnecessary or unused ports and services.

• Unencrypted or weakly encrypted network traffics.
• Absence of privilege access control.

198 Attack Vector Analysis with a New Benchmark

8.2.1 Application hardening

Application hardening involves enhancing the security of the server’s appli­
cations like web browsers, text editors, and other applications. It consists
in updating the application to the latest version or changing configurations,
or modifying the source code related to the application. A few examples of
application hardening are:

• OEM.
• Keeping application patched and updated.
• Using firewalls.
• Using encryption methods.
• Use of intrusion detection system or intrusion prevention system.
• Using antivirus, malware, and spyware protection application.
• Changing the configuration or attributes related to the application to
enhance its security.

8.2.2 Operating system hardening

OS hardening involves enhancing the security of the server’s operating
system. It can be done by patching, updating the system to the latest version,
and installing service packs. Make sure packages installed are from trusted
repositories. Unlike application hardening’s focus on securing standard and
third-party applications, OS hardening protects the base software that grants
programs access to specific tasks on your system. Examples of OS hardening
are as follows:

• OEM.
• Partitioning the file system properly. For example in Ubuntu make sure

/home /var /boot /tmp are in separate partition.
• Remove unnecessary drivers.
• Remove unused file system.
• Limit and authenticate system access permission.
• Enable secure boot.
• Encrypt file system.

8.2.3 Server hardening

Server hardening is a method of securing a server’s data, ports, components,
operations, and privileges by implementing sophisticated security mechanisms
at the hardware, firmware, and software layers.

8.2 Background and Related Work 199

Some of the general server security measures are as follows:

• OEM.
• Server's operating system must be updated and patched regularly.
• Removing unused or unsafe third-party software. Update all the critical
third-party software.

• Developing strong password policies for users and using stronger and
more complicated passwords.

• Failed login attempts should be recorded and blocked.
• USB ports are disabled when the computer boots up.
• Putting in place multi-factor authentication.
• Advanced cybersecurity suites suited to the operating system, firmware
resilience technologies, memory encryption, antivirus and firewall protec­
tion, and advanced cybersecurity suites adapted to the operating system
are some of the methods used.

8.2.4 Database hardening

Database hardening refers to safeguarding both the contents of a digital
database and the database management system (DBMS), which is the database
application used by users to analyze and store data. Database hardening mainly
involves three processes:

• OEM.
• Controlling and limiting user access and privileges.
• Useless or less frequently used database functions and services should be
disabled.

• All the database resources must be encrypted.

Few of the database hardening techniques involve:

• OEM.
• Administrators’ and administrative privileges and functions are restricted.
• Encrypting database data in transit and at rest.
• Following an RBAC (role-based access control) strategy.
• Patching and updating database software, or the DBMS, regularly.
• Disabling unnecessary database services and functions.
• Suspicious login activity to the database should be locked.
• Enforcing more difficult and strong database passwords.

200 Attack Vector Analysis with a New Benchmark

8.2.5 Network hardening

Network hardening involves enhancing the security of system communication
infrastructure to prevent unauthorized access from outside. It is one of the
critical steps as most of the attacks are made from outside the network.
Network hardening involves:

• Configuring and securing network firewalls.
• Regularly auditing the network rules.
• Securing remote access points and users.
• Blocking unused ports.
• Disabling and removing unnecessary network protocols and services.
• Implementing access lists.
• Encrypting network traffic.

Network hardening also involves establishing intrusion prevention or
intrusion detection systems. These applications automatically monitor and
report any suspicious activities in a given network which helps administrators
prevent unauthorized access. Using the above methods reduces the network’s
overall attack surface and enhances its resistance to network-based attacks.

For system hardening, there are several industry standards and guidelines.
Organizations like the Computer Information Security (CIS) Center for
Internet Security, the National Institute of Standards and Technology (NIST),
and Microsoft released best practices for hardening the system.

CIS Benchmark releases several configuration guidelines for web servers,
different OS (like Ubuntu, Windows, Mac), cloud platforms, networking
devices, and many more to reduce the system’s attack surface and protect the
system from several attacks.

The CIS Benchmarks are freely released in PDF format to promote
their use and adoption as user-generated, de facto standards worldwide.
Government, business, industry, and academia have produced and approved
the CIS Benchmarks as the sole consensus-based, best-practice security
configuration guides.

8.3 Threat Vector and Attack Surface

An attack is an act by which a threat actor gets access to an information
system’s assets. The path used to attack a system is called an attack vector.
There are mainly three types of attack vectors and threats:

• Network threats: Refers to the threat against a network of the
organization.

8.3 Threat Vector and Attack Surface 201

• Host threats: Threats against the host, including hardware and operating
system.

• Application threats: Threats against the system programs.

8.3.1 Attack surface

The attack surface is the point in the system or network exposed to attack.
Attack surfaces are the potential point of entry to the system for an attacker.
Attack surface does not always mean digital; it can be physical. Attack
surface analysis helps understand the risk areas in the system and makes
security specialists aware of part of the system open to attacks to find ways of
minimizing it. Organizations should focus on reducing attack surfaces to as
minimum as possible. Figure 8.2 shows the attack surface.

The best approach to secure a system is to identify the high-risk areas. The
focus should be on the remote access points like interfaces with the external
systems and the Internet, i.e., the issues where the system allows access to the
public. The next step should be to put some measures to safeguard the high-
risk areas like network firewalls, application firewalls, and intrusion detection
systems to protect the system. These will not make the system attack-proof.
However, it will reduce the system’s attack surface to a greater extent and

Figure 8.2 Attack surface.

202 Attack Vector Analysis with a New Benchmark

protect the system from well-known attacks and, in some cases, also from
zero-day attacks.

8.3.2 Attack vector

An adversary’s method for breaching or infiltrating a network or system.
Hackers can use attack vectors to take advantage of system flaws, including
the human factor. Figure 8.3 shows the common attack vectors. Some of the
common attack vectors are explained as follows:

Compromised credentials: The most common entry point for an attacker
is through username and password. It is one of the most common forms of
attack. When unauthorized entities gain access to user credentials such as
username and password, this is referred to as compromised credentials. Such
attacks are often brutal to detect as attackers impersonate real users with actual
usernames and passwords. Compromised credentials result from irresponsible
behaviour from users and admins. Most people still use credentials that are
very easy to guess, and passwords are still stored in plain text format or
inferior encryption methods prone to brute force attacks. Privilege access
credentials that grant admin access to the system and device are considered
most dangerous than consumer credentials. Such attacks can be avoided
by enforcing strict password policies and frequently changing passwords.
Password should be stored with robust encryption methods. The system should
be frequently audited for any irregular behaviour.

Malicious insider: Malicious insiders are users within the organization
who exploits the weakness in company infrastructure and organization

Figure 8.3 Common attack vectors.

8.3 Threat Vector and Attack Surface 203

information. Such users can cause significant damage to the system as they
have privileged access to sensitive data and networks. It can be avoided
by monitoring every user and device’s data and network access inside the
organization.

Encryption: Encryption converts plain data or text into a format that a
person can only access with a key. Encrypted data is also known as ciphertext.
Encryption is the need of age as all the data are being transmitted through
network channels that attackers can easily access. Plain text data can be read
and accessed by any user or attacker, putting sensitive information at risk. Poor
or old encryption methods should also be avoided, as brute force methods can
be used to break the encryption. Hence, robust encryption methods should
be enforced at every data processing stage, especially while transmitting data
over the network and data at rest in the case of servers and databases.

Misconfiguration: Misconfiguration is referred to as an error in system
configuration. Hidden weaknesses or loopholes aroused in the system due
to configuration or setup mistakes/errors can easily be detected by hackers
to obtain more information about the system. Misconfigured systems or
applications are considered easy access points for an attacker. Configure
the system and network as per the recommended security norms. Configure
application and device settings to enhance the security of the system.

Ransomware: Ransomware is a cyberattack where users are denied access
to their system or data unless a ransom amount is paid to the attacker. After
paying the ransom amount, users are provided with instructions to obtain
the decryption key. The demanded amount depends upon how critical the
information or system is. It varies from a few hundred dollars to thousands of
dollars, and the amount is generally paid in the form of bitcoins. To protect the
system from ransomware attacks, make sure the system is updated with the
latest version of the software. Permissions and privileges to the applications
should be closely monitored to precisely what it does.

Software Vulnerabilities: Malicious software is often granted full per­
mission during installation. Software from official as well as unofficial app
stores can have vulnerabilities. It is the user’s responsibility to check the sanity
of software before using it in the host or production environment. Users should
be aware of changes made by the app in the system.

8.3.3 Hardening steps

Our work is based on Ubuntu 18.04 desktop as well as Server. For virtualiza­
tion, we have used Oracle VMBOX, which is a virtual machine from Oracle.

204 Attack Vector Analysis with a New Benchmark

Oracle VMBOX is installed with Ubuntu 18.04. Hardening is performed inside
the Vbox, and the hardening index of the virtual machine is calculated by
using the lynis tool. The hardening step starts as early as during the operating
system installation on the system. There are various steps of hardening which
are as follows:

8.3.4 During installation

The first step toward hardening starts with the partitioning of the file system
during the installation of the OS. Make sure separate partition exists for /home,
/tmp and /var. It is an important step, especially in a multi-user environment
where the unprivileged user will have read/write access on partitions. It
becomes easier to specify mount options separately for each partition with
separate partitions, which further enhances the system’s security. Generally,
users will have two partitions, one for root / and another one is /home. This
partition system will have a greater risk of resource exhaustion as /var partition
could easily be filled by some misbehaved application which can further fill
up the / partition and lead to a kernel crash. Similarly /tmp partition contains
temporary data and might fill the / partition if /tmp is not kept on a separate
partition. Hence, keeping /var and /tmp on separate partitions limit the amount
of temporary data stored to prevent another important partitioning from filling
up and causing system crashes and data loss.

8.3.5 Updates and upgrades

If the partition rules are followed as specified in the previous section, the lynis
score on fresh installation is 58. There will be a few updates and upgrades
available on a fresh installation. The first step post-installation of OS is to
update and upgrade the packages present on the system. This step increases
the lynis score to 63. Old packages are vulnerable to attacks; hence, keeping
the packages updated to the latest version is crucial. It is considered the most
common and simple step toward securing the system. Softwares regularly
release updates or patches to include some additional features or rectify
security flaws. Updates must be performed first before the upgrade, making
apt aware of new versions of packages. Run the following command to update
and upgrade all the packages:

1 apt update
2 apt upgrade

8.3 Threat Vector and Attack Surface 205

8.3.6 File systems

Linux supports several uncommon filesystem types. Disabling unused filesys­
tems can help in reducing the attack surface of the system. Utmost care
should be taken while using an uncommon filesystem as it may compromise
the security and functionality of the system. Some unused filesystems in
Linux are udf, hfs, hfsplus, freevfxs, jffs2, cramfs, etc. To disable uncommon
filesystem on Ubuntu create or edit file under directory /etc/modprobe.d/ with
.conf extention. For example uncommon.conf. Run following commands in
terminal:

1 echo " i n s t a l l cramfs /bin / t rue ">>/etc /modprobe . d/uncommon .
conf

2 echo " i n s t a l l udf /bin / true ">>/etc /modprobe . d/uncommon . conf
3 echo " i n s t a l l h f s / bin / true ">>/etc /modprobe . d/uncommon . conf
4 echo " i n s t a l l h s f p l u s /bin / t rue ">>/etc /modprobe . d/uncommon .

conf
5 echo " i n s t a l l j f f s 2 /bin / true ">>/etc /modprobe . d/uncommon . conf
6 echo " i n s t a l l f r e e v f x s /bin / true ">>/etc /modprobe . d/uncommon .

conf

Mount options: To further reduce the attack surface of filesystem , strict
mount options needs to be set on each partition. By default Linux will have
defaults mount option set to all partition.The defaults is equivalent to rw, suid,
dev, exec, auto, nouser, async(no ACL support). noexec mount option will
prevent any binaries from executing on that partition. nosuid mount option
will ignore setuid and setguid bit i.e., the partition cannot contain suid files.
nodev mount option prevents partition from containing any device files.

To change the mount options of /tmp partition, in the fourth field of /tmp
partition inside /etc/ftsab file, enter nodev, nosuid, noexec. Similarly set
mount options nodev, nosuid for /home partition. Mount options for /var
partition is set as nodev, nosuid. As separate partitions exist for /home, /var,
/tmp there will be entry present inside /etc/fstab, mount options can be changed
adding entries to fourth field.

/dev/shm functions as shared memory implementation on Unix systems
which is used for sharing data between programs. It is used for inter-process
communication purposes. If permitted, one program will create a memory
portion, and another program can access the memory portion. shm is also
known as a temporary file storage filesystem (tmpfs). Instead of persistent
storage, it uses virtual storage. Make the following changes in /etc/fstab file:

1 tmpfs /dev/shm tmpfs de f au l t s , noexec , nodev , nosuid 0 0

206 Attack Vector Analysis with a New Benchmark

Additional filesystem configuration to further enhance the security of
system in addition to CIS benchmark involves setting mount options for
/run,/dev,/proc,/var/log,/var/log/audit. Figure 8.4 shows the few mount options
in /etc/fstab file. Edit /etc/fstab file and add following line:

1 tmpfs /run tmpfs de f au l t s , noexec , nodev , nosuid 0 0
2 tmpfs /dev tmpfs de f au l t s , noexec , nosuid 0 0
3 tmpfs /pro tmpfs de f au l t s , noexec , nodev , nosuid 0 0
4 tmpfs /run tmpfs de f au l t s , noexec , nodev , nosuid 0 0

Figure 8.5 shows side by side comparison of lynis output on fresh
installation and after adding mount options to partitions.

Figure 8.4 Mount options in /etc/fstab file.

(a) Before hardening

(b) After hardening

Figure 8.5 Lynis output before and after defining mount points.

8.3 Threat Vector and Attack Surface 207

8.3.7 Users, groups and authentication

PAM (Pluggable authentication modules) implements authentication on a
UNIX system. It is a collection of shared libraries that are used to authenticate
a user to an application dynamically. PAM should be properly configured to
enhance system authentication. Several attributes are present to strengthen
the authentication. /etc/security/pwquality.conf file have the following
options :

• minlen : minimum password length.
• minclass : minimum number of types of character (lowercase, uppercase,
digit, etc)

• dcredit – n : maximum allowed number of digit. If value is less than n,
each digit will be counted toward minlen. Negative value of n means
minimum number of digits required for password.

• ucredit – n : maximum allowed number of uppercase character for
password. If value is less than n, each character will be counted toward
minlen. Negative value of n means minimum number of uppercase
character required for password.

• lcredit – n : maximum allowed number of lowercase character for
password. If value is less than n, each character will be counted toward
minlen. Negative value of n means minimum number of lowercase
character required for password.

• ocredit – n : maximum allowed number of other character for password.
If value is less than n, each character will be counted toward minlen.
Negative value of n means minimum number of lowercase character
required for password.

pam_pwquality can be installed by using following command :

1 apt i n s t a l l libpam - pwqual ity

Shadow password suite parameters: Many password parameters are
configured in PAM , some password configuration are done in /etc/login.defs
file. PASS_MIN_DAYS parameter restricts users from changing their password
within the mentioned number of days. This value should be at least 1.
PASS_MAX_DAYS defines the age of the password. Limiting the password
age will protect the system from brute-force attacks, reducing the attacker’s
window of opportunity. It is recommended that the value should not be greater
than 365. PASS_WARN_AGE parameter notifies the user with a warning about
the expiration of a password in a defined number of days. The value should

208 Attack Vector Analysis with a New Benchmark

(a) Before hardening (b) After hardening

Figure 8.6 Lynis output before and after user, group, and authentication.

be set to at least 7 days. The default value of umask is set to be 027 or more
restrictive. Inside file /etc/profile, set the value of umask to 027 .

1 PASS_MIN_DAYS 7
2 PASS_MAX_DAYS 365
3 PASS_WARN_AGE 7
4 UMASK 027

Inactive user accounts should be locked to prevent unauthorized access to
the idle system. As per security norms, it is suggested that accounts inactive
for more than 30 days should be blocked or disabled. To set the parameter run
the following command:

1 useradd -D - f 30

Figure 8.6 shows the output of Lynis before and after user, group, and
authentication.

8.3.8 Warning banners

Contents from /etc/issue and /etc/issue.net are displayed as welcome message
when a user tries to remote login to the system. /etc/issue.net content is shown
when a user tries to connect from the network. Message from /etc/issue is
displayed when a local user tries to connect, and network user (if issue.net is
not configured), issue.net displays message before the password prompt, i.e.,
before actually entering into the system. The motd content is displayed after
the user has logged into the system. /etc/issue,/etc/issue.net and /etc/motd file
contains OS version information by default, which is considered vulnerable

8.3 Threat Vector and Attack Surface 209

Figure 8.7 Content of /etc/issue,/etc/issue.net.

(a) Before hardening (b) After hardening

Figure 8.8 Lynis output before and after configuring banner message.

as the attackers will have system’s OS and patch level information prior
login to system. It will enable the attacker to carry out attacks related
to the corresponding OS and patch. Hence there is a need to change the
banner message. Permission /etc/issue,/etc/issue.net and /etc/motd should be
configured properly. The user id and group id should be 0/root, and access
should be 644.

As per the U.S. Department of Defense guidelines, a warning message
should have an organization name that owns the system. It should mention
that the system user is trying to access is under monitoring, and the use of the
system implies the user’s consent to monitoring. Edit /etc/issue,/etc/issue.net
file with the content as shown in below Figure 8.7. Figure 8.8 shows the lynis
output before and after configuring banner message.

8.3.9 Configuring crons

Cron is considered a time-based job scheduler based in Unix systems used to
run scripts or commands at fixed intervals. Tasks like maintenance and backups
need to be performed regularly when no one uses the resource. System admin
can execute the task at a specified time on a repetitive basis with the help of
Cron and at. Even if users don’t have any shell or jobs to execute at regular
intervals, cron is still needed for the system to perform maintenance jobs like
checking for updates or security monitoring.

Ensure correct permissions are set on /etc/cron.d, /etc/crontab,
/etc/cron.weekly, /etc/cron.hourly, /etc/cron.daily, /etc/cron.monthly. The
/etc/crontab is a system-wide cron file. It contains information about

210 Attack Vector Analysis with a New Benchmark

system-level jobs run by cron. Read and write access can give the unprivileged
user access to system-level information about cron tasks, providing the
provision for privilege escalation. Hence Uid and Gid should be 0/root, and
no permission should be given to the group and others, i.e., Access 600.

1 chown root : root / e tc / crontab /
2 chown og - rwx / e tc / crontab /

/etc/cron.hourly have all the cron tasks that will run on an hourly basis.
System admin can change the file inside this directory by using a text editor.
The only root user should be given read and write access (Access: 700).
Regular should not have any access to this file.

1 chown root : root / e tc / cron . hour ly /
2 chown og - rwx / e tc / cron . hour ly /

/etc/cron.daily have all the cron tasks will run daily. Read or Write access
to an unprivileged user on this directory can enable them to elevate their
privilege. Hence Read/Write access to this directory should be restricted to
root only(Access: 700).

1 chown root : root / e tc / cron . da i l y /
2 chown og - rwx / e tc / cron . da i l y /

/etc/cron.weekly have all the cron tasks that will run every week. Read
or Write access to an unprivileged user on this directory can enable them to
elevate their privilege. Hence Read/Write access to this directory should be
restricted to root only(Access: 700).

1 chown root : root / e tc / cron . weekly/
2 chown og - rwx / e tc / cron . weekly /

/etc/cron.monthly have all the cron tasks that will run every month. Read
or Write access to an unprivileged user on this directory can enable them to
elevate their privilege. Hence Read/Write access to this directory should be
restricted to root only(Access: 700).

1 chown root : root / e tc / cron . monthly/
2 chown og - rwx / e tc / cron . monthly/

/etc/cron.d is similar to directories as mentioned above, but it provides
more granularity as to when cron jobs will run. Read/Write access should also
be the same as directories mentioned above. A regular user should be refrained
from reading and writing access to this directory as it might enable them to
escalate privileges.

1 chown root : root / e tc / cron . d/
2 chown og - rwx / e tc / cron . d/

8.3 Threat Vector and Attack Surface 211

(a) Before hardening
(b) After hardening

Figure 8.9 Lynis output before and after setting permissions on cron.

Figure 8.9 shows the lynis output before and after setting permissions on
cron.

8.3.10 User shell configuration

/etc/profile file is used to set system-wide environment variable and startup
scripts. Initial values of PATH or PS1 are defined for all shell users of the
systemetc/profile is executed only for an interactive shell. System admins can
customize the system by making changes to this file. For large changes, the
application-specific changes user needs to create a separate shell script(*.sh)
inside /etc/profile.d/ directory. /etc/bash.bashrc invoked for interactive as well
non-interactive shell.

TMOUT environment variable sets a timeout of shell in seconds. It closes
the shell of it inactive for n seconds. TMOUT variable restrains unauthorized
users from accessing any other user’s shell, which has been left open for a
while.To configure TMOUT make the changes in /etc/profile, /etc/bash.bashrc
and place a bash file(e.g., tmout.sh) under /etc/profile.d/ directory. Run the
following command to configure TMOUT. In the following command, the
timeout is set as 900 seconds.

1 echo ‘ ‘ readonly TMOUT=900 ; export TMOUT’’>>/ etc / p r o f i l e . d/
tmout . sh

2 echo ‘ ‘ readonly TMOUT=900 ; export TMOUT’’>>/ etc / p r o f i l e
3 echo ‘ ‘ readonly TMOUT=900 ; export TMOUT’’>>/ etc /bash . bashrc

UMASK stands for User Mask, also known as user file creation mask,
which is used to assign default file permission when a new file or directory
is created. In Linux machines, files are created with default permission
of 666(rw-rw-rw-), and directories are created with default permission of

212 Attack Vector Analysis with a New Benchmark

(a) Before hardening (b) After hardening

Figure 8.10 Lynis output before and after setting UMASK value.

777(rwxrwxrwx). Umask value doesn’t mean permission on files and directo­
ries. We need to subtract the umask value from the default permission of files
and directories to calculate the actual permission. Default UMASK is 022, i.e.,
newly created files and directories will be readable by all users on the system.
Here we are restricting the UMASK value as 027; hence permission for the
newly created directory and files will be – 666-027 = 640, i.e., files will be
readable by users of the same Unix group. 777-027 = 750, i.e., directories will
be readable by the same Unix group users.

Run the following commands to set system-wide UMASK value:

1 echo ‘ ‘ umask 027 ’ ’ >> / e tc / p r o f i l e . d/umaskval . sh
2 echo ‘ ‘ umask 027 ’ ’ >> / e tc / p r o f i l e
3 echo ‘ ‘ umask 027 ’ ’ >> / e tc /bash . bashrc

Figure 8.10 shows the Lynis output before and after setting UMASK
value.

8.3.11 USB devices

USBGuard is a software framework which helps in implementing whitelist­
ing/blacklisting of USB devices, which protects the system from rogue USB
devices. Run the below command to install USBGuard:

1 sudo apt - get i n s t a l l -y usbguard

/etc/usbguard/usbguard-daemon.conf is configuration file for USBGuard.
This file is used by USBGuard daemon to load the policy rule set.We have
made following changes to the attributes of usbguard-daemon.conf :

1 Res to r eCont ro l l e rDev i c eS ta t e=f a l s e
2 Pre s en tCont r o l l e rPo l i c y=apply - p o l i c y
3 PresentDev icePo l i cy=apply - p o l i c y
4 In s e r t edDev i c ePo l i cy=apply - p o l i c y
5 Imp l i c i tPo l i c yTarg e t=block

8.3 Threat Vector and Attack Surface 213

RestoreControllerDeviceState: The USBGuard daemon modifies some
attributes of controllers, such as the default authorization status for new sub-
device instances. With this setting, we can control whether the daemon will
attempt to restore the attribute values to the state before modification on
shutdown. On setting this value to true, the USB authorization policy can be
bypassed by performing some daemon attack (via a local exploit or a USB
device) to shut it down and restore the operating system’s default state. Set
this value to false to enhance security.

PresentControllerPolicy: How to handle USB controllers already con­
nected when the daemon is started. One of the apply, reject, block, keep or
apply-policy value will be assigned.

• allow - authorizes every device present on the system.
• block - deauthorize every device present on the system.
• reject - remove every device present on the system.
• keep - sync the internal state.
• apply-policy - ruleset is evaluated for every present device.

Setting value to apply-policy seems most secure, ensuring security even
when the daemon hits a restart.

PresentDevicePolicy: How the devices are treated that is already con­
nected when the daemon starts. It is setting the key value to apply policy.

InsertedDevicePolicy: How the USB devices are treated that are already
connected after the daemon starts. Setting the key value to apply-policy.

ImplicitPolicyTarget: Policy that is to be applied to devices that don’t
match any rule in the policy.The key value is set to block.

To deauthorize USB devices on the system, use the following command.

1 f o r host in / sys /bus/usb/ dev i c e s /usb*
2 do
3 echo 0 > $host / author i zed_de fau l t
4 echo 0 > $host / author i zed
5 done

Figure 8.11 shows the Lynis output before and after setting USBGuard.

8.3.12 Uncommon network protocol

Several uncommon network protocols are present on Linux kernels that are
not commonly used. Hence it is recommended to disable those network
protocols to reduce the attack surface of the system further. Some uncommon
networks are Datagram Congestion Control Protocol (DCCP), Stream Control

214 Attack Vector Analysis with a New Benchmark

(a) Before hardening

(b) After hardening

Figure 8.11 Lynis output before and after setting USBGuard.

Transmission Protocol (SCTP), Reliable Datagram Sockets (RDS), and
Transparent Inter-Process Communication (TIPC). Network protocols can be
disabled by creating or editing a file ending with .conf inside /etc/modprobe.d/
directory.

1 echo ‘ ‘ i n s t a l l dccp /bin / true ’’>> / e tc /modprobe . d/
uncommonprotocols . conf

2 echo ‘ ‘ i n s t a l l sc tp /bin / true ’’>> / e tc /modprobe . d/
uncommonprotocols . conf

3 echo ‘ ‘ i n s t a l l rds /bin / true ’’>> / e tc /modprobe . d/
uncommonprotocols . conf

4 echo ‘ ‘ i n s t a l l t i p c /bin / true ’’>>/ etc /modprobe . d/
uncommonprotocols . conf

Disable special-purpose services that are not required to reduce the
system’s attack surface further. The system admin should adequately review the
open port. Each network port can be closed or opened by a firewall. Services
listening on these ports sometime might lead to attacks if not checked. Hence
unnecessary services should be removed from the system. Run the following
and make sure all the services listed are required.

1 l s o f - i -P -n | grep -v ‘ ‘ (ESTABLISHED) ’ ’

Remove unnecessary packages by using following command:

1 apt purge <package_name>

Some of them are Avahi Server, Domain Name System (DNS), Common
Unix Print System (CUPS), Dynamic Host Configuration Protocol (DHCP),
Network File System (NFS), File Transfer Protocol (FTP), HTTP server, IMAP
and POP3 server, Samba, HTTP Proxy Server, Simple Network Management
Protocol(SNMP) Server, rsync, Network Information Service (NIS), rsh
client, talk, telnet, Lightweight Directory Access Protocol (LDAP), Remote
Procedure Call (RPC).

8.3 Threat Vector and Attack Surface 215

1 apt purge avahi - daemon cups i s c - dhcp - s e r v e r nfs - kerne l ­
s e r v e r bind9 vs f tpd apache2 dovecot - imapd dovecot - pop3d

samba squid snmpd rsync n i s rsh - c l i e n t t a l k t e l n e t ldap ­
u t i l s rpcbind

8.3.13 Kernel hardening

To configure kernel parameter at runtime make the changes in /etc/sysctl.conf.
Following are the changes made to the parameters of /etc/sysctl.conf file:

1 # Enable address space l ayout randomizat ion (ASLR)

2 ke rne l . randarnize_va_space 2

3 # Re s t r i c t core dumps

4 f s . suid_dumpable 0

5 # Rejec t ing ICMP packets

6 net . ipv4 . c o n f a l l . acc ep t_red i r e c t s 0

7 net . ipv4 . c on f d e f au l t . accep t_red i r e c t s 0

8 net . ipv6 . c o n f a l l . acc ep t_red i r e c t s 0

9 # Logging s u s p i c i o u s packets

10 net . ipv4 . c o n f a l l . log_martians 1
11 net . ipv4 . c on f d e f au l t . log_martians 1
12 # Rejec t ing source routed packets
13 net . ipv4 . c o n f a l l . accept_source_route 0
14 net . ipv4 . c on f d e f au l t . accept_source_route 0

Configure few more additional parameters (additonal step) to further
increase the hardening index:

1 f s . p ro t e c t ed_ f i f o s 2

2 f s . protec ted_regu lar 2

3 Kernel . core_usespid 1

4 Kernel . dmesg_restr i c t 1

5 Kernel . kp t r_r e s t r i c t 2

6 Kernel . modules_disabled 1

7 Kernel . sy s r eg 0

8 Kernel . unpr iv i l eged_bpf d i s ab l ed 1

9 net . core . bpf_jit_harden 2

Figure 8.12 shows the lynis Output before and after setting parameters in
/etc/sysctl.conf.

8.3.14 Compilers

Compiler or development tools are helpful for the user and any potential
attackers. If there is an open compiler on the system, it becomes easier for

216 Attack Vector Analysis with a New Benchmark

(a) Before hardening (b) After hardening

Figure 8.12 Lynis output before and after setting parameters in /etc/sysctl.conf.

attackers to run vulnerable programs. Some rootkits require the attacker to
compile the program on the system. Hence, either disable the compilers or
restrict them to any particular user or group. We have disabled the compilers
by following commands:

1 chmod 000 / usr /bin /as>/dev/ nu l l
2 chmod 000 / usr /bin /byacc>/dev/ nu l l
3 chmod 000 / usr /bin /yacc>/dev/ nu l l
4 chmod 000 / usr /bin /bcc>/dev/ nu l l
5 chmod 000 / usr /bin /kgcc>/dev/ nu l l
6 chmod 000 / usr /bin /cc>/dev/ nu l l
7 chmod 000 / usr /bin /gcc>/dev/ nu l l
8 chmod 000 / usr /bin /* c++>/dev/ nu l l
9 chmod 000 / usr /bin /*g++>/dev/ nu l l

Sometimes there will be a symbolic link present for compilers. Changing
just the permission might not work correctly. In that case, we need to remove
the symbolic link. Table 8.1 shows the scenarios with hardening index and
remarks.

8.3.15 Additional tools to enhance hardening index

AIDE (Advanced intrusion detection environment) is a tool used to check the
integrity of files and directories, which helps detect an unauthorized change
to the configuration files. A database of files is created by this utility, through

8.4 Post Hardening 217

Table 8.1 Hardening index with scenario.

Scenario Hardening index Remarks
Fresh OS without update and upgrade 58
Fresh Installation after update and
upgrade

64 Updating and upgrading

After Using CIS benchmark 88 Following the steps pro­
vided in CIS benchmark

After following the suggestion from
lynis and external resources

96 Disabling compilers, setting
kernel parameters

which the integrity of files and folders is verified. AIDE can be installed on
the Ubuntu system by using the following command:

1 apt i n s t a l l a ide aide - common

To initialize AIDE run the following command:

1 a i d e i n i t

Clam AntiVirus is an open-source software to detect malicious software,
trojans, viruses, and other malicious threats.

1 apt i n s t a l l clamav clamav - daemon

System Accounting (auditd) is a system administrator tool to monitor
the system, such as system calls, file access, authentication failures, abnormal
terminations, and program executions. The Linux Auditing system is not
intended to provide protection. It provides awareness about the changes inside
the system. Events are logged inside /var/log/audit/audit.log file. There are
limited rules defined by default. User needs to define their own rule when
implementing auditd in /etc/audit/audit.rules file.

1 apt i n s t a l l auditd audispd - p lug in s

fail2ban is an intrusion detection tool to protect the system from brute-
force attacks. It bans IP addresses that show malicious activities like multiple
password attempts to exploit the system. Fail2ban can be an updated firewall
to block several malicious IP addresses.

1 apt - get i n s t a l l -y f a i l 2 b an
2 sy s t emct l s t a r t f a i l 2 b an
3 sy s t emct l enable f a i l 2 b an

Ansible

1 apt i n s t a l l -y so f tware - p rope r t i e s - common
2 apt - add - r epo s i t o ry - yes - update ppa : an s i b l e / an s i b l e
3 apt i n s t a l l -y an s i b l e

218 Attack Vector Analysis with a New Benchmark

8.4 Post Hardening

After performing all the hardening steps mentioned in the previous section, the
lynis score of Ubuntu VM came out to be 96. To install packages on the host
machine user needs first to install them on VM. Based on the post-installation
lynis score, the user can decide to install the package on the host machine. The
user will know whether installing the package will compromise the system
security or not, and based on that, and he can perform appropriate steps on the
host machine. Package installation and score calculation script is placed inside
VM (getscore.sh). We have customized the apt command with bash script
and changed the environment variable to point apt command to custom script.
On performing apt operation, the package will be first installed on the VM
machine and based on the lynis score post-installation, the user will proceed
on the host machine. Following are the steps of operation performed while
installing the package :

1 apt i n s t a l l <package - name> on host machine .
2 Custom s c r i p t f o r apt command w i l l be c a l l e d with parameter

as package - name whose l o c a t i o n i s s p e c i f i e d in

environment va r i ab l e .

3 Vir tua l Machine w i l l be powered on .

4 Package w i l l be i n s t a l l e d on VM.

5 Lynis Score w i l l be c a l c u l a t ed post i n s t a l l a t i o n o f package

and returned to host .
6 There w i l l be two ca s e s :
7 a . Score w i l l dec rea se means package has made changes to the

system which have i n c r ea s ed the attack s u r f a c e o f the
system .

8 b . Score remains same means package have not a f f e c t e d the
attack s u r f a c e o f system .

9 User w i l l dec ide whether to i n s t a l l package on host or not .
10 VM i s r e s t o r ed to prev ious snapshot .

8.5 Results

To get a list of all packages in the apt repositories first update is required, after
which we can run the following command :

apt-cache search . |sort -d

The above command will also sort the package names as per the dictionary

order. Approximately 70,000 packages are found in the fresh installation of

Ubuntu18.04. https://popcon.ubuntu.com/by_inst ranks the Ubuntu packages

https://www.popcon.ubuntu.com

8.5 Results 219

as per the popularity. Some softwares cannot be directly installed via apt;
we first need to add a repository and perform an apt install operation.
Some softwares requires installation by snap. We have also tested the
top 100 software in Ubuntu (e.g., Google Chrome, Dropbox, Sublime,
Notepad, etc.)

Packages were tested using Python and bash script. Input file containing
the list of packages has been given to the Python program. Bash script to install
package and calculate the lynis score is placed inside the virtual machine. The
virtual machine is started for each package in the input file, and the package
is installed on the virtual machine. Post-installation, lynis score before and
after installation is calculated on VM and returned to the host machine. These
scores are logged inside a file on the host machine. VM is reset to the previous
snapshot after each operation.

Note: We had to disable bootloader password to automate login through
Virtualboxmanage command. Due to this Score has reduced to 95 from 96.
Hence all the testing is done on lynis score of 95. Around 7000 and 450 top
ranked packages were tested to get the following observation which is shown
in Table 8.2. Figure 8.13 shows the hardening index of apt packages.

100 most popular apps like Chrome, Virtualbox, Dropbox, etc., gave the
following results shown in Table 8.3 and Figure 8.14.

During a competition, there were 66 participants involved. Each one of
them was assigned a playground for CTF, which was running on a docker
container in the backend with danielguerra/ubuntu-xrdp image on it, which
is based on the Ubuntu 18 server. Each participant can be considered an
admin/user of an organization performing several tasks on their system.
Hardening indexes for each participant were logged at regular intervals. Cron
was set up on the master machine on which all the docker containers were
running; using Python thread, we were able to run lynis simultaneously on
all docker containers and stored the result to a log file. Default lynis score
was 58. The following observation has been made shown in Table 8.4 and
Figure 8.15.

Table 8.2 Hardening index post-installing Ubuntu official repository apt packages

Score Number Of Packages Remarks
88 2 Outdated packages or Unconfigured SSH
93 91 Compilers installed with default permission
94 27 Upgradable package is available and few packages are

installing CUPS with default configuration
95 Remaining No changes to hardening index

220 Attack Vector Analysis with a New Benchmark

Figure 8.13 Hardening index of apt packages.

Table 8.3 Hardening index post-installing 100 popular Ubuntu software.

Score Number of packages Remarks
93 4 Compilers installed with default permission
94 2 Upgradable packages are available
95 Remaining No changes to hardening index

Figure 8.14 Hardening index of 100 popular Ubuntu softwares.

8.6 Conclusion and Future Work 221

Table 8.4 Observations obtained for 66 participants.

Users Remarks
46 Update and upgrade operation performed
5 Score increased to 61
3 Score decreased to 59 from 60
3 Score reached to 63
3 Score increased to 61 then back to 60
2 Score reached to 64
2 Score varied from 60-59-62-61, finally stable at 61
1 Score increased to 65 then back to 58
1 Increased to 63 then back to 60

Figure 8.15 Hardening score of 66 participants.

8.6 Conclusion and Future Work

It is conclusive from the above results that installing packages even from
authentic sources can make the system vulnerable to attacks. Packages often
make configuration changes to the system, which does not comply with the

222 Attack Vector Analysis with a New Benchmark

security norms. Such changes need to be addressed immediately to protect
the system from attacks. Apart from securing the network and firewalls, it is
also essential to protect the system from the inside. System hardening helps
reduce attack surface to a greater extent by closing most of the loopholes in the
system. It is good practice to disable unused services and unused filesystem,
enhance system authentication, keep a check on permissions, configure IP
table rules and several other steps to reduce the attack surface.

Our work provides users with real-time identification of such security
compromises. Moreover, as the packages are first installed on the sandboxed
environment, the real system remains unchanged until the user installs it on
the host machine based on the hardening index. Hence, the user is always
aware of the particular package’s changes to the system. Appropriate actions
can be performed to enhance the security of the system. This work will be
helpful for a system administrator for monitoring servers or hundreds of
machines in an organization. We are currently getting a hardening score of 96,
which can be attained to a maximum of 100. Our work is restricted to Ubuntu
operating system currently. It can be further extended to other operating
systems, like Windows and macOS. Automated installation is applicable only
for packages available with apt package manager. Packages with snap and
additional repositories need to be installed manually to VM. Such operation
can also be automated.

Part IV

Honeypot

223

https://taylorandfrancis.com

9

Stealpot Honeypot Network

Amardeep Singh1, Om Prakash Mishra2 and Sanjeev Kumar Sumbria

1eclerx services Ltd., India
2Canum infotech, India
E-mail: amardeepsg@gmail.com; om@canuminfotech.com;
sam288037@gmail.com

Abstract

A honeypot system is purposefully designed to be vulnerable and strategically
deployed to be discovered as an easy target to attack. The objective is to
continuously capture all possible data (source location, IP, approach, type,
pattern, payload etc.) when an attempt or attack. The idea is to know more
about different adopted attack methodologies and proactively build more
specific cyber defense mechanisms. This work describes the basic concept
and practical know-how on deploying a honeypot network using open-source
platform components. The steps and elaborations have been presented, the way
it was implemented as part of actual project work. Cybersecurity enthusiasts
can apply this to explore easy deployment options for the honeypot network
as a defensive security mechanism.

9.1 Introduction

With the rapid increase of digitization, cybersecurity has become more critical
than ever. As it happens with everything in the limelight, the bad actors are yet
more active now. Increasing reliance on digital means a bigger pie to exploit,
newer tactics, techniques, and payloads continuously deployed by the threat
actors. Security teams have always been catching up, running scheduled scans,
publishing new vulnerabilities, and ensuring an on-time response. However,
more often than not, these approaches do not ensure total safety.

225

mailto:amardeepsg@gmail.com
mailto:om@canuminfotech.com
mailto:sam288037@gmail.com

226 Stealpot Honeypot Network

We need more relevant and to the point threat intelligence inputs by
trapping specific data and methods being adopted by possible threats in action
(IOCs & TTPs). It would allow security teams to prioritize defense against
specific threats in real-time instead of running behind the target of keeping
everything up to date and still getting impacted by an attack. Honeypots help
with such threat intelligence inputs. Honeypots have been around for more than
two decades but are probably considered expensive and complex to manage
and maintain. It requires automated setup, easily configurable, orchestrated
deployment mechanisms, and central management at affordable costs. The
Stealpot sources its evolution based upon these ideas and asks.

We are going through challenging times, and things are changing at the
speed of light. It is no longer feasible to have tall perimeter walls (Build
perimeter security by deploying NGFWs, IPS/IDS, DDOS, etc.) and be assured
of total security within the boundaries. The idea of a shield around and staying
protected from the threats around could just be imagined. We have cyber
threats everywhere. Data is distributed across the boundaries of any defined
periphery. There are increasing trends of multi-cloud, hybrid, on-premise and
all possible combinations of deployments. End-users are distributed on various
networks with more BYOD (Bring your own device) and work from home
requirements. In such scenarios, how do we spell the relevance of perimeter
security? Can we define perimeters? Do they exist?

Given the complexity and dynamics, zero trust could give us some answers.
With a rapidly evolving threat landscape, honeypots have gained relevance
and can be leveraged effectively if they are managed well with automated,
orchestrated and continuous deployment mechanisms. Of course, ease is an
ask for both speed and scale to realize actual yield. Here, we present an
approach to creating a honeypot ecosystem comprising a central reporting
and management console, remote honeypot deployment and integration with a
malware analysis engine using various open-source platforms.

Honeypot(s) are mainly used by defensive security product/solutions com­
panies. These companies deploy high-interaction research honeypots across
the globe to gather intelligence, capture intelligence like origin, preferred
targets, techniques, motivation, etc., to feed into their solutions as signatures,
patterns, behaviors, etc. Industry at large is not using honeypots, instead of
relying on products developed by security vendors using this intelligence.
Figure 9.1 is talking about the usage trend of honeypots as we see it today.
These were taken from a survey conducted under the supervision of SANS
Institute [22].

9.1 Introduction 227

Figure 9.1 Responses per country/region.

The hypothesis that honey technologies are not widely deployed in produc­
tion systems proved correct. Of those surveyed, only 25% had honeypots.
Another aspect worth looking at was the breakdown of the responding
organizations. Interestingly, the top three organization types were privately-
held corporations, publicly-traded corporations, and government agencies.
Academic institutions, utilities, and non-profits also made an appearance.
It is worth noting that 34.6% of respondents did not identify the type of
organization, however, so this data point might not offer extraordinary insights.
Figure 9.2 shows the organization type breakdown by percentage.

One use case that is observed in the industry is to replicate a critical
production application as a honeypot. It is expensive to deploy and maintain
and only attempt to protect the specific application, not something everyone
can attempt to use [64].

We suggest a slightly different approach, deploying a group of low-
interaction honeypots managed through a central console that provides
reporting and analytics. It is not expensive, less complex, still provides intelli­
gence on prevailing threats closer to where you are present as an organization,
and protects your overall IT footprint and not specific applications. Most
importantly, we attempt to do this using open-source platforms/technologies
and use an architecture that can be easily modified and extended to match

228 Stealpot Honeypot Network

Figure 9.2 Organizations by type.

an organization’s specific requirement using the same main components (for
central management, reporting, and analytics).

We call our honeypot “Stealpot.” Stealpot, a honeypot network, as the
name suggests, is a network of different kinds of honeypots deployed across
geographic locations to cajole prevalent threat actors into attempting a hack
and help collection of IOCs, payloads, tactics and techniques. It is a centrally
managed honeypot network of different honeypots that can help security teams
identify relevant threats and fine-tune their defenses proactively.

9.1.1 Problem statement

Composing a high-interaction honeypot network [67] with the following key
features:

• Easy to configure and deploy
• Central management
• Cost-effective implementation
• Extendible analytics and reporting capabilities

Considering the above key requirements, the Stealpot solution starts with
an approach to leverage open-source. We experimented with many open-source
platforms and components. With due research and learnings, we preferred

9.2 Methodology 229

MHN (Modern honeypot network) [25], which has a solid central management
platform for honeypots. However, the support community has not kept up to
date for MHN.

9.2 Methodology

Following are the ingredients of our dish:

• DigitalOcean developer cloud platform. (Any cloud platform would be
fine)

• MHN (Modern honeypot network): Open-source central honeypot
deployment and reporting platform. Figure 9.3 shows the MHN
console.

• Honeypots to cover multiple ports and protocols for collection of IOCs ­

– Dionaea
– Cowrie
– Elastichoney
– Shockpot

• ELK Stack – Elasticsearch, Logstash, and Kibana [48]: For expandable
analytics, reporting and integration with honeypots that do not have an
out of the box support with MHN.

• VirusTotal API script – To analyze payloads uploaded to Dionaea for
malicious content and inject details into Elasticsearch and Kibana for
analytics and reporting.

Figure 9.3 MHN console.

230 Stealpot Honeypot Network

We focused on creating a relatively high-interaction honeypot network
without replicating an entire production setup. So, we picked up MHN as the
central component deployed on the cloud. We added four different honeypots
in the network, each capturing the IOCs for different protocols. To keep the
honeypots relatively more vulnerable, we utilized Ubuntu 18.04 as the OS
platform for all honeypots and other components in the network.

Cloud deployment was an obvious choice for implementation speed and
easy capturing of IOCs across different geographies. It can be deployed in
separate VLAN(s) in the enterprise network. A compromised honeypot does
not allow any compromise beyond the VLAN(s) with the honeypot.

9.3 Architecture: Keeping It Simple and Straightforward

Figure 9.4 shows the overall architecture of the Stealpot.

9.3.1 Components

Platform: MHN (Modern honey network) deployed on an Ubuntu 18.04 VM
hosted on a cloud platform. Figure 9.3 shows the MHN console.

Figure 9.4 Architecture diagram.

9.3 Architecture: Keeping It Simple and Straightforward 231

9.3.2 Honeypots: Ubuntu 18.04 as the base OS, deployed at four
different regions across the globe

• Dionaea – For capturing the most prevalent malware samples and other
IOCs.

• Cowrie – For identifying SSH and Telnet attack statistics.
• Elastichoney – For capturing specific threats to ELK stack as this forms
part of most big data deployments.

• Shockpot – Webapp Honeypot to capture statistics for Bash RCE
vulnerability. (Do people still exploit it?)

9.3.3 Other components/integration

• Dionaea integration with VirusTotal: To capture analysis data and
upload it to an ELK stack for analytics and dashboarding purposes.

• “inotifywait”: Custom script for monitoring a folder and triggering file
upload to VirusTotal as soon as a suspected file gets uploaded via FTP.
Figure 9.5 shows the corresponding script. It was hosted as part of the
Dionaea honeypot.

Figure 9.5 Snippet of the Trigger script for uploading to VirusTotal.

Figure 9.6 Code for making API call to VirusTotal.

232 Stealpot Honeypot Network

Figure 9.6 shows the snippet of the Python script used for making API call
to VirusTotal, submitting a suspect file for analysis and receiving analysis in a
json format output file [53]. See Elasticsearch and Kibana in action, Figure 9.7
shows a sample command to upload required details from VirusTotal json
analysis file into Elasticsearch. Figures 9.8–9.13 depict the tool in action and
showcase the IOCs captured in a very short period of time.

Figure 9.7 Curl command to upload content from VT output file on Dionaea in json format
into the Elasticsearch for indexing, analysis, and dashboard.

Figure 9.8 IOCs captured within minutes of powering on.

Figure 9.9 Attack report.

9.3 Architecture: Keeping It Simple and Straightforward 233

Figure 9.10 Attack report.

Figure 9.11 Sample IOCs for malware uploaded on Dionaea.

234 Stealpot Honeypot Network

Figure 9.12 Malware uploaded to Dionaea.

Figure 9.13 Malware visualization.

9.4 Conclusion

Honeypots can become an integral part of a defensive strategy to identify the
real threats, both internal and external and feed that intelligence into your
defensive security platforms in the form of IOCs and TTPs. The biggest
hindrance in achieving the same is complexity and cost. Our approach
uses open source technologies to create a comprehensive honeypot network,
keeping the architecture flexible and straightforward.

We solve the problem of complexity, cost, and adaptability by focusing on
a ready-to-use out-of-the-box central console, ready to deploy low-interaction
honeypots that can be deployed using MHN. The central management and

9.4 Conclusion 235

deployment solution and ELK stack for adding flexibility and extendibility
to the solution. We hope to increase the usage of honeypot and honeypot
networks in the corporate world to protect against internal and external threats
by offering a simple, low-cost solution. At the end of the day, the more we
know about our enemies, the better we can protect ourselves against them.

https://taylorandfrancis.com

References

[1] A06_2021vulnerable_and_outdated_components. https://owasp.org/To
p10/A06_2021-Vulnerable_and_Outdated_Components/, 2021.

[2] 2021 open source security and risk analysis report. https://www.synops
ys.com/software-integrity/resources/analyst-reports/open-source-secu
rity-risk-analysis.html, 2022.

[3] Flowchart maker and online diagram software. https://app.diagrams.net/,
2022.

[4] Kotlin v 1.6.10. https://kotlinlang.org/, 2022.
[5] Owasp dependency-check. https://owasp.org/www-project-dependency

-check/, 2022.
[6] Mamoun Alazab and Sitalakshmi Venkatraman. Detecting malicious

behaviour using supervised learning algorithms of the function calls.
International Journal of Electronic Security and Digital Forensics,
5(2):90–109, 2013.

[7] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, Moutaz
Alazab, et al. Zero-day malware detection based on supervised learning
algorithms of api call signatures. 2010.

[8] Inc. Amazon Web Services. Open distro. https://opendistro.github.io/for
-elasticsearch/, 2021.

[9] Saptarshi Bej, Narek Davtyan, Markus Wolfien, Mariam Nassar, and Olaf
Wolkenhauer. Loras: An oversampling approach for imbalanced datasets.
Machine Learning, 110(2):279–301, 2021.

[10] BlueVirtualNerds-Team. Bluevirtualnerds/g0rking. https://github.com/B
lueVirtualNerds/G0rKing/blob/main/DorkingGuide, 2021.

[11] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[12] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.
[13] Ferhat Ozgur Catak, Ahmet Faruk Yazı, Ogerta Elezaj, and Javed

Ahmed. Deep learning based sequential model for malware analysis
using windows exe api calls. PeerJ Computer Science, 6:e285, July 2020.

237

https://www.owasp.org
https://www.synopsys.com
https://www.app.diagrams.net
https://www.kotlinlang.org
https://www.owasp.org
https://www.opendistro.github.io
https://www.github.com
https://www.owasp.org
https://www.synopsys.com
https://www.synopsys.com
https://www.owasp.org
https://www.opendistro.github.io
https://www.github.com

238 References

[14] Danqi Chen and Christopher Manning. A fast and accurate dependency
parser using neural networks. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages
740–750, Doha, Qatar, October 2014. Association for Computational
Linguistics.

[15] B. Cheng, Q. Tong, J. Wang, and W. Tian. Malware clustering using
family dependency graph. IEEE Access, 7:72267–72272, 2019.

[16] Aviad Cohen, Nir Nissim, and Yuval Elovici. Maljpeg: Machine learning
based solution for the detection of malicious jpeg images. IEEE Access,
8:19997–20011, 2020.

[17] Aviad Cohen, Nir Nissim, and Yuval Elovici. Maljpeg: Machine learning
based solution for the detection of malicious jpeg images. IEEE Access,
8:19997–20011, 2020.

[18] KHT Dam and T Touili. Malware detection based on graph classification.
ICISSP, pages 455–463, 2017.

[19] Jeremie Daniel. Install and setup cowrie honeypot on ubuntu (linux).
https://medium.com/@jeremiedaniel48/install-and-setup-cowrie-hone
ypot-on-ubuntu-linux-5d64552c31dc, 2019.

[20] DigitalOcean. How to create a droplet from the digitalocean control panel.
https://docs.digitalocean.com/products/droplets/how-to/create/, 2021.

[21] Wazuh Docs. User manual. https://documentation.wazuh.com/current/us
er-manual/index.html, 2021.

[22] Andrea Dominguez. The state of honeypots: Understanding the use of
honey technologies today. https://www.sans.org/white-papers/38165/,
2022.

[23] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy.
A study of the effect of jpg compression on adversarial images. arXiv
preprint arXiv:1608.00853, 2016.

[24] Phibos et al. Dinotools or dionaea. https://github.com/DinoTools/diona
ea/graphs/contributors, 2022.

[25] Serpulga et al. Modern honey network. https://github.com/pwnlandia/m
hn, 2022.

[26] Firehol. All cybercrime ip feeds. http://iplists.firehol.org/, 2022.
[27] David French. How to setup “cowrie” – an ssh honeypot. https://medium

.com/threatpunter/how-to-setup-cowrie-an-ssh-honeypot-535a68832e
4c, 2018.

[28] Yoav Freund and Robert E. Schapire. A decision-theoretic gener­
alization of on-line learning and an application to boosting. In
Proceedings of the Second European Conference on Computational

https://www.medium.com
https://www.docs.digitalocean.com
https://www.documentation.wazuh.com
https://www.sans.org
https://www.github.com
https://www.github.com
http://www.iplists.firehol.org
https://www.medium.com
https://www.medium.com
https://www.documentation.wazuh.com
https://www.github.com
https://www.github.com
https://www.medium.com
https://www.medium.com

References 239

Learning Theory, EuroCOLT ’95, page 23–37, Berlin, Heidelberg, 1995.
Springer-Verlag.

[29] Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention in natural lan­
guage processing. IEEE Transactions on Neural Networks and Learning
Systems, page 1–18, 2020.

[30] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[31] Claudio Guarnieri. Cuckoo Sandbox - Automated Malware Analysis.
https://cuckoosandbox.org/, 2020.

[32] Common Vulnerability Scoring System V3.1: User Guide. Cve overview.
https://www.first.org/cvss/user-guide, 2021.

[33] Eric Hamilton. Jpeg file interchange format. 2004.
[34] Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversar­

ial images. arXiv preprint arXiv:1608.00530, 2016.
[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural Comput., 9(8):1735–1780, November 1997.
[36] DigitalOcean Inc. Digital ocean. https://www.digitalocean.com/, 2022.
[37] H. Jiang, T. Turki, and J. T. L. Wang. Dlgraph: Malware detection using

deep learning and graph embedding. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages
1029–1033, 2018.

[38] Yasoob Khalid. Understanding and decoding a jpeg image using python.
https://yasoob.me/posts/understanding-and-writing-jpeg-decoder-in-py
thon/, 2022.

[39] Ban Mohammed Khammas. The performance of iot malware detection
technique using feature selection and feature reduction in fog layer. In
IOP Conference Series: Materials Science and Engineering, volume 928,
page 022047. IOP Publishing, 2020.

[40] Chan Woo Kim. Ntmaldetect: A machine learning approach to malware
detection using native api system calls. 02 2018.

[41] Konstantinos Kosmidis and Christos Kalloniatis. Machine learning and
images for malware detection and classification. 09 2017.

[42] ktsaou. firehol blocklist ipsets. https://github.com/firehol/blocklist-ipset
s/blob/master/README.md#list-of-ipsets-included, 2022.

[43] Sushil Kumar et al. An emerging threat fileless malware: a survey and
research challenges. Cybersecurity, 3(1):1–12, 2020.

[44] Rakesh Singh Kunwar and Priyanka Sharma. Framework to detect
malicious codes embedded with jpeg images over social networking

https://www.cuckoosandbox.org
https://www.first.org
https://www.digitalocean.com
https://www.yasoob.me
https://www.github.com
https://www.yasoob.me
https://www.github.com

240 References

sites. In 2017 International Conference on Innovations in Information,
Embedded and Communication Systems (ICIIECS), pages 1–4. IEEE,
2017.

[45] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial
examples in the physical world, 2016.

[46] Chatchai Liangboonprakong and Ohm Sornil. Classification of malware
families based on n-grams sequential pattern features. In 2013 IEEE 8th
Conference on Industrial Electronics and Applications (ICIEA), pages
777–782. IEEE, 2013.

[47] Ching-Yung Lin and Shih-Fu Chang. A robust image authentication
method distinguishing jpeg compression from malicious manipulation.
IEEE Transactions on Circuits and Systems for Video Technology,
11(2):153–168, 2001.

[48] Rose Web Services LLC. Install elasticsearch, logstash, and kibana on
ubuntu 20.04. https://www.rosehosting.com/blog/how-to-install-elk-stac
k-on-ubuntu-20-04/, 2022.

[49] Johnny Long. j0hnnyhax. https://en.wikipedia.org/wiki/Johnny_Long,
2022.

[50] Luca Massarelli, Giuseppe Luna, Fabio Petroni, and Leonardo Querzoni.
Safe: Self-attentive function embeddings for binary similarity. 11 2018.

[51] Microsoft. Visual studio v 17.1. https://kotlinlang.org/, 2022.
[52] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient

estimation of word representations in vector space, 2013.
[53] Subhasis Mukhopadhyay. Python implementation of virustotal vt3 api

and automation. https://github.com/SubhasisMukh/virustotal-vt3, 2020.
[54] K Nasla and M Shabna. Enhanced maljpeg: A novel approachfor the

detection of malicious jpeg images. 2020.
[55] L. Nataraj. A signal processing approach to malware analysis. 2015.
[56] Blue Virtual Nerds. Blue virtual nerds. sauron.in, 2022.
[57] NGINX. Configuring https servers. http://nginx.org/en/docs/http/config

uring_https_servers.html, 2022.
[58] US Department of Homeland Security. About the cve program. https:

//www.cve.org/About/Overview, 2021.
[59] US Department of Homeland Security. Common vulnerabilities and

exposures. https://cve.mitre.org/, 2021.
[60] Angelo Oliveira. Malware analysis datasets: Api call sequences, 2019.
[61] Morten Oscar Østbye. Multinomial malware classification based on call

graphs. 2017.

https://www.rosehosting.com
https://www.en.wikipedia.org
https://www.kotlinlang.org
https://www.github.com
http://www.nginx.org
https://www.cve.org
https://www.cve.mitre.org
https://www.rosehosting.com
http://www.nginx.org
https://www.cve.org

References 241

[62] OWASP. Owasp g0rking. https://owasp.org/www-project-g0rking/,
2021.

[63] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–519,
2017.

[64] Reshma R Patel and Chirag S Thaker. Zero-day attack signatures
detection using honeypot. In International Conference on Computer
Communication and Networks (CSI-COMNET), 2011.

[65] Abdurrahman Pektaş and Tankut Acarman. Deep learning for effective
android malware detection using api call graph embeddings. In Soft
Computing, pages 1027–1043, 2020.

[66] PhoenixNAP. Setup and use nginx as a reverse proxy. https://phoenixnap
.com/kb/nginx-reverse-proxy, 2021.

[67] Honeynet Project. The honeynet project. https://www.honeynet.org/,
2022.

[68] Rapid. How to install suricata nids on ubuntu. http://nginx.org/en/docs/ht
tp/configuring_https_servers.html, 2022.

[69] Rapid7 Report. Malware attacks: Definition and best practices. https:
//www.rapid7.com/fundamentals/malware-attacks/, 2022.

[70] SankalpIT. How to create slack incoming webhook url. https://sankalpit.
com/plugins/documentation/how-to-create-slack-incoming-webhook-u
rl/, 2022.

[71] Slack. Sending messages using incoming webhooks. https://api.slack.co
m/messaging/webhooks, 2022.

[72] Suricata. Rule management with suricata-update. https://suricata.readthe
docs.io/en/suricata-6.0.0/rule-management/suricata-update.html, 2019.

[73] Suricata. Setting up ips/inline for linux. https://suricata.readthedocs.io/en
/suricata-6.0.0/setting-up-ipsinline-for-linux.html, 2021.

[74] Mingdong Tang and Quan Qian. Dynamic api call sequence visualisation
for malware classification. IET Information Security, 13(4):367–377,
2018.

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need, 2017.

[76] Duc-Ly Vu. Deepmal: Deep convolutional and recurrent neural networks
for malware classification. 10 2020.

https://www.owasp.org
https://www.phoenixnap.com
https://www.honeynet.org
http://www.nginx.org
http://www.rapid7.com
https://www.sankalpit.com
https://www.api.slack.co
https://www.suricata.readthedocs.io
https://www.suricata.readthedocs.io
https://www.phoenixnap.com
http://www.nginx.org
https://www.sankalpit.com
https://www.sankalpit.com
https://www.api.slack.co
https://www.suricata.readthedocs.io
https://www.suricata.readthedocs.io

242 References

[77] Juntao Wang and Xiaolong Su. An improved k-means clustering algo­
rithm. In 2011 IEEE 3rd International Conference on Communication
Software and Networks, pages 44–46, 2011.

[78] Wazuh. Ruleset. https://documentation.wazuh.com/current/user-manual/
ruleset/, 2022.

[79] Wazuh. Using osint to create cdb lists and block malicious ips. https:
//wazuh.com/blog/using-osint-to-create-cdb-lists/, 2022.

[80] Wikepedia. Elf. https://en.wikipedia.org/wiki/Elf, 2022.
[81] Wikepedia. Malware. https://en.wikipedia.org/wiki/Malware, 2022.
[82] Fei Xiao, Zhaowen Lin, Yi Sun, and Yan Ma. Malware detection based on

deep learning of behavior graphs. Mathematical Problems in Engineering,
2019, 2019.

[83] Lu Xiaofeng, Zhou Xiao, Jiang Fangshuo, Yi Shengwei, and Sha Jing.
Assca: Api based sequence and statistics features combined malware
detection architecture. Procedia Computer Science, 129:248–256, 2018.

[84] Kai Zhang, Chao Li, Y. Wang, Xiaobin Zhu, and H. Wang. Collaborative
support vector machine for malware detection. In ICCS, 2017.

https://www.documentation.wazuh.com
https://www.en.wikipedia.org
https://www.en.wikipedia.org
https://www.documentation.wazuh.com
https://www.wazuh.com
https://www.wazuh.com

Index

A
Anomalies 115, 120, 131, 191
Anti-evasion 116
Application security 22, 28

C
Classification 51, 58, 71, 88, 112,
128

Common vulnerabilities and
exposures (CVE) 26, 27

Common vulnerability scoring
system (CVSS) 27, 32

Confusion matrix 53, 54, 59, 60, 90
Cuckoo 135, 143, 239
Cuckoo sandbox 135, 143, 239

D
Database security 194
Detection 25, 37, 103, 105, 112, 120,
151, 237

E
ELF 26, 33, 67, 68, 90, 95, 240

F
Feature engineering 71
Features 25, 84, 85, 110
Firewall 193, 194, 198, 201, 214

H
HIDS 152, 165, 190
Honeynet 241
Honeypot 155, 169, 172, 177, 223,
225, 230

I
Image 38, 105, 108, 109, 110, 112,
Indicators of compromise 154

J
JPEG 39, 44, 105, 107, 108

L
Log analyzer 116

M
Machine learning 37, 50, 71, 105, 111
Malware 35, 39, 67, 115, 116, 133,
233

Malware analysis 35, 115, 133, 226

N
National vulnerability database (NVD)
25, 26

Natural language processing 138, 146,
238

243

244 Index

Network security 245
NIDS 151, 152, 154, 165, 190, 241

O
Open-source software (OSS) 131, 217
Open-source vulnerability scanner 26,

27
OWASP 3, 23, 188, 237

P
Random forest 27, 59, 60, 88, 90, 95

S
Sandbox 116, 135, 143, 195, 239
Security 22, 29, 116, 181, 193,

200, 226

SOC 116, 130

T
TF-IDF 43, 48, 50, 60
Threat analytics 190
Threat intelligence 118, 152, 154, 190,

226
Trojan 38, 68, 70, 72, 138, 144, 217

V
Virtualization 203

W
Web service python 38

About the Editors

Anand Handa – is a senior research engineer and a post-doctoral fellow at
C3i center, IIT Kanpur. His focus areas include malware analysis, memory
forensics, IDS, etc. His role at C3i involves working on projects with malware
analysis and IDS as a significant component. He has published his work
at various international conferences and journals of repute. He is an active
member of different working groups.

Rohit Negi – An IIT Kanpur alumni with over 10 years of experience
specialising in industrial automation. A well-rounded researcher with a
background in areas related to cyber defense of ICS and OT layer. Actively
involved in development and incubation of indigenous solutions that improve
cyber defense strategies and capabilities, such as ICS-honeypots, ICS-SIEM,
Threat intelligence, Anomaly based IDS, etc.Lead engineer, security architect
and security operations lead at C3i Center, IIT Kanpur. Published several
international research papers and written several book chapters.

S. Venkatesan – is an associate professor at the Department of Information
Technology at the Indian Institute of Information Technology Allahabad
(IIITA). He heads IIITA’s C3iHub IoT Security Lab and is a member of the
Network Security and Cryptography (NSC) Group. He has authored several
research papers published in reputed journals and presented at conferences. His
research interests include network security, cloud computing, social network
privacy, mobile agent security, applied cryptography, and blockchain.

Sandeep K. Shukla – is a professor of computer science and engineering with
the Indian Institute of Technology. He is an IEEE Fellow, ACM distinguished
scientist, and subject matter expert in cybersecurity of cyber-physical systems
and blockchain technology. He is a recipient of various prestigious honors, and
he serves as a joint coordinator for the C3i Center and the National Blockchain
Project at IIT Kanpur, India.

245

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	List of Figures
	List of Tables
	List of Contributors
	List of Abbreviations
	Part I: Web Application Security
	Chapter 1: OWASP G0rKing – Exploiting the Hidden Aspects of Google’s Search Capabilities
	1.1: Introduction
	1.2: Literature Survey
	1.2.1: What is google dorking?
	1.2.2: A brief history of dorking

	1.3: Purpose
	1.4: Objective
	1.4.1: Types of crawling

	1.5: Technical Details
	1.5.1: Google dorking techniques

	1.6: Project SaUR0N – One Tool to Search Them All
	1.6.1: Project deliverables

	1.7: Project Requirements Packages
	1.8: Dorking Guide – Tool User Manual
	1.9: The Tool – G0rKing aka SaUR0N
	1.9.1: For simple google dorking (search)
	1.9.2: For URL probing

	1.10: Dorking Queries
	1.10.1: Guide

	1.11: Best Practices and Learnings
	1.12: Website Security and Best Practices
	1.13: Tool: SaUR0N
	1.14: GitHub Repository

	Chapter 2: OSS Known Vulnerability Scanner – Helping Software Developers Detect Third-Party Dependency Vulnerabilities in Real Time
	2.1: Introduction
	2.2: Background
	2.3: Problem Statement
	2.4: Tool Architecture
	2.5: Tool Implementation
	2.5.1: Components and their implementations

	2.6: Deployment
	2.6.1: Enterprise deployment
	2.6.2: Standalone deployment

	2.7: Tool Validation and Result
	2.8: Conclusion
	2.9: Acknowledgments

	Part II: Malware Analysis
	Chapter 3: Detecting Malware using Machine Learning
	3.1: Introduction
	3.2: Detecting Malware in JPEG Files
	3.2.1: JPEG file structure
	3.2.2: EXIF tags

	3.3: Dataset
	3.3.1: Dataset split – train and test set

	3.4: Feature Extraction Strategies
	3.4.1: Strategy I: (using the length of the tags as features)
	3.4.2: Strategy II: (forming TF-IDF)

	3.5: Working of the System
	3.6: Building the Model
	3.6.1: Constants used
	3.6.2: Functions used to extract EXIF tags from JPEG files
	3.6.3: Example of EXIF tags
	3.6.4: Unique keys extraction for all files
	3.6.5: Preparation of data frame for creating TF-IDF
	3.6.6: Forming theTF-IDF
	3.6.7: Handling the imbalanced datasets
	3.6.8: Development of decision tree model
	3.6.9: Development of random forest model

	3.7: Conclusions on the Model
	3.8: Creating the Web Service
	3.9: Creating a Simple Client Application
	3.10: Sample of a Sophisticated Client Application
	3.11: Detecting Malware in ELF Files
	3.12: About ELF Files
	3.12.1: ELF file header
	3.12.2: Program header
	3.12.3: Section information
	3.12.4: ELF dataset
	3.12.5: Distribution of dataset

	3.13: Feature Engineering and Machine Learning Classification
	3.14: Building the Model
	3.14.1: Constants used
	3.14.2: Functions used to extract information from ELF files

	3.15: Extract the Unique List of Keys for All the Files
	3.16: Createa Data Frame
	3.17: Random Forest Model Generation
	3.18: Outcomes from the Model
	3.19: Creating the Web Service
	3.20: Conclusion
	3.21: Acknowledgments

	Chapter 4: New Age Attack Vectors – JPEG Images Machine Learning-based Solution for the Detection of Malicious JPEG Images
	4.1: Introduction
	4.2: Background
	4.2.1: JPEG file structure

	4.3: Related Work
	4.4: Methodology
	4.4.1: Input JPEG images
	4.4.2: JPEG reader
	4.4.3: Data preparation
	4.4.4: Machine learning model

	4.5: Model Evaluation
	4.5.1: Evaluation metrics
	4.5.2: JPEG image detection

	4.6: Conclusion
	4.7: Acknowledgments

	Chapter 5: Live Monitoring of Malware Attacks on Cloud using Windows Agent-based Solution
	5.1: Introduction
	5.1.1: About malware
	5.1.2: Types of malware
	5.1.3: Fileless malware

	5.2: Background
	5.2.1: Procmon

	5.3: Project Approach
	5.3.1: Detection engine – agent development
	5.3.2: Analysis engine
	5.3.3: Classification engine
	5.3.4: Reporting with ELK

	5.4: Deployment Architecture
	5.4.1: Product tool architecture (benefits of the agent)

	5.5: Product Future Enhancements
	5.6: Conclusion and Future Directions
	5.7: Acknowledgments

	Chapter 6: Malware also Needs “Attention”
	6.1: Introduction
	6.2: Related Work
	6.3: Proposed Methodology
	6.3.1: Datasets
	6.3.2: Methodology
	6.3.2.1: API call level understanding – Word2Vec
	6.3.2.2: Function and binary file level understanding – attention

	6.3.3: Network architecture

	6.4: Experiments and results
	6.4.1: Experimental setup
	6.4.2: Results
	6.4.2.1: Dataset 1
	6.4.2.2: Dataset 2

	6.5: Conclusion

	Part III: IDS
	Chapter 7: Implementation of an Intrusion Detection System and Deception Technologies using Open Source Tools for Small Businesses
	7.1: Introduction
	7.2: Tool Setup and architecture
	7.2.1: Central management server (CMS)
	7.2.1.1: OpenDistro for elasticsearch
	7.2.1.2: Wazuh manager
	7.2.1.3: Suricata
	7.2.1.4: Nginx reverse proxy

	7.2.2: Endpoints or honeypots
	7.2.2.1: Cowrie honeypot
	7.2.2.2: WordPress honeypot
	7.2.2.3: Honeypot dionea
	7.2.2.4: Honeypot mailoney
	7.2.2.5: Wazuh agent

	7.3: Implementation of Tools
	7.3.1: Create droplet on digital ocean
	7.3.2: Deploying Wazuh with open Distro for Elasticsearch
	7.3.3: Installing Filebeat
	7.3.4: Installing Kibana
	7.3.5: Installing Nginx as a reverse proxy
	7.3.6: Installing Suricata on CMS
	7.3.7: Integration with IP repudiation feeds
	7.3.8: Configuring the CDB lists

	7.4: Honeypots
	7.4.1: WordPress honeypot deployment and configuration
	7.4.2: Mailoney honeypot deployment and configuration
	7.4.3: Cowrie honeypot deployment and configuration
	7.4.4: Dionaea honeypot deployment and configuration
	7.4.5: Deploying Wazuh agents on honeypot systems
	7.4.5.1: Configuration for logs forwarding from honeypot’s server to Wazuh manager

	7.4.6: Installing Suricata on honeypot server
	7.4.7: Custom rules
	7.4.8: Centralized configuration
	7.4.9: Log data collection
	7.4.10: Security configuration assessment
	7.4.11: File integrity monitoring
	7.4.12: Virus Total integration
	7.4.13: Slack
	7.4.13.1: Integration with Slack

	7.4.14: Configuration on Wazuh server

	7.5: Result
	7.5.1: Geolocation of attacks
	7.5.2: Top usernames
	7.5.3: Top attacker countries
	7.5.4: Top 10 attacker machine IPs
	7.5.5: Attacks for MySQL servers
	7.5.6: Top signatures-based attempts
	7.5.7: Top 10 attempted passwords

	7.6: Conclusion and future work

	Chapter 8: Attack Vector Analysis with a New Benchmark
	8.1: Introduction
	8.2: Background and Related Work
	8.2.1: Application hardening
	8.2.2: Operating system hardening
	8.2.3: Server hardening
	8.2.4: Database hardening
	8.2.5: Network hardening

	8.3: Threat Vector and Attack Surface
	8.3.1: Attack surface
	8.3.2: Attack vector
	8.3.3: Hardening steps
	8.3.4: During installation
	8.3.5: Updates and upgrades
	8.3.6: File systems
	8.3.7: Users, groups and authentication
	8.3.8: Warning banners
	8.3.9: Configuring crons
	8.3.10: User shell configuration
	8.3.11: USB devices
	8.3.12: Uncommon network protocol
	8.3.13: Kernel hardening
	8.3.14: Compilers
	8.3.15: Additional tools to enhance hardening index

	8.4: Post Hardening
	8.5: Results
	8.6: Conclusion and Future Work

	Part IV: Honeypot
	Chapter 9: Stealpot Honeypot Network
	9.1: Introduction
	9.1.1: Problem Statement

	9.2: Methodology
	9.3: Architecture: Keeping It Simple and Straightforward
	9.3.1: Components
	9.3.2: Honeypots: Ubuntu 18.04 as the base OS, deployed at four different regions across the globe
	9.3.3: Other components/integration

	9.4: Conclusion

	References
	Index
	About the Editors

