
Cyber Physical
Systems

Architectures, Protocols, and Applications

© 2016 by Taylor & Francis Group, LLC

Broadband Mobile Multimedia:
Techniques and Applications
Yan Zhang, Shiwen Mao, Laurence T. Yang,
and Thomas M. Chen
ISBN: 978-1-4200-5184-1

Cognitive Radio Networks: Architectures,
Protocols, and Standards
Yan Zhang, Jun Zheng, and Hsiao-Hwa Chen
ISBN: 978-1-4200-7775-9

Cooperative Wireless Communications
Yan Zhang, Hsiao-Hwa Chen,
and Mohsen Guizani
ISBN: 978-1-4200-6469-8

Cyber Physical Systems: Architectures,
Protocols and Applications
Chi (Harold) Liu and Yan Zhang
ISBN: 978-1-4822-0897-9

Delay Tolerant Networks: Protocols and
Applications
Athanasios V. Vasilakos, Yan Zhang, and
Thrasyvoulos Spyropoulos
ISBN: 978-1-4200-1108-5

Distributed Antenna Systems: Open
Architecture for Future Wireless
Communications
Honglin Hu, Yan Zhang, and Jijun Luo
ISBN: 978-1-4200-4288-7

The Future of Wireless Networks:
Architectures, Protocols, and Services
Mohesen Guizani, Hsiao-Hwa Chen,
and Chonggang Wang
ISBN: 978-1-4822-2094-0

Game Theory for Wireless
Communications and Networking
Yan Zhang
ISBN: 978-1-4398-0889-4

The Internet of Things: From RFID to the
Next-Generation Pervasive Networked
Systems
Lu Yan, Yan Zhang, Laurence T. Yang,
and Huansheng Ning
ISBN: 978-1-4200-5281-7

Millimeter Wave Technology in Wireless
PAN, LAN and MAN
Shao-Qiu Xiao, Ming-Tuo Zhou,
and Yan Zhang
ISBN: 978-0-8493-8227-7

Mobile WiMAX: Toward Broadband
Wireless Metropolitan Area Networks
Yan Zhang and Hsiao-Hwa Chen
ISBN: 978-0-8493-2624-0

Orthogonal Frequency Division Multiple
Access Fundamentals and Applications
Tao Jiang, Lingyang Song, and Yan Zhang
ISBN: 978-1-4200-8824-3

Physical Layer Security in Wireless
Communications
Xiangyun Zhou, Lingyang Song, and Yan Zhang
ISBN: 978-1-4665-6700-9

Resource, Mobility, and Security
Management in Wireless Networks and
Mobile Communications
Yan Zhang, Honglin Hu, and Masayuki Fujise
ISBN: 978-0-8493-8036-5

RFID and Sensor Networks: Architectures,
Protocols, Security and Integrations
Yan Zhang, Laurence T. Yang, and JimIng Chen
ISBN: 978-1-4200-7777-3

Security in RFID and Sensor Networks
Yan Zhang and Paris Kitsos
ISBN: 978-1-4200-6839-9

Security in Wireless Mesh Networks
Yan Zhang, Jun Zheng, and Honglin Hu
ISBN: 978-0-8493-8250-5

Unlicensed Mobile Access Technology:
Protocols, Architectures, Security,
Standards, and Applications
Yan Zhang, Laurence T. Yang, and Jianhua Ma
ISBN: 978-1-4200-5537-5

WiMAX Network Planning and Optimization
Yan Zhang
ISBN: 978-1-4200-6662-3

Wireless Ad Hoc Networking: Personal-Area,
Local-Area, and the Sensory-Area Networks
Shih-Lin Wu, Yu-Chee Tseng, and Hsin-Chu
ISBN: 978-0-8493-9254-2

Wireless Mesh Networking: Architectures,
Protocols, and Standards
Yan Zhang, Jijun Luo, and Honglin Hu
ISBN: 978-0-8493-7399-2

Wireless Quality-of-Service: Techniques,
Standards, and Applications
Maode Ma, Mieso K. Denko, and Yan Zhang
ISBN: 978-1-4200-5130-8

WIRELESS NETWORKS AND MOBILE COMMUNICATIONS
Dr. Yan Zhang, Series Editor

Simula Research Laboratory, Norway
E-mail: yanzhang@ieee.org

© 2016 by Taylor & Francis Group, LLC

mailto:yanzhang@ieee.org

Cyber Physical
Systems

Architectures, Protocols, and Applications

Edited by
Chi (Harold) Liu and Yan Zhang

© 2016 by Taylor & Francis Group, LLC

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20151014

International Standard Book Number-13: 978-1-4822-0898-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2016 by Taylor & Francis Group, LLC

http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com

Contents

List of Figures . xiii

List of Tables . xix

List of Contributors . xxi

1 Background . 1

Chi Harold Liu, Jianxin Zhao, and Yan Zhang

SECTION I: CPS ARCHITECTURE 5

2 Overall Architecture for CPS 7
Chi Harold Liu and Jianxin Zhao

3 Mobile Sensing Devices and Platforms for CPS 11

Charith Perera, Prem P. Jayaraman, Srimal Jayawardena, Arkady
Zaslavsky, Chi Harold Liu, and Peter Christen
3.1 Introduction . 12
3.2 Mobile Sensing in Internet of Things Paradigm 13
3.3 Strategies, Patterns, and Practice of Mobile Sensing 15
3.4 MOSDEN: Mobile Sensor Data Engine 17

3.4.1 Problem Definition . 17
3.4.2 MOSDEN: Architectural Design 17
3.4.3 Plugin Architecture 18
3.4.4 General Architecture 19
3.4.5 Interaction with the Cloud and Peers 19
3.4.6 Distributed Processing 21

3.5 Implementation . 21

v

© 2016 by Taylor & Francis Group, LLC

vi � Contents

3.5.1 Plugin Development 22
3.6 Performance Evaluation and Lessons Learned 26

3.6.1 Experimental Testbed 27
3.6.2 Stand-Alone Experimentation 27
3.6.3 Collaborative Sensing Experimentation 31

3.7 Open Challenges and Opportunities 36
3.7.1 Automated Configuration 36
3.7.2 Unified Middleware Platform 37
3.7.3 Optimized Data Processing Strategy 38
3.7.4 Multi-Protocol Support 38
3.7.5 Modular Reasoning, Fusing, and Filtering 39

3.8 Summary . 40

4 Naming, Addressing, and Profile Services for CPS 41

Chi Harold Liu
4.1 Introduction . 42

4.1.1 Scope and Assumptions 43
4.1.2 Contributions and Chapter Organization 44

4.2 Related Work . 45
4.3 System Flows . 46

4.3.1 Device Registration and Configurations 47
4.3.2 Upstream Data Collection 47
4.3.3 Downstream Command Delivery 49
4.3.4 Application Query . 49
4.3.5 Integration with Different CPS Platforms 49

4.4 System Designs and Implementations 51
4.4.1 RESTful Interfaces . 51
4.4.2 Naming and Addressing Convention 53
4.4.3 Generating the devID 55

4.5 A Case Study . 56
4.5.1 Device Deployment, Naming, and Addressing Format 56
4.5.2 A Device Registration Portal 59

4.6 Performance Evaluation . 60
4.7 Discussion . 64

4.7.1 DDoS Attacks . 64
4.7.2 Compatibility with IPv6 65

4.8 Summary . 65

5 Device Search and Selection for CPS 67
Charith Perera, Chi Harold Liu, and Peter Christen
5.1 Introduction . 68
5.2 Internet of Things Architecture and Search Functionality . . 69

5.2.1 Sensing Device Searching from Functional Perspective 70

© 2016 by Taylor & Francis Group, LLC

Contents � vii

5.2.2 Sensing Device Searching from Implementation Per-
spective . 72

5.3 Problem Definition . 76
5.4 Context-Aware Approach for Device Search and Selection . . 77

5.4.1 High-Level Model Overview 77
5.4.2 Capturing User Priorities 80
5.4.3 Data Modelling and Representation 80
5.4.4 Filtering Using Querying Reasoning 82
5.4.5 Ranking Using Quantitative Reasoning 84
5.4.6 Context Framework 85

5.5 Improving Efficiency . 85
5.5.1 Comparative-Priority Based Heuristic Filtering

(CPHF) . 86
5.5.2 Relational-Expression Based Filtering (REF) 87
5.5.3 Distributed Sensor Searching 88

5.6 Implementation and Experimentation 90
5.7 Performance Evaluation . 91

5.7.1 Evaluating Alternative Storage Options 94
5.7.2 Evaluating Distributed Sensor Searching 95

5.8 Open Challenges and Future Research Directions 96
5.8.1 Context Discovery, Processing, and Storage 97
5.8.2 Utility Computing Models and Sensing as a Service . 97
5.8.3 Automated Smart Device Configuration 98
5.8.4 Optimize Sensing Strategy Development 98

5.9 Summary . 99

6 Energy Management for CPS 101

Chi Harold Liu
6.1 Introduction . 102
6.2 Related Work . 103
6.3 System Model . 105

6.3.1 Sensors . 105
6.3.2 Tasks . 106
6.3.3 System Flow . 106

6.4 QoI-Aware Sensor-to-Task Relevancy and Critical Covering
Sets . 107
6.4.1 Information Fusion . 108
6.4.2 Critical Covering Set 108

6.5 QoI-Aware Energy Management 109
6.5.1 Duty-Cycling of Sensors 109
6.5.2 Delay Model for Tasks 110
6.5.3 Problem Formulation 111

6.5.3.1 Minimize the Maximum Duty Cycle 111
6.5.3.2 Minimize Weighted Average Duty Cycle . . . 112

© 2016 by Taylor & Francis Group, LLC

viii � Contents

6.5.4 A Greedy Algorithm 112
6.6 Performance Evaluation . 117

6.6.1 System Model and Simulation Setup 117
6.6.2 Simulation Results . 119

6.7 Modeling the Signal Transmission and Processing Latency . 123
6.7.1 Model Description and Problem Formulation 124
6.7.2 Satisfactory Region of Delay Tolerance 127
6.7.3 Results . 128

6.8 Implementation Guidelines 128
6.9 Summary . 130

SECTION II: ENABLING TECHNOLOGIES
FOR CPS 131

7 Networking Technologies for CPS 133

Chi Harold Liu and Zhengguo Sheng
7.1 Sensing Networks . 134

7.1.1 433MHz Proprietary Solutions 134
7.1.2 ZigBee . 134
7.1.3 RFID . 135
7.1.4 Bluetooth . 135

7.2 Data Connectivity . 136
7.2.1 2G/3G SIM Modules 136

8 Machine-to-Machine Communications for CPS 139
Zhengguo Sheng, Hao Wang, and Daqing Gu
8.1 Introduction . 140
8.2 Related Works . 141
8.3 A RESTful Protocol Stack for WSN 142

8.3.1 6LoWPAN . 142
8.3.2 RPL . 144
8.3.3 CoAP . 145
8.3.4 HTTP-CoAP Protocol Implementation 147

8.3.4.1 Direct Access 147
8.3.4.2 Proxy Access 147

8.4 Prototyping Implementation 148
8.4.1 Sensor Node . 148
8.4.2 RESTful Gateway . 149

8.4.2.1 libcoap Layer 151
8.4.2.2 CoAP Request/Response Layer 152
8.4.2.3 HTTP-CoAP Mapping Layer 153

8.5 Performance Evaluation . 154
8.5.1 System Configuration 154
8.5.2 RTTs and Packet Loss Evaluations of RPL Routing . 154

© 2016 by Taylor & Francis Group, LLC

Contents � ix

8.5.3 RESTful Method to Retrieve Sensor Resources 155
8.6 Summary . 157

9 Mobile Cloud Computing for CPS 159

Chi Harold Liu
9.1 Introduction . 160
9.2 MCC Definition . 162
9.3 Challenges . 163

9.3.1 Managing the Task Offloading 163
9.3.2 Encountering Heterogeneity 166
9.3.3 Enhancing Security and Protecting Privacy 169
9.3.4 Economic and Business Model 171

9.4 Future Directions . 172
9.4.1 Managing the Task Offloading 172

9.4.1.1 Scalability in the Device Cloud 172
9.4.1.2 Making the Offloading Decision Process Trans-

parent to the Application Developer 173
9.4.1.3 Context Awareness on Trading Off the Opti-

mization between Performance Improvement
and Energy Saving 173

9.4.1.4 Tasks Distributing among Sensors 173
9.4.1.5 Offloading Decision Making in a Hybrid

Cloud . 174
9.4.2 Encountering Heterogeneity 174

9.4.2.1 Efficient Middleware 174
9.4.2.2 Dynamic Adaptive Automated System . . . 174
9.4.2.3 Mobile Big Data 175

9.4.3 Enhancing Security and Privacy 175
9.4.3.1 Finding Protection Solutions That Are More

Efficient Is Still a Research Topic 175
9.4.3.2 Context Awareness on Dynamic Security Set-

tings . 175
9.4.3.3 Trade Off between the Functional Perfor-

mance Degradation and Security and Privacy
Requirements 176

9.4.4 Economic and Business Models 176
9.5 Summary . 177

SECTION III: CPS APPLICATIONS 179

10 Connected Healthcare for CPS 181
Chi Harold Liu
10.1 Introduction . 182
10.2 Related Work . 183

© 2016 by Taylor & Francis Group, LLC

x � Contents

10.3 System Model . 184
10.4 Sensor Proxy Design . 185

10.4.1 Data Capture Module 185
10.4.2 Internal Event Pub/Sub Engine 185
10.4.3 Process Service Module 186
10.4.4 Transportation Service Module 187
10.4.5 Device Management Service Module 188

10.5 HTTP Interface . 188
10.5.1 Get Naming and Addressing 188

10.5.1.1 Sensor Proxy Naming 188
10.5.1.2 Biomedical Sensors Naming 188
10.5.1.3 Biomedical Sensors Addressing 189

10.5.2 Start Blood Pressure/Glucose Reader 189
10.5.3 Get Social Security Card ID 189
10.5.4 Get Blood Pressure/Glucose Data 190

10.6 Case Studies . 190
10.6.1 Stationary HealthKiosk 190
10.6.2 Mobile HealthKiosk 191

10.7 Summary . 193

11 Multi-Player Gaming for Public Transport Crowd 195

Chi Harold Liu
11.1 Introduction . 196
11.2 A CrowdMoG Use Case Scenario 201
11.3 CrowdMoG Design . 202

11.3.1 Cloud-Based Game Services 203
11.3.2 Cloud Manager . 204
11.3.3 Group Manager . 205

11.3.3.1 Peer Manager 205
11.3.3.2 Session Dynamics Manager 206

11.3.4 Network Protocol Manager 206
11.3.5 Game Feature Extractor 207

11.4 Prototype — Phage . 207
11.5 Summary . 209

12 Mobile Cloud Computing Enabled Emerging CPS
Applications . 211

Chi Harold Liu
12.1 Education . 212
12.2 Office Automation . 212
12.3 Healthcare . 213
12.4 Mission-Critical Applications 214
12.5 Summary . 215

© 2016 by Taylor & Francis Group, LLC

Contents � xi

13 Conclusion . 217
Chi Harold Liu, Jianxin Zhao, and Yan Zhang

References . 219

Index . 243

© 2016 by Taylor & Francis Group, LLC

© 2016 by Taylor & Francis Group, LLC

List of Figures

2.1 An overall architecture considered in this chapter. 8

3.1 MOSDEN supports sensing as a service model. Sensors that
do not have long-range network communication capabilities
connect to MOSDEN instances. Then, MOSDEN processes
the data and transmits it to the cloud selectively, 14

3.2 Different types of mobile sensing devices and platforms. . . . 14
3.3 Plugin distribution and installation. 19
3.4 The architectural design of the MOSDEN. Legend: Sensor

(S), Plugin (P), Wrapper (W), Virtual Sensor (VS). Plugins
communicate with the sensors and retrieve data. Each plugin
should be compatible with the sensor it wants to communi-
cate with. Plugins compatible with different sensors can be
downloaded from Google Play. 20

3.5 Interactions between MOSDEN and cloud GSN. 21
3.6 MOSDEN screenshots: (a) List of sensors connected to the

MOSDEN; (b) list of virtual sensors currently running on the
MOSDEN and their details; (c) map that shows sensor loca-
tions; and (d) interface for data fusing and filtering. 23

3.7 Screenshots of a cloud GSN instance showing three different
MOSDEN instances registration. 24

3.8 IPlugin written in AIDL (Android Interface Definition Lan-
guage) that governs the structure of the plugins. It defines the
essential items in the plugin. 25

3.9 MOSDEN plugin is an Android service. 25
3.10 Code snippet of the plugins AndroidManifest file. 26
3.11 Code snippet of a virtual sensors definition. 26
3.12 Some of the hardware devices used in the experimentation. . 28

xiii

© 2016 by Taylor & Francis Group, LLC

xiv � List of Figures

3.13 Experimentation and evaluation results. (Note: MOSDEN ap-
plication and plugins use CPU, memory, and energy indepen-
dently where plugins are treated as individual services by the
Android platform. All the calculations are accumulated values
of MOSDEN application and plugin services.) 29

3.14 Experimental testbed has been configured in two different
ways: (a) Setup 1: three mobile devices are connected to a
laptop, and (b) Setup 2: three mobile devices are connected
to another mobile device. 32

3.15 Experimental results in collaborative sensing environment. . 34
3.16 Two types of configuration are required to establish the con-

nectivity between ICOs and cloud middleware platforms. . . 36
3.17 Categorization of CPS devices based on their computational

capabilities. The devices belonging to each category have dif-
ferent capabilities depending on processing, memory, and com-
munication. From left to right, the devices become more and
more expensive; the computational capabilities also increase. 37

4.1 System context of NAPS and the associated application-layer
interfaces. 47

4.2 System flow: (a) upstream data collection, (b) downstream
command delivery, and (c) application query. 48

4.3 NAPS component design. 50
4.4 Table designs for device, device type, device group, and device

domain tables. 52
4.5 RESTful URI design for NAPS. 53
4.6 Device deployment in a smart building environment. 57
4.7 Device domain structure for the considered smart building sce-

nario. 58
4.8 NAPS registration portal. (a) View a list of device types, and

(b) add a new device type. 60
4.9 NAPS registration portal. (a) Add/view a new device domain

in a tree structure, and (b) register a new device profile. . . 61
4.10 NAPS registration portal. (a) Select the device domain infor-

mation from the existing domain tree, and (b) add/remove
devices to/from a device group. 62

4.11 The XML body attached with the RESTful URI to register a
new device profile for temperature sensor 1. 63

4.12 Average JDBC query response time versus the number of de-
vice profile records stored in NAPS, w.r.t. to different periodic
batch fetching size. 64

5.1 High level overview of CASSARAM. 79

© 2016 by Taylor & Francis Group, LLC

List of Figures � xv

5.2 A weight of W1 is assigned to the reliability property. A weight
of W2 is assigned to the accuracy property. A weight of W3

is assigned to the availability property. A weight of W4, the
default weight, is assigned to the cost property. High priority
means always favored, and low priority means always disfa-
vored. For example, if the user makes cost a high priority
(more toward the right), that means CASSARAM tries to
find the sensors that produce data at the lowest cost. Simi-
larly, if the user makes accuracy a high priority, that means
CASSARAM tries to find the sensors that produce data with
high accuracy. 81

5.3 Data model used in CASSARAM. In SSN ontology, sensors
are not constrained to physical sensing devices; rather a sensor
is anything that can estimate or calculate the value of a phe-
nomenon, so a device or computational process or combination
could play the role of a sensor. A sensing device is a device
that implements sensing [122]. Sensing device is also a sub-
class of sensor. By following the above definition, our focus is
on sensors. CF (Climate and Forecast) ontology is a domain
specific external ontology. DOLCE+DnS Ultralite (DUL) on-
tology provides a set of upper level concepts that can be the
basis for easier interoperability among many middle and lower
level ontologies. More details are provided in [122]. 83

5.4 Sensors plotted in three-dimensional space for demonstration
purposes. Sα, Sβ , and Sγ represent real sensors. Ui repre-
sents the user preferred sensor. Ud represents the default user
preferred sensor. CPWI calculates weighted distance between
Sj=α||β||γ and Ui||d. Shortest distance means sensor will rank
higher because it is close to the user requirement. 84

5.5 Visual illustration of Comparative-Priority Based Heuristic
Filtering. 87

5.6 Distributed processing approaches for CASSARAM. 88
5.7 Optimization: (a) wihout k-extension and (b) with k-

extension. 89
5.8 Context information collection and modelling. 91
5.9 Experimental results. 92

6.1 System flow of the proposed energy management framework. 107
6.2 An illustrative example of service delay, where Tasks 1, 2, and

4 have two instances and Task 3 has only one instance. . . . 110
6.3 An illustrative example of the reservoir plane graph to monitor

the water quality of four locations (as square), where 15 ran-
domly deployed sensors with certain sensing range are shown
(as dots). 118

6.4 Sensor duty cycle vs. time 120

© 2016 by Taylor & Francis Group, LLC

xvi � List of Figures

6.5 Average duty cycle vs. delay failure threshold, by chang-
ing (a) frame size L = {5, 10, 15, 20}, (b) switching power
P sw
n = {2, 4, 6, 8}, and (c) task accuracy requirement εm =
{0.06, 0.07, 0.10, 0.12}. 121

6.6 Normalized remaining energy vs. time. 123
6.7 Fairness index (Jain’s) on energy consumption among all sen-

sors. 124
6.8 An illustrative example of service delay with signaling latency. 125
6.9 F vs. delay tolerance threshold, varying parameters ω = {3, 7}

and µL = {0.002, 0.003}. 127
6.10 Average measured delay failure probability vs. delay tolerance

threshold. 129

7.1 Radio technologies and applications mapping. 134
7.2 ISM (industrial, scientific, and medical) band in China. . . . 135
7.3 Comparison of SIM modules manufacturers. 136

8.1 The position of 6LowPAN in the IPv6 protocol stack. 143
8.2 CoAP protocol stack. 146
8.3 Direct access vs. proxy access. 148
8.4 System architecture. 149
8.5 A snapshot of a sensor platform. 149
8.6 Hardware architecture of gateway. 151
8.7 Interaction process of HC proxy. 152
8.8 Network topology of the prototype system. 155
8.9 Routing table, RTTs, and packet loss evaluations. 156
8.10 HTTP vs. CoAP methods. 156

9.1 Three MCC-enabled CPS architectures: Internet Cloud, De-
vice Cloud, and Hybrid Cloud. 161

9.2 MAPCloud middleware architecture. 168
9.3 Context management architecture in IRNA. 169
9.4 Different location-based privacy techniques. 171

III.A MOSDEN can be used as an intermediary device where it re-
trieves data from low-cost sensors and pushes it to the cloud in
real-time or on demand. These sensing middleware platforms
can be installed on both static (e.g., Raspberry Pi) and mobile
hardware devices (e.g., tablets and smartphones). 179

III.B Efficient waste management in smart cities supported by the
sensing as a service model 180

© 2016 by Taylor & Francis Group, LLC

List of Figures � xvii

10.1 A system diagram for the proposed HealthKiosk system, where
(1) biomedical sensors send the sensor readings to the sensor
proxy, (2) the sensor readings are processed and sent to the
kiosk via Ethernet, (3) and (4) the data are further analyzed
by the backend server, and (5) treatment suggestions are sent
to the sensor proxy. 183

10.2 A functional design architecture for the sensor proxy. 185
10.3 The illustrative functional diagram for data aggregation,

transformation, and encryption. 186
10.4 The combined data with social security card and blood pres-

sure sensor information in one XML data format. 187
10.5 An illustrative case study showing (a) the overall system com-

posed of a touch-screen kiosk, a sensor proxy, a social security
card reader, a height and weight sensor, and a blood pressure
sensor, and (b) a colleague of IBM Research – China is taking
blood pressure measurement with his social security card. . 191

10.6 Developed UI, showing (a) the welcome page, (b) the height
and weight measurement, and (c) the blood pressure measure-
ment. 191

10.7 The case study for the mobile HealthKiosk system, showing
(a) the welcome page, (b) the personal settings, (c) and (d)
the blood pressure measurement entrance and the historical
data trend, (e) and (f) new measurement, (g) and (h) healthy
tips and community suggestions. 192

10.8 Historical records of blood pressure measurements and the
relational database containing the patient information. . . . 193

11.1 Overall scenario. 196
11.2 Results of packets’ RTT indicate 3G/4G cellular networks can-

not serve the purpose for a satisfactory gaming experience be-
cause of high latency, unexpected high variance, and sudden
link loss. 198

11.3 Studies of passenger dynamics in Beijing Underground sug-
gest that there is ample opportunity to start/join a game play
in the crowd. The experimental results also confirm that the
considered public transport scenarios indeed offer a unique op-
portunity for travelers to participate in game play according
to their gaming preferences. 199

11.4 Architectural design of the CrowdMoG platform — the square
on the bottom contains the part on the players’ mobile devices
while the cloud above contains cloud-based gaming services
components. 202

11.5 Screenshot of the “Phage.” 208

12.1 MCC ecosystem and its important stakeholders. 213

© 2016 by Taylor & Francis Group, LLC

© 2016 by Taylor & Francis Group, LLC

List of Tables

3.1 Heterogeneity in Terms of Wireless Communication Technol-
ogy . 39

4.1 Summary of Important Acronyms 45
4.2 RESTful API to Get Device Profile Information 54
4.3 RESTful API to Search Devices under Condition 54
4.4 Examples of Device Addressing Convention with Different

Protocols . 55
4.5 Bit Allocation for devID (in total 64 bits) 56
4.6 Device Naming Format and devID of Six ZigBee Sensors . . 58
4.7 Device Addressing Format of Six ZigBee Sensors 59
4.8 Pressure Test Results on RESTful API to Search Device

Names Containing Keyword “ibm” 65

5.1 Common Algorithmic Notation Table 78
5.2 The Amount of Redundant Data Communication Saved by

the Parallel Sensor Search with k-extension Strategy 96

6.1 Summary of Important Symbols 104
6.2 Summary of Important Symbols (continued) 105
6.3 Average Measured Delay Failure w.r.t. Different Frame Sizes

and Delay Failure Thresholds 122

8.1 6LoWPAN Dispatch Field 145
8.2 Technical Specifications of Sensor Device 150
8.3 Technical Specifications of Gateway 151

9.1 Comparison of Mobile Cloud Computing Solutions 164
9.2 Heterogeneity of Hardware 167

xix

© 2016 by Taylor & Francis Group, LLC

© 2016 by Taylor & Francis Group, LLC

List of Contributors

Peter Christen
Australian National University
Australia

Daqing Gu
France Telecom Orange Labs
China

Prem P. Jayaraman
RMIT University, Australia

Srimal Jayawardena
CSIRO, Australia

Chi Harold Liu
Beijing Institute of Technology
China

Charith Perara
Open University, U.K.

Zhengguo Sheng

University of Sussex, U.K.

Hao Wang

France Telecom Orange Labs
China

Arkady Zaslavsky

CSIRO, Australia

Yan Zhang

Simula Research Laboratory
Norway

Jianxin Zhao

Beijing Institute of Technology
China

xxi

© 2016 by Taylor & Francis Group, LLC

Chapter 1

Background

Chi Harold Liu and Jianxin Zhao

Beijing Institute of Technology, China

Yan Zhang

Simula Research Laboratory and University of Oslo, Norway

In the past decades, with the fast improvements in science, technology, and
engineering, people are continuing to redefine the capabilities of the surround-
ing physical world. The articles “Cyber Physical Systems” (CPS [1, 2, 3]) and
“The Internet-of-Things” [4, 5, 6]) represent an evolution in computerized in-
terconnectivity. They integrate the dynamics of the physical processes with
those of the software and communication, providing abstractions and model-
ing, design, and analysis techniques for the integrated whole [7]. It has become
the new frontier research focus for worldwide industry, academia, and govern-
ment agencies [6]. The concept of CPS can be traced back to the pioneering
work done by Kevin Ashton in 1999, and it is initially linked to the new idea of
using radio frequency identification (RFID [8, 9]) in the supply chain industry
sector [10]. Soon after, this term became popular and now is well known as a
new communication and computing system, where the Internet is connected to
the physical world via ubiquitous (wireless) sensor networks [11]. CPS’s basic
concept is that “...things having identities and virtual personalities operating
in smart spaces using intelligent interfaces to connect and communicate within
social, environmental, and user contexts...” [12].

These global networked things include RFID tags, ZigBee sensors [13],
smartphones, etc., thus forming intimate coupling between the cyber and phys-
ical. Using technologies like wireless sensor networks (WSNs) [14], RFID [9],

1

© 2016 by Taylor & Francis Group, LLC

2 � Cyber Physical Systems: Architectures, Protocols, and Applications

ZigBee, WiFi and the next generation of mobile communication networks like
4G/LTE [15]. It is expected that various access networks, sensors/actuators,
and almost everything on the planet can be seamlessly inter-connected to-
gether and be able to perceive and understand the complex surrounding envi-
ronment, and hence cover a wide range of applications like healthcare [16, 17],
home automation [18], environmental monitoring [19], intelligent transporta-
tion [20], electric power grid [21], utilities, e-learning [22], etc. [23]. Future
applications include using such capabilities to enable highly intelligent and
responsive actuation, for example through dynamic public transit scheduling
or efficient and predictive utility (electricity, water) management. In recent
years, with the evolving model of “participatory sensing” [24, 25], the “sen-
sors” in a CPS sensory environment are not only traditional embedded systems
such as a sensing node/unit, but also the affordable, wireless, and easily pro-
grammable mobile devices such as smartphones and tablets. These new types
of smart devices are equipping with many types of sensors like accelerome-
ter, GPS, gyroscope, magnetometer, luxmeter, microphone, proximity sensor.
Today mobile phones have become a ubiquitous central computing and com-
munication device in people’s lives [25]. The mobile device market is growing
at a frantic pace and it won’t be long before it outnumbers the human pop-
ulation. It is predicted that mobile phones combined with tablets will exceed
the human population by 2017 [26, 27].

The vision of CPS is to allow “things” to be connected anytime, anyplace,
with anything and anyone, ideally using any path, any network, and any ser-
vice [28]. In order to realize this vision, we need a common operating platform,
namely the middleware, that is scalable and supports a high level of interoper-
ability. This platform enables sensor data collection, processing, and analysis.
Efficient and feature-rich CPS middeware platforms are key enablers of the
CPS paradigm. We are currently observing an emerging trend in middelware
solutions that enable CPS [29]. However, most of the solutions are designed
and developed to be used in the cloud environments where abundant resources
are available. It is believed that middleware solutions designed specifically for
low powered resource constrained computation devices are critical in order to
realize the vision of CPS.

From another perspective, the Internet of Things (IoT) is part of the future
Internet and will comprise billions of intelligent Internet connected objects
(ICO) which will have sensing, actuating, and data processing capabilities.
With the development of IoT technologies in the past few years, a wide range
of intelligent and tiny sensing devices has been massively deployed in a vari-
ety of vertical applications and several major standardization alliances have
gradually formed based on the interests of technology selections and commer-
cial markets. Generally, sensing devices have common features of constrained
energy resources, limited processing capability, vulnerable radio conditions,
real-time nature of applications and no direct human interaction, etc. By inter-
connecting these devices using low-cost wireless communication technologies,
usually called wireless sensor networks (WSN), a new ecosystem with a large

© 2016 by Taylor & Francis Group, LLC

Background � 3

deployment of smart applications has been formed. Each ICO will have one
or more embedded sensors that will capture potentially enormous amounts
of data. Some ICOs are large, and some are small. Similarly, some ICOs are
expensive while others are cheap. The number of sensors deployed around the
world is increasing at a rapid pace. These sensors continuously generate enor-
mous amounts of data. However, collecting data from all the available sensors
does not create additional value unless they are capable of providing valuable
insights that will ultimately help to address the challenges we face every day
(e.g., environmental pollution and traffic congestion management). Further-
more, it is also not feasible due to its large scale, resource limitations, and cost
factors. When a large number of sensors are available from which to choose,
it becomes a challenge and a time-consuming task to select the appropriate
sensors that will help the users solve their own problems.

The challenges include CPS specific challenges such as privacy, partici-
patory sensing, data analytics, GIS-based visualization and cloud computing
apart from the standard WSN challenges including architecture, energy effi-
ciency, security, protocols, and quality of service. Toward this end, the aim of
this book is to introduce CPS from the standpoint of architectures, protocols,
and applications. First, from Chapter 2 to Chapter 6, we give a whole picture
of the architectures of CPS, and elaborate on it from perspectives including
mobile sensing devices/platforms, naming/addressing/profile services, device
search and selection, device management and energy management. Then, we
introduce enabling technologies of CPS, from the fundamental networking
technologies to machine-to-machine (M2M) communications and mobile cloud
computing (MCC) in Chapters 7, 8, and 9. Finally, in Chapters 10, 11 and 12,
we present a few representative CPS applications including connected health-
care, gaming in the public transport crowd, and MCC-enabled emerging CPS
applications. Finally, we conclude this book in Chapter 13.

To conclude, CPS is a part of future Internet and ubiquitous computing.
It envisions interactions between things that consist of sensors and actuators.
As the price of sensors diminishes rapidly, we can soon expect to see very large
numbers of things. As a very active research field, there are a variety of ques-
tions that need to be answered in CPS, at different layers of the architecture
and from different aspects of systems design.

© 2016 by Taylor & Francis Group, LLC

CPS

ARCHITECTURE

I

© 2016 by Taylor & Francis Group, LLC

Chapter 2

Overall Architecture
for CPS

Chi Harold Liu and Jianxin Zhao

Beijing Institute of Technology, China

In this chapter, we discuss the overall CPS architecture. We analyze the dif-
ferent CPS applications from the bottom up and extract the common parts
that form the vertical structure.

Throughout the introduction, a careful reader may ask what do CPS ap-
plications have in common. Although there exist CPS segments, such as in-
telligent transportation, smart logistics, and smart grid, etc., we notice that
they all have a similar vertical structure, which is shown in Figure 2.1. The
only difference is their technical solutions due to the nature of applications
or other constraints. Nevertheless, this figure shows the overall CPS architec-
ture considered in this book, from the physical phenomenon all the way up
to the data center, and it is also widely adopted in industry. A number of
manufacturers or service providers are located on part of this value chain to
provide differentiated technologies and services. Generally, we can divide the
CPS architecture into four layers:

� Physical/MAC Layer

Physical/MAC Layer (or access networks) lays a foundation for CPS
architecture. CPS uses devices (such as sensors or actuators) to sense
or control the physical world. They are interconnected either wire-
lessly or wired through a variety of radio access network technologies

7

© 2016 by Taylor & Francis Group, LLC

8 � Cyber Physical Systems: Architectures, Protocols, and Applications

M
an

ag
em

en
t

Online
Analysis

Offline
Analysis

Monitor and
Control

Naming,
Addressing
and Profile

RESTful and JDBC APIs

Industry Applications

Middleware

Transport
Layer

PHY/MAC
Layer

Applications Portal …

Data Center

RESTful and JDBC APIs

Device Hardware

Physical World

Cellular
(2G/3G/LTE)

IEEE 802.11
IEEE 802.15, etc.

(WiFi, Bluetooth, ZigBee)
RFID Wireline

(PLC, etc.)

Transport Protocols
(CoAP/UDP, HTTP/TCP)

EPCglobal
Architecture

CPS Private Network

3GPP MTC

ETSI M2M
Service Architecture

Carrier Public Network

IPv4/IPv6

Access Networks

OPC-UA
Architecture

…

Mobile
Sensing
Platform

Device
Search and
Selection

Energy
Management

Figure 2.1: An overall architecture considered in this chapter.

for smart transmission. A few known examples are cellular networks
(2G/3G/LTE), IEEE 802.11/802.15 series of standards for WiFi, Zig-
Bee, Bluetooth, RFID readers and tags, and wire-line technologies like
power-line communications (PLC), etc.

� Transport Layer

Transport layer plays a key role in bridging sensing networks with
carrier networks. It actually behaves as a gateway to translate the
captured event from the sensor layer into a standard format, inter-
connecting the access networks and the backbone Internet. Data are
then routed either through the carrier public network or CPS private
network. For the former, a standard like 3GPP MTC is defined to up-
grade the existing backbone cellular network to manage M2M devices;
for the latter, most service layer architectures, e.g., EPCglobal RFID
architecture and OPC-UA client-server model, leverage existing trans-
port layer protocols such as CoAP [30] over UDP, and HTTP over
TCP.

� Middleware/Service Layer

CPS platform is the core element in CPS architecture. It actually
provides operation functions such as terminal management, protocol

© 2016 by Taylor & Francis Group, LLC

Overall Architecture for CPS � 9

conversion, route forwarding, and service authentication for CPS ap-
plications. Moreover, extra service functions can be added into the
platform such as billing, account separation, and statistics for CPS ap-
plications. In this layer, ETSI M2M service architecture can inter-work
with 3GPP MTC via interworking function (IWF) that enables seam-
less integration of M2M SC layer with cellular MTC devices. That is,
M2M SCs can invoke and leverage cellular MTC functions to optimize
and support better M2M services. Meanwhile, cellular MTC functions
can be enhanced for M2M SCs. Companies like InterDigital and Ju-
niper Networks have this kind of solution [31, 32]. The middleware
layer consists of the mobile sensing platform, naming/addressing/pro-
filing module, device search and selection module, and the energy man-
agement module.

� Application Layer

Application supports various applications in multiple areas, such as
smart city, smart home and smart vehicle, online analysis, environ-
ment monitoring and control, etc. From the point of view of a telecom
operator, they all come from two major solutions: the telecom oper-
ator’s solution is where telecom operators try to provide end-to-end
CPS solutions, and “over the top” solutions, while manufacturers pro-
vide their own CPS services or applications over operators’ networks
which are only treated as a pipeline.

© 2016 by Taylor & Francis Group, LLC

Chapter 3

Mobile Sensing
Devices and Platforms
for CPS

Charith Perera

Open University, U.K.

Prem P. Jayaraman, Srimal Jayawardena, Arkady Zaslavsky

Australian National University

Chi Harold Liu

Beijing Institute of Technology, China

Peter Christen

Australian National University

CONTENTS

3.1 Introduction . 12
3.2 Mobile Sensing in Internet of Things Paradigm 13
3.3 Strategies, Patterns, and Practice of Mobile Sensing 15
3.4 MOSDEN: Mobile Sensor Data Engine . 17

3.4.1 Problem Definition . 17
3.4.2 MOSDEN: Architectural Design . 17
3.4.3 Plugin Architecture . 18
3.4.4 General Architecture . 19

11

© 2016 by Taylor & Francis Group, LLC

12 � Cyber Physical Systems: Architectures, Protocols, and Applications

3.4.5 Interaction with the Cloud and Peers 19
3.4.6 Distributed Processing . 21

3.5 Implementation . 21
3.5.1 Plugin Development . 22

3.6 Performance Evaluation and Lessons Learned 26
3.6.1 Experimental Testbed . 27
3.6.2 Stand-Alone Experimentation . 27
3.6.3 Collaborative Sensing Experimentation 31

3.7 Open Challenges and Opportunities . 36
3.7.1 Automated Configuration . 36
3.7.2 Unified Middleware Platform . 37
3.7.3 Optimized Data Processing Strategy . 38
3.7.4 Multi-Protocol Support . 38
3.7.5 Modular Reasoning, Fusing, and Filtering 39

3.8 Summary . 40

The preceding chapter gives a whole picture of the CPS architecture. To dis-
cuss it in detail, in this chapter, we discuss mobile sensing platforms and their
applications toward different but interrelated paradigms such as CPS, sens-
ing as a service, and smart cities. We highlight and briefly discuss different
types of mobile sensing platforms and functionalities they offer. Mobile sens-
ing platforms are more often integrated with smartphones and tablet devices.
The resource constrained nature of the mobile devices requires different types
of designs and architectural implementations. We proposed a software-based
mobile sensing platform called Mobile Sensor Data Engine (MOSDEN). It is
a plug-in-based scalable and extendible CPS middleware for mobile devices
that provides an easy way to collect sensor data from both internal and ex-
ternal sensors. MOSDEN acts as an intermediary device that collects data
from external sensors and uploads to the cloud in real-time or on demand. We
evaluate MOSDEN in both stand-alone and collaborative environments. The
proof of concept is developed on the Android platform.

3.1 Introduction

In this chapter, we present the design and implementation details of the
proposed middleware solution named Mobile Sensor Data Processing Engine
(MOSDEN). MOSDEN is designed to support sensing as a service model
[33, 34] natively. Further, MOSDEN is a true zero programming middleware
where users do not need to write program code or any other specifications us-
ing declarative languages. Our solution also supports both push and pull data
streaming mechanisms as well as centralized and decentralized (e.g., peer-to-
peer) data communication. We employ a plugin architecture so developers
can develop plugins allowing MOSDEN to communicate with their sensor

© 2016 by Taylor & Francis Group, LLC

Mobile Sensing Devices and Platforms for CPS � 13

hardware. We utilize the ecosystem that is built around the Android platform
to share and distribute plugins. We designed and developed MOSDEN in such
a way that it is interoperable with other cloud-based middleware solutions such
as GSN. Our pluggable architecture is scalable and promotes ease-of-use. We
present results of evaluating the performance of MOSDEN using devices with
different capabilities and resource constraints in order to validate MOSDEN’s
scalability and suitability toward CPS domain. Additionally, we also evaluated
MOSDEN in a collaborative environment where multiple MOSDEN instances
work together to accomplish distributed sensor data collection and processing
[35].

Hereafter, the chapter is organized in the following way: Section 3.2
presents the background information on mobile sensing systems in CPS
paradigm. Different strategies and patterns in which mobile sensing systems
can be used are discussed and compared in Section 3.3. In Section 3.4, the
proposed solution, Mobile Sensor Data Engine (MOSDEN), is presented. The
implementation details of MOSDEN are presented in Section 3.5. Section 3.6
discusses the performance evaluations and lessons learnt. Open challenges and
opportunities are discussed in Section 3.7. Concluding remarks are presented
in Section 3.8.

3.2 Mobile Sensing in Internet of Things
Paradigm

Both cyber physical systems (CPS) and Internet of Things (IoT) paradigms
envision the integration of computation, networking, and physical processes
[36]. Toward this, mobile sensing platforms play a significant role. These mid-
dleware platforms allow us to collect data from internet connected devices.
Additionally they are capable of processing data locally or pushing it to the
cloud for further processing. Further, these platforms sit in between cloud
middleware platforms and low cost sensors and establish the communication
between the two. Sensing platforms primarily concentrate on collecting data
but sometimes support actuation tasks up to a certain level. In order to ex-
plain sensing as a service domain better, let us introduce Figure 3.1.

It illustrates how cloud-based CPS middleware platforms receive data from
sensors through mobile sensing middleware platforms. All the data collected
are available to users through sensing as a service model [33]. Typically mo-
bile sensing middleware platforms are more powerful than sensors and much
less powerful than cloud servers in terms of processing, communication, and
storage capabilities. For example, sensors may be capable of performing com-
munication using short range protocols such as Bluetooth. From sensors per-
spective, it is cheap to support Bluetooth where its radio consumes far less
energy compared to other long-range communication protocols such as 3G

© 2016 by Taylor & Francis Group, LLC

14 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.1: MOSDEN supports sensing as a service model. Sensors
that do not have long-range network communication capabilities con-
nect to MOSDEN instances. Then, MOSDEN processes the data and
transmits it to the cloud selectively,

and WiFi. Short-range protocols also require less expensive radios (at the
hardware level), which makes it more viable for sensors.

Computational devices with hardware configurations similar to modern
smartphones can easily support long-range communication protocols such as
3G and WiFi. Therefore, this category of devices is ideal for sensing middle-
ware platforms to be installed. As they have more computational resources
they can perform intelligent processing, storage, filtering, and more. In this
chapter, we define the mobility in two ways — mobility of sensors as well as
mobility of sensing platforms. In Figure 3.2, we illustrate a number of devices
that have similar capacity in terms of computational resources. MOSDEN is
capable of supporting this category of devices. They are ranging from smart-
phones and tablets, low-cost computer devices such as Raspberry Pi, or wall-
mounted tablets for smart home environments. If the mobile devices store
data, MapReduce technique can be used to collect data required by the users
[37].

Figure 3.2: Different types of mobile sensing devices and platforms.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-000.jpg&w=288&h=130

Mobile Sensing Devices and Platforms for CPS � 15

3.3 Strategies, Patterns, and Practice of Mobile
Sensing

Choudhury et al. [38] has developed a custom mobile sensing hardware plat-
form for activity recognition. Activities such as walking, running, taking stairs
up/down, taking an elevator up/down, cooking, working on a computer, eat-
ing, watching TV, talking, cycling, using an elliptical trainer, and using a
stair machine can be detected by using the device. Choudhury et al. have
used sensors such as microphone, light, 3-axis digital accelerometer, barom-
eter temperature, IR and visible+IR light, humidity/temperature, compass,
3D magnetometers, 3D gyroscope, and 3D compass to collect data to sup-
port their algorithms that detect the activities. Lee et al. [39] have developed
a similar system. However, instead of processing the data in the mobile de-
vice, it sends data to the cloud by using a smartphone as an intermediate
gateway device. Another similar approach has been presented by Laukkarinen
et al. [40]. They have implemented a distributed middleware for 8-bit micro
controller nodes where executing instructions (e.g., for data processing and
event detection) are sent to each node using a Process Description Language
(PDL). CONSORTS-S [41] has also used a similar approach. Instead of getting
data from external sensors directly into mobile phones, CONSORTS-S uses a
custom-made sensor board that connects to the mobile phone using a serial
cable which allows the mobile phone to collect data from external sensors.

Most mobile sensing applications can be classified into personal and com-
munity sensing [25, 42]. Personal sensing applications focus on the individual.
On the contrary, community sensing also termed opportunistic/crowdsensing1

takes advantage of a population of individuals to measure large-scale phenom-
ena that cannot be measured using a single individual. In most cases, the
population of individuals participating in crowdsensing applications share a
common goal. To date most efforts to develop crowdsensing applications have
focused on building monolithic mobile applications that are built for specific
requirements [43]. Further, the sensed data generated by the application are
often available only within the closed population [44]. However, to realize the
greater vision of a collaborative mobile crowdsensing application, we would
need a common platform that facilitates easy development and deployment of
collaborative crowd-sensed applications [45].

Grid-M [46] is a platform for lightweight grid computing. It is tailored for
embedded and mobile computing devices. The middleware is built using Java
2 Micro Edition, and application programming interface (API) is provided to
connect Java-developed applications in a grid computing environment. This
work highlights the importance of providing an API-based communication
channel which enables communication. As illustrated in Figure 3.1, mobile
nodes work like the grid computing principle where they work together to
collect sensor data as instructed by the cloud-based CPS middleware or by

1In this chapter, we use the terms opportunistic sensing, crowdsensing, and participatory
sensing synonymously.

© 2016 by Taylor & Francis Group, LLC

16 � Cyber Physical Systems: Architectures, Protocols, and Applications

their own peers (e.g., other mobile sensing platform nodes). Zhang et al. [47]
have developed a middleware on top of TinyOS (tinyos.net) for TelosB sensors.
The data fusion components are designed as agents which migrate from one
node to another. Such migration is an efficient technique in terms of resource
utilization. Data fusion consumes the resources only when a given node is
required to process data. Otherwise, the agent moves on to another node on
demand. We simulate such behavior in MOSDEN where plugins are installed
when needed and uninstalled when not needed. Another agent-based sensing
platform has been proposed by Sun and Nakata [48]. Budde et al. [49] have
proposed a framework that allows for smart objects discovery in the Internet
of Things. The framework allows smart objects and services to be registered
by providing metadata where it later allows searching and selection.

NORS [50] is an open-source platform that enables participatory sensing
using mobile phones. It mainly focuses on collecting data instead of process-
ing. The platform includes external sensors, mobile phones, and a cloud service
for data storage. Sharing data among mobile phones is not supported. USense
[51] is client-side middleware that opportunistically and passively (i.e., with-
out human intervention) performs sensing tasks in crowd sensing fashion. It
uses XML definitions to explain a “moment” where the middleware needs to
start sensing and stop sensing. The “moments” are composed of a bunch of
conditions such as location, time, and so on. Similarly, SENSE-SATION [52]
also gathers and stores sensor information using mobile phones and makes
them directly accessible over the Internet via RESTful web services.

MAGIC Broker 2 (MB2) [53] is a server-side platform for CPS paradigm
where devices such as mobile phones and screens can be easily connected. MB2
allows objects interoperability by providing the API for queries.The platform
provides basic abstractions, such as events, state, and content management
services. Further, interoperability is supported via a middleware responsible
for handling information coming from different devices where OSGimodularity
plays a significant role in extensibility. SensorFly [54] is a controlled-mobile
aerial sensor network platform for indoor, emergency response domain where
it uses miniature helicopters to deploy sensors. When SensorFly is deployed,
the nodes perform collaborative localization during flying. A very similar ap-
proach has been proposed in [55] where they use water flows to deploy sensors.
TECO Envboard [49] is also a mobile sensor platform for urban sensing that
is designed to be carried out by people or to be attached to other objects such
as carrying bags, and bags in bicycles. The data collected is pushed to the
cloud using a mobile phone. Wi2Me Traces explorer [56] is an extensible mo-
bile sensing application for smartphones that allow any mobile user to gather
not only access point locations but also their performance in terms of band-
width, link quality, and successful connection rate. Such a platform is useful
to diagnose issues in wireless sensor networks.

© 2016 by Taylor & Francis Group, LLC

http://tinyos.net

Mobile Sensing Devices and Platforms for CPS � 17

3.4 MOSDEN: Mobile Sensor Data Engine

In this section, we introduce the proposed solution in detail. First, we explain
the problem that we addressed using the proposed solution. Then we illustrate
the architecture of the solution followed by technical implementation details.

3.4.1 Problem Definition

We address several research problems in this work. Our focus areas are
energy-efficient and effective data processing and network communication,
cost-efficient infrastructure support for large-scale CPS deployment, and us-
ability in connecting/configuring sensors. In the earlier section, we highlighted
the importance of addressing the above-mentioned research challenges: (1) the
importance of processing data locally before transmitting to the cloud, (2) the
importance of utilizing devices with different computational capabilities and
price tags, and (3) the importance of providing efficient and easy ways to con-
nect sensors to low-level computational devices (devices belonging to category
3 and 4 in Figure 3.17).

There are several commercial solutions2 that have been proposed in order
to address some of the above-mentioned challenges. However, these solutions
have several weaknesses. The following brief analysis helps to identify those
weaknesses as well as to identify the ideal design requirements of a CPS mid-
dleware that needs to be installed on resource-constrained devices. Though
some of the hardware components are open sourced, software systems remain
closed source which makes it hard to extend and interoperate. Further, these
solutions have their own hardware devices that perform tasks similar to MOS-
DEN. However, these devices are custom built. We believe utilizing commonly
available devices, such as mobile phones, makes it easy to adopt due to the
fact the most people are familiar with mobile phones and know how to oper-
ate them in comparison to custom-built proprietary devices. Another major
drawback is inability for devices to interoperate with solutions provided by
different vendors. For example, a sensor designed to be used by one solution
cannot be connected to the software system of another solution. Hence, our
proposed middleware aims to be vendor agnostic.

3.4.2 MOSDEN: Architectural Design

In this section, we explain the design decisions in detail. First, we present the
reasons for introducing a plugin architecture. Second, we explain the complete
MOSDEN architecture. Third, we explain how MOSDEN instances interact
with their peers and GSN cloud instances. Finally, we briefly show that data
can also be distributedly processed and MOSDEN instances.

2TWINE (supermechanical.com), Ninja Blocks (ninjablocks.com), and Smart Things
(smartthings.com).

© 2016 by Taylor & Francis Group, LLC

http://supermechanical.com
http://ninjablocks.com
http://smartthings.com

18 � Cyber Physical Systems: Architectures, Protocols, and Applications

3.4.3 Plugin Architecture

In MOSDEN, we employed a plugin architecture [57] in order to support three
main requirements: scalability, usability, and community-based development.
A plugin is an independent software component that adds a specific feature to
an existing software application. In MOSDEN, each plugin translates generic
communication messages to sensor specific commands in order to enable com-
munication between MOSDEN and a specific sensor. When an application
supports plugins, it enables customization. Further, MOSDEN plugins can be
installed and configured at run time.

Scalability: Due to the plugin approach, MOSDEN can virtually sup-
port any sensor in the world. Anyone can develop plugins that allow MOS-
DEN to communicate with given sensors. Further, plugins consume very small
amounts of storage space (e.g., 25KB). Therefore, large numbers of plugins can
be stored even in a resource limited mobile device. Furthermore, MOSDEN
automatically removes unused plugins when the memory is running low. New
plugins can be downloaded through application stores such as Google Play or
directly as .apk files. Separation of plugins from the main MOSDEN applica-
tion helps to reduce the size of the application and also promotes plug-n-play.
Practically, at a given point in time, only a small number of plugins need to
be installed in order to facilitate sensor communication though thousands of
plugins would be available on applications stores. Finally, the plugin architec-
ture allows us to improve MOSDEN in the future, specially in the directions
of automated sensor discovery and plugin installation based on context infor-
mation.

Usability: MOSDEN is convenient to use as it allows us to collect data
from sensors without programming efforts. Users are only required to down-
load the matching plugin from an application store. Due to standardized plu-
gin structure, MOSDEN knows how to communicate with each plugin. For
the user, all the technical complexities and details are hidden and happen
autonomously behind the scene.

Community-based Development: Plugin architecture allows us to en-
gage with developer communities and support a variety of different sensors
through community-based development. Our software is expected to release
as free and open source in the future. We provide the main MOSDEN applica-
tion as well as the standard interfaces developers can use to start developing
their own plugins to support different sensors. We provide a sample plugin
source code where developers only need to add their code according to the
guidelines provided. Plugin model support increasingly enables the number
of sensors supported by MOSDEN. Plugins for MOSDEN can be downloaded
via applications stores such as Google Play as illustrated in Figure 3.3.

© 2016 by Taylor & Francis Group, LLC

Mobile Sensing Devices and Platforms for CPS � 19

Figure 3.3: Plugin distribution and installation.

3.4.4 General Architecture

The architecture of MOSDEN is presented in Figure 3.4. MOSDEN archi-
tecture is based on the GSN architecture [58]. Additionally, we made several
changes to the architecture in order to improve the efficiency as well as scalabil-
ity. The major change is that we added a plugin manager and a plugin layer to
support and manipulate plugins. GSN requires different wrappers to connect
to different sensors. We eliminated this requirement and instead developed a
single generic wrapper to handle the communication. In MOSDEN, wrappers
do not directly communicate with sensors. Instead, the generic wrapper com-
municates with plugins and the plugin communicates with the sensors (i.e.,
wrapper → plugins (Pi)→ Sensor (Si)). Due to the introduction of a generic
wrapper, manual re-compilation of MOSDEN is not required when new sen-
sors are added. Our newly added plugin manager component communicates
with the cloud based GSN instances as well as MOSDEN peer instances and
shares the information about the sensors connected to them. All the other
architectural components behave as in the GSN middleware [58].

3.4.5 Interaction with the Cloud and Peers

MOSDEN is designed to be used as part of the sensing as a service model.
On the other hand, due to that fact that our code is based on GSN middle-
ware, MOSDEN is 100% compatible with GSN. This means communication
between GSN instances and MOSDEN instances can be performed natively
without any additional effort. Further, MOSDEN is a part of our overall vi-
sion of providing middleware support across different categories of devices as

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-005.jpg&w=338&h=175

20 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.4: The architectural design of the MOSDEN. Legend: Sen-
sor (S), Plugin (P), Wrapper (W), Virtual Sensor (VS). Plugins com-
municate with the sensors and retrieve data. Each plugin should be
compatible with the sensor it wants to communicate with. Plugins
compatible with different sensors can be downloaded from Google
Play.

depicted in Figure 3.17. The typical interactions between GSN cloud instances
and MOSDEN instances are illustrated in Figure 3.5. There are three main
interactions that are frequently performed between MOSDEN instances and
a GSN cloud instance. During our work, we also extended the cloud GSN
architecture in order to support these interactions. When MOSDEN instance
detects a new sensor connected to it through a plugin, it retrieves additional
context information about the sensor (e.g., type of the sensor, unit measure-
ments, manufacturer) from the sensor itself. Then, MOSDEN registers the
newly detected sensor in the cloud GSN instance. Different MOSDEN in-
stances register their own sensors independently in the cloud GSN instance.
Cloud GSN combines all the information and models the data using the Se-
mantic Sensor network ontology (www.w3.org/2005/Incubator/ssn/ssnx/ssn)
[59, 60].

When the cloud GSN instance receives a request from a user, it queries the
sensor description registry in order to find out the relevant sensors that match
the user requirements. Then, it finds the MOSDEN instances that are capable
of fulfilling the user request (i.e., whether the given MOSDEN is capable of
collecting data from a sensor which is required by the user). Subsequently, the
GSN instance sends the requests to MOSDEN instances. Then, each MOSDEN
registers the request. Finally, MOSDEN starts streaming the requested data
to the cloud GSN instance. The cloud GSN instance can make the requests in
both pull and push mechanisms. In the pull method, GSN makes the request
every time it wants data from MOSDEN. In the push method, cloud GSN
sends the request and MOSDEN sends the data back until the request expires.

© 2016 by Taylor & Francis Group, LLC

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-006.jpg&w=335&h=134

Mobile Sensing Devices and Platforms for CPS � 21

Figure 3.5: Interactions between MOSDEN and cloud GSN.

3.4.6 Distributed Processing

Though the topic of distributed data processing will not be discussed in detail
in this chapter, it is important to note that processing data locally saves a
substantial amount of network communication cost. Therefore, our proposed
CPS middleware platform supports different resource-constrained mobile de-
vices, where multiple MOSDEN instances can interact in peer-to-peer com-
munication mode without having a central controller such as cloud MOSDEN.
Everything discussed earlier can also be applied in distributed processing sce-
narios.

3.5 Implementation

In this section, we describe the implementation details of MOSDEN. First,
we present an overview of the development platforms, tools, and technologies
we used to develop the proposed solution. Further, we illustrate some user
interfaces provided in MOSDEN. We also discuss how we implemented the
plugin architecture and the steps and guidelines that need to be followed in
order to develop new plugins that are compatible with MOSDEN.

Our middleware is written in Java and runs on Android-based devices. We
used Java to develop our middleware in order to ensure compatibility with
its cloud-based companion, GSN middleware [58]. Further, we selected An-
droid platform due to its availability and the popularity.3 Another important

3http://www.gartner.com/newsroom/id/2335616

© 2016 by Taylor & Francis Group, LLC

http://www.gartner.com/newsroom/id/2335616
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-007.jpg&w=333&h=185

22 � Cyber Physical Systems: Architectures, Protocols, and Applications

factor is the portability of the Android platform. Android is not intended to
be a platform only for mobile phones. The leading developer of the Android
platform, Google Inc., intends to use it for many other smart devices such
as automobiles, refrigerators, televisions, and so on. This vision supports our
objectives discussed earlier in Section 3.4.1. Therefore, the objective of de-
veloping MOSDEN is not only to support mobile phone platforms but also
to support devices such as Raspberry Pi (raspberrypi.org). Currently, An-
droid for Raspberry Pi is under development. MOSDEN runs on Android 2.3
(and up), and it has 9935 (+ 768 logging lines in debugging version) lines
of Java code. It consists of 115 classes distributed across 14 packages. MOS-
DEN is based on popular middleware called global sensor networks (GSN)
[58]. MOSDEN source code will be available to download free in the future.
As we mentioned earlier, our goal is not only to support mobile phones but
also to support devices with similar resources limitations. These devices may
or may not have screens. We decided to develop two different versions of our
middleware based on the same underlying code-base where one version pro-
vides fully-fledged user interface to support direct user interaction with the
MOSDEN as illustrated in Figure 3.6. The other version provides a simple
user interface that only allows to start the middleware.4 Figure 3.7 illustrates
the user interface of the cloud GSN.

All the features available in GSN are also available in MOSDEN includ-
ing data processing and REST-base peer-to-peer communication over HTTP.
In comparison to GSN, we changed the wrapper structure and developed a
generic wrapper. Further, we introduced the notion of plugins and added a
plugin layer as well as a plugin manager. We also replaced the web-based user
interface with a native Android application.

3.5.1 Plugin Development

This section explains how third party developers can develop plugins in such
a way that their plugins are compatible with MOSDEN so MOSDEN can use
them to communicate with external sensors. In plugin development, there are
three main components that need to be considered: (1) Plugin interface writ-
ten in Android Interface Definition Language (AIDL),5 (2) plugin class written
in Java, and (3) plugin definition in AndroidManifest file. Figure 3.8 shows
the plugin interface written in AIDL. IPlugin is an interface defined in AIDL.
Plugin developers should not make any changes in this file. Instead they can
use this file to understand how MOSDEN plugin architecture works. IPlugin is
similar to the Java interfaces. It defines all the methods that need to be imple-
mented by all the plugins despite their functionalities. Related to MOSDEN,

4It is important to note that graphical user interface version requires Android 4.0 or
higher as we have utilized the latest user interface components in order to provide a rich ex-
perience to the users. Limited user interface version is suitable for devices such as Raspberry
Pi which reduces the additional overhead caused by the user interfaces.

5http://developer.android.com/guide/components/aidl.html

© 2016 by Taylor & Francis Group, LLC

http://developer.android.com/guide/components/aidl.html
http://raspberrypi.org

M
o
b
ile

S
en

sin
g

D
ev

ices
a
n
d

P
la

tfo
rm

s
fo

r
C

P
S
�

2
3

Figure 3.6: MOSDEN screenshots: (a) List of sensors connected to the MOSDEN; (b) list of virtual sensors
currently running on the MOSDEN and their details; (c) map that shows sensor locations; and (d) interface
for data fusing and filtering.

©
 2

0
1

6
 b

y T
aylo

r &
 F

ra
n

cis G
ro

u
p

, L
L

C

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-008.jpg&w=504&h=215

24 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.7: Screenshots of a cloud GSN instance showing three dif-
ferent MOSDEN instances registration.

we defined three methods to support the communication between main appli-
cation and third party plugins.6 Figure 3.9 presents the basic structure of a
MOSDEN plugin. Each plugin is defined as an Android service. MOSDEN plu-
gin developers need to implement these two methods: getdataStructure() and
getReadings(). There is a third method, void setConfiguration(in Map config),
that developers can use to retrieve data from MOSDEN at runtime, especially
information unknown to them at the development time (e.g., IP address, port
number and other information related to configuration). This method accepts
a Map7 data structure as input and does not return any output.

In high-level, getdataStructure() returns a data type called DataField4
Plugins[]. This returning data structure describes what kind of data items
MOSDEN should expect from the plugin, so MOSDEN can prepare its inter-
nal data structures as necessary. At the initialization phase, MOSDEN calls

6We expect to add more methods in order to support sophisticated functionalities and
features in the future.

7A Java Data structure.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-009.jpg&w=324&h=271

Mobile Sensing Devices and Platforms for CPS � 25

Figure 3.8: IPlugin written in AIDL (Android Interface Definition
Language) that governs the structure of the plugins. It defines the
essential items in the plugin.

Figure 3.9: MOSDEN plugin is an Android service.

the getdataStructure() method so MOSDEN knows what to expect before
real data comes in. Once the initialization is done, MOSDEN calls getRead-
ings() repeatedly depending on the frequency specified by the cloud GSN.
The method getReadings() returns data raw (that comprise data items) that
is organized as specified in the DataField4Plugins[]. The return data type is
StreamElement4Plugins[]. Plugin developers are allowed to perform any op-
eration within this method as long as it produces and returns the data types
as specified by the guidelines.8 Figure 3.10 shows how the plugins need to
be defined in the AndroidManifest so MOSDEN application can automati-
cally query and identify them. The Android plugin must have an intent filter

8We expect to release a developer guide that explains how third party plugins can be
developed in the future.

© 2016 by Taylor & Francis Group, LLC

26 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.10: Code snippet of the plugins AndroidManifest file.

Figure 3.11: Code snippet of a virtual sensors definition.

and the action name must be au.csiro.mosden.intent.action.PICK PLUGIN.
Developers can provide any category name based on their preferences.

In order to support much user friendly and scalable plugin architecture,
we extended the typical GSN Virtual Sensor Definition (VSD). The essential
details that are required to connect a specific sensor to MOSDEN (e.g., IP
address, port number) can be passed into the plugin via the VSD as illustrated
in Figure 3.11. These details are important, especially in scenarios where mul-
tiple sensors need to use the same plugin (e.g., connecting 2 sensors that are
similar).

3.6 Performance Evaluation and Lessons Learned

In this section, we present the details of the testbeds and evaluation method-
ology. We evaluate MOSDEN in both stand-alone and collaborative environ-
ments and results and lessons learned are discussed separately.

© 2016 by Taylor & Francis Group, LLC

Mobile Sensing Devices and Platforms for CPS � 27

3.6.1 Experimental Testbed

We evaluated the proposed middleware solution, MOSDEN using several dif-
ferent parameters such as CPU consumption, scalability, memory require-
ments, latency and so on. For the evaluation, we used three devices with
different resource limitations. From here onwards we refer them as D1, D2,
D3, D4, D5, and D6. The technical specifications of the devices are as follows.

� Device 1 (D1): Google Nexus 4 mobile phone, Qualcomm Snap-
dragon S4 Pro CPU, 2 GB RAM, 16GB storage, Android 4.2.2 (Jelly
Bean)

� Device 2 (D2): Google Nexus 7 tablet, NVIDIA Tegra 3 quad-core
processor, 1 GB RAM, 16GB storage, Android 4.2.2 (Jelly Bean)

� Device 3 (D3): Samsung I9000 Galaxy S, 1 GHz Cortex-A8 CPU,
512 MB RAM, 16GB storage, Android 2.3.6 (Gingerbread)

� Device 4 (D4): Google Nexus 7 tablet, NVIDIA Tegra 3 quad-core
processor, 1 GB RAM, 16GB storage, Android 4.2.2 (Jelly Bean)

� Device 5 (D5): Acer Iconia Tab A501, NVIDIA Tegra 2 T20 Dual-
core 1 GHz Cortex-A9, 1 GB DDR2 RAM, Updated to Android 4.2.2
(Jelly Bean),

� Device 6 (D6): ASUS Ultrabook Intel(R) Core i5-2557M 1.70GHz
CPU and 4GB RAM (Windows 7 operating system)

We used a computer D6 to host the cloud GSN during the evaluations.
For our evaluations, we employed sensors built into the above devices (e.g.,
Motion sensors: accelerometer, gravity, gyroscope, liner acceleration, rotation
vector; Environmental sensors: ambient temperature, light, pressure, relative
humidity; Position sensors: magnetic fields, orientation, proximity.). Further,
we used sensors manufactured by Libelium [61] as external sensors with differ-
ent combination of hardware sensors plugged into them such as temperature
sensor, humidity sensor, light-dependent resistor (LDR) sensor, air pressure
sensor, leaf wetness sensor, noise sensor, dust sensor, force and pressure sensor,
flex-bend sensor, flexible stretch sensor, hall-effect sensor, different gas sen-
sors (e.g., O2, CO2) and so on. Resource constrained computational devices
we used in this work as well as some of the sensors used in this experiments
are shown in Figure 3.12.

3.6.2 Stand-Alone Experimentation

This section explains the evaluation methodology, experimental conditions and
objectives of the Figures 3.13(a) to 3.13(g). All the evaluations are done using
three different resource constrained mobile devices as explained in the section
above. In all the evaluations, CPU usage (consumption) is measured in units

© 2016 by Taylor & Francis Group, LLC

28 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.12: Some of the hardware devices used in the experimenta-
tion.

of jiffies.9 At this point, MOSDEN supports only Wi-Fi communications.10

We keep the sampling rate as 1 second during the course of evaluations.
In Figure 3.13(a), we examine how CPU usage changes when the number

of sensors involved increases. Figure 3.13(b) shows how memory consump-
tion changes when the number of sensors involved increases. Figure 3.13(c)

9In computing, a jiffy is the duration of one tick of the system timer interrupt. It is not
an absolute time interval unit, since its duration depends on the clock interrupt frequency
of the particular hardware platform.

10We expect to support ZigBee and Bluetooth in the future. However, such improvements
will not change the overall architecture.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-010.jpg&w=334&h=352

Mobile Sensing Devices and Platforms for CPS � 29

(a)

(b)

(c) (d)

(e) (f)

(g)

C
P

U
 U

se
ag

e
(A

ve
ra

ge
 u

ni
ts

 o
f j

iff
ie

s)

Number of Sensors

seireuQ fo rebmuNsrosneS fo rebmuN

Number of Queries

Number of Server Requests

Number of Queries

Number of Sensors

M
em

or
y

U
sa

ge
 (M

B
)

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

C
P

U
 U

se
ag

e
(A

ve
ra

ge
 u

ni
ts

 o
f j

iff
ie

s)

M
em

or
y

U
sa

ge
 (M

B
)

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

La
te

nc
y

(m
ili

se
co

nd
s)

[in
 L

og
ar

ith
m

ic
]

Figure 3.13: Experimentation and evaluation results. (Note: MOS-
DEN application and plugins use CPU, memory, and energy indepen-
dently where plugins are treated as individual services by the Android
platform. All the calculations are accumulated values of MOSDEN
application and plugin services.)

© 2016 by Taylor & Francis Group, LLC

30 � Cyber Physical Systems: Architectures, Protocols, and Applications

measures how energy consumption changes when the number of sensors in-
volved increases. In Figures 3.13(a), 3.13(b), and 3.13(c), MOSDEN only uses
inbuilt sensors to collect data and store them in the local storage space. No
network communication is performed. According to Figure 3.13(a), it is ev-
ident that CPU usage increases when the number of sensors increases. It is
important to highlight that D3 consumes more CPU time compared to other
devices when it needs to handle 10+ sensors. One reason for this is the lack
of main memory (RAM) which puts additional overheads on the CPU.

Similar pattern is revealed in Figure 3.13(b) as well as in terms of mem-
ory usage. Devices that have larger memory capacity can afford to allocate
more memory to MOSDEN, which increases the overall performance of MOD-
SEN. Further, comparatively resource rich devices consume more energy due
to usage of powerful CPUs and sensing hardware. This is observed in Figure
3.13(c) where difference in energy consumption for D1 and D3 is much higher
compared to difference in memory usage. When not performing any network
communication tasks, MOSDEN takes only 38MB (D1) / 30MB (D3) to col-
lect, process and store data from 13 different sensors.11 MOSDEN consumes
around 35J (D1) / 10J (D3) to process, and store data from 13 sensors.

In Figure 3.13(d), we evaluate how CPU usage changes when the number
of queries processed by the MOSDEN changes (step 2 and 3 in Figure 3.5). As
we mentioned earlier related to Figure 3.13(a), Figure 3.13(d) also reveals that
D3 uses significantly more CPU compared to other devices due to the overhead
created by lack of memory. Comparatively, D1 and D2 use less CPU and as
observed from the results, the CPU consumption is gradually increasing but
not significant when MOSDEN processes more than 10 queries. One reason for
this is that Android OS restricts MOSDEN from consuming too much CPU
resource after a certain level as it needs to facilitate other essential Android
applications and services.

Figure 3.13(e) shows how memory consumption changes when the number
of queries changes. Additionally, Figure 3.13(f) shows how energy consumption
changes when the number of queries changes. In Figures 3.13(d), 3.13(e), and
3.13(f), MOSDEN uses inbuilt sensors to collect data and send them to the
cloud GSN over a WiFi network. Figure 3.13(e) clearly shows that D3 suffers
from lack of memory as it is not allocated more than 150MB of memory. In
contrast, both D1 and D2 have abundant memory available to be utilized
so memory usage increases up to 620MB (D1) / 580MB (D2). The energy
consumption graph with and without network communication looks similar
in pattern. However, energy consumption has significantly increased across all
three devices (50J (D1) / 40J (D2) when processing 30 queries).

In Figure 3.13(g), we examine the time MOSDEN takes (i.e., latency) to
process and transmit the data. We measure the time taken for the follow-
ing two operations. (1) We start measuring the time taken by the plugin to
retrieve data from a sensor, pass it to a wrapper, and subsequently store it

11All the devices do not have all 13 sensors though the Android platform supports them.

© 2016 by Taylor & Francis Group, LLC

Mobile Sensing Devices and Platforms for CPS � 31

in a local database. (2) We measure time taken for MOSDEN to respond to
an incoming query request from the cloud GSN. When there is no network
communication, MOSDEN takes 22 seconds to collect data from a sensor plu-
gin, process, and store it locally. However, when the cloud GSN starts send-
ing queries Android allocates more CPU and memory to MOSDEN. Hence,
the data collection/processing and query processing operations are performed
much faster which helps to reduce the overall latency from 22 seconds to
0.2 seconds. As the number of query requests increases, from the results, we
observe that, latency12 also increases. When MOSDEN processes 30 queries,
latency increases to 10 seconds. However, a significant portion of the total
processing time is taken to fuse the data and send them to the cloud.13

Lessons Learned: Our experimental evaluations validate the energy and
performance efficiency of the proposed plugin-based MOSDEN platform. The
middleware functioned without any issues during our experiments. Addition-
ally, the plugin-based architecture increases the usability of MOSDEN by al-
lowing users to download and install plugins from Google market place with
zero effort in programming and no modifications to MOSDEN. Further, mod-
ern mobile devices can process significant numbers of requests with the limited
resources they have. It is evident that the memory is more important than
CPU in a situation where data needs to be processed under small sampling
rates. In our previous work [62], we learned that reduced sampling rate can
save energy and resource consumption significantly. In such scenarios, MOS-
DEN will be able to process many more queries efficiently than it did in the
evaluations. We look forward to performing more experiments to examine the
impact of sampling rate on MOSDEN’s performance.

Potential Applications: The MOSDEN platform can greatly foster the
development of new and innovative mobile data services that depend on CPS
devices as the source of data. One such example is a crowd-sourcing appli-
cation where sensor data (e.g., noise level in outdoor environments) can be
collected from users’ mobile devices running MOSDEN. The collected data can
be used by applications in the cloud in their decision making process (e.g.,
determine the noise pollution level at an intersection in the city by fusing
data from multiple MOSDEN instances). Another example is to determine
real-time traffic conditions using data acquired from MOSDEN running on
user mobile devices.

3.6.3 Collaborative Sensing Experimentation

In the previous section, we evaluated MOSDEN in stand-alone fashion. In this
section, we evaluate MOSDEN in collaborative environment where multiple
MOSDEN instances are configured to work together. For the collaborative
evaluation, we used four mobile devices and a laptop. The technical specifi-

12Time it takes to fulfill all the requests made by the cloud GSN.
13Time that the data takes to travel over the network is not counted.

© 2016 by Taylor & Francis Group, LLC

32 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.14: Experimental testbed has been configured in two differ-
ent ways: (a) Setup 1: three mobile devices are connected to a laptop,
and (b) Setup 2: three mobile devices are connected to another mobile
device.

cations of the devices are listed in Section 3.6.1. In the following experiments
we use D1, D2, D4, D5, and D6. For experimentation, we devised two setups
as illustrated in Figure 3.14 and evaluated the proposed framework in each
setup independently. The mobile devices are configured to run our proposed
framework, MOSDEN, and the laptop computer is configured to run the GSN
engine [63].

The overall objective of the experimental evaluations we conducted is to ex-
amine the performance of MOSDEN platform in collaborative environments.
Two different collaborative setups are illustrated in Figure 3.14. In this sec-
tion, we explain the objectives behind each experiment we conducted in detail.
The next section discusses the results and lessons learned in detail. Number of
sensors used for sensing has been kept fixed throughout the experiments.14 In
all the evaluations, CPU usage (consumption) is measured in units of jiffies.15

Sampling rate for all evaluations is one second.
A query in the form of a request is sent from the server to MOSDEN

client instances. Depending on the number of sensors queried on MOSDEN
instances, the number of requests increases. We use the term MOSDEN client
to refer to client devices where MOSDEN acts as a client such as D1, D2,
and D4 in setup 1 in Figure 3.14(a) and D2, D4, and D5 in setup 2 in Figure
3.14(b)). We use the term MOSDEN server to refer to the server device where
MOSDEN acts as a server such as D1 in setup 2 in Figure 3.14(b)).

We configured the experimental testbed as illustrated in Figure 3.14(a) -
setup 1. In Figures 3.15, 3.15(b), and 3.15(c), we compare the performance

14All the sensors available on the given device has been used (e.g., in D1: accelerometer,
microphone, light, orientation, proximity, gyroscope, magnetic, pressure).

15In computing, a jiffy is the duration of one tick of the system timer interrupt. It is not
an absolute time interval unit, since its duration depends on the clock interrupt frequency
of the particular hardware platform.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-011.jpg&w=288&h=128

Mobile Sensing Devices and Platforms for CPS � 33

of restful streaming and push-based streaming methods in term of CPU usage
and memory usage by both client and server devices which run MOSDEN and
GSN. Restful streaming is designed to have a persistent connection between
the client and the server. On the other hand, the push-based approach makes
a new connection every time to transmit data. Both these techniques can be
used to perform communication between two (or more) distributed GSN or
MOSDEN instances (i.e., GSN ↔ GSN, MOSDEN ↔ MOSDEN, GSN ↔
MOSDEN). The two approaches have their own strengths and weaknesses.
The former is good for clients running MOSDEN that have a reliable data
connection. The latter is useful for clients that need to work in offline modes.
The MOSDEN platform supports both the operations and the application
developer has the choice to choose the best approach suited to application
requirements.

Figure 3.15(a) illustrates the difference between CPU usage in MOSDEN
when number of requests increases. Figure 3.15(b) illustrates the variation
of memory consumption of MOSDEN when number of requests increases.
According to Figure 3.15(a), it is evident that restful streaming is slightly
better than push-based streaming from a CPU consumption perspective. This
slight difference can be due to above explained reasons. I contrast, restful
streaming consumes more memory than push-based streaming as depicted in
Figure 3.15(b). One reason could be the overheads to maintain a persistent
network connection.

Figure 3.15(c) illustrates how memory consumption of GSN changes in
the server when the number of queries it handles increases. It can also be
noted that the memory consumption of GSN engine running on the server as
depicted in Figure 3.15(c) also increases with load but not as significantly as
the mobile device. This observation is straightforward and attributed to the
difference in computing capacity of the two nodes (mobile device and laptop).

Based on the experience in MOSDEN client-side, it is fair to predict that,
we will be able to see a difference if we increase the number of requests to
be processed toward tens of thousands. In Figure 3.15(d), we examine how
storage requirements vary when the number of sensors handled by the MOS-
DEN client increases. For this experiment, we used Setup 1 in Figure 3.14. All
the sensors onboard the client mobile device (i.e., accelerometer, microphone,
light, orientation, proximity, gyroscope, magnetic, pressure) are used as sen-
sor sources. Sampling rates for sensors are configured as one second. The D1
(Setup 1) has been configured to receive data requests from the server at one-
second intervals. The experiment was conducted for three hours. The exact
storage requirements depend on multiple factors such as number of active sen-
sors sending data, number of data items generated by the sensor,16 sampling
rate, and history size [58]. We used external sensors to increase the number

16E.g., accelerometer generates 3 data items i.e., x, y, and z while temperature sensor
generates one data item.

© 2016 by Taylor & Francis Group, LLC

34 � Cyber Physical Systems: Architectures, Protocols, and Applications

(a) (b)

(c) (d)

(e) (f)

(g)

C
P

U
 U

sa
ge

 (
A

ve
ra

ge
 u

ni
ts

 o
f j

iff
ie

s)

M
em

or
y

U
sa

ge
 (

M
B

)

Number of Requests Processed by MOSDEN ClientNumber of Requests Processed by MOSDEN Client

Number of Requests Generated by GSN Server Time in Minutes

C
P

U
 U

sa
ge

 (
A

ve
ra

ge
 u

ni
ts

 o
f j

iff
ie

s)
M

em
or

y
U

sa
ge

 (
M

B
)

M
em

or
y

U
sa

ge
 (

M
B

)
S

to
ra

ge
 R

eq
ui

re
m

en
t (

M
eg

ab
yt

es
)

Number of Requests Handled by MOSDEN ServerNumber of Requests Handle by MOSDEN Server

Number of Requests Handle by GSN/MOSDEN Server

T
im

e
to

 P
ro

ce
ss

 a
 S

in
gl

e
R

eq
ue

st
(A

ve
ra

ge
)

(in
 s

ec
on

ds
)

Figure 3.15: Experimental results in collaborative sensing environ-
ment.

of sensors connected to MOSDEN during the experiment in order to examine
the behavior of MOSDEN from a storage requirement perspective.

According to the outcome shown in Figure 3.15(d), storage requirements
are linear. It is to be noted that to stress test MOSDEN client instances, we

© 2016 by Taylor & Francis Group, LLC

Mobile Sensing Devices and Platforms for CPS � 35

used external sensors, on-board sensors and additional data source generators
to simulate 30 virtual sensors. This further demonstrates the scalability of
MOSDEN. In both GSN and MOSDEN, storage can be easily controlled by
changing the history-size. History-size defines how much data record needs
to be stored at a given time. Large history-sizes can be used for summariz-
ing purposes or archival purposes. However, the amount of storage in easily
predictable due to history-size, because MOSDEN always deletes old items in
order to accommodate new data items. For real time reasoning history can be
set to one. Considering all the above factors, it is fair to conclude that modern
mobile devices have the storage capacity to store sensor data collected over
long periods of time.

For the next set of experiments, we configured the testbed as illustrated
in Figure 3.14(b)-Setup 2. In Figure 3.15(e) and 3.15(f), we compare the per-
formance of restful streaming and push-based streaming techniques in terms
of CPU usage and memory usage by the server mobile device (D1) which
runs MOSDEN. Figure 3.15(e) illustrates the difference between CPU usage
in MOSDEN when the number of requests increases.

Figure 3.15(f) illustrates the variation of memory consumption of MOS-
DEN when the number of requests increases. According to Figure 3.15(e) and
Figure 3.15(f) push based streaming is slightly better than restful stream-
ing. Further, it is important to note that both techniques maintain the same
amount of CPU consumption over time despite the increase in requests it
handles. Additionally, MOSDEN server consumes significantly less amount
of memory in comparison to MOSDEN client. One reason is that MOSDEN
client performs sensing activities in addition to sending data to the server. In
contrast, MOSDEN server performs data requesting tasks only (from clients).
As we mentioned earlier, when number of requests handled by MOSDEN in-
creases (given that no other tasks are performed), restful streaming technique
performs better in terms of both CPU consumption and memory consumption.

Figure 3.15(g), compares the amount of time (average) it takes to process
a single request.17 Time it takes to process a single request is calculated as
denoted in Equation 3.1. Figure 3.15(g) shows the impact of increased over-
heads when using a push-based streaming technique. However, MOSDEN still
processes a single request in less than a second.

=
Duration of the Experiment

Total Number of Round Trips Completed
(3.1)

Overall MOSDEN performs extremely well in both server and client roles
in collaborative environments. MOSDEN (as a server) was able to handle 90
requests (i.e., 180 sub requests) where each request has a sampling rate of one
second. This resulted in a MOSDEN client processing 1800 data points every 1
minute and a MOSDEN server (running on a mobile device) processing 5400

17Time taken to process a single request is the time interval elapsed between two subse-
quent requests made by the server to any client irrespective of the virtual sensor.

© 2016 by Taylor & Francis Group, LLC

36 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 3.16: Two types of configuration are required to establish the
connectivity between ICOs and cloud middleware platforms.

data points every 1 minute from distributed clients. It is to be noted, that
for evaluation purposes and to validate the efficiency and scalability of MOS-
DEN, we conducted experiments on MOSDEN server and client under extreme
loads. Such processing is intensive and rare in real-world applications. How-
ever, our experiments showed that MOSDEN can withstand such intensive
loads proving to be a scalable platform for deploying large-scale crowdsensing
applications. If MOSDEN is configured to collect data from 10 different sen-
sors and handle 30 requests (typical of real-world situations), it can perform
real-time sensing with delay of 0.4 – 1.5 seconds. When the server node is a
computer (D6 as explained in Section 3.6.3) both restful streaming and push-
based streaming work extremely well without visible significant differences.
However, when the server node is a mobile device, which runs MOSDEN,
restful streaming performs approximately 6 times better than the push-based
technique.

3.7 Open Challenges and Opportunities

3.7.1 Automated Configuration

Configuration in mobile sensing middleware platforms domain can be ex-
plained in two different ways. First, configuration needs to be done between
external ICOs and mobile middleware platform. Secondly, configuration needs
to be performed between mobile middleware platforms and the cloud middle-
ware. Figure 3.16 illustrates both types of configuration techniques. In order
to collect data from an ICO, first it needs to establish communication with the
mobile sensing middleware platform. Both of them need to negotiate common
protocols and message sequences [64] in which they are capable of communi-
cating with each other. Then, ICOs need to provide enough information (e.g.,
sensor ID, manufacture details, sensor types) to the mobile sensing middle-
ware platforms, so the matching plugin can be downloaded from the cloud
and configured locally. Additionally, configuration of ICO includes tasks such
as configuring sampling rate, communication frequency, scheduling calendar,
and data acquisition method. A similar research effort is discussed in [64].
Once mobile sensing middleware platforms collect context information from

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-012.jpg&w=323&h=61

Mobile Sensing Devices and Platforms for CPS � 37

Figure 3.17: Categorization of CPS devices based on their compu-
tational capabilities. The devices belonging to each category have
different capabilities depending on processing, memory, and commu-
nication. From left to right, the devices become more and more ex-
pensive; the computational capabilities also increase.

ICOs, they need to be sent to the cloud middleware so the cloud can prepare
itself to accept the sensor data that may arrive later.

Additionally, such registration of ICOs on the cloud supports sensing as
a service model [33]. Further, registration allows the cloud to know about
sensors and data availability through each of the mobile sensing middleware
platforms. Registration of mobile sensing devices includes information such as
ICOs connected to it, the capabilities of ICOs, context information such as
location and energy level. As a result, the cloud middleware can request the
data from the correct mobile sensing middleware platform easily. Some of the
preliminary research work on configuring mobile sensing middleware platforms
and the cloud are in [65]. However, dynamicity and the heterogeneity of sensors
increase the complexity of both configuration tasks where automation is the
only viable solution.

3.7.2 Unified Middleware Platform

It is important to build a set of middleware platforms [66] that strongly inte-
grate to each other. However, such middleware platforms need to be custom
developed for different categories of devices by considering the resource limita-
tions and capabilities of each device (e.g., processing power, memory, storage,
communication bandwidth, energy availability) [67]. Some of the devices with
different capabilities limitations are depicted in Figure 3.17. The MOSDEN
middleware platform is built in such a way that it is fully compatible with
the popular cloud-based Global Sensor Network middleware [58]. However,
middleware platforms suitable for very low cost, less capable devices, such as
Raspberry Pi, are yet to be developed. From the engineering point of view,
difference in programming languages makes such interoperability challenging
(e.g., Java/Android, .NET, Arduino, and so on). In CPS paradigm, each de-
vice has a unique role to play. Additionally, these devices should be able to
perform the tasks of distributed sensing in a collaborative fashion [33].

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-5&iName=master.img-013.jpg&w=335&h=55

38 � Cyber Physical Systems: Architectures, Protocols, and Applications

3.7.3 Optimized Data Processing Strategy

Once the data has been collected by the sensors, it needs to be processed.
However, efficiency of the entire system depends on the place where data
would be processed. Let us concentrate on Figure 3.17. Once the data has
been collected from the sensors on the right side, it needs to be processed at
the earliest possible location, because sending data from right to left costs
significant amounts of energy [62]. Some of the processing tasks (e.g., event
detection using sensors attached to the same node) can be done on the sensor
itself without even sending them out. In other instances, individual sensors
may not have the required knowledge to process the data collected locally
(e.g., event detection using sensor data collected by two or more sensors that
are connected to separate sensor nodes). In such circumstances, data needs to
be sent to the devices on the left. It is important to remember that the more
the data moves, the more cost it adds to the overall system.

Another important factor is the time taken to process data. Sometimes,
processing the real-time is critical. However, more communication increases
the latency. Therefore, real-time processing should be supported by delegat-
ing processing responsibility to lower categories of devices. However, if the
objective of collecting data is to process it later, then ideally sensors may
cache data for some time and then push it through the devices as bulk data.
This reduces the communication wastage (i.e., communication radio open and
close less frequently than in real-time communication). The basic rule that
governs whether to process data on the current device or not in a given sit-
uation can be found out by following the rule. Understanding the knowledge
requirements is comparatively easy. However, finding out the energy require-
ment for data processing and communication is challenging. This challenge is
yet to be addressed by the research community. The communication protocol
used, energy source available to the device, and the energy consumption for
processing data need to be carefully evaluated to make a decision.

3.7.4 Multi-Protocol Support

There are several popular communication protocols that have been widely
used in CPS domains [68]. WiFi, Bluetooth, ZigBee, z-wave are some of them.
Even though they seem few, incompatibility makes the CPS application more
challenging. Each protocol has its own advantages and disadvantages. Table
3.1 summarizes basic differences in the protocols. When developing mobile
middleware platforms, it is important to support all the above-mentioned pro-
tocols. Typically, data will be uploaded to the cloud using long-range protocols
such as 3G or WiFi (communication between mobile middleware and cloud
middleware). However, communication between mobile middleware platforms
and external sensors is ideally performed through protocols such as Bluetooth
and ZigBee. Additionally, it is important to address the challenge of develop-
ing a high-level framework that handles the difference in protocols behind the
scenes without affecting the design of upper-level structure. So an ideal frame-

© 2016 by Taylor & Francis Group, LLC

Mobile Sensing Devices and Platforms for CPS � 39

Table 3.1: Heterogeneity in Terms of Wireless Communication Tech-
nology

ZigBee GPRS-GSM WiFi Bluetooth

Standard 802.15.4 802.11b 802.15.1
System Resources 4-32KB 16MB+ 1MB+ 250KM+
Battery Life (days) 100-1000+ 1-7 0.5-5 1-7
Network Size 264 1 32 7
Bandwidth (KB/s) 20-250 64-128+ 11000 720
Transmission 1-100+ 1000 1-100 1-10+
Range (Meters)
Success Metrics Reliability, Reach, quality Speed, Convenience,

power, cost flexibility cost

work will allow the developer of data communication in high-level (e.g., what
to send when) rather than dealing with communication protocols, which one
to use when and implement program code-level changes to address the differ-
ences. This will increase the efficiency and effectiveness of the CPS solutions
but also save a significant amount of development time.

3.7.5 Modular Reasoning, Fusing, and Filtering

In the current state of the MOSDEN middleware, we only support limited
SQL query-like filtering and fusing (e.g., average). It is important to build
a plugin architecture that is similar to the one we introduce to collect data
from external sensors, to support modular reasoning (e.g., secondary context
generation using primary context). A preliminary work that addresses this
challenge is Dynamix [69]. Dynamix is a plug-and-play context framework
for Android. Dynamix automatically discovers, downloads, and installs the
plugins needed for a given context sensing task. Dynamix is a stand alone
application, and it tries to understand new environments by using pluggable
context discovery and reasoning mechanisms. It does not provide a server-level
solution. Context discovery is the main functionality in Dynamix. In contrast,
MOSDEN is focused on allowing an easy way to connect sensors to appli-
cations in order to support sensing as a service model in CPS domain. We
employ a pluggable architecture that is similar to the approach used in Dy-
namix, in order to increase the scalability and rapid extension development
by 3rd party developers. Activity recognition is one of the popular reason-
ing tasks performed in mobiles. In plugin based architecture, it is critical to
have a cloud companion integrated to the solutions so the big picture can be
understood by the cloud and then configure the mobile sensing middleware
platforms as necessary, because mobile sensing platforms have only limited
knowledge about the resources they have access to, in comparison to cloud
middleware.

© 2016 by Taylor & Francis Group, LLC

40 � Cyber Physical Systems: Architectures, Protocols, and Applications

3.8 Summary

The number of mobile devices connected to the Internet is growing at a rapid
pace. A significant portion of these devices is mobile devices today. However,
it is expected that billions of different types of resource constrained compu-
tational devices will be connected to the Internet over the coming decade. On
the other hand, the number of sensors deployed around us is increasing. It is an
increasingly important task to collect data from these sensors in order to ana-
lyze and act upon it. In this chapter, we described our approach on building a
mobile middleware platform, called Mobile Sensor Data Engine (MOSDEN),
for resource constrained devices. MOSDEN can be installed in mobile devices
(smartphones and tablets) and can be used to collect data from both internal
and external sensors. Due to the plugin architecture, MOSDEN can retrieve
data from virtually any smart device. Further, it has the capability to perform
limited data processing and filtering tasks.

We also discuss a number of different ways that existing mobile system
platforms have been used to support sensor data collection and processing.
This chapter comprises a number of performance evaluation results where
MOSDEN has been tested in stand-alone mode as well as in collaborative
mode. In the later part of this chapter, we presented different real-world ap-
plications for which MOSDEN can be used. Finally, it is important to mention
that the goal of building a unified middleware platform that supports a broad
range of devices, ranging from low-level sensors to smartphones to personal
computers to the cloud, is yet to be achieved by the research community. Ad-
dressing the open challenges mentioned previously will help to move in that
direction.

Acknowledgment: Authors acknowledge support from SSN TCP,
CSIRO, Australia and ICT Project, which is co-funded by the European
Commission under the seventh framework program, contract number FP7-
ICT-2011-7-287305-OpenIoT. The authors also acknowledge help and contri-
butions from The Australian National University.

© 2016 by Taylor & Francis Group, LLC

Chapter 4

Naming, Addressing,
and Profile Services
for CPS

Chi Harold Liu

Beijing Institute of Technology, China

CONTENTS

4.1 Introduction . 42
4.1.1 Scope and Assumptions . 43
4.1.2 Contributions and Chapter Organization 44

4.2 Related Work . 45
4.3 System Flows . 46

4.3.1 Device Registration and Configurations 47
4.3.2 Upstream Data Collection . 47
4.3.3 Downstream Command Delivery . 49
4.3.4 Application Query . 49
4.3.5 Integration with Different CPS Platforms 49

4.4 System Designs and Implementations . 51
4.4.1 RESTful Interfaces . 51
4.4.2 Naming and Addressing Convention . 53
4.4.3 Generating the devID . 55

4.5 A Case Study . 56
4.5.1 Device Deployment, Naming, and Addressing Format . . 56

41

© 2016 by Taylor & Francis Group, LLC

42 � Cyber Physical Systems: Architectures, Protocols, and Applications

4.5.2 A Device Registration Portal . 59
4.6 Performance Evaluation . 60
4.7 Discussion . 64

4.7.1 DDoS Attacks . 64
4.7.2 Compatibility with IPv6 . 65

4.8 Summary . 65

The preceding chapter discusses mobile sensing platforms and their applica-
tions, and this chapter presents another important factor in the architecture
of CPS: Naming, Addressing, and Profile Services. Given massive amounts of
heterogeneous devices deployed across different platforms in cyber physical
systems, how to provide efficient upstream sensory data collection, content-
based data filtering/matching, and efficient downstream control is a common
issue. We will discuss a middleware component to service dynamic application
needs, and sensors/actuators deployment and configurations across different
platforms.

4.1 Introduction

In the field of CPS, the lack of a de facto standard architecting a naming, ad-
dressing, and profile server (NAPS), as a middleware [70] interoperable with
heterogenous platforms has become a key limiting issue on its proliferation to
deployment [71]. The research community is hearing the strong desire from
application developers to avoid learning heterogeneous communication/net-
working protocols in use, but be provided a homogeneous naming and ad-
dressing convention, so that they are able to retrieve the data from sensors
and control the actuators of different platforms and network domains. Toward
this end, a higher layer of device naming-addressing mapping should be pro-
vided to integrate with legacy systems and different platforms. As for device
naming, the convention should contain key elements of device meta-data, such
as device type and domain information; while for addressing, its format al-
lows the granularity of efficient accessibility and addressability to the physical
world. Profile services are also needed to aid the application query and system
configurations, like device status and presence. Furthermore, sensing tasks are
always achieved by a group of devices with similar sensing capabilities, and
thus NAPS should provide device group management functionalities, such as
to create, update, read, and delete (CURD) groups (and its tree-structured
subgroups). In this way, application development logic is greatly simplified
where only a device group name is needed and NAPS handles the internal
mapping. As a middleware, it should extend its usability by providing abun-
dant external interfaces.

IPv4, IPv6, and Dynamic Name Service (DNS) are usually considered as
the candidate standards for naming and addressing; however due to the lack

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 43

of communication and processing capabilities of many small and cheap de-
vices (like RFID tags) it is quite challenging to connect every “thing” with
an IP. Furthermore, with the increasing number of end devices, even IPv6’s
address space may not be enough. On the other hand, industry standards
have put much effort into each application domain. EPCglobal [72] uses a 96-
bit binary sequence to identify each RFID tag, and the object name service
(ONS) for URL translation. OPC-UA [73] defines client-server based models
for industrial production line solutions, where an abstract address space is
formed by a mesh topology. In it, each node represents a sensor in the pro-
duction stage and the edge between two nodes represents the stage-by-stage
relationship during the production. As an overall service architecture, ETSI
[74] proposed a solution interworking with 3GPP machine type communica-
tion (MTC) standard [75], to support machine-to-machine (M2M) communi-
cations when upgrading from traditional cellular networks where each device
is with a unique international mobile subscriber identity (IMSI) and is IP ad-
dressable. Furthermore, as a service layer architecture, it defines a variety of
service capabilities (SCs) including a Network Reachability, Addressing, and
Repository (NRAR) SC. However, it has no technical details thus far. Our
goal in this work is to work with any service platform as a middleware at the
back-end data center. Therefore, all these efforts pay attention only to a spe-
cific network or application domain, instead of a common platform managing
different technologies and standards.

4.1.1 Scope and Assumptions

There is no common platform interoperable with different platforms to hide
this heterogeneity and provide a transparent naming service to applications.
We therefore designed a CPS - application infrastructure (CPS-AI) and its
management platform (out of the scope of this chapter). The key technical
entablements of CPS-AI are: application gateway (AG), NAPS and its service
registration portal (Portal), and real-time operational database (RODB). AG
coordinates the data filtering and processing, and controls message delivery
based on a uniform device naming and addressing convention in NAPS. The
goal is to have applications access devices across different platforms without
knowing their languages in detail, but focusing on the development logic only.
The position of NAPS extends the functionality comparable to DNS in the
Internet, to the profile services such as storage and query. We next present
three assumptions of this work.

First is service discovery. Since the scope of NAPS is a middleware com-
ponent at the back-end data center to hide the heterogeneous protocols and
standards, here we assume that service discovery has already been successfully
performed by each platform individually, and stored in our NAPS repository.
Examples are service discovery server enhanced from ETSI M2M service ar-
chitecture by InterDigital [31], discovery service set in OPC-UA standard, and
protocols like Universal Plug and Play (UPnP) [76], etc.

© 2016 by Taylor & Francis Group, LLC

44 � Cyber Physical Systems: Architectures, Protocols, and Applications

Second is the authentication, authorization, and accounting (AAA). Al-
though it is not the focus of this work, the design can largely leverage the
Network Security Capability (NSEC) SC in ETSI M2M service architecture.
It uses a key hierarchy, composed of root key, service key, and application
keys. Root key is used to derive service keys through authentication, and key
agreement between the device or gateway and the M2M SCs at the M2M Core.
The application key, derived from service key, is unique as per M2M applica-
tion. Issues like distributed denial-of-service (DDoS) attack will be discussed
in Section 4.7.

Finally, we assume that wireless imperfection like packet errors and inter-
ference have been handled by the communication stack of each access network.
Solutions from PHY layer techniques (e.g., antenna techniques, modulation
and coding) and MAC/network layer protocols (e.g., scheduling and routing)
are a few examples. Therefore, any wireless issues are completely transparent
to the service layer operations, or the NAPS middleware considered in this
chapter.

4.1.2 Contributions and Chapter Organization

Our contributions are summarized as fourfold. First, we propose a complete
and detailed design of NAPS, including its key system flows, interfaces, and
individual module designs. Second, we propose a unique device naming and
addressing convention interworking with different platforms, and we show its
applicability to a few widely used standards and protocols. Third, we propose
an efficient identifier generation scheme, not only used during data transporta-
tion, but also to facilitate the data filtering and matching. Fourth, we provide
CURD operations on device, device type, and device group profiles, in the
RESTful design style [77] over HTTP at runtime. Meanwhile, we provide a
JDBC library so that external applications can access large amounts of profile
information (in the scale of gigabytes), where HTTP falls short. Finally, we
demonstrate its usage by a case study in a smart building environment and
show performance evaluation results on system throughput. To the best of
our knowledge, this is the first piece of work to tackle the fundamental design
issues of naming, addressing, and profile services as a middleware across dif-
ferent platforms by demonstrating its usage through a real implementation.
A summary of important acronyms used in this chapter is listed in Table 4.1.

The rest of this chapter is organized as follows. Related research activ-
ities are introduced in Section 4.2. System context and flows are described
in Section 4.3. Section 4.4 presents the detailed system design and imple-
mentation issues. Next, performance evaluation is given in Section 4.6. After
discussing a few related practical issues in Section 4.7, a conclusion is drawn
in Section 10.7.

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 45

Table 4.1: Summary of Important Acronyms

Acronyms meaning

M2M Machine-to-machine
SC Service capability
NAPS Naming, addressing, and profile server
RFID Radio frequency identification
CURD Create, update, read and delete
NRAR Network reachability, addressing and repository
OPC-UA OLE for process control - Unified Architecture
CPS-AI Cyber Physical Systems application infrastructure
RODB Real-time operational database
AG-FEP Application gateway - front-end processor
AG-BE Application gateway - back-end
AG-CC Application gateway - command controller
AAA Authentication, authorization, and accounting
IBM WAS-CE IBM Websphere Application Server - Community Edition
devID Device identifier
Java PO Java persistent object
Java DAO Java Data Access Object
API Application Programming Interface
URI Uniform resource identifier
XSD XML Schema Definition
JDBC Java Data Base Connectivity
JVM Java virtual machine

4.2 Related Work

EU FP7 project CPS-Architecture (CPS-A) extensively discussed the exist-
ing architectures, protocols, and platforms [78]. Besides, in [79] the authors
propose a framework to interconnect sensors running 6LoWPAN [80], where
IEEE 802.15.4 and IPv6 were considered to connect wireless devices to the
Internet. In [81], they provide an XML schema to encode device profile in-
formation including its local name. Web-of-things (WoT, [82]) makes use of
popular Web languages for building applications involving smart things and
users.

As for industrial standards, based on DNS, the pure IP solution [83] is
favored due to the recent development of IPv6 to connect “things” for CPS.
EPCglobal [72] specializes in the use of RFID in the information rich and
trading networks, especially for logistics. In it, similar to DNS, an object
name service (ONS) is designed to translate a 96-bit binary sequence to a
URI, which directs the query to a (set of) database(s) called EPC informa-
tion services for information retrieval and update. OPC-UA [73] defines an
address space where devices are interconnected to form a mesh topology. The
connectivity represents the production line sequence, where the directional
edge called “reference” links the next stage of behavior. ETSI M2M service

© 2016 by Taylor & Francis Group, LLC

46 � Cyber Physical Systems: Architectures, Protocols, and Applications

architecture [74] assumes each M2M device is IP addressable. In 3GPP MTC
[75], they propose to use the IMSI as the internal identifier for signalling and
charging, while providing external identifiers to include domain information
under the control of a network operator, and flexibly allocated descriptions as
the customer friendly local identifier.

On the other hand, naming and addressing for wireless sensor networks
have been extensively investigated [84, 85, 86, 87]. The first kinds of ap-
proaches rely on the efficient address allocation among nodes, where in [88, 89]
the assigned addresses are reused spatially and represented by variable length
of codewords. This was later extended in [90] which used the prefix-free Huff-
man encoding of node addresses based on the energy map, where nodes with
little battery life left will have the advantage of a short address and check
period. The authors of [91] proposed the “attributed-based naming.” In [92],
clients use an intentional name to request a service without explicitly listing
the end-node that ultimately serves the request. This level of indirection al-
lows applications to seamlessly continue communicating with end-nodes even
though the mapping from name to end-node addresses may change during the
session. Finally, a unique identifier generation problem is investigated in [93],
where they designed a correlated lookup scheme with a distributed hash table
to improve the performance of identifier management.

However, none of these schemes is motivated from the service layer as
part of the middleware at the back-end data center, nor do they tackle the
fundamental problem of providing a homogeneous, both human and machine
understandable, and unique naming and addressing convention across differ-
ent platforms. Furthermore, none of them supports profile services and legacy
system integration.

4.3 System Flows

To support the high scalability requirement, we further decompose AG into
four modules, front-end processor (FEP, for data collection and format trans-
formation), command controller (CC, for application command parsing and
translation from NAPS), back-end processor (BE, for rule-based data filtering
and matching), and message queue (MQ, for publish-subscribe based topic
services [94]). Then, users can identify its bottleneck and scale up/out the
corresponding component; for example, to deploy MQs for a large number of
applications in a cloud. The list of components that interact with NAPS either
offline or at runtime are AG-FEP, AG-CC, AG-BE, applications, portal, and
RODB, as shown in Figure 4.1 for system context and associated interfaces.
It is worth noting that the overall CPS-AI platform is only used as an ex-
ample to demonstrate the system flow of NAPS, whereas its applicability can
extend to any external component with similar interfaces. We next present
three key system flows, service registration and configurations, upstream data
collection and downstream command delivery. In all aspects, an AAA server

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 47

Figure 4.1: System context of NAPS and the associated application-
layer interfaces.

interacts with NAPS for security authentication and authorization, and we
left the details for future work.

4.3.1 Device Registration and Configurations

As discussed earlier, service discovery is performed at an individual platform
beneath the data center service layer, and NAPS only provides a set of in-
terfaces to facilitate the device registration, either automatic or offline. The
registered capabilities include the ones offered by devices, device types, and
device groups, and thus the repository stores the corresponding profile infor-
mation. The provided interfaces are based on the RESTful design style where
standard HTTP request/response is used to transport the data. It is worth
noting that before the response is returned to the client, we generate a unique
device identifier, or “devID” for the rest of the chapter (see Section 4.4.3). It
contains key elements of the device meta-data. Note that this devID generation
process is also applicable when device type and device group are registered.
For service bootstrap, other components like AG and RODB can establish
JDBC connection to retrieve these meta-data from the database.

4.3.2 Upstream Data Collection

As shown in Figure 4.2(a), when AG-BE receives the raw data from a CPS
platform, it translates the devID to the corresponding device name (devName)
as more friendly to the application. Meanwhile, AG-BE makes use of devID
to perform efficient content-based data filtering and matching. For example,
one application configures a topic on MQ to aggregate and average the room
humidity data in a smart building environment. Then, since the designed
devID contains key elements of device meta-data such as associated domain

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-000.jpg&w=192&h=116

48 � Cyber Physical Systems: Architectures, Protocols, and Applications

AG-FEP AG-BE AppMQ

NAPS

data

REST
devName devID

devID devName devNameAG

AAA

AG-FEP AG-BE AppMQ

AG-CC

NAPS

cmd@devName
cmd@grpName

9cmd@devName
cmd@grpName

cmd@grpName

cmd@devIDs

cmd@devIDs
cmd@devAddrs

AG

(a)

(b)

(c)

cmd@devAddrs

AAA

AG-FEP AG-BE AppMQ

AG-CC

NAPS

criterion

grpName(s)/devName(s)

• List of Supported Criteria
– Blurred device/group names
– Device/group location
– Device/group domain

AG

AAA

Figure 4.2: System flow: (a) upstream data collection, (b) downstream
command delivery, and (c) application query.

information and device type, it helps to categorize, filter and select the exact
set of raw data from the massive data pool. This can be achieved by masking
certain encoded profile parameters. To save the overhead, we use devID as the
unique identifier in the transport (e.g., through the carrier public network and

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 49

CPS private network as shown in Figure 2.1), while using devName containing
a set of human-readable properties for applications.

4.3.3 Downstream Command Delivery

Figure 4.2(b) shows the downstream system flow when control messages are
initialized by the application to specific device groups. First, device (group)
name is passed to the AG-CC, and the latter retrieves the (list of) dev-
ID(s) from NAPS over the RESTful interface. Then, AG-FEP translates the
devID(s) to the corresponding device address(es) from NAPS, in which it
specifies how to address the command(s) to the exact (group of) device(s). In
this way, similar to the functionality of DNS in the Internet, NAPS performs
the name-to-address resolution. It is worth noting that our aim is not to de-
sign completely new transport protocols to inter-operate with heterogeneous
network domains like cellular networks and ZigBee. However, we only define
a thin layer for address resolution, as a uniform convention to unify and co-
ordinate different platforms. In our addressing convention (see Section 4.4.2),
it specifies the way to route the command to the Internet gateway, which is
IP addressable, such as the M2M gateway in ETSI M2M service architecture,
OPC-UA server, or WiMax base station (as considered in the case study).
In a hierarchy, these gateways further route the command to the next level
gateway (e.g., the ZigBee coordinator) which maintains its own addressing
mechanism to the device.

4.3.4 Application Query

Application developers may be the same as or, as a future trend, different
from the device owners. Therefore, their development logic entirely relies on
identifying the right set of devices from the physical world, which may even-
tually belong to different network domains/platforms. Toward this end, since
the device, device type, and device group profiles are registered and stored in
NAPS repository, we allow search services to retrieve a list of devices and de-
vice groups with certain geographical, domain, and device name information.
Furthermore, this process can be coupled with downstream command delivery
procedures where a retrieved list of device and device group names is used to
issued commands to the physical world.

4.3.5 Integration with Different CPS Platforms

Nearly all third-party device vendors and platform operators have their own
naming mechanism, and it is likely that they also have already developed
their own applications. Therefore, to ease the integration process, the ex-
posure of the proposed uniform device naming is not the most convenient
way. Toward this end, NAPS provides the translation between our uniform

© 2016 by Taylor & Francis Group, LLC

50 � Cyber Physical Systems: Architectures, Protocols, and Applications

naming convention and the legacy naming, offering shared services to dif-
ferent vendors and applications. We thus provide two RESTful interfaces,
getDevOldNamebyDevName() and getDevNamebyDevOldName(), where the for-
mer is used when the upstream data are received by the application attached
with our device name, and thus to be translated to the legacy name, and the
latter is used when applications issue commands to the actuators by trans-
lating the legacy naming to the proposed one. In this way, existing naming
platforms like 3GPP MTC and EPCglobal can be seamlessly integrated with
our NAPS middleware.

Since one of the functionalities of NAPS is to store the registered profile
information, among many choices, our implementation uses IBM DB2 as the
relational database to store all devices, device types, and device groups re-
lated profile information. A JDBC library is used as an interface for the Web
container (where Java code resides) to access the database (see Figure 4.3).
We choose IBM WAS-CE as this container that hosts an Apache Tomcat ap-
plication server and other necessary programming supports. Within the Web
container, NAPS implements the data persistence, data access object (DAO),

RESTful API

Device
Profiles

Device Group
Profiles

6Container
(IBM WAS-CE)

JDBC

Persistent Object

Device Type
Profiles

IBM DB2

REST Toolkit JDBC Toolkit

Services

Data Access Object
(DAO) JDBC Library

Device Domain
Profiles

Figure 4.3: NAPS component design.

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 51

service layer, and RESTful APIs; and in parallel, JDBC library and client-side
toolkits. Next, we show key functionalities of each internal module.

4.4 System Designs and Implementations

Java PO: Java persistent object, which specifies the one-one correspondence
from a Java object to the database entries, columns, and relations. Persistency
is also implemented by using the open-source packages like Apache openJPA.

DAO: basic database operations, like delete, get, query, save, update, and
above operations in batch are defined and implemented by using the Java PO.

Services: in this layer, RESTful resource URIs are decomposed into the
Java PO consistent with the same database design, e.g., entry names, column
names, and their corresponding values. Then, HTTP method calls are trans-
lated into internal APIs which will be further decomposed into database basic
operations defined in the DAO layer. Service logics are also maintained, and
in particular for device deletion related operations, this layer will help check
the related device group profile and perform the update accordingly.

JDBC library: provides a wrapper from the JDBC operations to the
Java package.

RESTful API: serves as the external interface to send and/or receive
response/request to the clients.

For the sake of completeness, we also describe table designs on IBM DB2,
as shown in Figure 4.4. Four key tables are device, device type, device group,
and device domain tables, with the one-to-many mapping between the device
types and devices, many-to-many mapping between devices and device groups,
and one-to-many mapping between device domain and devices.

4.4.1 RESTful Interfaces

We expose RESTful APIs to external users. In REST, clients initiate requests
to servers that process requests and return appropriate responses. Neither
the client nor the server needs to store the transitional states between the
exchanged messages. This restriction isolates the client of changes in the server
side. REST uses a set of HTTP methods, known as POST, GET, PUT, and
DELETE, corresponding to a complete set of CURD operations. To this end,
this is a perfect technology to describe application activities including profile
browsing, look-up, update, and delete.

The requests and responses in REST are built around the transfer of “rep-
resentations” of “resources.” We define resources in NAPS as the device, de-
vice type, and device group meta-data, rather than the “actions” on it. For
instance, to retrieve an entire device record, one should use the GET method
requesting the URI as: .../devices/devid/{id}, where the devid denotes
the devID as the key to the device profile table entry. Figure 4.5 shows the

© 2016 by Taylor & Francis Group, LLC

52 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 4.4: Table designs for device, device type, device group, and
device domain tables.

proposed tree-based URI structure. Followed by the NAPS IP address and
port,1 three types of root resources are defined, i.e., devices, device types,
and device groups. After, we use the format of attribute name-value to ex-
plicitly indicate a specific leaf resource as the operand. For example, if one
writes “...devices/devid/{724487363}”, then it maps to the record en-
try with its key equals to devid and value equals to 724487363. However,
if detailed attribute name-value information is omitted, like “...devices/”,
“...devices/*” or “...devices/devid/*” , then it operates on all leaf re-
sources (all devices in this case). Note that our design also supports the mul-
tiple leaf resource operations under one root resource, i.e., we use “&” to con-
catenate multiple values, e.g., “.../devices/devid/{id1}&{id2}&{id3}”.

We next explain the use of four HTTP methods on our RESTful resource.
POST: to submit the data from the client to be processed at a target re-

source, resulted in the creation of a new or an update of the existing resources.

1Or server URL; and if considering the cluster deployment, this address corresponds to
the address of server dispatcher, allowing to direct the client request to the corresponding
NAPS.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-001.jpg&w=334&h=238

Naming, Addressing, and Profile Services for CPS � 53

Figure 4.5: RESTful URI design for NAPS.

The data are included in the body of the request, in the format of XML. We
use this method to register a new profile.

GET: to request the information from the specified resource, e.g., making
a request GET in .../devices/devid/{724487363} will return as a response
to the device record with devID=10. We use this method to retrieve the profile.

PUT: updates the resource’s particular set of information, and if re-
quest URI does not exist, it allows to create a new resource. If one
aims to update the serial number of a device, clients make a PUT
request to: .../devices/devid/{724487363}/serialnumber/{456WEFGA},
where 456WEFGA is the refreshed data. We use this to update an existing
profile.

DELETE: to delete a specified resource without an XML body. For in-
stance, if one requests URI: .../devices/devid/{724487363}, it deletes the
device record with devID=724487363, however the service layer will check its
relations to the device group to make sure the mapping is also removed. We
use this method to delete an existing profile.

Tables 4.2 and 4.3 show RESTful APIs to retrieve and search devices
(under condition), respectively.

4.4.2 Naming and Addressing Convention

We propose a novel naming convention for devices and device groups across
different platforms in a form of:

dev://domain-series/devtype/legacy-name,

grp://domain-series/target/policy/grp-name,

where the prefix distinguishes its category (as for devices or device groups),
followed by a series of device domain information. The device domain is

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-002.jpg&w=288&h=142

54 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 4.2: RESTful API to Get Device Profile Information

URI http://<serverURL>/devices/devid/{724487363}&...

/paging?startindex=0&count=100

http://<serverURL>/devices/devid/*

/paging?startindex=0&count=100

Method GET

Query string startindex: start index, default=0

count: No. of records needed., default=50

Returns 200 OK & XML response

404 Not Found

500 Internal Error

Table 4.3: RESTful API to Search Devices under Condition

URI http://<serverURL>/search?key={val1}&key={val2}&...

Method GET

Query string key=location, domain, devname, devtype

Returns 200 OK & XML response

404 Not Found

500 Internal Error

organized in a tree structure, written in the above naming convention back
trace from the leaf to the root node of the domain tree. After the domain
series, for devices we use the device type information to further categorize all
devices associated with a domain node on the leaf of the tree, and finally the
legacy naming (e.g., serial number) from the production phase. Meanwhile,
device groups use the monitoring target (e.g., the room temperature) and
grouping policy for detailed classification.

Device domain information refers to either their deployed geographical
information, or logical organization of these devices. In NAPS, we allow to
store multiple device domains, and each domain indexed r is a tree structure
with depth dr and width of each level as {wir,∀i = 1, . . . , dr}. In other words,

domain r is composed of total Nr =
∑dr
i=1 w

i
r domain nodes. We call the

“partition” of a domain tree by parameters (dr, {wir}) the “domain rule,”
and the corresponding data structure representation “rule assignment.” For
example, the rule assignment parameters are the number of bits to store the
domain nodes in each level of the tree. The meta-data of each node include
the name, its parents and children, and other properties; see Figure 4.4. In
practice, project managers of a CPS system will carefully plan the device

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 55

Table 4.4: Examples of Device Addressing Convention with Different
Protocols

Protocol Example

OPC-UA nodeID@opcua/<OPCUA-ServerURL>

ZigBee short-address@zigbee/<coordinatorIP:port>

RFID binary-epc@rfid/<readerIP:port>

IP-based <ip-address:port>@http

Bluetooth MAC-address@bluetooth/<receiverIP>

WiFi 192.168.x.x@wifi/<access-point-IP>

USB VendorID-ProductID@USB/<ip-addr>

deployment at a site of interest, where the first step is to plan an overall
device domain. For example, in a smart building environment, how many
temperature and humidity sensors of what device type should be deployed at
which location, and this deployment stage eventually specifies a domain tree
structure, and is stored in NAPS repository.

As for device addressing convention, we propose to use the format:

address-1@protocol-1/.../address-n@protocol-n︸ ︷︷ ︸
non-IP networks

/IP-address,

to accommodate heterogeneous protocols and standards in use across different
platforms. To allow the granularity of addressing the device in a hierarchy, we
repeat the element “address@protocol” one after the other from the device to
the Internet gateway, which is IP addressable (as the last part of the conven-
tion). Table 4.4 shows a few examples for well-known protocols. An example
of naming a device with our address convention is presented in Section 10.6.

4.4.3 Generating the devID

As mentioned earlier, when device profile information is registered either man-
ually or automatically from each CPS platform, a devID is automatically gen-
erated. We propose to use a 64-bit long integer. It is used when the data
and control messages transfer between the access network, carrier public net-
work and CPS private network, to save the communication overhead over
any character-based naming. However, one cannot randomly generate this se-
quence to avoid potential collisions when a cluster of NAPS is deployed in a
cloud environment. Meanwhile, the allocation of these 64 bits should have to
support other components. For instance, AG will deploy its policy-based rule
engine like MQ topic according to the device domain information, where one
example is that applications may efficiently query all devices with mobility

© 2016 by Taylor & Francis Group, LLC

56 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 4.5: Bit Allocation for devID (in total 64 bits)

ID device control r/w mobile domain domain sequence

category type flag flag flag rule series

5bits 6bits 1bit 2bits 1bit 5bits 34bits 10bits

for their connectivity and presence at runtime by simply masking a portion
of this devID. Toward this end, we propose the following design, as shown in
Table 4.5. The category field identifies the type of sequence in the database
(for devID this field equals to 1), followed by the device type, controllable
flag, read/write access flag, and mobility indicator. The last part is a series
of domain information, starting from the domain rule sequence r and back
trace from the leaf to the root domain nodes of that domain rule. A detailed
example will be presented in the next section.

4.5 A Case Study

4.5.1 Device Deployment, Naming, and Addressing
Format

In this section, we demonstrate the use of NAPS in a real smart building
scenario. As shown in Figure 4.6, we deploy three temperature sensors, one
humidity sensor, one alarm, and one camera, all wirelessly connected by Zig-
Bee with a central ZigBee coordinator. All devices are deployed in room 308
at Floor 3 of IBM Research in Beijing, China. In particular, three tempera-
ture sensors form a multi-hop wireless network. Then, in order to assist the
device naming, we first define the device domain as shown in Figure 4.7.
This phase is usually associated with the initial planning stage where project
managers decide the location, device type, and number of sensors for deploy-
ment. In this example, we use sensors’ deployed geographical information to
form the device domain tree. Without loss of generality, we denote the do-
main rule index r = 1 with depth dr=1 = 3 and width of three levels as
w1
r=1 = 1, w2

r=1 = 3, w3
r=1 = 6, respectively. Collectively, we have Nr=1 = 10

domain nodes in total. Then, domain rule assignment tells the number of bits
used to encode these domain nodes, as 1 bit, 2 bits, and 3 bits for three lay-
ers, respectively. Based on this, we sequentially allocate bits to each domain
node, as used later for devID generation of each sensor, as shown in the figure.
Besides, we also register the device type information in NAPS repository, and
use encoding (010101)B, (010110)B, (010111)B, and (011000)B to represent
temperature, humidity, alarm, and camera, respectively.

Based on the proposed naming convention and devID generation scheme
in Sections 4.4.2 and 4.4.3, Table 4.6 summarizes the result. Take temperature
sensor 1 for example; its generated devID is 0xAA450000000F001, where ID

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 57

Figure 4.6: Device deployment in a smart building environment.

category=(00001)B, device type “temperature”=(010101)B, control flag “con-
trollable”=(0)B, r/w flag “read only”=(01)B, mobility flag “static”=(0)B,
domain rule “IBM site”=(00101)B, domain series = (0...0︸︷︷︸

28

111100)B2, and

“sequence”=(1)B. Furthermore, users may create a device group to monitor
the “average” room temperature on a daily basis, then we generate its naming
as: grp://rm308.floor3.IBM/temperature/daily-average/group1. To do
this, a user deploys a rule in the AG, and simply masks 0xAA000000000F000
with the devID of the collected data, or (1 010101︸ ︷︷ ︸ 0...0︸︷︷︸

37

1︸︷︷︸
IBM

11︸︷︷︸
Floor3

100︸︷︷︸
room308

0...0︸︷︷︸
10

)B.

Behind the access network (ZigBee based sensor network in this case), we
deploy a WiMax subscriber station (SS) in the same room that connects the
ZigBee coordinator by a USB cable. At Floor 1 of the building, we house a

2We assign domain node IBM, Floor 3, and room 308 as (1)B, (11)B, and (100)B,
respectively, see Figure 4.7. Meanwhile, the upper-most 28 bits are filled by zeros.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-003.jpg&w=288&h=293

58 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 4.7: Device domain structure for the considered smart building
scenario.

Table 4.6: Device Naming Format and devID of Six ZigBee Sensors

device devName devID

begin with dev://rm308.floor3.IBM

temp. sensor 1 .../temperature/DER452SA 0xAA450000000F001

temp. sensor 2 .../temperature/LDKE4512 0xAA450000000F002

temp. sensor 3 .../temperature/235S4FDE 0xAA450000000F003

humidity sensor .../humidity/98SWLK12 0xAC450000000F001

warning alarm .../alarm/273FDS43 0xAFC50000000F001

camera .../camera/091ASEKL 0xB1C50000000F001

small but compact data center comprised of an AG (on an IBM Workload
Deployer) and a NAPS server (our Java code is running on an IBM System
x3650). AG connects to the WiMax base station (BS), which is implemented
as a software-defined radio system on hardware IBM System x3650. By using
a remote radio head (RRH), BS extends the communication range to cover
the entire building. The communication channel between SS and AG is the
standard WiMax air interface. WiMax employs a connection oriented MAC
layer and each connection is identified with a set of 16-bit connection iden-
tifiers (CIDs). Upon entering into networks, the SS is assigned with three
CIDs in each direction, i.e., the basic CID used for initial registration derived
from its 48-bit MAC address, primary management CID used for connection
management and authentication, and secondary management CID used for
management messages such as DHCP. In addition, each terminal is allocated
with transport CIDs for data services. Upon service discovery and registration,
SS sends the list of capabilities to AG in the REG-REQ message, and then

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-004.jpg&w=178&h=100

Naming, Addressing, and Profile Services for CPS � 59

Table 4.7: Device Addressing Format of Six ZigBee Sensors

device addressing

temp. sensor 1 0x4FE2@zigbee/03F0-2D12@USB/9.186.1.133

temp. sensor 2 0x4FE3@zigbee/03F0-2D12@USB/9.186.1.133

temp. sensor 3 0x4FE4@zigbee/03F0-2D12@USB/9.186.1.133

humidity sensor 0xD3E1@zigbee/03F0-2D12@USB/9.186.1.133

warning alarm 0xF2A1@zigbee/03F0-2D12@USB/9.186.1.133

camera 0x82AD@zigbee/03F0-2D12@USB/9.186.1.133

AG responds with a REG-RSP message along with supported capabilities.
Finally, SS will acknowledges REG-RSP with ACK.

As for addressing, SS and AG are provided with a public routable IP ad-
dress through DHCP secondary management CID, ZigBee coordinator is ad-
dressable through the VID and PID on the connected USB port, and sensors
are accessible through internal 16-bit short address assigned by the coordina-
tor when they first join the network. Therefore, for each sensor, its addressing
convention is

short-address@zigbee/VendorID-ProductID@USB/<SS’s IP address>.

Assuming that 9.186.1.133 is the IP address of WiMax SS, Table 4.7 sum-
marizes the result.

4.5.2 A Device Registration Portal

We implement a Web-based registration portal to support service registration
functionality, assuming that the discovery phase has been achieved by an
individual platform already like ETSI M2M or OPC-UA. In our case, WiMax
uses CIDs for service discovery. It is worth noting that the provided RESTful
interfaces fully support the automatic registration procedure from these legacy
systems, and for now we show a way for manual configurations. As shown
in Figure 4.8, authorized users can log-in the system and create, view, or
remove device types. Then, the user creates device domain information as
in Figure 4.9(a), and registers new devices as in Figure 4.9(b). Since the
device domain is already configured, when adding a new device, the user
simply selects a domain node the device belongs to, either geographically or
logically, as shown in Figure 4.10(a). Finally, device group is managed by
adding registered devices to a group; see Figure 4.10(b). All these operations
are achieved by calling the provided RESTful APIs, as shown in Section 4.4.1.

As an example, Figure 4.11 shows the XML body attached with the REST-
ful request POST: http://<serverURL>/devices to create the device profile

© 2016 by Taylor & Francis Group, LLC

60 � Cyber Physical Systems: Architectures, Protocols, and Applications

(a)

(b)

Figure 4.8: NAPS registration portal. (a) View a list of device types,
and (b) add a new device type.

for temperature sensor 1. Device name, device address, location, domain in-
formation are all encoded.

4.6 Performance Evaluation

Since the previous section has verified the correctness of our model and system
by deploying six sensors as a case study, in this section, we aim to evaluate

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-005.jpg&w=288&h=162
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-006.jpg&w=288&h=162

Naming, Addressing, and Profile Services for CPS � 61

(a)

(b)

Figure 4.9: NAPS registration portal. (a) Add/view a new device
domain in a tree structure, and (b) register a new device profile.

the server performance in terms of throughput when the number of devices
reaches a certain amount. We testify two offered external interfaces, namely:
(a) JDBC API for large amount of device meta-data retrieval (more in the
configuration phase), and (b) RESTful API for information query at runtime.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-007.jpg&w=277&h=197
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-008.jpg&w=277&h=197

62 � Cyber Physical Systems: Architectures, Protocols, and Applications

Domain Path

Domain Rule Tree

Domain Node

(b)

(a)

Figure 4.10: NAPS registration portal. (a) Select the device domain
information from the existing domain tree, and (b) add/remove de-
vices to/from a device group.

To run the JDBC API pressure test, we set up the environment by installing
the IBM DB2, client side code (in Java Eclipse Galileo 3.5.0) on the same
Thinkpad W500 workstation; and therefore the computational costs come
more from the I/O side instead of the network. Furthermore, we set the JVM

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-010.jpg&w=279&h=196

Naming, Addressing, and Profile Services for CPS � 63

Figure 4.11: The XML body attached with the RESTful URI to reg-
ister a new device profile for temperature sensor 1.

heap size to 512MB for Java object creation in batch. When running the
tests, we call the JDBC API to fetch the device profile records in different
batch sizes, where each record is approximately 20KB. Figure 4.12 shows
experimental results. For fixed batch size (e.g., 10,000 records), we observe a
relatively linear increase of system response time while increasing the total
number of device records in the database, showing our system scales well
within the number of devices in an CPS environment. For fixed total number
of devices, the response time also increases steadily with different batch sizes.
Meanwhile, if one aims to retrieve five million device profiles (approximately
100GB in total), the average response time is around 33 minutes, equivalent
to the system throughput around 404Mbps.

We next show the performance of RESTful APIs, and Table 4.8 demon-
strates the pressure test result when searching devices under conditions. We
use Apache JMeter [95], and implement the client side code (in Java Eclipse
Galileo 3.5.0) on a Lenovo Thinkpad W500 workstation. The station con-
nects to the internal WLAN (interface card supports IEEE 802.11b/g). Server
is implemented on an IBM ThinkCentre M58p machine, with 1Gbps Eth-
ernet connection, so that the client and server are within the same LAN,
and wireless network should cost most. The used URI is GET http://9.186.

x.x:8080/search?devname={pollutant}, i.e., to search for all pollutant sen-
sors. We observe that after the system experiences some fluctuations it quickly
reaches the steady state, the average achievable throughput is around 500-600
transactions per second (tps), i.e., 500-600 transactions can be simultaneously
and successfully processed with responses. The throughput slightly decreases

© 2016 by Taylor & Francis Group, LLC

http://9.186.x.x:8080/search?devname={pollutant}
http://9.186.x.x:8080/search?devname={pollutant}
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-6&iName=master.img-011.jpg&w=288&h=182

64 � Cyber Physical Systems: Architectures, Protocols, and Applications

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

No. of device profile records stored in NAPS (million)

A
ve

ra
ge

 q
ue

ry
 re

sp
on

se
 ti

m
e

(s
ec

on
d)

5K device profiles

100K device profiles
50K device profiles
10K device profiles

Figure 4.12: Average JDBC query response time versus the number
of device profile records stored in NAPS, w.r.t. to different periodic
batch fetching size.

when increasing the total number of device records. Meanwhile, the system
response time increases slightly that scales well with the total number of
records, and to search devices within five million records (100GB), and aver-
age response time is around 61ms.

4.7 Discussion

4.7.1 DDoS Attacks

Apart from AAA, security issues like DDoS protection should also be consid-
ered. Although leaving detailed investigations for the future, we review and
discuss a few well-known mechanisms to prevent DDoS attacks. First is ingress
filtering [96], where packets coming into the network are filtered if inconsis-
tent with the source IP addresses. Second is the router throttle mechanism
[97] proposed at the routers close to the victim, to proactively regulate incom-
ing packets to a moderate level, thus reducing the amount of flooding traffic.
Similarly, the key idea of pushback is to identify and control high bandwidth
aggregates in network [98]. This upstream rate-limiting is called pushback and
can be propagated recursively to routers further upstream. Third, since the
source addresses of flooding packets are faked, various traceback techniques
[99] have been proposed to find out the origin of a flooding source. Finally,

© 2016 by Taylor & Francis Group, LLC

Naming, Addressing, and Profile Services for CPS � 65

Table 4.8: Pressure Test Results on RESTful API to Search Device
Names Containing Keyword “ibm”

Device No. of avr median 90% line min max thrpt

record requests (ms) (ms) (ms) (ms) (ms) (tps)

10k 264644 17 11 29 2 3042 584.60

500k 287615 38 27 46 1 7069 544.51

1M 277728 48 36 54 2 8183 535.81

5M 255494 61 52 72 1 22551 508.26

based on the distinct protocol behavior of TCP connection establishment and
teardown, the TCP SYN flooding is detected [100].

Meanwhile, commercial solutions are also available particularly for M2M
scenarios such as the one provided by du Telecom [101] through a layered
network. The scalability of their protect services can detect and handle threats
of flexible size, using multiple methods of detection and mitigation.

4.7.2 Compatibility with IPv6

As discussed earlier in the scope of this work, we are not devising a new
transport layer protocol, but aim to inter-operate with heterogeneous CPS
platforms. In this sense, IPv6 based networks (like 6LowPan) is one kind of
such solutions to be integrated with our NAPS middleware. As presented in
this chapter, NAPS performs the uniform name-to-address resolution, com-
parable to the functionality of DNS in the IP world. Furthermore, it provides
abundant RESTful APIs for device, device type, and device group profile
services. During the downstream command delivery, once the addressing is
obtained from NAPS, it will forward it to the corresponding Internet gate-
way, such as the M2M gateway in ETSI M2M service architecture, OPC-UA
server, or WiMax base station (as considered in the case study). In a hier-
archy, these gateways further route the command to the next level gateway
(e.g., the ZigBee coordinator) which maintains its own addressing mechanism
to the device. In this way, we do not attempt to “escalate” the IPv6 naming
up to the middleware layer, and are thus able to go around the issue of po-
tential insufficiency problems when the number of devices is massive beyond
the capacity of IPv6.

4.8 Summary

In this chapter, we presented NAPS, a middleware to support device naming,
application addressing and profile storage and look-up services in CPS sensory

© 2016 by Taylor & Francis Group, LLC

66 � Cyber Physical Systems: Architectures, Protocols, and Applications

environments. Different from all previous efforts only focusing on a specific
standard/protocol, our design can work with any existing system and plat-
form to assist the upstream data collection and identification, content-based
data filtering and matching, downstream control message delivery, as well as
application query. Our contributions were the proposal of such a complete and
detailed design, including its key functionalities, system flows, interfaces, and
individual module designs, the proposal of a unique device naming and ad-
dressing convention with applicability to widely used standards and protocols,
the proposal of an efficient identifier generation scheme, and finally a real case
study in a smart building environment. Performance evaluation showed that a
single node commodity server can achieve average throughput of around 500-
600tps, with system response time 61ms to search devices within five million
devices.

© 2016 by Taylor & Francis Group, LLC

Chapter 5

Device Search and
Selection for CPS

Charith Perera

Open University, U.K.

Chi Harold Liu

Beijing Institute of Technology, China

Peter Christen

Australian National University, Australia

CONTENTS

5.1 Introduction . 68
5.2 Internet of Things Architecture and Search Functionality 69

5.2.1 Sensing Device Searching from Functional Perspective . 70
5.2.2 Sensing Device Searching from Implementation

Perspective . 72
5.3 Problem Definition . 76
5.4 Context-Aware Approach for Device Search and Selection 77

5.4.1 High-Level Model Overview . 77
5.4.2 Capturing User Priorities . 80
5.4.3 Data Modelling and Representation . 80
5.4.4 Filtering Using Querying Reasoning . 82
5.4.5 Ranking Using Quantitative Reasoning 84
5.4.6 Context Framework . 85

67

© 2016 by Taylor & Francis Group, LLC

68 � Cyber Physical Systems: Architectures, Protocols, and Applications

5.5 Improving Efficiency . 85
5.5.1 Comparative-Priority Based Heuristic Filtering

(CPHF) . 86
5.5.2 Relational-Expression Based Filtering (REF) 87
5.5.3 Distributed Sensor Searching . 88

5.6 Implementation and Experimentation . 90
5.7 Performance Evaluation . 91

5.7.1 Evaluating Alternative Storage Options 94
5.7.2 Evaluating Distributed Sensor Searching 95

5.8 Open Challenges and Future Research Directions 96
5.8.1 Context Discovery, Processing, and Storage 97
5.8.2 Utility Computing Models and Sensing as a Service 97
5.8.3 Automated Smart Device Configuration 98
5.8.4 Optimize Sensing Strategy Development 98

5.9 Summary . 99

Besides mobile sensing platforms and naming/addressing/profile services,
searching functionality also plays a vital role in the domain of cyber-physical
systems (CPS). Many different types of search capabilities are required to
build a comprehensive CPS architecture. In CPS, users may want to search
smart devices and services. In this chapter, we discuss concepts and tech-
niques related to device search and selection. We briefly discuss different types
of device searching approaches where each has its own objectives and appli-
cations. One such device searching technique is context-aware searching. In
this chapter, we present context-aware sensor search, selection, and ranking
model called CASSARAM in detail. This model addresses the challenge of
efficiently selecting a subset of relevant sensors out of a large set of sensors
with similar functionality and capabilities. CASSARAM takes into account
user preferences and considers a broad range of sensor characteristics, such
as reliability, accuracy, location, battery life, and many more. Later in the
chapter, we discuss three different techniques that can be used to improve
the efficiently of CASSARAM. We implemented the proof of concept software
using Java. Testing and performance evaluation results are also discussed. We
also highlight open research challenges and opportunities in order to support
future research directions.

5.1 Introduction

When a large number of sensors are available from which to choose, it becomes
a challenge and a time-consuming task to select the appropriate sensors that
will help the users to solve their own problems. Besides, when more and more
sensors get connected to the Internet, the search functionality becomes critical.
This chapter addresses the problem mentioned above as we observe the lack

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 69

of focus on sensor selection and search in existing CPS solutions and research.
Some of the early work on searching in sensor networks is presented in [102].

In this chapter, we discuss a model that provides context-aware sensor
search support to any CPS middleware solution. Our contributions can be
summarized as follows. We have developed an ontology-based context frame-
work for sensing devices in CPS which allows capturing and modelling con-
text properties related to sensors. This information allows users to search
the sensors based on context. We have designed, implemented, and evaluated
the proposed CASSARAM model and its performance in a comprehensive
manner. Specifically, we propose a comparative-priority based weighted in-
dex (CPWI) technique to index and rank sensors based on the user prefer-
ences. Furthermore, we propose a comparative-priority based heuristic filtering
(CPHF) technique to make the sensor search process more efficient. We also
propose a relational-expression based filtering (REF) technique to support
more comprehensive searching. Finally, we propose and compare several dis-
tributed sensor search mechanisms. During this chapter, we mainly focused on
searching the sensors. However, as we mentioned above, sensors are always at-
tached to sensing devices. Therefore, once the required sensors are identified
through search, the actual communication that is required to retrieve data
needs to be done with the respective sensing devices.

Hereafter, the chapter is organized in the following way: Section 5.2 briefly
explains the architecture of CPS and the importance of searching functional-
ity toward the architecture. Further, it discusses variety of different ways of
searching sensing devices in CPS paradigm. It also explains how each search-
ing technique uniquely contributes to a comprehensive sensing strategy. Then,
we introduce the problem of context-aware device search in Section 5.3. In Sec-
tion 5.4, we propose our solution, context-aware sensor search and selection
model (CASSARAM). Then, we introduce three techniques that can be used
to enhance and enrich the performance of CASSARAM in Section 5.5. Im-
plementation and evaluation details are presented in Sections 5.6 and 5.7,
respectively. Finally, we highlight open research challenges and opportunities
in this domain in Section 5.8. The concluding remarks are presented in Section
5.9.

5.2 Internet of Things Architecture and Search
Functionality

In this section, we briefly introduce the Internet of Things architecture and
the applicability of device search functionality toward CPS middleware. How-
ever, we are not going to discuss a concrete architecture. Instead, we high-
light the relevance and importance of different types of search functionalities.
“Middleware is a software layer that stands between the networked operat-
ing system and the application and provides well known reusable solutions to

© 2016 by Taylor & Francis Group, LLC

70 � Cyber Physical Systems: Architectures, Protocols, and Applications

frequently encountered problems like heterogeneity, interoperability, security,
dependability” [103]. The functionalities required by CPS middleware plat-
forms are explained in detail in [104, 105, 106, 107, 28]. Further, challenges in
developing middleware solutions for the CPS are discussed in [108]. In a CPS
middleware platform, searching functionality may mainly be used to search
CPS resources (smart devices, services, people) [109].

In this chapter, we concentrate on searching smart devices. Such search
functionality is used by users as well as applications to support both machine-
to-machine communications and sensing as service models. Some of the major
challenges such as the dynamic nature, massive number of devices, real-time
searching, and privacy in searching are discussed in [110]. Further, radio-
frequency identification (RFID) enabled objects make the searching hard.
Especially, unlike the Web which is built of static documents, sensor read-
ing possesses a very short life span and real-world entities are highly dy-
namic. This implies the traditional search techniques of the Web do not work
in CPS.

5.2.1 Sensing Device Searching from Functional Per-
spective

Smart sensing devices can be searched using different techniques. There are
three primary techniques to search sensing devices: thematic, spatial, and
temporal [111]. Additionally, there are a few other ways to search sensing
devices as discussed below. It is important to note that these techniques can
be combined to provide comprehensive CPS middleware solution.

� Thematic searching is finding the sensing devices based on the phe-
nomena. For example, a user may want to find devices that sense tem-
perature or pressure. This category of techniques may extend to search
sensing devices with capabilities to sense multiple phenomena. This is
one of the most the widely used searching techniques.

� Spatial searching is finding sensors that are in a particular geograph-
ical location or area. For example, a user may want to find devices
that are in Canberra. The location can be based on geographical co-
ordinates. It can also be based on high-level abstractions such as Aus-
tralian National University. Mayer et al. [112] consider the location of
sensing devices as the main context property and structure them in a
logical tree structure. The sensing devices are by location using a tree
search technique. Search queries are distributively processed in differ-
ent paths/nodes of the tree. Mayer et al. have represented the layers
of abstractions using a tree structure. For example, a root node repre-
sents the whole building. Children nodes of the root can thus represent
different floors, and rooms of each floor can be denoted by children’s
children.

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 71

Shakkottai et al. [113] address the problem of a user searching for in-
formation over a sensor network, where the user does not have prior
knowledge of the location of the information. They have used three
strategies to search sensors. First, query (i.e., packet) moves from one
node to another until it finds a match. In the second strategy, sensors
advertise their information and queries also move through nodes look-
ing for a match. In the final method, sensors share the information
(i.e., their capabilities) with each other which makes it easier for the
query to find a match as the distributed information can guide the
query to a matching sensor much faster.

� Temporal searching is finding sensors that offer data for a set point
in time or period. For example, a user may need to find sensing devices
that deliver data measured during the last month. Another example
would be when a user searches sensing devices that are capable of pro-
viding sensor data for the next week at a sampling rate of 30 seconds.

� Content-based searching is finding the sensors that produce (or
have produced in the past) a certain pattern of values. For example, a
user may want to monitor environmental pollution. So he may search
sensors that produce certain patterns of sensor data values. The user
may collect data from those sensors for his own application (e.g., for
further processing in the future). Truong et al. [114] propose a fuzzy-
based technique to search sensing devices. The technique generates
similarity scores to compare the output of a given sensor with the
outputs of several other sensors in order to find a similar sensor. Elahi
et al. [115] propose a content-based sensor search approach (i.e., finding
a sensor that outputs a given value at the time of a query).

Dyser is a search engine proposed by Ostermaier et al. [116] for real-
time Internet of Things, which uses statistical models to make pre-
dictions about the state of its registered objects (sensors). When a
user submits a query, Dyser pulls the latest data to identify the actual
current state to decide whether it matches the user query. Prediction
models help to find matching sensors with a minimum number of sen-
sor data retrievals. This work also searches sensing devices based on
content, but it uses predictive models to predict content (e.g., predict
the state of a given sensor at a time based on historic data) instead
of using real content in order to support faster real-time searching. A
survey on real time searching in CPS paradigm is presented in [117].
They have compared eight different CPS middleware solutions in terms
of their searching functionality.

� Cluster searching is a combination of spatial and thematic searching
techniques that find clusters of devices. For example, a user may need
to find devices that sense temperature, air pressure, and luminosity
where all the sensing devices are located within five meters’ radius from

© 2016 by Taylor & Francis Group, LLC

72 � Cyber Physical Systems: Architectures, Protocols, and Applications

each other. Such close proximity allows algorithms to fuse, and reason
data assuming that all devices are approximately deployed together.

� Context-aware searching is finding the sensing devices based on
context information related to those devices. Some of the context in-
formation that can be used to search sensing devices are availability,
accuracy, latency, battery life, etc. In this chapter, we focus on search-
ing devices based on context. A comprehensive set of context informa-
tion that can be used to search sensing devices is discussed later in the
Section 5.4.6. For example, this type of searching may be useful to find
devices that have more energy remaining when more than one device
that can perform the required sensing task is available. Algorithms can
put the device with less energy into sleep mode and retrieve data from
the device which has more energy. Such optimization will increase the
life-time of the entire sensing device network.

� Manual interactive searching is allowing users to select sensing
devices manually from which they want to retrieve data through dif-
ferent kinds of user interfaces. Users may be provided with graphical
user interface (e.g., may be Web based or may be interactive touch-
based walls, tables or tabletops such a Pixelsense1) where devices are
mapped based on location (either outdoor or indoor maps). Users may
pick sensors by selecting sensing devices one by one. Additionally, users
may mark certain geographical areas, so the sensors within the marked
area get selected. Such techniques will complement other techniques,
so the users have more control and it allows fine tuning the search
results. Noguchi et al. [118] has proposed a framework that visualizes
sensors and sensor data on a map through a graphical user interface.

5.2.2 Sensing Device Searching from Implementation
Perspective

In addition to the above-mentioned searching techniques that we discussed
from a functional perspective, implementation of each technique can also be
varied. Additionally, there can be differences in data storage models (i.e.,
text, metadata, semantic), time taken to process (i.e., real-time or archival),
location of the data storage, and so on. Let us discuss some of the widely used
techniques.

� Text-based search: One of the primary ways of searching sensing de-
vices is to describe the sensor’s capabilities and functionalities in clear
text and use a search engine to search relevant sensors. By extending
this concept, Snoogle [119], a search engine for pervasive computing

1www.microsoft.com/en-us/pixelsense/

© 2016 by Taylor & Francis Group, LLC

http://www.microsoft.com/en-us/pixelsense/

Device Search and Selection for CPS � 73

environments built on a network of smart devices, stores a textual de-
scription of that object in the form of keywords. Through a layered
architecture, Snoogle allows users to describe their requirements using
keywords. Snoogle searches appropriate object sensors matching the
keywords. However, such traditional Web search-like approach does
not work accurately in the CPS sensor selection and search domain as
text based search approaches cannot capture the critical characteristics
of a sensor accurately.

� Metadata-based search: Another approach that can be followed is
metadata annotation. Even if we maintain metadata on the sensors
(e.g., stored in a sensor’s storage) or in the cloud, interoperability will
be a significant issue. Furthermore, a user study done by Broring et al.
[120] has described how 20 participants were asked to enter metadata
for a weather station sensor using a simple user interface. Those 20
people made 45 mistakes in total. The requirement of re-entering meta-
data in different places (e.g., entering metadata on GSN [58] once and
again entering metadata on OpenIoT [121], etc.) arises when we do not
have common descriptions.

� Ontology-based search: Recently, the W3C Incubator Group re-
leased Semantic Sensor Network XG Final Report, which defines an
SSN ontology [122]. The SSN ontology allows describing sensors, in-
cluding their characteristics. This effort increases the interoperability
and accuracy due to the lack of manual data entering. Furthermore,
such mistakes can be avoided by letting the sensor hardware manufac-
turer produce and make available sensor descriptions using ontologies
so that CPS solution developers can retrieve and incorporate (e.g.,
mapping) them in their own software system. Paparrizos et al. [123]
provides an easy-to-use query interface, built upon semantic technolo-
gies where users can freely store and query their metadata. Location
information sensor types can be provided though form-based Web user
interface.

Based on the arguments above, ontology-based sensor description and
data modelling is useful for CPS solutions. This approach also allows
semantic querying. Our proposed solution allows the users to express
their priorities in terms of sensor characteristics and it will search and
select appropriate sensors. In our model, both quantitative reasoning
and semantic querying techniques are employed to increase the perfor-
mance of the system by utilizing the strengths of both techniques.

� Distributed search: Sensing devices in CPS paradigm may be con-
nected to different middleware solutions and server nodes. Therefore,
distributed processing is required to find sensing devices from multiple
middleware instances. Microsearch [124] is a search system suitable for

© 2016 by Taylor & Francis Group, LLC

74 � Cyber Physical Systems: Architectures, Protocols, and Applications

small devices (e.g., a 12MHz CPU, 64KB of RAM, 512KB of ash mem-
ory, and wireless capabilities, all packaged in a 3x3 cm circuit board)
used in ubiquitous computing environments. Microsearch allows us to
index static information stored in sensor nodes in distributed manner
and to search for sensor nodes that store a particular static informa-
tion.

� Real-time search: As we discussed earlier, Dyser [116] uses predictive
models to predict content (e.g., predict the state of a given sensor at a
time based on historic data) instead of using real content in order to
support faster real-time searching.

There are a number of existing solutions that have been proposed and
developed in this area. Let us discuss some of these leading and interesting
solutions that will help to understand our solution presented in later sec-
tions. Ideally, CPS middleware solutions should allow the users to express
what they want and provide the relevant sensor data back to them quickly
without asking the users to manually select the sensors which are relevant to
their requirements. Even though CPS has received significant attention from
both academia and industry, sensor search and selection has not been ad-
dressed comprehensively. Specifically, sensor search and selection techniques
using context information [125] have not been explored substantially. A survey
on context aware computing for the Internet of Things [125] has recognized
sensor search and selection as a critical task in automated sensor configuration
and context discovery processes. Another review on semantics for the Inter-
net of Things [126] has also recognized resource (e.g., a sensor or an actuator)
search and discovery functionality as one of the most important functionalities
required in CPS. Barnaghi et al. [126] have highlighted the need for seman-
tic annotation of CPS resources and services. Processing and analyzing the
semantically annotated data are essential elements to support search and dis-
covery [126]. This justifies our approach of annotating the sensors with related
context information and using that to search the sensors. The following ex-
amples show how existing CPS middleware solutions provide sensor searching
functionality.

Linked Sensor Middleware (LSM) [127, 128] provides some sensor selec-
tion and searching functionality. However, they have very limited capabilities,
such as selecting sensors based on location and sensor type. All the searching
needs to be done using SPARQL, which is not user-friendly to non-technical
users. Similar to LSM, there are several other CPS middleware related projects
under development at the moment. GSN [58] is a platform aiming at provid-
ing flexible middleware to address the challenges of sensor data integration
and distributed query processing. It is a generic data stream processing en-
gine. GSN has gone beyond the traditional sensor network research efforts
such as routing, data aggregation, and energy optimization. GSN lists all the
available sensors in a combo-box which users need to select. However, GSN
lacks semantics to model the metadata. Another approach is Microsoft Sen-

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 75

sorMap [129]. It only allows users to select sensors by using a location map,
by sensor type, and by keywords. xively (xively.com) is also another approach
which provides a secure, scalable platform that connects devices and prod-
ucts with applications to provide real-time control and data storage. This also
provides only keyword search. The illustrations of the search functionalities
provided by the above-mentioned CPS solutions are presented in [130]. Our
proposed solution CASSARAM can be used to enrich all the above-mentioned
CPS middleware solutions with a comprehensive sensor search and selection
functionality.

According to a study in Europe [131], there are over 12,000 working and
useful Web services on the Web. Even in such conditions, choice between alter-
natives (depending on context properties) has become a challenging problem.
The similarities strengthen the argument that sensor selection is an important
challenge at the same level of complexity as Web services. On the other hand,
the differences show that sensor selection will become a much more complex
challenge over the coming decade due to the scale of the CPS. In the following,
we briefly describe some of the work done in sensor searching and selection.

De et al. [132] have proposed a conceptual architecture, a CPS platform,
to support real-world and digital objects. They have presented several seman-
tic ontology-based models that allow capturing information related to CPS
resources (e.g., sensors, services, actuators). However, they are not focused on
sensors and the only context information considered is location. In contrast,
CASSARAM narrowly focuses on sensors and considers a comprehensive set
of context information (see Section 5.4.6).

Guinard et al. [133] have proposed a Web service discovery, query, selection,
and ranking approach using context information related to the CPS domain.
Similarly, TRENDY [134] is a registry-based service discovery protocol based
on CoAP (Constrained Application Protocol) [135] based Web services with
context awareness. This protocol has been proposed to be used in the Web of
Things (WoT) domain with the objective of dealing with a massive number
of Web services (e.g., sensors wrapped in Web services). Context information
such as hit count, battery, and response time are used to select the services.
An interesting proposal is by Calbimonte et al. [136], who have proposed an
ontology-based approach for providing data access and query capabilities to
streaming data sources. This work allows the users to express their needs
at a conceptual level, independent of implementation. Our approach, CAS-
SARAM, can be used to complement their work where we support context-
based sensor search and they provide access to semantically enriched sensor
data. Furthermore, our evaluation results can be used to understand the scal-
ability and computational performance of their working big data paradigm as
both approaches use the SSN ontology.

Garcia-Castro et al. [137] have defined a core ontological model for seman-
tic sensor Web infrastructures. It can be used to model sensor networks (by
extending the SSN ontology), sensor data sources, and the Web services that
expose the data sources. Our approach can also be integrated into the uBox

© 2016 by Taylor & Francis Group, LLC

http://xively.com

76 � Cyber Physical Systems: Architectures, Protocols, and Applications

[138] approach, to search things in the WoT domain using context information.
Currently, uBox performs searches based on location tags and object (sensor)
classes (types) (e.g., hierarchy local/class/actuator/light). As we mentioned
earlier, collecting data from all the available sensor devices is not required all
the time. Further, such methods are inefficient in terms of resource consump-
tion both in sensor network domain and CPS paradigm. The cost models that
can be used to measure the cost of search are discussed in [139]. IoT-SVK [140]
is a hybrid search engine framework for the CPS paradigm, and it supports
three search modes: keyword-based searches, spatial-temporal searches, and
value-based searches.

5.3 Problem Definition

The problem that we address in this chapter can be defined as follows. Due
to the increasing number of sensors available, we need to search and select
sensors that provide data which will help to solve the problem at hand in
the most efficient and effective way. Our objective is not to solve the users’
problems, but to help them to collect sensor data. The users can further
process such data in their own ways to solve their problems. In order to achieve
this, we need to search and select sensors based on different pieces of context
information. Mainly, we identify two categories of requirements: point-based
requirements (non-negotiable) and proximity-based (negotiable) requirements.
We examined the problem in detail in [130] by providing real-world application
scenarios and challenges.

First, there are the point-based requirements that need to be definitely
fulfilled. For example, if a user is interested in measuring the temperature in
a certain location (e.g., Canberra), the result (e.g., the list of sensors) should
only contain sensors that can measure temperature. The user cannot be satis-
fied by being providing with any other type of sensor (e.g., pressure sensors).
There is no bargain or compromise in this type of requirement. Location can
be identified as a point-based requirement. The second is proximity-based re-
quirements that need be fulfilled in the best possible way. However, meeting
the exact user requirement is not required. Users may be willing to be satisfied
with a slight difference (variation). For example, the user has the same inter-
est as before. However, in this situation, the user imposes proximity-based
requirements in addition to point-based requirements. The user may request
sensors having an accuracy of around 92%, and reliability 85%. Therefore, the
user gives the highest priority to these characteristics. The user will accept
sensors that closely fulfill these requirements even though all other character-
istics may not be favorable (e.g., the cost of acquisition may be high and the
sensor response may be slow). It is important to note that users may not be
able to provide any specific value, so the system should be able to understand
the user’s priorities and provide the results accordingly, by using comparison
techniques.

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 77

Another motivation behind our research are statistics and predictions that
show rapid growth in sensor deployment related to the CPS and smart cities.
It is estimated that today there about 1.5 billion Internet-enabled PCs and
over 1 billion Internet-enabled mobile phones. By 2020, there will be 50 to
100 billion devices connected to the Internet [28]. Furthermore, our work is
motivated by the increasing trend of CPS middleware solutions development.
Today, most of the leading middleware solutions provide only limited sensor
search and selection functionality.

We highlight the importance of sensor search functionality using current
and potential applications. Smart agriculture [141] projects such as Phenonet
[142] collect data from thousands of sensors. Due to heterogeneity, each sen-
sor may have different context values, as mentioned in Section 5.4.6. Context
information can be used to selectively select sensors depending on the re-
quirements and situations. For example, CASSARAM helps to retrieve data
only from sensors which have more energy remaining when alternative sensors
are available. Such action helps to run the entire sensor network for a much
longer time without reconfiguring and recharging. The sensing as a service
[33] architectural model envisions an era where sensor data will be published
and sold through the cloud. Consumers (i.e., users) will be allowed to select a
number of sensors and retrieve data for some period as specified in an agree-
ment by paying a fee. In such circumstances, allowing consumers to select the
sensors they want based on context information is critical. For example, some
consumers may be willing to pay more for highly accurate data (i.e., highly
accurate sensors) while others may be willing to pay less for less accurate
data, depending on their requirements, situations, and preferences.

5.4 Context-Aware Approach for Device Search
and Selection

In this section, we present the proposed sensor selection approach step by
step in detail. First, we provide a high-level overview of the model, which
describes the overall execution flow and critical steps. Then, we explain how
user preferences are captured. Next, the data representation model and pro-
posed extensions are presented. Finally, the techniques of semantic querying
and quantitative reasoning are discussed with the help of some algorithms. All
the algorithms presented in this chapter are self-explanatory and the common
algorithmic notations used in this chapter are presented in Table 5.1.

5.4.1 High-Level Model Overview

The critical steps of CASSARAM are presented in Figure 5.1. As we men-
tioned earlier our objective is to allow the users to search and select the
sensors that best suit their requirements. In our model, we divide user

© 2016 by Taylor & Francis Group, LLC

78 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 5.1: Common Algorithmic Notation Table

Symbol Definition

O Ontology consists of sensor descriptions and context property val-
ues related to all sensors

P UserPrioritySet contains user priority value for all context prop-
erties

Q Query consists of point-based requirements expressed in SPARQL

N/NAll
Number of sensors required by the user / Total number of sensors
available

SFiltered This contains the results of the query Q

SResults ResultsSet contains selected number of sensors

SIndexed IndexedSensorSet stores the index values of the sensors

M Multidimensional space where each context property is repre-
sented by a dimension and sensors are plotted

UI UserInput consists of input values provided by the users via the
user interface

SC/SC Values of all the sliders / Value of a slider

Pw This contains user priority value converted into weights using nor-
malization

pi/p
w
i

Value of ith context property / Value of ith context property in
normalized form

CP/CP ContextPropertySet consists of all context information / value of
ith context property

NCP Normalized Context Property Set

M Margin of error

Sj This is the jth sensor

CP
Sj
i CP value of ith property of jth sensor.

CP ideal CP values of the ideal sensors that user prefers

requirements into two categories (from the user’s perspective): point-based
requirements and proximity-based requirements, as discussed in Section 5.3.
Algorithm 1 describes the execution flow of CASSARAM. At the beginning,

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 79

Figure 5.1: High level overview of CASSARAM.

CASSARAM identifies the point-based requirements, the proximity-based re-
quirements, and the user priorities. First, users need to select the point-based
requirements. For example, a user may want to collect sensor data from 1,000
temperature sensors deployed in Canberra. In this situation, the sensor type
(i.e., temperature), location (i.e., Canberra) and number of sensors required
(i.e., 1,000) are the point-based requirements. Our CASSARAM prototype
tool provides a user interface to express this information via SPARQL queries.
In CASSARAM, any context property can become a point-based requirement.
Next, users can define the proximity-based requirements. All the context prop-
erties we will present in Section 5.4.6 are available to be defined in comparative
fashion by setting the priorities via a slider-based user interface, as depicted
in Figure 5.2. Next, each sensor is plotted in a multi-dimensional space where
each dimension represents a context property (e.g., accuracy, reliability, la-
tency). Each dimension is normalized [0,1] as explained in Algorithm 3. Then,
the Comparative-Priority Based Weighted Index (CPWI) is generated for each
sensor by combining the user’s priorities and context property values as ex-
plained in Section 5.4.5. The sensors are ranked using the CPWI and the
number of sensors required by the user is selected from the top of the list.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-7&iName=master.img-000.jpg&w=287&h=235

80 � Cyber Physical Systems: Architectures, Protocols, and Applications

Algorithm 1 Execution Flow of CASSARAM

Require: (O), (P), (Q), (N), (M).
1: Output: SResults
2: SFiltered ← queryOntology(O,Q)
3: if cardinality(SFiltered) < N then
4: return SResults ← SFiltered
5: else
6: P← capture user priorities(UI)
7: M← Plot sensors in multidimensional space(SResults)
8: SIndexed ← calculate CPWI(SResults,M)
9: SResults ← rank sensors(SIndexed)

10: SResults ← select sensors(SResults, N)
11: return SResults
12: end if

5.4.2 Capturing User Priorities

This is a technique we developed to capture the user’s priorities through a user
interface, as shown in Figure 5.2. CASSARAM allows users to express which
context property is more important to them, when compared to others. If a
user does not want a specific context property to be considered in the indexing
process, they can avoid it by not selecting the check-box correlated with that
specific context property. For example, according to Figure 5.2, energy will
not be considered when calculating the CPWI. This means the user is willing
to accept sensors with any energy consumption level. Users need to position
the slider of each context property if that context property is important to
them. The slider scale begins from 1, which means no priority (i.e., the left
corner). The highest priority can be set by the user as necessary with the help
of a scaler, where a higher scale makes the sliders more sensitive (e.g., 102 =
1 to 100, 103, 104). Algorithm 2 describes the user priority capturing process.

As depicted in Figure 5.2, if the user wants more weight to be placed on
the reliability of a sensor than on its accuracy, the reliability slider needs to
be placed further to the right than the accuracy slider. A weight is calculated
for each context property. Therefore, higher priority means higher weight.
Sensors with high reliability and accuracy will be ranked highly. However,
those sensors may have high costs due to the low priority placed on cost.

5.4.3 Data Modelling and Representation

In this chapter, we employed the Semantic Sensor Network Ontology (SSN)
[122] to model the sensor descriptions and context properties. The main rea-
sons for selecting the SSN ontology are its interoperability and the trend to-
ward ontology usage in the CPS and sensor data management domain. A com-
parison of different semantic sensor ontologies is presented in [59]. The SSN

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 81

Algorithm 2 User Priority Capturing

Require: (UI), (SC)
1: Output: Pw
2: P← extract user priorities(UI)
3: SCHighest ← get maximum priority(SC)
4: SCLowest ← get minimum priority(SC)
5: SCRange ← SCHighest − SCLowest
6: for each context property priority pi ∈ P do
7: pwi ← (pi ÷ SRange)
8: if pwi ≥ 0 then
9: add pwi to Pw

10: else
11: continue
12: end if
13: end for
14: return Pw

Figure 5.2: A weight of W1 is assigned to the reliability property. A
weight of W2 is assigned to the accuracy property. A weight of W3

is assigned to the availability property. A weight of W4, the default
weight, is assigned to the cost property. High priority means always
favored, and low priority means always disfavored. For example, if
the user makes cost a high priority (more toward the right), that
means CASSARAM tries to find the sensors that produce data at
the lowest cost. Similarly, if the user makes accuracy a high priority,
that means CASSARAM tries to find the sensors that produce data
with high accuracy.

ontology is capable of modelling a significant amount of information about
sensors, such as sensor capabilities, performance, the conditions in which it
can be used, etc. The details are presented in [122]. The SSN ontology in-
cludes the most common context properties, such as accuracy, precision, drift,
sensitivity, selectivity, measurement range, detection limit, response time, fre-
quency, and latency. However, the SSN ontology can be extended unlimit-
edly by a categorization with three classes: measurement property, operating

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-7&iName=master.img-001.jpg&w=288&h=85

82 � Cyber Physical Systems: Architectures, Protocols, and Applications

Algorithm 3 Flexi-Dynamic Normalization

Require: (CP), (S), (cpi),
1: Output: NCP
2: cp

Sj
i ← receive new property value∗

3: cphighesti ← retrieve highest(CP)
4: cplowesti ← retrieve lowest(CP)

5: if cphighesti < cp
Sj
i then

6: cphighesti ← cp
Sj
i

7: for each cp
Sj
i ∈ CP,S do

8: update(NCP)← [
(cp

Sj
i −cp

lowest
i)

(cphighesti −cplowesti)
]

9: end for
10: else

11: update(NCP)← [
(cp

Sj
i −cp

lowest
i)

(cphighesti −cplowesti)
]

12: end if
13: return NCP

∗sensors registered in the CPS middleware

property, and survival property. We depict a simplified segment of the SSN
ontology in Figure 5.3. We extend the quality class by adding several sub-
classes based on our context framework, as listed in Section 5.4.6. All context
property values are stored in the SSN ontology in their original measurement
units. CASSARAM normalizes them on demand to [0,1] to ensure consistency.
Caching techniques can be used to increase the execution performances. Due
to technological advances in sensor hardware development, it is impossible to
statically define upper and lower bounds for some context properties (e.g.,
battery life will be improved over time due to advances in sensor hardware
technologies). Therefore, we propose Algorithm 3 to dynamically normalize
the context properties.

5.4.4 Filtering Using Querying Reasoning

Once the point-based requirements of the user have been identified, they need
to be expressed using SPARQL. Semantic querying has weaknesses and lim-
itations. When a query becomes complex, the performance decreases [143].
Relational expression based filtering can also be used; however, using it will
increase the computational requirements. Further explanations are presented
in Section 5.5.2. Any of the context properties identified in Section 5.4.6 can
become point-based requirements and need to be represented in SPARQL.
This step produces SFiltered, where all the sensors satisfy all the point-based
requirements.

© 2016 by Taylor & Francis Group, LLC

D
ev

ice
S
ea

rch
a
n
d

S
electio

n
fo

r
C

P
S
�

8
3

Figure 5.3: Data model used in CASSARAM. In SSN ontology, sensors are not constrained to physical sensing
devices; rather a sensor is anything that can estimate or calculate the value of a phenomenon, so a device
or computational process or combination could play the role of a sensor. A sensing device is a device that
implements sensing [122]. Sensing device is also a sub-class of sensor. By following the above definition, our
focus is on sensors. CF (Climate and Forecast) ontology is a domain specific external ontology. DOLCE+DnS
Ultralite (DUL) ontology provides a set of upper level concepts that can be the basis for easier interoperability
among many middle and lower level ontologies. More details are provided in [122].

©
 2

0
1

6
 b

y T
aylo

r &
 F

ra
n

cis G
ro

u
p

, L
L

C

84 � Cyber Physical Systems: Architectures, Protocols, and Applications

5.4.5 Ranking Using Quantitative Reasoning

In this step, the sensors are ranked based on the proximity-based user require-
ments. We developed a weighted Euclidean distance based indexing technique,
called the Comparative-Priority Based Weighted Index (CPWI), as follows.

(CPWI) =
√∑n

i=1

[
Wi(Udi − Sαi)2

]
First, each sensor is plotted in multi-dimensional space where each context

property is represented by a dimension. Then, users can plot an ideal sensor
in the multi-dimensional space by manually entering context property values
as illustrated in Figure 5.4 by Ui. By default, CASSARAM will automatically
plot an ideal sensor as depicted in Ud (i.e., the highest value for all context
properties). Next, the priorities defined by the user are retrieved. Based on the
positions of the sliders (in Figure 5.2), weights are calculated in a comparative
fashion. Algorithm 4 describes the indexing process. It calculates the CPWI
and ranks the sensors using reverse-normalized techniques in descending order.
CASSARAM selects N sensors from the top.

Figure 5.4: Sensors plotted in three-dimensional space for demonstra-
tion purposes. Sα, Sβ, and Sγ represent real sensors. Ui represents the
user preferred sensor. Ud represents the default user preferred sen-
sor. CPWI calculates weighted distance between Sj=α||β||γ and Ui||d.
Shortest distance means sensor will rank higher because it is close to
the user requirement.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-7&iName=master.img-002.jpg&w=288&h=205

Device Search and Selection for CPS � 85

Algorithm 4 Comparative-Priority Based Weighted Index

Require: (Pw), (CP), (SIndexed), (PSj), (UI)
1: Output: SRanked
2: CP ideal ← proximity based requirements(UI)
3: plot on multi-dimensional space(CP ideal)
4: for each sensor Sj ∈ S do

5: plot on multi-dimensional space(CPSj)
6: end for

7: Indexing Formula (for Sα) =
√∑n

i=1

[
Wi(Udi − Sαi)2

]
8: for each sensor sj ∈ S do
9: SIndexed ← calculate index(PSj ,Pw)

10: end for
11: SRanked ← reversed normalized ranking∗(SIndexed) ∗i.e., lowest value is

ranked higher which represents the weighted distance between use preferred sensor

and the real sensors

12: return SRanked

5.4.6 Context Framework

After evaluating a number of research efforts conducted in the quality of ser-
vice domain relating to Web services [144], mobile computing [145], mobile
data collection [67], and sensor ontologies [122], we extracted the following
context properties to be stored and maintained in connection with each sen-
sor. This information helps to decide which sensor is to be used in a given
situation. We adopt the following definition of context for this chapter. “Con-
text is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and appli-
cations themselves”[146]. CASSARAM has no limitations on the number of
context properties that can be used. More context information can be added to
the following list as necessary. Our context framework comprises availability,
accuracy, reliability, response time, frequency, sensitivity, measurement range,
selectivity, precision, latency, drift, resolution, detection limit, operating power
range, system (sensor) lifetime, battery life, security, accessibility, robustness,
exception handling, interoperability, configurability, user satisfaction rating,
capacity, throughput, cost of data transmission, cost of data generation, data
ownership cost, bandwidth, and trust.

5.5 Improving Efficiency

In this section, we present three approaches that improve the efficiency and
the capability of CASSARAM. First, we propose a heuristic approach that
can handle a massive number of sensors by trading off with accuracy. Second,

© 2016 by Taylor & Francis Group, LLC

86 � Cyber Physical Systems: Architectures, Protocols, and Applications

we propose a relational-expression based filtering technique that saves compu-
tational resources. Third, we tackle the challenge of distributed sensor search
and selection.

5.5.1 Comparative-Priority Based Heuristic
Filtering (CPHF)

The solution we discussed so far works well with a small number of sensors.
However, the model becomes inefficient when the number of sensors available
to search increases. Let us consider an example to identify the inefficiency.
Assume we have access to one million sensors. A user wants to select 1,000
sensors out of them. In such a situation, CASSARAM will index and rank
one million sensors using proximity-based requirements provided by the user
and select the top 1,000 sensors. However, indexing and ranking all possible
sensors (in this case one million) is inefficient and wastes a significant amount
of computational resources. Furthermore, CASSARAM will not be able to
process large numbers of user queries due to such inefficiency. We propose
a technique called Comparative-Priority Based Heuristic Filtering (CPHF)
to make CASSARAM more efficient. The execution process is explained in
Algorithm 5. The basic idea is to remove sensors that are positioned far away
from the user defined ideal sensor and reduce the number of sensors that need
to be indexed and ranked. Figure 5.5 illustrates the CPHF approach with a
sample scenario. The CPHF approach can be explained as follows. First, all
the eligible sensors are ranked in descending order of the highest weighted
context property (in this case accuracy). Then, 40% (from NRemovable) of the
sensors from the bottom of the list need to be removed. Next, the remaining
sensors need to be ordered in descending order of the next highest weighted

Algorithm 5 Comparative-Priority Based Heuristic Filtering

Require: (O), (P), (Q), (N), (M%)
1: Output: SFiltered
2: S← query ontology(O,Q)
3: Pw ← get weighted priorities(P)
4: PPercentages ← convert weights to percentages(Pw)
5: NAll ← total numberof available sensors(O,Q)
6: N ← required number of sensors(UI)
7: NRemovable ← (NAll −N)

8: PPercentagesordered ← descending order(PPercentages)
9: for each priority percentage p ∈ PPercentagesordered do

10: SFiltered ← Query SFiltered and ordered by p
11: Remove NRemovable × (100−M) sensors from bottom.
12: end for
13: return SFiltered

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 87

Figure 5.5: Visual illustration of Comparative-Priority Based Heuris-
tic Filtering.

context property (in this case reliability). Then, 30% (from NRemovable) of
the sensors from the bottom of the list need to be removed. This process
needs to be applied for the remaining context properties as well. Finally, the
remaining sensors need to be indexed and ranked. This approach dramatically
reduces the indexing and ranking related inefficiencies. Broadly, this category
of techniques is called Top-K selection where top sensors are selected in each
iteration. The efficiency of this approach is evaluated and discussed in Section
5.7.

5.5.2 Relational-Expression Based Filtering (REF)

This section explains how computational resources can be saved and how to
speed up the sensor search and selection process by allowing the users to define
preferred context property values using relational operators such as <,>,≤,
and ≥. For example, users can define an upper bound, lower bound, or both,
using relational operators. All context properties defined by relational opera-
tors, other than the equals sign (=), are considered to be semi-non-negotiable
requirements. According to CASSARAM, non-negotiable as well as semi-non-
negotiable requirements are defined using semantic queries. Let us consider a
scenario where a user wants to select sensors that have 85% accuracy. How-
ever, the user can be satisfied by providing sensors with accuracy between
70% and 90%. Such requirements are called semi-non-negotiable requirements.
Defining such a range helps to ignore irrelevant sensors during the semantic
querying phase without even retrieving them to the CPWI generating phase,
and this saves computational resources. Even though users may define ranges,
the sensors will be ranked considering the user’s priorities by applying the
same concepts and rules as explained in Section 5.4. The efficiency of this
approach is evaluated in Section 5.7.

© 2016 by Taylor & Francis Group, LLC

88 � Cyber Physical Systems: Architectures, Protocols, and Applications

5.5.3 Distributed Sensor Searching

We have explained how CASSARAM works in an isolated environment with-
out taking into consideration the distributed nature of the problem. Ideally, we
expect that not all sensors will be connected to one single server (e.g., a single
middleware instance). Similarly, it is extremely inefficient to store complete
sensor descriptions and related context information in many different servers
in a redundant way. Ideally, each CPS middleware instance should keep track
of the sensors that are specifically connected to them. This means that each
server knows only about a certain number of sensors. However, in order to
deal with complex user requirements, CASSARAM may need to query multi-
ple CPS middleware instances to search and select the suitable sensors. Let us
consider a scenario related to the smart agriculture domain [141]. A scientist
wants to find out whether his experimental crops have been infected with a
disease. His experimental crops are planted in fields distributed across differ-
ent geographical locations in Australia. Furthermore, the sensors deployed in
the fields are connected to different CPS middleware instances, depending on
the geographical location. In order to help the user to find the appropriate
sensors, CASSARAM needs to query different servers in a distributed manner.
We explored the possibilities of performing such distributed queries efficiently.
We identified three different ways to search sensors distributively, depending
on how the query/data would be transferred over the network (i.e., path),
as depicted in Figure 5.6. We also identified their strengths, weaknesses, and
applicability to different situations.

1) Chain Processing: Data is sent from one node to another sequentially
as depicted in Figure 5.6(a). First, a user defines his requirements using a
CPS middleware instance (e.g., GSN installed in a particular server). Then,
this server becomes the search request initiator (SRI) for that specific user
request. The SRI processes the request and selects the 100 most appropriate
sensors. Then, the information related selected sensors (i.e., the unique IDs of
the sensors and respective CPWIs) is sent to the next server node. The second
node (i.e., that next node) merges the incoming sensor information with the

Figure 5.6: Distributed processing approaches for CASSARAM.

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 89

Figure 5.7: Optimization: (a) wihout k-extension and (b) with k-
extension.

existing sensor descriptions and performs the sensor selection algorithm and
selects the 100 best sensors. This pattern continues until the sensor request has
visited all the server nodes. This method saves communication bandwidth by
transferring only the most essential and minimum amount of data. In contrast,
due to a lack of parallel processing, the response time could be high.

2) Parallel Processing: The SRI parallelly sends each user search request
to all available nodes. Then, each sensor node performs the sensor search-
ing algorithm at the same time. Each node selects the 100 most appropriate
sensors and returns the information related selected sensors to the SRI. In cir-
cumstances where we have 2500 server nodes, the amount of data (2500×100)
received by the SRI could be overwhelming, which would waste the commu-
nication bandwidth. The SRI processes the sensor information (2500 × 100)
and selects the final 100 most appropriate sensors. This approach becomes
inefficient when N becomes larger.

3) Hybrid Processing: By observing the characteristics of the previous
two methods, it is obvious that the optimal distributed processing strategy
should employ both chain and parallel processing techniques. There is no single
method that works efficiently for all types of situations. An ideal distributed
processing strategy for each situation needs to be designed and configured
dynamically depending on the context, such as the types of the devices, their
capabilities, bandwidth available, and so on.

We can improve the efficiency of the above methods as follows. In the
parallel processing method, each node sends information related to N sensors
to the SRI as depicted in Figure 5.7(a). However, at the end, the SRI may only
select N sensors (in total) despite its having received a significant amount of
sensor related information (N ×number of nodes). Therefore, the rest of the
data [(N ×number of nodes)−N] received by the SRI would be wasted. For
example, let us assume that a user wants to select 10,000 sensors. Assuming
that there are 2500 server nodes, the SRI may receive a significant amount of
sensor information (10, 000×2500). However, it may finally select only 10,000
sensors. We propose the following method to reduce this wastage, depicted in
Figure 5.7(b).

In this method, the SRI forwards the search request to each server node
parallelly, as depicted in step (1) in Figure 5.7b. Each node selects the 10,000

© 2016 by Taylor & Francis Group, LLC

90 � Cyber Physical Systems: Architectures, Protocols, and Applications

most appropriate sensors. Without sending information about these 10,000
sensors to the SRI, each server node sends only information about the kth
sensor (the UID and CPWI of every kth sensor). (That is, if k = 1, 000, then
the server node sends only the 1000th, 2000th, 3000th, . . . 10,000th sensors.)
Therefore, instead of sending 10,000 records, now each server node returns
only 10 records. Once the SRI receives the sensor information from all the
server nodes, it processes and decides which portions need to be retrieved.
Then, the SRI sends requests back to the server nodes and now each node
returns the exact portion specified by the SRI (e.g., the 5th server node may
return only the first 2000 sensors instead of sending 10,000 sensors) as de-
picted in (2). In this method, k plays a key role and has a direct impact on
the efficiency. k needs to be chosen by considering N as well as other relevant
context information as mentioned earlier. For example, if we use a smaller k,
then information about more sensors would be sent to the SRI during step
(1), but with less wastage in step (2). In contrast, if we use a larger k, then
less information would be sent to the SRI during step (1), but there would be
comparatively more wastage in step (2). Furthermore, machine learning tech-
niques can be used to customize the value of k for each server node, depending
on the user’s request and context information, such as the types of the sen-
sors, energy, bandwidth availability, etc. The suitability of each approach is
discussed in Section 5.7.2.

5.6 Implementation and Experimentation

In this section, we describe the experimental setup, datasets used, and as-
sumptions. The experimental scenarios we used are explained at the end. The
discussions related to the experiments are presented in Section 5.7.

We analyzed and evaluated the proposed model using a prototype called
CASSARA Tool, which we developed using Java. The data was stored in a
MySQL database. Our tool allows capturing user preferences and the priori-
ties of the various context properties of the sensors. We used a computer with
an Intel(R) Core i5-2557M 1.70GHz CPU and 4GB RAM to evaluate our
proposed model. We also reproduced the experimentations using a higher-
end computer with more CPU and RAM and the results showed that the
graphs are similar in shape though the exact values are different. In order
to perform mathematical operations such as a Euclidean distance calculation
in multi-dimensional space, we used the Apache Commons mathematics [147]
library. It is an open-source optimized library of lightweight, self-contained
mathematics and statistics components, addressing the most common prob-
lems not available in the Java programming language. As we used a Semantic
Sensor Ontology (SSN) [122] to manage the sensor descriptions and related
data, we employed open-source Apache Jena API [148] to process and manip-
ulate the semantic data. Our evaluation used a combination of real data and
synthetically generated data. We collected environmental linked data from the

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 91

Figure 5.8: Context information collection and modelling.

Bureau of Meteorology [149] and datasets from both the Phenonet project
[142] and the Linked Sensor Middleware (LSM) project [127, 128].

The main reasons for combining the data were the need for a large amount
of data and the need to control different aspects (e.g., the context information
related to the sensors needed to be embedded into the dataset, because real
data that matches our context framework is not available in any public data
sets at the moment) to better understand the behavior of CASSARAM in dif-
ferent CPS related real-world situations and scenarios where real data is not
available. We make the following assumptions in our work. We assume that
the sensor descriptions and context information related to the sensors have
already been retrieved from the sensor manufacturers in terms of ontologies,
and been used in the SSN ontology as depicted in Figure 5.8. Similarly, we
assume that the context data related to the sensors, such as accuracy, relia-
bility, etc., have been continually monitored, measured, managed, and stored
in the SSN ontology by the software systems. In order to evaluate the dis-
tributed processing techniques, we proposed an experimental test involving
four computational nodes. All the nodes are connected to a private organi-
zational network (i.e., The Australian National University IT Network). The
hardware configurations of the three additional devices are as follows: (1) Intel
Core i7 CPU with 6GB RAM, (2) Intel Core i5 CPU with 4GB, and (3) Intel
Core i7 with 4G. The details are presented in Section 5.7.2.

5.7 Performance Evaluation

We evaluated CASSARAM using different methods and parameters as de-
picted in Figures 5.9(a)–5.9(i). In this section, we explain the evaluation cri-
teria which we used for each experiment and discuss the lessons we learned.
Figure 5.9(a) shows how the storage requirement varies depending on the num-
ber of sensor descriptions. We stored the data according to the SSN ontology,

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-7&iName=master.img-003.jpg&w=334&h=114

9
2
�

C
y
b

er
P

h
y
sica

l
S
y
stem

s:
A

rch
itectu

res,
P

ro
to

co
ls,

a
n
d

A
p
p
lica

tio
n
s

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

S
to

ra
ge

 R
eq

ui
re

m
en

t i
n

M
eg

ab
yt

e
(M

B
)

S
to

ra
ge

 R
eq

ui
re

m
en

t i
n

M
eg

ab
yt

e
(M

B
)

(L
og

ar
ith

m
ic

 S
ca

le
)

P
ro

ce
ss

in
g

Ti
m

e
in

 m
ili

se
co

nd
s

(m
s)

(L
og

ar
ith

m
ic

 S
ca

le
)

M
em

or
y

U
sa

ge
 in

 M
eg

ab
yt

es
 (M

B
)

P
ro

ce
ss

in
g

Ti
m

e
in

 m
ili

se
co

nd
s

(m
s)

M
em

or
y

U
sa

ge
 in

 M
eg

ab
yt

e
(M

B
)

A
cc

ur
ac

y
as

 a
 P

er
ce

nt
ag

e
(%

)

P
ro

ce
ss

in
g

Ti
m

e
in

 m
ili

se
co

nd
s

(m
s)

(L
og

ar
ith

m
ic

 S
ca

le
)

M
em

or
y

U
sa

ge
 in

 M
eg

ab
yt

es
 (M

B
)

(L
og

ar
ith

m
ic

 S
ca

le
)

To
ta

l s
en

so
r s

ea
rc

in
g

Ti
m

e
in

 m
ili

se
co

nd
s

(m
s)

(L
og

ar
ith

m
ic

 S
ca

le
)

srosneS fo rebmuNsrosneS fo rebmuNsrosneS fo rebmuN

)elacS cimhtiragoL(srosneS fo rebmuN)elacS cimhtiragoL(srosneS fo rebmuN)elacS cimhtiragoL(srosneS fo rebmuN

resU eht yb detseuqeR srosneS fo rebmuN)elacS cimhtiragoL(srosneS fo rebmuN)elacS cimhtiragoL(srosneS fo rebmuN

Figure 5.9: Experimental results.

©
 2

0
1

6
 b

y T
aylo

r &
 F

ra
n

cis G
ro

u
p

, L
L

C

Device Search and Selection for CPS � 93

as depicted in Figure 5.3. We conducted two experiments where we stored 10
context properties and 30 context properties from the context framework we
proposed in Section 5.4.6. To store one million sensor descriptions, it took 6.4
GB (10 context properties) and 17.8 GB (30 context properties). It is evident
that the storage requirements are correlated with the number of triples: a
single triple requires about 0.193 KB storage space (for 100,000+ sensors).
Though storage hardware is becoming cheaper and available in high capaci-
ties, the number of context properties that need to be stored should be decided
carefully in order to minimize the storage requirements, especially when the
number of sensors is in the billions.

Figure 5.9(b) shows how much time it takes to select sensors as the num-
ber of sensors increases. Each step (i.e., searching, indexing, and ranking)
has been measured separately. Semantic querying requires significantly more
processing time than indexing and ranking. Furthermore, as the number of
context properties retrieved by a query increases, the execution time also in-
creases significantly. Furthermore, it is important to note that MySQL can
join only 61 tables, which only allows retrieving a maximum of 10 context
properties from the SSN ontology data model. Using alternative data storage
or running multiple queries can be used to overcome this problem. Similarly,
it is much more efficient to run multiple queries than to run a single query
if the number of sensors is less than 10,000 (e.g., 8 ms to retrieve 5 context
properties and 24 ms to retrieve 10 context properties when querying 10,000
sensors). In addition, Figure 5.9(c) shows how much memory is required to se-
lect sensors as the number of sensors increases. It is evident that having more
context properties requires having more memory. The memory requirements
for querying do not change much up to 10,000 (ranging from 10 MB to 25
MB). When the number of sensors exceeds 10,000, the memory requirements
grow steadily, correlated with the number of sensors. In comparison, indexing
and ranking require less memory.

Figure 5.9(d) shows the processing time taken by the sensor indexing pro-
cess as the number of context properties and the number of sensors increase.
Reducing the number of sensors needing to be indexed below 10,000 allows
speeding up CASSARAM. The processing time starts to increase significantly
after 100,000 sensors. Similarly, Figure 5.9(e) shows the memory usage by the
sensor indexing process as the number of context properties and sensors in-
creases. Even though the memory requirements increase slightly, the actual
increase is negligible when the number of sensors is still less than 100,000.
After that, the memory requirements increase substantially, but are still very
small compared to the computational capabilities of the latest hardware. Fur-
thermore, the number of context properties involved does not have any con-
siderable impact during the indexing process. The differences only become
visible when the number of sensors reaches one million. Still, the memory re-
quired by the process is 30 MB. Java garbage collection performs its task more
actively when processing large numbers of sensors, which makes the difference
invisible.

© 2016 by Taylor & Francis Group, LLC

94 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 5.9(f) shows how the accuracy changes when the margin of er-
ror (M%) value changes in the CPHF algorithm and the number of sensors
increases. The scenario presented in Figure 5.5 has been evaluated. The accu-
racy of the CPHF approach increases when the margin of error (M) increases.
However, a lower M leads CASSARAM toward low resource consumption.
Therefore, there is a trade-off between accuracy and resource consumption.
The optimum value of M can be dynamically learned by machine learning
techniques based on which context properties are prioritized by the users in
each situation and how the normalized weights are distributed between the
context properties.

5.7.1 Evaluating Alternative Storage Options

In the evaluations conducted earlier (Figures 5.9(g) to 5.9(i)), we used Jena
SDB/MySQL-backed RDF storage to store the data. In order to evaluate the
performance of CASSARAM when using alternative storage options, we here
employ a Jena TDB-backed approach (jena.apache.org/documentation/tdb).
In Figure 5.9(g), we compare the processing times taken by both the Jena
SDB/MySQL and the Jena TDB approach. Furthermore, in Figure 5.9(h),
we compare the memory usage by the SDB and TDB approaches. According
to the Berlin SPARQL Benchmark [143], Jena TDB is much faster than Jena
SDB. We also observed similar results both in 5 context data processing as well
as in 10 context data processing. Specifically, Jena TDB is 10 times faster than
SDB when processing 10 context properties, where the dataset consists of half
a million sensor descriptions. The Jena SDB approach consumed less memory
than the Jena TDB approach when the dataset was less than 100,000 sensor
descriptions. However, after that, the Jena TDB approach consumes less mem-
ory than the Jena SDB. Specifically, Jena TDB uses 50% less memory than
Jena SDB when processing 10 context properties, where the dataset consists
of half a million sensor descriptions. Therefore it is evident that Jena TDB is
more suitable when the number of sensor descriptions goes beyond 100,000.

Despite the differences we observed in our evaluation, there are several fac-
tors that need to be considered when selecting underlying storage solutions. As
evaluated on the Berlin SPARQL Benchmark, there are several other storage
options available, such as Sesame (openrdf.org), Virtuoso TS, Virtuoso RV,
and D2R Server [143]. Jena TDB offers faster load times and better scale, but
has the worst query performance. Sesame seems better all-round for low data
sizes assuming infrequent loads. In contrast, Jena SDB provides moderate per-
formance, offering load times, query performance, and scalability between the
Jena TDB and Sesame. Based on these evaluations, at the time at which this
chapter was written, there is no superior solution that has all good qualities.
Due to the lack of extensive usage and the short existence of Sesame, SD-
B/MySQL can be seen as a better choice especially when considering database
functionalities such as backup, concurrent and parallel processing. As we do
not expect frequent loading/ unloading of datasets such as sensor descriptions,

© 2016 by Taylor & Francis Group, LLC

http://jena.apache.org/documentation/tdb
http://openrdf.org

Device Search and Selection for CPS � 95

it is evident that SDB outperforms TDB in query processing (excluding data
loading) [143]. As we expect more updates (transactions) to occur, SDB would
be a better choice.

5.7.2 Evaluating Distributed Sensor Searching

We evaluated distributed sensor searching using a private network that con-
sists of four computational nodes. We compare two different distributed sensor
search techniques, namely, chain processing and parallel processing with/with-
out k-extensions, which we discussed in Section 5.5.3. The results are presented
in Figure 5.9(i). Each node consists of a dataset of one million sensor data
descriptions. The four datasets are different from each other. Five context
properties are considered for the evaluation and the context information is
stored using Jena TDB. First, we discuss the techniques from the theoretical
perspective.

Let us define some of the notations which will be used in the following
discussion: n= number of computational nodes (in our experiments n=4),
N=number of sensors requested by the users, Si= number of sensor descrip-
tions stored in the ith computational node, r= size of a single sensor de-
scription record (i.e., storage requirements), tneti,j = time taken for network
communication between the computational nodes i and j, tproi = time taken
to query the computational node i; merge the indexed results with the incom-
ing results, and select the final number N of sensors. The total time taken by
chain-based distributed sensor searching can be defined as:

Totalchain =

n∑
i=1

tproi +

n−1∑
i=1

tneti,i+1 + tnetn,1 (5.1)

The total time taken by parallel distributed sensor searching can be defined
as:

Totalparallel = max
{
i = [2..n] : tproi + tnet1,i

}
(5.2)

According to the results, it is evident that parallel processing is more ef-
ficient than chain processing in terms of the total processing time. However,
parallel processing is inefficient in other aspects, such as network communi-
cation and bandwidth consumption. Therefore, we proposed k-extension to
address this issue. The evaluation of the k-extension approach is presented in
Table 5.2. In this experiment, we measured how much data communication
can be saved (i.e., due to elimination of redundant data communication that
occurs in parallel processing without k-extension) by using different k values
under different N values. We measured the guaranteed minimum2 amount of
data communications (measured in Megabytes) that can be saved.

In Table 5.2, positive values indicate the minimum amount of data com-
munication saved using the k-extension. Although negative values indicate no

2Depending on the dataset and the context information stored in each node, the parallel
processing technique with k-extension will be able to save more data communication than
the guaranteed minimum level.

© 2016 by Taylor & Francis Group, LLC

96 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 5.2: The Amount of Redundant Data Communication Saved by
the Parallel Sensor Search with k-extension Strategy

Number of sensors requested by the users (N)

100 500 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000

k
v
a
lu

e

10 -60.7 -60.5 -60.3 -58.7 -56.7 -40.5 -20.2 141.6 344.0

in
M

eg
a
b
y
te

s
(M

B
)100 -5.9 -5.7 -4.1 -2.1 14.1 34.3 196.2 398.5

500 -1.1 0.5 2.5 18.7 38.9 200.8 403.1

1000 0.8 2.8 19.0 39.3 201.1 403.5

5000 0.9 17.1 37.3 199.2 401.5

10000 14.1 34.3 196.2 398.5

50000 10.1 172.0 374.3

100000 141.6 344.0

500000 101.2

guaranteed savings, some situations have a high chance of saving redundant
data communication compared to others. Equation (5.3) can be used to calcu-
late the guaranteed minimum amount of data saving by using k- extensions.

TotalSaving =

n∑
i=2

Sir−

{
[

n∑
i=2

Si
k

+N + (k − 1)n]× r

}
, IF (k < N) (5.3)

Let us consider different scenarios where chain and parallel processing can
be used. Chain processing is suitable for situations where saving computa-
tional resources and bandwidth is more critical than response time. A parallel
processing method without k-extension is suitable when response time is crit-
ical and N is fairly small. k-extension requires two communication rounds:
communication radios need to be opened and closed twice. Such a commu-
nication pattern consumes more energy [62], especially if the computational
devices are energy constrained. Therefore, transmitting data all at once is
more efficient. However, this recommendation becomes invalid when N be-
comes very large (10,000+). Our experiments clearly show that k-extensions
can be used to improve the efficiency of the parallel sensor searching approach,
especially when N is large. The ideal value of k needs to be determined based
on N , n, and Si.

5.8 Open Challenges and Future Research
Directions

In this section, we identify a number of major challenges that need to be
addressed. First, we discuss the challenge of collecting and modelling context

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 97

information related to sensors. Then, we explain the notion of providing access
to sensors as a service and the related challenges. Thirdly, we highlight the
importance of automated configuration of sensors and the challenges involved
in context information management in highly dynamic environments. Finally,
we elaborate the role of context information on developing optimized sensing
strategies.

5.8.1 Context Discovery, Processing, and Storage

Throughout this chapter, we assumed that context information related to sen-
sors has been collected and modelled in semantically annotated data and is
ready to be used. However, in the real world such context information needs
to be collected from each Internet-connected object. Further, collecting such
context data is challenging. Some context information such as battery life can
be directly retrieved from the objects. However, context information such as
expected lifetime may need to be retrieved from data sources provided by
the object manufacturer or technical documents. Another set of context infor-
mation such as accuracy or reliability needs to be generated by fusing (e.g.,
pattern recognition) data collected for some period. Furthermore, separate
context information profiles need to be maintained for each sensor. Such an
application programming interface (API) that supports collecting and mod-
elling context information is yet to be developed. In this chapter, we modelled
context information using semantic modelling technologies. The data storages
we used are TDB and SDB. It is important to consider and evaluate the
state-of-the-art data storage technologies such as NOSQL data store [150].
Further, efficiency of querying can be improved by applying techniques such
as MapReduce [151].

5.8.2 Utility Computing Models and Sensing as a
Service

In this chapter, we did not calculate the costs in financial terms. In utility
based cloud computing, CPU, RAM, and data storage per hour are sold in pay-
as-you-go fashion. In sensing as a service model, sensors (or sensor data) also
need to be valued (provided a price tag) in addition to the above-mentioned
computational resources. Such valuation has not yet been addressed by the
research community. There are interesting factors that need to be considered
when valuing sensor data. Factors such as battery life and location may impact
the value of the sensor data. For example, smart devices that have continuous
power supply (e.g., indoor temperature sensors) may be cheaper in comparison
to the devices with limited and fixed power (e.g., temperature sensors deployed
in a forest) due to cost of recharging or disposable nature. If the cloud service
provider performs additional analytics, additional charges may apply.

© 2016 by Taylor & Francis Group, LLC

98 � Cyber Physical Systems: Architectures, Protocols, and Applications

5.8.3 Automated Smart Device Configuration

Throughout this chapter, we assumed smart devices are connected to the
cloud, and configuration has been performed. However, detecting, discovering,
and configuring smart objects is a tough challenge. This is especially challeng-
ing due to dynamicity where smart devices may appear and disappear at a
given location over time. It is vital to maintain a context information profile
of each device even when it is not at the given location. The MAC address can
be used uniquely to identify the smart device. However, some of the context
information may change drastically depending on the location of the smart de-
vice. For example, a smart object that has a pressure sensor may perform well
when deployed inside a shopping mall. However, if we deploy the same object
outside the shopping mall, accuracy may drastically change due to natural
factors such as temperature, wind, rain, and so on. So it becomes challeng-
ing to maintain location-aware context profiles. In addition to the location,
time of the day, day of year, seasonal variation may have a significant impact
on context information such as reliability. Therefore, an ideal solution may
be to model context information by considering the above-mentioned factors.
Preliminary efforts on automated smart device configuration are presented in
[64].

5.8.4 Optimize Sensing Strategy Development

Scheduling sensor networks has been a widely researched topic. However, In-
ternet connected devices and their scheduling creates a different kind of chal-
lenge. Let us consider a scenario related to smart agriculture to understand
why context-aware scheduling matters in sensor configuration. Severe frosts
and heat events can have a devastating effect on crops. Flowering time is crit-
ical for cereal crops and a frost event could damage the flowering mechanism
of the plant. However, the ideal sampling rate could vary depending on both
the season of the year and the time of day. For example, a higher sampling
rate is necessary during the winter and the night. In contrast, lower sampling
would be sufficient during the summer and daytime. On the other hand, some
reasoning approaches may require multiple sensor data readings. For exam-
ple, a frost event can be detected by fusing air temperature, soil temperature,
and humidity data. However, if the air temperature sensor stops sensing due
to a malfunction, there is no value in sensing humidity because frost events
cannot be detected without temperature. In such circumstances, configuring
the humidity sensor to sleep is ideal until the temperature sensor is replaced
and starts sensing again. Such intelligent (re-)configuration can save energy
by eliminating ineffectual sensing and network communication.

© 2016 by Taylor & Francis Group, LLC

Device Search and Selection for CPS � 99

5.9 Summary

Device searching is an important functionality in the cyber-physical systems
domain. Search may directly help the users or may be useful as a subroutine of
a complex process (e.g., on demand sensors and services composition [152]).
This chapter explains how the device search fits in the Internet of Things
architecture. We discussed different types of searching techniques. Multiple
searching techniques can be combined in order to build a complete CPS mid-
dleware platform. Some techniques are less resource intensive where others
are more resource intensive. However, it is important to note that such combi-
nations will increase the computational complexity. We presented a context-
aware sensor search, selection, and ranking model, called CASSARAM, to
address the challenge of efficiently selecting a subset of relevant sensors out of
a large set of sensors with similar functionality and capabilities.

We showed how the context information can be used to search the sensors
that are best suited to user requirements in sensing as a service scenario. We
selected sensors based on the user’s expectations and priorities. As a proof
of concept, we built a working prototype to demonstrate the functionality
of CASSARAM. We also highlighted how CASSARAM helps to achieve the
broader vision of sensing-as-a-service in the CPS paradigm. CASSARAM al-
lows optimizing the sensor data collection approaches by selecting the sensors
in an optimized fashion. For example, CASSARAM can be used to find sensors
which have more energy and collect data only from those sensors. Such a strat-
egy helps to run the entire sensor network for a much longer time without re-
configuring. We explored three different techniques that improve the efficiency
and scalability of CASSARAM: comparative-priority based heuristic filtering,
relational-expression based filtering, and distributed sensor searching. Finally,
it is important to mentioned that the goal of building a comprehensive smart
device searching platform is yet to be achieved by the research community.
Addressing the open challenges mentioned previously will help to move in that
direction.

© 2016 by Taylor & Francis Group, LLC

Chapter 6

Energy Management
for CPS

Chi Harold Liu

Beijing Institute of Technology, China

CONTENTS

6.1 Introduction . 102
6.2 Related Work . 103
6.3 System Model . 105

6.3.1 Sensors . 105
6.3.2 Tasks . 106
6.3.3 System Flow . 106

6.4 QoI-Aware Sensor-to-Task Relevancy and Critical Covering Sets 107
6.4.1 Information Fusion . 108
6.4.2 Critical Covering Set . 108

6.5 QoI-Aware Energy Management . 109
6.5.1 Duty-Cycling of Sensors . 109
6.5.2 Delay Model for Tasks . 110
6.5.3 Problem Formulation . 111

6.5.3.1 Minimize the Maximum Duty Cycle 111
6.5.3.2 Minimize Weighted Average Duty Cycle . . 112

6.5.4 A Greedy Algorithm . 112
6.6 Performance Evaluation . 117

6.6.1 System Model and Simulation Setup . 117
6.6.2 Simulation Results . 119

101

© 2016 by Taylor & Francis Group, LLC

102 � Cyber Physical Systems: Architectures, Protocols, and Applications

6.7 Modeling the Signal Transmission and Processing Latency 123
6.7.1 Model Description and Problem Formulation 124
6.7.2 Satisfactory Region of Delay Tolerance 127
6.7.3 Results . 128

6.8 Implementation Guidelines . 128
6.9 Summary . 130

6.1 Introduction

The previous three chapters address different aspects of the architectures of
CPS. However, there are various technical challenges in sensor energy and data
quality management of CPS. A major one that drives our work involves the
large-scale management of heterogeneous devices that are expected to popu-
late CPS systems. A great many sensor types, manufacturers, protocols, etc.,
are expected to co-exist and hence, any solution must be designed to operate
as expected regardless of the device configuration. Regarding energy man-
agement, this motivates the need for a universal management approach that
attempts to control MAC (medium access control) level energy consumption
of nodes, as motivated by previous research [153]. Furthermore, an efficient
management scheme should minimize the transmission of control messages
crossing different domains, and thus we are seeking a long-term optimal so-
lution. In regard to data quality management, a universal measure of expres-
sion can be found in recent work in quality-of-information (QoI) management.
Broadly speaking, QoI relates to the ability to judge whether information is
fit-for-use for a particular purpose [154, 155, 156]. For the purposes of this
chapter, we will assume that QoI is characterized by a number of attributes
including accuracy, latency, and physical context (specifically, sensor coverage
in this chapter [154]).

To address the aforementioned challenges, we aim to design an energy
management service (and supporting algorithms) that is transparent to and
compatible with any lower layer protocols and over-arching applications, while
providing long-term energy-efficiency under the satisfactory QoI constraints.
In support of our design, we first introduce the new concept of “sensor-to-task
relevancy” to explicitly consider the sensing capabilities offered by a sensor
(or a set thereof) to the applications and QoI requirements required by a task.
Second, we use the generic information fusion function to compute the “crit-
ical covering set” of any given task in selecting the sensors to service a task
over time. Third, we propose a runtime energy management framework based
on the previous design elements to control the duty cycles of a sensor in the
long run, i.e., the control decision is made optimally considering the long-term
task usage statistics where the service delay of each task serves as the con-
straint. Then, an extensive case study related to water quality monitoring is
given to demonstrate the ideas and algorithms proposed in this chapter, and
a simulation is made to support all performance analysis. Lastly, we further

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 103

consider the signal transmission and processing latency into our previous pro-
posal to both theoretically and experimentally investigate its impact on the
measured delay probability. Finally, we provide some potential implementa-
tion guidelines to make the energy management framework more applicable
under realistic scenarios. It should be noted that this is first-of-a-kind research
that manages the energy usage of a variety of sensors from different domains,
irrespective of how the provided sensing capabilities will be used by different
applications.

The rest of this chapter is organized as follows. Section 6.2 presents re-
lated research efforts. The system model, including the system flow of the
proposed efficient energy management framework, is described in Section 6.3.
The sensor-to-task relevancy and the critical covering set are introduced in
Section 6.4, and the optimization problem of efficient energy management is
formulated in Section 6.5, where several solutions are also given and analyzed.
In Section 6.6, a case study of water quality monitoring is explained in detail,
and its simulation results are presented. In Section 6.7 the modeling of signal-
ing overhead is thoroughly discussed and analyzed. Implementation guidelines
are given in Section 6.8. Finally, concluding remarks are drawn in Section 6.9.
This chapter largely extends [157], by introducing the delay model for all tasks
in a probabilistic manner (see Section 6.5.2), giving the explicit definition of
the weight factor in the duty cycle optimization (see Section 6.5.3), demon-
strating extensive performance evaluation results (see Section 6.6), and adding
the modeling and analysis of signal transmission and processing latency (see
Section 6.7).

A summary of important symbols used in this chapter is listed in Tables 6.1
and 6.2.

6.2 Related Work

The area of QoI has been proposed recently to judge how retrieved infor-
mation is fit-for-use for a particular task [158, 159]. Work described in [160]
made further contributions to this area by proposing a QoI satisfaction index
to describe the degree of QoI satisfaction that tasks receive from a wireless
sensor network (WSN). Reference [160] additionally describes a QoI network
capacity metric to describe the marginal ability of the WSN to support the
QoI requirement of a new task upon its arrival to the network. Based on these,
the authors proposed an adaptive admission control scheme to optimally ac-
commodate the QoI requirements of all incoming tasks by treating the whole
WSN as a “black box.”

Existing work describes many different schemes for WSN node scheduling
[161, 162, 163, 164, 165]. In [161], Ma et al. propose centralized and dis-
tributed algorithms to assign sensors with consecutive time slots to reduce
the frequency of operational state transitions. In [162], the authors describe
an energy-efficient scheduling scheme for low-data-rate WSNs, where both the

© 2016 by Taylor & Francis Group, LLC

104 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 6.1: Summary of Important Symbols

Symbol Definition (Section where the symbol is first used)
cn sensing capability of sensor n (6.3.1)
En initial energy reserve of sensor n (6.3.1)
Ēn(t) residual energy of sensor n at time t (6.3.1)
P on
n power consumption level of sensor n when it is ON (6.3.1)
q
m

desired QoI of task m (6.3.2)

L frame length (6.3.3)
rnm relevancy of sensor n to task m (6.4)
f(·) sensor-to-task relevancy function (6.4)
g(·) information fusion function (6.4.1)
T lifetime of the CPS sensory environment (6.5.1)
ηn(t) runtime generalized duty cycle of sensor n up to t (6.5.1)
Nn(t) number of switches sensor n makes up to time t (6.5.1)
Σn(t) aggregation of the ON times of sensor n up to time t (6.5.1)
P sw
n energy consumed each time sensor n switches mode (6.5.1)
dm,i service delay of task m for its i-th instance (6.5.2)
πm steady state probability of task m (6.5.2)

sensors’ energy requirements for specific operational states and the state tran-
sitions are considered. In [163], the authors propose a cross-layer framework to
optimize global power consumption and balance the load in sensor networks.
In [164], the authors utilize control theory to balance energy consumption
and packet delivery success. In [165], the authors present novel schemes to
reduce sleep latency, while achieving balanced energy consumption among
sensor nodes with energy harvesting capability. The authors in [166] study
the QoI performance of WSN tracking applications with energy constraints,
focusing on a duty-cycled network with random wake-up schedules for differ-
ent nodes. In comparison, our work is different in that we explicitly consider
the multi-dimensional QoI requirements of tasks and capabilities of sensors,
and use this in addition to energy to determine node duty cycle schedules.
This approach completely decouples relations between sensors and applica-
tions, but dynamically controls the energy consumption state of each sensor
to achieve desired QoI over the long run.

Finally, we note that there has been plenty of work on MAC layer proto-
col design for WSNs focusing on minimizing energy consumption in order to
achieve prolonged system lifetime, such as S-MAC [167] and T-MAC [168]. In
contrast to this work, our proposal is a system-level management operation
and not a communications protocol; and more importantly, this proposal can
work with systems that engage to MAC level energy conservation as well.

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 105

Table 6.2: Summary of Important Symbols (continued)

Symbol Definition (Section where the symbol is first used)
ζm,i delay failure indicator of task m for its i-th instance (6.5.2)
ζm average measured delay failure of task m (6.5.2)
ξm delay failure threshold of task m (6.5.2)
τm delay tolerance of task m (6.5.2)
βn weight factor in duty cycle minimization (6.5.3)
P task transition matrix for the exclusive task model (6.5.4)
∆n(t) energy consumption of sensor n between t and t+ L (6.5.4)
Pm(t) probability that an instance of task m starts at t (6.5.4)
Ψm(t) probability that at least one CCS of task m exists at t (6.5.4)
Φm,i(t) probability that task m’s i-th instance starts at t (6.5.4)
Q(·) tail probability of the standard normal distribution (6.5.4)
Zm(t) fused sensory information for task m at time t (6.6.1)
Wn(t) retrieved sensory information from sensor n at time t (6.6.1)
δm, εm accuracy requirement of task m (6.6.1)
µ parameter for exponential task instance duration (6.6.1)
lmin minimum task instance duration (6.6.1)
ω number of delayed frames (6.7.1)
lk the duration of the k-th instance of all tasks (6.7.1)

6.3 System Model

In this section, we present the modeling of sensors, tasks, and overall system
architecture and flow.

6.3.1 Sensors

We consider an CPS sensory environment that comprises a collection N of N
sensors (indexed by n ∈ {1, 2, . . . , N}), plus a gateway (the sink). Each sensor
is associated with certain sensing, processing, and communication capabilities.
The sensing capability of a sensor represents its ability to offer a certain level
of QoI to a task, but independently of any specific task. The sensing capability
of sensor n is described by the K-vector cn ∈ RK , whose entries include QoI
attributes such as the measurement errors, latency in reporting, its coverage,
etc. For each sensor n, the initial energy reserve is denoted as En, and the
residual energy at time t is denoted as Ēn(t).

We assume that there are only two power consumption levels for a sen-
sor: (a) P on

n when in active mode, and (b) negligibly small (relative to P on
n)

approximated with 0 when in sleeping mode.

© 2016 by Taylor & Francis Group, LLC

106 � Cyber Physical Systems: Architectures, Protocols, and Applications

6.3.2 Tasks

We consider a collectionM of M tasks (indexed by m ∈ {1, 2, . . . ,M}). Each
task represents a specific class of activities that may share a common spatial
property but not temporal properties, such as starting time or duration. An
instance of a task represents a single continuous period that the task is in
service. For example, “monitor the water quality at certain location” may
represent one of the M tasks, while doing so between times t1 and t2 or t3
and t4, represents two instances of the same sensing task executed over two
different time periods. Each task’s desired QoI is described by a K-vector q

m
,

describing the desired accuracy, latency, coverage, etc. Note that the elements
in q

m
can be vectors as well, as a QoI requirement can be defined by more

than one parameter, as illustrated in a case study in Section 6.6.1.
Finally we consider the granularity for all tasks that cannot be separated

into sub-tasks. If a submitted task includes a combination of different tasks,
we consider the joint set of their QoI requirements into our framework.

6.3.3 System Flow

We assume that our energy management scheme runs within the CPS EMS,
interacting with both the applications and gateways of different underlying
network domains, so that control signals can be computed, generated, and
sent to the sensors.

We consider a discrete (or slotted) time system operation. Duty-cycling
decisions are made by the EMS every L time slots, which define the duration
of a L-slot frame in the system. Then decisions are sent to the gateways that
coordinate control operations of the corresponding sensors. For simplicity, we
assume a sensor stays active in a frame after it is woken up. Contrary to
the collection N , the gateway is assumed to have sufficient processing power
and energy capacity. We assume that the frame length L is far less than the
average service time of tasks and the average idle time between two consecutive
instances of a task, which ensures that the probability of any task changing
its status during a frame is negligible. We also assume that the current service
time is known to the CPS EMS and gateway after it starts.

Figure 6.1 illustrates the procedure for the proposed energy management
framework during one frame, which can be summarized as follows:

1. At the sensor deployment stage, compute the critical covering sets
(CCSs) of each task with information fusion algorithms, based upon the
sensor capabilities and the desired QoI of the tasks (see Section 6.4).

2. At the beginning of a frame, the EMS makes a decision on when to
activate/deactivate which sensor and for how long in the current frame
based on the task model and sensor status, and sends the control message
back to each sensor through its gateway (see Section 6.5).

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 107

Desired QoI Task Model

Tasks

Sensor-to-task
Relevancy

Information Fusion
Algorithm

Critical Covering Sets Energy management
optimization

Sensing Capability Status

Sensors

decisions

EMS

Figure 6.1: System flow of the proposed energy management frame-
work.

3. During a frame, each sensor follows its predetermined waking-up sched-
ule without further communications with the gateway until the next
frame.

6.4 QoI-Aware Sensor-to-Task Relevancy and
Critical Covering Sets

In [158], the 5WH principle was proposed to summarize the information needs
of a task and the sensing capabilities of a WSN, and in [169], the spatial rele-
vancy of the provided information was introduced along with a way to measure
it. Motivated by this prior work, we propose the relevancy of a sensor to a
task as the degree to which the sensor can satisfy the task’s QoI requirements.
Specifically, we define:

rnm = f
(
cn, qm

)
∈ [0, 1], ∀n ∈ N ,m ∈M, (6.1)

where rnm denotes the relevancy of sensor n to task m, and f(·) is a generic
relevancy function that takes value in [0, 1] by definition. A specific example
of f is given in Section 6.6.1.

We define a sensor irrelevant to a task if and only if its relevancy to
the task is 0. Examples of sensors irrelevant to a task include sensors whose
sensing region have no overlap with the desired service region of a task, and

© 2016 by Taylor & Francis Group, LLC

108 � Cyber Physical Systems: Architectures, Protocols, and Applications

sensors that cannot provide the type of information the task requires, such
as a sensor providing temperature readings to an air pressure related task.
On the other hand, for the coverage requirement of a task, we say a sensor
covers a task if and only if the computed relevancy is 1. By definition, a
sensor covers a task if and only if it can individually satisfy the desired QoI
of the task. In a CPS sensory environment, the retrieved information from
a single relevant sensor may not satisfy all QoI requirements of a task, thus
resulting in a relevancy value that lies between 0 an 1. Therefore, to fully
satisfy a task’s QoI requirement, fusing information collected from multiple
coordinating sensors will be needed.

6.4.1 Information Fusion

Some QoI requirements, like the coverage of a region, can be achieved by us-
ing a fusion algorithm (function) even if no individual sensor can meet the
requirement. The authors in [169] propose to select a number of providers
that cumulatively provide the most relevant information using an abstract,
scalar-valued representation of QoI. While similar in principle, here we con-
sider a more general way to accommodate a vector-valued QoI in information
fusion. For ease of presentation, we use g(·) for the generic fusion function,
and clearly, g should take a variant number of single-sensor “capabilities” and
output an aggregated capability in all aspects. Note that there are a number
of works on information fusion in WSNs (e.g., [170, 171]) that can be applied
as a realization of g(·); further elaboration of g(·) is beyond the scope of this
chapter. Denoting the capability of a subset S of sensors by cS , we have:

cS = g
(
{cn|n ∈ S}

)
. (6.2)

Then, the relevancy of a subset of sensors to a task can be defined in the same
way as that of a single sensor to a task based upon their aggregated sensing
capability, i.e.,

rS,m = f
(
cS , qm

)
, ∀S ⊆ N ,m ∈M. (6.3)

6.4.2 Critical Covering Set

We define the critical covering set (CCS) of a task as a set of sensors whose
aggregated sensor-to-task relevancy always achieves 1; and if the retrieved
information from any sensor is lost, the aggregated relevancy will drop below
1. It is worth noting that there is finite probability that the sensors may
not be able to cover the entire area of interest when randomly deployed.
Furthermore, the desired QoI of certain tasks may be so demanding that even
multiple collaborated sensors could not satisfy it. Therefore, it is possible that
a task has no CCS. In this chapter, we focus on the scenario in which there
is sufficient density of deployed sensors to always guarantee the existence of

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 109

CCSs for each task, with the realization that the system performance metric
we defined in Section 6.5.2 also fits the scenario in which there exists no CCS
for certain tasks. For ease of presentation, let Sm,∀m ∈ M, be the set of all
CCSs for task m and S = {Sm} the collection of all these sets.

6.5 QoI-Aware Energy Management

As discussed earlier, in order to fully exploit the energy-efficiency in a CPS
sensory environment without sacrificing the QoI delivered to a task, both (a)
the irrelevant sensors, i.e., sensors that are not relevant to any future incoming
tasks, and (b) the redundant sensors, i.e., sensors that are not critical to any
tasks, are allowed to be switched to the sleeping mode (OFF). In this section,
we propose a framework to control the duty-cycling of these sensors based
upon the task model outlined in Section 6.3.

6.5.1 Duty-Cycling of Sensors

The duty-cycle of a sensor is defined as the fraction of time that the sensor
is ON, i.e., Σn(T)/T , ∀n ∈ N , where Σn(T) is the aggregation of the ON times
during the lifetime T . We express the aggregated ON time as a function of T to
explicitly describe its dependency on the lifetime. However, this straightfor-
ward definition of duty-cycle does not directly reflect the energy spent while
switching between the two modes. Therefore, we propose a generalized duty
cycle to explicitly incorporate the extra energy penalty paid each time the
sensors switch modes. Specifically, let P sw

n , P on
n denote the amount of energy

consumed when each time sensor switches modes and keeps awake, respec-
tively, and Nn(T) is the number of mode switchings sensor n makes. Then the
generalized duty cycle ηn of sensor n is defined as

ηn =
P sw
n

P on
n

· Nn(T)

T
+

Σn(T)

T
, ∀n ∈ N . (6.4)

The goal of energy management is to minimize the generalized duty cycle
in a CPS sensory environment, without sacrificing the QoI levels attained.
At the beginning of each frame, the CPS EMS informs the gateway on the
decisions as to when to switch modes for sensors in the current frame. Let
A(t) = {an(t)}, 0 ≤ an(t) ≤ L, n ∈ N denote the mode switching times of
sensors in the frame following the decision at time t. When an(t) < L, the
n-th sensor will switch mode at time t + an(t) and, when an(t) = L, it will
not switch mode in this frame. Clearly, the cardinality of the decision space
of A(t) is NL.

© 2016 by Taylor & Francis Group, LLC

110 � Cyber Physical Systems: Architectures, Protocols, and Applications

1

2

3

4

Task index

FrameiL t' (i + 1)L

Service delay

Figure 6.2: An illustrative example of service delay, where Tasks 1,
2, and 4 have two instances and Task 3 has only one instance.

6.5.2 Delay Model for Tasks

In practice, when the gateway sends the wake-up signal to the corresponding
sensors they may not receive it immediately and be activated exactly at the
scheduled time, mainly caused by the signal transmitting and processing la-
tency. Moreover, even if the latency is so small as to be neglected, it is likely
that no active CCS of a task exists when task instances start. Therefore, the
task may have to wait for the next frame when the EMS informs the gateway
to wake up a CCS for its service, as shown in Figure 6.2. Toward this end, we
introduce the delay model for all tasks as follows.

We denote dm,i as the “attained” service delay of task m for its i-th in-
stance. Note that this service delay may be tolerable, depending on the type of
requested application (e.g., a few seconds’ delay for reporting the water qual-
ity levels are highly likely tolerable). We denote Dm as the maximum tolerable
delay for any instance of task m, defined as the fraction of time compared to
the lifetime of the task instance:

Dm = τmlm,i, ∀m ∈M, i ∈ N+, (6.5)

where lm,i is the lifetime of task m’s i-th instance, and τm ∈ [0, 1] is the delay
tolerance of task m. Clearly, smaller τm represents a more stringent delay
requirement. Then, let ζm,i indicate if the system fails to satisfy task m’s i-th
instance’s delay requirement; we have:

ζm,i ,

{
0, if 0 ≤ dm,i ≤ τmlm,i
1, if dm,i > τmlm,i,

(6.6)

∀m ∈ M, i ∈ N+. Therefore, considering the overall service delay for a task,

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 111

its average measured delay failure probability is defined as:

ζm =
1

I

I∑
i=1

ζm,i, ∀m ∈M, I ∈ N+, (6.7)

and if the “attained” delay failure probability is smaller than a threshold ξm,
we call its delay requirement successfully satisfied:

ζm ≤ ξm, ∀m ∈M. (6.8)

Hence, we have introduced the delay model for all tasks in a probabilistic
manner with the task-specified parameters ξm (delay failure threshold) and
τm (delay tolerance).

6.5.3 Problem Formulation

At the beginning of each frame, the EMS informs the gateway of decisions
made on the energy consumption state of each sensor n ∈ N , i.e., which
set of sensors should be awakened for task service in the current frame, and
which set of sensors are allowed to be turned OFF, given the historical task
evolution and sensor activity information, which we denote by H(t). For ease
of presentation, we use Λ to denote a generic task evolution model without
specifying the mathematical details. Therefore, a decision policy ν is defined
as a mapping from H(t) to A(t), given the known task model and the pre-
determined CCS information:

A(t) = ν(H(t)|Λ,S). (6.9)

The goal of EMS algorithm is to find the optimal decision policy ν∗ that
optimizes the sensor duty-cycles under the delay failure threshold for tasks.
We propose two performance metrics to describe the system performance, and
then formulate two corresponding optimization problems.

6.5.3.1 Minimize the Maximum Duty Cycle

As a collection of N sensors comprise the CPS sensory environments, the
optimization of one single sensor duty-cycle does not represent the overall
optimum, and this model starts from the overall CPS lifetime perspective
that aims at providing a degree of fairness among all sensors (or in other
words, the usages of all sensors are relatively comparable). The optimization
problem is:

minimize:
ν

ηmax = max
n∈N

ηn

subject to: ζm ≤ ξm, ∀m ∈M, (6.10)

where the constraint is that the average measured delay failure for task m
should not be larger than the tolerable threshold ξm, ∀m ∈M.

© 2016 by Taylor & Francis Group, LLC

112 � Cyber Physical Systems: Architectures, Protocols, and Applications

6.5.3.2 Minimize Weighted Average Duty Cycle

As the task is changing from time to time, some sensors may be excessively
depleted, which can greatly decrease the system lifetime. This model aims at
minimizing the average duty cycle of the entire CPS sensory environment,
while taking the energy consumption fairness into consideration. The opti-
mization problem is:

minimize:
ν

η =
∑
n∈N

βnηn,

subject to: ζm ≤ ξm, ∀m ∈M, (6.11)

where {βn} ∈ [0, 1] are weight factors, and
∑
n∈N βn = 1. We explicitly define

it as the normalized ratio between the remaining energy Ēn(t) and total energy
reserve En to achieve a degree of energy fairness among all sensors:

κn = exp

(
− Ēn(t)

En

)
, βn =

κn∑N
n=1 κn

, ∀n ∈ N . (6.12)

The mapping function is chosen to characterize the effect of decreased βn with
the increase of Ēn(t). Clearly, βn is a non-increasing function that the sen-
sors with less residual energy are assigned with higher weights, indicating the
smaller probability to be utilized at the decision moment. Therefore, a certain
level of energy consumption fairness can be achieved, and network lifetime,
defined as the time when the first sensor depletes its energy, is prolonged.

6.5.4 A Greedy Algorithm

The optimization problems in (6.10) and (6.11) are generally NP-hard and
their optimal solutions are difficult to find without an exhaustive search. In
this work, we propose a greedy algorithm for optimization problem (6.11).
The algorithm is greedy in that at any decision point, it chooses the action
that leads to the least marginal increment in η.

For ease of presentation, suppose the system starts at t = 0. Denote t = iL
as the beginning of the i-th frame, where i ∈ N. Denote ηnt as the runtime
generalized duty cycle of sensor n up to time t. ηnt can be updated recursively
by

ηn(t) =
1

t

[
P sw
n

P on
n

(
Nn(t)−Nn(t− L)

)
+

(
Σn(t)− Σn(t− L)

)
+ ηn(t− L) · (t− L)

]
, (6.13)

t = iL, i ∈ N+, with ηn(0) defined to be zero. Note that Nn(t) − Nn(t − L)
and Σn(t)−Σn(t−L) are the number of state switches and the aggregated ON

time between time t − L and time t for sensor n, respectively. We define the

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 113

marginal increase in the normalized energy consumption of sensor n between
time t and t+ L as:

∆n(t) ,
P sw
n

P on
n

(
Nn(t+ L)−Nn(t)

)
+
(

Σn(t+ L)− Σn(t)
)
, (6.14)

and clearly, we have:

ηn(t) =
1

t

(
∆n(t− L) + (t− L) · ηn(t− L)

)
, ∀n ∈ N . (6.15)

Further, define the weighted average marginal increase in the normalized en-
ergy consumption of all sensors between time t and t+ L as

∆(t) ,
∑
n∈N

βn(t)∆n(t). (6.16)

At the i-th decision point, EMS needs to predict the task activities in
the current frame and prepare the sensors accordingly. Rather than a global
algorithm that minimizes η throughout the lifetime of the CPS sensory envi-
ronment, we specify an algorithm that minimizes ∆(t) at each decision point
while satisfactorily guaranteeing the service delay requirement, i.e., the delay
failure probability.

Specifically, define Φm,i(t) as the probability that the i-th instance of task
m starts exactly at time t, and Ψm(t) as the “preparation” probability that at
least one CCS of task m exists at time t. Then, we can rewrite the measured
delay failure probability in Equation 6.7 as the sum of the probabilities when
CCS of a task is not prepared under the condition of the task appearance:

ζm =
T∑
t=0

Φm,i(t)
(

1−Ψm(t)
)
, ∀m ∈M. (6.17)

T denotes the task lifetime. Note that Φm,i(t) is zero almost everywhere. To
see this, Φm,i(t) = 0 if: (a) t is not a task transition time, (b) either less
than i − 1 or greater than i + 1 instances of task m have occurred. In other
words, Φm,i(t) takes non-zero value only at the time of task transition and
task m is expecting its i-th instance. Therefore, the above summation is easy
to compute.

The task transition is modeled as a (discrete) semi-Markov process. A
semi-Markov process is a stochastic process which moves from one state to
another, with the successive states visited forming a Markov chain, and that
the process stays in a given state a random length of time (holding time).
The state space of a semi-Markov process is countable and the distribution
function of the holding times may depend on the current state as well as on
the one to be visited next [172]. When modeling the task evolution by a semi-
Markov model, the tasks are treated as the states. The behavior of the tasks
can be summarized in the following three aspects:

© 2016 by Taylor & Francis Group, LLC

114 � Cyber Physical Systems: Architectures, Protocols, and Applications

� There is at most one task in service at any time slot. And because of
this, we call it the exclusive task model. In the main context, we only
consider the existence of task instance, and we discuss the inclusion of
“idle task” in Section 6.8;

� A new task starts immediately after a current task ends with certain
“task transition” probability;

� The service time of a task is known at the time it starts.

We denote P = {pk,m} as the task transition matrix, where pk,m is the
transition probability from task k to task m. We also assume that P is known
a priori to the gateway. In reality, P can be estimated based on the task evo-
lution history by the EM algorithms1 [173], which finds maximum likelihood
or maximum a posteriori (MAP) estimates of parameters in statistical models
in an iterative manner. The input of the EM algorithm is the observed data
from task evolution history, consisting of the time of occurrence and departure
of each task instance. More details will be given in Section 6.8.

Lemma 6.1
For any given task m, its delay requirement is satisfied, if the probability of

any instance of it fails to provide the satisfactory service delay, τm, is upper-
bounded by ξm

πm
, where ξm denotes the delay failure threshold, and πm denotes

the steady state probability of task m.

Proof 6.1 Define the steady state of transition matrix P of the Markov
Chain that models the task evolution as π. Due to the structure of the task
model, all the possible states of the Markov Chain can be mutually visited,
and thus, the Markov Chain is irreducible. Also, the Markov Chain is aperiodic
since the probability of being at any state after N and N + 1 transitions is
greater than zero. Then, for an irreducible, aperiodic Markov Chain, there
exists a steady state π = (π1, π2, . . . , πM) for all M tasks such that:

πP = π, and
M∑
m=1

πm = 1. (6.18)

This π can be found by solving the set of linear equations, and the result is:

π = b(B−P + I)−1, (6.19)

where b1×M = (1 1 . . . 1), BM×M is an all-one matrix and IM×M is the
identity matrix.

1The expectation maximization (EM) algorithms will be executed within the energy
management server (EMS).

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 115

Then, given any task m, its average measured delay failure probability of
all instances in Equation 6.7 can be rewritten as:

ζm = lim
I→∞

1

I

I∑
i=1

ζm,i = E [ζm,i]

= 1 · Pr{ζm,i = 1}πm + 0 · Pr{ζm,i = 0}πm
= Pr{ζm,i = 1}πm, ∀m ∈M.

(6.20)

Therefore, for satisfactory delay performance under parameter ξm, we rewrite
ζm ≤ ξm as:

Pr{ζm,i = 1} ≤ ξm
πm

, ∀m ∈M, i ∈ N+. (6.21)

In our model, the EMS knows exactly the time when the current task ends
and the next task starts, whereas which specific task succeeds the current one
is uncertain. If there is no transition between tasks in a frame, the system only
needs to keep awake the CCS of the current task that leads to the least ∆(t)
and set the other sensors to sleep. Otherwise, if a task transition is bound to
happen in a frame, the system has to wake up the corresponding sensors to
make preparation for all possible succeeding tasks under their specific delay
failure threshold. Suppose the current task will end during a frame and a new
task will start at time t′, where t′ ∈ [iL, (i + 1)L). Our greedy algorithm at
the i-th decision point is the solution to the following optimization problem

minimize:
ν

∆(iL)

subject to: Pm(t′)(1−Ψm(t′)) ≤ ξm, ∀m ∈M. (6.22)

where ∆(iL) is defined in Equations 6.14 and 6.16, and Pm(t′) is the transition
probability from the current task to task m.

To solve the above optimization problem, the constraint can be rewritten
as

Ψm(t′) ≥ 1−min

{
1,

ξm
Pm(t′)

}
, (6.23)

which illustrates a way of computing the preparation probability given the
task transition model and delay failure requirement. Essentially, Equation 6.23
specifies the minimum required probability of existence of CCSs for each task
at the task transition time t′. Therefore, the EMS can determine whether to
wake up a CCS for each task according to Ψm(t′), but the collective decisions
for all tasks can be made either jointly or separately, since CCS may overlap
for different tasks and a global optimum is achieved when the joint decision is
made. However, this will induce further computational complexity, especially
when M is large. Therefore, as another “degree of greediness,” we let the
EMS make decisions separately for each task. After the decision on making
preparation for which tasks is made, the EMS chooses and schedules the wake-
up times for a subset of sensors that can cover that selected group of tasks and

© 2016 by Taylor & Francis Group, LLC

116 � Cyber Physical Systems: Architectures, Protocols, and Applications

induces the minimum increase in the marginal energy consumption ∆(iL). In
the (i+1)-th frame, which task follows the previous task is already known and
all the irrelevant sensors prepared for the possible occurrence of other tasks
can be sent to sleep.

It is worth noting that signal transmission and processing latency has
impact on the control decision operation, and we shall investigate this in
Section 6.7. As for now, we assume that when the decision is made at EMS
and further informs the gateway, the latter is able to control all corresponding
sensors immediately, i.e., the wake-up time of the scheduled sensors is the
task transition time t′. If the selected sensors can cover the next arrival task
rightly after the completion of the current task, at the start moment of the
next frame (i + 1)L, non-critical sensors will be shut down. However, if the
predicted sensors are incapable of covering the actual coming task, at time
(i + 1)L, the gateway sends a new wake-up signal and activates the sensors
from the CCS which induces the minimum increase in the marginal energy
consumption ∆((i + 1)L). This is because the gateway already knows the
identification of this task at time (i + 1)L. It is easily obtained that, in the
latter case, the service delay equals to (i+ 1)L− t′.

The algorithm can be summarized in the following steps:

1. At the beginning of each frame, shut down any sensor that is not critical
to the current task, if there exist such sensors;

2. If no task transition is bound to happen in the current frame, keep the
current status of each sensor until the next frame;

3. If a task transition is bound to happen in the current frame, for each
task, compute the minimum required probability of existence of a CCS
based on the delay failure threshold by Equation 6.23, and determine
(by random tests) whether to make preparation for that task according
to the derived probability. At the time of task transition, wake up a
subset of sensors that critically covers all the tasks to be prepared for,
yet induces the minimum increase in the marginal energy consumption.

The algorithm is greedy in three aspects:

1. The algorithm satisfies the delay failure threshold every time task tran-
sitions happen;

2. The algorithm minimizes the marginal increase in energy consumption
at every decision point;

3. The algorithm makes a decision on whether to prepare for the possible
occurrence of each task separately.

As discussed earlier, we can revise the greedy algorithm so that it makes a
decision on whether to prepare for the possible occurrence of each task jointly.

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 117

Compared to the original one whose computational complexity increases lin-
early with M , the revised greedy algorithm increases exponentially with M
and it is therefore much more time consuming. In order to show the poten-
tial improvement, we demonstrate the results for both greedy algorithms in
Section 6.6.

6.6 Performance Evaluation

In this section, we show an example of our methodology, by assuming a mon-
itoring CPS application, such as using (randomly deployed) pollutant-sensing
sensors with certain sensing range to measure the water quality of certain lo-
cations in a reservoir supplying water to city dwellers. We present the system
pertinent solutions, the environment settings, and show the results.

6.6.1 System Model and Simulation Setup

In our water quality monitoring system, each sensor with pollution level moni-
toring capability is randomly deployed and its spatial coverage follows a classic
disk model. We assume that the sensory data within the sensing region is cor-
rupted by noise during measurement and/or transmissions. Figure 6.3 shows
an illustrative example of the reservoir plane graph for sensor and task deploy-
ment, where N = 15 sensors are deployed in a 600× 600 square unit distance
of area to monitor the water quality of M = 4 specific locations.

In this example, we consider measurement accuracy and service delay (both
with multiple metrics) as two QoI requirements. For the former, we define its
probabilistic model as:

Pr
{
|Zm(t)− zm| ≥ δm

}
≤ εm, ∀m ∈M, (6.24)

where the random variable Zm(t) is the fused, sensor-retrieved information
for task m at time t, and zm is the actual but unknown information, i.e., the
ground truth. Analogously to the desired QoI functions in [169], we define q

m
as:

q
m

=
{
Ym, (δm, εm)

}
, ∀m ∈M, (6.25)

where Ym and {δm, εm} are the geographical location and accuracy require-
ment of task m, respectively. For service delay, tasks specify the required delay
tolerance threshold τm and delay failure probability ξm,∀m ∈ M, as shown
in Section 6.5.2.

On the other hand, the sensing capability of sensor n, i.e., cn, can be
defined as:

cn =
{

(Xn, rn), γn

}
, ∀n ∈ N , (6.26)

where Xn is the location of the sensor and rn is its sensing radius. We model

© 2016 by Taylor & Francis Group, LLC

118 � Cyber Physical Systems: Architectures, Protocols, and Applications

0 200 400 600
0

100

200

300

400

500

600

1

2
3

45

6 7

89 10

11 12

1314

15

1 2

3
4

Figure 6.3: An illustrative example of the reservoir plane graph to
monitor the water quality of four locations (as square), where 15
randomly deployed sensors with certain sensing range are shown (as
dots).

the measurement noise as additive white Gaussian noise (AWGN) with vari-
ance γn for sensor n. A sensor-to-task relevancy function for this model is

f(cn, qm) = f(Xn, rn, γn, Ym, δm, εm)

= 1{dist(Xn, Ym) ≤ rn} ·min

{
εm

Pr{|Wn(t)− ωL| ≥ δm}
, 1

}
= 1{dist(Xn, Ym) ≤ rn} ·min

{
2εm

Q(δm√
γn

)
, 1

}
, (6.27)

∀n ∈ N ,m ∈ M, where 1{statement} is the indicator function that takes
value 1 if the statement is true and 0 otherwise, dist(Xn, Ym) is the Euclidean
distance between two points, the random variable Wn(t) is the information re-
trieved from sensor n at time t, and Q(·) is the tail probability of the standard
normal distribution.

If task m is serviced solely by sensor n, then Zm(t) = Wn(t); otherwise,
if it is serviced by a subset S of sensors, then Zm(t) = WS(t), where WS(t)
is the fused information from a subset S of sensors. One possible information
fusion algorithm of relevant sensors in this case can be:

WS(t) = arg min
w

1

|S|
∑
n∈S

1

γn

∣∣∣∣Wn(t)− w
∣∣∣∣2 =

∑
n∈S

Wn(t)
γn∑

n∈S
1
γn

. (6.28)

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 119

The right-hand side of Equation 6.28 is a specific example of the fusion func-
tion g(·) we defined in Section 6.4.1. Specificially, if all γn are equal and
Wn(t) ∼ N(1, γ), the fused information of a group of K relevant sensors is
the average of the individual ones and WSt ∼ N(1, γ/K), where N(µ, σ2) is a
Gaussian distribution with mean µ and variance σ2. Based on the above fusion
algorithm, CCSs of every task can be computed during the sensor deployment
stage, and used in the online duty-cycling control.

Our numerical result is based on the water quality monitoring system dis-
cussed above and is achieved in MATLAB R©. The capabilities (exclusive of
sensing radius which is illustrated in Figure 6.3) of all sensors are: γn = 3,
∀n ∈ N . Moreover, P sw

n = 5 and P on
n = 1, ∀n ∈ N and the initial energy

reserve of each sensor is set as 20,000 units. We assume that with the pre-
determined working power, each sensor is able to fully cover its sensing area.
For all tasks in M, the desired QoI satisfies: εm = 0.1, δm = 1, τm = 0 (i.e.,
delay-sensitive applications). Assume that the service time of each task follows
identical exponential distribution with average duration 1/µ = 50 time slots
and minimum duration lmin = 25 time slots (both are sufficiently longer than
the frame size L), thus the arrival of all tasks is a Poisson process. A total of
1,000 task instances are simulated. The task transition matrix is given by:

P =

0 1/10 2/5 1/2

1/5 0 3/5 1/5
1/3 1/3 0 1/3
4/5 1/10 1/10 0

 . (6.29)

The sensor-to-task relevancy and CCSs can therefore be computed at offline,
and there are 10 candidate sets for Tasks 1, 2, and 4, and 20 CCSs for Task
3. Meanwhile, each CCS consists of three sensors.

We consider the optimization problem in Equation 6.11 with the energy-
aware weight factor βn in Equation 6.12, and the solution is obtained by using
the proposed greedy algorithms outlined in Section 6.5.4.

6.6.2 Simulation Results

In Figure 6.4, we arbitrarily pick up five sensors and plot the evolving trend
of their duty cycles over time. We set up the system parameters as stated
above with ξm = 0.04, ∀m ∈ M and L = 20 time slots. It can be seen from
the figure that after a few rounds of fluctuations at the very beginning when
the sensors are trading-off their energy consumption with the provided QoI to
tasks, the duty cycle of each sensor converges soon afterwards. This is because
our proposed greedy algorithm successfully selects the best set of sensors for
service under the stochastic, but Markovian task transitions, and the weight
factors accurately capture the energy consumption state of all sensors and
guarantee a degree of fairness among them.

Next, we show the impact of two system parameters, the frame size L and
sensor mode switching power P sw

n , on the average duty cycle of all deployed

© 2016 by Taylor & Francis Group, LLC

120 � Cyber Physical Systems: Architectures, Protocols, and Applications

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Time (frames)

D
ut

y
cy

cl
e

sensor2
sensor3
sensor4
sensor5
sensor6

Figure 6.4: Sensor duty cycle vs. time

sensors as shown in Figure 6.5(a) and Figure 6.5(b), respectively. The delay
failure thresholds ξm of all tasks are equally chosen while varying between 0
and 0.1. We observe that for fixed L and P sw

n , the average measured duty
cycle linearly decreases with the increase of required delay failure threshold,
as higher ξm relaxes the service delay requirement provided to all tasks by al-
lowing a certain number of task instances to fail, and in turn the sensors spend
more time in the sleeping mode. For fixed ξm, the duty cycle increases with
L and P sw

n . Larger L represents the less frequency system control decisions
and thus in order to provide satisfactory services to the next task, the system
tends to wake up more sensors than necessary. These unnecessary sensors will
stay awake until the next decision point when they can be turned OFF by the
EMS. Clearly, the wasted ON times of sensors increase linearly with the frame
length. Furthermore, larger P sw

n indicates the less reluctant control behavior
(or higher penalty) when switching the mode. Thus, the system decisions favor
those sensors who have been in the ON state, and let them continue servicing
other tasks that may not eventually appear. Therefore, the energy consump-
tion of all sensors is not optimally allocated, resulting in larger average duty
cycle and its variance.

Similar trends have been found when simulating the impact of task accu-
racy requirement εm, as shown in Figure 6.5(c). With the increase of εm, i.e.,
less stringent QoI requirement that allows more measurement errors, the CCS
of a task may involve fewer sensors for service, and in turn reduce the average
duty cycle.

Then, we investigate the impact of system parameter L on the measured
delay failure probability given different delay failure thresholds, i.e., to judge
if the required delay parameters are successfully guaranteed by the greedy

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 121

0 0.02 0.04 0.06 0.08 0.1

0.36

0.34

0.32

0.3

0.28

0.26

Delay failure threshold
0 0.02 0.04 0.06 0.08 0.1

Delay failure threshold

A
ve

ra
ge

 d
ut

y
cy

cl
e

L=5
L=10
L=15
L=20

0.42

0.4

0.38

0.36

0.34

0.32

0.28

0.26

0.24

0.3

A
ve

ra
ge

 d
ut

y
cy

cl
e

Pn
sw=2

Pn
sw=4

Pn
sw=6

Pn
sw=8

0 0.02 0.04 0.06 0.08 0.1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Delay failure threshold

A
ve

ra
ge

 d
ut

y
cy

cl
e

)b()a(

(c)

εm=0.06
εm=0.07

εm=0.1
εm=0.12

Figure 6.5: Average duty cycle vs. delay failure threshold, by changing
(a) frame size L = {5, 10, 15, 20}, (b) switching power P sw

n = {2, 4, 6, 8},
and (c) task accuracy requirement εm = {0.06, 0.07, 0.10, 0.12}.

algorithm. Table 6.3 shows the result, where the measured delay failure is
satisfactorily less than the delay failure threshold and apparently, it increases
with the threshold. However, it is interesting to observe that under the same
delay failure threshold, the difference between measured results of different
frame sizes L is insignificant. This can be explained by our setting of τm = 0,
∀m ∈ M, i.e., we only consider the delay-sensitive applications, and thus as
long as the prepared sensors are incapable of servicing the coming task at the
task transition time, the delay failure event is counted, irrespective of how big
the frame size L is (or when the next decision time will be, even if the sensors
are well-prepared then). We shall investigate the impact of signal transmission

© 2016 by Taylor & Francis Group, LLC

122 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 6.3: Average Measured Delay Failure w.r.t. Different Frame
Sizes and Delay Failure Thresholds

L = 5 L = 10 L = 15 L = 20

ξm = 0 0 0 0 0

ξm = 0.02 0.0150 0.0133 0.0150 0.0137

ξm = 0.04 0.0338 0.0298 0.0295 0.0312

ξm = 0.06 0.0445 0.0428 0.0428 0.0468

ξm = 0.08 0.0655 0.0583 0.0637 0.0645

ξm = 0.1 0.0798 0.0755 0.0785 0.0795

and processing latency and frame size L on delay-tolerable applications in the
next section.

Figure 6.6 illustrates the energy depletion process, for ξm = 0.04, L = 20,
with other parameters being set up as the former setting. Besides the proposed
greedy algorithm and its revised version (i.e., jointly considering the CCSs
of all tasks rather than treating them separately), we also show the result
of the optimal solution where the EMS knows exactly which task succeeds
the current one. The slope of a curve in the figure represents the energy
depletion rate. We observe that the revised greedy algorithm only achieves a
slightly better performance than the basic greedy algorithm, at the expense of
more computational complexity. The gap between the greedy algorithm and
the genie-aided optimal solution can also be identified, due to the potential
error in estimating the future arrived task. Furthermore, we plot the energy
depletion process for two extremes: the least (sensor 12) and most used (sensor
5) sensor in the proposed greedy algorithm. As sensor 12 is located at the
border area with limited sensing range, it can only cover task 2, which is
also being covered by many other sensors like 2, 4, 5, 15, and thus being
least frequently used. Meanwhile, sensor 5 is located at the center with a
relatively larger sensing radius allowing it to service all four tasks, thus being
used mostly. Nevertheless, the energy-aware weight factor in Equation 6.12
that explicitly takes the residual energy of a sensor into consideration helps
to lower the variance between these two extremes so that a certain degree of
energy consumption fairness is achieved, as shown in the following.

We investigate the energy consumption fairness, quantified by the Jain’s
fairness index2 under the proposed greedy algorithm as shown in Figure 6.7.
We compare the proposed energy-aware weight assignment approach with the
equal weight assignment, i.e., βn = 1/N , ∀n ∈ N . Clearly, for a fixed number
of sensors N , the Jain’s index under energy-aware approach is higher than
the one under equal assignment. Furthermore, when more nodes are deployed

2It is defined by (
∑

(En − Ēn))2/
(
N
∑

(En − Ēn)2
)
, ∀n ∈ N . The result ranges from

1
N

(worst case) to 1 (best case). The larger the index is, the better fairness we can achieve.

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 123

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Time (frames)

N
or

m
al

iz
ed

 re
m

ai
ni

ng
 e

ne
rg

y

Average (greedy algorithm)
Average (revised greedy algorithm)
Average (genie-aided approach)
Object 5 (most used)

Object 12 (least used)

Figure 6.6: Normalized remaining energy vs. time.

in a fixed geographic area, the increased node density helps to achieve better
fairness among them since any single task would potentially be serviced by
more CCSs. This trend does not hold for the equal weight setting, since the
diversity gain cannot be utilized by assigning the same weights to all sensors
irrespective of their different amounts of residual energy, and in turn the
fairness level decreases with the number of sensors.

6.7 Modeling the Signal Transmission and
Processing Latency

In practice, because of the signal transmission and processing latency by MAC
protocols and routing algorithms, the selected CCS members cannot be awak-
ened immediately after the control decision is made. Furthermore, for many
applications they do not require immediate task service, but allowing certain
service delay after the specified start time. Toward this end, in this section,
we improve our system model by explicitly considering the signal transmission
and processing latency, modeled by certain amount of wake-up delays after
the control decision is made when all CCS members have been successfully
informed. In other words, this model considers the longest signal propaga-
tion delay from EMS to a CCS member, denoted as a period of ωL, ω ∈ Z.
We also assume that once the wake-up signal has been sent, it cannot be re-
voked. In this section, we provide a thorough theoretical analysis on the new
system model, coupled with experimental results of the impact of this signal-
ing latency on average measured delay failure probability.

© 2016 by Taylor & Francis Group, LLC

124 � Cyber Physical Systems: Architectures, Protocols, and Applications

Fa
irn

es
s

in
de

x
(J

ai
n'

s)
 o

n
en

er
gy

 c
on

su
m

pt
io

n

Frame size L (slots)

N=15, equal βn

N=10, equal βn

ξ=0
ξ=0.04

N=15, energy-aware

N=15, energy-aware

5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

10 15 20

Figure 6.7: Fairness index (Jain’s) on energy consumption among all
sensors.

6.7.1 Model Description and Problem Formulation

Without loss of generality, we rename the appearance sequence of all task
instances sequentially by index k = 1, 2, . . ., as shown in Figure 6.8. The
figure also illustrates a localized view on a specific time period, where the
k-th instance of all tasks arrives at time t′ ∈ (iL, (i + 1)L), i ∈ N+, with its
lifetime lk. Further let x denote the interval between iL and t′ as a random
variable; then we have t′ =

∑k−1
i=1 li = iL+ x.

After receiving the control decision from EMS, the gateway sends a wake-
up signal to the corresponding sensors at decision time iL. If at least one CCS
of instance k exists at time t′, the CCS members will be awakened at time
(i+ ω)L, i.e., after this control decision successfully propagates to all sensors
in ωL frames. Then, the service delay is computed as:

(i+ ω)L− t′ = (i+ ω)L− (iL+ x) = ωL− x. (6.30)

However, if no CCS of instance k exists at time t′, by knowing exactly which
task will appear at the next decision time (i + 1)L, the gateway then sends
a new wake-up signal which eventually takes effect at time (i+ 1 + ω)L, i.e.,
after considering the signal transmission and processing latency (1+ω)L from
the current time. In this case, the service delay is:

(i+ 1 + ω)L− t′ = (ω + 1)L− x. (6.31)

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 125

1

2

3

4

Task index

Frame

instance k+1

instance k-1

ωL

ωL

(ω+1)L

iL (i + 1)L

x
instance k

Service delay

t' lk

Figure 6.8: An illustrative example of service delay with signaling
latency.

Note that it is necessary to ensure (ω + 1)L − x < lk, ∀k ∈ N+, since the
task instance k needs to be handled before its termination. Consequently,
ω < blmin/Lc − 1.

We are able to compute the probability that the service delay incurred
at any instance is larger than the specified delay tolerance τmlk, conditioned
when a CCS is well-prepared for service and otherwise, as:

Pm(t′)Ψm(t′)Pr {ωL− x > τmlk}
+Pm(t′) (1−Ψm(t′)) Pr {(ω + 1)L− x > τmlk} ≤ ξm, (6.32)

∀m ∈M. It is worth noting that Equation 6.32 exactly characterizes the con-
straint of our optimization problem in Equation 6.22, and more importantly
a way to further theoretically derive the left-hand side of Lemma 6.1.

Theorem 6.1
Given the service time distribution in the previous assumptions, Ψm(t′) in

(6.32) can be derived as:

Ψm(t′) ≥
F (ω + 1)− ξm

Pm(t′)

F (ω + 1)− F (ω)
, (6.33)

where

F (ω) = 1− τm
µL

exp

(
− ωµL

τm
+ µlmin

)(
exp

(
µL

τm

)
− 1

)
. (6.34)

© 2016 by Taylor & Francis Group, LLC

126 � Cyber Physical Systems: Architectures, Protocols, and Applications

Proof 6.2 As the service time of each task follows identical exponential dis-
tribution, the total number of instance occurrences has a Poisson distribution
over (0, t], and the occurrences are distributed uniformly on any interval of
time. Therefore, the random variable x shown in Figure 6.8 follows a uniform
distribution in (0, L). As lk is exponentially distributed with average 1/µ and
lower-bound lmin, its probability density function is given by:

fl(l) =

{
µ exp(−µl + µlmin), l > lmin,

0, others.
(6.35)

From Equation 6.32, we have:

Ψm(t′) ≥
Pr{(ω + 1)L− x > τmlk} − ξm

Pm(t′)

Pr{(ω + 1)L− x > τmlk} − Pr{ωL− x > τmlk}
. (6.36)

Let F (w) denote the probability that the incurred service delay is larger than
the specified tolerance, or F (w) , Pr{ωL− x > τmlk}, then:

F (w) = Pr{lk <
ωL− x
τm

}

=

∫ L

0

1

L

∫ ωL−x
τm

lmin

µ exp(−µlk + µlmin)dlk dx

= 1− τm
µL

exp

(
− ωµL

τm
+ µlmin

)(
exp

(
µL

τm

)
− 1

)
.

(6.37)

Hence, replacing Equation 6.37 back to Equation 6.36, we obtain the closed-
form expression for Ψm(t′) in Equation 6.33.

We next discuss the feasibility issues of Theorem 6.1. As F (ω) monotoni-
cally increases with ω, we have F (ω + 1) > F (ω) always holds. Since Ψm(t′)
denotes the preparation probability that at least one CCS of task m exists at
time t′, by definition it is a scaler between 0 and 1. Therefore, it requires:

F (ω) ≤ ξm
Pm(t′)

≤ F (ω + 1). (6.38)

However, since ξm ∈ [0, 1) is the maximum allowed delay failure probability,
it is specified by applications, and does not have relations with the transi-
tion probability Pm(t′) from the current task to task m. Therefore, Equa-
tion 6.38 may not always hold. Recall that F (ω) represents the probabil-
ity that the incurred service delay is larger than the specified tolerance, or
F (ω) , Pr{ωL−x > τmlk}. Then, when ξm

Pm(t′) > F (ω+1), we set Ψm(t′) = 0.

This is because if the maximum allowed delay failure is relatively very high or
the task arrival probability is low enough, there is no need to prepare sensors
for it. On the contrary, when ξm

Pm(t′) < F (ω), we set Ψm(t′) = 1 as a constant,

indicating that if the maximum allowed delay failure is very low or a task

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 127

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4
Satisfactory region

0.5

0.6

Delay tolerance

F

w=3
w=7
µL=0.002
µL=0.003

πm

ζm

Figure 6.9: F vs. delay tolerance threshold, varying parameters ω =
{3, 7} and µL = {0.002, 0.003}.

instance is very likely to come at time t′, it is necessary to prepare sensors for
service.

In summary, replaced by the new constraint in Equation 6.33 under the
realistic delay model, our objective function in Equation 6.22 and proposed
greedy algorithms can provide a sub-optimal solution. All other steps in Sec-
tion 6.5.4 apply.

6.7.2 Satisfactory Region of Delay Tolerance

The value of F denotes the theoretically derived probability that the service
delay exceeds the maximum tolerable threshold. Figure 6.9 shows the value of
F with respect to (w.r.t.) different specified delay tolerance values, by varying
ω and µL. Consistent with previous analysis, F monotonically increases with
ω, since more severe signaling latency would result in higher delay outage
probability. It also can be seen from the figure that higher delay tolerance τm
leads to lower delay probability, and this probability increases with µL that
characterizes the ratio of frame size and average duration of task instance.
Higher µL (i.e., larger frame size or shorter instance duration) will relax the
delay constraint imposed by tasks, and thus lower delay outage is expected.

As analyzed in Lemma 6.1, given task m, in order to successfully achieve its
delay requirement, the probability of delay occurrence at any of its instances

© 2016 by Taylor & Francis Group, LLC

128 � Cyber Physical Systems: Architectures, Protocols, and Applications

should be upper-bounded by ξm/πm. Based on our analysis of signaling latency
in Equation 6.32, we rewrite the steady state form of Lemma 6.1 as:

ΨmF (ω) + (1−Ψm)F (ω + 1) ≤ ξm
πm

, (6.39)

where Ψm denotes the corresponding preparation probability under the steady
state of task transitions. Since F (ω) < F (ω + 1), we relax the constraint in
Equation 6.39 by

F (ω) <
ξm
πm

, ∀m ∈M. (6.40)

According to the derivation of F as a non-increasing function of the delay
tolerance τm, it is interesting to observe that τm cannot be arbitrarily chosen,
but tightly coupled with system parameters L, ω,Pm and task parameters
µ, lmin. In Figure 6.9, we visualize the condition (Equation 6.40) that even-
tually crosses all curves of different parameters. We call the region of τm
satisfying the condition (Equation 6.40) as its satisfactory region. Therefore,
given those parameters, the system has its own feasible working range, be-
yond which higher system settings (like L) should be configured. Deriving
this lower-bounded region requires solving the transcendental equation and
thus, numerical solutions are expected like the Newton’s method.

6.7.3 Results

We still use the same task transition matrix P as shown in Section 6.6.1, and
set ξm = 0.1, ∀m ∈ M. A total of 1,000 task instances are simulated, with
average duration of 1/µ = 2000 and minimum duration lmin = 25 time slots.
Other parameters are the same as the basic setting in Section 6.6.1.

According to the proof of Lemma 6.1, the steady state π is obtained as
(0.33, 0.14, 0.25, 0.28). Each element of the steady state denotes the stationary
probability of a specific task. Figure 6.10 shows the simulation result on the
average measured delay failure among all tasks w.r.t. different delay tolerance
thresholds. It can be observed that ω = 3 can successfully guarantee that the
required ξm = 0.1 for all τm ∈ [0.02, 0.1]; however only part of entire τm values
can satisfy the same requirement when ω = 7, consistent with our analysis in
Section 6.7.2. Furthermore, smaller parameter µL decreases the probability
of delay failure occurrences either through more frequent control decisions
(smaller L) or servicing longer instance duration (larger 1/µ); equivalently
wider satisfactory region for delay tolerance given a ξ and P.

6.8 Implementation Guidelines

We have made a few simplifications and assumptions in Section 6.3 to ease
the analysis, some of which may potentially generate new implementation
guidelines in practice.

© 2016 by Taylor & Francis Group, LLC

Energy Management for CPS � 129

0.02 0.04 0.06 0.008 0.1
0

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Delay tolerance

A
ve

ra
ge

 m
ea

su
re

d
de

la
y

fa
ilu

re

w=3
w=7
µL=0.002
µL=0.003

Figure 6.10: Average measured delay failure probability vs. delay tol-
erance threshold.

First, we assume that the CCS are known a priori to the EMS, which
is usually realized during the deployment stage where the application owner
deploys a certain number of devices to the specified network domain with
known geographical locations. Then, the offline computation can be performed
given the desired task location and requirements.

Second, the computation of task transition matrix requires advanced al-
gorithms like EM algorithm [173]. It uses an iterative procedure to compute
the maximum likelihood estimation of a set of parameters in a given distribu-
tion (from empirical analysis). To apply it in our framework, EM needs the
observed data from task evolution history, including the start and end time
of each task instance, from which we can derive the transition times between
tasks. Then, the EM algorithm approximates the parameters of the given
distribution, as well as its expected value. Note that these expected values
exactly represent the average number of transitions between each pair of two
tasks, whose normalized values are a “noisy” version of the hidden, true value
of all entries of the transition matrix P.

Finally, in practical scenarios, tasks are described in human-friendly for-
mats, e.g., XML/HTML, and thus a higher layer of format interpretation is
used to translate the encoded scripts into the required QoI attributes, which
can then be easily incorporated into our framework. Also, as a middleware
bridging a variety of different applications and underlying networks, although
tasks can be submitted randomly by each user, we assume that the aggregated

© 2016 by Taylor & Francis Group, LLC

130 � Cyber Physical Systems: Architectures, Protocols, and Applications

behavior as the input to our platform exhibits some degree of determined char-
acteristics, e.g., the total number of tasks, and their associated task QoI re-
quirements. Moreover, there may not always be a ready task after the current
task ends. Therefore, we can incorporate an “idle state” into the task tran-
sition model. The transition probability between idle state and other tasks
can also be estimated by historical observations on task evolutions over time.
When the idle task arrives, at the next decision point, we simply shutdown all
prepared sensors and keep this state until the arrival of the next task instance.
Therefore, all previous analysis and proposed algorithms still apply.

6.9 Summary

In this chapter, a system-level efficient energy management framework is pro-
posed to provide a satisfactory QoI experience in CPS sensory environments.
Contrary to past efforts, our proposal is transparent and compatible with
lower protocols in use, and preserves energy-efficiency in the long run without
sacrificing any attained QoI levels. Specifically, we introduced the new con-
cept of QoI-aware “sensor-to-task relevancy” to explicitly consider the sensing
capabilities offered by a sensor to the CPS sensory environments, and QoI re-
quirements required by a task. Then, we proposed a novel concept of the
“critical covering set” of any given task in selecting the sensors to service a
task over time. Next, an energy management decision is made dynamically at
runtime, as the optimum for long-term traffic statistics under the constraint
of the service delay. An extensive case study based on utilizing the sensor
networks to perform water level monitoring is given to demonstrate the ideas
and algorithms proposed in this chapter, and a simulation is made to show
the performance of the proposed algorithms. To make our energy management
framework more applicable and practical in realistic scenarios, we further con-
sidered the signal transmission and processing latency into our system model,
and both theoretically and experimentally showed its impact on average mea-
sured delay probability. Finally, based on our system model assumptions, we
brought forward some implementation guidelines in practice and discussed the
applicability of our proposal.

© 2016 by Taylor & Francis Group, LLC

ENABLING

TECHNOLO-

GIES FOR

CPS

II

© 2016 by Taylor & Francis Group, LLC

Chapter 7

Networking
Technologies for CPS

Chi Harold Liu

Beijing Institute of Technology, China

Zhengguo Sheng

University of Sussex, U.K.

CONTENTS

7.1 Sensing Networks . 134
7.1.1 433MHz Proprietary Solutions . 134
7.1.2 ZigBee . 134
7.1.3 RFID . 135
7.1.4 Bluetooth . 135

7.2 Data Connectivity . 136
7.2.1 2G/3G SIM Modules . 136

The preceding chapters discuss the architecture of CPS. First we discuss the
CPS architecture in general, and then separate it into different sub-sections,
including the mobile sensing devices/platforms, naming, addressing and profile
services, device search and selection, device management, and energy manage-
ment. In the following chapters, we will consider the enabling technologies of
CPS. First, we start with the fundamental networking technologies in this
chapter.

133

© 2016 by Taylor & Francis Group, LLC

134 � Cyber Physical Systems: Architectures, Protocols, and Applications

Technical Summary Radio
Band

Applications Manufacturers

433MHz
enabled
proprietary
solutions

Proprietary solutions by using one of the most
commonly used ISM (industrial, scientific, and
medical) radio bands in China.

433MHz Home security (with
China mobile),
environment monitoring,
etc.

Homewell
Beelinker

ZigBee A well-defined protocol stack for WSN with
features of self-deployment, low complexity, low
data rate, and low cost, etc.

780MHz,

2.4GHz

Smart Energy, Home
Automation, Building
Automation. Health
care, Remote Control,
Retail Services, etc.

Vinnotech,
Smeshlink,

Starvalley

RFID A fast developing radio technology used to
transfer data from an electronic tag, which
includes identification, information collection, etc.

125KHz,

13.56MHz,

433MHz,

Logistic, E-car license,
one pass card

Fudan microelec.
Huahong, Vision
electronics
etc.

Bluetooth Bluetooth low energy technology is a global
standard, which enables devices with coin cell
batteries to be wirelessly connected to standard
Bluetooth enabled devices and services.

2.4GHz Remote access, Indoor
positioning (HAIP)

Nokia Research
Beijing

Figure 7.1: Radio technologies and applications mapping.

7.1 Sensing Networks

It is worth noting that China has still little developed sensor technologies,
especially in the manufacturing of high-precision sensor chips. With around
20k kinds of sensor chips around the world, China can only manufacture about
300 of them. Therefore, in this section, we are not going to focus on sensor
chips, but on radio technologies and networking abilities.

In China, SMEs (small- and medium-sized enterprises) play a very impor-
tant role in sensing networks in terms of technologies and products. Figure. 7.1
shows a list of radio technologies being used in M2M applications in China.

Figure. 7.2 shows the authorized ISM band in China. It is worth noting
that most popular radio technologies for M2M applications are based on ISM.

7.1.1 433MHz Proprietary Solutions

433MHz is one of the most commonly used radio bands in industrial-grade
M2M modules in China. It provides the wireless remote transmission capacity
for various M2M terminals. The application area covers electric power, oil
fields, coal mines, meteorology, environmental protection, water conservancy,
heat power, gas, telecommunications, postal services, banking, transportation,
petrochemicals, etc.

7.1.2 ZigBee

The Chinese manufacturers are on a relatively a small scale and in the begin-
ning stage of M2M industry development. Major players currently focus on
the development of mesh connection and proprietary protocol stacks. With the

© 2016 by Taylor & Francis Group, LLC

Networking Technologies for CPS � 135

ISM Band Frequency Range Center Frequency

1 6.765 MHz - 6.795 MHz 6.780 MHz

2 13.553 MHz - 13.567 MHz 13.560 MHz

3 26.957 MHz - 27.283 MHz 27.120 MHz

4 40.660 MHz - 40.700 MHz 40.680 MHz

5 433.050 MHz - 434.790 MHz 433.920 MHz

6 2.400 GHz - 2.500 GHz 2.450 GHz

7 5.725 GHz - 5.875 GHz 5.800 GHz

8 24.000 GHz - 24.250 GHz 24.125 GHz

9 61.000 GHz - 61.500 GHz 61.250 GHz

10 122.000 GHz - 123.000 GHz 122.500 GHz

11 244.000 GHz - 246.000 GHz 245.000 GHz

Figure 7.2: ISM (industrial, scientific, and medical) band in China.

development of ZigBee technology, especially the development of application
profiles, more Chinese companies tend to join the camp of ZigBee.

7.1.3 RFID

China is a follower in RFID industry. However, the future demand of RFID is
huge. The RFID driven M2M applications could be the most dominant and
popular in China. It is widely used in logistics and intelligent transportation.
Some key RFID manufacturers are listed in Figure 7.3.

It is worth noting that China has a well-developed RFID value chain.
There are also related R&D and testing institutes, such as the Institute of
Automation, Fudan Auto ID lab, etc. Moreover, more than 200 companies and
research institutes are working on RFID middleware, data management, public
information service platform and applications. Key solutions available in the
market are item identification, information collection, control and processing,
and near-field communication.

7.1.4 Bluetooth

It is rare to see Bluetooth enabled M2M applications in China. However, there
are research institutes working on BLE (Bluetooth low energy) for sensor
applications. Nokia Research Beijing is a leading research institute in Blue-
tooth technology. Their current focus is on BT 4.0 which enables connectivity

© 2016 by Taylor & Francis Group, LLC

136 � Cyber Physical Systems: Architectures, Protocols, and Applications

Key
Players

Communication
Module

Embedded
OS

M2M enabled
features

Clients of
module

Applications Maturity of market

Huawei LTE/WCDMA/G
SM/TD/EVDO/
WiMax

Linux Low energy cost, low
data rate, dedicated
data management
(GPRS initiate, sleep
and wakeup).

Operators, DTU
vendor, device
vendor, system
integrator

Smart metering,
telematics, laptop,
notebook

Products available in
EU market for SM and
telematics; no
available M2M
products in China.

ZTE WCDMA/GSM/T
D/EVDO

Linux Low energy cost, low
data rate, dedicated
data management
(GPRS initiate, sleep
and wakeup).

Operators, DTU
vendor, device
vendor, system
integrator

Smart metering,
telematics, ebook,
laptop,
Chongqiong tax
system, ZTE
logistics

Early stage in China,
high cost.

SIMcom GSM/GPRS/ED
GE/WCDMA/HS
DPA

Linux Small size, high
speed GPRS data
transmission built for
high-volume M2M
applications.

Device vendor,
system
integrator

E-health,
telematics, security
monitoring,smart
grid, mobile POS

Customized solution
and ODM service with
limited device portfolio.

Fibocom GSM/GPRS/UM
TS/GPS

Linux Not known Device vendor Telematics
(preparing), electric
automobile
charging
infrastructure,
smart grid, wireless
POS, E-health

Mainly provide 2G and
GPS modules,
supplier of M2M
wireless
communication and
LBS(location-based
service) solutions

Figure 7.3: Comparison of SIM modules manufacturers.

between small devices and the mobile phone providing a complete and seam-
less data chain from sensors to Web services.

7.2 Data Connectivity

Data connectivity plays a key role in bridging sensing networks with carrier
networks. After scouting China’s market, we categorize our interested solu-
tions into two domains: 2G/3G SIM modules and M2M gateway.

7.2.1 2G/3G SIM Modules

With the rapid growth of 3G wireless networks in China, it is straightforward
and relatively low cost to develop SIM card based M2M applications and
therefore the dedicated communication modules will play an important role
in China’s M2M development. Figure 7.3 gives an overview of key Chinese
players who are capable of providing SIM modules for M2M applications.

Huawei

Huawei primarily works with 3rd party device vendors or system integra-
tors on delivering M2M solutions to operators in specific projects. They are
focusing on two target M2M markets: 1) Smart metering — SIM module and

© 2016 by Taylor & Francis Group, LLC

Networking Technologies for CPS � 137

hub/DTU (downlink ZigBee, uplink GPRS) for UK smart energy. 2) Telem-
atics — Service platform with China Unicom. Huaweis modules make up 50%
of the post-install market (about 2 million units shipped for telematics in 2010.

ZTE

Module products are mainly provided for three kinds of customers: data
transport utility (DTU) vendor, device vendor, and system integrator. Avail-
able products include telematics with Ford Motor, ebook with Elisa. It is also
used in Chongqing tax system and ZTEs own logistics.

SIMcom

SIMcom is dedicated to wireless module solutions using multiple com-
munication technologies such as GSM/GPRS/EDGE/WCDMA/HSDPA and
provide standard modules to device vendors and system integrators for M2M,
wireless local loop (WLL), notebook, GPS, etc. Partners include Qinghua-
tongfang for China Mobile. They also provide customized solutions and ODM
services with a limited device portfolio, such as industrial modem/gateway,
DTU, tracker, etc., for China Mobile, Vodafone tracker RFQ, and T-Mobile.

Fibocom

Fibocom produces wireless GSM/GPRS/UMTS modules and GPS mod-
ules. They have complete testing methods for M2M modules. They started
to collaborate with Motorola in 2000 (distributor/service center/ODM) and
also have a partnership with EMS (a Chinese express company) and BYD (a
Chinese auto company). Overall, we conclude that M2M SIM modules from
Chinese manufacturers are primarily shipped to the overseas M2M market.
The M2M market in China is not mature and only has a few applications on
a very small scale.

© 2016 by Taylor & Francis Group, LLC

Chapter 8

Machine-to-Machine
Communications for
CPS

Zhengguo Sheng

University of Sussex, U.K.

Hao Wang and Daqing Gu

France Telecom Orange Labs, China

CONTENTS

8.1 Introduction . 140
8.2 Related Works . 141
8.3 A RESTful Protocol Stack for WSN . 142

8.3.1 6LoWPAN . 142
8.3.2 RPL . 144
8.3.3 CoAP . 145
8.3.4 HTTP-CoAP Protocol Implementation 147

8.3.4.1 Direct Access . 147
8.3.4.2 Proxy Access . 147

8.4 Prototyping Implementation . 148
8.4.1 Sensor Node . 148
8.4.2 RESTful Gateway . 149

8.4.2.1 libcoap Layer . 151
8.4.2.2 CoAP Request/Response Layer 152

139

© 2016 by Taylor & Francis Group, LLC

140 � Cyber Physical Systems: Architectures, Protocols, and Applications

8.4.2.3 HTTP-CoAP Mapping Layer 153
8.5 Performance Evaluation . 154

8.5.1 System Configuration . 154
8.5.2 RTTs and Packet Loss Evaluations of RPL Routing . . . 154
8.5.3 RESTful Method to Retrieve Sensor Resources 155

8.6 Summary . 157

Besides networking technology, the Machine-to-Machine Communications is
also one of the enabling technologies of CPS, and in this chapter we focus on
this topic. Specifically, we are looking at the open technologies such as IPv6
based solution that can be integrated into CPS and enable wireless sensor
communications.

8.1 Introduction

Technically speaking, current CPS solutions can be categorized as non-IP-
based and IP-based solutions. Most off-the-shelf solutions belong to the for-
mer, especially for some well-known standard alliances, such as ZigBee [174],
Z-Wave [175], INSTEON [176], and WAVE2M [177], etc. However, most of
these non-IP solutions are isolated within their own verticals, which hinders
the CPS development due to the incompatible nature across heterogeneous
communication systems.

Motivated by the fact that the TCP/IP protocol is the de facto standard
for computer communications in today’s networked world, IP-based solutions
could be the future for CPS networks. In order to tackle the technical chal-
lenges, such as extensive protocol overheads against memory and computa-
tional limitations of sensor devices, Internet Engineering Task Force (IETF)
takes the lead in standardizing communication protocols for resource con-
strained devices and developing a number of Internet protocols, including
Routing Protocol for Low Power and Lossy Network (RPL) [178] and Con-
strained Application Protocol (CoAP) [179], etc. Besides, IP Smart Object
Alliance (IPSO)[180] also actively promotes IPv6 embedded devices for M2M
applications. Although it is still in its early stage to be commercialized, there
is already a significant number of IP-based WSN solutions as demonstrated
by a growing number of products and systems.

We are looking at open technologies that can be integrated into CPS and
the IPv6-based solution is a promising one. In order to well maintain sensor
devices as well as facilitate CPS application development, for example, mon-
itoring the performance of sensor devices or sending commands to a sensor
node, CPS authorities should be able to provide a reliable and efficient way to
remotely monitor and control WSN without consuming significant resources.
We take an approach based on the Representation State Transfer (REST)
paradigm [77] in which a lightweight Web server can be embedded in resource

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 141

constrained sensor devices. In essence, the proposed method is not only to in-
tegrate CPS devices into the network, but also to connect them to the “Web.”

The following summarizes our contributions and key results:

� We implement the full IPv6 protocol stack on wireless sensor nodes
to enable wireless connectivity among sensor devices. Specifically, the
6LowPAN/IPv6/RPL/UDP/CoAP protocol stack has been deployed
on IEEE 802.15.4 radio platform.

� We integrate IEEE 802.15.4 connectivity into an open-platform gate-
way and implement the HTTP-CoAP proxy implementation to the
OpenWrt, an open and Linux-based operating system of the gateway,
to realize remote access from an ordinary IP terminal to IPv6 sensor
devices.

� We propose two alternative access methods to enable REST-based ap-
plications with sensor devices. In the direct access method, the user can
directly visit any sensor device by sending a CoAP request. Whereas for
the proxy access method, the user can use the normal HTTP method
to visit sensor devices, the gateway needs to help convert the HTTP
request to the CoAP request and vise versa.

The remainder of this chapter is organized as follows. A survey of related
works is provided in Section 8.2. The RESTful protocol stack used in WSN is
introduced and analyzed in Section 8.3. The prototype implementation of the
remote access schemes is presented in Section 8.4 and performance evaluation
results are shown in Section 8.5. Finally, concluding remarks are given in
Section 8.6.

8.2 Related Works

Recent technology trends in the Web Services (WS) are primarily separated as
Big Web Services (or WS-*) and RESTful Web Services. Cesare et al. in [181]
compare these two architecture choices and argue that the RESTful WS can
create a loosely coupled system which is better suited for simple and flexible
integration scenarios, whereas WS-* can provide more advanced quality-of-
service for enterprise level usages.

More recent works are dedicated to developing REST-style CPS systems
to enable easy access from application servers to wireless sensor devices, since
the REST-style device would not require any additional API or descriptions
of resources/functions. REST, a lightweight Web service implementation, is a
general design style of Internet resource access protocol. It provides a design
concept in which all the objects in the Internet are abstracted as resources.
Each resource corresponds to a unique identity. Through a general interface,
all the operations on resources do not change the identity as they are stateless.

© 2016 by Taylor & Francis Group, LLC

142 � Cyber Physical Systems: Architectures, Protocols, and Applications

REST style can make applications as sharable, reusable, and loose coupling
services. The uniform operation and interaction mechanisms on resources can
help developers or decision makers to quickly react to market changes.

Weijun et al. in [182] propose an adaptation layer to integrate the RESTful
Web service infrastructure which can enable connectivity of embedded devices
with mobile Internet applications. Vlad in [183] proposes a resource discovery
mechanism based on RESTful principles that enables a plug and play experi-
ence in the Web of Things. Dominique et al. in [184] and [185] also propose
a RESTful mechanism to integrate wireless energy monitors with application
servers to build mashup applications. However, most of the embedded devices
in the above literature are not IP based, which means that a multiprotocol
translation gateway is needed. As discussed in [11], the network protocol trans-
lation can bring more complexity than just a packet format conversion, which
usually involves semantics translation between different mechanisms and logic
for routing, quality of service, and security, etc.

There are recent papers focusing on the implementation of IPv6 protocol
stacks on various hardware platforms. Thomas et al. in [186] demonstrate
an intelligent container testbed where the CoAP protocol is implemented on
the embedded operating system TinyOS [187]. Moreover, a couple of other
implementations of CoAP are also available on the Contiki platform [188, 189,
190]. However, most of these cases are only for the purpose of connectivity
evaluations on different operation platforms and usually assume that a virtual
gateway, which is usually an IEEE 802.15.4 USB dongle connected to a PC,
is mounted as a root node to collect upstream packets from leaf nodes.

Different from the above works, our contribution in this chapter is that
we consider IPv6 protocol implementation on sensor devices as well as an
integrated gateway solution to allow any normal Internet devices (e.g., PC
and smartphone) to visit an IPv6 sensor device. Specifically, we integrate
real-world things into the existing Web by turning real objects into RESTful
resources that can be retrieved directly over HTTP.

8.3 A RESTful Protocol Stack for WSN

We employ the IPv6-based protocol stack for wireless sensor networks and
some IP protocols developed for resource constrained networks are introduced
as follows.

8.3.1 6LoWPAN

Since the beginning of IETF research on CPS related technologies, IPv6 has
been selected as the only choice to enable wireless communication. Its key
features such as universality, extensibility, and stability, etc., have attracted a
lot of attention and will be the de facto solution for future Internet technology.

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 143

Sensor

802.15.4PHY

802.15.4 MAC

IPv6

TCP/UDP

6LowPan

Sensor

802.15.4PHY

802.15.4 MAC

IPv6

TCP/UDP

6LowPan

Figure 8.1: The position of 6LowPAN in the IPv6 protocol stack.

In order to enable IP connectivity in resource constrained sensor networks, the
IPv6 over low-power WPAN (6LowPAN) working group is established and
works on protocol optimization of IPv6 over networks made of IEEE 802.15.4
[191]. Specifically, the 6LoWPAN protocol discusses how to apply IPv6 to the
MAC layer and PHY layer of IEEE 802.15.4.

In fact, there are two key challenges to running IPv6 over the IEEE
802.15.4 network. On the one hand, considering that the maximum frame
size supported by IEEE 802.15.4 is only 127 bytes and there are significant
header overheads occupied by layered protocols (e.g., MAC layer header, IPv6
header, security header and transmission layer), the payload size available for
the application layer is very limited. On the other hand, since the minimum
value of maximum transmission unit (MTU) specified by IPv6 is 1280 bytes
(RFC 2460), if MTU supported by the under layer (i.e., IEEE 802.15.4) is
smaller than this value, the data link layer must fragment and reassemble
data packets. In order to address these issues, 6LoWPAN designs an adapta-
tion layer right above the data link layer to tail the IPv6 packet into small
pieces required by the under layer. Moreover, 6LoWPAN specifies stateless
compression methods of IP header in order to reduce the overhead of IPv6.
The position of 6LoWPAN in the IPv6 protocol stack is shown in Figure 8.1.

It is worth noting that the fundamental of header compression methods is
to remove the redundant information from the header by using compression
encoding schemes. Although the IPv6 header takes 40 bytes, most information
bits can be compressed in the network sensing layer. The compression methods
for each field of IPv6 header are as follows:

1. Version (4 bits): The value is 6. It can be omitted in the IPv6 network.

2. Traffic Class (8 bits): It can be compressed by compression encoding
methods.

3. Flow Label (20 bits): It can be compressed by compression encoding
methods.

© 2016 by Taylor & Francis Group, LLC

144 � Cyber Physical Systems: Architectures, Protocols, and Applications

4. Payload Length (16 bits): It can be omitted because the length of IP
header can be obtained through the payload length field in the MAC
header.

5. Next Header (8 bits): It can be compressed by compression encoding
methods if the next header is assumed to be one of UDP, ICMP, TCP,
or extended header.

6. Hop Limit (8 bits): The only field that cannot be compressed.

7. Source Address (128 bits): It can be compressed by omitting prefix or
IID (interface identifier).

8. Destination Address (128 bits): It can be compressed by omitting prefix
or IID.

In order to implement the stateless compression on IPv6 header, 6LoW-
PAN group specifies two compression algorithms: LOWPAN HC1 (RFC4944)
[192] and LOWPAN IPHC (RFC6282) [193]. HC1 algorithm is applicable to
networks using a link-local address. The prefix of node’s IPv6 address is fixed
as FE80::/10 and IDD can be obtained by MAC address. Since this algorithm
cannot efficiently compress global/routable address or broadcast address, it
cannot be used to connect the 6LoWPAN with the Internet. LOWPAN IPHC,
however, is proposed to improve the efficiency of compressing routable address.

Both LOWPAN HC1 and LOWPAN IPHC define an 8-bit dispatch field
after the MAC header. Its values shown in Table 8.1 determine the specific
format of type-specific header and algorithm. For example, if the first 8 bits is
01000010, the following field is the header corresponding to LOWPAN HC1
algorithm; if the first 3 bits is 011, the following field is the header correspond-
ing to LOWPAN IPHC algorithm.

Dispatch field is immediately followed by the type-specific header which
consists of some indicating bits. The indicating bits indicate a specific com-
pression scheme for IPv6. Readers can refer to RFC4944 for more details.

In addition to stateless IPv6 header compression, 6LoWPAN also develops
other relevant standards including the scheme supporting mesh routing, sim-
plified IPv6 neighbor discovery protocol, use cases and routing requirements.
In summary, the 6LoWPAN working group is the fundamental of IETF on
CPS communications; its contributions significantly promote the establish-
ment and research work of other working groups.

8.3.2 RPL

IETF Routing over Lossy and Low-power Networks (RoLL) working group
was established in February 2008. It focuses on the routing protocol design
and is committed to standardizing the IPv6 routing protocol for lossy and
low power networks (LLN). Its tasks start with the routing requirements of

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 145

Table 8.1: 6LoWPAN Dispatch Field

Type Header type
00 xxxxxx NALP - Not a LoWPAN frame
01 000001 IPv6 - Uncompressed IPv6 Addresses
01 000010 LOWPAN HC1 - LOWPAN HC1 compressed IPv6
. . . Reserved
01 010000 LOWPAN BC0 - LOWPAN BC0 broadcast
. . . Reserved

01 XXXXXX IPv6 header compressed by LOWPAN IPHC
01 000000 ESC: indicating more headers to come
10 xxxxxx MESH - Mesh Header

11 000xxx FRAG1- Fragmentation Header (first)
11 100xxx FRAGN - Fragmentation Header (subsequent)

various application scenarios. So far, the routing requirements of four appli-
cation scenarios have been standardized, i.e., home automation (RFC5826),
industrial control (RFC5673), urban environment (RFC5548), and building
automation (RFC 5867).

In order to develop suitable standards for lossy and low-power networks,
RoLL first provides an overview of existing routing protocols for wireless sen-
sor networks. The literature [194] analyzes the characteristics and shortcom-
ings of the relevant standards and then discusses the quantitative metrics for
constructing routing in the routing protocol. RFC6551 [195] introduces two
kinds of quantitative metric: node metrics including node state, node energy,
and hop count, and link metrics including throughput, latency, link reliability,
expected transmission count (ETC), and link colour object. In order to assist
dynamic routing, nodes can design objective function to determine the rule
to select a path based on the quantitative metrics.

Based on the results of routing requirements and quantitative static link
metrics, RoLL develops routing protocol for LLN (RPL), i.e., RFC6550 [196].
RPL supports three kinds of traffic flow including point-to-point (between
devices inside the LLN), point-to-multipoint (from a central control point to
a subset of devices inside the LLN), and multipoint-to-point (from devices
inside the LLN toward a central control point). RPL is a distance-vector rout-
ing protocol, in which nodes construct a Directed Acyclic Graph (DAG) by
exchanging distance vectors. Through broadcasting routing constraints, DAG
root node (i.e., central control point) filters out the nodes that do not meet
the constraints and selects the optimum path according to the metrics.

8.3.3 CoAP

Constrained Application Protocol (CoAP), specified by IETF CoRE working
group [179], is a specialized Web transfer protocol for resource constrained

© 2016 by Taylor & Francis Group, LLC

146 � Cyber Physical Systems: Architectures, Protocols, and Applications

Application

Request/Responses

Messages

UDP

CoAP

Figure 8.2: CoAP protocol stack.

nodes and networks. CoAP conforms to REST style. It abstracts all the objects
in the network as resources. Each resource corresponds to a unique Universal
Resource Identifier (URI) from which the resources can be operated stateless,
including GET, PUT, POST, DELETE, and so on.

Strictly speaking, CoAP is not a HTTP compression protocol. On the
one hand, CoAP realizes a subset of HTTP functions and is optimized for
constrained environment. On the other hand, it offers features such as built-in
resource discovery, multicast support, and asynchronous message exchanges.

Unlike HTTP, CoAP adopts datagram-oriented transport protocols, such
as UDP. In order to ensure reliable transmission over UDP, CoAP introduces
a two-layer structure which is shown in Figure 8.2. The messaging layer is
used to deal with asynchronous interactions using UDP. Specifically, there are
4 kinds of CoAP message:

1. Confirmable (CON): ACK is needed.

2. Non-confirmable (NON): ACK is not needed.

3. Acknowledgment (ACK): To represent that a confirmable message is
received.

4. Reset (RST): To represent that a confirmable message is received but
can’t be processed.

The Request/Response interaction layer is used to transmit resource oper-
ation requests and the request/response data. As a summary, CoAP has the
following features:

� Constrained Web protocol fulfilling M2M requirements.

� Asynchronous message exchanges.

� Low header overhead and parsing complexity.

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 147

� URI and content-type support.

� Simple proxy and caching capabilities.

� Built-in resource discovery.

� UDP binding with optional reliability supporting unicast and multicast
requests.

� A stateless HTTP-CoAP mapping, allowing proxy to provide access to
CoAP resources via HTTP in a uniform way and vice versa.

8.3.4 HTTP-CoAP Protocol Implementation

Applying REST-style network structure in WSN can largely facilitate connec-
tion between WSN and the Internet. By applying CoAP protocol on wireless
sensor devices, Internet services can access wireless sensor networks as re-
sources directly or via gateway as a proxy. Basically, there are two methods
to enable remote access from an Internet client to a sensor device.

8.3.4.1 Direct Access

Direct access means that the Internet users access WSN through a gateway
which only implements protocol conversion between the IPv6 network layer
and 6LoWPAN, but does not process the upper layers protocols (e.g., CoAP).
As an example shown in Figure 8.3 (a), a sensor node in WSN can be visited
through an IPv6 address and the gateway only needs to implement conver-
sion between IPv6 and 6LoWPAN, which significantly reduces the processing
overhead.

8.3.4.2 Proxy Access

Proxy access means that Internet users access WSN through a proxy which
can convert an incompatible data format from outside networks into a WSN
compatible data format. For example, in our case, the proxy can have functions
of protocol conversion from a HTTP request to a CoAP request, and vice
versa, payload conversion, and blockwise segmentation of large data packet
(e.g., image), etc.

The advantage of this method is that current Internet services can eas-
ily access WSN resources without any changes, because of the existing proxy
gateway. Moreover, since the low power sensor mode cannot serve TCP re-
quests efficiently, the proxy mechanism can buffer and process the requests to
avoid TCP time out. However, the protocol conversion increases the complex-
ity of the gateway and thereafter affects communication efficiency. Figure 8.3
(b) illustrates the protocol conversion between HTTP and CoAP via gateway.

© 2016 by Taylor & Francis Group, LLC

148 � Cyber Physical Systems: Architectures, Protocols, and Applications

(a) Direct access

(b) Proxy access

Figure 8.3: Direct access vs. proxy access.

8.4 Prototyping Implementation

In this section, we present our prototyping system to illustrate the implemen-
tation of the RESTful access methods to IPv6 wireless sensor devices. Specif-
ically, we choose IPv6 enabled wireless sensor devices as the representative of
the embedded devices. A RESTful gateway supports both Wi-Fi interface and
IEEE 802.15.4 communication. The Web resources located on sensor devices
are accessible through the RESTful APIs. The system architecture is shown
in Figure 8.4, where a personal computer acts as a client to retrieve sensor
resources via the RESTful gateway.

8.4.1 Sensor Node

We deploy wireless sensor devices to monitor air temperature and humidity,
detect movement, and take photos. All these sensor platforms are equipped
with the same ATmega1284P MCU and AT86RF231 transceiver to support
250kbps, 2.4GHz, and IEEE 802.15.4 radio. To support IPv6 connectivity, all
the sensor devices are running Contiki v2.6 operating system and implement
6LowPAN, IPv6, and RPL protocols based on IEEE 802.15.4. The Web service
running on the sensor devices relies on the application protocol CoAP and uses
version 06 of the draft. A snapshot of a sensor platform is illustrated in Figure
8.5 and the detailed technical specifications are shown in Table 8.2.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-001.jpg&w=264&h=87
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-002.jpg&w=264&h=87

Machine-to-Machine Communications for CPS � 149

Figure 8.4: System architecture.

Figure 8.5: A snapshot of a sensor platform.

8.4.2 RESTful Gateway

To ease the access from Internet applications to sensor resources, especially
for those Internet users who cannot speak CoAP, we integrate IEEE 802.15.4
connectivity into an open-platform gateway and port the HTTP-CoAP proxy
implementation to the OpenWrt, the operation system of the gateway, to

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-003.jpg&w=335&h=224
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-004.jpg&w=142&h=131

150 � Cyber Physical Systems: Architectures, Protocols, and Applications

Table 8.2: Technical Specifications of Sensor Device

Parameters Note

CPU Performance

Internal storage 128KB

External storage 16KB

EEPROM 4KB

Serial communication UART / USART TTL transmission level

A/D converter 10-bit ADC 8 channels, 0-3V input

Other interfaces Digital I/O, I2C,SPI

Maximum current 18mA Work mode

2uA Sleep mode

RF Transceiver

Frequency band 2400-2485MHz ISM global free band

Data rate 250Kbps/ 1000Kbps/
2000Kbps

RF power 3.2 dBm

Receiving sensitivity −104 dBm

Adjacent channel 36 dBc +5M Channel bandwidth
suppression

34 dBc -5M Channel bandwidth

Outdoor transmission ≥ 300m

Indoor transmission ≥ 10m

Maximum current 12mA Receiving mode

14mA Tx -3dBm

Extended interface 51 pins

realize remote access from an ordinary IP terminal to an IPv6 sensor device.
Figure 8.6 gives the hardware architecture of the RESTful gateway. The tech-
nical specifications are also provided in Table 8.3.

HTTP-CoAP (HC) proxy provides translation and mapping between
HTTP and CoAP protocol. CoAP can be directly mapped to HTTP, be-
cause CoAP actually implements a subset of HTTP functions. The mapping
is performed only at the request/response layer of the CoAP protocol and is
invisible to the messages layer. There are two kinds of mapping: CoAP-to-
HTTP and HTTP-to-CoAP. In our case, we only realize the HTTP-to-CoAP
mapping which is implemented by specifying CoAP-URI as the request address
or transmitting HTTP request to the HTTP-CoAP proxy. It is worth noting
that, compared to CoAP-to-HTTP mapping, the HTTP-to-CoAP mapping is
more complex, since it is necessary to determine whether to ignore the content
or report an error by checking unsupported HTTP request methods, response
codes, content-types, and options.

In our prototype gateway, the HC proxy is implemented based on libcoap
[197] which is an open-source C-Implementation of CoAP and conforms to

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 151

BROADCOM
GCM6358
MIPS CPU

WSN radio
Radio: At86RF231
MCU: Atmega1287

802.15.4

Ethernet portUSB port

Rechargeable
battery

RESTful gateway

WiFi Radio
BROADCOM

BCM4318
802.11b/g

RAM 32MB
FLASH 16MB

Figure 8.6: Hardware architecture of gateway.

Table 8.3: Technical Specifications of Gateway

Parameters Note
CPU frequency 300MHz

RAM 32MB
Flash 16MB

Serial communication UART / USART TTL Transmission level

A/D converter 10-bit ADC 8 channels, 0-3V input
USB HOST 2

RJ45 4
WiFi 1 IEEE 802.11abg

OS OpenWrt v12.09-beta2
Protocol IPv6, IPv4

GPL v2 or higher licenses. The version we adopted is 2.1.0 with support of
coap-06.

The interaction process of the HC proxy is shown in Figure 8.7. Specifically,
for each of the HC proxy layers, we have the following implementations:

8.4.2.1 libcoap Layer

libcoap implements the CoAP messages layer based on UDP. It defines CoAP
message structure and methods to operate CoAP messages.

© 2016 by Taylor & Francis Group, LLC

152 � Cyber Physical Systems: Architectures, Protocols, and Applications

HTTP-CoAP Mapping

HTTP Client

CoAP Request/Response

libcoap

CoAP Server

HTTP Request

CoAP Request

CoAP Message

CoAP Message CoAP Message

CoAP Message

CoAP Response

HTTP Response
HC Proxy

UDP/IPv6

TCP/IPv4/IPv6

Figure 8.7: Interaction process of HC proxy.

8.4.2.2 CoAP Request/Response Layer

CoAP Request/Response layer encapsulates the data structure and methods
relevant to CoAP requests and responses. It is to transmit CoAP requests in
the form of CoAP messages through the messages layer and generate CoAP re-
sponse based on received CoAP messages. Because the CoAP messages layer
adopts unreliable UDP, certain issues need to be solved in order to imple-
ment a reliable transmission, including CoAP message acknowledge, message
retransmission for timeout, message process, asynchronous message process,
and segmented message process, etc. The following code header is provided to
illustrate the implementation of CoAP Request/Response.

1 /∗ r e que s t . h ∗/
2

3 typedef struct {
4 unsigned char msgtype ;
5 method t method ;
6 c o a p l i s t t ∗ o p t l i s t ;
7 s t r proxy ;
8 unsigned short proxy port ;
9 s t r payload ;

10 int ready ;
11 char l p o r t s t r [NI MAXSERV] ;
12 c o a p u r i t u r i ;
13 int f l a g s ;

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 153

14 coap b l o ck t block ;
15 unsigned int wai t seconds ; /∗ d e f a u l t t imeout in

seconds ∗/
16 c o a p t i c k t max wait ; /∗ g l o b a l t imeout (

changed by s e t t imeou t ()) ∗/
17 unsigned int obs seconds ; /∗ d e f a u l t ob serve time

∗/
18 c o a p t i c k t obs wai t ; /∗ t imeout f o r current

s u b s c r i p t i o n ∗/
19 } c o a p r e q u e s t t ;
20

21 void coap request method (c o a p r e q u e s t t ∗ request , char
∗ arg) ;

22 void c o a p r e q u e s t u r i (c o a p r e q u e s t t ∗ request , char ∗
arg) ;

23 int coap reques t proxy (c o a p r e q u e s t t ∗ request , char ∗
arg) ;

24 void coap opt i on conten t type (c o a p r e q u e s t t ∗ request ,
char ∗arg , unsigned short key) ;

25 int c o a p o p t i o n b l o c k s i z e (c o a p r e q u e s t t ∗ request , char
∗ arg) ;

26 void c o a p o p t i o n s u b s c r i b e (c o a p r e q u e s t t ∗ request ,
char ∗ arg) ;

27 void coap opt ion token (c o a p r e q u e s t t ∗ request , char ∗
arg) ;

28 int coap send reque s t (c o a p r e q u e s t t ∗ request , void ∗
context) ;

29

30 void c o a p i n i t r e q u e s t (c o a p r e q u e s t t ∗ r eque s t) ;
31 void c o a p r e g i s t e r r e q u e s t h a n d l e r (int (∗ handler) (

coap pdu t ∗pdu , void ∗ context)) ;
32 void c o a p r e g i s t e r r e q u e s t d a t a h a n d l e r (int (∗ handler)

(const unsigned char ∗data , s i z e t len , void ∗
context)) ;

8.4.2.3 HTTP-CoAP Mapping Layer

It is to implement mapping from HTTP requests to CoAP requests and vice
versa. When converting a HTTP request to a CoAP request, the HC proxy
needs to convert the HTTP request method, URI, header/option, and payload,
respectively. If a proxy encounters an error, it has to generate the correspond-
ing error response. The C function defined for handling the HTTP-CoAP
mapping is also provided as follows.

1 int coap response map code (int code) ;
2 char∗ coap response map content type (int content type) ;
3

© 2016 by Taylor & Francis Group, LLC

154 � Cyber Physical Systems: Architectures, Protocols, and Applications

4 BOOL coap proxy handler (SOCKET loca lwebuser , char ∗
szL ineBuf f e r , int nLineBuf fer)

8.5 Performance Evaluation

In this section, we provide evaluation results of the prototype system. Espe-
cially, we evaluate the performance from two layers: the routing layer where
the round trip times (RTTs) and packet loss rate of multi-hop transmission in
wireless sensor networks are measured and the application layer where Web
resources of sensor devices are retrieved using RESTful methods.

8.5.1 System Configuration

Our prototype system is composed of three different sensor devices, one HC
proxy gateway, and one PC for initiating tests. In order to ease the setup of
WSN in a multi-hop fashion, we manually assign IPv6 addresses for the sensor
devices as follows:

Camera sensor 2001:2::19
Humidity & temperature sensor 2001:2::14
Approach detecting sensor 2001:2::16

We deploy the prototype system in an open office area. The HC proxy
gateway and sensor devices are connected wirelessly via IEEE 802.15.4 and
using channel 26. The PC client is connected to the gateway through the
Wi-Fi channel. The network topology is built with a maximum number of 2
hops, where the camera sensor and humidity/temperature sensor are directly
connected to the gateway with one hop distance, and the approach detecting
sensor is the leaf node of the humidity/temperature sensor and it is two hops
away to the gateway. The distance of each hop is around 10 meters. Figure
8.8 provides the network topology of the prototype system.

8.5.2 RTTs and Packet Loss Evaluations of RPL
Routing

To cope with large-scale deployment and low cost requirements of WSN, wire-
less sensor networks should be capable of forming multi-hop transmissions
among peer sensor devices. In this evaluation, the RTTs and packet loss rate
in single-hop and multi-hop scenarios are measured by using RPL routing
protocol. After the setup of the system, we use the simple ping commands
to evaluate the RTTs from the PC client to the humidity/temperature sen-
sor and approach detecting sensor, respectively. The payload size for each
transmission packet is 32 bytes and the RTTs results are averaged over 100

© 2016 by Taylor & Francis Group, LLC

Machine-to-Machine Communications for CPS � 155

Figure 8.8: Network topology of the prototype system.

measurements. Figure 8.9 (a) shows the routing table via SSH client. As can
be seen from Figure 8.9 (b), for one-hop transmission, the average RTTs and
packet loss rate are 24 ms and 18%, respectively. When the routing extends to
two hops, the results as shown in Figure 8.9 (c) are degraded to 43 ms average
RTTs and 20% packet loss.

There are several factors that may cause the performance losses. Since
the prototype system is exposed in a highly polluted environment with more
than 10 Wi-Fi access points jamming the IEEE 802.15.4 radio, some of the
packets may be interfered with and overwhelmed by nearby Wi-Fi signals.
Furthermore, the hardware constraints and protocol configurations also affects
the routing performance.

8.5.3 RESTful Method to Retrieve Sensor Resources

To drive CPS applications, we initiate a trial by ‘GET’ a JEPG picture from
the camera sensor device. Specifically, we use both proxy access and direct
access methods to retrieve the sensor data via the gateway. Figure 8.10 (a)
shows the proxy access result by sending a HTTP GET request along with the
URI http://[2001:2::19]/camera. The HC proxy then converts the HTTP
request to CoAP request and forwards the request to the camera sensor. In
contrast, Figure 8.10 (b) shows the direct access result by sending a CoAP re-
quest coap://[2001:2::19]:5683/camera directly from the CoAP browser
[198] on the PC. It is worth noting that since the picture takes about 27
kBytes, which exceeds the payload size defined by the CoAP client, the CoAP
protocol adopts the blockwise transfer by dividing the response into 64-byte
blocks in such a way that the Web server can handle each block transfer sep-
arately, with no need for a connection setup or other server-side memory of
previous block transfers. In summary, both methods show acceptable perfor-
mances.

© 2016 by Taylor & Francis Group, LLC

http://[2001:2::19]/camera
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-008.jpg&w=263&h=99

156 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 8.9: Routing table, RTTs, and packet loss evaluations.

(a) Proxy access using HTTP (b) Direct access using CoAP

Figure 8.10: HTTP vs. CoAP methods.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-009.jpg&w=264&h=214
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-010.jpg&w=138&h=146
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-011.jpg&w=142&h=141
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-11&iName=master.img-011.jpg&w=142&h=141

Machine-to-Machine Communications for CPS � 157

8.6 Summary

We have implemented the 6LowPAN/IPv6/RPL/CoAP protocol stack on
IEEE 802.15.4 radio platform to enable wireless sensor communications. Fur-
thermore, by integrating IEEE 802.15.4 connectivity and HTTP-CoAP proxy
into the open-platform gateway, we have realized remote access from a PC to
an IPv6 sensor device. Through the performance evaluations, we have shown
the IP-based solution is promising to drive IOT development. In future work,
we plan to design a more robust and reliable IP solution for CPS. Especially,
how to deploy large-scale networks with decent performance is a critical issue
and we need to continue to optimize both hardware and software implemen-
tations. Moreover, other issues, such as device management and control of
sensor devices, can also be explored via RESTful methods.

© 2016 by Taylor & Francis Group, LLC

Chapter 9

Mobile Cloud
Computing for CPS

Chi Harold Liu

Beijing Institute of Technology, China

CONTENTS

9.1 Introduction . 160
9.2 MCC Definition . 162
9.3 Challenges . 163

9.3.1 Managing the Task Offloading . 163
9.3.2 Encountering Heterogeneity . 166
9.3.3 Enhancing Security and Protecting Privacy 169
9.3.4 Economic and Business Model . 171

9.4 Future Directions . 172
9.4.1 Managing the Task Offloading . 172

9.4.1.1 Scalability in the Device Cloud 172
9.4.1.2 Making the Offloading Decision Process

Transparent to the Application Developer 173
9.4.1.3 Context Awareness on Trading Off the

Optimization between Performance
Improvement and Energy Saving 173

9.4.1.4 Tasks Distributing among Sensors 173
9.4.1.5 Offloading Decision Making in a Hybrid

Cloud . 174
9.4.2 Encountering Heterogeneity . 174

159

© 2016 by Taylor & Francis Group, LLC

160 � Cyber Physical Systems: Architectures, Protocols, and Applications

9.4.2.1 Efficient Middleware . 174
9.4.2.2 Dynamic Adaptive Automated System 174
9.4.2.3 Mobile Big Data . 175

9.4.3 Enhancing Security and Privacy . 175
9.4.3.1 Finding Protection Solutions That Are

More Efficient Is Still a Research Topic . . . 175
9.4.3.2 Context Awareness on Dynamic Security

Settings . 175
9.4.3.3 Trade Off between the Functional

Performance Degradation and Security and
Privacy Requirements . 176

9.4.4 Economic and Business Models . 176
9.5 Summary . 177

Recently, the evolution of mobile cloud computing (MCC) has attracted sig-
nificant attention from both academia and industry. Similar to networking
and machine-to-machine communications, it is more and more considered as
a critical method to power and boost the CPS. In this chapter, we will discuss
state-of-the-art MCC research activities that aim to enhance the capabilities
of resource-constrained smart devices in CPS sensory environments.

9.1 Introduction

The underlying motivation of mobile cloud computing (MCC) is based on
the desire to overcome the resource constraints on smart devices, such as
computation power, memory, and storage capacity to satisfy the ever increas-
ing quality-of-service (QoS) requirements of diverse CPS applications on-the-
move. Typical QoS parameters include, but are not limited to, throughput,
user experienced latency, service reliability and availability, etc. MCC is orig-
inally rooted in interdisciplinary research of mobile (ubiquitous) computing
and cloud computing. Existing research activities try to cross the disciplines’
boundaries by applying cloud computing solutions and techniques to mobile
applications, or incorporating mobile features when constructing new cloud
services. However, the immense and complex information involved in mobile
cloud applications for CPS demands new transdisciplinary research to better
understand the natures and principles of MCC. Toward this end, MCC, which
has recently attracted significant attention from both academia and industry,
is more and more considered as a critical method to power and boost the CPS,
enabled by resource-constrained smart devices.

In a CPS sensory environment, the term mobile cloud can be interpreted
in three perspectives that ultimately form three types of MCC-enabled CPS
architectures, as illustrated in Figure 9.1. They are: (a) Internet Cloud:
that provides leverages to individual smart devices, (b) Device Cloud: that

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 161

Figure 9.1: Three MCC-enabled CPS architectures: Internet Cloud,
Device Cloud, and Hybrid Cloud.

consists of a group of physically co-located smart devices, and (c) Hybrid

Cloud: in which an individual device can leverage the resources from both
Internet Cloud and Device Cloud simultaneously. In the first architecture,
the Internet Cloud is a relatively static infrastructure (usually at the back-
end) that provides computation or storage resources via the Internet to the
end devices. On the other hand, a set of smart devices themselves, especially
those physically located in the proximity, can form a Device Cloud locally and
share computation or storage resources among each other to achieve certain
sensing tasks in a CPS sensory environment. To the best of our knowledge,
most of the MCC interests in the field are targeting the challenges from the
first perspective aforementioned. However, we do not limit the selection of
CPS applications to the former cases only, because we reckon the challenges
faced by the dynamic and ad hoc mobile cloud are fundamentally different
when considering the underlying CPS architecture and unpredictable mobil-
ity patterns of those devices. Furthermore, the opportunities and benefits of
evolving the interactions of two kinds of clouds, such as Hybrid Cloud, are
most promising and should not be neglected for CPS sensory environments.

In this chapter, we survey the state-of-the-art MCC research activities that
aim to enhance the capabilities of resource-constrained smart devices in CPS
sensory environments by means of either employing existing Internet-based
cloud computing infrastructures or locally constructing an ad hoc device cloud.
Our contribution is threefold: (a) three types of MCC-enabled CPS architec-
tures are proposed, reviewed, and extensively discussed, (b) applicabilities of

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-12&iName=master.img-000.jpg&w=331&h=191

162 � Cyber Physical Systems: Architectures, Protocols, and Applications

these three architectures, both existing and new, on CPS are described, and
(c) their associated new research challenges and opportunities are identified.

The remainder of this chapter is organized as follows: the basic definitions
of MCC are revisited in Section 9.2. We then review the associated challenges,
representative solutions, and open research issues from three major categories
in Section 9.3. Section 9.4 presents some promising future research directions
within the context of our discussed topics. Finally, the chapter is concluded
in Section 9.5.

9.2 MCC Definition

Participatory sensing focuses on the seamless collection of information from a
large number of connected smart devices and provides fine-grained monitor-
ing of environmental phenomena; thus fundamentally it can be regarded as a
key enabling technology for CPS, where the only difference, if compared with
the traditional understanding of a CPS sensory environment, is the employed
devices. With the embedded sensors like accelerometer, gyroscope, GPS, cam-
era, and microphones, smart devices integrated with rich media and location
tracking features are making the concept of participatory sensing more feasible
and realizable, by forming a ubiquitous mobile cloud and providing compre-
hensive information perceiving. Given the current commercial hype and the
fact that there are diverse ways of cooperating with cloud computing and mo-
bile applications, it is not surprising that there is no single widely accepted
clear definition of MCC. As a result its scope may not be properly defined
[199]. Cloud computing is the delivery of computing as a service rather than
a product, whereby shared resources, software, and information are provided
to computers and other devices as a utility (like the electricity grid) over a
network (typically the Internet). It provides computation, software, and stor-
age services that do not require end-user knowledge of the physical location
and system configuration. Cloud computing research mainly focuses on how
to manage computing, storage, and communication resources that are shared
by multiple users in a virtualized and isolated environment.

There are three main different service models in the Internet Cloud

computing environment: (a) Software as a Service (SaaS), which provides
access for the end users to a specific application such as Gmail, Facebook,
Microsoft Office 365; (b) Platform as a Service (PaaS) provides application
programming interface (API) and programming environments for the appli-
cation developers, (Google Application Engine (GAE), Amazon Web Services
and Microsoft Azure are in this layer); and (c) finally Infrastructure as a Ser-
vice (IaaS), provides computation and storage facilities through virtualization
such as Amazon EC2 and S3.

Although there is no single widely accepted definition of MCC in the
field [200], we refer to MCC as the set of techniques that are using shared
resources (in different manners) to empower mobile applications. The re-
sources can be provided in the form of computation power, storage capacity, or

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 163

information content from either or both of the infrastructure based cloud and
other mobile devices locally in the ad hoc, dynamic Device Cloud. The over-
all goal is to provide better QoS experience for end users with these limited
resources and capacities like computation, storage, and battery.

Figure 12.1 shows the general ecosystem of MCC and some of its impor-
tant players [201] including, but not limited to, public cloud providers, content
and service providers, local and private cloud providers, network providers,
smartphones, and sensors. Public cloud providers serve scalable and elastic
high computation and storage facilities with the help of globally distributed
data centers. Local and private cloud providers have limited scalability and
elasticity but with high performance which can provide efficient services on
the portable devices considering delay, energy consumption, local information
caching, data protection, and privacy, etc. Content and service providers are
providing usable services and data content for the end mobile users like news,
videos, email, games, etc. They could get their required storage and servers
from public and local cloud providers. Network providers provide the network
infrastructures (wired or wireless) where all MCC architectural components
could communicate. Finally, smart devices and sensors like iPad, smartphones,
traffic cameras and sensors distributed in cities, etc., are also important com-
ponents in this ecosystem of MCC.

9.3 Challenges

By forming a ubiquitous and dynamic mobile cloud and enhancing the ca-
pacity of smart devices, MCC-enabled CPS applications and services will ul-
timately significantly enrich the information perceiving and processing pro-
cesses. However, its success heavily relies on a few key technologies, namely:
(a) efficient task offloading, (b) manageable heterogeneity, and (c) sufficient
security and privacy protection. In this section, we summarize a detailed tax-
onomy of the most creditable and recently developed solutions in Table 9.1,
and identify research gaps regarding these three characteristics in practice.

9.3.1 Managing the Task Offloading

Since cloud resources in any of the three CPS architectures have consider-
ably better computation, storage performance, and constant power supply,
offloading the “heavy-lifting” to the cloud appears to be the feasible solution
to overcome the resource limitations on smart devices. A significant amount of
research has been conducted on the offloading techniques, where a recent sys-
tematic survey [213] indicates that, in the last fifteen years, researchers’ focus
has moved from making offloading feasible and making offloading decisions
(e.g., whether, what and how) to the infrastructure of offloading.

In [213, 214] the authors were among the first to propose simple analyti-
cal models that help to decide whether to offload. The parameters take into

© 2016 by Taylor & Francis Group, LLC

1
6
4
�

C
y
b

er
P

h
y
sica

l
S
y
stem

s:
A

rch
itectu

res,
P

ro
to

co
ls,

a
n
d

A
p
p
lica

tio
n
s

Table 9.1: Comparison of Mobile Cloud Computing Solutions

Approaches Objectives Partitioning Scheduling Heterogeneity Security/Privacy Pros/Cons

MapReduce [202] Performance
Manually annotation on

method level
Static - Trustworthy cloud assumed

Users manually mark the
“offloadable” block.

Hyrax [203] Performance
Manually annotation on

method level
Static Homogeneous hardware allowed. Trustworthy cloud assumed

Implemented based on
Hadoop/MapReduce

Cloudlets [204] Performance - -
Commodity server hardwares are

used.

The physical security of
cloudlets is easy to

safeguard.

Cloudlet-type solutions seek a
compromise between distributed

and centralized operation.

MAUI [205] Battery and Performance
Manually annotation on

method level

Dynamically by profiling each
method and the network.
History based profiling

Dynamic decisions incorporate
changes in the network conditions

and CPU consumption of individual
methods over time.

Trustworthy cloud assumed
Users manually mark the

“offloadable” block

MobiCloud [206] Enhance Security - Dynamic: Stochastic method Context-aware risk assessment
Fundamental trust model is

provided.

A secure service-oriented mobile
cloud framework is built to assist

communications in MANETs.

Scavenger [207] Performance
Automatically annotation

on application level
Dynamic: dual-profiling

scheduler
Dynamic offloading

Black-listing and
white-listing approach is

used to accept new mobile
node.

Scavenger is the only system that
considers the CPU utilization effect.

Easy for programmers to use.

CloneCloud [208]
User specifiable; reduction
in execution time, energy

usage.

Automatically static
analysis on methods and

migrate threads at runtime

Dynamic: History based
profiling

Dynamic offloading Trustworthy cloud assumed
Live migration of virtual machines

enables moving an entire OS and all
its running applications.

ThinkAir [209] Battery
Automatically on method

level
Dynamic: History based

profiling
Dynamic offloading Trustworthy cloud assumed

Scalability is enhanced by
parallelism on dynamic VMs.

MAPCloud [210] Performance and Scalability
Automatically on method

level
Dynamic: Heuristics resource

allocation
Middleware broker Trustworthy cloud assumed

Heuristics is used to optimize
resource allocation.

Cuckoo [211] Performance and Battery - - Dynamic offloading - The program needs to be rewritten.

Carmen [212] Enhance Connectivities -

Comprehensive and accurate
resource information from a

users’ MPG are used to make
better decisions on connectivity.

Seamless network connectivity is
proposed for individual user with
multiple devices in heterogeneous

networks.

Security and privacy are
considered.

Focus on mobile connectivity across
multiple devices and deep

integration with the cloud and the
network infrastructure.

©
 2

0
1

6
 b

y T
aylo

r &
 F

ra
n

cis G
ro

u
p

, L
L

C

Mobile Cloud Computing for CPS � 165

consideration are: the amount of computation need to be done as w, the speed
of the cloud as ss, the speed of the mobile device m as sm, the bandwidth
between the mobile device and the cloud as B, the amount of data sent to the
cloud as di. Then offloading improves the performance when the amount of
time of executing the tasks takes longer on the mobile device:

w

sm
>
di
B

+
w

ss
⇒ w ×

(
1

sm
− 1

ss

)
>
di
B
. (9.1)

Similarly, offloading saves energy if the energy consumption of executing
the tasks is larger on the mobile device:

pm ×
w

sm
> pc ×

di
B

+ pi ×
w

ss
⇒ w ×

(
pm
sm
− pi
ss

)
> pc ×

di
B
, (9.2)

where p denotes mobile’s power during computing as pm, communicating as pc,
and waiting for response as pi. Therefore, only tasks that require heavy com-
putation (large w) with light data exchange (small di) should be considered
for the purpose of both performance improvement and energy saving.

Furthermore, various other parameters should be taken into account in the
decision-making process, such as migration overhead, security and privacy, and
the required bandwidth and exchanged information may change for different
offloading tasks. Thus, a majority of the recent research focus on making
dynamic offloading decision at runtime [205, 215, 216, 217, 218, 219] rather
than static [220, 221].

Before the decision to offload is made, the “offloadable” elements of code
have to be identified, which can be done either manually [205] by developers
or automatically [208] by partitioning tools. Memory arithmetic unit and in-
terface (MAUI) [205] uses a combination of virtual machine migration (VMM)
and code partitioning. Their main objective is to save energy while considering
application execution time. Applications are offloaded from phones to local
servers using WiFi or 3G. They used .NET framework for implementation.
MAUI’s partitioning is done at runtime and it is very dynamic. Developers
annotate which methods can be offloaded and at the time of execution, if there
is a local cloud (local server), MAUI decides whether or not to offload these
methods. By profiling application cost like device energy usage and network
characteristics, the data from the profiler is then fed into the MAUI Solver to
decide how to partition application optimally.

To avoid the manual annotation, CloneCloud [208] automatically marks
the potential “offloadable” blocks in the bytecode statically, and then dynam-
ically determines the optimal offloading at runtime. CloneCloud uses VMM
to transfer part of a mobile application to a server using 3G or WiFi wire-
less connections. VMM simply refers to transferring the memory image, CPU
state, storage contents, and network connection from a source node to a desti-
nation node. It greatly reduces the programming effort while there is no need
to rewrite the application to be adapted for different environments.

© 2016 by Taylor & Francis Group, LLC

166 � Cyber Physical Systems: Architectures, Protocols, and Applications

CloneCloud has a cost model that considers the cost involved in migration
of the application into the cloud and compares the cost against running it on
a mobile device. To calculate the cost it uses the combination of “static ana-
lyzer” and “dynamic analyzer” to optimally partition the mobile application.

On the one hand, static analyzer uses well-defined policies for placing mi-
gration and re-integration points in the code. To solve traceable optimization
problems, CloneCloud used the following policies:

� Migration and re-integration points should be considered in the entry
and exit of the methods.

� Methods that access specific features of a mobile device such as Global
Positioning System (GPS) must be pinned to the device.

� Methods that share native states must be collocated at the same ma-
chine.

� Nested and core-system library migration is prevented.

On the other hand, the dynamic analyzer uses randomly chosen input data
fed into the application to collect the execution cost on mobile device and
cloud. It is used to construct a cost model for the application under different
execution settings. This data is then fed into the “Optimization Solver” to
decide which method needs to be migrated to minimize execution time and
energy usage.

Rather than considering energy efficiency on individual devices, researchers
[222] develop computational offloading schemes that maximize the lifetime of
an entire collection of highly collaborative mobile devices. Essentially, the
schemes aim to keep every mobile device in the collection alive by finding out
the best approach to schedule and shuttle the computation workload among
the set of mobile devices.

9.3.2 Encountering Heterogeneity

As illustrated in Figure 9.1, high heterogeneity is an inevitable feature of a
CPS ecosystem since MCC aims to bring together players from multiple dis-
ciplines, such as network providers, public and local cloud providers, smart
devices, and sensors. Table 9.2 demonstrates only a small fraction of the het-
erogeneity in the mobile devices, network connections, and the clouds. This
makes an important issue on how to seamlessly orchestrate this diversity in
CPS to achieve high QoS.

To achieve maximum benefits from heterogeneity and overcome its chal-
lenges, researchers have leveraged several technologies and approaches like
visualization, middleware, and service oriented architecture (SOA) which are
referred to as heterogeneity handling approaches in [223]. We reckon the de-
velopment of a CPS middleware is one of the most promising directions to
counter the challenge of heterogeneity that highly leverages the Internet

Cloud architecture.

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 167

Table 9.2: Heterogeneity of Hardware

Mobiles Battery Storage Performance

Handheld devices Low Low Low

Laptops Med High Med/Low

Vehicles High Med/Low Med/Low

Networks Latency Bandwidth Power Efficiency

2.5/3G High Low Low

WiFi Med/Low Med/High High

4G LTE Low High Med/High

Clouds Scalability Performance Security Overhead

Public High High High

Private Med/Low High Low

Hybrid Med/Low High Med/High

MAPCloud [210] aims to improve performance and scalability of MCC by
proposing a hybrid 2-tier architecture that consists of both local private cloud
and public cloud. As shown in Figure 9.2, the middleware architecture main-
tains a registry of resources and services and resource allocation in both tiers
of the cloud, and uses heuristics to optimize the resource allocation. Mobile
User Log Database: This database (DB) contains unprocessed user data logs
such as mobile service usage, location of the user, user delay in getting the
service, energy consumed on user mobile device, etc. Mobile Profile Analyzer:
This module processes mobile user Log DB. Based on the processed data
it will update QoS-aware cloud service DB, space-time mobile user pattern
DB, and MAPCloud Analytics DB. QoS-Aware Cloud DB. It contains the
service lists on local and public cloud and their QoSes in different locations.
It will be updated based on the mobile user statistics experience in differ-
ent locations. MAPCloud Analytics DB: This DB contains general system
performance, such as improved energy saving, price, and delay. Mobile User
Space-Time DB: This DB contains space-time workflow pattern of the mobile
users. It contains the user service usage in space and time. Admission Control
and Scheduling : This module is responsible for optimally allocating services
to mobile users based on a heuristic called CRAM (Cloud Resource Allocation

© 2016 by Taylor & Francis Group, LLC

168 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 9.2: MAPCloud middleware architecture.

for Mobile Applications). CRAM combines simulated annealing and a greedy
approach to optimally assign services to users.

It is worth noting that Carmen [212] provides seamless network connec-
tivities for a set of smart devices across heterogeneous access networks, and
it aims to help individual users in their own Mobile Personal Grid (MPG).
Most importantly, it demonstrates the strength of using network visualization
in constructing and slicing the heterogeneous network resources for different
Device Cloud.

Instead of assuming a static network connection, ENDA [224] takes the net-
work inconsistency into consideration. ENDA is a three-tier architecture that
makes adaptable energy efficient offloading decisions in a constantly changing
environment. The user mobility, server workloads and network performance
are considered during the decision-making process. Therefore, it can make
more efficient offloading decisions than existing approaches that neglect the
issue of network inconsistency. ENDA considers not only the network hetero-
geneity, but also the dynamics upon it.

In [225], the authors propose an intelligent network access strategy for
pervasive users to meet the user required QoS. They have used the Intelligent
Radio Network Access (IRNA). IRNA is an efficient model for dealing with the
dynamic and heterogeneities of multi-networks and services in MCC. Figure
9.3 shows the context management in IRNA. This architecture has three main
components: context provider, context broker, and context consumer. Context
provider gathers data from different resources in the MCC environment such as
wireless network connectivity and Web services. Context broker could provide
the required services for context consumers through search and lookup of

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-12&iName=master.img-001.jpg&w=287&h=175

Mobile Cloud Computing for CPS � 169

Figure 9.3: Context management architecture in IRNA.

context providers. In this architecture, when a context consumer wants to
communicate with a context provider, the context consumer will request the
URI (Uniform Resource Identifier) of context providers at the context broker.
Using this URI, the context consumer can communicate directly with the
context provider and request the context data.

9.3.3 Enhancing Security and Protecting Privacy

Security and privacy protection are the two main and challenging issues in
CPS sensory environments, especially when powered by MCC like private and
public clouds for m-commerce, m-health, and mobile social network-based
CPS applications and services on-the-move. They add a high degree of system
complexity to CPS applications which requires intensive computation and
storage. By providing scalable and elastic resources, cloud computing could
easily tackle these problems.

Because MCC utilizes the resources on the cloud to extend the capacity
of a smart device, mobile cloud security naturally inherits the security con-
cerns from both cloud computing [226] and mobile security [227]. However,
the adaptation process of security techniques from traditional studies should
be justified with the cases of not only limited local resources but also more
potential threats, since MCC includes a vastly divergent, software, hardware,
operating system, and network connection.

Most of the recently proposed mobile cloud security frameworks tend to
offloads security/privacy related tasks to the cloud. [228]. Although this of-
floads the most of the security overhead to the cloud, mobile devices still need
to perform security operations, such as authentication and encryption before
outsourcing the sensitive data or tasks. These security operations still con-
sume a considerable amount of energy and cause performance degradation.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-12&iName=master.img-002.jpg&w=239&h=122

170 � Cyber Physical Systems: Architectures, Protocols, and Applications

However, this issue can be tackled by reducing the amount of data that needs
to be processed [229], and optimizing the cryptographic techniques [230].

Security concerns both users and service providers because a third party
may take advantage of confidential data. In addition to providing traditional
computation services, MobiCloud [206] also enhances the security operation of
the ad hoc network itself. As a typical example of handling security concerns
in Device Cloud, MobiCloud proposed the service called Virtual Trusted and
Provisioning Domain (VTaPD) which essentially uses programmable routing
to handle information flow in various security domains.

In [231] the authors define two levels of security services; critical security
(CS) and normal security (NS). CS provides strong security protection such
as using longer key size, strict security access policies, isolations for protecting
data. The CS service usually occupies more cloud computing resources and has
benefits for cloud providers. The authors try to optimally use these security
services to increase the benefits of cloud resource providers. They proposed
a model called Security Service Admission Model (SSAM) based on Semi-
Markov Decision Process (SMDP) to model the system reward for the cloud
providers. SMDP provides a framework when the outcome of the decision
making results are partly random and partly under the control of a decision
makers. It is a discrete time stochastic control process where, in each state,
the decision maker may choose any action that is available in state. It will
react at the next time step by randomly changing state into a new state, and
giving the decision maker a reward.

Privacy is an issue because the user’s personal program and data are in the
cloud that is not controlled by the user. In using the mobile service scenario,
especially in location based services (LBS), mobile users query a server for
nearby points, but they don’t want to disclose their location information [232].
In general there are two main techniques for privacy, cloaking and domain
transformation. As shown in Figure 9.4 (a) in spatial cloaking exact user
location q will be expanded and cloaked into a region Q0. That will make it
impossible for a server to reconstruct q from the region Q0. The server will
make some candidate points of interest (PIOs) for each point in Q0. This
result will then subsequently be refined by the users trusted mobile client.
Figure 9.4 (a) shows the case where Q0 is a rectangle. In this case, the LBS
server reports the POIs as p0, p1, ..., pn. While the mobile user could be at
any possible location in Q0, all POIs inside Q0 will be reported . Because of
the large number of POIs, the cloaked query will have huge processing and
communication costs.

In addition to the conventional “cloaking” techniques, the location based
fined-grained access control (LFAC) [233] novelly separates users’ identities
from their location information. The authors aim to construct the LFAC
framework to provide access control and user privacy protection for LBS.
In addition, LFAC facilitates fine-grained access control and authentication
by adapting a novel cryptographic access control framework that is based on
a spatiotemporal predicate-based encryption.

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 171

Figure 9.4: Different location-based privacy techniques.

In transformation-based matching technique (see Figure 9.4(b)), the query
is evaluated in a transformed space, in which the points and/or distances
between points are encoded. The weak point here is that the query result may
not be accurate. To address this problem one approach defines a specific Hilbert
ordering with a key H, whose value is known only by the client and a trusted
broker. Not having the key value, the server cannot decode a Hilbert value
into a point. In preparation for querying, the trusted entity transforms each
POI into Hilbert value H(pi) and it will be uploaded to the server. At query
time, the client q submits its Hilbert value H(q) = 2 to the server. The server
then reports the closest Hilbert value H(p2) = 10 of H(q), which is eventually
decoded by the client into point p2.

9.3.4 Economic and Business Model

So far this chapter has been all about performance and energy saving. In this
section we shall discuss the business model that can distribute the profits
fairly among the players.

To improve the resource utilization and revenue, mobile service providers
can cooperate to form a coalition and create a resource pool for users running
mobile applications [234]. The admission control of this cooperative environ-
ment has been developed based on optimization formulation. Also revenue
sharing among cooperative providers has been introduced based on a coali-
tional game (i.e., linear programming game).

Economic and business aspects are the new and hot open areas in cloud
computing and MCC [235]. MCC contains interactions of many different busi-
nesses like mobile and cloud service providers. All of them have different cri-
teria and policies for service providing and customer management and inter-
action. This will open a new direction on how to orchestrate these elements
efficiently.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-12&iName=master.img-003.jpg&w=218&h=142

172 � Cyber Physical Systems: Architectures, Protocols, and Applications

There are some solutions in MCC literature for efficient service manage-
ment. The authors of [235] proposed a service decision making system for
inter-domain service transfer to balance the computation loads among multi-
ple cloud domains in MCC. They focused on maximizing the rewards for both
the cloud system and the users, by minimizing the number of service rejec-
tions which degrade the user satisfaction level. To this end, they formulated
the service request decision making process as a SMDP. In this work the op-
timal service transfer decisions are obtained by jointly considering the system
incomes and expenses. They showed that the SMDP system can significantly
improve the system rewards and decrease service disruptions.

Cloud federation [236] proposed to solve the unified business model for
cloud provider interactions. It provides a flexible collaboration of cloud
providers to lower the effect of vendor lock-in and underestimate problems.
Vendor lock-in is a situation where cost of switching from one cloud provider
to an other surpasses the benefits of the customers. The lack of standardized
service interface, protocols, and data format is the potential threat of vendor
lock-in. This will lead to underestimated problems in investment on cloud
computing services. Cloud federation was proposed to solve this problem. It
provides a unified, robust, and flexible cloud marketplace in which all service
providers and customers could collaborate and do business easily. It has the
following main components:

� Provisioning Engine: It maps and negotiates to allocate resources for
customer applications according to market rules, policies, and stan-
dards.

� Distribution Manager: It guarantees the QoS and requirements of cus-
tomers according to market policies.

� Resource Manager: It manages all resources in a unified way or provides
the standard interface for different cloud platforms and customers.

9.4 Future Directions

In this section, we present future research directions within the context of
task offloading, heterogeneity, security and privacy, and economic and business
models.

9.4.1 Managing the Task Offloading

9.4.1.1 Scalability in the Device Cloud

In the mentioned frameworks, the authors did not show any deep stud-
ies of scalability, elasticity, and user mobility in the performance of their
architectures when there is a large number of users (i.e., smart devices) using

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 173

cloud to provide CPS application services. While resources on cloud scale up
well, the communication bandwidth does not have this property. For example
the performance of WiFi will drop very fast when the number of users is high.
There should be a study which considers the effect of aforementioned factors
on the system performance.

9.4.1.2 Making the Offloading Decision Process Transparent to the
Application Developer

While the up-running CPS applications are treated as a collection of reusable
components, the offloading decision-making process should be designed and
developed accordingly to different requirements for various CPS applications
and services. The system can thus provide highly customized offloading pol-
icy groups from which a CPS application developer can select the suitable
one according to the features of application alone, e.g., how heavy does each
component rely on computation and real-time information from the cloud.
The parameters from cloud environment should not be the concern of the
developer, at least not on the level of each component of the application.

9.4.1.3 Context Awareness on Trading Off the Optimization be-
tween Performance Improvement and Energy Saving

Both power and execution time efficiency of offloading are heavily studied in
the MCC literature. However, there is a lack of research that aims to simul-
taneously optimize the power consumption and execution time. We reckon it
as a promising research direction because a real-world CPS application may
have different degrees of QoS requirements among these two objectives, and
more importantly, this demand may vary under different circumstances. For
example, on a fast moving vehicle under complex traffic conditions, the GPS
device demands real-time calculation but should not have to worry about bat-
tery consumption. However, if this GPS device is unplugged by the driver to
complete the rest of journey on feet or bike, the demands among the two ob-
jectives should be able to adapt automatically. Multi-objective optimization
techniques appear to be a natural solution to satisfy this requirement by pro-
viding adapting configuration to the smart device. This advice concerns the
research on all three types of MCC-enabled CPS architectures.

9.4.1.4 Tasks Distributing among Sensors

CPS applications and services are mainly sensory-based which are producing
streams of data like traffic monitoring services. They need real-time processing
and huge data storage. Future research directions should pay more attention
to how to distribute the processing and storage tasks among sensors and cloud
to optimize power usage, execution time, and paid price. After all, study on
balancing the workload within a Device Cloud is still rare in the field of MCC
to support diverse CPS applications.

© 2016 by Taylor & Francis Group, LLC

174 � Cyber Physical Systems: Architectures, Protocols, and Applications

9.4.1.5 Offloading Decision Making in a Hybrid Cloud

To the best of our knowledge, most of the existing studies on offloading
techniques are focusing on either the decision on offloading tasks to the
Internet Cloud or within the Device Cloud. However, we reckon the Hybrid
Cloud should be the emerging direction for future research. Because a CPS
sensory environment cannot fully depend on one kind of offloading technique,
because the characteristics of the resources on the Internet or peer smart
devices are fundamentally different, as shown in Figure 9.1, and the cost of
utilizing the available resources from different sources also varies. Thus, the
offloading decision in a hybrid CPS sensory environment cannot be made
by easily combining the existing techniques. Therefore, studying the various
characteristics of offloading in a Hybrid Cloud architecture is the key to max-
imizing the leverage provided by both Internet Cloud and Device Cloud.

9.4.2 Encountering Heterogeneity

Although some middleware solutions have been proposed for MCC, this area
still has many open questions that should be explored.

9.4.2.1 Efficient Middleware

The main source of the Web traffic on the Internet these days is related to
multimedia-based data. According to an eMarketer prediction, mobile mu-
sic, multimedia sharing, and game users will increase by 55% from 2009 to
2014. This will open a new research direction which considers efficient mid-
dleware frameworks for achieving high QoS in a CPS sensory environment for
the aforementioned multimedia-based CPS applications [237, 238]. It is clear
that efficient middleware will be applicable to Internet Cloud-based CPS
architecture.

9.4.2.2 Dynamic Adaptive Automated System

To add on the complexity of the heterogeneities, the CPS sensory environment
is rapidly changing during the deployment of any system that was manually
configured by an engineer. The adaptivity of the system is at only a glacial
pace. This fact forces highly skilled engineers to waste significant time on
manually implementing the detailed configurations. Often, the result is still
equally inflexible, forcing users to also rely on their innate human adaptivity
to find “workarounds.” The heterogeneity of the environment naturally pro-
vides a great deal of flexibility, but we reckon that it is promising to enable
the system to use computational search to achieve its full potential for flex-
ibility and adaptivity. For example, heuristics is one of the most promising
techniques to enable automation and dynamic adaptation of the system. We
should be creating new ways to develop, deploy, and maintain CPS systems.
Apparently, a dynamic adaptive automated system is the ultimate solution

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 175

to ease the issue of heterogeneity in a mobile cloud network, especially in a
Hybrid Cloud network.

9.4.2.3 Mobile Big Data

Different CPS stakeholders are producing huge data, such as location-time
service usage logs, mobile data traffic logs, cloud resources usage logs, wired
and wireless network usage logs, etc. The study of this “Mobile Big Data” (for
example using data mining techniques) will open a new research direction in
the CPS middleware design to efficiently and optimally manage and allocate
resources in CPS sensory environments to achieve high QoS.

The authors of [223] present a comprehensive survey on MCC with major
focus on heterogeneity. The authors describe the challenges and opportuni-
ties imposed by heterogeneity and identify hardware, platform, feature, API,
and network as the roots of MCC heterogeneity. They explain major het-
erogeneity handling approaches, particularly virtualization, service oriented
architecture, and semantic technology. However, the computing performance,
distance, elasticity, availability, reliability, and multi-tenancy of remote re-
sources are marginally discussed in these studies which necessitates further
research to explain the impact of remote resources on the augmentation pro-
cess and highlight paradigm shift from the unreliable surrogates to reliable
clouds.

9.4.3 Enhancing Security and Privacy

9.4.3.1 Finding Protection Solutions That Are More Efficient Is
Still a Research Topic

Due to the limited resources and capabilities of portable devices and sensors
in CPS ecosystems, finding solutions that are more efficient will remain the
research focus in the foreseeable future. Specifically, the future research di-
rection in designing security protocols and algorithms should focus more on
power-efficiency and delay caused by such security algorithms and how to
partition them on cloud and mobile devices.

9.4.3.2 Context Awareness on Dynamic Security Settings

Because of user mobility, the security level of mobile users will change from
location to location; for example changing from 3G network coverage to WiFi
network coverage or from local cloud resources to public cloud. There are some
questions that should be explored in future research like: How could this infor-
mation affect the design of security policies and algorithms for mobile users?
What are the effects of using different security policies on power consumption,
delay, and application performance?

© 2016 by Taylor & Francis Group, LLC

176 � Cyber Physical Systems: Architectures, Protocols, and Applications

9.4.3.3 Trade Off between the Functional Performance Degrada-
tion and Security and Privacy Requirements

The operations taken to provide insurance on security and privacy consume
energy and cause delay. Due to the fact that security and privacy are essen-
tially non-functional requirements, in addition to “do it smartly” by enhancing
the efficiency of existing precaution techniques, more attention is demanded
on the study of relaxing the security and privacy requirements. For example, if
the loss caused by potential threat can be measured, insured, and reimbursed
by a third party, user and CPS service provider should both have the ability
to downgrade to a range of relaxed precaution settings for the purpose of en-
suring a specific level of functional performance. This “doing less” approach
introduces the risk that is affordable to the individual user and the service
provider.

9.4.4 Economic and Business Models

Cloud federation concept could be extended to a “Mobile Cloud Federation”
concept which opens a new research direction to have unified and robust CPS
cloud environment. It will open some important questions that should be
answered in future research:

� From a game theory perspective: how could we design policies and
mechanisms to have stable a “Mobile Cloud Federation”? Does this
market have “Nash Equilibrium”?

� With different players in MCC-enabled CPS sensory environments,
what are the best strategies to optimize cloud providers’ revenue while
having green cloud computing? What are the best strategies for maxi-
mizing the user’s saving on price, delay, and power consumption?

� What are the best strategies and policies to offer competitive prices to
mobile users in MCC-enabled CPS sensory environments?

� As has been mentioned, one of the most important area is m-commerce
applications, such as acquiring user profile location and priorities,
mobile user forwarding strategy, advertisement strategy to maximum
cloud providers/business owners’ profit, etc.

� Service Oriented Computing (SOC) tries to provide a unified protocols
and standard interface for cloud service interactions [236] like SOAP
(Simple Object Access Protocol), UDDI (Universal Description Dis-
covery and Integration), and WSDL (Web Services Description Lan-
guage). This will open a new research direction to extend the SOC
framework to cover other MCC player criteria like wireless network
providers, mobile users and sensors.

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing for CPS � 177

9.5 Summary

With the immense and complex information perceiving and processing capa-
bility, MCC technologies are emerging to empower diverse CPS applications
by providing ubiquitous and rich functionalities, regardless of the resource
limitations of smart devices. In this chapter, we first clearly defined a novel
classification methodology on three different CPS architectures: Internet

Cloud, Device Cloud, and Hybrid Cloud. The user of Internet Cloud ben-
efits from the resources that are on the Internet, while the user of Device

Cloud benefits from the resources that come from the peer devices in the lo-
cal, ad hoc, dynamic connections. We find that most existing literature on
MCC is focusing only on the Internet Cloud, and reckon that the study
of Device Cloud and Hybrid Cloud should be promoted to leverage the re-
source sharing among peer devices. Then, the most recent advances of the CPS
applications using MCC technologies are reviewed accordingly, and challenges
and opportunities are summarized and discussed. Furthermore, open research
issues on other aspects of MCC, but highly relevant to CPS, such as offloading
techniques, heterogeneity of the infrastructure, security and privacy, and eco-
nomic/business model, have also been discussed within the context of existing
schemes.

© 2016 by Taylor & Francis Group, LLC

CPS

APPLICATIONS

III

In this part, we introduce some of the potential applications where such plat-
forms can be used in the future.

Smart Agriculture: This is an outdoor domain where sensors need to be
deployed close to the environment with limited energy. Further, sensors need to
cover large geographical area in comparison to indoor domains. Sensors with
low cost are ideal to be deployed in large numbers in agriculture domains.
Farmers can deploy sensing middleware platforms permanently. Alternatively,
they can carry their mobile phones or tablets as data collection devices if the
geographical area is quite small. Alternatively, sensing middleware platforms
can be fixed into vehicles or robots that go around the field and collect data
from sensors. These two options are illustrated in Figure III.A.

Figure III.A: MOSDEN can be used as an intermediary device where
it retrieves data from low-cost sensors and pushes it to the cloud in
real-time or on demand. These sensing middleware platforms can be
installed on both static (e.g., Raspberry Pi) and mobile hardware
devices (e.g., tablets and smartphones).

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-13&iName=master.img-000.jpg&w=334&h=87

180 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure III.B: Efficient waste management in smart cities supported
by the sensing as a service model

Smart Home and Office: This is an indoor domain where sensors have
comparatively sophisticated access to permanent energy sources. Sensor data
can be collected through crowd sensing [239] techniques where corporate
smartphones will play the role of intermediary. In comparison to other do-
mains, the smart home and office domain is highly dynamic. Internet Con-
nected Objects (ICO) may appear, disappear, and move faster than in any
other domain. Additionally, short range protocols may work in most cases.
It is also important to highlight that real-time data collection is critical in
this domain. Further, event detection and actuation is an integral part of this
domain where occupants receive increased quality of life or workspace.

Smart Cities: Mobile and static sensing middleware platforms are useful
in a wide range of sensing tasks that need to be carried out in the smart city
domain. One such example is waste management. Sensors are expected to be
fitted into garbage cans deployed around the modern cities. These sensors will
collect information about the content of the garbage, garbage level, cleaning
and pick times and dates and so on. The mobile sensing platforms can be fit-
ted into garbage collection trucks, and other municipal council owned vehicles.
Such data received on time has a significant value to many different parties.
Static sensing platforms can be fitted into nearby public infrastructure such
as light poles. Such infrastructure has permanent connectivity to power grids
and can support long-range 3G communication. For example, city councils
may use sensor data to develop optimized garbage collection strategies, so they
can save fuel costs related to garbage trucks. Additionally, recycling companies
can use sensor data to predict and track the amount of waste coming into their
plants. This allows them to optimize their internal processes. Further, health
and safety authorities can monitor and supervise the waste management pro-
cess without spending a substantial amount of money for manual monitoring
inspections. The scenario of waste management is illustrated in Figure III.B.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-13&iName=master.img-001.jpg&w=335&h=135

Chapter 10

Connected Healthcare
for CPS

Chi Harold Liu

Beijing Institute of Technology, China

CONTENTS

10.1 Introduction . 182
10.2 Related Work . 183
10.3 System Model . 184
10.4 Sensor Proxy Design . 185

10.4.1 Data Capture Module . 185
10.4.2 Internal Event Pub/Sub Engine . 185
10.4.3 Process Service Module . 186
10.4.4 Transportation Service Module . 187
10.4.5 Device Management Service Module . 188

10.5 HTTP Interface . 188
10.5.1 Get Naming and Addressing . 188

10.5.1.1 Sensor Proxy Naming . 188
10.5.1.2 Biomedical Sensors Naming 188
10.5.1.3 Biomedical Sensors Addressing 189

10.5.2 Start Blood Pressure/Glucose Reader 189
10.5.3 Get Social Security Card ID . 189
10.5.4 Get Blood Pressure/Glucose Data . 190

10.6 Case Studies . 190
10.6.1 Stationary HealthKiosk . 190

181

© 2016 by Taylor & Francis Group, LLC

182 � Cyber Physical Systems: Architectures, Protocols, and Applications

10.6.2 Mobile HealthKiosk . 191
10.7 Summary . 193

The preceding chapters discuss the enabling technologies of CPS, including
the aspects of fundamental networking technologies, M2M communications,
and mobile cloud computing. In the following chapters, we will consider the
enormous applications of CPS. We start with the applications of CPS tech-
nology in connected healthcare in the present chapter.

10.1 Introduction

One of the major challenges around the world recently has been the contin-
uous increase of the elderly population, and thus the delivery of quality care
while reducing healthcare costs is highly needed [240]. Particularly with the
continuing advances in sensors and sensor-supporting technologies including
pervasive computing and communications capabilities, we are witnessing an
emergence of a variety of promising applications stemming from the integra-
tion of sensing and consumer electronics, allowing people to be constantly
monitored [241].

Family-based healthcare services [242, 243] render the patient’s full free-
dom at home, which dramatically reduces the need and waiting time for
face-to-face contact with care professionals, where the healthcare providers
remotely monitor the patient’s physical condition 24/7, even when the pa-
tient is mobile. Furthermore, if the measurements show certain deterioration
of the patient’s well-being, alerts are generated and sent to the patient’s mo-
bile phone. The care professional’s help could also be invoked immediately as
part of the service requirement. Not only the elderly and chronically ill but
also working parents may derive benefits from these systems for delivering
high-quality care services for their babies and little children. Also, the bene-
fits can be extended to young fitness trainers who are interested in continuous
monitoring of their training outcomes. Hence, a family-based system should
provide collaborative, interactive, and long-term support to all users, based
on the powerful data processing and analysis units, but such a system barely
exists within the research community.

In this chapter, we present “HealthKiosk,” a family-based healthcare mon-
itoring system that bridges the data centers and biomedical sensors. As shown
in Figure 10.1, biomedical sensors collect personal data on health conditions
and other vital signs, and report them to the sensor proxy, where the lat-
ter serves as a bridge between the sensor network (e.g., via WiFi, Bluetooth,
RS232) and the kiosk controller. We note that the sensor proxy will also
maintain some data processing logic, like correlating the blood pressure data
with the patient’s social security card meta data. Then, the developed kiosk
system automatically connects to a variety of backend servers like a clinical

© 2016 by Taylor & Francis Group, LLC

Connected Healthcare for CPS � 183

Figure 10.1: A system diagram for the proposed HealthKiosk system,
where (1) biomedical sensors send the sensor readings to the sensor
proxy, (2) the sensor readings are processed and sent to the kiosk via
Ethernet, (3) and (4) the data are further analyzed by the backend
server, and (5) treatment suggestions are sent to the sensor proxy.

supporting system in major hospitals via a wide area network (WAN, e.g.,
the Ethernet) for further treatment. For instance, after receiving the personal
medical data, the application may decide to remeasure the blood pressure,
and the sensor proxy will command the sensor accordingly.

We believe that the proposed solution provides a universal research as-
set to enhance the clinical process for streamlining interactions among care
professionals and patients. It is also worth noting that the HealthKiosk sys-
tem has been piloted and deployed at the Peking University People’s Hospital
(PKUPH1) since February 2010, and has shown its success so far.

The rest of the chapter is organized as follows. In Section 10.2, we high-
light related research activities. Section 10.3 establishes a formal model of our
system. Section 10.4 describes the design of the sensor proxy and related tech-
nical challenges and solutions, and Section 10.5 presents the HTTP interface
used between the kiosk controller and the sensor proxy. Two complete case
studies are presented in Section 10.6, followed by the conclusions and future
work in Section 10.7.

10.2 Related Work

Healthcare systems using either mobile or other equipment have been proposed
and studied for over a decade to provide convenient and constant monitoring
of a patient’s health conditions [244, 245, 246, 247]. It has been identified as
an important branch of research of the machine-to-machine (M2M [248]) or,
the Internet of Things (IoT [249, 250]), that aims to connect physical sensors
to the Internet for better monitoring and analysis. Recently, low-cost and

1PKUPH, is one of the biggest hospitals in China, founded in 1918, housing more than
2,400 staff and admitting more than 40,000 inpatients a year. It receives more than 1,560,000
outpatients, and more than 133,000 emergency cases annually.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-000.jpg&w=335&h=89

184 � Cyber Physical Systems: Architectures, Protocols, and Applications

effective sensors, such as blood pressure and heart rate sensors [251], have been
made available to a large number of individuals and families for healthcare
solutions.

There are several case studies that take advantage of the above develop-
ment to offer healthcare solutions to particular groups of patients in limited
regions. For example, Columbia University monitors thousands of diabetes
patients in the greater New York area [252]. There are also evaluations and
actual field deployment to confirm that mobile Internet devices such as cell
phones can be used as gateways to connect body area networks to the Inter-
net [253, 254, 255]. Furthermore, efforts have been taken to define standards
for mobile healthcare systems [256].

In this chapter, we emphasize our architecture and framework, which can
accommodate various sensors, a wide range of Internet connectivities, and
comprehensive sharing and analysis of the data. We provide a middleware
appliance, named “sensor proxy” that can speak the languages of both the
physical world and the Internet, to bridge the gap and mediate the inter-
actions between them. It can be deployed as a stand-alone box or part of
broadband modems/routers and mobile handsets. More importantly, we de-
sign its interface to be RESTful [257, 258] such that its data can be obtained
and shared to multiple parties easily. This reduces the effort and power re-
quirements on sensors since they do not have to provide the interfaces [259],
and consequently makes them even more portable and energy efficient.

10.3 System Model

The overall architectural view of our proposed HealthKiosk system is shown
in Figure 10.1, where patients can use their installed biomedical sensors (e.g.,
glucose-meter, blood pressure monitor, etc.) to take measurements. Then, the
data are sent to the sensor proxy via existing communication networks like
3G, WiFi, and Bluetooth. The sensor proxy can be a small server or even an
application in the mobile handset, and it holds certain data processing logic to
integrate multiple pieces of the raw data from a variety of the physical sensors
to a common format prepared for uploading to the application gateway (or the
“kiosk controller” in our design). Then, either the transformed and integrated
data are relayed to the healthcare service supporting system in the backend
(if needed), or they are locally consumed/shown on an easy-to-use touch-
screen user interface (UI) at the kiosk. We also allow interaction between the
backend supporting system and the patients. If his/her medical data shows
the deterioration of his/her health condition detected by the clinical decision
supporting system, alerts are generated and sent to the sensor proxy, like
the patient’s mobile phone. If necessary, the care professional’s intervention
could also be invoked immediately as part of the service requirement. We
next describe the functional designs and the challenges of the sensor proxy in
Section 10.4.

© 2016 by Taylor & Francis Group, LLC

Connected Healthcare for CPS � 185

Data Capture

Internal Event Pub/Sub Engine

Bluetooth
HTTP/Web

Services

Agents Manager

Monitoring

Configuration

Upgrade

Failure Detection

Micro-Process Engine

Transport
Services

Process Services
Device
management
service

RS232

Figure 10.2: A functional design architecture for the sensor proxy.

10.4 Sensor Proxy Design

With the proposed HealthKiosk system, the sensor proxy serves as an im-
portant design element bridging different biomedical sensors with the kiosk
controller, either wirelessly or wire connected. Furthermore, it also provides a
certain degree of sensing event processing and sensor management functionali-
ties. A functional design architecture is shown in Figure 10.2, and is composed
of five core elements:

10.4.1 Data Capture Module

It is a wrapper with which different agents connect to the biomedical sensors
via underlying communication channels (e.g., RS232, Bluetooth). An “agent
manager” is implemented to load these agents and transfer the data from
medical sensors to a common business event of the sensor proxy.

10.4.2 Internal Event Pub/Sub Engine

Due to the instability of the wireless conditions between the sensor proxy and
biomedical sensors, the data uploads might be blocked or delayed from the
sensor agents. From the user experience perspective, they may feel uncom-
fortable being kept waiting for the response from the sensors. Therefore, we
developed a lightweight “internal pub/sub engine” (see Figure 10.2), to de-
couple the data from multiple physical sensors. In our design approach, the
process service module subscribes the medical data of interest, and the sensor
agents publish the medical data whenever it arrives. Upon receiving an event

© 2016 by Taylor & Francis Group, LLC

186 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 10.3: The illustrative functional diagram for data aggregation,
transformation, and encryption.

from the data capture module, the internal event pub/sub engine will dispatch
it into the process service module for further processing. After the processing
is completed and the data is sent back to the internal pub/sub engine, the
latter will choose a transport service (e.g., HTTP) to publish the event to the
kiosk controller. Therefore, the user experience is significantly enhanced by
our design.

10.4.3 Process Service Module

It provides a micro engine to handle the event processing step by step, for
example, a typical community healthcare service will require the sensor proxy
to correlate the patient’s meta data from his/her social security card with
the patient’s sensor data, and then send the combined data through an XML
format to the remote repository (like the kiosk database). Therefore, a reusable
data processing and transformation capability must be provided to convert a
variety of data formats to a common interface so that effective integrations
among domains can be performed.

To achieve the design goal, we developed a lightweight process engine,
called the “micro process engine” (see Figure 10.2), which runs a simple data
processing logic, and defines some reusable data operations. As shown in Fig-
ure 10.3, the processing logic is composed of an aggregation operation (“A”), a
transform operation (“T”), and a security operation (“S”). When the logic re-
ceives any data, it first aggregates them together (by using the “A” operation)
and then calls for a “T” operation to transform the combined data in a certain
format and use the security operation (“S”) for encryptions. Figure 10.4 shows

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-001.jpg&w=264&h=165

Connected Healthcare for CPS � 187

Figure 10.4: The combined data with social security card and blood
pressure sensor information in one XML data format.

a snapshot of the real XML code obtained after combining the social security
card data and the blood pressure measurement.

10.4.4 Transportation Service Module

While the data capture module connects the sensor proxy to the sensor net-
work, the transportation service module connects the sensor proxy to the
Internet, and ultimately the kiosk controller. We leverage the RESTful design
approach [257, 258], where the sensor proxy behaves as a HTTP server (while
leaving other methods, e.g., MQTT [260], for future extensions), and receives
the instructions from the kiosk server by HTTP request and methods (like GET
and POST). In the meantime, the sensor proxy also acts as an HTTP client
and uploads the measured data and its associated patient’s meta data to the
kiosk controller database where the relational database is stored. The detailed
HTTP interface from the kiosk server to the sensor proxy and backwards is

© 2016 by Taylor & Francis Group, LLC

188 � Cyber Physical Systems: Architectures, Protocols, and Applications

described in Section 10.5. Besides the fundamental capability of delivering the
data back to the backend server, it is worth noting that the sensor proxy itself
can also have certain exposure for the medical data in a Web-friendly manner,
and thus the application developer can “mash-up” these data and show them
in the mobile phone or desktop for patients.

10.4.5 Device Management Service Module

It provides a common infrastructure to configure, deploy, monitor, and update
other modules. In different cases, the sensor proxy might connect to different
medical sensors, transform the sensor data into different formats, and expose
the data in different ways. Therefore, the device management service will
configure and deploy different agents in data capture modules, and different
processes in the micro process engine for these cases.

10.5 HTTP Interface

We next describe a few important HTTP interfaces connecting the kiosk con-
troller and the sensor proxy, including naming and addressing, initializing and
obtaining sensor readings.

10.5.1 Get Naming and Addressing

We use the HTTP GET method by calling the URL http://hostname:

port/healthcare/namingaddressing, to obtain the naming and addressing
information of the sensory proxy and its connected biomedical sensors. Since
multiple physical biomedical sensors connect to the sensor proxy simultane-
ously, we need an efficient naming and addressing mechanism so that the
sensor readings can be identified, and the control commands can reach the
physical world. We leverage the RESTful style [257, 258] as:

10.5.1.1 Sensor Proxy Naming

We name the sensor proxy 1 as:

<sensor_proxy name="proxy_1">

10.5.1.2 Biomedical Sensors Naming

For instance, the following pseudocode shows the naming mechanism of a
social security card reader connected with the sensor proxy 1.

<sensor_proxy name="proxy_1">

<sensor type="social_security_card">

© 2016 by Taylor & Francis Group, LLC

Connected Healthcare for CPS � 189

10.5.1.3 Biomedical Sensors Addressing

We use a URL-like address to hierarchically differentiate multiple sensors as:

<sensor type="bloodpressure">

<start_address>

http://hostname:port/healthcare/

bloodpressure/

1A-34-46-78-9A-BC-DE-F3/start

</start_address>

10.5.2 Start Blood Pressure/Glucose Reader

We use the HTTP POST method by calling http://hostname:port/

healthcare/glucose/deviceID/start, to start the sensor reader, e.g.,
deviceID=1A-34-46-78-9A-BC-DE-F3 uniquely denotes the blood pressure
sensor. The request complies with the RESTful [257, 258] style, and the fol-
lowing returns may be generated:

(1) 200: OK, if the sensor is successfully started.

(2) 404: Not found, if one cannot find the corresponding sensor.

(3) 400: Bad request, if other errors in the request format exist.

(4) 500: Internal server error, identified in the sensor proxy.

10.5.3 Get Social Security Card ID

We use the HTTP GET method by calling http://hostname:port/

healthcare/socialsecuritycard/1A-00-00-00-00-00-00-01/data, to ob-
tain the social security card ID from the kiosk controller, once the data is
available. If not, the sensor proxy will return 200 but with an empty response
body; nevertheless, for the successful data fetching, a 200 return will be gen-
erated with the body of <id hasCard=“true”>996-756-495</id>. The sensor
proxy can also return <id hasCard=“false”/>, which indicates that there is no
card in the card reader. The following items summarize the possible returns:

(1) 200: OK with body either <id hasCard=“true”>996-756-495</id>,
or <id hasCard=“false”/>, or empty.

(2) 404: Not found, if one cannot find the corresponding device.

(3) 400: Bad request, if there are other errors in the request format.

(4) 500: Internal server error, identified in the sensor proxy.

© 2016 by Taylor & Francis Group, LLC

190 � Cyber Physical Systems: Architectures, Protocols, and Applications

10.5.4 Get Blood Pressure/Glucose Data

We use the HTTP GET method by calling http://hostname:port/

healthcare/bloodpressure/deviceID/data, to obtain the data from blood
pressure and glucose sensors. Based on the patient’s current vital signs, the
kiosk controller tries to get blood pressure data from the sensor proxy, where
the message is flowing from the kiosk controller to the sensor proxy. The ob-
tained measurements use an XML format and are embedded in the body of
the HTTP response. The following items summarize the returns:

(1) 200: OK with empty body.

(2) 404: Not found, if one cannot find the corresponding device.

(3) 400: Bad request, if there are other errors in the request format.

(4) 500: Internal server error, identified in the sensor proxy.

(5) 200: OK with body of the combined XML data.

10.6 Case Studies

To better illustrate the rich set of functionalities our system is able to provide,
we present two complete case studies in this section: one is the stationary
HealthKiosk system where a PC-like sensory proxy is developed to connect
the biomedical sensors (see Figure 10.5 and Figure 10.6), while the other one
is to use the mobile handsets behaving as the sensor proxy, or the “mobile
HealthKiosk,” for the support of mobile healthcare solutions (see Figure 10.7).

10.6.1 Stationary HealthKiosk

Figure 10.5(a) demonstrates an implementation of the HealthKiosk system,
composed of a kiosk touch-screen UI, a social security car reader to leverage
the meta data of the patients, a height and weight scaler, and a blood pressure
sensor. Figure 10.5(b) shows that a colleague of IBM Research – China is
taking a blood pressure measurement with his social security card inserted into
the card reader. The detailed touch-screen UI is demonstrated in Figure 10.6,
where Figure 10.6(a) shows the welcome page, and by clicking the “next”
button, the user will be directed to choose taking either height and weight
measurements, or blood pressure measurements. The measurements of each
sensor are shown in Figure 10.6(b) and Figure 10.6(c), respectively.

It is also worth noting that our stationary HealthKiosk system has been
piloted and deployed at the PKUPH for diabetes treatments by building an
evidence-based clinical care solution focusing on chronic disease management.
Extensive training has been offered by the IBM Research – China, and the

© 2016 by Taylor & Francis Group, LLC

Connected Healthcare for CPS � 191

)b()a(

Sensor
proxy

Figure 10.5: An illustrative case study showing (a) the overall system
composed of a touch-screen kiosk, a sensor proxy, a social security
card reader, a height and weight sensor, and a blood pressure sensor,
and (b) a colleague of IBM Research – China is taking blood pressure
measurement with his social security card.

)c()b()a(

Figure 10.6: Developed UI, showing (a) the welcome page, (b) the
height and weight measurement, and (c) the blood pressure mea-
surement.

current contract will be extended to the next year, when more systems and
complicated offerings will be provided. Famous Chinese newspapers including
China Daily, Reuters, and ZDNet have covered the news.

10.6.2 Mobile HealthKiosk

To take advantage of the mushrooming popularity of the mobile devices, we
also implement a mobile HealthKiosk system, complementing the previous

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-003.jpg&w=162&h=140
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-003.jpg&w=162&h=140
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-006.jpg&w=335&h=82
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-006.jpg&w=335&h=82
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-006.jpg&w=335&h=82

192 � Cyber Physical Systems: Architectures, Protocols, and Applications

)d()c()b()a(

)h()g()f()e(

Figure 10.7: The case study for the mobile HealthKiosk system, show-
ing (a) the welcome page, (b) the personal settings, (c) and (d) the
blood pressure measurement entrance and the historical data trend,
(e) and (f) new measurement, (g) and (h) healthy tips and community
suggestions.

stationary sensor proxy, as shown in Figure 10.7. Different from the station-
ary sensor proxy, we use the mobile handset to behave as a sensor proxy;
and the developed lightweight process service module periodically listens to
the wireless connections of the biomedical sensors to obtain the newly arrived
medical data. Then, the process engine helps with the data processing, e.g.,
to transform or enrich the data into a suitable format for upload. Apart from
all these, further applications developed include the kiosk applications and
a community widget. The kiosk applications provide an easy-to-use user in-
terface for patients to interact with the biomedical sensors. The community
widget lets the patient leverage resources from the mobile healthcare commu-
nity, e.g., the care professionals and hospital equipment, where patients are
able to receive good tips from other patients or doctors.

Figure 10.7(a) shows the welcome page summarizing the functionalities we
provide in a user-centric and service-oriented manner, where patients are able
to set their personal settings, take blood pressure and glucose readings, and
browse some healthy tips and community suggestions. A typical scenario using
our deployed system is described as follows. James is a fifty-year-old man, who
has suffered high blood pressure for two years. Provided by our mobile health-
care system, he owns a blood pressure sensor and glucose-meter. Furthermore,
his personal mobile phone has installed our developed widgets and the mobile

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-009.jpg&w=79&h=89
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-010.jpg&w=79&h=89
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-011.jpg&w=79&h=89
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-012.jpg&w=79&h=89
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-013.jpg&w=79&h=89
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-014.jpg&w=79&h=88
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-015.jpg&w=79&h=88
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-14&iName=master.img-016.jpg&w=79&h=88

Connected Healthcare for CPS � 193

Figure 10.8: Historical records of blood pressure measurements and
the relational database containing the patient information.

sensor proxy application. Every day, James is able to periodically take mea-
surements by himself; then, his mobile phone obtains the medical data from
the blood pressure sensor and glucose-meter. Figure 10.7(g) shows a measure-
ment result, i.e., 118/89mmHg for blood pressure and 76 times/min for pulse;
and Figure 10.7(h) shows the tips received from the community group mem-
bers. Figure 10.8 shows the relational database storing the patient’s personal
information and all historical measurements.

10.7 Summary

In this chapter, we presented a novel family-based healthcare monitoring sys-
tem, called “HealthKiosk,” with its detailed designs and case studies. The
proposed solution is patient-driven and service-oriented, and provides a user-
friendly interface for visible patient care. HealthKiosk could potentially min-
imize the efforts of care professionals, not only applicable for the elderly but

© 2016 by Taylor & Francis Group, LLC

194 � Cyber Physical Systems: Architectures, Protocols, and Applications

also children and young fitness trainers. The proposed architecture leverages
the RESTful design style, nevertheless introducing a novel development of
the sensor proxy, both in the PC style and as a mobile widget. The sensor
proxy behaves not only as a bridge between the raw sensor readings and the
kiosk controller, but also as a data processing logic to integrate, correlate, and
transform multiple pieces of data to an XML format. We demonstrated the
system performance by showing two complete case studies for both station-
ary and mobile sensor proxies used in the proposed end-to-end HealthKiosk
system. Finally, the proposed solution has been piloted and deployed at the
PKUPH for diabetes patients, via building an evidence-based clinical care so-
lution focusing on chronic disease management in China. In the future, we are
planning to investigate an integrated mobile monitoring platform across mul-
tiple industry domains, like healthcare and logistics, and make it applicable
in real scenario deployments.

© 2016 by Taylor & Francis Group, LLC

Chapter 11

Multi-Player Gaming
for Public Transport
Crowd

Chi Harold Liu

Beijing Institute of Technology, China

CONTENTS

11.1 Introduction . 196
11.2 A CrowdMoG Use Case Scenario . 201
11.3 CrowdMoG Design . 202

11.3.1 Cloud-Based Game Services . 203
11.3.2 Cloud Manager . 204
11.3.3 Group Manager . 205

11.3.3.1 Peer Manager . 205
11.3.3.2 Session Dynamics Manager 206

11.3.4 Network Protocol Manager . 206
11.3.5 Game Feature Extractor . 207

11.4 Prototype — Phage . 207
11.5 Summary . 209

Besides healthcare applications, multi-player gaming on smart devices is
catching more and more attention recently, particularly in public transport

195

© 2016 by Taylor & Francis Group, LLC

196 � Cyber Physical Systems: Architectures, Protocols, and Applications

environments where people are looking forward to playing rich contextual
games while traveling. In this chapter, we will discuss how to enable highly
interactive and opportunistic mobile gaming in public transport environments.
Our focus is a mobile gaming platform that utilizes both the cloud resource
and the crowd resource.

11.1 Introduction

In many crowded metropolitan cities, people often travel by public transport
like metro and local buses everyday. A finding shows that about 3,000 com-
muters in the west of England spend about 139 hours a year on average travel-
ing to and from their workplace [261]. Therefore, mobile gaming, or computing
in general, in crowded public transports can open up a new opportunity to
harness a collection of smart devices (e.g., smartphones and tablets [262, 263])
in their vicinity as a unified computing substrate. Figure 11.1 shows a num-
ber of snapshots taken in the London Underground where a large number
of passengers are looking at their smart devices, either reading news, check-
ing emails, or playing games. A promising aspect we focus on in this chapter
and our research path in its own right, is to enable highly interactive and
opportunistic multi-player gaming [264, 265, 266] among the crowd, based on
their travel trajectories, gaming preferences, and other related social infor-
mation in different contexts. Examples of these games are, but not limited

Game Groups

Service Provider
Network

Game Service Cloud

Passenger Departure

Oxford
Circus

Bond
Street

Periodically Game Groups
Reforming at Every Stop

Game Groups
on the Train

Device Cloud

Figure 11.1: Overall scenario.

© 2016 by Taylor & Francis Group, LLC

Multi-Player Gaming for Public Transport Crowd � 197

to, first-person-shooting (FPS) and racing. However, this comes with many
challenges.

First, despite the fact that mobile gaming has been a dominant enter-
tainment source in public transports, and the increasing number of mo-
bile games available on major application markets, their adaptability as
multi-player games is still in an early stage. As far as we are concerned,
none of them is carefully designed for our targeted highly crowded public
transport environments, as they are either single-player based or turn-wise
multi-player, and these applications are usually built with suboptimal fea-
tures, like for a particular platform and/or a network type with a mobile
operator.

Second, in public transport, cellular network connectivity like 3G UMTS
and even 4G LTE is not reliable at all. Figure 11.2 demonstrates the round
trip time (RTT) between phones and the back-end game server via 3G/4G
cellular connections. The experiments are undertaken on both the bus and
metro scenarios in Seoul, South Korea, during non-peak hours. Since we are
targeting to support multi-player games likes FPS and racing, the latency is
required to be around 100-200ms and the jitter should be negligibly small. As
shown in Figure 11.2, 3G network cannot serve the purpose for satisfactory
gaming experience at all, and 4G network’s unexpected high variance and
high infrastructure costs may sometimes be a serious problem. Furthermore,
we observe sudden link loss that may significantly impact the overall gaming
experience. Thus, the challenge is to provide high-quality gaming experience
to all passengers, without intermittent, abrupt response and interruptions.
Our experiments confirm that a traditional client-server based gaming model
via cellular networks, which may lead to an unreliable gaming connection and
unsatisfactory user experience, is not feasible. If using broadcast, given that
many gaming groups may potentially exist in a crowd, broadcasting from each
end terminal would cause heavy co-channel inter-group interference.

Third, traditional cloud-based gaming services use game engines like [267],
where mobile clients are only responsible for sending game-related commands
to the cloud server. Although this centralized approach works on PCs, it suf-
fers in our scenario where a stable Internet connectivity cannot be assumed,
e.g., the train tunnel. Furthermore, the concept of realizing a gaming cloud
Platform as a Service (PaaS) restricts the on-the-fly gaming behaviors of in-
dividual passengers, where the availability of the service is a prerequisite.
Therefore, new technology that can cope with the disrupted mobile connec-
tions via Internet become strongly desired. Toward this end, the architecture
of game development and communication methodology needs to be revised to
consider the periodically disrupted manner of the Internet connection by the
aid of a dynamic local cloud formed by smart devices.

Fourth, multi-player game play is further complicated by the mobility
pattern of both the moving vehicles and passengers’ different routines, e.g.,
the duration between two stops, the time window on the platform, where to
board/get off the vehicle, etc.

© 2016 by Taylor & Francis Group, LLC

198 � Cyber Physical Systems: Architectures, Protocols, and Applications

Packet index

RT
T

(m
s)

RT
T

(m
s)

Packet index

Zoom in view of scale
from 0 to 1000ms

(a) Traveling on a bus with 3G network — RTT reaches up to 28.27s, with 738.518ms on average
(standard deviation 3.147s) and 5% packet loss.

Packet index

RT
T

(m
s)

sudden link loss

high peak delay

(b) Traveling in the metro with 4G network — RTT is 97.312ms on average (standard deviation
47.013ms) and 0.5% packet loss. Better performance but with sudden link loss and high peak delay.

Figure 11.2: Results of packets’ RTT indicate 3G/4G cellular net-
works cannot serve the purpose for a satisfactory gaming experience
because of high latency, unexpected high variance, and sudden link
loss.

We developed a Bluetooth-based neighbor discovery application in an An-
droid smartphone, where a tester carries the handset traveling in two fixed
routes of Beijing Underground everyday from June to September 2012. As
shown in Figure 11.3, experimental results confirm that the considered public
transport scenarios indeed offer a unique opportunity for travelers to partic-
ipate in game play according to their gaming preferences. It is very impor-
tant to notice that the Bluetooth’s sensing range is much shorter than WiFi’s,

© 2016 by Taylor & Francis Group, LLC

Multi-Player Gaming for Public Transport Crowd � 199

(a) The ECDF (empirical cumulative distribution function) of the number
of newly discovered (Bluetooth enabled) neighbors per minute — On av-
erage nearly 7 new passengers are discovered per minute, which means that
14 new passengers are discovered on average at each stop of Beijing Un-
derground given that it takes approximately 2 minutes for the trip between
stops.

(b) The ECDF of the durations of neighbors staying within the communi-
cation range of Bluetooth — the average lifetime for an active passenger is
470.91s, i.e., on average a passenger will stay with the tester for 3.9 stops.

Figure 11.3: Studies of passenger dynamics in Beijing Underground
suggest that there is ample opportunity to start/join a game play
in the crowd. The experimental results also confirm that the con-
sidered public transport scenarios indeed offer a unique opportunity
for travelers to participate in game play according to their gaming
preferences.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-15&iName=master.img-002.jpg&w=220&h=168
http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-15&iName=master.img-003.jpg&w=221&h=180

200 � Cyber Physical Systems: Architectures, Protocols, and Applications

therefore, we expect more passengers can be discovered via WiFi connections.
However, the question still remains of how to optimally estimate the stability
of an existing gaming group formed by passengers’ devices, so that anyone’s
departure will not impact the overall gaming experience of others, and the
newly arrived participants can accurately join the right game group and com-
petitors among the crowd.

Finally, traditional ways like constant scanning and retrieving informa-
tion from the cloud server in finding participants in the proximity may cause
additional signaling overhead and energy efficiency issues. Furthermore, the
conventional lengthy registration/sign-on/involvement process over the back-
end game server is obviously not applicable either. Therefore, a distributed
game operation within the local crowd is strongly desired.

To address the above limitations and enable highly interactive gaming in
crowded public transports, in this chapter we propose and prototype “Crowd-
MoG,” the Crowd based Mobile Gaming platform. It provides users with
cloud-based, context-aware automation for group forming and reforming when
group members move. As a core functionality, CrowdMoG provides a location-
aware matchmaking process to discover and match a passenger with his/her
preferred game group. The backend cloud-based game servers offer players
gaming group information according to the information retrieved from their
mobile app as well as their social network profiles. Furthermore, the heavy
lift computation like group forming and game owner (GO) selection are of-
floaded to the server in the cloud to guarantee minimum usage of the scarce
battery and computation resources on the mobile client. Most importantly,
since the numbers of platforms and trains can be large in a modern city, if
the computation takes too long, the train will be gone before the players re-
ceive the relevant information. Therefore, the backend gaming servers have
to be on the cloud which is resourceful in terms of computation power and
knowledge.

The contribution of this chapter is threefold:

� We propose a completely new type of context-aware application sce-
nario to enable highly interactive and opportunistic mobile gaming
among nearby passengers in public transports, geared by the proposed
CrowdMoG platform.

� We show the detailed component design of CrowdMoG to achieve the
required functionalities, that include a few key design elements for
gaming group discovery in aware of the passenger dynamics and related
social information, and runtime game operation in aware of network
latency issues: Cloud-Based Gaming Services, Cloud Manager, Peer
Manager, Game Session Manager, Network Protocol Manager, Group
Manager, and Game Feature Extractor.

� Finally, a prototype is developed and shown to demonstrate the gaming
service among crowds.

© 2016 by Taylor & Francis Group, LLC

Multi-Player Gaming for Public Transport Crowd � 201

The rest of the chapter is organized as follows. First we describe the potential
scenario which frames key challenges in building such a system. Then, we
elaborate the design of CrowdMoG. After the prototype is introduced, we
conclude the chapter.

11.2 A CrowdMoG Use Case Scenario

In this section, we describe a motivating scenario for the considered oppor-
tunistic crowd-based gaming in public transports. Patrick from France boards
a metro train departing for the Louvre in Paris. Being a regular commuter, he
knows that the journey will take approximately half an hour, and thus decides
to kill the time by playing a racing game on his Android tablet. With the in
situ gaming functionality supported by CrowdMoG, he is able to race with
nearby passengers in the same metro car. Patrick strongly favors this type
of location-aware mobile gaming since he could play with people in the real
world [263] (however, he may not know exactly who he is playing with), and
more importantly, he would not experience unexpected performance degrada-
tion while playing due to the cellular network latency. When Patrick’s game
starts, the CrowdMoG platform on his tablet disseminates the gaming infor-
mation, including the preferred game type, future period of stay on the route,
the number of required players and their levels, etc., to all nearby passengers.
Assume that this information is proactively received by two passengers in the
same metro car who have installed the same game in their Google Nexus. Note
that in practice, passengers frequently change their location (e.g., getting on
and off) while commuting, and thus the maximum allowed time window to
join a game is relatively very short (as analyzed in Section Gaming Group
Discovery in Section 11.3.1). In such cases, just making an application layer
protocol to probe for nearby peers is inefficient, since it will result in high bat-
tery drain while continuously searching for peers. Using our situation-aware
matchmaking process as part of our CrowdMoG system, it helps identify only
the GOs of the ongoing games if they are of similar interests as Patrick (rather
than finding all game participants). Furthermore, CrowdMoG also performs
seamless session handoff right after Patrick’s departure, so that other game
participants who were gaming with him are still able to maintain a satisfactory
continuity, and one of them will become the new GO. Hence, the proposed
system not only deals with intricacies related to the real-time, on-the-fly gam-
ing, but also it solves the fundamental research problem of how to form a
game group opportunistically at runtime among co-located travelers.

In the following discussions, we similarly call a passenger behaving like
“Patrick” as the GO, those travelers who are physically around Patrick and
within the communication range as the “crowd,” and finally once they join
Patrick in a game play, they are called the participants of a gaming group. A
crowd may consist of multiple co-located simultaneous gaming groups.

© 2016 by Taylor & Francis Group, LLC

202 � Cyber Physical Systems: Architectures, Protocols, and Applications

11.3 CrowdMoG Design

Figure 11.4 shows the component design of CrowdMoG including: the cloud
on the upper side which contains the cloud-based gaming services (CBGS)
component and four layered design on the bottom that runs as a middleware
service on each smart device. As an overall system, it receives supports from
both the cloud-based game services that interact with social media (like on-
line social networks) and provides the support for CrowdMoG and gaming
applications on the smart devices. CrowdMoG consists of four layers built

Smartphone OS (Android)

G
am

e

En
gi

ne

I/O Command processing / Graphic Rendering/ APIs

G
am

e
C

on
tr

ol

 L
ay

er

Game
Feature

Extractor

User’s Input/ Engine’s Output

Network
Protocol
Manager

Application Interfaces

In
fo

rm
at

io
n

La
ye

r

Session Dynamics
Manager

Peer Manager
Discover (Control)

Group Manager

Mobility Trace
(Trip Memory App)

Game
Preference

Cloud
Manager

Group
Storage

Gaming
APP1

Gaming
APPn

Passenger Departure
Prediction

Gaming
APP2

Cloud Based Gaming Service Platform

Gaming
APP1

Gaming
APPn

Gaming
APP2

Application Interfaces

Group Forming Manger

Gaming Information
Social Networks

Figure 11.4: Architectural design of the CrowdMoG platform — the
square on the bottom contains the part on the players’ mobile devices
while the cloud above contains cloud-based gaming services compo-
nents.

© 2016 by Taylor & Francis Group, LLC

Multi-Player Gaming for Public Transport Crowd � 203

on top of the smart device operating system (i.e., Android). The top layer
leverages the existing open-source game engines (i.e., Andengine), responsi-
ble for I/O command processing, graphic rendering, and handling APIs. The
next layer below consists of a handful of session APIs. These APIs are linked
with the four modules in the Game Controller layer. It is primarily respon-
sible for maintaining the gaming group session through the Group Manager
as well as efficient communication with the Internet cloud (Cloud Manager)
and local cloud (Network Protocol Manager). The session information is then
passed to the Information layer, which maintains a set of repositories to store
the gaming group information, passenger trajectories, etc. The fundamental
functionalities associated with these key components are provided as follows.

11.3.1 Cloud-Based Game Services

The cloud-based game services (CBGS) maintain the information that is col-
lected from each active player and gaming group which includes: the player’s
id, current location, past trajectory, existing gaming group, etc. Moreover,
CBGS collaborate with existing social networking services like Facebook,
Twitter, and SINA Weibo to retrieve other information including: players’ pro-
files and their gaming preferences, etc. Based on information collected, CBGS
determine how gaming groups can be established at a particular station, and
whether the existing gaming groups in the subway car shall be reformed to
accept newly joined passengers who just boarded, or to terminate the partic-
ipation with those who just got off. Most importantly, CBGS nominate two
GOs to all co-located players within a group. The reason is to minimize the
chance of game disruption in case the only GO decides to get off the train but
there is no other GO to serve the gaming group.

While considering to nominate GOs, CBGS predict all players’ trajectories
among which the owner of the longest one is nominated as the “executive”
GO and the second longest as the “deputy” GO. The dead-reckoning concept
[268] (extrapolation-based) is used here to estimate the new position of the
player by predicting his/her trajectory through the most recent information
update. Other possible techniques include the interpolation based techniques
[269], however due to the imperfect prediction results and thus the errors
deviating from the ground truth, it may significantly affect the game play
experience at runtime. If the current executive GO is leaving the train, the
deputy GO shall step in and therefore without expensive overhead on the
communication and computation from the player’s mobile device. After all,
CBGS dynamically maintains two GOs for each group existing on the train
and periodically updates two GOs and group members considering players on
the train and platform.

Gaming Group Discovery : Passengers in public transport scenarios are
behaving dynamically and their average period of stay indicates the possibil-
ity of playing multi-player games. Unlike in delay tolerant networks (DTNs)
where each device aims to learn the mobility pattern of all nearby devices for

© 2016 by Taylor & Francis Group, LLC

204 � Cyber Physical Systems: Architectures, Protocols, and Applications

information sharing [270, 271], it is not applicable for real-time gaming appli-
cations in our scenario due to the concerns of resource limitation on mobile
devices. The challenging task of how to efficiently detect the nearby co-located
devices, especially when considering their associated gaming preferences is
aided by our proposed CBGS module which is much more resourceful in terms
of computational power and information storage.

CBGS aid the learning of the mobility patterns of a crowd of passengers
on the platform through offloading the computation from their own smart
device. This is because given the fact that the period of a train stay on each
platform is only on the scale of seconds (e.g., 20 seconds on average in Beijing
Underground), it is almost impossible for a smart device to compute and
compare the trajectory of all the passengers on the platform. However, it is
worth mentioning that the larger the size of the crowd, the better diversity
and opportunity for gaming passengers to join a preferable game play.

On the other hand, CBGS collect the gaming preferences of each player
from their mobile device and social networks to aid the process of providing
recommendations on games and groups. When certain passengers are pre-
dicted to join or leave a game, an optimal solution for group reforming is
computed and provided by the CBGS to maintain the undisrupted gaming
experiences for other players.

Furthermore, we limit the number of players in a gaming group to the
maximum of 10 members in order to guarantee the essential information ex-
changes for the game in case the CBGS are not available to the crowd. The
reason for conducting such a limitation is because of the fact that a unicast-
based peer discovery by using Wi-Fi Direct shows that maximally 10 users can
be detected in a 15-second time window by using a 1MHz channel of 900MHz
band.

After all, the computation of group reforming and recommendations on
games are all offloaded to the cloud, and all the computed results are prepared
before the train arrives at the platform. Because the heavy lifting computa-
tion on group forming is offloaded to the cloud, the limited computation and
battery resource on the player’s mobile device can focus only on the game
playing and necessary communication in an efficient manner.

11.3.2 Cloud Manager

Cloud manager on the player’s mobile device takes responsibilities of initiat-
ing the connections between the CBGS and all players, while it also optimizes
the time slot in which the client should be probing the CBGS with the opti-
mized energy and communication efficiency. This is aided by the sensor-based
passenger departure prediction (PDP) module and stored players’ historical
trajectory.

Passenger Departure Prediction: It predicts when a passenger is about
to depart from the train and, therefore, leave the game. The prediction is
supported by the hardware like motion sensors and accelerometers on mobile

© 2016 by Taylor & Francis Group, LLC

Multi-Player Gaming for Public Transport Crowd � 205

devices, and PDP automatically alerts the GO about this departure. Based
on the received alerts from multiple passengers, the GO can further predict
that the train might be arriving soon. Based on this prediction, the cloud
manager is able to maximize the bandwidth efficiency by only probing the
CBGS when the train is about to arrive at the platform where the cellular
signal is available.

11.3.3 Group Manager

This module maintains the gaming group information like the type of game
being played and number of participants as group members. During the time
when the CBGS are not available, the GO’s Group Manager module dis-
tributes this information to the new passengers to aid their joining decision,
which is eventually performed by the Peer Manager. When the GO or group
members leave the group without being successfully predicted, Session Dy-
namics Manager will provide essential support for maintaining the game group
structure until the next available group reforming recommendation is received
from CBGS.

The group information will be updated when existing passengers join/leave
the game, and it will be further uploaded to the CBGS by the GO whenever
the Internet connection is available. Note that the group information will be
updated periodically at runtime on the mobile side, therefore we only store it in
a memory-based device cache (without persistency guarantees). As discussed
earlier, in order to provide satisfactory latency performance, the size of the
group is restricted for the purpose of imposing a hard requirement on the
maximum allowed number of participants admitted in the game.

11.3.3.1 Peer Manager

While recommending peer-of-interest is the primary functionality of the
CrowdMoG platform on CBGS, the Peer Manager module performs the peer
detection to associate the end users with all interested nearby participants
via recommended gaming groups, without being impacted by any side effect
of high discovering latency. As part of the situation-aware matchmaking pro-
cess, peer detection is only performed by the GO, who initializes the game at
the very beginning, or the deputy GO after the first GO’s departure, rather
than finding all devices by each passenger individually. As described above,
CBGS provides each player with relevant gaming group member information
and recommended GOs. This flexible functionality enables every player to as-
sociate himself/herself only with their preferred game play, given the fact that
potentially many different types of games co-exist in a crowd. The role of peer
manager is to follow the support from CBGS and connect with the interested
gaming group (via its members or GOs).

Furthermore, interacting with the Session Dynamics Manager, Peer Man-
ager enables the group association only if the participants are mutually trust-
worthy and their size does not exceed a threshold (see Section Network

© 2016 by Taylor & Francis Group, LLC

206 � Cyber Physical Systems: Architectures, Protocols, and Applications

Protocol Manager, Section 11.3.4). It provides an opportunity in case a
player wants to interact with someone he/she has played earlier in a game
and makes sure the admitted new player will not affect the existing game
performance. The degree of trust can be quantized by parameters like average
gaming session length between two players.

11.3.3.2 Session Dynamics Manager

Since our targeted application scenario is associated with a highly dynamic
crowd, maintaining the dynamics of the game sessions becomes extremely
important. This module serves as part of the situation-aware matchmaking
process, to provide passengers a unique way to attain continuous session man-
agement.

In the case of the executive GO leaving the game unexpectedly, the deputy
GO’s session dynamics manager broadcasts to the group members about
his/her new ownership of the game group; thereafter the deputy GO per-
forms as the executive GO until a better recommendation on group reforming
is received from the CBGS. On the other hand, if a group member leaves the
game unexpectedly, it is comparatively easier to maintain the group structure.

Following Patrick’s example earlier, since he is a regular commuter, the
CrowdMoG platform running on his smart device periodically records his
travel pattern using the trip memory application [262, 272], which has been
prototyped as a proof-of-concept. It is an Android application that tracks the
commuter’s traveling path and logs the surrounding events extracted from the
ambient sensors. The collected trip information (stored in the mobility trace
repository of the Information layer) is then distributed to the GO, and the cor-
responding Session Dynamics Manager coordinates the session handover well
before his/her departure through the Network Protocol Manager. In this way,
it facilitates the mobility pattern overhearing inside the group, and ultimately
helps all participants achieve the continuity of the game play.

11.3.4 Network Protocol Manager

Recently, overhearing the broadcast packets has been applied in a typically
tethered connection type, to support the traditional server-client model in a
local video streaming [273]. It aims to overcome the shortages of prediction
based techniques, but comes with shortages at the expense of heavy energy
drain on 3G/4G, heavy co-channel inter-group interferences [273], and with-
out the support of session handover upon a participant’s departure and new
members joining in.

The main drawback of using 3G/4G-based cellular networks to facilitate
crowd gaming in public transports is due to its poor wireless link quality as
demonstrated in Figure 11.2. This problem can be more severe in some cases
where infrastructure is not available (like in the tunnels of London Under-
ground). Thus, a traditional client-server model is not feasible. Meanwhile,

© 2016 by Taylor & Francis Group, LLC

Multi-Player Gaming for Public Transport Crowd � 207

the proposed broadcasting based protocols like WiFi-Direct [274] suffer from
injecting significant amounts of co-channel interference within a group, even
under a reasonable size of 50 passengers (the usual case during peak hours).
Toward this end, our Network Protocol Manager aims to reduce the number
of packet exchanges in the crowd while improving the latency performance of
the network in real time.

Instead of communicating with the cloud-based game server for each game
packet (e.g., mobility and game information), we operate the CrowdMoG plat-
form in a two-phase mechanism. Each participant unicasts the game packet
to the GO in the first phase, and then the GO broadcasts the collected set
of information to the crowd. In this way, the communication only happens
within the local game group, and the GO is the only one to broadcast the
packets, while overhearing by all participants. Furthermore, unlike traditional
prediction-based methods (e.g., interpolation [269] and extrapolation [268])
that estimates other characters’ movements by using their past information,
our Network Protocol Manager accurately disseminates the gaming informa-
tion among the game group. This mitigates the problem caused by poor cel-
lular network connectivity, and helps distribute the exact gaming information
among all participants, rather than using any prediction-based methods that
aim to estimate their movements. This is feasible in that the size of the group
remains relatively stable during the travel time between two stops.

Finally, because the size of the group highly affects the performance of
network overhearing, this module aims to dynamically estimate an optimal
threshold, defined as the maximum number of participants in a group, be-
yond which the interference may deteriorate the protocol performance. This
threshold is quantized by parameters like the received signal-to-noise-plus-
interference-ratio (SINR) at runtime.

11.3.5 Game Feature Extractor

This module is primarily responsible for collecting and analyzing the smart
device user’s gaming preferences data that is produced on the mobile device,
including the preferred game type and role, the average duration of the game
play, the preferred type of competitors, etc. These pieces of information are all
periodically collected and summarized by the Game Feature Extractor when
the Internet connection is not available and then, this module is expected to
perform runtime analysis to extract the gaming preferences of the user, and
later stored in the Game Preference repository in the Information layer.

11.4 Prototype — Phage

“Phage” is developed as a proof-of-concept to demonstrate the advantage
of the proposed gaming platform. It is a PvP (player vs. player) real-time
strategy game that is very easy and enjoyable to play. The game is about

© 2016 by Taylor & Francis Group, LLC

208 � Cyber Physical Systems: Architectures, Protocols, and Applications

Figure 11.5: Screenshot of the “Phage.”

multiple species of viruses aiming to infect as many cells as possible. In order
to infect a cell, players first touch and drag over cells that are already occupied
by his/her “virus” in an attempt to assemble a relatively larger quantity of
“virus” army, and then release the finger at another cell to direct the army to
defeat those occupying “viruses” from another species. Eventually, the winning
species should infect all cells by defeating every other species of “virus.”

The game is easy to play because it uses touch interface only on which a
single movement is conducted by a simple touch-drag-release sequence. Players
can operate on the touchscreen to: (1) touch the factions to choose the cells in
which the occupying viruses are selected, (2) drag and hover over other cells in
your faction to fortify the cell or aim at others to attack, (3) and then release
to make the fortification or attack happen. In the team-wise multi-player case,
two players can also communicate with each other to collaborate on a joint
operation to defeat a third player.

“Phage” supports the 3G communication with CBGS and the WiFi-Direct
for ad hoc multi-player gaming. As demonstrated in Figure 11.5, “Phage” is
very suitable for a group of temporarily co-located passengers to enjoy some
moments of fun during their time of travel. On the one hand, the feature
that has WiFi-Direct to connect with other players provides the game with
advantages in the underground tunnel. Because even when a public telecom-
munication network is not available, players can still enjoy the current game
session via WiFi-Direct connection. On the other hand, it also supports the
3G communication with the CBGS while the train is on the platform where
Internet infrastructure can be assumed. This provides the game application

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-15&iName=master.img-018.jpg&w=288&h=217

Multi-Player Gaming for Public Transport Crowd � 209

with the ability to connect with the SINA Weibo, the most visited microblog-
ging website in China, where the players publish their scores and the CBGS
retrieves the gaming preference information.

At the current stage of development, although only one game has been
implemented based on proposed platform, it demonstrates the applicability
of the overall platform in providing cloud-based context-aware crowd gaming
service.

11.5 Summary

Multi-player gaming on smart devices is increasingly catching attention, par-
ticularly in public transport environments where people are looking forward
to playing rich contextual games while traveling. In this chapter, we proposed
CrowdMoG, a crowd-based mobile gaming platform that utilizes the cloud re-
source as well as crowd resource to enable highly interactive and opportunistic
mobile gaming in such scenarios. The goal is to leverage the unlimited compu-
tation power of the cloud, information on the social network, and the mobile
devices in the vicinity to achieve a distributed on-line gaming experience in
real life.

Specifically, in this chapter we proposed a design of the CrowdMoG
platform with key design elements including: Cloud-Based Gaming Services,
Group Manager, Cloud Manager, Network Protocol Manager, and Game Fea-
ture Extractor. Supported by many modules, the group forming process of-
fers a unique functionality to discover and match the nearby passengers on
the move according to their associated gaming preferences, and provides the
smooth session handover to enable the continuity of existing game plays when
participants leave the game due to different mobility patterns.

The Phage, a functioning vertical prototype, has been developed to demon-
strate the advantage of the proposed gaming platform and cloud-based crowd
architecture. In addition to the multi-players’ gaming experience, the Phage
provides passengers with convenient ad hoc communications via WiFi-Direct
connection. The game preference extractor, which is the fundamental support
for game group forming, is also implemented to analyze the favorite based on
a player’s profile on social network.

Our investigation aims to demonstrate the applicability of context-aware
crowd gaming in underground transportation where the public telecommuni-
cation network is often not reliable. The proposed architecture enables the
gaming app to behave differently according to the availability of the cellular
network. On one hand, the application can automatically form/join a game
group based on the information retrieved when the cellular connection is avail-
able. On the other hand, when the cellular network is not available, a local
device cloud is sufficient to maintain the gaming communication.

© 2016 by Taylor & Francis Group, LLC

Chapter 12

Mobile Cloud
Computing Enabled
Emerging CPS
Applications

Chi Harold Liu

Beijing Institute of Technology, China

CONTENTS

12.1 Education . 212
12.2 Office Automation . 212
12.3 Healthcare . 213
12.4 Mission-Critical Applications . 214
12.5 Summary . 215

The previous chapters present two important application areas of CPS. In
fact, there are many emerging CPS applications to be considered on such plat-
forms, e.g., crowd computing, mobile social networking applications, location-
based services, sensory-based applications, etc. Realization of these applica-
tions brings many constraints for researchers and developers like task offload-
ing to reduce energy consumption on a device and execution time, communi-
cation bandwidth, security and privacy, etc. In this chapter, we name some

211

© 2016 by Taylor & Francis Group, LLC

212 � Cyber Physical Systems: Architectures, Protocols, and Applications

representative MCC-enabled CPS applications in the following four areas: ed-
ucation, office automation, healthcare, and mission-critical applications.

12.1 Education

Since CPS is based on the connection of common “objects” to the Internet,
inherently it provides powerful possibilities to enhance the traditional learning
experience, and brings a high degree of tangibility to the learning process, es-
pecially with user-centered characteristics [275]. Specifically, powered by MCC
technologies, mobile learning represents an expansion of the learning environ-
ment. Compared to conventional e-Learning, MCC-enabled CPS architecture
and associated key technologies enable mobile learning to provide full acces-
sibility to lecture contents and acquire knowledge without the constraint of
specific place, time, or devices. Furthermore, the personal smart devices can
establish better interactions among students, and between students and lec-
turer.

A most recent implementation of an intelligent mobile cloud education
system is reported in [276]. The system provides four main functionalities of
Learning-Assessment-Communication-Analysis (LACA) based on the IaaS ar-
chitecture to enable learners to access the learning cloud anytime anywhere
on various mobile devices. Its primary motivation is that the role of teaching
and learning has changed from a teacher-centered approach to a community-
centered approach, and from information transfer to knowledge creation. Con-
sidering the type of MCC-oriented CPS architecture, Internet Cloud can be
most suitable for educational, mobile applications. Key challenges in this area
are the limited device battery due to the power-consuming nature of video
streaming applications, limited communication bandwidth, security, and pri-
vacy due to online mobile exams, etc.

12.2 Office Automation

Smart environments, such as smart home, smart office, and smart plant, are
envisioned as one of the most profound impacts within the concept of CPS,
making full human interactions with surrounding systems a pleasant experi-
ence. Specially, in the field of office automation, the rapid growth of the usage
of smart devices and the rise of cloud computing have motivated practition-
ers to provide solutions that can benefit the user not only on the level of
everyday office activities such as “driverless printing” [277], but also on the
enterprise level [278]. For the latter, Cisco developed and deployed a cloud-
based selling management system [278] to its worldwide field users, to not
only provide uniform representation transformation to ensure that the same
enterprise content is natively accessible from mobile devices, but also take

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing Enabled Emerging CPS Applications � 213

Figure 12.1: MCC ecosystem and its important stakeholders.

over the heavy lifting such as: access authentication, tracking, and business
analytics. Uniform user experience across Apple iOS, Blackberry, and Android
devices is provided through a thin smartphone native client. Therefore, “any-
where & anytime” information retrieval is ensured. More importantly, global
collaborative communities are formed among colleagues because it allows field
personnel with the same interests to share updates on strategies or exchange
important information in order to make the next sale cycle easier.

In the scenarios of office automation application within a specific geograph-
ical range, like printer, projector, etc., Device Cloud provides more efficient
connectivities. In addition, Internet Cloud remains the most suitable solu-
tion for field agents. The main challenges faced here are: (a) the authentication
on access from mobile devices takes significant effort, and (b) heterogeneity of
mobile devices with different user interfaces causes problems when the content
and user interface are updated.

12.3 Healthcare

One of the main and emerging CPS applications is m-health [279]. Realization
of m-health applications will bring many challenges like real-time processing
and storing huge amounts of patient data, privacy protection and security of
medical data, power-awareness of sensors, bandwidth constraints, etc.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19003-16&iName=master.img-000.jpg&w=285&h=234

214 � Cyber Physical Systems: Architectures, Protocols, and Applications

Through smart devices in a CPS sensory environment, MCC is able to
provide patients with easier accessibility to critical healthcare. ROCHAS [280]
assists the healthcare service between patients and doctors by adopting wired
or wireless communications, and a cloud-assisted healthcare infrastructure.
In addition, a low-cost robot (as the end device) is used to provide mobile
multimedia communications and intelligent speech recognition, so as to help
the patient to connect and communicate with other family members as well.

In the scenarios of healthcare monitoring, Hybrid Cloud is the solution.
The Device Cloud provides “anywhere” connectivity to enable real-time mon-
itoring and managing a range of medical conditions. The Internet Cloud pro-
vides “anytime” resourceful support to generate accurate estimation on a pa-
tient’s status. On the other hand, the Internet Cloud is a more resourceful
pool to find aids for remote diagnostics, and Device Cloud is the only ef-
ficient way to connect and communicate in the case of large-scale disaster
management.

12.4 Mission-Critical Applications

In a critical mission-based field operation, like disaster management, emer-
gency rescue mission, etc., maintaining local communications and information
sharing in real-time are very critical for the crowds (i.e., soldiers) in the front
line. The Device Cloud architecture provides a way that not only allows the
crowds in the front line to communicate and share information, but also to op-
timize the computational and battery resources among them for the purpose
of maximizing the lifetime of the teams as a whole.

Recently, CPS has obtained rapid development and has a significant im-
pact on the military field. The Defense Advanced Research Projects Agency
(DARPA) recently conducted a preliminary field test on their software pro-
gram called Content Based Mobile Edge Networking (CBMEN) [281] which
allows soldiers in the battlefield to share intelligence without syncing to a
server by using the equipped smart devices.

From the technical point of view, DARPA’s effort is to leverage the avail-
able connections like cellular, WiFi, or Rifleman Radios (as the access network
in a CPS architecture) to create secure front line cloud storage services that
provide battlefield content with decreased latency and increased availability.

On the one hand, the updates are automatically replicated and shared as
long as the troops are within the connection range, and the tactical cloud
grows and diminishes as soldiers move in and out of range of each other. On
the other hand, when the troops come back to the base where connections
becomes available, all the intelligence can be synced to the central server and
processed on the infrastructure-based cloud.

The challenges faced here are: (a) limited battery of the mobile device, (b)
inefficient information exchange, (c) limited bandwidth of the connection, and
(d) heterogeneity of the mobile devices and network connection.

© 2016 by Taylor & Francis Group, LLC

Mobile Cloud Computing Enabled Emerging CPS Applications � 215

12.5 Summary

These MCC-enabled CPS applications are not just simply the mobile version
of PC applications. Their mobility and dynamic nature bring something really
challenging and important for researchers and practitioners to tackle. Tradi-
tionally, all computation was run on fixed PCs where energy consumption and
computing performance of a PC’s application were not constrained. However,
this is completely different when it comes to the era of MCC with limited
mobile battery and CPU power. In addition, the heterogeneity in an MCC
environment, OS, wireless connections, etc., requires the MCC application to
be much more adaptive and dynamic. Also, in contrast to a fixed PC, a mo-
bile phone is a very personal belonging, therefore extra security and privacy
protection are highly expected.

© 2016 by Taylor & Francis Group, LLC

Chapter 13

Conclusion

Chi Harold Liu and Jianxin Zhao

Beijing Institute of Technology, China

Yan Zhang

Simula Research Laboratory and University of Oslo, Norway

Cyber Physical Systems (CPS) represent an evolution in computerized inter-
connectivity. It integrates the dynamics of the physical processes with those of
the software and communication, providing abstractions and modeling, design,
and analysis techniques for the integrated whole. It has become the new re-
search focus for worldwide industry, academia, and government agencies. CPS
faces many challenges, including CPS-specific ones such as privacy, participa-
tory sensing, data analytics, GIS-based visualization, cloud computing, and
those standard WSN challenges, e.g., architecture, energy efficiency, security,
protocols, and quality of service. To deal with these challenges, in this book,
we analyze CPS in detail from different aspects, including its architectures,
protocols, and applications.

In Chapter 2, we discussed the overall CPS architecture by analyzing differ-
ent CPS applications from the bottom up and extracting the common charac-
ters that form a vertical structure. The next four chapters presented different
important aspects of this structure. Chapter 3 presented mobile sensing plat-
forms and their applications in interrelated paradigms, and highlighted and
briefly discussed different types of mobile sensing platforms and the function-
alities they can offer. In Chapter 4, we discussed the naming, addressing, and
profile services of CPS and proposed a middleware component to meet the re-
quirements of dynamic applications, and sensors/actuators deployment/con-

217

© 2016 by Taylor & Francis Group, LLC

218 � Cyber Physical Systems: Architectures, Protocols, and Applications

figurations across different platforms. Chapter 5 presented a context-aware
sensor search, selection, and ranking model, which addresses the challenge of
efficiently selecting a subset of relevant sensors out of a large set of sensors
with similar functionality and capabilities. In Chapter 6, we considered various
topics in the energy management of CPS and proposed a novel energy-efficient
framework.

The next part presented some vital technologies that make CPS possible.
Chapter 7 presented the fundamental networking technologies of CPS. Chap-
ter 8 focused on the machine-to-machine communications for CPS, specifically
on open technologies such as IPv6-based solutions that can be integrated
into IoT and enable wireless sensor communications. Chapter 9 discussed the
state-of-the-art MCC research activities that aim to enhance the capabilities of
resource-constrained smart devices in CPS sensory environments. With its im-
mense and complex information perceiving and processing capabilities, MCC
technologies are emerging to empower diverse CPS applications by providing
ubiquitous and rich functionalities.

Finally, Chapters 10, 11, and 12 presented a few representative CPS appli-
cations, including connected healthcare, gaming in public transport crowds,
and a series of MCC-enabled emerging CPS applications. Built on previous
architecture and technologies, these application fields fully demonstrate the
great potential of applying CPS in public life.

Although there are still many research challenges in CPS, we believe that
CPS will finally be extended to individual and home users, facilitating life for
everyone with ubiquitous networks and strong connections among all things.
CPS will also extend communications beyond the traditional boundaries. As
more devices are added to communication networks, ubiquitous networks will
take shape and grow. The gradual establishment and improvement of technol-
ogy will inevitably enlarge the scope of CPS applications and lower deployment
costs so that they will finally become part of daily life.

© 2016 by Taylor & Francis Group, LLC

References

[1] W. Wolf. Cyber-physical systems. Computer, 42(3):88–89, March 2009.

[2] Kyoung-Dae Kim and P. R. Kumar. Cyber-physical systems: A perspec-
tive at the centennial. Proceedings of the IEEE, 100 (Special Centennial
Issue):1287–1308, 2012.

[3] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical sys-
tems: The next computing revolution. In Proceedings of the 47th Design
Automation Conference, pages 731–736. ACM, 2010.

[4] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey.
Comput. Netw., 54:2787–2805, Oct. 2010.

[5] J. Zheng, D. Simplot-Ryl, C. Bisdikian, and H. T. Mouftah. The Internet
of Things. Special Topic in IEEE Comm. Mag., Nov. 2011.

[6] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. Internet of things: Vision, applications and research chal-
lenges. Ad Hoc Networks, 10(7):1497–1516, 2012.

[7] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of cyber-
physical systems. In IEEE WCSP’11, pages 1–6, 2011.

[8] Jiann-Liang Chen, Ming-Chiao Chen, Chien-Wu Chen, and Yao-Chung
Chang. Architecture design and performance evaluation of RFID object
tracking systems. Computer Communications, 30(9):2070–2086, 2007.

[9] Chris M Roberts. Radio frequency identification (rfid). Computers &
Security, 25(1):18–26, 2006.

[10] Kevin Ashton. That ‘internet of things’ thing. RFID Journal, July 2009.

[11] Jean-Philippe Vasseur and Adam Dunkels. Interconnecting smart objects
with IP: The next internet. Morgan Kaufmann, 2010.

219

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.comcom.2007.04.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMC.2009.81
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1837274.1837461
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1837274.1837461
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cose.2005.12.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.cose.2005.12.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.comnet.2010.05.010
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.adhoc.2012.02.016

220 � References

[12] INFSO d.4 networked enterprise & RFID INFSO g.2 micro & nanosys-
tems. In Co-operation with the working group RFID of the ETP EPOSS,
2008.

[13] P. Kinney. ZigBee technology: Wireless control that simply works. In
Communications design conference, volume 2, 2003.

[14] B. Mukherjee, J. Yick, and D. Ghosal. Wireless sensor network survey.
Computer Networks, 52(12):2292–2330, 2008.

[15] I. Toufik, S. Sesia, and M. Baker. LTE: the UMTS long term evolution.
Wiley Online Library, 2009.

[16] Haiyan Luo, Song Ci, Dalei Wu, Nicholas Stergiou, and Ka-Chun Siu.
A remote markerless human gait tracking for e-healthcare based on
content-aware wireless multimedia communications. IEEE Wireless
Communications, 17(1):44–50, 2010.

[17] N. Bui and M. Zorzi. Health care applications: A solution based on
the internet of things. In The 4th International Symposium on Applied
Sciences in Biomedical and Communication Technologies, 2011.

[18] J. Paradells and C. Gomez. Wireless home automation networks: A
survey of architectures and technologies. IEEE Comm. Mag., 48(6):92–
101, 2010.

[19] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore.
Environmental wireless sensor networks. Proceedings of the IEEE,
98(11):1903–1917, 2010.

[20] F.-Y. Wang. Parallel control and management for intelligent transporta-
tion systems: Concepts, architectures, and applications. IEEE Transac-
tions on Intelligent Transportation Systems, 11(3):630–638, 2010.

[21] B. McMillin, C. Gill, M.L. Crow, F. Liu, D. Niehaus, A. Potthast, and
D. Tauritz. Cyber-physical systems distributed control: The advanced
electric power grid. Proc. of Electrical Energy Storage Applications and
Technologies, 2007.

[22] D. R. Garrison. E-learning in the 21st century: A framework for research
and practice. Taylor & Francis, 2009.

[23] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, archi-
tectural elements, and future directions. Future Generation Computer
Systems, 29(7):1645–1660, 2013.

[24] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emil-
iano Miluzzo, Ronald Peterson, Hong Lu, Xiao Zheng, Mirco Musolesi,
Kristof Fodor, and Gahng-Seop Ahn. The rise of people-centric sensing.
In IEEE Internet Comp. Special Issue on Sensor Networks, 2008.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-540-92295-7_3
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2093698.2093829
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2093698.2093829
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FJPROC.2010.2068530
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.comnet.2008.04.002
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.future.2013.01.010
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.future.2013.01.010
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMWC.2010.5416349
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMWC.2010.5416349
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2010.5473869
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTITS.2010.2060218
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTITS.2010.2060218

References � 221

[25] N.D. Lane, E. Miluzzo, Hong Lu, D. Peebles, T. Choudhury, and A.T.
Campbell. A survey of mobile phone sensing. Communications Maga-
zine, IEEE, 48(9):140–150, Sept. 2010.

[26] Paul Lilly. Mobile devices to outnumber global population by 2017.
http://hothardware.com/News/Mobile-Devices-To-Outnumber-Global-
Population-By-2017/ [Accessed on: 2013-08-06].

[27] Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. Sens-
ing as a service and big data. In International Conference on Advances
in Cloud Computing (ACC-2012), pages 21–29, Bangalore, India, July
2012.

[28] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelf-
fle. Vision and challenges for realising the internet of things. Tech-
nical report, European Commission Information Society and Media,
March 2010. http://www.internet-of-things-research.eu/pdf/

IoT_Clusterbook_March_2010.pdf [Accessed on: 2011-10-10].

[29] Cosm. Cosm platform, 2007. https://cosm.com/ [Accessed on: 2012-
08-05].

[30] CoAP, http://tools.ietf.org/html/draft-ietf-core-coap-04.

[31] Standardized machine-to-machine (M2M) software development plat-
form, white paper, InterDigital, Inc.

[32] Machine-to-machine (M2M) — the rise of the machines, white paper,
Juniper Networks, Inc.

[33] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Sensing as a service model for smart cities supported by
internet of things. Transactions on Emerging Telecommunications Tech-
nologies (ETT), 2014.

[34] Xiang Sheng, Jian Tang, Xuejie Xiao, and Guoliang Xue. Sensing as
a service: Challenges, solutions and future directions. Sensors Journal,
IEEE, 13(10):3733–3741, 2013.

[35] Prem Prakash Jayaraman, Charith Perera, Dimitrios Georgakopoulos,
and Arkady Zaslavsky. Efficient opportunistic sensing using mobile col-
laborative platform. In 9th IEEE International Conference on Collab-
orative Computing: Networking, Applications and Worksharing (COL-
LABORATECOM), Austin, Texas, United States, October 2013.

[36] Edward A. Lee. Cyber-physical systems: A rehash or a new intellectual
challenge?, June 2013. Invited Talk in the Distinguished Speaker Se-
ries, sponsored by the IEEE Council on Electronic Design Automation
(CEDA) held at the Design Automation Conference (DAC), Austin,
Texas.

© 2016 by Taylor & Francis Group, LLC

http://hothardware.com/News/Mobile-Devices-To-Outnumber-Global-Population-By-2017/
http://hothardware.com/News/Mobile-Devices-To-Outnumber-Global-Population-By-2017/
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
https://cosm.com/
http://tools.ietf.org/html/draft-ietf-core-coap-04
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fett.2704
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2Fett.2704
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.collaboratecom.2013.254090
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.collaboratecom.2013.254090
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.collaboratecom.2013.254090
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2010.5560598
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2010.5560598
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FJSEN.2013.2262677
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FJSEN.2013.2262677

222 � References

[37] T. Kakantousis and V. Kalogeraki. A mobile platform for managing
mobile MapReduce participatory sensing data. In Applications and the
Internet (SAINT), 2012 IEEE/IPSJ 12th International Symposium on,
pages 196–201, 2012.

[38] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca,
L. Legrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klas-
nja, K. Koscher, J.A. Landay, J. Lester, D. Wyatt, and D. Haehnel.
The mobile sensing platform: An embedded activity recognition system.
Pervasive Computing, IEEE, 7(2):32–41, 2008.

[39] Woosuk Lee, Bodhi Priyantha, Ted Hart, Gerald DeJean, Yan Xu, and
Jie Liu. The CLEO mobile sensing platform. In Proceedings of the 10th
ACM Conference on Embedded Network Sensor Systems, SenSys ’12,
pages 371–372, New York, NY, USA, 2012. ACM.

[40] Teemu Laukkarinen, Jukka Suhonen, and Marko Hnnikinen. An em-
bedded cloud design for internet-of-things. International Journal of
Distributed Sensor Networks, 2013:13, 2013.

[41] A. Sashima, Y. Inoue, T. Ikeda, T. Yamashita, and K. Kurumatani.
Consorts-s: A mobile sensing platform for context-aware services. In
Intelligent Sensors, Sensor Networks and Information Processing, 2008.
ISSNIP 2008. International Conference on, pages 417–422, 2008.

[42] Arkady Zaslavsky, Prem Prakash Jayaraman, and Shonali Krish-
naswamy. ShareLikesCrowd: Mobile analytics for participatory sensing
and crowd-sourcing applications. 2013 IEEE 29th International Con-
ference on Data Engineering Workshops (ICDEW), 0:128–135, 2013.

[43] Niels Brouwers and Koen Langendoen. Pogo, a middleware for mobile
phone sensing. In Proceedings of the 13th International Middleware
Conference, Middleware ’12, pages 21–40, New York, NY, USA,, 2012.
Proceedings of the 13th International Middleware Conference, Springer-
Verlag New York, Inc.

[44] R.K. Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: Current state
and future challenges. Communications Magazine, IEEE, 49(11):32 –39,
November 2011.

[45] B. Predic, Zhixian Yan, J. Eberle, D. Stojanovic, and K. Aberer. Ex-
posureSense: Integrating daily activities with air quality using mobile
participatory sensing. In Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2013 IEEE International Confer-
ence on, pages 303–305, 2013.

[46] H.A. Franke, F.L. Koch, C.O. Rolim, C.B. Westphall, and D.O. Balen.
Grid-m: Middleware to integrate mobile devices, sensors and grid com-

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1155%2F2013%2F790130
http://www.crcnetbase.com/action/showLinks?crossref=10.1155%2F2013%2F790130
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDEW.2013.6547440
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDEW.2013.6547440
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2011.6069707
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FSAINT.2012.36
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FSAINT.2012.36
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2426656.2426714
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2426656.2426714
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-35170-9_2
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-35170-9_2
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPerComW.2013.6529500
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPerComW.2013.6529500
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPerComW.2013.6529500
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMPRV.2008.39

References � 223

puting. In Wireless and Mobile Communications, 2007. ICWMC ’07.
Third International Conference on, pages 19–19, 2007.

[47] Li Zhang, Qiang Wang, and Xijuan Shu. A mobile-agent-based middle-
ware for wireless sensor networks data fusion. In Instrumentation and
Measurement Technology Conference, 2009. I2MTC ’09. IEEE, pages
378–383, 2009.

[48] Yong Sun and K. Nakata. An agent-based architecture for participa-
tory sensing platform. In Universal Communication Symposium (IUCS),
2010 4th International, pages 392–400, 2010.

[49] M. Budde, M. Berning, M. Busse, T. Miyaki, and M. Beigl. The teco en-
vboard: A mobile sensor platform for accurate urban sensing and more.
In Networked Sensing Systems (INSS), 2012 Ninth International Con-
ference on, pages 1–2, 2012.

[50] Dirk Trossen and D. Pavel. Nors: An open source platform to facilitate
participatory sensing with mobile phones. In Mobile and Ubiquitous
Systems: Networking Services, 2007. MobiQuitous 2007. Fourth Annual
International Conference on, pages 1–8, 2007.

[51] V. Agarwal, N. Banerjee, D. Chakraborty, and S. Mittal. Usense – a
smartphone middleware for community sensing. In Mobile Data Man-
agement (MDM), 2013 IEEE 14th International Conference on, vol-
ume 1, pages 56–65, 2013.

[52] A.S. Shirazi, C. Winkler, and A. Schmidt. Sense-sation: An extensible
platform for integration of phones into the web. In Internet of Things
(IOT), 2010, pages 1–8, 2010.

[53] M. Blackstock, N. Kaviani, R. Lea, and A. Friday. Magic broker 2: An
open and extensible platform for the internet of things. In Internet of
Things (IOT), 2010, pages 1–8, 2010.

[54] A. Purohit, Zheng Sun, F. Mokaya, and Pei Zhang. Sensorfly:
Controlled-mobile sensing platform for indoor emergency response ap-
plications. In Information Processing in Sensor Networks (IPSN), 2011
10th International Conference on, pages 223–234, 2011.

[55] Ted Tsung-Te Lai, Wei-Ju Chen, Kuei-Han Li, Polly Huang, and Hao-
Hua Chu. Triopusnet: Automating wireless sensor network deployment
and replacement in pipeline monitoring. In Proceedings of the 11th In-
ternational Conference on Information Processing in Sensor Networks,
IPSN ’12, pages 61–72, New York, NY, USA, 2012. ACM.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIMTC.2009.5168479
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIMTC.2009.5168479
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINSS.2012.6240573
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINSS.2012.6240573
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDM.2013.16
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDM.2013.16
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678443
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678443
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIUCS.2010.5666187
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIUCS.2010.5666187
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMOBIQ.2007.4451019
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMOBIQ.2007.4451019
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMOBIQ.2007.4451019
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678455
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678455

224 � References

[56] German Castignani, Alejandro Lampropulos, Alberto Blanc, and Nico-
las Montavont. Wi2me: A mobile sensing platform for wireless hetero-
geneous networks. In Proceedings of the 2012 32Nd International Con-
ference on Distributed Computing Systems Workshops, ICDCSW ’12,
pages 108–113, Washington, DC, USA, 2012. IEEE Computer Society.

[57] D. Kharrat and S.S. Quadri. Self-registering plug-ins: an architecture
for extensible software. In Electrical and Computer Engineering, 2005.
Canadian Conference on, pages 1324–1327, 2005.

[58] Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure for
data processing in large-scale interconnected sensor networks. In In-
ternational Conference on Mobile Data Management, pages 198–205.
International Conference on Mobile Data Management, May 2007.

[59] Michael Compton, Corey Henson, Holger Neuhaus, Laurent Lefort, and
Amit Sheth. A survey of the semantic specification of sensors. In 2nd
International Workshop on Semantic Sensor Networks, at 8th Interna-
tional Semantic Web Conference, October 2009.

[60] Michael Compton. Holger Neuhaus. The semantic sensor network on-
tology: A generic language to describe sensor assets. In AGILE 2009
Pre-Conference Workshop Challenges in Geospatial Data Harmonisa-
tion, 2009.

[61] Libelium Comunicaciones Distribuidas. libelium, 2006. http://www.

libelium.com/ [Accessed on: 2012-011-28].

[62] Charith Perera, Arkady Zaslavsky, Peter Christen, Ali Salehi, and Dim-
itrios Georgakopoulos. Capturing sensor data from mobile phones using
global sensor network middleware. In IEEE 23rd International Sympo-
sium on Personal Indoor and Mobile Radio Communications (PIMRC),
pages 24–29, Sydney, Australia, September 2012.

[63] GSN Team. Global sensor networks project, 2011. http://

sourceforge.net/apps/trac/gsn/ [Accessed on: 2011-12-16].

[64] Charith Perera, Prem Jayaraman, Arkady Zaslavsky, Peter Christen,
and Dimitrios Georgakopoulos. Big Data and Internet of Things: A
Roadmap for Smart Environments, chapter Context-aware Dynamic
Discovery and Configuration of ‘Things’ in Smart Environments, pages
215–141, Springer Berlin Heidelberg, 2014.

[65] Charith Perera, Prem Jayaraman, Arkady Zaslavsky, Peter Christen,
and Dimitrios Georgakopoulos. Dynamic configuration of sensors us-
ing mobile sensor hub in internet of things paradigm. In IEEE 8th
International Conference on Intelligent Sensors, Sensor Networks, and
Information Processing (ISSNIP), pages 473–478, Melbourne, Australia,
April 2013.

© 2016 by Taylor & Francis Group, LLC

http://www.libelium.com/
http://www.libelium.com/
http://sourceforge.net/apps/trac/gsn/
http://sourceforge.net/apps/trac/gsn/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDCSW.2012.36
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDCSW.2012.36
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISSNIP.2013.6529836
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISSNIP.2013.6529836
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISSNIP.2013.6529836
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDM.2007.36
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDM.2007.36
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPIMRC.2012.6362778
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPIMRC.2012.6362778
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-319-05029-4_9
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-319-05029-4_9
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FCCECE.2005.1557221
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FCCECE.2005.1557221

References � 225

[66] S. Hadim and N. Mohamed. Middleware: Middleware challenges and
approaches for wireless sensor networks. Distributed Systems Online,
IEEE, 7(3):1, March 2006.

[67] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Peter
Christen, and Dimitrios Georgakopoulos. Mosden: An internet of things
middleware for resource constrained mobile devices. In 47th Hawaii In-
ternational Conference on System Sciences (HICSS), page n/a, Kona,
Hawaii, USA, January 2014.

[68] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. A comparative study
of wireless protocols: Bluetooth, UWB, ZigBee, and wi-fi. In Industrial
Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the
IEEE, pages 46–51, 2007.

[69] D. Carlson and A. Schrader. Dynamix: An open plug-and-play context
framework for android. In Internet of Things (IOT), 2012 3rd Interna-
tional Conference on the, pages 151–158, 2012.

[70] Kiev Gama, Lionel Touseau, and Didier Donsez. Combining heteroge-
neous service technologies for building an internet of things middleware.
Computer Communications, 35(4):405–417, 2012.

[71] Luis Roalter, Matthias Kranz, and Andreas Moller. A middleware for
intelligent environments and the internet of things. In ACM UIC’10,
2010.

[72] EPCglobal, www.epcglobalinc.org/.

[73] OPC Unified Architecture (UA), www.opcfoundation.org/ua/.

[74] ETSI machine-to-machine communications (m2m); functional architec-
ture, draft ETSI TS 102 690 v0.10.4 (2011-01).

[75] 3GPP TS 22.368 v11.0.0, service requirements for machine-type com-
munications.

[76] UPnP, http://www.upnp.org.

[77] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. Doctoral dissertation, University of Cali-
fornia, Irvine, USA, 2000.

[78] Internet-of-things architecture (IOT-A) project deliverable d3.1 - initial
m2m api analysis.

[79] Angelo Paolo Castellani, Nicola Bui, Paolo Casari, Michele Rossi, Zach
Shelby, and Michele Zorzi. Architecture and protocols for the internet of
things: A case study. In IEEE PerCom Workshops’10, pages 678–683,
2010.

© 2016 by Taylor & Francis Group, LLC

http://www.upnp.org
http://www.epcglobalinc.org/
http://www.opcfoundation.org/ua/
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.comcom.2011.11.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOMW.2010.5470520
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2012.6402317
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2012.6402317
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-16355-5_23
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDSO.2006.19
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDSO.2006.19
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIECON.2007.4460126
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIECON.2007.4460126
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIECON.2007.4460126

226 � References

[80] IPv6 over Low power WPAN (6lowpan), IETF.
http://datatracker.ietf.org/wg/6lowpan/charter.

[81] Bilhanan Silverajan and Jarmo Harju. Developing network software
and communications protocols towards the internet of things. In IEEE
COMSWARE ’09, pages 9:1–9:8, 2009.

[82] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented
architecture for the web of things. In IEEE IoT’10, 2010.

[83] N. Kong, N. Crespi, G. Lee, and J. Park. Internet-draft: The in-
ternet of things - concept and problem statement, 18 Oct. 2010.
https://tools.ietf.org/html/draft-lee-iot-problem-statement-00.

[84] M. Y.S. Uddin and M. M. Akbar. Addressing techniques in wireless
sensor networks: A short survey. In IEEE ICECE’06, pages 581–584,
Dec. 2006.

[85] M. Ali and Z.A. Uzmi. An energy-efficient node address naming scheme
for wireless sensor networks. In IEEE INCC’04, pages 25–30, June 2004.

[86] Fujun Ye and Ruifang Pan. A survey of addressing algorithms for wire-
less sensor networks. In IEEE WiCom’09, pages 1–7, Sept. 2009.

[87] Zhigao Du, Cui Zhang, Yangming Su, Depei Qian, and Yi Liu. Two-
tier dynamic address assignment in wireless sensor networks. In IEEE
TENCON’09, pages 1–6, Jan. 2009.

[88] Curt Schurgers, Gautam Kulkarni, and Mani B. Srivastava. Distributed
assignment of encoded MAC addresses in sensor networks. In ACM
MobiHoc’01, pages 295–298, 2001.

[89] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee, David
Culler, Scott Shenker, and Ion Stoica. Beacon vector routing: Scal-
able point-to-point routing in wireless sensornets. In USENIX NSDI’05,
2005.

[90] F. D. Kronewitter. Dynamic Huffman addressing in wireless sensor net-
works based on the energy map. In IEEE MILCOM’08, pages 1–6, Nov.
2008.

[91] J. Elson and D. Estrin. Random, ephemeral transaction identifiers in
dynamic sensor networks. In IEEEE ICDCS’01, pages 459–468, Apr.
2001.

[92] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh
Govindan, Deborah Estrin, and Deepak Ganesan. Building efficient
wireless sensor networks with low-level naming. In ACM Symp. on Oper.
Sys. Principles (SOSP’01), pages 146–159, 2001.

© 2016 by Taylor & Francis Group, LLC

http://datatracker.ietf.org/wg/6lowpan/charter
https://tools.ietf.org/html/draft-lee-iot-problem-statement-00
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FWICOM.2009.5304082
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F501416.501463
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F501416.501463
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1621890.1621902
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1621890.1621902
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMILCOM.2008.4753639
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502034.502049
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502034.502049
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINCC.2004.1366571
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678452
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678452
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDSC.2001.918976
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICECE.2006.355698

References � 227

[93] Qing Shen, Yu Liu, Zhijun Zhao, Song Ci, and Hui Tang. Distributed
hash table based ID management optimization for internet of things. In
IEEE IWCMC’10, pages 686–690, 2010.

[94] IBM Websphere MQ, www.ibm.com/software/integration/wmq/.

[95] Apache JMeter, http://jmeter.apache.org/.

[96] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial
of Service Attacks Which Employ IP Source Address Spoofing.

[97] D.K.Y. Yau, J.C.S. Lui, Feng Liang, and Yeung Yam. Defending against
distributed denial-of-service attacks with max-min fair server-centric
router throttles. IEEE/ACM Trans. on Networking, 13(1):29–42, Feb.
2005.

[98] J. Ioannidis and S. M. Bellovin. Implementing pushback: Router-based
defense against DDoS attacks. In NDSS’02.

[99] Zhiqiang Gao and N. Ansari. Tracing cyber attacks from the practical
perspective. IEEE Comm. Mag., 43(5):123–131, May 2005.

[100] Haining Wang, Danlu Zhang, and Kang G. Shin. Detecting SYN flood-
ing attacks. In IEEE INFOCOM’02, volume 3, pages 1530–1539, June
2002.

[101] du Telecom, http://www.du.ae.

[102] Jennifer L. Wong and M. Potkonjak. Search in sensor networks: Chal-
lenges, techniques, and applications. In Acoustics, Speech, and Sig-
nal Processing (ICASSP), 2002 IEEE International Conference on, vol-
ume 4, pages IV–3752–IV–3755, 2002.

[103] Valerie Issarny, Mauro Caporuscio, and Nikolaos Georgantas. A per-
spective on the future of middleware-based software engineering. In
2007 Future of Software Engineering, FOSE ’07, pages 244–258, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[104] Casaleggio Associati. The evolution of internet of things.
Technical report, Casaleggio Associati, February 2011. http:

//www.casaleggio.it/pubblicazioni/Focus_internet_of_things_

v1.81%20-%20eng.pdf [Accessed on: 2011-06-08].

[105] European Commission. Internet of things in 2020 road map for
the future. Technical report, Working Group RFID of the ETP
EPOSS, May 2008. http://ec.europa.eu/information_society/

policy/rfid/documents/iotprague2009.pdf [Accessed on: 2011-06-
12].

© 2016 by Taylor & Francis Group, LLC

http://jmeter.apache.org/
http://www.du.ae
http://www.casaleggio.it/pubblicazioni/Focus_internet_of_things_v1.81%20-%20eng.pdf
http://www.casaleggio.it/pubblicazioni/Focus_internet_of_things_v1.81%20-%20eng.pdf
http://www.casaleggio.it/pubblicazioni/Focus_internet_of_things_v1.81%20-%20eng.pdf
http://ec.europa.eu/information_society/policy/rfid/documents/iotprague2009.pdf
http://ec.europa.eu/information_society/policy/rfid/documents/iotprague2009.pdf
http://www.ibm.com/software/integration/wmq/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTNET.2004.842221
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2005.1453433
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1815396.1815554

228 � References

[106] Patrick Guillemin and Peter Friess. Internet of things strategic research
roadmap. Technical report, The Cluster of European Research Projects,
September 2009. http://www.internet-of-things-research.eu/

pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf.

[107] International Telecommunication Union. Itu internet reports 2005: The
internet of things. Workshop report, International Telecommunication
Union, November 2005. http://www.itu.int/dms_pub/itu-s/opb/

pol/S-POL-IR.IT-2005-SUM-PDF-E.pdf [Accessed on: 2011-12-12].

[108] Michal Nagy, Artem Katasonov, Oleksiy Khriyenko, Sergiy Nikitin,
Michal Szydlowski, and Vagan Terziyan. Challenges of middleware
for the internet of things. Technical report, University of Jyvaskyla,
2009. http://cdn.intechopen.com/pdfs/8786/InTech-Challenges_
of_middleware_for_the_internet_of_things.pdf [Accessed on:
2011-12-20].

[109] Daqiang Zhang, L.T. Yang, and Hongyu Huang. Searching in internet
of things: Vision and challenges. In Parallel and Distributed Processing
with Applications (ISPA), 2011 IEEE 9th International Symposium on,
pages 201–206, 2011.

[110] Xin Jin, Daqiang Zhang, Qin Zou, Genlin Ji, and Xiaojun Qian. Where
searching will go in internet of things? In Wireless Days (WD), 2011
IFIP, pages 1–3, 2011.

[111] Simon Jirka, Arne Broring, and Christoph Stasch. Discovery mecha-
nisms for the sensor web. Sensors, 9(4):2661–2681, 2009.

[112] Simon Mayer, Dominique Guinard, and Vlad Trifa. Searching in a web-
based infrastructure for smart things. In Proceedings of the 3rd Interna-
tional Conference on the Internet of Things (IoT 2012), Wuxi, China,
2012.

[113] S. Shakkottai. Asymptotics of query strategies over a sensor network.
In INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, volume 1, 2004.

[114] Cuong Truong, Kay Romer, and Kai Chen. Fuzzy-based sensor search
in the web of things. In Proceedings of the 3rd International Conference
on the Internet of Things (IoT 2012), Wuxi, China, 2012.

[115] B. Maryam Elahi, Kay Romer, Benedikt Ostermaier, Michael Fahrmair,
and Wolfgang Kellerer. Sensor ranking: A primitive for efficient content-
based sensor search. In Proceedings of the 2009 International Conference
on Information Processing in Sensor Networks, IPSN ’09, pages 217–
228, Washington, DC, USA, 2009. IEEE Computer Society.

© 2016 by Taylor & Francis Group, LLC

http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2009.pdf
http://www.itu.int/dms_pub/itu-s/opb/pol/S-POL-IR.IT-2005-SUM-PDF-E.pdf
http://www.itu.int/dms_pub/itu-s/opb/pol/S-POL-IR.IT-2005-SUM-PDF-E.pdf
http://cdn.intechopen.com/pdfs/8786/InTech-Challenges_of_middleware_for_the_internet_of_things.pdf
http://cdn.intechopen.com/pdfs/8786/InTech-Challenges_of_middleware_for_the_internet_of_things.pdf
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2012.6402313
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2012.6402313
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2012.6402314
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2012.6402314
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISPA.2011.53
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISPA.2011.53
http://www.crcnetbase.com/action/showLinks?crossref=10.3390%2Fs90402661
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINFCOM.2004.1354526
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINFCOM.2004.1354526
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FWD.2011.6098173

References � 229

[116] B. Ostermaier, K. Römer, L.F. Mattern, M. Fahrmair, and W. Kellerer.
A real-time search engine for the web of things. In Proceedings of the 2rd
International Conference on the Internet of Things (IoT 2010), pages
1–8, 2010.

[117] K. Romer, B. Ostermaier, F. Mattern, M. Fahrmair, and W. Kellerer.
Real-time search for real-world entities: A survey. Proceedings of the
IEEE, 98(11):1887–1902, 2010.

[118] H. Noguchi, T. Mori, and Tomomasa Sato. Framework for search appli-
cation based on time segment of sensor data in home environment. In
Networked Sensing Systems (INSS), 2010 Seventh International Con-
ference on, pages 261–264, 2010.

[119] Haodong Wang, C.C. Tan, and Qun Li. Snoogle: A search engine for
pervasive environments. Parallel and Distributed Systems, IEEE Trans-
actions on, 21(8):1188–1202, 2010.

[120] Arne Broring, Felix Bache, Thomas Bartoschek, and Corne P.J.M. Elza-
kker. The sid creator: A visual approach for integrating sensors with the
sensor web. In Stan Geertman, Wolfgang Reinhardt, and Fred Toppen,
editors, Advancing Geoinformation Science for a Changing World, Lec-
ture Notes in Geoinformation and Cartography, pages 143–162. Springer
Berlin Heidelberg, 2011.

[121] OpenIoT Consortium. Open source solution for the internet of things
into the cloud, January 2012. http://www.openiot.eu [Accessed on:
2012-04-08].

[122] w3.org. Semantic sensor network xg final report: W3c incubator
group report, June 2011. http://www.w3.org/2005/Incubator/ssn/

XGR-ssn-20110628/ [Accessed on: 2012-09-25].

[123] Ioannis Paparrizos, Hoyoung Jeung, and Karl Aberer. Advanced search,
visualization and tagging of sensor metadata. In Proceedings of the
2011 IEEE 27th International Conference on Data Engineering, ICDE
’11, pages 1356–1359, Washington, DC, USA, 2011. IEEE Computer
Society.

[124] Chiu C. Tan, Bo Sheng, Haodong Wang, and Qun Li. Microsearch: A
search engine for embedded devices used in pervasive computing. ACM
Trans. Embed. Comput. Syst., 9(4):43:1–43:29, April 2010.

[125] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Context aware computing for the internet of things: A
survey. Communications Surveys Tutorials, IEEE, XX:X, 2013.

[126] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. Semantics
for the internet of things: Early progress and back to the future. Int. J.
Semant. Web Inf. Syst., 8(1):1–21, January 2012.

© 2016 by Taylor & Francis Group, LLC

http://www.openiot.eu
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://w3.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDE.2011.5767943
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDE.2011.5767943
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICDE.2011.5767943
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678450
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678450
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINSS.2010.5573153
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINSS.2010.5573153
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-19789-5_8
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1721695.1721709
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1721695.1721709
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FJPROC.2010.2062470
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FJPROC.2010.2062470
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2012010101
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2012010101

230 � References

[127] Digital Enterprise Research Institute. Linked sensor middleware (lsm),
2011. http://lsm.deri.ie/ [Accessed on: 2012-09-24].

[128] Danh Le Phuoc, Hoan Nguyen Mau Quoc, Josiane Xavier Parreira, and
Manfred Hauswirth. The linked sensor middleware — connecting the
real world and the semantic web. In International Semantic Web Con-
ference (ISWC), October 2011.

[129] Suman Nath, Jie Liu, and Feng Zhao. Sensormap for wide-area sensor
webs. Computer, 40(7):90–93, July 2007.

[130] Charith Perera, Arkady Zaslavsky, Peter Christen, Michael Compton,
and Dimitrios Georgakopoulos. Context-aware sensor search, selection
and ranking model for internet of things middleware. In IEEE 14th
International Conference on Mobile Data Management (MDM), Milan,
Italy, June 2013.

[131] John Domingue and Dieter Fensel. Toward a service web: integrating
the semantic web and service orientation. IEEE Intelligent Systems,
23(1):8688, 2009.

[132] Suparna De, Tarek Elsaleh, Payam Barnaghi, and Stefan Meissner. An
internet of things platform for real-world and digital objects. Scalable
Computing: Practice and Experience, 13(1):45–57, 2012.

[133] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting
with the SOA-based internet of things: Discovery, query, selection, and
on-demand provisioning of web services. Services Computing, IEEE
Transactions on, 3(3):223–235, 2010.

[134] Talal Ashraf Butt, Iain Phillips, Lin Guan, and George Oikonomou.
Trendy: An adaptive and context-aware service discovery protocol for
6LoWPANs. In Proceedings of the Third International Workshop on the
Web of Things, WOT ’12, pages 2:1–2:6, New York, NY, USA, 2012.
ACM.

[135] Z. Shelby. Embedded web services. Wireless Communications, IEEE,
17(6):52–57, 2010.

[136] Jean-Paul Calbimonte, Hoyoung Jeung, Oscar Corcho, and Karl Aberer.
Enabling query technologies for the semantic sensor web. Int. J. Semant.
Web Inf. Syst., 8(1):43–63, January 2012.

[137] Rau Garcia-Castro, Oscar Corcho, and Chris Hill. A core ontological
model for semantic sensor web infrastructures. Int. J. Semant. Web Inf.
Syst., 8(1):22–42, January 2012.

© 2016 by Taylor & Francis Group, LLC

http://lsm.deri.ie/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMWC.2010.5675778
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2012010102
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2012010102
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDM.2013.46
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMDM.2013.46
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2379756.2379758
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2379756.2379758
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2012010103
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2012010103
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMC.2007.250

References � 231

[138] Naoya Namatame, Yong Ding, Till Riedel, Hideyuki Tokuda, Takashi
Miyaki, and Michael Beigl. A distributed resource management archi-
tecture for interconnecting web-of-things using ubox. In Proceedings of
the Second International Workshop on Web of Things, WoT ’11, pages
4:1–4:6, New York, NY, USA, 2011. ACM.

[139] Joon Ahn and B. Krishnamachari. Modeling search costs in wireless
sensor networks. In Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks and Workshops, 2007. WiOpt 2007. 5th International
Symposium on, pages 1–6, 2007.

[140] Zhiming Ding, Xu Gao, Limin Guo, and Qi Yang. A hybrid search
engine framework for the internet of things based on spatial-temporal,
value-based, and keyword-based conditions. In Green Computing and
Communications (GreenCom), 2012 IEEE International Conference on,
pages 17–25, 2012.

[141] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Ca4iot: Context awareness for internet of things. In IEEE
International Conference on Conference on Internet of Things (iThing),
pages 775–782, Besanon, France, November 2012.

[142] Commonwealth Scientific and Industrial Research Organisation
(CSIRO), Australia. Phenonet: Distributed sensor network for phe-
nomics supported by high resolution plant phenomics centre, CSIRO
ICT centre, and CSIRO sensor and sensor networks tcp., 2011. http:

//phenonet.com [Accessed on: 2012-04-20].

[143] Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark.
Int. J. Semantic Web Inf. Syst., 5(2):1–24, 2009.

[144] Shuping Ran. A model for web services discovery with QoS. SIGecom
Exch., 4(1):1–10, March 2003.

[145] D. Chalmers and M. Sloman. A survey of quality of service in mobile
computing environments. Communications Surveys Tutorials, IEEE,
2(2):2 –10, 1999.

[146] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context
and context-awareness. In Proceedings of the 1st International Sympo-
sium on Handheld and Ubiquitous Computing, HUC ’99, pages 304–307,
London, UK, 1999. Springer-Verlag.

[147] Apache Foundation. Commons math: The apache commons mathemat-
ics library, 2011. http://commons.apache.org/math/ [2012-09-05].

[148] Apache Software Foundation. Apache Jena, November 2010. http:

//jena.apache.org/ [accessed on: 2012-05-10].

© 2016 by Taylor & Francis Group, LLC

http://phenonet.com
http://phenonet.com
http://commons.apache.org/math/
http://jena.apache.org/
http://jena.apache.org/
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F844357.844360
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F844357.844360
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F3-540-48157-5_29
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F3-540-48157-5_29
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjswis.2009040101
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FCOMST.1999.5340514
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1993966.1993972
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1993966.1993972
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FGreenCom.2012.13
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FGreenCom.2012.13

232 � References

[149] Australian Government, Bureau of Meteorology. Experimental envi-
ronmental linked-data published by the Bureau of Meteorology, 2012.
http://lab.environment.data.gov.au/ [Accessed on: 2012-009-05].

[150] Rick Cattell. Scalable SQL and NOSQL data stores. SIGMOD Rec.,
39(4):12–27, May 2011.

[151] Prasad Kulkarni. Distributed SPARQL query engine using MapReduce.
Master’s thesis, University of Edinburgh, 2010.

[152] Charith Perera, Arkady Zaslavsky, Michael Compton, Peter Christen,
and Dimitrios Georgakopoulos. Semantic-driven configuration of inter-
net of things middleware. In 9th International Conference on Semantics,
Knowledge & Grids (SKG), page n/a, Beijing, China, October 2013.

[153] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A
survey on sensor networks. IEEE Comm. Mag., 40(8):102–114, Aug.
2002.

[154] C. Bisdikian, L. M. Kaplan, M. B. Srivastava, D. J. Thornley, D. Verma,
and R. I. Young. Building principles for a quality of information speci-
fication for sensor information. In FUSION 2009, July.

[155] Richard Y. Wang and Diane M. Strong. Beyond accuracy: what data
quality means to data consumers. J. Manage. Inf. Syst., 12(4):5–33,
1996.

[156] M.E. Johnson and K.C. Chang. Quality of information for data fusion
in net centric publish and subscribe architectures. In FUSION’05, July
2005.

[157] Z. Sun, C. H. Liu, C. Bisdikian, J. W. Branch, and B. Yang. QoI-
aware energy management in Internet-of-Things sensory environments.
In IEEE SECON’12, pages 19–27, June 2012.

[158] C. Bisdikian, J. Branch, K. K. Leung, and R. I. Young. A letter soup for
the quality of information in sensor networks. In IEEE PERCOM’09,
Galveston, TX, USA, March 2009.

[159] C. H. Liu, P. Hui, J. W. Branch, and Bo Yang. QoI-aware energy man-
agement for wireless sensor networks. In IEEE PERCOM Workshops
2011 on IQ2S, pages 8–13, March 2011.

[160] C. H. Liu, C. Bisdikian, J. W. Branch, and K. K. Leung. QoI-Aware
wireless sensor network management for dynamic multi-task operations.
In IEEE SECON’10, Boston, MA, USA, June 2010.

[161] J. Ma, W. Lou, Y. Wu, X. Li, and G. Chen. Energy efficient TDMA
sleep scheduling in wireless sensor networks. In IEEE INFOCOM’09,
pages 630–638, April 2009.

© 2016 by Taylor & Francis Group, LLC

http://lab.environment.data.gov.au/
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FSECON.2010.5508203
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2002.1024422
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1978915.1978919
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOMW.2011.5766978
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOMW.2011.5766978
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FINFCOM.2009.5061970
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICIF.2005.1591976
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOM.2009.4912835

References � 233

[162] Y. Wu, X. Li, Y. Liu, and W. Lou. Energy-efficient wake-up scheduling
for data collection and aggregation. IEEE Trans. Parallel and Dis-
tributed Systems, 21(2):275–287, Feb. 2010.

[163] R. Jurdak, P. Baldi, and C. V. Lopes. Adaptive low power listening
for wireless sensor networks. IEEE Trans. Mobile Computing, 6(8):988–
1004, Aug. 2007.

[164] C. J. Merlin and W. B. Heinzelman. Duty cycle control for low-power-
listening MAC protocols. IEEE Trans. Mobile Computing, 9(11):1508–
1521, Nov. 2010.

[165] H. Yoo, M. Shim, and D. Kim. Dynamic duty-cycle scheduling schemes
for energy-harvesting wireless sensor networks. IEEE Comm. Letters,
16(2):202–204, Feb. 2012.

[166] S. Zahedi, M. B. Srivastava, C. Bisdikian, and L. M. Kaplan. Quality
tradeoffs in object tracking with duty-cycled sensor networks. In IEEE
RTSS’10, pages 160–169, Nov. 2010.

[167] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol
for wireless sensor networks. 4(44):115–121, April 2006.

[168] T. Dam and K. Langendoen. An adaptive energy-efficient MAC protocol
for wireless sensor networks. In ACM SenSys’03, pages 171–180, Oct.
2003.

[169] G. Tychogiorgos and C. Bisdikian. Seeking provides of relevant sensory
information. In IEEE MDM’11, June 2011.

[170] E. Nakamura, F. Nakamura, C. Figueiredo, and A. Loureiro. Using in-
formation fusion to assist data dissemination in wireless sensor networks.
Telecom. Systems, 30:237–254, 2005.

[171] E. Nakamura, A. Loureiro, and A. C. Frery. Information fusion for
wireless sensor networks: Methods, models, and classifications. ACM
Comput. Surv., 39(3), September 2007.

[172] R. Pyke. Markov renewal processes: definitions and preliminary prop-
erties. Ann. Math. Statist, 32:1231–1242, 1961.

[173] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B, 39(1):1–38, 1977.

[174] ZigBee Alliance. ZigBee home automation public application profile.
IEEE J. Select. Areas Commun., Oct. 2007.

[175] Z-Wave. Z-wave protocol overview. May 2007.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTPDS.2009.45
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTPDS.2009.45
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1267070.1267073
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTMC.2010.116
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FRTSS.2010.24
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FRTSS.2010.24
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs11235-005-4327-y
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTMC.2007.1037
http://www.crcnetbase.com/action/showLinks?crossref=10.1214%2Faoms%2F1177704863
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FLCOMM.2011.120211.111501

234 � References

[176] P. Darbee. Whitepaper: The details. Insteon, Aug. 2005.

[177] A. Garcia-Hernando et al. Problem solving for wireless sensor networks.
Springer, July 2008.

[178] Routing Over Low power and Lossy networks (roll), IETF. Available
at: http://datatracker.ietf.org/wg/roll/charter.

[179] Constrained RESTful Environments (core), IETF. Available at:
http://datatracker.ietf.org/wg/core/charter.

[180] IP Smart Object Alliance (IPSO). Available at: http://www.ipso-
alliance.org.

[181] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web
services vs. “big” web services: Making the right architectural decision.
In 17th International Conference on World Wide Web, 2008.

[182] Weijun Qin, Qiang Li, Limin Sun, Hongsong Zhu, and Yan Liu. Rest-
thing: A restful web service infrastructure for mash-up physical and web
resources. In 2011 IFIP 9th International Conference on Embedded and
Ubiquitous Computing (EUC), pages 197–204, Oct. 2011.

[183] V. Stirbu. Towards a restful plug and play experience in the web of
things. In IEEE International Conference on Semantic Computing,
pages 512–517, Aug. 2008.

[184] Dominique Guinard. Towards the web of things: Web mashups for em-
bedded devices. In In MEM 2009 in Proceedings of WWW 2009. ACM,
2009.

[185] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture
for the web of things. In Internet of Things (IOT), 2010, Dec. 2010.

[186] T. Potsch, K. Kuladinithi, M. Becker, P. Trenkamp, and C. Goerg. Per-
formance evaluation of CoAP using RPL and LPL in TinyOs. In 2012
5th International Conference on New Technologies, Mobility and Secu-
rity (NTMS), pages 1–5, May 2012.

[187] S. Sitharama Iyengar, Nandan Parameshwaran, Vir V. Phoha, N. Bal-
akrishnan, and Chuka D. Okoye. Fundamentals of sensor network pro-
gramming: Applications and technology. Wiley-IEEE Press, 2011.

[188] A. Dunkels, B. Gronvall, and T. Voigt. Contiki — a lightweight and
flexible operating system for tiny networked sensors. In 29th Annual
IEEE International Conference on Local Computer Networks, 2004,
pages 455– 462, Nov. 2004.

[189] M. Kovatsch, S. Duquennoy, and A. Dunkels. A low-power CoAP for
Contiki. In 2011 IEEE 8th International Conference on Mobile Adhoc
and Sensor Systems (MASS), pages 855–860, Oct. 2011.

© 2016 by Taylor & Francis Group, LLC

http://datatracker.ietf.org/wg/roll/charter
http://datatracker.ietf.org/wg/core/charter
http://www.ipso-alliance.org
http://www.ipso-alliance.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FIOT.2010.5678452
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMASS.2011.100
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMASS.2011.100
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FEUC.2011.59
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FEUC.2011.59
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FNTMS.2012.6208761
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FNTMS.2012.6208761
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FNTMS.2012.6208761
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FLCN.2004.38
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FLCN.2004.38
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICSC.2008.51

References � 235

[190] Jürgen Schönwalder, Tina Tsou, and Behcet Sarikaya. Protocol pro-
files for constrained devices. Available at: www.iab.org/wp-content/IAB-
uploads/.../Schoenwaelder.pdf, 2011.

[191] IEEE Computer Society. IEEE std. 802.15.4-2003. 2003.

[192] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission
of IPv6 packets over ieee 802.15.4 networks. RFC4944, available at:
https://datatracker.ietf.org/doc/rfc4944/.

[193] J. Hui and P. Thubert. Compression format for ipv6 data-
grams over ieee 802.15.4-based networks. RFC6282, available at:
hhttp://datatracker.ietf.org/doc/rfc6282/.

[194] P. Levisi, A. Tavakoli, and S. Dawson-Haggerty. Overview of exist-
ing routing protocols for low power and lossy networks. Internet-
Draft, available at: http://tools.ietf.org/html/draft-ietf-roll-protocols-
survey-07.

[195] J.P. Vasseuri, M. Kim, K. Pister, N. Dejean, and D. Barthel. Routing
metrics used for path calculation in low-power and lossy networks. RFC
6551, available at: http://datatracker.ietf.org/doc/rfc6551/.

[196] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pis-
ter, R. Struik, JP. Vasseur, and R. Alexander. Rpl: Ipv6 routing
protocol for low-power and lossy networks. RFC 6550, available at:
http://datatracker.ietf.org/doc/rfc6550/.

[197] O. Bergmann. libcoap: C-implementation of CoAP. Available at:
http://libcoap.sourceforge.net.

[198] Copper (Cu) CoAP Browser. A Firefox add-on to browse the internet
of things. Available at: https://github.com/mkovatsc/Copper.

[199] H. Jin, L. Ding, J. Yu, D. Niu, F. Liu, P. Shu, and B. Li. Gearing
resource-poor mobile devices with powerful clouds: architectures, chal-
lenges, and applications. IEEE Wirel. Comm., 20:2–10, June 2013.

[200] S. W. Loke, N. Fernando, and W. Rahayu. Mobile cloud computing: A
survey. Fut. Gen. Comp. Sys., 29:84–106, June 2013.

[201] M. Satyanarayanan. Mobile computing: the next decade. SIGMOBILE
Mob. Comput. Commun. Rev., 15:2–10, Aug. 2011.

[202] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. ACM Commun., 51:107–113, Jan. 2008.

[203] E. Marinelli. Hyrax: Cloud computing on mobile devices using MapRe-
duce. PhD thesis, Carnegie Mellon University, 2009.

© 2016 by Taylor & Francis Group, LLC

http://www.iab.org/wp-content/IAB-uploads/.../Schoenwaelder.pdf
https://datatracker.ietf.org/doc/rfc4944/
hhttp://datatracker.ietf.org/doc/rfc6282/
https://github.com/mkovatsc/Copper
http://datatracker.ietf.org/doc/rfc6551/
http://datatracker.ietf.org/doc/rfc6550/
http://libcoap.sourceforge.net
http://tools.ietf.org/html/draft-ietf-roll-protocols-survey-07
http://tools.ietf.org/html/draft-ietf-roll-protocols-survey-07
http://www.iab.org/wp-content/IAB-uploads/.../Schoenwaelder.pdf
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2016598.2016600
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2016598.2016600
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.future.2012.05.023
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1327452.1327492

236 � References

[204] R. Caceres, M. Satyanarayanan, P. Bahl, and N. Davies. The case for
VM-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[205] D. Cho, A. Wolman, S. Saroiu, R. Chandra, E. Cuervo, A. Balasubra-
manian, and P. Bahl. Maui: Making smartphones last longer with code
offload. In ACM MobiSys’10, pages 49–62, 2010.

[206] M. Kang, D. Huang, X. Zhang, and J. Luo. Mobicloud: Building secure
cloud framework for mobile computing and communication. In IEEE
SOSE’10, pages 27–34, 2010.

[207] M. D. Kristensen. Scavenger: Transparent development of efficient cyber
foraging applications. In IEEE PerCom’10, pages 217–226, 2010.

[208] P. Maniatis, M. Naik, B.-G. Chun, S. Ihm, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In ACM EuroSys
’11, pages 301–314, 2011.

[209] P. Hui, R. Mortier, S. Kosta, A. Aucinas, and X. Zhang. Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading. In IEEE INFOCOM’12, pages 945–953, 2012.

[210] S. Mehrotra M. R. Rahimi, N. Venkatasubramanian and A. V. Vasilakos.
Mapcloud: Mobile applications on an elastic and scalable 2-tier cloud
architecture. In IEEE/ACM UCC’12, 2012.

[211] T. Kielmann, R. Kemp, N. Palmer, and H. Bal. Cuckoo: A computation
offloading framework for smartphones. Mob. Comp., App., and Serv.,
76:59–79, 2012.

[212] S.-J. Lee, K.-H. Kim, and P. Congdon. On cloud-centric network archi-
tecture for multi-dimensional mobility. ACM SIGCOMM Comp. Comm.
Rev., 42:509–514, 2012.

[213] Y.-H. Lu, K. Kumar, J. Liu, and B. Bhargava. A survey of computation
offloading for mobile systems. ACM/Springer MONET, 18:129–140,
Apr. 2013.

[214] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can of-
floading computation save energy? IEEE Computer, 43(4):51–56, Apr.
2010.

[215] Y.-H. Lu, Y. Nimmagadda, K. Kumar, and C. S. G. Lee. Real-time
moving object recognition and tracking using computation offloading.
In IEEE/RSJ Intelligent Robots and Systems (IROS’10), pages 2449–
2455, 2010.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMPRV.2009.82
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FUCC.2012.25
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2377677.2377706
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2377677.2377706
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMC.2010.98
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPERCOM.2010.5466972

References � 237

[216] S. Ou, K. Yang, and H.-H. Chen. On effective offloading services for
resource-constrained mobile devices running heavier mobile internet ap-
plications. IEEE Comm. Mag., 46:56–63, Jan. 2008.

[217] C. Krintz, R. Wolski, S. Gurun, and D. Nurmi. Using bandwidth data
to make computation offloading decisions. In IEEE International Sym-
posium on Parallel and Distributed Processing, Apr. 2008.

[218] K. Kumar, Y.-J. Hong, and Y.-H. Lu. Energy efficient content-based
image retrieval for mobile systems. In IEEE ISCAS’09, pages 1673–
1676, 2009.

[219] R. Nathuji, B. Seshasayee, and K. Schwan. Energy-aware mobile service
overlays: Cooperative dynamic power management in distributed mobile
systems. In IEEE ICAC ’07, 2007.

[220] G. Huerta-Canepa and D. Lee. An adaptable application offloading
scheme based on application behavior. In IEEE AINAW’08 Wkshp,
pages 387–392, 2008.

[221] Y.-H. Lu, C. Xian, and Z. Li. Adaptive computation offloading for
energy conservation on battery-powered systems. In Parallel & Dist.
Sys.’07, 2007.

[222] K. Harras, A. Mtibaa, A. Fahim, and M. Ammar. Towards resource
sharing in mobile device clouds: Power balancing across mobile devices.
In ACM SIGCOMM MCC’13, pages 51–56, 2013.

[223] A. Gani, Z. Sanaei, S. Abolfazli, and R. Buyya. Heterogeneity in mobile
cloud computing: Taxonomy and open challenges. IEEE Comm. Surv.
& Tut., (99):1–24, 2013.

[224] X. Liu, J. Li, K. Bu, and B. Xiao. Enda: embracing network inconsis-
tency for dynamic application offloading in mobile cloud computing. In
ACM SIGCOMM Workshop on MCC’13, pages 39–44, 2013.

[225] J. Schneider, A. Klein, C. Mannweiler, and H. D. Schotten. Access
schemes for mobile cloud computing. In IEEE MDM’10, pages 387–392,
2010.

[226] S. Subashini and V. Kavitha. A survey on security issues in service
delivery models of cloud computing. J. Netw. Comput. App., 34(1):1–
11, 2011.

[227] Q. Li and G. Clark. A survey on security issues in service delivery
models of cloud computing. J. Netw. Comput. App., 11(1):78–81, 2013.

[228] S. U. Khan, A. N. Khan, M. L. M. Kiah, and S. A. Madani. To-
wards secure mobile cloud computing: A survey. Fut. Gen. Comp. Sys.,
29(5):1278–1299, 2013.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FWAINA.2008.148
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2486001.2486015
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jnca.2010.07.006
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.future.2012.08.003

238 � References

[229] P. Kumar, S. S. Walia, J.-P. Hubaux, I. Aad I. Bilogrevic, M. Jadliwala,
and V. Niemi. Meetings through the cloud: Privacy-preserving schedul-
ing on mobile devices. J. Syst. & Softw., 84(11):1910–1927, 2011.

[230] A. Kayssi, W. Itani, and A. Chehab. Energy-efficient incremental
integrity for securing storage in mobile cloud computing. In IEEE
ICEAC’10, pages 21–26, 2010.

[231] L. X. Cai, X. Shen, H. Liang, D. Huang, and D. Peng. Resource allo-
cation for security services in mobile cloud computing. In IEEE INFO-
COM’11 WKSHPS on M2MCN’11, pages 191–195, 2011.

[232] X. Huang, M. L. Yiu, C. S. Jensen, and H. Lu. Spacetwist: Managing
the trade-offs among location privacy, query performance, and query
accuracy in mobile services. In IEEE ICDE’08, pages 366–375, 2008.

[233] D. Huang, Y. Zhu, D. Ma, and C. Hu. Enabling secure location-based
services in mobile cloud computing. In ACM SIGCOMM Workshop on
MCC’13, pages 27–32, 2013.

[234] E. Hossain, W. Saad, D. Niyato, P. Wang, and Z. Han. Game theo-
retic modeling of cooperation among service providers in mobile cloud
computing environments. In IEEE WCNC’12, pages 3128–3133, 2012.

[235] D. Huang, X. Shen, H. Liang, L. X. Cai, and D. Peng. An smdp-based
service model for interdomain resource allocation in mobile cloud net-
works. IEEE Transactions on Vehicular Technology, 61(5):2222–2232,
2012.

[236] M. P. Papazoglou. Cloud blueprints for integrating and managing
cloud federations. Software Service and Application Engineering, LNCS,
7365(5):102–119, 2012.

[237] S. Maiti, S. Bandyopadhyay, M. Sengupta, and S. Dutta. A survey of
middleware for internet of things. Recent Trends in Wireless and Mobile
Networks, pages 288–296, 2011.

[238] A. M. Chaqfeh and N. Mohamed. Challenges in middleware solutions
for the internet of things. In IEEE International Conference on Collab-
oration Technologies and Systems, pages 21–26, 2012.

[239] I. Carreras, D. Miorandi, A. Tamilin, E.R. Ssebaggala, and N. Conci.
Crowd-sensing: Why context matters. In Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2013 IEEE In-
ternational Conference on, pages 368–371, 2013.

[240] Hande Alemdar and Cem Ersoy. Wireless sensor networks for healthcare:
A survey. Computer Networks, 54(15):2688–2710, 2010.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jss.2011.04.027
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FCTS.2012.6261022
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FCTS.2012.6261022
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.comnet.2010.05.003
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTVT.2012.2194748
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPerComW.2013.6529518
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPerComW.2013.6529518
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FPerComW.2013.6529518

References � 239

[241] V. Stanford. Using pervasive computing to deliver elder care. IEEE
Pervasive Comp., 1(1):10 – 13, 2002.

[242] T. Mcfadden and J. Indulska. Context-aware environments for indepen-
dent living. In IEEE 3rd National Conf. of Emerging Researchers in
Ageing, 2004.

[243] J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin,
S. Son, R. Stoleru, and A. Wood. Wireless sensor networks for in-home
healthcare: Potential and challenges. In IEEE High Confidence Medical
Device Software and Systems (HCMDSS) Workshop’05, 2005.

[244] V. Jones, R. Kleissen, V. V. Goldman, A. T. Halteren, I. A. Widya, and
N. T. Dokovski. Mobile applications in the health sector. In Mobile
Minded Symp., volume 22, 1999.

[245] S. Sultan and P. Mohan. How to interact: Evaluating the interface
between mobile healthcare systems and the monitoring of blood sugar
and blood pressure. In ACM MobiQuitous’09, pages 1–6, July 2009.

[246] Yonglin Ren, R. W. N. Pazzi, and A. Boukerche. Monitoring patients
via a secure and mobile healthcare system. IEEE Trans. on Wireless
Comm., 17(1):59–65, Feb. 2010.

[247] P. Mohan and S. Sultan. Medinet: A mobile healthcare management
system for the caribbean region. In ACM MobiQuitous’09, pages 1–2,
July 2009.

[248] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson. M2M:
From mobile to embedded internet. IEEE Comm. Mag., 49(4):36–43,
April 2011.

[249] M. Conner. Sensors empower the internet of things. EDN, 55:10–32,
2010.

[250] S. Haller, S. Karnouskos, and C. Schroth. The internet of things in an
enterprise context. Future Internet–FIS 2008, pages 14–28, 2009.

[251] V. Jones, A. Halteren, I. Widya, N. Dokovsky, G. Koprinkov, R. Bults,
D. Konstantas, and R. Herzog. Mobihealth: Mobile health services based
on body area networks. Springer M-Health, pages 219–236, 2006.

[252] S. Shea, J. Starren, R. S. Weinstock, P. E. Knudson, J. Teresi,
D. Holmes, W. Palmas, L. Field, R. Goland, and C. Tuck. Columbia
University: Informatics for diabetes education and telemedicine (ideatel)
project. J. of the American Medical Informatics Association, 9(1):49,
2002.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2FICST.MOBIQUITOUS2009.6905
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2FICST.MOBIQUITOUS2009.7024
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMWC.2010.5416351
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMWC.2010.5416351
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMCOM.2011.5741144
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMPRV.2002.993139
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMPRV.2002.993139
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-00985-3_2
http://www.crcnetbase.com/action/showLinks?crossref=10.1136%2Fjamia.2002.0090049

240 � References

[253] T. Broens, A. Van-Halteren, M. Van-Sinderen, and K. Wac. Towards
an application framework for context-aware m-health applications. Int’l
J. of Internet Protocol Tech., 2(2):109–116, 2007.

[254] Y. Zouand, R.S.H. Istepanian, and W. Huang. Performance evaluation
of a GPRS/bluetooth diabetes management system. In IET 3rd Int’l
Conf. on Advances in Medical, Sig. and Inf. Processing’06, pages 1–4,
2007.

[255] S. Dagtas, Y. Natchetoi, and H. Wu. An integrated wireless sensing
and mobile processing architecture for assisted living and healthcare
applications. In ACM SIGMOBILE Int’l Workshop on Sys. and Netw.
Support for Healthcare and Assisted Living Environments, pages 70–72,
2007.

[256] R. Carroll, R. Cnossen, M. Schnell, and D. Simons. Continua: An inter-
operable personal healthcare ecosystem. IEEE Pervasive Comp., pages
90–94, 2007.

[257] L. Richardson and S. Ruby. Restful web services. O’Reilly Media, May
2007.

[258] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. In ACM ICSE’00, pages 407–416, 2000.

[259] D. Guinard and V. Trifa. Towards the web of things: Web mashups
for embedded devices. In WWW Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM’09), 2009.

[260] MQTT. http://mqtt.org.

[261] Glenn Lyons and Kiron Chatterjee. A human perspective on the daily
commute: Costs, benefits and trade-offs. Transport Reviews, 28(2):181–
198, 2008.

[262] Youngki Lee, Younghyun Ju, Chulhong Min, Seungwoo Kang, Inseok
Hwang, and Junehwa Song. CoMon: Cooperative ambience monitoring
platform with continuity and benefit awareness. In ACM MobiSys’12,
pages 43–56, 2012.

[263] Carrie Heeter, Chandan Sarkar, Becky Palmer-Scott, and Shasha Zhang.
Engineering sociability: Friendship drive, visibility, and social connec-
tion in anonymous co-located local Wi-Fi multiplayer online gaming.
Int’l J. of Gaming and Computer-Mediated Simulations, 4(2):1–18, 2012.

[264] Jason O. B. Soh and Bernard C. Y. Tan. Mobile gaming. Commun.
ACM, 51(3):35–39, March 2008.

© 2016 by Taylor & Francis Group, LLC

http://mqtt.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F01441640701559484
http://www.crcnetbase.com/action/showLinks?crossref=10.4018%2Fjgcms.2012040101
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMPRV.2007.72
http://www.crcnetbase.com/action/showLinks?crossref=10.1504%2FIJIPT.2007.012374
http://www.crcnetbase.com/action/showLinks?crossref=10.1504%2FIJIPT.2007.012374
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2307636.2307641
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1248054.1248074
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1248054.1248074
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1325555.1325563
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1325555.1325563

References � 241

[265] Shaoxuan Wang and Sujit Dey. Cloud mobile gaming: modeling and
measuring user experience in mobile wireless networks. ACM SIGMO-
BILE Mob. Comput. Commun. Rev., 16(1):10–21, July 2012.

[266] Claudio Feijoo, José-Luis Gómez-Barroso, Juan-Miguel Aguado, and
Sergio Ramos. Mobile gaming: Industry challenges and policy impli-
cations. Telecommun. Policy, 36(3):212–221, April 2012.

[267] P. E. Ross. Cloud computing’s killer app: Gaming. IEEE Spectrum,
46(3):14, 2009.

[268] E. J. Berglund and D. R. Cheriton. Amaze: a multiplayer computer
game. IEEE Software, 2(3):30–39, May 1985.

[269] Y. Bernier. Latency compensating methods in client/server in-game
protocol design and optimization. In Games Developers Conf.’01.

[270] Andreea Picu and Thrasyvoulos Spyropoulos. Forecasting dtn perfor-
mance under heterogeneous mobility: The case of limited replication. In
IEEE SECON’11, pages 569–577, June 2011.

[271] Vikram Srinivasan, Mehul Motani, and Wei Tsang Ooi. Analysis and
implications of student contact patterns derived from campus schedules.
In ACM MobiCom’06, pages 86–97, 2006.

[272] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and An-
drew T. Campbell. SoundSense: Scalable sound sensing for people-
centric applications on mobile phones. In ACM MobiSys’09, pages 165–
178, 2009.

[273] Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina
Fragouli, and Athina Markopoulou. MicroCast: cooperative video
streaming on smartphones. In ACM MobiSys’12, pages 57–70, 2012.

[274] Hayoung Yoon and Jongwon Kim. Collaborative streaming-based me-
dia content sharing in wifi-enabled home networks. IEEE Trans. on
Consumer Electronics, 56(4):2193–2200, 2010.

[275] M. G.-Domingo and J. A. M. Forner. Cube-u: Exploring the combination
of the internet of things and elearning. In The 2011 Annual Conference
Extended Abstracts on Human Factors in Computing Systems, 2011.

[276] M. Wang and J. W. P. Ng. Intelligent mobile cloud education: Smart
anytime-anywhere learning for the next generation campus environment.
In IEEE Intelligent Environments (IE’12), pages 149–156, 2012.

[277] S. Chung, S. Wang, and I. Rhee. A cloud-powered driver-less printing
system for smartphones. In ACM UbiComp ’13, pages 255–264, 2013.

© 2016 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2493432.2493462
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1555816.1555834
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2331675.2331679
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2331675.2331679
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTCE.2010.5681090
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FTCE.2010.5681090
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMSPEC.2009.4795441
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1161089.1161100
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F2307636.2307643
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.telpol.2011.12.004
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1979742.1979551
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1979742.1979551
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMS.1985.230698

242 � References

[278] T. K. Lakshman and X. Thuijs. Enhancing enterprise field productivity
via cross platform mobile cloud apps. In ACM MCS ’11, pages 27–32,
2011.

[279] M. Sihvonen M. R. Savola, H. Abie. Towards metrics-driven adaptive
security management in e-health iot applications. In The 7th Interna-
tional Conference on Body Area Networks, pages 276–281, 2012.

[280] S. Ullah W. Cai M. Chen, Y. Ma and E. Song. Rochas: Robotics and
cloud-assisted healthcare system for empty nester. In BodyNets’13, 2013.

[281] DARPA. Creating a secure, private internet and cloud at the tacti-
cal edge, 2013. http://www.darpa.mil/NewsEvents/Releases/2013/08/
21.aspx [Online. Last accessed: 2013/09/20].

© 2016 by Taylor & Francis Group, LLC

http://www.darpa.mil/NewsEvents/Releases/2013/08/21.aspx
http://www.darpa.mil/NewsEvents/Releases/2013/08/21.aspx
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.bodynets.2012.250241
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.bodynets.2012.250241
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F1999732.1999741
http://www.crcnetbase.com/action/showLinks?crossref=10.4108%2Ficst.bodynets.2013.253922

Index

3G communication protocols, 13
433MHz, 134
4G/LTE, 2
6LoWPAN, 142–144, 148, 157

A
Additive white Gaussian noise

(AWGN), 118
Air pressure sensors, 27
Amazon Web Services, 162
Android platform, 21
AndroidManifest, 22, 25
Apache Jena API, 90
Application development, 49
Application programming interface

(API), 15, 97
Architecture, CPS, 3

application layer, 9
ETSI M2M service architecture,

9
framework, 445
middleware configuration,

36–37, 129–130, 166
middleware, cloud-based, 15–16
middleware/service layer, 2, 8–9,

13, 17, 75, 88
mobile cloud computing (MCC)

with; see Mobile cloud
computing (MCC)

physical/MAC layer, 7–8

smart architecture, 179
transport layer, 8

Azure, Microsoft, 162

B
Bluetooth, 182

China, use in, 135–136
communication protocols, 38
description, 13–14
IEEE standards, 8
protocols, 13
sensor proxies, relationship

between, 184

C
CASSARA Tool, 90
CASSARAM. See Context-aware

sensor search and selection
model (CASSARAM)

Cisco, 212
CloneCloud, 165, 166
Cloud federation, 172
Cloud Resource Allocation for

Mobile Applications
(CRAM), 167–168

Cloud technologies, 2
data, collection and reception of,

13
Cloud-based game services, 203–204,

205

243

© 2016 by Taylor & Francis Group, LLC

244 � Index

Code partitioning, 165
Community sensing, 15
Comparative-priority based heuristic

filtering (CPHF), 86–87
Comparative-priority based weighted

index (CPWI), 69, 79, 80,
84

generating phase, 87
CONSORTS-S, 15
Constrained Application Protocol

(CoAP), 75, 140, 145–147,
148, 151

Content Based Mobile Edge
Networking (CBMEN), 214

Context-aware sensor search and
selection model
(CASSARAM), 68

chain processing, 88–89
context framework, 85
context properties, 79, 80
CPS middleware, enrichment of,

75
efficiency, 85–86
energy efficiency, 94
execution flow, 78
hybrid processing, 89–90
implementation, 90–91
overview, 77–79
parallel processing, 89
performance, 91, 93–94
queries, 88
sensor ranking, 79
storage, 94–95

Create, update, read, and delete
(CURD) groups, 42, 44

Critical covering set (CCS), 108–109
Critical security, 170
CrowdMoG

cloud manager, 204–205
cloud-based game services; see

Cloud-based game services
design, 202–203
Network Protocol Manager,

206–207
overview, 201

Peer Manager, 205
Phage, 207–209
platform, 205
predictions, 203
Protocol Manager, 206

Crowdsensing, 14
Cyber Physical Systems (CPS)

application infrastructure; see
Cyber Physical Systems
application infrastructure
(CPS-AI)

applications, 1–2, 173, 212; see
also specific applications

architecture; see Architecture,
CPS

communication protocols, 38–39;
see also specific protocols

control decisions, 123
deployment, large-scale, 17
description, 1
energy efficiency, 3, 102
energy flow, 106
evolution, 217
latency, processing, 123, 127–128
medium access control (MAC),

102
mobile cloud computing with;

see Mobile cloud computing
(MCC)

origins, 1
platforms; see Platforms, CPS
privacy issues, 3
quality of service, 3, 174
quality-of-information (QoI)

management; see
Quality-of-information
(QoI) management, CPS

security protocols, 3, 170
sensory environments; see

Sensors, CPS
vision of, 2

Cyber Physical Systems application
infrastructure (CPS-AI)

application gateway, 43
authentication, authorization,

© 2016 by Taylor & Francis Group, LLC

Index � 245

and accounting (AAA), 44,
46–47

real-time operational database
(RODB), 43, 47

registration portal, 43

D
Data access object (DAO), 50, 51
DDoS attacks, 64–65
Defense Advanced Research Projects

Agency (DARPA), 214
Device Cloud, 174
DevID, 47, 48

generating, 55–56
masking, 56

DevName, 49
Directed Acyclic Graph (DAG), 145
Duty cycling, 109, 112
Dynamic Name Service (DNS), 42–43
Dynamix, 39
Dyser, 71

E
E-learning, 2
ENDA, 168
EPCglobal, 8, 43, 45
Ethernet, 63
ETSI M2M service architecture, 9

F
Fibocom, 137
Flexible stretch sensors, 27
Front-end processors, 45, 46

G
Game theory, 176
Gaming, mobile. See Mobile gaming
Gas sensors, 27
Global Positioning Systems (GPS),

166, 173
Global Sensor Networks (GSN)

architecture, 19
middleware, 21, 27, 37, 74
semantics, 74–75

Google Application Engine (GAE),
162

Google Play, 18
Grid-M, 14

overview, 15–16

H
Hall-effect sensors, 27
HealthKiosks

challenges, 182
data capture, 185
device management service

module, 188
GET naming and addressing,

188, 189, 190
HTTP POST, 189
internal pub/sub engine,

185–186
mobile, 191–193
overview, 182–183
process service module, 186–187
sensor proxy design, 185
sensor proxy naming, 188, 189
stationary, 190–191
system model, 184
transport service, 186, 187–188

Heuristic filtering, 99
Hilbert value, 171
HTTP Constrained Application

Protocol (CoAP), 147–148,
149, 150, 152

HTTP over TCP, 8
Huawei, 136–137

I
Ingress filtering, 64–65
INSTEON, 140
Intelligent Radio Network Access

(IRNA), 168
Internet, backbone of, 8, 174
Internet Cloud, 174, 214
Internet connected objects (ICO),

2–3
Internet Connected Objects (ICO),

1, 180

© 2016 by Taylor & Francis Group, LLC

246 � Index

Internet Engineering Task Force
(IETF), 140, 142, 143

Internet of Things (IoT), 2
middleware, use with, 69–70
Mobile Sensor Data Engine

(MOSDEN). relationship
between, 13–14

semantics, 74
Internet Protocol v4, 42
Internet Protocol v6, 42, 65, 140,

141, 143, 148, 218
Interworking function (IWF), 9
IPlugin, 22

J
Java 2 Micro Edition, 15
Java Eclipse Galileo 3.5.0, 62
JDBC library, 51, 62
Jena TDB, 94, 95

K
K-extensions, 95, 96

L
Leaf wetness sensors, 27
Light-dependent resistor (LDR)

sensors, 27
Linked Sensor Middleware (LSM),

74, 91
Location based fined-grained access

control (LFAC), 170
Location based services (LBS), 170
Lossy and low power networks

(LLN), 143–144, 145

M
Machine to machine (M2M) devices

architecture, 46–47
China, use in, 134, 135, 136, 137
IP addressable, 46

Machine-to-machine (M2M)
communications, 3

MAGIC Broker 2, 16
MAPCloud, 167
MapReduce, 14

Markov chains, 113, 118
Maximum a posteriori (MAP)

estimates, 114
Medium access control (MAC), 102

6LoWPAN, within, 143
protocol design, WSNs, 104
protocols, routing algorithms,

123
S-MAC, 104
T-MAC, 104

Memory arithmetic unit and
interface (MAUI), 164

Mesh topology, 45
Microsoft Azure, 162
MobiCloud, 170
Mobile Big Data, 175
Mobile cloud computing (MCC), 3

applications, 212
challenges, 161, 163, 164–166
content awareness, 173
cost, 176
defining, 162–163
ecosystems, 163
elasticity, 172–173
encryption, 169
energy consumption, 175
heterogeneity, 166, 167–169
multi-objective optimization,

173
overview, 160–161
performance, 167, 169, 175
privacy, 169
quality of service (QoS), 172
scalability, 167, 172–173
security, 169, 175
service management, 172
user mobility, 172–173

Mobile communications networks, 2
Mobile gaming, 196–198, 200–201.

See also Cloud-based game
services; CrowdMoG

Mobile Personal Grid (MPG), 168
Mobile Sensor Data Engine

(MOSDEN)
cloud interaction, 19–20, 31

© 2016 by Taylor & Francis Group, LLC

Index � 247

CPU consumption, 27, 28, 30, 35
data processing, 38
design of, 13
development, 13, 18
energy efficiency, 17
implementation, 21–22
Internet of Things, relationship

between, 13–14
interoperability, 37
memory consumption, 33
overview, 12–13
peer interaction, 19–20, 26,

31–36
performance, 35
plugin architecture, 18, 19, 39
plugin development, 22, 24–26
processing, distributed, 21
scalability, 13, 18, 35, 39
stand-alone use, 26, 27–28,

30–31
storage use, 35
streaming, 36
usability, 18

Multi-objective optimization, 173
My SQL, 90
MySQL, 93

N
Naming, addressing, and profile

server (NAPS), 42, 43, 46
case study, 56–59
data persistence, 50
devID, 49
interfaces, 47, 65
prefixes, 53
security authentication, role in,

47
storage, 49, 50, 54, 55
translation role, 49–50
tree structure, 54

Network Reachability, Addressing,
and Repository (NRAR), 43

Normal security, 170
NOSQL, 97

O
Object name service (ONS), 45
Office automation, 212–213
Open Internet-of-Things, 73
OpenWrt, 149
Opportunistic sensing, 15

P
Personal sensing, 15
Phage, 207–209
Platform as a Service (PaaS), 162
Platforms, CPS, 2. See also specific

platforms
open-source, 16
overview, 8–9
server-side, 16

Position sensors, 27
Power-line communications (PLC),

IEEE standards, 8
Process Description Language

(PDL), 14

Q
Quality-of-information (QoI)

management, CPS
attributes, 105, 129
constraints, 102
efficiency, relationship between,

102
energy efficiency, relationship

between, 109
requirements, 106, 117, 120

R
Radio frequency identification

(RFID) tags, 1
China, use in, 135
data management, 135
EPCglobal; see EPCglobal
identifying, 43
IEEE standards, 8
middleware, 135
searching with, 70

Raspberry Pi, 14, 22

© 2016 by Taylor & Francis Group, LLC

248 � Index

Relational-expression based filtering
(REF), 87

Remote radio heads (RRH), 58
Representation State Transfer

(REST)-based peer-to-peer
communication, 22, 49, 50

API, 51–52, 53, 59, 61, 65, 141
applications and use, 140–141
design style, 47, 187, 188, 189
HTTP methods, used with, 51,

52
Web Services, 141

RESTfull Gateway, 149–151, 152,
153

Routing over Lossy and Low-power
Networks (RoLL) working
group, 143, 145

Routing Protocol for Low Power and
Lossy Network (RPL), 140

RPL, 145, 148

S
S-MAC, 104
Search request initiator (SRI), 88,

89–90
Searching, sensing devices

cluster searching, 71–72
content-based searching, 71
context-aware searching, 75, 77
distributed searching, 73–74
manual interactive searching, 72
metadata-based searching, 73
ontology-based searching, 73
real-time searching, 74
spatial searching, 70–71
temporal searching, 71
text-based searching, 72–73
thematic searching, 70

Security Service Admission Model
(SSAM), 170

Semantic querying, 82
Semantic Sensor Network Ontology

(SSN), 80–82, 90, 91, 93
Semi-Markov Decision Process

(SMDP), 170

Semi-Markov models, 113
SENSE-SATION, 26
Sensing devices, searching. See

Searching, sensing devices
Sensor searching, 95–96
Sensors, CPS

critical covering set (CCS),
108–109

delay failure, 120–121, 125,
126–127

delay model, 110, 111
duty cycling, 109, 112
energy management, 106, 109,

110, 111, 112, 113, 114,
115–116, 120, 122, 129

environments, 65–66, 105
exclusive task models, 114
greedy algorithm for, 118, 121,

122
location, 117–118
relevancy, 117, 118
sensing radius, 117
tasks, assessing relevance to,

107–108
Service Oriented Computing, 176
Sesame, 94
SIMcom, 137
Simple Object Access Protocol

(SOAP), 176
SINA, 209
Smartphones, 1, 14
Snoogle, 72–73
Software as a Service (SaaS), 162
SPARQL, 74, 79, 82

Berlin Benchmark, 94

T
T-MAC, 104
TECO Envboard, 16
TelosB sensors, 16
TinyOS, 16
Transmission Control Protocol

(TCP), 147
Transport layer protocols, 8
TRENDY, 75

© 2016 by Taylor & Francis Group, LLC

Index � 249

U
Universal Description Discovery and

Integration (UDDI), 176
Universal Plug and Play (UPnP), 43

V
Virtual Sensor Definition (VSD), 26
Virtual sensors, 35

W
W3C Incubator Group, 73
WAS-CE, IBM, 50
WAVE2M, 140
Web Services, 141, 162
Web Services Description Language

(WSDL), 176
Web-of-things (WoT), 45
Weibo, 209
Wi2Me Traces, 16
WiFi, 2, 14, 155, 165, 175, 182, 200,

214
communication protocols, 38
IEEE standards, 8

WiMax
base station, 58, 65
CIDs, use of, 59

Wireless sensor networks (WSN), 2

configuration, 154
costs, 154
CPS, relationship between, 140
data rate, 103–104
deployment, 154
energy consumption, 104
MAC protocol, 104
performance, 154–155
quality-of-information (QoI)

management, relationship
between, 102, 103

sensing capabilities, 107
setup, 154
tracking applications, 104

Wireless sensor networks (WSNs), 1

X
XML, 54, 59, 129

Z
Z-Wave, 38, 140
ZigBee, 1, 2, 140

communication protocols, 38
gatewa49y
IEEE standards, 8
implementation, 134–135

ZTE, 137

© 2016 by Taylor & Francis Group, LLC

	b19003-1
	Cyber Physical Systems: Architectures, Protocols, and Applications
	Contents
	List of Figures
	List of Tables
	List of Contributors

	b19003-2
	Chapter 1: Background

	b19003-3
	I: CPS Architecture

	b19003-4
	Chapter 2: Overall Architecture for CPS

	b19003-5
	Chapter 3: Mobile Sensing Devices and Platforms for CPS
	3.1 Introduction
	3.2 Mobile Sensing in Internet of Things Paradigm
	3.3 Strategies, Patterns, and Practice of Mobile Sensing
	3.4 MOSDEN: Mobile Sensor Data Engine
	3.4.1 Problem Definition
	3.4.2 MOSDEN: Architectural Design
	3.4.3 Plugin Architecture
	3.4.4 General Architecture
	3.4.5 Interaction with the Cloud and Peers
	3.4.6 Distributed Processing

	3.5 Implementation
	3.5.1 Plugin Development

	3.6 Performance Evaluation and Lessons Learned
	3.6.1 Experimental Testbed
	3.6.2 Stand-Alone Experimentation
	3.6.3 Collaborative Sensing Experimentation

	3.7 Open Challenges and Opportunities
	3.7.1 Automated Configuration
	3.7.2 Unified Middleware Platform
	3.7.3 Optimized Data Processing Strategy
	3.7.4 Multi-Protocol Support
	3.7.5 Modular Reasoning, Fusing, and Filtering

	3.8 Summary

	b19003-6
	Chapter 4: Naming, Addressing, and Profile Services for CPS
	4.1 Introduction
	4.1.1 Scope and Assumptions
	4.1.2 Contributions and Chapter Organization

	4.2 Related Work
	4.3 System Flows
	4.3.1 Device Registration and Configurations
	4.3.2 Upstream Data Collection
	4.3.3 Downstream Command Delivery
	4.3.4 Application Query
	4.3.5 Integration with Different CPS Platforms

	4.4 System Designs and Implementations
	4.4.1 RESTful Interfaces
	4.4.2 Naming and Addressing Convention
	4.4.3 Generating the devID

	4.5 A Case Study
	4.5.1 Device Deployment, Naming, and Addressing Format
	4.5.2 A Device Registration Portal

	4.6 Performance Evaluation
	4.7 Discussion
	4.7.1 DDoS Attacks
	4.7.2 Compatibility with IPv6

	4.8 Summary

	b19003-7
	Chapter 5: Device Search and Selection for CPS
	5.1 Introduction
	5.2 Internet of Things Architecture and Search Functionality
	5.2.1 Sensing Device Searching from Functional Per-spective
	5.2.2 Sensing Device Searching from Implementation Perspective

	5.3 Problem Definition
	5.4 Context-Aware Approach for Device Search and Selection
	5.4.1 High-Level Model Overview
	5.4.2 Capturing User Priorities
	5.4.3 Data Modelling and Representation
	5.4.4 Filtering Using Querying Reasoning
	5.4.5 Ranking Using Quantitative Reasoning
	5.4.6 Context Framework

	5.5 Improving Efficiency
	5.5.1 Comparative-Priority Based Heuristic Filtering (CPHF)
	5.5.2 Relational-Expression Based Filtering (REF)
	5.5.3 Distributed Sensor Searching

	5.6 Implementation and Experimentation
	5.7 Performance Evaluation
	5.7.1 Evaluating Alternative Storage Options
	5.7.2 Evaluating Distributed Sensor Searching

	5.8 Open Challenges and Future Research Directions
	5.8.1 Context Discovery, Processing, and Storage
	5.8.2 Utility Computing Models and Sensing as a Service
	5.8.3 Automated Smart Device Configuration
	5.8.4 Optimize Sensing Strategy Development

	5.9 Summary

	b19003-8
	Chapter 6: Energy Management for CPS
	6.1 Introduction
	6.2 Related Work
	6.3 System Model
	6.3.1 Sensors
	6.3.2 Tasks
	6.3.3 System Flow

	6.4 QoI-Aware Sensor-to-Task Relevancy and Critical Covering Sets
	6.4.1 Information Fusion
	6.4.2 Critical Covering Set

	6.5 QoI-Aware Energy Management
	6.5.1 Duty-Cycling of Sensors
	6.5.2 Delay Model for Tasks
	6.5.3 Problem Formulation
	6.5.3.1 Minimize the Maximum Duty Cycle
	6.5.3.2 Minimize Weighted Average Duty Cycle

	6.5.4 A Greedy Algorithm

	6.6 Performance Evaluation
	6.6.1 System Model and Simulation Setup
	6.6.2 Simulation Results

	6.7 Modeling the Signal Transmission and Processing Latency
	6.7.1 Model Description and Problem Formulation
	6.7.2 Satisfactory Region of Delay Tolerance
	6.7.3 Results

	6.8 Implementation Guidelines
	6.9 Summary

	b19003-9
	II: Enabling Technologies for CPS

	b19003-10
	Chapter 7: Networking Technologies for CPS
	7.1 Sensing Networks
	7.1.1 433MHz Proprietary Solutions
	7.1.2 ZigBee
	7.1.3 RFID
	7.1.4 Bluetooth

	7.2 Data Connectivity
	7.2.1 2G/3G SIM Modules
	Huawei
	ZTE
	SIMcom
	Fibocom

	b19003-11
	Chapter 8: Machine-to-Machine Communications for CPS
	8.1 Introduction
	8.2 Related Works
	8.3 A RESTful Protocol Stack for WSN
	8.3.1 6LoWPAN
	8.3.2 RPL
	8.3.3 CoAP
	8.3.4 HTTP-CoAP Protocol Implementation
	8.3.4.1 Direct Access
	8.3.4.2 Proxy Access

	8.4 Prototyping Implementation
	8.4.1 Sensor Node
	8.4.2 RESTful Gateway
	8.4.2.1 libcoap Layer
	8.4.2.2 CoAP Request/Response Layer
	8.4.2.3 HTTP-CoAP Mapping Layer

	8.5 Performance Evaluation
	8.5.1 System Configuration
	8.5.2 RTTs and Packet Loss Evaluations of RPL Routing
	8.5.3 RESTful Method to Retrieve Sensor Resources

	8.6 Summary

	b19003-12
	Chapter 9: Mobile Cloud Computing for CPS
	9.1 Introduction
	9.2 MCC Definition
	9.3 Challenges
	9.3.1 Managing the Task Offloading
	9.3.2 Encountering Heterogeneity
	9.3.3 Enhancing Security and Protecting Privacy
	9.3.4 Economic and Business Model

	9.4 Future Directions
	9.4.1 Managing the Task Offloading
	9.4.1.1 Scalability in the Device Cloud
	9.4.1.2 Making the Offloading Decision Process Transparent to the Application Developer
	9.4.1.3 Context Awareness on Trading Off the Optimization between Performance Improvement and Energy Saving
	9.4.1.4 Tasks Distributing among Sensors
	9.4.1.5 Offloading Decision Making in a Hybrid Cloud

	9.4.2 Encountering Heterogeneity
	9.4.2.1 Efficient Middleware
	9.4.2.2 Dynamic Adaptive Automated System
	9.4.2.3 Mobile Big Data

	9.4.3 Enhancing Security and Privacy
	9.4.3.1 Finding Protection Solutions That Are More Efficient Is Still a Research Topic
	9.4.3.2 Context Awareness on Dynamic Security Settings
	9.4.3.3 Trade Off between the Functional Performance Degradation and Security and Privacy Requirements

	9.4.4 Economic and Business Models

	9.5 Summary

	b19003-13
	III: CPS Applications

	b19003-14
	Chapter 10: Connected Healthcare for CPS
	10.1 Introduction
	10.2 Related Work
	10.3 System Model
	10.4 Sensor Proxy Design
	10.4.1 Data Capture Module
	10.4.2 Internal Event Pub/Sub Engine
	10.4.3 Process Service Module
	10.4.4 Transportation Service Module
	10.4.5 Device Management Service Module

	10.5 HTTP Interface
	10.5.1 Get Naming and Addressing
	10.5.1.1 Sensor Proxy Naming
	10.5.1.2 Biomedical Sensors Naming
	10.5.1.3 Biomedical Sensors Addressing

	10.5.2 Start Blood Pressure/Glucose Reader
	10.5.3 Get Social Security Card ID
	10.5.4 Get Blood Pressure/Glucose Data

	10.6 Case Studies
	10.6.1 Stationary HealthKiosk
	10.6.2 Mobile HealthKiosk

	10.7 Summary

	b19003-15
	Chapter 11: Multi-Player Gaming for Public Transport Crowd
	11.1 Introduction
	11.2 A CrowdMoG Use Case Scenario
	11.3 CrowdMoG Design
	11.3.1 Cloud-Based Game Services
	11.3.2 Cloud Manager
	11.3.3 Group Manager
	11.3.3.1 Peer Manager
	11.3.3.2 Session Dynamics Manager

	11.3.4 Network Protocol Manager
	11.3.5 Game Feature Extractor

	11.4 Prototype — Phage
	11.5 Summary

	b19003-16
	Chapter 12: Mobile Cloud Computing Enabled Emerging CPS Applications
	12.1 Education
	12.2 Office Automation
	12.3 Healthcare
	12.4 Mission-Critical Applications
	12.5 Summary

	b19003-17
	Chapter 13: Conclusion

	b19003-18
	References

	b19003-19
	Index

	Cit p_8:1:
	Cit p_1:1:
	Cit p_3:1:
	Cit p_3:2:
	Cit p_9:1:
	Cit p_9:2:
	Cit p_4:1:
	Cit p_6:1:
	Cit p_24:1:
	Cit p_17:1:
	Cit p_17:2:
	Cit p_19:1:
	Cit p_14:1:
	Cit p_23:1:
	Cit p_23:2:
	Cit p_16:1:
	Cit p_16:2:
	Cit p_18:1:
	Cit p_20:1:
	Cit p_20:2:
	Cit p_33:1:
	Cit p_33:2:
	Cit p_35:1:
	Cit p_35:2:
	Cit p_35:3:
	Cit p_25:1:
	Cit p_25:2:
	Cit p_34:1:
	Cit p_34:2:
	Cit p_40:1:
	Cit p_40:2:
	Cit p_42:1:
	Cit p_42:2:
	Cit p_44:1:
	Cit p_37:1:
	Cit p_37:2:
	Cit p_39:1:
	Cit p_39:2:
	Cit p_43:1:
	Cit p_43:2:
	Cit p_45:1:
	Cit p_45:2:
	Cit p_45:3:
	Cit p_38:1:
	Cit p_49:1:
	Cit p_49:2:
	Cit p_51:1:
	Cit p_51:2:
	Cit p_53:1:
	Cit p_53:2:
	Cit p_55:1:
	Cit p_55:2:
	Cit p_50:1:
	Cit p_50:2:
	Cit p_52:1:
	Cit p_52:2:
	Cit p_52:3:
	Cit p_54:1:
	Cit p_54:2:
	Cit p_58:1:
	Cit p_58:2:
	Cit p_67:1:
	Cit p_67:2:
	Cit p_67:3:
	Cit p_60:1:
	Cit p_60:2:
	Cit p_64:1:
	Cit p_64:2:
	Cit p_66:1:
	Cit p_66:2:
	Cit p_59:1:
	Cit p_59:2:
	Cit p_72:1:
	Cit p_81:1:
	Cit p_71:1:
	Cit p_71:2:
	Cit p_73:1:
	Cit p_68:1:
	Cit p_68:2:
	Cit p_70:1:
	Cit p_70:2:
	Cit p_70:3:
	Cit p_88:1:
	Cit p_90:1:
	Cit p_90:2:
	Cit p_83:1:
	Cit p_83:2:
	Cit p_92:1:
	Cit p_94:1:
	Cit p_94:2:
	Cit p_87:1:
	Cit p_84:1:
	Cit p_84:2:
	Cit p_93:1:
	Cit p_86:1:
	Cit p_99:1:
	Cit p_101:1:
	Cit p_95:1:
	Cit p_114:1:
	Cit p_114:2:
	Cit p_116:1:
	Cit p_116:2:
	Cit p_111:1:
	Cit p_111:2:
	Cit p_113:1:
	Cit p_115:1:
	Cit p_115:2:
	Cit p_112:1:
	Cit p_125:1:
	Cit p_125:2:
	Cit p_125:3:
	Cit p_118:1:
	Cit p_118:2:
	Cit p_120:1:
	Cit p_120:2:
	Cit p_122:1:
	Cit p_126:1:
	Cit p_126:2:
	Cit p_119:1:
	Cit p_119:2:
	Cit p_128:1:
	Cit p_128:2:
	Cit p_137:1:
	Cit p_139:1:
	Cit p_139:2:
	Cit p_132:1:
	Cit p_132:2:
	Cit p_136:1:
	Cit p_136:2:
	Cit p_138:1:
	Cit p_138:2:
	Cit p_131:1:
	Cit p_146:1:
	Cit p_146:2:
	Cit p_148:1:
	Cit p_148:2:
	Cit p_145:1:
	Cit p_147:1:
	Cit p_140:1:
	Cit p_140:2:
	Cit p_142:1:
	Cit p_142:2:
	Cit p_162:1:
	Cit p_155:1:
	Cit p_152:1:
	Cit p_161:1:
	Cit p_161:2:
	Cit p_163:1:
	Cit p_158:1:
	Cit p_160:1:
	Cit p_164:1:
	Cit p_164:2:
	Cit p_173:1:
	Cit p_166:1:
	Cit p_168:1:
	Cit p_168:2:
	Cit p_172:1:
	Cit p_165:1:
	Cit p_174:1:
	Cit p_167:1:
	Cit p_187:1:
	Cit p_191:1:
	Cit p_191:2:
	Cit p_184:1:
	Cit p_184:2:
	Cit p_188:1:
	Cit p_188:2:
	Cit p_188:3:
	Cit p_190:1:
	Cit p_190:2:
	Cit p_185:1:
	Cit p_203:1:
	Cit p_203:2:
	Cit p_202:1:
	Cit p_204:1:
	Cit p_206:1:
	Cit p_212:1:
	Cit p_214:1:
	Cit p_214:2:
	Cit p_216:1:
	Cit p_209:1:
	Cit p_222:1:
	Cit p_226:1:
	Cit p_228:1:
	Cit p_230:1:
	Cit p_231:1:
	Cit p_240:1:
	Cit p_240:2:
	Cit p_242:1:
	Cit p_237:1:
	Cit p_241:1:
	Cit p_241:2:
	Cit p_241:3:
	Cit p_247:1:
	Cit p_249:1:
	Cit p_248:1:
	Cit p_248:2:
	Cit p_250:1:
	Cit p_243:1:
	Cit p_243:2:
	Cit p_252:1:
	Cit p_254:1:
	Cit p_263:1:
	Cit p_265:1:
	Cit p_258:1:
	Cit p_255:1:
	Cit p_255:2:
	Cit p_264:1:
	Cit p_257:1:
	Cit p_257:2:
	Cit p_266:1:
	Cit p_266:2:
	Cit p_279:1:
	Cit p_274:1:
	Cit p_267:1:
	Cit p_267:2:
	Cit p_276:1:
	Cit p_276:2:
	Cit p_269:1:
	Cit p_273:1:
	Cit p_275:1:
	Cit p_268:1:
	Cit p_277:1:
	Cit p_277:2:
	Cit p_270:1:
	Cit p_281:1:
	Cit p_281:2:
	Cit p_280:1:
	Cit p_282:1:

