

Principles of Cyber-Physical Systems

Principles of Cyber-Physical Systems

Rajeev Alur

The MIT Press

Cambridge, Massachusetts

London, England

c© 2015 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or informa-
tion storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or
sales promotional use. For information, please email special sales@mitpress.mit.edu.

This book was set using LATEX by the author. Printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Alur, Rajeev, 1966–

Principles of cyber-physical systems / Rajeev Alur.

p. cm

Includes bibliographical references and index.

ISBN: 978-0-262-02911-7 (hardcover: alk. paper)

1. Automatic control. 2. System design. 3. Embedded internet devices.
4. Internet of things. 5. Formal methods (Computer science). I. Title.

TJ213.A365 2015

006.2’2—dc23

2014039755

Dedicated to the memory of my parents

Contents

Preface xi

1 Introduction 1

1.1 What Is a Cyber-Physical System? 1

1.2 Key Features of Cyber-Physical Systems 2

1.3 Overview of Topics . 5

1.4 Guide to Course Organization . 7

2 Synchronous Model 13

2.1 Reactive Components . 13

2.1.1 Variables, Valuations, and Expressions 13

2.1.2 Inputs, Outputs, and States 14

2.1.3 Initialization . 15

2.1.4 Update . 16

2.1.5 Executions . 18

2.1.6 Extended-State Machines 19

2.2 Properties of Components . 21

2.2.1 Finite-State Components 21

2.2.2 Combinational Components 22

2.2.3 Event-Triggered Components ∗ 24

2.2.4 Nondeterministic Components 26

2.2.5 Input-Enabled Components 29

2.2.6 Task Graphs and Await Dependencies 30

2.3 Composing Components . 36

2.3.1 Block Diagrams . 36

2.3.2 Input/Output Variable Renaming 38

2.3.3 Parallel Composition . 38

2.3.4 Output Hiding . 47

2.4 Synchronous Designs . 49

2.4.1 Synchronous Circuits . 50

2.4.2 Cruise Control System . 54

2.4.3 Synchronous Networks ∗ 58

Bibliographic Notes . 63

viii Contents

3 Safety Requirements 65
3.1 Safety Specifications . 65

3.1.1 Invariants of Transition Systems 65
3.1.2 Role of Requirements in System Design 70
3.1.3 Safety Monitors . 75

3.2 Verifying Invariants . 78
3.2.1 Proving Invariants . 78
3.2.2 Automated Invariant Verification ∗ 85
3.2.3 Simulation-Based Analysis 87

3.3 Enumerative Search ∗ . 90
3.4 Symbolic Search . 97

3.4.1 Symbolic Transition Systems 98
3.4.2 Symbolic Breadth-First Search 103
3.4.3 Reduced Ordered Binary Decision Diagrams ∗ 109

Bibliographic Notes . 123

4 Asynchronous Model 125
4.1 Asynchronous Processes . 125

4.1.1 States, Inputs, and Outputs 126
4.1.2 Input, Output, and Internal Actions 126
4.1.3 Executions . 131
4.1.4 Extended-State Machines 132
4.1.5 Operations on Processes 136
4.1.6 Safety Requirements . 141

4.2 Asynchronous Design Primitives 142
4.2.1 Blocking vs. Non-blocking Synchronization 142
4.2.2 Deadlocks . 143
4.2.3 Shared Memory . 145
4.2.4 Fairness Assumptions ∗ . 154

4.3 Asynchronous Coordination Protocols 162
4.3.1 Leader Election . 163
4.3.2 Reliable Transmission . 167
4.3.3 Wait-Free Consensus ∗ . 170

Bibliographic Notes . 179

5 Liveness Requirements 181
5.1 Temporal Logic . 181

5.1.1 Linear Temporal Logic . 182
5.1.2 Ltl Specifications . 189
5.1.3 Ltl Specifications for Asynchronous Processes ∗ 193
5.1.4 Beyond Ltl ∗ . 197

5.2 Model Checking . 199
5.2.1 Büchi Automata . 200
5.2.2 From Ltl to Büchi Automata ∗ 206
5.2.3 Nested Depth-First Search ∗ 212
5.2.4 Symbolic Repeatability Checking 216

Contents ix

5.3 Proving Liveness ∗ . 222

5.3.1 Eventuality Properties . 222

5.3.2 Conditional Response Properties 224

Bibliographic Notes . 229

6 Dynamical Systems 231

6.1 Continuous-Time Models . 231

6.1.1 Continuously Evolving Inputs and Outputs 231

6.1.2 Models with Disturbance 241

6.1.3 Composing Components 242

6.1.4 Stability . 243

6.2 Linear Systems . 247

6.2.1 Linearity . 248

6.2.2 Solutions of Linear Differential Equations 251

6.2.3 Stability . 259

6.3 Designing Controllers . 263

6.3.1 Open-Loop vs. Feedback Controller 263

6.3.2 Stabilizing Controller . 264

6.3.3 PID Controllers ∗ . 269

6.4 Analysis Techniques ∗ . 276

6.4.1 Numerical Simulation . 277

6.4.2 Barrier Certificates . 280

Bibliographic Notes . 287

7 Timed Model 289

7.1 Timed Processes . 289

7.1.1 Timing-Based Light Switch 289

7.1.2 Buffer with a Bounded Delay 291

7.1.3 Multiple Clocks . 292

7.1.4 Formal Model . 294

7.1.5 Timed Process Composition 297

7.1.6 Modeling Imperfect Clocks ∗ 300

7.2 Timing-Based Protocols . 301

7.2.1 Timing-Based Distributed Coordination 302

7.2.2 Audio Control Protocol ∗ 305

7.2.3 Dual Chamber Implantable Pacemaker 310

7.3 Timed Automata . 317

7.3.1 Model of Timed Automata 318

7.3.2 Region Equivalence ∗ . 319

7.3.3 Matrix-Based Representation for Symbolic Analysis . . . 328

Bibliographic Notes . 338

x Contents

8 Real-Time Scheduling 339
8.1 Scheduling Concepts . 339

8.1.1 Scheduler Architecture . 340
8.1.2 Periodic Job Model . 341
8.1.3 Schedulability . 345
8.1.4 Alternative Job Models 350

8.2 EDF Scheduling . 352
8.2.1 EDF for Periodic Job Model 352
8.2.2 Optimality of EDF . 356
8.2.3 Utilization-Based Schedulability Test 358

8.3 Fixed-Priority Scheduling . 361
8.3.1 Deadline-Monotonic and Rate-Monotonic Policies 361
8.3.2 Optimality of Deadline-Monotonic Policy ∗ 365
8.3.3 Schedulability Test for Rate-Monotonic Policy ∗ 371

Bibliographic Notes . 378

9 Hybrid Systems 379
9.1 Hybrid Dynamical Models . 379

9.1.1 Hybrid Processes . 379
9.1.2 Process Composition . 386
9.1.3 Zeno Behaviors . 389
9.1.4 Stability . 393

9.2 Designing Hybrid Systems . 395
9.2.1 Automated Guided Vehicle 395
9.2.2 Obstacle Avoidance with Multi-robot Coordination 398
9.2.3 Multi-hop Control Networks ∗ 406

9.3 Linear Hybrid Automata ∗ . 413
9.3.1 Example Pursuit Game 414
9.3.2 Formal Model . 417
9.3.3 Symbolic Reachability Analysis 420

Bibliographic Notes . 430

Bibliography 431

Index 439

Preface

A cyber-physical system consists of computing devices communicating with one
another and interacting with the physical world via sensors and actuators. In-
creasingly, such systems are everywhere, from smart buildings to medical devices
to automobiles. The challenge of developing design and analysis tools to ensure
reliability of such systems has attracted researchers from academia as well as
industry over the past decade resulting in a vibrant and multi-disciplinary field
of study.

The goal of this textbook is to provide an introduction to the principles of
design, specification, modeling, and analysis of cyber-physical systems. These
principles are drawn from a diverse set of sub-disciplines including model-based
design, concurrency theory, distributed algorithms, formal methods for specifi-
cation and verification, control theory, real-time systems, and hybrid systems. I
have attempted to provide a coherent introduction to selected ideas from these
different topics that are relevant to the design and analysis of cyber-physical sys-
tems. Throughout the textbook, mathematical concepts of modeling, specifica-
tion, and analysis are illustrated by representative case studies from distributed
algorithms, network protocols, control design, and robotics.

The textbook is self-contained, and is suitable for a semester-long course aimed
at upper level undergraduate or first-year graduate students in computer science,
computer engineering, or electrical engineering. Chapter 1 discusses alternatives
for selection of topics for the organization of such a course.

My interest in cyber-physical systems is rooted in the fruitful research collabora-
tion with Tom Henzinger on hybrid systems dating back to 1990s. Furthermore,
the organization of this textbook is based on the unpublished manuscript titled
Computer-Aided Verification coauthored by Tom and me. Some of the exam-
ples and figures in chapters 2 and 3 are copied from this manuscript with Tom’s
permission. Thus Tom’s contribution to this textbook is invaluable and I am
deeply grateful to him.

My understanding of cyber-physical systems and the contents of this book are
greatly influenced by my interactions with faculty and students in PRECISE,
a research center focused on cyber-physical systems in Penn Engineering. I am
grateful to my colleagues Vijay Kumar, Insup Lee, Rahul Mangharam, George
Pappas, Linh Phan, Oleg Sokolsky, and Ufuk Topcu for continued collaborations
and support. I am also thankful to DARPA and NSF for providing sustained
funding to my research projects in cyber-physical systems.

For the past five years, I have used drafts of this textbook in the course titled
Principles of Embedded Computation aimed primarily at the Embedded Systems
Masters program at Penn. Teaching this course on a regular basis has been a
key motivating factor for finishing this book, and the feedback from students
has significantly improved its contents. Thanks to all my students and also to

xii Preface

the wonderful teaching assistants: Sanjian Chen, Zhihao Jiang, Salar Moarref,
Truong Nghiem, Nimit Singhania, and Rahul Vasist.

I have also been fortunate to receive feedback on drafts of this manuscript
from researchers at other universities. In particular, chapters 6 and 9 are much
improved based on the suggestions from Sriram Sankaranarayanan and Paulo
Tabuada. Special thanks to Christos Stergiou for carefully proofreading a recent
version and his help with Matlab simulations of the examples in chapter 9.

This is also an opportunity to thank my publisher, MIT Press, for supporting
this project. In particular, Virginia Crossman, Marie Lufkin Lee, and Marc
Lowenthal have offered help and encouragement throughout the process of pub-
lishing this book.

Writing a textbook takes many years, and would not have been possible without
the support of my family. I am particularly grateful to my wife, Mona, for her
friendship, love, and patience.

Rajeev Alur
University of Pennsylvania
Philadelphia, USA
January 2015

1

Introduction

1.1 What Is a Cyber-Physical System?

The original computer was a stand-alone device focused on number crunching
and information processing. While we continue to use computers for these tasks
today, the more ubiquitous use of computers is within embedded systems. An
embedded system consists of hardware and software integrated within a me-
chanical or an electrical system designed for a specific purpose. From watches
to cameras to refrigerators, almost every engineered product today is an embed-
ded system with an integrated microcontroller and software. The concept of a
cyber-physical system is a generalization of embedded systems. A cyber-physical
system consists of a collection of computing devices communicating with one
another and interacting with the physical world via sensors and actuators in a
feedback loop. Increasingly, such systems are everywhere, from smart buildings
to medical devices to automobiles.

As an illustrative example of a cyber-physical system, consider a team of au-
tonomous mobile robots tasked with the identification and retrieval of a target
inside a house with an unknown floor plan. To achieve this task, each robot
must be equipped with multiple sensors that collect the relevant information
about the physical world. Examples of on-board sensors include a GPS receiver
to track a robot’s location, a camera to take snapshots of its surrounds, and an
infrared thermal sensor to detect the presence of humans. A key computational
problem then is to construct a global map of the house based on all the data
collected, and this requires the robots to exchange information using wireless
links in a coordinated fashion. The current knowledge of the positions of the
robots, obstacles, and target then can be used to determine a motion plan for
each of the robots. Such a motion plan includes high-level commands for each of
the robots of the form “move in the north-west direction at a constant speed of
5 mph.” This directive then needs to be translated to low-level control inputs
for the motors controlling the robot’s motion. The design objectives include
safe operation (for instance, a robot should not bump into obstacles or other

2 Chapter 1

robots), mission completion (for example, the target should be retrieved), and
physical stability (for example, each robot should be stable as a dynamical sys-
tem). Construction of the multi-robot system to meet these objectives requires
design of strategies for control, computing, and communication in a synergistic
manner.

Although certain forms of cyber-physical systems have been in industrial use
since the 1980s, only recently has the technology for processors, wireless com-
munication, and sensors matured to allow the production of components with
impressive capabilities at a low cost. Realizing the full potential of these emerg-
ing computing platforms requires advances in tools and methodology for con-
structing reliable cyber-physical systems. This challenge of developing a system-
atic approach to integrated design of control, computation, and communication
proved to be the catalyst for the formation of a distinct academic discipline of
cyber-physical systems during the 2000s. The science of design for cyber-physical
systems has been identified as a key research priority by government agencies as
well as industries in automotive, avionics, manufacturing, and medical devices.

1.2 Key Features of Cyber-Physical Systems

Theory, methodology, and tools for assisting developers to build hardware and
software systems in a systematic manner have been the central themes in com-
puter science since its inception. The classical theory of computation, with its
focus on computational complexity, and the methodology based on structured
programming have both been instrumental in our ability to build today’s com-
plex software infrastructure. These principles for design of traditional software
systems, however, are of no direct help in building cyber-physical systems due
to significant differences in design concerns. The distinguishing characteristics
of cyber-physical systems are discussed below.

Reactive Computation

In the classical model of computation, a computing device produces an output
when supplied with an input. An example of such a computation is a program
that, given an input list of numbers, outputs a sorted version of the input list.
The notion of correctness for such a program can be captured mathematically
as a function from input values to output values. Theory of computability and
complexity gives us an understanding of which functions are computable and
which functions are computable efficiently. The traditional programming ab-
stractions of functions and procedures allow us to write programs for computing
complex functions by composing simpler functions.

A reactive system, in contrast, interacts with its environment in an ongoing
manner via inputs and outputs. As a typical example of reactive computation,
consider a program for a cruise controller in a car. Such a program receives
high-level input commands for turning the cruise controller on and off and for

Introduction 3

changing the desired cruising speed. The control program needs to respond
to such inputs by changing its output, which corresponds to the force that is
applied to the engine throttle. The behavior of such a system then is naturally
described by a sequence of observed inputs and outputs, and the notion of
correctness specifies which input/output sequences correspond to acceptable
behaviors. Cyber-physical systems are reactive systems, and thus the focus of
this book is on reactive computation.

Concurrency

In a traditional sequential model of computation, the computation consists of
a sequence of instructions executed one at a time. In concurrent computation,
multiples threads of computation, usually called components or processes, are
executing concurrently, exchanging information with one another to achieve the
desired goal of the computation. Concurrency is fundamental to cyber-physical
systems. In our example of a team of autonomous mobile robots, the robots
themselves are separate entities and are thus executing concurrently. Each robot
has multiple sensors and processors, and computing tasks such as constructing a
map of the environment based on vision data and motion planning based on the
map of the environment can be executing on separate processors in parallel. The
motion planning task can be subdivided into logically concurrent subtasks such
as local planning to avoid obstacles and global planning for optimal progress
toward the target.

Understanding models and design principles for distributed and concurrent com-
putation thus is critical for cyber-physical systems. For sequential computation,
the model of Turing machines is accepted as the canonical model of computa-
tion. No such agreement exists for concurrent computation with a rich variety
of proposals of formal models. Broadly speaking, these models fall into two
categories: in synchronous models, components execute in lock-step, and the
computation progresses in a logical sequence of synchronized rounds; and in
asynchronous models, components execute at independent speeds, exchanging
information by sending and receiving messages. Both types of models are use-
ful for the design of cyber-physical systems. In our example, the system of
robots can be viewed as an asynchronous system consisting of individual robots
exchanging messages, whereas for simplicity of design, the computation on a
single robot can be divided into concurrent activities executing in a logically
synchronous manner.

Feedback Control of the Physical World

A control system interacts with the physical world in a feedback loop by measur-
ing the environment via sensors and influencing it via actuators. For example,
a cruise controller is constantly monitoring the speed of the car and adjusts
the throttle force so that the speed stays close to the desired cruising speed.
Controllers are components of a cyber-physical system, and this integration of

4 Chapter 1

computing devices with the physical world sets cyber-physical systems apart
from the traditional computers.

Design of controllers for the physical world requires modeling the dynamics of
the physical quantities: to adjust the throttle force, a cruise controller needs
a model of how the speed of the car changes with time as a function of the
throttle force. The theory of dynamical control systems is a well-developed
discipline with a rich set of mathematical tools for design and analysis, and a
basic understanding of these principles is valuable to designers of cyber-physical
systems. The traditional control theory focuses on continuous-time systems. In
a cyber-physical system, the controller consists of discrete software comprising
concurrent components operating in multiple possible modes of operation, in-
teracting with the continuously evolving physical environment. Such systems
with a mix of discrete and continuous dynamics are sometimes called hybrid
systems, and the emerging principles of design and analysis of controllers for
such systems will be studied in this book.

Real-Time Computation

Programming languages, and the supporting infrastructure of operating systems
and processor architectures, typically do not support an explicit notion of real
time. This offers a convenient abstraction for traditional computing applications
such as document processing, but real-time performance is critical for cyber-
physical systems. For example, for a cruise controller to satisfactorily control
the speed of the car, its design should take into account the time it takes its
subcomponents to execute the necessary computations and communicate the
results.

Modeling timing delays, understanding their impact on the correctness require-
ments and system performance, timing-dependent coordination protocols, and
resource-allocation strategies to ensure predictability have been the subject of
study in the sub-discipline of real-time systems. A principled approach to design
and implementation of cyber-physical systems thus builds on these techniques.

Safety-Critical Applications

While designing and implementing a cruise controller, we expect a high level
of assurance in the correct operation of the system because errors can lead to
unacceptable consequences such as loss of life. Applications where the safety of
the system has a higher priority over other design objectives such as performance
and development cost are called safety-critical. Computing devices now control
aircrafts, automobiles, and medical devices and thus are all examples of cyber-
physical systems for safety-critical applications. In this context, establishing
that the system works correctly at design time is of paramount importance and
sometimes mandatory due to government regulations for certification of systems.

The traditional route to system development is design and implementation, fol-
lowed by extensive testing and validation to detect bugs. The more principled

Introduction 5

approach to system development involves writing mathematically precise re-
quirements of the desired system, designing models of system components along
with the environment in which the system is supposed to operate, and using
analysis tools to check that the system model meets the requirements. Com-
pared to the traditional approach, this methodology can detect design errors
in early stages and ensure higher reliability. Such an approach based on for-
mal models and verification is appealing in safety-critical applications, is being
increasingly adopted by industry, and will be a central theme in this book.

1.3 Overview of Topics

The goal of this textbook is to provide an introduction to the principles of
design, specification, modeling, and analysis of cyber-physical systems. Due
to the distinguishing characteristics of cyber-physical systems, these principles
are drawn from a diverse set of sub-disciplines including model-based design,
concurrency theory, distributed algorithms, formal methods for specification and
verification, control theory, real-time systems, and hybrid systems. Research
conferences and textbooks are devoted to each of these sub-disciplines, and this
book is aimed at explaining the core ideas relevant to system design and analysis
in each of these in a coherent manner. The topics are discussed by interweaving
the three themes of formal models, model-based design, and specification and
analysis as discussed below.

Formal Models

The goal of modeling in system design is to provide mathematical abstractions
to manage the complexity of design. In the context of reactive systems, the
basic unit of modeling is a component that interacts with its environment via
inputs and outputs. Different forms of interaction lead to different classes of
models. We begin in chapter 2 by focusing on synchronous modeling, where
all components execute in lock-step in a sequence of rounds. Then in chap-
ter 4, we switch to asynchronous models, where different activities execute at
independent speeds. In chapter 6, we study continuous-time models of dynam-
ical systems that are suitable for capturing the evolution of the physical world.
Chapter 7 introduces timed models, where the interaction among components
is facilitated by the knowledge of concrete bounds on timing delays. Finally,
chapter 9 considers hybrid systems by integrating models of discrete interaction
and dynamical systems.

To describe models, we use a combination of block diagrams, code fragments,
state machines, and differential equations. We define our models formally , that
is, in a mathematically precise manner. The formal semantics allows us to
answer questions such as, “what are the possible behaviors of a component”
and “what does it mean to compose two components” rigorously. Examples
of modeling concepts covered in this book include nondeterministic behavior,

6 Chapter 1

input-output interfaces of components, time-triggered and event-triggered com-
munication, await dependencies for synchronous composition, communication
using shared memory, atomicity of synchronization primitives, fairness for asyn-
chronous systems, equilibria for dynamical systems, and Zeno behaviors for
timed and hybrid systems.

Specification and Analysis

To check that the design (or system implementation) works correctly as in-
tended, the designer first needs to express the requirements capturing correct-
ness in a mathematically precise manner. Analysis tools then allow the designer
to check that the system satisfies its requirements. This textbook covers a range
of specification formalisms and associated techniques for formal verification.

Chapter 3 introduces safety requirements. A safety requirement asserts that
“nothing bad ever happens” and can be formalized using invariants and moni-
tors. We first consider the general technique of inductive invariants for proving
that a system satisfies its safety specification and then state-space exploration
algorithms for automatically establishing safety properties. Both enumerative
and symbolic search algorithms are developed, including the symbolic explo-
ration using the data structure of Ordered Binary Decision Diagrams (BDDs)
commonly used in hardware verification. The presence of continuous-time dy-
namics of the physical quantities poses new challenges for safety verification of
cyber-physical systems. For verifying systems with hybrid dynamics, we study
the proof method based on barrier certificates and symbolic search algorithms
for two special classes, namely, timed automata and linear hybrid automata.

Chapter 5 introduces liveness requirements: such a specification asserts that
“something good eventually happens.” We introduce the temporal logic Linear
Temporal Logic (Ltl) to formally express such correctness requirements and
show how the notion of monitors can be generalized to Büchi automata so
as to capture Ltl requirements. The problem of automatically verifying Ltl
requirements of system models is known as model checking. Both enumerative
and symbolic state-space exploration techniques are generalized to solve the
model-checking problem, and the method of ranking functions is developed as
a general proof principle for proving liveness requirements.

For dynamical systems, a basic design requirement concerns stability, which
informally means that small perturbations to system inputs should not cause
a disproportionate change in its observed behavior. This classical topic from
control theory is studied in chapter 6, with a particular focus on linear systems
for which tools from linear algebra are shown to be useful for mathematically
establishing stability.

While implementing embedded systems, a key analysis problem is to establish
that the time it takes to execute different tasks in the system model on a given
computational platform is consistent with the model-level assumptions regard-
ing the timing delays. Real-time scheduling theory is aimed at formalizing and

Introduction 7

solving this problem and is the subject of chapter 8. We focus primarily on
understanding two fundamental scheduling algorithms: Earliest Deadline First
(EDF) and Rate Monotonic.

Model-Based Design and Case Studies

Principles of modeling, specification, and analysis are illustrated by constructing
solutions to representative design problems from distributed algorithms, network
protocols, control design, and robotics. We illustrate how modeling differs from
programming, for instance, by allowing the specification of nondeterministic
behavior and including explicit models of how the environment behaves. While
designing model-based solutions, we emphasize two principles:

1. Structured design: simple components can be composed to perform more
complex tasks, and, conversely, a design problem can be decomposed into
simpler subtasks.

2. Requirements-based design: correctness requirements are specified pre-
cisely up front and are used to guide the exploration among design al-
ternatives and for debugging of the design in early stages.

We study the classical distributed coordination problems of mutual exclusion,
consensus, and leader election. These problems are revisited throughout the
textbook, highlighting how the power of synchronization primitives influences
the design. Another set of problems focuses on message communication, includ-
ing how to reliably transmit messages in the presence of a lossy network and
how to synchronize a sender and a receiver in the presence of timing uncertain-
ties introduced by imperfect clocks. The design of a cruise controller illustrates
how to integrate synchronous design using block diagrams with the design of a
low-level PID controller. We conclude with case studies representative of cyber-
physical systems: design of a pacemaker monitoring and responding to timing
patterns of heart pulsations, obstacle avoidance for a team of robots using coor-
dination, and design of stabilizing controllers communicating over a multi-hop
network.

1.4 Guide to Course Organization

This textbook is suitable for a semester-long course aimed at upper level un-
dergraduate or first-year graduate students in computer science, computer engi-
neering, or electrical engineering. This section gives some suggestions regarding
the organization of such a course.

Prerequisites

The textbook emphasizes principles of modeling, design, specification, and anal-
ysis. These principles are drawn from a range of mathematical topics such as
calculus, discrete mathematics, linear algebra, and logic. Most of the concepts

8 Chapter 1

3. Safety Requirements

7. Timed Model

6. Dynamical Systems

9. Hybrid Systems5. Liveness Requirements

4. Asynchronous Model

8. Real-time Scheduling

2. Synchronous Model

Figure 1.1: Dependencies among Chapters

are developed from the first principles, and thus courses in these topics are not
prerequisites. However, some basic level of mathematical maturity is essential
for understanding the course material. The course is suitable for students who
have completed the required theory courses either in the computer science cur-
riculum (such as Discrete Mathematics and Theory of Computation) or in the
electrical engineering curriculum (such as Signals and Systems and Dynamical
Systems).

Throughout the textbook, we discuss design problems from a range of appli-
cations such as control systems, distributed coordination, network protocols,
and robotics. Analogous to the necessary mathematical principles, in each of
our case studies, the basic constraints of the application domain are explained
without assuming any explicit background knowledge. However, prior expe-
rience with design and implementation of software and systems is necessary
to appreciate these examples. This experience can be gained by completing
project-oriented undergraduate courses: for example, the courses on program-
ming and operating systems in the computer science curriculum and those on
mechanical or control systems in the engineering curriculum.

Selection of Topics

Not all topics from the textbook can be covered during a semester-long course.
Figure 1.1 shows dependencies among chapters that can be used to guide the
selections of topics. In each chapter, the essential concepts can be covered even
if one skips the sections marked with an asterisk. We describe three possible
courses below.

Introduction 9

A fast-paced course that aims to cover all the themes, namely, modeling, design,
specification, and verification, is feasible and has been taught at University
of Pennsylvania for many years. For such a course, we recommend that the
following sections be skipped: 3.3, 5.3, 6.4, 7.2, and 9.3.

A course primarily focused on modeling and design can omit techniques for
analysis and verification. In particular, sections 3.3, 3.4, 5.2, 5.3, 6.4, 7.3, and
9.3, can be skipped. However, it is recommended that even such a course should
emphasize the role of formally specified requirements in principled design and,
thus, should include the specification formalisms.

A third possibility to narrow the scope of the course is by omitting chapters 6, 8,
and 9. Such a course focuses on modeling, design, specification, and verification
of reactive systems but does not include modeling of the interaction with the
physical world.

Homework and Projects

Each section has a number of exercises at its end, and students are expected to
answer these questions with mathematical rigor. The more challenging exercises
are marked with an asterisk.

Besides solving theoretical exercises, coursework should include design projects
using software for modeling and analysis. The textbook discusses modeling
concepts in a generic manner and is not tied to the concrete syntax of any
specific tool. The following are some examples of design projects:

1. Synchronous modeling and symbolic safety verification (chapters 2 and
3): A project focused on synchronous hardware designs, such as arbiters
and on-chip communication protocols, offers an opportunity to understand
how to structure a design as a hierarchical composition of subcompo-
nents. Industry-standard hardware description languages such as VHDL
and Verilog (see vhdl.org) can be used for such a modeling project. Al-
ternatively, the academic tool NuSmv (see nusmv.fbk.eu) can be used
for modeling and verification of requirements using BDD-based symbolic
state-space exploration.

2. Asynchronous modeling and model checking (chapters 4 and 5): A dis-
tributed protocol, such as a cache coherence protocol used for coordinating
accesses to global shared memory on modern multiprocessor systems, can
be modeled as communicating asynchronous processes in the modeling tool
Spin (see spinroot.com). The tool allows the user to specify both safety
and liveness requirements in temporal logic and to debug the correctness
of the protocol using model checking.

3. Control design for dynamical systems (chapter 6): A traditional project
in a course on control systems involves building a model of a physical
system, designing a controller for it, and then establishing the stability

10 Chapter 1

of the composed system by using tools of linear algebra. Such a project
is quite suitable for this course also. The most commonly used software
for such a project is Matlab (produced by Mathworks, mathworks.com),
and a typical problem is to design a controller to maintain a pendulum
attached to a moving cart in a vertically inverted position.

4. Modeling and verification of timed systems (chapter 7): The modeling
tool Uppaal (see uppaal.org) supports modeling using interacting timed
automata and verification of safety properties using symbolic state-space
exploration. A suitable case study in this domain consists of requirements-
based design and analysis of a control algorithm for a medical device such
as an autonomous infusion pump or a detailed design of a pacemaker.

5. Modeling and simulation of hybrid systems (chapter 9): The modeling
tools such as Stateflow and Simulink (see mathworks.com),Modelica
(see modelica.org), and Ptolemy (see ptolemy.org) allow structured
modeling of hybrid systems, and multi-robot coordination offers a fertile
problem domain to set up projects in design and analysis of cyber-physical
systems using these modeling tools. The goal of analysis in such a project
is to understand the trade-offs among different design parameters using
numerical simulation.

Supplementary Reading

The case for a new science of design for embedded and cyber-physical soft-
ware systems, with an emphasis on high assurance, has been made by many
researchers over the last decade (see [Lee00, SLMR05, KSLB03, HS06, SV07]).
Now there is a vibrant academic research community in this sub-discipline, and
the annual conferences Embedded Systems Week (see esweek.org) and Cyber-
Physical Systems Week (see cpsweek.org) reflect the current trends in research
in cyber-physical systems.

The textbook Introduction to Embedded Systems [LS11] is the closest to ours
in terms of focus and selection of topics and, thus, is a valuable supplementary
textbook. For comparisons, [LS11] covers a broader range of topics, for in-
stance, it discusses processor architectures for embedded applications, whereas
this textbook includes a more in-depth development of analysis and verification
techniques as well as case studies.

Specialized books on each of the topics covered in this textbook are also useful
for a deeper study of that topic. For principles of model-based design, [Hal93]
is focused on synchronous models, [Mar03] is devoted to design of embedded
systems, and [Pto14] highlights design by integrating heterogeneous modeling
styles. Among the rich literature on distributed systems, [Lyn96] and [CM88]
introduce a wide range of distributed algorithms emphasizing formal model-
ing, correctness requirements, and verification. For an introduction to formal
logic and its applications to software verification, we recommend [HR04] and

Introduction 11

[BM07]. Textbooks devoted to automated verification and model checking in-
clude [CGP00] and [BK08], and [Lam02] explains how logic can be used for
specification and development of reactive systems. Dynamical systems, with a
focus on design of controllers for linear systems, is a classical topic with many
textbooks such as [AM06] and [FPE02]. For an introduction to real-time sys-
tems, with an emphasis on schedulability, see [But97] and [Liu00]. Finally, the
research monographs [Tab09], [Pla10], and [LA14] focus on formal modeling,
control, and verification of hybrid systems.

2

Synchronous Model

A functional component produces outputs when supplied with inputs, and its
behavior can be mathematically described using a mapping between input and
output values. A reactive component, in contrast, maintains an internal state
and interacts with other components via inputs and outputs in an ongoing man-
ner. We first focus on a discrete and synchronous model of reactive computation
in which all components execute in a sequence of rounds. In each round, a re-
active component reads its inputs; based on its current state and inputs, it
computes outputs and updates the internal state.

2.1 Reactive Components

As a first example, consider the Delay component shown in figure 2.1. The
component has a Boolean input variable in, a Boolean output variable out, and
an internal state modeled by a Boolean variable x. To describe the behavior of
the component, we first need to describe the initial values for the state variables.
For Delay, assume that the initial value of x is 0. In each round of execution,
the component sets the output variable out to the value of the state variable x
at the beginning of the round and then updates the state to the value of the
input variable in the current round. Thus, in the first round, the output will be
0, and in each subsequent round, the output will be equal to the input in the
previous round.

2.1.1 Variables, Valuations, and Expressions

To explain the various aspects of the definition of a component precisely, we
need a bit of mathematical notation concerning variables, expressions over vari-
ables, and assignments of values to variables. We use typed variables to describe
components. The commonly used types are:

• nat denoting the set of natural numbers.

14 Chapter 2

bool in

out := x; x := in

bool x := 0 bool out

Figure 2.1: Reactive Component Delay

• int denoting the set of integers.

• real denoting the set of real numbers.

• bool denoting the set of Boolean values {0, 1}.
• An enumerated type contains a finite number of symbolic constants; an
example of such a type is the set {on, off } with two values.

Given a set V of typed variables, a valuation over V is a type-consistent assign-
ment to all the variables in V . That is, a valuation over V is a function q with
domain V such that for each variable v ∈ V , q(v) is a value belonging to the
type of v. We use QV to denote the set of all valuations over V . For example,
if V contains two variables, the variable x of type bool and variable y of type
nat, then a valuation q assigns a Boolean value to x and a natural number to
y, and the set QV contains all such possible valuations.

A typed expression e over a set V of typed variables is constructed using vari-
ables in V , constants, and primitive operations over types corresponding to
these variables. Over numerical types, such as nat, int, and real, we will use
arithmetic operations such as addition and multiplication and comparison oper-
ations such as = and ≤. To construct Boolean expressions, we use the following
logical operators:

• Negation (¬): the expression ¬ e evaluates to 1 precisely when e evaluates
to 0;

• Conjunction (∧): the expression e1∧e2 evaluates to 1 precisely when both
e1 and e2 evaluate to 1; and

• Disjunction (∨): the expression e1 ∨ e2 evaluates to 1 precisely when at
least one of e1 or e2 evaluates to 1.

• Implication (→): the expression e1 → e2 evaluates to 1 precisely when
either e1 evaluates to 0 or e2 evaluates to 1.

2.1.2 Inputs, Outputs, and States

The component Delay of figure 2.1 has one input variable, one output variable,
and one state variable. In general, a component C has a set I of typed input
variables, a set O of typed output variables, and a set S of typed state variables.

Synchronous Model 15

All three sets should be finite. To avoid conflicts in variable names, these sets
should also be disjoint from one another.

For the Delay component, I = {in}, O = {out}, and S = {x}.
In our illustrations, we draw components as rectangular boxes. For each input
variable, there is an incoming arrow incident upon this box, and for each output
variable, there is an outgoing arrow. These arrows are labeled with the names
and types of the corresponding variables. The state variables are listed inside
the component box.

An input to a reactive component C is a valuation over the set I of its input
variables, and the set of all possible inputs is QI . An output of a component C
is a valuation over the set O of its output variables, and the set of all possible
outputs is QO. A state of a component C is a valuation over the set S of its
state variables, and the set of its states is QS .

For the Delay component, an input is a Boolean value for the variable in, an
output is a Boolean value for the variable out, and a state is a Boolean value for
the variable x. Thus, each of the sets QI , QO, and QS contains two elements.

2.1.3 Initialization

To describe the dynamics of the component, we must specify the initial states
and how the component reacts to a given input in each state. A variety of
programming styles are used to describe this, ranging from imperative style (for
instance, SystemC and Esterel), declarative equational style (for instance,
Lustre), and hierarchical state machines (for instance, Stateflow). To be
analyzable by tools, the precise syntax—what are the legal code fragments for
describing the initialization and update, and the precise semantics—what are
the corresponding mathematical sets of initial states and reactions, needs to
be formalized. This can be challenging for real-world languages and even for
“toy” languages, defining semantics formally requires a potentially overwhelm-
ing level of mathematical notation. We will use a combination of common
imperative constructs and state machines, introducing the features as needed,
without rigorously formalizing the mathematical semantics.

The initialization of a component, denoted Init, specifies the initial values for
all the state variables in S. Whenever a state variable is declared, the corre-
sponding initial values are described using an assignment. For example, in the
Delay component, the state variable x is initialized using the assignment x := 0.
Sometimes we want to specify multiple possible initial values to allow modeling
of situations where initial conditions are only partially known. For this purpose,
we will use a new construct called choose, which returns an arbitrarily chosen
value from its argument set. For the Delay component, consider an alternative
declaration for the variable x given by

bool x := choose {0, 1}.

16 Chapter 2

In this modified version, choose may return either 0 or 1; as a result, the initial
value of the variable x may be either 0 or 1. Another example of initialization
using the choose construct is the declaration

real x := choose {z | 0 ≤ z ≤ 2}.

This means that the variable x is real-valued, and its initial value can be any
real number between 0 and 2.

A state q of the component is called an initial state if, for every state variable x,
the value q(x) is consistent with the initialization of the variable x. The set of
all initial states is denoted [[Init]]. Thus, the initialization Init is a syntactic de-
scription of how the component initializes state variables, and the corresponding
set [[Init]] is its mathematical semantics.

For the component Delay, the set [[Init]] contains the single initial state that
assigns the value 0 to x.

In our illustrations of components, we split the box representing the component
by a horizontal line, and the top part lists all the state variables along with their
types, followed by their initialization.

2.1.4 Update

The computation of a component in response to an input in each round is given
by its reaction description, denoted React. If the component in state s, when
supplied with input i, can produce output o and update its state to t, we write

s
i/o−→ t. Such a response is called a reaction.

A natural way to describe the reactions is using code that assigns values to the
output variables and updates the values of the state variables. This code can
use the values of the input variables and the state variables at the beginning of
the round. The set of all possible reactions of the component is the semantics
of the reaction description and is denoted [[React]].

For the Delay component, the reaction description React is a sequence of two
assignment statements:

out := x; x := in.

That is, in a state s, given an input i, the component copies the state to the
output and updates the state to the current input. In this case, the component
has four possible reactions:

0
0/0−→ 0; 0

1/0−→ 1; 1
0/1−→ 0; 1

1/1−→ 1.

In our illustrations, the reaction description is given in the lower half of the
component box.

Synchronous Model 17

The reaction description typically is a sequence of statements, where each state-
ment is either an assignment statement or a conditional statement. An assign-
ment statement is of the form x := e, where e is an expression of the same type
as the type of the variable x. We allow the right-hand side of an assignment to
use the choose construct to specify a set of possible values, thereby permitting
multiple responses to the same input in a given state. A conditional statement
is of the form

if b then stmt1 else stmt2

where b is a Boolean expression, and stmt1 and stmt2 are code fragments given as
sequences of assignment and conditional statements. To execute the conditional
statement, the expression b is evaluated first. If it evaluates to 1, the code for
stmt1 is executed; otherwise the code for stmt2 is executed. We will use curly
braces { and } to group statements together when needed. It is possible that
the else-branch of a conditional statement is missing.

Given a state s and an input i, to find the possible reactions of the component,
we execute the reaction description code. If we can execute the code without
errors, and if the values assigned to all the output variables give the output
valuation o, while the updated values of all the state variables give the state

valuation t, then this contributes the reaction s
i/o−→ t to the set [[React]]. Such

a successful execution may not be possible for different reasons. Two common
cases are discussed below.

First, when the code tries to execute an assignment statement x := e, we expect
x to be either an output variable or a state variable; an attempt to assign a value
to an input or an undeclared variable is an error. To be able to evaluate the
expression e, it should refer only to state variables, input variables, and those
output variables assigned values by previously executed assignment statements.
In the description of the Delay component, if we replace the reaction description
by

x := out; out := in

then the first statement cannot be executed as no value of the output variable
out is known, and for this description, the corresponding set of reactions is the
empty set.

Second, if the code does not assign values to all the output variables, then this
execution cannot define a valid reaction. For example, in the Delay component,
if we replace the reaction description by the conditional assignment

if (x �= in) then out := x

then the statement updates the output only when the input differs from the

current state. The modified component then has only two reactions: 0
1/0−→ 1

and 1
0/1−→ 0. This can be interpreted as a specification of a component that

rejects the input 0 in state 0 and rejects the input 1 in state 1.

18 Chapter 2

The reaction description can also use local variables, that is, auxiliary variables
used to store results of intermediate computation. Suppose given integer values
of input variable in1 and in2, we want to compute the output variable out with
value equal to the difference of the squares of the two input values. The code
below achieves this using only one multiplication:

local int x, y;
x := in1 + in2;
y := in1 − in2;
out := x ∗ y.

In this description, the values of the variables x and y are not available to the
other components and are not stored across rounds.

We summarize the discussion so far by presenting a formal definition of a reactive
component below:

Synchronous Reactive Component

A synchronous reactive component C is described by

• a finite set I of typed input variables defining the set QI of inputs,

• a finite set O of typed output variables defining the set QO of outputs,

• a finite set S of typed state variables defining the set QS of states,

• an initialization Init defining the set [[Init]] ⊆ QS of initial states, and

• a reaction description React defining the set [[React]] of reactions of the

form s
i/o−→ t, where s, t are states, i is an input, and o is an output.

2.1.5 Executions

The operational semantics of a component can be captured by defining its ex-
ecutions. To execute a component, we first initialize all the variables to obtain
an initial state. The execution then proceeds for a finite number of rounds. In
each round, values for input variables are chosen. Then the code in the reaction
description of the component is executed to determine its output and updated
state.

Formally, an execution of a synchronous reactive component C of length k,
where k ≥ 0, consists of a finite sequence of the form

s0
i1/o1−→ s1

i2/o2−→ s2
i3/o3−→ s3 · · · · · · sk−1

ik/ok−→ sk,

where

Synchronous Model 19

1. for 0 ≤ j ≤ k, each sj is a state of C, and for 1 ≤ j ≤ k, each ij is an
input of C, and each oj is an output of C;

2. s0 is an initial state of C; and

3. for 1 ≤ j ≤ k, sj−1
ij/oj−→ sj is a reaction C.

For instance, one possible execution of the Delay component of length 6 is:

0
1/0−→ 1

1/1−→ 1
0/1−→ 0

1/0−→ 1
1/1−→ 1

1/1−→ 1.

Exercise 2.1 : Consider a modified version of the Delay component, called
OddDelay, that has a Boolean input variable in, a Boolean output variable out,
and two Boolean state variables x and y. Both the state variables are initialized
to 0, and the reaction description is given by:

if y then out := x else out := 0;
x := in;
y := ¬y.

Describe in words the behavior of the component OddDelay. List a possible exe-
cution of the component if it is supplied with the sequence of inputs 0, 1, 1, 0, 1, 1
for the first six rounds.

2.1.6 Extended-State Machines

State machines are commonly used for describing the behavior in model-based
design. Figure 2.2 describes the component Switch that models a light switch.
The component has a single Boolean input variable press. In every round, the
value 1 for the input variable indicates that the switch is pressed. Initially,
the light is off, and when the switch is pressed, it is turned on. The light
gets switched off either when the switch is pressed again or if 10 rounds elapse
without the switch being pressed.

In the state-machine notation, there is an implicit state variable, called the mode
of the state machine, ranging over an enumerated type. For the component
Switch, the mode ranges over the enumerated type {off, on}. The different
modes of the machine are drawn as circles. This visual representation highlights
different modes of operation for the component. The sourceless incoming arrow
for the mode off indicates that the initial value of the variable mode is off.

In extended state machines, the description using the modes of the machine
is augmented with additional state variables. In our example, the component
Switch uses an additional state variable x of type int. The initialization ar-
row into the initial mode is labeled with the declaration of these additional
state variables along with their initial values. In our example, there is a single
additional state variable x of type int, and it is initialized to the value 0.

20 Chapter 2

off on
int x := 0 (press = 1) ?

(press = 1 ∨ x ≥ 10)→ x := 0

(press = 0) ? (press = 0 ∧ x < 10)→ x := x+ 1

Figure 2.2: Description of Switch as an Extended-State Machine

In extended-state machines, reactions are specified using mode-switches. A
mode-switch is depicted as an edge between two modes and has an associated
guard-condition and a code fragment to update variables. If the guard-condition
is the expression Guard and the code to update variables is Update, then the edge
is annotated with Guard → Update. If the guard-condition always holds (that
is, it equals the constant 1), then it is omitted, and the edge is annotated only
with the code Update; and if the update code does not modify any variables,
then it is omitted, and the edge is annotated only with the guard-condition
Guard ?

In our illustrative example, we have four mode-switches. The mode-switch from
off to on is guarded with the condition press = 1 and does not change the value
of x; the mode-switch from off to off is guarded with the condition press = 0
and does not change the value of x; the mode-switch from on to on is guarded
with the conjunctive condition (press = 0 ∧ x < 10), and it increments the
value of x; and the mode-switch from on to off is guarded with the disjunctive
condition (press = 1 ∨ x ≥ 10), and it resets the value of x to 0.

When the mode is off, if the input is 0, then the guard-condition for the mode-
switch from off to off is satisfied, and this mode-switch is executed. The new
mode is the same as the old mode off, and since there is no explicit update
code, the value of the state variable x stays unchanged. If the input is 1, then
the guard-condition for the mode-switch from off to on is satisfied, and this
mode-switch is executed. As a result, the updated value of the mode is on, with
the value of x unchanged.

When the mode is on, if the input is 0 and the value of x is still below the
timeout-threshold 10, the mode-switch from on to on is executed, leaving the
mode unchanged while incrementing x. Thus, the component can stay in the
mode on for at most 10 consecutive rounds. When either the input press has
the value 1 or the value of x reaches 10, the guard-condition for the mode-switch
from on to off is satisfied. Executing this mode-switch updates the mode to
off and x to 0.

In this example, each state can be represented as a pair, where the first com-
ponent belongs to the enumerated type {off, on} and the second component
is an integer. The set [[Init]] of initial states contains the sole state (off, 0).

Synchronous Model 21

We can associate a set [[React]] of reactions to formally capture the meaning
of the mode-switches. Given a state that assigns values to the mode and x
and an input value for press, we can obtain a reaction by executing the update
code of a mode-switch out of the current mode, provided the corresponding
guard-condition is satisfied. For every integer n, we have reactions

(off, n)
1/−→ (on, n); (off, n)

0/−→ (off, n); (on, n)
1/−→ (off, 0);

for every integer n < 10, we have the reaction (on, n)
0/−→ (on, n+ 1); and for

every integer n ≥ 10, we have the reaction (on, n)
0/−→ (off, 0).

In this example, the component Switch has no output variables. In the presence
of output variables, the update code associated with each mode-switch assigns
values to all the output variables. Also, in our example, the guard-conditions
of two mode-switches out of the same mode are disjoint, and thus there is
no choice in terms of which mode-switch should be executed. In general, this
assumption need not hold. In fact, the state-machine notation is a convenient
way of specifying multiple choices as later examples will illustrate.

Exercise 2.2 : Describe the component OddDelay from Exercise 2.1 as an
extended-state machine with two modes. The mode of the state machine should
capture the value of the state variable y, while the state variable x should be
updated using assignments in the mode-switches.

Exercise 2.3 : We want to design a reactive component with three Boolean
input variables x, y, and reset and a Boolean output variable z. The desired
behavior is the following. The component waits until it has encountered a round
in which the input variable x is high and a round in which the input variable y is
high, and as soon as both of these have been encountered, it sets the output z to
high. It repeats the behavior when, in a subsequent round, the input variable
reset is high. By default the output z is low. For instance, if x is high in
rounds 2,3,7,12, y is high in rounds 5,6,10, and reset is high in round 9, then z
should be high in rounds 5 and 12. Design a synchronous reactive component
that captures this behavior. You may want to use the extended-state machine
notation.

2.2 Properties of Components

2.2.1 Finite-State Components

In many embedded applications, it suffices to consider types with only finitely
many values. The type bool and enumerated types are finitely valued, whereas
the numerical types such as nat, int, and real are not finite. When all the
variables of a component have finite types, the set QI of inputs, the set QO

of outputs, and the set QS of states are all finite. This is the case for the

22 Chapter 2

0 1

1/0

0/1

0/0 1/1

Figure 2.3: Mealy Machine Corresponding to the Component Delay

component Delay. Such components are called finite-state components and are
amenable to powerful automated analysis.

Finite-state Component

A synchronous reactive component C is said to be finite-state if the type of
each of its input, output, and state variables is finite.

Note that the component Switch of figure 2.2 is not finite-state according to the
definition due to the integer-valued state variable x. A close examination of this
component reveals that, along every possible execution of the component, the
value of x never exceeds 10. Thus, the only relevant range of values for x is from
0 to 10, and we can modify the description of Switch by changing the type of x to
the range-type int[0, 10]. The resulting component is a finite-state component.
In general, we allow restricting the numerical types int, nat, and real to the
corresponding range-types int[low, high], nat[low, high], and real[low, high],
where low and high are numerical constants of the corresponding types. The
resulting restricted versions of int and nat are finite types.

For a finite-state component, its behavior can be illustrated by a labeled finite
graph. The nodes of the graph are states of the component. If s is an initial

state of the component, then there is a sourceless edge incident on s. If s
i/o−→ t

is a reaction of the component, then there is an edge from node s to node t
labeled with input i and output o. Such graphs are called Mealy machines.
Executions of the component are simply paths through this graph starting at
an initial state.

The Mealy machine representation of the Delay component is shown in fig-
ure 2.3.

Exercise 2.4 : Consider the component OddDelay from exercise 2.1. Is the
component finite-state? Draw the corresponding Mealy machine.

2.2.2 Combinational Components

Consider the Comparator component shown in figure 2.4. The component has
two input variables, in1 and in2, both of type nat. It has a Boolean output
variable out. In each round, the component reads the inputs in1 and in2 and

Synchronous Model 23

bool out

else out := 0
if (in1 ≥ in2) then out := 1

nat in2

nat in1

Figure 2.4: Combinational Component Comparator

sets the output variable out to 1 if the value of in1 is greater than or equal to
the value of in2, and to 0 otherwise.

The component does not need to maintain any internal state and, hence, has
no state variables. When there are no state variables, there is no initialization,
and the reaction description assigns values to the output variables in terms of
values of the input variables.

When the set S of state variables is empty, formally there is a unique valuation
for S, and let us denote this unique state by s∅. This will also be the initial
state. For every pair of natural numbers m and n, if m ≥ n, Comparator has

a reaction s∅
(m,n)/1−→ s∅, and if m < n, then it has a reaction s∅

(m,n)/0−→ s∅. A
possible execution of the component is

s∅
(2,3)/0−→ s∅

(5,1)/1−→ s∅
(40,40)/1−→ s∅.

Components such as Comparator without any state variables are called combi-
national.

Combinational Component

A synchronous reactive component C is said to be combinational if the set
of its state variables is empty.

Note that the component Comparator corresponds to the Boolean-valued ex-
pression in1 ≥ in2. A component C that has the variable out as one of its
input variables can instead take both in1 and in2 as input variables, and we
can substitute every occurrence of out in the reaction description of C by the
expression in1 ≥ in2 without changing its behavior. Conversely, note that the
values of the expressions used in the reaction description of a component can be
explicitly modeled as combinational components. For example, to take logical
conjunction of two Boolean variables x and y, we can simply use the expression
x ∧ y or construct a combinational component that takes two input variables
x and y and produces an output that has value 1 precisely when both input
variables are 1. Whether a desired expression is modeled as a combinational
component is a design choice, which is influenced by the primitives supported
by the language used to describe the reactions.

24 Chapter 2

event(bool) in event(bool) out
if in? then {out ! in; x := x+ 1}

nat x := 0

Figure 2.5: Event-Triggered Component TriggeredCopy

2.2.3 Event-Triggered Components ∗

In the synchronous execution model of reactive components, the notion of a
round is global, and each component participates in every round. This may
not be realistic in some scenarios, and we want to allow the possibility of a
component to specify its own notion of a round. For example, a system may
consist of multiple hardware components, each operating at a different clock
frequency, and in this case, each component will participate in only those rounds
in which its own clock signal is high. To model this behavior, we use input
variables of type event. The basic type event is the enumerated type {�,⊥},
where � denotes that the event is present and ⊥ denotes that the event is
absent. More generally, we allow the event type to be parameterized by another
type: the event can be absent or can be present with a value belonging to
the parameter type. For example, the type event(bool) has three values 0,
1, and ⊥. For an event variable x, the Boolean expression x?, meaning x is
present, stands for the expression x �=⊥. Note that while input, output, and
local variables can be of type event, a state variable cannot be of this type, as
it is not meaningful to consider a state to be absent.

As an example, consider the component TriggeredCopy, shown in figure 2.5,
that copies its input to output. The type of input variable in is event(bool):
in each round, the input can be absent and, if present, takes a Boolean value.
Whenever the input is present, denoted by in?, it is copied to the output; when
input is absent, so is the output. The type of the output variable out, thus, is
also event(bool). The assignment out := in is written as out ! in to highlight
that the event out is issued.

By default, an output event variable is absent, that is, if the event output
variable out is not explicitly assigned a value during a round, then its value is
assumed to be ⊥. In the reaction description of the component TriggeredCopy,
if the input event is absent, then the code does not assign any value to the output
variable, and thus the component responds to an absent input with an absent
output.

The component TriggeredCopy does maintain a state variable x: initially x is
0, whenever the input is present, x is incremented, and whenever the input is
absent, x stays unchanged. Thus, the value of the state x shows the number of
past rounds in which the input has been present. For every natural number n,

Synchronous Model 25

if clock? then x := in

bool x := 0

event clock

bool in
bool out = x

Figure 2.6: Event-Triggered Component ClockedCopy

the component has three reactions:

n
⊥/⊥−→ n; n

0/0−→ n+ 1; n
1/1−→ n+ 1.

A sample execution of TriggeredCopy is

0
⊥/⊥−→ 0

0/0−→ 1
1/1−→ 2

⊥/⊥−→ 2
⊥/⊥−→ 2

1/1−→ 3.

We say that the input variable in is a trigger for the component TriggeredCopy,
and the component is event-triggered. If the input is absent in a round, then the
component is passive: the output is absent, and the state stays unchanged. Such
a reaction is called a stuttering reaction. In the implementation, the component
does not have to be “executed” to produce such a reaction.

As another example, consider the event-triggered component ClockedCopy shown
in figure 2.6. It has a Boolean input variable in and an input event variable clock
that acts as a trigger. Every time the clock event is present, the component up-
dates its state variable x to the current value of the input variable in. Any
changes to the input in during rounds in which the event clock is absent are
ignored. The output out is a Boolean variable, and its value equals the updated
state. Such an output variable is called a latched output. In this case, the
component does not need to explicitly compute the value of out, and this is
indicated by associating out with the state variable x in the declaration of the
output.

The output variable out always has a value, even during rounds in which the
trigger clock is absent, and equals the value of the input variable in from the
most recent round in which the event clock was present. One possible execution
of the component is shown below, where input is listed as a pair with the value
of in followed by the value of clock:

0
(1,⊥)/0−→ 0

(1,�)/1−→ 1
(0,⊥)/1−→ 1

(0,⊥)/1−→ 1
(0,�)/0−→ 0.

Formally, for a synchronous reactive component C, an output variable y is said

to be latched if there exists a state variable x such that in every reaction s
i/o−→ t

of the component, the value of the output variable y is the updated value of the
state variable x: o(y) = t(x). In the implementation of a component, a latched
output does not need to be explicitly stored or computed; the corresponding
state variable needs to be made accessible to other components.

26 Chapter 2

Now we can define the notion of an event-triggered component in its generality.
Each of its output variables should be either latched or an event. When the
triggering input events are absent, the state should stay unchanged (and, as a
result, the latched outputs also stay unchanged), and event outputs should be
absent.

Event-triggered Component

For a synchronous reactive component C = (I,O, S, Init,React), a set J ⊆ I
of input variables is said to be a trigger if:

1. every input variable in J is of type event;

2. every output variable either is latched or is of type event; and

3. if i is an input with all events in J absent (that is, for all input variables

x ∈ J , i(x) =⊥), then for all states s, if s
i/o−→ t is a reaction, then

s = t and o(y) =⊥ for every output variable y of event type.

A component C is said to be event-triggered if there exists a subset J ⊆ I
of its input variables such that J is a trigger for C.

Exercise 2.5 : Design an event-triggered combinational component ClockedMax
with two input variables x and y of type nat and an input event variable clock.
The output variable z of the component should be of type event(nat) such that
the value of z should be the maximum of the inputs x and y during rounds in
which clock is present.

Exercise 2.6 : Design an event-triggered component SecondToMinute with the
input event variable second and the output event variable minute such that
minute is present every 60th time the event second is present.

Exercise 2.7 : Design a component ClockedDelay with a Boolean input vari-
able x, an input event variable clock, and an output variable y of type event(bool)
with the following behavior: if clock is present during rounds, say, n1 < n2 <
n3 < · · · then in round n1, the output should be some default value, say 0; in
round nj+1, for each j, the output should equal the value of x in round nj ; and
in the remaining rounds (that is, rounds during which the input event clock is
absent), output should be absent.

2.2.4 Nondeterministic Components

In our examples so far, the components are deterministic: for a given sequence
of inputs, the component has a unique execution producing a unique sequence
of outputs. Such deterministic behavior is ensured if the component has a single
initial state, and in every state, for a given input, there is exactly one possible
reaction.

Synchronous Model 27

event req2 ¬ req1? ∧ ¬ req2?

req1?→ grant1!req2?→ grant2!
event grant1

event grant2

event req1

Figure 2.7: Nondeterministic Component Arbiter

Deterministic Component

A synchronous reactive component C is said to be deterministic if:

1. C has a single initial state, and

2. for every state s and every input i, there is precisely one output o and

one state t such that s
i/o−→ t is a reaction of C.

The components Delay, Switch, Comparator, TriggeredCopy, and ClockedCopy
are all deterministic. Determinism is a desirable property for components that
are meant to be implemented.

Nondeterministic components, in contrast, can respond with different output
sequences for the same input sequence. Such components are useful for modeling
parts of the system that are not yet fully designed and for capturing constraints
on the environment. As an example, consider the component Arbiter shown in
figure 2.7. It has two input variables, req1 and req2, and two output variables
grant1 and grant2, all of which are events. This component is designed to
resolve contention among incoming requests. The dynamics of the component
are described using the extended-state machine notation. The machine has
only one mode, and thus no state needs to be maintained explicitly to record
this mode. In each round, a mode-switch whose guard-condition is satisfied is
chosen, and the corresponding update code is executed.

When only the request req1 is present, the guard-condition of the mode-switch
“req1?→ grant1!” is satisfied, and the event grant1 is issued. Note that the event
grant2 is absent by default in this case. The case when only the request req2 is
present is symmetric. If both requests are absent, then the guard-condition of
the mode-switch labeled “¬ req1? ∧ ¬ req2?” is satisfied. For this mode-switch,
there is no explicit update code, and thus both the output events are absent by
default. However, if both input requests are present, then the guard-conditions
req1? and req2? of two mode-switches are satisfied. In such a case, one of
them gets executed. There are two possible reactions of the component: either
grant1 is present and grant2 is absent or grant1 is absent and grant2 is present.
Such a nondeterministic behavior captures what an arbiter should do, namely,

28 Chapter 2

in?→ out ! in event(bool) outevent(bool) in

Figure 2.8: Nondeterministic Component LossyCopy

a grant output should be issued only when requested, and at most one grant
output should be issued in any round, without constraining how the contention
is resolved, leaving open the possibility of different implementations. Note that
the component Arbiter is combinational and event-triggered.

As another example of a nondeterministic component, consider the combina-
tional and event-triggered component LossyCopy shown in figure 2.8. It has an
input event in and an output event out. The desired behavior of the component
is that in each round, either the input is copied to the output or the output is
absent. This is again described by a single-mode extended-state machine with
two mode-switches: one with guard-condition in? and update code out ! in and
one with default guard-condition that always holds and default update code
that does not assign any explicit value to out. When the input event is present,
the guard-conditions of both the mode-switches are satisfied. In one case, the
value of the input is issued on the output event; in the other case, no action is
taken, and thus the output event is absent. When the input event is absent, only
the mode-switch with default guard-condition is enabled, and the output event
is absent. Such a component can be used to model potential loss of messages
along a network link. One possible execution of the component is

s∅
0/0−→ s∅

1/⊥−→ s∅
⊥/⊥−→ s∅

1/1−→ s∅
⊥/⊥−→ s∅

0/⊥−→ s∅.

Exercise 2.8 : Consider the Delay component of figure 2.1, and suppose we
replace the reaction description by

out := x;
x := choose(in, x)

Describe in words the behavior of the modified component. Draw the Mealy
machine corresponding to the component.

Exercise 2.9 : For the nondeterministic component Arbiter of figure 2.7, the
reactions are expressed using the extended-state machine notation. Write an
equivalent description using straight-line update code. You can use a local vari-
able whose value is assigned nondeterministically using the choose construct.

Synchronous Model 29

nat out

bool inc

bool dec

{ x := x+ 1; out := x };

{ x := x− 1; out := x };

if (inc = 1 ∧ dec = 0) then

if (inc = 0 ∧ dec = 1 ∧ x > 0) then

if (inc = 0 ∧ dec = 0) then out := x

nat x := 0

Figure 2.9: Component Counter with Input Assumptions

2.2.5 Input-Enabled Components

All the components we have seen so far have the following property: in every
state and for every input, the component has at least one reaction. This property
makes the components input-enabled. For a given sequence of inputs, an input-
enabled component has at least one corresponding execution.

Input-enabled Component

For a synchronous reactive component C, an input i is said to be enabled

in a state s if there exists an output o and a state t such that s
i/o−→ t is a

reaction of C. The component C is said to be input-enabled if every input
is enabled in every state.

There are design problems where it is useful to make assumptions about the
inputs that the environment may supply. As an example, consider the compo-
nent Counter of figure 2.9, which maintains a non-negative counter using a state
variable x. The initial value of x is 0. The component has two Boolean input
variables inc and dec: when the input inc is 1, the counter state is incremented
by 1, and when the input dec is 1, the counter state is decremented by 1. The
counter does not expect both input variables inc and dec to be 1 simultaneously,
nor does it expect the counter to be decremented when the counter value is 0.
We describe the reactions of Counter only for inputs satisfying this assumption
as shown in figure 2.9. The output of the component is the updated value of x.
When both input variables inc and dec are 1, and when dec is 1 with the state
x equal to 0, the reaction description does not assign any value to the output,
and thus there is no corresponding reaction.

In general, the input assumption can be a constraint on the sequence of inputs
supplied to the component. When a component C with input assumptions is
used as part of a larger system, we need to check that its input assumptions are
indeed satisfied by the components that supply its inputs.

Note that, by definition, every deterministic component has exactly one reaction
corresponding to a given state and input and, thus, is input-enabled.

30 Chapter 2

out := in
bool in bool out

Figure 2.10: The Combinational Component Relay

Exercise 2.10 : Design a nondeterministic component CounterEnv that sup-
plies inputs to the counter of figure 2.9. The component CounterEnv has no
inputs, and its outputs are the Boolean variables inc and dec. It should pro-
duce all possible combinations of outputs as long as the component Counter

is willing to accept these as inputs: it should never set both inc and dec to 1
simultaneously, and it should ensure that the number of rounds with dec set to
1 never exceeds the number of rounds with inc set to 1.

2.2.6 Task Graphs and Await Dependencies

Let us consider a component Relay, shown in figure 2.10, that has a Boolean
input variable in and a Boolean output variable out. The component Relay

is a combinational component without any state variables and, in each round,
simply copies the input to the output.

Let us compare the components Relay and Delay. Observe that they have
identical input/output variables. In a given round, the output of the compo-
nent Delay does not depend on its input in that round, whereas the component
Relay can produce its output only after reading the input for the current round.
Intuitively, the output of Relay must await its input, whereas this is not nec-
essary for Delay. This crucial intra-round dependency of output variables on
input variables can impact how components can be composed.

In the current reaction description of the component Delay, given the input and
the current state, the update code consisting of two assignments computes the
output and updated state. This monolithic description hides the intra-round
independence of the output on the input. To avoid this problem, we allow the
reaction description to be split into multiple tasks. This is illustrated by revising
the description of the component Delay to obtain the component SplitDelay
shown in figure 2.11.

The reaction description for the component SplitDelay is split into execution
of two tasks A1 and A2. The task A1 computes the value of the variable out
using the value of the state variable x, whereas the task A2 updates the value
of the state variable x using the value of the input variable in. In general, each
task has an associated read-set R and write-set W of variables, and it assigns
values to variables in the write-set given the values of variables in the read-
set. Note that the write-set of a task should not include any input variables
of the component. The read-/write-sets can also include local variables used in

Synchronous Model 31

x := inout := x

bool x := 0
bool out

A1 : x �→ out A2 : in �→ x
bool in

Figure 2.11: Component SplitDelay with Split Reaction

the reaction description. Since an output variable is used for communication
with other components, it should be written by exactly one task. With this
restriction, once the task A of a component C responsible for writing an output
variable y executes, the value of y will no longer change within the current
round and can be used by other components, even if some other tasks within
the component C have not yet executed.

In our illustrations, we depict tasks as rectangular boxes with rounded corners.
The declaration

A : x1, x2, . . . xm �→ y1, y2, . . . yn

indicates that the task A has the read-set R = {x1, x2, . . . xm} and the write-set
W = {y1, y2, . . . yn}. The update description of a task describes its computation
as a sequence of assignment and conditional statements or, alternatively, using
the extended-state machine notation. The update description can be nondeter-
ministic: the assignments may use the choose construct, and in the extended-
state machine, guards of multiple mode-switches out of the same mode may be
simultaneously satisfied. Thus, the mathematical semantics of the update de-
scription Update of a task is a relation [[Update]] between the values of variables
in the read-set and the values of variables in the write-set; that is, [[Update]]
contains pairs of the form (s, t) with s ∈ QR and t ∈ QW .

In example of figure 2.11, for the task A1, the read-set is {x}, the write-set is
{out}, and the update is described by the assignment out := x; and for the
task A2, the read-set is {in}, the write-set is {x}, and the update is described
by the assignment x := in.

When the reaction description is split into multiple tasks, we need to specify
constraints on the order in which the tasks should be executed. In our example
of SplitDelay, the task A1 must be executed before the task A2; executing the
assignment statements corresponding to these two tasks in this order is necessary
for the desired behavior. We write A1 ≺ A2 to express the precedence constraint
that the task A1 should be executed before the task A2. In our illustrations,
the precedence constraint A1 ≺ A2 is captured by an arrow from the task
A1 to the task A2. Thus, in the task graph description of the component,
nodes correspond to tasks (with associated read-sets, write-sets, and update
descriptions), and edges correspond to precedence constraints on the order of
execution of the tasks within a round.

32 Chapter 2

out2 := in2

bool in2

bool in1

bool out2

bool out1out1 := in1

A2 : in2 �→ out2

A1 : in1 �→ out1

Figure 2.12: Component ParallelRelay: out1 awaits in1 and out2 awaits in2

Given the precedence relation ≺ over tasks, the relation ≺+ denotes the tran-
sitive closure of the relation ≺: for two tasks A and A′, A ≺+ A′ holds if there
is a path from A to A′ in the task graph. In other words, if there is a chain
of precedence constraints A1 ≺ A2 ≺ · · · ≺ An, for n > 1, then A1 ≺+ An. If
A ≺+ A′ holds, then the task A must execute before the task A′. Thus, the
relation ≺+ captures all the constraints on the execution order implied by the
precedence constraints. We require that the precedence relation ≺ is acyclic:
there is no task A such that A ≺+ A, that is, the task graph does not contain
any cycles. In particular, if A1 ≺ A2 is a precedence constraint, then we cannot
have the constraint A2 ≺ A1.

The precedence constraints captured by the relation ≺ lead to await dependen-
cies between output and input variables. Output variables written by a task
must await the input variables this task reads, and if A1 ≺+ A2, then the out-
put variables written by A2 must await the input variables read by A1. We
write y � x if the output variable y awaits the input variable x according to the
precedence constraints ≺ over the tasks.

In our example component SplitDelay, by the above definitions, the output
variable out does not await the input variable in. By default, when the reaction
description of a component is not explicitly split into tasks, it can be viewed as a
single task with its read-set containing all the input and state variables, its write-
set containing all the output and state variables, and the update description
same as the reaction description. In such a case, each output variable awaits
each input variable. Then for both Relay and Delay components, the output
variable out awaits the input variable in.

An output variable may await only some of the input variables, and different
output variables may await different input variables. This can be captured if
we allow the precedence relation ≺ to express ordering constraints among tasks
only partially. To illustrate this point, consider the combinational component
ParallelRelay (see figure 2.12) with two input variables, in1 and in2, and two
output variables, out1 and out2. In each round, the component copies the input
variable in1 to output variable out1 and copies the input variable in2 to output
variable out2. We wish to express that out1 awaits in1 but not in2, and out2

Synchronous Model 33

awaits in2 but not in1. This is achieved by splitting the reaction description
into two tasks, A1 and A2. The task A1 reads in1 and writes out1, whereas the
task A2 reads in2 and writes out2. There is no precedence constraint between
the two tasks, and thus the task graph has no edges. This means that these two
tasks are independent and can be executed in any order (and even concurrently
if implemented on parallel hardware).

A task schedule is a linear ordering of all the tasks that is consistent with the
precedence relation. For SplitDelay, we have only one task schedule A1, A2,
whereas for ParallelRelay, we have two possible task schedules, A1, A2 and
A2, A1. In general, for a task graph with k tasks, a schedule is an ordering
A1, A2, . . . Ak of all the tasks, such that if there is a precedence constraint from
the task A to task A′, then A must appear before A′ in the schedule.

Thus, the ordering constraints expressed by ≺ can allow multiple schedules. We
can allow any binary relation ≺ over tasks as the precedence relation as long as it
obeys the following rules. As already discussed, the precedence relation should
be acyclic, and this ensures that there is at least one possible way of ordering all
the tasks to get a schedule. Second, if a task A2 is reading an output or a local
variable y, then the precedence constraints should enforce that the value of y is
already computed when A2 executes in every possible schedule. This is ensured
if there exists a task A1 that writes y, such that A1 ≺+ A2 holds. Third, we
want to ensure that two tasks that are independent according to the precedence
constraints can be executed in either order without affecting the result of the
execution. For example, in the component SplitDelay, the task A1 reads x,
and the task A2 writes x. If these two tasks were unordered (that is, if the
precedence edge A1 ≺ A2 was missing), then it should be considered a syntactic
error as the result depends on which of the two tasks executes first. In general,
two tasks have a write-conflict if there is a variable that belongs to the write-set
of one of the tasks and also belongs to either the read-set or the write-set of the
other task. The tasks A1 and A2 have a write-conflict in SplitDelay but not
in ParallelRelay. When two tasks have a write-conflict, the order in which
they execute matters, and hence the precedence relation should not leave their
ordering unconstrained.

As an illustrative example of the general specification of the tasks, consider the
task graph shown in figure 2.13 for a component with state variables x1 and
x2, input variables in1 and in2, and output variables out1, out2, and out3. The
reaction description also uses a local variable y. Each output variable is written
by exactly one task: out1 by task A3, out2 by task A2, and out3 by task A4. The
precedence relation given by A1 ≺ A3, A1 ≺ A4, and A2 ≺ A4 is acyclic. The
task A4 reads the output out2, and this is legal since it has a precedence-edge
from the task A2 that writes out2. Similarly, the local variable y is guaranteed
to be written by the task A1 before it is used by A4. The task A2 is not ordered
with respect to the tasks A1 and A3 according to the precedence constraints,
and this means that the task A2 should have no write-conflicts with both A1 and
A3. This is indeed the case. Finally, verify that for each of the state variables x1

34 Chapter 2

and x2, the task that writes to the variable is ordered with respect to the tasks
that read this variable. For instance, the task A2 will read the “old” value of
x2, whereas the task A3 will read the value of x1 updated by A1 and rewrite it.
The await dependencies implied by the precedence constraints are: the output
variable out1 awaits the input in1, the output variable out2 does not await any
inputs, and the output variable out3 awaits both the input variables in1 and
in2. Thus, out1 � in1, out3 � in1, and out3 � in2.

The definition and rules for splitting the update into multiple tasks, and the
await dependencies they induce among output and input variables, are summa-
rized below.

Task Graphs and Await Dependencies

For a synchronous reactive component C with input variables I, output
variables O, and state variables S, a task-graph description of the reac-
tions using a set L of local variables consists of a set of tasks and a bi-
nary precedence relation ≺ over these tasks. Each task A has a read-set
R ⊆ I ∪ S ∪ O ∪ L, a write-set W ⊆ O ∪ S ∪ L, and an update description
Update with [[Update]] ⊆ QR ×QW such that:

1. The precedence relation ≺ is acyclic.

2. Each output variable belongs to the write-set of exactly one task.

3. If an output or a local variable y belongs to the read-set of a task A,
then there exists a task A′ such that y is in the write-set of A′ and
A′ ≺+ A.

4. If a state or a local variable x belongs to the write-set of a task A
and also to either the read-set or write-set of a different task A′, then
either A ≺+ A′ or A′ ≺+ A.

For an output variable y and an input variable x, y awaits x (also written
y � x), precisely when for the unique task A, such that y belongs to the
write-set of A, either x belongs to the read-set of A, or there exists a task
A′ such that A′ ≺+ A and x belongs to the read-set of A′.

To execute a component with a task-graph description of reactions, we choose
a schedule that orders all the tasks in a manner consistent with the precedence
relation. The tasks are then executed one by one in this order. Executing a task
A means assigning values to the variables in its write-set based on the values of
the variables in its read-set. Note that our consistency requirements make sure
that an output variable gets assigned a value exactly once, and if it is read by
a task A, then the output value has already been assigned when A is executed.
Also, if a task A reads a state variable x, then either A reads the value of x
at the beginning of the round (this happens if there is no task with x in its
write-set that precedes A), or there is a unique task A′ with x in its write-set
such that A always reads the value written by A′ (irrespective of the schedule

Synchronous Model 35

x1, x2

local y

in2
out3

out2

out1in1

A2 : x2 �→ out2

A1 : x2, in1 �→ y, x1 A3 : x1, in1 �→ x1, out1

A4 : in2, y, out2 �→ x2, out3

Figure 2.13: Illustrative Task Graph

chosen) since the precedence relation totally orders A with respect to all the
tasks that write to x.

In our example of figure 2.13, there are five possible schedules:

A1, A2, A3, A4; A1, A2, A4, A3; A1, A3, A2, A4; A2, A1, A3, A4; A2, A1, A4, A3.

The set of possible reactions of the component will depend on the update de-
scriptions of the four tasks but is independent of the schedule.

Properties such as determinism and input-enabledness can be naturally defined
for tasks so that they imply the corresponding properties of the component:

• Deterministic Tasks: A task A with read-set R, write-set W , and up-
date description Update is said to be deterministic if for every valuation s
overR, there exists a unique valuation t overW such that (s, t) ∈ [[Update]].
Thus, given values for the read variables, a deterministic task assigns
unique values to the variables it writes. If a component has a single ini-
tial state and all the tasks in the task-graph description of reactions are
deterministic, then the component must be deterministic. This is because
the requirements on what constitutes a legal precedence relation ensure
that the schedule does not affect the result of executing tasks.

• Input-Enabled Tasks: An update task A with read-set R, write-set
W , and update description Update is said to be input-enabled if for every
valuation s over R, there exists at least one valuation t over W such
that (s, t) ∈ [[Update]]. Thus, given values for the read variables, an input-
enabled task produces at least one result. Now consider a component with
a task-graph description of its reactions so that all the tasks are input-
enabled. Given a state and an input, we can execute all the update tasks
in an order consistent with the precedence constraints. Since each task
is input-enabled, there is a way to progress at every step, and thus the
component can produce at least one reaction. Thus, such a component is
input-enabled.

36 Chapter 2

y := u

bool u := 0

u := x

bool x
bool y

bool z

A1 : u �→ y A2 : x, u �→ u, z

z := choose(x, u);

Figure 2.14: Component Specified Using Task Graph

Exercise 2.11 : Consider the component from exercise 2.3. Split the reaction
description into two tasks so that the output z awaits the inputs x and y but
not the input reset.

Exercise 2.12 : Consider a synchronous reactive component C with an input
variable x and output variables y and z. The component has two tasks, A1 and
A2, such that the output y belongs to the write-set of the task A1, and the
output z belongs to the write-set of the task A2. If we know that the output
y awaits the input x, but the output z does not await x, then what can we
conclude regarding the precedence constraints between the tasks A1 and A2?

Exercise 2.13 : Consider the synchronous reactive component shown in fig-
ure 2.14. List all the possible reactions of the component. Does the output y
await x? Does the output z await x?

Exercise 2.14 : Design a synchronous reactive component ComputeAverage

with an integer input variable x, an input event variable clock, and a real-
valued output variable y with the following behavior: in the first round, the
output y is 0; in a subsequent round i, let j < i be the most recent round before
round i in which the input event clock is present (if clock is absent in all rounds
before i, then let j = 0), the output should be the average of input values for x
in rounds j, j +1, upto i− 1. The following is a sample behavior of the desired
component:

Clock ⊥ ⊥ � ⊥ ⊥ ⊥ � ⊥
x 5 2 −3 1 6 5 −2 11
y 0 5 3.5 −3 −1 1.33 2.25 −2

The component should be designed so that the output y does not await any of
the input variables.

2.3 Composing Components

2.3.1 Block Diagrams

Suppose we want to design a reactive component with a Boolean input variable
in and a Boolean output variable out, such that in the first two rounds the

Synchronous Model 37

Delay2Delay1
bool in bool temp bool out

Figure 2.15: Block Diagram for DoubleDelay from Two Delay Components

output is 0 and in every subsequent round n, the output equals the input in
round n−2. Instead of designing this component from scratch, we would like to
reuse the component Delay. Composing two Delay components in series gives
the desired component. The resulting design of the component DoubleDelay

is shown in figure 2.15. The design of the component should be obvious from
the block diagram, and given the intuitive appeal of such diagrammatic de-
scriptions, almost all tools for high-level embedded systems design support such
diagrams. A careful examination of the block diagram reveals that there are
three operations on components in such a diagram:

• Instantiation: The components Delay1 and Delay2 are both instances
of the component Delay. Such instances are obtained by renaming the
input/output variables. For example, the component Delay1 is exactly
like the component Delay except its output variable is called temp instead
of out.

• Parallel Composition: The two components Delay1 and Delay2 run
in parallel. The block diagram shows that the output of the compo-
nent Delay1 is the same as the input of the component Delay2, and this
achieves communication between the two components. The communica-
tion is synchronous. In each round, the component Delay1 reads its input
in, produces output temp, and updates its internal state to record the
current value of in. In the same round, the component Delay2 reads its
input temp — as supplied by the component Delay1, produces its output
out, and updates its internal state to record the current value of temp.

• Output Hiding: For the component DoubleDelay, the relevant output
variable is out, and the variable temp is only an auxiliary variable that is
used in implementing DoubleDelay. The block diagram shows that the
variable temp is local and not exported to the outside world.

The component DoubleDelay is textually defined as

(Delay[out �→ temp] ‖ Delay[in �→ temp]) \ temp.

We proceed to discuss the three operations in the above expression, namely,
parallel composition ‖, renaming �→, and hiding \, in more details.

38 Chapter 2

2.3.2 Input/Output Variable Renaming

Before composing and connecting components, we may need to rename vari-
ables so that there are no name conflicts among state variables of different
components, and common names for input/output variables indicate desired in-
put/output connections. It is common practice to assume that the renaming of
state variables is implicit and performed mechanically without burdening the
designer. For instance, in figure 2.15, we can assume that the state variable of
the component Delay1 is called x1 instead of x, and the state variable of the
component Delay2 is called x2. The renaming of input/output variables needs
to be defined explicitly since it establishes the intended communication pattern.

Let C = (I,O, S, Init,React) be a synchronous reactive component, x be an
input or an output variable, and y be a fresh variable (that is, y is not a state,
input, or output variable of C), such that the types of x and y are the same.
Then the component obtained by renaming x to y in C, denoted C [x �→ y], is
the synchronous reactive component obtained by substituting the variable name
x by y in the description of C.

With this notation, the component Delay1 is defined as Delay [out �→ temp].
For the component Delay1, the set of input variables is {in}, the set of output
variables is {temp}, the set of state variables is {x1}, the initialization is x1 := 0,
and the reaction description is temp := x1; x1 := in. Similarly, the component
Delay2 is defined as Delay [in �→ temp].

Observe that variable renaming does not change properties of a component. For
instance, if a component is deterministic, so is its renamed instance, and if a
component is event-triggered, so is its renamed instance.

2.3.3 Parallel Composition

The parallel composition operation combines two components into a single com-
ponent whose behavior captures the synchronous interaction between the two
components running concurrently.

Compatibility in Variable Names

Consider C1 = (I1, O1, S1, Init1,React1) and C2 = (I2, O2, S2, Init2,React2). Be-
fore we can compose these two components, we need to check for compatibility
in their variable declarations. First, there should be no name conflicts concern-
ing state variables. If x is a state variable of C1, then no variable of C2 should
be called x. That is, the set S1 should be disjoint from each of the sets I2, O2,
and S2; symmetrically, the set S2 should be disjoint from each of I1, O1, and
S1. Note that the names of state variables are really private to a component.
We can always rename them to avoid name conflicts before taking the compo-
sition. For instance, the variable name may be prefixed by the name of the
component instance. Henceforth, we will assume that names of state variables
are chosen according to a scheme that avoids name conflicts. Similarly, if the

Synchronous Model 39

reaction description uses local variables, we will assume that the names of these
local variables are unique and do not conflict with the names of other variables.

Second, a variable can be an input variable to both the components, and an
output variable of one component can be an input variable to the other, but a
variable cannot be an output variable of both the components. That is, the sets
O1 and O2 should be disjoint. A consequence of this requirement is that only
one component is responsible for controlling the value of any given variable.

Product Variables

When two components C1 and C2 are compatible, we want to define their paral-
lel composition, denoted C1‖C2, to be another synchronous reactive component
C. We will also refer to the composition C as the synchronous product of the
components C1 and C2. We proceed to describe how to construct the input vari-
ables, output variables, state variables, initialization, and reaction description
of the product C.

Each state variable of a component is a state variable of the product. That is,
the set S of state variables of C is the union S1 ∪ S2. Each output variable of
a component is an output variable of the product. That is, the set O of output
variables of C is the union O1 ∪ O2. Each input variable of a component is an
input variable of the product, provided it is not an output variable of the other
component. That is, the set I of input variables of C is the set (I1 ∪ I2) \ O,
denoting the difference of the two sets I1 ∪ I2 and O.

For example, the composition of the components Delay1 and Delay2 gives the
component with state variables {x1, x2}, output variables {temp, out}, and input
variables {in}.

Product States

A state of the product C assigns values to variables in S1 as well as variables in
S2. The initial states of C are obtained by choosing the values for variables in
S1 according to the initialization Init1 of the component C1 and choosing the
values for variables in S2 according to the initialization Init2 of the component
C2. If the two initializations Init1 and Init2 are given as sequences of assignment
statements, then the initialization Init for the product can be defined to be
Init1; Init2 or, equivalently, Init2; Init1 since there can be no write-conflicts in the
two blocks of initial assignments. In the example of composing the components
Delay1 and Delay2, the sole initial state of the product assigns the value 0 to
both the state variables x1 and x2, and this can be described by the initialization
x1 := 0; x2 := 0.

Reaction Description of the Product

Let us consider how to obtain the reaction description and the corresponding set
of reactions of the product. If the reaction descriptions of the two components

40 Chapter 2

bool in

x2 := temp

temp := x1;

x1 := in

out := x2; bool temp

bool outA1 : x1, in

�→ x1, temp

A2 : x2, temp

�→ x2, out

bool x1 := 0; x2 := 0

Figure 2.16: Parallel Composition of Delay1 and Delay2

C1 and C2 use local variables L1 and L2, respectively, then the set of local
variables for the reaction description of the product is L1 ∪ L2.

If there is no communication between the two components, and this is the
case when outputs of one component are not inputs to the other, then the
two components can be executed independently. To obtain the reactions of the
product, we can execute the update code of one followed by the other, and
the order would not matter. However, when outputs of one component are
inputs to the other, we have ordering constraints on how components should
execute within a round. If the input/output connections are only one way, as
is the case in the example of composing the components Delay1 and Delay2,
where the output of Delay1 is an input to Delay2 but not vice versa, then
we can execute the updates of the components in the order suggested by the
connections: we can first execute the component Delay1 and then execute the
component Delay2. In other words, the reaction description for the product
consists of a task graph with two tasks, the task A1 corresponding to the reaction
description of Delay1, the task A2 corresponding to the reaction description
of Delay2, and a precedence edge from A1 to A2. The product is shown in
figure 2.16. The reactions of the product are listed below, where in each state
we list the values of x1 and x2, in that order, and in each output, we list the
values of temp and out, in that order:

(0, 0)
0/(0,0)−→ (0, 0); (0, 0)

1/(0,0)−→ (1, 0); (0, 1)
0/(0,1)−→ (0, 0); (0, 1)

1/(0,1)−→ (1, 0);

(1, 0)
0/(1,0)−→ (0, 1); (1, 0)

1/(1,0)−→ (1, 1); (1, 1)
0/(1,1)−→ (0, 1); (1, 1)

1/(1,1)−→ (1, 1).

Composing Task Graphs

As another example of parallel composition, consider the composition shown
in figure 2.17, in which the output out of the component SplitDelay is con-
nected to the input of the component Inverter and vice versa. The component
Inverter is a combinational component that sets its output to the negation of
its input. This form of cyclic composition is called feedback composition. The
result of the composition is the product component shown in figure 2.18. The
product has no input variables, two output variables in and out, and one state

Synchronous Model 41

out := x x := in

A1 : x �→ out A2 : in �→ x

in := ¬ out

bool in
Inverter

SplitDelay

bool out

bool x := 0

Figure 2.17: Feedback Composition of a SplitDelay with an Inverter

variable x. The task-graph description of the update for SplitDelay suggests
an execution schedule in each round for the product. In each round, we first
execute the task A1 of SplitDelay to assign a value to the variable out. Now,
the component Inverter can be executed as its input is available, and this as-
signs a value to the variable in. Subsequently, the task A2 of SplitDelay can
be executed using this value. In essence, we are constructing the task graph of
the product by merging the task graphs of the two components. In this case,
the component Inverter has a single task A, which reads out and writes in. We
retain the original precedence constraints (the edge from A1 to A2 in the task
graph of SplitDelay) and add additional precedence edges to reflect variable
dependencies. The general rule for these additional cross-component edges is:

If a task A belonging to one component reads a variable y, which is
an output variable of the other component, then add a precedence
edge from the unique task that writes y to the task A.

This rule gives us the edge from the task A1 of SplitDelay to the task A of
Inverter as the latter reads the variable out computed by A1, and the edge
from the task A of Inverter to the task A2 of SplitDelay as the latter reads
the variable in computed by A. In the first round, out is 0 and in is 1, and in
every subsequent round, both of these values toggle. That is, the sequence of
outputs produced by the product, listing the value of in first and out second, is
10, 01, 10, 01, 10, . . .

Now we can propose a precise definition for the reaction description of the
product. We assume that the reaction descriptions for both the components
C1 and C2 are given as task graphs. Recall that when the reaction description
is not explicitly split into tasks, we interpret it as a single task that reads all
the state and input variables and writes all the state and output variables, thus
leading to await dependency of each of the output variables on all of the input
variables. The set of tasks in the product is the union of the tasks of the two
components. The precedence relation ≺ of the product is the union of the

42 Chapter 2

in := ¬ out

out := x x := in

bool x := 0

A : out �→ in

bool out

bool in

A1 : x �→ out A2 : in �→ x

Figure 2.18: Parallel Composition of SplitDelay and Inverter

in2 := ¬ out1

out2 := in2

out1 := in1

bool in2

bool in1 bool out2

A : out1 �→ in2

A2 : in2 �→ out2

A1 : in1 �→ out1

ParallelRelay

bool out1

Inverter

Figure 2.19: Parallel Composition of ParallelDelay and Inverter

precedence relations ≺1 and ≺2 of the component task graphs, together with
the cross-component edges according to the rule above.

As another example, consider the composition of the components ParallelRelay
and Inverter, shown in figure 2.19. The two tasks A1 and A2 are independent
in ParallelRelay. Since the component Inverter reads out1 and writes in2,
we get cross-component edges from A1 to A and from A to A2. This implies a
new transitive precedence constraint: the task A1 must be executed before A2

in the product.

Acyclicity of Await Dependencies

The cross-component precedence edges can lead to a cycle among precedence
constraints. This problem can be traced to cycles in the input/output await
dependencies. Observe that in the feedback composition of the components
SplitDelay and Inverter of figure 2.17, for the Inverter component, the
variable in awaits the variable out, but for the SplitDelay component, there is
no await dependency between the variables out and in. The absence of mutual

Synchronous Model 43

in := out

bool out

bool in
out := in

Relay Relay

Figure 2.20: Ill-Formed Combinational Loop with Two Relay Components

await dependency is a key for well-formed behavior of the product. Composing
components with mutually cyclic await dependencies can lead to unexpected
behaviors, even when the individual components are deterministic. Let us illus-
trate two kinds of basic problems using two examples.

Figure 2.20 shows composition of two Relay components: the left component
copies its input in to its output out, whereas the right component copies its
input out to its output in. For one component, the variable out awaits the vari-
able in, whereas for the other, the variable in awaits the variable out, and it is
not possible to order the updates of the components in a consistent manner. If
we just consider the set of reactions of the two components and mathematically
compose these sets to obtain reactions that are consistent with the descriptions
of both, then in each round, the product can produce two outputs: one possi-
bility is that both the variables in and out are set to 0, and the other possibility
is that both the variables are set to 1. Thus, if we were to allow composition of
these two components, then we would obtain a nondeterministic component by
composing deterministic ones.

A converse problem to the one of multiple possible consistent reactions arises
in composition of an inverter component with a relay component shown in fig-
ure 2.21. The left component Inverter sets its output to the negation of its
input, and the right component Relay copies its input to its output. For the
left component, the variable out awaits the variable in, whereas for the right
component, the variable in awaits the variable out causing cyclic await depen-
dencies. In this case, there is no assignment of values to the two variables that
is consistent with the reactions of the two components, and thus the product
would have no behaviors.

Thus, it is imperative to detect cyclic await dependencies and rule out such
ill-formed compositions. Let �1 and �2 represent the await dependencies of
the two components. For instance, in figure 2.20, the await dependency for the
top component is out �1 in and for the bottom component is in �2 out. The
union of the two relations gives the cycle out �1 in �2 out. We allow two
components to be composed only when the union of the two await-dependency
relations �1 ∪ �2 is acyclic, that is, there do not exist common input/output
variables x1, x2, . . . xn, with xn = x1, such that for each 1 ≤ j < n, xj+1 awaits
xj according to either one of the two await-dependency relations. This condition
can be checked automatically by the compiler for the modeling language.

44 Chapter 2

in := out

bool out

bool in
out := ¬ in

Inverter Relay

Figure 2.21: Ill-Formed Combinational Loop with a Relay and an Inverter

The compatibility conditions for two components to be composable are summa-
rized in the definition below.

Component Compatibility

The components C1 with input variables I1, output variables O1, and in-
put/output await-dependency relation �1 ⊆ O1 × I1, and C2 with input
variables I2, output variables O2, and input/output await-dependency rela-
tion �2 ⊆ O2 × I2, are said to be compatible if (1) the sets O1 and O2 are
disjoint, and (2) the relation (�1 ∪ �2) is acyclic.

We can take parallel composition of two components only when they are com-
patible by the above definition. Observe that by this definition, in figure 2.18,
if we replace the component SplitDelay with the component Delay, then the
composition is not allowed as the compatibility check would fail. This is because
the component Delay has a single task, and thus its output out awaits its input
in. Thus, our approach to ensuring well-behaved composition is conservative
as it relies on the syntactic decomposition of the reaction description into tasks
given by the designer.

Interfaces

One appealing feature of the compatibility check is that it refers only to in-
put/output variables and their await dependencies. We can think of the inputs
I, outputs O, and await-dependency relation �⊆ O × I as an interface for the
component. To form block diagrams consisting of multiple components, the
designer can focus only on the interfaces of components to ensure compatibility
and consistent usage and does not need to know internal details such as state
variables and task graphs.

As an example of compatibility check using interfaces, consider the components
shown in figure 2.22. The interface of the component C1 corresponds to the task
graph illustrated in figure 2.13. The interface simply shows the input variables
in1 and in2, the output variables out1, out2, and out3, and the dependencies
that the output out1 awaits in1 and the output out3 awaits both in1 and in2.
The block-diagram connects this component C1 with another component C2.
The interface of C2 shows its input variables to be out1, out2, and out3, its
output variables to be in1 and in2, and the dependencies that in1 awaits out2
and in2 awaits both out1 and out2. Verify that there is no cycle in the combined

Synchronous Model 45

C1 C2

out1 �1 in1

out3 �1 in1, in2

out2

in1 �2 out2

in2 �2 out1, out2

Figure 2.22: Composing Interfaces

dependencies and the interfaces are compatible. This suffices for us to conclude
that the composition illustrated in figure 2.22 is well defined.

The next proposition asserts that indeed absence of cycles in the union of the
await-dependency relations over input/output variables implies absence of cycles
in the precedence constraints in the task graph of the product component.

Proposition 2.1 [Await Compatibility Implies Acyclic Product Task Graph]
Let C1 and C2 be compatible reactive components. Then the task graph over
the set of tasks of C1 and C2 obtained by retaining the precedence edges in the
individual components and adding cross-component edges from a task A1 of one
component to a task A2 of another component whenever A1 writes a variable
read by A2, is acyclic.

Proof. Consider two compatible components, C1 and C2. Let ≺1 and ≺2 be
their respective precedence relations over their task sets, and let �1 and �2

be the corresponding input/output await dependencies. Consider the combined
task graph over the tasks of both the components obtained by retaining edges
of the individual precedence relations and cross-component edges from a task
A1 of one component to a task A2 of another component if A2 reads a variable
written by A1. We will prove that if this task graph contains a cycle, then the
union relation (�1 ∪ �2) over input and output variables also contains a cycle,
thereby contradicting the assumption that the two components are compatible.

Consider a cycle in the combined task graph. This type of cycle must alternate
between stretches of tasks, such that each stretch contains one or more tasks of a
single component, and there is a cross-component edge from the last task of one
stretch to the first task of the next stretch. Let (A1, B1), (A2, B2), . . . (Ak, Bk)
be the pairs of tasks connected by cross-component edges in the order in which
these cross-component edges appear in the cycle. For each j, tasks Aj and Bj

belong to different components. Let xj be the variable written by task Aj and
read by task Bj . Thus, xj must be an output variable of the component to

46 Chapter 2

which the task Aj belongs and an input variable of the other component to
which the task Bj belongs. From each task Bj , there is a stretch of the cycle to
the task Aj+1 within the same component (define Ak+1 = A1 for the cycle to
wrap around). Consider the case when the task Bj belongs to the component
C1. Then either Bj = Aj+1 or Bj ≺+

1 Aj+1. The variable xj is an input to
C1 belonging to the read-set of Bj , and the variable xj+1 is an output of C1

belonging to the write-set of Aj+1. Thus, the component C1 cannot produce
the output variable xj+1 before the input variable xj is available. By definition
of await dependencies, xj+1 �1 xj . The case when the task Bj belongs to
the component C2 is symmetric and leads to xj+1 �2 xj . Note that in this
argument, the task Ak+1 is the same as A1, and thus the variable xk+1 is the
same as x1. This gives a cycle of await dependencies, alternating between �1

and �2, among the sequence of input/output variables x1, x2, . . . xk, x1.

Thus, we have established that the existence of a cycle in the task graph of the
product implies the existence of a cycle in the combined await dependencies
and, thus, incompatibility of the two components.

The following definition summarizes the parallel composition operation.

Component Composition

Let C1 = (I1, O1, S1, Init1,React1) and C2 = (I2, O2, S2, Init2,React2) be
compatible synchronous reactive components. Suppose the reaction de-
scription React1 is given using local variables L1 by a task graph with the
set A1 of tasks and the precedence relation ≺1, and the reaction description
React2 is given using local variables L2 by a task graph with the set A2 of
tasks and the precedence relation ≺2. Then the parallel composition C1‖C2

is a synchronous reactive component C such that:

• the set S of state variables is S1 ∪ S2;

• the set O of output variables is O1 ∪O2;

• the set I of input variables is (I1 ∪ I2) \O;

• the initialization for a state variable x is given by Init1 for x ∈ S1 and
by Init2 for x ∈ S2; and

• the reaction description of C uses the local variables L1 ∪ L2 and is
given by the task graph such that (1) the set of tasks is A1 ∪A2, and
(2) the precedence relation is the union of ≺1 and ≺2 and task pairs
(A1, A2), such that A1 and A2 are tasks of different components with
some variable occurring in both the write-set of A1 and the read-set
of A2.

Properties of Parallel Composition

Let C1 and C2 be compatible components. Then by the above definition, the
product C1 ‖C2 is the same as the product C2 ‖C1. Thus, the parallel compo-

Synchronous Model 47

sition operation is commutative.

The parallel composition is also associative. Suppose two components, C1 and
C2, are compatible, and their product, C1 ‖C2, is compatible with a third com-
ponent, C3. Then compatibility also holds for components C2 and C3 and for C1

and C2 ‖C3. Furthermore, (C1 ‖C2) ‖C3 is the same as C1 ‖ (C2 ‖C3). Thus, if
we want to compose multiple components, then we can compose two, compose
the result with a third one, and so on, and we get the same final result irrespec-
tive of the order of composition. At some step, we may discover incompatibility
due to either common outputs or cyclic await dependencies, and we may not
be able to compose all the components, but this failure does not depend on the
order in which the components are composed.

If both the components C1 and C2 are finite-state, then so is the product C1‖C2.
If C1 has n1 states and C2 has n2 states, then C1‖C2 has n1 ∗ n2 states. For
example, in the composition of the components Delay1 and Delay2, each com-
ponent has two states, and the product has four states. If we were to compose
n instances of the component Delay in a chain to construct a component that
outputs, in each round, the value of the input n rounds earlier, then it will
have 2n states. The fact that the number of states grows exponentially with
the number of components is sometimes referred to as the state-space explosion
problem, and it poses a challenge to analysis tools in terms of scalability.

Note that when all the tasks of two compatible components C1 and C2 are deter-
ministic, then the product C1 ‖C2 is guaranteed to be deterministic. Similarly,
if all the tasks of two compatible components C1 and C2 are input-enabled, then
the product C1 ‖C2 is guaranteed to be input-enabled.

2.3.4 Output Hiding

The final operation needed to define the semantics of block diagrams is hiding
of output variables. If y is an output variable of a component C, then the result
of hiding y in C, denoted C \ y, gives a component that behaves the same way
as the component C, but y is no longer an output that is observable outside.
This is achieved by removing y from the set of output variables and declaring y
to be a local variable in the reaction description.

Let us revisit the component Delay1 ‖ Delay2 (see figure 2.16). If we hide
the intermediate output temp, then we get the desired product component
DoubleDelay: the set of state variables is {x1, x2}, the set of output variables
is {out}, and the set of input variables is {in}. The resulting component is
shown in figure 2.23. Note that the initial state of the component DoubleDelay
is (0, 0), and its reactions are:

(0, 0)
0/0−→ (0, 0); (0, 0)

1/0−→ (1, 0); (0, 1)
0/1−→ (0, 0); (0, 1)

1/1−→ (1, 0);

(1, 0)
0/0−→ (0, 1); (1, 0)

1/0−→ (1, 1); (1, 1)
0/1−→ (0, 1); (1, 1)

1/1−→ (1, 1).

48 Chapter 2

x2 := temp

�→ x2, out
A2 : x2, temp

temp := x1;

x1 := in

out := x2;

bool in bool outA1 : x1, in

local bool temp

bool x1 := 0; x2 := 0

�→ x1, temp

Figure 2.23: The Component DoubleDelay

Hiding preserves all the following properties of components: being finite-state,
combinational, deterministic, input-enabled, and event-triggered.

When we want to hide multiple output variables, the order in which we apply
the hiding operator does not matter. If x and y are two output variables of a
component C, then the components (C \ x) \ y and (C \ y) \ x are exactly the
same, and we can use C \ {x, y} as an abbreviation to indicate hiding of both
the output variables.

Exercise 2.15 : Consider the component ClockedDelay from exercise 2.7. The
component ClockDelayComparator is defined as follows:

(Comparator[out �→ x] ‖ ClockedDelay) \ x
Describe the input-output behavior of the component ClockDelayComparator.

Exercise 2.16 : Consider the component DoubleSplitDelay defined as

(SplitDelay[out �→ temp] ‖ SplitDelay[in �→ temp]) \ temp

This component is similar to the component DoubleDelay except we use in-
stances of the component SplitDelay instead of Delay. Show the “compiled”
version of DoubleSplitDelay, that is, list its state, input, output, and local
variables, tasks, and precedence constraints. What are the await dependencies
among output and input variables for DoubleSplitDelay?

Exercise 2.17 : Recall the event-triggered component SecondToMinute from
exercise 2.6 with the input event variable second and the output event variable
minute such that minute is present every 60th time the event second is present.
Now suppose we want to design an event-triggered component SecondToHour

with an input event variable second and an output event variable hour, such
that the output event hour is present every 3600th time the event second is
present. Show how to construct the desired component SecondToHour from
the component SecondToMinute using the operations of parallel composition,
instantiation, and output hiding.

Synchronous Model 49

2.4 Synchronous Designs

Before we consider some illustrative design problems in the synchronous model,
let us recap the salient features and assumptions of the model.

In the classical functional model of computation, the component reads its input
and then computes, producing the output on termination. The desired behavior
of the component is described as a function from inputs to outputs. Reactive
components, in contrast, interact with their environment via inputs and outputs
in an ongoing manner. In principle, the component never terminates. The
desired behavior is described by the sequence of outputs that the component
should produce in response to a given sequence of inputs.

In synchronous reactive computation, the computation proceeds in a well-defined
sequence of rounds. All the components, along with the environment that is sup-
plying the inputs, agree on what constitutes a round. Event-triggered modeling
can be used to describe the situation where a component may not be interested
in every round and actively participates only in those rounds in which one of
the trigger events is present. The key assumption of the synchronous model
is that the computation of all the tasks within a round and all the inter-task
communication necessary to determine the values of all the variables logically
happens instantaneously. The external inputs do not change during a round,
and when the inputs do change, a new round is initiated with all the tasks ready
to process the new inputs. This assumption is called the synchrony hypothesis .
This idealized assumption leads to simplicity and predictability of designs.

The computation of a component within a round can be split into multiple
tasks. The precedence constraints among tasks capture read/write dependen-
cies among its variables and lead to await dependencies among output and input
variables. While composing components, absence of mutually cyclic await de-
pendencies, a condition that can be checked at design time, ensures well-behaved
execution of the product. During a round, the order in which tasks execute does
not affect the resulting reaction. Nondeterminism, that is, multiple reactions
in response to the same input, needs to be explicitly programmed within the
description of a task and is not an artifact of the interaction model. In par-
ticular, for deterministic components, the behavior is repeatable: if we execute
the component again with the same sequence of inputs, then we will observe
the same sequence of outputs. This is valuable in debugging and analysis of
complex designs.

During implementation, one needs to ensure that the implementation faithfully
implements the synchronous semantics. This is the case, for instance, if the
upper bound on the time needed to compute a reaction, which may require inter-
component communication, is less than the minimum delay between changes to
the input. Real-time scheduling theory, to be studied in chapter 8, offers ways
of checking this.

50 Chapter 2

out := ¬ in

SyncNot

in out

SyncAnd

out := in1 ∧ in2

in1

in2

out

SyncOr

x

y

z

in1

in2

out

in out

in1

in2

out

in1

in2

out

Figure 2.24: Synchronous Not, And, and Or Gates

2.4.1 Synchronous Circuits

Synchronous circuits are built from logic gates and memory cells that are driven
by a sequence of clock ticks. Each logic gate computes a Boolean value once
per clock cycle, and each memory cell stores a Boolean value from one clock
cycle to the next. The design of synchronous circuits offers an excellent case
study of how to build complex systems by putting together simpler components
in a hierarchical manner. We can construct synchronous circuits from three
basic building blocks: as basic logic gates we use the Not and And gates, and
as basic memory cell we use a latch component that models a set-reset flip-flop.
These building blocks are then combined to obtain circuits by applying the three
operations of parallel composition, variable renaming, and output hiding.

Combinational Circuits

Figure 2.24 defines three deterministic and combinational synchronous reactive
components for modeling Not, And, and Or gates. In the description of syn-
chronous circuits, all variables are implicitly assumed to be of type bool.

The component SyncNot is the same as the component Inverter of figure 2.17
and models a Not gate, which takes a Boolean input variable in and produces
a Boolean output out. The reaction description sets the output to the logical
negation of the input value. Note that the output out awaits the input in. The
component SyncAnd models an And gate in a similar fashion. The component
takes two Boolean input variables in1 and in2 and produces a Boolean output

Synchronous Model 51

out := x

A1 : x �→ out

A2 : x, set, reset �→ xset

reset

out

bool x := choose {0, 1}

set = 1
→ x := 1

reset = 1
→ x := 0

(set = 0 ∧ reset = 0) ?

Figure 2.25: Synchronous Latch Component

out. The output is set to the logical conjunction of the two inputs and awaits
both the input variables.

From SyncNot and SyncAnd gates we can build all combinational circuits. For
example, by de Morgan’s law, an Or gate can be defined by composing an And
gate with three Not gates that negate both inputs and the output of the And
gate. The block diagram is shown in figure 2.24. Note that instances of the
components SyncNot and SyncAnd are shown by the corresponding symbolic
representations commonly used in circuit diagrams. The resulting component
SyncOr has two Boolean input variables in1 and in2 and produces a Boolean
output out. The local variables x, y, and z of SyncOr represent internal wires
that connect the four component gates. The component SyncOr is deterministic
and combinational, and its output awaits both its input variables. The compo-
nent SyncOr can be equivalently described using the operations of instantiation,
parallel composition, and hiding:

SyncNot1 = SyncNot[in �→ in1][out �→ x],

SyncNot2 = SyncNot[in �→ in2][out �→ y],

SyncNot3 = SyncNot[in �→ z],

SyncAnd1 = SyncAnd[in1 �→ x][in2 �→ y][out �→ z],

SyncOr = (SyncNot1 ‖ SyncNot2 ‖ SyncAnd1 ‖ SyncNot3) \ {x, y, z}.

Sequential Circuits

The combinational circuits are stateless. To model sequential circuits, we need
a component that can store a value in its state from one round to the next.
Figure 2.25 defines a nondeterministic component for modeling a unit-delay
latch. The latch takes two Boolean input variables set and reset and produces
a Boolean output out. The latch has a Boolean state, which is represented by
the state variable x. The initial value of the state is unconstrained, and this
is expressed using the choose construct in the initialization. In every round,
the latch first issues its state as output and then waits for the input values

52 Chapter 2

Latch

start

set

reset

out

inc

carry

Figure 2.26: Synchronous Component 1BitCounter

to compute its next state. For this purpose, the reaction description is split
into two tasks: the task A1 for computing the output out and the task A2 for
updating x. The update of the state variable x is described using a single-mode
extended-state machine with three mode-switches. If the value of set is 1, then
the latch can change its state to 1 using the mode-switch “set = 1 → x := 1”;
and if the value of reset is 1, then the latch can change its state to 0 using the
mode-switch “reset = 1 → x := 0”. If both input variables have value 1, then
the guards of both mode-switches are satisfied, and one of them is executed
nondeterministically; thus, the next state of the latch may be either 0 or 1. If
both input variables have value 0, then the state stays unchanged using the
mode-switch “set = 0 ∧ reset = 0”.

Note that the component Latch is nondeterministic and finite-state, and its
output does not await either of its input variables. The fact that the output of
the latch is available before the values of its inputs are known is essential for
composing latches with logic gates, which in every round (clock cycle) provide
the latch inputs dependent on the latch outputs.

Binary Counter

As an example of a sequential circuit, we design a three-bit binary counter.
The counter has two Boolean input variables start and inc, for starting and
incrementing the counter, respectively. The counter value ranges from 0 to 7
and is represented by three bits. We do not make any assumption about the
initial counter value. When the input start is 1, the counter value is reset to 0
independent of the value of the other input inc. Otherwise when the input inc is
1, the counter value increases by 1. If the counter value is 7, then an increment
changes the counter value to 0. In every round, the counter issues its value as
output—the low bit on the output variable out0, the middle bit on the output
variable out1, and the high bit on the output variable out2.

Figure 2.26 shows a possible design of a one-bit counter. It uses one Latch

component to store one bit of state, and its logic is implemented using two And

Synchronous Model 53

1BitCounter0

1BitCounter1

1BitCounter2

inc

start

carry2

out0

out1

out2

carry1

carry0

Figure 2.27: Synchronous Component 3BitCounter

gates, one Not gate, and one Or gate. Verify that there are no awaits cycles
and, thus, the components are compatible. The value of the output out equals
the state of Latch at the beginning of the round. Let us consider all possible
cases to understand how this circuit works.

Suppose the state of the latch (that is, the value of the counter) is 0. Then the
output carry, which indicates overflow in the counter value, is 0. The value of
the local variable reset equals the input start, and the value of the local variable
set equals the conjunction inc ∧ ¬ start. Observe that both set and reset cannot
be 1 simultaneously. When start is 1, only reset is 1, and in this case, the latch
state is reset to 0. When start is 0, set equals inc: if inc is 1, then the latch
state is updated to 1; otherwise, the latch state stays 0.

Suppose the state of the latch is 1 and the input inc is 0. Then again, the value
of the output carry is 0. The value of the local variable reset equals the input
start, and the value of the local variable set equals 0. When start is 1, the latch
state is reset to 0; otherwise, the latch state stays 1.

Finally, suppose the state of the latch is 1 and the input inc is 1. In this case,
the value of the output carry is 1, indicating overflow. The variable reset equals
start and the variable set equals ¬ start. Thus, no matter what the value of
start is, the latch state is updated to 0.

Figure 2.27 shows the block diagram for connecting three instances of the 1-bit
counter to implement a 3-bit counter in a natural way. The input variable start
acts as the command to reset to all the three instances. The input variable inc
acts as the command to increment only to the 1-bit counter 1BitCounter0 corre-
sponding to the least significant bit. The carry output of 1BitCounter0 is used

54 Chapter 2

as the command to increment the next significant bit stored in 1BitCounter1,
whose carry overflow output acts as the command to increment the most signif-
icant bit.

Exercise 2.18 : An Xor (Exclusive-Or) gate has two Boolean inputs in1 and
in2, and a boolean output out. The output is 1 when exactly one of its two
inputs are 1 and is 0 otherwise. Define the combinational component SyncXor
to capture this desired functionality by composing And, Or, and Not gates.

Exercise 2.19 : A parity circuit has n boolean input variables in1, in2, . . . inn
and a boolean output out. The value of the output should be 1 if an odd number
of input variables have the value 1 and should be 0 otherwise. Construct the
component Parityn that computes the parity of n input variables by composing
instances of the component SyncXor defined in exercise 2.18.

Exercise 2.20 : Design a 1-bit synchronous adder 1BitAdder by composing
instances of And, Or, Not, and Xor gates. The component 1BitAdder has three
input variables x, y, and carry-in and two output variables z and carry-out. In
each round, the value encoded by the two output bits z and carry-out, where
z is the least significant bit, should equal the sum of the values of three input
variables. Then, design a 3-bit synchronous adder 3BitAdder by composing
three instances of the component 1BitAdder. The component 3BitAdder has
input variables x0, x1, x2, y0, y1, y2, and carry-in and has output variables z0,
z1, z2, and carry-out. In each round, the 4-bit number encoded by the output
variables z0, z1, z2, and carry-out should equal the sum of the 3-bit number
encoded by the input variables x0, x1, and x2, the 3-bit number encoded by the
input variables y0, y1, and y2, and the input value of carry-in.

2.4.2 Cruise Control System

We will illustrate concepts of top-down component-based design using a simpli-
fied design of a cruise-control system for a car.

Top-Level Specification

The inputs and outputs of the system are shown in figure 2.28. The driver
interacts with the cruise-controller with three buttons: one to turn the cruise
controller on and off, one to increment the desired speed, and one to decrement
the desired speed. These are modeled by three input event variables cruise,
inc, and dec. Presence of the event cruise should toggle the controller between
on and off modes. When it is turned on, the desired cruising speed should
be set to the current speed, and the events inc and dec, when present, should
cause the desired cruising speed to increment and decrement, respectively. We
should ensure that this value stays within a reasonable cruising range, given by a
minimum value, denoted minSpeed, and a maximum value, denoted maxSpeed.

Synchronous Model 55

Display

Clock

ThrottleController

DriverCruiseController

Sensor

nat speed event(nat) cruiseSpeed

event rotate

event second event cruise

event dec

event inc

event(real) F

Figure 2.28: Inputs and Outputs of the Cruise-Control System

The cruise controller needs to measure the current speed to make its decisions.
This is achieved using two input events: rotate and second. Whenever the
wheel completes a rotation, a sensor associated with the wheel-shaft issues the
input event rotate, and every second a system-wide clock issues the input event
second. Thus, the controller can count the number of rotations every second
and compute the current speed.

The controller should send information to the display regarding the current
settings. This is modeled by output variables speed, denoting the current speed,
and cruiseSpeed. The value of cruiseSpeed is absent if the cruise control is turned
off and, when on, equals the current cruising speed set by the driver.

Finally, the output F is sent to the throttle control system and corresponds to
the force needed to adjust the throttle to regulate the current speed so as to
track the desired cruising speed.

Decomposing into Subsystems

As a next step in the design, we decompose the controller into three subsystems:
the component MeasureSpeed to compute the current speed based on the inputs
rotate and second, the component SetSpeed to keep track of the desired cruise
settings based on the inputs from the driver and the current speed, and the
component ControlSpeed to process the differential between the current speed
and the desired speed in order to compute the output force. The interconnec-
tions among these subcomponents are shown in figure 2.29. The design of the

56 Chapter 2

MeasureSpeed

event rotate

event second event cruise

event dec

event inc

nat speed event(nat) cruiseSpeed

event(real) F

SetSpeed

ControlSpeed

Figure 2.29: Components of the Cruise-Control System CruiseController

component ControlSpeed requires understanding the dynamics of the car and
control theory, a topic to be discussed in chapter 6 on dynamical systems. We
proceed to design the other two components.

Tracking Speed

The task for the component MeasureSpeed is to output the current speed of the
car based on the two input event variables, rotate and second. The component
is shown in figure 2.30. The component has a state variable count that counts
the number of times the event rotate has occurred since the most recent occur-
rence of the event second. The initial value of count is 0. The state variable s
remembers the current speed: it is 0 initially, and in every round during which
the event second is present, the current value of count is used to update s.

More precisely, the rules for updating the state are as follows. If rotate event is
present, then the component increments count. If second event is present, then
the current value of count indicates the number of rotations of the wheel during
a time interval of a second. To compute the speed, this value is multiplied
by a constant, denoted k, which depends on the circumference of the wheel
and rounded to the nearest integer (the function round-off returns the integer
nearest to its argument). In this case, the value of count is reset to 0. Note that
if both input events are absent, then the state stays unchanged. If both events
are present, then count is first incremented, then used to compute the value of
s, and then reset to 0.

The component has an output variable speed: in each round, the output is set
to the updated value of s. Thus, it is a latched output. The display as well
as the speed controller can access this output in any round. The component
MeasureSpeed is deterministic and event-triggered.

Synchronous Model 57

event rotate event second

if rotate? then count := count+ 1;

if second? then { s := round-off(k ∗ count); count := 0 }

nat speed = s

nat count := 0; s := 0

Figure 2.30: Component MeasureSpeed

Tracking Cruise Settings

Now consider the component SetSpeed shown in figure 2.31. The output vari-
able cruiseSpeed is an event variable that is either absent (when the controller
is off) or indicates the current desired speed. The component maintains two
state variables: a Boolean variable on that keeps track of whether the controller
is switched on and the current desired speed s.

Since there are three input events for the component, each of which can be
present or absent, we should process all their combinations. In our design, we
avoid this blow-up by considering these events in a priority order: first cruise,
then dec, and then inc. If the driver presses two or more buttons simultaneously,
then the effect will be equivalent to pressing a single button, with the highest
priority among those pressed simultaneously. Alternatively, we could make an
assumption about the environment that at any instant, at most one of the input
events can be present.

The component updates the state variable on according to the following rule:
every time the event cruise occurs, the variable on is toggled. The rule for
updating the desired speed s is as follows. If the event cruise is present, then
the variable s is set to the current speed, provided the current speed is within
the legal cruising range from minSpeed to maxSpeed. Otherwise, if the event
dec is present, then the variable s is decremented, provided its value is above the
minimum threshold and the controller is on. Finally, if the event inc is present,
then the variable s is incremented, provided its value is below the maximum
threshold and the controller is on. If none of the rules applies, then the desired
speed stays unchanged. After updating the state, the component decides on its
output based on the following rule: if the updated value of on is 1, then the
output cruiseSpeed is set to the updated value of s or else it is absent.

Note that the component SetSpeed is deterministic and event-triggered. Its
output variable awaits all the four input variables.

58 Chapter 2

event incnat speed event decevent cruise

if cruise? then { on := ¬ on;

event(nat) cruiseSpeed

if on then cruiseSpeed := s

else if [dec? ∧ on ∧ (s > minSpeed)] then s := s− 1

nat s := minSpeed; bool on := 0

if (speed < minSpeed) then s := minSpeed

else if [inc? ∧ on ∧ (s < maxSpeed)] then s := s+ 1 ;

else s := speed }
else if (speed > maxSpeed) then s := maxSpeed

Figure 2.31: Component SetSpeed

Exercise 2.21 : Consider the design of the component SetSpeed of figure 2.31.
Suppose we want to add another input control for the driver, pause, with the fol-
lowing desired behavior. When the cruise controller is on, if the driver presses
pause, then the controller is temporarily turned off. In the resulting paused
state, the output cruiseSpeed should be absent, and the events inc and dec
should be ignored. Pressing pause again in this paused state should resume
the operation of the cruise controller, restoring the desired speed on pausing.
Pressing cruise in the paused state should switch the system off, and when the
controller is off, pressing pause should have no effect. Redesign the component
SetSpeed with this additional input event pause to capture the above specifi-
cation.

2.4.3 Synchronous Networks ∗

In a synchronous network, communication happens in a sequence of time slots.
The network topology determines the one-hop directed connectivity among net-
work nodes. In each time slot, a node sends a message to all its neighbors
connected by outgoing edges and receives messages from all its neighbors con-
nected by incoming edges. We can model such networks as synchronous reactive
components.

Modeling a Network Node

The design of an individual node should be independent of the network topology
so that instances of the node can be connected in different ways to form different
networks. For this purpose, each network node is modeled as a component
NetwkNode with an input variable in and an output variable out as shown in
figure 2.32. If the type of messages that a node sends in each round is msg, then

Synchronous Model 59

set(msg)in event(msg) outnat id := myId

Figure 2.32: Schematic of a Synchronous Network Node NetwkNode

the type of the output variable out is event(msg) since in each round, a node
may or may not send a message. The type of the input variable in is set(msg),
and a value of this type is a set of messages of type msg. We want to design the
component so that there is no await dependency between the output out and
the input in: during each round, the component decides on its output message
based on its state and then updates the state in response to the input that
contains the set of messages it receives.

The description of the component NetwkNode is parameterized by an identifier
myId. To form a desired network of components, we create as many instances of
the component NetwkNode as needed. Each instance is given a unique identifier,
which is used to instantiate myId and rename the input and output variables to
avoid name conflicts.

Modeling the Interconnections

The communication network is modeled as a combinational component Network.
It has one input and one output variable for each instance of NetwkNode.

As a concrete example, consider the communication network shown in figure 2.33
over four nodes with identifiers 1, 3, 5, and 8. The edges show connectivity:
for example, node 3 has two outgoing edges connecting it to nodes 5 and 8 and
two incoming edges connecting from nodes 1 and 5. In a single round, if node 3
chooses to send a message, then it will be delivered to both nodes 5 and 8, and
the set of messages it receives contains messages sent by nodes 1 and 5 in this
round.

Figure 2.34 shows the composition of components. There are four instances
of the component NetwkNode corresponding to the four nodes. The network is
captured by Network with input variables out1, out3, out5, and out8, each of
type event(msg), each of which is connected to the output of the corresponding
node component. It has output variables in1, in3, in5, and in8, each of type
set(msg), connected to the input of the corresponding node component. In
each round, the network reads the messages from all its input variables outn,
and for each node n, it collects the messages that are present on the incoming
links for node n and delivers the corresponding set of messages by updating
the output variable inn. The reaction description in figure 2.34 first sets all the
output sets inn to empty sets. Then it checks all the input events one by one,
adding it to the appropriate output sets. For instance, if the input message

60 Chapter 2

5

1 8

3

Figure 2.33: Example Communication Network with Four Nodes

out3 is present, since the node 3 has outgoing links to nodes 5 and 8, then the
message out3 is added to the output sets in5 and in8.

More generally, let P be a set of node identifiers and let E ⊂ P × P denote
the directed one-hop connectivity edges among nodes. Then for each n ∈ P ,
let NetwkNoden be the instance of NetwkNode obtained by instantiating myID

to n and renaming each input and output variable x to xn. The component
NetworkP,E is a deterministic combinational component with the set {outn| n ∈
P} of input variables and the set {inn| n ∈ P} of output variables. In each
round, for each n ∈ P , the output variable inn equals the set containing the
input values outm, such that (1) the set E of network connections has an edge
from node m to node n, and (2) the event outm is present. The desired system
is the parallel composition of all the components NetwkNoden, for n ∈ P , and
the interconnection network component NetworkP,E .

Leader Election

To illustrate the design of algorithms for synchronous networks, let us consider
the classical coordination problem of leader election: the nodes should exchange
messages to decide on a unique leader. More precisely, let us assume that each
node component has an output variable status that ranges over the enumerated
type {unknown, leader, follower}. The nodes exchange messages updating the
status so that (1) eventually every component sets the status output to be either
leader or follower, and (2) exactly one component changes the status output
to the value leader.

Since each node has a unique identifier, it is natural to use these identifiers for
choosing the leader, say, the one with the highest value of the identifier. At the
beginning, a node does not know which other nodes are part of the network,
and the purpose of exchanging messages is to identify this highest identifier.
We want the algorithm to work in as many networks as possible. Consider the
algorithm shown in figure 2.35, which relies on two assumptions:

1. The network is strongly connected: for every pair of nodes m and n, there
is a directed path from node m to node n.

2. Each node knows an upper bound N on the total number of nodes in the
network.

Synchronous Model 61

nat id := 5

nat id := 1

nat id := 3

nat id := 8

set(msg)in5

set(msg)in1

set(msg)in3

set(msg)in8

if out8? then Insert(out8, in1)

{ Insert(out3, in5); Insert(out3, in8) };
if out3? then

if out1? then Insert(out1, in3);

{ Insert(out5, in1); Insert(out5, in3) };
if out5? then

in5 := ∅; in1 := ∅; in3 := ∅; in8 := ∅;

event(msg) out5

event(msg) out1

event(msg) out3

event(msg) out8

Figure 2.34: The Synchronous Network Component Network

The first condition is needed for information to flow from one node to another,
and the second is used for termination.

In the algorithm of figure 2.35, called the flooding algorithm, a node maintains
a state variable id that equals the highest identifier it knows so far. Initially,
the value of id equals the node’s own unique identifier. In each round, the node
outputs this identifier to its neighbors, and if it receives any identifier higher
than the current value of id, it updates this value. The reaction description
is split into two tasks: the task A1 computes the output out and updates the
state variable r, and the task A2 updates the state variable id and computes the
output status. Note that the first task does not need the input, and thus only
the output variable status awaits the input variable in.

If the total number of nodes in a strongly connected network is N , then between
each pair of nodes, there is a path with at most N − 1 hops. Hence, after N − 1
rounds, each node can be sure that its identifier has had a chance to propagate
to every other node. More precisely, if a node’s unique identifier is n, and if
the shortest path from this node to another node m is of length j, then after j
rounds, the value of id variable of node m will be n or higher. As a result, after
N − 1 rounds, the value of id variable of each node will be equal to the highest
identifier in the network. At this point, each node can decide: if the value of
its id variable equals its original identifier, then it is the leader, otherwise it is
a follower.

Consider the four-node network shown in figure 2.34 so that each component
is the instantiated version of the leader election component SyncLENode of fig-

62 Chapter 2

if (in �= ∅) then id := max(id, max in);

if (r < N) then status := unknown

else if (id = myID) then status := leader

else status := follower

if (r < N) then

{ out := id; r := r+ 1 };

set(nat) in

A2 : r, id, in �→ id, status

A1 : r, id �→ r, out

nat id := myId; r := 1

event(nat) out {unknown, leader, follower} status

Figure 2.35: Component SyncLENode for Synchronous Leader Election

ure 2.35. Here is how their executions proceed:

1. In round 1, each of the nodes 1, 3, 5, and 8 output their original identifiers.
The node 1 receives {5, 8} and updates its id variable to 8; the node 3
receives {1, 5} and updates its id variable to 5; the node 5 receives {3},
and its id variable remains 5; the node 8 receives {3}, and its id variable
remains 8. All the nodes set the output status to the value unknown.

2. In round 2, nodes 1 and 8 output 8, and nodes 3 and 5 output 5. As a
result, the id variable of node 3 gets updated to 8, and other nodes do not
change their respective id variables. Again, all the nodes set the output
status to the value unknown.

3. In round 3, nodes 1, 3, and 8 output 8, and node 5 outputs 5. The node
5 updates its id variable to 8. The updated value of the round-counting
variable r equals N = 4; as a result, all the nodes decide based on the
updated values of their respective id variables: the node 8 sets its output
status to the value leader, and the rest set their output status to the
value follower.

Observe that if the diameter of the network is D, that is, between every pair of
nodes there is a path of length D or less, then after D rounds, the value of id
variable of each node will be equal to the highest identifier in the network. An
upper bound on D is N − 1, but D can be much less than this upper bound.

Synchronous Model 63

If the diameter D is known to the nodes in advance, then a node can decide at
the end of round D.

Exercise 2.22 : Consider the leader election algorithm in synchronous networks
(figure 2.35). Argue that if the value of id does not change in a given round,
then there is no need to send it in the following round (that is, the output out
can be absent in the next round). This can reduce the number of messages sent.
Modify the description of the component SyncLENode to implement this change.

Exercise 2.23*: In a strongly connected network, for each network node n,
let Dn be the smallest integer j such that for every node m, there is a directed
path of at most j links from m to n. For example, if the network is a complete
graph (for every pair of nodes m and n, there is a link from m to n), Dn is
1 for every node n; if the network is unidirectional ring connecting all nodes
in a single cycle, Dn is N − 1 for every node n, where N is the total number
nodes; and in the network of figure 2.33, D5 = 3, D3 = 2, D1 = 2, and D8 = 2.
Design an algorithm for synchronous networks so that each node n can figure
out the value of Dn. As in the case of leader election, assume that each node
has a unique identifier, and it knows the bound N on the total number of nodes.
The algorithm should work for any network as long as it is strongly connected.
Explain how your algorithm works.

Bibliographic Notes

The term reactive computation, as opposed to the classical functional computa-
tion, was introduced in [HP85]. Since the 1980s, a number of formal mod-
els of synchronous reactive computation have been introduced and studied.
Prominent examples include Esterel [BG88], Lustre [CPHP87], and State-
charts [Har87]. All of these have resulted in industrial-strength programming
environments; see [BCE+03] for a survey of synchronous languages.

In theory of concurrency, a rich variety of formal models of reactive and con-
current computation with alternative forms of interaction among components
has been studied. Example formalisms include CSP [Hoa85], CCS [Mil89],
UNITY [CM88], data-flow networks [Kah74, LP95], I/O automata [Lyn96], TLA
[Lam02], and BIP [Sif13].

The model of synchronous reactive components studied in this chapter is a
simplified version of Reactive Modules [AH99b]. The presentation of the model
follows the outline in [AH99a]. The description of the leader election algorithm
is based on [Lyn96], which contains rigorous descriptions of algorithms for a
large variety of distributed coordination problems in synchronous networks.

3

Safety Requirements

A reactive component interacts with the environment via inputs and outputs. A
requirement for a component is a specification of acceptable or desired sequences
of outputs in response to inputs. Design of high-assurance systems demands that
requirements should be stated explicitly and as precisely as possible. Require-
ments can be classified in two broad categories: safety requirements assert that
“nothing bad ever happens,” and liveness requirements assert that “something
good eventually happens.” For instance, in the leader election problem of sec-
tion 2.4.3, the main safety requirement is that no two nodes should ever declare
themselves to be the leaders, and the main liveness requirement is that some
node should eventually declare itself to be the leader, and the remaining nodes
should eventually declare themselves to be the followers. Given a specific so-
lution to the leader election problem, such as the one described in figure 2.35,
the verification problem is to check whether the given implementation meets
these requirements. For safety requirements, violation of a requirement can
be demonstrated by a finite execution that illustrates the undesirable behav-
ior. Typically, such requirements are captured by composing the system with a
monitor that observes the inputs and outputs of the system and enters an error
state if an undesirable behavior is detected. The safety verification problem
then reduces to checking whether there is some execution of the system that
leads the monitor to an error state. In this chapter, we will first study how
reachability problems can be used to formalize safety requirements, and then
we will explore verification techniques for establishing correctness of systems
with respect to safety requirements.

3.1 Safety Specifications

3.1.1 Invariants of Transition Systems

A safety requirement for a system classifies its states into safe and unsafe and
asserts that an unsafe state is never encountered during an execution of the
system. Since the concept of such requirements and the tools for establishing

66 Chapter 3

correctness of systems with respect to such requirements do not specifically rely
on the synchronous nature of interaction among reactive components, let us
study them in a more general context of transition systems.

Transition Systems

A transition system is specified using variables whose valuations describe possi-
ble states of the system. The initialization describes the initial values for each
of the system variables. Transitions of the system describe how the state evolves
and are typically specified using a sequence of assignments and conditional state-
ments that update the state variables, possibly using additional local variables.
Following the convention analogous to the definition of synchronous reactive
components, we use Init to denote the syntactic description of the initialization,
with an associated semantics [[Init]] denoting the corresponding set of initial
states. Similarly, Trans denotes the syntactic description of the transitions, and
the associated semantics [[Trans]] is a set of pairs of states.

Transition System

A transition system T has:

• a finite set S of typed state variables defining the set QS of states,

• an initialization Init defining the set [[Init]] ⊆ Q of initial states, and

• a transition description Trans defining the set [[Trans]] ⊆ QS ×QS of
transitions between states.

Synchronous Reactive Components as Transition Systems

With each synchronous reactive component C = (I,O, S, Init,React), there is
a naturally associated transition system: the set of state variables is S; the
initialization is Init; and the transition description Trans is obtained from the
reaction description React by declaring the input and output variables to be local
variables, where the input variables are assigned nondeterministically chosen
values. Consequently, the set of transitions contains pairs of states (s, t) such

that s
i/o−→ t is a reaction for some input i and some output o.

For example, consider the component TriggeredCopy of figure 2.5. In the cor-
responding transition system, the set of state variables is {x}. The initialization
is given by the assignment x := 0. The transition description is obtained by
declaring the variables in and out as local and letting the input take every
possible value using the choose construct:

local event(bool) in, out;
in := choose {0, 1,⊥};
if in ? then {out ! in; x := x+ 1 }.

Safety Requirements 67

stoploop
nat x := m; y := n

¬ (x > 0 ∧ y > 0) →

if (x > y) then x := x− y else y := y− x

(x > 0 ∧ y > 0) →

if (x = 0) then x := y

Figure 3.1: Euclid’s GCD Program

In any given state, if the input event is present, then the value of x is incre-
mented, and if the input event is absent, then the value of x stays unchanged.
Thus, the corresponding transition system has transitions (n, n) and (n, n+ 1)
for every natural number n.

Programs as Transition Systems

Sequential programs can also be modeled as transition systems. Consider the
classical Euclid’s algorithm for computing the greatest common divisor (GCD)
of two natural numbers. Given two input numbers m and n, the algorithm
computes their GCD using two variables x and y, both of type nat. The program
executes the following code:

x := m; y := n;
while (x > 0 ∧ y > 0)

if (x > y) then x := x− y else y := y− x;
if (x = 0) then x := y.

The variable x contains the desired answer when the program terminates.

The program can be modeled as an extended-state machine shown in figure 3.1.
In the initial mode, denoted loop, the system repeatedly decreases either x or y
as long as the condition (x > 0 ∧ y > 0) is true, and when the condition is false,
it switches to the terminal mode stop and changes the variable x as needed so
that it contains the desired answer. Note that the modes correspond to program
locations, and such a representation of a program by an extended-state machine
is sometimes called the control-flow-graph of the program.

We can used the extended-state machine representation of the program to as-
sociate a transition system with it. For given input numbers m and n, the
behavior of the GCD program is captured by the transition system GCD(m,n),
whose description is parameterized by the numbers m and n. The state vari-
ables are x and y of type nat and the mode ranging over {loop, stop}. The
sole initial state is (m,n, loop). Consider a state s of the form (j, k, loop). If
j > k > 0, then the state s has a transition to state (j−k, k, loop); if k ≥ j > 0,

68 Chapter 3

then the state s has a transition to state (j, k− j, loop); if j = 0, then the state
s has a transition to state (k, k, stop); and if j > 0 and k = 0, then the state
s has a transition to state (j, k, stop). A state in which the mode equals stop
has no outgoing transitions.

Reachable States

An execution of a transition system starts in an initial state and proceeds by fol-
lowing the transitions specified by Trans. States encountered during executions
are reachable states of the system.

Reachable States of Transition System

An execution of a transition system T consists of a finite sequence of the
form s0, s1, . . . sk, such that:

1. for 0 ≤ j ≤ k, each sj is a state of T ,

2. s0 is an initial state of T , and

3. for 1 ≤ j ≤ k, (sj−1, sj) is a transition of T .

For such an execution, the state sk is said to be a reachable state of T .

For example, for m = 6 and n = 4, the transition system GCD(6, 4) has the
following execution

(6, 4, loop) → (2, 4, loop) → (2, 2, loop) → (2, 0, loop) → (2, 0, stop).

All the reachable states are the states appearing in this execution.

Invariants

For a transition system T , a property is a Boolean-valued expression over the
state variables of T . A state q of T satisfies the property ϕ if ϕ evaluates to 1
when all variables are assigned values according to the valuation q. The set of
all states that satisfy the property ϕ is denoted [[ϕ]].

Let us revisit the program computing the GCD of two natural numbers. Con-
sider the following property of the transition system GCD(m,n) (see figure 3.1):

ϕgcd : gcd(m,n) = gcd(x, y),

where gcd represents the mathematical function that returns the greatest com-
mon divisor of its two arguments. The expression represents exactly those states
in which the gcd of the values of x and y in that state equals the gcd of the
parameters m and n (that is, the inputs to the GCD program).

A property is said to be an invariant of the transition system if all the reachable
states of the system satisfy the property. For our example GCD program, the

Safety Requirements 69

stoploop
(x = 0) ?nat x := m; y := 0

(x > 0) → {x := x− 1; y := y+ n}

Figure 3.2: Program for Multiplication

property ϕgcd is indeed an invariant of the transition system GCD(m,n). This
invariant captures the core logic of the program: during the execution of the
program, even though the values of the state variables x and y change, their gcd
stays the same. Since gcd(p, 0) equals p, for every natural number p, it follows
that when the variable x has the value 0, gcd(x, y) is the same as y. By a
symmetric argument, when the variable y has the value 0, gcd(x, y) is the same
as x. This means that the update to the variable x when the system terminates
by switching to the mode stop is the desired answer. Thus, the implication

(mode = stop) → (gcd(m,n) = x)

is an invariant of the transition system GCD(m,n).

Invariant of Transition System

For a transition system T , a property ϕ of T is an invariant of T if every
reachable state of T satisfies ϕ.

If we denote the set of reachable states of the transition system T by Reach(T),
then a property ϕ is an invariant exactly when the set-inclusion Reach(T) ⊆ [[ϕ]]
holds. The dual of the notion of an invariant property is the concept of a
reachable property: a property ϕ of a transition system T is reachable if some
reachable state of T satisfies ϕ. In other words, a property ϕ is reachable when
the intersection Reach(T) ∩ [[ϕ]] is a non-empty set. From the definitions, it
follows that:

A property ϕ of a transition system T is an invariant if and only if
the negated property ¬ϕ is not reachable.

As an another example, consider the cruise controller from section 2.4.2 and
consider the following property:

ϕrange : minSpeed ≤ SetSpeed.s ≤ maxSpeed.

It says that the state variable s of the component SetSpeed is guaranteed to be
between the threshold values given by minSpeed and maxSpeed. This property is
an invariant of the system. This is because whenever the component SetSpeed
updates its state variable s, to initialize in response to the input event cruise,

70 Chapter 3

signalW

signalE

TrainE

TrainW

Figure 3.3: Railroad Controller Example

increment in response to the input event inc, or decrement in response to the
input event dec, it checks to ensure that the updated value is in the interval
[minSpeed, maxSpeed].

The invariant verification problem is the following: given a transition system T
and a property ϕ, check whether ϕ is an invariant of the system T . If it is not
an invariant, then there must be some state s such that the state s is reachable
and violates the property ϕ. In such a case, for debugging purposes, the analysis
technique should produce an execution of T that leads to s. Such an execution
is called a counterexample to the claim that the property ϕ is an invariant and,
equivalently, a witness to the claim that the property ¬ϕ is reachable.

Exercise 3.1 : Given two natural numbers m and n, consider the program Mult

that multiplies the input numbers using two variables x and y, of type nat, as
shown in figure 3.2. Describe the transition system Mult(m,n) that captures
the behavior of this program on input numbers m and n, that is, describe the
states, initial states, and transitions. Argue that when the value of the variable
x is 0, the value of the variable y must equal the product of the input numbers
m and n, that is, the following property is an invariant of this transition system:

(mode = stop) → (y = m · n)

3.1.2 Role of Requirements in System Design

To illustrate the use of invariants as safety requirements in the design of em-
bedded controllers, let us consider a (toy) system of traffic lights for a railroad.

Specification of the Railroad Controller

Figure 3.3 shows two circular railroad tracks, one for trains that travel clockwise
and the other for trains that travel counterclockwise. At one place in the circle,

Safety Requirements 71

A1 : mode �→ out A2 : mode, out, signal �→ mode

{green, red} signal

{away, wait, bridge} mode := away

event({arrive, leave}) out

out ? leave

else

signal = green

else

out ? arrive
away wait

bridge else

→ out ! arrive

mode = away

→ out ! leave
mode = bridge

Figure 3.4: Modeling the Train as a Nondeterministic Reactive Component

there is a bridge that is not wide enough to accommodate both tracks. The two
tracks merge on the bridge, and for controlling the access to the bridge, there
is a signal at each entrance. If the signal at the western entrance is green, then
a train coming from the west may enter the bridge, and if the signal is red, the
train must wait. The signal at the eastern entrance to the bridge controls trains
coming from the east in the same fashion.

A train is modeled by the component Train in figure 3.4. The state of the train,
captured by the enumerated variable mode, indicates whether the train is away
from the bridge, waiting at the signal, or on the bridge. We use nondeterminism
to model the assumption that the train can be away for an unknown period of
time: when the train is away, either the state stays unchanged, or the train
issues an output event with the value arrive and updates the state to waiting.
When the train is waiting, it checks the signal. If the signal is red, then the
train keeps waiting, and if the signal is green, then the train proceeds onto the
bridge. The train can stay on the bridge for an arbitrary number of rounds.
When the train exits from the bridge, it issues an output event with the value
leave and updates the state to away.

The reactions of the train component can naturally be described using an
extended-state machine with three modes corresponding to away, wait, and
bridge. However, specifying the update as a single task would create an await
dependency of the output event on the input signal. To avoid this, the com-
ponent specification of figure 3.4 splits the reaction description into two tasks.
The first task A1 computes the value of the output variable out, and this does
not depend on the input variable signal. The task A1 is nondeterministic: when

72 Chapter 3

TrainW

TrainE

Controller

outE

signalW

outW

signalE

Figure 3.5: Composite System for the Railroad Controller

the mode is away, the output can be absent or present with the value arrive;
when the mode is wait, the output is absent; when the mode is bridge, the
output can be either absent or present with the value leave. This description is
captured by the single-mode extended-state machine in figure 3.4. Recall that
for a mode-switch, absence of a guard condition means that the mode-switch
is always enabled (that is, by default, the guard condition is the constant 1
that is satisfied in every state), and absence of an associated update means
that state variables do not change and event outputs are absent. The second
task A2 updates the mode based on the output computed by the task A1 and
the value of the input signal. In the mode away, when the guard-condition
out ? arrive holds, the mode is updated to wait. The condition else on the
self-loop is an abbreviation for the negated condition ¬ (out ? arrive). In gen-
eral, the guard-condition else on a self-loop on a mode is satisfied exactly when
none of the guard-conditions of the mode-switches out of this mode is satisfied.
The mode-switches out of the modes wait and bridge are similar.

Since there are two trains, one traveling clockwise and the other traveling coun-
terclockwise, we create two instances of the train component, TrainW and
TrainE .

We are asked to design a deterministic controller that prevents collisions be-
tween the two trains by ensuring that at all times, at most one train is on the
bridge. More specifically, we want to design a deterministic synchronous re-
active component Controller with input event variables outW and outE and
with output variables signalW and signalE . When composed with the models
of the trains, we get the composite system

RailRoadSystem = Controller ‖ TrainW ‖ TrainE
shown in figure 3.5. Note that, irrespective of the await dependencies of the con-
troller, there will be no cycles in await dependencies in these three components,
and thus the above composition is well defined.

The controller should be designed so that the property

TrainSafety : ¬ (modeW = bridge ∧ modeE = bridge)

Safety Requirements 73

{green, red} signalW {green, red} signalE

event({arrive, leave}) outEevent({arrive, leave}) outW

signalW := west signalE := east

A1 : west �→ signalW A2 : east �→ signalE

else if outW ? arrive then east := red

if outE ? leave then west := green;

if outE ? arrive then west := red

if outW ? leave then east := green;

{green, red} west := green; east := green

A3 : west, east, outE, outW �→ east,west

Figure 3.6: A First Attempt at Design of the Railroad Controller

is an invariant of RailRoadSystem. Here, the state variablesmodeW and modeE
are the state variables of the two instances of the train component.

A First Attempt at the Design of the Railroad Controller

Figure 3.6 shows a first attempt at designing the railroad controller. The con-
troller Controller1 maintains two state variables west and east for the states of
the two output signals signalW and signalE , respectively, and in each round, the
output variable is set to the value of the corresponding state variable. Initially,
both signals are green. A signal is set to red whenever a train approaches the
opposite entrance to the bridge, and it is set back to green whenever that train
exits from the bridge. If both trains approach the bridge in the same round,
then only the west signal turns red, giving priority to the train approaching
from the east. The update is split into three tasks: the tasks A1 and A2 output
the values of the respective signals without waiting for any input, and the task
A3 then updates the state variables based on the input events.

Unfortunately, the resulting railroad system

RailRoadSystem1 = Controller1 ‖ TrainW ‖ TrainE
does not satisfy the desired invariant TrainSafety. This is evidenced by the
counterexample shown in figure 3.7, which leads to a state with both trains on
the bridge. If both trains approach the bridge simultaneously, then the east
train is admitted to the bridge with the west signal red and the east signal
green. When the east train exits from the bridge, the west signal turns green,
allowing the west train to proceed to the bridge. However, the east signal is still

74 Chapter 3

west east modeW modeE signalW signalE outW outE

green green away away

green green arrive arrive

red green wait wait

red green ⊥ ⊥
red green wait bridge

red green ⊥ leave

green green wait away

green green ⊥ arrive

red green bridge wait

red green ⊥ ⊥
red green bridge bridge

Figure 3.7: An Execution of RailRoadSystem1 That Violates TrainSafety

green. So if the east train returns before the west train has left the bridge, the
west signal will turn red while admitting the east train onto the bridge, leading
to a violation of the safety requirement.

A Second Attempt at the Design of the Railroad Controller

Figure 3.8 shows another attempt at designing the controller. The controller
Controller2, in addition to the state variables east and west for the signals,
maintains Boolean state variables nearW and nearE to keep track of whether
the respective trains need to use the bridge. Initially, nearW is 0. When the
west train arrives near the bridge, it is updated to 1, and when the west train
leaves the bridge, it is reset to 0. Observe that the state variable modeW is
away precisely when nearW is 0. Analogously, the variable nearE keeps track of
the status of the east train.

The controller Controller2 plays it safe by keeping the two signals red by
default. Initially, the state variables east and west for the signals are red.
When a train is away (as indicated by the corresponding near variable), the
corresponding signal variable is set to red. When the east train is near, the east
signal is turned green, provided the west signal is red. Consider the case when
both signals are red and both trains issue arrive. Then both near variables
are set to 1. In this case, the east train gets a preference: the variable east is
changed to green, and this blocks the update of west, which is turned green only
if the updated value of east is red.

For the composite system

RailRoadSystem2 = Controller2 ‖ TrainW ‖ TrainE ,

the property TrainSafety is indeed an invariant as desired.

Safety Requirements 75

if outW ? arrive then nearW := 1;

if outE ? leave then nearE := 0;

if outE ? arrive then nearE := 1;

if outW ? leave then nearW := 0;

if ¬ nearE then east := red

else if west = red then east := green;

if ¬ nearW then west := red

else if east = red then west := green;

event({arrive, leave}) outW event({arrive, leave}) outE

{green, red} signalW {green, red} signalE

signalW := west signalE := east

A1 : west �→ signalW A2 : east �→ signalE

bool nearW := 0; nearE := 0

{green, red} west := red; east := red

A3 : west, east, outE, outW , nearE, nearW
�→ east,west, nearW , nearE

Figure 3.8: A Safe Controller for the Railroad Problem

Exercise 3.2 : The composed system RailRoadSystem1 has four state vari-
ables, east and west, each of which can take two values, and modeW and modeE ,
each of which can take three values. Thus, RailRoadSystem1 has 36 states. How
many of these 36 states are reachable?

Exercise 3.3 : The reaction description for the controller Controller2 con-
sists of three tasks as shown in figure 3.8. Split the task A3 into four tasks,
each of which writes exactly one of the state variables east, west, nearW , and
nearE . Each task should be described by its read-set, write-set, and update
code, along with the necessary precedence constraints. The revised description
should have the same set of reactions as the original description. Does this
splitting impact output/input await dependencies? If not, what would be the
potential benefits and/or drawbacks of the revised description compared to the
original description?

3.1.3 Safety Monitors

For our railroad crossing example, suppose we have an additional “fairness”
requirement that if a train arrives at a bridge and as it waits for its signal to

76 Chapter 3

turn green, the other train should not be allowed to enter the bridge repeatedly.
More specifically, while a train is waiting with its signal red, the other train
should not leave the bridge twice. This is clearly a requirement regarding the
sequence of inputs and outputs along an execution of the railroad system, but it
cannot be formulated as an invariant directly. It can, however, be stated as an
invariant if we add another component, WestFairMonitor, shown in figure 3.9.

The monitor is described as an extended-state machine with four possible modes.
The mode is initially 0. When the west train arrives, the mode changes to 1.
If the east train leaves the bridge, then the mode changes to 2, and if the east
train leaves the bridge again, then the mode changes to 3. In modes 1 and 2,
if the west signal is turned green, then the mode is reset to 0. If there is an
execution in which the monitor’s mode gets updated to 3, then it demonstrates
a violation of the desired fairness requirement with respect to the west train.
The mode 3 of the monitor is marked as an accepting mode of the monitor (this
is analogous to the final states of automata in theory of formal languages). An
execution that reaches this accepting mode corresponds to a counterexample to
the desired safety requirement. To check whether there is such a violation, we
can determine whether the property WestFairMonitor.mode = 3 is reachable in
the composite system RailRoadSystem ‖ WestFairMonitor. To ensure fairness
with respect to the east train, we can compose the system with a symmetric
version of the monitor, which can be defined by renaming the input variables of
WestFairMonitor.

The definition of such monitors is summarized below.

Safety Monitor

A safety monitor for a reactive component C with input variables I and
output variables O consists of a synchronous reactive component M such
that:

• the set of input variables of M is a subset of the variables I ∪O,

• the set of output variables of M is disjoint from the variables I ∪O,

• and the reaction description of M is given as an extended-state ma-
chine, along with a subset F of the modes declared as accepting.

The component C satisfies the monitor specification if the property
M.mode �∈ F is an invariant of the composed system C ‖M .

The requirement that the input variables of the monitorM are the input/output
variables of the component C means that M can observe the behavior of C in
terms of its interaction with the other components. The requirement that the
output variables of M are neither the inputs nor the outputs of C ensures that
the behavior of C is not modified by the monitorM and also that it is compatible
with M . We design the monitor so that it enters an error mode in the set F

Safety Requirements 77

outW

signalW

outE

else2

else1

outE ? leave

signalW = green

else

3
outE ? leave

0

outW ? arrive

signalW = green

Figure 3.9: Fairness Monitor WestFairMonitor for the West Train

when the observed sequence of inputs and corresponding outputs violates the
desired safety requirement.

Not all requirements can be expressed as safety monitors. For the railroad cross-
ing example, consider the controller that always keeps both the traffic lights red.
Such a controller satisfies the invariant TrainSafety as well as the requirement
expressed by the safety monitor of figure 3.9. To rule out such solutions that
avoid bad situations by not attempting to do anything good, we need to impose
additional requirements such as, “If both trains are waiting, then the controller
must allow some train to eventually enter the bridge.” Such a requirement is
called a response requirement. In this requirement, we have not asserted any
bound on the number of rounds the trains have to wait. As a result, a finite
execution in which both trains are waiting in the last, say 10, rounds of the ex-
ecution cannot be considered a violation of the response requirement. Indeed,
hypothetically, there may be a correct implementation of the controller that is
slow in its processing of requests and needs 11 rounds to turn the signal to green.
In general, no finite execution can demonstrate that the response requirement is
truly violated. This is not a safety requirement and, thus, cannot be expressed
using monitors and invariants. If we change the requirement to a bounded re-
sponse requirement such as, “If both trains are waiting and both signals are red,
then the controller must turn one of the signals to green in the next round,” it
can be captured by a safety monitor. We will study specification and analysis
of response and other forms of liveness requirements in chapter 5.

Exercise 3.4 : Consider a component C with an output variable x of type int.
Design a safety monitor to capture the requirement that the sequence of values
output by the component C is strictly increasing (that is, the output in each
round should be strictly greater than the output in the preceding round).

Exercise 3.5 : Does the second attempt to design the railroad controller satisfy
the fairness requirement captured by the monitor WestFairMonitor? That
is, is the property WestFairMonitor.mode �= 3 an invariant of the composite
system RailRoadSystem2 ‖ WestFairMonitor? If not, show a counterexample
execution.

78 Chapter 3

3.2 Verifying Invariants

In the invariant verification problem, we are given a transition system T and a
property ϕ, and we want to check whether ϕ is an invariant of T . If not, we
should output a counterexample that demonstrates the reachability of a state vi-
olating the property. We first describe a general purpose proof methodology for
establishing invariants and then consider the challenge of developing automatic
tools for solving the invariant verification problem.

3.2.1 Proving Invariants

Inductive Invariants

Consider a transition system T and a property ϕ. If we can establish that ϕ
holds initially and is preserved during every transition, then by the principle of
mathematical induction, it should hold at every state encountered along every
execution and thus should be an invariant of T . Showing that the property
holds initially amounts to establishing that,

every initial state satisfies ϕ.

Showing that the property is preserved by every transition amounts to estab-
lishing that,

if a state s satisfies ϕ, and (s, t) is a transition of T , then the state
t satisfies ϕ.

Notice the similarity of these two conditions with the classical proofs by induc-
tion. To show that a property holds for all natural numbers n, we first show
that the property holds for 0 (this is called the base case), and then, assuming
that the property holds for a number k, we show that the property also holds
for the number k + 1 (this is called the inductive case). In case of properties of
reachable states of a transition system, the base case corresponds to proving the
property for the initial states, and the inductive case corresponds to, assuming
the property holds for an arbitrary state s, proving that the property holds for
any state t that has a transition from the state s.

Properties that hold initially and are preserved by the transition relation are
called inductive invariants.

Inductive Invariant

A property ϕ of a transition system T is an inductive invariant of T if:

1. every initial state s satisfies ϕ, and

2. if a state s satisfies ϕ and (s, t) is a transition, then the state t also
satisfies ϕ.

Let us consider the program GCD of figure 3.1. For the transition system
GCD(m,n), consider the property ϕgcd given by gcd(m,n) = gcd(x, y). To show

Safety Requirements 79

that this is an inductive invariant, let us first consider the requirement corre-
sponding to initialization. In this case, there is only one initial state s with
s(x) = m and s(y) = n, and this initial state clearly satisfies the property. Now
let us focus on the inductive case. Consider a state s that satisfies the desired
property ϕgcd. Let s(x) = a and s(y) = b. By assumption, gcd(m,n) = gcd(a, b)
holds. If s(mode) = stop, then the state s has no transition from it. Now sup-
pose s(mode) = loop, and consider a transition (s, t) of the system GCD(m,n).
To show that the new state t satisfies the property ϕgcd, it suffices to show that
gcd(t(x), t(y)) equals gcd(a, b). First, let us consider the case when a > b > 0.
Then the program decrements x by y, and in this case, t(x) = a−b and t(y) = b.
So we need to show that gcd(a− b, b) = gcd(a, b). This follows from basic prop-
erties of arithmetic: when a > b, any number that is a divisor of both a and b
must also be a divisor of a− b, and any number that is a divisor of both a and
a − b must also be a divisor of b. In the case when a ≤ b and b > 0, t(x) = a
and t(y) = b − a, and by a symmetric argument gcd(a, b − a) = gcd(a, b). In
the case when either a = 0 or b = 0, the program switches to the mode stop.
In such a case, either a > 0 and t(x) = a and t(y) = b or a = 0 and t(x) = b
and t(y) = b. In both these cases, verify that gcd(t(x), t(y)) equals gcd(a, b).

For the cruise-control example from section 2.4.2, the property minSpeed ≤
SetSpeed.s ≤ maxSpeed is an inductive invariant: it holds in the initial state,
and whenever there is a transition (s, t), it holds in state t since the component
SetSpeed never updates the value of the state variable s without checking the
bounds.

Strengthening Invariants

To illustrate that a property may be an invariant but not an inductive invariant,
let us consider the transition system IncDec(m), parameterized by a natural
number m, shown in figure 3.10. The system uses two variables x and y, both
of type int. Initially, x is 0 and y is m, and in each transition, the program
increments the variable x and decrements the variable y as long as the value of
x does not exceed m.

Consider the property ϕx : 0 ≤ x ≤ m, which states that the value of the
variable x is always within the range from 0 to m. Let us examine whether the
property ϕx is an inductive invariant of the transition system IncDec(m). In
the sole initial state of IncDec(m), the value of x is 0, and thus the property ϕx

holds initially. A state of IncDec(m) is a valuation of the integer variables x and
y and thus is a pair of integers, listing the value of x first. Consider an arbitrary
state s = (a, b). We want to show that if the state s satisfies the property ϕx

and (s, t) is a transition of IncDec(m), then the state t also satisfies ϕx. Assume
that the state s satisfies the property ϕx, that is, 0 ≤ a ≤ m. If a < m, then in
one transition from state s, the program increments x and decrements y, and
thus the updated state t is (a+1, b− 1), and in this case, we can conclude that
0 ≤ a+ 1 ≤ m, and thus the state t continues to satisfy the property ϕx. If the
condition a < m does not hold, then executing the update code does not change

80 Chapter 3

x

y x = m

x+ y = m

int x := 0; y := m

{x := x+ 1; y := y− 1}
(x < m) →

y = m

Figure 3.10: Transition System IncDec(m)

the state, and thus the property ϕx continues to hold. Hence, the property ϕx

is an inductive invariant of the transition system IncDec(m).

Now let us examine whether the property ϕy : 0 ≤ y ≤ m is an inductive
invariant of the transition system IncDec(m). The property ϕy holds in the
initial state (0,m). Consider an arbitrary state s = (a, b) of IncDec(m). If the
only assumption about the state s is that it satisfies ϕy, that is, 0 ≤ b ≤ m,
then can we conclude that, after one transition of the program, the value of
y will still be in the range [0,m]? The answer is negative. In particular, the
state (0, 0) satisfies ϕy, and executing one transition from the state (0, 0) gives
the state (1,−1), which violates ϕy. In conclusion, the property ϕy is not an
inductive invariant of the transition system IncDec(m).

Note, however, that the property ϕy is an invariant of IncDec(m): the reachable
states of the transition system IncDec(m) are (0,m), (1,m − 1), · · · (m, 0), all
of which satisfy the property ϕy. That is, although the property ϕy is an
invariant of the system, it is not strong enough to be inductive. The inductive
strengthening of the property is ϕxy:

0 ≤ y ≤ m ∧ x+ y = m.

The property ϕxy implies ϕy: if a state satisfies the property ϕxy, then clearly
it also satisfies ϕy. The property ϕxy holds in the initial state (0,m). Now
consider a state s = (a, b) that satisfies the property ϕxy, that is, assume that
a+ b = m and 0 ≤ b ≤ m. If the condition a < m does not hold, then executing
the update code does not change the state, and thus the property ϕxy continues
to hold. Suppose a < m. Then there is a transition from the state s to the state
t = (a+ 1, b− 1). Since a+ b = m and a < m, we can conclude that b > 0. It

Safety Requirements 81

follows that 0 ≤ b − 1 ≤ m and also (a + 1) + (b − 1) = m. Thus, the state t
satisfies the property ϕxy. Hence, the property ϕxy is an inductive invariant of
the transition system IncDec(m).

Intuitively, since the program decrements y when the condition x < m holds, it
is not possible to show that the property ϕy is preserved by its transitions as
this property asserts bounds on the values of y without relating it to the values
of x. The stronger property ϕxy captures the relevant corelation between the
values of the two variables and turns out to be inductive.

Figure 3.10 also shows states and transitions of the system visually and is useful
to understand the concepts of reachable states, invariants, and inductive invari-
ants. The reachable states of the system are the states on the line segment
joining the points (0,m) and (m, 0). A property is an invariant as long as it
includes this line segment. Thus, properties such as 0 ≤ x ≤ m, 0 ≤ y ≤ m,
x+ y = m, and x ≥ 0 are all invariants, whereas the property x < m is not an
invariant. An inductive invariant is any set of states that contains the reachable
line segment and has no transitions crossing its boundary from a state inside to
a state outside it. Examples of such inductive invariants are 0 ≤ x ≤ m, x ≥ 0,
x ≤ m, y ≤ m, x+ y = m, and x+ y ≤ m. Examples of properties that are not
inductive invariants include y ≥ 0 and 0 ≤ y ≤ m ∧ 0 ≤ x ≤ m. Given a prop-
erty ϕ, its inductive strengthening is an inductive property that is a subset of ϕ.
Such a strengthening need not be unique: for instance, while ϕxy is an inductive
strengthening of the property ϕy, so is the property 0 ≤ y ≤ m ∧ x+ y ≥ m.

Proof Rule for Establishing Invariants

The method of inductive strengthening is a general purpose and powerful tech-
nique for establishing invariants.

Proof Rule for Invariants

To establish that a property ϕ is an invariant of the transition system T ,
find a property ψ such that:

1. ψ is an inductive invariant of T , and

2. the property ψ implies the property ϕ (that is, a state satisfying ψ is
guaranteed to satisfy ϕ).

If the property ψ is an inductive invariant, then all reachable states of T must
satisfy ψ. If ψ implies ϕ, then every state satisfying ψ must also satisfy ϕ. It
follows that the property ϕ is an invariant of T if both the assumptions are
satisfied. Thus, the above proof rule is sound , that is, it is a correct method for
establishing invariants.

The proof rule is also complete from a theoretical perspective. What this means
is that if a property ϕ is indeed an invariant, then there does exist an inductive
property ψ that implies ϕ, and thus the proof rule can always be used to establish

82 Chapter 3

the desired invariant. In particular, let ψreach be the formula that holds only
in those states of T that are reachable. Clearly, if ϕ is an invariant, then it
holds in all reachable states, and thus ψreach implies ϕ. The property ψreach

capturing precisely the reachable states is inductive: initial states are reachable,
and executing one transition from a reachable state leads to a reachable state.
If the assertion language for writing formulas is expressive enough to describe
the set of reachable states, then we know that the proof rule gives a complete
method.

In practice, to prove invariants of a system in a rigorous manner, the user must
identify the inductive strengthening. To establish that ψ is indeed inductive
and implies ϕ, one can either use a “paper-and-pencil” argument or construct a
formal proof using an automated theorem prover. Identifying such an inductive
strengthening requires expertise, but note that this task can be much easier than
understanding the precise set of reachable states of the system. For instance,
let us modify the transition system IncDec(m) of figure 3.10 by introducing an
additional integer variable z, initialized to 0, and by modifying the self-loop to

(x < m) → { x := x+ 1; y := y− 1; z := z+ x y }.
To prove that the property 0 ≤ y ≤ m is an invariant of the modified system,
it still suffices to consider the strengthening 0 ≤ y ≤ m ∧ x + y = m, which
turns out to be an inductive invariant for the modified system also. Note that
the property characterizing the set of reachable states of the modified system is
a lot more complex as it needs to relate the current values of x and z. In other
words, to prove that the variable y stays within the bounds of 0 and m using
the technique of inductive invariants, it suffices to understand the relationship
between x and y, and one can ignore the way the variable z gets updated.

Proof of the Synchronous Leader Election Protocol

To illustrate a more interesting proof, let us consider the central correctness
argument for the flooding algorithm for leader election from section 2.4.3. For
a set P of nodes and a set E of directed links that induce a strongly connected
graph over the nodes, consider the system SyncLE defined as the composition of
all the node components SyncLENoden, for each node n ∈ P , each executing the
leader election protocol, and the combinational network component NetworkP,E

that transfers the messages in a synchronous manner. The description of the
transition system for SyncLE is summarized below.

The set of state variables contains the variables idn and rn for each node n. The
type of all the state variables is nat. Initially, the value of each variable rn is 1,
and the value of each variable idn equals n.

The transition description of SyncLE uses the variables inn, outn, and statusn for
each node n, which are the input/output variables of individual components that
are used for communication. The update in each round involves the following
sequence of steps:

Safety Requirements 83

1. The tasks A1 of all the node components execute: for each node n, if the
condition rn < N holds, then the value idn is issued on outn, and rn is
incremented. Otherwise outn is absent and rn stays unchanged.

2. The component Network executes updating all the variables inn: for each
node n, the value of inn equals the set containing the values of the variables
outm, such that there is a network edge from node m to node n, and the
event outm is present.

3. The tasks A2 of all the node components execute: for each node n, the
value of idn is updated to equal the maximum of its current value and the
values contained in the set inn.

Consider the following property ϕleader for the transition system SyncLE:

for every node n, after N rounds, the value of the variable idn equals
the highest identifier in P : rn = N → idn = max P .

Convince yourself that this property is not inductive. To strengthen it, we must
assert that, at the beginning of each round j, the value of idn is the maximum
of identifiers of nodes at distance less than j from n. Let dist(m,n) denote the
length of the shortest path from node m to node n according to the links in E.
The distance of a node from itself is 0. Consider the following property ψ:

for every node n, idn = max {m | dist(m,n) < rn }.
The property ψ does imply the desired invariant ϕleader. This is because the
distance between any pair of nodes is at most N − 1, and hence when rn equals
N , the set {m | dist(m,n) < rn} must equal the set P of all identifiers, and
thus the value of idn must equal the maximum identifier, max P .

Let us check whether the property ψ is an inductive invariant of the system
SyncLE. It holds initially that the only node at distance 0 from a node n is n
itself. Unfortunately, it is not strong enough to be preserved in every transition.
Consider a state s satisfying ψ and a node n. Suppose the value of the round
variable rn equals j, where j < N . Then we know that the value of idn is
max{m | dist(m,n) < j}. In one round, the node n receives the current values
of id variables of all its neighbors and updates idn to the maximum of its current
value and all the values received. Since the node n increments the variable rn,
we need to show that the updated value of idn is max{m | dist(m,n) < j + 1}.
Now any node, say n1, at distance less than j + 1 from n must be at distance
less than j from one of the neighbors, say n2, of n. Do we know that the value
of id of node n2 must be at least j in state s? We know, from the property
ψ, that the value of idn2

is the maximum of identifiers of all nodes at distance
less than the value of the round variable rn2 . We would be finished with the
proof successfully if we could conclude that the value of rn2 in state s is j. But
this is not really captured in the property ψ, and the proof fails. The necessary
strengthening must also assert that the values of the round variables of all the
nodes are equal. The following property ψleader is indeed an inductive invariant
of the system SyncLE and implies ϕleader:

84 Chapter 3

onoff

x := x+ 1

x := x− 1

int x := 0

x := x+ 1

Figure 3.11: Exercise for Inductive Invariants

for every node n, idn = max {m | dist(m,n) < rn }, and for every
pair of nodes m and n, rm = rn.

Exercise 3.6 : Consider a transition system T with two integer variables x and
y and a Boolean variable z. All the variables are initially 0. The transitions of
the system correspond to executing the conditional statement

if (z = 0) then {x := x+ 1; z := 1} else {y := y+ 1; z := 0}.
Consider the property ϕ given by (x = y) ∨ (x = y + 1). Is ϕ an invariant of
the transition system T? Is ϕ an inductive invariant of the transition system T?
Find a formula ψ such that ψ is stronger than ϕ and is an inductive invariant
of the transition system T . Justify your answers.

Exercise 3.7 : Recall the transition system Mult(m,n) from exercise 3.1. First,
show that the invariant property (mode = stop) → (y = m · n) is not an
inductive invariant. Then find a stronger property that is an inductive invariant.
Justify your answers.

Exercise 3.8 : Consider the transition system specified by the extended-state
machine of figure 3.11. Consider the property ϕ given by x ≥ 0. Show that ϕ
is not an inductive invariant of the system. Find a formula ψ such that ψ is
stronger than ϕ and is an inductive invariant. Prove your answer.

Exercise 3.9 : Consider the system RailRoadSystem2 corresponding to the
controller of figure 3.8. For each of the properties listed below, state whether
the property is an invariant of the system and, if so, whether it is an inductive
invariant. Justify your answers with an explanation.

1. The controller state variable nearE is 0 when the east train is away and 1
otherwise: (nearE = 0)↔ (modeE = away).

2. When the east train is on the bridge, the controller state variable corre-
sponding to the east signal is green: modeE = bridge → east = green.

3. The controller variables for the two signals cannot be green simultaneously:
¬ (east = green ∧ west = green).

Safety Requirements 85

3.2.2 Automated Invariant Verification ∗

Before we proceed to consider some techniques for checking invariants of transi-
tion systems, let us consider invariant verification as a computational problem.
Ideally, we would like to automate verification. The challenge then is to build a
verification tool as shown in figure 3.12: the input to the verifier consists of the
description of the transition system T and a property ϕ, and it decides whether
ϕ is an invariant of T .

Undecidability

In general, the verification problem is undecidable. This means that we cannot
hope to have a completely algorithmic solution to solve the invariant verification
problem, and the ideal verifier of figure 3.12 does not exist. Intuitively, to
check whether a property ϕ is an invariant of a given transition system T , the
verification tool needs to check all reachable states of T . Given the description of
T , the tool can systematically explore reachable states and check whether each
such state satisfies the property ϕ. However, when the number of states of a
system is unbounded, and this is the case for systems described using variables
with unbounded types such as nat, the verification tool can potentially run
forever exploring more and more states without ever being able to conclude
that the property holds in all reachable states. Formally, the undecidability of
the verification problem follows from the results in computability theory. In
fact, if we limit ourselves to transition systems that have only counter-variables,
then the invariant verification problem remains undecidable, where a counter-
variable is a variable of type nat that in one transition can only be incremented,
decremented, or tested for being equal to zero.

Verification of Finite-State Systems

Now let us restrict our focus on systems whose variables have finite types. For
such finite-state systems, the number of all possible states is bounded. In this
special case, the invariant verification problem can be automated. The input
to the verifier is a description of the transition system in the source model-
ing language and, thus, is described in a compact manner. In particular, for
synchronous reactive components, the set of states is described by listing the
names and types of all the variables, and the set of transitions is described by
a sequence of assignments and conditional statements. If the transition system
T has k state variables, and each variable can take at most m different values,
then the bound on the number of states is mk. The total number of states grows
exponentially with the number k of state variables, and as a result, the solution
based on examining all states does not lead to a scalable analysis tool. This
exponential complexity, however, is intrinsic to the problem.

The precise computational complexity of the invariant verification problem de-
pends on the details of the modeling language used to specify transition systems.
As an illustrative case, let us consider transition systems described as sequential

86 Chapter 3

Transition system T

Property ϕ

Verifier

Yes; ϕ is an invariant of T

No; Counter-example execution

Figure 3.12: Ideal Automated Verification Tool

circuits discussed in section 2.4.1. A sequential circuit is specified using block
diagrams connecting Not gates, And gates, and latches. All the variables in
such a circuit are of type bool. If the circuit has k latches, then the number of
possible states is 2k. Suppose the property ϕ is specified as a Boolean expression
over the state variables corresponding to the latches. In this case, the invariant
verification problem is a canonical problem for the complexity class Pspace
of computational problems. Pspace stands for problems solvable using space
polynomial in the size of the input description. The upper bound of Pspace
means that there is an algorithm to solve the invariant verification problem for
sequential circuits that requires memory polynomial in the number of latches
and gates used in the circuit description. Furthermore, the invariant verifica-
tion problem is computationally hard for the class Pspace, implying that every
other problem in this class can be reformulated as an invariant verification for
sequential circuits.

Theorem 3.1 [Complexity of Finite-state Invariant Verification] Given a se-
quential circuit C represented as a block diagram over Not gates, And gates,
and latches, and a property ϕ specified as a Boolean formula over the state
variables corresponding to the latches, the computational problem of checking
whether the property ϕ is an invariant of the transition system corresponding to
C is Pspace-complete.

Understanding the Pspace complexity bounds in a rigorous manner would re-
quire a detour into computational complexity theory and is beyond the scope
of this textbook. We will just note some facts useful in our context. First, the
characterization of the complexity of the invariant verification problem is robust:
the invariant verification problem is Pspace-complete for finite-state systems
for all typical choices of modeling languages used in practice. The complexity
stays the same whether systems are deterministic or nondeterministic. Second,
the class Pspace of problems is a superset of the class NP of problems, which
stands for problems that can be solved by nondeterministic algorithms in time
polynomial in the size of the input. The canonical problem for the class NP
is analysis of combinational circuits. Consider a combinational circuit C repre-
sented as a block diagram over Not and And gates, such that C has m Boolean
input variables x1, . . . xm and a Boolean output variable y. Suppose we want to
check whether there is an input, that is, an assignment of 0/1 values to the m
input variables, so that the output of C is 1. Given a specific input, computing
the corresponding output is easy, and we can develop an efficient algorithm for

Safety Requirements 87

this purpose that would require time linear in the size of the circuit (that is, the
number of gates). However, to check whether there exists some input for which
the corresponding output is 1, the most obvious strategy to try all inputs would
lead to an exponential-time algorithm since there are 2m possible inputs. This
structure makes this analysis problem for combinational circuits belong to the
class NP. Furthermore, it is a canonical representative of all NP problems: if
a combinational circuit analysis problem can be solved efficiently, then so can
every problem in the class NP. Thus, the combinational circuit analysis prob-
lem is an NP-complete problem. Whether such a problem can be solved by a
polynomial-time algorithm remains a long-standing open problem in computer
science. For all practical purposes, we can assume that efficient algorithms do
not exist for NP-complete problems and, thus, also not for Pspace-complete
problems, such as the invariant verification problem for finite-state systems. Fi-
nally, note that the combinational circuit analysis problem is representative of
computing reactions from a given state. For a finite-state system corresponding
to a synchronous reactive component, given two states s and t, determining
whether there is a transition from state s to state t is typically NP-complete
as it would require examining all possible input combinations, but for a specific
input i, determining whether state s on input i gets updated to state t can be
determined efficiently by executing the update code.

In summary, for finite-state reactive components, analyzing what happens within
a round is computationally hard (NP-complete) due to the multitude of combi-
nations of values of input variables, and analyzing what happens in an execu-
tion, across multiple rounds, has additional computational difficulty (Pspace-
complete) due to the multitude of combinations of values of state variables.

3.2.3 Simulation-Based Analysis

The most commonly used industrial technique for analyzing systems is explo-
ration using simulation. Given a user-specified value k for the number of steps
of the simulation, the algorithm generates an execution of the transition system
containing k transitions and checks whether the invariant holds for every state
visited during this execution. In general, the transition system has many exe-
cutions of a given length. For instance, in transition systems corresponding to
synchronous reactive components, each state can have multiple successors due
to inputs as well as nondeterministic choices within the reaction description. In
such a case, the simulator must resolve the choice in some way, for instance, by
using randomization.

The simulation-based algorithm can process transition systems represented in
many different possible ways ranging from source code to internal representation.
What is needed is a way of generating an initial state from the representation
and a way of generating a successor state of a given state. More specifically, the
simulation-based algorithm relies on the implementation of the following data
structures and operations:

88 Chapter 3

Input: A transition system T , a property ϕ, and an integer k > 0;
Output: If a state violating ϕ is encountered, return a counterex-

ample;

array [state] exec;
nat j := 0;
state s := ChooseInitState(T);

if s = null then return;
exec[j] := s;
if Satisfies(s, ϕ) = 0 then return exec;
for j = 1 to k do {
s := ChooseSuccState(s, T);
if s = null then return;
exec[j] := s;
if Satisfies(s, ϕ) = 0 then return exec;
}.

Figure 3.13: Simulation-based Invariant Falsification

• States of the transition system are of the type state. The constant null
specifies a dummy state.

• Given a transition system T , ChooseInitState(T) returns some initial state
and the dummy state null if T has no initial states.

• Given a transition system T and a state s, ChooseSuccState(s, T) returns
some successor state of s, that is, some state t such that (s, t) is a transition
of T , and the dummy state null if s has no outgoing transitions.

• Given a property ϕ and a state s, Satisfies(s, ϕ) returns 1 if the state s
satisfies the property ϕ, and 0 otherwise.

The simulation algorithm is presented in figure 3.13. The variable exec is an
array of states, and the algorithm fills its entries one by one for the specified
number of steps. At each step, the function Satisfies is used to check whether the
current state violates the desired invariant. Note that if no violation is found, the
algorithm cannot make any conclusions about whether the invariant holds. In
such a case, we can run the algorithm repeatedly to gain more confidence in the
correctness of the system. However, such analysis cannot prove that the system
indeed satisfies the invariant. This form of analysis, which can conclusively only
disprove the claim that the system satisfies the specified correctness requirement,
is called falsification.

Representing Transition Systems

The actual running time of the simulation-based algorithm depends on how
long it takes to execute functions such as ChooseSuccState that depend on the

Safety Requirements 89

ChooseSuccState

Interpreter

Compiler

ChooseSuccStateT

Executable code

Description of T

State s

Successor state t

Description of T

State s

Successor state t

Figure 3.14: Interpretation vs. Compilation for Simulation-based Analysis

representation of the transition system. One possible representation for the
transition system, then, is the original description of the system in the source
modeling language. For transition systems corresponding to synchronous re-
active components, a system description is typically a parallel composition of
compatible components, where each component consists of one or more tasks,
each with an update description given as straight-line code, along with prece-
dence constraints among tasks. With this choice, the implementation of the
function ChooseSuccState can be as follows. Given a state, it first picks ar-
bitrary values for the input variables. It then orders all the tasks of all the
components in a manner consistent with all the precedence constraints. Then
the update specifications of the tasks are executed in the chosen order. If there
is a nondeterministic assignment (using the choose command) in any update
specification, an arbitrary choice is made. This style of implementation is called
model interpretation: the different constructs in the model description are in-
terpreted as needed during the execution of ChooseSuccState.

An alternative strategy is model compilation: the original description of the
system in the source modeling language is compiled to executable functions
for operations such as ChooseSuccState that are specialized for this particular
transition system. That is, given the description of the transition system T , the
model compiler generates an executable function for ChooseSuccStateT . The in-
put to ChooseSuccStateT is a state of T , and its output will be a successor-state
of the input state. The two approaches of interpretation and compilation are il-
lustrated in figure 3.14. In the context of synchronous reactive components, the
compiled version of ChooseSuccStateT contains a fixed order of execution of all
the tasks: this order needs to be consistent with all the precedence constraints
but is chosen just once when the code for ChooseSuccStateT is generated. Non-
deterministic constructs such as choose in the update specification of individ-
ual tasks are replaced with suitably chosen calls to random-number generator
routines in the target language. The main benefit of the model-compilation
approach is performance: individual calls to ChooseSuccStateT do not need to

90 Chapter 3

process the internal representation of the source model and thus execute faster.

State Compaction

The memory used by an analysis algorithm that stores states is obviously af-
fected by how an individual state is represented and stored. For the simulation
algorithm of figure 3.13, the states are stored in the array exec. The most natu-
ral data structure for representing a state is a record type with a field for each of
the state variables. However, this is too wasteful: if a system has, say, 50 state
variables, allocating a word to each field on a 32-bit machine would mean 400
bytes per state, and storing thousands of states would be impractical. As a re-
sult, a state is represented using low-level bit encoding. For each state variable,
the analysis tool first computes an upper bound on the number of bits that are
sufficient to encode all possible values. A Boolean variable needs just one bit, a
variable ranging over an enumerated type with three values needs two bits, and
for a variable storing speed of a car, in miles per hour up to one decimal point,
10 bits should suffice. The state then is encoded as a sequence of bits.

3.3 Enumerative Search ∗

Given a transition system T and a property, to check whether the property is
an invariant of the transition system, we can check whether the negation of
the property is reachable. This problem can be viewed as finding a path in
a graph whose vertices correspond to states of T and whose edges correspond
to transitions of T . In classical graph search algorithms, the input graph is
represented by listing all its vertices and edges. In invariant verification, the
graph is given implicitly by listing the state variables, their initialization, and
the update code for the transitions and may not be finite. Hence, we do not
want to build the graph explicitly and explore the graph only as much as needed.

Reachable Subgraph

For a transition system T , the graph consisting of the reachable states of T and
transitions out of these states constitutes the reachable subgraph of the system.
To check whether a property is an invariant, it suffices to examine only the
reachable subgraph.

Let us revisit the controller Controller2 for the railroad crossing example of fig-
ure 3.8. For the system RailRoadSystem2, there are six state variables: modeW
andmodeE , each of which ranges over {away, wait, bridge}; west and east, each
of which ranges over {green, red}; and Boolean variables nearW and nearE . As
a result, the system has 144 possible states. It turns out that few of these states
are reachable. Figure 3.15 shows the reachable portion of the graph. Each state
is denoted by listing the values of the variables modeW , modeE , nearW , nearE ,
west, and east, in that order. We use a, w, b, g, and r as abbreviations for the
values away, wait, bridge, green, and red, respectively. The initial state then

Safety Requirements 91

bw11gr ab01rg

aw01rg

wb11rg

ww11rg

aa00rr

aw01rr

ba10gr

wa10gr

Figure 3.15: Reachable Subgraph of RailRoadSystem2

is aa00rr denoting that both trains are away, both near variables are 0, and
both signals are red. The four transitions out of this state correspond to the
possibilities of one, both, or neither of the two trains arriving. One of the transi-
tions is a self-loop to aa00rr, and the other three lead to states wa10gr, aw01rg,
and ww11rg. We then systematically consider all the possible transitions from
these three new states and continue until no new states are discovered. Only 9
out of 144 states are found to be reachable.

As another example, consider the synchronous leader election of section 2.4.3.
Suppose we choose values for the set P of node identifiers and the set E of
network links. The component SyncLE still has infinitely many states since the
type of the variables such as r and id of each of the node components is nat.
However, during an execution of the system, the value of the round variable r
ranges over {1, 2, . . . N}, where N is the upper bound on the number of nodes
in the network, and the value of the identifier variable id ranges over P . Thus,
for a given network, the number of reachable states of the system is finite.

These examples indicate that the analysis algorithm for the invariant verification
problem should explore only the reachable states of the system starting with
the initial states. Such a search procedure is called on-the-fly since it examines
states and transitions in an incremental manner. It is enumerative as it processes
states individually.

On-the-Fly Depth-First Search

As in the case of simulation-based exploration, our presentation of the on-the-fly
algorithm does not rely on a specific representation of transition systems. In the
case of enumerative search, what we need is that there is a way to systematically
enumerate all the initial states of a transition system, and given a state s, there
is a way to systematically enumerate all the successors of s, that is, states t such

92 Chapter 3

that (s, t) is a transition. As in the case of simulation-based exploration, states
of the transition system are of type state. We will use the following functions
that access the representation of transition systems:

• Given a transition system T , FirstInitState(T) returns the first initial state
of T , according to the chosen enumeration of the initial states, and the
dummy state null if T has no initial states.

• Given a transition system T and an initial state s, NextInitState(s, T)
returns the initial state following s in the chosen enumeration of the initial
states and null if no such state exists.

• Given a transition system T and a state s of T , FirstSuccState(s, T) re-
turns the first successor state of s, according to the chosen enumeration
of the set of states t such that (s, t) is a transition of T and the dummy
state null if s has no outgoing transitions.

• Given a transition system T and states s and t, NextSuccState(s, t, T) re-
turns the state following t in the chosen enumeration of the set of successor
states of s and the dummy state null if no such state exists.

For instance, if T has a state variable x of type nat and the initialization specifies
that x ≥ 10, then T has infinitely many initial states that can be enumerated
as 10, 11, 12, In such a case, FirstInitState can return 10, and for n ≥ 10,
NextInitState on input n can return n + 1. The ability to systematically list
all the initial states and the successors of a state is necessary for enumerative
search. A transition system T for which the set of initial states, and the set of
successor states of each state, can be effectively enumerated is called countably
branching : whenever there is a choice in extending an execution, the number of
choices is countable. If T has a state variable x of type real and the initialization
specifies that 0 ≤ x ≤ 1, then there are uncountably many initial states, one for
every real number in the interval [0, 1]. This transition system is not countably
branching. For such a system, it would not be possible to apply a systematic
search exploring states one by one. Note that the simulation-based exploration
is still possible in such a case, as one can implement ChooseInitState to return
a randomly chosen real number up to a given precision of the floating-point
representation of numbers.

The classical depth-first-search algorithm for on-the-fly exploration of (count-
ably branching) transition systems is depicted in figure 3.16. It relies on the
following data structures:

• The variable Reach, of type set(state), stores the set of reachable states.
The operations used on this set data structure are: (1) an initialization
constant EmptySet that corresponds to the empty set; (2) a membership
test Contains that takes a set and a state and returns 1 if the input state
belongs to the input set and 0 otherwise; and (3) an insertion procedure
Insert that takes a state and a set and updates the input set by adding
the input state to it.

Safety Requirements 93

Input: A transition system T and property ϕ;
Output: If ϕ is reachable in T , return a witness, else return 0;

set(state) Reach := EmptySet;
stack(state) Pending := EmptyStack;
state s := FirstInitState(T);

while s �= null do {
if Contains(Reach, s) = 0 then

if DFS(s) = 1 then return Reverse(Pending);
s := NextInitState(s, T);
};

return 0.

bool function DFS(state s)
Insert(s,Reach);
Push(s,Pending);
if Satisfies(s, ϕ) = 1 then return 1;
state t := FirstSuccState(s, T);
while t �= null do {
if Contains(Reach, t) = 0 then

if DFS(t) = 1 then return 1;
t := NextSuccState(s, t, T);
};

Pop(Pending);
return 0.

Figure 3.16: On-the-fly Depth-first Search Algorithm for Reachability

• The variable Pending stores the sequence of states from which exploration
is in progress, and is of type stack(state). The operations used on this
stack data structure are: (1) an initialization constant EmptyStack that
corresponds to the empty stack; (2) a procedure Push that takes a state
and a stack and updates the input stack by adding the input state at its
top; (3) a procedure Pop that takes a stack and updates it by removing
the top element, if any; and (4) the function Reverse that takes a stack
and returns the sequence of states it contains from bottom to top.

The algorithm maintains the set Reach of states it has encountered so far. All
the states in this set are guaranteed to be reachable states of the transition sys-
tem T . The initial states of the transition system are supplied to the algorithm
one by one by the functions FirstInitState and NextInitState. The algorithm
initiates search from every initial state that is not already visited by calling the
recursive function DFS. When DFS is called with an input state s, it adds it to
the set Reach and pushes it onto the top of the stack Pending. At any time, the
stack contains a sequence of states such that the state at the bottom is an initial
state, and every state has a transition from the state immediately below it. If

94 Chapter 3

the input state s satisfies the property ϕ, then the algorithm has discovered
ϕ to be reachable, and all pending invocations of DFS terminate. The stack
contains an execution of the transition system that demonstrates reachability of
a state satisfying the property ϕ, and thus the reversed stack can be output as a
witness execution. If the input state s does not satisfy the property ϕ, then the
algorithm examines all the outgoing transitions from s. The successor states of
s are supplied to the algorithm one by one by the functions FirstSuccState and
NextSuccState. The algorithm calls DFS recursively from those successor states
that are not already visited. If all the DFS calls terminate, then the algorithm
has visited all the reachable states without encountering a state satisfying the
property ϕ, and it returns 0.

Illustrative Example

Figure 3.17 shows a possible execution of the depth-first search algorithm on
the transition system corresponding to the component RailRoadSystem2 (see
figure 3.15 for the reachable graph).

Initially, the algorithm invokes DFS with input state aa00rr with Reach equal
to the empty set and Pending equal to the empty stack. In figure 3.17, each
state is assigned a unique number that indicates the order in which states are
discovered and added to Reach. Thus, the state aa00rr has number 1. The
ordering of the successor states from a given state is depicted left to right in
figure 3.17. That is, the first successor of aa00rr is aa00rr. Since this state
is already visited, no new call to DFS is initiated. Then the next successor
of aa00rr, the state wa10gr, is examined. At this point, Reach contains only
the state aa00rr, the stack also contains just this state, and the function DFS
is invoked again with input state wa10gr, whose DFS discovery number is 2.
Figure 3.17 shows the values of the set Reach of visited states and the stack
Pending when a new call to DFS is made (for brevity, states are represented by
their DFS discovery numbers). Note that when the call DFS(wa10gr) returns,
the set Reach contains all the states; as a result, examining the remaining two
successors of aa00rr, states aw01rg and ww11rg in that order, do not initiate
new calls to DFS.

When DFS(aw01rr) first examines the successor aw01rg, it calls DFS(aw01rg).
This call explores all states that can be reached from aw01rg and then returns.
The value of Reach contains all these states. Since the next successor of aw01rr
is ww11rg and not yet visited, DFS(ww11rg) gets called. For two calls such
as DFS(aw01rg) and DFS(ww11rg), which share the immediate parent calling
context (DFS(aw01rr) in this case), at the time the call, the value of the stack
Pending is the same (and captures an execution leading to the input state for
the call), but the value of the variable Reach has changed (the one on the right
is guaranteed to be a superset of the one on the left).

Safety Requirements 95

wa10gr

1
2
3

ab01rg

1
2
3
4

1
2
3

1
2

1aa00rr aw01rg

aa00rr ww11rg1

ba10grba10gr

bw11gr 9

bw11gr aw01rraw01rr4

1
2
3
4
5
6

ab01rg aa00rr

ww11rg 8aw01rg5

1
2
3
4

wb11rg wb11rg

wb11rg7

wb11rg wa10gr

{}

{1}

bw11gr

{1, 2, 3}
aa00rr

{1, 2, 3, 4} {1, 2, 3, 4
5, 6, 7}

{1, 2, 3, 4, 5}

{1, 2, 3, 4, 5, 6}

wa10gr

1
2
3
4
5

{1, 2, 3, 4
5, 6, 7, 8}

2

6

{1, 2}
3

Figure 3.17: Sample Execution of Depth-first Search on RailRoadSystem2

Analysis of the Depth-First Search

For a reachable state s, the algorithm calls DFS with input s at most once, and
thus it processes every transition out of a reachable state at most once. If the
number of reachable states of a transition system is finite, then the algorithm
is guaranteed to terminate, and its running time will be linearly proportional
to the number of reachable states and transitions. Even when the number of
reachable states is not finite, the algorithm may encounter a state satisfying
ϕ and terminate with a witness execution. However, if the property ϕ is not
reachable and the number of reachable states is not finite, then the algorithm
will just keep on examining more and more states until it runs out of available
memory. These properties are summarized in the following theorem:

96 Chapter 3

Theorem 3.2 [On-the-fly Depth-First Search for Invariant Verification] Given
a countably branching transition system T and a property ϕ, the depth-first
search algorithm of figure 3.16 has the following guarantees:

1. If the algorithm returns 0, then the property ϕ is not reachable in T .

2. If the algorithm returns a sequence of states, then its output is a witness
execution demonstrating the reachability of the property ϕ.

3. If the number of reachable states of T is finite, then the algorithm ter-
minates, and the number of calls to DFS is bounded by the number of
reachable states.

We conclude the discussion of the enumerative search by discussing some com-
monly used implementation techniques employed by enumerative model checkers
for improving the efficiency of the depth-first search algorithm. As in the case of
simulation-based exploration, the representation of the transition system should
allow fast computation of initial states and successor states of a given state, and
memory requirements of the algorithm can be reduced by compact encoding of
states.

Bit-State Hashing

The most commonly used data structure for storing the set Reach of states
already visited is a hash-table. A hash-table consists of a hashing function that
maps each state to an integer between 0 and N , for a suitably chosen positive
integer N , and an array of length N , whose each entry is a list of states. Initially,
all lists are empty. To insert a state s in the hash-table, first the hashing function
is used to map s to an index j, and then the state s is added to the list at the
jth entry of the hash-table. To check whether a state s is already in the hash-
table, the hashing function is used to map s to an index j, and the list at the
jth entry is scanned to check whether it contains s. If the hashing function is
chosen appropriately, then the number of states mapped to the same index is
small; as a result, both Insert and Contains take near-constant time.

While hashing is an effective technique to store the set of explored states, often
the number of reachable states is too large to be stored in memory. In such
cases, an approximate strategy, known as bit-state hashing, can be used. This
approach uses a hash-table of size N whose jth entry is a single bit. Initially
all bits are 0. The insertion of a state s, which is mapped to an integer j by
the hash function, is implemented by setting the jth bit of the hash-table to 1.
The membership test for a state s returns the value of the bit stored at the
index corresponding to s. This scheme does not handle hash collisions correctly.
Suppose that two states s and t are mapped to the same index j, and state s is
inserted in the hash-table first. When the state t is encountered, as the jth bit
of the hash-table is already set to 1, the membership test Contains incorrectly

Safety Requirements 97

returns a positive answer for the state t. Consequently, the depth-first search
algorithm does not explore the successors of t. Hence, only a fraction of the set
of reachable states is explored. Thus, when the algorithm returns 0, we cannot
be sure that the property ϕ is not reachable, but when it returns a sequence of
states, it is guaranteed to be a witness to the reachability of ϕ. What fraction
of the reachable states is explored by bit-state hashing depends on the choice
of the table size and the hash function. The performance of bit-state hashing
can be improved dramatically by using two bit-state hash-tables that employ
independent hash functions: to insert a state, the corresponding bits in both
the hash-tables are set to 1, and the membership test checks whether the bits
corresponding to the input state in both the hash-tables are 1.

Exercise 3.10 : Consider the reactive component Switch of figure 2.2. How
many reachable states does it have? Draw the reachable subgraph for the cor-
responding transition system.

Exercise 3.11 : To save memory, sometimes the on-the-fly depth-first search
algorithm is modified so that it does not store any states. That is, we modify
the algorithm of figure 3.16 by removing the set Reach, and when a state is
encountered, there is no test to check whether it was visited before. This form
of search is called stateless search. Show that the partial correctness of the
algorithm is still preserved: the claims (1) and (2) of theorem 3.2 continue to
hold. How is the termination (claim (3) of theorem 3.2) affected?

Exercise 3.12*: A breadth-first search algorithm first examines all the initial
states, then all the successors of the initial states, and so on. To implement
such an algorithm, we need two functions on the representation of transition
systems: InitStates returns a list of initial states of a given transition system,
and SuccStates returns a list of the successors of a given state of a transition sys-
tem. Such a representation is feasible for finitely branching transition systems,
namely, transition systems for which the number of initial states is finite, and
each state has only finitely many successor states. Given a finitely branching
transition system T and a property ϕ, develop a breadth-first search algorithm
to check whether ϕ is reachable in T , and state precisely its correctness and
termination guarantees.

3.4 Symbolic Search

As the invariant-verification problem is computationally hard, we cannot hope
to find an efficient scalable solution. There are, however, heuristics that per-
form well on many instances of the invariant-verification problem that occur
in practice. One such heuristic is based on a symbolic reachability analysis of
the transition system. Instead of explicitly processing states one at a time, a
symbolic search algorithm processes sets of states represented by constraints.
For example, for an integer variable x, the constraint 20 ≤ x ≤ 99 concisely
represents the set {20, 21, . . . , 99} of 80 states. Such a symbolic representation

98 Chapter 3

can be succinct, and with suitable operations that can manipulate the symbolic
representation, we can develop a symbolic search algorithm that can solve the
invariant verification problem.

3.4.1 Symbolic Transition Systems

For symbolic analysis, the initial states and transitions can be described by
formulas, that is, Boolean-valued expressions, over state variables that capture
constraints on initialization and update.

Initialization and Transition Formulas

Consider a transition system T with state variables S. The initialization can
be expressed by a Boolean expression ϕI over the variables S. The set of initial
states then contains the states satisfying this expression. Let us revisit the
transition system GCD(m,n) (see figure 3.1) corresponding to the program that
computes the gcd function. It has three state variables x, y, and mode. The
initialization formula is x = m ∧ y = n ∧ mode = loop.

To express the transition description Trans as a formula, we need to relate the
values of state variables before the transition to the values of the state variables
after the transition. For a variable v, we use v′ to denote a primed version of v
with the same type as v, and this primed copy is used to capture the value after
the transition. With this convention, the transition description is expressed by
a Boolean expression ϕT over the state variables S and the corresponding set
S′ of primed state variables.

Let us develop the transition formula for the GCD program step by step. The
extended-state machine of figure 3.1 has two mode-switches, and a transition
corresponds to executing one of these switches. As a result, the transition
formula is a disjunction of two formulas, with one disjunct each contributed by
each mode-switch. Let us first focus on the self-loop.

Consider the assignment x := x − y. This translates to the logical formula
x′ = x − y that relates the updated value of x to the old values of x and
y. The assumption that “a state variable that is not updated explicitly stays
unchanged” needs to be captured by explicit constraints in the logical formula.
Thus, the formula corresponding to the decrement of x by y, with y implicitly
unchanged, is (x′ = x − y) ∧ (y′ = y). The conditional statement “if (x >
y) then x := x− y” is captured by the formula

(x > y) ∧ (x′ = x− y) ∧ (y′ = y).

Such a formula is evaluated over a pair of states of the system, where the first
state is used to obtain values for the variables x and y, and the second state is
used to obtain values for the variables x′ and y′. A pair of states (s, t) satisfies
this transition formula precisely when s(x) > s(y) and t(x) = s(x) − s(y) and
t(y) = s(y). Notice that if we simply omit the conjunct y′ = y, the formula

Safety Requirements 99

would have the unintended meaning that the variable y can be updated to any
arbitrary value when the condition x > y holds.

The if-then-else statement “if (x > y) then x := x − y else y := y − x”
corresponds to the formula ψ that is the disjunction of the two cases:

[(x > y) ∧ (x′ = x− y) ∧ (y′ = y)] ∨ [¬(x > y) ∧ (y′ = y− x) ∧ (x′ = x)].

The above pattern for mapping conditional statements to transition formulas is
typical: the formula is a disjunction of cases, where each case is a conjunction
of the condition and the update corresponding to this condition.

For the self-loop of the GCD program, the guard condition is (x > 0 ∧ y > 0),
and this mode-switch is from the mode loop to itself. Thus, the contribution
of this self-loop to the transition formula is the formula ψ1:

[(x > 0) ∧ (y > 0) ∧ (mode = loop) ∧ ψ ∧ (mode′ = loop)].

The contribution of the mode-switch from loop to stop can be computed in
a similar manner. In particular, the update code “if (x = 0) then x := y”
translates to the formula ψ′:

[(x = 0) ∧ (x′ = y) ∧ (y′ = y)] ∨ [¬(x = 0) ∧ (x′ = x) ∧ (y′ = y)],

and the contribution of this mode-switch to the transition formula is the formula
ψ2:

[¬ (x > 0 ∧ y > 0) ∧ (mode = loop) ∧ ψ′ ∧ (mode′ = stop)].

The desired transition formula ϕT of the transition system GCD(m,n) is: ψ1 ∨ψ2.

This style of specification of the transition relation is called declarative. Unlike
the more familiar operational style that prescribes the sequence of statements to
be executed, the declarative specifications only capture the constraints on the
relationship between the old and new values of variables. Unlike an assignment,
which is an operational and executable description, equality, which is a declara-
tive and logical specification, does not have a meaningful distinction between the
left-hand side and right-hand side. In particular, the expressions x′ = x−y and
x−y = x′ are logically equivalent and express exactly the same constraint. Simi-
larly, since logical conjunction is commutative, the formula (x′ = x−y)∧ (y′ = y)
expresses exactly the same constraint as (y′ = y) ∧ (x′ = x− y).

Reaction Formulas

For transition systems described by synchronous reactive components, the sym-
bolic description of the transition system can be obtained by the analogous sym-
bolic description of the corresponding reactive component. For a synchronous
reactive component, the initialization can be captured by a formula ϕI over the
state variables, and its reactions can be specified by a formula ϕR over (un-
primed) state variables (denoting the state at the beginning of a round), input

100 Chapter 3

and output variables, and primed state variables (denoting the state at the end
of a round).

Let us revisit our first reactive component, Delay, of figure 2.1. The initializa-
tion formula ϕI for the component Delay is x = 0. Note that if we want to
specify that the initial value of x may be either 0 or 1, the corresponding initial
assignment x := choose {0, 1} is captured by the formula 1 (every state satisfies
the constant 1). Indeed, the constraint-based or declarative style can be more
convenient to specify nondeterminism.

For the Delay component, the reaction formula ϕR is

(out = x) ∧ (x′ = in)

that captures the relationship among old state, input, output, and updated
state. In general, the reaction formula ϕR for a component C with state variables
S, input variables I, and output variables O is a formula over the variables

S ∪ I ∪O ∪ S′. For states s, t, input i, and output o of C, s
i/o−→ t is a reaction

of C precisely when the formula ϕR is satisfied when we use state s to assign
values to variables in S, input i to assign values to variables in I, output o to
assign values to variables in O, and state t to assign values to the corresponding
primed variables in S′.

Given a symbolic description of a synchronous reactive component C, the sym-
bolic description of the corresponding transition system T can be obtained easily.
The initialization formula for T is the same as the initialization formula for C.
Recall that, for states s and t, (s, t) is a transition of T precisely when there

exists some input i and output o such that s
i/o−→ t is a reaction of C. This rela-

tionship between transitions of T and reactions of C can be naturally expressed
using the operation of existential quantification for logical formulas.

If f is a Boolean formula over a set V of variables and x is a variable in V , then
∃x. f is a Boolean formula over V \ {x}. A valuation q over V \ {x} satisfies
the quantified formula ∃x. f if q can be extended by assigning some value to
x to satisfy f , that is, there exists a valuation s over V such that s(f) = 1
and s(y) = q(y) for each variable y in V \ {x}. For example, if x and y are
Boolean variables, then the formula ∃x .(x∧ y) expresses a constraint only over
the variable y and is equivalent to the formula y (that is, ∃x .(x∧y) evaluates to
1 exactly when y is assigned 1). Similarly, the formula ∃x .(x ∨ y) is equivalent
to 1 (that is, this formula evaluates to 1 independent of the value of y).

The transition formula for the transition system corresponding to Delay is

∃ in. ∃ out. [(out = x) ∧ (x′ = in]).

This formula simplifies to the logical constant 1 since the formula is satisfied no
matter what the values of x and x′ are. This corresponds to the fact that for
this transition system, there is a transition between every pair of states.

Safety Requirements 101

More generally, if ϕR is the reaction formula for the component C, then the
transition formula ϕT for the corresponding transition system is obtained by
existentially quantifying all the input and output variables: ∃ I. ∃O.ϕR.

As another example, consider the component TriggeredCopy of figure 2.5. The
only state variable is x of type nat, the initialization formula is x = 0, and the
reaction formula is

(in? ∧ out = in ∧ x′ = x+ 1) ∨ (¬in? ∧ out =⊥ ∧ x′ = x).

The assumption that when the input event is absent, the component leaves the
state unchanged and the output is absent, is captured explicitly in the reaction
formula as a separate case. The corresponding transition formula is obtained
by existentially quantifying the input and output variable:

∃ in, out. [(in? ∧ out = in ∧ x′ = x+ 1) ∨ (¬in? ∧ out =⊥ ∧ x′ = x)].

This transition formula can be simplified to a logically equivalent formula

(x′ = x+ 1) ∨ (x′ = x).

Composing Symbolic Representations

In section 2.3, we studied how complex components can be combined using the
operations of input/output variable renaming, parallel composition, and output
hiding. The symbolic description of the resulting component can be obtained
naturally from the symbolic descriptions of the original components. We will
use the block diagram for DoubleDelay from figure 2.15 to illustrate this.

Renaming of variables is useful to create instances of components so that there
are no name conflicts among state variables of different components, and com-
mon names for input/output variables indicate input/output connections. Given
the initialization and reaction formulas for the original component, the corre-
sponding formulas for the instantiated component can be obtained by textual
substitution. For instance, the component Delay1 is obtained from the compo-
nent Delay by renaming the state variable x to x1 and the output out to temp.
The initialization formula for Delay1 then is x1 = 0, and the reaction formula
is (temp = x1) ∧ (x′1 = in). Similarly, the initialization formula for Delay2 is
x2 = 0, and the reaction formula is (out = x2) ∧ (x′2 = temp).

Consider two compatible components C1 and C2. If ϕ
1
I and ϕ2

I are the respective
initialization formulas for C1 and C2, then the initialization formula for the
product C1‖C2 is simply the conjunction ϕ1

I ∧ ϕ2
I . This captures the fact that

the formula ϕ1
I constrains the initial values of the state variables of C1, and the

formula ϕ2
I constrains the initial values of the state variables of C2. Similarly,

if ϕ1
R and ϕ2

R are the respective reaction formulas for C1 and C2, then the
reaction formula for the product C1‖C2 is the conjunction ϕ1

R ∧ ϕ2
R. This again

captures the intuition that in synchronous composition, state s of the composite,

102 Chapter 3

on input i, can react with output o updating the state to t if the values assigned
by s, i, o, and t are consistent with the reaction descriptions of the two original
components.

In our running example, the composition of Delay1 and Delay2 gives the compo-
nent with state variables {x1, x2}, output variables {temp, out}, input variables
{in}, initialization formula x1 = 0 ∧ x2 = 0, and reaction formula

temp = x1 ∧ x′1 = in ∧ out = x2 ∧ x′2 = temp.

If y is an output variable of a component C, then we can use hiding to ensure that
y is no longer an output that is observable outside. The initialization formula
of the resulting component C \ y is the same as the initialization formula for
C, and if ϕR is the reaction formula for C, then the reaction formula for the
result is ∃ y. ϕR. In our example, if we hide the intermediate output temp of
Delay1 ‖ Delay2, then we get the desired composite component DoubleDelay.
Its initialization formula is

x1 = 0 ∧ x2 = 0,

and the reaction formula is

∃ temp . (temp = x1 ∧ x′1 = in ∧ out = x2 ∧ x′2 = temp),

which can be simplified to an equivalent formula

x′1 = in ∧ out = x2 ∧ x′2 = x1.

To obtain the transition formula for the transition system corresponding to
the component DoubleDelay, we can existentially quantify the variables in and
out from the above formula. The resulting transition formula is equivalent to
x′2 = x1.

Exercise 3.13 : Consider the transition system Mult(m,n) described in exer-
cise 3.1. Describe this transition system symbolically using initialization and
transition formulas.

Exercise 3.14 : Consider the description of the component Switch given as
an extended-state machine in figure 2.2. Give the initialization and reaction
formulas corresponding to Switch. Obtain the transition formula for the corre-
sponding transition system in as simplified form as possible.

Exercise 3.15*: Let C1 and C2 be two compatible reactive components with
reaction formulas are ϕ1

R and ϕ2
R, respectively. We have argued that the reaction

formula for the product C1‖C2 is ϕ1
R∧ϕ2

R. Let ϕ
1
T and ϕ2

T be the transition for-
mulas for the transition systems corresponding to C1 and C2, respectively. Can
we conclude that the transition formula for the transition system corresponding
to the product C1‖C2 is ϕ1

T ∧ ϕ2
T ? Justify your answer.

Safety Requirements 103

3.4.2 Symbolic Breadth-First Search

Before developing the symbolic algorithm for invariant verification, let us iden-
tify the operations that we need for symbolic search.

Operations on Regions

We call a symbolically represented set of states a region. Given a set V of
typed variables, a set of states over V is represented as a region of type reg.
In the symbolic representation of a transition system with state variables S,
the initial states are represented by a region over S, and the transitions are
represented by a region over S ∪ S′. We have already considered a specific
instance of such a representation, namely, Boolean formulas over the variables.
While representation using formulas is useful for understanding the symbolic
algorithm, the algorithm works for any choice as long as the primitives discussed
below are implemented.

The data type reg for regions supports the following operations:

• Given regions A and B, Disj(A,B) returns the region that contains those
states that are in either A or B.

• Given regions A and B, Conj(A,B) returns the region that contains those
states that are in both regions A and B.

• Given regions A and B, Diff(A,B) returns the region that contains those
states that are in A but not in B.

• Given a region A, IsEmpty(A) returns 1 if the region A contains no states
and 0 otherwise.

• Given a region A over V and a set X ⊆ V of variables, Exists(A,X)
returns the region A projected onto over the variables V \X. The result
contains a valuation s over V \X precisely when there exists some valuation
t over X such that the valuation over V obtained by combining s and t is
in A.

• Given a region A over variables V , a list of variables X = {x1, . . . xn} in
V and a list of variables Y = {y1, . . . yn} not in V , such that each variable
yj is of the same type as the corresponding variable xj , Rename(A,X, Y)
returns the region obtained by renaming each variable xj to yj . Thus, the
result contains a valuation t over the variables (V ∪ Y) \X exactly when
there exists some valuation s in A such that t(yj) = s(xj), for j = 1, . . . n,
and t(z) = s(z) for all variables z in V \X.

Image Computation

The core of symbolic search is image computation: given a region A over state
variables, we want to compute the region that contains all the states that can be

104 Chapter 3

reached from the states in A using one transition. The desired operation Post

can be implemented using the operations intersection, renaming, and existential
quantification as follows. Given a region A, we first conjoin it with Trans, a
region over unprimed and primed state variables containing all the transitions.
The intersection Conj(A,Trans) is a region over S ∪ S′ and contains all the
transitions that originate in states in A. Then we project the result onto the set
S′ of primed state variables by existentially quantifying the variables in S. The
result is the region containing states that can be reached from states in A using
one transition. However, it is a region over the primed variables. Renaming
each primed variable x′ to x gives us the desired region Post(A).

Symbolic Image Computation

Consider a transition system with state variables S and transition specifi-
cation given by the region Trans over S ∪ S′. Given a region A over S, the
post-image of A, defined by

Post(A,Trans) = Rename(Exists(Conj(A,Trans), S), S′, S)

is a region over S that contains precisely those states t for which there is a
transition (s, t) for some state s in A.

Examples of Image Computation

As an example, suppose the system has a single variable x of type real, and
the transition region is given by the formula x′ = 2x+1 (this corresponds to the
assignment x := 2x+1). Consider the region A given by the formula 0 ≤ x ≤ 10.
In the first step of the image computation, we conjoin A with Trans, and this
gives the region 0 ≤ x ≤ 10 ∧ x′ = 2x+1. Applying existential quantification of
x and simplifying the result, we get 1 ≤ x′ ≤ 21. The final step renames x′ to x,
and we get the region 1 ≤ x ≤ 21. Verify that the constraint 1 ≤ x ≤ 21 indeed
describes all possible values of x after executing the assignment x := 2x + 1,
given that 0 ≤ x ≤ 10 describes all possible values of x before executing the
assignment.

As a second example, consider a transition system with two integer variables
x and y. Suppose the transitions of the system correspond to executing the
statement:

if (y > 0) then x := x+ 1 else y := y− 1.

This statement translates to the following transition formula:

[(y > 0) ∧ (x′ = x+ 1) ∧ (y′ = y)] ∨ [(y ≤ 0) ∧ (x′ = x) ∧ (y′ = y− 1)].

Consider a region A of this transition system described by the formula 2 ≤
x − y ≤ 5. To compute the post-image of this region, we take its conjunction
with the transition formula, and this gives:

[(y > 0) ∧ (x′ = x+ 1) ∧ (y′ = y) ∧ (2 ≤ x− y ≤ 5)]
∨ [(y ≤ 0) ∧ (x′ = x) ∧ (y′ = y− 1) ∧ (2 ≤ x− y ≤ 5)].

Safety Requirements 105

If we existentially quantify the variable x from this formula, then we get

[(y > 0) ∧ (y′ = y) ∧ (2 ≤ x′ − 1− y ≤ 5)]
∨ [(y ≤ 0) ∧ (y′ = y− 1) ∧ (2 ≤ x′ − y ≤ 5)].

Now let us existentially quantify the variable y from this formula, and we get

[(y′ > 0) ∧ (2 ≤ x′ − 1− y′ ≤ 5)] ∨ [(y′ + 1 ≤ 0) ∧ (2 ≤ x′ − y′ − 1 ≤ 5)].

By renaming x′ and y′ to x and y, respectively, and some simplification, we
obtain

(3 ≤ x− y ≤ 6) ∧ (y �= 0)

as the post-image of the region A.

Consider the synchronous reactive component 3BitCounter of section 2.4.1 (see
figure 2.27). The component has two input variables, inc and start, and three
output variables, out0, out1, and out2. Let the state variables of the three
latches corresponding to the three bits be x0, x1, and x2. The reaction formula
ϕR for the component is equivalent to:

out0 = x0 ∧ out1 = x1 ∧ out2 = x2 ∧
⎡
⎣ (start = 1 ∧ x′0 = 0 ∧ x′1 = 0 ∧ x′2 = 0) ∨

(start = 0 ∧ inc = 0 ∧ x′0 = x0 ∧ x′1 = x1 ∧ x′2 = x2) ∨
(start = 0 ∧ inc = 1 ∧ x′0 = ¬x0 ∧ x′1 = x0 ⊕ x1 ∧ x′2 = (x0 ∧ x1)⊕ x2)

⎤
⎦

This formula expresses the constraint that each output bit outj is the same as
the (old) state xj , and either (1) the input start is high, and all the updated
state bits are 0, or (2) both the inputs are low, and the state stays unchanged,
or (3) the input start is low and inc is high, and counter increments. The
increment condition for the counter means that the low-order bit out0 flips, the
new value of middle bit out1 is the exclusive-or (denoted by the operator ⊕)
of the two low-order bits, and the new value of the high-order bit out2 is the
exclusive-or of the old value of out2 and the conjunction of the other two bits.
For the corresponding transition system, the transition formula ϕT is

∃ inc, start, out0, out1, out2 . ϕR

which simplifies to

(x′0 = 0 ∧ x′1 = 0 ∧ x′2 = 0) ∨
(x′0 = x0 ∧ x′1 = x1 ∧ x′2 = x2) ∨
(x′0 = ¬x0 ∧ x′1 = x0 ⊕ x1 ∧ x′2 = (x0 ∧ x1)⊕ x2)

Now consider the region A given by the formula x0 = 0 ∧ x1 = 0; that is, the
region A consists of states in which the two lower order bits are 0, but the higher
order bit may be 0 or 1. To compute the image of this region, we first conjoin
it with the transition formula ϕT , and this simplifies to

(x′0 = 0 ∧ x′1 = 0 ∧ x′2 = 0) ∨ (x′1 = 0 ∧ x′2 = x2)

106 Chapter 3

Input: A transition system T given by regions Init for initial states
and Trans for transitions, and a region ϕ for the property.

Output: If ϕ is reachable in T , return 1, else return 0.

reg Reach := Init;
reg New := Init;
while IsEmpty(New) = 0 do {
if IsEmpty(Conj(New, ϕ)) = 0 then return 1;
New := Diff(Post(New,Trans),Reach);
Reach := Disj(Reach,New);
};

return 0.

Figure 3.18: Symbolic Breadth-first Search Algorithm for Reachability

Existentially quantifying the old state variable x2 and simplifying the result
give us x′1 = 0. Finally, renaming the primed variables to unprimed ones
gives the region x1 = 0. This correctly captures the effect of executing one
round of the three-bit counter: the set of successors of the region {000, 100} is
{000, 001, 100, 101}.

Iterative Image Computation

Now we are ready to describe the symbolic breadth-first search algorithm. The
algorithm of figure 3.18 computes successive approximations of the set of reach-
able states by repeatedly applying the image computation, starting with the
initial region. The region Reach stores the set of states found reachable so far,
and the region New represents the states newly found reachable. The successive
values of New capture the minimum number of transitions needed to reach a
state: in the j-th iteration of the loop, New contains precisely those states s
for which the shortest execution from an initial state leading to s involves j
transitions. Initially, both the regions Reach and New are set to Init. If any
state in New satisfies the property ϕ, that is, the intersection of the regions
New and ϕ is non-empty, then the algorithm stops. If the region New is empty,
then the algorithm can terminate reporting that no reachable state satisfies the
property ϕ (that is, the negated property ¬ϕ is an invariant). Otherwise, to
find the states that are reachable in one more step, the algorithm applies the
Post operator to the region New and removes those states that were already
known to be reachable using the set-difference operation on regions. The values
of the region Reach in the successive iterations of the algorithm are depicted in
figure 3.19.

To illustrate how the symbolic breadth-first search algorithm works, let us revisit
the transition system corresponding to the component RailRoadSystem2 (see
figure 3.15). Initially, Reach = New = Init = {aa00rr}. After one iteration of

Safety Requirements 107

reach0 reach1 reach2

Figure 3.19: Symbolic Breadth-First Computation of Reachable States

the loop,

Reach = { aa00rr, wa10gr, ww11rg, aw01rg };
New = {wa10gr, ww11rg, aw01rg }.

After the second iteration of the loop,

New = { ba10gr, bw11gr, ab01rg, wb11rg }.

After the third iteration of the loop, Reach contains all the nine reachable states,
and New equals { aw01rr }. After the fourth iteration, New becomes empty, and
Reach stays unchanged. As a result, the algorithm stops.

If the symbolic breadth-first search algorithm terminates, then its answer is
correct. If the property ϕ is reachable and the shortest witness contains j
transitions, then after j iterations of the while-loop, the algorithm terminates.
If the property is not reachable, then the algorithm can terminate only if it
discovers all the reachable states after a finite number of iterations. This is
guaranteed if the number of reachable states of T is finite.

Theorem 3.3 [Symbolic Breadth-first Search for Reachability] Given a sym-
bolic representation of a transition system T and a property ϕ, the symbolic
breadth-first search algorithm of figure 3.18 has the following guarantees:

1. If the algorithm terminates, then the returned value correctly indicates
whether the property ϕ is reachable in T .

2. If the property ϕ is reachable in the transition system T , then the algorithm
terminates after j iterations of the while-loop, where j is the length of the
shortest witness to the reachability of ϕ.

3. If there exists a natural number j, such that every reachable state of T is
reachable by an execution with at most j transitions, then the algorithm
terminates after at most j iterations of the while-loop.

108 Chapter 3

A natural choice for a symbolic representation of regions is formulas. In par-
ticular, for transition systems with only Boolean variables, we can use formulas
over Boolean variables as a data type for regions. The operations such as Disj
and Conj correspond to the logical connectives such as disjunction and conjunc-
tion. To take set-difference of regions A and B, we can take conjunction of A
with the negation of B. Renaming corresponds to textual substitution. Finally,
existential-quantifier elimination Exists(A, x), where x is a Boolean variable,
corresponds to A0 ∨A1, where the formula A0 is obtained from A by replacing
each occurrence of the variable x with the constant 0, and the formula A1 is
obtained from A by replacing each occurrence of x with 1. All these operations
individually can be implemented efficiently over formulas. However, the check
IsEmpty(A) corresponds to checking satisfiability of the formula A, that is,
whether there exists a 0/1 assignment to Boolean variables so that the formula
A evaluates to 1. This test is computationally expensive. When A has Boolean
variables and logical connectives of negation, conjunction, and disjunction but
no existential quantification, this is exactly the canonical NP-complete problem
known as propositional satisfiability or SAT. Furthermore, in the context of the
iterative breadth-first search of our symbolic algorithm of figure 3.18, the main
drawback of representing the regions Reach and New as formulas is that there is
no guaranteed way to simplify the formula representing the reachable states at
each step. The formulas will get more and more complex due to the operations
applied in each iteration of the while-loop, and their size grows exponentially
with the number of iterations. The data structure of ordered binary decision
diagrams, to be discussed in the next section, offers a possible remedy.

Exercise 3.16 : Consider the symbolic image computation for a transition sys-
tem with two real-valued variables x and y and transition description given by
the formula x′ = x + 1 ∧ y′ = x. Suppose the region A is described by the
formula 0 ≤ x ≤ 4 ∧ y ≤ 7. Compute the formula describing the post-image of
A.

Exercise 3.17 : Consider a transition system T with two integer variables x
and y. The transitions of the system correspond to executing the statement:

if (x < y) then x := x+ y else y := y+ 1.

Write the transition formula over the variables x, y, x′, and y′ that captures the
transition relation of the system. Consider a region A of the above transition
system described by the formula 0 ≤ x ≤ 5. Compute the formula describing
the post-image of A.

Exercise 3.18*: The symbolic breadth-first search algorithm of figure 3.18
is a forward search algorithm that computes the set of states reachable from
the initial states by repeatedly applying the image computation operator Post.
Define a pre-image computation Pre using the symbolic operations such as Conj,
Rename, and Exists so that given a region A, Pre(A,Trans) is the region over
S that contains precisely those states s for which there is a transition (s, t)

Safety Requirements 109

for some state t in A. Develop a backward search algorithm for the invariant
verification problem that starts with the states that violate the desired invariant
and computes the set of states that can reach the violating states by repeatedly
applying the pre-image computation operator Pre.

Exercise 3.19*: Suppose we want to modify the symbolic breadth-first search
algorithm of figure 3.18 so that when it finds the property ϕ to be reachable,
it outputs a witness execution. Which additional operations on regions will be
needed for this purpose? Using these operations, modify the algorithm so that
it outputs a witness execution.

3.4.3 Reduced Ordered Binary Decision Diagrams ∗

Reduced ordered binary decision diagrams (ROBDDs) provide a compact and
canonical representation for formulas over Boolean variables (or, equivalently,
for Boolean functions).

Ordered Binary Decision Diagrams

Let V be a set containing k Boolean variables. A Boolean formula f over V
represents a function from boolk to bool. For a variable x in V , the following
equivalence, called the Shannon expansion of f around the variable x, holds:

f ≡ (¬x ∧ f [x �→ 0]) ∨ (x ∧ f [x �→ 1]).

Here, the formulas f [x �→ 0] and f [x �→ 1] are obtained from f by substituting
the variable x by the constants 0 and 1, respectively. The formulas f [x �→ 0]
and f [x �→ 1] do not refer to the variable x and are thus Boolean functions with
domain boolk−1. As a result, the Shannon expansion can be used to recursively
simplify a Boolean function. This suggests representing Boolean functions as
decision diagrams.

A (binary) decision diagram is a directed acyclic graph with two types of ver-
tices: terminal and internal. The terminal vertices have no outgoing edges, and
are labeled with one of the Boolean constants, 0 or 1. Each internal vertex is
labeled with a variable in V and has two outgoing edges: a left edge and a right
edge. Every path from an internal vertex to a terminal vertex contains, for
each variable x, at most one vertex labeled with x. Each vertex u represents a
Boolean function f(u). Given a valuation q for all the variables in V , the value
of the Boolean function f(u) is obtained by traversing a path starting from u
as follows. Consider an internal vertex v labeled with x. If q(x) is 0, then we
choose the left successor of v; if q(x) is 1, then we choose the right successor of
v. If the path terminates in a terminal vertex labeled with 0, then the function
f(u) evaluates to 0 according to the assignment q; if the path terminates in a
terminal vertex labeled with 1, then the function f(u) evaluates to 1 according
to q.

110 Chapter 3

Ordered (binary) decision diagrams (OBDDs) are decision diagrams in which
we choose a linear order < over the variables V and require that the labels of
internal vertices appear in an order that is consistent with <. Note that there
is no requirement that every variable should appear as a vertex label along
a path from the root to a terminal vertex, but simply that the sequence of
vertex labels along a path from the root to a terminal vertex is monotonically
increasing according to <. The semantics of OBDDs is defined by associating
Boolean formulas with each of the vertices. The definition is formalized below.

Ordered Binary Decision Diagram

Let V be a finite set of Boolean variables and < be a total order over V .
An ordered binary decision diagram B over (V,<) consists of:

1. Vertices: a finite set U of vertices that is partitioned into two sets:
internal vertices U I and terminal vertices UT ;

2. Root: a root vertex u0 in U ;

3. Labeling: a labeling function label that labels each internal vertex with
a variable in V and each terminal vertex with a constant in {0, 1};

4. Left edges: a left-child function left that maps each internal vertex
u to a vertex left(u), such that if left(u) is an internal vertex, then
label(u) < label(left(u)); and

5. Right edges: a right-child function right that maps each internal vertex
u to a vertex right(u), such that if right(u) is an internal vertex, then
label(u) < label(right(u)).

For such an OBDD, each vertex u has an associated Boolean formula over
V : f(u) equals label(u) if u is a terminal vertex, and equals

[¬ label(u) ∧ f(left(u))] ∨ [label(u) ∧ f(right(u))]

otherwise. The Boolean formula f(B) associated with the OBDD B is the
formula f(u0) associated with the root u0.

A Boolean constant is represented by an OBDD that contains a single terminal
vertex labeled with that constant. Figure 3.20 shows one possible OBDD for
the formula (x ∧ y) ∨ (x′ ∧ y′) with the ordering x < y < x′ < y′. A left edge
is shown as an arrow ending with an empty circle, and a right edge is shown as
an arrow ending with a filled circle. The OBDD of figure 3.20 is, in fact, a tree.
Figure 3.21 shows a more compact OBDD for the same formula with the same
ordering of variables.

Isomorphism and Equivalence

Two OBDDs B and C are isomorphic if the corresponding labeled graphs are
isomorphic. Two OBDDs B and C are equivalent if the Boolean formulas f(B)

Safety Requirements 111

v3

v0

v1

v4 v5

v2

v6

y′y′ y′y′y′ y′y′ y′

x′

x

y

x′ x′

y

x′

11 10 1 100 00 1 10 0 0 0

Figure 3.20: Ordered Binary Tree for (x ∧ y) ∨ (x′ ∧ y′)

and f(C) are equivalent. Thus, isomorphism means that the two OBDDs are
structurally the same, and equivalence means that the two OBDDs are seman-
tically the same. Clearly, isomorphic OBDDs represent the same formulas and
are, thus, equivalent. The converse need not hold: the ordered binary decision
diagrams of figures 3.20 and 3.21 are not isomorphic but are equivalent.

The notions of equivalence and isomorphism also extend to individual vertices.
If B is an OBDD over (V,<) and u is a vertex of B, then the subgraph rooted
at u consisting of the vertices and edges that are reachable from u is also an
OBDD over (V,<). In figure 3.20, the subgraph rooted at vertex v3 is an OBDD
that represents the Boolean formula x′∧ y′. Two vertices u and v of the OBDD
B are isomorphic if the subgraphs rooted at u and v are isomorphic. Similarly,
two vertices u and v are equivalent if the subgraphs rooted at u and v are
equivalent. Since OBDDs are acyclic graphs, the notion of isomorphism can be
defined by the following rules: (1) two terminal vertices u and v are isomorphic
if label(u) = label(v), and (2) two internal vertices u and v are isomorphic if
label(u) = label(v) and the left successors left(u) and left(v) are isomorphic and
the right successors right(u) and right(v) are isomorphic. In figure 3.20, all
terminal vertices with label 0 are isomorphic to one another. The subgraphs
rooted at vertices v3, v4, and v5 are isomorphic. In contrast, the vertices v5 and
v6 are not isomorphic to each other.

Reduced Ordered Binary Decision Diagrams

A reduced OBDD (ROBDD) is obtained from an OBDD by repeatedly applying
the following two steps:

1. Merge isomorphic vertices into one.

2. Eliminate internal vertices with identical left and right children.

Each step reduces the number of vertices while preserving equivalence. For
instance, consider the OBDD of figure 3.20. Since vertices v3 and v4 are iso-

112 Chapter 3

y′ 10

x′

x

y

Figure 3.21: Reduced Ordered Binary Decision Diagram for (x ∧ y) ∨ (x′ ∧ y′)

morphic, we can delete one of them, say v4, along with the subtree rooted at
v4 and redirect the right edge of the vertex v1 to v3. Now, since both edges
of the vertex v1 point to v3, we can delete the vertex v1, redirecting the left
edge of the root v0 to v3. Continuing in this manner, we obtain the ROBDD of
figure 3.21. It turns out that the above transformations are sufficient to obtain
a canonical form: the final ROBDD is the same irrespective of the specific order
in which the reductions are applied, and if we start with two non-isomorphic
but equivalent OBDDs, we get the same final ROBDD.

Reduced Ordered Binary Decision Diagram

A ROBDD over a totally ordered set (V,<) of Boolean variables is an or-
dered binary decision diagram B = (U, u0, label, left, right) over (V,<) such
that:

1. there are no two distinct vertices u and v in U with label(u) = label(v)
and left(u) = left(v) and right(u) = right(v), and

2. for every internal vertex u, the two children left(u) and right(u) are
distinct vertices.

Direct Construction of ROBDDs: An Example

Let us consider the Boolean formula

ϕ0 : (x ∨ ¬ y) ∧ (y ∨ z)

and suppose the variable ordering is x < y < z. Instead of first building an
OBDD and then reducing it using the two reduction rules, let us try to build
a ROBDD directly. The first step is illustrated in figure 3.22(a), which shows
the root vertex v0 labeled with the variable x. Note that the root vertex must
be labeled with x because x is the first variable in the chosen ordering, and the
value of the formula ϕ0 depends on the value of x. The left successor of the
vertex v0 should be a vertex, say v1, that represents the formula ϕ1 = ϕ0[x �→ 0],
which simplifies to the formula ¬y ∧ z, and the right successor of the vertex v0

Safety Requirements 113

y y y y

x

v0

¬y ∧ z y ∨ z

x

v0

v2v1

x

v0

10z z 10 z

(a) (b) (c)

v1 v2

v3

Figure 3.22: Building ROBDD for (x ∨ ¬y) ∧ (y ∨ z)

should be a vertex, say v2, that represents the formula ϕ2 = ϕ0[x �→ 1], which
simplifies to the formula y ∨ z.

The vertex v1 corresponds to the formula ϕ1 : ¬y ∧ z, and since the variable y
is the next variable in the chosen ordering, the vertex v1 is labeled with y. Its
left successor should be a vertex, say v3, that represents the formula ϕ1[y �→ 0],
which is equivalent to the formula z, and the right successor of the vertex v1
should be a vertex that represents the formula ϕ1[y �→ 1], which is equivalent
to the constant 0, and hence must be a terminal vertex.

The ROBDD corresponding to the vertex v2 that represents the formula ϕ2 :
y ∨ z is developed using a similar logic (see figure 3.22(b)). The vertex v2 is
labeled with the variable y. Its left successor should be a vertex that represents
the formula ϕ2[y �→ 0], which is equivalent to the formula z. Since the vertex v3
already represents the formula z and the reduction rules require as much sharing
as possible, the left child of the vertex v2 must be v3. The right successor of
the vertex v2 should be a vertex that represents the formula ϕ2[y �→ 1], which
is equivalent to the constant 1 and, hence, must be a terminal vertex.

Finally, the vertex v3 corresponding to the formula z has label z, the terminal
vertex 0 as its left successor, and the terminal vertex 1 as its right successor. This
completes the desired ROBDD for the formula ϕ0 as shown in figure 3.22(c).

Properties of ROBDDs

The next theorem asserts the basic facts about representing Boolean functions
using ROBDDs. Every Boolean function has a unique, up to isomorphism,
representation as a ROBDD. Furthermore, the ROBDD of a Boolean function
has the least number of vertices among all OBDDs for the same function once
we fix the variable ordering.

Theorem 3.4 [Existence, Uniqueness, and Minimality of ROBDDs] Let V be
a set of variables and < be a total order over V .

114 Chapter 3

1. If f is a Boolean formula over V , then there exists a ROBDD B over
(V,<) such that f(B) and f are equivalent.

2. If B and C be two ROBDDs over (V,<), then they are equivalent if and
only if they are isomorphic.

3. If B is a ROBDD over (V,<) and C is an OBDD over (V,<), such that
the two are equivalent, then C contains at least as many vertices as B.

Checking equivalence of two ROBDDs with the same variable ordering corre-
sponds to checking isomorphism and, hence, can be performed in time linear in
the number of vertices. The Boolean constant 0 is represented by a ROBDD
with a single terminal vertex labeled with 0, and the Boolean constant 1 is rep-
resented by a ROBDD with a single terminal vertex labeled with 1. A Boolean
formula represented by a ROBDD B is satisfiable if and only if the root of B
is not a terminal vertex labeled with 0. A Boolean formula represented by a
ROBDD B is valid if and only if the root of B is a terminal vertex labeled with 1.
Thus, checking satisfiability or validity of Boolean formulas is particularly easy
if we use ROBDD representation.

The size of the ROBDD representation of a Boolean formula may be exponential
in the number of variables. The size of the ROBDD representing a given formula
depends on the choice of the ordering of variables. Consider the formula (x =
y) ∧ (x′ = y′). Figure 3.23 shows two ROBDDs for two different orderings
of the variables. This example illustrates that the ordering can influence the
size dramatically: one ordering may result in a ROBDD whose size is linear
in the number of variables, whereas another ordering may result in a ROBDD
whose size is exponential in the number of variables. While choosing an optimal
ordering of variables can lead to exponential saving, computing the optimal
ordering is a computationally hard problem.

There are Boolean functions whose ROBDD representation does not depend
on the chosen ordering, and the ROBDD representation of some functions is
exponential in the number of variables, irrespective of the ordering. An example
of the former variety is the parity function, whereas that of the latter variety is
the multiplication function:

• Parity. Given a valuation s to a set V of Boolean variables, the parity
function returns 1 precisely when the number of variables x with s(x) = 1
is even. If V contains k variables, then irrespective of the chosen ordering,
the ROBDD for the parity function contains 2k + 1 vertices.

• Multiplication. Consider the set of variables {x0, . . . , xk−1, y0, . . . , yk−1},
and for 0 ≤ j < 2k, letMultj denote the Boolean function that denotes the
jth bit of the product of the two k-bit inputs, one encoded by the x-bits
and another encoded by the y-bits. For every ordering < of the variables,
the total number of vertices in the ROBDDs representing all the functions

Safety Requirements 115

y

x′

y′

y

0

y′

x

1

Ordering: x < y < x′ < y′

x′ x′

x

1

0y′ y′

yy y y

Ordering: x < x′ < y < y′

Figure 3.23: Two ROBDDs for (x = y) ∧ (x′ = y′)

Multj is guaranteed to grow exponentially with k. More precisely, the
following lower bound result has been established: there exists an index
0 ≤ j < 2k such that the ROBDD for Multj has at least 2k/8 vertices.

Shared Data Structure for ROBDDs

Let us turn our attention to implementing regions as ROBDDs. Every vertex
of a ROBDD is a ROBDD rooted at that vertex. This suggests that a ROBDD
can be represented by an index to a global data structure that stores vertices of
all the ROBDDs such that no two vertices are isomorphic. There are two signif-
icant advantages to this scheme, as opposed to maintaining each ROBDD as an
individual data structure. First, checking isomorphism, and hence equivalence,
corresponds to comparing indices and does not require traversal of the ROB-
DDs. Second, two non-isomorphic ROBDDS may have isomorphic subgraphs
and, hence, can share vertices.

Let V be an ordered set of k Boolean variables. The type of ROBDDs is bdd,
which is either a Boolean constant (denoting a terminal vertex) or a pointer
to an entry in the global data structure BDDPool. The type of BDDPool is
set(bddnode), and it stores the (internal) vertices of ROBDDs. An internal
vertex records a variable label, which ranges over the type nat[1, k] containing
the numbers {1, . . . k}, and a left and a right pointer, each of which has type
bdd. Thus, the vertices of ROBDDs have type bddnode, which equals nat[1, k]×
bdd× bdd. The type bddnode supports the following operations:

• The operation Label(u), for an internal vertex u, returns the first compo-
nent of u, which is the number of the variable labeling u.

• The operation Left(u), for an internal vertex u, returns the second com-
ponent of u, which is either a Boolean constant or a pointer to the left

116 Chapter 3

function AddVertex
Input: Variable label j in nat[1, k], ROBDDs B0, B1 of type bdd.
Output: ROBDD B such that f(B) is equivalent to (¬xj ∧f(B0))∨

(xj ∧ f(B1)).

if B0 = B1 then return B0;
if Contains((j, B0, B1),BDDPool) = 0 then

Insert((j, B0, B1),BDDPool);
return Index((j, B0, B1)).

Figure 3.24: Creating ROBDD Vertices

successor of u.

• The operation Right(u), for an internal vertex u, returns the third com-
ponent of u, which is either a Boolean constant or a pointer to the right
successor of u.

The type set(bddnode), besides usual operations such as Insert and Contains,
also supports

• For an internal vertex u in BDDPool, Index(u) returns a pointer to u.

• For a pointer B, the operation BDDPool[B] returns the vertex that B
points to.

For such a representation, given a pointer B of type bdd, we write f(B) to denote
the Boolean function associated with the ROBDD that B points to. To avoid
duplication of isomorphic nodes while manipulating ROBDDs, it is necessary
that new vertices are created using the function AddVertex of figure 3.24. If
no two vertices in the global set BDDPool are isomorphic before an invocation
of the function AddVertex, then even after the invocation, no two vertices in
BDDPool are isomorphic.

As an illustrative example, let us examine the snapshot of the global data struc-
ture BDDPool shown in figure 3.25. Each row shows an internal vertex stored
in this data structure. For example, the ROBDD B0 points to a vertex labeled
with variable x4 whose left successor is the terminal vertex 0 and right successor
is the terminal vertex 1, and the ROBDD B4 points to a vertex labeled with
variable x1 whose left successor is the terminal vertex 0 and right successor is
the ROBDD B2. The Boolean functions corresponding to each of the vertices
are listed below:

f(B0) = x4,

f(B1) = x2 ∨ x4,

f(B2) = ¬x3 ∨ x4,

f(B3) = x1 ∧ (x2 ∨ x4),

Safety Requirements 117

Index Label Left Right

B0 4 0 1
B1 2 B0 1
B2 3 1 B0

B3 1 0 B1

B4 1 0 B2

Figure 3.25: Illustrative Snapshot of the Data Structure BDDPool

f(B4) = x1 ∧ (¬x3 ∨ x4).

Observe that the ROBDDs B3 and B4 share the ROBDD B0.

Operations on ROBDDs

To construct a ROBDD representation of a given Boolean formula and im-
plement the primitives of the symbolic reachability algorithm, we need a way
to compute conjunctions and disjunctions of ROBDDs. We give a recursive
algorithm for obtaining conjunction of ROBDDs. The algorithm is shown in
figure 3.26.

Consider two ROBDDs, B and B′, and suppose we wish to compute the con-
junction f(B)∧f(B′). If one of them is a Boolean constant, then the result can
be determined immediately. For instance, if B is the terminal constant 0, then
the conjunction is also the terminal constant 0. If B is the terminal constant 1,
then the conjunction is equivalent to f(B′), and thus the algorithm can return
B′. Also, note that when both the ROBDDs are the same, we can use the fact
f ∧ f always equals f , and thus the result coincides with the input argument.

The interesting case is when both ROBDDs are pointers to distinct internal
vertices, say u and u′, respectively. Let j be the minimum of the indices labeling
u and u′. Then xj is the least variable that the function f(u) ∧ f(u′) can
depend on. The label of the root of the conjunction is j, the left successor is
the ROBDD for (f(u) ∧ f(u′))[xj �→ 0], and the right successor is the ROBDD
for (f(u) ∧ f(u′))[xj �→ 1]. Let us consider the left successor. Observe the
equivalence

(f(u) ∧ f(u′))[xj �→ 0] ≡ f(u)[xj �→ 0] ∧ f(u′)[xj �→ 0].

If u is labeled with j, the ROBDD for f(u)[xj �→ 0] is the left successor of
u. If the label of u exceeds j, then the function f(u) does not depend on xj ,
and the ROBDD for f(u)[xj �→ 0] is u itself. The ROBDD for f(u′)[xj �→ 0] is
computed similarly, and then the function Conj is applied recursively to compute
the conjunction according to the expression above.

118 Chapter 3

Let us apply this scheme to compute the conjunction of the ROBDDs B3 and
B4 from figure 3.25. The vertex corresponding to B3 has label x1, left successor
0, and right successor B1, while the vertex corresponding to B4 has label x1,
left successor 0, and right successor B2. As a result,

Conj(B3, B4) = AddVertex(1,Conj(0, 0),Conj(B1, B2)).

The call Conj(0, 0) returns 0 using the rule for the constant ROBDDs. To com-
pute the conjunction of B1 and B2, the algorithm examines the corresponding
vertices: the vertex corresponding to B1 has label x2, left successor B0, and
right successor 1, while the vertex corresponding to B2 has a higher label x3.
This leads to:

Conj(B1, B2) = AddVertex(2,Conj(B0, B2),Conj(1, B2)).

This generates two recursive calls to Conj again: the second call Conj(1, B2)
returns immediately with the answer B2 using rules for simplification when one
of the arguments is a constant. The first call Conj(B0, B2) requires examination
of the corresponding vertices: the vertex corresponding to B0 has label x4, while
the vertex corresponding to B2 has label x3, left successor 1, and right successor
B0. This leads to:

Conj(B0, B2) = AddVertex(3,Conj(B0, 1),Conj(B0, B0)).

In this case, both the recursive calls to Conj return immediately: Conj(B0, 1)
returns B0 and Conj(B0, B0) also returns B0 using the rule for the conjunction
of identical ROBDDs. As a result, a call is made to AddVertex(3, B0, B0). This
does not create a new vertex since the reduction rules do not allow both left and
right successors to be the same. The call AddVertex(3, B0, B0) simply returns
B0:

Conj(B0, B2) = AddVertex(3, B0, B0) = B0.

Now, Conj(B1, B2) calls AddVertex(2, B0, B2). The data structure BDDPool
does not contain a vertex with label 2, left successor B0, and right successor B2.
As a result, AddVertex will create a new entry (2, B0, B2), with the index B5:

Conj(B1, B2) = AddVertex(2, B0, B2) = B5.

Finally, Conj(B3, B4) calls AddVertex(1, 0, B5). Again, BDDPool does not con-
tain such a vertex, so a new entry, indexed by B6, is created and is the desired
result, namely, the ROBDD representation of the conjunction of the functions
represented by B3 and B4:

Conj(B3, B4) = AddVertex(1, 0, B5) = B6.

Avoiding Recomputation

The recursive algorithm described so far may call the function Conj repeatedly
with the same two arguments. To avoid unnecessary computation, a table is

Safety Requirements 119

Input: bdd B,B′.
Output: bdd B′′ such that f(B′′) is equivalent to f(B) ∧ f(B′).

table[(bdd× bdd)× bdd] Done = EmptyTable

return Conj(B,B′).

bdd Conj (bdd B,B′)
bddnode u, u′; bdd B′′, B0, B1, B

′
0, B

′
1; nat[1, k] j, j

′

if (B = 0 ∨ B′ = 1) then return B;
if (B = 1 ∨ B′ = 0) then return B′;
if B = B′ then return B;
if Done[(B,B′)] �=⊥ then return Done[(B,B′)];
if Done[(B′, B)] �=⊥ then return Done[(B′, B)];
u := BDDPool[B]; u′ := BDDPool[B′];
j := Label(u); B0 := Left(u); B1 := Right(u);
j′ := Label(u′); B′

0 := Left(u′); B′
1 := Right(u′);

if j = j′ then B′′ := AddVertex(j,Conj(B0, B
′
0),Conj(B1, B

′
1));

if j < j′ then B′′ := AddVertex (j,Conj(B0,B
′),Conj(B1,B

′));
if j > j′ then B′′ := AddVertex (j′,Conj(B,B′

0),Conj(B,B′
1));

Done[(B,B′)] := B′′;
return B′′.

Figure 3.26: Algorithm for Taking Conjunction of ROBDDs

used to store the arguments and the corresponding result of each invocation of
Conj. When Conj is invoked with input arguments B and B′, it first consults
the table to check whether the conjunction of f(B) and f(B′) was previously
computed. The actual recursive computation is performed only the first time,
and the result is stored into the table.

A table data structure stores values that are indexed by keys. If the type of
values stored is value and the type of the indexing keys is key, then the type
of the table is table[key × value]. This data type supports the retrieval and
update operations like arrays: D[k] is the value stored in the table D with the
key k, and the assignment D[k] := m updates the value stored in D for the key
k. The constant table EmptyTable has the default value ⊥ stored with every
key. Tables can be implemented as arrays or hash-tables. The table used by the
algorithm uses a pair of ROBDDs as a key and stores ROBDDs as values.

Let us analyze the time complexity of the algorithm of figure 3.26. Suppose the
ROBDD pointed to by B has n vertices and the ROBDD pointed to by B′ has n′

vertices. Let us assume that the implementation of the set BDDPool supports
constant time membership tests and insertions and the table Done supports
constant-time creation, access, and update. Then within each invocation of
Conj, all the steps, apart from the recursive calls, are performed in constant
time. Thus, the time complexity of the algorithm is the same, within a constant

120 Chapter 3

factor, of the total number of invocations of Conj. For any pair of vertices, the
function Conj produces two recursive calls only the first time Conj is invoked
with this pair as input and zero recursive calls during the subsequent invocations.
This gives an overall time-complexity of O(n · n′).

Theorem 3.5 [ROBDD Conjunction] Given two ROBDDs, B and B, the al-
gorithm of figure 3.26 correctly computes the ROBDD for f(B) ∧ f(B′). If the
ROBDD pointed to by B has n vertices and the ROBDD pointed to by B′ has
n′ vertices, then the time complexity of the algorithm is O(n · n′).

Similar algorithms can be developed to implement other operations such as Disj
(logical disjunction), Diff (set difference), and Exists (existential quantifica-
tion).

Symbolic Search Using ROBDDs

We now have all the machinery to implement the symbolic search algorithm
using ROBDDs as a representation for regions. We have already discussed how
to construct symbolic representation of transition systems as initialization and
transition formulas ϕI and ϕT . If all the variables in the source description
are Boolean variables, then the formulas ϕI and ϕT are Boolean formulas built
using logical connectives and existential quantification. We can build ROBDDs
corresponding to these formulas using the operations we have discussed.

If the formula is an atomic formula of the form x = 1, then the correspond-
ing ROBDD is obtained by calling the AddVertex function: if the position of
the variable x in the variable ordering is j, then the desired ROBDD is simply
AddVertex(j, 1, 0). If the formula f is of the form f1 ∧ f2, then we first build
ROBDDs B1 and B2 corresponding to the (simpler) formulas f1 and f2, respec-
tively, and then the ROBDD for f is obtained by invoking Conj(B1, B2). The
ROBDD operations Disj, Diff, and Exists are used to process the corresponding
operations of disjunction, negation, and existential quantification in the formu-
las. We can define the function FormulaToBdd that maps Boolean formulas to
ROBDDs as follows:

FormulaToBdd(xj = 1) = AddVertex(j, 0, 1)

FormulaToBdd(xj = 0) = AddVertex(j, 1, 0)

FormulaToBdd(f1 ∧ f2) = Conj(FormulaToBdd(f1),FormulaToBdd(f2))

FormulaToBdd(f1 ∨ f2) = Disj(FormulaToBdd(f1),FormulaToBdd(f2))

FormulaToBdd(¬ f) = Diff(1,FormulaToBdd(f))

FormulaToBdd(∃X. f) = Exists(FormulaToBdd(f), X)

For symbolic invariant verification, given a property ϕ, we also need to build
the ROBDD for the formula ϕ. Then we can use the algorithm of figure 3.18,

Safety Requirements 121

where every region is a pointer into the global data structure storing ROBDD
vertices.

While ROBDDs can be used directly when all system variables are of type
bool, they can also be used for analysis of finite-state systems with variables
of enumerated or other finite types by encoding a finite type using a sequence
of Boolean variables. For example, consider the state variable mode of the
Train component that takes three possible values away, wait, and bridge (see
figure 3.4). We can encode the variablemode using two Boolean variablesmode0
andmode1, using values 00, 01, and 10 to encode the three possibilities formode.
Expressions of the form mode = away are replaced by mode0 = 0 ∧ mode1 = 0;
expressions of the form mode = wait are replaced by mode0 = 0 ∧ mode1 = 1;
and expressions of the form mode = bridge are replaced by mode0 = 1 ∧
mode1 = 0.

The ROBDD representation of a Boolean formula can be exponential in the
number of variables and is sensitive to the ordering of variables. Given a system
with Boolean state variables S, to build the representation of the initialization
and transition formulas, we need to choose an ordering < of the variables in
S ∪ S′. Recall that one of the steps in the image computation is to rename
all the primed variables to unprimed variables. This renaming step can be
implemented by renaming the labels of the internal vertices of the ROBDD
if the ordering of the primed variables is consistent with the ordering of the
corresponding unprimed variables. This gives us our first rule for choosing <:
for all variables x, y ∈ S, x < y if and only if x′ < y′. Another commonly used
rule for choosing the ordering stipulates that a variable should appear only after
all the variables it depends on. For example, when the update is specified using
task graphs, if a task A writes a state variable x, then x′ should appear after
the variables read by the task A as well as the tasks preceding A according to
the precedence constraints. Finally, the variables that are related to each other
should be clustered together. In particular, instead of ordering all the primed
variables after all the unprimed variables, we can try to minimize the distance
between a primed variable and the unprimed variables it depends on.

The practical tools for analyzing systems using ROBDDs employ a wide array
of techniques to combat the growth in the ROBDD size with the number of
variables. As a result, symbolic invariant verification using ROBDDs has had
significant success in analyzing industrial-scale hardware designs and embedded
controllers. Yet it is not a magic bullet, and the performance of ROBDD-based
tools remains unpredictable: sometimes they can reveal hitherto unknown bugs
in complex designs, and sometimes the breadth-first search algorithm can finish
only a few iterations before the number of ROBDD vertices created becomes
too large compared to the available memory.

Exercise 3.20 : Consider the Boolean formula

(x ∨ y) ∧ (¬x ∨ z) ∧ (¬ y ∨ ¬ z).

122 Chapter 3

x

0

1

z

y

+

+

−

Figure 3.27: A Decision Graph with Complement Edges

Draw the ROBDD for this formula with respect to the variable ordering x <
y < z.

Exercise 3.21 : Consider the Boolean formula

(x1 ∧ x2 ∧ x3) ∨ (¬x2 ∧ x4) ∨ (¬x3 ∧ x4).

Choose a variable ordering for the variables {x1, x2, x3, x4} and draw the re-
sulting ROBDD. Can you reduce the size of the ROBDD by reordering the
variables?

Exercise 3.22 : Let V be the set {x0, x1, y0, y1, z0, z1, c}. Choose an appro-
priate ordering of the variables and construct the ROBDD for the requirement
that the output z1z0, together with the carry bit c, is the sum of the inputs
x1x0 and y1y0.

Exercise 3.23*: Give an algorithm for computing the existential quantifica-
tion for ROBDDs: given a ROBDD B and a set X of variables, Exists(B,X)
should return the ROBDD for the formula ∃X. f(B).

Exercise 3.24*: An ordered binary decision diagram with complement edges
(COBDD) is similar to an ordered binary decision diagram B with an addi-
tional component that classifies each right edge as positive + or negative −.
The function f(u) for an internal vertex u is redefined so that f(u) equals
(¬label(u) ∧ f(left(u))) ∨ (label(u) ∧ f(right(u))) if the right edge of u is posi-
tive and (¬label(u) ∧ f(left(u))) ∨ (label(u) ∧ ¬f(right(u))) if the right edge of
u is negative. Thus, when the right edge is negative, we negate the function
associated with the right successor. For instance, in figure 3.27, the vertex la-
beled with y represents the function y ∧ z while the root represents the function
(x ∧ ¬(y ∧ z)).

(1) Is there a function with a COBDD representation that is smaller than its
ROBDD representation for the same variable ordering? (2) Can we define a
notion of reduced ordered binary decision diagrams with complement edges
(RCOBDD) as a subclass of COBDDs such that every boolean function has
a unique representation?

Safety Requirements 123

Bibliographic Notes

The concept of invariants and inductive invariants was introduced in 1960s in
early papers to formalize the notion of program correctness [Hoa69]. For an
introduction to principles and tools for program verification, we refer the reader
to [Lam02] and [BM07]. There have been prominent successes of software ver-
ification in industrial projects recently; see [BLR11, BBC+10, IBG+11, Hol13]
as illustrative examples.

Efficient on-the-fly enumerative search for invariant verification was developed
in the 1980s and forms the core analysis engine in the model checker Spin [Hol04,
Hol97] (see also the model checker Murphi [Dil96]).

Bryant introduced ROBDDs as an efficient representation on Boolean func-
tions [Bry86]. Symbolic search using ROBDDs was first introduced in the model
checker Smv and was instrumental in the success of verification tools in ana-
lyzing hardware protocols [BCD+92, McM93] (see also the model checkers Vis
and NuSmv and the associated optimized implementations of ROBDD opera-
tions [BHSV+96, CCGR00]).

Many of the illustrative examples in this chapter are borrowed from the draft
textbook on Computer Aided Verification [AH99a].

We have briefly mentioned concepts in computability theory such as decidability
and NP-completeness. For a comprehensive introduction to these topics, see
[Sip13].

4

Asynchronous Model

We now shift our focus to the asynchronous model of computation that does
not require concurrent activities to execute in lock-step. Such models naturally
capture multi-processor machines and networked distributed platforms. In this
chapter, we first formalize this model of computation and then study how to
design protocols to achieve coordination necessary to solve computing problems
in the presence of asynchrony.

4.1 Asynchronous Processes

Like a synchronous reactive component, an asynchronous process interacts with
other processes via inputs and outputs and maintains an internal state. How-
ever, the execution does not proceed in rounds, and the speeds at which different
processes execute are independent. Within a process, the reception of inputs is
decoupled from the production of outputs, and this corresponds to the assump-
tion that any internal computation takes an unknown but nonzero amount of
time.

As an example, consider the Buffer process shown in figure 4.1 that models the
asynchronous version of the synchronous reactive component Delay of figure 2.1.
The input and output variables of a process are called channels. The process
Buffer has a Boolean input channel in and a Boolean output channel out. The
internal state of the process Buffer is a buffer of size 1, which can either be
empty or contain a Boolean value. This is modeled by the variable x that ranges
over the enumerated type {null, 0, 1}. Initially, the buffer is empty. The key
difference between the synchronous component Delay and the asynchronous
process Buffer lies in the specifications of their dynamics. The process Buffer
has two possible types of actions. It can process an input value available in
the input channel in by copying it into its buffer. Alternatively, if the buffer
is non-empty, then the process can output the buffer state by writing it to the
output channel out and then reset the buffer to empty. Each type of action is
specified using a task, and in one step, only one of the tasks is executed.

126 Chapter 4

bool outbool in
{0, 1, null} x := null

Ai : x := in

Ao : x �= null → {out := x; x := null}

Figure 4.1: Asynchronous Process Buffer

4.1.1 States, Inputs, and Outputs

In general, an asynchronous process P has a set I of typed input channels, a
set O of typed output channels, and a set S of typed state variables. All these
three sets are finite and disjoint from one another so that there are no name
conflicts.

As in the case of synchronous reactive components, a state of a process P is a
valuation over the set S of its state variables, and the set of its states is the
set QS of all possible valuations over S. The initialization Init assigns initial
values to all the state variables in S. As before, we allow multiple initial values
to capture situations where initial values are only partially known. A state q is
called an initial state if, for every state variable x, the value q(x) is consistent
with the initialization of the variable x. The set of all initial states is denoted
[[Init]].

In the asynchronous model of computation, when there are multiple input chan-
nels, the arrival of input values on different channels is not synchronized. Hence,
an input of a process consists of a single input channel x along with a value v
that belongs to the type of x. We denote such an input by x ? v. Such an input
can be interpreted as receiving the value v on the input channel x.

The modeling of outputs is symmetric. When there are multiple output chan-
nels, in one step, a process can produce a value for only one of the output
channels. An output of a process consists of a single output channel y along
with a type-consistent value v. We denote such an output by y ! v. Such an
output can be interpreted as sending the value v on the output channel y.

For the process Buffer, the set S of state variables is {x}, the set I of input
variables is {in}, the set O of output variables is {out}, the set of states is
{0, 1, null}, the set of initial states is {null}, the set of inputs is {in ? 0, in ? 1},
and the set of outputs is {out ! 0, out ! 1}.

4.1.2 Input, Output, and Internal Actions

For synchronous reactive components, execution during a round is specified
using a set of tasks, where the execution of a single task captures an atomic unit
of computation. For asynchronous processes, we also specify its computation
using a set of tasks. As before, the update description of a task assigns values

Asynchronous Model 127

to variables in its write-set using the values of variables in its read-set and is
usually given as a straight-line code consisting of conditional and assignment
statements. In contrast to the synchronous case, during one step, instead of
executing all the tasks, only one task is executed. To indicate whether a task
is ready to be executed, we explicitly associate a guard condition with each
task. This condition is given as a Boolean formula over the state variables,
and the task is enabled in a given state if the state satisfies this formula. If
multiple tasks are enabled, then one of them is chosen nondeterministically for
execution. Precedence constraints among tasks are no longer meaningful since
there is no need to order tasks within a round. In the synchronous model, a
careful specification of the subset of state variables that a task reads and writes
is necessary to identify potential write-conflicts, and we require that tasks with
write-conflicts are ordered by precedence constraints for scheduling within a
single round. This is not relevant in the asynchronous model, and we assume
that each task reads and writes all the state variables. To ensure that a process
either receives a single input value or sends a single output value in a step, we
require that each task can either read at most one input channel or write at
most one output channel.

Input Tasks

Processing of an input is called an input action. During an input action, the pro-
cess can only update its state and does not produce outputs. Input actions are
specified using input tasks, each of which is associated with one input channel.
The description of an input task A associated with an input channel x is given
as Guard → Update, where Guard gives the condition under which this task is
willing to process inputs on the channel x and Update describes how the task
updates state variables based on the old values of the state variables together
with the input value received on the channel x. Semantically, Guard defines a
set [[Guard]] of valuations over S, and Update defines a relation [[Update]] from
valuations over the read-set S ∪ {x} to valuations over the write-set S. An
input task A is said to be enabled in a state s if the state s satisfies the guard

condition Guard. Such a task defines the set of input actions of the form s
x ? v−→ t

such that the state s satisfies the guard Guard and the state t can be obtained
by executing the description Update in state s given the value v for the input
channel x, that is, if s ∈ [[Guard]] and (s[x �→ v], t) ∈ [[Update]].

For the process Buffer of figure 4.1, there is a single input task Ai that reads
the input channel in. The task is always enabled, meaning that the process is
always willing to accept an input on the channel in. In such a case, the guard
equals the Boolean constant 1 and is omitted from the description. The task
updates the state variable x using the assignment x := in. This task leads to six

input actions: for each state s ∈ {0, 1, null}, s in ? 0−→ 0 and s
in ? 1−→ 1. Note that

if the process is supplied an input value when the buffer is non-empty, then the
old state is lost.

Usually each input channel x has one input task associated with it. If no input

128 Chapter 4

nat x := 0; y := 0

Ax : x := x+ 1

Ay : y := y+ 1

Figure 4.2: Asynchronous Process AsyncInc

task is associated with a channel, then the process cannot receive any inputs
on this channel. We can associate multiple tasks with the same channel to
specify different ways of processing input values on this channel. The set of all
input tasks associated with an input channel x is denoted Ax. In our example,
Ain = {Ai}.

Output Tasks

Producing an output is called an output action. Output actions are specified
using output tasks, where each output task is associated with one output channel
y. An output task A associated with an output channel y is described using
a guard condition Guard that specifies the set of states in which the output
task is ready to be executed and an update description Update that specifies
how the task updates the state variables and the output value for y based on
the values of the state variables it reads. Thus, for such a task, [[Update]] is a
relation from valuations over the set S of state variables to valuations over the
set S ∪ {y}. Given a state s that satisfies the guard condition Guard, we can
execute the update description Update to compute the new values of the state
variables resulting in a state t, along with a value v to be issued on the output

channel y. Thus, such a task defines the set of output actions s
y ! v−→ t, such

that s ∈ [[Guard]] and (s, t[y �→ v]) ∈ [[Update]]. As in the case of input tasks,
multiple output tasks may be associated with the same channel, and the set of
all tasks associated with an output channel y is denoted Ay.

For the process Buffer of figure 4.1, there is a single output task Ao that
produces an output on the channel out. The guard for this task is the condition
x �= null: the output task is enabled only when the buffer contains a non-
null value. The update is described by the sequence of assignments out :=

x; x := null. This leads to the following two output actions: 0
out ! 0−→ null and

1
out ! 1−→ null.

Internal Tasks

As a second example, consider the process AsyncInc of figure 4.2. The process
does not have any input or output channels. It has two state variables x and y,
both of type nat and initialized to 0. Since the process has no input and output
channels, there are no input or output tasks.

Asynchronous Model 129

A1
o : ¬ Empty(x1) → out := Dequeue(x1)

A1
i : ¬ Full(x1) → Enqueue(in1, x1)

queue(msg) x1 := null; x2 := null

A2
o : ¬ Empty(x2) → out := Dequeue(x2)

A2
i : ¬ Full(x2) → Enqueue(in2, x2)

msg out

msg in1

msg in2

Figure 4.3: Asynchronous Process Merge

The internal computation of a process is described using internal actions. Such
actions neither process inputs nor produce outputs but update internal state
and are described using internal tasks. An internal task A has a Boolean guard
condition Guard that describes the states in which the task is enabled and an
update description Update that specifies how the task updates the state variables
based on their old values. Given a state s, we evaluate the guard Guard to
check whether the task is ready to be executed and, if so, execute the update
description Update to compute the new values for the state variables leading
to a state t. Thus, the task specifies the set of internal actions s

ε−→ t such
that s ∈ [[Guard]] and (s, t) ∈ [[Update]]. The label ε indicates that there is no
observable communication during an internal action.

For the process AsyncInc, the state is updated by two internal tasks Ax and Ay.
The task Ax is always enabled (that is, its guard condition is always satisfied)
and increments the state variable x as specified by the update code x := x+ 1.
The task Ay is symmetric and increments the state variable y. The set of all
internal tasks of a process is denoted A and equals {Ax,Ay} for the process
AsyncInc. A step of the process corresponds to executing one of these two
tasks. Thus, the set of internal actions consists of (i, j)

ε−→ (i + 1, j) and

(i, j)
ε−→ (i, j + 1) for every pair of natural numbers i and j.

Asynchronous Merge

As a third example, consider the process Merge, shown in figure 4.3, with two
input channels in1 and in2, both of type msg. The process uses a buffer dedicated
to each of the two input channels to store values received on that channel. We
model a buffer using the type queue: null represents the empty queue, the
operation Enqueue(v, x) updates the queue x by adding the value v as its last
element, the operation Dequeue(x) returns the first element of the queue x
while updating the queue by removing the first element, the operation Front(x)
returns the first element of the queue x without removing it from the queue,
the operation Empty(x) returns 1 if the queue x is empty and 0 otherwise, and
the operation Full(x) returns 1 if the queue x is full and 0 otherwise.

130 Chapter 4

The input task A1
i captures how the values received on the input channel in1

are processed: if the queue x1 is not full, then the value of in1 is enqueued
in the queue x1. This is captured by the guard condition ¬ Full(in1) and the
update code Enqueue(in1, x1). Compared to the process Buffer, this captures
a different style of synchronization: the environment, or the process sending
values on the channel in1, is blocked if the process Merge has its internal queue
x1 full. The input task A2

i corresponding to processing of the channel in2 is
similar.

The process Merge has two output tasks. The task A1
o dequeues an element

from the queue x1 and transmits it on the output channel out. This is possible
when the queue x1 is not empty. Hence, the task is described by the guard
condition ¬ Empty(x1) and the update code out := Dequeue(x1). The task A2

o

is symmetric and corresponds to transferring the front element of the queue x2
to the output channel. Note that both the output tasks are associated with
the same channel, and thus Aout = {A1

o,A
2
o}. When the queues x1 and x2 are

non-empty, both output tasks are enabled, and either of them can be executed.

The definition is summarized below.

Asynchronous Process

An asynchronous process P has:

• a finite set I of typed input channels defining the set of inputs of the
form x ? v with x ∈ I and a value v for x;

• a finite set O of typed output channels defining the set of outputs of
the form y ! v with y ∈ O and a value v for y;

• a finite set S of typed state variables defining the set QS of states;

• an initialization Init defining the set [[Init]] ⊆ QS of initial states;

• for each input channel x, a set Ax of input tasks, each described by
a guard condition over S and an update from the read-set S ∪ {x} to
the write-set S defining a set of input actions s

x ? v−→ t;

• for each output channel y, a set Ay of output tasks, each described
by a guard condition over S and an update from the read-set S to the

write-set S ∪ {y} defining a set of output actions s
y ! v−→ t; and

• a set A of internal tasks, each described by a guard condition over S
and an update from the read-set S to the write-set S defining a set of
internal actions s

ε−→ t.

Exercise 4.1 : We want to design an asynchronous adder process AsyncAdd

with input channels x1 and x2 and an output channel y, all of type nat. If the ith
input message arriving on the channel x1 is v and the ith input message arriving

Asynchronous Model 131

0,0

1,0 0,1

1,12,0 0,2

Figure 4.4: Executions of the Process AsyncInc

on the channel x2 is w, then the ith value output by the process AsyncAdd on
its output channel should be v+w. Describe all the components of the process
AsyncAdd.

4.1.3 Executions

The operational semantics of an asynchronous process can be captured by defin-
ing its executions. An execution starts in an initial state. At every step, one
of the tasks that is enabled in the current state is chosen and executed. This
task may be an input task, an output task, or an internal task. Only one task
is executed at every step, and the order in which different tasks are executed is
totally unconstrained. Such a semantics for asynchronous interaction is called
the interleaving semantics.

Figure 4.4 shows possible executions of the asynchronous process AsyncInc of
figure 4.2. Each state is a pair (i, j) of natural numbers corresponding to the
values of the variables x and y, respectively. The state (0, 0) is the sole initial
state, and each state has two possible transitions: one that increments the
value of x corresponding to the execution of the internal task Ax, and one that
increments the value of y corresponding to the execution of the task Ay. An
execution is a (finite) path through the graph shown in figure 4.4 starting at
the root. Note that for the process AsyncInc, every state of the form (i, j) is a
reachable state. In particular, the state (i, 0) is reachable via an execution that
consists of executing the task Ax i times without ever executing the task Ay,
corresponding to the left-most path in figure 4.4.

Formally, a finite execution of an asynchronous process P consists of a finite
sequence of the form

s0
l1−→ s1

l2−→ s2
l3−→ s3 · · · sk−1

lk−→ sk

where for 0 ≤ j ≤ k, each sj is a state of P , s0 is an initial state of P , and for

1 ≤ j ≤ k, sj−1
lj−→ sj is an input, an output, or an internal action P .

132 Chapter 4

For instance, one possible execution of the process Buffer of figure 4.1 is:

null
in ? 1−→ 1

out ! 1−→ null
in ? 0−→ 0

in ? 1−→ 1
in ? 1−→ 1

out ! 1−→ null.

Note that the process Buffer may execute an unbounded number of input
actions before it executes an output action, which issues the most recent input
value received.

For the process Merge of figure 4.3, below is one possible execution, where the
state lists the contents of the queues x1 and x2 in that order:

(null, null)
in1 ? 0−→ ([0], null)

in1 ? 2−→ ([02], null)
in2 ? 5−→ ([02], [5])

out ! 5−→
([02], null)

in2 ? 3−→ ([02], [3])
out ! 0−→ ([2], [3])

out ! 3−→ ([2], null)
in1 ? 0−→ ([20], null).

In a state such as ([02], [5]) where both the buffers are non-empty, assuming
that the two input buffers are also not full, all the four tasks are enabled. For

every possible value v of type msg, the possible input actions are: ([02], [5])
in1 ? v−→

([02v], [5]) and ([02], [5])
in2 ? v−→ ([02], [5v]), obtained by executing the input tasks

A1
i and A2

i , respectively; and the possible output actions are ([02], [5])
out ! 0−→

([2], [5]) and ([02], [5])
out ! 5−→ ([02], null), obtained by executing the output tasks

A1
o and A2

o, respectively.

Note that the sequence of values output by the process represents a merge of the
sequences of input values received on the two input channels. The relative order
of values received on the input channel in1 is preserved in the output sequence,
and so is the relative order of values received on the channel in2, but an input
value received on the channel in1 before a value received on the channel in2 may
appear on the output channel later.

In this example, each individual task is deterministic: for each task, given a
state in which the task is enabled, the execution of the task results in a unique
update of the variables in its write-set. However, the asynchronous execution
model is inherently nondeterministic: at each step, one of the enabled tasks
is chosen and executed, and the order in which the tasks execute affects the
outputs.

Exercise 4.2 : We want to design an asynchronous process Split that is the
dual of Merge. The process Split has one input channel in and two output
channels out1 and out2. The messages received on the input channel should be
routed to one of the output channels in a nondeterministic manner so that all
possible splittings of the input stream are feasible executions. Describe all the
components of the desired process Split.

4.1.4 Extended-State Machines

In section 2.1.6, we explored the use of extended-state machines to specify the
behavior of synchronous reactive components. Extended-state machines are

Asynchronous Model 133

stable unstable

x := 0

in ?

else

x := ¬ x
else

(in = x) ?
(in = x) ?

out ! x out ! x out ! 0

out ! 1hazard

Figure 4.5: An Asynchronous Not Gate AsyncNot

used to describe the behavior of asynchronous processes also. In an extended-
state machine description, there is an implicit state variable mode that ranges
over a finite enumerated type. The behavior is described by a graph whose ver-
tices correspond to the modes and whose edges correspond to mode-switches. In
the asynchronous case, each mode-switch can access at most one input channel
or at most one output channel, and each mode-switch corresponds to a task.
We will illustrate the notation using the example of an asynchronous process
modeling an asynchronous Not gate shown in figure 4.5.

In an asynchronous circuit, in contrast to synchronous circuits, there is no single
global clock, and a change in the value of an output due to changes in the values
of the inputs is delayed. An asynchronous logic gate is stable when its output is
the desired function of the inputs and unstable otherwise. If the gate is stable
and any of the inputs change in a way that violates the stability condition,
then the gate turns unstable. The output of an asynchronous gate can change
only if the gate is unstable, and when this happens, the gate becomes stable.
The time it takes for the gate to update its output is assumed to be arbitrary
so that a correctly designed asynchronous circuit is not dependent on concrete
values of the delay parameters. If the gate is unstable and any of the inputs
change without causing the stability condition to become true, then the gate
remains unstable. However, if any of the inputs of an unstable gate change
in a way that causes the stability condition to become true, then a hazard is
encountered and the gate fails. If a gate has failed, then its output may change
arbitrarily. Asynchronous gates and latches should be composed together to
form an asynchronous circuit in a manner so as to ensure that no gate ever fails.

Figure 4.5 describes the asynchronous process AsyncNot. The process has an
input channel in and an output channel outmodeling the input and output wires
of the gate. The extended-state machine has three modes stable, unstable,
and hazard corresponding to the three modes of operation of the gate. The
state variable x captures the value of the output, and this value is issued on the
output channel out.

Initially, the gate is in the stablemode with the output x equal to 0. If the value
received on the input channel in equals the current output, then this violates

134 Chapter 4

the logic of the Not gate, making it unstable, and if the value of the input
channel is the negation of the output x, then the gate continues to stay stable.
This is expressed by a conditional mode-switch that has multiple targets: the
switch out of stable corresponding to processing inputs has no guard (that is,
it is always enabled), and then if the condition (in = x) holds the target of the
mode-switch is unstable; otherwise the target of the mode-switch is stable.

In the unstable mode, the gate can switch back to the stable mode, toggling the
value of x. Processing of an input value in the unstable mode causes the gate
to ignore the input by either keeping the mode unchanged (this is the case if
the input value is equal to the current output, thereby maintaining the validity
of the pending toggling of the output) or switching to the mode hazard (this
is the case if the input value is the negation of the current output implying a
meaningful change in input values in rapid succession without giving the gate
a chance to update its output appropriately). Processing of inputs is again
expressed by a conditional mode-switch with two possible targets.

In the mode hazard, the gate ignores input values (that is, processing an input
value has no effect on the state) and issues both output values in a nondeter-
ministic manner.

Each mode-switch corresponds to a single task, and at each step, exactly one
mode switch of the machine is executed. In our example, the self-loop on the
mode stable contributes an output task with the guard condition (mode =
stable) and the update code out ! x. Each of the other three self-loops that in-
volve the output channel contribute one output task each. The switch from the
mode unstable to stable contributes the sole internal task with the guard con-
dition mode = unstable and the update code x := ¬ x; mode := stable. The
conditional mode-switch out of stable contributes an input task with the guard
condition (mode = stable) and the update code if (in = x) then mode :=
unstable. The input task corresponding to the conditional mode-switch out of
the mode unstable is similar. Finally, the self-loop on the mode hazard labeled
with in ? contributes the input task with the guard condition (mode = hazard)
and empty update code (that is, the state stays unchanged). A possible execu-
tion of the process is shown below:

(stable, 0)
out ! 0−→ (stable, 0)

in ? 0−→ (unstable, 0)
in ? 0−→ (unstable, 0)

ε−→
(stable, 1)

out ! 1−→ (stable, 1)
out ! 1−→ (stable, 1)

in ? 1−→ (unstable, 1)
in ? 0−→

(hazard, 1)
out ! 0−→ (hazard, 1)

out ! 1−→ (hazard, 1)
in ? 0−→ (hazard, 1).

Note that starting in the initial state, if the process is supplied the input in ? 0,
followed by the input in ? 1, with no intervening output actions, then the result-
ing mode may be hazard or unstable. The latter is a possibility if in between
the two input actions the process executes the internal action that toggles the
state variable x. Note that the internal action of toggling x is decoupled from
issuing the output on the output channel out. The only way to ensure that the

Asynchronous Model 135

m

m2

m1

Guard

else→ Update2

Test → Update1

Figure 4.6: A Conditional Mode-switch in Extended-state Machines

gate does not enter the mode hazard is for its environment, after supplying the
input in ? 0, to wait for the output out ! 1 before issuing the subsequent input
in ? 1.

The execution semantics of processes specified using extended-state machines is
intuitively simple and can be directly incorporated in the simulation and analysis
tools for asynchronous processes. Alternatively, it is possible to translate the
extended-state machine description to the task-based formal definition. The
general form of a conditional mode-switch is shown in figure 4.6. The mode-
switch can be executed if the current mode is m and the guard condition Guard
holds. The update code corresponds to evaluating the condition Test, and if
that holds, the code Update1 is executed, and the mode variable is updated to
m1; otherwise the code Update2 is executed, and the mode variable is updated
to m2. Such a mode-switch contributes a task with the guard condition

(mode = m) ∧ Guard

and update code

if Test then {Update1; mode := m1} else {Update2; mode := m2}.

The variables accessed in the two conditionsGuard and Test and the two updates
Update1 and Update2 should be such that the task can be classified as an internal
task, an input task associated with a single input channel, or an output task
associated with a single output channel. In particular, the key restriction is
that the guard condition Guard should not refer to input values. That’s why
we cannot replace the conditional mode-switch out of the mode stable by two
separate mode-switches, one from the mode stable to unstable with the guard
condition (in = x) and one self-loop with the negated guard condition (in �= x).

Exercise 4.3 : Describe an asynchronous process AsyncAnd that models an
asynchronous And gate with two Boolean input channels in1 and in2 and a
Boolean output channel out. The process can be described as an extended-state
machine with three modes as in the case of the process AsyncNot in figure 4.5
and with three Boolean state variables.

136 Chapter 4

Buffer1 Buffer2
bool tempbool in bool out

Figure 4.7: Block Diagram for DoubleBuffer from Two Buffer Processes

4.1.5 Operations on Processes

As discussed in chapter 2, block diagrams can be used to describe composition
of synchronous components to form systems in a hierarchical manner. The same
design methodology applies to asynchronous processes also. As an example, con-
sider the block diagram of figure 4.7 that uses two instances of the asynchronous
process Buffer to form a composite process DoubleBuffer. The block diagram
is structurally identical to the block diagram of the synchronous component
DoubleDelay of figure 2.15. As before, the meaning of such diagrams can be
made precise using three operations: instantiation, parallel composition, and
output hiding. A textual description of the process DoubleBuffer using these
operations is:

(Buffer[out �→ temp] | Buffer[in �→ temp]) \ temp.

Input/Output Channel Renaming

The operation of input or output channel renaming is used to achieve the desired
communication pattern. In figure 4.7, the asynchronous process Buffer1 is
obtained by renaming the output channel out of the process Buffer to temp and
corresponds to the renaming expression Buffer[out �→ temp]. Analogously, the
process Buffer2 is obtained by renaming the input channel in of the process
Buffer to temp and corresponds to the process Buffer[in �→ temp]. When
these two processes are composed, the shared name temp ensures that the output
issued by the process Buffer1 is consumed by the process Buffer2 as its input.

When composing processes, we assume that the names of state variables are
private, and state variables are implicitly renamed to avoid name conflicts. In
our example, we can assume that the state variable of Buffer1 is called x1
instead of x, and the state variable of Buffer2 is called x2.

The formal definition of the input/output channel renaming operation for pro-
cesses is similar to the corresponding definition for synchronous components and
corresponds to syntactic substitution of channel names throughout its descrip-
tion.

Asynchronous Model 137

Parallel Composition

The parallel composition operation combines two processes into a single process
whose behavior captures the interaction between the two processes running con-
currently so that an output action of one is synchronized with an input action
of another with the common channel name, and remaining actions are inter-
leaved. To differentiate the asynchronous composition with the synchronous
composition (which is denoted ‖), we use P1 |P2 to denote the composition of
two processes P1 and P2.

As in the synchronous case, two processes can be composed only if their vari-
able declarations are mutually consistent: there are no name conflicts concern-
ing state variables, and the two sets of output channels are disjoint. These
requirements capture the assumption that only one process is responsible for
controlling the value of any given variable. An input channel of one can be
an input or output channel of the other. Note that the problem of mutually
cyclic await-dependencies discussed for the synchronous case does not arise in
the asynchronous interaction. If x is an output channel of process P1 and an
input channel of process P2, and y is an output channel of P1 and an input chan-
nel of P2, then we can compose P1 and P2 without any complications. This is
because production of an output is a separate step from processing an input for
each of the processes, and hence there can be no dependencies among variables
within the same step.

The set of input channels, output channels, and state variables of the composite
process are defined as in the synchronous case. Each state variable of a compo-
nent process is a state variable of the composite process. Each output channel
of a component process is an output channel of the composite process. Each
input channel of a component process that is not an output of the other is an
input channel of the composite process.

The state of the composite process is of the form (s1, s2), where s1 is a state of
the process P1 and s2 is a state of the process P2. The two processes initialize
their states independently, and thus a composite state (s1, s2) is initial if both
states s1 and s2 are initial states of processes P1 and P2, respectively.

Tasks of the Composite Process

When an input channel x is a common input channel to both the processes,
both consume an input value on channel x simultaneously, and a possible input
action of the composite process corresponding to such an input is obtained by

executing input actions of the two processes together. That is, (s1, s2)
x ? v−→

(t1, t2) is an input action of the composite process precisely when s1
x ? v−→ t1

is an input action of P1 and s2
x ? v−→ t2 is an input action of P2. Consider an

input task A1 of P1 associated with the channel x, and suppose its guard is
Guard1 and update description is Update1. Similarly, suppose an input task A2

of P2 associated with the channel x has guard Guard2 and update description

138 Chapter 4

Update2. Then by combining the tasks A1 and A2, we obtain an input task A12

for the composite process associated with the channel x: its guard condition is
Guard1 ∧ Guard2 and the update code is Update1;Update2. That is, the task
A12 for processing input values on the channel x is enabled exactly when both
the corresponding input tasks of the two component processes are enabled, and
it updates the state variables of P1 using the update code Update1 and then
updates the state variables of P2 by executing the update code Update2. The
order in which the two update descriptions are executed does not really matter
as they update disjoint sets of variables. When the processes P1 and P2 have
multiple input tasks associated with the channel x, the composite process has
tasks corresponding to all possible pairings of such tasks of the two processes.

If a channel x is an output channel of one process, say process P1, and an input
channel of the other process P2, then the two processes synchronize using this
channel: when P1 executes an output action sending a value on the channel x,
the receiver P2 executes a matching input action. The resulting joint action is

an output action for the composite. That is, (s1, s2)
x ! v−→ (t1, t2) is an output

action of the composite process precisely when s1
x ! v−→ t1 is an output action of

P1 and s2
x ? v−→ t2 is an input action of P2. If the description of an output task

A1 of P1 associated with channel x is Guard1 → Update1 and the description of
an input task A2 of P2 associated with channel x is Guard2 → Update2, then
the description for the task A12 of the composite process obtained by pairing
these two tasks is: Guard1 ∧ Guard2 → Update1;Update2. Thus, the task is
enabled when the guard conditions of both the tasks are satisfied. The update
description Update1 updates the state variables of the process P1 and computes
an output value for the channel x. This value is then used by the update code
Update2 to update the state variables of P2. It is worth emphasizing that the
guard condition of an input task corresponding to a channel x refers only to the
state variables: whether a process is willing to process an input on a channel
x depends on its state but not on the value supplied on the channel x. Thus,
in the synchronization between two processes P1 and P2 using the channel x,
the willingness of both the processes to participate in the synchronization using
the tasks A1 and A2 is captured by the condition Guard1 ∧ Guard2, which can
be evaluated in a given composite state before the process P1 has executed
its update code to determine which output value is to be transmitted on the
channel x. If P1 has multiple output tasks associated with the channel x and/or
P2 has multiple input tasks associated with the channel x, the set of tasks
associated with the channel x in the composite process is obtained by considering
all possible pairings.

Now consider the case when P1 has an input channel x that is not a channel of
the other process P2. In this case, to process an input value on the channel x,
the composite process simply executes the input task of P1 corresponding to the
channel x, and the state of P2 stays unchanged during such an input action. For

every input action s1
x ? v−→ t1 of process P1 and every state s of process P2, the

composite process has an input action (s1, s)
x ? v−→ (t1, s). For this purpose, we

Asynchronous Model 139

bool out

bool temp

{0, 1, null} x1 := null; x2 := null

Ai : x1 := in

At : (x1 �= null) →

Ao : (x2 �= null) → {out := x2; x2 := null}

bool in

{temp := x1; x1 := null; x2 := temp}

Figure 4.8: Asynchronous Parallel Composition of Two Buffer Processes

declare each input task of process P1 associated with the channel x to be also
an input task of the composite. Note that the guard condition and the update
description of such a task stays unchanged and does not refer to the variables
of P2.

The same holds for output actions for a channel that involves only one process.
If y is an output channel of the process P1 and is not a channel of P2, then
each output task of P1 associated with the output channel y is declared to be
an output task of the composite process with the same guard condition and
update description. Enabledness of such a task does not depend on the process
P2, and executing such a task leaves the state of P2 unchanged. Thus, for

every output action s1
y ! v−→ t1 of process P1 and every state s of process P2, the

composite process has an output action (s1, s)
y ! v−→ (t1, s).

Finally, an internal action of the composite process is an internal action of
exactly one of the two component processes, with the other process maintaining
its state unchanged. Thus, every internal task of each of the two processes is
declared to be an internal task of the composite with the same guard condition
and update description.

The composition of processes Buffer1 and Buffer2 gives the process shown in
figure 4.8. It has state variables {x1, x2}, output channels {temp, out}, and input
channels {in}. For the composite process, the input task Ai is the same as the
corresponding input task for the process Buffer1, and the output task Ao is the
same as the corresponding output task for the process Buffer2. Since temp is
a common channel, the corresponding output task At is obtained by composing
the specifications of the output task of the process Buffer1 responsible for
producing outputs on the channel temp, with the input task of the process
Buffer2 responsible for processing the inputs on the channel temp. The guard
condition for this task then is the conjunction of the guard conditions of the two
contributing tasks, which turns out to be only (x1 �= null) since the input task
of Buffer2 is always enabled with guard condition 1. The update description
executes the update code of the output task of Buffer1 followed by the input
task of Buffer2. The composite has no internal tasks. Thus, only the process
Buffer1 participates in the processing of the channel in, the two processes

140 Chapter 4

synchronize on temp, and only the process Buffer2 participates in producing
the output on the channel out.

We now summarize the formal definition of parallel composition of asynchronous
processes.

Asynchronous Process Composition

Let P1 = (I1, O1, S1, Init1, {A1
x | x ∈ I1}, {A1

y | y ∈ O1},A1) and P2 =

(I2, O2, S2, Init2, {A2
x | x ∈ I2}, {A2

y | y ∈ O2},A2) be two asynchronous
processes such that O1 and O2 are disjoint. Then the parallel composition
P1 |P2 is the asynchronous process P defined by:

• the set S of state variables is S1 ∪ S2;

• the set O of output channels is O1 ∪O2;

• the set I of input channels is (I1 ∪ I2) \O;

• the initialization is given by Init1; Init2;

• for each input channel x ∈ I, (1) if x �∈ I2, then the set of input tasks
Ax is A1

x; (2) if x �∈ I1, then the set of input tasks Ax is A2
x; and

(3) if x ∈ I1 ∩ I2, then for each task A1 ∈ A1
x and A2 ∈ A2

x, the set
of input tasks Ax contains the task described by Guard1 ∧Guard2 →
Update1;Update2, where Guard1 → Update1 is the description of the
task A1 and Guard2 → Update2 is the description of the task A2;

• for each output channel y ∈ O, (1) if y ∈ O1 \ I2, then the set of
output tasks Ay is A1

y; (2) if y ∈ O2 \ I1, then the set of output

tasks Ay is A2
y; (3) if y ∈ O1 ∩ I2, then for each task A1 ∈ A1

y and

A2 ∈ A2
y, the set of output tasks Ay contains the task described by

Guard1∧Guard2 → Update1;Update2, where Guard1 → Update1 is the
description of the task A1 and Guard2 → Update2 is the description
of the task A2; and (4) if y ∈ O2 ∩ I1, then for each task A1 ∈ A1

y and

A2 ∈ A2
y, the set of output tasks Ay contains the task described by

Guard2∧Guard1 → Update2;Update1, where Guard1 → Update1 is the
description of the task A1 and Guard2 → Update2 is the description
of the task A2;

• the set A of internal tasks of the composite is A1 ∪ A2.

Output Hiding

If y is an output channel of a process P , then the result of hiding y in P gives
a process that behaves exactly like the process P , but y is no longer an output
that is observable outside. This is achieved by removing y from the set of output
channels and turning each output task associated with the channel y into an
internal task by declaring y to be a local variable. Recall that a local variable

Asynchronous Model 141

is an auxiliary variable used in the description of the update code of a task and
is not stored in the state.

Let us revisit the process Buffer1 | Buffer2. If we hide the intermediate output
channel temp, we get the desired composite process DoubleBuffer: the set of
state variables is {x1, x2}, the set of output channels is {out}, the set of input
channels is {in}, and the initialization is given by x1 := null; x2 := null. The
input task Ai and the output task Ao are unchanged from Buffer1 | Buffer2.
The process DoubleBuffer has one internal task described by

(x1 �= null) →
{ local bool temp;
temp := x1; x1 := null;
x2 := temp }.

Exercise 4.4 : Consider the asynchronous process

Merge[out �→ temp] | Merge[in1 �→ temp][in2 �→ in3]

obtained by connecting two instances of the process Merge. Show the “compiled”
version of this composite process similar to the description in figure 4.8. Explain
the input/output behavior of this composite process.

4.1.6 Safety Requirements

In chapter 3, we studied how to specify and verify safety requirements of transi-
tion systems. The same techniques apply to asynchronous processes also. Given
an asynchronous process P , we can define an associated transition system T as
follows:

• the state variables S of P are the state variables of T ;

• the initialization specification Init of P is also the initialization of T ; and

• the transition description of T corresponds to choosing either an internal,
an input, or an output task A of P such that the guard of A is satisfied,
and executing the corresponding update description. For output tasks,
the corresponding output channel is converted into a local variable; and
for input tasks, the corresponding input channel is converted into a local
variable whose value is chosen nondeterministically at the beginning.

Thus, s → t is a transition of T precisely when the process P has either an
input or an output or an internal action from state s to t.

A property ϕ over state variables of an asynchronous process is an invariant of
the system if all reachable states of the corresponding transition system satisfy
the property ϕ. For instance, consider the process AsyncInc of figure 4.4 and
the requirement that the values of the two variables x and y remain at most c
apart for a given constant c. This corresponds to checking whether the property

142 Chapter 4

|x − y| ≤ c is an invariant of the system. It turns out that this is not the case
for the process AsyncInc, no matter how large the constant c is.

Concepts such as inductive invariants can be used to prove safety requirements
of asynchronous processes. For instance, to show that a state property ϕ is an
inductive invariant, we need to show that it (1) holds initially, and (2) is pre-
served by every transition. Since a transition corresponds to executing exactly
one task, we need to show that ϕ is preserved by the execution of every task.

Safety monitors can be used to capture safety requirements that cannot be
directly stated in terms of state variables. In the asynchronous setting, a safety
monitor for a process with input variables I and output variables O is another
asynchronous process with internal state and I ∪O as its input variables. Such
a monitor synchronizes with the observed system P on the input and output
actions of P . The monitor is described by an extended-state machine, such
that an execution that ends up in an “error” mode of the monitor indicates a
violation of the desired safety requirement.

Enumerative and symbolic reachability algorithms discussed in sections 3.3
and 3.4 also apply to verification of asynchronous processes.

Exercise 4.5 : Consider the process AsyncNot of figure 4.5. In this exercise,
we want to design an asynchronous process AsyncNotEnv that interacts with
AsyncNot. The process AsyncNotEnv has a Boolean input channel out and a
Boolean output channel in. It first outputs the value 0 and then is able to
receive inputs. It waits until the received input equals 1 and proceeds to output
the value 1, and then waits until the received input equals 0. This cycle is then
repeated. Model the desired asynchronous process AsyncNotEnv as an extended-
state machine. Consider the asynchronous composition AsyncNot | AsyncNotEnv
and argue that (AsyncNot.mode �= hazard) is an invariant of the composite
process.

4.2 Asynchronous Design Primitives

4.2.1 Blocking vs. Non-blocking Synchronization

In the asynchronous model, exchange of information between two processes, and
thus synchronization between them, occurs when the production of an output
by one process is matched with the consumption of the corresponding input by
another. Suppose x is an output channel of a process P1 and an input channel
of another process P2. Let A1 be an output task of P1 corresponding to the
channel x. Suppose the process P1 is in a state s1, in which this output task
A1 is enabled. Then the process P1 is ready to send a value on its output
channel x. Suppose s2 is the current state of P2. If some input task A2 of P2

associated with the channel x is enabled in the state s2, then the process P2

is willing to accept an input on the channel x, and the composite process can
execute a synchronizing action on the channel x. However, if none of the input

Asynchronous Model 143

tasks of P2 associated with the channel x is enabled in the state s2, then the
process P2 is not willing to accept an input on the channel x, and effectively the
process P1 is blocked from executing its output task. This is a form of blocking
communication where the producer P1 needs the cooperation of the receiver P2

to produce an output on the channel x. A process that is willing to accept every
input in every state does not prevent the producer from producing outputs and
is said to be non-blocking.

In our model, a process is willing to process inputs on a channel x precisely when
the guard condition of one of the input tasks associated with the channel x is
satisfied. For a process to be non-blocking, we require that the disjunction of
the guards of all the tasks corresponding to an input channel be a valid formula,
that is, equivalent to the Boolean constant 1.

Non-blocking Process

An asynchronous process P is said to be non-blocking if for every input
channel x and for every state s, some task in the set Ax of tasks associated
with the channel x is enabled in the state s.

The process Buffer of figure 4.1 is non-blocking: its environment can always
supply a value on the input channel in even though some of these values are
effectively lost. However, the process Merge of figure 4.3 is blocking: an input on
the channel in1 cannot be processed if the queue x1 is full, and thus the producer
of outputs on the channel in1 has to wait until this queue becomes non-full. The
process AsyncNot of figure 4.5 is non-blocking: it always accepts inputs even
though supplying inputs in rapid succession can lead it to the hazardous state.

The process DoubleBuffer obtained by composing two Buffer processes is
non-blocking. In fact, it is easy to verify that all the operations defined in
section 4.1.5 preserve the property of being non-blocking: if all the component
processes in a block diagram are non-blocking, then so is the composite process
corresponding to the block diagram.

In designing asynchronous systems, both styles of synchronization, non-blocking
and blocking, are common. In the non-blocking designs, if a process P1 sends an
output value to another process P2, then typically an explicit acknowledgment
from the process P2 back to process P1 is needed for P1 to be sure that its output
was examined by P2. In the implementation of blocking synchronization, the
run-time system must somehow ensure that the receiver is willing to participate
in the synchronizing action.

4.2.2 Deadlocks

Deadlock is a commonly occurring error in asynchronous designs. In a system
composed of multiple processes, a deadlock refers to a situation in which each
process is waiting for some other process to execute a task, but no task is
enabled, and thus there is no continuation of the execution.

144 Chapter 4

To illustrate how deadlocks can arise, consider the system consisting of two
processes P1 and P2 shown in figure 4.9. The process P1 can generate requests
of one type that are serviced by the process P2. For our purpose, the data
values exchanged are not particularly relevant. Hence, we model a request by
process P1 as a message with the value req1 sent on the channel x1 from process
P1 to process P2 and the corresponding response by process P2 as a message
with the value resp1 sent on the channel x2 from process P2 to process P1.
Similarly, the process P2 can generate requests of another kind, and each such
request is modeled as a message with the value req2 sent on the channel x2 from
process P2 to process P1. Each such request is serviced by process P1, and the
corresponding response is modeled as a message with the value resp2 sent on
the channel x1 from process P1 to process P2.

The description of the process P1 is shown in figure 4.9. The process has an
internal queue y1 that is used to store messages received on its input channel
x2. The description of its tasks uses a mixture of two styles of specifications we
have seen so far: the input task is listed explicitly, whereas the computation of
the process corresponding to the internal and output tasks is described using
an extended-state machine. The input task A2 is always enabled and simply
enqueues each message received on the input channel into the queue y1. Initially,
the mode is idle. In this mode, if the process finds a message req2 at the front of
the queue y1, then it dequeues this request and switches to the mode busy. The
mode busy captures the internal state of the process P1, where the computation
needed to service an incoming request occurs. The corresponding response is
then issued on the output channel (captured by the update x1 ! resp2), and
the process returns to the idle mode. In the idle mode, the process can also
generate a request on its own. This is modeled by the switch to the mode wait
with the output action x1 ! req1. In the mode wait, the process P1 is waiting
for a response from the other process and is unwilling to process requests issued
by P2. Hence, the process can switch from the mode wait back to idle only
when the first message in the queue y1 is a response message resp1; if so, it is
removed from the queue.

The description of the process P2 is symmetric. Now consider the composed
process P1 |P2. Suppose the process P1 issues the request req1 on the channel
x1. This request gets stored in the internal queue y2 of process P2. This step
is captured by the action shown below, where each state is described by listing
the values of variables P1.mode, y1, P2.mode, and y2, in that order:

(idle, null, idle, null)
x1! req1−→ (wait, null, idle, [req1]).

At this point, two tasks are enabled: the internal task of the process P2 corre-
sponding to the mode-switch from the mode idle to mode busy and the output
task of the process P2 corresponding to the mode-switch from the mode idle to
mode wait. If the former task executes first, then the computation will progress
as intended. However, if the latter task executes first, then the corresponding

Asynchronous Model 145

idle waitbusy

x2 ! resp1

x2 ! req2

→ Dequeue(y2)

A1 : Enqueue(x1, y2)

queue({req1, resp2}) y2 := null

Front(y2) = resp2

P2

{req2, resp1} x2{req1, resp2} x1

idle waitbusy

x1 ! resp2

x1 ! req1

A2 : Enqueue(x2, y1)

queue({req2, resp1}) y1 := null

Front(y1) = resp1

P1

Front(y1) = req2
→ Dequeue(y1)

Front(y2) = req1
→ Dequeue(y2)

→ Dequeue(y1)

Figure 4.9: Illustrating Deadlocks

transition is:

(wait, null, idle, [req1])
x2! req2−→ (wait, [req2], wait, [req1]).

In the resulting state, no task is enabled: the process P1 is expecting a response
from P2 and vice versa. Such a state is a deadlock and should be considered a
bug in the design.

In general, a state s of an asynchronous process P is a deadlock state if (1)
no task is enabled in the state s, and (2) the state s does not correspond to
a successful termination of the system. The latter condition is specific to the
design problem; for instance, in the leader election problem, a state in which all
processes have already made a decision to be a leader or a follower is considered
to be a successful terminal state. Except for such successful terminal states,
we expect the system to continue executing. Thus, absence of deadlocks is a
generic safety requirement that is expected to be an invariant of all asynchronous
designs.

4.2.3 Shared Memory

In a shared memory architecture, processes communicate by reading and writing
shared variables and, more generally, shared objects. In this section, we will

146 Chapter 4

A2
w : v := x.write2

A1
w : v := x.write1

val v := initVal

A2
r : x.read2 ! v

A1
r : x.read1 ! v

val x.write1

val x.read1

P2

val x.read2

val x.write2

P1

AtomicReg x

Figure 4.10: Atomic Register Supporting Read and Write Operations

illustrate how to model shared variables as asynchronous processes. In the
asynchronous model, executions of different tasks are interleaved. A crucial
design decision concerns how much computation can happen in one computation
step of a task, that is, which operations are supported by shared objects as
atomic operations that can be executed in a single step. We first discuss the
model of atomic registers, where the only allowed operations are the most basic
read and write operations.

Atomic Registers

Figure 4.10 shows the process AtomicReg that models a variable (or a register) x
shared between two processes P1 and P2. The only atomic operations supported
by this shared object are read and write, and such an object is called an atomic
register. The description is parameterized by the set of values that the register
can hold, denoted val, and the initial value of the register, denoted initVal.

The internal state variable v of the object holds its current value and is initialized
to the value initVal. The channels x.read1 and x.read2 are used to model the
read operations. The channel x.read1 is an output channel for the atomic register
and is an input channel for the process P1. When the process P1 wants to read
the register, it executes the input action y := x.read1, where y is a state variable
of P1, which is synchronized with the output action of the task A1

r. Executing
this action transmits the current state of the register x, and as a result, the
updated value of the state variable y of P1 is the current value of the register,
whereas the state of the register stays unchanged. Thus, synchronization of the
atomic register with the process P1 on the channel x.read1 transmits the value
of the register to P1. Note that the task A1

r of the process AtomicReg is always
enabled, and thus whether the process P1 can execute the task corresponding
to reading the register depends solely on the guard condition of the task in P1.

Analogously, the channels x.write1 and x.write2 are used to model the write
operations. When the process P1 wants to update the register by writing the
value u, it executes the output action x.write1 !u, which is synchronized with the
input action of the task A1

w and updates the internal state of the register x to the

Asynchronous Model 147

W1 : x := y1 + 1 W2 : x := y2 + 1

R1 : y1 := x R2 : y2 := x

Process P1 Process P2

nat y1 := 0 nat y2 := 0

AtomicReg nat x := 0

Figure 4.11: Data Race Example: Shared Counter

value received on the channel. If y is a state variable of the process P1, then to
update the shared register x with the current value of y, the process can execute
the output statement x.write1 := y. Since the task A1

w is always enabled, the
enabledness of this joint activity depends solely on the guard condition of the
corresponding task in P1.

The communication pattern for the process P2 is analogous.

Data Races

Consider the asynchronous system shown in figure 4.11. It consists of three
processes. The shared register x is an instantiation of the AtomicReg process
where the type val is nat and the initial value initVal is 0. In our description,
such a shared register is declared using the familiar syntax for declaring vari-
ables. We will also refer to the shared variable without explicitly mentioning
the associated read/write channels. For example, a read reference to the shared
register x by process P1 is an abbreviation for its input channel x.read1, and an
update of the shared register x by process P2 is an update of its output channel
x.write2.

The two asynchronous processes P1 and P2 communicate by reading and writing
the shared register x. The process P1 has a state variable y1, which is initialized
to 0. The process first reads the value of x by executing the statement y1 := x
(task R1). Execution of this statement involves synchronization of the processes
P1 and x on the channel x.read1. The process P1 then writes the value y1 + 1
back to the shared register x by executing the statement x := y1 + 1 (task
W1), which involves synchronization of the processes P1 and x on the channel
x.write1.

The process P2 is symmetric: it reads the value of the shared register x in its
internal state variable y2 (task R2) and writes the incremented value back to
the shared register (task W2).

148 Chapter 4

Interleaving x y1 y2
R1;R2;W1;W2 1 0 0
R1;W1;R2;W2 2 0 1
R1;R2;W2;W1 1 0 0
R2;R1;W2;W1 1 0 0
R2;W2;R1;W1 2 1 0
R2;R1;W1;W2 1 0 0

Figure 4.12: All Possible Executions of Shared Counter of Figure 4.11

A step of the composed system corresponds to executing one of the tasks of the
two processes. Executions of the composed system resulting from all possible
interleavings of the four tasks are shown in figure 4.12. With each such execu-
tion, we list the values of the variables x, y1, and y2 at the end of the execution.
Observe that when all the tasks have been executed once, the final value of the
shared register x can be either 1 or 2. If the desired intent of each process is
to increment the value of x, then a final value of 1 corresponds to a lost incre-
ment, a potential bug. Such a bug is caused by the other process accessing the
shared register in between the execution of read and write access statements of
one process. This type of interference between concurrent accesses to shared
objects by asynchronous processes is called a data race.

Mutual Exclusion Problem

In the illustrative example of a shared counter of figure 4.11, suppose the pro-
cess P1 wants to ensure that the value of the shared object x stays unchanged
between the execution of the read and write statements by P1. Note that the
shared object does not support both reading and writing in a single atomic step:
the process P1 cannot use the statement x := x + 1 to increment the counter
atomically as it would involve two distinct synchronizations on two separate
channels, x.read1 and x.write1. To ensure that the process P1 has an exclusive
access to the shared object as it reads and then updates the shared register, we
need to design a protocol to solve the classical coordination problem of mutual
exclusion.

Suppose we have two or more asynchronous processes that need access to a crit-
ical shared resource, such as the shared counter of our illustrative example. At
any time, only one process should be using the shared resource. The allocation
of the resource is not governed by a central coordinator, but processes need to
coordinate among themselves to ensure such a mutually exclusive access. We
assume that processes can communicate using atomic registers. Initially, a pro-
cess starts in the mode Idle. It accesses the shared resource in the mode Crit,
classically known as the critical section. In our example, once the process enters
the critical section, it can read the value of the shared counter, add one to it,
and write the updated value back to the shared register. We want to design the

Asynchronous Model 149

Idle CritTry2Try1
flag1 := 1

flag1 := 0

turn := 1

flag2 = 0 ?

else

Try3
else turn = 2 ?

Process P1

Idle CritTry2Try1
flag2 := 1

flag2 := 0

turn := 2

flag1 = 0 ?

else

Try3
else turn = 1 ?

Process P2

AtomicReg bool flag1 := 0; flag2 := 0; {1, 2} turn;

Figure 4.13: Peterson’s Mutual Exclusion Protocol

entry code that the process should execute when it wants to switch from the
mode Idle to the mode Crit and the exit code that the process should execute
when it has finished its job in the critical section before returning to the idle
mode. The safety requirement is mutual exclusion: no two processes should be
in the critical section simultaneously. The other requirement is deadlock free-
dom: it should not be the case that one of the processes wants to enter the
critical section but none is allowed to enter. Note that the safety requirement
can be made precise using invariants, and formalization of the deadlock freedom
as a liveness requirement is addressed in chapter 5.

Peterson’s Mutual Exclusion Algorithm

Figure 4.13 shows Peterson’s protocol, a classical solution to the mutual exclu-
sion problem for the case of two processes. The processes communicate via three
shared atomic registers: turn, flag1, and flag2. The process P1 is initially in the
mode Idle. The process has seven tasks, each corresponding to a mode-switch
as described below.

1. The self-loop on the mode Idle indicates that the process may stay in
this mode for arbitrarily many steps.

2. In the mode Idle, when the process needs access to the shared resource,
it sets the Boolean register flag1 to 1 and switches to the mode Try1.

3. In the mode Try1, the process updates the shared variable turn to its
identifier, namely 1, and switches to the mode Try2.

150 Chapter 4

sj−1 sj sk−1 sksl−1 sl

P2.mode : CritTry1 Try2

P1.mode : Try1 Try2 Try3 Crit

turn := 1 turn := 2

P1.mode ∈ {Try2, Try3}; flag1 = 1

turn = 2

Figure 4.14: Analysis of Potential Counterexample Execution

4. In the mode Try2, the process reads the value of the variable flag2. If flag2
is 0, then it concludes that the other process does not need the resource
and proceeds to the critical section. Otherwise, it switches to the mode
Try3. This is formally modeled as a conditional mode-switch that involves
the read channel between the process P1 and shared register flag2.

5. In the mode Try3, using a conditional switch, the process checks the value
of the shared register turn. If turn equals 2, then it concludes that the
process P2 updated turn to 2 after the process P1 updated turn to 1, and
in this case, the process P1 proceeds to the critical section. If it finds turn
to be 1, then it concludes that the process P2 updated turn to 2 before
the process P1 updated turn to 1 and returns to the mode Try2 to check
the value of flag2 again.

6. The mode Crit corresponding to the critical section has a self-loop indi-
cating that the process may spend an arbitrary number of steps in the
critical section.

7. In the mode Crit, when the process no longer needs the shared resource,
it updates the variable flag1 back to 0 and returns to the initial mode
Idle.

The process P2 is symmetric.

We want to argue that Peterson’s solution indeed satisfies the mutual exclusion
requirement. First, observe that only the process P1 writes to the shared register
flag1. The process sets flag1 to 1 when it leaves the mode Idle and resets it to
0 when it returns to this mode. Hence, the value of flag1 is 0 exactly in those
states in which the mode of the process P1 is Idle. Symmetrically, the value of
the Boolean variable flag2 is 0 exactly in those states in which the mode of the
process P2 is Idle.

To prove that there is no execution that leads both processes to be in the critical
section simultaneously, let us assume to the contrary. Let ρ = s0, s1 . . . sk be
a shortest execution such that the modes of both processes equal Crit in the

Asynchronous Model 151

state sk. In such an execution, the last step must correspond to some process,
say P1, switching its mode to Crit (if not, in the state sk−1, both processes are
already in their critical sections, and thus ρ is not the shortest counterexample
demonstrating the violation of the desired requirement). The process P1 can
update its mode from Try2 to Crit provided flag2 is 0, or from Try3 to Crit

provided turn is 2. In the state sk−1, the process P2 is already in the critical
section, and hence flag2 must be 1, and thus only the latter case is possible.
Suppose the transition from the state sj−1 to sj is the latest write to turn by
the process P1, and the transition from the state sl−1 to sl is the latest write
to turn by the process P2 in this execution. Since turn is 2 at the end of the
execution, we conclude that j < l (that is, the most recent update to turn
must be by the process P2). Figure 4.14 depicts the scenario corresponding to
this execution. The mode of the process P1 must be either Try2 or Try3 in all
the states sj , sj+1, . . . sk−1, and hence the value of flag1 must be 1 in all these
states. We can conclude that the value of turn is 2 and flag1 is 1 in all the
states sl, sl+1, . . . sk−1. This implies that the switching conditions for the two
possible ways for the process P2 to enter its critical section ((flag2 = 0) from the
mode Try2, and (turn = 1) from the mode Try3) are false during this interval.
Since the mode of the process P2 is Try2 in the state sl and Crit in the state
sk, we obtain a contradiction (that is, the postulated execution ρ witnessing a
violation of the safety requirement cannot exist).

We can also show that Peterson’s protocol does not deadlock: it cannot happen
that one of the processes wants to enter the critical section but none is allowed
to enter. If only one process, say P1, wants to enter the critical section, then
the other process P2 is in the mode Idle, and the variable flag2 is 0. In this
case, the process P1 will succeed when it checks the value of flag2 in the mode
Try2. If both processes are trying to enter the critical section, then it cannot
happen that both get stuck in the cycle between the modes Try2 and Try3:
once both are past their updates to the variable turn, its value does not change,
and depending on its value, one of them must succeed in the test in the mode
Try3.

Test&Set Registers

Figure 4.15 shows the process Test&SetReg that models a shared object that
stores a Boolean value but supports the primitive operations of test&set and
reset. The test&set operation sets the shared register to 1 while returning the
old value, and the reset operation updates the shared register to 0. The state
variable v, initialized to 0, stores the current value of the register. When the
process P1 wants to execute the test&set operation, it executes an input action
on the channel x.t&s1 and synchronizes with the output action executed by the
register. The output task A1

ts0 is enabled when the value of the register is 0 and
it transmits 0 while updating the state to 1. The output task A1

ts1 is enabled
when the value of the register is 1, and it transmits 1 while keeping the state un-
changed. Note that the transmission of the current value and its update happen

152 Chapter 4

x.reset1

bool x.t&s1

P2

x.reset2

P1

A1
ts0 : v = 0 → x.t&s1 ! 0; v := 1

A1
ts1 : v = 1 → x.t&s1 ! 1

A2
ts1 : v = 1 → x.t&s2 ! 1

A2
ts0 : v = 0 → x.t&s2 ! 0; v := 1

bool x.t&s2

A2
r : v := 0

A1
r : v := 0

Test&SetReg x

bool v := 0

Figure 4.15: Boolean Register Supporting test&set and reset Operations

atomically within a single step, and this results in a more powerful communi-
cation scheme. If both processes P1 and P2 are attempting to synchronize with
the Test&SetReg process, then the first process to synchronize will receive the
value 0, and this will set the state of the register to 1, causing the subsequent
process to receive the response 1.

Whenever the process P1 wants to reset the register, it executes the output
action for the channel x.reset1, which gets synchronized with the execution of
the input task A1

r which updates the register to 0. Note that no value needs to
be associated with the reset operation.

In the presence of Test&Set registers, it is easy to implement a solution to the
mutual exclusion problem. Figure 4.16 shows a solution using a single shared
Test&Set register free. When the value of this shared object is 0, the critical
section is unoccupied. When a process wants to enter the critical section, it
simply executes the test&set operation on the shared register. If the operation
returns 0, then the process proceeds to the critical section, and if the operation
returns 1, the process tries again. Upon leaving the critical section, the pro-
cess resets the value of the shared register to 0. Note that both processes are
identical. It is easy to verify that the protocol satisfies the mutual exclusion
requirement and is also deadlock-free.

The specification of shared objects such as AtomicReg and Test&SetReg can
be generalized so that the object is shared among multiple processes instead of
two.

Exercise 4.6 : Consider the transition system corresponding to Peterson’s mu-
tual exclusion protocol. The set of state variables for this system contains the
variables P1.mode, P2.mode, turn, flag1, and flag2. Draw the reachable subgraph
of this transition system. How many states are reachable?

Asynchronous Model 153

Test&SetReg free := 0

else

Try CritIdle

free.reset

Process P1 and P2

free.t&s = 0 ?

Figure 4.16: Mutual Exclusion Using Test&Set Register

Exercise 4.7 : In an attempt to “optimize” the two-process mutual exclusion
protocol of figure 4.13, someone proposes that the shared register turn is not
necessary. Consider the modified solution of figure 4.17 that uses only the
Boolean shared registers flag1 and flag2. Does this solution satisfy the mutual
exclusion requirement? If your answer is yes, then give an informal argument
of correctness or else show a counterexample execution. Is this revised protocol
a satisfactory solution to the mutual exclusion problem?

Exercise 4.8 : In Peterson’s mutual exclusion protocol (see figure 4.13), the
process P1, when it wants to enter the critical section, first sets the register
flag1 to 1 and then sets the register turn to 1. Suppose we switch the order
in which these two steps are executed. That is, consider a modified version of
Peterson’s protocol in which the process P1, when it wants to enter the critical
section, first sets the register turn to 1 and then sets the register flag1 to 1;
symmetrically, the process P2, when it wants to enter the critical section, first
sets the register turn to 2 and then sets the register flag2 to 1. Everything else
stays the same. Does the modified protocol satisfy the requirement of mutual
exclusion? If yes, give a brief justification; if no, show a counterexample.

Exercise 4.9*: Consider two asynchronous processes P1 and P2 that commu-
nicate using a shared atomic register x of type nat with initial value 1. The
process P1 reads the shared register and stores the value in its internal state
variable u1, reads it again and stores the value in another state variable v1,
updates the shared register value with the sum of u1 and v1, and repeats this
sequence of read, read, and write. The process P2 is symmetric: it reads the
shared register and stores the value in its internal state variable u2, reads it
again and stores the value in another state variable v2, updates the shared reg-
ister value with the sum of u2 and v2, and repeats this sequence. Let us say
that a value n is reachable if there is an execution of the system in which the
value of the shared register x is n at the end of the execution. Which values
are reachable? Hint: try to find executions that demonstrate the reachability
of values 5, 6, 7, and 8.

154 Chapter 4

flag1 := 0

else

TryIdle
flag1 := 1

Crit
flag2 = 0 ?

Process P1

flag2 := 0

else

TryIdle
flag2 := 1

Crit
flag1 = 0 ?

Process P2

AtomicReg bool flag1 := 0; flag2 := 0

Figure 4.17: Modified Peterson’s Mutual Exclusion Protocol

4.2.4 Fairness Assumptions ∗

The execution of a process in the asynchronous model is obtained by interleaving
executions of different tasks. At every step of the execution, if multiple tasks can
be executed, there is a choice. For example, for the Buffer process (figure 4.1),
at every step, one can obtain the next state by executing either the input task Ai

or the output task Ao (provided the state is non-null). We do not want to make
assumptions about the relative frequency at which the two tasks are executed,
but we would like to rule out an execution where the output task is never
executed. Similarly, for the Merge process (figure 4.3), while the exact order in
which the values arriving on the two input channels are merged is arbitrary by
design, it is natural to assume that all these values eventually appear on the
output channel. For the shared objects such as AtomicReg and Test&SetReg, if
multiple processes are competing to write to them, the asynchronous model of
computation allows them to succeed in an arbitrary order, possibly one process
executing multiple writes before another process gets to execute a single write.
However, if a process is denied a chance to write successfully forever, then no
meaningful computation can occur. Hence, we would like to assume that a read
or write operation by a process on a shared register is not delayed forever.

Infinite Executions

The standard mathematical framework for capturing the informal assumption
that execution of a task can be delayed arbitrarily long, but not forever , re-
quires us to consider infinite executions. An infinite execution, also called an

Asynchronous Model 155

ω-execution, of a process P starts in one of the initial states and has an infinite
sequence of states such that every state in this sequence is obtained from the
previous one by executing one of the actions of the process.

Let us revisit the process AsyncInc of figure 4.2: it has two tasks Ax and Ay that
are always enabled and increment the variables x and y, respectively. Consider
the following ω-execution of the process AsyncInc:

(0, 0)
Ax−→ (1, 0)

Ax−→ (2, 0)
Ax−→ (3, 0)

Ax−→ (4, 0) · · ·

where we have labeled each internal action by the task that was executed. In
this ω-execution, the next state is always obtained by executing the internal
task Ax. We will say that such an ω-execution is unfair to the task Ay: at
every step the task Ay is enabled, but it is never executed. It is reasonable
to assume that no implementation produces such unfair executions. When we
state requirements, we will only require that all fair executions should satisfy
the requirements. Consider the process AsyncInc and a correctness requirement
that the value of y should not always be zero. Even though the ω-execution in
which the task Ay is never executed violates this requirement, we still want
to conclude that the process AsyncInc meets this requirement since in all fair
executions y is guaranteed to be incremented.

Consider a finite execution of the process AsyncInc, say consisting of 1000 steps.
Even if all the actions in this execution correspond to incrementing x, and thus
the task Ay is enabled at every step without being executed, this is considered a
plausible or valid execution of the process. If the desired correctness requirement
states that “the value of y should be non-zero when the value x is 1000,” we want
to conclude that the AsyncInc is buggy since the finite execution consisting of
executing the task Ax 1000 times demonstrates the reachability of the state
(1000, 0) that violates the requirement. If we put a concrete quantitative bound
on the number of steps for which it is acceptable to ignore an enabled task,
but not beyond this bound, then no matter what specific number we choose,
it would seem to be an arbitrary assumption about the implementation of the
process. That’s why fairness is defined to be an assumption about infinite
executions: every finite prefix of the unfair execution of AsyncInc illustrated
above is considered legal, but the infinite execution is unfair. In a sense that
can be made mathematically precise, fairness is a property of limits of finite
executions. As we will study in chapter 5, even though infinite executions is
an abstract mathematical concept and seems difficult to reason about at first
glance, effective analysis algorithms exist for reasoning about such executions
since such reasoning can typically be reduced to analyzing cycles in the graph
of reachable states.

Consider an ω-execution of the process AsyncInc in which the tasks Ax and
Ay are executed in an alternate manner, say 1000 times, but after that only
the task Ax is executed indefinitely. In such an infinite execution, the value
of y is “stuck” at 1000, but x keeps increasing in an unbounded manner. The

156 Chapter 4

fairness assumption with respect to the execution of the task Ay rules out this
execution also. For an ω-execution of the process AsyncInc to be fair with
respect to the task Ay, it must contain infinitely many actions that increment
y. Symmetrically, an ω-execution is considered fair with respect to the task
Ax only if it contains infinitely many actions that increment x. In the infinite
tree of figure 4.4, a fair ω-execution is an infinite path through the tree that
zigzags along left and right branches in an arbitrary manner but is guaranteed
to take both left and right branches repeatedly. In particular, for every number
n, along every fair execution, we are guaranteed that the value of x will exceed
n and the value of y will also exceed n.

For the process Buffer, an ω-execution where only the input task Ai is executed
at every step is unfair to the output task Ao, and we want to rule out such
an execution by assuming fairness with respect to the task Ao. For an ω-
execution of Buffer to be fair with respect to its output task, it must contain
infinitely many output actions. Again, when we state requirements such as a
message is eventually delivered, we will demand that all fair executions should
satisfy the requirements. For the process Buffer, we don’t make any fairness
assumptions about the execution of the input task Ai. Notice that for this
particular process, every infinite execution must contain infinitely many input
actions: this is because every time Buffer executes an output action, the buffer
becomes empty, and the next output cannot be produced until another input is
received.

Now consider the following infinite execution of the process Merge of figure 4.3.
It receives a value on the input channel in1. Then it repeatedly executes the
loop in which it receives a value on the input channel in2 and transfers it to
the output channel by executing the task A2

o. That is, the infinite sequence
of tasks it executes is A1

i , followed by the periodic execution of A2
i ;A

2
o. This

clearly starves the output task A1
o that can transfer the element from the queue

x1 to the output channel, which is enabled at every step but never executed.
We again want to rule out such an ω-execution as unfair.

Before we define the notion of fair ω-executions precisely, note that we can
require a task to be executed only when it is enabled. An unfair ω-execution is
one in which, after a certain point, a task is always enabled but never executed.

Consider another infinite execution of the process Merge: it repeatedly executes
the loop in which it receives a value on the input channel in2 and transfers it
to the output channel by executing the task A2

o. We consider this to be a fair
execution. The input task A1

i is never executed, but this is a plausible scenario,
and a bug revealed in such an execution may be a real bug. Demanding repeated
execution of an input task would mean that we are making implicit assumptions
about the environment. Thus, fairness is assumed only for the tasks that the
process controls. If the process Merge is composed with another process P
whose output channel is in1, then the fairness with respect to an output task
of P corresponding to in1 can force actions involving the channel in1. The ω-
execution that repeatedly executes A2

i and A2
o in a loop is also (vacuously) fair

Asynchronous Model 157

nat x := 0; y := 0

Ax : x := x+ 1

Ay : even(x) → y := y+ 1

Figure 4.18: Asynchronous Process AsyncEvenInc

with respect to the output task A1
o. This is because the queue x1 is always

empty, and thus the task A1
o is never enabled.

Strong Fairness

The notion of fairness we have discussed so far corresponds to what is known as
weak fairness. Weak fairness for a task assumes that if the task is continuously
enabled, then it is eventually executed. A stronger assumption is strong fairness,
which demands that a task that is repeatedly enabled should eventually be
executed.

An an illustrative example, consider the process AsyncEvenInc shown in fig-
ure 4.18. Similar to the process AsyncInc of figure 4.2, it has two state variables
x and y that are incremented by the internal tasks Ax and Ay, respectively, but
now the task Ay is enabled only when the value of x is an even number. Consider
the following ω-execution of the process AsyncEvenInc:

(0, 0)
Ax−→ (1, 0)

Ax−→ (2, 0)
Ax−→ (3, 0)

Ax−→ (4, 0) · · ·

During this execution, the status of the task Ay switches between enabled and
disabled. As a result, this execution satisfies the condition “if continuously
enabled then eventually taken” for both the tasks, and it is weakly fair with
respect to both the tasks. However, this execution is not strongly fair with
respect to the task Ay: the task Ay is enabled infinitely often but never taken.
If we assume that the implementation platform ensures only weak fairness, then
such an execution is a possible execution, and it is not guaranteed that y gets
incremented. If we assume that the implementation platform ensures strong
fairness, then such an execution is not a possible execution, and it is guaranteed
that y gets incremented.

Modeling an Unreliable FIFO Link

As another illustrative example, consider the unreliable FIFO buffer modeled by
the process UnrelFIFO shown in figure 4.19. The input task Ai simply transfers
the input message to the internal queue x. The transfer of messages from the
queue x to the output channel is done by three tasks. The task A1

o transfers a
message from the queue x to the output channel correctly dequeuing a message

158 Chapter 4

queue(msg) x := null

Ai : Enqueue(in, x)

A3
o : ¬ Empty(x) → out := Front(x)

A2 : ¬ Empty(x) → Dequeue(x)

A1
o : ¬ Empty(x) → out := Dequeue(x)

msg outmsg in

Figure 4.19: Asynchronous Process UnrelFIFO for Unreliable Link

and sending it on the output channel. The (internal) task A2 models a loss of
message and simply removes a message from the queue x without transferring
it. The task A3

o models duplication of messages: it transmits the message at the
front of the queue x to the output channel without removing it from the queue.
The process thus models a communication link that may lose some messages
and may duplicate others. However, it preserves the order and does not reorder
messages. The fairness assumptions should ensure that an input message will
eventually appear on the output channel.

Consider the following execution of the process UnrelFIFO. A message arrives
on the channel in and is enqueued in the queue x. This message is removed
by the task A2. Since the execution of this task models loss of a message, it
does not transmit it on the output channel. Suppose the tasks Ai and A2 are
repeated forever in an alternating manner. This ω-execution is weakly fair with
respect to the task A1

o that models the correct transfer of messages. This is
because every time the input task enqueues the input message in the queue
x, the task A1

o is enabled, but every time the internal task A2 removes this
message, the task A1

o is disabled. Since it does not stay continuously enabled,
the weak fairness assumption does not ensure its eventual execution. However,
this infinite execution is not strongly fair with respect to the task A1

o: the
task is repeatedly enabled but is never executed. Thus, to capture the informal
assumption that repeated attempts to transfer a message will eventually succeed,
we should restrict attention to ω-executions that are strongly fair with respect
to the task A1

o.

Fairness Specification

The specification of the process UnrelFIFO also highlights that we do not have to
assume fairness with respect to all the tasks. In particular, an infinite execution
in which the task A3

o that duplicates a message or the task A2 that loses a
message is never executed is an acceptable and realistic execution. Losing or
duplicating a message is not an active task to be executed and does not need
to be executed repeatedly. While the correct functioning of the system could
rely on fairness with respect to the task A1

o, it should not rely on fairness with
respect to A2: a protocol that works correctly only when the underlying network

Asynchronous Model 159

repeatedly loses messages should not be considered correct.

This suggests that the description of an asynchronous process should annotate
its output and internal tasks: for some strong fairness is assumed, for some weak
fairness is assumed, and some do not have any fairness assumption.

Fairness Assumption

An ω-execution of an asynchronous process P consists of an infinite sequence

of the form s0
l1−→ s1

l2−→ s2
l3−→ s3 · · · where each sj is a state of

P , s0 is an initial state of P , and for each j > 0, sj−1
lj−→ sj is an input,

an output, or an internal action of P . A task A is taken at step j if the

transition sj−1
lj−→ sj corresponds to the execution of the task A. The

ω-execution is weakly fair with respect to an internal or an output task A,
if for all positions j, if the task A is enabled in the state sj , then there
exists a later position l > j such that the task A is either taken at step l or
not enabled in state sl. The ω-execution is strongly fair with respect to an
output or an internal task A, if for infinitely many indices j, the task A is
enabled in state sj , then for infinitely many indices l, the task A is taken
at step l. A fairness assumption for an asynchronous process P consists
of a subset SF of its internal and output tasks demanding strong fairness
and a subset WF of its internal and output tasks demanding weak fairness.
Given such a specification, a fair ω-execution of P is an ω-execution that is
strongly fair with respect to every task in SF and is weakly fair with respect
to every task in WF.

In the formal definition above, the weak fairness assumption is if enabled then
eventually either taken or disabled , which is equivalent to repeatedly disabled
or repeatedly taken. Similarly, the strong fairness assumption is if repeatedly
enabled then repeatedly taken, which is equivalent to continuously disabled or
repeatedly taken. Note that any execution that is strongly fair with respect to
a task is also weakly fair with respect to that task, but the converse may not
hold. In chapter 5, we will specify fairness assumptions using temporal logic,
which can help in gaining more insight into the subtle distinction between weak
and strong assumptions.

Fairness Assumptions for Mutual Exclusion

To illustrate how to augment a process description with fairness assumptions, let
us revisit the solutions to the mutual exclusion problem. First, let us consider
Peterson’s protocol described in figure 4.13. Each mode-switch corresponds to a
task, and let us examine all the tasks of process P1 (the assumptions for the tasks
of the process P2 are symmetric). There are no fairness assumptions regarding
the mode-switches out of the mode Idle. This means that the protocol does not
assume how long a process waits in the mode Idle and does not rely on whether
a process requests to enter the critical section repeatedly. The mode-switch out

160 Chapter 4

of the mode Try1 represents an output action by the process P1, and we assume
weak fairness for this task. This rules out an infinite execution in which the
process P1 is waiting in the mode Try1 to execute the statement turn := 1 while
only the process P2 is being executed repeatedly. The conditional mode-switches
out of the modes Try2 and Try3 correspond to testing the values of the shared
registers. Such read actions are output actions of the corresponding shared
register process AtomicReg shown in figure 4.10. We assume weak fairness for
the output tasks A1

r of the registers flag2 and turn. This ensures that the
process P1 cannot just stay in the mode Try2 waiting to read flag2 while only
the process P2 is executed repeatedly. There are no fairness assumptions about
the self-loop on the mode Crit, as we don’t want to rely on the process P1

staying in the critical section for a specific duration. But we do want to assume
that it eventually does leave the critical section (otherwise the process P2 will be
blocked forever), and hence we assume weak fairness for the mode-switch from
the mode Crit to Idle. Note that in each case, weak fairness suffices since each
task, once enabled, stays enabled until it is executed.

Now let us consider the protocol of figure 4.16. As in the case of Peterson’s
protocol, we don’t make any fairness assumptions about the self-loops on the
modes Idle and Crit and the switch from the mode Idle to Crit. Weak
fairness is assumed for the switch from the mode Crit to Idle to capture the
assumption that a process eventually does exit its critical section. Regarding
the conditional switch out of the mode Try that tests the value of the shared
register free, note that this corresponds to output actions of the shared register,
and thus the fairness assumptions should be added to the description of the
process corresponding to free (see the description of the Test&SetReg process
in figure 4.15). We assume strong fairness for the four output tasks A1

ts0, A
1
ts1,

A2
ts0, and A2

ts1. Note that each task has a guard, and as the value of the shared
register changes, each of the tasks can switch between being enabled and being
disabled. Strong fairness with respect to the task A1

ts0 ensures that if it is the
case repeatedly that the process P1 is in the mode Try and the register is 0,
then the task A1

ts0 must eventually be executed, resulting in a synchronization
that returns the value 0 to the process P1. Thus, it cannot happen that the
process P1 waits in the mode Try indefinitely while the process P2 enters and
exits the critical section repeatedly. Note that weak fairness for the task A1

ts0

will not rule out such a scenario.

Correctness under Fairness Assumptions

When proving liveness requirements of an asynchronous process with fairness
assumption, we can restrict attention only to fair ω-executions. For example,
for the process Merge, weak fairness is assumed for the output tasks A1

o and A2
o.

With such a fairness assumption, if it processes the input in1 ? v at any step,
then it is guaranteed that at some future step it will produce the output out ! v.
This is because in every fair execution, if the ith action processes the input
in1 ? v, then the message v will be added to the queue x1. Once the queue x1

Asynchronous Model 161

has a message, the output task A1
o stays enabled at least until this message has

been transmitted on the output channel. The weak-fairness assumption for the
output task A1

o ensures that it will be executed: if the queue x1 contains multiple
messages ahead of v, then they will all be eventually transferred, finally along
with v itself. The desired requirement does not hold for unfair executions, but
such executions are merely an artifact of modeling definitions and not indicative
of a violation in a real implementation.

For the mutual exclusion protocols of figures 4.13 and 4.16, in every fair execu-
tion, if the process P1 wants to enter the critical section, then it will eventually
enter the critical section.

The choice of fairness assumptions clearly affect the requirements that an asyn-
chronous process satisfies. Let us illustrate this by considering different require-
ments for the processes AsyncInc and AsyncEvenInc:

• The requirement ϕ1 states that “the value of x eventually exceeds 10.”
The process AsyncInc does not satisfy this requirement in absence of
fairness assumptions but does satisfy this requirement if weak fairness
for the task Ax is assumed. Similarly, the process AsyncEvenInc does
not satisfy this requirement in absence of fairness assumptions but does
satisfy this requirement if weak fairness for the task Ax is assumed.

• Consider the requirement ϕ2 that “the value of y eventually exceeds 10.”
The process AsyncInc does not satisfy this requirement in absence of
fairness assumptions but does satisfy this requirement if weak fairness for
the task Ay is assumed. The process AsyncEvenInc, in contrast, does
not satisfy this requirement in absence of fairness assumptions, and does
not satisfy this requirement if only weak fairness is assumed, but it does
satisfy this requirement if strong fairness for the task Ay is assumed.

• The requirement ϕ3 states that “the value of y eventually exceeds the
value of x.” The process AsyncInc does not satisfy this requirement. The
requirement is still not satisfied even if we assume fairness for the two
tasks. In particular, the infinite execution where we first execute the task
Ax, then execute the task Ay, and repeat this pattern is fair to both
the tasks, and along this execution, the condition y ≤ x holds in every
state (and thus the requirement ϕ3 is violated). By a similar argument,
the process AsyncEvenInc does not satisfy the requirement ϕ3 with or
without any form of fairness assumptions.

Fairness assumptions only ensure eventual execution of tasks and cannot enforce
any specific pattern in relative frequencies of executions of different tasks. If such
a pattern is required, as is the case in the requirement ϕ3, then the coordination
logic within the system must be modified to meet this requirement.

Exercise 4.10 : Let us revisit the asynchronous process Split that you de-
signed in exercise 4.2. Suppose we want to capture the assumption that the

162 Chapter 4

distribution of messages among the two output channels should be, while un-
specified, fair in the sense that if infinitely many messages arrive on the input
channel in, then both output channels out1 and out2 should have infinitely many
messages transmitted. How would you add fairness assumptions to your design
to capture this? If you are using strong fairness, then argue that weak fairness
would not be enough (that is, describe an infinite execution that is weakly fair
but the split of messages is not fair as desired).

Exercise 4.11 : By modifying the description of the process UnrelFIFO of fig-
ure 4.19, construct a precise specification of the process VeryUnrelFIFO, which,
in addition to losing and duplicating messages, can also reorder messages. What
would be natural fairness assumptions for the modified process?

Exercise 4.12 : Consider the modified version of Peterson’s mutual exclusion
protocol shown in figure 4.17. What fairness assumptions should be added to
this description? With these fairness assumptions, does the protocol satisfy
the requirement that if a process wants to enter the critical section, then it
eventually will enter the critical section?

Exercise 4.13 : Consider an asynchronous process P with two variables x and
y, both of type nat, with x initialized to 0 and y initialized to 2. The behavior
of the process is described by two tasks. The task A1 is always enabled, and
its update code x := x+ 1. The task A2 is always enabled, and its update code
is y := x + y. Answer each of the questions below with a brief justification.
When adding fairness assumptions, clearly specify whether you are using strong
fairness or weak fairness and for which task.

1. Is it guaranteed that the value of x eventually exceeds 5? If not, is there a
suitable fairness assumption for the two tasks under which this guarantee
holds?

2. Is it guaranteed that the value of y eventually exceeds 5? If not, is there a
suitable fairness assumption for the two tasks under which this guarantee
holds?

3. Is it guaranteed that at some step in the execution the values of x and y
become equal? If not, is there a suitable fairness assumption for the two
tasks under which this guarantee holds?

4.3 Asynchronous Coordination Protocols

In a network of processes communicating asynchronously, in each step a sin-
gle process executes a computation step, and such a step can either receive
an input value on an incoming channel or send an output value on an outgo-
ing channel. As a result, algorithms for solving coordination problems cannot

Asynchronous Model 163

statuscstatusd

outboutd

2 7 statusbstatuse

5

oute outa
PbPe

310
outc

statusa

Pa

Pd Pc

Figure 4.20: An Asynchronous Network with Ring Topology

proceed in lock-step rounds as in the synchronous case. We illustrate some of
the design challenges using three classical problems: electing a leader in a ring
of processes, implementing reliable communication using unreliable links, and
reaching consensus among two processes using shared objects.

4.3.1 Leader Election

Let us revisit the coordination problem of leader election discussed in sec-
tion 2.4.3, now in the asynchronous setting. Let us assume that the underlying
network connects the nodes in a unidirectional ring (see figure 4.20 for an exam-
ple ring with five nodes). Each node has a unique identifier, and the protocol
consists of a strategy for nodes to exchange messages so that eventually a sin-
gle node declares itself to be the leader, with the remaining nodes declaring
themselves to be followers.

We model each network node as an asynchronous process P . The input channel
in receives identifiers sent by the unique predecessor of P in the ring, and the
output channel out sends identifiers to the unique successor of P in the ring.
An internal queue x is used to store messages received on the channel in, and
the queue y is used to store messages to be sent, which get delivered by the
output task on the channel out one by one. When the process concludes that it
is either the leader or one of the followers, the decision is issued on the output
channel status. The description of the process is parameterized by the identifier
of the corresponding network node, denoted myID. We will assume that each
identifier is a positive number. To form a ring, we create multiple instances of
the process P and compose them together using the asynchronous composition
operation. For example, the system corresponding to the ring of five processes

164 Chapter 4

in figure 4.20 is Pa |Pb |Pc |Pd |Pe, where

Pa = P [status �→ statusa][in �→ oute][out �→ outa][myID �→ 5],
Pb = P [status �→ statusb][in �→ outa][out �→ outb][myID �→ 7],
Pc = P [status �→ statusc][in �→ outb][out �→ outc][myID �→ 3],
Pd = P [status �→ statusd][in �→ outc][out �→ outd][myID �→ 10],
Pe = P [status �→ statuse][in �→ outd][out �→ oute][myID �→ 2].

Our goal is to complete the description of the process P so that when multiple
instances of this process are composed to form a ring, the following requirements
are met: (1) every process eventually terminates, that is, there is no infinite
execution of the protocol; and (2) in every terminating execution, exactly one
process has output the value leader on its output channel status, and the
remaining processes have output the value follower on their output channels
status.

Recall that in the synchronous solution, if N is the total number of nodes in the
network, then assuming the network to be strongly connected, a node could infer
that its identifier has reached all the nodes in the network within N rounds. In
the asynchronous case, no such inference can be drawn, as nodes are executing
at independent speeds, and there is no concept of a round that involves all the
processes. A node can infer that the message it sent to its successor on the
output channel out has propagated to all the processes in the ring only when
it receives an appropriate input message from its predecessor. Consequently, a
process does not need to know the number of processes.

One possible solution to the asynchronous leader election in a ring is obtained
by adopting the flooding algorithm of section 2.4.3 that elects the process with
the highest identifier. We describe a more interesting algorithm that reduces
the number of messages that are exchanged. If the ring contains N processes,
then the algorithm to be discussed will generate only about N logN messages,
as opposed to N2 messages that the flooding algorithm can generate. As it
turns out, N logN is also a lower bound on the number of messages that have
to be exchanged in order to elect a leader among processes communicating
asynchronously over a ring network.

The algorithm is shown in figure 4.21. The input task Ai is always enabled and
simply stores each input message in the internal queue x. The output task Ao

outputs pending messages from the queue y to the output channel out and can
be executed at any time provided the queue y is not empty.

The core computation of the process is described as an extended-state machine.
Initially, the mode is undecided. Once a decision is reached, the process switches
to the leader or the follower mode, and during this switch, the decision is output
on the channel status. In the follower mode, the process simply relays messages
from its input queue x to its output queue y, and this is captured by the internal
task A7.

Asynchronous Model 165

Follow

Check2

Undec

Check1

Lead

nat id := myID; id1 := 0; id2 := 0
queue(nat) x := null; y := Enqueue(myID, null)

nat in

{leader, follower} status nat out

Enqueue(Dequeue(x), y)

A7 : ¬ Empty(x) →

A2 : (¬ Empty(x) ∧ id1 �= 0) →
id2 := Dequeue(x)

A5 : (id1 > max(id, id2)) →

Ai : Enqueue(in, x)
Ao : ¬ Empty(y) → out := Dequeue(y)

A3 : (id = id1) →

A4 : (id �= id1) →
id1 := Dequeue(x)

A6 : (id1 ≤ max(id, id2)) →
status ! follower

status ! leader

Enqueue(id1, y)

{ id := id1; id1 := 0;

id2 := 0; Enqueue(id, y) }

A1 : (¬ Empty(x) ∧ id1 = 0) →

Figure 4.21: Asynchronous Leader Election in a Ring

The execution of the algorithm progresses in phases, and in each phase, the
number of undecided processes decreases at least by a factor of 2, until only one
process remains undecided, which then becomes the leader.

Initially, each process sends its identifier to two successive processes along the
ring. To achieve this, each process first sends its identifier, as well as the first
input message it receives, on the output channel. When a process receives two
messages on the input channel, it knows its own identifier, captured by the
variable id, the identifier of its predecessor, captured by the variable id1, and
the identifier of the predecessor’s predecessor, captured by the variable id2.

Initially, the variable id is set to myID, the unique positive number associated
with the process. The variables id1 and id2 are set to 0. The identifier is

166 Chapter 4

enqueued in the outgoing queue to be transmitted to the next process. Then
the process waits until there is a message to be processed in the incoming queue
x. When the value of id1 is 0, the next message to be processed, which is at
the front of the queue x, is the value from the predecessor, and id1 is set to this
value by dequeuing x, and the process switches to the mode Check1 (see task
A1). If the value of id1 is non-zero, the next input message to be processed is the
identifier of the predecessor’s predecessor. The task A2 dequeues this message,
stores it in the variable id2, and switches to the mode Check2.

In the mode Check1, the process checks the value of the predecessor’s identifier
stored in id1. When this value equals the current value of id, the process has
won the election. In this case, the process outputs the value leader on the
channel status, and the mode is updated to Lead (see task A3). Otherwise,
when the predecessor’s identifier is different from the current value of id, this
value is enqueued in the outgoing queue y to be sent to the successor process,
and the mode switches to Undec (see task A4).

Once the process has received the values of both id1 and id2, in the mode Check2,
it compares these two identifiers with the value of id. If id1 is the highest among
these three identifiers, then the process continues to remain undecided, adopting
the value of id1 as its own identifier, and initiates a new phase starting in the
mode Undec (see task A5). If id1 is not the highest among these three identifiers,
then the process outputs the decision follower on the channel status and
switches to the follower mode Follow (see task A6). Subsequently, this process
will only relay messages without examining them.

Note that every process is repeating the same computation. Suppose for a
process P , id = m0, id1 = m1, and id2 = m2. The process P will continue to
stay undecided if both m1 > m0 and m1 > m2. Consider the predecessor P ′

of P . Then for the process P ′, its own identifier, that is, the value of its id
variable is m1, and the identifier of its predecessor, that is, the value of its id1
variable, is m2. This guarantees that if P decides to stay undecided adopting
m1 as its identifier, P ′ will become a follower. Consequently, the number of
processes that continue to stay undecided is at most half of the current number
of undecided processes. Furthermore, the number of processes that continue to
stay undecided is at least 1: among all the undecided processes, the successor
of the process with the highest identifier is guaranteed to stay undecided.

For the example network shown in figure 4.20, for the process Pc with the
original identifier 3, the values of id, id1, and id2 in the first phase will be 3, 7,
5, respectively, and it will continue to the next phase as an undecided process,
with 7 as its identifier. For the process Pb with the original identifier 7, the
values of id, id1, and id2 in the first phase will be 7, 5, and 2, respectively, and
it will become a follower. After the first phase, only processes Pc and Pe will
be undecided, with modified identifiers 7 and 10, respectively.

When a process continues to stay undecided, it repeats the protocol again. It
sends its current identifier (which was adopted from its predecessor in the pre-
ceding round) and the next input message on its output channel. After receiving

Asynchronous Model 167

two input messages, it examines the relative ordering of its identifier and the
identifiers of its two (undecided) predecessors, making decisions as before. That
is, in every subsequent phase, the current ring with the reduced number of un-
decided processes repeats the same protocol, thereby again reducing the number
of undecided processes by at least half. The presence of follower processes does
not influence the logical argument since they are simply relaying messages.

When an undecided process receives an input message that is equal to its current
identifier, it can conclude that it is the only undecided process and proceeds to
declaring itself as the leader. Note that even though this identifier is guaranteed
to be the highest among all the original identifiers, it is not the original identifier
of this leader process.

Continuing our example from figure 4.20, during the second phase, for the pro-
cess Pc, the values of id, id1, and id2 will be 7, 10, and 7, respectively, and
it will continue to the next phase as the only undecided process adopting the
identifier 10. In the third phase, the first message it sends will come back to
it as the predecessor’s identifier, with all other processes simply relaying this
message. This will cause the process Pc to declare itself as the leader.

The formal correctness argument is complicated by the fact that the phases are
not synchronized, and at any given time, neighboring processes may be executing
different phases. In each phase, each process sends at most two messages. If the
ring contains N processes, then each phase contributes at most 2N messages,
and the number of phases is at most logN , leading to an overall bound of
2N logN messages.

In this protocol, no process ever sends messages repeatedly. Thus, no infinite
execution is possible, and as a result, correctness does not require any fairness
assumptions.

Exercise 4.14 : For the leader election protocol of figure 4.21, consider a ring
with 16 nodes where the identifiers of the processes in order are: 25, 3, 6, 15,
19, 8, 7, 14, 4, 22, 21, 18, 24, 1, 10, 23. Which process will be elected as the
leader?

Exercise 4.15*: For the leader election protocol of figure 4.21, describe the
best- and worst-case scenarios: (a) describe the scenario in which only one node
will stay active after the first phase, and (b) describe the scenario in which the
protocol will need log N phases before the election.

4.3.2 Reliable Transmission

Given an unreliable communication medium, how can we implement a reliable
FIFO link that delivers each message exactly once in the order received? More
specifically, we want to design processes Ps and Pr so that the composite system
shown in figure 4.22 acts as a reliable FIFO buffer with respect to its input
and output channels using two instances of the unreliable communication link

168 Chapter 4

Pr

UnrelFIFO1

UnrelFIFO2

msg in msg out
Ps

x1 y1

y2x2

Figure 4.22: The Block Diagram for Reliable Communication

UnrelFIFO (see figure 4.19). The process Ps acts as an interface for the sender,
and the process Pr acts as an interface for the receiver. The unreliable link
UnrelFIFO1 transfers messages from the process Ps to Pr, and the unreliable
link UnrelFIFO2 transfers messages from the process Pr to Ps.

Alternating Bit Protocol

To deliver a message that the process Ps receives on its input channel in, it may
need to send the message repeatedly to the process Pr since the link UnrelFIFO1
may lose messages, and the process Pr needs to send an explicit acknowledgment
back to the process Ps notifying successful delivery. The acknowledgment also
needs to be sent repeatedly to ensure eventual successful delivery to account for
lost messages. A key design challenge is to match messages with acknowledg-
ments, in the presence of potential duplication of messages as well as duplication
of acknowledgments. One classical solution for this purpose is the alternating bit
protocol that synchronizes the sender and the receiver processes using a Boolean
tag bit that alternates.

The sender interface process Ps is shown in figure 4.23. It maintains a queue
x of messages that it receives on its input channel in, and it is processed by
the input task Ai. The state variable tag is a Boolean variable that is initially
1. When the process Ps sends the message at the front of its internal queue x
to the receiver process Pr using the unreliable FIFO link on the channel x1, it
augments the message with the current value of tag and does not remove the
message from the queue x. The output task A1 may get executed repeatedly.
When the sender process Ps gets an acknowledgment on the channel x2 in the
form of a tag bit from the receiver, it checks whether the received tag matches
its own tag; if this check succeeds, it removes the message from its queue x and
toggles the tag. The processing of acknowledgment tags is modeled by the input
task A2. The toggling of the tag will cause the next message in the queue x
to be sent, possibly repeatedly, on the output channel x1 augmented with this
updated tag. Note that the task A2 is always enabled, but it does not modify
the state if the incoming acknowledgment tag does not match the expected tag.
The fairness assumption consists of weak fairness for the output task: once
a message is enqueued in the queue x, the task A1 stays enabled and should
eventually be executed sending the first message on the channel x1.

The receiver process Pr is shown in figure 4.24. The messages it receives are

Asynchronous Model 169

Ai : Enqueue(in, x)

queue(msg) x := null; bool tag := 1

A2 : if [x2 = tag ∧ ¬ Empty(x)] then {tag := ¬tag; Dequeue(x)}

msg in

bool x2

A1 : ¬ Empty(x) → x1 ! 〈 Front(x), tag 〉
〈 msg, bool 〉 x1

Figure 4.23: The Sender Process for the Alternating-bit Protocol

stored in the internal queue y. The process also maintains a Boolean-valued tag
state variable, which is initially 0. Note that the initial values of the tag bits
of the sender Ps and the receiver Pr are complements of each other: initially
and at every step, the sender Ps expects the incoming tag from the receiver to
be the same as its internal tag, whereas the receiver expects the incoming tag
from the sender to be the complement of its internal tag. When the receiver
process Pr receives a message on the input channel y1, it checks whether the tag
of the incoming message is the complement of its own tag. If so, the incoming
message is considered a new message, and it is added to the queue y. This is
captured by the input task A1, where the primitives First and Second are used
to retrieve the two fields of the incoming message. Note again that the task A1

is always enabled, and if the incoming tag is not what it expects, the incoming
message is simply ignored. Messages in the queue y are transmitted on the
output channel by the output task Ao. The receiver Pr also repeatedly sends
the current value of its tag to the sender process Ps as an acknowledgment on
the channel y2 (captured by the output task A2). To ensure eventual delivery
on both the output channels, the fairness assumption consists of weak fairness
for both the output tasks A2 and Ao. Since these tasks are not disabled by
competing actions, we don’t need strong fairness.

The following scenario describes how the protocol executes. Suppose the pro-
cess Ps receives a message, say m1, on its input channel in. Then it will repeat-
edly send the message (m1, 1) to the process Pr using the unreliable channel.
Each such message may be lost or duplicated. Meanwhile, the process Pr can
repeatedly send the tag bit 0 to the process Ps, but Ps will ignore all such ac-
knowledgments. The first time the message (m1, 1) is successfully delivered to
the process Pr on the channel y1, the process Pr will change its tag to 1 and
enqueue m1 in its output queue y. The message m1 will eventually be trans-
mitted on the output channel out. Additional copies of the message (m1, 1)
received on the channel y1 will be ignored by the process Pr since its tag is now
1: it will recognize the next message as a fresh message only when the message
is tagged with 0. The process Pr will repeatedly send the tag 1 to Ps as an
acknowledgment on the channel y2. Each such message again may be lost or
duplicated, but eventually the process Ps will receive the tag 1 on the channel
x2. At this point, the process Ps will remove the message m1 from its internal
queue x and toggle its tag variable to 0. If additional messages are received on

170 Chapter 4

queue(msg) y := null; bool tag := 0

A2 : y2 ! tag

Ao : ¬ Empty(y) → out := Dequeue(y)〈 msg, bool 〉 y1
msg out

A1 : if Second(y1) �= tag then bool y2
{ tag := ¬ tag; Enqueue(First(y1), y) }

Figure 4.24: The Receiver Process for the Alternating-bit Protocol

the channel in during this period, then they get enqueued in the queue x, and
if m2 is the next pending message, then the process Ps will start sending the
message (m2, 0) to Pr on the channel x1. If the process Ps receives additional
tag messages 1 on the channel x2, then it will ignore them. The message m2

will be dequeued by the process Ps from its queue x only when it receives the
tag 0.

Exercise 4.16 : Suppose we know that the communication link from the re-
ceiver back to the sender is reliable. How would you modify the alternating-bit
protocol to take advantage of this? That is, design simplified versions of the
processes Ps and Pr so that the composite system shown in figure 4.22 acts a
reliable FIFO buffer when the process UnrelFIFO2 is replaced by the process
Buffer.

Exercise 4.17*: Consider the description of the process VeryUnrelFIFO de-
signed in exercise 4.11 of an unreliable link that may lose messages, duplicate
messages, and reorder messages. First, show that the alternating-bit protocol
does not work correctly if we replace each instance of UnrelFIFO with a corre-
sponding instance of the process VeryUnrelFIFO. How would you modify the
processes Ps and Pr so that reliable communication is guaranteed even in the
presence of this added complication of reordering? Argue that the modified pro-
tocol works correctly. Hint: a Boolean-valued tag is not enough, and messages
need to be tagged with a counter variable of type nat.

4.3.3 Wait-Free Consensus ∗

To see how the choice of atomic primitives supported by shared objects impacts
the ability to solve distributed coordination problems, let us consider the clas-
sical problem of wait-free two-processes consensus. Each process starts with an
initial preference that is known only to itself. The processes want to communi-
cate and arrive at a consensus decision value. This problem has been posed in
many different forms, for instance, requiring two Byzantine Generals in charge
of collaborating armies separated by the enemy army to exchange messengers
to arrive at a mutually agreed time of attack. The core coordination problem of
reaching agreement in the presence of unpredictable delays is central to many
distributed computing problems.

Asynchronous Model 171

{0, 1, null} other1 := null

bool pref1, dec1

if other1 �= null

then dec1 := pref1 ∨ other1
else dec1 := pref1

x1 := pref1

other1 := x2

{0, 1, null} other2 := null
bool pref2, dec2

if other2 �= null

then dec2 := pref2 ∨ other2
else dec2 := pref2

x2 := pref2

other2 := x1

AtomicReg {0, 1, null} x1 := null; x2 := null

Figure 4.25: First Solution to Two-Process Consensus Using Atomic Registers

Problem Description

More specifically, we have two asynchronous processes, say P1 and P2, each of
which has an initial Boolean value, denoted v1 and v2, respectively, unknown to
the other. The processes want to arrive at Boolean decision values d1 and d2,
respectively, so that the following three requirements are met: (1) the decision
values d1 and d2 of the two processes are identical, (2) the decision value must be
equal to one of the initial values v1 or v2, and (3) at any time, if tasks involving
only one of the processes are repeatedly executed, this process should reach a
decision. The first requirement, called agreement, means that the two processes
should come to a common decision even if they start with different preferences.
The second requirement, called validity, says that if both prefer the same value,
then they must decide on that value. This requirement rules out input-oblivious
solutions such as: both decide on 0 no matter what the initial preferences are.
The third requirement, called wait freedom, ensures that a process can decide
on its own without having to wait indefinitely for the other.

Suppose we want to design the processes P1 and P2 so that they communicate
using shared objects such as atomic registers and test&set registers. In the
composite system, every action then will be either an internal action of one of
the processes or will be a primitive operation by one of the processes involving
one of the shared objects.

Incorrect Solutions Using Atomic Registers

Correctness requirements for the problem and challenges in designing a correct
solution can be best illustrated using protocols that meet only some of the
requirements. As a first attempt, consider the solution shown in figure 4.25.
The solution uses two shared atomic registers x1 and x2, each of which is an

172 Chapter 4

AtomicReg {0, 1, null} x1 := null; x2 := null

else

x1 := pref1

{0, 1, null} other1 := null
bool pref1, dec1

other1 := x2

dec1 := pref1 ∨ other1

other1 �= null →

x2 := pref2

{0, 1, null} other2 := null
bool pref2, dec2

other2 := x1

dec2 := pref2 ∨ other2

other2 �= null →

else

Figure 4.26: Second Solution to Two-Process Consensus Using Atomic Registers

instance of the AtomicReg process shown in figure 4.10. Here, the set val

of values is {0, 1, null}, and the initial value initVal for each of the shared
registers is null.

The initial preference of the process P1 is stored in its state variable pref1, and
its objective is to set the decision variable dec1 to the decision value on termi-
nation. The process P1 first writes its preference to the shared register x1, and
analogously, the process P2 writes its preference (captured by the initial value of
its state variable pref2) to the shared register x2. The process P1, after writing
its preference to x1, reads the shared register x2 into its internal state variable
other1. Since the execution of the two processes proceeds asynchronously, when
the process P1 executes the action of reading x2, there is no guarantee that the
process P2 has already written its preference to x2. To account for this possi-
bility, the process P1 checks whether the value it reads is null. If it is null,
then it decides on its own preference; otherwise, it knows the preference of the
process P2 and decides on the logical disjunction of the two preferences. The
process P2 is symmetric.

The protocol, however, is buggy. Suppose the initial preferences of P1 and P2 are
0 and 1, respectively. Consider the execution in which we first execute only the
tasks involving the process P1 until it finishes and then execute all the actions
of the process P2. In this scenario, when the process P1 reads x2, its value is
still null, and hence P1 decides on its own preference, 0. However, when the
process P2 reads x1, it receives the value 0, and it decides on the disjunction of
the two initial preferences, namely, 1. Thus, the protocol violates the agreement
requirement. Observe that the protocol does meet the requirements of validity
(if both initial preferences are 0, both will decide 0; and if both initial preferences
are 1, both will decide 1 no matter in which order the two processes execute

Asynchronous Model 173

bool s2 := 0

bool pref2, dec2

if s2 = 1
then dec2 := x1
else dec2 := pref2

s2 := y.t&s

x2 := pref2

bool s1 := 0

bool pref1, dec1

if s1 = 1
then dec1 := x2

else dec1 := pref1

s1 := y.t&s

x1 := pref1

AtomicReg bool x1; x2
Test&SetReg y := 0

Figure 4.27: Solution to Two-Process Consensus Using a Test&Set Register

their respective actions) as well as wait freedom (each process executes exactly
three actions before terminating and enabling of each of these actions does not
depend on the other process).

We can try to “fix” the protocol by requiring each process to wait until it knows
the preference of the other process. Figure 4.26 shows the revised protocol: after
the process P1 reads the shared register x2, if its value is null, it loops back and
reads x2 again. In the revised version, the requirement of agreement is satisfied
since both processes decide only after they know both the preferences. The
requirement of validity also holds. However, the requirement of wait freedom
is violated. The reason is that if, say the process P2, has not yet executed its
write to x2, then the process P1 will repeatedly read x2 and will not be able to
reach a decision on its own.

Solution Using Test&Set Registers

It is possible to solve consensus using a single test&set register. Consider the fol-
lowing protocol that uses two Boolean atomic registers x1 and x2 and a test&set
register y (see figure 4.27). The initial values of the registers x1 and x2 do not
matter, and y is initially 0. The process P1 executes the following sequence of
actions, with the process P2 following a symmetric protocol. The process P1

first writes its own preference to the atomic register x1. Then it executes a
test&set operation on the register y. If the value returned (stored in the state
variable s1) is 0 (implying that the register y was 0 before the process P1’s
test&set operation was executed), then P1 goes ahead and decides on its own
preference. If the value received by the test&set operation on y is 1, then the
process P1 concludes that the other process P2 had already executed its test&set
operation successfully, and hence the register x2 must contain the preference of
the process P2. The process P1 then proceeds to read x2 and decides on the

174 Chapter 4

value it contains. In summary, each process publishes its preference in a shared
atomic register, executes test&set to resolve contention, and, based on the result
of this test, decides whose preference to adopt. Each process executes a fixed
number of actions and thus can decide without waiting for the other.

Impossibility of Solving Consensus Using Atomic Registers

The key to the correct solution of figure 4.27 is the use of the atomic operation
test&set that updates the register and returns its old value without interference
from other processes. If we are required to use only atomic registers, where the
operations of reading and writing a register are decoupled, then no matter how
many shared registers the protocol employs and how many values each such
register can hold, there is no solution that satisfies all three requirements of
agreement, validity, and wait-freedom.

For the protocol of figure 4.27, consider the initial state in which pref1 = 0 and
pref2 = 1. Such a state is called uncommitted in the sense both decisions are
still feasible: starting from such a state, there is a possible execution in which
both processes end up deciding on 0, and there is another possible execution
that results in both processes deciding on 1. The first step of the proof below
is to establish that such an uncommitted state must exist in every protocol
that correctly solves the consensus problem. For the protocol of figure 4.27,
starting with pref1 = 0 and pref2 = 1, consider the state after both the processes
have taken one step each and have written their respective preferences to the
variables x1 and x2. This state is still uncommitted, but if the next step is
by P1, then the final decision is guaranteed to be 0 (irrespective of how the
execution proceeds subsequently), while if the next step is by P2, then the final
decision is guaranteed to be 1. A key part of the proof is to establish that in
every consensus protocol, there must be such an uncommitted reachable state
such that the next step is the deciding factor for the final decision. For the
protocol of figure 4.27, this critical step involves the test&set operation on a
shared register. The proof concludes by showing that if all that a process can
do in one step is either read or write an atomic register, then such a step cannot
be the critical deciding factor, and thus the problem cannot be solved using only
atomic registers.

Theorem 4.1 [Impossibility of Consensus using Atomic Registers] There is no
protocol for two-process consensus such that (1) the processes communicate using
only atomic registers as shared objects, and (2) the protocol satisfies all three
requirements of agreement, validity, and wait-freedom.

Proof. Suppose there exists a solution to the two-process consensus problem
using only atomic registers. Consider the transition system T that corresponds
to the system obtained by composing the two processes P1 and P2 and all the
atomic registers that the protocol uses. A state s of T consists of the internal
states of the two processes and the states of all the shared atomic registers. A
single transition of T is either an internal action of one of the two processes or

Asynchronous Model 175

a read action involving one of the processes and one shared register, or a write
action involving one of the processes and one shared register.

Starting from a given state s, many executions are possible, but each one is
finite and ends in a state where both processes have decided. Let us call a
state s uncommitted if both decisions 0 and 1 are still possible: there is an
execution starting in the state s in which both processes decide 0, and there
is another execution starting in the state s in which both processes decide 1.
A state is called 0-committed if in all executions starting in the state s both
processes decide 0 and 1-committed if in all executions starting in the state s
both processes decide 1.

Let us call two states s and t P2-indistinguishable if the internal state of the
process P2 is the same in both states s and t, and the state of each of the shared
registers is also the same in both states s and t. That is, the states s and t look
the same from the perspective of the process P2: if P2 can execute an action in
the state s, then it can execute the same action in the state t.

As a first step toward the proof, we first establish the following:

Lemma 1. If two states s and t are P2-indistinguishable, then it
cannot be the case that the state s is 0-committed and the state t is
1-committed.

The wait-freedom requirement means that starting in any state, if we execute
actions involving only one of the two processes, then it must reach a decision.
Consider two states s and t that are P2-indistinguishable such that the state s
is 0-committed. In the state s, if we let only the process P2 execute actions,
then it will eventually reach a decision, and this must be 0 by the assumption
that all executions starting in the state s lead to the decision 0. Now consider
what happens if we let only the process P2 take steps starting in the state t.
Since the states s and t look the same as far as the process P2 can tell, it can
execute the same sequence of actions and reach the same decision 0. Thus, the
state t cannot be 1-committed.

The next step in the proof is the following lemma:

Lemma 2: There exists an uncommitted initial state.

Consider an initial state s in which the preferences v1 and v2 of the two pro-
cesses are different, say 0 and 1, respectively. We claim that this state must
be uncommitted. If not, suppose it is 0-committed. In the state s, the process
P2 has preference 1. Neither the initial values of the shared registers nor the
initial values of the state variables belonging to P2 reflect the initial preference
of the process P1. Consider the initial state t in which the initial values for the
shared registers and the state variables of P2 are identical to those in the state
s but the initial state of the process P1 is chosen so that its initial preference is
1. That is, the only difference in the states s and t is in the initial preference of
the process P1. The states s and t are P2-indistinguishable by construction. By

176 Chapter 4

Lemma 1, we can conclude that the state t cannot be 1-committed. But this is
a contradiction to the validity requirement: in the state t, both preferences are
1, and thus every execution starting in the state t must lead to the decision 1
(otherwise the protocol does not satisfy the validity requirement).

We now proceed to establish that:

Lemma 3: There exists an uncommitted reachable state s such that
all successor states of the state s are committed.

The proof of the lemma is by contradiction. First observe that the protocol
cannot terminate in an uncommitted state since both processes are required
to reach a common decision upon termination. Then if Lemma 3 does not
hold, we can assume that every reachable uncommitted state has an uncom-
mitted successor state. Consider an uncommitted initial state s0 guaranteed by
Lemma 2. Clearly, the state s0 is reachable, and by assumption, it must have
an uncommitted successor, say state s1. We can repeat this argument again: at
every step j, we have a reachable uncommitted state sj , and by assumption, we
can find an uncommitted successor state sj+1 extending the execution by one
more step. This means that there is an infinite execution in which processes
have not reached a decision, a violation of the correctness requirement to reach
agreement. It follows that Lemma 3 must hold.

Consider a state s promised by Lemma 3. The state s is uncommitted, that
is, both decisions are still possible, but executing one more step by either of
the processes commits the protocol to the eventual decision. Without loss of
generality, we can assume that there exist actions s → s1 by the process P1

using the task A1 and s → s2 by the process P2 using the task A2, such that
every execution starting in the state s1 ends up with the decision 0, and every
execution starting in the state s2 results in the decision 1 (see figure 4.28). Each
action can be an internal action, a reading of a shared register, or a writing of
a shared register. To complete the proof, we consider all possible types of tasks
for A1 and A2 and arrive at a contradiction in each case.

Suppose the task A1 of the process P1 corresponds to a reading of a shared
atomic register. The execution of such a task does not modify the state of
any of the shared objects and does not modify the internal state of the process
P2. Thus, the states s and s1 are P2-indistinguishable. Since the two states
look the same to the process P2, it can execute the task A2 in the state s1
also, and let the resulting state be t (see figure 4.28). The states t and s2
are P2-indistinguishable. But the state s2 is 1-committed, while the state t is
0-committed, a contradiction to Lemma 1.

The cases when one of the tasks is an internal task and when the task A2 involves
a read action are similar. The interesting remaining case is when both the tasks
A1 and A2 execute write actions. There are two sub-cases: they both write
to the same register and they write to different registers. We will consider the
former, leaving the latter as an exercise.

Asynchronous Model 177

s1 s2 1-committed0-committed

t 0-committed

s Uncommitted

Task A2 by P2Task A1 by P1

A2 by P2 P2-indistinguishable states

Figure 4.28: Impossibility Result for Consensus Using Atomic Registers

Consider the case when both the processes write to the same atomic register,
say x. That is, in the state s, the process P1 writes some value m1 to the
register x leading to the state s1, and the process P2 writes some value m2 to
the same register x leading to the state s2. Note that in the state s1, even
though the value of the register x is different from its value in the state s, the
internal state of the process P2 is the same in both the states s and s1. A key
observation is that the execution of the task corresponding to writing a register
is not influenced by the current value of the register. Thus, in the state s1, the
process P2 can write the same value m2 to the register x leading to the state t
(see figure 4.28). The writing of the value m1 by the process P1 to x has been
effectively lost and did not influence what the process P2 was about to do in
the state s. In the states s2 and t, the internal states of the process P2 are
identical, and so are the states of all the shared registers. Thus, the states s2
and t are P2-indistinguishable, the state s2 is 1-committed, and the state t is
0-committed: a contradiction to Lemma 1.

Exercise 4.18 : Complete the proof of Theorem 4.1 by considering the remain-
ing case where the task A1 writes to a shared register x, and the task A2 writes
to a different shared register y.

Exercise 4.19 : Consider the following solution to the two-process consensus
problem in the asynchronous model. The processes use a shared atomic register
x and a shared test-and-set register y. The possible values for the register x are
null, 0, and 1, and the initial value is null. The possible values for the register
y are 0 and 1, and its initial value is 0. Each process executes the following
sequence of steps:

1. Write its initial preference to the register x.

2. Execute a test-and-set operation on the register y.

3. If step (2) returns 0, then decide on its own initial preference.

4. If step (2) returns 1, then read the register x and decide on the value read.

Consider the three requirements for consensus: validity, agreement, and wait-
freedom. Which of these requirements are satisfied by this protocol? Justify
your answer.

178 Chapter 4

Exercise 4.20*: Consider the generalization of the consensus problem to mul-
tiple processes in which each process starts with an initial preference bit and
wants to decide on a common Boolean value. The protocol must satisfy the
requirements of agreement (all decide on the same value), validity (the decision
value must be a preference of one the processes), and wait freedom (if a process
takes steps all by itself, then it should reach a decision in finitely many steps
without having to wait for the others). Assume that the description of atomic
registers and test&set registers described in section 4.2.3 is suitably general-
ized so that a register can be accessed by multiple processes. Explain why the
strategy described in the two-process protocol based on a single Test&SetReg

register to resolve contention (see figure 4.27) does not generalize to three pro-
cesses. Try to design a solution to the three-process consensus problem using
two Test&SetReg registers and show that your attempts fail (note: when the
number of processes is three (or more), there is no solution to the consensus
problem using only atomic and test&set registers).

Exercise 4.21*: Consider the shared object StickyBit that supports read and
write operations as in the case of an atomic register, with some modifications.
The internal state of a StickyBit process can be null, 0, or 1 and is initially
null. The read operation outputs the current value. The write operation has a
Boolean (0 or 1) input value associated with it: if the current state is null, then
the state is updated to the value of write, but if not (that is, if the state is already
0 or 1), then the value stays unchanged. Describe a protocol for solving two-
process consensus using a single StickyBit object (you may use any number of
additional atomic registers as you need). Can you solve consensus for three (or
more generally, n) processes using multiple StickyBit and AtomicReg objects?

Exercise 4.22*: This exercise describes a classical puzzle that requires design
of an asynchronous coordination strategy. There are N prisoners who get to-
gether initially to decide on a strategy. Then each prisoner is taken to her own
isolated cell. A prison guard goes to a cell and takes its prisoner to a room
where there is a switch. The switch can either be up or down. The prisoner is
allowed to inspect the state of the switch and then has the option of flicking the
switch. The prisoner is then taken back to her cell. The prison guard repeats
this process infinitely often. The order in which he brings the prisoners to the
cell is arbitrary, in particular, there is no bound on how many times one prisoner
visits the room with the switch before some other prisoner gets to visit. How-
ever, the prison guard guarantees fairness: every prisoner will visit the room
infinitely often. At any time, any prisoner can exclaim “I have concluded that
every prisoner has visited the room with the switch at least once.” Upon such
a declaration, if the statement is indeed correct, all prisoners are set free; if the
statement is not correct, all prisoners are immediately executed. What strategy
should the prisoners use to ensure their eventual freedom? Note that the initial
state of the switch is unknown to the prisoners, but as a warm-up, you may
consider the same problem but with a known initial state of the switch.

Asynchronous Model 179

Bibliographic Notes

There is a rich history of formal models and distributed algorithms for asyn-
chronous concurrent processes dating back to Dijkstra [Dij65]. The formal model
described here is based on the model of I/O automata [LT87, Lyn96].

Different notions of fairness are discussed in [Fra86], and the literature on
the model of fair transition systems contains many examples of specification
and verification of asynchronous systems with weak and strong notions of fair-
ness [MP91].

The coordination problems of mutual exclusion, consensus, leader election, and
reliable communication in the presence of unreliable channels have been core
research problems in both distributed computing and formal verification for
decades (see for instance, [CM88], [Lyn96], and [Lam02]). The specific results we
have discussed include Peterson’s two-process mutual exclusion protocol [Pet81],
leader election in a ring using O(N .logN) messages [Pet82], alternating bit
protocol for reliable communication [BSW69], and impossibility of consensus
using atomic registers [FLP85, Her91].

5

Liveness Requirements

As discussed in chapter 3, requirements can be classified into two broad cate-
gories: safety requirements assert that “nothing bad ever happens,” and liveness
requirements assert that “something good eventually happens.” For instance,
in the leader election problem, the central safety requirement is that no two
nodes should ever declare themselves to be the leaders, and the central liveness
requirement is that each node should eventually make a decision. In chapter 3,
we studied how to specify and verify safety requirements. Now we turn our
attention to liveness requirements. Such requirements are specified using a for-
malism called temporal logic. The problem of checking whether a model satisfies
its specification expressed in temporal logic is known as model checking.

5.1 Temporal Logic

Let us revisit our example of the system of traffic lights for a railroad from
section 3.1.2. Given a model of the trains and the desired requirements, the
design problem is to construct a controller so that the system composed of the
trains and the controller satisfies the requirements. One basic requirement is
that the two trains should not be on the bridge simultaneously. This safety
requirement is captured by the property

TrainSafety : ¬ [(modeW = bridge) ∧ (modeE = bridge)]

and we require this property to be an invariant of the composite system. Obvi-
ously, this is not a complete specification for the desired controller: a controller
that keeps both traffic lights to be red all the time is safe with respect to the
property TrainSafety but is not an acceptable solution as it would never let
any train onto the bridge. We need to augment the safety requirement with a
liveness requirement that asserts that the controller should allow the trains onto
the bridge. For resource allocation problems exemplified by our railroad system,
while there is usually a canonical safety requirement, the liveness requirements
can make differing demands. For instance, we may require that “if one of the

182 Chapter 5

trains wants to enter the bridge, then eventually some train should be allowed
to enter,” or we may demand a stronger requirement that “if a train wants to
enter the bridge, then eventually that specific train should be allowed to enter.”

Violation of a safety requirement is demonstrated by a finite execution that
leads the system from an initial state to an erroneous state. For instance, the
counterexample of figure 3.7 is a finite execution demonstrating that our first
attempt at designing the controller for the railroad system is incorrect. Vio-
lation of a liveness requirement, in contrast, is not exhibited by such a finite
execution. Instead, it consists of a cycle of states such that the cycle is reachable
from an initial state, and if the cycle is executed repeatedly, the demand made
by the liveness requirement is unmet. Hence, the mathematical formalization
of liveness requirements considers infinite executions of the system. A natu-
ral formalism for specifying requirements about infinite executions is temporal
logic. Temporal logics come in many varieties and can express safety as well
as liveness requirements. We will study the classical temporal logic Ltl, which
stands for Linear Temporal Logic. This logic forms the core of the Property
Specification Language (PSL), which has been standardized by IEEE and sup-
ported by commercial simulation and verification tools used in the electronic
design automation industry.

5.1.1 Linear Temporal Logic

Let V be a set of typed variables, and suppose we are writing requirements to
constrain the values these variables are allowed to take. Given a valuation q over
V , that is, a type-consistent assignment of values to V and a Boolean expression
e over V , q(e) denotes the result of evaluating the expression e using the values
assigned by the valuation q. When q(e) equals 1, we say that the valuation
q satisfies the expression e. We can thus interpret a Boolean expression e to
express a constraint or requirement on individual valuations: the requirement e
is satisfied when the expression evaluates to 1 according to the values assigned by
the valuation. For example, suppose the set V contains two Boolean variables x
and y. Then the expression (x = y) expresses the requirement that both these
variables should take the same value: a valuation q satisfies the requirement
precisely when the value q(x) is same as the value q(y).

While an expression over variables V is evaluated with respect to a valuation
for V , a temporal logic formula over V is evaluated with respect to an infinite
sequence of valuations. That is, to interpret a temporal logic formula, we need
to consider an infinite sequence q1q2 . . . where each element qi of the sequence
is a valuation. For example, when the set V contains two Boolean variables x
and y, each valuation is an assignment to the Boolean variables x and y, and
the temporal logic formulas are evaluated with respect to an infinite sequence
ρ = (x1, y1)(x2, y2) · · ·. We call such an infinite sequence of valuations a trace
over V .

Boolean expressions are used to express constraints over individual valuations,

Liveness Requirements 183

e f

© e

♦ e

� e

f U e

♦� e

�♦ e

♦ (e ∧©♦ f)

e

Figure 5.1: Illustrating Temporal Operators of Ltl

and such expressions are combined using temporal operators that capture re-
quirements for the sequence of valuations in a trace. Thus, a Boolean expression
e over V is the simplest form of a temporal logic formula. We say that a trace ρ
satisfies the Boolean expression e if the first valuation in the trace satisfies e. In
our example, the trace ρ = (x1, y1)(x2, y2) · · · satisfies the Ltl-formula (x = y)
precisely when the first valuation in the trace satisfies the expression, that is,
when x1 equals y1.

Temporal Operators

Let us consider the temporal operator always, denoted � . The Ltl-formula � e
is satisfied by a trace when every valuation in the trace satisfies e. For example,
the trace ρ = (x1, y1)(x2, y2) · · · satisfies the Ltl-formula � (x = y) precisely
when every valuation in the trace satisfies the expression (x = y), that is, when
xj = yj for every j. Thus, the formula � (x = y) expresses the requirement
that the variable x should always be equal to y. Figure 5.1 illustrates the
requirements imposed by different temporal logic formulas.

The dual of the always operator is the temporal operator eventually , denoted
♦ . The Ltl-formula ♦ e is satisfied by a trace when some valuation in the
trace satisfies e. For example, the trace ρ = (x1, y1)(x2, y2) · · · satisfies the
Ltl-formula ♦ (x = y) precisely when some valuation in the trace satisfies the
expression (x = y), that is, when xj = yj for some j. Thus, the formula

184 Chapter 5

♦ (x = y) expresses the requirement that eventually at some step, the values of
the variables x and y coincide.

The temporal operator next, denoted © , is used to assert requirements for
the next valuation in the trace. The Ltl-formula © e is satisfied by the trace
q1q2 . . . when the valuation q2 satisfies the expression e. For example, the trace
ρ = (x1, y1)(x2, y2) · · · satisfies the Ltl-formula © (x = y) precisely when x2 =
y2.

The final temporal operator we consider is called the until operator, denoted
U , that takes two formulas as arguments. The Ltl-formula f U e is satisfied in
a trace if the expression f is satisfied in every valuation in the sequence until
we encounter a valuation that satisfies e. That is, the trace q1q2 . . . satisfies the
formula f U e precisely when there exists a position j such that the valuation
qj satisfies the expression e and each of the valuations from q1 to qj−1 satisfies
the expression f . For example, the trace ρ = (x1, y1)(x2, y2) · · · satisfies the
Ltl-formula (x = 0) U (y = 1) precisely when there is some position j such that
yj = 1 and xk = 0 for all positions 1 ≤ k < j. This expresses the requirement
that eventually y should become 1, and until then x should stay 0.

Temporal logic formulas can be combined using the standard logical operators:
conjunction (∧), disjunction (∨), implication (→), and negation (¬). For exam-
ple, if ϕ1 and ϕ2 are two Ltl-formulas, then we can combine them using the
conjunction operator to obtain the Ltl-formula ϕ1 ∧ ϕ2. A trace ρ satisfies the
conjunction ϕ1 ∧ ϕ2 precisely when it satisfies both ϕ1 and ϕ2. Thus, a trace
ρ satisfies the Ltl-formula � (x = y) ∧ ♦ (x = 0) if in every valuation of the
trace, the value of x is equal to the value of y, and there is a valuation in the
trace which assigns the value 0 to x.

So far we have considered Ltl-formulas in which the arguments to the temporal
operators are expressions constraining individual valuations. In general, tem-
poral operators can be nested, that is, arguments of temporal operators may
be complex temporal logic formulas. For example, consider the Ltl-formula
©� (x = y). This formula says that in the next step, always (x = y) holds: the
trace ρ = (x1, y1)(x2, y2) · · · satisfies this formula at the first position precisely
when it satisfies the formula � (x = y) at position 2, that is, xj = yj for all
positions j ≥ 2.

To formalize the meaning of Ltl-formulas with nested temporal operators, we
will define what it means for a trace to satisfy an Ltl-formula at a given position:
for a trace ρ, a position j ≥ 1, and an Ltl-formula ϕ, the notation (ρ, j) |= ϕ
stands for “the trace ρ satisfies the formula ϕ at position j.” The trace ρ =
q1q2 . . . satisfies a Boolean expression e (without any temporal operators) at
position j if the valuation qj satisfies e. The trace ρ satisfies the next formula
©ϕ at position j, where ϕ may be an arbitrary Ltl-formula, if the trace ρ
satisfies the formula ϕ at position j + 1. That is, “next ϕ” holds at a position
if ϕ holds at the next position. Similarly, the trace ρ satisfies the eventually
formula ♦ϕ at position j, where ϕ may be an arbitrary Ltl-formula, if the trace

Liveness Requirements 185

ρ satisfies the formula ϕ at some position k with k ≥ j. That is, “eventually
ϕ” holds at a position if ϕ holds at some later (or future) position. Similarly,
“always ϕ” holds at a position if ϕ holds at every subsequent position.

Syntax and Semantics

Now we can define the logic Ltl precisely. The definition below defines both
the syntax of the logic—what are the syntactically correct formulas of the logic
and the semantics of the logic—the meaning of the formulas given by the rules
to evaluate the formulas over traces. The definition is inductive; for instance,
it describes the rule for evaluating the formula �ϕ assuming we have already
defined how to evaluate the simpler formula ϕ.

Linear Temporal Logic

Given a set V of typed variables, the set of formulas of linear temporal logic
(Ltl) is defined inductively by the rules below:

• If e is a Boolean expression over V , then e is an Ltl-formula.

• If ϕ is an Ltl-formula, then so are ¬ϕ, ©ϕ, ♦ϕ, and �ϕ.

• If ϕ1 and ϕ2 are Ltl-formulas, then so are ϕ1∧ϕ2, ϕ1∨ϕ2, ϕ1 → ϕ2,
and ϕ1 U ϕ2.

Given a trace ρ = q1q2 . . . (that is, an infinite sequence of valuations over V),
a position j ≥ 1, and an Ltl-formula ϕ, the satisfaction relation, (ρ, j) |= ϕ,
meaning that the trace ρ satisfies the Ltl-formula ϕ at position j, is defined
inductively by the following rules:

• (ρ, j) |= e if the valuation qj satisfies the Boolean expression e.

• (ρ, j) |= ¬ϕ if it is not the case that (ρ, j) |= ϕ.

• (ρ, j) |= ϕ1 ∧ ϕ2 if both (ρ, j) |= ϕ1 and (ρ, j) |= ϕ2.

• (ρ, j) |= ϕ1 ∨ ϕ2 if either (ρ, j) |= ϕ1 or (ρ, j) |= ϕ2.

• (ρ, j) |= ϕ1 → ϕ2 if either (ρ, j) |= ¬ϕ1 or (ρ, j) |= ϕ2.

• (ρ, j) |=©ϕ if (ρ, j + 1) |= ϕ.

• (ρ, j) |= �ϕ if for every position k ≥ j, (ρ, k) |= ϕ.

• (ρ, j) |= ♦ϕ if for some position k ≥ j, (ρ, k) |= ϕ.

• (ρ, j) |= ϕ1 U ϕ2 if for some position k ≥ j, (ρ, k) |= ϕ2, and for all
positions i such that j ≤ i < k, (ρ, i) |= ϕ1.

The trace ρ satisfies the Ltl-formula ϕ if (ρ, 1) |= ϕ.

Notice that the satisfaction of a formula at a position j of a trace ρ = q1q2 . . .

186 Chapter 5

depends only on the suffix of the trace starting at position j, that is, on the
the sequence of valuations qjqj+1 · · ·. This is because all the temporal operators
refer to the future positions. It is worth emphasizing that the current position
is considered part of the future: satisfaction of “eventually ϕ” at a position
j demands ϕ to be satisfied at some position k ≥ j. Thus, if a formula ϕ
is satisfied at a position, then so is “eventually ϕ” satisfied at that position.
Also note that for the until-formula ϕ1 U ϕ2 to be satisfied at a position j, we
demand that the formula ϕ2 is satisfied at some position k ≥ j, and the formula
ϕ1 holds at all positions following j, including j itself, and strictly preceding k.
The eventuality operator is just a special case of the until-operator: ♦ϕ has the
same meaning as the until-formula 1U ϕ, where 1 is the Boolean constant that
is satisfied by every valuation.

Illustrative Temporal Patterns

Nesting of temporal operators give interesting and useful formulas. We highlight
some typical patterns (see figure 5.1).

Sequencing: Nested applications of eventually operators can be used to require
a sequence of events in a particular order. For instance, consider two events
that correspond to satisfaction of formulas ϕ1 and ϕ2. Then a trace satisfies
the Ltl-formula ♦ (ϕ1 ∧ ©♦ ϕ2) if there are two positions i and j with i < j,
such that the formula ϕ1 is satisfied at position i and the formula ϕ2 is satisfied
at position j. For example, the trace ρ = (x1, y1)(x2, y2) · · · satisfies the Ltl-
formula ♦ ((x = 1) ∧ ©♦ (y = 1)) precisely when we can find two positions i
and j such that i < j and xi = 1 and yj = 1. Note that the use of the next
operator requires the two events to occur at distinct positions. The modified
formula ♦ (ϕ1 ∧ ♦ ϕ2) is satisfied by a trace if there are two positions i and j
with i ≤ j, such that the formula ϕ1 is satisfied at position i and the formula
ϕ2 is satisfied at position j.

Recurrence Formulas: Consider the always-eventually formula �♦ϕ. A
trace ρ satisfies the formula �♦ϕ at the initial position if ♦ϕ is satisfied at
every position i. This condition holds if for every position i there exists a future
position j ≥ i such that the trace ρ satisfies ϕ at position j. With a little bit of
reasoning, convince yourself that this condition can be reformulated as: there
exists an infinite sequence of positions j1 < j2 < j3 < · · · such that ϕ is satisfied
at each of these positions. In other words, �♦ϕ is satisfied if ϕ is satisfied in
a recurrent or repeating manner. For example, the trace ρ = (x1, y1)(x2, y2) · · ·
satisfies the recurrence formula �♦ (x = 0) precisely when for infinitely many
positions j, xj = 0. This expresses the requirement that x is assigned the value
0 repeatedly.

Persistence Formulas: The dual of the recurrence requirement expressed
by the always-eventually formula is the eventually-always formula ♦�ϕ. It is
satisfied if there exists a position j where the always-formula�ϕ is satisfied, that
is, ϕ is satisfied in every position following j. In other words, the requirement is

Liveness Requirements 187

that eventually the formula ϕ is satisfied and continues to hold in a persistent
manner. For example, the trace ρ = (x1, y1)(x2, y2) · · · satisfies the persistence
formula ♦� (x = 0) precisely when for some position j, for every k ≥ j, xk = 0
(equivalently, if x is non-zero only at finitely many positions).

Let us consider another example to understand nested temporal formulas. Sup-
pose there is a single variable x of type nat. Consider the expressions even(x),
odd(x), and prime(x) that are satisfied when the value of x is an even num-
ber, an odd number, and a prime number, respectively. Consider the trace
ρ = 1, 2, 3, · · ·; that is, the jth valuation in the trace assigns the value j to the
variable x. Then the trace ρ satisfies the following formula

� [even(x) → (© odd(x) ∧ © © even(x))]

which asserts that at every position, if x is even, then in the next position, x is
odd, and in the next-to-next position, x is even. The trace ρ also satisfies the
recurrence formula

�♦ prime(x)

which asserts that the trace contains infinitely many prime numbers.

As another example, suppose there is a single variable x of type real, and
consider the trace ρ = 1, 1/2, 1/4, 1/8, · · · (that is, the jth valuation in the trace
assigns the value 2−j to the variable x. Then the trace ρ does not satisfy the
eventuality formula ♦ (x = 0) but for every ε > 0, however small, satisfies the
persistence formula ♦� (x ≤ ε).

Temporal Implications and Equivalences

An Ltl-formula ϕ is said to be valid if every trace ρ satisfies ϕ. A valid Ltl-
formula is also called a temporal tautology : it holds no matter how we choose
to assign values to the variables at every step. For two Ltl-formulas ϕ1 and
ϕ2, if the implication ϕ1 → ϕ2 is valid, then whenever a trace ρ satisfies the
formula ϕ1, we are guaranteed that the trace ρ also satisfies the formula ϕ2. In
such a case, the requirement expressed by ϕ1 is stronger than the requirement
expressed by ϕ2 since the satisfaction of one implies the satisfaction of the
other. Two Ltl-formulas ϕ1 and ϕ2 are equivalent , written ϕ1 ↔ ϕ2, if both
the implications ϕ1 → ϕ2 and ϕ2 → ϕ1 are valid. For two equivalent formulas,
a trace satisfies either both or none of them.

Let us consider a few valid implications and equivalences aimed at gaining a
better intuition about the meaning of temporal operators.

If a trace ρ satisfies the Ltl-formula �ϕ, then it satisfies ϕ at all positions,
in particular at the initial position, and thus ρ satisfies ϕ. This argument is
independent of the choice of ϕ. Thus, for every Ltl-formula ϕ, the implication
�ϕ → ϕ is valid, that is, the formula �ϕ is a stronger requirement than the
formula ϕ itself. The converse is not true: it is easy to find instances where

188 Chapter 5

a trace satisfies an Ltl-formula ϕ but not the formula �ϕ. The following
equivalence, however, is valid for every Ltl-formula ϕ:

�ϕ ↔ [ϕ ∧ ©�ϕ].

It says that the always-formula �ϕ is satisfied precisely when the current po-
sition satisfies ϕ and the next position satisfies the always-formula �ϕ. This
equivalence can be viewed as an “inductive” definition of the always opera-
tor. Similar inductive definitions of the eventually and until operators can be
obtained (see exercise 5.1).

Observe that if a trace satisfies the recurrence formula �♦ϕ at a particular
position, say the first position, then it satisfies the same recurrence formula
�♦ϕ at the next position also. The converse also holds. In fact, for every trace
ρ, for all positions i and j, (ρ, i) |= �♦ϕ if and only if (ρ, j) |= �♦ϕ. As a
result, for any Ltl-formula ϕ, all the following three formulas are equivalent:

�♦ϕ ↔ ©�♦ϕ ↔ ♦�♦ϕ.

Laws for Temporal and Logical Operators

The interplay between temporal and logical operators can be understood by
considering how the logical and temporal operators distribute with respect to
one another. Let ϕ1 and ϕ2 be two Ltl-formulas, and let ρ be a trace. Then the
trace ρ satisfies the always-formula � (ϕ1∧ϕ2) precisely when (ρ, j) |= (ϕ1∧ϕ2)
for every position j. This holds precisely when (ρ, j) |= ϕ1 and (ρ, j) |= ϕ2 for
every position j. This is equivalent to saying that the trace ρ satisfies �ϕ1 as
well as �ϕ2, which holds precisely when the trace ρ satisfies the conjunction
�ϕ1 ∧ �ϕ2. Thus, we have established that the always-operator distributes
over conjunction. Thus, for any two Ltl-formulas ϕ1 and ϕ2, the following
equivalence is valid:

� (ϕ1 ∧ ϕ2) ↔ (�ϕ1 ∧ �ϕ2).

Let us examine if a similar distributivity property holds for disjunction: do
the formulas � (ϕ1 ∨ ϕ2) and (�ϕ1 ∨ �ϕ2) mean the same? Consider a
trace ρ. Suppose ρ satisfies �ϕ1. Then for every position j, (ρ, j) |= ϕ1.
By the semantics of disjunction, we have that for every position j, (ρ, j) |=
(ϕ1 ∨ϕ2). It follows that ρ satisfies the always-formula � (ϕ1 ∨ϕ2). Symmetric
reasoning allows us to conclude that if a trace ρ satisfies �ϕ2, then it also
satisfies � (ϕ1 ∨ ϕ2). A trace satisfies the disjunction �ϕ1 ∨ �ϕ2 precisely
when it satisfies either �ϕ1 or �ϕ2, and in either case, we have established
that it must then satisfy � (ϕ1 ∨ ϕ2). Thus, the following implication is valid:

(�ϕ1 ∨ �ϕ2) → � (ϕ1 ∨ ϕ2).

However, the converse implication is not valid. If we know that a trace ρ satisfies
the always-formula � (ϕ1 ∨ ϕ2), then we know that at each position, either ϕ1

Liveness Requirements 189

or ϕ2 is satisfied. But this does not necessarily mean that either all positions
satisfy ϕ1 or all positions satisfy ϕ2. As a concrete counterexample, suppose
the valuation assigns a Boolean value to a variable x. Consider the trace ρ =
010101 · · · in which the values 0 and 1 are assigned to x in an alternate manner.
This trace satisfies � (x = 0 ∨ x = 1) but satisfies neither � (x = 0) nor
� (x = 1).

To conclude this section, let us note the interplay between the temporal oper-
ators and logical negation. First note that ¬�ϕ is equivalent to ♦¬ϕ (and
similarly, ¬♦ϕ is equivalent to �¬ϕ). This results in a duality between the re-
currence and persistence formulas: a property ϕ is not recurrent precisely when
the negated property ¬ϕ is persistent. That is, ¬�♦ϕ is equivalent to ♦�¬ϕ.
The dual of the next operator is itself: a trace does not satisfy the next-formula
©ϕ at a position j, precisely when the trace does not satisfy the formula ϕ at
position (j+1), precisely when the trace satisfies the formula©¬ϕ at position
j. Thus, the Ltl-formulas ¬ © ϕ and ©¬ϕ are equivalent.

Exercise 5.1 : We saw that the always-formula �ϕ is equivalent to ϕ ∧ ©�ϕ.
Find analogous formulas equivalent to the eventually-formula ♦ϕ and to the
until-formula ϕ1 U ϕ2. Justify your answers.

Exercise 5.2 : For each of the pair of formulas below, say whether the two are
equivalent and if not whether one of them is a stronger requirement than the
other. In each case, justify your answer.

1. ♦ (ϕ1 ∧ ϕ2) and (♦ϕ1 ∧ ♦ϕ2).

2. ♦ (ϕ1 ∨ ϕ2) and (♦ϕ1 ∨ ♦ϕ2).

3. �♦ (ϕ1 ∧ ϕ2) and (�♦ϕ1 ∧ �♦ϕ2).

4. �♦ (ϕ1 ∨ ϕ2) and (�♦ϕ1 ∨ �♦ϕ2).

Exercise 5.3 : Are the Ltl-formulas ¬ (ϕ1 U ϕ2) and (¬ϕ2) U (¬ϕ1) equiva-
lent? If not, is one of them a stronger requirement than the other? Justify your
answer.

Exercise 5.4 : Are the two Ltl formulas �♦ (ϕ1 ∧ ♦ϕ2) and �♦ (ϕ2 ∧ ♦ϕ1)
equivalent? Justify your answer clearly.

5.1.2 Ltl Specifications

We can use Ltl formulas to specify requirements for both synchronous and
asynchronous systems. Let us first focus on synchronous systems.

Consider a synchronous reactive component C with input variables I and output
variables O. The natural choice of observable variables for such a component

190 Chapter 5

is the set I ∪ O of input and output variables. An Ltl specification for the
component C is an Ltl-formula ϕ over the set I ∪O of observable variables. As
the component executes, the infinite sequence of inputs and outputs it produces
is a trace of the component. Formally, an infinite execution of the component
C consists of an infinite sequence of the form

s0
i1/o1−→ s1

i2/o2−→ s2
i3/o3−→ s3 · · ·

such that s0 is an initial state of C, and for each j > 0, sj−1
ij/oj−→ sj is a reaction

C. Given such an execution, the infinite sequence (i1, o1)(i2, o2)(i3, o3) · · · of
inputs and outputs is a trace of C. The component C satisfies the specification
ϕ if every trace of C satisfies ϕ. An infinite execution is called a counterexample
to the specification ϕ if the corresponding trace does not satisfy ϕ. The problem
of checking whether a component satisfies a temporal logic specification is known
as model checking.

For example, our very first component Delay (figure 2.1) has input variable
in and output variable out. Ltl-formulas over these variables can be used to
express constraints over the desired temporal behavior. In particular, consider
the specification:

� [(in = 0) → © (out = 0)] ∧ � [(in = 1) → © (out = 1)],

which says that at every position of a trace, if the value of in is 0, then in the next
position the value of out is 0, and if the value of in is 1, then in the next position
the value of out is 1. Indeed, every trace of the component Delay satisfies this
specification, so we will say that the component satisfies the specification.

As another example, consider the component ClockedCopy (figure 2.6) with
input variables in and clock and output variable out. Consider the following
Ltl formula:

� [(out = 0) → (out = 0) U clock?]∧ � [(out = 1) → (out = 1) U clock?].

It says that if the value of the output variable out is 0 (or 1) in a given round,
then it is guaranteed to stay 0 (or 1, respectively) until the event clock is present.
It captures the requirement that the output should not change in rounds in
which the event clock is absent. The component ClockedCopy does satisfy this
requirement.

Requirements for Leader Election

Let us recall the leader election problem discussed in section 2.4.3. The decision
of each node is captured by the output variable status that ranges over the enu-
merated type {unknown, leader, follower}. While the nodes use the variables
in and out for exchanging messages with one another, the design requirements

Liveness Requirements 191

of the problem specify which traces of values of the status variables of differ-
ent processes are acceptable. The requirement that a node n should eventually
make a decision is expressed by the formula

♦ [statusn �= unknown].

The formula states that for a given node n, eventually the value of the status
variable of the instance of the process SyncLENode corresponding to this node
should be different from unknown. The safety requirement that two nodes should
not consider themselves to be leaders can be expressed by the following formula,
which states that for every pair of distinct nodes m and n, either m is never a
leader or n is never a leader:

� (statusm �= leader) ∨ � (statusn �= leader).

Requirements for Railroad Controller

Let us revisit the railroad controller system of section 3.1.2. Let us consider
the observable variables of the system to be signalW and signalE capturing the
traffic lights and the variables modeW and modeE capturing the train states.
While the latter are not modeled as output variables, it is acceptable to write
requirements that refer to the state of the models capturing the environment
since the modeling of the environment is part of the specification of the design
problem.

When an Ltl-formula refers to a state variable x of a component, the valuation
at each position of a trace should specify the value for x also: in a trace corre-
sponding to an infinite execution, the value of x at position j is the value of x
at the beginning of the jth round.

The basic safety requirement that the two trains should not be on the bridge
simultaneously is expressed by the always-formula:

� ¬ [(modeW = bridge) ∧ (modeE = bridge)].

Consider the following liveness requirement, which asserts that the west train
should enter the bridge repeatedly:

� ♦ (modeW = bridge).

For the given model of the trains, no controller can satisfy this requirement since
the model does not require the train to arrive at the bridge: a train could always
stay in the mode away forever. Indeed, this is not an appropriate requirement
for resource allocation problems. The granting of the response—setting the
signal green by the controller should be preconditioned on the request—waiting
at the bridge by the train. Consider the following revised liveness requirement,
which asserts that if the west train is waiting then eventually the west traffic
signal should turn green:

� [(modeW = wait) → ♦ (signalW = green)].

192 Chapter 5

ww11rgaa00rr wb11rg

Figure 5.2: Cyclic Counterexample Illustrating Liveness Violation

This Ltl-formula says that at every step, if the condition modeW = wait holds,
then at some later step, the condition signalW = greenmust hold. This is a typ-
ical pattern for Ltl formulas: Always (Request implies Eventually Response).
We want to check if every trace of the system RailRoadSystem2 (see figure 3.8)
satisfies this specification. It turns out that this is not the case. The coun-
terexample, which consists of an initial sequence of steps followed by a cyclic
execution that repeats, is illustrated in figure 5.2. As in figure 3.7, each state
is denoted by listing the values of the variables modeW , modeE , nearW , nearE ,
west, and east, in that order, and a, w, b, g, and r are abbreviations for away,
wait, bridge, green, and red, respectively. The cycle in the counterexample
corresponds to the case when the east train is on the bridge refusing to leave,
while the west train keeps waiting. We can conclude that if the controller lets
the east train on the bridge and the train does not ever leave the bridge, a
scenario consistent with the given model of the train, then the controller cannot
possibly let the west train in. Since no controller can satisfy the requirement as
specified, we need to modify our specification of the requirement.

An alternative standard form of liveness requirement is captured by the revised
formula ϕdf , which states that if the west train is waiting, then eventually either
the corresponding signal is green or the east train is on the bridge:

� [(modeW = wait) → ♦ [(signalW = green) ∨ (modeE = bridge)]].

This form of requirement is called deadlock freedom: while it does not ensure
that the controller is responsive to the west train when it requests an entry, it
does ensure utilization of the resource. In particular, a controller that keeps
both the traffic lights red all the time would violate this requirement, and so
would a controller that keeps both trains waiting for one another in a deadlocked
manner due to a buggy design. The controller Controller2 of figure 3.8 is free
of such deadlocks and meets the specification ϕdf .

The more stringent requirement that every request should be fulfilled by grant-
ing the resource to the requester is called starvation freedom. In our example,
if the west train wants to enter, then starvation freedom requires that it should
be allowed to enter. As discussed already, this is feasible only when the east
train is well behaved in the sense that it does not stay on the bridge forever.
The formula ϕsf below asserts that under the assumption that the east train is
repeatedly off the bridge, if the west train is waiting, then eventually the west
traffic signal should turn green:

�♦ (modeE �= bridge) → � [(modeW = wait) → ♦ (signalW = green)].

Liveness Requirements 193

Note that the requirement expressed by ϕsf is stronger than ϕdf : any trace that
satisfies ϕsf also satisfies ϕdf but not vice versa. The controller Controller2
of figure 3.8 is in fact starvation-free and meets the specification ϕsf . In par-
ticular, the counterexample of figure 5.2 is ruled out: since the precondition
�♦ (modeE �= bridge) is violated by this trace, it satisfies ϕsf .

Exercise 5.5 : Consider the design of the synchronous three-bit counter from
section 2.4.1. Write an Ltl-formula to express the requirement that if the
input signal inc is repeatedly high, then it is guaranteed that the counter will
be repeatedly at its maximum value (that is, all the three output bits out0,
out1, and out2 are 1). Does the circuit 3BitCounter of figure 2.27 satisfy this
specification?

Exercise 5.6 : Recall the synchronous design of a cruise controller system from
section 2.4.2. Consider the following requirement: when the cruise-controller is
“on,” assuming the driver does not issue any further input events, eventually
the speed becomes equal to the desired cruising speed and stays equal. Express
this requirement in Ltl using the variables on, speed, cruiseSpeed, cruise, inc,
and dec.

5.1.3 Ltl Specifications for Asynchronous Processes ∗

Ltl-formulas can be used to specify constraints on executions of asynchronous
processes also. Consider an asynchronous process P with state variables S, input
channels I, and output channels O. Then Ltl-formulas over the set I ∪ O can
be used to specify desired requirements on sequences of inputs and outputs. We
can associate infinite traces with infinite executions of P in the same manner we
associated traces with executions of synchronous components with the following
two changes. First, in the asynchronous model, each action is either an internal
action that does not involve any of the input or output channels, an input action
involving a single input channel x, or an output action involving a single output
channel y. To interpret an Ltl-formula over the set I∪O of variables, we need an
infinite sequence of valuations, where each valuation needs to assign values to all
the input and output variables. To interpret a single action of P as a valuation
for all the input and output variables, we can assign the undefined value ⊥
to each input and output channel not involved in the action. Second, since
an asynchronous process has (weak or strong) fairness assumptions associated
with its tasks, to check whether the process satisfies an Ltl-specification, we
consider the traces corresponding only to the fair executions: the asynchronous
process P satisfies the Ltl-specification ϕ if the trace corresponding to every
fair infinite execution of P satisfies ϕ.

Suppose for the reliable communication buffer with input channel in and out-
put channel out, we want to specify that a message sent on the input channel
eventually appears on the output channel (see section 4.3.2). The following
Ltl-formula specifies this requirement for a given value v of type msg:

� ((in = v) → ♦ (out = v)).

194 Chapter 5

The alternating-bit protocol discussed in section 4.3.2 satisfies this requirement
under the fairness assumptions discussed there.

In some problems, the requirements for the asynchronous solutions are no differ-
ent from the corresponding requirements for the synchronous designs. One such
instance is the leader election problem. We have already studied Ltl-formulas
corresponding to the requirements that every node n eventually decides, and for
every pair of nodes m and n, either the node m is never a leader or the node
n is never a leader. The same formulas can be used as requirements for the
asynchronous case.

The difference in the requirements for the synchronous and asynchronous cases
is highlighted by the specification of logical gates. Consider an inverter with
input in and output out. The natural specification in the synchronous case is
the always formula

� (out = ¬ in),
which says that the output is always equal to the negation of the input. In the
asynchronous case, this specification cannot be satisfied due to the decoupling
of the changes in the output in response to the changes in the input. We can
demand that if the input is 0, then we expect the output to eventually become
1, provided the input is maintained unchanged at 0. This is expressed by the
following formula:

� [(in = 0) → (in = 0) U (in = 1 ∨ out = 1)].

A symmetric formula can express the requirement that if the input is 1, then
unless the input is changed back to 0, and the output will eventually become 1.

We can also write Ltl-requirements that refer to state variables as well as input
and output channels. To interpret such a formula, the trace corresponding to
an ω-execution retains the values of state variables also.

Fairness Assumptions

In section 4.2.4, we discussed how to annotate tasks of an asynchronous process
with fairness assumptions so that we consider only those infinite executions in
which enabled tasks are not delayed forever. To check whether an asynchronous
process meets its specification given as an Ltl-formula, we check if every fair
execution satisfies the specification. Now we discuss how to capture fairness
assumptions within Ltl-specifications. Ltl-formulas corresponding to fairness
assumptions can be useful for a better understanding of the distinction be-
tween weak and strong fairness and also suggest how an analysis tool designed
for checking whether all executions satisfy a given Ltl-formula can easily be
adapted to check whether all fair executions satisfy an Ltl-specification.

Consider an asynchronous process P with state variables S, input channels I,
and output channels O. To express fairness requirements in Ltl, at every step
of the execution, we need to be able to express whether a task is enabled and

Liveness Requirements 195

nat x := 0; y := 0; {Ax,Ay} taken
Ax : x := x+ 1; taken := Ax

Ay : even(x) → { y := y+ 1; taken := Ay }

Figure 5.3: Modified Version of AsyncEvenInc

whether a task is taken. For each output and internal task A of P , let Guard(A)
be the guard condition for the task A, which is a Boolean-valued expression over
the state variables whose value in a state indicates whether the task A is enabled
in that state. Thus, an infinite execution satisfies the Ltl-formula�♦Guard(A)
exactly when the task A is enabled at infinitely many steps of the execution.
While a state of an asynchronous process contains enough information about
whether a task is enabled, to refer to whether a task is taken, we introduce an
additional variable, taken, that ranges over the set of tasks: its value at each
step indicates the most recent task executed. The update code of a task A is
modified so that it sets this variable to A.

To illustrate this, recall the asynchronous process AsyncEvenInc from sec-
tion 4.2.4 (see figure 4.18). Figure 5.3 shows the corresponding process with
the additional variable taken. An infinite execution of this modified process
satisfies the recurrence formula �♦ (taken = Ay) exactly when the task Ay is
executed infinitely often.

With this modification, for a given output or an internal task A, consider the
following formula

wf(A) : ♦� Guard(A) → �♦ (taken = A).

This formula expresses the requirement that if the task A is persistently enabled,
then it must be repeatedly taken. Thus, a trace satisfies this formula precisely
when the trace corresponds to an infinite execution that is weakly fair with
respect to the task A. To check if the process AsyncEvenInc guarantees the
value of x to eventually exceed 10 assuming weak fairness for the task Ax, for
which the guard condition is always true, we check if the modified process of
figure 5.3 satisfies the Ltl-formula

�♦ (taken = Ax) → ♦ (x > 10).

Indeed this Ltl-formula is satisfied along every infinite execution of the process.
To check if the value of y is guaranteed to eventually exceed 10 assuming weak
fairness for the task Ay, we check if the process of figure 5.3 satisfies the Ltl-
formula

[♦� even(x)→ �♦ (taken = Ay)] → ♦ (y > 10).

196 Chapter 5

This requirement does not hold: the infinite execution in which only the task
Ax is executed at every step does not satisfy this formula, and thus weak fair-
ness assumption for the task Ay does not suffice to ensure satisfaction of the
eventuality ♦ (y > 10).

Note that the formula wf(A) is equivalent to the following formula, which asserts
that if the task A is enabled at a given step, then at a later position it is either
taken or disabled:

wf(A) : � [Guard(A) → ♦ ((taken = A) ∨ ¬Guard(A))].

The strong fairness assumption for a given task A is expressed by the formula:

sf(A) : �♦ Guard(A) → �♦ (taken = A).

This formula asserts that if the task is repeatedly enabled, then it must be
repeatedly executed. Thus, a trace satisfies this formula precisely when the
trace corresponds to an infinite execution that is strongly fair with respect to
the task A.

To check if the process AsyncEvenInc guarantees the value of y to eventually
exceed 10 assuming strong fairness for the task Ay, we check if the process of
figure 5.3 satisfies the Ltl-formula

[�♦ even(x) → �♦ (taken = Ay)] → ♦ (y > 10).

Indeed this Ltl-formula is satisfied along every infinite execution of the process.

Note that, independent of exactly how a trace assigns values to the expressions
Guard(A) and (taken = A) at each step, the following temporal implication is
valid:

sf(A) → wf(A).

This explains that “strong fairness” is indeed a stronger requirement than “weak
fairness.”

Instead of requiring that all fair executions of an asynchronous process P satisfy
an Ltl-formula ϕ, we can require all executions of the process P to satisfy the
conditional Ltl-formula ϕfair → ϕ, where ϕfair is the conjunction of wf(A) and
sf(A) formulas for tasks A for which weak and strong fairness assumptions are
made. For example, for the process UnrelFIFO of figure 4.19, we assume strong
fairness for the internal task A1 that correctly transfers an element from the
queue x to the queue y and weak fairness for the output task Aout that transmits
the elements from the internal queue y to the output channel. To demand that
all fair executions satisfy an Ltl-formula ϕ is equivalent to requiring that all
executions satisfy the formula

(sf(A1) ∧ wf(Aout)) → ϕ.

Liveness Requirements 197

nat x := 0; y := 0; bool z := 0

Az : in? → z := ¬ z

Ay : z = 1 → y := y+ 1

Ax : x := x+ 1

event in

Figure 5.4: Exercise: Satisfaction Under Fairness Assumptions

Exercise 5.7 : Consider the two specifications of weak fairness:

ϕ1 : ♦� Guard(A) → �♦ (taken = A)

and
ϕ2 : � [Guard(A) → ♦ ((taken = A) ∨ ¬Guard(A))].

Prove that these two Ltl-formulas are equivalent.

Exercise 5.8 : Consider an asynchronous process P shown in figure 5.4 with
the input task Az and internal tasks Ax and Ay. For each of the Ltl-formulas
below, does the process P satisfy the formula? If not, is there a suitable fairness
assumption regarding execution of tasks under which the process satisfies this
specification? When adding fairness assumptions, clearly specify whether you
are using strong fairness or weak fairness and for which tasks with a justification.

(1) ♦ (x > 5);
(2) ♦ (y > 5);
(3) �♦ (z = 1) → ♦ (y > 5).

5.1.4 Beyond Ltl ∗

We conclude this section by noting some of the limitations of the logic Ltl
as a specification language for writing requirements. These limitations have
spawned a number of extensions and variations of Ltl. While a detailed study of
various temporal logics and their comparative merits is beyond the scope of this
textbook, the discussion below is a glimpse into the rich variety of alternative
temporal logics.

Branching-Time Temporal Logics

An Ltl-formula is evaluated over a trace corresponding to a single execution
of a system, and a system satisfies an Ltl-formula when all executions of the
system satisfy the formula. With this interpretation, there is no way to demand

198 Chapter 5

that some executions satisfy one type of a requirement and some others satisfy
another kind. In particular, for the consensus problem discussed in section 4.3.3,
consider the requirement that “if the preferences of the two processes P1 and P2

are different initially, then both decisions are possible.” This requirement cannot
be specified in Ltl but can be stated in the so-called “branching-time” temporal
logics. Recall that the variables pref1 and pref2 capture the initial preferences of
the two processes, and the variables dec1 and dec2 are assigned the decision val-
ues on termination. Then the following formula of the branching-time temporal
logic Ctl (Computation Tree Logic) captures the desired requirement:

(pref1 �= pref2) → [∃♦ (dec1 = dec2 = 0) ∧ ∃♦ (dec1 = dec2 = 1)].

The logic Ctl, in addition to the logical and temporal operators, allows ex-
istential (∃) and universal (∀) quantifiers over executions. The formulas are
interpreted over the tree of all executions where nodes correspond to states and
branching corresponds to possible choices of the successor state at each node.
A quantified branching-time formula ∃ϕ is satisfied at a node if there is an
execution ρ starting at the corresponding state such that ρ satisfies the formula
ϕ, which may contain temporal operators.

Stateful Temporal Logics

Given a Boolean variable e, consider the following requirement: the value of e is
1 in every even position. One can prove that no Ltl-formula exactly captures
this requirement. Note that the Ltl-formula

© (e = 1) ∧ � [(e = 1) →© © (e = 1)]

expresses a much stronger requirement: for a trace to satisfy this formula, not
only is it necessary that at every even position the value of e must be 1, but if
the value of e happens to be 1 at some odd position, then the formula can be
satisfied only when the value of e is 1 in all subsequent odd positions. Intuitively,
the desired requirement “the value of e is 1 in every even position” requires the
specification logic to maintain an internal state variable that captures whether
a position is odd or even, and Ltl-formulas cannot maintain such a state. This
shortcoming has led to extensions of Ltl with regular expressions (or equiv-
alently deterministic finite automata) to express stateful temporal constraints.
The IEEE standard Property Specification Language PSL allows a combination
of temporal operators and regular expressions.

Interpretation over Finite Traces

In our formalization of Ltl, Ltl-requirements specify constraints only on infi-
nite executions of a system. As a result, if a synchronous reactive component
C has no infinite executions (this may happen if the component C is not in-
put enabled), then no matter which Ltl-formula ϕ we consider, the component
C satisfies the requirement ϕ vacuously. Also, since not every reachable state

Liveness Requirements 199

necessarily appears on some infinite execution, given a state property ϕ, the
system may satisfy the always-formula � ϕ, even though the property ϕ is not
an invariant of the system. This anomaly can be avoided if we redefine the
semantics of Ltl-formulas so that a formula can be evaluated on a finite trace
also. If ρ = q1q2 · · · qm is a finite trace and 1 ≤ j ≤ m is a position in the trace,
then

(ρ, j) |= �ϕ if (ρ, k) |= ϕ for all positions k with j ≤ k ≤ m; and
(ρ, j) |=©ϕ if j < k and (ρ, j + 1) |= ϕ.

Thus, the main difference is that ©ϕ now means that it’s not yet the end of
the trace and the next position satisfies ϕ. Now, a component C satisfies an
Ltl-formula ϕ if every infinite trace as well as every finite trace corresponding
to a maximal execution of C satisfies ϕ. Here, a maximal execution is a finite
execution of C that ends in a state that has no successors (that is, the execution
cannot be extended by an additional state). Intuitively, maximal traces corre-
spond to terminating (or deadlocked) executions, and including such executions
ensures that while evaluating an Ltl-formula, we examine all the reachable
states of the component. Note that evaluating an Ltl-formula on all finite ex-
ecutions is not meaningful: if a system satisfies an eventuality ϕ after, say five
rounds, then executions of the system of length less than five do not satisfy the
eventually formula ♦ϕ but should not be considered as counterexamples (how-
ever if there is some maximal execution that does not contain a state satisfying
ϕ, then it does indicate a violation of the requirement ♦ϕ). All the analysis
techniques for establishing that a system satisfies its Ltl-specification can be
easily modified to account for such a revised interpretation.

5.2 Model Checking

In chapter 3, we saw that the canonical safety verification problem is the in-
variant verification problem: given a transition system T and a property ϕ over
its state variables, we want to check if all the reachable states of the system
T satisfy the property ϕ. For automated verification, we reduced the invariant
verification to the reachability problem: to check whether the property ϕ is
an invariant of the transition system T , we check whether a state violating ϕ
is reachable and, if so, the corresponding execution is a counterexample to the
invariant verification question. We then studied both enumerative and symbolic
algorithms for solving the reachability problem.

Repeatability Problem

In model checking, given the system described as a synchronous reactive com-
ponent, or as an asynchronous process, and an Ltl-specification, we want to
check if every execution of the system satisfies the given Ltl-specification. The
core computational problem for verification of liveness requirements turns out
to be the repeatability problem: given a transition system T and a property ϕ

200 Chapter 5

over its state variables, does there exist an infinite execution of the system T
that repeatedly encounters states satisfying the property ϕ (that is, whether the
recurrence formula �♦ϕ is satisfied by some infinite execution of the system)?
This form of repeated reachability is also known as Büchi reachability, named
after the logician J. Richard Büchi who studied finite automata over infinite
words resulting in an elegant theory of ω-regular languages that mirrors the
classical theory of regular languages over finite words. We will show that the
Ltl model-checking problem, namely, checking whether every trace of a given
system satisfies a given Ltl-specification, can be reduced to the repeatability
problem for the composition of the system and a monitor derived from the
Ltl-specification. In the safety case, the finite execution that demonstrates the
reachability of certain error states of the monitor corresponds to a counterexam-
ple indicating a violation of the requirement. Similarly, in model checking, the
infinite execution that demonstrates the repeated reachability of certain error
states of the monitor is a counterexample indicating a violation of the liveness
requirement.

Repeatability Problem for Transition Systems

An infinite execution of a transition system T consists of an infinite sequence
of the form ρ = s0, s1, . . . such that s0 is an initial state of T and for each
j > 0, (sj−1, sj) is a transition of T . A property ϕ over the state variables
of T is said to be repeatable if there exists some infinite execution ρ of T
such that the execution ρ satisfies the recurrence Ltl-formula �♦ϕ. The
repeatability problem is to check, given a transition system T and a property
ϕ over its state variables, whether ϕ is repeatable.

When the answer to the repeatability problem, for a given transition system
T and property ϕ, is positive, we want to demonstrate an infinite execution
in which the property ϕ is repeatedly satisfied. Typically such an execution is
illustrated by a state s, such that (1) the state s is reachable from some initial
state, (2) the state s is reachable from itself using one or more transitions, and
(3) the state s satisfies the property ϕ. That is, as evidence, we will produce a
cycle that is reachable from some initial state and contains a state satisfying ϕ.

Recall the transition system GCD(m,n) of figure 3.1 capturing the program for
computing the greatest common divisor of two numbers m and n. Note that
as long as both the variables x and y have positive values, the system stays in
the mode loop updating the variables. Suppose we want to check the liveness
requirement that the loop always terminates. This corresponds to checking
repeatability of the property (mode = loop): an infinite execution where this
condition is satisfied repeatedly corresponds to a nonterminating execution.

5.2.1 Büchi Automata

Now we describe how to compile Ltl-formulas into a special kind of monitor,
called Büchi automata, so that the model checking problem can be reduced to
the repeatability problem for the composition of the system and the monitor.

Liveness Requirements 201

Definition

Given a set V of Boolean variables, a Büchi automaton over V is a synchronous
reactive component M with the set V as input variables, described as an
extended-state machine. The only state variable for the automaton is its mode,
and thus it has only finitely many states. It has no outputs. Thus, a mode-
switch, or an edge, is completely described by the source and the target states
of the switch and the guard condition, which is a Boolean expression over the
input variables. Given an infinite sequence of inputs, that is, a trace over V ,
an execution of the machine produces an infinite sequence of states. A subset
F of the states is declared as accepting . The execution corresponding to an
input trace is accepting if some accepting state repeats infinitely often along
this execution. The automaton can be nondeterministic: from a given state and
a given input, the guard conditions of multiple outgoing switches can be true
simultaneously. Thus, for a given input trace, multiple executions are possible.
The automaton M accepts an infinite trace ρ over V if there exists an accept-
ing infinite execution when supplied with the sequence ρ of inputs. The formal
definition is summarized below:

Büchi automaton

A Büchi automaton M consists of

• a finite set V of Boolean input variables,

• a finite set Q of states,

• a set Init ⊆ Q of initial states,

• a set F ⊆ Q of accepting states, and

• a finite set E of edges, where each edge is of the form (q,Guard, q′)
consisting of a source state q ∈ Q, a target state q′ ∈ Q, and a Boolean
expression Guard over the input variables V.

For two states q and q′ and an input v ∈ QV , q
v−→ q′ is a transition of

the automaton if there exists an edge (q,Guard, q′) such that the input v
satisfies the expression Guard. Given a trace ρ = v1v2 · · · over the input
variables, an execution of the automaton over the input trace ρ is an infinite
sequence of the form q0

v1−→ q1
v2−→ · · · such that q0 is an initial state,

and for each i ≥ 1, qi−1
vi−→ qi is a transition. The Büchi automaton M

accepts the input trace ρ if there exists an execution over ρ such that for
infinitely many indices i, qi = q for some accepting state q ∈ F .

The Büchi automaton M is said to be deterministic if from every state on a
given input only one edge can be chosen: for every state q and every pair of
edges (q,Guard1, q1) and (q,Guard2, q2), the conjunction Guard1 ∧ Guard2 is
unsatisfiable (ensuring that an input v that satisfies the guard Guard1 cannot
satisfy the guard Guard2, and vice versa).

202 Chapter 5

a b

e

¬ e

¬ e e

Figure 5.5: Büchi Automaton for �♦ e

a b

e

Figure 5.6: Büchi Automaton for ♦� e

Examples

Figure 5.5 shows the Büchi automaton M that accepts only those traces that
satisfy the recurrence formula �♦ e. It has a single Boolean input variable e
and is a state machine with two states a and b. The state a is initial, and
the state b is accepting (indicated by a double circle). In each round, if the
input e is 1, the automaton transitions to the state b, and if the input e is
0, the automaton transitions to the state a. Given a trace v1v2 · · · of inputs,
the automaton M has a unique execution, and the state b repeats infinitely
often along this execution precisely when the input sequence contains infinitely
many 1 s. Thus, the automaton M accepts an input trace ρ precisely when the
input trace contains infinitely many 1 s, that is, when the trace ρ satisfies the
Ltl-formula �♦ e.

Figure 5.6 shows another Büchi automaton. It also has a single Boolean input
variable e and is a state machine with two states a and b, of which the state
a is initial and the state b is accepting. This automaton is nondeterministic.
In the initial state, in each round, independent of whether the input value is
0 or 1, the automaton can either stay in the state a or switch to the state b.
Once the automaton switches to the state b, if the input is 0, then no transition
is enabled, and the automaton gets stuck. Since the only accepting state is b,
and once in the state b, the automaton can generate an infinite execution only
when all the subsequent input values are 1 s, the automaton has an infinite
execution with the state b repeating precisely when from some position onward
the input trace contains only 1 s. That is, the automaton accepts exactly those
traces that satisfy the Ltl-formula ♦� e. There is no deterministic Büchi
automaton corresponding to the Ltl-formula ♦� e, and thus nondeterminism
can be crucial for constructing Büchi automata corresponding to Ltl formulas.

Liveness Requirements 203

a b

Liveness Monitor MRailRoadSystem

e : (modeW = wait)

f : (signalW = green)

¬ f

(e ∧ ¬ f)

modeW

signalW

Figure 5.7: Monitoring Liveness Violations Using a Büchi Automaton

Monitoring for Violations of Liveness Requirements

To illustrate how Büchi automata can be used as monitors to detect violations of
liveness requirements, let us revisit the railroad controller example and the live-
ness requirement, which asserts that if the west train is waiting, then eventually
the west traffic signal should turn green:

� [(modeW = wait) → ♦ (signalW = green)].

This is a a commonly occurring pattern for liveness requirements of the form
ϕ : � (e → ♦ f), where e and f are expressions over the observable variables
of the system. To check whether every trace of the system satisfies ϕ, we first
negate the specification and check if there is some execution of the system that
satisfies the negated specification. The negated specification is ¬� (e → ♦ f),
which is equivalent to the formula ♦ (e ∧�¬ f). Thus, a violation of the require-
ment is an infinite execution in which the property e holds at some position, and
then onward the property f never holds. Consider the nondeterministic Büchi
automaton M shown in figure 5.7 that accepts exactly those traces that satisfy
this negated formula. The automaton can switch to the accepting state b only
when it encounters an input that satisfies the property e, and once in the state b,
it can continue execution only when the input at every step does not satisfy the
property f . In the composed system RailRoadSystem‖M , there is an infinite ex-
ecution in which the automaton state is repeatedly b if and only if the component
RailRoadSystem can produce a trace that satisfies ¬ϕ. Thus, the model check-
ing problem of verifying that every trace of the system satisfies the Ltl-formula
ϕ has been reduced to checking the repeatability of the property (M.mode = b)
for the composed system. As already discussed, RailRoadSystem2 (see fig-
ure 3.8) does not satisfy the specification: in the system RailRoadSystem2‖M ,
the property (M.mode = b) is repeatable since the state with modeW = wait,
modeE = bridge, nearW = nearE = 1, signalW = red, signalE = green, and
M.mode = b is reachable and has a self-loop.

As another example of monitoring for violations of liveness requirements, con-
sider the Ltl specification ϕ : �♦ e → �♦ f , where e and f are expressions

204 Chapter 5

a b c

¬ f

(¬ f ∧ e)

(¬ f ∧ ¬ e)

Figure 5.8: Büchi Automaton for Detecting Violation of �♦ e→ �♦ f

over the observable variables of the component C. It asserts conditional re-
currence demanding that if the property e is recurrent, then so should be the
property f . To check whether every trace of the component C satisfies ϕ, we
first negate the specification and check if there is some execution of the com-
ponent C that satisfies the negated specification. The negated specification is
equivalent to �♦ e ∧ ♦� ¬ f , stating that the property e is recurrent and the
property ¬ f is persistent. Thus, we want to find an infinite execution in which
after a certain position, ¬ f holds continuously and e holds repeatedly. This
is captured by the Büchi automaton M shown in figure 5.8 with three states.
Initially the state is a. The automaton loops in this initial state for an arbitrary
number of steps and then nondeterministically switches to the state b. Subse-
quently, every time the condition e is satisfied, it transitions to the state c and
switches back to the state b in the next step. In both states b and c, the execu-
tion can continue only if the condition ¬ f holds. An infinite execution can visit
the state c repeatedly only if the property e is recurrent and the property ¬ f is
persistent. Thus, the model checking problem can be reformulated as checking
the repeatability of the property (mode = c) for the composed system C‖M .

Generalized Büchi Automata

Consider the Ltl-formula �♦ e ∧ �♦¬ e, which says that the variable e should
be 1 infinitely often and should also be 0 infinitely often. A convenient way to
capture this requirement is to use the same automaton structure as the one
shown in figure 5.5 and to use two accepting sets: F1 = {a} and F2 = {b}.
An execution of such a machine over an input trace is accepting if both of
these sets repeat infinitely often. This extension of Büchi automata with such
a conjunctive accepting requirement is called generalized Büchi automata.

Formally, a generalized Büchi automaton has input variables V , states Q, initial
states Init, and edges of the form (m,Guard,m′), as in the case of a Büchi
automaton, and has sets F1, F2, . . . Fk of accepting sets of states. An execution
q0

v1−→ q1
v2−→ · · · of the automaton over an input trace v1v2 · · · is said to be

accepting if for each j, for infinitely many indices i, the state qi belongs to the
accepting set Fj . In other words, the trace q0q1 . . . over states corresponding to
the execution should satisfy the formula ∧j=1,...k �♦ (mode ∈ Fj).

It turns out that generalized Büchi automata are no more expressive than Büchi
automata. Expressing a requirement on input traces as a generalized Büchi

Liveness Requirements 205

automaton with multiple accepting sets can allow the design of a machine with
fewer states, but it is possible to compile it into a Büchi automaton (with a
single accepting set) without changing the set of input traces it accepts.

Proposition 5.1 [From Generalized Büchi automata to Büchi automata] For
a given generalized Büchi automaton M over the input variables V , there exists
a Büchi automaton M ′ over the input variables V such that for every trace ρ
over V , the automaton M accepts the trace ρ exactly when the automaton M ′

accepts it.

Proof. Let M be a generalized Büchi automaton over inputs V with states Q,
initial states Init, edges E, and accepting sets F1, . . . Fk. We want to construct
a Büchi automaton M ′ such that visiting one of its accepting states repeatedly
ensures that the original automatonM has visited each of the sets Fj repeatedly.
For this purpose, the automaton M ′ maintains the state of M and, additionally,
a counter that cycles through the values 1, 2, . . . k, 0. Initially the counter is 1.
When the state of M is in the set F1, the counter is incremented to 2. When
a state in the accepting set F2 is encountered, it is incremented to 3. More
generally, when the counter is j, the automaton is waiting to visit a state in the
accepting set Fj . When such a state is encountered, the counter is incremented
to j + 1. When the counter j equals k, when a state in the accepting set Fk

is encountered, the counter is updated to 0, and in the next transition, it is
changed to 1. If along the execution, the counter is 0 repeatedly, then it has
cycled through all the values repeatedly, and the execution has visited each of
the accepting sets Fj repeatedly. Conversely, if an accepting set Fj repeats
infinitely often along an execution, then the counter cannot get “stuck” at the
value j, and thus if all the accepting sets repeat infinitely often, then the counter
cycles through 0 repeatedly.

Formally, the set of states of M ′ is the set Q × {0, 1, . . . k}. The initial states
of M ′ are of the form 〈q, 1〉 with q ∈ Init. For every edge (q,Guard, q′) of M ,
the automaton M ′ has the edge (〈q, 0〉,Guard, 〈q′, 1〉); for every 1 ≤ c < k, if
q ∈ Fc, then the automaton M ′ has the edge ((q, c),Guard, (q′, c + 1)) or else
the edge (〈q, c〉,Guard, 〈q′, c〉); and if q ∈ Fk, then the automaton M ′ has the
edge (〈q, k〉,Guard, 〈q′, 0〉) or else the edge (〈q, k〉,Guard, 〈q′, k〉). The accepting
set for M ′ is the set of states of the form 〈q, 0〉.
To complete the proof, we need to show that an input trace ρ is accepted by
the generalized Büchi automaton M exactly when it is accepted by the Büchi
automatonM ′, but this follows in a straightforward manner from the definitions.

Exercise 5.9 : For each of the Ltl-formulas below, construct a Büchi automa-
ton that accepts exactly those traces that satisfy the formula:

(1) �♦ e ∨ ♦� f ;
(2) �♦ e ∧ �♦ f ;
(3) � (e → e U f).

206 Chapter 5

a b

(e ∧ f)

e

e

Figure 5.9: Exercise: From a Büchi Automaton to Ltl

Exercise 5.10 : Write an Ltl-formula that exactly describes the set of traces
that are accepted by the Büchi automaton shown in figure 5.9. Explain your
answer.

Exercise 5.11*: Given two Büchi automata M1 and M2, both over the same
set V of input variables, show how to construct a Büchi automaton M over the
inputs V such that the automaton M accepts an input trace ρ over V exactly
when both the automata M1 and M2 accept the trace ρ.

Exercise 5.12*: Given a Büchi automaton M with states Q and accepting
states F , consider the Büchi automaton M ′ obtained by toggling the role of
accepting states in M : the states, the initial states, and the edges of the au-
tomaton M ′ are the same as the ones in the original automaton M , but its
accepting states are Q \F (that is, a state is accepting in M ′ exactly when it is
not accepting in M). Consider the claim “an input trace ρ is accepted by the
automaton M ′ exactly when it is not accepted by the automaton M .” Does the
claim hold? If your answer is “yes,” justify with a proof. If your answer is “no,”
give a counterexample. In this latter case, does the claim hold if the automaton
M is deterministic?

5.2.2 From Ltl to Büchi Automata ∗

The construction of Büchi automata for detecting violations of Ltl specifications
can be automated. An Ltl-formula ϕ can be compiled into a (generalized) Büchi
automaton Mϕ, which accepts exactly those traces that satisfy the formula ϕ.
States of the desired automaton are sets of subformulas of ϕ. Such an automaton
is called a tableau. We first illustrate the construction using an example.

Sample Tableau Construction

To illustrate the principles of the tableau construction, let us consider the Ltl-
formula ϕ = � (e ∨ f) ∧ ♦ e. The states of the tableau are collections of Ltl-
formulas derived from ϕ. Each state q is a set of formulas, and we would like to
ensure that every formula contained in a state q is satisfied by the input trace
along every infinite accepting execution starting in the state q.

Liveness Requirements 207

e, f, ©♦ e

(e ∨ f), ©� (e ∨ f)

ϕ, � (e ∨ f), ♦ e

e

(e ∨ f), ©� (e ∨ f)

ϕ, � (e ∨ f), ♦ e

f

(e ∨ f), ©� (e ∨ f)

� (e ∨ f)

e, f

(e ∨ f), ©� (e ∨ f)

ϕ, � (e ∨ f), ♦ e

e ∧ f e ∧ ¬f ¬e ∧ f ¬e ∧ fe ∧ f e ∧ ¬f

e ∧ f e ∧ ¬f ¬e ∧ f
q0 q2q1

e ∧ ¬fe ∧ f

e, ©♦ e

(e ∨ f), ©� (e ∨ f)

ϕ, � (e ∨ f), ♦ e

f, ©♦ e

(e ∨ f), ©� (e ∨ f)

ϕ, � (e ∨ f), ♦ e
¬e ∧ fe ∧ ¬f

e ∧ f e ∧ ¬f

e ∧ f

¬e ∧ f

¬e ∧ f

q4q3

q5

Figure 5.10: Tableau Construction for ϕ = � (e ∨ f) ∧ ♦ e

An initial state of the tableau is required to contain the given formula ϕ. From
the semantics of conjunction, the formula ϕ is satisfied when both � (e∨f) and
♦ e are satisfied, so an initial state must contain both these formulas. From the
semantics of the always operator, � (e ∨ f) is satisfied if both (e ∨ f) and the
next-formula ©� (e ∨ f) are satisfied, and hence we add both of these to the
desired initial state. To satisfy the disjunction (e ∨ f), a state must contain
either e or f or both e and f . The inclusion of the next-formula ©� (e ∨ f)
does not create any additional requirements on the current state, but the rules
for adding transitions between states will ensure its satisfaction. From the
semantics of the eventuality operator, ♦ e is satisfied if at least one of e and
the next-formula©♦ e is satisfied. Combining the resulting cases with different
possible ways of satisfying (e ∨ f) gives us five initial states q0, q1, q2, q3, and
q4 as shown in figure 5.10. For example, the state q0 corresponds to the set
{ϕ,� (e ∨ f),♦ e, (e ∨ f),©� (e ∨ f), e,©♦ e} of formulas: for an execution
starting in a state q0, we want each formula in this set to be satisfied and a
formula such as f , which is not included in this set to be not satisfied.

Whenever a state includes an atomic expression, say e, it means that the input
to be processed must satisfy this expression, and thus e should appear as a

208 Chapter 5

conjunct in the guard of the edges out of this state. Similarly, when a state
does not contain an atomic expression e, the input to be processed must not
satisfy e, and thus ¬e should appear as a conjunct in the guard of the edges out
of this state. This explains the guards on all the edges of the automaton. In
particular, each edge out of the state q0 has the guard (e ∧ ¬f).
To obtain successors of a state, we examine the next formulas in the state.
For every formula of the form ©ψ, ©ψ should belong to the current state if
and only if the successor state contains ψ. Since the state q0 contains both
©� (e ∨ f) and ©♦ e, its successor is required to contain � (e ∨ f) as well
as ♦ e. Such a successor state then must satisfy the conjunction of these two,
which is the original formula ϕ. This means that the successors of the state q0,
and also of q1 and q2 by the same logic, are exactly the initial states containing
ϕ. Now let us consider the state q3, which contains ©� (e ∨ f) but not ©♦ e.
Hence, its successor state should contain � (e∨f) but not ♦ e (and hence cannot
contain ϕ). To satisfy the always-formula � (e∨f), a state must contain (e∨f)
and ©� (e ∨ f). Since it does not contain ♦ e, it cannot contain e, and thus
the only way to satisfy (e∨ f) is by including f . The state q5 = {� (e∨ f), (e∨
f),©� (e∨ f), f} is thus the sole successor of the state q3 and also of states q4
and q5 by the same logic.

We would like to ensure that if p0
v1−→ p1

v2−→ · · · is an infinite execution
through the tableau corresponding to the input trace ρ = v1v2 · · · starting at
some state p0, then a formula ψ is in p0 if and only if the input trace ρ satisfies the
formula ψ. This is not quite true yet. For instance, an execution can loop forever
at the state q2 provided each input satisfies f : every state contains ♦ e, but no
input satisfies the atomic expression e. Intuitively, along this infinite execution,
the choice to satisfy ♦ e is postponed forever. This can be avoided by adding
a Büchi acceptance condition that requires that to satisfy ♦ e, one must satisfy
e eventually. This is expressed by the Büchi accepting set F1 = {q0, q1, q3, q4}
containing states that either contain e or do not contain ♦ e. For the always-
formula � (e ∨ f), if a state does not contain this formula, then we want to
make sure that the formula is indeed not satisfied. Note that the negation of an
always-formula is an eventually-formula, so the Büchi accepting condition F2

contains all states that do not contain (e ∨ f) or contain � (e ∨ f), and in our
example, this turns out to be the set of all states. Thus, an infinite execution
is accepting according to both the accepting sets if it does not end up looping
at state q2 forever. Verify that the Büchi automaton, with the states and edges
given by the tableau of figure 5.10, accepts an input trace over {e, f} exactly
when it satisfies the formula ϕ.

In summary, in a tableau construction, states are subsets of formulas. Each
formula stipulates requirements concerning other formulas that must be satisfied
by the sequence of inputs along the paths starting in the current state. The edges
are defined so as to ensure propagation of the next formulas from one state to
its successor. The generalized Büchi accepting requirements ensure eventual
fulfillment of eventuality formulas.

Liveness Requirements 209

Tableau Construction

We proceed to formalize the tableau construction. For the formal construction,
let us assume that Ltl-formulas are constructed from atomic expressions using
the logical connectives of negation, conjunction, and disjunction and the tem-
poral operators next, always, and eventually. Extending the construction to
handle the until operator is left as an exercise.

Given an Ltl-formula ϕ, let Vϕ be the set of atomic expressions that occur in
ϕ. To evaluate the formula ϕ, at every step we need to know whether each of
the expressions in Vϕ is satisfied. Thus, we can treat every atomic expression
as a Boolean variable and interpret the formula ϕ with respect to a trace over
the set Vϕ of Boolean variables. These variables are the set of input variables
for the Büchi automaton Mϕ.

Let us first define the set of formulas that are relevant to evaluating the given
formula. The closure Sub(ϕ) of an Ltl-formula ϕ is defined as:

1. if ψ is a syntactic subexpression occurring in ϕ, then ψ belongs to Sub(ϕ);
and

2. if ψ is a subexpression of the form ♦ψ′ or �ψ′, then ©ψ also belongs to
Sub(ϕ).

For the illustrative tableau construction in figure 5.10, for ϕ = � (e ∨ f) ∧ ♦ e,

Sub(ϕ) = { e, f, (e ∨ f),♦ e,©♦ e,� (e ∨ f),©� (e ∨ f), ϕ }.

As illustrated in the sample construction, whether the satisfaction of the formula
ϕ depends on the satisfaction of the formulas in Sub(ϕ). Verify that if the
formula ϕ has length k, then the number of formulas in its closure is at most
2k.

Now, a state of the tableau is a subset of formulas from the closure such that
the set of constraints expressed by these formulas are locally consistent. A
subset q ⊆ Sub(ϕ) of the closure of ϕ is consistent if the following conditions
are satisfied:

• ¬ψ belongs to q exactly when ψ does not belong to q;

• ψ1 ∧ ψ2 belongs to q exactly when both ψ1 and ψ2 belong to q;

• ψ1 ∨ ψ2 belongs to q exactly when either ψ1 or ψ2 or both belong to q;

• ♦ψ belongs to q exactly when either ψ or ©♦ψ or both belong to q; and

• �ψ belongs to q exactly when both ψ and ©�ψ belong to q.

In our example of figure 5.10, note that all six states are indeed consistent.
These are not all the consistent states, and figure 5.10 shows only those states

210 Chapter 5

that are reachable from the initial states. For example, the state q6 = {f, (e∨f)}
is a consistent state but is not reachable.

Given a consistent subset q of Sub(ϕ), let us denote by Guardq the expression
obtained by conjoining each atomic expression e contained in q and the negation
of each atomic expression e that does not belong to q. For example, if q contains
the atomic expression e but does not contain the atomic expression f , then
Guardq is the expression e ∧ ¬ f and captures the constraint on the next input
when in state q.

Now we are ready to define the generalized Büchi automaton Mϕ, also known
as the tableau corresponding to the formula ϕ:

• the set of input variables is the set Vϕ of atomic expressions that appear
in ϕ;

• the set of states is the set of consistent subsets of the closure Sub(ϕ);

• a state q ⊆ Sub(ϕ) is initial exactly when q contains the formula ϕ;

• for a pair of states q and q′, if it is the case that every next formula ©ψ
in Sub(ϕ) belongs to q exactly when ψ belongs to q′, then there is an edge
(q,Guardq, q

′); and

• for each eventually formula ψ = ♦ψ′ in the closure Sub(ϕ), there is an
accepting set Fψ containing states q such that ψ′ ∈ q or ψ �∈ q; and for
each always formula ψ = �ψ′ in the closure Sub(ϕ), there is an accepting
set Fψ containing states q such that ψ′ �∈ q or ψ ∈ q.

The correctness of the construction is established below.

Proposition 5.2 [Correctness of Ltl Tableau Construction] For every Ltl-
formula ϕ over the atomic expressions V , a trace ρ over V satisfies ϕ exactly
when it is accepted by the generalized Büchi automaton Mϕ.

Proof. Let ϕ be an Ltl formula, and let ρ = v1v2 · · · be a trace over the set
Vϕ of expressions appearing in ϕ. Suppose ρ |= ϕ. For i ≥ 0, let qi ⊆ Sub(ϕ) be
the set {ψ ∈ Sub(ϕ) | (ρ, i+1) |= ψ} of formulas true at the position i+1 in the
trace ρ. From the definitions, it follows that (1) for all i, the set qi is consistent;
(2) for all i and all formulas©ψ ∈ Sub(ϕ),©ψ ∈ qi exactly when ψ ∈ qi+1; (3)
the set q0 is an initial state of Mϕ; (4) for all i, the input vi+1 satisfies the guard
Guardqi ; (5) for each ♦ψ ∈ Sub(ϕ), if (ρ, i) |= ♦ψ for infinitely many positions
i, then (ρ, j) |= ψ for infinitely many positions j; and (6) for each �ψ ∈ Sub(ϕ),
if (ρ, i) �|= �ψ for infinitely many positions i, then (ρ, j) �|= ψ for infinitely many

positions j. It follows that q0
v1−→ q1

v2−→ · · · is an accepting execution in the
tableau Mϕ, and the automaton Mϕ accepts the trace ρ.

Now consider an accepting execution q0
v1−→ q1

v2−→ · · · of the automaton Mϕ

over the input trace ρ = v1v2 · · ·. We want to establish that for all ψ ∈ Sub(ϕ),

Liveness Requirements 211

for all i ≥ 0, ψ ∈ qi if and only if (ρ, i + 1) |= ψ. The proof is by induction on
the structure of ψ and is left as an exercise. It follows that ρ |= ϕ.

Note that the number of states of the automaton Mϕ is exponential in the size
of the formula. This blow-up is unavoidable. The generalized Büchi automaton
Mϕ can be converted into a Büchi automaton using the construction described
in proposition 5.1.

Model Checking

To check whether a component C satisfies an Ltl-formula ϕ, we first negate
the formula ϕ. We build the Büchi automaton M corresponding to the formula
¬ϕ such that an infinite execution of the composed system C ‖M in which
the Büchi states of M are repeatedly encountered corresponds to an infinite
execution of the component C that satisfies the negated specification ¬ϕ and,
thus, is a counterexample to the model checking problem. This approach of
negating the formula before applying the tableau construction avoids the need
for the computationally demanding task of complementing the tableau and is
essential to the practical applications of model checking. We summarize the
result below.

Theorem 5.1 [From Ltl Model Checking to Repeatability] Given an Ltl-
formula ϕ over the atomic expressions V that refer to the observable variables
of a system C, there is an algorithm to construct a nondeterministic Büchi
automaton M with the input variables V , with a subset F of accepting states,
such that a system C satisfies the specification ϕ precisely when for the composed
system C‖M , the property “state of M belongs to F” is repeatable.

Exercise 5.13 : Consider the Ltl-formula ϕ = �♦ e ∨ � f . First compute the
closure Sub(ϕ). Then apply the tableau construction to build the generalized
Büchi automaton Mϕ. It suffices to show only the reachable states.

Exercise 5.14 : The formal description of the tableau construction considers
formulas where the only temporal operators are next, eventually, and always.
Describe how the modifications necessary when the until operator is also allowed.

Exercise 5.15 : Consider the Ltl-formula ϕ = (e U © f)∨¬e. First compute
the closure Sub(ϕ). Then apply the tableau construction to build the generalized
Büchi automaton Mϕ. It suffices to construct only the reachable states.

Exercise 5.16 : In section 5.1.4, we mentioned that the following property
cannot be specified in Ltl: “the expression e is 1 in every even position.” Draw
a Büchi automaton M with one input variable e that accepts a trace exactly
when it satisfies this property.

Exercise 5.17*: Complete the proof of proposition 5.2: for an accepting execu-
tion q0

v1−→ q1
v2−→ · · · of the automaton Mϕ over the input trace ρ = v1v2 · · ·,

prove that for all ψ ∈ Sub(ϕ), for all i ≥ 0, ψ ∈ qi if and only if (ρ, i+ 1) |= ψ,
by induction on the structure of the formula ψ.

212 Chapter 5

5.2.3 Nested Depth-First Search ∗

Given a transition system T and a property ϕ, to check whether ϕ is repeatable,
we search for a state that violates ϕ, is reachable from some initial state, and is
contained in a cycle. The core computational problem here is detecting cycles.
As discussed in section 3.3, we assume that the transition system is countably
branching and is represented by the functions FirstInitState, NextInitState,
FirstSuccState, and NextSuccState that can be used to enumerate initial states
and successor states of a given state. We want our algorithm to be on-the-fly :
it should explore states and transitions out of these states only as needed, and
it should terminate returning a counterexample as soon as it finds one. Thus,
the ideal algorithm should not first examine all the reachable states and then
proceed to finding cycles. As a result, the classical algorithms for detecting
cycles in a graph that rely on computation of strongly connected components
in the graph are not best suited for our application (a strongly connected com-
ponent in a directed graph is a maximal subset of the vertices such that there
is a path between every pair of vertices in this subset). Instead, we will present
a cycle-detection algorithm that employs two depth-first search traversals, one
nested in the other.

The algorithm explores the reachable states of the transition system in a man-
ner similar to the depth-first search algorithm of figure 3.16 using the stack
Pending and the set Reach to store states already visited. The key difference is
the following: while checking the reachability of a property, when a state sat-
isfying the property is encountered, the search terminates; while checking the
repeatability of a property, when a state s satisfying the property is encoun-
tered, the algorithm initiates another search for a cycle containing the state
s. To implement this, suppose every time a state satisfying the property ϕ is
encountered, a brand-new search to check whether the state s is reachable from
itself is initiated, and this search uses its own set of visited states. While such
a strategy would lead to a correct algorithm, it has time complexity that is
quadratic in the number of states, and this can be significantly improved. The
optimal algorithm is shown in figure 5.11.

The algorithm involves two nested searches: a primary search performed by the
function DFS and a secondary (or nested) search performed by the function
NDFS. The states encountered during the primary search are stored in the set
Reach, whereas the states visited during the secondary search are stored in the
set NReach. As in a standard depth-first search, for every reachable state s of
T , the function DFS is invoked at most once with the state s as its input. Once
the primary search originating at a state s terminates, if the state s satisfies
the desired repeatable property ϕ, then it is a potential candidate for the cyclic
counterexample. Then a secondary search is initiated by calling the function
NDFS with the state s as its input. The objective of this secondary search is
to find a cycle starting at the state s. When the function NDFS(s) is invoked,
the stack Pending contains an execution starting from an initial state leading
to the state s. The secondary search does not modify the stack Pending. Thus,

Liveness Requirements 213

Input: A transition system T and property ϕ;
Output: If ϕ is a repeatable property of T return 1, else return 0;

set(state) Reach := EmptySet;
set(state) NReach := EmptySet;
stack(state) Pending := EmptyStack;
state s := FirstInitState(T);

while s �= null do {
if Contains(Reach, s) = 0 then

if DFS(s) = 1 then return 1;
s := NextInitState(s, T);
};

return 0.

bool function DFS(state s)
Insert(s,Reach);
Push(s,Pending);
state t := FirstSuccState(s, T);
while t �= null do {
if Contains(Reach, t) = 0 then

if DFS(t) = 1 then return 1;
t := NextSuccState(s, t, T);
};

if Satisfies(s, ϕ) = 1 then

if Contains(NReach, s) = 0 then

if NDFS(s) = 1 then return 1;
Pop(Pending);
return 0.

bool function NDFS(state s)
Insert(s,NReach);
state t := FirstSuccState(s, T);
while t �= null do {
if Contains(Pending, t) = 1 then return 1;
if Contains(NReach, s) = 0 then

if NDFS(t) = 1 then return 1;
t := NextSuccState(s, t, T);
};

return 0.

Figure 5.11: Nested Depth-first Search Algorithm for Checking Repeatability

214 Chapter 5

if the secondary search encounters a transition leading to a state belonging to
the stack, then it concludes that there is a cycle that contains the state s.
This establishes that whenever the algorithm returns 1, the transition system
contains a reachable cycle containing a state that satisfies the property ϕ.

The secondary search uses a separate set NReach to keep track of states encoun-
tered during the secondary search. However, this set is shared across all calls
to NDFS: every time the function NDFS is called with a state s as its input,
the state s is added to this set, and NDFS is invoked with a state t as input
only if the state t is not in the set NReach. Thus, the secondary search explores
a reachable state at most once, and the total running time of the secondary
search is the same as the primary search. To understand the interplay between
the two searches and the argument about the correctness of the search strategy,
consider two states s and t that are encountered by the primary search, and
suppose both satisfy the property ϕ. Suppose the secondary search is invoked
from the state s first, and it explores all states that are reachable from the state
s, adding them to the set NReach but without finding a cycle. Later, when the
secondary search is invoked from the state t, it will just skip over states that
were added to the set NReach. What guarantees that this does not cause the
algorithm to miss detection of a cycle containing the state t?

To answer this question, let us order the states according to the termination
times of the primary search: with each reachable state s, associate a number ds
such that if the call DFS(s) terminates before the call DFS(t), then ds < dt. Let
s0, . . . sk be the ordering of the states that are reachable and satisfy the property
ϕ according to this numbering. Let si be the first state in this ordering that
belongs to a cycle, and let Q be the set of all states that are reachable from the
states sj with j < i.

We first claim that the cycle that contains the state si is disjoint from the set
Q. If not, there is a state t belonging to the set Q such that both states si and t
belong to a cycle. This implies that the state si is reachable from some state sj
with j < i (since the state t must be reachable from some such state). Thus, the
exploration from the state sj is guaranteed to examine state si, but given the
ordering of the states, we know that the call DFS(sj) terminates before the call
DFS(si). This can happen only if the call DFS(si) is pending when DFS(sj) is
invoked. This implies that the state sj is also reachable from the state si, and
thus the state sj is involved in a cycle, a contradiction to the assumption that
the state si is the first state in the ordering that belongs to a cycle.

When the primary search from the state si terminates, the set NReach contain-
ing the states visited by the secondary search so far equals the set Q. Since
the state si does not belong to the set Q, the function NDFS will be invoked
with the state si as its input. Since there is a cycle that contains the state si
and does not involve any of the states already in the set NReach, the secondary
search is guaranteed to discover this cycle.

To understand how the algorithm works, let us consider the transition system
shown in figure 5.12. The initial state is A, and the property is satisfied in

Liveness Requirements 215

B

A

D

C

E

F

Figure 5.12: Sample Transition System for Illustrating Repeatability Algorithms

states B and E. The execution of the algorithm is illustrated in figure 5.13.
The first column lists the calls made to the functions DFS and NDFS, where
the indentation indicates which calls are pending. The subsequent columns list
the values of the stack Pending (left-most element is at the top of the stack)
and the sets Reach and NReach.

Initially, the function DFS is called with the initial state A as input, which in-
vokes DFS(B), which in turn calls DFS(D), which then invokes DFS(F). Since
the sole successor of the state F is already in the set Reach, the call DFS(F)
terminates. Thus, dF = 1. Subsequently, the call DFS(D) also terminates
(dD = 2). At this point, in the execution of DFS(B), the state B has no more
successor states, but since the state B satisfies the desired property, the sec-
ondary search is initiated for the first time via the call NDFS(B). This in turn
calls NDFS(D) and then calls NDFS(F). All these calls terminate reporting
failure: the stack Pending contains the states A and B, and no transitions lead-
ing to either of these states are encountered. When the call DFS(B) terminates
(dB = 3), the set NReach contains all the states reachable from the state B,
namely, the states B, D, and F . The primary search from the state A now
proceeds to call DFS(C), which in turn calls DFS(E). All the successors of the
state E are already in the set Reach, but since the state E satisfies the property,
another secondary search is invoked using the call NDFS(E). At this point, the
states B, D, and F are already assumed to be visited for the secondary search,
and hence the transition from the state E to F will not be explored for es-
tablishing the repeatability of the state E. This is justified by the correctness
argument for the algorithm: since DFS(B) has already terminated without dis-
covering a cycle containing the state B, a cycle containing the state E cannot
involve states reachable from the state B. As it turns out, the state E has a
successor state, namely, A, which is in the stack. As a result, the call NDFS(E)
terminates reporting success, causing all the pending calls to terminate with
return value 1.

Note that, just like the depth-first search algorithm of figure 3.16, the nested
depth-first search algorithm may detect a cycle before exploring all the reachable

216 Chapter 5

Pending Reach NReach
DFS(A) [] { } { }
DFS(B) [A] {A} { }

DFS(D) [B,A] {A,B} { }
DFS(F) [D,B,A] {A,B,D} { }

NDFS(B) [B,A] {A,B,D, F} { }
NDFS(D) [B,A] {A,B,D, F} {B}
NDFS(F) [B,A] {A,B,D, F} {B,D}

DFS(C) [A] {A,B,D, F} {B,D,F}
DFS(E) [C,A] {A,B,D, F,C} {B,D,F}
NDFS(E) [E,C,A] {A,B,D, F,C,E} {B,D,F}

Figure 5.13: Illustrative Execution of the Nested Depth-first Search Algorithm

states. For instance, for the transition system of figure 5.12, if we introduce a
transition from the state D to state B, then the call NDFS(B) will discover
a cycle, and the algorithm terminates without ever visiting the states C or
E. If the number of reachable states of the transition system is finite, then
it is guaranteed to terminate with the correct answer. These properties are
summarized in the theorem below.

Theorem 5.2 [Nested Depth-first Search for Repeatability Checking] Given a
countably branching transition system T and a property ϕ, the nested depth-first
search algorithm of figure 5.11 has the following guarantees:

1. If the algorithm terminates, then the returned value correctly indicates
whether the property ϕ is a repeatable property of T .

2. If the number of reachable states of T is finite, then the algorithm termi-
nates, and the number of calls to DFS and to NDFS are bounded by the
number of reachable states.

Exercise 5.18 : Modify the nested depth-first search algorithm of figure 5.11
so that it outputs a counterexample consisting of an execution leading from an
initial state to a state s satisfying ϕ and a cyclic execution from s back to itself.

5.2.4 Symbolic Repeatability Checking

Recall the symbolic breadth-first search algorithm for invariant verification by
iterative image computation discussed in section 3.4. We will now develop a
symbolic nested search algorithm to check whether the transition system has an
infinite execution that repeatedly visits a given property. As before, we assume
that a set of states over a set V of typed variables is represented as a region
of type reg. In the symbolic representation of a transition system with state

Liveness Requirements 217

variables S, the initial states are represented by a region Init over the variables
S, and the transitions are represented by a region Trans over the variables S∪S′.
The property ϕ whose repeatability is to be checked is also represented by a
region over the variables S. The data type reg for regions supports operations
such as Conj, Diff, and IsSubset, as discussed in section 3.4.

Image and Pre-image Computation

The core step of symbolic verification algorithms is image computation. Given
a region A over the state variables S, the region that contains all the states that
can be reached from the states in A using one transition can be computed using
the Post operation defined as:

Post(A,Trans) = Rename(Exists(Conj(A,Trans), S), S′, S).

The dual operator corresponds to the pre-image computation: given a region
A over the state variables, the region that contains all the states from which
some state in A can be reached using one transition is called the pre-image of
the region A. Given a region A, to compute its pre-image, we first rename the
unprimed variables to primed variables and then intersect it with the transition
region Trans over S ∪ S′ to obtain all the transitions that lead to the states in
A. Then we project the result onto the set S of unprimed state variables by
existentially quantifying the variables in S′. Thus, the pre-image operator Pre
is defined as:

Pre(A,Trans) = Exists(Conj(Rename(A,S, S′),Trans), S′).

Let us consider an example to illustrate the pre-image computation. Suppose
the system has a single variable x of type real, and the update is given by the
following conditional statement

if (1 ≤ x ≤ 5) then x := x− 1 else x := x+ 1.

Then the transition region is given by the formula

[(1 ≤ x ≤ 5) ∧ (x′ = x− 1)] ∨ [((1 > x) ∨ (x > 5)) ∧ (x′ = x+ 1)].

Consider the region A given by the formula 1 ≤ x ≤ 2, and let us apply the
sequence of steps needed to compute the pre-image of the region A. First, we
rename the variable x to x′, and this gives us the formula 1 ≤ x′ ≤ 2. Then we
conjoin this region with the transition formula Trans, and this gives the result,
which simplifies to:

[(1 ≤ x ≤ 5) ∧ (x′ = x− 1) ∧ (1 ≤ x′ ≤ 2)]

∨ [((1 > x) ∨ (x > 5)) ∧ (x′ = x+ 1) ∧ (1 ≤ x′ ≤ 2)].

The final step is to apply the operation of existential quantification to eliminate
the variable x′ leading to the formula

[(1 ≤ x ≤ 5) ∧ (1 ≤ x− 1 ≤ 2)] ∨ [((1 > x) ∨ (x > 5)) ∧ (1 ≤ x+ 1 ≤ 2)].

218 Chapter 5

Input: A transition system T given by a region Init for initial states,
a region Trans for transitions, and a region ϕ for the property;

Output: If ϕ is repeatable in T , return 1, else return 0.

reg Reach := Empty;
reg New := Init;
while IsEmpty(New) = 0 do {
Reach := Disj(Reach,New);
New := Diff(Post(New,Trans),Reach);
};

reg Recur := Conj(Reach, ϕ);
while IsEmpty(Recur) = 0 do {
Reach := Empty;
New := Pre(Recur,Trans);
while IsEmpty(New) = 0 do {
Reach := Disj(Reach,New);
if IsSubset(Recur,Reach) = 1 then return 1;
New := Diff(Pre(New,Trans),Reach);
};

Recur := Conj(Recur,Reach);
};

return 0.

Figure 5.14: Symbolic Nested Search Algorithm for Checking Repeatability

This formula simplifies to

(2 ≤ x ≤ 3) ∨ (0 ≤ x < 1)

which precisely describes the desired set of values of x for which executing the
conditional assignment causes the resulting value to belong to the interval [1, 2].

Nested Symbolic Search

The symbolic algorithm for checking repeatability shown in figure 5.14 uses both
image computation and pre-image computation. The algorithm has two phases:
the first phase consists of a single while loop, and the second phase consists of
two nested while loops.

The first phase of the algorithm computes the region Reach of all states reach-
able from the region Init of initial states by repeatedly applying the image-
computation operator Post. This is similar to the algorithm of figure 3.19.
Let us illustrate the algorithm using the sample transition system shown in fig-
ure 5.12. Figure 5.15 shows the values of the regions Reach and New at the
beginning and, after each iteration, during the first phase of the algorithm.

The second phase attempts to find an infinite execution with repeating occur-
rences of the property ϕ. The set of states whose repeated occurrence indicates

Liveness Requirements 219

Reach New

Initially { } {A}
After iteration 1 {A} {B,C}
After iteration 2 {A,B,C} {D,E}
After iteration 3 {A,B,C,D,E} {F}
After iteration 4 {A,B,C,D,E, F} { }

Figure 5.15: Illustrative Execution of the First Phase of Algorithm 5.14

success is captured by the region Recur. This region initially contains all the
reachable states that satisfy the property ϕ and can be computed by intersect-
ing the region Reach computed at the end of the first phase and the region
representing the property. Let us call this region Recur0. For each of the states
s in this set, we want to determine if there exists an execution consisting of one
or more transitions starting in the state s and ending in some state in Recur0.
To compute this information, the inner loop repeatedly applies the pre-image
computation to find those states from which states in Recur0 can be reached
in one or more transitions. This computation is similar to the computation of
the reachable states: the region Reach, initialized to the empty set, contains
the states already examined; and the region New, initialized to the states from
which the current set Recur can be reached in one transition, contains the states
to be explored. In each iteration of the inner loop, the region Reach is updated
by adding the unexplored states in the region New. The set of states to be
newly explored is obtained by computing the pre-image of the current set New
and removing the already explored states in Reach using the set-difference op-
eration. The inner loop terminates when there are no more new states to be
examined. At this point, the region Reach contains precisely those states that
have a path to some state in Recur0. By intersecting this region with Recur,
we obtain the set Recur1, a subset of Recur0. The outer loop is now repeated
again with this revised value of Recur.

To illustrate the second phase of the algorithm, let us continue with our example
transition system of figure 5.12. Figure 5.16 shows the values of the regions
Recur, Reach, and New at each iteration. Initially, the set Recur contains the
states B and E as potential candidates for the repeating states. One iteration
of the outer loop discovers that there is no execution from the state B that can
lead back to this set; as a result, Recur gets updated to {E}. During the second
iteration of the outer loop, the inner loop computes the set of states from which
the state E can be reached. In the third iteration of the inner loop, the state
E gets added to the region Reach, and this causes the successful termination of
the algorithm.

220 Chapter 5

Outer loop Recur Inner loop Reach New

Initially {B,E}
Initially { } {A,C}
After iteration 1 {A,C} {E}
After iteration 2 {A,C,E} { }

After iteration 1 {E}
Initially { } {C}
After iteration 1 {C} {A}
After iteration 2 {C,A} {E}
During iteration 3 {C,A,E}

Figure 5.16: Illustrative Execution of the Second Phase of Algorithm 5.14

Correctness

Let Recur1,Recur2, . . . be the successive values assigned to the region variable
Recur at the end of the outer while loop. Each such set Recuri is a subset of the
set Recuri−1 and contains those states in Recuri−1 from which some state in
Recuri−1 can be reached using an execution with one or more transitions. Hence,
each such set Recuri contains the states s such that the state s is reachable from
some initial state, the state s satisfies the property ϕ, and there is an execution
starting from the state s that encounters states satisfying the property ϕ at
least i times.

Suppose the property ϕ is repeatable for the transition system T . Then there
is a state s that is reachable from some initial state, the state s satisfies ϕ, and
there is an infinite execution starting from the state s that encounters states
satisfying the property ϕ infinitely many times. Such a state s will belong to
every set Recuri and thus will never be removed from Recur. As a result, if
the value of Recur becomes the empty set at any point during the execution of
the algorithm, no such state s exists, and the algorithm can terminate claiming
that the property ϕ is not repeatable.

Conversely, suppose for the current nonempty set Recuri, from every state in
Recuri, some state in Recuri can be reached by an execution with one or more
transitions. Then in the subsequent iteration of the outer loop, the final value
of the set Reach is a superset of Recuri. As the region Reach is computed
iteratively by adding more and more states that can reach Recuri in one or
more transitions, when the algorithm finds that Reach is a superset of Recur,
it terminates reporting repeatability of the property ϕ. We argue that in this
case, indeed there is an infinite execution in which the property ϕ repeats. Let
s0 be any state in Recuri. Since the set Recuri is a subset of Recur0, the state
s0 is reachable from an initial state. Hence, it suffices to demonstrate that
there exists an infinite execution starting at the state s0 with the property ϕ
repeating infinitely often. From the state s0, there is an execution with one or

Liveness Requirements 221

more transitions leading to some state, say s1, in Recuri. From the state s1,
there is an execution with one or more transitions leading to some state, say s2,
in Recuri. This process can be repeated forever. Concatenating all these finite
executions gives us the desired infinite execution with repeating ϕ.

Complexity Analysis

If the number of reachable states of T is finite, then the termination is guaran-
teed. Suppose the number of reachable states of T is n, and k of these satisfy
the property ϕ. Then the set Recur0 contains k states, and the number of iter-
ations of the outer loop is at most k (since states are only removed from Recur,
and the algorithm terminates if the value of Recur does not change). In each
iteration of the outer loop, the inner loop can be executed at most n times as it
computes the set of states from which Recur is reachable, in an iterative manner.
The actual running time of the algorithm depends on how efficiently the various
operations on regions are executed, but the number of symbolic operations is
quadratic.

The correctness and complexity of the algorithm are summarized below.

Theorem 5.3 [Symbolic Nested Search for Checking Repeatability] Given a
symbolic representation of a transition system T and a property ϕ, the symbolic
nested search algorithm of figure 5.14 has the following guarantees:

1. If the algorithm terminates, then the returned value correctly indicates
whether the property ϕ is repeatable for the transition system T .

2. If the transition system T has n reachable states, of which k satisfy the
property ϕ, then the algorithm terminates after at most O(nk) operations
on regions.

Exercise 5.19 : Consider a transition system with two variables x and y of
type nat. Suppose the transitions of the system are described by the conditional
statement

if (x > y) then x := x+ 1 else y := x.

First, describe the transition region as a formula Trans over the variables x, y,
x′, and y′. Consider the region A given by the formula 1 ≤ y ≤ 5. Compute the
pre-image of the region A.

Exercise 5.20*: Algorithm of figure 5.14 uses both post-image computation
and pre-image computation. Suppose we modify the algorithm by replacing both
calls to Pre by Post, that is, in the second phase, replace the assignment New :=
Pre(Recur,Trans) by New := Post(Recur,Trans) and the assignment New :=
Diff(Pre(New,Trans),Reach) byNew := Diff(Post(New,Trans),Reach). How
will this modification impact the correctness of the algorithm? Justify your an-
swer.

222 Chapter 5

5.3 Proving Liveness ∗

In section 3.2.1, we studied a general proof technique for establishing invariants
of transition systems: given a transition system T and a property ϕ over its
state variables, to prove that the property ϕ is an invariant of the transition
system T , we find another property ψ and show that (1) the property ψ is an
inductive invariant of the transition system T , and (2) the property ψ implies
the property ϕ. This proof technique based on inductive invariants is appealing
for the following reasons. First, the method is rooted in the intuitive and infor-
mal argument needed to convince oneself about the correctness of the system.
Second, the formalization of the rule is mathematically precise, and the rule can
be used to produce a machine-checkable proof of the correctness of the system.
Third, the rule is general enough so that every invariant property can be estab-
lished by applying the rule. Now, we focus on identifying proof techniques for
proving liveness properties of transition systems.

Consider a transition system T with the state variables S. Liveness properties
of such a transition system can be expressed using Ltl-formulas over the set S
of variables: the transition system T satisfies the Ltl-formula ϕ if every infinite
execution of T satisfies ϕ. The precise details of proof rules for establishing that
the transition system satisfies the Ltl-formula ϕ depend on the structure of the
formula ϕ. We focus on the most commonly occurring patterns: eventuality
properties and response properties assuming weak fairness.

5.3.1 Eventuality Properties

Let us revisit the leader election protocol of section 2.4.3. We want to establish
that every node eventually makes a decision. Since a node announces its decision
by updating the output variable status when the value of its state variable
r equals N , where N is the total number of nodes in the network, we want
to show that eventually the value of r becomes N . More precisely, we want to
prove that every infinite execution of the transition system corresponding to the
protocol satisfies the eventually formula ♦ (rn = N), where n is an arbitrary
node.

To convince yourself that the component of figure 2.35 satisfies the eventuality
formula ♦ (rn = N), observe that the value of the variable rn is initially 1,
and in each round, it is incremented by 1 as long as it is less than N . To
formally capture the intuition behind this argument, let us define a function
rank from the states of the transition system to natural numbers: in a given
state s of the transition system, the value of rank(s) is the difference between
N and the value that the state s assigns to the variable rn. The function rank
captures the distance of a state from the desired eventuality goal. To prove
that every execution satisfies the eventuality formula ♦ (rn = N), we show that
if a state s does not already satisfy the desired eventuality (that is, the value
of the round variable in the state s is not yet N), then executing the protocol
for one more step decreases the rank; that is, if (s, t) is a transition of the

Liveness Requirements 223

system, then rank(t) < rank(s). Since the rank is a natural number, it cannot
decrease forever, implying that a state satisfying the desired eventuality must
be encountered in finitely many steps.

The function rank needs to map every state, and not just the states that we
informally know to be reachable, to a natural number. In our example, we
define the rank rank(s) of a given state s to be N − s(rn) if s(rn) ≤ N and 0
otherwise. For a state s that assigns, say, the value N + 1 to the variable rn,
the rank is 0, and executing a transition in such a state does not decrease the
rank. However, we know that such a state is unreachable. More precisely, we
show that 0 ≤ rn ≤ N is an invariant of the system, and this can be established
using the proof technique already studied. To show that the execution of one
transition decreases the rank, it now suffices to focus on those states that satisfy
this invariant. That is, we show that for every state s of the system, assuming
that the state s satisfies the invariant 0 ≤ rn ≤ N , if (s, t) is a transition of the
system, then either the state t satisfies the eventuality goal or its rank is strictly
smaller than the rank of the state s.

This reasoning is summarized in the following proof rule for establishing even-
tuality properties:

Proof rule for Eventuality properties

To establish that a transition system T satisfies the eventuality formula ♦ ϕ,
where ϕ is a property over the state variables of T , identify a state property
ψ and a function rank that maps states of T to nat and show that:

1. the property ψ is an invariant of T ; and

2. for every state s that satisfies ψ and every transition (s, t) of T , either
the state t satisfies ϕ or rank(t) < rank(s).

To establish that the proof rule is sound, we need to argue that if we establish
the two premises (1) and (2) of the rule, then the transition system must satisfy
the formula ♦ ϕ. Consider an infinite execution s0, s1, s2, . . . of the transition
system. Clearly, each state sj appearing in the execution is reachable and by
the first premise satisfies the invariant property ψ. To show that some state sj
in the execution must satisfy the desired eventuality ϕ, assume to the contrary.
Then by the second premise, since there is a transition between every pair of
adjacent states (sj , sj+1), we have that rank(sj+1) < rank(sj) for each j ≥ 0.
However, this is not possible: if rank(s0) is K, then the rank can decrease at
most K times as the rank of each state is a non-negative number and thus
cannot decrease at each step of an infinite execution.

Exercise 5.21 : Recall the transition system GCD(m,n) of figure 3.1 capturing
the program for computing the greatest common divisor of two numbers m
and n. Suppose we want to establish that the program terminates, that is,
eventually mode equals stop. Prove this eventuality property using the proof

224 Chapter 5

rule for eventuality formulas by selecting an appropriate invariant and a ranking
function.

5.3.2 Conditional Response Properties

A canonical liveness property is the response property “every request ϕ1 is
eventually followed by the response ϕ2,” expressed by the Ltl-formula � (ϕ1 →
♦ ϕ2).

Recall the rule for establishing the eventuality formula ♦ϕ: we find a ranking
function that maps states to natural numbers, identify an invariant property
ψ, and show that executing a transition in any state that satisfies the invari-
ant causes either the fulfillment of the goal or a decrease in the rank. Let us
first consider how to generalize this reasoning to establish the response formula
� (ϕ1 → ♦ϕ2). Now we want to show that whenever the property ϕ1 holds,
executing a sequence of system transitions must result in a state satisfying the
goal property ϕ2. We again use a ranking function that maps states to natural
numbers and show that the rank keeps decreasing until the goal is satisfied.
This is achieved by the following proof principle:

Proof rule for Response properties

To establish that a transition system T satisfies the response formula
� (ϕ1 → ♦ ϕ2), where ϕ1 and ϕ2 are state properties, identify a state
property ψ and a function rank that maps states of T to nat and show
that:

1. every state that satisfies the property ϕ1 also satisfies the property ψ,
and

2. for every state s that satisfies the property ψ and for every transition
(s, t) of T , either the state t satisfies the response property ϕ2 or the
state t satisfies the property ψ and rank(t) < rank(s).

As in the case of the eventuality rule, the property ψ captures the states from
which executing a transition causes either the fulfillment of the goal or a decrease
in the rank. However, instead of requiring that the property ψ be an invariant
of the system, we require that whenever the request property ϕ1 holds, the
property ψ should hold, and it should continue to hold until the response ϕ2 is
satisfied.

To illustrate the proof technique for establishing response properties, let us
consider a transition system with two variables x and y of type int. Suppose
initially x equals 1 and y equals 0, and the transitions of the system correspond
to executing the following code at each step:

if (x > 0) then {x := x− 1; y := y+ 1} else x := y.

The sequence of values of x is 1, 0, 1, 0, 2, 1, 0, 4, 3, 2, 1, 0, 8, 7, . . . and thus, the
program satisfies the recurrence property �♦ (x = 0). To prove that the system

Liveness Requirements 225

satisfies this recurrence formula, we can apply the rule for response properties
using ϕ1 as 1 (that is, always true) and ϕ2 as (x = 0). We choose ψ to be the
same as ϕ1, and thus premise 1 of the rule holds immediately. Consider a state
s = (a, b) (that is, x equals a and y equals b). The ranking function rank maps
such a state s to a if a > 0 and to b+1 if a = 0. To establish premise 2, consider
a state s = (a, b). If a > 0, then rank(s) = a, and letting the system execute
one step leads to the state t = (a− 1, b+ 1). If a = 1, then the state t satisfies
the goal (x = 0) (and in this case, rank(t) = b+ 2, which could be much higher
than rank(s)), and if a > 1, then a − 1 > 0 and rank(t) = a − 1, which is less
than rank(s). However, if a = 0, then rank(s) = b + 1, and letting the system
execute one step leads to the state t = (b, b) with rank(t) = b, which is less than
rank(s). This means that the proof rule is applicable and allows us to conclude
that the system satisfies �♦ (x = 0).

Establishing Eventual Delivery of Messages for Merge

Let us revisit the example of the asynchronous process Merge of figure 4.3.
Suppose we want to establish that if a message v is received on the input channel
in1, it will eventually be delivered on the output channel out. This is captured
by the response property:

� (in1 ? v → ♦ out ! v).

Here, the request property ϕ1 is in1 ? v, and its fulfillment is the response prop-
erty ϕ2 = out ! v. We first choose the strengthening ψ of the request property
to be Contains(x1, v). Note that whenever the process executes the input ac-
tion in1 ? v, the message v is enqueued in the state variable x1, and thus, the
property Contains(x1, v) holds.

To define the ranking function, consider the following question: when a message
v is in the queue x1, which quantity do we expect to monotonically decrease
until the message v gets removed from the queue? It is the number of messages
queued up ahead of the message v. Hence, given a state s, let rank(s) be 0 if the
queue s(x1) does not contain the message v; otherwise, let rank(s) be k if v is
the kth message in the queue s(x1). For instance, if the queue x1 contained five
messages when the message v gets enqueued, then it will be the sixth message
in the queue, and the rank will be 6. Whenever a message gets dequeued from
the queue x1 (and transmitted on the output channel), the message v moves up
one slot, causing the rank to become 5. This process repeats until the message
v is at the front of the queue. In such a state, the rank is 1, and dequeuing a
message from the queue x1 causes the rank to become 0, and in the resulting
state, the goal property out ! v is satisfied. Now the condition Contains(x1, v)
no longer holds, and the rank stays unchanged. If at a later step the message v
is received again on the input channel in1, it gets enqueued in the queue x1, and
the rank can increase arbitrarily. For instance, if the size of the queue x1 is 12
upon the arrival of the next instance of the message v on the input channel in1,
then it gets enqueued in the 13th slot, and the rank is 13. It keeps decreasing

226 Chapter 5

from 13 down to 0 until the message v is again transferred from the queue x1
to the output channel.

In order to apply the proof rule for the response property, let us check the
premises with the property ϕ1 equal to in1 ? v, the property ϕ2 equal to out ! v,
and the property ψ equal to Contains(x1, v). Clearly, the premise 1 of the rule
holds: a state satisfying the property ϕ1 is guaranteed to satisfy the property
ψ. Furthermore, in a transition (s, t), where the state s satisfies ψ (that is, the
message v is in the queue x1 in state s), and the state t does not satisfy the
goal (that is, the message v is not transmitted from the queue in1 to the output
channel during this transition), we are guaranteed that the state t continues to
satisfy the property ψ. Intuitively, the property Contains(x1, v) continues to
stay true and is preserved in every transition until the goal property holds.

However, the proof of the response formula fails. The second premise of the
rule requires that in states satisfying Contains(x1, v), executing a transition
either satisfies the goal property out ! v or causes the rank to decrease. That is,
when the message v is in the queue x1, executing a step of the process Merge,
either leads to a state with the message v is output on the output channel or
causes the message v to shift one slot in the queue x1. This condition is sat-
isfied only by the execution of the output task Ao

1 that dequeues a message
from the queue x1 and transmits it on the channel out. If the transition corre-
sponds to executing any task other than the task Ao

1, then while the condition
Contains(x1, v) continues to hold, the rank stays the same. If the task Ao

1 is
never executed, then the rank will stay unchanged, and the message v will never
be output. In fact, not all executions of the process Merge satisfy the response
formula � (in1 ? v → ♦ out ! v). The formula, however, is satisfied by all the
executions that satisfy the weak fairness assumption for the task Ao

1. We need
to strengthen the proof rule for response properties in order to establish such
conditional response properties.

Proof Rule for Conditional Response

Suppose we want to establish that the process Merge satisfies the response for-
mula � (in1 ? v → ♦ out ! v) assuming weak fairness for the output task Ao

1.
We use the same choice for ψ, namely, Contains(x1, v), and the same ranking
function, namely, for a given state s, rank(s) is 0 if the queue s(x1) does not
contain the message v, and rank(s) is k if v is the kth message in the queue
s(x1). Consider a state s that satisfies the property Contains(x1, v) and a tran-
sition (s, t) of the process such that the transition does not involve sending the
message v on the output channel. Instead of insisting that rank(t) < rank(s)
as required by the earlier response rule, we now consider two cases. When the
transition from the state s to the state t involves the execution of the task Ao

1,
we require that rank(t) < rank(s); otherwise, it suffices that the rank does not
decrease (that is, rank(t) ≤ rank(s)), but the task Ao

1 should be enabled in the
state t. Intuitively, the task Ao

1 has the responsibility to decrease the rank and,
hence, cause progress toward the fulfillment of the goal. The execution of a task

Liveness Requirements 227

other than the task Ao
1 should maintain enabledness of the task Ao

1 without
increasing the rank. The weak fairness assumption for the task Ao

1 ensures that
if the task Ao

1 stays continuously enabled, it will eventually be executed, and
this would decrease the rank.

Establishing the response formula assuming weak fairness for the task Ao
1 is the

same as establishing the following conditional response formula for all execu-
tions:

� [Guard(Ao
1) → ♦ ((taken = Ao

1) ∨ ¬Guard(Ao
1))]

→ � [in1 ? v → ♦ out ! v].

The proof rule formalized below shows how to establish the response formula
� [ϕ1 → ♦ϕ2] under the assumption of the form � [ψ1 → ♦ (ψ2 ∨ ¬ψ1)].
When the property ψ1 is Guard(A) and the property ψ2 is (taken = A), the
assumption corresponds to the weak fairness assumption for the task A. If we
pick the property ψ1 to be the constant 1, then the assumption simplifies to
�♦ψ2.

Proof rule for Conditional Response properties

To establish that a transition system T satisfies the conditional response
formula

� [ψ1 → ♦ (ψ2 ∨ ¬ψ1)] → � [ϕ1 → ♦ ϕ2],

where ϕ1, ϕ2, ψ1, and ψ2 are state properties, identify a state property ψ
and a function rank that maps states of T to nat and show that:

1. every state that satisfies the property ϕ1 also satisfies the property ψ,

2. every state that satisfies the property ψ also satisfies the property ψ1,
and

3. for every state s that satisfies the property ψ and for every transition
(s, t) of T , either the state t satisfies the response ϕ2 or the state
t satisfies the property ψ and rank(t) ≤ rank(s) and if the state t
satisfies the property ψ2 then rank(t) < rank(s).

Let us summarize the proof that the process Merge satisfies the response prop-
erty � (in1 ? v → ♦ out ! v) assuming weak fairness for the output task Ao

1

using the notation of this proof rule. For the proof rule above, we have the
property ϕ1 equal to in1 ? v, the property ϕ2 equal to out ! v, the property ψ1

equal to Guard(Ao
1), and the property ψ2 equal to (taken = Ao

1). We choose the
property ψ to be Contains(x1, v) and rank to be the function that maps a state
s to the position of the message v in the queue x1 (and 0 if the message is not
in the queue). Verify that all three premises as required by the rule indeed are
satisfied.

We conclude by sketching a proof that the reasoning behind the proof rule for
conditional response is sound : if we show all the premises of the rule, then

228 Chapter 5

the desired conditional response formula is indeed satisfied by every execution
of the transition system. It turns out that this proof rule, coupled with the
application of valid temporal patterns such as the chain rule, is complete: if the
transition system indeed satisfies the conditional response formula, there exist
appropriate choices for the strengthening property ψ and the ranking function
rank for which all the premises of the rule hold.

Theorem 5.4 [Soundness of the Proof Rule for Conditional Response] The
proof rule for establishing that a transition system T satisfies the conditional
response formula ϕ given by � [ψ1 → ♦ (ψ2 ∨ ¬ψ1)] → � [ϕ1 → ♦ ϕ2] is
sound.

Proof. Let T be a transition system, and consider the Ltl-formula ϕ of the
above form. Let ψ be a state property and rank be a function that maps states
of T to nat, such that (1) every state that satisfies the property ϕ1 also satisfies
the property ψ, (2) every state that satisfies the property ψ also satisfies the
property ψ1, and (3) for every state s that satisfies the property ψ and every
transition (s, t) of T such that the state t does not satisfy the property ϕ2, the
state t satisfies the property ψ, and rank(t) ≤ rank(s), and if the state t satisfies
the property ψ2, then rank(t) < rank(s). Under these assumptions, we want to
show that every infinite execution of T satisfies the formula ϕ.

Let ρ = s0s1s2 · · · be an infinite execution of the transition system T . Assume
that the execution ρ satisfies the formula � [ψ1 → ♦ (ψ2 ∨ ¬ψ1)]. We want
to show that the execution ρ satisfies the formula � [ϕ1 → ♦ ϕ2]. Let i be a
position in the execution. Assume that the state si satisfies the request property
ϕ1. We want to establish that there exists a position j ≥ i such that the state sj
satisfies the response property ϕ2. We will prove this by contradiction. Assume
that the property ϕ2 is not satisfied in every state sj for j ≥ i.

We claim that for every position j ≥ i, the state sj satisfies the property ψ.
The proof is by induction on j, where j = i is the base case. Since the state
si satisfies the property ϕ1, by premise 1, it also satisfies the property ψ. Now
consider an arbitrary state sj , with j ≥ i. Assume that the state sj satisfies the
property ψ. There is a transition from the state sj to the state sj+1 since they
appear as consecutive states along the execution ρ. By assumption, the state
sj+1 does not satisfy the property ϕ2. By premise 3, we conclude that the state
sj+1 satisfies the property ψ.

By premise 2, we conclude that every state sj , for j ≥ i, also satisfies the
property ψ1. Since the execution ρ satisfies the formula� [ψ1 → ♦ (ψ2 ∨¬ψ1)],
by the semantics of temporal operators, we conclude that there exist infinitely
many positions j1, j2, . . . with i < j1 < j2 < · · · such that for each k, the state
sjk satisfies the property ψ2.

Let rank(si) = m. We know that at every step j ≥ i, the state sj satisfies the
property ψ, the state sj+1 does not satisfy the property ϕ2, and (sj , sj+1) is a
transition of T . By premise 3, at every step j ≥ i, rank(sj+1) ≤ rank(sj). Since

Liveness Requirements 229

for each k the state sjk satisfies the property ψ2, rank must strictly decrease at
this step: rank(sjk) < rank(sjk−1).

To summarize, the rank is m at step i, it stays the same or decreases at every
step after i, and it strictly decreases at infinitely many steps j1, j2, · · ·. This is
a contradiction.

Exercise 5.22 : Consider an asynchronous process with the state variables x
and y, both of type nat, initialized to 0. The process consists of two tasks both
of which are always enabled. For the task A1, the update is specified by

if (x > 0) then x := x− 1 else x := y

and for the task A2, the update is specified by y := y + 1. Weak fairness
is assumed for both the tasks. Prove that the process satisfies the recurrence
property �♦ x = 0 using the proof rule for conditional response properties.

Bibliographic Notes

While the origins of temporal logic are rooted in philosophy, the use of lin-
ear temporal logic for expressing formal requirements of reactive systems was
introduced by Pnueli [Pnu77]. Subsequently, the expressiveness and decision
procedures for many variants of temporal logics were studied (see [Eme90] for
a survey of the theoretical foundations). The specification language PSL is
an industrial standard that is supported by commercial tools for hardware de-
sign [EF06] (see also integration of specifications in the hardware description
language Verilog [BKSY12]).

The concept of model checking was introduced in [CE81] and [QS82] in the
context of checking branching-time temporal properties of finite-state protocols
and has received significant attention in both academia and industry (see the
textbooks [CGP00] and [BK08] for an introduction and the 2009 ACM Turing
Award lecture for an overview of its impact [CES09]).

Automata over infinite traces were introduced by Büchi in the context of decision
procedures for monadic second-order logic [Büc62] (see [Tho90] for a survey
of results on such automata). The translation from Ltl to Büchi automata
appears in [VW86], and this work led to the automata-theoretic approach to
model checking. The nested depth-first search algorithm of figure 5.11 was
introduced in [CVWY92]. The model checker Spin [Hol04] includes state-of-
the-art implementations of these techniques.

The symbolic nested fixpoint computation of figure 5.14 was introduced in
[BCD+92, McM93] and is supported by the model checker NuSmv [CCGR00].

The proof rules for establishing liveness properties of transitions systems were
first studied in [MP81] (see also [Lam94]) and are supported by the verification
toolkit TLA+ [Lam02].

6

Dynamical Systems

Controllers such as a thermostat for regulating the temperature in a room or a
cruise controller for tracking and maintaining the speed of an automobile inter-
act with the physical world via sensors and actuators. The relevant information
about the physical environment corresponds to quantities such as temperature,
pressure, and speed that evolve continuously obeying laws of physics. As a re-
sult, design and analysis of control systems requires construction of models of
the physical system. In this chapter, we focus on continuous-time models of dy-
namical systems. This mathematically rich area is explored in details in a course
on control systems. The purpose of this chapter is to give a brief introduction
to the core concepts.

6.1 Continuous-Time Models

6.1.1 Continuously Evolving Inputs and Outputs

The typical architecture of a control system is depicted in figure 6.1. The phys-
ical world that is to be controlled is modeled by a component called the plant.
The evolution of the plant can be influenced by the controller using actuators,
but it also depends on uncontrollable factors from the environment, usually
called disturbances. The controller responds to the commands from the user,
called reference inputs, and can make its decisions based on measurements of the
plant provided by the sensors. For example, in a thermostat design, the plant is
the room whose temperature is to be controlled. The sensor is a thermometer
that can measure the current temperature. The task of the controller is to reg-
ulate the temperature so that it stays close to the reference temperature set by
the occupant on the thermostat. The controller can influence the temperature
by adjusting the heat flow from the furnace. The plant model, in this case,
needs to capture how the temperature of the room changes as a function of the
heat-flow from the furnace and the difference between the room temperature
and the outside temperature, which is the uncontrolled disturbance.

232 Chapter 6

SensorActuator

Controller

Plant

Reference Inputs

Disturbances

Figure 6.1: Block Diagram of a Control System

Models of dynamical systems can also be conveniently described as components
with inputs and outputs that are connected to one another using block diagrams.
The underlying model of computation is synchronous as in chapter 2 with one
essential difference: while the values of the variables of a synchronous reactive
component are updated in a sequence of discrete logical rounds, the values of the
variables of a dynamical system are updated continuously with the passage of
time. We call such components continuous-time components. The variables of a
continuous-time component typically range over a compact set such as a closed
interval of the set of reals with specified units of measurement. For example,
the velocity v of a car can be modeled by a variable that ranges over the real
numbers in the interval from 0 to 150 miles per hour. In our specifications of
dynamical systems, we assume that every variable has the type real without
explicitly mentioning the associated interval range.

Signals

The values a variable takes over time can then be described as a function from
the time domain to real. Such functions from the time domain to the set
of reals are called signals. Throughout we will assume that the time domain
consists of the set of non-negative real numbers and denote this set by time.
For a variable x, a signal over x is a function that assigns a real value to the
variable x for every time t in time. We will denote such a function by x. Thus,
x(0) denotes the value of the variable x at time 0, and for every time t, x(t)
denotes its value at time t.

Given a set V of variables, a signal V over V assigns values to all the variables
in V as a function of time. If the set V contains k variables, then a signal over V
is a function from the time domain time to k-tuples or vectors over real. The
number k of variables is called the dimensionality of the signal. Alternatively,
a k-dimensional signal can be viewed as a k-tuple of single-dimensional signals,
one for each of the variables in V .

Since the domain and the range of a signal consists of real numbers or vectors,
we can use the standard notion of Euclidean distance over reals, or any other
notion of measuring distance that satisfies the classical properties of a metric,

Dynamical Systems 233

h−

h+
hnet

hnet = h+ − h−

Figure 6.2: Continuous-time Component NetHeat

to measure how far apart two quantities are. For two vectors u and v, let
‖u− v‖ denote the distance between u and v, and we will denote the distance
of a vector u from the origin 0 by ‖u‖. Now the standard mathematical notions
of continuity and differentiability apply to signals. For example, a signal V is
continuous if for all time values t ∈ time, for all ε > 0, there exists a δ > 0 such
that for all time values t′ ∈ time, if ‖t− t′‖ < δ, then ‖V (t)− V (t′)‖ < ε holds.

Example: Heat Flow

As a first example, figure 6.2 shows a continuous-time component NetHeat that
has two input variables h+ and h− and a single output variable hnet, which
denote the heat inflow, heat outflow, and net heatflow, respectively. The com-
ponent NetHeat is a mapping from two input signals to an output signal, and
its dynamics is expressed by the equation:

hnet = h+ − h−,

which says that at every time t, the value of the output hnet equals the expression
h+ − h−. Given a signal h+ for the input variable h+ and a signal h− for the
input variable h−, the output signal hnet for the output variable hnet is defined
by hnet(t) = h+(t) − h−(t) for all times t in time. This unique output signal
is called the response of the component to the input signals h+ and h−. If the
input signals are continuous, then so is the output signal.

Note that the computation of the output value based on the input values is
expressed in a declarative style using (algebraic) equations instead in an opera-
tional style using assignments. Indeed such a declarative description is the norm
in the modeling of control systems since the models are primarily used to ex-
press relationships between various signals in a mathematically precise manner
so they can be subjected to analysis.

Example: Motion of a Car

The component NetHeat is stateless. As an example of a stateful continuous-
time component, let us build a model of how the speed of a car changes as a result
of the force applied to it by the engine. For the purpose of designing a cruise
controller, it typically suffices to make a number of simplifying assumptions. In
particular, let us assume that the rotational inertia of the wheels is negligible

234 Chapter 6

Velocity v

Position x

Force F

Friction k v

ẋ = v ;

v̇ = (F− k v)/m

real xL ≤ x ≤ xU ;
vL ≤ v ≤ vU

F v

Figure 6.3: Continuous-time Component Car Modeling the Car Motion

and that the friction resisting the motion is proportional to the car’s speed. The
forces acting on the car are shown in figure 6.3. If x denotes the position of
the car (measured with respect to an inertial reference) and F denotes the force
applied to the car, then using the classical Newton’s laws for motion, we can
capture the dynamics of the car by the differential equation:

F − k ẋ = mẍ.

Here k is the coefficient of the frictional force, and m denotes the mass of
the car. The quantity ẋ denotes the first-order time derivative of the signal
assigning values to the position variable x and thus captures the velocity of the
car. Similarly, ẍ denotes the second-order derivative of this signal, that is, the
acceleration of the car.

This equation of motion is modeled by the continuous-time component Car of
figure 6.3. It uses two state variables: the variable x modeling the position of
the car and the variable v modeling the velocity of the car. For every state
variable, the component needs to specify its initial value. In our example, the
initial value of the position x is specified by the constraint xL ≤ x ≤ xU ,
where xL and xU are constants that give lower and upper bounds on the initial
position. This declarative specification of the initialization is equivalent to the
nondeterministic assignment using the choose construct discussed in chapter 2:
real x := choose{z | xL ≤ z ≤ xU}. Similarly, the initial value of the velocity
v is given by the constraint vL ≤ v ≤ vU , where vL and vU are constants that
give lower and upper bounds on the initial velocity.

For every state variable, the dynamics is given by specifying the first-order time
derivative of the value of the state variable as a function of the input and state
variables. The differential equation ẋ = v says that the rate of change of the
state variable x at each time t equals the value of the state variable v at time t,
and the rate of change of the state variable v at each time t equals the value of
the expression (F −kv)/m at time t. The two equations together are equivalent
to the original equation F −k ẋ = mẍ. The output of the car is its velocity. For
every output variable, the component specifies the value of the output variable
as a function of the input variables and the state variables. In this example, the
output simply equals the state variable v.

Dynamical Systems 235

To illustrate the behaviors of this model, let us choose the initial position to be
x0 and initial velocity to be v0. Now consider the case when the input force F
equals the value kv0 at all times. Then the position x and the velocity v of the
car at all times can be obtained by solving the system of differential equations

ẋ = v; v̇ = k(v0 − v)/m

with the initial condition x(0) = x0 and v(0) = v0. These equations have a
unique solution: the velocity stays constant at the value v0 at all times, and the
distance x increases linearly with time t and is given by the expression x0+ t v0.
In other words, given the (constant) input signal F (t) = kv0 and the initial state
(x0, v0), the corresponding signal describing the dynamics of the state/output
variable v is given by v(t) = v0, and the signal describing the state variable x
is given by x(t) = x0 + t v0.

Now let us consider the case when the input force F is 0 at all times, the initial
position of the car is 0, and the initial velocity is v0. Then the position x and
the velocity v of the car at all times can be obtained by solving the system of
differential equations

ẋ = v; v̇ = −kv/m
with the initial condition x(0) = 0 and v(0) = v0. Using rules of differential
calculus, we can solve these equations, and the resulting signals corresponding
to the position and the velocity of the car are given by:

v(t) = v0 e
−kt/m; x(t) = (mv0/k) [1− e−kt/m].

Note that the velocity decreases exponentially converging to 0, while the position
increases converging to the value mv0/k.

As a third scenario, suppose the initial position is 0, and the initial velocity
is 0, and we apply a constant force F0 to the car. Then the position x and
the velocity v of the car can be obtained by solving the system of differential
equations

ẋ = v; v̇ = (F0 − kv)/m

with the initial condition x(0) = 0 and v(0) = 0. If we assume that the mass
m of the car is 1000 kg, the coefficient k of friction between the tires and the
road is 50, and the input force F0 is 500N , then the corresponding signal for the
velocity is shown in figure 6.4. The velocity increases converging to the value
F0/k = 10m/s.

Definition of Continuous-Time Components

In general, the initial values for the state variables are specified by a constraint
Init, which typically specifies an interval of possible values for each variable.
As usual, [[Init]] specifies the set of initial states, that is, the set of states that
satisfy the constraint specified by Init.

236 Chapter 6

The dynamics of the component is specified by (1) a real-valued expression hy

for every output variable y, and (2) a real-valued expression fx for every state
variable x. Each of these expressions is an expression over the input and state
variables. The value of the output variable y at time t is obtained by evaluating
the expression hy using the values of the state and input variables at time t, and
the signal for a state variable x should be such that its rate of change at each
time t equals the value of the expression fx evaluated using the values of the
state and input variables at time t. Thus, the execution of a continuous-time
component is similar to the execution of a deterministic synchronous reactive
component, except the notion of a round is now infinitesimal: at every time t,
the outputs at time t are determined as a function of the inputs at time t and
the state of the component at time t, and then the state is updated using the
rate of change specified by the derivative evaluated using the inputs and state
at time t.

The definition of a continuous-time component is now summarized below:

Continuous-time Component

A continuous-time component H has a finite set I of real-valued input vari-
ables, a finite set O of real-valued output variables, a finite set S of real-
valued state variables, an initialization Init specifying a set [[Init]] of initial
states, a real-valued expression hy over I∪S for every output variable y ∈ O,
and a real-valued expression fx over I ∪ S for every state variable x ∈ S.
Given a signal I over the input variables I, a corresponding execution of
the component H is a differentiable signal S over the state variables S and
a signal O over the output variables O such that

1. S(0) ∈ [[Init]];

2. for every output variable y and time t, y(t) equals the value of hy

evaluated using the values I(t) for the input variables and S(t) for the
state variables; and

3. for every state variable x and time t, the time derivative (d/dt)x(t)
equals the value of fx evaluated using the values I(t) for the input
variables and S(t) for the state variables.

A continuous-time component with no inputs is called closed.

Existence and Uniqueness of Response Signals

Determining the signals for the state and output variables corresponding to
a given initial state s0 and a given input signal using mathematical analysis
amounts to solving an initial value problem for a system of ordinary differential
equations. We need to impose restrictions on the expressions used to define the
state and output responses to ensure uniqueness of such solutions since not all
differential equations are well behaved. For example, the conditional differential

Dynamical Systems 237

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Time (seconds)

V
el

oc
ity

 (
m

/s
)

Figure 6.4: Velocity of Car in Response to Constant Input Force

equation

ẋ = if (x = 0) then 1 else 0

states that the derivative of the signal is 1 at time 0 and 0 everywhere else.
There is no differentiable signal x that can satisfy the given equation. The
source of this problem lies in the fact that the right-hand side of this differential
equation has a discontinuity at x = 0. If the right-hand side of a differential
equation is a continuous function, then a solution is guaranteed to exist.

To illustrate another potential problem in solving differential equations, consider
the differential equation ẋ = x1/3. For the initial value x(0) = 0, this differential
equation has two solutions: the constant signal x1(t) = 0 and the signal x2(t) =
(2t/3)3/2. A classical way to avoid this problem and ensure uniqueness of the
solution to a differential equation is to require the right-hand side to be Lipschitz
continuous. Intuitively, Lipschitz continuity means that there is a constant
upper bound on how fast a function changes: a function f : realn �→ realn

is said to be Lipschitz continuous if there exists a constant K such that for all
vectors u and v in realn, ‖f(u)− f(v)‖ ≤ K ‖u− v‖.
In the example component Car of figure 6.3, the right-hand side fx equals v,
which when viewed as a function from real to real is Lipschitz continuous,
and the right-hand side fv equals (F −kv)/m, which when viewed as a function
from real2 to real is Lipschitz continuous. The function x1/3 (in the right-hand
side of the differential equation we just considered) is not Lipschitz continuous
since its rate of change grows unboundedly as x approaches 0. The quadratic
function x2 is not Lipschitz continuous as its rate of change grows unboundedly
as x increases unboundedly. However, if we know that x ranges over a bounded
set D, which is the case in typical modeling of dynamical systems, then the
domain of the function x2 is D, and over this domain, it is Lipschitz continuous.

238 Chapter 6

A classical result in calculus, known as the Cauchy-Lipschitz Theorem, tells us
that for the initial value problem, given by Ṡ = f(S) and S(0) = s0, if f is
Lipschitz continuous, then the solution signal S exists and is unique.

With this motivation, we can require that, in the definition of a continuous-time
component, the expression fx defining the rate of change of each state variable x
is a Lipschitz continuous function over the state and input variables. In this case,
for a given initial state, assuming that the input signal is continuous, the state
signal is uniquely defined. Since the value of an output variable is a function
of the state and input variables, in this case, the output signal is also uniquely
defined. If the expression hy defining an output variable is a continuous function,
then this output signal is guaranteed to be continuous. Since the output of one
component can be connected as an input to another component in a block
diagram and can appear in a right-hand side of a differential equation in the
definition of that component, to ensure the desired uniqueness and existence
of solutions, we can demand that each output expression hy is also Lipschitz
continuous. Components that meet these restrictions, such as the component
Car of figure 6.3, are said to have Lipschitz-continuous dynamics.

Lipschitz-Continuous Dynamics

A continuous-time component H with input variables I, output variables
O, and state variables S is said to have Lipschitz-continuous dynamics if:

1. for each output variable y, the real-valued expression hy over I ∪ S is
a Lipschitz-continuous function; and

2. for each state variable x, the real-valued expression fx over I ∪ S is a
Lipschitz-continuous function.

It follows that if a continuous-time component H has Lipschitz-continuous dy-
namics, then for a given initial state and a given continuous input signal I,
the corresponding response of the component as a signal over the state and the
output variables exists and is unique.

Example: Helicopter Spin

As another example, let us consider the classical problem of controlling a heli-
copter so as to keep it from spinning. A helicopter has six degrees of motion,
three for position and three for rotation. In our simplified version, let us assume
that the helicopter position is fixed and the helicopter remains vertical. Then
the only freedom of motion is the angular rotation around the vertical, that is,
Z-axis. This rotation is called the yaw (see figure 6.5). The friction of the main
rotor at the top of the helicopter causes the yaw to change. The tail rotor then
needs to apply a torque to counteract this rotational force to keep the helicopter
from spinning. In this setting, the helicopter model has a continuous-time input
signal T , denoting the torque around the Y -axis. The moment of inertia of the
helicopter in this simplified setting can be modeled by a single scalar I. The

Dynamical Systems 239

Y axis

X axis

Z axis

Yaw

ṡ = T/I

T sreal sL ≤ s ≤ sU

Figure 6.5: Simplified Modeling of Helicopter Motion

output signal of the model is the angular velocity around the vertical axis and
is modeled by the spin s = θ̇, where θ gives the yaw. The equation of motion is
then given by

θ̈ = T/I

The corresponding continuous-time component is also shown in figure 6.5. There
is a single state variable s modeling the spin, a single input variable T corre-
sponding to the torque, and a single output variable, which equals the state s.
The initial value of the state is in the interval [sL, sU], and its rate of change
is given by the expression T/I. Note that this model has Lipschitz-continuous
dynamics.

The models expressed as continuous-time components with state variables and
differential equations are sometimes called the state-space representation of dy-
namical systems. The dynamics can alternatively be expressed using equations
that specify the output signals by integrating over input signals. For instance,
for our helicopter model, the value of the output spin at time t equals the sum
of its initial value and the integral of the input torque up to time t. This is
captured by the integral equation

s(t) = s0 + (1/I)

∫ t

0

T (τ)dτ,

where s0 is the initial state. Note that the internal state is implicit in the integral
model. Modeling tools such as Simulink allow modeling by both state-space
representation and integral equations.

Example: Simple Pendulum

Consider a simple pendulum shown in figure 6.6. The pendulum is a rod with
a rotational joint at one end and a mass at the other end. For simplicity, we
assume that the friction and the weight of the rod are negligible. A motor
is placed at the pivot to provide an external torque to control the pendulum.

240 Chapter 6

mg sinϕ

mg

u

�
ϕ u ϕ

ν̇ = −(g/�) sinϕ + u/(m�2)

ϕ̇ = ν

real[−π, π) ϕ := ϕ0; ν = 0

Figure 6.6: Simple Pendulum and Its Model

From Newton’s law for rotating objects, the dynamics of the pendulum system
is described by the following (nonlinear) differential equation:

m�2 ϕ̈ = u − mg � sinϕ

where m is the mass, g = 9.8m/s2 is the gravitational acceleration, � is the
length of the rod, ϕ is the angle of the pendulum measured counterclockwise
from the downward vertical, and u is the external torque applied in the coun-
terclockwise direction around the pivot. Note that the range of values for the
angle ϕ is the interval [−π, π).
In the continuous-time component modeling the pendulum (see figure 6.6), the
second-order differential equation of motion is replaced by a pair of (first-order)
differential equations by introducing the state variable ν that captures the angu-
lar velocity of the pendulum. The constant ϕ0 gives the initial angular position
of the pendulum.

To understand the resulting motion, let us assume that the external torque u is
set to 0, the length � of the rod is 1m, and the initial angular displacement is
π/4 radians. Then the motion of the pendulum is described by the equation

ϕ̈ = −9.8 sinϕ; ϕ(0) = π/4.

The resulting oscillatory motion is depicted in figure 6.7, which plots the angular
displacement as a function of time.

Exercise 6.1 : Is the dynamics of the continuous-time component of figure 6.6
modeling the pendulum Lipschitz continuous?

Dynamical Systems 241

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6.7: Angular Displacement of Simple Pendulum

Exercise 6.2 : Consider the model of the simple pendulum from figure 6.6.
Suppose the external torque u is set to 0. Analyze the motion of the pendulum
if the initial angular displacement is set to −15π/16 radians, that is, slightly
displaced from the vertically upward position. Plot the resulting response signal
ϕ using Matlab (use � = 1m).

6.1.2 Models with Disturbance

Let us revisit the model of the motion of a car. The model described in figure 6.3
assumes that the car is moving in a single dimension on a flat road. Suppose we
now want to account for the grade of the road: on an up hill, the weight of the
car works against the force applied by the engine, and on a down hill, the weight
of the car adds to this force (see figure 6.8). The cruise controller needs to adjust
the force F to keep the net velocity v in the direction along the road constant.
We can model the grade of the road by an additional input, denoted θ, that
captures the angle of the road with the horizontal: a positive angle indicates
an up hill slope, and a negative angle indicates a down hill slope. The weight
of the car equals mg in the vertically downward direction, where g = 9.8m/s2

is the gravitational acceleration. The modified dynamical system model is also
shown in figure 6.8. The forces acting on the car in the direction along the road
are: F in the forward direction controlled by the engine, k v in the backward
direction modeling the friction, and mg sin θ capturing the gravitational force
along the road.

The control design problem for the model of figure 6.8 differs from the corre-
sponding problem for the model of figure 6.3 in a crucial way: the input signal
θ modeling the grade of the road is not controlled by the controller and is not
known in advance. Such an uncontrolled input is typically called a disturbance.
The controller should be designed to produce the controlled input signal F so
that it works no matter how the input θ varies within a reasonable range of
values (for instance, all values in the range [−π/6,+π/6]).

242 Chapter 6

v
F

θ v̇ = (F− k v−mg sin θ)/m

ẋ = v

real xL ≤ x ≤ xU ; vL ≤ v ≤ vU

Velocity v

Position x

Weight mg
Friction k v

Force F

θ

Figure 6.8: Modeling Car Motion on a Graded Road

6.1.3 Composing Components

Continuous-time components can be composed using block diagrams in a way
similar to synchronous components. We can define the operations of variable
renaming, output hiding, and parallel composition in the same way as in chap-
ter 2. To ensure determinism and well-formed composition, while composing
components, we would like to establish absence of cyclic await dependencies.
The await dependency of an output variable on input variables is defined the
same way as in synchronous components: an output variable y of a continuous-
time component H awaits an input variable x if the value of the output y at
time t depends on the value of the input x at time t.

For the component NetHeat of figure 6.2, the output hnet awaits both the input
variables h+ and h−. For the components of figures 6.3 and 6.8 modeling the
motion of a car and the component of figure 6.5 modeling the motion of a
helicopter, the output variable at time t equals the value of one of the state
variables at time t and, hence, does not await any of the corresponding input
variables.

Since the evolution of each output variable y of a continuous-time component
is described by an expression hy over the state and input variables, the await
dependencies can be determined by a simple syntactic check: if the set of input
variables that occur in the expression hy is J , then the output y awaits the
input variables in J but does not await the remaining input variables.

Exercise 6.3 : Consider a continuous-time component H1 with an input vari-
able u, a state variable x, and an output variable v, as well as a continuous-time
component H2 with the input variable v, a state variable y, and an output
variable w. Assuming that both of these components have Lipschitz-continuous
dynamics, prove that the parallel composition H1‖H2 of the two components
also has Lipschitz-continuous dynamics.

Dynamical Systems 243

6.1.4 Stability

In earlier chapters, we have explored safety and liveness requirements for syn-
chronous as well as asynchronous systems. Dynamical control systems also have
similar requirements. For example, a safety requirement for a cruise controller
can demand that the speed of the car should always be below some maximum
speed, and a liveness requirement can demand that the difference between the
actual speed and the desired speed should eventually be close to zero. A cruise
controller, however, has a new kind of requirement, namely, that small pertur-
bations in input values, such as the grade of the road, should not cause dis-
proportionately large changes in the speed of the car. This requirement, which
is relevant only for continuous-time systems, is called stability. We will first
define the notion of Lyapunov stability for dynamical systems and then con-
sider the notion of bounded-input-bounded-output stability for continuous-time
components.

Equilibria

To define stability, we first need to understand the notion of an equilibrium
state of operation of a dynamical system. For this purpose, we assume that the
system is closed: if the original system has inputs, then the stability is analyzed
by setting the input signal to a fixed value, say 0, at all times.

Consider a closed continuous-time component whose state S is an n-dimensional
vector, with the dynamics given by the Lipschitz-continuous differential equation
Ṡ = f(S). A state se of the system is said to be an equilibrium state if f(se) = 0.
For an equilibrium state se, the constant signal S(t) = se is a solution to the
initial value problem Ṡ = f(S) and S(0) = se, and since the dynamics is
Lipschitz-continuous, this is the only solution. Thus, if the initial state of a
system with Lipschitz continuous dynamics is an equilibrium state se, then the
state of the system is guaranteed to stay at this equilibrium state at all times.

As an example, let us revisit the continuous-time component Car of figure 6.3,
and let us set the input force F to be the constant signal with value 0. Then
the dynamics of the component is described by the equations

ẋ = v; v̇ = −k v/m.

A state (xe, ve) is an equilibrium state of this system exactly when ve = 0.
When the velocity ve equals 0, the signal that sets the position x always equal
to xe and sets the velocity v always equal to 0 satisfies the above differential
equations. In contrast, if the initial velocity ve is nonzero, the velocity will keep
changing at an exponential rate. Thus, for the input signal F (t) = 0, the system
has infinitely many equilibria of the form (xe, 0).

As another example, consider the pendulum model of figure 6.6, and suppose
the input torque u is set to the constant value 0. Then the dynamics of the
component is described by the equations

ϕ̇ = ν; ν̇ = − g sinϕ/�.

244 Chapter 6

Recall that the angular displacement ϕ ranges over the interval [−π, π), and in
this range, sinϕ equals 0 for two values of ϕ, namely, ϕ = 0 and ϕ = −π. Thus,
the system has two equilibria: one where ϕ = 0 and ν = 0 (and this corresponds
to the pendulum in the vertically downwards position), and one where ϕ = −π
and ν = 0 (and this corresponds to the pendulum in the vertically inverted
position).

Lyapunov Stability

Let us consider a continuous-time component whose state S is an n-dimensional
vector, with the dynamics given by the Lipschitz-continuous differential equa-
tion Ṡ = f(S). Consider an equilibrium state se of the system. We know that
if the initial state of the system is se, then the corresponding system evolution
is described by the constant signal Se(t) = se. Now suppose the initial state
is perturbed slightly, that is, the initial state is chosen to be s0 such that the
distance ‖se − s0‖ is small. Consider the signal S0 that is the unique response
of the system starting from the initial state s0. If this signal stays close to the
constant signal Se at all times, then we can conclude that a small perturbation
from the equilibrium state causes the system state to stay close to the equilib-
rium. In such a case, the equilibrium se is said to be stable. If, in addition, the
state S0(t) converges to the equilibrium state se as time t advances, then we
are guaranteed that after a small perturbation from the equilibrium state, the
system state stays close to the equilibrium eventually returning to the equilib-
rium. When this additional convergence requirement holds, the equilibrium se
is said to be asymptotically stable.

These notions of stability, usually referred to as Lyapunov stability in the liter-
ature on dynamical systems, are summarized below.

Lyapunov Stability

Consider a closed continuous-time component H with n state variables S
and dynamics given by the equation Ṡ = f(S), where f : realn �→ realn

is Lipschitz continuous. A state se is said to be an equilibrium of the
component H if f(se) = 0. Given an initial state s0 ∈ realn, let S0 :
time �→ realn be the unique response of the component H from the initial
state s0.

• An equilibrium se of H is said to be stable if for every ε > 0, there
exists a δ > 0 such that for all states s0, if ‖se − s0‖ < δ, then
‖So(t)− se‖ < ε holds at all times t ≥ 0.

• An equilibrium se ofH is said to be asymptotically stable if it is stable,
and there exists a δ > 0 such that for all states s0, if ‖se − s0‖ < δ,
then the limit limt→∞ S0(t) exists and equals se.

Let us revisit the continuous-time component Car of figure 6.3 again, with the
input force F set to the constant value 0. We have already noted that the

Dynamical Systems 245

state with the position x = xe and the velocity v = 0 is an equilibrium for every
choice of xe. Suppose we perturb this equilibrium; that is, consider the behavior
of the component starting at the initial state (x0, v0) such that the distance
‖(xe, 0)− (x0, v0)‖ is small. The car will slow down according to the differential
equation v̇ = −k v/m starting from the initial velocity v0, with the velocity
converging to 0. The position of the car will converge to some value xf that is a
function of the initial position x0 and the initial velocity v0: xf = x0 +mv0/k.
Thus, for the resulting signal, the value ‖(xo(t), v0(t))− (xe, 0)‖ is bounded.
Thus, the equilibrium (xe, 0) is stable. However, it is not asymptotically stable
since along this signal, as time advances, the position does not converge to xe

but converges to a different value xf .

Now, let us consider the pendulum of figure 6.6 with the input signal u set
to the constant value 0. We know that the model ϕ̇ = ν; ν̇ = −g sinϕ/�
has two equilibria, namely, (ϕ = 0, ν = 0) and (ϕ = −π, ν = 0). The latter
corresponds to the vertically inverted position and is not stable: if we displace
the pendulum slightly from this vertically upward position, the angular velocity
ν will keep increasing positively, thereby increasing the displacement ϕ, pushing
the pendulum away from the vertical. In contrast, the equilibrium (ϕ = 0, ν = 0)
corresponding to the vertically downward position is stable. For example, if we
set the initial angle to a small positive value, the angular velocity will be negative
and will cause the angle to decrease back toward the equilibrium value 0 (see
figure 6.7 for a representative behavior). The pendulum will oscillate around the
equilibrium position, and if the initial perturbation is (ϕ0, ν0), then the value of
‖(ϕ0(t), ν0(t))− (0, 0)‖ stays bounded, with the bound dependent on the values
of ϕ0 and ν0. In this model, this equilibrium is not asymptotically stable: for
example, if the initial starting position is ε with initial angular velocity 0, then
the pendulum will keep swinging forever in the arc from ε to −ε around the
vertical. In reality, of course, such a pendulum asymptotically converges to the
vertical coming to a halt due to the damping effects, which are not captured in
our model.

Input-Output Stability

The notion of Lyapunov stability is based on the state-space representation of
a dynamical system and concerns the behavior of the system when its state
is perturbed from the equilibrium state, with the input signal set to 0. An
alternative notion of stability views the dynamical system as a transformer,
mapping input signals to output signals, and demands that a small change to
the input signal should cause only a small change to the output signal. This
notion of input-output stability is formalized next.

A signal x assigning values to the real-valued variable x as a function of time
is said to be bounded if there exists a constant Δ such that ‖x(t)‖ ≤ Δ for all
times t. Here are some typical signals analyzed for their boundedness:

• The constant signal defined by x(t) = a, for a constant value a, is bounded.

246 Chapter 6

• The linearly increasing signal defined by x(t) = a+ bt, for constants a and
b > 0, is not bounded.

• The exponentially increasing signal defined by x(t) = a+ebt, for constants
a and b > 0, is not bounded.

• The exponentially decaying signal defined by x(t) = a+e−bt, for constants
a and b > 0, is bounded.

• The step signal defined by x(t) = a for t < t0 and x(t) = b for t ≥ t0, for
constants t0, a, b, is bounded.

• The sinusoidal signal defined by x(t) = a cos bt, for constants a and b, is
bounded.

A signal over a set V of variables is bounded if the component of the signal
corresponding to each variable x in V is bounded.

In a stable system, when started in the initial state s0 = 0, whenever the
input signal is bounded, then the output signal produced by the component
in response is also bounded. The bound on the output signal can be different
from the bound on the input signal. This particular formalization of stability is
known as Bounded Input Bounded Output (BIBO) stability.

BIBO Stability

A continuous-time component H with Lipschitz-continuous dynamics with
input variables I and output variables O is Bounded-Input-Bounded-Output
stable if, for every bounded input signal I, the output signal O produced
by the component H starting in the initial state s0 = 0, in response to the
input signal I, is also bounded.

Let us consider the helicopter model from figure 6.5:

ṡ = T/I

and assume that the initial spin is 0. Suppose we apply a constant torque T0

to the system. Then the rate of change of the spin s is constant and the spin
keeps increasing linearly. Thus the system is unstable: the input signal is the
bounded constant function T (t) = T0, and the corresponding output signal is
described by the unbounded function s(t) = (T0/I) t.

Exercise 6.4 : Consider the model of the car moving on a graded road shown
in figure 6.8. Suppose the input force F is 0 at all times, and the grade θ of the
road is constant at 5 degrees uphill. What are the equilibria for the resulting
dynamical system?

Exercise 6.5 : Consider a two-dimensional dynamical system whose dynamics
is given by

ṡ1 = 3 s1 + 4 s2; ṡ2 = 2 s1 + s2.

Dynamical Systems 247

Restoration force −kx
Displacement x

Figure 6.9: Vibrations of a Tuning Fork

Find the equilibria of this system. For each equilibrium, analyze if the equilib-
rium is asymptotically stable, stable but not asymptotically stable, or unstable.

Exercise 6.6 : Consider a dynamical system whose dynamics is given by

ẋ = x2 − x.

Find the equilibria of this system. For each equilibrium, analyze if the equilib-
rium is asymptotically stable, stable but not asymptotically stable, or unstable.

Exercise 6.7*: A tuning fork consists of a metal tine that can be displaced
from its vertical position by striking it with a hammer (see figure 6.9). Once
displaced, assuming no friction, the fork vibrates forever, generating a musical
tone. Let x denote the displacement of the tine in the horizontal direction. The
force that pushes the tine back toward the vertical position is proportional to
its displacement at any point in time, and thus the equation of motion is given
by

mẍ = −k x,
where k is a constant depending on the properties of the tuning fork. (a) Design
a continuous-time component that captures this dynamics by finding a suitable
state-space representation. (b) Assuming initial displacement x(0) = x0, find
the closed-form solution for the response signal x(t) (hint: recall the rules of
derivatives of basic trigonometric functions). (c) What are the equilibria of
this system? For each equilibrium, analyze if the equilibrium is asymptotically
stable, stable but not asymptotically stable, or unstable.

6.2 Linear Systems

When the dynamics of a continuous-time component is specified using linear
expressions, a number of questions regarding the behavior of the system can be

248 Chapter 6

answered using mathematical analysis.

6.2.1 Linearity

A linear expression over a set of variables is formed using the operations of addi-
tion and multiplication by a numerical constant. If the variables are x1, x2, . . . xn,
then a linear expression has the form a1x1 + a2x2 + · · · + anxn, where the co-
efficients a1, a2, . . . an are either real, rational, or integer constants. A linear
system is a continuous-time component where the expressions used to specify
the dynamics of the state and output variables are such linear expressions.

Linear Component

A continuous-time component H with input variables I, output variables
O, and state variables S is said to be a linear component if:

1. for every output variable y, the expression hy is a linear expression
over the variables I ∪ S; and

2. for every state variable x, the expression fx is a linear expression over
the variables I ∪ S.

In our examples, the components of figures 6.2, 6.3, and 6.5 are linear. The
model of a car on a graded road in figure 6.8 with the nonlinear term mg sin θ
in the dynamics is not linear. However, notice that the input θ is not controlled
and simply represents disturbance or noise that the controller must handle. As a
result, we can replace the input θ by another variable d with the meaning that d
captures the value of the expression mg sin θ. Now the dynamics becomes v̇ =
(F −k v−d)/m and is linear. The range of values for the input disturbance θ ∈
[−π/6,+π/6] must be replaced by the range [mg sin (−π/6),m g sin (+π/6)]
for the new variable d. For the model of the simple pendulum in figure 6.6, the
dynamics is specified by the differential equation ϕ̈ = −(g/�) sin ϕ+ u/(m�2),
and thus this component is nonlinear.

A linear expression of n variables defines a function from realn to real, and
this function is Lipschitz continuous (see exercise 6.8). As a result, every linear
component has Lipschitz-continuous dynamics.

It is worth noting that an expression such as ax+b, with b > 0, is not considered
linear, and thus a single-dimensional system with the dynamics ẋ = ax + b is
not a linear component. In control theory literature, expressions with constants,
that is, expressions of the form a1x1+a2x2+ · · ·+anxn+an+1, are called affine
expressions. A particular quantity with affine dynamics is time itself as it can
be modeled by a variable t with the dynamics ṫ = 1, and then this variable t can
be used in the right-hand sides defining the dynamics of other state variables
(for example, the differential equation ẋ = t expresses time-dependent evolution
of the state variable x). The analysis techniques developed in this chapter focus
on linear systems, but some of them can be extended to affine systems also.

Dynamical Systems 249

Matrix-Based Representation

The conventional form for expressing the dynamics for linear systems uses ma-
trices. Consider a linear component with m input variables I = {u1, . . . um},
n state variables S = {x1, . . . xn}, and k output variables O = {y1, . . . yk}. In
this case, we can view an input as a vector of dimension m, a state as a vector
of dimension n, and an output as a vector of dimension k. The dynamics is
expressed by four matrices each with real-valued coefficients: a matrix A of di-
mension n×n, a matrix B of dimension n×m, a matrix C of dimension k×n,
and a matrix D of dimension k ×m. The dynamics is given by

Ṡ = AS +BI, O = CS +DI.

That is, for each state variable xi, the differential equation modeling its rate of
change as a function of the state/input variables is given by the linear differential
equation:

ẋi = Ai,1 x1 + · · · +Ai,n xn + Bi,1 u1 + · · · +Bi,m um.

For each output variable yj , its value is defined in terms of the state/input
variables by the linear expression:

yj = Cj,1 x1 + · · · + Cj,n xn + Dj,1 u1 + · · · +Dj,m um.

In our example of the car model of figure 6.3, S = {x, v}, I = {F}, and O = {x}.
Thus, n = 2 and m = k = 1. The dynamics can be rewritten as

ẋ = 0x + 1 v + 0F

v̇ = 0x + (−k/m) v + (1/m)F

v = 0x + 1 v + 0F

The matrices are then given by:

A =

[
0 1
0 −k/m

]
; B =

[
0

1/m

]
; C = [0 1]; D = [0].

Linear Response

We have defined linearity based on the state-space representation of the com-
ponent. Alternatively, linearity can be studied based on the properties of the
transformation from the space of input signals to the space of output signals
induced by the component.

Consider a continuous-time component H with Lipschitz-continuous dynamics
with an input variable x and an output variable y. Let us set the initial state
of the system to the origin, that is, the state where x equals 0. Given an
input signal x : time �→ real, there is a unique output signal y : time �→
real corresponding to the execution of the component H on the input signal x

250 Chapter 6

starting at the origin. Thus, a continuous-time component is a function from
the set of input signals to the set of output signals. This transformation is
guaranteed to be linear for a linear component. Linearity of transformations
means the following two properties:

• Scaling: If the input signal is scaled by a constant factor, then the output
signal also gets scaled by the same factor. Given an input signal x and a
constant α, let αx be the input signal whose value at each time t is αx(t).
Then for a linear component H, for all input signals x and all scaling
factors α, if y is the output signal corresponding to the input signal x,
then α y is the output signal corresponding to the input signal αx.

• Additivity: If an input signal can be expressed as a sum of two input
signals, then the corresponding output signal is also the sum of the output
signals corresponding to the component input signals. That is, if the input
signals x, x1, and x2 are such that x(t) = x1(t) + x2(t) for all times t,
and if y, y1, and y2 are the output signals produced by the component
corresponding to the input signals x, x1, and x2, respectively, then it must
be the case that y(t) = y1(t) + y2(t) for all times t.

In general, the component has multiple input and multiple output variables,
and we need to consider signals that are mappings from the time domain to the
set of real-valued vectors. In this case, linearity is defined by considering the

sum of vectors and scaling of vectors. For two signals V and V
′
over a set V of

variables and constants α, β ∈ real, the signal αV + β V
′
is defined to be the

signal that assigns, for every time t, the value αV (t)(x) + β V
′
(t)(x) to each

variable x ∈ V . Linearity of transformations is now captured by the following
theorem:

Theorem 6.1 [Linearity of Input-Output Transformation] Let H be a linear
component with input variables I and output variables O. For all input signals
I1 and I2 and constants α, β ∈ real, if the output signals generated by the
component H from the initial state 0 in response to the input signals I1 and I2
are O1 and O2, respectively, then the output signal generated by the component
H from the initial state 0 in response to the input signal α I1 + β I2 is αO1 +
β O2.

Proof. Suppose the dynamics of a linear componentH is given by the equations
Ṡ = AS + BI and O = CS + DI, where S is the state vector, I is the input
vector, and O is the output vector. Suppose the initial state is 0.

For a given input signal I1, suppose the state response signal is S1 and the
output response signal is O1. Then we know that the following conditions must
hold: S1(0) = 0, and for all times t, (d/dt)S1(t) = AS1(t) + B I1(t) and
O1(t) = C S1(t) +D I1(t).

Similarly, for another input signal I1, suppose the state response signal is S2

and the output response signal is O2. Then S2(0) = 0, and for all times t,
(d/dt)S2(t) = AS2(t) +B I2(t) and O2(t) = C S2(t) +D I2(t).

Dynamical Systems 251

Given constants α, β ∈ real, define the signals I = α I1 + β I2 and S = αS1 +
β S2 and O = αO1 + β O2. From basic properties of linear arithmetic and
differential calculus, it follows that the following must hold: S(0) = 0, and for
all times t, (d/dt)S(t) = AS(t) +B I(t) and O(t) = C S(t) +D I(t). Thus, for
the input signal I, the state response of the component H must be the signal S
and the output response must be the signal O.

Exercise 6.8 : Prove that a linear expression e = a1x1 + a2x2 + · · · + anxn,
viewed as a function from realn to real, is Lipschitz continuous.

Exercise 6.9 : Recall that the component corresponding to the motion of a car
on a graded road (see figure 6.8) can be viewed as a component with two inputs,
force F and disturbance d, with the dynamics given by the differential equation
v̇ = (F − kv − d)/m. What are the matrices A, B, C, and D for the standard
matrix-based representation of the resulting linear system?

Exercise 6.10 : Let us revisit the nonlinear model of the pendulum of figure 6.6.
A classical approach to designing controllers for nonlinear systems is to linearize
the model about an operating point, design a controller for that linearized model,
and use it for the original system. For the pendulum example, the operating
point of interest is ϕ = 0 corresponding to the vertical position of the pendulum.
Using the fact that sinϕ ≈ ϕ for small values of ϕ, build a corresponding linear
component model of the pendulum.

Exercise 6.11 : Consider a closed linear component H. Prove that the output
response of the system is a linear function of the initial state. That is, suppose
that O0 is the output response of the system starting from the initial state s0
and O1 is the response signal of the system starting from the initial state s1,
and α, β ∈ real are constants. Then prove that the output response of the
system starting from the initial state α s0 + β s1 is the signal αO0 + β O1.

6.2.2 Solutions of Linear Differential Equations

For linear systems, a number of analysis techniques are available to understand
how the output signal is related to the input signal. Let us first consider the
linear differential equation Ṡ = AS and suppose the initial state is given by
the vector s0. To solve this equation, we can construct a sequence of signals
S0, S1, · · · that approximate the desired solution in the following manner. Let
S0 be the constant signal defined by S0(t) = s0 for all times t. For each m > 0,
define:

Sm(t) = s0 +

∫ t

0

ASm−1(τ) dτ.

We can use mathematical calculations based on solving integrals to find closed
forms for these signals:

S1(t) = s0 +

∫ t

0

As0 dτ

252 Chapter 6

= s0 +At s0

= [I+A t] s0.

In these calculations, A is an n × n matrix, s0 is an n × 1 vector, and t is a
scalar. The identity matrix is denoted I (that is, Ii,j equals 1 if i = j and 0
otherwise). Repeating the calculation for one more step gives:

S2(t) = s0 +

∫ t

0

A ([I+Aτ] s0) dτ

= s0 +At s0 +A2 (t2/2) s0

= [I +

2∑
j=1

Aj tj/j !] s0

After repeating the pattern, we obtain

Sm(t) = [I +

m∑
j=1

Aj tj/j !] s0.

The sequence of functions S0, S1, S2, . . . converges to the unique solution of the
differential equation given by

S(t) = [I +

∞∑
j=1

Aj tj/j !] s0.

Recall that, for a real number a, the quantity ea is defined as:

ea = 1 +

∞∑
j=1

aj/j! .

Similarly, the matrix exponential eA for a matrix A is defined by the equation:

eA = I +

∞∑
j=1

Aj/j !

With this notation, the solution of the differential equation Ṡ = AS, with the
initial state s0, is given by

S(t) = eAt s0.

A similar analysis can be performed for the model of a linear component with
inputs. Consider the dynamics Ṡ = AS +BI. Suppose the initial state is given
by the vector s0. Given an input signal I, the resulting state signal S is given
by the equation:

S(t) = eAts0 +

∫ t

0

eA(t−τ) B I(τ) dτ.

The response of the system to a given input signal can be computed using this
equation: the output value at time t equals C S(t) +D I(t).

Dynamical Systems 253

The Matrix Exponential

Let us examine the definition of the matrix exponential operation:

eA = I +

∞∑
j=1

Aj/j !

For a square n × n matrix A, observe that each term Aj/j ! is a square n × n
matrix, and so is the exponential eA. If we calculate the matrix eA, the matrix
eAt appearing in the solution S(t) of the differential equation is easily obtained
by multiplying each matrix entry by t.

A number of mathematical tools exist to compute the quantity eA depending on
the structural properties of the matrix A. As an illustrative example, suppose
the matrix A is a diagonal matrix (that is, each entry Ai,j , for i �= j, equals
0). Let us denote the ith diagonal entry of the diagonal matrix A by ai, and
the diagonal matrix is denoted D(a1, a2, . . . an). In this case, observe that, for
every j, the matrix Aj is also a diagonal matrix whose ith diagonal entry is
given by aji . Then eA is also a diagonal matrix and its ith diagonal entry is the

sum 1 +
∑∞

j=1 aji/j!, which equals eai . Thus,

eD(a1,a2,···an) = D(ea1 , ea2 , · · · ean).

As another example, consider the two-dimensional matrix

A =

[
0 a
0 0

]
.

Observe that for this matrix A, A2 equals the matrix 0 with all entries 0. As a
result,

eA = I + A =

[
1 a
0 1

]
.

In general, whenever Ak = 0 for some k, only the first k terms in the infinite
series defining the matrix exponential eA are nonzero, and thus one can obtain
an explicit matrix representation of eA.

Eigenvalues and Eigenvectors

Let us consider a standard tool for calculating the matrix exponential using
the similarity transformation. This transformation is based on computing the
eigenvalues and eigenvectors of a matrix.

For an (n × n)-matrix A, if the equation Ax = λx holds, for a scalar λ and
a non-zero vector x of dimension n, then the value λ is called an eigenvalue
of the matrix A, and the vector x is called an eigenvector of the matrix A
corresponding to the eigenvalue λ. An (n× n)-matrix A has at most n distinct
eigenvalues, and these correspond to the characteristic equation of A given by

det(A − λ I) = 0,

254 Chapter 6

where det represents the determinant of a matrix. Note that a value λi is
an eigenvalue of the matrix exactly when the term (λ − λi) is a factor of the
characteristic polynomial det(A − λ I).

As an example, consider the two-dimensional matrix

A1 =

[
4 6
1 3

]
.

The eigenvalues of this matrix A1 are the solutions of the equation:

det(

[
4− λ 6
1 3− λ

]
) = 0.

Recall that the determinant of a (2 × 2)-matrix A is given by the expression
A1,1 A2,2 − A1,2 A2,1. Thus, the desired eigenvalues are the roots of the poly-
nomial

(4− λ) (3− λ)− 6 = λ2 − 7λ+ 6 = (λ− 6) (λ− 1).

Thus, the eigenvalues of the matrix A1 are λ1 = 6 and λ2 = 1. To obtain the
eigenvector x1 corresponding to the eigenvalue 6, we need to solve the equation
A1 x1 = 6x1. If the entries of the vector x1 are x11 and x12, then we get the
system of linear equations:

[
4 6
1 3

] [
x11

x12

]
= 6

[
x11

x12

]
.

This corresponds to

4x11 + 6x12 = 6x11; x11 + 3x12 = 6x12.

These equation are satisfied whenever x11 = 3x12, and every vector of this form
is an eigenvector corresponding to the eigenvalue 6. In particular, let us set
x1 = [3 1]T (note: x1 is a column vector with two rows and one column and,
thus, is the transpose of the row vector [3 1] and denoted [3 1]T). The eigen-
vector corresponding to the eigenvalue λ2 = 1 is obtained by a similar analysis,
and in particular, x2 = [2 − 1]T is a corresponding eigenvector. Note that the
two vectors x1 and x2 are linearly independent . This is no coincidence: if the
eigenvalues λ1, λ2, . . . λn are all distinct and the vectors x1, x2 . . . xn are eigen-
vectors corresponding to these eigenvalues, respectively, then these n vectors
are guaranteed to be linearly independent.

Note that if the matrix A is a diagonal matrix with diagonal entries ai, then
A−λI is also a diagonal matrix with entries ai−λ. The characteristic polynomial
of the matrix A then is the product of the terms (ai−λ). Furthermore, for each i,
the vector xi with 1 in the ith entry and 0 s everywhere else satisfies the equation
Axi = ai xi and is thus an eigenvector corresponding to the eigenvalue ai. For
example, for the three-dimensional diagonal matrix D(1, 2, 1), the characteristic
polynomial is (1 − λ)2(2 − λ). As a result, this three-dimensional matrix has

Dynamical Systems 255

two eigenvalues, namely, 1 and 2, and in this case, the (algebraic) multiplicity of
the eigenvalue 1 is 2 (since (λ− 1)2 is a factor of the characteristic polynomial).
The vectors x1 = [1 0 0]T , x2 = [0 1 0]T , and x3 = [0 0 1]T are eigenvectors,
corresponding to the eigenvalues 1, 2, and 1, respectively. In this case, all these
eigenvectors are linearly independent.

In the examples so far, the matrix has n linearly independent eigenvectors with
real-valued entries. However, this need not be the case as indicated by the
following two examples.

Consider the following two-dimensional (upper triangular) matrix:

A2 =

[
1 2
0 1

]
.

The characteristic polynomial for this matrix is (1 − λ)2. Thus, there is only
one eigenvalue, namely, 1. The eigenvectors of this matrix are of the form
[a 0]T for an arbitrary constant a. All these eigenvectors are linearly dependent
on one another, that is, the two-dimensional matrix A2 has only one linearly
independent eigenvector.

Consider the following two-dimensional matrix:

A3 =

[
0 1
−1 0

]
.

The characteristic polynomial for this matrix is λ2 + 1. However, the equation
λ2 + 1 = 0 has no real-valued solutions. In such a case, we want to interpret
matrices as linear transformers over the field of complex numbers. With this
interpretation, the matrix A3 has two eigenvalues j and −j, both of which are
imaginary numbers (note: the imaginary number j is the square-root of −1,
and every complex number is of the form a + bj, where a, b are real numbers).
In this case, the eigenvector corresponding to the eigenvalue j is obtained by
solving the equation A3 x = j x and is of the form [1 j]T .

If λ1, . . . λp are all the (complex) eigenvalues of the matrix A, then

det(A − λ I) = (λ− λ1)
n1 · · · (λ− λp)

np ,

where nj is the algebraic multiplicity of the eigenvalue λj and n1 + · · · + np

equals n. Note that if a complex number a+ bj, with b �= 0 is an eigenvalue of
the matrix A, then its conjugate, that is, the complex number a− bj, must also
be an eigenvalue of the matrix A.

Similarity Transformations

Consider the dynamical system H given by

Ṡ = AS; S(0) = s0,

256 Chapter 6

where S is the n-dimensional state vector, A is an (n×n)-matrix, and s0 is the
initial state. Suppose P is an invertible n-dimensional square matrix with real-
valued entries, and P−1 is its inverse. Thus, P−1P = P P−1 = I. Consider
the vector S′ defined by S′ = P−1 S. This defines a linear transformation of
the state. Note that the relation S = P S′ also holds. Let us denote the matrix
P−1AP by J . When such a relationship holds, the matrices A and J are said
to be similar.

Now, based on the original dynamical system H with state S, let us specify the
dynamical system H ′ with state S′:

Ṡ′ = (d/dt)(P−1 S) = P−1 Ṡ = P−1 AS = P−1AP S′ = J S′.

The initial state of this transformed linear system H ′ is given by

S
′
(0) = P−1 S(0) = P−1s0.

Such a transformation of the linear system H with state S and dynamics matrix
A to obtain another linear system H ′ with state S′ and dynamics matrix J is
called a similarity transformation (since the matrices A and J are similar). Note
that the solution of the system H ′ is given by:

S
′
(t) = eJt S

′
(0).

This implies that the solution of the original system H is given by:

S(t) = P eJt P−1 s0.

If the matrix J has properties that make the computation of the matrix expo-
nential eJt easier, then this can be used to compute the response S(t) of the
system H.

Suppose the matrix A has n linearly independent eigenvectors x1, x2, . . . xn with
real-valued entries, and let λi be the eigenvalue corresponding to the eigenvector
xi. Let us then choose the similarity matrix P to be the matrix whose columns
are these n eigenvectors:

P = [x1 x2 · · · xn].

Since the columns of P are linearly independent, its rank is n, and it is invertible.
Note that the ith column of the matrix P is the eigenvector xi. From the
definition of matrix multiplication, the ith column of the matrix product AP is
the vector Axi. Since xi is an eigenvector corresponding to the eigenvalue λi, it
follows that the ith column of the matrix product AP is the vector λi xi. Hence,
the ith column of the matrix product P−1AP is the vector P−1λixi or λiP

−1xi.
Recall that the product P−1P is the identity matrix, and the ith column of the
product P−1P equals the vector P−1xi (since xi is the ith column of the matrix
P). It follows that J = P−1AP is the diagonal matrix D(λ1, λ2, . . . λn). It

Dynamical Systems 257

follows that the matrix exponential eJt is also a diagonal matrix, and its ith
diagonal entry is the scalar eλit.

The method to compute the response signal of a linear system based on similarity
transformation using linearly independent eigenvectors is called diagonalization
and is summarized in the following theorem:

Theorem 6.2 [Linear System Response by Diagonalization] Consider an n-
dimensional linear system with dynamics given by the differential equation Ṡ =
AS with initial state s0. Suppose the matrix A has n linearly independent real-
valued eigenvectors x1, x2, . . . xn with corresponding eigenvalues λ1, λ2, . . . λn.
Let P be the matrix [x1 x2 · · · xn], and let P−1 be its inverse. Then the
execution of the system is given by the state signal:

S(t) = P D(eλ1t, eλ2t, · · · eλnt) P−1 s0.

To illustrate this method, let us consider the two-dimensional dynamical system
H given by

ṡ1 = 4 s1 + 6 s2; ṡ2 = s1 + 3 s2.

The matrix for the dynamics is the matrix A1 that we used in illustrating the
computation of eigenvalues and eigenvectors. As noted earlier, x1 = [3 1]T

is an eigenvector corresponding to the eigenvalue 6, and x2 = [2 − 1]T is an
eigenvector corresponding to the eigenvalue 1. Let us choose the transformation
matrix as:

P = [x1 x2] =

[
3 2
1 −1

]
.

We now need to compute the inverse P−1 of this matrix P . This can be done,
for instance, by viewing the entries in the desired matrix P−1 as unknowns and
setting up a system of simultaneous linear equations given by P P−1 = I:

[
3 2
1 −1

] [
a c
b d

]
=

[
3a+ 2b 3c+ 2d
a− b c− d

]
=

[
1 0
0 1

]
.

Solving these equations gives:

P−1 =

[
1/5 2/5
1/5 −3/5

]
.

Verify that indeed P P−1 = P−1P = I. Furthermore, verify that P−1A1P is
the diagonal matrix D(6, 1). What this means is that if we consider the linear
system H ′ with state variables s′1 and s′2 defined by

s′1 = (s1 + 2s2)/5; s′2 = (s1 − 3s2)/5,

it has a simpler dynamics given by ṡ′1 = 6s′1 and ṡ′2 = s′2 and thus is easier
to analyze. Putting all the pieces together, starting in the initial state s0, the

258 Chapter 6

state of the system H at time t is described by P D(e6t, et)P−1s0. If the initial
state vector s0 is [s01 s02]

T , then by calculating the matrix products, we get a
closed-form solution for the state of the system H at time t:

S1(t) = [(3e6t + 2et)s01 + 6(e6t − et)s02]/5

S2(t) = [(e6t − et)s01 + (2e6t + 3et)s02]/5.

As discussed earlier, the matrix A may not have n independent eigenvectors.
In this case, it is possible to choose the similarity transformation matrix P in
such a way that the matrix J = P−1AP is in Jordan canonical form. This is
a special form of matrix that is almost diagonal, and it is possible to get an
explicit representation of the exponential matrix eJt.

Exercise 6.12 : Consider a single-dimensional linear component with one input
with dynamics given by ṡ = a s + b u. Suppose we set the input signal to be
the constant signal u(t) = c for a constant value c. Find a closed-form formula
for the system response s(t) starting from the initial state s0 corresponding to

this input signal (hint: the integral
∫ t

0
e−aτ dτ evaluates to (1− e−at)/a).

Exercise 6.13 : Consider the two-dimensional dynamical system given by

ṡ1 = −s1 + 2s2; ṡ2 = s2.

Compute the closed form description of the state signal S(t) given the initial
state vector s0 using the method of similarity transformation.

Exercise 6.14 : Consider the two-dimensional dynamical system given by

ṡ1 = s2; ṡ2 = −2s1 − 3s2.

Compute the closed-form description of the state signal S(t) given the initial
state vector s0 using the method of similarity transformation.

Exercise 6.15 : Consider the three-dimensional dynamical system given by

ṡ1 = 3s1 + 4s2; ṡ2 = 2s2; ṡ3 = 4s1 + 9s3.

Compute the closed-form description of the state signal S(t) given the initial
state vector s0 using the method of similarity transformation. Note that the
determinant of a 3× 3 matrix A is given by the formula

a11(a22a33 − a23a32) + a12(a23a31 − a21a33) + a13(a21a32 − a22a31),

where aij denotes the entry of the matrix in ith row and jth column.

Dynamical Systems 259

6.2.3 Stability

Consider the n-dimensional linear system H given by Ṡ = AS. The response of
the system starting from the initial state s0 is described by the signal S(t) =
eAts0. Our goal is to develop analytical methods to determine stability of the
equilibria of this system.

A state se is an equilibrium of the system H if the condition Ase = 0 holds. To
compute the equilibria of the systemH, we can view the n elements of the vector
se as the unknowns and solve the system of n linear equations corresponding to
the condition Ase = 0. Observe that the state 0, which assigns 0 to all the state
variables, is an equilibrium of the system H. If the matrix A is invertible (that
is, if the rank of the matrix A is n), then the equation Ase = 0 has a unique
solution, and 0 is the only equilibrium. If a nonzero state se is an equilibrium
of the system H, then we can consider a transformed linear system H ′ with the
state vector S′ given by S′ = S − se. The dynamics of this transformed system

H ′ is given Ṡ′ = AS′, and at each time t, the equation S
′
(t) = S(t)− se holds.

Note that the state 0 is an equilibrium of the system H ′. Thus, the behavior
of this transformed system around its equilibrium 0 corresponds exactly to the
behavior of the original system around its equilibrium se. Thus, if we know how
to analyze whether the equilibrium 0 is stable, the same analysis technique can
be used to determine whether an arbitrary equilibrium is stable: the stability
properties of the equilibrium se of the system H are exactly the same as the
corresponding properties of the equilibrium 0 of the system H ′.

For the remainder of this section, we abbreviate “the state 0 of the linear system
H is a stable equilibrium” by “the linear system H is stable” and “the state 0
of the linear system H is an asymptotically stable equilibrium” by “the linear
system H is asymptotically stable.”

Single-Dimensional System

By definition, the linear system H is stable if, for every ε > 0, there exists a
δ > 0 such that for all state s0, if ‖s0‖ < δ, then ‖eAts0‖ < ε for all times t. The
system is asymptotically stable if, in addition, there exists a δ > 0 such that
for all states s0, if ‖s0‖ < δ, then the vector eAts0 converges to 0 as t increases.
In the latter case, the values of δ for which the condition “for all states s0, if
‖s0‖ < δ, then the signal eAts0 converges to 0” holds is called the region of
attraction.

First, let us focus on linear systems with dimension 1. Then the dynamics is
given by ẋ = ax. If x0 denotes the initial state, then the state at time t equals
eatx0. Depending on the sign of a, we have three cases:

• If the coefficient a is negative, then the magnitude of the value eatx0

decreases with increasing t and is bounded by the magnitude of the initial
value x0. Thus, the system is stable. Also, observe that no matter what
the initial value is, the value of x decays exponentially and will become 0

260 Chapter 6

in the limit. In this case, the system is asymptotically stable, and in fact,
the region of attraction includes all the states.

• If the coefficient a is 0, then the value of x stays equal to its initial value
x0. Thus, the magnitude of the state does not change with time, and the
system is stable. However, the signal does not converge to 0, and thus the
system is not asymptotically stable.

• If the coefficient a is positive, then observe that the quantity eat grows
exponentially with increasing t. As a result, the magnitude of the value
of x increases exponentially and grows in an unbounded manner, and the
system is not stable.

Thus, the stability of a one-dimensional linear system depends on the sign of
the coefficient of the term capturing dependence of the rate of change on the
state: the system is unstable if a > 0, stable if a ≤ 0, and asymptotically stable
if a < 0.

Diagonal State Dynamics Matrix

Now suppose that the matrix A is an n-dimensional diagonal matrix and equals
D(a1, a2, . . . an). In this case, we know that the matrix exponential eAt is also
a diagonal matrix. If the initial state of the system is given by the vector
[s01 s02 · · · s0n]T , then the state S(t) at time t is given by:

S(t) = [ea1ts01 ea2ts02 · · · eants0n]
T .

Observe that, for each i, with increasing t, the quantity eait increases exponen-
tially if ai > 0, stays unchanged if ai = 0, and decreases exponentially if ai < 0.
The case analysis for a single-dimensional system now generalizes naturally:

• If none of the coefficients ai s is positive, then for every initial state s0, for
the resulting signal, ‖S(t)‖ ≤ ‖s0‖ holds at all times, and thus the system
is stable.

• If all the coefficients ai s are negative, then in addition to the stability
as in the case above, independent of the initial state s0, for the result-
ing signal, ‖S(t)‖ converges to the equilibrium 0, and thus the system is
asymptotically stable. The region of attraction consists of the entire state
space realn.

• Suppose there exists an index i such that the coefficient ai is positive.
Then if we choose the initial state s0 such that s0i is positive and s0j = 0
for all j �= i, then no matter how small the value s0i is, the ith component
of the response signal S(t) given by eaits0i will grow unboundedly with
increasing t. In this case, the system is unstable.

In summary, when A = D(a1, a2, . . . an), the system is unstable if ai > 0 for
some i, stable if ai ≤ 0 for all i, and asymptotically stable if ai < 0 for all i.

Dynamical Systems 261

Diagonalizable State Dynamics Matrix

Now recall the similarity transformation that we used to diagonalize a ma-
trix and compute the matrix exponential. Given a linear system H with the
dynamics Ṡ = AS, we choose a suitable invertible matrix P and consider the
transformed linear system H ′ with the dynamics Ṡ′ = J S′, where J = P−1AP .
The state vector S′ of H ′ is obtained from the state vector S of H by linear
transformation: S′ = P−1S. Observe that a linear transformation of a signal
preserves the properties of being bounded in magnitude and convergence to 0.
This implies that the similarity transformation preserves the stability properties
of the equilibrium. This is captured by the following proposition:

Proposition 6.1 [Stability Preservation by Similarity Transformation] Given
an n-dimensional linear system H with state vector S and dynamics Ṡ = AS,
consider another n-dimensional linear system H ′ with state vector S′ and dy-
namics Ṡ′ = J S′, where J = P−1AP for some invertible matrix P . Then the
system H is stable if and only if the system H ′ is stable, and the system H is
asymptotically stable if and only if the system H ′ is asymptotically stable.

If we can choose the similarity transformation matrix P so that the matrix J is
diagonal, then we can conclude that the system H is unstable if some diagonal
entry of J is positive, stable if all entries of J are nonpositive, and asymptotically
stable if all diagonal entries of J are negative.

Recall that if all eigenvalues of the matrix A are real valued and distinct, then we
can choose the matrix P using the corresponding eigenvectors and the diagonal
entries of J correspond to the eigenvalues of A. As a result, if the matrix A
has n distinct real-valued eigenvalues λ1, λ2, . . . λn, then the equilibrium 0 is
unstable if λi > 0 for some i, asymptotically stable if λi < 0 for all i, and stable
but not asymptotically stable if λi ≤ 0 for all i and λj = 0 for some j.

Let us revisit the model of the car in figure 6.3. As noted earlier, the state
dynamics matrix for this system is

A =

[
0 1
0 −k/m

]
.

The eigenvalues of this matrix are the real numbers 0 and −k/m. We can
immediately conclude that the system is stable but not asymptotically stable,
which coincides with the analysis following the definition of Lyapunov stability
in section 6.1.4.

In general, the eigenvalues of a matrix can be complex numbers. It is possible to
generalize the above case analysis for real-valued eigenvalues to this case. The
system is asymptotically stable exactly when all the eigenvalues have negative
real parts.

Theorem 6.3 [Stability Test for Linear Dynamics] The linear system given by
Ṡ = AS is asymptotically stable if and only if every eigenvalue of the matrix A
has a negative real part.

262 Chapter 6

If some eigenvalue of the state-dynamics matrix A has a positive real part, then
the system is unstable. If some eigenvalues have negative real parts and the
remaining are purely imaginary numbers (that is, with real part equal to 0),
then the system is not asymptotically stable, and its stability depends on the
structure of the Jordan blocks corresponding to each such imaginary eigenvalue.

BIBO Stability

Now let us turn our attention to components with inputs. Consider the system
given by

Ṡ = AS + BI; O = CS + DI.

To check whether the system is BIBO-stable we set the initial state s0 = 0, and
consider the behavior of the system for a bounded input signal I. We note a
sufficient condition for checking BIBO-stability in terms of Lyapunov-stability
criterion:

Theorem 6.4 [Reducing BIBO-Stability to Lyapunov Stability] If the linear
dynamical system Ṡ = AS is asymptotically stable, then the continuous-time
component with the dynamics Ṡ = AS +BI and O = CS +DI is BIBO-stable.

The proof of this theorem relies on understanding the dynamics of a continuous-
time component using transfer functions and is beyond the scope of this text-
book.

Note that for the helicopter model of figure 6.5, if we set the input torque to
0, dynamics is given by ṡ = 0. In this dynamics, if the initial spin is s0, then
it will remain constant at the value s0, and thus the system, while stable, is
not asymptotically stable. As noted earlier, if the system is applied a constant
torque as input, the spin increases linearly in an unbounded manner, and the
system is not BIBO-stable. Thus, stability of the system Ṡ = AS does not imply
BIBO-stability of the continuous-time component with the dynamics Ṡ = AS+
BI. In the reverse direction, BIBO-stability of the continuous-time component
with the dynamics Ṡ = AS + BI, in itself, does not ensure that Lyapunov-
style stability properties of the system Ṡ = AS and additional properties of the
matrices need to be established for this purpose.

Exercise 6.16*: Prove proposition 6.1.

Exercise 6.17 : For each of the systems in exercises 6.13, 6.14, and 6.15, deter-
mine whether the system is asymptotically stable, stable but not asymptotically
stable, or unstable.

Dynamical Systems 263

6.3 Designing Controllers

Given a dynamical system model of the plant, the controller is designed to
provide the controlled input signals to maintain the output of the system close
to the desired output adjusting to changes in the uncontrolled disturbances.
Designing controllers in a principled manner is a well-developed discipline. We
will review some basic terminology in control design and get familiar with the
most commonly used class of controllers in industrial practice.

6.3.1 Open-Loop vs. Feedback Controller

An open-loop controller does not use measurements of the state or outputs of
the plant to make its decisions. Such a controller relies on the model of the
plant to decide on the controlled input for the plant, and its implementation
does not require sensors. For example, consider the first model of the car from
figure 6.3. Suppose the controller’s objective is to maintain a constant velocity
(that is, we want v̇ = 0 at all times). Then if the initial velocity is v0, the
desired value of the input force F equals k v0: the controller can simply apply
this constant force to the car to maintain the velocity constant at the value v0.
Such a controller is called open-loop: when compared to the architecture shown
in figure 6.1, the block for sensors and the flow of information from the plant to
the controller is missing. Obviously, such a controller would be less expensive
to implement than the one that requires sensors to estimate the state of the
plant. However, its design heavily relies on the assumption that the behavior
of the plant is entirely predictable and accurately captured by the idealized
mathematical model. In practice, operation of such a controller is acceptable,
provided there is a possibility of manual intervention. If the driver finds the
speed of the car unacceptable, she would simply increment or decrement the
desired speed triggering a recalculation of the force applied by the open-loop
controller.

A feedback controller uses sensors to measure the output, and thus indirectly
the current state of the plant, to update the values of the controlled input
variables. For example, in the revised model of the car in figure 6.8, the model
accounts for the change in the grade of the road. Suppose that the controller
is applying the correct amount of force to maintain the velocity of the car at
the desired cruising speed. A positive change in the grade θ causes the car to
slow down, while a negative change in θ causes the car to speed up. The speed
of the car, as measured by the sensors, is an input to the controller. It notices
the change in speed and adjusts the force to make the velocity again equal
to the desired cruising speed. A feedback controller not only can cope with
disturbances (such as the grade) whose variation with time is not predictable in
advance, but it can work well even when the mathematical model of the plant
is only a rough approximation of the real-world dynamics. Implementation of
a feedback controller requires sensors, and its performance is related to the
accuracy of measurements by these sensors.

264 Chapter 6

Controller

T = KP (r− s)
real sL ≤ s ≤ sU

ṡ = T/I

T

Helicopter plant

r s

Figure 6.10: Stabilizing Controller for the Helicopter Model

6.3.2 Stabilizing Controller

Stabilizing Helicopter Model

We now describe a simple and typical pattern for designing a controller using
the helicopter example of figure 6.5. Recall that the given helicopter model is
unstable. The controller is shown in figure 6.10. It takes two input signals:
the input variable r represents the reference signal that captures the desired
spin, and the signal s is the plant output, namely, the (measured) spin of the
helicopter. Given two such input variables corresponding to the desired and
actual values, we can define the error signal e by the equation e = r − s.
The goal of the controller is to keep the magnitude of the error as small as
possible and also ensure that the closed-loop system obtained by composing the
helicopter model and the controller is stable. Note that a positive value of e
means that the controller should try to increase the actual spin s by applying a
positive torque, and a negative value of e means that the controller should try
to decrease the actual spin s by applying a negative torque. The controller of
figure 6.10 computes the torque by simply scaling the error signal by a positive
constant factor KP . Such a controller is called a proportional controller, and
the constant KP is called the gain of the controller.

For the closed-loop system consisting of the composition of the controller and
the helicopter, the input signal is the reference value r and the output is the
spin s. The dynamics of the composite system is given by the equation

ṡ = KP (r − s)/I.

This is a one-dimensional linear system, and the coefficient capturing the de-
pendence of the rate of change of the state variable s on itself is −KP /I. We
know that such a system is asymptotically stable exactly when this coefficient
is negative. Thus, the composite system is asymptotically stable as long as the
gain KP is positive.

When the reference input is 0, that is, when the objective of the controller is
to keep the helicopter from spinning, the controller applies the torque equal to
−KP /I. No matter what the initial spin s0 is, this causes the spin to decay to
0 exponentially. The higher the value of KP , the faster the rate of convergence.

Dynamical Systems 265

Controller

I = F (R− S)
realn S = s0

Ṡ = A S + B I

I

Linear plant H

SR

Figure 6.11: State Feedback Controller for Linear Systems

Linear State Feedback

The general architecture of a state feedback controller for a linear system is
shown in figure 6.11. The original system is modeled by the linear component
H. It has n state variables S and m input variables I, and its dynamics is
given by the linear differential equation Ṡ = AS + B I. In this setup, the
assumption is that the controller can observe the state fully, that is, the set of
output variables of the plant coincides with its state variables. The controller
computes its output I based on the state S of the plant and the reference input
R. The reference input R has the same dimension n as the state vector S.

The controller is a stateless linear component and is defined by the linear trans-
formation

I = F (R − S).

The transformation matrix F has dimension m×n and is called the gain matrix.
The closed-loop system has n-dimensional state S and n-dimensional reference
input R, and its dynamics is given by

Ṡ = (A − BF)S + B F R.

The control design problem is to choose the (m × n)-matrix F such that the
composite system is asymptotically stable. Then by theorem 6.4, we are guar-
anteed that the system is also BIBO-stable, and thus small variations in the
reference inputs do not cause large perturbations in the state signal.

Design of the Gain Matrix

Recall that a linear system with dynamics Ṡ = AS is asymptotically stable
exactly when every eigenvalue of the matrix A has a negative real part (the-
orem 6.3). Thus, to design a stabilizing controller for figure 6.11, given the
matrices A and B, we need to choose the gain matrix F such that every eigen-
value of the matrix (A−BF) has a negative real part.

To illustrate this computation, let us consider the system with two state vari-
ables and one input variable given by:

ṡ1 = 4 s1 + 6 s2 + 2u; ṡ2 = s1 + 3 s2 + u.

266 Chapter 6

The matrix A for this system is the matrix A1 for which we computed eigenval-
ues, eigenvectors, and the matrix exponential in section 6.2.2. Recall that the
eigenvalues are 6 and 1, and thus the system is not stable. The matrix B is the
column vector [2 1]T . The desired gain matrix F is a (1 × 2)-matrix, and let
its entries be f1 and f2. We want to select values for these unknowns f1 and f2
so that the following matrix has eigenvalues with negative parts:[

4 6
1 3

]
−

[
2
1

]
[f1 f2] =

[
4− 2f1 6− 2f2
1− f1 3− f2

]
.

Control design now corresponds to choosing eigenvalues for this matrix and
then solving for the unknown f1 and f2. The characteristic polynomial for this
matrix is

P (λ, f1, f2) = (4− 2f1 − λ)(3− f2 − λ)− (6− 2f2)(1− f1);

= λ2 + (2f1 + f2 − 7)λ+ (6− 2f2).

The roots of this characteristic polynomial are λ1 and λ2 if the polynomial is
of the form (λ − λ1)(λ − λ2). By matching the coefficients of these quadratic
polynomials, we conclude that the eigenvalues of the matrix (A − BF) are λ1

and λ2 exactly when the entries of gain matrix F satisfy the following equations:

2f1 + f2 − 7 = −λ1 − λ2;

6− 2f2 = λ1λ2.

If we prefer eigenvalues −1 and −2 (and these would ensure asymptotic stabil-
ity), then we need to solve

2f1 + f2 − 7 = 3; 6− 2f2 = 2.

Solving these equations gives us f1 = 4 and f2 = 2. Thus, the desired matrix F
is [4 2], that is, the controller should provide the input signal u = 4(r1 − s1) +
2(r2−s2) to the system so that the resulting closed-loop system is asymptotically
stable with eigenvalues −1 and −2.
We can also choose the eigenvalues to be complex numbers as long as when we
choose a complex number, we also choose its conjugate. For example, if we want
the eigenvalues to be −1 + j and −1− j, then we need to solve

2f1 + f2 − 7 = 2; 6− 2f2 = 2.

Solving these equations give us f1 = 7/2 and f2 = 2. This means that with the
choice of the gain matrix F to be [7/2 2], the resulting closed-loop system is
asymptotically stable with eigenvalues −1 + j and −1− j.

Controllability of the Matrix Pair (A,B)

To summarize, to design a stabilizing feedback controller, we choose eigenvalues
λ1, λ2 . . . λn, all with negative real parts, and solve the equation

det [A − B F − λ I] = (λ− λ1)(λ− λ2) · · · (λ− λn),

Dynamical Systems 267

with mn unknowns corresponding to the entries of the gain matrix F . This
approach to stabilization naturally raises the following questions: (1) when is
this equation guaranteed to have solutions? and (2) does the existence of a
solution depend on the choice of the eigenvalues? It turns out that when the
pair of matrices A and B satisfy a certain property, for every choice of the
eigenvalues λ1, λ2 . . . λn, it is possible to choose the entries of the gain matrix
F so as to satisfy the above equation.

Given an (n × n)-matrix A and an (n × m)-matrix B, consider the following
matrix with n rows and mn columns:

C(A,B) = [B AB A2B · · · An−1B].

That is, the first m columns of the matrix C(A,B) are the columns of the
(n×m)-matrix B, the next m columns are the columns of the (n×m)-matrix
AB, and the last m columns are the columns of the (n × m)-matrix An−1B.
This matrix C(A,B) is called the controllability matrix corresponding to the
matrix pair (A,B). The pair (A,B) of matrices is called controllable if the rank
of the controllability matrix is n, that is, if all the rows of the matrix C(A,B)
are linearly independent. In such a case, the linear system with the dynamics
Ṡ = AS +BI is also called controllable.

The following theorem tells us that controllability is a necessary and sufficient
condition for the existence of a gain matrix corresponding to the chosen eigen-
values. If the pair (A,B) of matrices is controllable, then it is possible to obtain
the desired gain matrix F for any arbitrary choice of eigenvalues as long as we
choose only real numbers or when we choose a complex number, we also choose
its conjugate. If the pair (A,B) of matrices is not controllable, then not all
eigenvalues can be chosen freely.

Theorem 6.5 [Controllability and Eigenvalue Assignment] Let A be an (n×n)-
matrix and B be an (n×m)-matrix. The following two statements are equivalent:

• The (n×mn)-controllability matrix C(A,B) whose columns are the columns
of the matrices B,AB, . . . An−1B, has rank n.

• For every choice of (complex) numbers λ1, λ2, . . . λn such that a complex
number appears in this list exactly when its conjugate also appears in the
list, there exists a (m×n)-matrix F such that the eigenvalues of the matrix
(A − B F) are λ1, λ2, . . . λn.

Continuing with our example,

A1 =

[
4 6
1 3

]
; B =

[
2
1

]
; C(A1, B) =

[
2 14
1 5

]
.

In this example, m = 1 and n = 2. The controllability matrix C(A1, B) is a
(2 × 2)-matrix, and its rank is 2. Thus, the pair (A1, B) is controllable. As

268 Chapter 6

we have analyzed already, the eigenvalues of the matrix (A − BF) are λ1 and
λ2 exactly when the entries of gain matrix F satisfy the following equations:
2f1 + f2 = −λ1 − λ2 +7 and 2f2 = 6− λ1λ2. This system of linear equations is
guaranteed to have a solution for the entries f1 and f2 no matter what values
we choose for λ1 and λ2 (note: if λ1 is a complex number, then λ2 must be its
conjugate, and this ensures that their sum and product are both real numbers).
By theorem 6.5, we know that this is not a coincidence.

For a linear system, controllability entails many other appealing properties. If
the linear system is controllable, then for any given initial state and a target
state, it is possible to provide an input signal to the system so that the state of
the system starting from the initial state becomes equal to the target state in a
finite time. More precisely, consider a linear system with dynamics Ṡ = AS+BI
and an initial state s0, such that the pair (A,B) of matrices is controllable. Then
for every state s ∈ realn, there exists a time t∗ ∈ time and an input signal I
such that for the unique state signal S of the system as a response to the input
signal I starting from the initial state s0, S(t

∗) = s.

While we have presented a method for designing a controller to ensure the
critical property of stability, it is worth mentioning that there are two key
aspects of the control design that we are not addressing here, but for which the
theory of linear systems provides well-understood tools:

• Optimality: there are many choices for the gain matrix F that ensure
stability of the resulting closed-loop system. Theory of optimal control,
and in particular the technique for designing the Linear Quadratic Regu-
lator (LQR) controller, addresses the question of choosing a matrix that
satisfies additional criteria (for example, driving certain state variables to
0 as fast as possible).

• State Estimation: We have assumed that the input to the controller is
the complete state S of the system. What happens when the controller
can observe the state of the system only partially via the output vector O?
In this case, the controller needs to estimate the state of the system based
on the observation of the output signal and the theory of observability
and state estimation develops techniques for this purpose.

Exercise 6.18 : Consider the linear system with two state variables, one input
variable, and the dynamics given by:

ṡ1 = s1/2 + s2 + u; ṡ2 = s1 + 2s2 + u.

(1) Show that the system is not stable. (2) Show that the system is controllable.
(3) Find the gain matrix F so that the eigenvalues for the resulting closed-loop
system are −1 + j and −1− j.

Exercise 6.19*: Consider the linear system with two state variables, one input
variable, and the dynamics given by:

ṡ1 = −2s2 + u; ṡ2 = s1 − 3s2 + u.

Dynamical Systems 269

Resistor R

+

−

+

−
Back EMF k θ̇

Current ι

Displacement θ

Torque k ι

Damping resistance b θ̇

Inertial resistance I θ̈

Inductor L

Voltage Vs

Figure 6.12: Dynamics of a DC Motor

First, show that the matrix-pair (A,B) is not controllable. Then show that
it is not possible to choose entries of the gain matrix F so that the matrix
(A− B F) has arbitrarily chosen eigenvalues: show that one of the eigenvalues
of the matrix (A − B F) is always −1 no matter what the entries in the gain
matrix F are (although the second eigenvalue can be set to an arbitrary value
by suitably choosing the entries of F).

6.3.3 PID Controllers ∗

In industrial control systems, the most commonly used design of a controller to
correct the discrepancy between the desired reference signal and the measured
output signal uses a combination of three terms: a proportional term capturing
the reaction to the current error, an integral term capturing the reaction to the
cumulative error, and a derivative term capturing the response to the rate of
change of error. Such a controller is called a PID controller. Let us illustrate
the design of such a controller using a classical example of a control system,
namely, a DC motor.

DC Motor

Figure 6.12 shows the design of a DC motor that converts input voltage to ro-
tational motion and is a commonly occurring building block of many electrome-
chanical devices. The electrical circuit is shown on the left and is connected to
the rotating shaft shown on the right.

Let us denote the input voltage by Vs, the resistance of the circuit by R, and the
inductance of the circuit by L. Let ι denote the electrical current flowing through
the circuit and θ denote the angular displacement of the wheel. If k is the
electromotive-force (EMF) constant, then the back electromotive-force (EMF)
voltage generated by the rotating shaft equals k times its angular velocity. Basic
laws of electric circuits tell us that (1) the voltage across a resistor equals the
product of the resistance and the electrical current flowing through the circuit,
(2) the voltage across an inductor equals the product of the inductance and the

270 Chapter 6

ν̇ = (k ι − b ν)/I

ι̇ = (Vs − k ν − R ι)/L

real ι = 0 ; ν = 0
νVs

Figure 6.13: Continuous-time Component Modeling DC Motor

rate of change of the electrical current flowing through the circuit, and (3) the
sum of voltages around a closed path in an electrical circuit must equal to 0
(Kirchhoff’s law). Applying these rules gives us the equation:

L ι̇ + R ι + k θ̇ = Vs.

Now let us analyze the motion of the rotating shaft. The torque acting on the
shaft equals the EMF constant k times the current flowing through the circuit.
If I is the rotational inertia and b is the coefficient of friction corresponding to
the damping effects, then Newton’s law for rotating bodies gives us:

I θ̈ + b θ̇ = k ι.

The output of the DC motor is the rotational velocity of the shaft. The dynamics
then can be captured by the continuous-time component shown in figure 6.13.
In this model, ν denotes the rotational velocity, and the angular displacement
θ is omitted.

Controller for the DC Motor

The controller for the DC motor of figure 6.13 observes the rotational velocity ν
and adjusts the source voltage Vs to achieve the desired response. The canonical
task for such a controller is to control the voltage so that the rotational velocity
changes from its initial value to a desired speed, say r. We already know that a
general technique for designing a proportional controller consists of scaling the
difference between the reference value and the observed output by a suitably
chosen proportional gain constant KP :

Vs = Kp (r − ν).

While we have already analyzed the relationship between the value of the gain
constant and the (asymptotic) stability of the resulting closed-loop system, to
understand the various requirements other than stability that are of practical
interest, let us examine the typical behavior of the DC motor with a proportional
controller as shown in figure 6.14. This plot is generated using Matlab by
setting the rotational inertia I = 0.01, the damping constant b = 0.1, the
electromotive force constant k = 0.01, the resistance R = 1, the inductance L =
0.5, the reference input r = 1, and the proportional gain constant KP = 100.

Dynamical Systems 271

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

R
ot

at
io

na
l v

el
oc

ity
 (

ra
d/

s)

Overshoot

Steady state error

Settling time

Rise time

Figure 6.14: Output Response of the DC Motor with a Proportional Controller

The response shown in figure 6.14 is called the step response of a continuous-
time component: at time t0 (0 in this example), we want to change the output
from some initial value (0 in this example) to a new reference value (1 in this
example). The shape of the output response signal shown in figure 6.14 is
illustrative of a large number of physical systems. Let us consider intuitively
how the output of a system typically changes in response to a change in the
reference signal. Let e denote the difference between the reference value and the
output of the system. At the initial time instance, the magnitude of this error
e is the highest. As e changes, so does the value of the control input supplied
by the controller, which impacts the state and the output of the system. The
output approaches 1 but overshoots the desired value due to the smoothness of
the dynamics of the physical world. The overshoot makes the error negative,
causing the controller to change the direction of the derivative of its output. The
same phenomenon repeats, causing the output to oscillate for a while before it
settles into a steady-state value, which does not change in absence of further
external disturbances.

Given such an expected response of the system output, the following metrics
capture the performance of the controller:

1. Overshoot: The difference between the maximum value of the system
output and the desired reference value. For the DC motor response shown
in figure 6.14, the maximum rotational velocity is 1.12 rad/s, causing an
overshoot of 12%. Ideally, the overshoot should be as small as possible.
In particular, a safety requirement can assert that the overshoot should
be below some threshold value.

2. Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired

272 Chapter 6

Plant
∑ y∑

uP

uD

−
e

d

ur

Proportional

uP = KP e

Derivative

uD = KD ė

Integral
xI = e0

ẋI = e

uI = KI xI

PID Controller

uI

Figure 6.15: A Generic PID Controller

reference value. For the DC motor response shown in figure 6.14, the rise
time is 0.15 seconds. Ideally, smaller rise time means better responsiveness
of the system, and typically an attempt to reduce the rise time will increase
the overshoot.

3. Steady-state error: The difference between the steady-state value of the
output signal and the value of the reference signal. For the DC motor
response shown in figure 6.14, the output stabilizes at 0.9 rad/s, thus
leading to 10% steady-state error. Ideally, steady-state error should be 0,
but a small error may be acceptable.

4. Settling time: The time difference between the initial time when the ref-
erence signal changes and the time at which the output signal reaches its
steady-state value. For the DC motor response shown in figure 6.14, the
settling time is 0.8 seconds. Ideally, settling time should also be small, and
the system should reach the desired output value with few oscillations.

For the proportional controller for the DC motor, changing the value of the gain
constant KP affects the rise time and the overshoot, but a purely proportional
controller will not get rid of the steady-state error. For optimal performance,
we need to incorporate both derivative and integral components.

PID Controller

A generic version of the PID controller is shown in figure 6.15. The controller
takes two signals as inputs: the reference signal r and the measured output y
of the dynamical system to be controlled. Let the variable e denote the error
signal capturing the difference between the reference signal r and the measured

Dynamical Systems 273

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

R
ot

at
io

na
l v

el
oc

ity
 (

ra
d/

s)

PD Controller

PI Controller

Figure 6.16: Output Response of the DC Motor with PD and PI Controllers

plant output y. Then the controller’s output u, which is fed to the plant, is the
sum of three terms:

• Proportional term KP e: The contribution of this term is directly pro-
portional to the current error. The constant KP is called the proportional
gain, and the controller scales the error by this factor.

• Integral term KI

∫ t

0
e(τ) dτ : Note that the integral of the error signal up

to time t gives the cumulative error up to time t, and thus the contribution
of this term accounts for the cumulative error so far. The constant KI is
called the integral gain, and the controller scales the accumulated error by
this factor.

• Derivative term KD ė: The contribution of this term is correlated to the
rate at which the error changes. The constant KD is called the derivative
gain, and the controller scales the rate of change of the error by this factor.

Note that the proportional component of the PID controller is stateless. The
integral component maintains a state variable xI that captures the accumulated
error, and the rate of change of this state variable equals the error e. The deriva-
tive component has a state variable xD that stores the error e, and the output
of the derivative component is the first-order derivative of this state variable.
In figure 6.15, using the standard convention, the Sum block is illustrated as a
circle labeled with the symbol Σ. Such a component simply outputs the sum
of its input signals, where the negative sign on an input signal indicates that
the corresponding input should be subtracted. Some of the components may
be missing in a specific control design. For instance, a P controller has only
the proportional block, and a PI controller has only the proportional and the
integral blocks. Both of these are also common in practice.

274 Chapter 6

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

R
ot

at
io

na
l v

el
oc

ity
 (

ra
d/

s)

Figure 6.17: Output Response of the DC Motor with a PID Controller

PID Controller for the DC Motor

To understand how the control performance changes with the contributions of
various terms, let us revisit the proportional controller for the DC motor (see
figure 6.14). Higher values of the proportional gain KP mean that the rise time
will be smaller but with higher overshoot. Too high a value of KP can cause
large oscillations, delaying settling time.

A purely proportional controller has a steady-state error. The effect of the inte-
gral term gets rid of the steady-state error. Figure 6.16 shows a PI controller for
the DC motor with KP = 100 and KI = 200 (the values of all the other param-
eters are unchanged). Note that the output now stabilizes close to the desired
value 1 (the steady-state error is nonzero but very small), but the overshoot has
increased to 30%, which may be unacceptable, and both rise time and settling
time have also increased (compared to a purely proportional controller). Higher
values of the integral gain KI lead to better responsiveness but also contribute
to higher overshoot.

To reduce the overshoot, we need to use the derivative component. Figure 6.16
also shows response to a PD controller for the DC motor with KP = 100 and
KD = 10 (the values of all the other parameters are unchanged). There is no
overshoot, but the steady-state error is still large as the output stabilizes at 0.9
rad/s.

Good performance on all metrics is obtained by a judicious use of all three
components: figure 6.17 shows a PID controller for the DC motor with KP =
100, KD = 10, and KI = 200. Now the steady-state error is insignificant, there
is no overshoot, and the settling time is 0.4 seconds.

Dynamical Systems 275

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Time (seconds)

V
el

oc
ity

 (
m

/s
)

P Controller

PI Controller

Figure 6.18: Velocity Response with a Cruise Controller

Cruise Controller

Let us revisit the model of a car in figure 6.3. The input to the cruise controller
is the car output, namely, the velocity v, and the reference value r, that is, the
desired speed set by the driver. The goal of the controller is to supply the input
force F so that the velocity becomes equal to the reference value.

We begin the design by first using a proportional controller. The dynamics of
the closed loop system is given by:

v̇ = (F − kv)/m; F = KP (r − v).

If we set the initial velocity v0 to 0, the mass m to 100 kg, the coefficient of
friction k to 50, the desired velocity r to 10 m/s, and the proportional gain
KP to 600, the resulting velocity response is shown in figure 6.18. There is a
significant steady-state error: when the driver wants to increase the speed by
10 m/s, it increases by only 9 m/s. Notice that the settling time is about 10
seconds, which seems reasonable. Increasing the value of KP will reduce the
steady-state error but will also significantly decrease the settling time, which is
likely to result in an uncomfortably high acceleration for the passengers.

To remove the steady-state error, we can add an integral component. Note that
since there is no overshoot, we don’t need a derivative component. For the same
values of all the other parameters, the velocity response to the PI controller with
KP = 600 and KI = 40 is also shown in figure 6.18. The step response in this
case seems ideal: the velocity increases by 10 m/s is about 7 seconds, with no
overshoot, and stays stable at the desired value with a small steady-state error.

Note that the basic design of the PI cruise controller did not explicitly depend
on the model of the car, but the values of the gain constants KP and KI

276 Chapter 6

were obtained by running simulations of the model for different choices. For a
different model of the car, for instance, for the car on a graded road or for a
car with different values of the parameters m and k, suitable values of the gain
constants KP and KI need to be obtained.

Let us now revisit the design of the synchronous component CruiseController
discussed in section 2.4.2. The component ControlSpeed can indeed be imple-
mented as a PI controller discussed above. The two inputs speed and cruiseSpeed
correspond to the observed velocity and the desired velocity, and its output cor-
responds to the force. However, we have a semantic mismatch between the
discrete and continuous worlds: the components in section 2.4.2 interact with
one another in a discrete manner, and variables range over natural numbers;
while the models of the car and the PI controller are continuous-time compo-
nents that process real-valued signals. This gap is usually bridged informally:
an actual implementation of the PI controller samples the velocity only at dis-
crete intervals, and the values it operates on are finite-precision numbers with
rounding. This discretization can potentially introduce errors, which means
that model-based analysis cannot replace extensive testing of the final system
integrating all the components.

Exercise 6.20 : Recall the linear pendulum model from exercise 6.10. We will
use a Proportional-Derivative (PD) controller for the linearized model. The
feedback control is given as u = KP ϕ + KD ϕ̇, where we need to suitably
choose the gain parameters KP and KD. Write the equations of the closed-
loop system, which consists of the composition of the linearized model of the
pendulum and the PD controller. For what values of the parameters KP and
KD is the closed-loop system stable? Suppose the mass m and the length �
are such that m�2 = 1 (kg.m2) and mg� = 1 (N.m). Simulate the closed-loop
system using Matlab with different values of the gain parameters KP and
KD. You can choose some suitable initial position and initial angular velocity.
Experiment with different parameter values. Plot and discuss your results.

Exercise 6.21*: Figure 6.18 shows the response of the car to a PI con-
troller. Suppose we apply the same controller but now to the model of the
car on a graded road as shown in figure 6.8. Consider the input signal θ(t) =
(sin (t/5))/3 (measured in radians) that models a sinusoidal variation in the
grade of the road. For this input, plot the velocity of the car in response to the
PI controller using the same parameters: the initial velocity v0 is 0, the mass
m is 100 kg, the coefficient of friction k is 50, the gravitational acceleration g
is 9.8m/s2, the reference velocity r is 10m/s, the proportional gain KP is 600,
and the integral gain KI is 40.

6.4 Analysis Techniques ∗

Given a model of a continuous-time component, which may include the plant
model, the feedback controller, and constraints on the initial values and distur-
bances, we want to analyze the behavior of the system. We first discuss the

Dynamical Systems 277

traditional approach based on numerical simulation and then some constraint-
based techniques for verifying stability and safety requirements.

6.4.1 Numerical Simulation

Consider a continuous-time component with state variables S and input vari-
ables I. The function f gives the rate of change of the state as a function of the
state and input variables. Given an input signal I that assigns values to inputs
as a function of time and an initial state s0, the evolution of the state of the
system, then, can be computed by solving the differential equation Ṡ = f(S, I)
with the initial condition S(0) = s0. While for some specific forms of the
function f , a closed-form solution for the state response S(t) at time t can be
computed, a general method for computing this signal is to employ numerical
simulation. For numerical simulation, the user provides a discretization step
parameter Δ, and the simulator attempts to compute the values of the state at
times Δ, 2Δ, 3Δ, · · · that approximate the values of the desired response signal
S(t) as closely as possible. The simulation algorithm samples the input signal
I(t) only at times 0,Δ, 2Δ, 3Δ, · · · and the result of the simulation thus depends
on the discrete sequence u0, u1, u2, . . . of input values, where ui is the value of
the input signal I(t) at time t = iΔ for each i.

Euler’s Method

Euler’s method relies on the observation that the rate of change of the desired
state signal S, that is, dS/dt, at time t, is simply the limit of the quantity
(S(t+Δ)−S(t))/Δ as the increment Δ goes to 0. As a result, for small values
of Δ, it is natural to approximate the value of S(t+Δ) by the following equation

S(t+Δ) = S(t) + Δ f(S(t), I(t)).

This approximation assumes that the rate of change of state is constant during
the interval [t, t + Δ) and equals the rate of change at the beginning of the
interval. The rate of change at the beginning of the interval is obtained by
evaluating the function f using the values of the state and the input at time t.
The change in the value of the state is obtained by multiplying this rate by the
size Δ of the interval. Thus, given an initial value s0 for the state and a sequence
of values u0, u1, . . . for the input signal, the Euler’s method for simulation of
the differential equation Ṡ = f(S, I) computes the following sequence of values:
for every i ≥ 0,

si+1 = si +Δ f(si, ui).

This sequence of values is linearly extrapolated to give the response signal that
defines the state S(t) at every time t ∈ time: for every i ≥ 0 and time value
t ∈ [iΔ, iΔ+Δ), S(t) = si + (t− iΔ) f(si, ui).

278 Chapter 6

Runge-Kutta Methods

Euler’s method estimates the state at the end of an interval by assuming that
the rate of change of state stays constant during the interval, and this rate is
based only on the state at the beginning of the interval. A better approximation
can be obtained if the estimated change in the state at the end of the interval
is used to estimate a change in the derivative, and this is used to readjust the
state estimate. Runge-Kutta methods comprise a popular class of numerical
integration methods based on this idea. In particular, the second-order Runge-
Kutta method computes the state si+1 by the following calculation:

k1 = f(si, ui),

k2 = f(si +Δ k1, ui+1),

si+1 = si +Δ(k1 + k2)/2.

Given the current state si and input ui, the first step computes k1 to be the
current rate of change. However, instead of setting the state si+1 at the end of
the interval to be si +Δ k1 as in Euler’s method, it uses this estimated state to
calculate the estimated rate of change k2 at the end of the interval (the input
value ui+1 at the end of the interval is used for this estimate). The third step
calculates si+1 assuming that the rate of change is constant during the interval
but equals the average of the two values k1 and k2.

The higher order Runge-Kutta methods use the same basic idea but use es-
timates of derivatives at the midpoint as well as the endpoints to compute a
weighted average. The most commonly used method in practice is the fourth-
order Runge-Kutta method. It computes the state si+1 by the following calcu-
lation:

k1 = f(si, ui),

k2 = f(si +Δ k1/2, (ui + ui+1)/2),

k3 = f(si +Δ k2/2, (ui + ui+1)/2),

k4 = f(si +Δ k3, ui+1),

si+1 = si +Δ(k1 + 2k2 + 2k3 + k4)/6.

Quality of Approximation

To understand how well these simulation techniques approximate the desired
function, let us consider a single-dimensional linear differential equation with
no inputs: ṡ = s with the initial state s0 = 2. We already know that the solution
to this equation is given by the signal s(t) = 2et.

For numerical simulation, let us choose the length Δ of the interval to be 0.1.
Over the time interval of [0, 5], the simulation plots resulting from both Euler’s
method and the second- Runge-Kutta method are shown in figure 6.19. Note
that Euler’s method introduces significant error that accumulates: the value of

Dynamical Systems 279

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

Time t

S
ig

na
l s

(t
)

Euler

Runge−Kutta (2nd)

Figure 6.19: Alternative Simulation Algorithms

s(5) by Euler’s method is 234.78, while the value of s(5) by the second-order
Runge-Kutta method is 294.54. In this example, switching to the fourth-order
Runge-Kutta method improves the accuracy slightly. Since the differences in the
plots of second-order and fourth-order methods are not noticeable, figure 6.19
does not show the plot resulting from the fourth-order method, but it turns
out that the value of s(5) by the fourth-order Runge-Kutta method is 296.83,
which coincides with the quantity 2e5. Also note that if you were to simulate
this differential equation using the standard solvers and plotting routines in
Matlab, the result is identical to the plot given by the fourth-order Runge-
Kutta method.

The quality of approximation afforded by numerical simulation can be improved
by reducing the step size Δ. Simulation tools automatically tune this parameter
to keep the error small. In particular, adaptive techniques are also used to
change the value of Δ dynamically, possibly at every step of simulation, to
adjust to the current rate of change.

Exercise 6.22 : Consider the single-dimensional linear differential equation ṡ =
s. Suppose the initial state is s0, and let Δ be the length of the interval used for
numerical simulation. For Euler’s method, find a closed-form formula for the
state sn after n steps of simulation as a function of s0, Δ, and n. Verify that
for s0 = 2, Δ = 0.1, and n = 50, s50 equals 234.78 (see figure 6.19).

Exercise 6.23 : Consider the single-dimensional linear differential equation ṡ =
s. Suppose the initial state is s0, and let Δ be the length of the interval used for
numerical simulation. For the second-order Runge-Kutta method of simulation,
find a closed-form formula for the state sn after n steps of simulation as a
function of s0, Δ, and n. Verify that for s0 = 2, Δ = 0.1, and n = 50, s50
equals 294.54 (see figure 6.19).

280 Chapter 6

6.4.2 Barrier Certificates

In chapter 3, we focused on the safety verification problem for (discrete) tran-
sition systems: given a transition system and a set of safe states, is it the case
that every reachable state of the system is safe? Now let us revisit this problem
for continuous-time components.

Safety Verification

Consider a closed continuous-time component H with state variables S, initial-
ization given by Init, and dynamics specified by Ṡ = f(S). For every initial
state s0 ∈ [[Init]], the system has a unique response signal, and the set of reach-
able states of the system is the set of states that appear along all these response
signals:

Reach = { S(t) | S(0) ∈ [[Init]] and t ∈ time }.
Given a state property ϕ, the safety verification problem is to decide whether
every state in the set Reach satisfies the property ϕ. For example, the property
ϕ can assert that the magnitude of the error e between the reference signal and
the system output is less than some constant δ, and a violation of this property
indicates an unacceptable overshoot.

Numerical simulation is an effective technique to understand the behavior of a
dynamical system starting from a specific initial state. When we know that the
initial state belongs to a set, the simulation tool needs to choose different values
for the initial state from the given set and run multiple simulations. Such an
approach cannot be exhaustive, and thus we need some alternative techniques.

A natural approach would be to develop a symbolic simulation algorithm in the
style of the symbolic reachability algorithm of section 3.4. However, this turns
out to be challenging even for linear components. To illustrate the difficulty, let
us consider a two-dimensional linear system whose dynamics is given by:

ṡ1 = −7 s1 + s2 ; ṡ2 = 8 s1 − 10 s2.

Suppose the initial set is the rectangle described by the formula

Init = 5 ≤ s1 ≤ 6 ∧ −1 ≤ s2 ≤ 1.

Figure 6.20 shows the initial set, and also the system responses when the initial
state is chosen to be each of the four corner points. All these system responses
converge to the origin, which is no coincidence: verify that both the eigenvalues
of the state transition matrix are negative, and thus the system is asymptotically
stable (see theorem 6.3).

It is evident from figure 6.20 that the set Reach of reachable states of the system
has a complex form: it is not convex, and although the initial set is described
by linear constraints, linear constraints do not suffice to describe the set Reach.
As a result, it is not possible to develop symbolic methods to compute the set
of reachable states exactly.

Dynamical Systems 281

−2 −1 0 1 2 3 4 5 6 7 8
−2

−1

0

1

2

3

4

s1

s
2

Init

Figure 6.20: Reachable Set of a Continuous-time Component

Inductive Invariants

In chapter 3, we studied the principle of inductive invariants to prove safety
requirements of (discrete) transition systems. To show that a property ϕ is an
invariant of a transition system T , we find a property ψ such that (1) every
state satisfying ψ satisfies ϕ, (2) the initial states of T satisfy ψ, and (3) if a
state s satisfies ψ and (s, t) is a transition of T , then the state t is guaranteed to
satisfy ψ. We describe an analogous method for establishing that a given state
property is an invariant of a continuous-time system.

Let us revisit the dynamical system of figure 6.20. Suppose we want to establish
that the property ϕ described by −4 ≤ s2 ≤ 4 is an invariant of the system.
In figure 6.21, we want to show that if the initial state belongs to the rectangle,
then the execution stays between the two horizontal lines s2 = 4 and s2 = −4.
As in the case of proofs using inductive invariants, the first step is to identify the
“strengthening” ψ. For continuous-time components, the desired strengthening
is described by a function Ψ : realn �→ real mapping states to real numbers,
that is, a real-valued expression over the state variables S. The set of states
satisfying the equation Ψ(S) = 0 is called the barrier. The set of states satisfying
the formula Ψ(S) ≤ 0, that is, the set of states on or inside the barrier, is
the analog of the inductive invariant. The barrier is chosen to satisfy three
obligations. First, we need to establish that every state satisfying Ψ(S) ≤ 0
also satisfies the desired safety property ϕ. Equivalently, if a state violates ϕ,
then the value of Ψ must be positive. The second obligation is to show that
every initial state s0 satisfies Ψ(s0) ≤ 0. These two obligations imply that the
barrier should be chosen so that it separates the initial states from the states
violating the desired invariant property: all unsafe states are outside the barrier,
and all initial states are inside the barrier.

282 Chapter 6

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

s1

s
2

Init

Unsafe

Unsafe

Psi>0

Psi<0

Psi=0

Figure 6.21: Invariant Verification Using a Barrier Certificate

For the example of figure 6.21, the barrier is described by the function

Ψ(s1, s2) = 7 s21 − 6 s1 s2 + 28 s22 − 320.

The equation Ψ(s) = 0 describes the ellipse shown in the figure. Initial states
lie inside the ellipse, whereas unsafe states (that is, states above the line s2 = 4
and below the line s2 = −4) are outside the ellipse.

The third obligation in the discrete case corresponds to showing that the in-
ductive invariant is preserved by system transitions. In case of continuous-time
components, discrete transitions are replaced by continuous evolution of state
over time as described by the differential equation Ṡ = f(S). A system response
S(t) demonstrating a violation of the invariant must start in an initial state,
which lies inside the barrier, and visit an unsafe state, which lies outside the
barrier. The system response is a continuous and differentiable function, and
hence it cannot “jump” across the barrier. It suffices to establish that the choice
of the barrier with respect to the system dynamics f is such that a crossing of
the barrier is impossible.

To understand the required condition, consider the example of figure 6.21. At
a given state (s1, s2), the value of s1 changes at the rate f(s1) = −7 s1 + s2,
and the value of s2 changes at the rate f(s2) = 8 s1 − 10 s2. Thus, the state
(s1, s2) flows, or evolves, along the vector (−7 s1 + s2, 8 s1 − 10 s2) given by the
dynamics f . A key observation is that the value of Ψ always decreases along
these flow directions. In particular, if the state lies on the barrier (that is, the
boundary of the ellipse), this vector field points inward. This implies that if the
state of the system at time τ lies on the barrier, then the state of the system

Dynamical Systems 283

at time τ + dt must lie in the interior. It is clear that system executions cannot
cross the barrier from inside to outside.

Lie Derivatives

The appropriate mathematical concept to formalize the requirement that the
value of the function Ψ decreases along the flow direction is called the Lie
derivative. The Lie derivative of a function described by the expression Ψ with
respect to the vector field described by the dynamics f is denoted Lf Ψ and
gives the rate of change of the value of the expression Ψ as a function of the
state variables S as the state evolves according to the dynamics Ṡ = f(S). In
other words, the Lie derivative Lf Ψ is the directional derivative of the function
Ψ along the vector field f .

The Lie derivative of the function Ψ can be computed from partial derivatives
of the function Ψ with respect to each coordinate of the state vector:

Lf Ψ(S) =
∑
s∈S

(∂Ψ/∂ s) f(s).

In our example, the state vector has dimension 2:

Lf Ψ(s1, s2) = (∂Ψ/∂ s1) f(s1) + (∂Ψ/∂ s2) f(s2),

= (14 s1 − 6 s2) (−7 s1 + s2) + (−6 s1 + 56 s2) (8 s1 − 10 s2),

= −146 s21 − 566 s22 + 564 s1 s2.

The third obligation for Ψ to be a barrier certificate is that the value of the
function Lf Ψ should always be negative at all points belonging to the barrier.
This ensures that for every state s on the barrier, Ψ(s) decreases as the state s
evolves according to the dynamics f .

Going back to our example, verify that the expression −146 s21 − 566 s22 +
564 s1 s2 always has a negative value not just for the states on the barrier.

A technical requirement for the argument outlined above is that the function
described by the expression Ψ should be a smooth function. A smooth function
is a function for which all derivatives, higher order derivatives as well as partial
derivatives, exist. This ensures that the Lie derivative is well defined. In the
example of figure 6.21, the function Ψ is a quadratic function and is smooth.
Every polynomial function is a smooth function. A discontinuous function is
not smooth, and this means that the barrier separating the initial states and
the bad states cannot be a rectangle (or a polyhedron).

The proof technique for establishing invariants using barrier certificates is sum-
marized below.

Theorem 6.6 [Safety Verification using Barrier Certificate] Let H be a closed
continuous-time component with state variables S, initialization Init, and dy-
namics given by Ṡ = f(S). To show that a state property ϕ is invariant in

284 Chapter 6

all reachable states of the system H, it suffices to find a smooth real-valued ex-
pression Ψ over the state variables, called a barrier certificate, such that (1) if
Init(S) holds, then Ψ(S) ≤ 0; (2) if ϕ(S) does not hold, then Ψ(S) > 0; and
(3) the Lie derivative of Ψ with respect to the vector field f is negative for all
states belonging to the barrier: if Ψ(S) = 0 then (Lf Ψ)(S) < 0.

Proof. Let H be a closed continuous-time component with state variables
S, initialization Init, and dynamics given by Ṡ = f(S). Let the real-valued
expression Ψ over the state variables be a barrier certificate. That is, the value
Ψ is non-positive in all initial states, the value of Ψ is positive in all states
that violate ϕ, and the Lie derivative of Ψ with respect to the vector field f is
negative for all states for which Ψ is 0.

We want to prove that every reachable state of the system H satisfies the prop-
erty ϕ. The proof is by contradiction. Assume that there is a reachable state
that does not satisfy ϕ. Then there exists a system response signal S and a time
t∗ ∈ time such that S(0) is an initial state and S(t∗) does not satisfy the prop-
erty ϕ. Let us define the function Ψ : time �→ real such that Ψ(t) = Ψ(S(t)).
The function Ψ is a continuous function as it is a composition of two continuous
functions.

Since the value of Ψ in every initial state is non-positive, we know that Ψ(0) ≤ 0.
Since the value of Ψ in every unsafe state is positive, we know that Ψ(t∗) > 0.
From continuity of Ψ, it follows that there exists a time τ such that Ψ(τ) = 0 and
Ψ(t) > 0 for all times t such that τ < t ≤ t∗. By definition, (d/dt)Ψ(τ) equals
the Lie derivative (Lf Ψ) evaluated at the state sτ = S(τ). Since Ψ(τ) = 0, we
know that Ψ(sτ) = 0, and by assumption the value of the Lie derivative Lf Ψ
at the state sτ on the barrier, must be negative.

For the continuous function Ψ, the conditions (1) Ψ(τ) = 0, (2) Ψ(t) > 0 for all
times t such that τ < t ≤ t∗, and (3) (d/dt)Ψ(τ) < 0, cannot hold all at once,
and this leads to contradiction.

Recipe for Choosing the Barrier Certificate

Theorem 6.6 gives us a general method for establishing safety of linear as well
as non-linear continuous-time systems. The key to use this method effectively
is to choose the function Ψ so that it satisfies all the necessary assumptions.
We next outline a recipe for choosing this function for linear systems. Similar
techniques are also used to establish stability of continuous-time systems and
are known as Lyapunov methods in the literature.

Given an n-dimensional continuous-time system with dynamics Ṡ = AS, we
choose a symmetric n-dimensional matrix P and a constant k, let the function
Ψ be defined as:

Ψ(S) = ST P S + k.

Recall that a matrix is called symmetric if it equals its own transpose (that
is, lower triangular entries equal upper triangular entries). The function Ψ

Dynamical Systems 285

defined above is a quadratic expression over the state variables and is a smooth
function. In this case, the dynamics of the state is defined by the matrix A.
The Lie derivative of the expression Ψ with respect to this dynamics is given
by:

(LA Ψ)(S) = (d/dt) (ST P S + k),

= ṠT P S + ST P Ṡ,

= ST AT P S + ST P AS,

= ST (AT P + P A)S.

Let us define the matrix P ′ to be AT P + P A. Observe that the matrix P ′

is also a symmetric matrix. The Lie derivative of Ψ is given by the quadratic
expression ST P ′ S. The third requirement for Ψ being a barrier certificate now
can be related to a well-understood form of matrices from linear algebra: if
the matrix P ′ is negative definite, then for all states S the quantity ST P ′ S is
guaranteed to be negative. If all the eigenvalues of the matrix P ′ are negative,
then it is guaranteed to satisfy this condition. Thus, given the dynamics matrix
A, the coefficients of the desired symmetric matrix P are chosen so that the
resulting matrix P ′ has negative eigenvalues. Once we fix the matrix P , we
need to choose the coefficient k in the definition of the barrier certificate Ψ so
that it separates the initial states from the unsafe states.

Let us revisit the two-dimensional continuous-time system of figure 6.20. The
dynamics matrix is given by

A =

[−7 1
8 −10

]
.

Let us choose the symmetric matrix P to be

P =

[
7 −3
−3 28

]
.

Observe that

ST P S =
[
s1 s2

] [
7 −3
−3 28

] [
s1
s2

]
= 7 s21 − 6 s1 s2 + 28 s22.

The coefficient k is chosen to be −320 so that the expression ST P S + k is
negative in the initial rectangle and is positive in the unsafe states. The Lie
derivative is of the form ST P ′ S, where the symmetric matrix P ′ is given by:[−7 8

1 −10
] [

7 −3
−3 28

]
+

[
7 −3
−3 28

] [−7 1
8 −10

]
=

[−146 282
282 −566

]
.

Observe that the matrix P ′ is indeed symmetric. If we compute its eigenvalues,
we get −5.2984 and −11.7016. This implies that the matrix P ′ is negative defi-
nite. This means that the expression ST P ′ S, which equals −146 s21 − 566 s22 +
564 s1 s2, is always negative.

286 Chapter 6

Exercise 6.24 : For establishing safety of the system shown in figure 6.21,
suppose the barrier function is 7 s21 − 6 s1 s2 + 28 s22 + k, where k is a constant.
What are the possible choices of k for which the resulting function is a barrier
certificate?

Exercise 6.25*: Suppose we replace the third condition for an expression Ψ to
be a barrier certificate by the weaker condition “if Ψ(S) = 0 then (Lf Ψ)(S) ≤ 0”
(that is, instead of requiring the Lie derivative to be negative for states on the
barrier, it is required to be only non-positive). With this revised definition,
from the existence of a barrier certificate, can we conclude that the property ϕ
is an invariant? Prove or disprove your answer.

Exercise 6.26*: This project concerns implementing a tool for symbolic reach-
ability analysis of one-dimensional dynamical systems in Matlab.

A closed interval of the set of real numbers is denoted [a, b], where a, b ∈ real

and a ≤ b and corresponds the set of all real numbers between a and b. A
state of a one-dimensional dynamical system is a real number. A set of such
states can be naturally represented as a union of closed intervals. For example,
[0, 1] ∪ [4, 5] is the set {x ∈ real | 0 ≤ x ≤ 1 ∨ 4 ≤ x ≤ 5}. For the purpose
of this project, let us fix the data type for regions to be such unions of closed
intervals, each such region is of the form A =

⋃
i[ai, bi].

Part (a): Implement a programming library for computing with regions. The
first step is to choose a data structure to represent regions. Your representation
should ensure that the intervals are mutually disjoint. Make sure that the
empty set is also represented correctly. Explain succinctly and rigorously your
implementation of the following operations: (1) union of regions (the operation
Disj), (2) difference of regions (the operation Diff), (3) inclusion test (the
function IsSubset(A,B) returns 1 exactly when the region A is a subset of the
region B), (4) test for emptiness (the operation IsEmpty), (5) sum of regions
(the function Sum(A,B) returns the representation for the set {x + y | x ∈
A, y ∈ B}), (6) product of a region and a scalar (the function Product(A,α)
returns the representation of the set {αx | x ∈ A}), and (7) square of a region
(the operation Square(A) returns the representation of the set {x2 | x ∈ A}).
Part (b): Consider a discretized representation of the dynamical system of the
form xk+1 = f(xk, uk), k ≥ 0, where xk ∈ real is the state, uk is the control
input that belongs to the region U , and f expresses the dynamics of the system.
The set of initial states is Init. Let Reachk be the set of reachable states at step
k, that is, Reachk is the set of all states x such that there exists an execution
of the system starting from some state x0 ∈ Init under some control inputs
u0, u1, ..., uk−1 from the region U and ending at the state xk = x. The set
Reach of all reachable states is Reach =

⋃
k≥0 Reachk. Consider the breadth-

first search algorithm to compute successive values of the regions Reachk up to
a maximum number of iterations N . The algorithm should terminate as soon as
there is no new state that can be added to Reach or when it iterates for N steps.

Dynamical Systems 287

Implement the algorithm using the library you developed in part (a), provided
that the sets Init and U are also regions, that is, unions of closed intervals, and
the dynamics f can be described using the operations considered in part (a).
Experiment your implementation using the following examples. In each case,
report how the algorithm terminates and at which step, Output Reach (in its
minimal form as a union of disjoint closed intervals).

(1) xk+1 = −0.95xk + uk, Init = [1, 2], U = [−0.1, 0.1], N = 100;
(2) xk+1 = −0.96xk + uk, Init = [1, 2], U = [−0.1, 0.1], N = 100;
(3) xk+1 = −0.95xk + uk, Init = [1, 2], U = [−0.2, 0.2], N = 100;
(4) xk+1 = 0.5x2

k + uk, Init = [1.8, 1.89], U = [0, 0.1], N = 40;
(5) xk+1 = 0.5x2

k + uk, Init = [1.8, 1.9], U = [0, 0.1], N = 40.

Bibliographic Notes

The core topics discussed in this chapter, namely, models of dynamical systems
using differential equations, stability, linear systems, and analysis techniques
using concepts from linear algebra, are studied in control theory for decades
and appear in numerous textbooks. Our presentation is based on the textbook
by Antsaklis and Michel [AM06], and some examples are also borrowed from
[FPE02], [LV02], and [LS11].

For a detailed introduction to practical control design using PID controllers, see
[AH95] (see also www.mathworks.com for tutorials on design of PID controllers
using Matlab).

The use of barrier certificates for verification of safety properties was introduced
in [PJ04], and our discussion of this topic is based on the presentation in [Tab09]
(see also [Pla10] and [TT09] for discussion on soundness, completeness, and
variations of this proof technique).

The numerical calculations and the plots in this chapter are all obtained us-
ing the toolkit Matlab (see [SH92] for an introduction to control design using
Matlab, and the tutorials at www.mathworks.com to learn how to use Mat-
lab).

7

Timed Model

In the synchronous model of computation, all components execute in lock-step,
and the production of outputs by a component is synchronized with the recep-
tion of inputs. In the asynchronous model of computation, all processes execute
at independent speeds, and there is an unspecified delay between the reception
of inputs and the production of outputs by a process. Now we turn our attention
to a timed model of computation where processes are not tightly synchronized
to execute in a sequence of rounds but rely on the global physical time to achieve
a loose form of synchronization. The timed model allows us to express phenom-
ena such as “execute the task corresponding to sensing of temperature every
5ms,” “the delay between the reception of an input value and the correspond-
ing output response is between 2ms to 4ms,” and “if an acknowledgment is not
received within 4ms, resend.”

7.1 Timed Processes

The formal model of computation for timed processes is a variation of the model
of asynchronous processes from chapter 4. We will first illustrate the model with
examples.

7.1.1 Timing-Based Light Switch

Consider a light switch that uses a single push-button, along with a built-in
timer, to control a light bulb with two intensity levels. The switch is initially
off. When it is pressed once, it turns on the light at a dim intensity, and if
it is pressed twice in rapid succession, then the light is turned on at a bright
intensity. Here, rapid means that the duration between the successive press
events is less than one second. If the delay between the successive press events
is more than one second, the second press event is interpreted as a command to
switch the light off.

The system is modeled by the timed process LightSwitch shown in figure 7.1. It

290 Chapter 7

press ? → x := 0

clock x := 0

press ?

off

press ? ∧ (x ≥ 1)

dim bright
press ? ∧ (x ≤ 1)

Figure 7.1: A Timed Model of a Light Switch

has an input channel press on which it receives events corresponding to pressing
of the switch. The dynamics is illustrated using the extended-state machine
notation. In this example, the mode can be either off, dim, or bright. The
process uses a state variable x whose type is clock. A timed process has input,
internal, and output actions just like an asynchronous process: an input action
receives an input value on an input channel, an output action produces an
output value on an output channel, and an internal action updates only the
state variables and does not involve any input or output channels. During each
such action, the clock variables are tested and updated in the same way as
other state variables. The distinguishing new feature of the model is that a
timed process also has timed actions that capture elapse of time. During a
timed action of duration δ, which may be any positive real number, the value
of each clock variable is incremented by the amount δ. A state variable, such
as the variable mode for the process LightSwitch, of a type other than clock

is called a discrete variable. A discrete state variable stays unchanged during a
timed action.

For the process LightSwitch, initially the mode is off, the clock variable x
is 0, and the process is waiting for the input event press. Waiting for a time
period of δ1 is modeled by a timed action of duration δ1. After such an action,
the mode is still off, but the value of the clock variable x equals δ1. When the
input event press is received, the process updates the mode to dim and resets
the clock variable x to 0. As the process waits in the mode dim, the value of
the clock variable x captures the time elapsed since the time instance when the
mode-switch from off to dim occurred. Waiting in the mode dim for a total
duration of length δ2 corresponds to a timed action of duration δ2, and the value
of the clock variable x after such a timed action equals δ2. When the subsequent
input event press occurs, the value of the clock variable x is used to decide if
the process updates the mode to bright or to off, and this is captured by
the conjuncts (x ≤ 1) and (x ≥ 1) in the guard conditions of the two mode-
switches out of the mode dim. Note that if the value of x is exactly 1 (that is,
the duration between the two successive press events is one second), both these
mode-switches are enabled, and thus the model behaves nondeterministically
switching either to the mode off or to the mode bright. When the process
is in the mode bright, it switches back to the initial mode off whenever it

Timed Model 291

Empty

clock y := 0 Full

y ≤ UB
in ?

msg x

in ?→ x := in; y := 0

(y ≥ LB)→ out := x

Figure 7.2: A Timed Buffer with a Bounded Delay

receives the next input event.

One possible execution of the process is shown below, where each state is spec-
ified by listing the mode and the value of the clock variable x:

(off, 0)
2.3−→ (off, 2.3)

press ?−→ (dim, 0)
0.2−→ (dim, 0.2)

0.5−→
(dim, 0.7)

press ?−→ (bright, 0.7)
3.0−→ (bright, 3.7)

press ?−→ (off, 3.7).

Note that during an execution, two timed actions may follow one another. In
such a case, the effect of a timed action of duration δ1 immediately followed by
a timed action of duration δ2 is identical to a single timed action of duration
δ1 + δ2.

7.1.2 Buffer with a Bounded Delay

As a second example, let us consider a timed buffer of capacity 1 with an input
channel in and an output channel out, both of type msg. Whenever an input
value v is supplied to the buffer, it is stored in the internal discrete state variable
x. Now the buffer becomes full, and it simply ignores (or loses) further inputs
until it gets a chance to output the stored value on the output channel. The
timing assumption is that the delay between the reception of an input value and
the transmission of the corresponding output value is at least LB and at most UB
time units, where the constants LB and UB capture the lower and upper bound,
respectively, on the delay. This form of lower and upper bounds on delays is a
commonly occurring pattern for timed systems.

The timed process TimedBuf shown in figure 7.2 captures the desired timed
behavior using one clock variable y. The mode of the state machine indicates
whether the buffer is empty or full. Initially the mode is Empty. When the input
is received on the channel in, the message value is stored in the state variable
x, the mode is updated to Full, and the clock y is set to 0. As time elapses
while the mode of the process equals Full, the value of the clock y captures
the duration of time the process has been waiting in this mode. Input events
received in the mode Full do not change the buffer state, and this is modeled
by the mode-switch corresponding to the self-loop on the mode Full. The
mode-switch corresponding to the output actions is guarded with the condition

292 Chapter 7

Wait2

x ≤ 2
Wait1

x ≤ 1

in?→ x := 0
Idle

out1!; y := 0clock x, y := 0

(y ≥ 1)→ out2!

Figure 7.3: A Timed Process with Two Clocks

(y ≥ LB) and thus captures the assumption that the buffer can issue the message
on its output channel only after the lower bound LB on the delay.

The assumption concerning the upper bound, namely, that the process is guar-
anteed to produce the output within UB time units of receiving an input, is
captured by the annotation y ≤ UB associated with the mode Full. If the mode
is Full and the value of the clock y equals δ, then a timed action of duration
δ′ is allowed only if the constraint y ≤ UB holds throughout the transition as
the value of the clock y keeps increasing with time, that is, only if the condition
δ + δ′ ≤ UB holds. The process and its environment synchronize on the passage
of time during a timed action. The process wants to issue the output before
the clock y reaches UB and thus is willing to let time elapse only up to a certain
limit. The condition y ≤ UB associated with the mode Full is called a clock
invariant . The clock invariant associated with a mode and the guard condition
associated with the switches out of that mode together ensure lower and upper
bounds on delays.

In general, each mode has an associated clock invariant, which is an expression
over the clock variables, along with possibly other discrete state variables, of
the process. When the clock invariant associated with a mode is the constant 1,
it means that there is no upper bound on how long the process can wait in this
mode. In such a case, we omit the annotation, as is the case for the mode Empty
of the process TimedBuf and also for all the modes of the process LightSwitch
of figure 7.1.

7.1.3 Multiple Clocks

As an example of a timed process that uses two clocks, consider the process
shown in figure 7.3 with an input channel in and the output channels out1 and
out2. If an input event on the channel in happens at time t, then the process
responds by producing an output event on the channel out1 at time t1 followed
by an output event on the channel out2 at time t2 such that (1) the delay t1− t
is at most 1, (2) the delay t2− t is at most 2, and (3) the delay t2− t1 is at least
1. Thus, the output event on the channel out2 is constrained to occur within an
interval that depends on the timing of the preceding input event on the channel
in as well as the output event on the channel out1. The process does not accept
inputs on channel in until it has issued both output events.

Timed Model 293

A1 : (y1 ≥ 1)→ {x1 := x1 + 1; y1 := 0 }
A2 : (y2 ≥ 1)→ {x2 := x2 + 1; y2 := 0 }

CI : (y1 ≤ 2) ∧ (y2 ≤ 2)

nat x1 := 0; x2 := 0

clock y1 := 0; y2 := 0

Figure 7.4: Timed Process TimedInc with Parallel Increments

The desired constraints are expressed using two clock variables x and y. Initially
the mode is Idle, and both clock variables equal 0. Waiting in the mode Idle
for a duration of time δ is modeled by a timed action of duration δ, which
updates both clock variables to the value δ. When an input event occurs, the
process sets the clock x to 0, the clock y remains δ, and the mode is updated
to Wait1. Waiting in the mode Wait1 for a duration of time δ′ increments the
clock x to δ′ and the clock y to δ + δ′. Such a timed action is allowed only
as long as the value of x does not exceed 1 due to the clock-invariant x ≤ 1
associated with the mode Wait1. The output event out1 can occur at any time
instance before the value of the clock x exceeds 1. At this point, the process
switches to the mode Wait2, the clock y is reset to 0, and the value of the
clock x indicates the time spent in the mode Wait1. When the mode of the
process equals Wait2, both clocks increase with time, with the value of the
clock x capturing the time elapsed since the occurrence of the input event and
the value of the clock y capturing the time elapsed since the occurrence of the
output event on the channel out1. The clock-invariant x ≤ 2 associated with the
mode Wait2 and the guard condition (y ≥ 1) associated with the mode-switch
from the mode Wait2 to the mode Idle capture the desired timing constraints
on the occurrence of the output event on the channel out2. Below is a sample
execution of the process, where each state is specified by listing the mode, the
value of the clock variable x, and the value of the clock variable y:

(Idle, 0, 0)
5.7−→ , (Idle, 5.7, 5.7)

in ?−→ (Wait1, 0, 5.7)
0.6−→ (Wait1, 0.6, 6.3)

out1!−→
(Wait2, 0.6, 0)

0.5−→ (Wait2, 1.1, 0.5)
0.8−→ (Wait2, 1.9, 1.3)

out2!−→ (Idle, 1.9, 1.3).

Note that if we restrict the process to use only one clock, then the desired timing
constraints cannot be expressed accurately.

As another example of a timed process, consider the process TimedInc shown
in figure 7.4, which is a modified version of the asynchronous process AsyncInc
of figure 4.2. The process TimedInc has two discrete state variables x1 and x2,
both of which are initialized to 0 and are incremented by the internal tasks A1

and A2, respectively. However, unlike the asynchronous process AsyncInc, the
order in which these two tasks execute is no longer completely unconstrained.

294 Chapter 7

The time delay between the successive executions of the task A1 is at least
one and at most two time units. This constraint is specified using the clock
variable y1: initially its value is 0, the task A1 can be executed only when the
guard (y1 ≥ 1) is satisfied, its execution resets the clock y1 to 0, and the clock-
invariant has a conjunct (y1 ≤ 2), which ensures that the task A1 must get
executed before more than two time units elapse since its last execution. The
clock y2 is used in a similar manner to ensure that the time delay between the
successive executions of the task A2 is at least one and at most two time units.

Although the two tasks A1 and A2 do not have any variables in common, the
fact that the two clocks y1 and y2 need to increase by the same amount of
duration during a timed action constrains the relative frequencies at which the
two tasks execute. In particular, consider an execution of the process in which
the task A1 executes twice without executing the task A2. Such an execution
then has the form below (the state lists the variables x1, y1, x2, and y2 in that
order):

(0, 0, 0, 0)
δ1−→ (0, δ1, 0, δ1)

A1−→ (1, 0, 0, δ1)
δ2−→ (1, δ2, 0, δ1+δ2)

A1−→ (2, 0, 0, δ1+δ2)

Based on the guard of the task A1, we know that δ1 ≥ 1 and δ2 ≥ 1, and based
on the clock-invariant, we can conclude that δ1 + δ2 ≤ 2. These constraints can
be satisfied only if δ1 = δ2 = 1, and thus in the state after executing the task A1

twice, the clock y2 must be 2. It means that in this state, time cannot elapse,
and the only possible action is the execution of the task A2. Thus, the variable
x2 must be incremented at least once before the variable x1 is incremented
thrice.

7.1.4 Formal Model

Recall the definition of an asynchronous process from section 4.1: an asyn-
chronous process P has:

1. a finite set I of typed input channels defining the set of inputs of the form
x ? v with x ∈ I and a value v for x;

2. a finite set O of typed output channels defining the set of outputs of the
form y ! v with y ∈ O and a value v for y;

3. a finite set S of typed state variables defining the set QS of states;

4. an initialization Init defining the set [[Init]] ⊆ QS of initial states;

5. for each input channel x, a set Ax of input tasks, each described by a
guard condition over S and an update from the read-set S ∪ {x} to the

write-set S defining a set of input actions of the form s
x ? v−→ t;

6. for each output channel y, a set Ay of output tasks, each described by a
guard condition over S and an update from the read-set S to the write-set

S ∪ {y} defining a set of output actions of the form s
y ! v−→ t; and

Timed Model 295

7. a set A of internal tasks, each described by a guard condition over S and
an update from the read-set S to the write-set S defining a set of internal
actions of the form s

ε−→ t.

We can define the formal model for timed processes as an extension of the above
definition of asynchronous processes. The notions of input, output, and state
variables, and input, output, and internal tasks and actions stay unchanged.
The additional notion is that of a clock invariant, which is a Boolean expression
over state variables, and is used to define timed actions of duration δ. Given
a state s, which is a valuation of all the state variables, and a positive real
number δ, let s + δ denote the state that assigns the value s(x) + δ to every
clock variable x and the value s(y) to every discrete state variable y. The state
resulting from the timed action of duration δ starting in a state s is the state
s+ δ. Such a timed action is allowed only if the Boolean condition specified by
the clock invariant holds in all the states encountered during this interval. The
definition of a timed process is now summarized below.

Timed Process

A timed process TP consists of:

• an asynchronous process P , where some of its state variables can be
of type clock; and

• a clock invariant CI, which is a Boolean expression over the state
variables S.

Inputs, outputs, states, initial states, internal actions, input actions, and
output actions of the timed process TP are the same as that of the asyn-

chronous process P . Given a state s and a real-valued time δ > 0, s
δ−→ s+δ

is a timed action of TP if the state s + t satisfies the expression CI for all
values 0 ≤ t ≤ δ.

For the timed process TimedBuf of figure 7.2, the various components are listed
below:

• it has a single input channel in of type msg;

• it has a single output channel out of type msg;

• it has a (discrete) state variables mode of enumerated type {Empty, Full}
and x of type msg, and a variable y of type clock;

• the initial value of the clock variable y is 0, the initial value of the mode
variable mode is Empty, and the initial value of the variable x is uncon-
strained;

• there is a single input task for processing the input channel in, its guard
condition is 1 (that is, the task is always enabled), and the update corre-
sponding to the extended-state machine of figure 7.2 can be equivalently
written as:

296 Chapter 7

if (mode = Empty) then { mode := Full; x := in};
• there is a single output task for producing outputs on the channel out,
has the guard condition (mode = Full) ∧ y ≥ LB, and the corresponding
update code is out := x;

• it has no internal tasks;

• the clock invariant CI is given by the expression

(mode = Full) → (y ≤ UB).

Note that the clock invariant puts no constraints when the mode is Empty. The
translation from the extended-state machine notation to the formal definition
of timed processes can be automated.

The definition of a timed action requires that starting in a state s, a timed
action of duration δ is possible if the state s+ t satisfies the clock invariant at
every time t during the interval [0, δ]. Typically the expressions used in clock
invariants are convex functions of values of the clock variables, so it suffices to
check that the starting state s and the final state s + δ both satisfy the clock
invariant.

As in the case of asynchronous processes, the operational semantics of a timed
process can be captured by defining its executions. An execution starts in
an initial state and proceeds by executing an input action, an output action,
an internal action, or a timed action at every step. Note that input, output,
and internal actions are interleaved as in an asynchronous process. However,
during a timed action, the clocks belonging to different processes all increase
together, reflecting the passage of the same global time, and thus a timed action
is executed synchronously. This is why sometimes this model is called a partially
synchronous model.

Exercise 7.1 : Consider a timed process with an input event x and two output
events y and z. Whenever the process receives an input event on the channel
x, it issues output events on the channels y and z such that (1) the time delay
between x? and y! is between two and four units, (2) the time delay between x?
and z! is between three and five units, and (3) while the process is waiting to
issue its outputs, any additional input events are ignored. Design a timed state
machine that exactly models this description.

Exercise 7.2 : Consider a timed process with two input events x and y and an
output event z. Initially, the process is waiting to receive an input event x?. If
this event occurs at time t, then the process waits to receive an input on the
channel y. If the event y? occurs before time t+2 or does not occur before time
t+ 5, then the process simply returns to the initial state, and if the event y? is
received at some time t′ between times t+ 2 and t+ 5, then the process issues
an output event on z at some time between times t′+1 and t+6 and returns to

Timed Model 297

the initial state. Unexpected input events (e.g., the event y in the initial mode)
are ignored. Design a timed state machine that exactly models this description.

Exercise 7.3 : Consider an asynchronous OR gate with Boolean input variables
x and y and Boolean output variable z. Assume that initially all the variables
have value 0. The event x? denotes toggling of the input wire x, and similarly
the event y? denotes the toggling of the input wire y. The gate can change its
output by issuing the event z!. The desired timing behavior is specified by the
following rules:

1. When an input variable changes at time t1, if this change warrants a
change in the output (according to the standard logic of OR gate), then
the output should be issued at time t2 such that the delay t2−t1 is between
two and four time units (unless the inputs change again during the interval
from t1 to t2; if so, see the rules below).

2. While a change in the output is pending in the interval [t1, t2], if one of
the input variables changes again, but this change is consistent with the
output change about to happen at time t2, then the output should change
as scheduled.

3. While a change in the output is pending in the interval [t1, t2], if one of
the input variables changes at time t in a manner so as to make the change
in output inconsistent with the revised inputs, then the behavior depends
on the relative difference t − t1: if this difference is less than 1, then the
pending output change is canceled; if it is more than 1, then the output
change will occur as scheduled at time t2, and at that time, another output
event is scheduled with a delay of two to four time units.

Based on this description, design a timed process (as an extended-state machine
with one clock variable) that models the OR gate. The process should be input-
enabled: it should allow input events to happen at all times.

7.1.5 Timed Process Composition

Timed processes can be composed together using block diagrams. Operations
such as input-output variable renaming and output hiding are defined in the
usual manner. Let us consider the operation of composing timed processes. To
compose two timed processes, we first compose the corresponding asynchronous
processes using the composition operation for asynchronous processes as de-
scribed in section 4.1. The clock invariant for the composed process is simply
the conjunction of the clock invariants of the component processes.

298 Chapter 7

msg out1

msg out2

msg x1
clock y1
{Empty, Full} mode1

msg x2
clock y2
{Empty, Full} mode2

msg in

TimedBuf1

TimedBuf2

Figure 7.5: Composition of Two Instances of the Process TimedBuf

Timed Process Composition

For two timed processes TP1 = (P1,CI1) and TP2 = (P2,CI2), such that the
output channels of the two processes are disjoint, the parallel composition
TP1 |TP2 is the timed process whose asynchronous process is P1 |P2 and
whose clock invariant is CI1 ∧ CI2.

Thus, the internal, input, and output actions of the composite process are ob-
tained from the corresponding actions of the component processes using the
asynchronous composition. The conjunction of the clock invariants means that
a timed action of duration δ is possible in the composite process only if it is
acceptable for each component process to wait for a duration of δ. For states s1
and s2 of the processes TP1 and TP2, respectively, and a time duration δ > 0,

(s1, s2)
δ−→ (s1+δ, s2+δ) is a timed action of the composite process TP1 |TP2

exactly when s1
δ−→ s1 + δ is a timed action of TP1 and s2

δ−→ s2 + δ is a
timed action of TP2.

Product of Timed State Machines

To understand how the composition works, let us describe the composition
of two instances of the timed process TimedBuf connected in parallel with a
common input channel. Figure 7.5 shows two instances with their variables
renamed appropriately. The process TimedBuf1 responds to the input event on
the channel in by producing an output event on the channel out1 after a delay
of at least LB1 and at most UB1 time units, and the process TimedBuf2 responds
to the input event on the channel in by producing an output event on the
channel out2 after a delay of at least LB2 and at most UB2 time units. Instead
of compiling the extended-state machine of figure 7.2 for each process into a
description consisting of tasks and then computing the tasks for the composite
process using the composition operation, let us construct the extended-state

Timed Model 299

EF

y2 ≤ UB2

FE

y1 ≤ UB1

EE
clock y1, y2 := 0

in ?

y2 ≥ LB2 → out2 ! x2 y1 ≥ LB1 → out1 ! x1
in ?→
x1 := in; y1 := 0
x2 := in; y2 := 0

in ?→ x1 := in; y1 := 0 in ?→ x2 := in; y2 := 0

msg x1, x2

y2 ≥ LB2 → out2 ! x2y1 ≥ LB1 → out1 ! x1
FF

y1 ≤ UB1

y2 ≤ UB2

Figure 7.6: State Machine for Composition of Two TimedBuf Processes

machine capturing the behavior of the composition by taking a product of the
state machines for the component processes.

The behavior of the parallel composition of the two processes is captured by
the extended-state machine shown in figure 7.6. Since each component has two
possible modes, the composite process has four modes. The initial mode is
EE indicating that both component processes start in the mode Empty. When
an input on the channel in is processed, the mode changes to FF (that is, the
variable mode1 is Full and the variable mode2 is Full). The variables x1 and y1
are updated according to the input action of the first process, and the variables
x2 and y2 are updated according to the input action of the second process.

The mode FF corresponds to the case when each process is in the mode Full.
The clock-invariant of this mode is the conjunction (y1 ≤ UB1 ∧ y2 ≤ UB2).
Thus, the composite process can wait in this mode only as long as the clock y1
does not exceed UB1 and the clock y2 does not exceed UB2. This conjunctive
constraint reflects the synchronization of the two component processes on timed
actions. The mode can change in two ways depending on which component
process produces the output first. If the second component issues its output
on the channel out2, the mode changes to FE (that is, the variable mode1 is
Full and the variable mode2 is Empty). This switch is guarded by the condition
(y2 ≥ LB2), corresponding to the guard of the output action of the second
component, and the variables of the first component stay unchanged during
this switch. The clock-invariant in the mode FE is (y1 ≤ UB1) since the second
component does not impose any constraints on how long the process can wait in
this mode. In the mode FE, if the first component produces its output, then the
mode changes to EE, and if an input event is received, then the mode switches
back to FF.

Note that the values of the parameters that capture lower and upper bounds

300 Chapter 7

clock y1 clock y2
{Empty, Full} mode1 {Empty, Full} mode2

TimedBuf2TimedBuf1

msg x1 msg x2msg tempmsg in msg out

Figure 7.7: Composition of Two Instances of TimedBuf Processes in Series

on delays determine the possible executions of this composite process. For ex-
ample, if the upper bound UB1 is strictly smaller than the lower bound LB2,
then in response to an initial input event, the first component is guaranteed to
produce its output before the second component produces its output. That is,
a mode-switch from the mode EE to the mode FF is guaranteed to be followed
by the mode-switch to the mode EF since the guard condition (y2 ≥ LB2) can-
not be satisfied before the clock invariant (y1 ≤ UB1) gets violated. Similarly,
if the upper bound UB2 is strictly smaller than the lower bound LB1, then a
mode-switch from the mode EE to the mode FF is guaranteed to be followed
by the mode-switch to the mode FE corresponding to the output by the second
component. If the intervals [LB1, UB1] and [LB2, UB2] overlap, then following a
mode-switch from the mode EE to the mode FF, both scenarios, the first process
producing its output before the second, and vice versa, are feasible. The goal
of the timing analysis, to be discussed in section 7.3, is to discover which event
sequences are consistent with the timing constraints.

Exercise 7.4 : Figure 7.6 shows the product extended-state machine that cap-
tures the behavior of the composition of two instances of the timed process
TimedBuf shown in figure 7.5. Now consider the composition of two instances
of the timed process TimedBuf connected in series as shown in figure 7.7. Draw
the extended-state machine with four modes and two clocks that captures the
behavior of this composite process.

Exercise 7.5 : For the timed process TimedInc of figure 7.4, argue that both
the properties (x1 ≤ 2x2+2) and (x2 ≤ 2x1+2) are invariants of the system.

7.1.6 Modeling Imperfect Clocks ∗

In our model of timed processes, the value of a clock variable increases to ac-
curately capture the amount of time elapsed. Now consider a timed process P
that has a clock variable x that can measure time only imperfectly. The error
is specified using a per-unit drift, say 0.01. This means that if the value of the
clock x increases by 1, then the actual time elapsed may be any value in the
interval [0.99, 1.01]. In general, if the drift is ε and the process P resets the
clock x to 0 at time t and finds the constraint LB ≤ x ≤ UB to be satisfied at
a later time instance t′, then it can conclude that the elapsed time t′ − t is at
least LB(1− ε) and at most UB(1 + ε).

Timed Model 301

A

x ≤ UB1

B

x ≤ UB2

y ≤ UB+ε
2

B

y ≤ UB+ε
1

A

(x ≥ LB1)→ x := 0x := 0 (x ≥ LB2)→ x := 0

(y ≥ LB−ε
1)→ y := 0 (y ≥ LB−ε

2)→ y := 0y := 0

Timed process P with an imperfect clock x with drift ε

Equivalent timed process P ′ with (perfect) clock y

Figure 7.8: Simulating an Imperfect Clock with a Drift by a Perfect Clock

Although our basic model does not allow modeling of such imperfect clocks
explicitly, we can capture the resulting errors by changing the timing constraints.
As an example, consider the timed process P shown in figure 7.8 that measures
time using an imperfect clock x with drift ε. The clock-invariants associated
with the modes and the guards on the mode-switches imply that the process
spends between LB1 and UB1 time units in the mode A and between LB2 and
UB2 time units in the mode B, as measured according to its imperfect clock x.
We can capture the same behavior by the timed process P ′ that uses a perfect
clock y. The clock-invariants associated with the modes and the guards of the
mode-switches are modified by scaling upper bounds upward by a factor of ε
and scaling lower bounds downward by a factor of ε. In figure 7.8, we abbreviate
LB(1− ε) by LB−ε and UB(1 + ε) by UB+ε. The timing constraints of the process
P ′ imply that the process spends between LB1(1−ε) and UB1(1+ε) time units in
the mode A and between LB2(1− ε) and UB2(1+ ε) time units in the mode B. As
a result, the possible interactions of the process P with an imperfect clock and
that of the process P ′ with a perfect clock with other processes are the same.

Exercise 7.6 : We have argued that, in figure 7.8, the timing behavior of the
timed process P with an imperfect clock x with drift ε and the timed process P ′

with a perfect clock y with modified clock-invariants and guards are equivalent.
Suppose in figure 7.8 we remove the resetting of the clock to 0 on the mode-
switch from the mode A to the mode B. That is, consider the processes P and
P ′ with the updates x := 0 and y := 0, respectively, on the mode-switch from
the mode A to the mode B omitted. Are the resulting processes still equivalent
in terms of the relative timings of when the mode-switches can occur?

7.2 Timing-Based Protocols

In this section, we illustrate the formal design of timed systems using three case
studies: achieving distributed coordination by relying on timing assumptions,

302 Chapter 7

Idle

Crit

Test
Set

x ≤ Δ1

Delay
(x ≥ Δ2)?

Turn := 0
else x := 0

Turn := myID;

clock x (Turn = 0)→ x := 0

(Turn = myID)?

else

Figure 7.9: Timing-based Mutual Exclusion

achieving reliable transmission in presence of imperfect timing measurements,
and design of a pacemaker to deliver timely pulse to the heart to maintain its
rhythmic pulsation.

7.2.1 Timing-Based Distributed Coordination

In chapter 4, we studied how to solve problems that require coordination among
distributed processes in the asynchronous model of computation, that is, with-
out making any assumptions about the relative speeds of the participating pro-
cesses. Now we turn our attention to solving such problems in the timed model
of computation, where timing assumptions about the relative speeds of concur-
rent processes can be relied on to design solutions. In chapter 4, we established
that there is no solution to the consensus problem if we restrict shared variables
to atomic registers. However, if we assume that delays between successive steps
of a process are bounded, then the knowledge of these bounds can be used to
solve consensus using only atomic registers. Below we describe a timing-based
solution to the classical coordination problem of mutual exclusion, and the same
ideas can be used to solve consensus.

Recall the mutual exclusion problem aimed at allowing asynchronous processes
to access a critical shared resource in a safe manner. The allocation of the re-
source is not governed by a central coordinator, but processes need to coordinate
among themselves using atomic registers. The safety requirement is mutual ex-
clusion: no two processes should be in the critical section simultaneously, and
the liveness requirement is deadlock freedom: if some process wants to enter
the critical section, then some process should be allowed to enter the critical
section.

The timing-based solution, known as the Fischer’s protocol, uses a single shared
register Turn, and each process, with identifier myID, executes the timed state
machine shown in figure 7.9. Initially, the register Turn is 0 and the mode is
Idle. There is no clock invariant associated with the initial mode Idle, and

Timed Model 303

thus the process may spend an arbitrary amount of time in this mode. When the
process wants to enter the critical section, it switches to the mode Test. Then
it reads the shared register Turn: if Turn equals 0, then the process proceeds
to the mode Set, or else returns to the mode Test in order to read the shared
register again.

In the mode Set, the next step of the process is to update the value of the shared
register Turn to its own identifier. Observe that if a process P ′ tests Turn after a
process P has set Turn, then the process P ′ will have to wait in the mode Test.
However, if two processes test Turn before either has set it, then the protocol
needs to resolve contention between them to allow only one to proceed to the
critical section. The protocol assumes that writing to the shared register Turn
takes at most Δ1 time units. This is specified using the clock variable x and
the invariant (x ≤ Δ1) associated with the mode Set. After updating Turn, a
process waits in the mode Check for at least Δ2 time units; this delay is ensured
by the guard (x ≥ Δ2) on the mode-switch out of Delay. When a process leaves
the mode Delay, it reads the shared register Turn again. At this time, assuming
Δ2 > Δ1, we can conclude that all the processes that tested Turn to be zero,
and thus proceeded to set the register, have finished their updates. If a process
finds Turn unchanged, that is, equal to its own identifier, it proceeds to the
critical section, but if it finds that the value has been overwritten by some other
process, then it retries by switching back to the mode Test. Once in the critical
section, that is, in the mode Crit, a process can spend an arbitrary amount of
time, and upon exit, it resets Turn to 0 and returns to the initial mode.

To prove mutual exclusion, consider the sequence of events in a typical execution
depicted in figure 7.10. Let t1 be the time when the process P leaves the mode
Test and enters the mode Set, that is, the time when the process reads the
register Turn and finds it to be 0. Let t2 be the time when it enters the mode
Delay, that is, the time when it sets the register Turn to its own identifier. Let
t3 be the time when the process P leaves the mode Delay and reads the value
of the register Turn again. The timing constraints ensure that the condition
t3 − t2 ≥ Δ2 holds. It is possible that some other process P ′ attempting to
enter the critical section also reads the shared register Turn to be 0 sometime
during the time interval from t1 to t2, say at time t′1 (see figure 7.10). We don’t
need to worry about processes that had not entered the mode Set before time
t2 since the value of the register Turn is guaranteed to be non-zero at all times
from t2 onward, and thus each such process would read a non-zero value from
the register Turn. Due to the upper bound on time a process spends in the
mode Set, the process P ′ must execute the mode-switch from the mode Set to
the mode Delay sometime during the interval [t′1, t

′
2], where t′2 = t′1 +Δ1. Now

it is easy to see that if Δ2 > Δ1, then t′2 < t3, meaning that any competing
process that switched from the mode Test to the mode Set during the interval
[t1, t2] would have left the mode Set by time t3. In our illustrative scenario of
figure 7.10, the process P modifies the register Turn to its identifier at time t2,
and the process P ′ modifies the register Turn to its own identifier at some time
after time t′1 and before time t′2. If this write by the process P ′ occurs before

304 Chapter 7

P :→ Set P :→ DelayP ′ :→ Set P : Delay→

t2 t′2 = t′1 +Δ1 t3
t1 t′1

≥ Δ2

Figure 7.10: Illustrating a Timed Execution of the Mutual-exclusion Protocol

time t2, then this update is overwritten by that of the process P , and if it occurs
after time t2, then it overwrites the update by the process P . In either case,
the test (Turn = myID) cannot succeed for both, and it is not possible for both
to proceed to the critical section.

In general, among all the competing processes that succeed in entering the mode
Set, if the process P ′ is the last process to set the register Turn to its identifier,
then every process will find the register Turn to be equal to the identifier of
the process P ′ when it checks the register Turn when it leaves the mode Delay.
Such a process P ′ will be the unique winner and will proceed to its critical
section. When it leaves the critical section, it sets the register Turn back to 0 so
that processes waiting in the mode Test can compete again to enter the critical
section.

From the discussion above, for Δ2 > Δ1, it follows that the protocol satisfies
both mutual exclusion and deadlock freedom. More precisely, consider the timed
process obtained by composing arbitrarily many instantiations of the process P
of figure 7.9, each with its own value of the identifier myID and the process
modeling the atomic register Turn. For the composite process, the mutual
exclusion property

ϕme : ¬ (P.mode = Crit ∧ P ′.mode = Crit)

is an invariant, for every pair P and P ′ of processes. The composite process
also satisfies the deadlock freedom property: if P.mode = Test for a process P ,
then eventually P ′.mode = Crit for some process P ′.

Exercise 7.7 : For the timing-based mutual exclusion protocol of figure 7.9,
consider the starvation-freedom requirement “if a process P enters the mode
Test, then it will eventually enter the mode Crit.” Does the system satisfy the
starvation-freedom requirement? If not, show a counter-example.

Exercise 7.8 : Describe a protocol for solving the consensus problem described
in section 4.3.3 using atomic registers and timing assumptions. State the timing
assumptions explicitly. Describe the protocol in the state machine notation
(using the mutual exclusion protocol of figure 7.9 as a guide). Argue why the
protocol meets all three requirements of the consensus problem.

Timed Model 305

1 00 0 01011

Figure 7.11: Manchester Encoding of the Bit Sequence 100110100

7.2.2 Audio Control Protocol ∗

We now consider a timing-based protocol for transferring a sequence of bits
from the sender to the receiver using imperfect clocks. The encoding used in
this protocol is called the Manchester encoding, and this protocol is based on
an audio control protocol used by Philips Inc.

Problem Description

A stream of bits, that is, values of Boolean type, is communicated using high-
and low-voltage settings on a communication bus. Time is divided into slots
of fixed length, and in each slot, a single bit is communicated by changing the
voltage in the middle of the slot. The value 0 is encoded as a falling edge from
high voltage to low voltage, and the value 1 is encoded as a rising edge from low
voltage to high voltage. If the bits to be sent in consecutive slots are the same,
then there must be an intermediate change in the voltage, and this happens at
the end of a slot. The voltage pulse corresponding to the encoding for the bit
sequence 100110100 is shown in figure 7.11.

The clocks of the sender and the receiver are imperfect and have a specified
drift. The receiver does not know when the first time slot begins, but both
the sender and the receiver know the agreed-on width of the slots. The sender
and the receiver synchronize the beginning of the transmission by requiring low
voltage when no information is exchanged and by agreeing that each message
begins with the bit 1. The receiver does not know the length of the message in
advance but can infer the end of the current message when it detects that no
information has been communicated during a slot. A challenge for the protocol
designer is the constraint that the receiver cannot reliably detect a falling edge.
Thus, all decoding must be inferred based purely on the relative timings of the
rising edges. As a result, the receiver cannot resolve the ambiguity between
messages ending in 10 and in 1. This is because even when the message ends
with 1, the sender sets the voltage to low to ensure that the voltage is low when
no information is being transmitted. The delay between the last falling edge
and the preceding rising edge is a full time slot for messages ending with 10 and
is only a half time slot for messages ending with 1. Since the receiver cannot
detect a falling edge, it cannot differentiate between these two cases. To resolve
this ambiguity, it is assumed that each message ends in 00.

For the design and analysis of the desired protocol, let us assume that the length
of the time slot is four time units and the drift of the clocks of the sender and

306 Chapter 7

clock x

queue(bool) m

Sender

clock y

queue(bool) out

Receiver

msg in

event down

event up

Figure 7.12: Block Diagram for the Audio Control Protocol

the receiver is ε per time unit. What this means is that if the sender keeps the
voltage high for four time units according to its internal clock, then the actual
elapsed time may be anywhere between 4− 4ε and 4+ 4ε time units. Similarly,
if the receiver finds the duration between two consecutive rising edges to be less
than three time units, then it can only assume that the corresponding actual
delay is less than 3 + 3ε time units.

The correctness requirement is that every message is correctly decoded by the
receiver, assuming that the drift in the clock values is bounded by a given ε per
time unit. More generally, once we design a protocol, we would like to determine
the largest value of the drift rate ε for which the protocol works correctly.

The Sender Process

The block diagram for the system composed of the sender and the receiver is
shown in figure 7.12. The sender process receives the message to be transferred
on the input channel in. A single message is a sequence of Boolean values.
The sender process uses an internal queue m to store the sequence of bits to be
transferred. We model the rising and falling edges of the voltage as output events
up and down, respectively. The clock variable x is used to specify the timing
constraints. The state machine for the sender process is shown in figure 7.13.

The process starts in the mode A, where it is waiting to receive the input. When
the input is received on the channel in, it is stored in the queue m. The first
bit is immediately dequeued for transfer, and it is assumed to be 1 (it is easy
to modify the state machine for the sender so that it checks if the first bit is 1
and enters an error state if the check fails). The process sets its clock variable x
to 0 and switches to the mode B. After waiting for two time units, it issues the
event up to change the voltage to high in the middle of the slot. The process
removes the next bit to be transmitted from the queue m. If this bit is 1, then
it switches to the mode C, where it waits for two time units, changes the voltage
to low by issuing the event down, and then returns to the mode B in order to
transmit 1 in the following time slot. If the bit is 0, then it switches to the mode
D. In mode D, it waits for four time units till the middle of the next time slot,
and then changes the voltage to low. It then examines the next bit from the

Timed Model 307

A

F
x ≤ 2+ε

B
x ≤ 2+ε

G
x ≤ 2+ε

(x ≥ 2−ε ∧ F(m) = 1)→

up!; Deq(m); x := 0 (x ≥ 4−ε ∧ F(m) = 1)→
down!; Deq(m); x := 0

(x ≥ 4−ε ∧ F(m) = 0)→
down!; Deq(m); x := 0

(x ≥ 2−ε)→ up!; x := 0

(x ≥ 2−ε ∧ F(m) = 0)→
down!; Deq(m); x := 0

up!; Deq(m); x := 0

(x ≥ 4−ε ∧ F(m) = 0)→
up!; Deq(m); x := 0

(x ≥ 2−ε)→ down!; x := 0

(x ≥ 2−ε ∧ F(m) = 1)→
down!; Deq(m); x := 0

(x ≥ 4−ε ∧ F(m) = 1)→
up!; Deq(m); x := 0

(x ≥ 2−ε ∧ F(m) = 0)→

(x ≥ 2−ε ∧m = null)→ down!in?→
m := in; Deq(m); x := 0

D
x ≤ 4+ε

C

E
x ≤ 4+ε

x ≤ 2+ε

H

x ≤ 4+ε

(x ≥ 4−ε)?

Figure 7.13: The Sender Process in the Audio Control Protocol

message queue. If this bit is 1 (different from the last bit processed), it switches
to the mode E, where it waits for four time units before issuing the event up.
If this bit is 0 (same as the last bit processed), then it waits in the mode F for
two time units, raises the voltage, waits in the mode G for two time units, and
then lowers it again to send the 0 bit. Each time the next bit is removed from
the message queue and decisions are made based on whether the next bit is the
same or different compared to the bit most recently sent. The last two bits of
the message are guaranteed to be 00. The process will be in the mode G when
the message ends, and when the queue m is empty, it returns to the idle location
A after waiting in the mode H for a duration of a time slot without changing the
output.

The detailed state machine for the sender appears in figure 7.13. In the descrip-
tion F(m) stands for the first element of the queue m, and the action Deq(m)
removes the first element from the queue m. Note that all timing constraints are
modified to reflect the possible errors in the measurement of time, as explained
in section 7.1.6. For example, to specify that the process waits in the mode H

for four time units we need to associate the clock-invariant (x ≤ 4) with the

308 Chapter 7

Last1

y ≤ 9+ε
Last0

y ≤ 7+ε

Idle

Enq(out, 0); y := 0

Enq(out, 0); y := 0

y ≥ 7−ε → Enq(out, 0)

up? ∧ 3−ε ≤ y ≤ 5+ε →
y := 0; Enq(out, 1)

up?→

y := 0; Enq(out, 1)

up? ∧ 3−ε ≤ y ≤ 5+ε →

up? ∧ 7−ε ≤ y ≤ 9+ε →

up? ∧ 5−ε ≤ y ≤ 7+ε →

up? ∧ 5−ε ≤ y ≤ 7+ε →
Enq(out, 01); y := 0

y := 0; Enq(out, 01)

Figure 7.14: The Receiver Process in the Audio Control Protocol

mode H, and associate the guard (x ≥ 4) with the mode-switch from the mode H
to the mode A. To capture the errors in time measurement, the clock-invariant
(x ≤ 4) is changed to the constraint (x ≤ 4 + 4ε), and the guard (x ≥ 4) is
changed to the constraint (x ≥ 4−4ε). We use 4−ε as an abbreviation for 4−4ε
and 4+ε for 4 + 4ε.

The Receiver Process

The receiver process is shown in figure 7.14. The receiver uses a clock variable
y and an output buffer out to store the decoded message. It starts in the mode
Idle. When it receives the first up event, it initiates the message to be 1. The
mode Last1 corresponds to the case that the last decoded bit is 1; analogously,
the mode Last0 corresponds to the case that the last decoded bit is 0. The
clock y is used to measure the duration between successive up events. In the
mode Last1, if the next bit is 1, then the exact duration until the next event is
expected to be 4. Since the receiver simply needs to distinguish among various
cases, if the duration is any time between 3 and 5, then it considers the next bit
to be 1. The delay is measured using the receiver’s imperfect clock. The check
(3−ε ≤ y ≤ 5+ε) is an abbreviation for the check (3− 3ε ≤ y ≤ 5+ 5ε), and this
accounts for the fact that the receiver’s clock has a potential drift of ε per time
unit compared to the physical elapsed time. In the mode Last1, if the next
rising edge is detected after a delay in the interval [5, 7], then the bit 0 is sent,
and if the next rising edge is detected after a delay in the interval [7, 9], then
the bits 0 and 1 were transmitted (no rising edge is required for a 0 sandwiched
between two 1s). In the mode Last0, similar logic is applied by partitioning
the expected delays until the next up event into different categories: a delay
between 3 and 5 means the next bit is 0, a delay between 5 and 7 means that

Timed Model 309

Time Event x Sender Queue m y Receiver Queue out

0 B 00110100 Idle null

2.07 up 2.07 D 0110100 Last1 1
5.97 down 3.9 F 110100 3.9 Last1 1
7.97 up 2 G 110100 5.9 Last0 10
9.92 down 1.95 E 10100 1.95 Last0 10
14.08 up 4.16 C 0100 6.11 Last1 1001
16.1 down 2.02 B 0100 2.02 Last1 1001
18 up 1.9 D 100 3.92 Last1 10011

22.05 down 4.05 E 00 4.05 Last1 10011
25.91 up 3.86 D 0 7.91 Last1 1001101
30.01 down 4.1 F null 4.1 Last1 1001101
32.11 up 2.1 G null 6.2 Last0 10011010
34.16 down 2.05 H null 2.05 Last0 10011010
38.29 4.13 A null 6.18 Last0 10011010
39.39 1.1 A null 7.28 Idle 100110100

Figure 7.15: An Execution of the Audio Control Protocol

bits 0 and 1 are sent, and if no event is detected for seven time units, then the
receiver concludes that the transmission has ended (recall that the message ends
with 0) and returns to the mode Idle.

Example Execution

Figure 7.15 shows a possible execution of the protocol when the message string
100110100 is supplied to the sender at time 0, where the error rate ε equals 0.05.
Then at time 0, the sender switches to the mode B, setting its variable m to
00110100 and its clock x to 0. Each row in the table shows the time at which
the transition occurs, the event issued by the sender during this transition, the
value of the clock variable x of the sender at the time of the transition (before
it gets updated), the mode of the sender after the transition, the value of the
internal message queue m after the transition, the value of the clock variable y
of the receiver at the time of the transition (before it gets updated), the mode of
the receiver after the transition, and the value of the output message queue out
after the transition. Note that at the end of this execution, both processes have
returned to their respective initial modes, and the value of the output queue
equals the original input message 100110100.

Analysis

The parallel composition of the timed processes for the sender and the receiver
can be analyzed to check whether the protocol works correctly, that is, whether
the message received on the channel in by the sender equals the final value of
the buffer out. This requirement can be captured by a safety monitor. We

310 Chapter 7

would also like to find out what is the maximum value of the error rate ε for
which the protocol works correctly. It turns out the industrial design by Philips
allowed an error of 5% (that is, ε = 1/20), and the protocol meets the correctness
requirement for this error rate. A formal analysis using model checking tools
such as HyTech and Uppaal established that the protocol is resilient for errors
upto ε = 1/15.

Exercise 7.9 : Demonstrate that the audio control protocol cannot tolerate the
error rate ε = 0.25 by showing an incorrect execution corresponding to the input
string 100110100.

7.2.3 Dual Chamber Implantable Pacemaker

The design and implementation of software for medical devices is challenging due
to their rapidly increasing functionality and the tight coupling of computation,
control, and communication. The safety-critical nature of such devices make
them an ideal domain for exploring applications of formal modeling and analysis.
In this section, we use a dual chamber implantable pacemaker to illustrate
the modeling of control software and specification of correctness requirements
for such devices. We begin with an overview of the basic functionality of a
pacemaker.

Pacemaker Basics

The human heart is an excellent example of a naturally occurring timed system.
It spontaneously generates electrical impulses that organize the sequence of
muscle contractions during each heart beat. The underlying timing pattern of
these impulses is key to the proper functioning of the heart. The implantable
cardiac pacemaker is a rhythm management device that monitors these patterns
and corrects them via external means when needed.

Controlled by the nervous system, a specialized tissue, called the SinoAtrial
node, at the top of the right atrium periodically generates electrical pulses.
These pulses cause both atria to contract, forcing blood into the ventricles. The
electrical conduction gets delayed at the AtrioVentricular node, allowing the
ventricles to fill fully, but then spreads rapidly across the ventricular muscles,
resulting in their coordinated contraction that pumps the blood out of the heart.

A common heart disease, called bradycardia, is due to failures in either impulse
generation or impulse propagation and results in slow heart rate, leading to
insufficient pumping of blood. Bradycardia can be treated by an implantable
pacemaker that monitors the heart rate and delivers timely external electrical
pulses to maintain an appropriate heart rate as well as atrio-ventricular coordi-
nation. Such a pacemaker usually has two leads fixed on the wall of the right
atrium and the right ventricle. Activation of local tissue is sensed by these leads,
and these sensing events act as inputs to the pacemaker. If these sensed events

Timed Model 311

event VP

event AI

event VI

event APHeart Pacemaker

Figure 7.16: Interaction between the Heart and the Pacemaker

do not occur in a timely manner, then the pacemaker responds by producing
pacing events that trigger electrical stimuli to the heart.

A modern pacemaker responds to a variety of heart conditions and can operate
in different modes. We focus on a mode calledDDD: the first character describes
the pacing locations and D means that the pacemaker is pacing both the atrium
and the ventricle, the second character describes the sensing locations and D
means that both chambers are being sensed, and the third character specifies
how the pacemaker software responds to sensing and D means that sensing can
both activate or inhibit further pacing. While models corresponding to other
commonly used modes (for instance, the VDI mode in which the pacemaker
paces only the ventricle, senses both chambers, and sensing causes inhibition of
pacing) are similar, the decision logic for switching from one mode to another
causes additional complexity for the pacemaker software and is not reflected in
our model for the DDD mode.

Design Overview

Figure 7.16 shows the top-level block diagram for communication between the
two timed processes: the plant process Heart and the controller process Pacemaker.
The events AI and VI are inputs to the pacemaker, while its outputs correspond
to the events AP and VP. The event AI is sensed by the lead placed in the wall
of the right atrium and corresponds to electrical potential exceeding a specific
threshold value. The event VI is analogous and denotes electrical activation in
the right ventricle. The pacing events AP and VP induce contractions of the
muscles of the atrium and the ventricle, respectively. Note that all communica-
tion variables are modeled as events and thus have no associated data values.
The behavior of the pacemaker depends on the timing delays between these
events.

The design of the pacemaker is composed of four processes as shown in fig-
ure 7.17. The event VI denotes raw sensory input indicating electrical activity
in the ventricle. The timed process FilterV outputs the event VS: the sequence
of VS events corresponds to a filtered version of the sequence of VI events, and
these events are used for deciding when to produce the pacing events. Similarly,
the timed process FilterA outputs the event AS, a filtered version of the raw
sensory event AI. The processes PaceA and PaceV produce the pacing events AP

312 Chapter 7

FilterV

FilterA

PaceV

PaceA

event VI event VP

event AP

Pacemaker

event AS

event VS

event AI

Figure 7.17: Block Diagram for the Pacemaker Subcomponents

and VP, respectively, based on the timing pattern of the filtered sense events
AS and VS. The inputs to each of these four subprocesses are as shown in
figure 7.17, and we proceed to explain their designs.

Event Sensing

The timed process FilterV of figure 7.18 filters the sequence of VI events to re-
move noise. After each ventricular event, there is a blanking period, called Ven-
tricular Refractory Period (VRP), during which additional ventricular events
are not considered to be new activity and, hence, ignored. The programmable
parameter δ1 in the description of the process FilterV corresponds to VRP,
and a typical value of this parameter is 100 ms.

The process FilterV uses a clock variable x to measure the timing delay since
the last ventricular event. When the process receives an input event VI, if the
clock x has not exceeded δ1, then it means that the VRP has not elapsed, and
no output is produced. If the clock x exceeds δ1, then the process wants to
immediately respond by producing the event VS and by resetting the clock x
to mark the beginning of a new VRP. Note that the underlying formal model
is that of asynchronous processes, and thus the output transition producing
the event VS has to be decoupled from the input transition that receives the
event VI. To ensure that this output transition immediately follows the input
transition without a delay, on receiving the input, the process sets the clock x
to 0 and switches to the mode B with the associated clock-invariant (x ≤ 0).
This ensures that this mode B is transient, and the system cannot spend a non-
zero amount of time while the process FilterV is in this mode. Note that the
clock x is reset to 0 also when the ventricular pacing event VP is received, and
this ensures that an input event VI within VRP of such a pacing event will be
ignored.

The process FilterA is responsible for filtering the sequence of sensed atrial
events. Its functioning is defined by the following rule: an input event AI should
be viewed as the filtered event AS if it is not within the Post Ventricular Atrial

Timed Model 313

y ≤ 0

B

x ≤ 0

B

clock x := δ2, y
AI ?

VP ?/VS ? → x := 0

AS !

(x ≥ δ2)→ y := 0

else

Process FilterA

VI ?

VP ?→ x := 0

VS !

(x ≥ δ1)→ x := 0

else

Process FilterV

clock x := δ1
A

A

Figure 7.18: Timed Processes for Filtering Sense Events

Refractory Period (PVARP) since the last ventricular event. The parameter δ2
in the description of the process FilterA corresponds to this PVARP, and its
typical value is 100 ms.

The clock x of the process FilterA measures the delay since the last ventricular
event and is reset to 0 whenever either of the ventricular input events VS or VP
is received. When the event AI occurs, if the value of x is below the threshold
δ2, then it does not result in any output event. Otherwise the process responds
by producing the output event AS without any delay. To ensure that no time
elapses between the reception of AI and production of AS, it sets a clock variable
y to 0 when the input is received and switches to the transient mode B that has
the associated clock-invariant (y ≤ 0) and a single outgoing transition that
produces the desired output.

Timing of Pacing Events

The timed processes PaceA and PaceV shown in figure 7.19 implement the basic
functionality of the pacemaker to keep the heart rate above a basic minimum.

The function of the process PaceV is to ensure that a ventricular event occurs
within a maximum delay of Atrio-Ventricular Interval (AVI) since the last atrial
event. The clock x is set to 0 when the event AS or AP occurs, and the process
switches to the mode Pending. Note that the mode-switch AS ?/AP ? → x := 0
is a short-hand for two mode-switches one triggered by the condition AS ? and
one triggered by the condition AP ?. The parameter δ3 corresponds to AVI, and

314 Chapter 7

clock x := 0
x ≤ δ5

AS ?

AS ?

IdlePending

VP ?/VS ? → x := 0
(x = δ5)→ AP !

VP ?/VS ? → x := 0

Process PaceA

clock x, y := 0

VS ? → y := 0

AS ?/AP ? → x := 0

Idle

Process PaceV

(x ≤ δ3) ∨ (y ≤ δ4)

AS ?/AP ?

(x ≥ δ3 ∧ y ≥ δ4)→
{VP !; y := 0}

VS ? → y := 0
Pending

Figure 7.19: Timed Processes for Generating Pacing Events

its typical value is 150 ms. If the ventricular sensing event VS does not occur
before the clock x exceeds this threshold δ3 while waiting in the mode Pending,
then the process should issue the pacing event VP. However, in order to prevent
the pacemaker from pacing the ventricle too fast, the pacing event is issued only
when at least Upper Rate Interval (URI) time has elapsed since the most recent
ventricular event. To capture this constraint, the process uses another clock y
that is reset to 0 on every ventricular event. The parameter δ4 corresponds to
URI that enforces a lower bound on the times between consecutive ventricular
events, and its typical value is 400 ms. The condition to issue the pacing event
VP is the conjunction (x ≥ δ3) ∧ (y ≥ δ4). The disjunctive clock-invariant
associated with the mode Pending is the negation of this guard and ensures
that when both time limits expire, the pacemaker responds by pacing.

The process PaceA encodes the logic to generate the atrial pacing event AP. In
the specification of a pacemaker, Lower Rate Interval (LRI) refers to the longest
allowed interval between two ventricular events. In the initial mode Pending, if
the process does not receive a ventricular event or the atrial sensing event AS
within δ5 time units since the previous ventricular event, then it issues the atrial
pacing event AP. The value of the parameter δ5 is chosen to be the difference
LRI − AVI (with the assumption that the process PaceV paces the ventricle
after a delay of AVI time units with respect to an atrial event). With an atrial
event, the process PaceA switches to the mode Idle and switches back on the
subsequent ventricular event. A typical value of LRI is 1000 ms.

Timed Model 315

y ≤ UVx ≤ UA

Process HeartV

(y ≥ LV)→ {VI ! ; y := 0 }

Process HeartA

(x ≥ LA)→ {AI ! ; x := 0 }

AP ?→ x := 0 VP ?→ y := 0

Figure 7.20: A Nondeterministic Model of the Heart

Heart Modeling

To analyze the functioning of the pacemaker, we need a model of the heart that
generates the sensory events AI and VI. Figure 7.20 shows such an abstract
model. The timed process HeartA generates the atrial sensing event AI after
a nondeterministically chosen delay in the interval [LA, UA] since the previous
atrial event. The timed process HeartV is symmetric and generates the ven-
tricular event VI with a nondeterministic delay in the interval [LV , UV]. The
process Heart is the parallel composition of the timed processes HeartA and
HeartV.

For establishing basic safety requirements of the pacemaker design, the simpli-
fied models in figure 7.20 suffice. However, this modeling does not capture the
corelation in the timings of the atrial and ventricular events. A more faithful
model can be constructed as a composition of processes, some capturing nodes in
the heart tissue and some corresponding to the conduction pathways connecting
these nodes.

Illustrative Execution

Let us illustrate the behavior of the pacemaker using a sample execution shown
in figure 7.21. At time t1, the process HeartA outputs the atrial event AI.
The pacemaker component FilterA considers this to be a new atrial event
and generates the sensing event AS without any delay. Given the absence of
a ventricular sensing event, the process PaceV generates the pacing event VP
at time t2, which is the maximum of δ4 and t1 + δ3 (the parameters δ3 and δ4
correspond to the periods AVI and URI, respectively).

Following the ventricular event at time t2, the subsequent atrial pulsation is
generated by the heart at time t3. However, this event is ignored by the process
FilterA since t3 < t2 + δ2, where the parameter δ2 is set to PVARP.

Meanwhile, the process PaceA expects the subsequent atrial sensing within a
period of δ5 corresponding to the difference LRI − AVI after the ventricular

316 Chapter 7

VP VI/VS VP VP

Atrium

Time

Ventricle

t2 t6 t8 t10t5

VI

AI/AS AP AI/AS

t1 t4 t9t7t3

AI/ASAI

Figure 7.21: An Illustrative Execution of the Pacemaker

event at time t2. Since such an event does not occur in this sample execution,
it responds by generating the event AP at time t4 = t2 + δ5.

The heart generates the following ventricular event VI at time t5, which gets
mapped to the event VS by the filtering process FilterV without any delay.
The subsequent ventricular puslation is generated by the heart at time t6, and
since t6 < t5 + δ1, where the parameter δ1 corresponds to VRP, the event VI
at time t6 is ignored by the pacemaker. The next atrial event is generated by
the heart at time t7, and this event is translated to the atrial sensing event AS
without any delay (assuming t7 exceeds t5 + δ2).

The process PaceV expects the subsequent ventricular event within δ3 time units
of the atrial event at time t7. At time t8 = t7+δ3, it turns out that t8 > t5+δ4,
implying that sufficient time (URI) has elapsed since the most recent VS, and
hence the process PaceV generates the pacing event VP.

The following atrial event AI occurs at time t9 and is translated to AS without
any delay. Subsequently, the process PaceV expects a ventricular sensing before
time t9 + δ3. However, in this case, t9 + δ3 < t8 + δ4, implying that insufficient
time has elapsed since it generated the most recent pacing event VP. As a
result, it keeps waiting, and only at time t10 = t8 + δ4 (which is greater than
t9 + δ3) it paces the heart again by generating the event VP

Requirements

The most basic functionality of a pacemaker is to treat bradycardia by main-
taining the ventricular rate above the threshold of LRI (Lower Rate Interval).
Thus, the closed-loop system consisting of the parallel composition of Heart
and Pacemaker (see figure 7.16) should satisfy the following safety require-
ment: the delay between two successive ventricular events should not exceed
LRI. This property cannot be directly captured as an invariant of the system,
but we can use the timed process LRIMonitor of figure 7.22 as a safety mon-
itor. The monitor observes the events VS and VP and enters the error state
E if more than LRI time units have elapsed since the last occurrence of a ven-
tricular event. Verifying safety of the pacemaker now corresponds to checking

Timed Model 317

B E
A

(x ≥ LRI)?VS ?/VP ? → x := 0clock x

VS ?/VP ? → x := 0

Figure 7.22: Safety Monitor for the Pacemaker

whether the property (LRIMonitor.mode �= E) is an invariant of the system
Heart | Pacemaker | LRIMonitor.
For the pacemaker model we have discussed, along with the specified values of
the programmable delay parameters and for the nondeterministic heart model
of figure 7.20, irrespective of the values of the parameters LA, UA, LV , and UV ,
it is the case that the pacemaker is safe (that is, the monitor LRIMonitor cannot
enter the error mode). This can be established by a manual proof by identifying
a suitable inductive invariant or by using a model checker such as Uppaal that
implements the algorithmic reachability analysis discussed in section 7.3.

There are a number of other requirements that a pacemaker design is expected to
satisfy. For example, a pacemaker should pace the ventricles beyond a maximum
rate specified as the upper rate limit. A number of timing patterns of atrial and
ventricular events are considered undesirable, and the pacemaker is expected
to take a corrective action in response. While the modeling, specification, and
analysis techniques we have discussed are suitable for the formalization of such
requirements, we omit such detailed modeling from this case study.

Exercise 7.10 : In the modeling of the timed process PaceV (see figure 7.19),
we have used a disjunctive clock-invariant expression for the mode Pending.
Construct an alternative model where the mode Pending is split into two modes,
one with the clock-invariant (x ≤ δ3) and one withe the clock-invariant (y ≤
δ4), such that the resulting process has identical input/output behavior as the
process PaceV.

7.3 Timed Automata

Given a timed process TP, which may be expressed as a parallel composition
of a number of timed processes, including a safety monitor, and a property ϕ
over the state variables, the goal of the reachability analysis is to check whether
ϕ is an invariant of the process TP and, if not, produce a counter-example. A
key obstacle in adapting the on-the-fly enumerative depth-first search algorithm
for invariant verification (as studied in section 3.3) is the fact that the state of
a timed process includes the values for the real-valued clock variables. As a
result, we must develop symbolic or constraint-based techniques to handle sets

318 Chapter 7

of values for clocks. In this section, we present analysis techniques that are
applicable for the most commonly occurring pattern in which clocks are used in
the modeling of timed systems.

7.3.1 Model of Timed Automata

In chapter 3, we established that verification problems admit algorithmic so-
lutions provided the system being analyzed is a finite-state system. A timed
process is typically not a finite-state system due to the presence of clock vari-
ables. However, algorithmic analysis is possible if we restrict the way the clock
variables are used. For such an analysis, the use of the clock variables is re-
stricted in the following way. First, the only value assigned to a clock variable
is 0. Second, the only tests involving the clock variables are of the form x ≤ k
and x ≥ k, for some integer constant k, that is, the only atomic expressions used
in the clock-invariants and updates compare a clock variable to a constant. All
the examples we have considered so far in this chapter obey these restrictions.
Such updates and tests are adequate to express lower and upper bounds on the
delays between events.

Timed processes with such restricted usage of clock variables are called timed
automata. In particular, the timed process TimedBuf (see figure 7.2) is a timed
automaton: the clock y is reset to 0 on the switch from the mode Empty to the
mode Full and the test (y ≤ UB) in the clock-invariant of the mode Full and
the test (y ≥ LB) in the guard of the mode-switch from the mode Full to the
mode Empty, compare the clock variable with the constants corresponding to
the upper and lower bounds on the delay, respectively.

Timed Automaton

A timed process TP is said to be a timed automaton if for every clock
variable x of the process:

1. the only assignment to the variable x occurring in the update descrip-
tion of any of the tasks of the process TP is of the form x := 0; and

2. each atomic expression involving the variable x occurring either in
the clock invariant of the process TP, or in the guards or update
descriptions of any of the tasks of the process TP, is of the form x ≤ k
or x ≥ k, where k is an integer constant.

Note that a test of the form (x = k), for an integer constant k, can be defined
since it is equivalent to the conjunction (x ≤ k) ∧ (x ≥ k), and so can be a test
of the form (x < k)x, which is equivalent to ¬ (x ≥ k).

Since the analysis treats clock variables in a special way, it is convenient to
consider a state of a timed automaton TP as a pair (s, ν), where the discrete-
state s assigns values to all the discrete variables, and the clock-valuation ν
assigns values to the clock variables. Note that if a timed automaton has n

Timed Model 319

A

x < 2

B
x < 2

y ≤ 1

(x ≥ 1)→ a!; x := 0(x ≥ 1)→ a!; x := 0

(y > 0)→ c!

b?→ y := 0

clock x, y := 0

Figure 7.23: Example Timed Automaton for Illustrating Region Equivalence

clock variables, then a clock-valuation is an element of timen, where time is the
set of non-negative real numbers.

7.3.2 Region Equivalence ∗

Example Partition

To explain the analysis technique for timed automata, consider the automaton
in figure 7.23 with modes A and B, clocks x and y, input channels a and b
of type event, and an event output channel c. The constraints involving the
clock x imply that the process issues the event a periodically such that the
delay between two consecutive such events is greater than or equal to 1 and
strictly less than 2. The constraints involving the clock y imply that whenever
the process receives an input event b, it issues an output event c with a delay
strictly greater than 0 and less than or equal to 1.

Although this timed automaton has only two discrete states, its state-space is
infinite since there are infinitely many clock-valuations. The basic idea of the
analysis algorithm is to cluster these clock-valuations into finitely many equiva-
lence classes so that equivalent states behave similarly. This equivalence, called
the region equivalence, is depicted in figure 7.24 for our example automaton.
In this example, a clock-valuation is a point in the first quadrant of the two-
dimensional x/y plane. This space is split into finitely many clusters by drawing
vertical, horizontal, and diagonal lines.

Intuitively, whenever we find a line such that the clock-valuations that lie on
the line and that lie in the halves on either side of the line lead to different
behaviors, we need to split the space by drawing such a line. To limit the
number of partitions, we should draw such lines only when needed. The guards
and invariants of the automaton compare clock variables with integer constants,
and this motivates drawing horizontal and vertical lines. For example, in the
mode A, if the clock variable x is less than 1, then the event a cannot be issued
immediately; if the clock variable x is 1 or more, then the event a can be issued
immediately; in the mode B, if the clock y is 0, then the event c is not possible
without waiting a non-zero amount of time; and if the clock y equals 1, then the
event c must be issued immediately. In this example, the largest constant that

320 Chapter 7

0 1 2ν ′2ν2

ν ′1

ν1

1

x

y

ν3
ν ′3ν

ν ′

Figure 7.24: Clock Regions

the clock x is ever compared to is 2, and the largest constant that the clock y
is ever compared to is 1. This suggests that the actual value of the clock x is
not relevant for determining the set of possible future behaviors once it exceeds
2; similarly, once the value of the clock y exceeds 1, it need not be tracked
accurately. As a result, to obtain the desired partitioning, we draw the vertical
lines x = 0, x = 1, and x = 2 and the horizontal lines y = 0 and y = 1.

In a given mode, the effect of a timed action of duration δ is adding δ to the
values of both clocks. Thus, during a timed action, the clock-valuation evolves
along the diagonal direction. In our example, in the mode B, consider a clock-
valuation where the variable x is between 0 and 1 and the variable y is between
0 and 1. This information is adequate to determine which guards are satisfied
and, thus, which mode-switches can be executed immediately. If the constraint
(x > y) holds, then as time elapses, the value of the clock x reaches 2 before the
clock y reaches 1, at which instance the output event a is enabled. However, if
the value of x is less than that of y, then as time elapses, the value of the clock
y reaches 1 before the clock x reaches 1, and this implies that the event b is
guaranteed to be issued before the event a can be issued. To account for such
effects, we split the partition further by drawing the two diagonal lines.

The resulting partition is shown in figure 7.24. Two clock-valuations are consid-
ered region-equivalent if they belong to the same partition, and each partition
consisting of all equivalent clock-valuations is called a clock-region. In our ex-
ample, there are 28 clock-regions: 6 corner points such as (0, 1) and (2, 0); 14
open line segments such as the segment (0 < y < 1) on the line x = 0 and the
segment (0 < y < 1) on the diagonal line x = (y+ 1); and 8 open regions such
as the triangular region (0 < x < y < 1) and the unbounded region specified by
the constraints (1 < x < 2) and (y > 1).

Two states are region-equivalent if their corresponding discrete states are identi-
cal and their clock-valuations are region-equivalent. To understand why region-
equivalent states behave similarly, consider two clock-valuations ν and ν′ be-
longing to the open region specified by the constraints 1 < x < 2 and 0 < y < 1

Timed Model 321

and (x− y) > 1 shown in figure 7.24. Consider an atomic clock constraint that
compares the clock x with 0, 1, or 2 and compares the clock y with 0 or 1. Such
a clock constraint is satisfied by the clock-valuation ν if and only if it is satisfied
by the clock-valuation ν′. Thus, if a mode-switch is enabled in the state (A, ν),
then it is also enabled in the region-equivalent state (A, ν′), and if a mode-switch
is enabled in the state (B, ν), then it is also enabled in the region-equivalent state
(B, ν′). If during such a mode-switch the clock x gets reset, then the resulting
clock-valuations after the mode-switch are ν1 and ν′1 (see figure 7.24), which
are again region-equivalent; and if the clock y gets reset, then the resulting
clock-valuations after the mode-switch are ν2 and ν′2, which are again region-
equivalent. Starting in the clock-valuation ν, as time elapses, the mode stays the
same, and both the clocks increase along the diagonal line. The clock-valuation
during such a transition remains region-equivalent to ν until the value of the
clock x reaches 2, leading to the clock-valuation ν3. The effect of a timed action
starting from clock-valuation ν′ is similar: the clock-valuation evolves along the
diagonal line leading to the clock-valuation ν′3, which is region-equivalent to
the clock-valuation ν3. Note that the duration of the timed action leading the
clock-valuation ν to ν3 is different from the duration of the timed action leading
the clock-valuation ν′ to ν′3, but the order in which different clock-regions are
encountered as time elapses is identical for two equivalent clock-valuations.

In summary, whatever action the process can take from a state can be matched
by taking a corresponding action starting in a region-equivalent state, resulting
in states that are equivalent, from which the same argument can be applied
again. Thus, any execution starting in a state can be matched by a correspond-
ing execution starting in a region-equivalent state, such that the two executions
have matching sequence of input/output/internal/timed actions, with the only
difference being in the exact durations used for timed actions.

As an example, consider the following execution of the timed automaton of
figure 7.23:

(A, 0, 0)
0.6−→ (A, 0.6, 0.6)

b?−→ (B, 0.6, 0)
0.5−→ (B, 1.1, 0.5)

c!−→ (A, 1.1, 0.5)
0.2−→ (A, 1.3, 0.7)

a!−→ (A, 0, 0.7)
1.25−→ (A, 1.25, 1.95)

0.61−→ (A, 1.86, 2.56).

Now suppose at the first step the duration of the timed action is changed to
0.1, resulting in the state (A, 0.1, 0.1) that is region-equivalent to the state
(A, 0.6, 0.6). Below is another execution whose first step is the timed action
of duration 0.1 such that, at every step of the execution, the state remains
region-equivalent to the corresponding state of the execution above:

(A, 0, 0)
0.1−→ (A, 0.1, 0.1)

b?−→ (B, 0.1, 0)
0.91−→ (B, 1.01, 0.91)

c!−→ (A, 1.01, 0.91)
0.05−→ (A, 1.06, 0.96)

a!−→ (A, 0, 0.96)
1.25−→ (A, 1.25, 2.21)

0.61−→ (A, 1.86, 2.82).

Region Equivalence

Now let us define the notion of region equivalence formally for the general case.
Consider a timed automaton TP. For two clock-valuations ν and ν′ to be

322 Chapter 7

considered equivalent, the following conditions must hold. Consider a clock
variable x. The clock-valuations ν and ν′ must agree on whether the clock x
is 0, the clock x is between 0 and 1, the clock x is 1, the clock x is between
1 and 2, and such relationships with respect to the lines parallel to the x-axis.
If kx is the largest constant that the clock x is compared with in the atomic
constraints that appear in a guard, update description, or the clock-invariant
of TP, then once the value of the clock x exceeds kx, its actual value does
not matter. This condition can be summarized by requiring that the clock-
valuations ν and ν′ agree on all constraints of the form (x = d) and (x < d) for
every integer d between 0 and kx. The second condition accounts for constraints
on the differences of clock values. Consider two clocks x and y such that both of
them are assigned values that do not exceed their respective thresholds kx and
ky. Then the values assigned by the clock-valuations ν and ν′ must agree on
the relationship with respect to the diagonal lines. This can be formalized by
requiring that the ordering of the fractional parts of x and y must be identical
according to the clock-valuations ν and ν′. For example, in figure 7.24, in each
square, for the clock-valuations on the diagonal line, the fractional parts of the
clocks x and y are equal; for the clock-valuations in the lower triangle, the
fractional part of the clock x exceeds that of the clock y; and for the clock-
valuations in the upper triangle, the fractional part of the clock y exceeds that
of the clock x.

Two states are region-equivalent if they assign the same values to all the discrete
variables and, thus, have identical discrete states, and their clock-valuations are
region equivalent. This definition of the region equivalence is captured below.

Region Equivalence

Given a timed automaton TP, for each clock variable x, let kx be the
largest integer constant that the variable x is compared with in the atomic
constraints appearing in the guards, update descriptions, and the clock-
invariant of the automaton TP. Two clock-valuations ν and ν′ of the timed
automaton TP are said to be region-equivalent if the following conditions
hold:

1. for every clock variable x and for every integer 0 ≤ d ≤ kx, ν(x) = d
if and only if ν′(x) = d and ν(x) < d if and only if ν′(x) < d; and

2. for every pair of clock variables x and y such that ν(x) ≤ kx and
ν(y) ≤ ky, the fractional part of ν(x) is less than or equal to the
fractional part of ν(y) if and only if the fractional part of ν′(x) is less
than or equal to the fractional part of ν′(y).

Two states s = (t, ν) and s′ = (t′, ν′) of the timed automaton TP are said
to be region-equivalent if (1) the discrete states t and t′ are the same, and
(2) the clock-valuations ν and ν′ are region-equivalent.

When a process has three clocks, the desired partitioning is obtained by creating

Timed Model 323

a three-dimensional grid using axis-parallel planes up to a certain relevant con-
stant on each axis. If we consider a cube given by (0 < x < 1) and (0 < y < 1)
and (0 < z < 1), then it is further split by diagonal planes into multiple cells.
Examples of such clock regions include (x < y < z), (x = y < z), (x = y = z),
and (y < x = z). Each such clock region can be described by giving the relative
ordering of the fractional parts of the three clocks.

As illustrated in figure 7.24, if two states s and t are region-equivalent, then the
transition from one state can be matched by a transition from the other such
that the resulting states continue to be region-equivalent. This is formalized by
the following theorem:

Theorem 7.1 [Region Equivalence] Consider a timed automaton TP and two
states s and t of the automaton TP such that s and t are region-equivalent. Then
(1) if s

α−→ s′ is an input, or output, or internal action of TP, then there exists

a state t′ such that t
α−→ t′ holds and states s′ and t′ are region-equivalent; and

(2) for every real-valued time duration δ > 0 such that s
δ−→ s + δ is a timed

action of TP, there exists a duration δ′ > 0 such that s′ δ′−→ s′ + δ′ is a timed
action of TP and the states s+ δ and s′ + δ′ are region-equivalent.

Proof. Let TP be a timed automaton. Consider two states s and t that are
region-equivalent. We want to prove that every input/output/internal/timed
action from the state s can be matched by a corresponding action from the
state t such that the target states continue to be region-equivalent.

Observe that if two states are region-equivalent, then every expression that
appears in the guard or update code of the automaton has the same value in
both states.

Consider an internal action obtained by executing an internal task A with
the guard condition Guard and update code Update from the state s. Since
s(Guard) = t(Guard), the task A is enabled in the state t also. Now consider
the execution of the update code in the two region-equivalent states s and t.
At every step of the execution, a conditional expression evaluates to the same
value in both states. Executing an assignment of the form y := e, for a discrete
variable y, preserves the region-equivalence. If a statement involves a nondeter-
ministic choice, then it can be resolved exactly the same way in both executions.
Furthermore, executing an assignment to a clock variable of the form x := 0
preserves the region-equivalence: it is easy to establish that whenever two clock-
valuations ν and ν′ are region-equivalent, so are the clock-valuations ν[x �→ 0]
and ν′[x �→ 0]. It follows that if the execution of the update code Update start-
ing from the states s and t results in the states s′ and t′, respectively, then it
must be the case that states s′ and t′ are region-equivalent.

The case of input and output actions is similar.

Consider a timed action s
δ−→ s′ where s′ = s + δ for δ > 0. Suppose the

choice of the duration δ is such that for every 0 ≤ ε ≤ δ, the state s + ε is

324 Chapter 7

region-equivalent to either the starting state s or the end-state s′ (that is, the
time duration is short enough so that multiple regions are not encountered along
the way). We want to find a duration δ′ so that the states s+ δ and t+ δ′ are
region-equivalent.

Let us say that a clock x is integral in the state s if s(x) is an integer value not
greater than the threshold kx. Similarly, a clock x is fractional in the state s
if s(x) is not an integer (and thus has a nonzero fractional part) and does not
exceed the threshold kx.

Suppose in the state s there is some clock, say x, that is integral. Then for any
ε > 0, in the state s + ε, the value of the clock x is no longer an integer, and
such a state is not region-equivalent to s and, by assumption, must be region-
equivalent to s′. Among all the clocks that are fractional in the state s, let y be
the clock whose fractional part is the highest in the state s, and let εs be this
fractional value (if there are multiple choices for y with equal fractional values,
then we can choose any of them, and if there is no fractional clock in the state
s, then this has to be handled as a separate simpler case). Then starting in the
state s, if we let 1− εs time elapse, then the clock y will have an integer value,
and the resulting state will no longer be region-equivalent to s′. Thus it must
be the case that 0 < δ < εs. Since the state t is region-equivalent to the state
s, it agrees with the state s in terms of which clocks have integer values, which
have fractional values, and the relative ordering of these fractional values. In
particular, the clock x has an integer value in the state t also, and for any small
ε > 0, the state t + ε is no longer region-equivalent to t. Furthermore, among
the fractional clocks in the state t, the clock y has the highest fractional value,
and let this fraction be εt. Then verify that for every 0 < δ′ < εt, the state
t+ δ′ is region-equivalent to the state s+ δ, and thus the desired duration can
be any value in the interval (0, εt).

Now suppose there is no integral clock in the state s, but there is a fractional
clock. Then let x be the clock with the highest fractional part, denoted εs. Then
starting in the state s, as time elapses, the state stays region-equivalent to the
state s for any duration less than 1− εs, and at time 1− εs, the clock x becomes
an integer, triggering a change in the region. In this case, the duration δ must
be equal to 1− εs. Now the state t exhibits a similar behavior. If εt denotes the
fractional part of the clock x in the state t, then we can choose δ′ = 1− εt and
verify that the state t+ δ′ is region-equivalent to the state s′.

When the state s has no integral or fractional clocks, the value of each clock
x already exceeds the threshold kx. In this case, for all values of δ and δ′, the
states s, s+ δ, t, and t+ δ′ are all region-equivalent.

Thus, the proof is complete for the case that the delay δ is short enough so that
the states s and s + δ belong to adjacent regions. As exercise 7.13 establishes,
in the general case, a timed action of duration δ can be split into a sequence of
timed actions such that the duration of each part is short enough: there exist
states s = s0, s1, . . . sn = s′ and delays δ1, . . . δn with δ1 + · · · + δn = δ such

Timed Model 325

that for each i, si = si−1 + δi and for every 0 ≤ ε ≤ δi, the state si−1 + ε
is region-equivalent to either si−1 or si. Then starting from the state t0 = t
that is region-equivalent to the state s0 = s, by applying the argument above
n times, we can find delays δ′1, . . . δ

′
n and states ti = ti−1 + δ′i such that each

state ti is region-equivalent to si. Thus, the desired duration δ′ is the sum
δ′1 + · · · + δ′n, and this ensures that the state t+ δ′ is region-equivalent to the
state s′ = sn = s+ δ.

Let us now establish a bound on the number of clock regions. For a clock
variable x, a clock region specifies whether the value of the clock x equals an
integer d, where the possible choices of d are 0, 1, . . . kx, whether the value of the
clock x exceeds kx, or whether the value of the clock x is strictly between the
integers d− 1 and d, where the possible choices of d are 1, 2, . . . kx. This gives a
total of 2kx + 2 choices in terms of the constraint for the clock x. This means
that the total number of partitions due to the axis-parallel constraints is given
by the product Πx(2kx + 2). In terms of the ordering of the fractional parts,
if the timed automaton has m clock variables, then we get m! many possible
orderings. Finally, for every pair of adjacent clock variables x and y in such an
ordering, the clock region makes a distinction based on whether the fractional
part of the clock x is strictly smaller than that of the clock y or whether the two
coincide. This gives additional 2m choices. Altogether the number of possible
clock regions is at most 2m · m! · Πx(2kx + 2). This bound is not precise.
In particular, this calculation considers orderings of fractional parts of all the
clocks in every region, but when a clock x equals an integer d, its fractional part
is guaranteed to be 0, and thus the actual number of clock regions is smaller
than this bound. However, this bound is useful to get an understanding of how
the number of clock regions varies: this number grows exponentially with the
number of clocks and grows proportional to the product of the constants used
in the description.

Search Using Region Equivalence

We have studied how region equivalence can be used to partition the infinite
space of clock valuations into finitely many clock regions. We can now adopt
the on-the-fly depth-first search enumerative algorithm for reachability of fig-
ure 3.16 to timed automata. Instead of enumerating states, the algorithm now
enumerates regions, where each region specifies a discrete state and a clock
region.

Figure 7.25 shows some of the regions that are found to be reachable for the
timed automaton of figure 7.23. The initial region is described by [A, x = y = 0],
which consists of a single state with the mode A and the clock region correspond-
ing to the single clock-valuation (0, 0). In this region, the state can change in
two ways: either due to the input event b, leading to the region described by
[B, x = y = 0], or due to a timed action of duration at most 2, leading to one
of the regions [A, 0 < x = y < 1], [A, x = y = 1], or [A, 1 < x < 2, y > 1]. Edges
corresponding to successors due to timed actions are labeled with the symbol

326 Chapter 7

A,0 < x = y < 1

A, x = 0, y > 1B, 0 = y < x < 1 B, x = 1, y = 0

B, 1 < x < 2, y = 0A, x = y = 0 A, x = 0, y = 1

B, 0 < x = y < 1

B, x = y = 1

A, 1 < x < 2, y > 1

τ

b?
b?

a!

τ τ τ a!

b?τ τ
b?

A, x = y = 1
ττ

τ

τ

B, x = y = 0

Figure 7.25: Search Using Clock Regions

τ in figure 7.25. This figure shows successors of each of these four regions. For
example, consider the region [A, 1 < x < 2, y > 1]. If the input event b occurs,
then the mode changes to B and the clock y gets reset, leading to the region
[B, 1 < x < 2, y = 0]. Since the guard (x ≥ 1) is enabled, the output event a can
be issued, and this resets the clock x, leading to the region [A, x = 0, y > 1]. The
third possibility is a timed action. Given a state s that satisfies the constraints
(1 < x < 2) and (y > 1), we can find a time duration δ > 0 such that the state
s+δ also satisfies the constraints (1 < x < 2) and (y > 1), and this explains the
τ -labeled self-loop on the region [A, 1 < x < 2, y > 1]. Due to the clock-invariant
(x < 2), the region [A, x = 2, y > 1] is not reachable using a timed action.

Recall the two illustrative executions for the timed automaton for figure 7.23
such that at every step, the corresponding states were region-equivalent. Both
of these executions correspond to the following execution that records regions
instead of concrete states:

[A, x = y = 0]
τ−→ [A, 0 < x = y < 1]

b?−→ [B, 0 < x < 1, y = 0]
τ−→ [B, 0 < y < 1 < x < y+ 1]

c!−→ [A, 0 < y < 1 < x < y+ 1]
τ−→ [A, 0 < y < 1 < x < y+ 1]

a!−→ [A, x = 0 < y < 1]
τ−→ [A, 1 < x < 2 < y]

τ−→ [A, 1 < x < 2 < y].

In this example, there are two discrete states (the mode can be either A or B),
and there are at most 28 clock regions as shown in figure 7.24. This implies
that the depth-first search algorithm can explore only 56 possible regions. In
general, if the types of variables that are not clocks are finite, then there are
only finitely many discrete states, and hence only finitely many regions, and the
depth-first search algorithm exploring regions is guaranteed to terminate.

Given a property ϕ of a timed automaton TP, which in general is a Boolean
expression over its state variables, when can we use the search over regions to
determine whether the property ϕ is an invariant of the automaton TP? If the
property ϕ refers only to discrete variables, then since the search over regions

Timed Model 327

keeps track of the discrete state, it is adequate to check if the property ϕ holds
in every reachable region. If the property refers to the clock variables also, then
the region-based search is adequate as long as these references are consistent
with the partitioning, that is, every atomic constraint involving clock variables
in the property ϕ is of the form x ≤ d or x ≥ d for some integer constant d ≤ kx.
In other words, let ϕ be a property such that whenever two states s and t are
region-equivalent, either both states s and t satisfy ϕ or both do not satisfy
ϕ. Hence, such a property ϕ is called a region-invariant property. For such a
region-invariant property ϕ, to check whether all reachable states of the timed
automaton satisfy ϕ, it suffices to check whether all reachable regions satisfy ϕ
using a search over regions.

The analysis for timed automata can be easily adopted to handle rational con-
stants. In the audio control protocol of section 7.2.2, the model has constraints
of the form (5− 5ε ≤ y ≤ 5 + 5ε), where ε is a rational-valued constant such as
1/15. To handle such models, we can simply multiply all constants by a factor
of 15 to make them integers without changing the executions that are possible
in the model.

We conclude this section by noting that defining region-equivalence, and using
the resulting equivalence classes for analysis (more specifically, for depth-first
search), is an instance of the general concept of abstraction. Concrete states
such as 〈A, 0.2, 0.3〉 are replaced by regions such as [A, 0 < x < y < 1]. Such
a mapping removes some details and, hence, is called an abstraction, and the
regions are called abstract states. Since many concrete states get mapped to
the same abstract state, searching through abstract states is more efficient.
Theorem 7.1 says that, in the case of timed automata, this specific abstraction
using regions retains enough information so that a search over the abstract
states accurately captures which sequences of input-output events are feasible
and whether a region-invariant property is an invariant of the system.

Exercise 7.11 : Consider the timed automaton of figure 7.23. List all possible
regions that are successors of the region [A, x = 0, y > 1] and all possible regions
that are successors of the region [B, 0 < x = y < 1].

Exercise 7.12 : Consider a timed automaton with 3 clocks x, y, and z, with
kx = ky = kz = 1. List all possible clock regions for this automaton.

Exercise 7.13*: Prove that every timed action in a timed automaton can be
split into a sequence of timed actions such that during every subaction, the
state is region-equivalent to either the start or the end state of this subaction.
Formally, consider a state s of a timed automaton and a duration δ. Prove
that there exist states s = s0, s1, . . . sn = s + δ and delays δ1, . . . δn with
δ1 + · · · + δn = δ such that for each i, si = si−1 + δi, and for every 0 ≤ ε ≤ δi,
the state si−1 + ε is region-equivalent to either si−1 or si. Find a bound b as a
function of the number m of the clock variables of the automaton so that every
timed action can be split into at most b subactions of this desired form?

328 Chapter 7

E

F

D

C

x1 ≤ 8

B

x1 ≤ 7
A

x1 ≤ 5

(x1 ≤ 4)?

(x2 ≥ 6)?

(x1 = 7)?

(x1 ≥ 3)→ x2 := 0 (x2 ≥ 2)?clock x1, x2 := 0

Figure 7.26: Example for Analyzing Timing Feasibility of Executions

Exercise 7.14*: Suppose we modify the definition of a timed automaton so
that clock variables can be reset to constant values (that is, for a clock variable
x, the allowed assignments are of the form x := d, where d is a non-negative
integer constant), and tests can also compare differences of clock variables with
constants (that is, each atomic expression involving clock variables is of the
form x ≤ k, x ≥ k, or x − y ≤ k, where k is an integer constant). How
would you modify the definition of the region-equivalence over clock valuations
so that there are only finitely many clock regions, and the analog of theorem 7.1
continues to hold?

7.3.3 Matrix-Based Representation for Symbolic Analysis

Region equivalence allows partitioning of the infinite space of clock-valuations
into finitely many regions, and we have seen how it can be used for invariant
verification of timed automata using a search algorithm that enumerates all
reachable regions. While theorem 7.1 implies that it is sufficient to keep track
of clock regions to verify region-invariant properties, such a fine partitioning
may not be necessary to solve a particular invariant verification problem. For
example, consider the search for reachable regions from the initial region [A, x =
y = 0] shown in figure 7.25. Instead of enumerating the three regions [A, 0 <
x = y < 1], [A, x = y = 1], and [A, 1 < x < 2, y > 1], which are successors of the
initial region corresponding to timed actions, we can represent the result of a
timed action from the initial region by the single set [A, 0 < x = y < 2]. In this
section, we consider a symbolic representation called clock zones that allows
analyzing clock regions in clusters instead of enumerating them in a manner
that allows an efficient representation and manipulation.

Example of Timing Analysis Using Clock Zones

To explain the symbolic analysis technique, let us consider the timed automaton
shown in figure 7.26. Examination of timing constraints reveals that the mode
D is not reachable, that is, the path A, B, C, D cannot be traversed. Similarly,

Timed Model 329

x1 = 0
x2 = 0

x1 − x2 = 0

Clock-zone R0

3 ≤ x1 ≤ 5
x2 = 0

3 ≤ x1 − x2 ≤ 5

Clock-zone R2

5 ≤ x1 ≤ 7
2 ≤ x2 ≤ 4

3 ≤ x1 − x2 ≤ 5

Clock-zone R4

E

F

D

C

x1 ≤ 8

B

x1 ≤ 7
A

x1 ≤ 5

(x1 ≤ 4)?

5 ≤ x1 ≤ 8
2 ≤ x2 ≤ 5

3 ≤ x1 − x2 ≤ 5

Clock-zone R5

0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5
x1 − x2 = 0

Clock-zone R1

3 ≤ x1 ≤ 7
0 ≤ x2 ≤ 4

3 ≤ x1 − x2 ≤ 5

Clock-zone R3

(x2 ≥ 6)?

(x1 = 7)?

(x1 ≥ 3)→ x2 := 0 (x2 ≥ 2)?clock x1, x2 := 0

Figure 7.27: Inferring and Propagating Clock Constraints

the mode E cannot be reached, but it is possible to reach the mode F. This is
not evident by a local examination of the constraints on the clock values in the
clock-invariant of the mode C and the guards associated with the switches out of
the mode C but is based on the implied constraints on the values of the clocks x1
and x2 when an execution reaches the mode C. This is illustrative of the nature
of analysis that is needed to check whether the timing-based mutual exclusion
protocol satisfies the mutual exclusion requirement: in the parallel composition
of multiple instances of the timed process of figure 7.9, is it possible to reach the
state with two processes in the mode Crit while satisfying the timing constraints
imposed by the guards and the clock-invariants at every step?

A state in this example consists of the mode that takes values from the enumer-
ated set {A, B, C, D, E, F} and the values for the clock variables x1 and x2, each
of which can be a non-negative real number. We can use finite-state analysis
by partitioning the space of clock-valuations into clock regions, but for the au-
tomaton of figure 7.26, k1 = 7 and k2 = 6, and as a result, there are many clock
regions (140, to be precise), and we wish to avoid considering all such clock
regions individually. For this purpose, we generalize the notion of a clock re-
gion to a clock zone, which is a set of clock-valuations that is represented using
constraints of a particular form over the variables x1 and x2, namely, bounds on
the values of individual clock variables and bounds on the differences between
the values of clock variables.

Initially, both clocks are 0, and this leads to the constraint

(x1 = 0) ∧ (x2 = 0) ∧ (x1 − x2 = 0).

This is shown as the clock zone R0 in figure 7.27. Given that the set of clock-
valuations upon entry to the mode A is described by the constraints R0, we can
calculate the set of clock-valuations that can be reached using timed actions as
the process waits in the mode A. The value of the clock x1 increases but cannot

330 Chapter 7

x2 = 4

x2 = 2

x2 = 0

x1 = 7x1 = 0 x1 = 5x1 = 3

R4

R2

x1 − x2 = 5

x1 − x2 = 3

Figure 7.28: Illustrating Clock Zone Manipulations

exceed 5 due to the clock-invariant associated with the mode, and this gives
the constraint 0 ≤ x1 ≤ 5. Observe that during timed actions, the difference in
the clock values stays unchanged, so the constraint (x1− x2 = 0) from R0 stays
unchanged. These two constraints imply bounds on the value of the clock x2,
and this gives the description of the clock zone R1:

(0 ≤ x1 ≤ 5) ∧ (0 ≤ x2 ≤ 5) ∧ (x1 − x2 = 0).

Note that the clock zone R1 consists of multiple clock regions such as the corner
point x1 = x2 = 3 and the line segment 3 < x1 = x2 < 4. Also observe that the
number of clock regions that can be reached from the clock zone R0 due to a
timed action is proportional to the constant 5 appearing in the clock-invariant
of the mode A, while there is always a single clock zone that captures all the
clock-valuations that are reachable using a timed action starting in the clock
zone R0.

The set R2 describing the set of clock-valuations upon entry to the mode B is
calculated from the clock zone R1 by intersecting it with the guard condition
(x1 ≥ 3) and setting the clock x2 to 0 to capture the effect of the assignment.
The desired clock zone R2 is described by the constraints:

(3 ≤ x1 ≤ 5) ∧ (x2 = 0) ∧ (3 ≤ x1 − x2 ≤ 5).

Again notice the implied constraint (3 ≤ x1 − x2 ≤ 5).

This process can be repeatedly applied. The clock zone R3 describes the set
of clock-valuations that are reachable as time elapses in the mode B, and the
clock zone R4 describes the set of clock-valuations upon entry to the mode C.
To get some intuition about this calculation, see figure 7.28. The clock zone
R2 is the segment of the line x2 = 0 between x1 = 3 and x1 = 5. As time

Timed Model 331

evolves, this line segment moves diagonally between the lines (x1 − x2 = 3) and
(x1−x2 = 5). The vertical line x1 = 7 captures the clock-invariant and restricts
the reachable clock-valuations in the mode B. The clock zone R3 is thus the
trapezoid between the lines (x2 = 0), (x1 = 7), (x1−x2 = 3), and (x1−x2 = 5).
The guard condition of the mode-switch from the mode B to the mode C means
that this trapezoid should be intersected with the constraint (x2 ≥ 2), leading
to the triangular clock zone R4.

The clock zone R5 describes the set of clock-valuations that are reachable as
time elapses in the mode C (see figure 7.27) and is described by the constraints:

(5 ≤ x1 ≤ 8) ∧ (2 ≤ x2 ≤ 5) ∧ (3 ≤ x1 − x2 ≤ 5).

This accurately captures the cumulative effect of timing constraints along the
path leading to the mode C. Intersection of this clock zone with the guard
condition (x2 ≥ 6) on the switch to the mode D is the empty set, and this
establishes that the mode D is unreachable. Similarly, the intersection of the
clock zone R5 with the guard condition (x1 ≤ 4) is also the empty set, and so
the mode E cannot be reached. Intersecting the set R5 with the guard condition
(x1 = 7) gives a non-empty set, namely, (x1 = 7) ∧ (2 ≤ x2 ≤ 4), that describes
the set of clock-valuations upon entry to the mode F.

Difference Bounds Matrices

The most natural way of representing the constraints that arise during timing
analysis is using a matrix-based representation. Let us assume that the timed
automaton has m clock variables: x1, x2, . . . xm. We use a dummy clock x0 that
is assumed to represent the constant 0. Then a clock zone is represented by a
square matrix R of dimension m+ 1: the (i, j)th entry of the matrix gives the
upper bound on the difference (xi − xj).

We use the symbolic constant ∞ to denote a large value, and this is used to
represent absence of a bound. More specifically, let Bounds be the set int

of integers together with the symbolic constant ∞. The usual operations of
comparison, minimum, and addition over integers are extended to the set Bounds
in the following way: for every integer n, n ≤ ∞ holds and min(n,∞) = n and
n+∞ =∞.

A clock zone is represented by a square matrix R of dimension (m + 1), with
entries in Bounds, which represents the conjunction of constraints

∧
0≤i≤m,0≤j≤m

(xi − xj) ≤ Rij .

The column 0 (that is, the entries Ri0) gives the upper bounds on the clocks xi,
and the row 0 (that is, the entries R0i) gives the upper bounds on the values
of −xi (and thus, the negations of these entries capture lower bounds on the
clocks xi). Such a matrix representing bounds on the differences of clock values
is called a difference bounds matrix (DBM).

332 Chapter 7

Going back to our example from figure 7.27, the clock zone R1 is represented
by the following DBM: ⎡

⎣ 0 0 0
5 0 0
5 0 0

⎤
⎦

and the clock zone R5 is represented by the following DBM:

⎡
⎣ 0 −5 −2

8 0 5
5 −3 0

⎤
⎦ .

Note that a lower bound of 5 on x1 shows up as the upper bound −5 on −x1 in
the first row, and a lower bound of 3 on (x1− x2) shows up as the upper bound
of -3 on the difference (x2 − x1).

The representation (and the zone-based analysis of the example) discussed so
far assumes that constraints on the clock values do not occur inside negation.
A negated constraint such as ¬(x1 ≥ 2) is equivalent to the strict inequality
(x1 < 2). In the presence of such constraints, we need to distinguish between
a non-strict upper bound of 2 (generated by the constraint x1 ≤ 2) and a
strict upper bound of 2 (generated by the constraint x1 < 2). This requires
tagging each integral bound with a Boolean flag that indicates whether the
associated constraint is strict or non-strict. The representation using DBMs and
the techniques for manipulating DBMs can be adopted to handle this distinction
(see exercise 7.19).

DBM Manipulation

The key insight regarding algorithmic and efficient inference of constraints (which
is necessary to derive the constraint (x2 ≤ 5) from the constraints (x1 ≤ 5)
and (x1 − x2 = 0) in the description of the clock zone R1 in our example in
figure 7.27) is the following. Since the entry Ril is an upper bound on the dif-
ference (xi−xl) and the entry Rlj is an upper bound on the difference (xl−xj),
the sum (Ril + Rlj) is an inferred upper bound on the difference (xi − xj). If
the entry Rij is larger than the sum (Ril +Rlj), then we can tighten the upper
bound Rij by replacing it with the inferred bound (Ril +Rlj).

The DBM R is said to be canonical if and only if

for all 0 ≤ i, j, l ≤ m, Rij ≤ (Ril +Rlj).

That is, in a canonical matrix, every entry Rij represents the tightest bound
that can be inferred on the difference (xi− xj). Figure 7.29 shows an algorithm
that computes the canonical version of an input DBM.

The tightening of upper bounds and the computation of the algorithm can be
readily understood by an alternative view of the DBM as a weighted directed
graph. Consider the graph with m+ 1 vertices x0, x1, . . . xm. For every pair of

Timed Model 333

Input: (m+ 1)× (m+ 1) DBM R with entries in Bounds.
Output: Empty if R is empty, else canonical version of R.

for l = 0 to m {
for i = 0 to m {
for j = 0 to m {
R[i, j] := min (R[i, j], R[i, l] +R[l, j])

};
if R[i, i] < 0 then return Empty

}
}
return R.

Figure 7.29: Algorithm for Canonicalization of DBMs

vertices xi and xj , there is an edge from the vertex xi to the vertex xj whose
cost is equal to the entry Rij . Adding the entries Ril and Rlj gives the cost of
a path from the vertex xi to the vertex xj consisting of two edges. If this cost is
smaller than the cost of the direct edge from xi to xj , then we can replace the
cost of this edge by the smaller value. In general, the path with the smallest cost
between two vertices gives the tightest upper bound on the difference between
the corresponding clocks. Then a DBM can be converted into a canonical one
by executing the shortest path algorithm (or, equivalently, the transitive closure
construction) on the matrix. The algorithm of figure 7.29 is indeed the classical
Floyd-Warshall shortest-path algorithm. In the outer-most loop, the value of
the variable l changes from 0 to m, and at every iteration, for all pairs (i, j),
the entry R[i, j] captures the shortest path from the vertex xi to the vertex xj
using only vertices indexed ≤ l, that is, the tightest upper bound on (xi − xj)
using constraints that involve variables with indices ≤ l.

As an example, suppose m = 3 and consider the clock zone given by the con-
straints

(1 ≤ x1 ≤ 3) ∧ (x2 ≥ 0) ∧ (0 ≤ x3 ≤ 3) ∧ (x2 − x3 = 1) ∧ (x2 − x1 ≥ 2).

Translating these constraints to the DBM representation gives the matrix R:

⎡
⎢⎢⎣

0 −1 0 0
3 0 −2 ∞
∞ ∞ 0 1
3 ∞ −1 0

⎤
⎥⎥⎦ .

The corresponding graph representation is shown in figure 7.30 on the left. Note
that whenever a matrix entry is ∞, the corresponding edge is not shown as this
indicates absence of a constraint. Also, self-loops with cost 0 are not shown.

334 Chapter 7

x0 x1

x3 x2

0 3 −20 30 −23

−1
3

1

−1x3 x2

x1x0

−1

3

1

−1 −1

2

−3
4

Figure 7.30: Illustrating Canonicalization

The result of canonicalization leads to the matrix⎡
⎢⎢⎣

0 −1 −3 −2
2 0 −2 −1
4 3 0 1
3 2 −1 0

⎤
⎥⎥⎦ .

This matrix corresponds to the graph on the right in figure 7.30. Verify that for
the graph on the right, the cost of an edge between a pair of vertices corresponds
to the shortest (in terms of total cost) path between those two vertices in the
left graph (for example, the shortest path from the vertex x1 to the vertex x0
is the path x1, x2, x3, x0 and has cost −2 + 1 + 3 = 2).

The algorithm for canonicalization also needs to address the following ques-
tion: given a DBM R, is the conjunction of all the constraints represented by
R satisfiable? It turns out that the matrix R represents an unsatisfiable set
of constraints, and thus the empty set of clock valuations precisely when the
corresponding graph has a cycle with a negative cost. For example, consider the
constraints (x1 ≥ 1) and (x2 ≤ 2) and 2 ≤ (x1 − x2) ≤ 3. These constraints are
unsatisfiable, corresponding to the empty clock zone. In the DBM representa-
tion, due to the first constraint, we set R01 to −1; due to the second constraint,
we set R20 to 2; and the third constraint gives R12 = −2 and R21 = 3. Adding
up R01 and R12 implies that R02 must be tightened to −3, and adding up R02

and R20 then implies that R00 must be tightened to −1. In the graph view, the
edge with cost −1 from x0 to x1, the edge with cost −2 from x1 to x2, and the
edge with cost 2 from x2 to x0 form a cycle with a total cost that is negative.
In such a case, repeating this cycle lowers the cost further and further, and
the DBM cannot be made canonical. In the algorithm of figure 7.29, if some
entry Rii is lowered from 0 to some negative value, the algorithm has detected
a cycle with a negative cost and returns with the answer that the input DBM
corresponds to the empty clock zone. If the input DBM represents a non-empty
clock zone, then the algorithm tightens all the entries as much as possible, and
the output DBM is the canonical version of the input DBM.

Let us consider some operations that are useful on DBMs.

Timed Model 335

• Atomic constraints: Consider an atomic constraint (xi ≤ k) for a con-
stant k. To obtain the DBM R representing this constraint, we first set
all the diagonal entries Rjj to 0, for 0 ≤ j ≤ m; set the entry Ri0 to k to
reflect the upper bound on the difference (xi − x0); set the entry R0j to
0, for 0 ≤ j ≤ m, to reflect the implicit assumption that (xj ≥ 0) holds
for every clock variable; and set all the remaining entries Rjl to ∞ to
indicate absence of explicitly stated bounds. We then use the algorithm
of figure 7.29 to convert this DBM into a canonical one.

• Intersection: Consider two DBMs R and R′ both in canonical forms. To
compute the intersection of the clock zones represented by these matrices,
we simply set the (i, j)th entry of the result to be the minimum of Rij and
R′

ij . Then, we can test if the resulting matrix is empty, and if not, make
it canonical using the algorithm of figure 7.29. The intersection operation
is useful for capturing the effect of clock-invariants and of tests in guards
appearing on mode-switches.

• Time elapse: Given a canonical DBM R representing a clock zone, to
compute the set of clock-valuations that can be reached starting in the set
R using timed actions (without accounting for the upper bounds imposed
by the clock-invariants), we simply set the entry Ri0, for 1 ≤ i ≤ m, to∞.
As time elapses, clock values increase, so the upper bounds on individual
clock values are changed to∞. Lower bounds on clock values and bounds
on differences on clocks do not change because of timed actions.

• Clock reset: Given a canonical DBM R and a clock xi, for 1 ≤ i ≤ m,
we can define an operation on the DBM so that the result captures the
set of clock-valuations that can be obtained by assigning the clock xi to 0
starting from a clock-valuation in R (see exercise 7.17 to develop details
of this operation).

• Subset test: If R and R′ are two canonical (non-empty) DBMs, then
the clock zone represented by the DBM R is a subset of the clock zone
represented by the DBM R′ precisely when for every 0 ≤ i, j ≤ m, Rij ≤
R′

ij . In particular, two canonical (non-empty) DBMs represent the same
clock zone precisely when all of their respective entries match.

Reachability Analysis

To verify safety requirements of timed systems, we can now adopt the on-the-
fly depth-first search algorithm of section 3.3 using clock zones. A zone is now
represented as a pair (s,R), where the discrete state s records the values of all
the discrete variables and R is a non-empty canonical DBM that captures a set
of clock-valuations. The basic search mechanism stays the same. In particular,
zones are explored and examined on demand, and the algorithm terminates as
soon as a violation of the safety property is encountered. As in the case of the
search using clock regions, the clustering of clock-valuations using clock zones
is adequate as long as the property being checked is region-invariant.

336 Chapter 7

For a zone (s,R), one possible successor zone is obtained by considering the
effect of letting time elapse using a timed action. For this purpose, the algo-
rithm first intersects the DBM R with the clock-invariant corresponding to the
discrete state s, updates the matrix R to reflect elapse of time (by setting the
entries in the 0-th column to ∞), and then again intersects it with the clock-
invariant corresponding to the discrete state s. Note that the clock-invariant
corresponding to each discrete state s also needs to be represented as a DBM,
and such a DBM can be obtained using the constructions corresponding to
atomic constraints and intersection. At every step, the resulting DBM is tested
for emptiness and, if non-empty, is made canonical.

For a zone (s,R), the successor corresponding to a discrete transition, that is,
execution of either an input, an output, or an internal task, is computed using
the following steps. First, we compute the intersection of the DBM R and the
DBM that captures the constraints on clock values for the guard condition of
the corresponding task. If this intersection is an empty set, then this task is
not enabled; otherwise the resulting DBM is made canonical. Then the discrete
state s for the discrete variables is updated according to the update description
of the task. If the update involves setting a clock variable to 0, then the clock
reset operation is applied to the DBM part.

Zones of the form (s,R) are stored in the hash-table Reach that contains the
zones visited so far. While examining a zone (s,R), the algorithm considers it
as visited if a zone of the form (s,R′), where the DBM R is a subset of the DBM
R′, has been visited before. To implement this check, given a discrete state s,
there needs to be an efficient way to access the set of all DBMs R such that the
zone (s,R) has been encountered before.

Observe that the search algorithm has a mix of enumerative and symbolic fla-
vors: discrete variables are processed by explicitly enumerating their values and
clock variables are manipulated using constraints represented as DBMs. For
finite-state timed automata, the number of choices for the discrete states s is
bounded a priori, and the zone-based search is guaranteed to terminate.

The search algorithm using clock zones is implemented in tools such as the
model checker Uppaal (see www.uppaal.com) with many optimizations. The
same ideas can also be applied to modify the nested depth-first search algorithm
of chapter 5 for checking liveness properties of timed systems.

Exercise 7.15 : Suppose a timed automaton has two clocks x1 and x2. Before
entering a mode A, suppose we know that (3 ≤ x1 ≤ 4) and (1 ≤ x1 − x2 ≤ 6)
and (x2 ≥ 0):

1. Show the DBM corresponding to the given constraints.

2. Is the DBM in part (1) canonical? If not, obtain an equivalent canonical
form.

Timed Model 337

x2 ≤ 3

A

x1 ≤ 5

x3 ≤ 6

B

x2 ≤ 2

C

x1 ≤ 8(x3 ≥ 2)→ x2 := 0clock x1, x2, x3 := 0 (x1 ≥ 3)→ x3 := 0

Figure 7.31: DBM Exercise

3. Suppose the clock-invariant of mode A is (x2 ≤ 5). Compute the canonical
DBM that captures the set of clock values that can be reached as the
process waits in mode A.

4. Consider a mode-switch out of mode A with guard (x1 ≥ 7) and update
x1 := 0. Compute the canonical DBM that captures the set of clock values
that are possible after taking this transition.

Exercise 7.16 : Consider the timed process shown in figure 7.31 with three
clocks. Compute the sets RA, R

′
A, RB , R

′
B , RC , and R′

C of clock values repre-
sented as canonical DBMs such that each of the DBMs RA, RB , RC captures
the possible clock values when the corresponding mode is entered, and each of
the DBMs R′

A, R
′
B , R

′
C captures the possible clock values as the process waits

in the corresponding mode.

Exercise 7.17 : Consider a non-empty canonical DBM R and an index 1 ≤
i ≤ m. Describe clearly how to compute the DBM R′ that captures the effect
of setting the clock xi to 0. That is, R′ should represent the set of all clock-
valuations v such that v = u[xi �→ 0] for some u ∈ R.

Exercise 7.18 : For m = 3, consider the constraints given by

x1 ≤ 3 ∧ x3 ≥ 1 ∧ 4 ≤ x1 − x2 ≤ 10 ∧ x1 − x3 ≤ 2 ∧ x3 − x2 ≤ 2.

Draw the weighted directed graph with four vertices that captures these con-
straints. Then draw the graph corresponding to the canonical DBM in which
the weights reflect the shortest paths in the original graph.

Exercise 7.19*: The DBMs we have discussed cannot capture strict inequali-
ties such as (x1 < 2). For this purpose, we can change the set Bounds to contain,
in addition to the symbolic constant ∞, pairs of the form (k, b), where k is an
integer and b is a Boolean value. The entries of the DBM now range over this
new type. Then to capture the constraint (x1 < 2), we set R10 to the value
(2, 0), and to capture the constraint (x1 ≤ 2), we set R10 to the value (2, 1).
The concepts such as tightening of bounds and canonicalization continue to
work provided we extend the operations of comparison, minimum, and addition
over this new set of bounds. Define these operations precisely. Over two clocks,

338 Chapter 7

consider the constraints (3 < x1 ≤ 6) and (1 ≤ x1−x2 < 4) and (x2 ≥ 0). Show
the DBM corresponding to these constraints. Is this DBM canonical? If not,
obtain an equivalent canonical form.

Bibliographic Notes

Since the 1980s, there have been many proposals for incorporating timing con-
straints in formal models of reactive computation (see, for instance, timed I/O
automata as an example of a well-developed model [KLSV10]). The model pre-
sented in this textbook is based on timed automata [AD94], which has been
studied extensively, resulting in a wealth of theoretical results and practical
applications.

The data structure of difference-bounds matrices for analysis of timing con-
straints was introduced in [Dil89], and the concept of regions for finite parti-
tioning of the state-space of timed models was introduced in [AD94]. Model
checkers that implement these analysis techniques include Kronos [HNSY94],
Red [Wan04], and Uppaal [LPY97], which now supports different forms of ef-
ficient analysis tools for real-time systems and has been used in industrial case
studies (see www.uppaal.org and [BDL+11]).

The mutual exclusion algorithm of figure 7.9 is due to Fischer (see [Lam87] and
[Lyn96] for solving distributed coordination problems relying on timing delays).
The formal modeling and analysis of the audio control protocol in section 7.2.2
is based on [HW95] (see [BGK+96] for an automated analysis of the protocol
using Uppaal). Applying formal methods to the design and verification of a
pacemaker is described as a challenge at sqrl.mcmaster.ca/pacemaker.html
(see also [LSC+12] for a survey of formal modeling and analysis of medical cyber-
physical systems). The pacemaker design in section 7.2.3 is based on [JPAM14].

8

Real-Time Scheduling

We have so far studied a model-based approach to the design and analysis of
embedded systems. In this chapter, we turn our attention to a key aspect
of implementing embedded systems so that the implementation exhibits the in-
tended timing behavior. As an example, consider the event-triggered component
MeasureSpeed of figure 2.30. To implement this component, whenever one of
the input events Second or Rotate is detected, the update code of its task needs
to be executed. While defining the execution semantics of synchronous models,
we assumed that a task executes instantaneously. Whether such an assumption
is justified for a given implementation depends on the answers to a number of
questions: How long does it take to execute the code of this task on the under-
lying processor? Does the task MeasureSpeed have its own dedicated processor,
or are multiple tasks sharing the same processor? Is the task MeasureSpeed

independent of the other tasks, or does it have to be executed only after some
other task has finished executing? The theory of real-time scheduling focuses
on the formalization of demands for processing time by different computational
tasks and general policies for allocating processing time so that these demands
are met. This subject has a rich history with applications to safety-critical em-
bedded systems as well as signal processing and multimedia systems. In this
chapter, we first introduce the most commonly occurring pattern for demand
for processing time and then study two classical and widely used algorithms for
real-time scheduling.

8.1 Scheduling Concepts

For the purpose of scheduling decisions concerning allocation of processing time,
the basic unit of computation is called a job. Examples of jobs include execution
of the task corresponding to the component MeasureSpeed of figure 2.30 and
execution of the code corresponding to a mode-switch in the sender process in
the timed audio control protocol of figure 7.13. In multimedia applications such
as processing of the incoming video stream, a job can correspond to decoding

340 Chapter 8

Scheduler

Job J ′

Idle

Wait

Running
preemptJ

runJ

doneJ

arriveJ

run ? preempt ?

done !

arrive !

Job J

Figure 8.1: Interaction between the Scheduler and the Jobs

of a video frame in an MPEG file, while in a real-time control application such
as avionics, a job can correspond to converting an analog signal from a sensor
to a discrete value meaningful to the control software.

8.1.1 Scheduler Architecture

Figure 8.1 shows a typical interaction pattern between the scheduler and dif-
ferent jobs. Each job J is an independent process that communicates with the
scheduler process responsible for allocation of processing time via events. The
illustration also shows an abstract view of how the status of a job changes as a
state machine.

Initially, a job J is in the mode Idle. When a job needs processing time, it
communicates with the scheduler using the event arriveJ , and its status changes
to Wait. When the scheduler decides to allocate the processor to the job J , it
notifies the job using the event runJ , and this changes its mode to Running.
When the current instance of the job J finishes its execution, it communicates
with the scheduler using the event doneJ and returns to the mode Idle. The
subsequent instance of the same job can now again request processing time using
the event arriveJ .

Real-Time Scheduling 341

When a job J is running, the scheduler may decide to preempt it before its
computation is finished and allocate the processor to another job J ′. The event
preemptJ switches the mode of the job J from Running to Wait, where it con-
tinues to wait for the scheduler to issue another runJ event.

The scheduler has two requirements. First, the processor can be allocated to
only one job at any point in time, and thus at most one job should be in
the mode Running at any time. Second, each instance of the job should get
“enough” computation time. To formalize this requirement, we need to know
the timing pattern of the arrivals of successive instances of each job, how much
computation time each job instance needs, and by when each instance needs to
finish its execution.

The model of timed processes studied in chapter 7 is rich enough to formalize the
arrival pattern and usage requirements for the jobs, the interaction between a job
and the scheduler, and the decision logic of the scheduler. However, in a typical
implementation, the scheduler is an integral part of the operating system and
has tight control over the execution of the jobs. Furthermore, the time needed
to execute the decision logic used by the scheduler is much smaller compared
with the demands for execution time by the jobs. As a result, we assume that
processing time is divided into discrete time slots. All the interaction between
the scheduler and all the jobs happens instantaneously at the beginning of each
time slot. The demand for processing time by each job is specified in units of
time slots (for example, by specifying the bounds on the number of time slots
between arrivals of successive instances of a job), and the allocation strategy of
the scheduler is completely specified by an assignment of time slots to the jobs.
Such an allocation scheme is called time-triggered allocation and is an example
of a computation model that is synchronous and timed. In this scheme, the
choice of the length of a single time slot—whether it is, for example, a second or
a millisecond, does not matter for designing resource-allocation policies as long
as all the parameters of all the jobs are specified using this length as the basic
time unit.

8.1.2 Periodic Job Model

A job model specifies the arrival pattern and usage requirements for the jobs.
The most common such job model is the periodic job model, in which the demand
for processing time is specified using three parameters: a period, a deadline, and
a worst-case execution time.

Period

In the periodic model, each job J has an associated period π(J), which is a
positive number. This specifies that the job J is to be executed periodically
every π(J) time units, that is, the event arriveJ is issued every π(J) time units
starting at time 0. Since a periodic job J is to be executed repeatedly, we use
the notation Ja, for every positive integer a, to denote the ath instance of the

342 Chapter 8

job. The ath instance of the job J is ready to be executed at time (a−1)∗π(J),
and this time is called the arrival time of the ath instance, denoted α(J, a).

Deadline

Each job J has an associated deadline δ(J), which is a positive number, that
specifies that each instance of the job must finish its execution within δ(J) time
units of its arrival. In other words, the delay between the occurrence of an
event arriveJ and the subsequent event doneJ should be bounded by δ(J) time
units. It is required that this relative deadline should not exceed the period: the
condition δ(J) ≤ π(J) should hold. Since the arrival time of the ath instance of
the job J is (a− 1) ∗ π(J), this instance should finish execution by the deadline
(a− 1) ∗ π(J) + δ(J), and we denote this absolute deadline for the ath instance
of the job J by δ(J, a). For example, if a job has period 5 and deadline 4, then
the arrival time of its third instance is 10, and the deadline for this instance is
14.

When the deadline equals the period, it means that each instance of the job
should finish executing before the arrival of the next instance. Such a deadline
is called an implicit deadline. While implicit deadlines are common, allowing a
deadline to be strictly smaller than the period allows specification of more strin-
gent timing requirements, as meeting such explicit deadlines implies improved
response time.

Worst-Case Execution Time

While the period specifies how often a job needs to be executed, and the deadline
specifies by when each job instance needs to finish executing, the (worst-case)
execution time specifies how long it takes to execute an instance of a job. Each
job J has an associated worst-case execution time (WCET) η(J), which is a
positive number, such that the execution of an instance of a job takes at most
η(J) time units. In other words, the job J is guaranteed to issue the event doneJ
if it spends a total cumulative time of η(J) time units in the mode Running

since the last occurrence of its arrival. Note that η(J) is an upper bound on
how long the computation corresponding to an instance of the job J can take
to execute on the given platform. The actual execution time may vary, but if
the scheduler allocates η(J) time units to an instance before its deadline, then
this allocation policy is safe. Since δ(J) specifies the deadline by which a job
instance should finish executing, if the WCET η(J) exceeds δ(J), then it is clear
that the deadline cannot be met. Henceforth, we will assume that the condition
η(J) ≤ δ(J) ≤ π(J) holds.

The three parameters η(J), δ(J), and π(J) together specify the requirement
that, for every positive integer a, the job J should be allowed to execute for a
total of η(J) time units between the arrival time α(J, a) = (a− 1) ∗ π(J) of the
instance Ja, and the deadline δ(J, a) = (a − 1) ∗ π(J) + δ(J) for this instance.
For example, if a job has period 5, deadline 4, and WCET 3, then it should

Real-Time Scheduling 343

be allocated three time units between times 0 and 4, three time units between
times 5 and 9, three time units between times 10 and 14, and so on.

Estimating WCET

The period and the deadline for a job follow from the design-time requirements
of a system. The WCET, however, is an artifact of the software implementation
and the execution platform, and we would like an analysis tool to derive this
bound automatically by analyzing the code. Deriving WCET bounds is an
active area of research with a variety of approaches. Let us review the basic
idea underlying the approach based on statically analyzing the code, that is,
by examining the syntactic structure of the code without actually having to
execute it.

Let us assume that the code corresponding to a job is loop-free and consists of
atomic assignment statements, conditional statements, and sequences of state-
ments. This is indeed the assumption we have been using for the update code
of tasks used in the earlier chapters. Suppose we know how to associate an ex-
ecution time η(stmt) with an atomic statement stmt of the form x := e and an
execution time η(e) for evaluating a Boolean expression e. Then the following
two rules can be used to associate the WCET with a block of code:

1. Sequencing: If a statement stmt is the sequence (stmt1; stmt2; . . . stmtl)
of l statements, then the execution time of stmt is the sum of execution
times of the component statements:

η(stmt) = η(stmt1) + η(stmt2) + · · ·+ η(stmtl).

2. Conditional statement: If a statement stmt is the conditional state-
ment (if e then stmt1 else stmt2), then the execution time of stmt is
the sum of the execution time of evaluating the test e and the maximum
of the execution times of the statements stmt1 and stmt2:

η(stmt) = η(e) + max { η(stmt1), η(stmt2) }.

To understand the rule for conditional statements, observe that to execute the
conditional statement, first the test e is evaluated, and then either of the two
statements stmt1 or stmt2 is executed depending on the result of the test. Since
we want to estimate an upper bound on the execution time statically, we simply
take the maximum of the estimated execution times for stmt1 and stmt2. As
an example, consider the code

x := y+ 1;
if (x > z) then y := z else {y := 0; z := x+ 1}.

Suppose the execution time of each of the assignment statements is c1, and the
execution time of evaluating the condition (x > z) is c2, then the execution time
of the above code is estimated to be 3c1 + c2.

344 Chapter 8

Thus, a WCET bound for straight-line code can be obtained from execution
times for assignment statements and for evaluating Boolean expressions. Let
us consider the assignment statement x := y + 1. The time it takes to execute
such an instruction depends on the specifics of the underlying architecture and,
particularly, how memory is organized. If the variables x and y are stored in
registers, then such an assignment maps to a single machine instruction and
executes in one clock cycle. In contrast, if the variables x and y reside in main
memory, then executing such an assignment requires fetching the value of y
from the main memory, incrementing a register, and then storing it back in the
memory. When an assignment involves such memory operations, its execution
time varies over a wide range depending on whether each relevant memory
address resides in the local cache or whether it resides in the main memory. If
we assume every read or write results in a cache-miss and leads to an access of
the main memory, then the resulting upper bound is likely to be too pessimistic
for useful analysis. In particular, for the code above, the variables x and y are
accessed multiple times, and only the first such access can lead to a cache-miss.
As this example illustrates, estimating an upper bound on the execution time
that (1) is not too pessimistic, (2) reflects the complexity of the underlying
architecture, (3) is guaranteed to be an upper bound on the actual execution
time in all cases, and (4) can be computed by statically analyzing the code with
reasonable computational effort is a challenging problem.

Periodic Job Model

A periodic job model then consists of a set of periodic jobs, where each job
is specified using a period, a deadline, and a bound on execution time. This
definition is summarized below.

Periodic job model

A periodic job model consists of a finite set J of jobs, where each job J has
an associated period π(J), deadline δ(J), and worst-case execution time
η(J), each of which is a positive integer, such that the condition η(J) ≤
δ(J) ≤ π(J) holds.

As an example, consider the job model consisting of two periodic jobs J1 and
J2: the job J1 has period 5, deadline 4, and WCET 3; and the job J2 has
period 3, deadline 3, and WCET 1. The scheduling problem then is to allocate
computation time to these two jobs so that for every a ≥ 0, the job J1 gets
three time units between times 5a and 5a+4, and the job J2 gets one time unit
between times 3a and 3a+ 3.

Exercise 8.1 : Consider the code

x := y+ 1;
if (x > z) then { if y > 1 then y := z} else {y := 0; z := x+ 1}.

Real-Time Scheduling 345

1 2 3 4 5 6 7 8 14 1511 12 131090

J1

J2

Figure 8.2: Illustrative Schedule for a Job Model with Two Jobs

Assuming that each atomic assignment statement takes c1 time units and eval-
uation of each Boolean expression used in the conditional tests takes c2 time
units, estimate the worst-case execution time of the above code.

8.1.3 Schedulability

A schedule specifies allocation of processing time to jobs, and the scheduling
problem is to find a schedule that meets the deadlines of all the jobs.

Schedules and Feasibility

As discussed earlier, the scheduler allocates processing time in discrete time
slots. A schedule σ for a periodic job model J specifies for every time t, for
t = 0, 1, 2, . . ., the job J ∈ J that is allocated the time slot starting at time t.
It is possible that a particular time slot is allocated to none of these jobs, and
we use ⊥ to indicate this possibility. Formally, a schedule σ is a function from
the set nat of natural numbers to the set J ∪ {⊥}: σ(t) = J means that the
time slot starting at time t is allocated to the job J , and σ(t) = ⊥ means that
the time slot starting at time t is not allocated to any of the jobs in the set J .
When σ(t) = ⊥, the processor can stay idle during this time slot or can be used
for computation not related to the system corresponding to this job model.

In this scheduling framework, the three parameters η(J), δ(J), and π(J) corre-
sponding to a periodic job J specify the requirement that, for every instance a,
the job J should be allocated a total of η(J) time slots in the interval from time
α(J, a) to time δ(J, a). A schedule σ is deadline-compliant for a job J if it indeed
allocates the necessary number of slots to each instance of this job. A schedule
is deadline-compliant for a periodic job model if it is deadline-compliant for each
of the jobs in the model.

Let us reconsider the job model consisting of two periodic jobs J1 and J2: the
job J1 has period 5, deadline 4, and WCET 3; and the job J2 has period 3,
deadline 3, and WCET 1. Consider the schedule whose allocation pattern for
the first 15 slots is shown in figure 8.2. For each job, vertical lines indicate times
when successive instances of the job are ready for execution, and dashed vertical
lines indicate the corresponding deadlines (for the job J2, the deadline coincides

346 Chapter 8

with the period, so these dashed lines are missing). When a slot is assigned to
a job, the row corresponding to that job is shown as a filled rectangle. Thus,
in the schedule of figure 8.2, the first two slots are assigned to the first job, the
third slot is assigned to the second job, and the 15th slot is not assigned to any
of the two jobs. The same pattern repeats for every 15 slots. Formally, the
schedule σ is given by:

σ(0) = σ(1) = σ(3) = σ(5) = σ(7) = σ(8) = σ(10) = σ(11) = σ(12) = J1;

σ(2) = σ(4) = σ(6) = σ(9) = σ(13) = J2;

σ(14) = ⊥;
for every t ≥ 0, σ(t+ 15) = σ(t).

The abstraction of a schedule as an assignment of time slots to jobs can naturally
be implemented in the scheduler architecture of figure 8.1. For instance, to
implement the schedule shown in figure 8.2, the scheduler transmits the following
events to the job J1: run1 at time 0, preempt1 at time 2, run1 at time 3, run1
at time 5, preempt1 at time 6, run1 at time 7, and run1 at time 10.

The illustration in figure 8.2 should convince you that this schedule is deadline-
compliant for both jobs: each instance of the job J1 is assigned three slots within
four time units of its arrival time, and each instance of the job J2 is assigned
one slot before its next instance arrives.

For a periodic job model J , if there exists a deadline-compliant schedule, then
the job model is called schedulable. Thus, the model consisting of the job J1
with period 5, deadline 4, and WCET 3 and the job J2 with period 3, deadline
3, and WCET 1 is schedulable. Now suppose we change the WCET of the job
J1 to 4. Then convince yourself that the job model is not schedulable: during
the first 10 slots, the deadlines of at least the first two instances of the job J1
must be met, and thus it must be given at least eight slots; at the same time,
the deadlines of at least the first three instances of the job J2 must be met,
implying that it must be given at least three slots, which is not possible.

These definitions are summarized below. For notational convenience, for a
schedule σ, a job J , and time instances t1 and t2, such that t1 < t2, let us
denote the number of time slots that the schedule σ allocates to the job J
between times t1 and t2 by σ(t1, t2, J), that is,

σ(t1, t2, J) = |{t | t1 ≤ t < t2 and σ(t) = J}|.

Schedulability of Periodic Job Model

A schedule σ for a periodic job model J is a function that maps every
natural number t ≥ 0 to the set J ∪ {⊥}. Such a schedule is deadline-
compliant for a job J ∈ J if for every instance a ≥ 1, σ(α(J, a), δ(J, a), J) =
η(J). The schedule σ is deadline-compliant for the job model J if it is
deadline-compliant for every job in J . The job model J is schedulable if
there exists a deadline-compliant schedule σ for J .

Real-Time Scheduling 347

Periodic Schedules

A periodic schedule assigns slots to jobs in a repeating manner. Formally, a
schedule σ is a periodic schedule with period p, where p is a positive number,
if for all time instances t ≥ 0, σ(t + p) equals σ(t). The schedule shown in
figure 8.2 is a periodic schedule with period 15. A periodic schedule σ can be
fully specified by listing its period p and the assignments σ(0), σ(1), . . . σ(p− 1)
of slots to jobs for the first p slots.

If we want to check whether a periodic job model is schedulable, then we can
limit the search for plausible schedules to only periodic schedules. This is estab-
lished in the following theorem. Its proof shows that given a periodic job model,
it suffices to consider periodic schedules whose period equals the least-common
multiple of the periods of all the jobs in the model.

Theorem 8.1 [Periodic Schedules] A periodic job model J is schedulable if and
only if there exists a periodic schedule that is deadline-compliant for J .

Proof. Consider a periodic job model J . If there exists a periodic schedule
that is deadline-compliant for all the jobs in J , then by definition the job model
J is schedulable. Conversely, suppose the job model J is schedulable. Then
by definition there exists a deadline-compliant schedule σ. The schedule σ need
not be periodic, and our goal is to construct a periodic schedule σ′ that also
meets the deadlines of all the jobs.

Let p be the least-common multiple of periods of all the jobs, that is, of all the
numbers in the set {π(J) | J ∈ J }. Define the desired schedule σ′ as follows:
for 0 ≤ t < p, σ′(t) = σ(t), and for every t ≥ 0, σ′(t + p) = σ′(t). Clearly, the
schedule σ′ is periodic with period p. Consider a job J ∈ J . Let n = p/π(J)
(note that, by the choice of p, it is divisible by π(J)). Since the schedule σ′ is
the same as the schedule σ for the first p slots and the schedule σ is deadline-
compliant for the job J , the schedule σ′ also meets the deadlines of the first n
instances of the job J . Since the schedule σ′ is periodic, for every a ≥ 1, the
quantity σ(α(J, a), δ(J, a), J) equals the quantity σ(α(J, a+ n), δ(J, a+ n), J),
and thus if it meets the deadline of the instance Ja, then it also meets the
deadline of the instance Ja+n. This shows that the schedule σ′ is deadline-
compliant for the job model.

Utilization

Consider the periodic job model consisting of two jobs, the job J1 with period 5,
deadline 4, and WCET 3; and the job J2 with period 3, deadline 3, and WCET
1. Since the job J1 requires three time slots in every five slots, it needs 3/5
of the available processing time. Similarly, since the job J2 requires one time
slot in every three slots, it needs 1/3 of the available processing time. The sum
3/5 + 1/3, equal to 14/15, is called the utilization of the job model. Formally,

348 Chapter 8

1 2 3 4 5 6 7 8 14 1511 12 131090

J1

J2

Figure 8.3: A Non-preemptive Schedule for a Job Model with Two Jobs

the utilization of a periodic job model J is defined as

U(J) =
∑
J∈J

η(J)/π(J).

The utilization indicates what fraction of the available processing time is nec-
essary to meet the demands of all the jobs. Note that the periodic schedule
of figure 8.2 for the job model in our example assigns 14 out of 15 slots for
scheduling of the two jobs, leaving one slot unassigned.

If the utilization of a job model exceeds 1, then it means that all the jobs
together need more processing time than is available. In such a case, the job
model is not schedulable. In our example job model, if we change the WCET
of the job J1 to 4, then utilization changes to 4/5 + 1/3, which exceeds 1, and,
as already noted, this leads to non-schedulability. Since the utilization of a job
model can be computed easily, checking whether it exceeds 1 is a quick test to
detect non-schedulability.

Preemptive vs. Non-preemptive Schedules

Consider the schedule of figure 8.2. The first instance of the job J1 needs three
out of the first four slots, and it is chosen at times 0, 1, and 3. While this
meets the deadline of this instance, at time 2, its execution must be interrupted
(using the event preempt1) to let the job J2 execute during the next slot and
needs to be resumed in the subsequent slot. The schedule of figure 8.2 is called
a preemptive schedule due to its use of such preemptions. A schedule that does
not include such preemptions is called non-preemptive. In other words, a non-
preemptive schedule assigns each instance of a job J , a chunk of η(J) many
consecutive time slots. Formally, a schedule σ over a set J of jobs is preemptive
if there exists a job J and times t1 < t2 < t3, such that (1) σ(t1) = σ(t3) = J
and σ(t2) �= J , and (2) there exists a such that α(J, a) ≤ t1 and t3 < α(J, a+ 1).
This says that there exist three slots, all belonging to an interval during which
a single instance of the job J is active, such that the job J is assigned the two
extreme slots but not the middle one.

Since preemption of jobs requires switching the context of processing from one
job to another, it is expensive to implement and should be avoided whenever

Real-Time Scheduling 349

possible. For our example job model consisting of the job J1 with period 5,
deadline 4, and WCET 3; and the job J2 with period 3, deadline 3, and WCET
1, figure 8.3 shows an alternative periodic schedule that is non-preemptive and
yet is deadline-compliant.

It is possible that the only way to meet all the deadlines is by relying on pre-
emption: a periodic job model can be schedulable, and yet there may be no
non-preemptive schedule that is deadline-compliant. To illustrate this, suppose
the model consists of two jobs: the job J1 with period 2, deadline 1, and WCET
1; and the job J2 with period 4, deadline 4, and WCET 2. The periodic pre-
emptive schedule, with period 4, that chooses the job J1 at times 0 and 2, and
chooses the job J2 at times 1 and 3, is deadline-compliant. But it is easy to
convince yourself that it is not possible to find a non-preemptive schedule that
meets all the deadlines.

Scheduling Policies

Given a periodic job model J , the goal of a scheduling policy is to either produce
a deadline-compliant periodic schedule or report failure to find such a schedule.
While we will discuss two such policies in detail in sections 8.2 and 8.3, let
us consider some of the questions we should ask to understand and evaluate a
scheduling policy.

When does the policy succeed in producing a schedule? Ideally, a policy should
produce a deadline-compliant periodic schedule whenever the job model is schedu-
lable. If this is not the case, then we should aim to find conditions under which
the policy is guaranteed to succeed.

How much computational effort does the policy need to compute the schedule?
We already know that if the job model is schedulable, then there exists a periodic
deadline-compliant schedule with period equal to the least-common multiple of
the periods of all the jobs. If the model has n jobs, then each slot can be assigned
only (n + 1) different values (since a schedule maps a slot to either one of the
jobs or to ⊥). Thus, there are pn+1 many different periodic schedules possible
with period p. A naive scheduling policy analyzes all such possible schedules
and chooses a schedule that meets all the deadlines. However, such a policy is
too inefficient as its computational cost grows rapidly as the number of jobs and
the values of the periods grow. A scheduling policy is required to be efficient
with time-complexity polynomial in the number of jobs in the model.

How much of the decision logic of the policy is implemented off-line vs. on-line?
One possible way to implement a scheduling policy for periodic job models is to
compute the desired schedule off-line, that is, before the system starts executing.
Then during the execution of the system, that is, on-line, the scheduler simply
needs to look up this schedule at the beginning of each time slot (or whenever
a scheduling decision regarding allocation of jobs to the processor needs to be
made). Alternatively, some scheduling policies only assign priorities to jobs
off-line, and when a scheduling decision needs to be made on-line, make the

350 Chapter 8

decision based on, say, comparing job priorities. Policies of this latter kind are
preferable as there is no need to compute and store a long schedule, and such
policies can typically be extended to more complex job models, for instance,
to job models in which jobs are added and removed dynamically as the system
executes. However, when the decisions are made on-line, it is critical that the
overhead associated with such a decision is minimal–no more than a couple of
instructions.

Does the policy ensure alternative optimality criteria? Our definition of schedu-
lability requires that the schedule should meet all the deadlines. When there are
multiple deadline-compliant schedules, alternative criteria can be used to prefer
one schedule over the other. For example, we may want the scheduling policy
to compute a schedule with the least number of preemptions (and produce a
non-preemptive schedule whenever possible). Another such criterion is response
time: the response time of an instance of a job is the difference between the
arrival time of this instance and the time this instance finishes its execution
according to the schedule. We may want the scheduling policy to compute a
schedule that minimizes the average response time over all the job instances.

Exercise 8.2 : Consider a periodic job model with two jobs: the job J1 has
period 5, deadline 5, and WCET 2; and the job J2 has period 7, deadline 7,
and WCET 4. What is the utilization for this job model? Show a periodic
deadline-compliant schedule.

Exercise 8.3 : Consider a periodic job model with two jobs: the job J1 has
period 3, deadline 2, and WCET 1; and the job J2 has period 5, deadline 5, and
WCET 3. Argue that this job set is schedulable only if we allow preemptions.
Find a deadline-compliant schedule with minimum number of preemptions.

8.1.4 Alternative Job Models

The periodic job model is the simplest model for formalizing the demand for
processing time by jobs in a real-time application. Many extensions and vari-
ations have been studied in the literature. We close this section with a brief
introduction to some of the most significant variants.

Precedence Constraints among Jobs

In a periodic job model with precedence constraints, in addition to the period,
deadline, and WCET for each job, precedence constraints among jobs are also
specified. The precedence constraint J1 ≺ J2 between two jobs J1 and J2
means that for every a, the ath instance of the job J2 should start executing
only after the ath instance of the job J1 has finished its execution. It is required
that whenever there is such a precedence constraint between two jobs, they
should have the same period, and the precedence relation should be acyclic.
The schedulability problem then is to find a schedule that not only meets the
deadlines of all the jobs but also obeys the ordering constraints expressed by

Real-Time Scheduling 351

the precedence relation. Precedence constraints among tasks in the task-graph-
based description of synchronous components in chapter 2 naturally lead to a
job model with precedence constraints.

Dynamically Changing Job Set

In the basic periodic job model, it is assumed that the set of jobs is known a
priori and is fixed. In practice, it is desirable to allow a dynamically changing
set of jobs, where jobs can be added and removed while the system is executing.
In such a scenario, whenever a new job is to be added, the scheduling policy
needs to perform a schedulability test on the revised set of jobs and admit the
new job only when the schedulability test is successful. The policy also needs
to make scheduling decisions dynamically at run-time since the schedule cannot
be computed off-line in advance.

Aperiodic Jobs

An aperiodic job is a job whose arrival pattern is irregular and not known in
advance. For example, in the cruise controller design discussed in chapter 2,
while the tasks corresponding to measuring the current speed and controlling
the speed (the components MeasureSpeed and ControlSpeed of figure 2.29)
are to be executed in a periodic manner, the task responsible for updating the
cruising speed (the component SetSpeed) needs to be executed whenever the
driver switches on the cruise control or decides to change the cruising speed.
An aperiodic job, thus, has an associated deadline and worst-case execution
time, but instead of a period, it has an associated triggering event. When the
job set has both periodic and aperiodic jobs, the scheduling policy is inspired
by the principles and analysis used for design of policies for purely periodic job
models and sets aside a fraction of the time slots for allocation to the anticipated
but unpredictable demands by the arrival of aperiodic jobs. Such a policy,
however, cannot offer guaranteed deadline-compliance, and we can only hope
for a “best-effort” policy, where the guarantees of the policy are measured only
by comparing them with respect to the guarantees of alternative policies.

Multiprocessor Scheduling

Our definition of a schedule allocates each time slot to at most one job, and this
corresponds to the assumption that all the jobs are executing on a single proces-
sor. Modern computing platforms consist of multiple computing cores, and in
embedded applications, it is even more common to have specialized processors
dedicated to executing specific jobs. To formalize the problem of scheduling jobs
on multiprocessors, in addition to the period, deadline, and worst-case execution
time for each job, we also specify the set of processors, and for each processor,
the subset of jobs that can execute on this processor. The multiprocessor sched-
ule then maps each time slot and each processor to a job (or ⊥ to indicate an
idle slot), and the scheduling problem is to compute a deadline-compliant mul-
tiprocessor schedule. A job set that is not schedulable on a single processor can

352 Chapter 8

become schedulable on multiple processors due to the availability of additional
processing time. However, designing an efficient scheduling policy to compute a
deadline-compliant schedule in the multiprocessor job model is more challenging
since the multiprocessor schedulability problem is computationally intractable
(typically NP-complete).

Soft vs. Hard Real-Time Requirements

In the scheduling problem we have defined, a schedule is required to meet the
deadlines of all the instances of each job. While such strict deadline-compliance
is a necessary requirement in safety-critical and real-time control systems, in
applications such as multimedia, it may be appropriate to demand a weaker
guarantee. For example, if the job corresponds to refreshing the screen by
displaying the next video frame, executing only 95% of all instances of the
job may be acceptable. In the literature, systems where it is required that
all deadlines must be met, as missing deadlines implies an unacceptable safety
violation, are called hard real-time systems, and systems where deadlines should
be met as frequently as possible, but missing deadlines only causes a degradation
of the desired quality, are called soft real-time systems. The objective of a
scheduling policy for soft real-time systems is then to compute a schedule with
a minimum fraction of missed deadlines.

Exercise 8.4*: Consider a set J of n jobs with a precedence relation ≺ such
that ≺ is acyclic. Suppose every job in J has period p, deadline p, and WCET c.
Let us assume that we have n processors available for scheduling, and each job
can be executed on any of the processors. This job set is schedulable if we can
find a multiprocessor schedule that meets the precedence constraints (that is, if
J1 ≺ J2, then in each period, the job J1 should finish executing before the job J2
can start executing, but it’s okay if they execute on different processors). Under
what conditions is the job set schedulable? Hint: the condition should relate
period p, WCET c, and some quantity derived from the precedence relation ≺.

8.2 EDF Scheduling

The Earliest Deadline First (EDF) policy is a classical scheduling policy that
always selects a job whose deadline is going to expire first. This scheduling
policy is applicable to a wide range of job models and is commonly used in
practice. We will first describe the EDF policy for the periodic job model and
then analyze its performance.

8.2.1 EDF for Periodic Job Model

Given a set of periodic jobs, at every time t, the EDF scheduling policy assigns
the next slot to the job that has the earliest (or least) deadline. In a periodic
model, for each job, different instances of the job are active at different times,

Real-Time Scheduling 353

and thus the specific value of the deadline for a job depends on the time t. Also,
the policy assigns a slot to a job only if the demand of its active instance has
not already been met. The construction of the schedule according to these rules
is formalized below.

Scheduling Policy

Consider a periodic job model J , where each job J has an associated period
π(J), deadline δ(J), and worst-case execution time η(J). For each time t =
0, 1, 2, . . ., the EDF scheduling policy decides allocation of the next slot and
builds the EDF schedule σ step by step in the following manner. Consider a job
J . Let a be the unique number such that α(J, a) ≤ t < α(J, a+ 1). The deadline
of the job J at time t is the deadline of this instance of J , namely, δ(J, a). If the
schedule σ up to the first t slots has already allocated η(J) number of slots to
this particular instance of the job J , then it does not need any more processing
time. To formalize this, we say that the job J is ready at time t according to
the schedule σ if σ(α(J, a), t, J) < η(J). If there is no job that is ready at time
t, then the next slot is left unassigned, that is, σ(t) = ⊥. Otherwise it selects a
job J such that the job J is ready at time t and has the least deadline at time t
among the jobs that are ready at time t, that is, σ(t) = J , such that the job J
is ready at time t and if there is another job K that is also ready at time t, then
the deadline of the job J at time t is less than or equal to the deadline of the
job K at time t. Note that if multiple ready jobs share the same deadline, then
any one of them can be chosen according to the EDF policy, and the choice is
made using some alternative criteria in a specific implementation.

The definition of an EDF schedule is summarized below.

EDF Schedule

A schedule σ for a periodic job model J is called an EDF-schedule if for
every time t ≥ 0, if no job is ready at time t in the schedule σ, then σ(t) = ⊥,
or else σ(t) = J , such that the job J is ready at time t in the schedule σ,
and for every job K ∈ J , either the job K is not ready at time t or the
deadline of the job J at time t is less than or equal to the deadline of the
job K at time t.

Example

Let us revisit the periodic job model consisting of the job J1 with period 5,
deadline 4, and WCET 3; and the job J2 with period 3, deadline 3, and WCET 1
(see deadline-compliant periodic schedules of figures 8.2 and 8.3 for this model).
Suppose we want to construct a schedule according to the EDF policy for this
model.

Initially, at time t = 0, both jobs J1 and J2 are ready (since the demands of their
respective first instances have not yet been met), the deadline for the job J1 is 4,
and the deadline for the job J2 is 3. The EDF policy hence assigns the first slot

354 Chapter 8

to the job J2. As a result, at time 1 as well as at time 2, the job J2 is no longer
ready (the demand of the corresponding active instance has been met), and the
policy picks the job J1 at these times. At time 3, the second instance of the job
J2 arrives, and thus both jobs are ready at time 3. At this point, the deadline
for the job J1 is still 4, but the deadline for the job J2 is now 6. As a result,
the EDF policy assigns the next time slot to the job J1. At time 4, the job J1
is no longer ready, and hence the subsequent slot is assigned to the job J2. At
time 5, the job J2 is no longer ready as the demand for its active instance has
been met, but the job J1 is ready again as its second instance arrives. Thus, the
policy chooses the job J1 at time 5. At time 6, the third instance of the job J2
arrives, and both jobs are ready. At this time, the deadlines for both jobs equal
9. As a result, the EDF policy is free to choose either of the two jobs. Suppose
it chooses the job J1 since its identifier is smaller than that of the job J2. By
the same reasoning, the next slot is also allocated to the job J1. At times 8 and
9, only the job J2 is ready and gets chosen. At times 10 and 11, only the job J1
is ready, and gets chosen. At time 12, both jobs are ready, the deadline for the
job J1 is 14, and for the job J2 is 15. Thus, the policy allocates the next slot to
the job J1. At time 13, only the job J2 is ready and gets the next slot. At time
14, none of the jobs is ready, and hence the following slot is unassigned. The
same cycle now repeats with a period of 15. The EDF schedule constructed in
this manner is, in fact, identical to the schedule shown in figure 8.3.

Properties of the EDF Policy

In section 8.2.2, we will study under what conditions the EDF policy is guar-
anteed to produce a deadline-compliant schedule. For now, let us note some of
its basic properties.

Whenever a scheduling decision is to be made, the EDF policy picks the job with
the earliest current deadline among the ready jobs without explicitly analyzing
the global consequences of such a decision. Such a policy is an example of a
class of algorithms known as greedy algorithms.

Let us assume that whenever the EDF policy needs to choose a job among the
ready jobs with identical deadlines, it uses some fixed decision rule (for example,
choose the job with the lowest identifier). With this assumption, observe that
the schedule produced by the EDF policy is a periodic schedule with period
equal to the least-common multiple of periods of all the jobs.

In the EDF schedule of figure 8.3, at time 0, the job J2 is given a priority over
the job J1, while at time 3, the job J1 is given a priority over the job J2. Such
a scheduling policy whose relative preference among the ready jobs is different
at different times is called a dynamic priority policy.

In general, the schedule generated by the EDF policy can be preemptive. For
example, consider the periodic job model with the job J1 with period 2, deadline
1, and WCET 1; and the job J2 with period 4, deadline 4, and WCET 2. The

Real-Time Scheduling 355

EDF policy chooses the job J1 at times 0 and 2 and chooses the job J2 at times
1 and 3. The resulting schedule is deadline-compliant and is preemptive.

In our description of the EDF policy, the policy makes a decision regarding
which job is to be scheduled in every slot. However, the decision logic need not
be executed in every slot based on the following observation. If a job J is chosen
at time t, then the EDF policy is guaranteed to choose the same job at time
t+1 also if both the following conditions hold: (1) the execution of the currently
active instance of the job J is not yet finished, and (2) no new instance of any
other job K arrives at time t+1. For example, in the schedule of figure 8.3, the
job J1 is chosen at time 1, and at the next time instance, neither the current job
finishes its execution nor a new instance of the job J2 arrives, and this ensures
that the job J1 is chosen at time 2 also. In other words, the scheduler needs to
make a decision about allocation of processing time to jobs only when the set
of ready jobs changes, which can occur only when either the current instance of
the job finishes its execution or a new instance of another job arrives.

This suggests a natural strategy for implementing the EDF policy in the sched-
uler architecture of figure 8.1. The scheduler maintains a listWaitingJobs, which
contains all the jobs that are waiting for processing time in the decreasing order
of their relative priorities. When the job that is currently running finishes its
execution, if the list WaitingJobs is non-empty, then the first job from the list
WaitingJobs is removed and is allocated the processor. When a new instance of
a job J arrives, the scheduler performs the following steps. If no job is currently
assigned the processor, then the job J is allocated processing time. Otherwise,
suppose the job J ′ is currently assigned the processor. If the deadline of the
newly arrived instance of J is less than the deadline of the job J ′, then the job
J ′ is preempted and added to the front of the queue WaitingJobs, and the job
J is allocated the processor. If not, the newly arrived instance of the job J
is inserted in the queue WaitingJobs of ready jobs in the suitable position by
comparing its deadline with those of the jobs already in this sorted list.

Exercise 8.5 : For the periodic job model consisting of the job J1 with period
5, deadline 4, and WCET 3; and the job J2 with period 3, deadline 3, and
WCET 1, figure 8.3 shows the schedule constructed by the EDF policy assuming
that whenever both jobs are ready with identical deadlines, the job J1 is chosen.
Show the schedule constructed by the EDF policy assuming that whenever both
jobs are ready with identical deadlines, the job J2 is chosen.

Exercise 8.6 : Consider a periodic job model consisting of the job J1 with
period 6, deadline 5, and WCET 2; the job J2 with period 8, deadline 4, and
WCET 2; and the job J3 with period 12, deadline 8, and WCET 4. Construct
the schedule according to the EDF policy (if multiple ready jobs have identical
deadlines, prefer the job J1 over the job J2 over the job J3).

356 Chapter 8

8.2.2 Optimality of EDF

Given a periodic job model, when is the EDF scheduling policy guaranteed to
produce a deadline-compliant schedule? As the next theorem shows, the EDF
policy is guaranteed to succeed as long as the model is schedulable. That’s why
the EDF policy is considered to be an optimal algorithm: it is guaranteed to
produce a deadline-compliant schedule as long as one such schedule exists.

Theorem 8.2 [Optimality of EDF] If J is a schedulable periodic job model and
σ is an EDF schedule for J , then σ is deadline-compliant.

Proof. Let J be a schedulable periodic job model, and let σ be an EDF
schedule for J . We want to prove that the schedule σ meets the deadlines of
all instances of all jobs. The proof is by contradiction. That is, we assume
that the schedule σ misses some deadline, and we will arrive at a contradiction.
Suppose there is an instance of a job such that the schedule σ does not allocate
this instance enough slots by its deadline, and let t0 be the time of this missed
deadline.

Since the job model J is schedulable, there exists a schedule, say σ′, that meets
all the deadlines. Consider the two schedules σ and σ′. Since the schedule σ′

meets all the deadlines and the schedule σ misses at least one deadline, the
two schedules cannot be identical. Let diff(σ, σ′) denote the first time instance
where the two schedules make different choices, that is, diff(σ, σ′) = t, such that
σ(t) �= σ′(t) and for all t′ < t, σ(t′) = σ′(t′). Such a time instance t must be
less than the deadline t0 that the schedule σ misses but the schedule σ′ does
not miss.

There can be multiple deadline-compliant schedules for the job model J . Let
σ1 be a schedule among all such deadline-compliant schedules σ′, such that
diff(σ, σ′) is the largest, that is, the schedule σ1 is a deadline-compliant schedule
for J , such that if the schedule σ′ is also a deadline-compliant schedule for J ,
then diff(σ, σ′) ≤ diff(σ, σ1). In other words, the schedule σ1 makes the same
choices as the EDF schedule σ for as long as possible without giving up the goal
of staying deadline-compliant.

Let t1 = diff(σ, σ1). We know that σ(t1) �= σ1(t1), and for all t < t1, σ(t) =
σ1(t). We will consider different cases based on the values of σ(t1) and σ1(t1).
In each case, we construct another schedule σ2 such that (1) the schedule σ2

is deadline-compliant, and (2) diff(σ, σ2) > t1. This is a contradiction to the
way the schedule σ1 is chosen, implying that our initial assumption that the
schedule σ misses some deadline cannot be true, thus completing the proof.

Consider the case when σ(t1) = J and σ1(t1) = K, with J �= K, such that the
job K is ready at time t1 (see figure 8.4 for illustration). Let the deadlines of
the jobs J and K at time t1 be tJ and tK , respectively. Since the EDF schedule
chooses the job J at time t1, the job J must be the one with the earliest deadline
among all the jobs that are ready at time t1, and this implies tJ ≤ tK . Since

Real-Time Scheduling 357

t1 t0t2 tKtJ

J

J

J

K

σ

σ1

σ2

K

Figure 8.4: Proof of Optimality of EDF

the job J is ready at time t1, the demand of its active instance at time t1 has
not yet been met, and it needs at least one more slot before the deadline tJ .
Since the schedule σ1 is deadline-compliant, there must be a time instance t2
such that t1 < t2 < tJ and σ1(t2) = J .

Now define the schedule σ2 such that for all t �= t1 and t �= t2, σ2(t) = σ1(t)
and σ2(t1) = J and σ2(t2) = K (see figure 8.4 for illustration). That is, the
schedule σ2 is obtained from the deadline-compliant schedule σ1 by swapping
the choice of the jobs J and K at times t1 and t2. By the choice of these times,
the instances t1 and t2 belong to the same active instance of the job J and the
same instance of the job K, both before their relevant deadlines. As a result,
the number of slots allocated to each instance of each job is exactly the same in
both the schedules σ1 and σ2. It follows that the schedule σ2 is also deadline-
compliant. Now, the EDF schedules σ and σ2 are identical for times less than
t1 and also at time t1, and thus the condition diff(σ, σ2) > t1 must hold.

For the remaining cases, either (1) σ(t1) = ⊥ and σ1(t1) �= ⊥, (2) σ(t1) = J and
σ1(t1) = ⊥, or (3) σ(t1) = J and σ1(t1) = K, such that the job K is not ready
at time t1. In all these cases, define the schedule σ2 such that for all t �= t1,
σ2(t) = σ1(t) and σ2(t1) = σ(t1). We leave it as an exercise to verify that the
resulting schedule σ2 is deadline-compliant and the condition diff(σ, σ2) > t1
must hold.

The proof shows that, at any step, if a deadline-compliant schedule chooses a job
K over another job J , whose deadline is earlier than that of K, then choosing
the job J , instead of the job K, cannot be the cause of a missed deadline. This
core idea of the proof applies to more general job models and shows, for instance,
even in the presence of both periodic and aperiodic jobs, that the EDF policy
produces a deadline-compliant schedule as long as one exists.

Exercise 8.7 : Complete the proof of theorem 8.2: show that the schedule σ2

defined in the last paragraph of the proof is such that it meets all the deadlines
and the condition diff(σ, σ2) > t1 holds.

358 Chapter 8

Exercise 8.8 : We have established that if there exists a deadline-compliant
schedule, then the EDF policy produces one such schedule. Show that, however,
the following statement is false: if there exists a deadline-compliant schedule
with no preemptions, then the EDF policy is guaranteed to produce one such
schedule. That is, construct a job model J (with two jobs) such that (1) there
exists a deadline-compliant schedule σ that has no preemptions, and (2) the
deadline-compliant schedule produced by the EDF policy involves preemptions.

8.2.3 Utilization-Based Schedulability Test

We know that as long as the periodic job model is schedulable, the EDF policy
produces a deadline-compliant schedule. But can we test whether the periodic
job model is schedulable or, equivalently, whether the EDF policy is going to
succeed without explicitly generating an EDF schedule and checking whether it
meets all the deadlines. It turns out that when all the deadlines are implicit,
that is, for every job J , the deadline δ(J) equals its period π(J), the test for
schedulability is simple: a periodic job model is schedulable exactly when its
utilization is 1 or less. We already know that if the utilization exceeds 1, the
demand for processing time exceeds the available processing time, and thus the
job model is not schedulable. The following theorem proves that if the utilization
is 1 or less, then an EDF schedule is deadline-compliant.

Theorem 8.3 [Schedulability test when deadlines equal periods] Let J be a
periodic job model such that for every job J , δ(J) = π(J). Then the job model
J is schedulable if and only if U(J) ≤ 1.

Proof. Let J be a periodic job model such that for every job K, δ(K) = π(K).
Let

U =
∑
K∈J

η(K)/π(K) (1)

be the utilization of the job model.

If U > 1, then the total demand for the processing time exceeds the available
supply, and there does not exist a deadline-compliant schedule, and the job
model is not schedulable.

For the converse, assume that the job model J is not schedulable. Consider
an EDF schedule σ for J . The schedule σ cannot be deadline-compliant. We
proceed to prove that the utilization U must exceed 1.

Since σ is not deadline-compliant, there must exist a job J and an instance i of
the job J , such that the schedule σ does not allocate enough time slots to the
instance J i. Let t1 be the arrival time of this instance, that is, t1 = α(J, i), and
let t2 be the deadline of this instance, that is, t2 = δ(J, i), which is the same as
α(J, i+ 1) (see figure 8.5). We know that the instance J i misses its deadline,

Real-Time Scheduling 359

and thus the schedule σ chooses the job J for fewer than η(J) time instances in
the interval [t1, t2): the condition σ(t1, t2, J) < η(J) must hold.

Consider a time instance t with t1 ≤ t < t2. We know that the job J is ready at
time t and its deadline is t2. The EDF schedule σ at time t must choose some
job keeping the processor busy: σ(t) �= ⊥. Furthermore, the EDF policy selects
a job with the earliest deadline, and hence if σ(t) = K, then the deadline of the
job K at time t must be t2 or less.

Let t0 be the least time such that for all time instances t with t0 ≤ t < t2, the
schedule σ chooses some job K at time t such that the deadline of the job K at
time t is ≤ t2. In other words, the time instance t0 is chosen so that the interval
[t0, t2) is the longest interval, such that the processor is busy at all times during
the interval and is assigned to a job instance with a deadline t2 or earlier. From
the argument in the preceding paragraph, it follows that the interval [t1, t2) does
satisfy the desired condition, but it may not be the longest such interval, and
thus t0 is chosen by extending this interval to the left as long as the schedule σ
assigns time slots to job instances with deadlines t2 or less.

By our choice of t0, the processor is busy throughout the interval [t0, t2), and
thus it follows that the length of this interval equals the sum of the number of
slots the schedule σ allocates to each job during this interval:

t2 − t0 =
∑
K∈J

σ(t0, t2,K) (2).

The next step in the proof aims to derive a bound on the value of each quantity
σ(t0, t2,K). For this purpose, we show that:

Claim: If the schedule σ allocates a time slot in the interval [t0, t2)
to a job K, then the corresponding instance of K lies entirely within
the interval [t0, t2).

Consider an arbitrary job K and an instance j of this job. The interval cor-
responding to the instance Kj is [α(K, j), α(K, j + 1)). If this interval is not
contained within the interval [t0, t2), then one of the following three cases can
happen.

First, the interval [α(K, j), α(K, j + 1)) has no overlap with the interval [t0, t2).
This can happen if α(K, j) ≥ t2 or if α(K, j + 1) ≤ t0. In this case, the instance
Kj is not relevant to scheduling during the interval [t0, t2). In figure 8.5, these
are the instances before the ath instance or after the cth instance of the job K.

A second possibility is that there is an overlap, but α(K, j + 1) > t2 (see the
cth instance of the job K in figure 8.5). We know that throughout the interval
[t0, t2), the schedule σ picks a job only if its current deadline does not exceed
t2. Throughout the interval [α(K, j), α(K, j + 1)) corresponding to the instance
Kj , the deadline is α(K, j + 1), which exceeds t2, and thus we can conclude that

360 Chapter 8

α(J, i) J i misses deadline

α(K, a) α(K, b) α(K, c)

t0 t1 t2

Longest interval in which σ chooses task with deadline ≤ t2

σ(t) �= Kσ(t) �= K

Figure 8.5: Proof of Test for EDF Schedulability

during the interval [t0, t2), the schedule does not allocate any time slots to such
an instance Kj .

The third and final possibility is that the interval corresponding to the instance
Kj does overlap with [t0, t2), the deadline α(K, j + 1) does not exceed t2, but
α(K, j) < t0 (see the ath instance of the job K in figure 8.5). We claim that,
in this case,

the job K is not ready at time t0 in the schedule σ,

that is, all the demand for the instance Kj has been met during the interval
[α(K, j), t0), and the job K does not need anymore slots during the interval
[t0, α(K, j + 1)). Since the schedule picks only ready jobs, the claim implies that
during the interval [t0, t2), the schedule does not allocate slots to the instance
Kj .

To prove the claim, assume to the contrary that the job K is ready at time t0,
that is, the instance Kj has not been allocated enough processing time before
time t0. Consider a time instance t such that α(K, j) ≤ t < t0. The job K
is ready at time t, and its deadline at time t is α(K, j + 1). According to the
EDF policy, then, σ(t) cannot be ⊥ and must be a job whose deadline at time
t is ≤ α(K, j + 1). Since α(K, j + 1) ≤ t2, we can conclude that the interval
[α(K, j), t2) is an interval in which at every time the schedule picks a job with
deadline t2 or less. But this contradicts the assumption that [t0, t2) is the longest
such interval. In other words, if the job K is ready at time t0, then we should
be extending the interval of interest from [t0, t2) to [α(K, j), t2).

Thus, we have shown that whenever the EDF schedule σ picks a job K at a
time instance t in the interval [t0, t2), the corresponding instance of K must
lie entirely within the interval [t0, t2) (such as the bth instance of the job K
in figure 8.5). The length of the interval [t0, t2) is t2 − t0. The length of the
interval corresponding to any instance of K is π(K). It follows that the number
of instances of K that lie entirely within [t0, t2) is at most (t2− t0)/π(K). Note
that the number of instances of K with a possible overlap with the interval
[t0, t2) can be the two extreme instances with partial overlap plus the number

Real-Time Scheduling 361

of instances that lie entirely within it. But we have established that the two
extreme instances are not allocated any slots.

To each instance of K that lies entirely inside the interval [t0, t2), the schedule
allocates at most η(K) number of slots. It follows that, for every job K,

σ(t0, t2,K) ≤ η(K) · (t2 − t0)/π(K) (3).

The inequality (3) holds for the job J also. However, we know that the instance
J i is allocated strictly less than η(J) number of slots by the schedule σ (since
this instance misses its deadline t2). This implies the following strict inequality:

σ(t0, t2, J) < η(J) · (t2 − t0)/π(J) (4).

Summing the inequalities (3) over all the jobs and noting that the inequality is
strict at least for the job J leads to:

∑
K∈J

σ(t0, t2,K) <
∑
K∈J

η(K) · (t2 − t0)/π(K) (5).

We can substitute U from equation (1) in the above inequality to get

∑
K∈J

σ(t0, t2,K) < (t2 − t0) · U (6).

From the equation (2) and inequality (6), we get

(t2 − t0) < (t2 − t0) · U.
Since t2 − t0 is positive, we can conclude that 1 < U , which is what we wanted
to prove.

8.3 Fixed-Priority Scheduling

The EDF policy is an example of a dynamic priority policy, where different
instances of the same job get assigned different priorities; as a result, at some
time instance, a job J is preferred over another job K, while at some other time
instance, the job K is preferred over the job J . Now we turn our attention
to fixed-priority policies, where jobs are statically assigned fixed priorities, and
whenever the scheduler has to make a choice, the job with the highest priority is
chosen. In particular, we will analyze the properties of the most commonly used
such policies, namely, the deadline-monotonic policy and the rate-monotonic
policy.

8.3.1 Deadline-Monotonic and Rate-Monotonic Policies

Fixed-Priority Policies

A priority assignment for a set of jobs assigns each job a number such that
no two jobs have the same number. Given two jobs J and K, if the number

362 Chapter 8

assigned to the job J is larger than the number assigned to the job K, then the
job J has a higher priority than the job K. Given such a priority assignment, a
fixed-priority scheduling policy always prefers a job of higher priority over jobs
with lower priorities.

More precisely, the fixed-priority schedule is constructed for each time t =
0, 1, 2 . . . in the following manner. Recall that, given a schedule up to time
t, a job J is ready at time t if the instance of J that is active at time t has
not already been allocated the necessary η(J) number of slots. If there is no
job that is ready at time t, then the next slot is left unassigned. Otherwise the
fixed-priority schedule selects the job that is ready at time t and has the highest
priority among all the jobs ready at that time.

The definition of such policies is summarized below.

Fixed-Priority Scheduling Policy

A priority assignment for a periodic job model J is a function ρ that maps
each job J ∈ J to a natural number such that for every two distinct jobs J
and K, ρ(J) �= ρ(K). A schedule σ for the periodic job model J is called a
fixed-priority schedule with respect to the priority assignment ρ, if for every
time t ≥ 0, if no job is ready at time t in the schedule σ, then σ(t) = ⊥,
else σ(t) = J , such that the job J is ready at time t in the schedule σ, and
for every job K ∈ J , either the job K is not ready at time t in the schedule
σ or ρ(K) < ρ(J).

Given a priority assignment ρ, the corresponding fixed-priority schedule depends
only on the ordering of the jobs induced by the priorities and not on the numer-
ical values of priorities assigned to jobs. More precisely, consider two priority
assignments ρ and ρ′ for a periodic job model J such that for every pair of jobs
J and K, ρ(J) > ρ(K) exactly when ρ′(J) > ρ′(K). Then at every time t, the
fixed-priority scheduler makes exactly the same decision whether it is based on
the priority assignment ρ or is based on the assignment ρ′. Thus, in this case,
the fixed-priority schedule with respect to the assignment ρ coincides with the
fixed-priority schedule with respect to the assignment ρ′.

Deadline-Monotonic and Rate-Monotonic Priorities

Once we commit to employing a fixed-priority scheduling policy, the only choice
for a scheduling policy concerns the priority assignment to jobs. If the period of
a job J is smaller than the period of another job K, then the instances of the job
J arrive at a faster rate than the instances of the job K, and this suggests that
the job J should be assigned a higher priority. This priority assignment rule is
called rate monotonic: the priority assignment ρ for jobs is a rate-monotonic
priority assignment if for every pair of jobs J and K, if π(J) < π(K), then
ρ(J) > ρ(K). Note that if two jobs have the same period, then a rate-monotonic
priority assignment still needs to assign different priorities to both, and there is
a choice regarding which of the two should be assigned a higher priority.

Real-Time Scheduling 363

When all deadlines are implicit, that is, for every job, its deadline equals its pe-
riod, it turns out that the rate-monotonic policy is an optimal choice for assign-
ing priorities. However, when the jobs have explicitly specified deadlines, then
it seems intuitive to prefer a job with an earlier deadline over a job with a later
deadline. The resulting priority assignment rule is called deadline monotonic:
the priority assignment ρ for jobs is a deadline-monotonic priority assignment
if for every pair of jobs J and K, if δ(J) < δ(K), then ρ(J) > ρ(K). Again, if
two jobs have the same deadline, then a deadline-monotonic priority assignment
can arbitrarily choose one of them to have a higher priority. In a case where
the deadline of each job equals its period, the notions of deadline-monotonic
policy and rate-monotonic policy coincide. Note that while the EDF policy also
prefers job instances with earlier deadlines, EDF is a dynamic priority policy,
whereas deadline monotonic is a fixed-priority policy.

The notions of rate-monotonic and deadline-monotonic schedules are formalized
below.

Deadline-monotonic and Rate-monotonic Policy

A priority assignment ρ for a periodic job model J is called deadline mono-
tonic if for all jobs J,K ∈ J , if δ(J) < δ(K), then ρ(J) > ρ(K); and is called
rate monotonic if for all jobs J,K ∈ J , if π(J) < π(K), then ρ(J) > ρ(K).
A schedule σ for the periodic job model J is called a deadline-monotonic
schedule if there exists a deadline-monotonic priority assignment ρ, such
that the schedule σ is a fixed-priority schedule with respect to ρ; and is
called a rate-monotonic schedule if there exists a rate-monotonic priority
assignment ρ, such that the schedule σ is a fixed-priority schedule with
respect to ρ.

Examples

Let us revisit the job model consisting of the job J1 with period 5, deadline 4,
and WCET 3; and the job J2 with period 3, deadline 3, and WCET 1. We know
that this job model is schedulable: see figures 8.2 and 8.3 for deadline-compliant
schedules. In particular, the schedule of figure 8.3 is an EDF schedule, and it
sometimes prefers the job J1 over J2 and other times prefers the job J2 over
J1. The priority assignment that assigns a higher priority to the job J2 than
to the job J1 is deadline monotonic (and also rate monotonic). Observe that in
the resulting fixed-priority schedule, the job J2 is selected at time 0 as well as
at time 3; as a result, the first instance of the job J1 gets only two slots before
its deadline 4, causing a missed deadline. If the priority assignment were to
always prefer the job J1 over the job J2, then the first three slots are allocated
to the job J1, causing the first instance of the job J2 to miss its deadline. Thus,
fixed-priority scheduling policies do not produce deadline-compliant schedules
for this job model.

Let us change the deadline of the job J1 to 5: this leads to the job model with
implicit deadlines consisting of the job J1 with period 5 and WCET 3 and the

364 Chapter 8

1 2 3 4 5 6 7 8 14 1511 12 131090

J2
J1

Figure 8.6: Illustrative Rate-Monotonic Schedule

job J2 with period 3 and WCET 1. The rate-monotonic priority assignment still
assigns a higher priority to the job J2 than to the job J1. The resulting fixed-
priority schedule is shown in figure 8.6. The schedule is periodic with period 15
and meets all the deadlines.

Properties

We have already noted that a deadline-monotonic policy may fail to produce a
deadline-compliant schedule even when the job model is schedulable. Conditions
under which deadline-monotonic and rate-monotonic policies are guaranteed to
succeed are studied in sections 8.3.2 and 8.3.3. For now let us note some basic
properties of these policies.

The deadline-monotonic and rate-monotonic policies resolve the choice among
the set of ready jobs by a simple local rule and, similar to the EDF policy, are
examples of greedy algorithms. We also note that any fixed-priority schedul-
ing policy is guaranteed to produce a periodic schedule with period equal to
the least-common multiple of the periods of all the jobs. Furthermore, the
schedules generated by these policies can be preemptive (for example, see the
rate-monotonic schedule shown in figure 8.6).

The principal benefit of the deadline-monotonic as well as the rate-monotonic
policy is that the overhead needed to implement the scheduler is minimal. The
scheduler needs to assign a priority to each job off-line, and the computation nec-
essary for this purpose involves ordering jobs according to their deadlines. As in
the case of the EDF policy, the deadline-monotonic/rate-monotonic scheduling
policy also needs to make a scheduling decision only when either the currently
executing instance of a job finishes its execution or a new instance of another job
arrives. The priority of an instance of a job equals the statically assigned priority
to that job, and thus no computation is needed to determine priorities at run-
time. As a result, the deadline-monotonic as well as the rate-monotonic policy
can be easily incorporated in any operating system that supports priority-based
scheduling of processes.

Exercise 8.9 : Consider a periodic job model of exercise 8.6 consisting of the
job J1 with period 6, deadline 5, and WCET 2; the job J2 with period 8, deadline

Real-Time Scheduling 365

4, and WCET 2; and the job J3 with period 12, deadline 8, and WCET 4. Is
this model schedulable using the deadline-monotonic scheduling policy?

Exercise 8.10 : Construct a periodic job model with two jobs such that the
deadline-monotonic policy leads to a deadline-compliant schedule, but the rate-
monotonic policy results in a schedule with missed deadlines.

8.3.2 Optimality of Deadline-Monotonic Policy ∗

We have already noted that, unlike the EDF policy, the deadline-monotonic
policy is not an optimal policy for producing deadline-compliant schedules: a
deadline-monotonic schedule for a schedulable periodic job model need not be
deadline-compliant. In this section, we establish that the deadline-monotonic
policy, however, is optimal among all fixed-priority policies: if there exists a
priority assignment such that the corresponding fixed-priority schedule meets all
the deadlines, then a deadline-monotonic schedule also meets all the deadlines.
This implies that if we prefer fixed-priority scheduling for its simplicity and
minimal scheduling overhead, then it is desirable to choose a deadline-monotonic
priority assignment.

Criticality of First Instances

Before we prove optimality of the deadline-monotonic policy relative to fixed-
priority schedules, let us establish a property that all fixed-priority schedules
satisfy: if a fixed-priority schedule misses a deadline, then it misses the deadline
of the first instance of some job. In other words, in a fixed-priority schedule,
the first instances of all the jobs are the critical ones: if all first instances
meet their deadlines, then the remaining instances are guaranteed to meet their
deadlines. This implies that if we want to check whether a fixed-priority schedule
is deadline-compliant, we can explicitly construct the schedule from time t = 0
up to time t = d, where d is the maximum of the deadlines of all the jobs,
ensuring that no deadlines are missed until this time, instead of constructing
and examining the entire periodic schedule up to time t = p, where p is the
least-common multiple of the periods of all the jobs, which is typically much
larger than d.

Theorem 8.4 [Criticality of the first instances in fixed-priority schedules] If
σ is a fixed-priority schedule for a periodic job model, and if the deadline of
the first instance of every job is met in the schedule σ, then the schedule σ is
deadline-compliant.

Proof. Let J be a periodic job model, let ρ be a priority assignment for J ,
and let σ be the fixed-priority schedule for J with respect to the assignment ρ.
Let us assume that the schedule σ allocates enough slots to the first instance of
every job. We want to prove that the schedule is deadline-compliant.

For proof by contradiction, assume that the schedule σ is not deadline-compliant.
Then there must exist a job instance that misses its deadline in the schedule σ.

366 Chapter 8

K1 K2 Km Kb Kb+1 Kb+m

J ≤ J

D0 T T +DT ′

Figure 8.7: Illustration for Proof of Theorem 8.4

Let J be the job with the highest priority that misses a deadline. That is, there
exists an instance of the job J that misses its deadline in the schedule σ, and
if K is a job such that ρ(K) > ρ(J), then all instances of the job K meet their
deadlines in the schedule σ. Let h be the priority of this job J .

By assumption, the first instance of the job J gets η(J) number of slots by its
deadline. Let D be the time when the first instance finishes its execution, that
is, D is the number such that σ(0, D, J) = η(J) and σ(D−1) = J (see figure 8.7
for illustration). By assumption, D ≤ δ(J) holds.

For every t ≥ 0, let θ(t) denote the number of slots that the schedule allocates
to jobs with priority higher than that of the job J during the time interval of
length D starting at time t:

θ(t) =
∑

K∈J , ρ(K)>h

σ(t, t+D,K).

For every instance a, the instance Ja of the job J arrives at time ta = α(J, a).
By definition, θ(ta) is the number of slots that the schedule allocates to jobs of
priority higher than h during the interval of length D starting at time ta. Any
slot not allocated to a job of higher priority is assigned to the job J as long as
the job J needs slots, and thus if the condition θ(ta) ≤ D−η(J) holds, then the
instance Ja finishes its execution within D units of its arrival and, thus, meets
its deadline (since D ≤ δ(J)).

We know that the first instance of the job J finishes at time D, and thus
θ(0) ≤ D − η(J) holds. We also know that there exists an instance of the job
J that misses its deadline, and thus for some a, θ(ta) > D − η(J) must hold,
which implies, θ(ta) > θ(0). Let T be the least time for which θ(T) > θ(0); that
is, if θ(t) > θ(0), then T ≤ t. Note that this particular time instance T cannot
exceed the arrival time ta of the a instance that misses its deadline, but T itself
need not be the arrival time of any instance of the job J . By the choice of T ,
we know that θ(T − 1) < θ(T), and thus we can conclude that the schedule σ
cannot choose a job of priority higher than h at time T − 1.

We proceed to show that the schedule σ does not allocate more slots to a job
with priority higher than h during the interval [T, T+D) than during the interval
[0, D):

Real-Time Scheduling 367

Claim: if ρ(K) > ρ(J) then σ(T, T +D,K) ≤ σ(0, D,K).

Consider a job K such that ρ(K) > ρ(J). By assumption, all instances of such a
job meet their deadlines. To prove the claim that σ(T, T +D,K) ≤ σ(0, D,K),
our analysis depends on how many instances of the job K overlap with the
interval [0, D). Instances of the job K arrive every π(K) time units. Let m be
the integer such that (m − 1) · π(K) < D ≤ m · π(D), that is, m is obtained
by calculating D/π(K), and if this quantity is a fraction, then rounding it up
to the next integer. Then the first m instances of the job K overlap with the
interval [0, D) (see figure 8.7 for illustration).

Observe that the first (m − 1) instances of the job K lie entirely within the
interval [0, D), and the mth instance has a partial overlap. Note that since all
instances of the job K meet their deadlines, the schedule σ allocates exactly
η(K) number of slots to each instance of the job K. Each of the first (m − 1)
instances of the job K lie entirely within the interval [0, D), and thus each of
them contributes η(K) to the quantity σ(0, D,K). We know that the last slot
of the interval [0, D) is allocated to the job J . Since the job K has a higher
priority than that of the job J , this implies that at time (D − 1), the job K
is not ready, which implies that its corresponding instance has been allocated
η(K) number of slots by time (D− 1). This means that the contribution of the
mth instance of K to the quantity σ(0, D,K) is also η(K). Thus, σ(0, D,K)
equals m · η(K).

Now let us focus our attention on how different instances of the job K overlap
with the interval [T, T + D). Suppose the earliest instance of the job K that
arrives at time T or later is the (b+ 1)-th instance: α(K, b) < T ≤ α(K, b+ 1).
Let T ′ be the arrival time of the (b+ 1)-th instance of the job K.

In general, T ′ > T is possible, and then the bth instance of the job K also has
an overlap with the interval [T, T +D) (figure 8.7 illustrates this case). By the
choice of T , we know that at time (T −1), the schedule does not choose a job of
priority higher than h and, thus, does not choose the job K or a job of priority
higher than that of the job K. This can happen only if the job K is not ready
at time (T − 1), which means that all the demand of the bth instance of the job
K has been met by time (T −1). This implies that even though the bth instance
can overlap with the interval [T, T +D), it does not contribute to the quantity
σ(T, T +D,K). This implies that σ(T, T +D,K) equals σ(T ′, T +D,K).

The number of instances of K that overlap with the interval [T ′, T + D) is
obtained by dividing its length by π(K) and rounding up the answer to the
next integer. Since T ′ ≥ T , the length of the interval [T ′, T +D) cannot exceed
D, it follows that the number of instances of K that overlap with the interval
[T ′, T + D) is at most m (it is either m or m − 1 depending on the difference
between T and T ′). Since an instance of the job K can be allocated only η(K)
number of slots, it follows that σ(T ′, T +D,K) ≤ m · η(K).

We have established the claim that σ(T, T +D,K) ≤ σ(0, D,K) for every job K
of priority higher than h. This means that θ(T) > θ(0) is not possible, resulting
in the desired contradiction.

368 Chapter 8

Proof of Optimality

Now we proceed to prove that a deadline-monotonic policy is guaranteed to pro-
duce a deadline-compliant schedule as long as there exists a deadline-compliant
fixed-priority schedule.

Theorem 8.5 [Optimality of deadline-monotonic policy] Given a periodic job
model J , if there exists a priority assignment ρ for J , such that the corre-
sponding fixed-priority schedule σ is deadline-compliant, then every deadline-
monotonic schedule for J is deadline-compliant.

Proof. Let J be a periodic job model. Let ρ be a priority assignment for J
such that the fixed-priority schedule σ with respect to ρ meets all the deadlines.
Suppose the ordering of the jobs in J according to the priority assignment ρ is
J1, J2, . . . Jn, where n is the number of jobs in J , with the job J1 being the job
of the highest priority and the job Jn being the job of the lowest priority.

Let ρ′ be a deadline-monotonic priority assignment. We want to prove that
the fixed-priority schedule with respect to the assignment ρ′ is also deadline-
compliant. If the ordering of the jobs according the priorities assigned by ρ′

equals that according to the assignment ρ, then the schedule σ is also the fixed-
priority schedule with respect to ρ′ since the choices made by the schedule
depend only on the relative priorities of the jobs and not on the numerical
values of priorities. Hence, suppose that the ordering of the jobs in decreas-
ing priorities according to the assignment ρ′ is not the same as the ordering
J1, J2, . . . Jn. Then there must exist a pair of adjacent jobs Ja and Ja+1 in this
order such that their relative priorities are different according to the assignment
ρ′: ρ′(Ja+1) > ρ′(Ja). Since the assignment ρ′ is deadline-monotonic, it fol-
lows that the deadline of the job Ja is not earlier than that of the job Ja+1:
δ(Ja) ≥ δ(Ja+1).

First, we show that if we modify the priority assignment ρ by swapping the
priorities of two such adjacent jobs, then the corresponding schedule is still
deadline-compliant. That is, let ρ1 be the priority assignment such that ρ1(Jb) =
ρ(Jb) for b < a and for b > a+1, ρ1(Ja) = ρ(Ja+1) and ρ1(Ja+1) = ρ(Ja). Thus,
the ordering of the jobs with decreasing priorities according to the assignment
ρ1 is J1, J2, . . . , Ja−1, Ja+1, Ja, Ja+2, . . . Jn.

Let σ1 be the fixed-priority schedule with respect to the priority assignment ρ1.
We want to prove that the schedule σ1 is deadline-compliant. From theorem 8.4,
to prove that the schedule σ1 meets the deadlines of all instances of all the jobs,
it suffices to prove that it meets the deadline of the first instance of each job.

Consider a job Jb for b = 1, 2, . . . n. Let Db be the time by which the first
instance of the job Jb finishes its execution in the deadline-compliant schedule
σ according to the original priority assignment ρ. That is, σ(Db − 1) = Jb and
σ(0, Db, Jb) = η(Jb). Since this is a deadline-compliant schedule, we know that
Db ≤ δ(Jb) holds. We proceed to prove that, in the schedule σ1 with respect to

Real-Time Scheduling 369

the revised priority assignment ρ1, for each b �= a, the first instance of the job Jb
finishes its execution by time Db, and the first instance of the job Ja finishes its
execution by time Da+1. Since Da+1 ≤ δ(Ja+1) and δ(Ja+1) ≤ δ(Ja), it follows
that the first instances of all the jobs finish their executions by their deadlines,
implying deadline-compliance of the schedule σ1.

To show that the first instance of the job Ja finishes its execution by time Da+1,
we prove:

Claim: The schedule σ1 allocates η(Ja) time slots to the job Ja in
the time interval [0, Da+1).

Let us denote Da+1 by D. To prove the claim, let us consider a job Jb of a
priority higher than that of the job Ja according to the priority assignment ρ1
and compute how many time slots are allocated to the job Jb by the schedule
σ1 during the interval [0, D). According to the priority assignment ρ1, a job Jb
has a higher priority than that of the job Ja if either b < a or b = a + 1. We
consider these two cases one by one.

• Case b < a: The job Jb has a higher priority than the job Ja in both the
schedules σ and σ1. Suppose the number of instances of the job Jb that
overlap with the interval [0, D) is m, that is, m is the integer obtained by
rounding up the quantityD/π(Jb). Using reasoning similar to the one used
in the proof of theorem 8.4, we can conclude that σ(0, D, Jb) = m · η(Jb):
each of the first (m − 1) instances of the job Jb are entirely contained
within the interval [0, D), and since this schedule meets all the deadlines,
each of them gets η(Jb) number of slots; the mth instance can have a
partial overlap, but since the priority of the job Jb is higher than that of
the job Ja+1 and the schedule σ chooses the job Ja+1 at time (D−1), this
last instance of Jb must have been allocated all its demand before time
D. Since m is the total number of instances of the job Jb that overlap
with the interval [0, D), the schedule σ1 cannot possibly allocate more
than m · η(Jb) number of slots to the job Jb, and we can conclude that
σ1(0, D, Jb) ≤ σ(0, D, Jb) holds.

• Case b = a+ 1: Now the job Jb has a higher priority than the job Ja in
the schedule σ1 but has a lower priority than the job Ja in the schedule
σ. We know that in the schedule σ the first instance of the job Jb finishes
its execution by time D, and since this schedule is deadline-compliant,
σ(0, D, Jb) = η(Jb). It also implies that only the first instance of the
job Jb has any overlap with the interval [0, D), so it follows that in the
schedule σ1, even though the job Jb has a relatively higher priority, it
cannot allocate more then η(Jb) number of time slots to the job Jb. We
can conclude that σ1(0, D, Jb) ≤ σ(0, D, Jb) holds.

Thus, we have proved that for a job Jb that has a higher priority than the job
Ja in the revised priority assignment ρ1, the schedule σ1 does not allocate more
slots to the job Jb during the interval [0, D) than the schedule σ does. Since

370 Chapter 8

the schedule σ allocates η(Ja) number of time slots to the job Ja by time Da

and Da ≤ D, it follows that σ(0, D, Ja) = η(Ja). In the schedule σ1, during
the interval [0, D), no job Jb for b > a + 1 will be chosen before the job Ja is
allocated η(Ja) number of time slots. Hence, the claim follows.

The proof that for each b �= a, the first instance of the job Jb finishes by time
Db in the schedule σ1 is similar and is left as an exercise.

We have established that the schedule corresponding to the priority assignment
ρ1 obtained by swapping priorities of an adjacent pair of jobs in the ordering
given by the original priority assignment ρ is also deadline-compliant. If the
ordering of the jobs according to the priority assignment ρ1 equals the ordering
according to the deadline-monotonic assignment ρ′, we have already established
our goal. If not, we can repeat the argument: in the assignment ρ1, we can find a
pair of jobs that are adjacent according to the ordering given by the assignment
ρ1 but have different relative ordering according to the assignment ρ′ and swap
their priorities to obtain the assignment ρ2. By the argument above, deadline-
compliance of the fixed-priority schedule σ1 with respect to the assignment ρ1
implies the deadline-compliance of the fixed-priority schedule σ2 with respect
to the assignment ρ2.

To finish the proof, we need to establish that such swapping of jobs will not
continue forever. To understand why only a bounded number of swaps suffice,
let us consider a concrete example. Suppose the ordering of the jobs according
to the original priority assignment ρ is J1, J2, J3, J4, and the ordering according
to the desired (deadline-monotonic) priority assignment is J3, J1, J4, J2. Then
starting from the assignment ρ, we can swap the ordering of the jobs J2 and
J3 to get the priority assignment ρ1 with the ordering J1, J3, J2, J4; then swap
the ordering of the jobs J1 and J3 to get the priority assignment ρ2 with the
ordering J3, J1, J2, J4; and finally swap the ordering of the jobs J2 and J4 to get
the priority assignment ρ′. As this example suggests, this process is the same
as an algorithm for sorting a sequence of elements by swapping adjacent out-of-
order elements, where each swap makes the current sequence more “similar” to
the desired final sequence.

To make this argument precise, let us define the distance between two priority
assignments ρ and ρ′ to be the number of pairs (a, b), such that the relative
ordering of the priorities of the jobs Ja and Jb are different in the two assign-
ments. Such a distance can be at most n(n− 1), where n is the number of jobs.
The assignment ρ1 is obtained from the assignment ρ by swapping an adjacent
pair of jobs to make the assignment more similar to the target assignment ρ′.
More precisely, if the distance between the assignments ρ and ρ′ is k, then the
distance between the assignment ρ1 and ρ′ cannot be more than (k − 1): if
the assignment ρ1 is obtained from the assignment ρ by swapping the pair Ja
and Ja+1, then the pairs that contribute to the distance between ρ1 and ρ′ are
exactly those pairs that contribute to the distance between ρ and ρ′, except
the swapped pair (a, a + 1). Since the distance decreases by at least one at

Real-Time Scheduling 371

every step, it follows that there can be at most n(n− 1) many swaps before the
assignment becomes identical to ρ′.

Exercise 8.11 : In the proof of theorem 8.5, the schedule σ1 is the fixed-priority
schedule obtained by swapping priorities of two adjacent jobs Ja and Ja+1, such
that δ(Ja) ≥ δ(Ja+1). We proved that in this schedule, the first instance of the
job Ja finishes by time Da+1, where for every b, Db is the time by which the first
instance of the job Jb finishes its execution in the original schedule σ. Complete
the proof of deadline-compliance of the schedule σ1 by showing that for every
b �= a, the first instance of the job Jb finishes its execution by time Db in the
schedule σ1.

8.3.3 Schedulability Test for Rate-Monotonic Policy ∗

Given a periodic job model J , how can we check if the rate-monotonic or
the deadline-monotonic scheduling policy is going to succeed in producing a
deadline-compliant schedule? One possibility is to explicitly compute the sched-
ule and check if it meets all the deadlines. Theorem 8.4 assures us that it suffices
to examine compliance of deadlines only for the first instances of all the jobs, and
thus we need to compute the schedule only for the first d time slots, where d is
the maximum of the deadlines of all the jobs. We proceed to establish a simpler
condition based on the utilization that assures us that for a periodic job model
with implicit deadlines, if the utilization is below a certain threshold value, then
the rate-monotonic policy is guaranteed to produce a deadline-compliant sched-
ule. Recall that the utilization of a job model specifies the fraction of available
processing time that is needed to execute all the jobs and can be computed
easily. We also know that the EDF policy is guaranteed to succeed as long as
the utilization does not exceed 1. It turns out that the rate-monotonic policy
is guaranteed to succeed as long as the utilization does not exceed 0.69. This
result is of importance for both practical and theoretical reasons. In practice,
if we know that the total demand for processing time is not too high (less than
69%, to be precise), then it suffices to employ the rate-monotonic policy, which
has a minimal scheduling overhead. In theory, techniques used to establish this
bound illustrate how to analyze algorithms for the worst case.

Analyzing Utilization for Two Jobs

For now, let us suppose that there are only two jobs with implicit deadlines.
Let us call the job with the higher priority according to the rate-monotonic
priority assignment J1 and the job with the lower priority J2. Let σ denote
the corresponding fixed-priority rate-monotonic schedule. Let π1 and π2 be the
periods of the two jobs. By assumption, π1 ≤ π2. Let η1 and η2 be the worst-
case execution times of the two jobs. The utilization for this job model is given
by

U = η1/π1 + η2/π2.

372 Chapter 8

0 π1 2π1 m · π1 (m+ 1) · π1

π2

η1

J2
J1

Figure 8.8: Analyzing Rate-monotonic Policy for Two Jobs: Case (a)

Our goal is to come up with a numerical bound B, which should be as high
as possible, such that if U ≤ B holds, then we are guaranteed that the rate-
monotonic schedule σ meets all the deadlines. For this purpose, we eliminate
the four parameters in the above expression one by one, and the ensuing analysis
reveals relationships among these parameters that cause the worst-case scenario
for the rate-monotonic policy.

Eliminating WCET η2

As the first step in the analysis, let us treat the parameters π1, π2, and η1 as
given and suppose we want to find out constraints on the fourth parameter η2, in
terms of these three fixed parameters so that the schedule is deadline-compliant.

For checking deadline-compliance, we need to examine only the first instances of
the two jobs. Since the job J1 has the higher priority, its first instance gets the
first η1 slots and is guaranteed to meet its deadline (recall that, by assumption,
for every job, its WCET cannot exceed its deadline). To analyze the condition
under which the job J2 gets η2 slots by its deadline π2, we need to consider how
many instances of the job J1 are executed in the interval [0, π2). Let m be the
number such that the condition m · π1 ≤ π2 < (m + 1) · π1 holds, that is, m
is obtained by rounding down the quantity π2/π1 to the nearest integer. Then
the first m instances of the job J1 lie entirely within the interval [0, π2).

To compute the number of slots available for the execution of the job J2 before
its deadline, there are two cases as shown in figures 8.8 and 8.9.

• Case (a): If m · π1 + η1 < π2, then the (m + 1)th instance of the job
J1 finishes its execution before the deadline π2 of the first instance of the
job J2. This is the case shown in figure 8.8. In this case, the total time
allocated to the first job in the interval [0, π2) is (m + 1) · η1. Then the
first instance of the job J2 can be allocated up to π2 − (m + 1) · η1 time
slots. Thus, the schedule meets the deadlines as long as the condition
η2 ≤ π2 − (m+ 1) · η1 holds. This implies that the rate-monotonic policy
succeeds as long as

U ≤ η1/π1 + [π2 − (m+ 1) · η1]/π2.

Real-Time Scheduling 373

0 π1 2π1 m · π1 (m+ 1) · π1

η1

π2

J2

J1

Figure 8.9: Analyzing Rate-monotonic Policy for Two Jobs: Case (b)

• Case (b): If m · π1 + η1 ≥ π2, then the (m+ 1)th instance of the job J1
does not finish its execution before the deadline π2 of the first instance of
the job J2. In this case, the job J2 meets its deadline only if it finishes
execution before the (m+1)th instance of the job J1 arrives (see figure 8.9),
and the maximum number of slots that can be allocated to the job J2 by
its deadline is m · (π1 − η1). Thus, the schedule meets the deadlines as
long as the condition η2 ≤ m · (π1 − η1) holds. This implies that the
rate-monotonic policy succeeds as long as

U ≤ η1/π1 + [m · (π1 − η1)]/π2.

Thus, in each case, we have obtained a bound B such that if the utilization is
below that bound, the schedule is guaranteed to be deadline-compliant. This
bound B can be viewed as a function of the three parameters, π1, π2, and η1,
and can be summarized as

if (m·π1+η1 < π2) then η1/π1+[π2−(m+1)·η1]/π2 else η1/π1+[m·(π1−η1)]/π2.

Eliminating WCET η1

The next step is to eliminate the parameter η1 by minimizing this function B
over all possible choices of η1: if the utilization is below this minimized value,
then we are guaranteed that the utilization is below the desired bound no matter
what value of η1 is chosen, and hence the schedule is deadline-compliant.

For the case m · π1 + η1 < π2, we have

B = η1/π1 + [π2 − (m+ 1) · η1]/π2,

= 1 + η1/π1 − (m+ 1) · η1/π2,

= 1− η1 · (m+ 1− π2/π1)/π2.

Since π2 < (m + 1) · π1, the quantity (m + 1 − π2/π1) is positive. Hence, for
given values of the parameters π1 and π2, the value of the bound B decreases

374 Chapter 8

as η1 increases. Hence, the minimum occurs when η1 has the highest possible
value, which due the condition m · π1 + η1 < π2, equals π2 −m · π1.

For the case m · π1 + η1 ≥ π2, we have

B = η1/π1 +m · (π1 − η1)/π2,

= m · π1/π2 + η1/π1 −m · η1/π2,

= m · π1/π2 + η1 · (π2/π1 −m)/π2.

Since m · π1 ≤ π2, the quantity (π2/π1 −m) is positive. As a result, for given
values of the parameters π1 and π2, the value of the bound B increases as η1
increases. Hence, the minimum occurs when η1 has the least possible value,
which due the condition m · π1 + η1 ≥ π2, equals π2 −m · π1.

Thus, we have shown that the bound B is minimal when η1 = π2 − m · π1.
Substituting this value of η1 in the expression for B in the second case gives us
the desired bound as a function of the parameters π1 and π2:

B = m · π1/π2 + (π2 −m · π1) · (π2/π1 −m)/π2.

We want to choose the parameters π1 and π2 to minimize this function. Note
that m is the largest integer less than or equal to the ratio π2/π1. Let π2/π1 be
m + f , where f ∈ [0, 1) is the fractional part of this ratio. Substituting m + f
for the ratio π2/π1 in the above expression for the bound B leads to:

B = m/(m+ f) + (1−m/(m+ f)) · f = (m+ f2)/(m+ f).

Computing the Numerical Bound

We have expressed the desired bound as a function of the two parameters m
and f . Now we want to minimize this quantity over all choices of m and f ,
where m is a positive integer and f is a fraction in the interval [0, 1).

B = (m+ f + f2 − f)/(m+ f) = 1 + (f2 − f)/(m+ f).

Since 0 ≤ f < 1, the quantity f2 − f is always negative, and thus for a given
value of the fraction f , the value of the bound B increases as m increases.
Thus, the minium occurs at the smallest possible value of m. Note that, by
assumption, π1 ≤ π2, and thus m cannot be 0. This means that the smallest
possible value of m is 1. Substituting this value in the expression for the bound
B gives us

B = (1 + f2)/(1 + f).

This says that, for a given f , which is the fractional part of the ratio of the two
periods, the schedule is deadline-compliant as long as the utilization does not
exceed (1 + f2)/(1 + f).

Real-Time Scheduling 375

The last step of the analysis is to minimize this function with respect to the
parameter f , where 0 ≤ f < 1. For this purpose, let us differentiate the
expression B with respect to f :

dB/df = [2f(1 + f)− (1 + f2)]/(1 + f)2,

= (f2 + 2f − 1)/(1 + f)2.

Thus, the derivative dB/df is 0 exactly when f2 + 2f − 1 = 0. This quadratic
equation has two roots, f = −1−√2 and f = −1+√2, of which only −1+√2
lies in the range [0, 1) for f . Thus, the bound B is minimal when f = −1+√2.
Substituting this value in the expression B gives:

B = [1 + (−1 +
√
2)2]/(1− 1 +

√
2) = 2(

√
2− 1).

This leads to the main claim for the case of two jobs:

For a periodic job model with two jobs with implicit deadlines, a
rate-monotonic schedule is guaranteed to be deadline-compliant if
the utilization does not exceed 2(

√
2− 1).

Note that the quantity 2(
√
2−1) is 0.828. This means that with two jobs, if the

utilization does not exceed 0.828, then we know that the rate-monotonic policy
will succeed no matter what values of the periods and WCETs are chosen.

Understanding the Worst Case for Two Jobs

To recap the proof of the bound for two jobs, the worst case for the rate-
monotonic policy, that is, the case where the utilization is as small as possible,
while the resulting schedule is just barely deadline-compliant, occurs when (1)
the period π2 is

√
2 times the period π1, (2) the WCET η1 equals the difference

π2 − π1, and (3) the WCET η2 equals the difference π1 − η1.

Figure 8.10 shows this critical scenario for two jobs. For the job J1, the period
is 100, whereas for the job J2, the period is 141. The WCET for the job J1 is
41, whereas the WCET of the job J2 is 59. Observe that the resulting schedule
is deadline-compliant, and the utilization is 41/100 + 59/141, which is about
0.828.

Suppose we increase the WCET of the first job to 42. The utilization for this
updated job model is 42/100+ 59/141, which is about 0.838, which exceeds the
bound of the schedulability test. Observe that in the rate-monotonic schedule
for this revised model, the second job gets only 57 slots by its deadline, and
thus the schedule is not deadline-compliant.

Observe that the bound we have calculated is only a sufficient test for deadline-
compliance. It may happen that the utilization for a model with two jobs
exceeds the bound 0.828, and yet the rate-monotonic policy produces a deadline-
compliant schedule. This can happen if the specific values of the periods and

376 Chapter 8

J1

J2

π2
π1

41 100 1410

Figure 8.10: Worst Case for Rate-monotonic Policy with Two Jobs

WCETs in this model do not correspond to the worst-case scenario for the rate-
monotonic policy. For example, for the job model consisting of the job J1 with
period 5 and WCET 3 and the job J2 with period 3 and WCET 1, the utilization
is 0.93, and yet as figure 8.6 illustrates, the rate-monotonic schedule meets all
the deadlines.

Schedulability Test for n Jobs

The analysis for two jobs can be generalized to a job model with n jobs. We
only state the worst-case scenario that the analysis reveals. Suppose the jobs are
ordered J1, J2, . . . Jn in a decreasing order of priorities (that is, in an increasing
order of periods) according to the rate-monotonic policy. For each job Ja, let
us denote its period (and deadline) by πa and its WCET by ηa. Then the worst
case for the rate-monotonic policy occurs when the following relationships hold
among the different parameters:

π1 < π2 < · · · < πn < 2 · π1,

η1 = π2 − π1,

η2 = π3 − π2,

· · ·
ηn = π1 − (η1 + η2 + · · ·+ ηn−1) = 2 · π1 − πn,

π2/π1 = π3/π2 = · · · = πn/πn−1 = 21/n.

If we calculate the utilization for these values of the parameters, then we get
the bound Bn = n(21/n − 1).

This scenario for the case of n = 3 is shown in figure 8.11. The WCETs and
periods are chosen so that the first instances of all three jobs finish by the time
the second instance of the first job arrives, the second instance of the first job
finishes by the time the second instance of the second job arrives, which finishes
by the time the second instance of the third job arrives, which finishes by the
time the third instance of the first job arrives. The relationship among the three
periods π1, π2, and π3 and the three WCETs η1, η2, and η3 is given by:

π2 = 1.26 · π1,

Real-Time Scheduling 377

η1η1

η3 η3
η2 η2

J1

J2

J3

2π1π1

π2 = 1.26π1

π3 = 1.26π2

Figure 8.11: Worst Case for Rate-monotonic Policy with Three Jobs

π3 = 1.26 · π2 = 1.59 · π1,

η1 = π2 − π1 = 0.26 · π1,

η2 = π3 − π2 = 0.33 · π1,

η3 = 2 · π1 − π3 = π1 − (η1 + η2) = 0.41 · π1,

B3 = η1/π1 + η2/π2 + η3/π3 = 0.78.

The following theorem summarizes the bound for n jobs:

Theorem 8.6 [Schedulability test for Rate-Monotonic Policy] Given a periodic
job model with n jobs with implicit deadlines, if the utilization does not exceed
the quantity Bn = n(21/n−1), then every rate-monotonic schedule is guaranteed
to be deadline-compliant.

Note that the bound Bn decreases as n increases. The table in figure 8.12 shows
the values of these bounds for n = 1, 2, . . . 10. This means, for instance, when
we have six jobs, if the utilization is 0.735 or less, then we are guaranteed that
the rate-monotonic policy produces a deadline-compliant schedule.

Finally, let us consider the limit of the expression n(21/n − 1). This limit turns
out to be ln 2, the natural logarithm of 2, and equals 0.69. That is, for every
number n, the value of the expression n(21/n − 1) is at least 0.69. This means:

If the utilization of a periodic job model with implicit deadlines is
0.69 or less, then a rate-monotonic schedule is deadline-compliant.

Exercise 8.12 : Consider a periodic job model with three jobs with implicit
deadlines: the job J1 with period 4 and WCET 1, the job J2 with period 6
and WCET 2, and the job J3 with period 8 and WCET 3. Can we conclude
that the rate-monotonic policy results in a deadline-compliant schedule using
the utilization-based schedulability test? Does the rate-monotonic policy result
in a deadline-compliant schedule?

378 Chapter 8

n 1 2 3 4 5 6 7 8 9 10
Bn 1 0.828 0.780 0.757 0.743 0.735 0.729 0.724 0.721 0.718

Figure 8.12: Utilization Bound for Rate-monotonic Policy

Exercise 8.13*: Let J be a periodic job model, let ρ be a priority assign-
ment for J , and let σ be the fixed-priority schedule for J with respect to the
assignment ρ. Prove that the schedule σ is deadline-compliant if the following
condition is satisfied for every job J :

δ(J) ≥ η(J) +
∑

K∈J :ρ(K)>ρ(J)

!(δ(J)/π(K))" · η(K)

In this formula, for a rational number f , !f" denotes the integer obtained by
rounding up f , that is, the smallest integer that is greater than or equal to f .

Bibliographic Notes

Scheduling algorithms for real-time systems is a well-studied topic: see [SAÅ+04]
for a survey. The key result developed in this chapter, namely, the optimality
and the analysis of the rate-monotonic scheduling policy, is due to Liu and
Layland [LL73]. The presentation in this chapter is based on [But97] (see
also [Liu00]). We also refer the reader to [FMPY06, BDL+11] for formaliza-
tion of job models and schedulability analysis using the computational model
of timed processes and reachability analysis for timed automata.

We have only briefly discussed the problem of estimating the worst-case execu-
tion time of tasks, which is also a well-studied problem with multiple theoretical
approaches and tools (see [WEE+08] for a survey).

Real-time scheduling is supported by a number of operating systems (see [RS94]
and [Kop00]).

9

Hybrid Systems

In chapter 6, we studied continuous-time models of physical plants and con-
trollers. In this chapter, we turn our attention to systems whose dynamics
consists of both continuous evolution as time elapses and discrete instantaneous
updates to state. In fact, the timed processes of chapter 7 already exhibit this
mix of discrete and continuous updates in their dynamics: the values of the
clock variables of a timed process increase as time elapses while the process
waits in a mode, and state variables are updated in a discrete manner during
a mode switch. Hybrid systems admit more general forms of continuous-time
evolution for state variables described using differential and algebraic equations.
Such models provide a unified framework for designing and analyzing systems
that integrate computation, communication, and control of the physical world.

9.1 Hybrid Dynamical Models

The model of computation for hybrid processes is a generalization of the model
for timed processes studied in chapter 7.

9.1.1 Hybrid Processes

We describe a hybrid process using an extended-state machine with modes and
mode-switches. Each process has input, output, and state variables, and some
of these variables are of type cont. A variable of type cont takes values from
the set of real numbers (or an interval of real numbers) and is updated con-
tinuously as time progresses while a process waits in a mode. A mode-switch
is executed discretely and takes zero time. As usual, such a switch is guarded
with a condition over state and input variables, can update state and output
variables, and describes either an input, an output, or an internal action. A
mode is annotated with differential and algebraic equations that specify how
state and output variables of type cont evolve. In addition, each mode also
specifies a constraint on how long the process can wait in that mode using a

380 Chapter 9

60 ≤ T ≤ 70
off

T ≥ 60
Ṫ = −k2

on

Ṫ = k1(70− T)
T ≤ 70

(T ≤ 62)?

(T ≥ 68)?

Figure 9.1: A Thermostat Model Switching between Two Modes

Boolean expression over the state variables.

Switching Thermostat

As an example of a dynamical system switching between two modes, consider
a simple model of a self-regulating thermostat shown in figure 9.1. The pro-
cess Thermostat can be in two modes, off and on. The temperature T is a
continuous-time variable. When the mode is on, the dynamics of the system is
given by the differential equation Ṫ = k1(70− T), where k1 is a constant. The
temperature changes continuously according to this differential equation. Note
that this dynamics is linear, and for a given initial value of the temperature,
there is a unique response signal that captures how the temperature evolves
with time. The constraint (T ≤ 70) associated with the mode specifies that the
process can stay in this mode only as long as this condition holds: the switch to
the mode off must occur before this constraint is violated. The switch to the
mode off is guarded by the condition (T ≥ 68). This implies that the switch
may happen any time after the temperature exceeds 68.

In the mode off, the dynamics of how the temperature changes is described by
the differential equation Ṫ = −k2, where k2 is a constant. Thus, the temperature
falls linearly with time when the thermostat is off. The constraint (T ≥ 60)
associated with the mode off specifies that the process must switch to the mode
on before the temperature falls below 60, and the guard (T ≤ 62) associated
with the switch from the mode off to the mode on implies that this switch may
occur at any time after the temperature drops below 62.

Initially the mode is off and the temperature is T0. The set of choices for
the initial temperature is described by the initialization constraint 60 ≤ T ≤
70. Figure 9.2 shows a possible execution of the thermostat process for the
initial temperature T0 = 66 with the constants k1 = 0.6 and k2 = 2. The
execution proceeds in phases: during each phase, the mode stays unchanged,
and the temperature changes as a continuous function of time according to the
differential equation of the current mode. When a mode-switch occurs, state
changes discontinuously. In this model, there is an uncertainty in the times
at which the mode-switches occur, and thus the model is non-deterministic,
and even when we fix the initial temperature, the process has many possible
executions.

Hybrid Systems 381

0 5 10 15 20 25 30
58

60

62

64

66

68

70

72

74

Time

T
e
m
p
a
r
a
t
u
r
e

on

off

Figure 9.2: A Possible Execution of the Process Thermostat

The behavior of the process Thermostat while it stays in a given mode can be
analyzed using techniques discussed in chapter 6. If the process switches to the
mode off at time t∗ with the temperature equal to T ∗, then until the next
mode-switch, the value of the temperature at time t is given by the expression
T ∗−k2 (t−t∗). Assuming that the temperature T ∗ upon entry is at least 62, the
process spends at least (T ∗ − 62)/k2 seconds and at most (T ∗ − 60)/k2 seconds
in the mode off.

If the process switches to the mode on at time t∗ with the temperature equal
to T ∗, then until the next mode-switch, the value of the temperature at time t
is given by the expression 70 − (70 − T ∗) e−k1(t−t∗). Assuming that the entry
temperature T ∗ does not exceed 68, the process spends at least ln (2/(70 −
T ∗))/k1 seconds in the mode on. It can stay there for an indefinite period as
the value of the temperature is guaranteed not to exceed 70 according to this
equation.

Bouncing Ball

Consider a ball dropped from an initial height h = h0 with initial velocity ḣ =
v = v0. The ball drops freely with its dynamics given by the differential equation
v̇ = −g, where g is the gravitational acceleration. When it hits the ground, that
is, when the value of the variable h becomes 0, there is a discontinuous update
in its velocity. This discrete change can be modeled as a mode switch with the
update given by v := −a v. This assumes that the collision is inelastic, and the
velocity decreases by a factor a, for some appropriate constant 0 < a < 1. This
behavior is captured by the hybrid process BouncingBall of figure 9.3. It has
a single mode and two state variables of type cont. Whenever the condition
(h = 0) holds, a mode-switch is triggered. The output event bump is issued by
the process, and the assignment is executed reflecting the change in the direction

382 Chapter 9

h ≥ 0

ḣ = v; v̇ = −g

Fall

h := h0; v := v0
(h = 0) →
bump !; v := −a v

Figure 9.3: A Bouncing Ball as a Single-mode Hybrid System

of the velocity. The invariant constraint (h ≥ 0) ensures that the switch is
executed whenever the height h becomes 0. Figure 9.4 shows an execution of the
process BouncingBall with the initial velocity v0 = 0, initial height h0 = 5m,
gravitational acceleration g = 9.8m/s2, and damping coefficient a = 0.8.

Note that the model capturing the continuous-time evolution of the state is a
two-dimensional linear system: for each state variable, its rate of change with
time is given as a linear function of the state variables. However, due to the
discontinuous update of the velocity during the discrete mode-switch, the value
of a state variable at time t cannot be expressed as a nice closed-form function
of the initial state.

Formal Model

We define the formal model for hybrid processes along the lines of the formal
model for timed processes. A hybrid process consists of an asynchronous process
that is defined by listing its input channels, output channels, state variables,
initialization, input tasks, output tasks, and internal tasks. Input, output, and
internal actions are defined as in the case of asynchronous processes and can
discretely update any of the variables. A variable can be of type cont, indicating
that the variable evolves continuously during a timed action. A variable of a
type other than cont is updated only discretely, and let us call such variables
discrete variables.

To execute a timed action of duration δ, for each continuously updated input
variable u, we need a continuous signal u that specifies the value of the input
u over the interval [0, δ]. As in the case of continuous-time components, the
continuous-time evolution is specified by a real-valued expression hy for every
continuously updated output variable y and a real-valued expression fx for every
continuously updated state variable x. Each of these expressions is an expres-
sion over the continuously updated input variables and state variables. The
value of the output variable y of type cont at time t is obtained by evaluating
the expression hy using the values of the state and input variables at time t.
The signal for a continuously updated state variable x should be a differentiable
function such that its rate of change at time t equals the value of the expression
fx evaluated using the values of the state and input variables at time t. Note
that the discrete input and discrete output variables are not relevant during a

Hybrid Systems 383

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−8

−6

−4

−2

0

2

4

6

8

Time (seconds)

Height h

Velocity v

Figure 9.4: The Execution of the Hybrid Process BouncingBall

timed action, and the value of a discrete state variable stays unchanged during
a timed action. These rules define the state signal and the output signal for
the continuously updated output variables for the duration [0, δ]. If the expres-
sions hy and fx used to define the dynamics are Lipschitz-continuous, then the
state and the output signals corresponding to a given continuous input signal
during a timed action are uniquely defined. The continuous-time invariant is
specified as a Boolean expression over the state variables, and it is required that
at every time instance during the timed action, the state signal satisfies this
invariant. During a timed action of duration δ, the process and its environment
synchronize on the evolution of the continuously updated variables as in the
case of dynamical models and also agree on not executing a discrete action for
this duration.

Let us revisit the process Thermostat shown in figure 9.1. Let us assume that the
output of the process is the temperature. Then the hybrid process corresponding
to this state machine consists of the following components:

• it has no input variables;

• it has a single output variable T of type cont;

• it has a discrete state variable mode of enumerated type {off, on}, and a
state variable T of type cont;

• the variable mode is initialized to off, and the initialization of the variable
T is given by the nondeterministic choice 60 ≤ T ≤ 70;

• it has no output tasks, which means that the value of the temperature is
not transmitted during the discrete actions;

384 Chapter 9

• it has two internal tasks corresponding to the two mode-switches: one task
has the guard (mode = off ∧ T ≤ 62) and the update mode := on, and
the second task has the guard (mode = on ∧ T ≥ 68) and the update
mode := off;

• the expression defining the value of the output variable T equals the state
variable T;

• the expression defining the derivative of the state variable T is given by
the conditional expression

if (mode = off) then − k2 else k1 (70− T);

• the continuous-time invariant CI is given by the expression:

(mode = off) → (T ≥ 60)] ∧ [(mode = on) → (T ≤ 70)].

The formal definition is summarized below:

Hybrid Process

A hybrid process HP consists of (1) an asynchronous process P where some
of the input, output, and state variables are of type cont; (2) a continuous-
time invariant CI, which is a Boolean expression over the state variables S;
(3) for every output variable y of type cont, a real-valued expression hy over
the state and input variables of type cont; and (4) for every state variable x
of type cont, a real-valued expression fx over the state and input variables
of type cont. Inputs, outputs, states, initial states, internal actions, input
actions, and output actions of the hybrid process HP are the same as those
of the asynchronous process P . Given a state s, a real-valued time δ > 0,
and an input signal u for every input variable u of type cont over the interval
[0, δ], the corresponding timed action of the process HP is the differentiable
state signal S over the state variables, and the signal y for every output
variable y of type cont over the interval [0, δ] such that (1) for every state
variable x, x(0) = s(x); (2) for every discrete state variable x and time
0 ≤ t ≤ δ, x(t) = s(x); (3) for every output variable y of type cont and
time 0 ≤ t ≤ δ, y(t) equals the value of hy evaluated using the values u(t)
and S(t); (4) for every state variable x of type cont and time 0 ≤ t ≤ δ, the
time derivative (d/dt)x(t) equals the value of fx evaluated using the values
u(t) and S(t); and (5) for all 0 ≤ t ≤ δ, the continuous-time invariant CI is
satisfied by the values S(t) of the state variables at time t.

Executions

The execution of a hybrid process starts in an initial state. At each step, either
an internal, an input, an output, or a timed action is executed. For example,

Hybrid Systems 385

θ

v

(�, b)
Y

(�, 0)(0, 0)
X

(x0, y0)

(0, b)

Figure 9.5: Motion of a Billiard Ball

the execution of the process Thermostat shown in figure 9.2 corresponds to the
following sequence of alternating timed and internal actions:

(off, 66)
2.5−→ (off, 61)

ε−→ (on, 61)
3.7−→ (on, 69.02)

ε−→
(off, 69.02)

4.4−→ (off, 60.22)
ε−→ (on, 60.22)

7.6−→ (on, 69.9)
ε−→

(off, 69.9)
4.1−→ (off, 61.7)

ε−→ (on, 61.7)
7.7−→ (on, 69.92).

During each timed action, the process continuously outputs the value of the
temperature. For example, during the first timed action of duration 2.5, the
temperature signal is given by T (t) = 66 − 2 t, while during the second timed
action of duration 3.7, the temperature signal is given by 70− 9 e−0.6t.

Note that discrete and timed actions need not strictly alternate during an ex-
ecution: two timed actions can appear consecutively and so can two discrete
actions. In particular, the first timed action of duration 2.5 in the execution
above can be split into multiple timed actions:

(off, 66)
1.5−→ (off, 63)

0.8−→ (off, 61.4)
0.2−→ (off, 61).

A state s of a hybrid process is reachable if there is an execution that ends in
the state s. Given a hybrid process HP and a property ϕ over its state variables,
the property ϕ is said to be an invariant of the process HP if every reachable
state of the process HP satisfies the property ϕ. For example, the property
60 ≤ T ≤ 70 is an invariant of the process Thermostat.

Exercise 9.1 : Specify the model of the bouncing ball shown in figure 9.3 as a
formal hybrid process by listing all its components. Assume that the outputs of
the process are the discrete bump events and the continuously updated height.

Exercise 9.2 : In this problem, we want to construct a hybrid systems model
of the motion of a ball on a billiards table with perfect collisions (see figure 9.5).
The table has length � units and breadth b units. The ball is initially hit from
the position (x0, y0) with an initial speed v in the direction θ. Whenever the

386 Chapter 9

ReactorPlant ReactorControl

cont x

{add1, add2, remove1, remove2} u

Figure 9.6: The Block Diagram for the Reactor Example

ball hits a side parallel to the X-axis, its velocity in the Y -direction flips sign,
and the velocity in the X-direction stays unchanged. Symmetrically, whenever
the ball hits a side parallel to the Y -axis, its velocity in the X-direction flips
sign, and the velocity in the Y -direction stays unchanged. Thus, we are ignoring
friction and collision impact. When the ball reaches one of the corner points, it
drops and stops. Describe a precise hybrid state machine corresponding to this
description.

Exercise 9.3*: Consider a mobile robot that moves in a two-dimensional world
corresponding to the positive quadrant of the X-Y plane. The robot is initially
at the origin and is stationary. The input command to the robot consists of a
target location to go to. Assume that there are no obstacles. The robot can
move in the horizontal direction at speed 6 m/s, in the vertical direction at speed
8 m/s, or along any other arbitrary direction at speed 5 m/s. The robot plans its
trajectory to the target to minimize the time taken. Once it reaches the target,
it waits there to receive another input command to move to a new target and
repeats the same behavior. Construct a hybrid process (using the extended-state
machine notation) to model the behavior of the robot. Clearly specify input and
state variables along with their types. For the purpose of this question, you can
assume that the time needed to change the velocity is negligible (that is, the
robot can change its speed from, say, 0 to 5, instantaneously).

9.1.2 Process Composition

Hybrid processes can be put together using block diagrams. Operations such as
instantiation, variable renaming, and output hiding are defined in the usual way.
To compose two hybrid processes, we compose the corresponding asynchronous
processes using the composition operation for asynchronous processes and com-
pose the dynamics during timed actions as in the case of continuous-time com-
ponents. Thus, two hybrid processes are compatible and can be composed,
provided the state variables of the two are disjoint, the output variables of the
two are disjoint, and there are no cyclic await dependencies among the continu-
ously updated common input/output variables of the two. The continuous-time
invariant for the composed process is simply the conjunction of the continuous-
time invariants of the component processes. Thus, the discrete actions of the
composite process are obtained by the asynchronous composition of the discrete
actions of the component processes, and the timed actions of the composite

Hybrid Systems 387

ẋ = 0.1x− 60

Rod2

ẋ = 0.1x− 50

NoRod

ẋ = 0.1x− 56

Rod1

x := 510

u ? remove2

u ? add2

u ? add1

u ? remove1

Figure 9.7: The Hybrid Model of the Reactor Plant

process are obtained by the synchronous composition of the timed actions of
the component processes. In particular, a timed action of a duration δ is possi-
ble in the composite process only when both components are willing to evolve
continuously for the duration of δ without an interrupting discrete action.

To illustrate process composition, we consider a toy model of a nuclear reactor
with two control rods. The reactor and the controller are modeled by the hybrid
processes ReactorPlant and ReactorControl, respectively. The interaction
pattern is shown in the block diagram of figure 9.6. The output of the process
ReactorPlant is the continuously updated variable x that captures the reactor
temperature, and this variable is monitored by the controller. The output of
the process ReactorControl is the event variable u that can take values add1
(a control command to insert the first rod), remove1 (a control command to
remove the first rod), add2 (a control command to insert the second rod), and
remove2 (a control command to remove the second rod).

The hybrid process corresponding to the plant model is shown in figure 9.7. The
process has three modes NoRod, Rod1, and Rod2, corresponding, respectively, to
whether there is no rod in the reactor, the first rod is in the reactor, or the
second rod is in the reactor. Initially, the temperature is 510 degrees, and no
rods are in the reactor. The dynamics for the change in the temperature is
described by the differential equation ẋ = 0.1x− 50. When the controller issues
the event add1, the plant switches to the mode Rod1. The rod has a dampening
effect, which slows down the rate of increase in temperature, and the dynamics
is given by the differential equation ẋ = 0.1x − 56. On receiving the control
command remove1, the plant switches back to the mode NoRod. The mode
Rod2 is similar except that the second rod causes a stronger dampening with
the dynamics given by the differential equation ẋ = 0.1x− 60.

The controller for the plant is shown in figure 9.8. Once a rod is removed, it
cannot be reinserted for a time period of c time units. To capture this restriction,

388 Chapter 9

ẏ1 = ẏ2 = 1
Rod1

x ≥ 510

ẏ1 = ẏ2 = 1

Rod2

x ≥ 510

ẏ1 = ẏ2 = 1

NoRod

x ≤ 550

y1 := c; y2 := c

(x ≤ 510)→ u ! remove1; y1 := 0

(x ≥ 550 ∧ y2 ≥ c)→ u ! add2

(x ≤ 510)→ u ! remove2; y2 := 0

(x ≥ 550 ∧ y1 ≥ c ∧ y2 < c)→ u ! add1

Figure 9.8: The Hybrid Model of the Reactor Controller

we introduce two variables: y1 and y2. The rate of change of these continuously
updated variables is 1 in all the modes, and thus they are the same as the clock
variables of timed models. Initially, the clock y1 equals c and is reset to 0 every
time the first rod is removed. The controller can issue the output add1 only
when the clock y1 is at least c. This ensures that the delay between an event
remove1 and the subsequent add1 is at least c time units. The variable y2 is
updated similarly and ensures that the delay between an event remove2 and the
subsequent add2 is at least c time units.

Initially, the controller is in the mode NoRod. The continuous-time invariant
(x ≤ 550) ensures that when the plant temperature rises to 550 degrees, a mode-
switch is triggered. Note that in this example, the variable x is updated by the
process ReactorPlant, which specifies the differential equations regarding how
the variable evolves. It is monitored by the process ReactorControl, which
constrains the durations of timed actions via continuous-time invariants that
refer to x. When the temperature reaches 550, depending on the values of the
clock variables y1 and y2, the controller process can decide to insert the first
rod by issuing the output add1 or the second rod by issuing the output add2.
If both choices are available, then the controller prefers the second rod with
the stronger dampening effect. The controller process stays in the mode Rod1

or Rod2 as long as the temperature is above 510 degrees, and if it falls below
that, it switches back to the mode NoRod by issuing a command to remove the
corresponding rod.

When the mode equals NoRod, if the temperature rises to 550 and both the
clock variables y1 and y2 are smaller than c, thereby disabling both the control
actions add1 and add2, the temperature of the core can rise to an unacceptable
level, causing an alarm. Formal analysis can reveal the range of values for the
parameter c for which such an alarm condition is not feasible.

Hybrid Systems 389

Exercise 9.4 : Consider the composition of the hybrid processes ReactorPlant
and ReactorControl. Show executions of the system using a simulation tool
(such as Matlab) for the following values of the constant c: 10, 20, 30, 40, 50,
and 60.

9.1.3 Zeno Behaviors

Execution of the Bouncing Ball

Let us reconsider the hybrid process BouncingBall corresponding to the bounc-
ing ball of figure 9.3. Let us assume that the initial velocity v0 equals 0.
Then before the first bump, the change in height is described by the equa-
tion h(t) = h0 − g t2/2. The guard condition (h = 0) for the mode-switch
becomes true at time δ1 =

√
2h0/g. The first timed action is of this duration

δ1, and during this action, the height decreases from h0 to 0, and the velocity
changes from 0 to −v1, where v1 = g δ1 =

√
2 g h0. At this instance, a discrete

output action is executed, the event bump is issued, and the velocity changes its
direction while its magnitude decreases by a factor of a. Thus, the new velocity
is v2 = av1. After the first bump until the next bump, the height signal during
the timed action is given by h(t) = v2 t− g t2/2 and the velocity signal is given
by v(t) = v2 − g t. This timed action is of duration δ2 = 2 v2/g, and captures
one bounce corresponding to the parabolic motion of the ball. At the end of
this action, the height becomes 0 again, and the velocity is −v2. As a result
of the bump, the velocity is updated to v3 = a v2 = a2 v1, and the entire cycle
repeats.

If we concatenate a sequence of successive timed actions into one single timed
action, then the model has a single infinite execution that can be described as

(h0, 0)
δ1−→ (0,−v1) bump !−→ (0, v2)

δ2−→ (0,−v2) bump !−→ (0, v3)
δ3−→ · · ·

where for each i, vi+1 = a vi = ai v1 and δi+1 = 2 vi+1/g = 2 ai v1/g. After k
bumps, the velocity of the ball is ak v1. Since a < 1, this sequence converges to
0. Similarly, the sequence of durations δ1, δ2, . . . of timed actions corresponding
to the successive bounces of the ball is decreasing, converging to 0. However, at
no point during this infinite execution of the ball, it is stationary, and there is
always one more bounce possible. An inductive reasoning about such a behavior
of the ball can lead to the flawed conclusion that at no point in time the ball is
at rest.

Zeno’s Paradox

The phenomenon exhibited by the bouncing ball was noted by the Greek philoso-
phers many centuries ago and is known as the Zeno’s Paradox. This was origi-
nally posed in the context of a race between Achilles and the tortoise, in which
the tortoise has a head start. Suppose the tortoise is ahead of Achilles by d1

390 Chapter 9

meters at the beginning of a round. By the time Achilles has covered this dis-
tance d1, the tortoise has moved a little bit ahead, say d2 meters, with d2 < d1,
and for the next round, Achilles has now to cover another d2 meters, during
which the tortoise has moved farther by d3 meters with d3 < d2. By inductive
reasoning, for every natural number n, after n rounds, the tortoise is ahead of
Achilles by a non-zero distance, and thus Achilles will never be able to catch up
with the tortoise! The source of paradoxical behavior lies in the fact that exe-
cutions in which the total elapsed time does not grow in an unbounded manner
do not adequately describe the system state with progression of time.

The total time elapsed along an execution is the sum of the durations of all
the timed actions in the execution. In our bouncing ball example, this sum is
Σi≥1 δi. Since the sequence δ1, δ2, δ3 . . . converges to 0, the sum is bounded by
a constant K. Plugging in the expressions for the durations δi and velocities
vi discussed above, and using the fact that the geometric series Σi≥1 a

i equals
a/(1− a), we can compute the expression for the constant K:

∑
i≥1

δi =
√
2 g h0 (1 + a)/(1− a).

Thus, the execution, even though it contains infinitely many output and timed
actions, does not describe what happens at time K (and beyond). In reality,
the ball would be stationary on the ground at time K, but the execution never
gets to time K.

Zeno Executions and Zeno States

An infinite execution of a hybrid process HP is said to be a Zeno execution if
the sum of the durations of all the timed actions in the execution is bounded
by a constant. Thus, a non-Zeno execution is an execution in which time di-
verges. Zeno executions are an artifact of mathematical modeling, and proving
properties using Zeno executions will lead to misleading conclusions.

In the bouncing-ball model, from the initial state, every possible infinite execu-
tion is a Zeno execution. Such a state is called a Zeno state. It is the analog of
the deadlock states discussed in chapter 4. From a deadlock state there is no
enabled action, and thus there is no way to continue the execution even for one
step. From a Zeno state, there is no way to produce an infinite execution on
which time keeps increasing unboundedly.

Note that the existence of a Zeno execution starting from a state does not imply
that the state is Zeno. For example, consider the initial state (off, 66) of the
process Thermostat of figure 9.1. Consider the execution in which we first
execute a timed action of duration δ1 = 0.5, then a timed action of duration
δ2 = 0.25, and repeat this pattern: the ith action in the execution is a timed
action of duration 1/2i. This is an infinite execution, where the total sum of
durations of all the timed actions is bounded by 1. Thus, the execution is a
Zeno execution. However, the initial state is not a Zeno state: we could have

Hybrid Systems 391

chosen durations of timed actions so that the resulting execution is non-Zeno (in
particular, see the execution corresponding to the one illustrated in figure 9.2).

A hybrid process is called Zeno if some reachable state of the system is a Zeno
state. For a Zeno process, the execution can end up in a state from which every
possible way of continuing the execution causes convergence in the sum of the
durations of timed actions. The process BouncingBall of figure 9.3 is a Zeno
process. However, the process Thermostat of figure 9.1 is a non-Zeno process,
and so is the process obtained by composing the processes ReactorPlant and
ReactorControl (see section 9.1.2).

These definitions are summarized below.

Zeno Executions, States, and Processes

An infinite execution of a hybrid process HP is said to be a Zeno execution if
the sum of the durations of all the timed actions in the execution is bounded
by a constant. A state s of a hybrid process HP is said to be a Zeno state
if every infinite execution that contains the state s is a Zeno execution. A
hybrid process HP is said to be a Zeno process if there exists a state s that
is reachable and is a Zeno state.

Revising Zeno Models

The Zenoness of the hybrid process BouncingBall is perhaps not a serious
problem if we were analyzing it in isolation. However, consider the composite
process

HP = BouncingBall ‖ Thermostat
obtained by the parallel composition with the thermostat model. Even though
the two processes BouncingBall and Thermostat do not communicate, they
synchronize on the passage of time. In particular, the composite process HP is
a Zeno process, and its initial state is a Zeno state. This can lead to absurd
conclusions. For instance, suppose that the parameters of the two processes
are chosen so that the expression

√
2 g h0 (1 + a)/(1− a) that gives the bound

on the sum of the durations of all the timed actions of the bouncing ball is
less than the earliest time, given by the expression (T0 − 62)/k2, by which
the thermostat can switch to the mode on. Then on every execution of the
composite process HP, the mode of the process Thermostat stays off, and its
temperature variable keeps decreasing from the initial value T0 without ever
crossing 62. By definition, a state is considered reachable only when it appears
on some execution of the system. Hence, the following property is an invariant
of the composite process HP:

(mode = off) ∧ (62 ≤ T ≤ T0).

This property of course is not an invariant of the process Thermostat and will
be violated in the physical world regardless of whether a ball is bouncing next
to the thermostat.

392 Chapter 9

(h = 0 ∧ v ≤ vs)→
bump !; v := 0

Stop

ḣ = 0; v̇ = 0
h ≥ 0

Fall

ḣ = v; v̇ = −g

(h = 0 ∧ v > vs)→
bump !; v := −a v

h := h0; v := v0

Figure 9.9: A Non-Zeno Model of the Bouncing Ball

Thus, in a system consisting of multiple components, the presence of a single
Zeno process can affect the analysis of the entire system in unexpected ways.
This suggests that Zeno components should be avoided during formal modeling.

A Zeno process can be converted into a non-Zeno process by modifying the
model so that the model does not force mode-switches after shorter and shorter
durations. For example, figure 9.9 shows the non-Zeno process NonZenoBall

obtained from the process BouncingBall by adding a new mode called Stop in
which the ball is stationary and adding a mode-switch from the initial mode
Fall to the mode Stop when the velocity during a bump is smaller than some
threshold value vs. Starting from the initial state, if we execute a timed action
of maximum possible duration, followed by the output action corresponding to
the discrete bump, then it is guaranteed that after finitely many actions, the
magnitude of the velocity becomes smaller than this threshold value, and the
process switches to the mode Stop. Once in the mode Stop, timed actions of
arbitrary durations are possible, and in particular one can generate a non-Zeno
execution.

If we compose the process Thermostat and the modified bouncing ball process
NonZenoBall, then the behavior of the process Thermostat is not influenced in
any meaningful way. In particular, verify that for any property ϕ that refers to
the mode and the temperature of the thermostat, the property ϕ is an invari-
ant of the composite process NonZenoBall ‖ Thermostat if and only if it is an
invariant of the process Thermostat.

Exercise 9.5 : Consider the following scenario. Two trains are heading toward
each other on a single track at constant speeds: the train E is traveling east
at a fixed speed ve, and the train W is traveling west at a fixed speed vw. A
bee B is initially traveling west at a fixed speed vb along the line joining the
two trains. When the bee reaches the train E, it reverses its direction, heads
east at the same speed vb, and reverses its direction again when it reaches the
train W . This cycle repeats. Model this scenario as a hybrid process. The state
machine can have two modes, one each corresponding to the direction in which
the bee is traveling, and three state variables that capture the positions of the
train E, the train W , and the bee B. Show that the process is Zeno. Compute
the formula that expresses the distance between the two trains as a function of

Hybrid Systems 393

B

ṡ1 = −s1 + 10s2

ṡ2 = −100s1 − s2
s2 ≥ 5s1

A

ṡ1 = −s1 − 100s2

ṡ2 = 10s1 − s2
s2 ≥ −0.2s1

(s2 = −0.2s1)?

(s2 = 5s1)?

Figure 9.10: Instability Due to Mode Switching

the speeds ve, vw, and vb and the initial values of the three position variables.

Exercise 9.6*: In this exercise, we establish that the property of being non-
Zeno is not preserved by parallel composition. Consider the following specifi-
cation of the hybrid process HP1. It has a single input event x and a single
output event y. Whenever it receives an input, it waits for a duration of 1/2i

time units, if this is the ith input event it has received so far, and then issues
an output event (it does not accept any inputs while it is waiting to issue its
output). Design the process HP1 as an extended-state machine. It suffices for
the process HP1 to use a single clock variable, and thus the process HP1 is a
timed process. Argue that the process HP1 is non-Zeno.

Now consider the following specification of another process HP2. It has a single
input event y and a single output event x. It first issues an output event after
a delay of 1 second; subsequently, whenever it receives an input, it waits for
a duration of 1/2i time units, if this is the ith input event it has received so
far, and then issues an output event. Design the timed process HP2 as an
extended-state machine. Argue that the process HP2 is non-Zeno.

Now consider the parallel composition HP1‖HP2. Show that the composite
process is Zeno.

9.1.4 Stability

As discussed in chapter 6, stability is a desirable feature for dynamical systems.
Recall that a state se of a dynamical system is an equilibrium state if the
system, starting in the state se, continues to stay in that state in the absence
of external inputs. Such an equilibrium state is stable if we perturb the system
state slightly, that is, choose the initial state s such that the distance ‖s− se‖ is
small, then at all times the state of the system stays within a bounded distance
from the equilibrium, and is asymptotically stable if the state converges to the
equilibrium with the passage of time.

We can use these same definitions to understand stability of hybrid processes.
However, due to the presence of mode-switches, the mathematical analysis used
to characterize stability for linear systems, and the associated techniques for

394 Chapter 9

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

0

0.2

0.4

0.6

0.8

1

s1

s
2

s2=−0.2s1

s2=5s1

Figure 9.11: Unstable Response due to Mode-switching

designing stabilizing controllers, are not applicable to hybrid systems. We will
illustrate the difficulties introduced due to mode-switching using an example.

Consider the hybrid process shown in figure 9.10. The dynamics in the mode
A is specified by the linear differential equations ṡ1 = −s1 − 100s2 and ṡ2 =
10s1 − s2. Observe that the origin, that is, the state 0, is an equilibrium state.
The eigenvalues of the dynamics matrix are −1 +

√
1000j and −1 − √1000j,

and from theorem 6.3, we can conclude that the continuous-time system with
this dynamics is asymptotically stable.

However, the hybrid process of figure 9.10 stays in the mode A only as long as
the invariant (s2 ≥ −0.2s1) holds, and when the state satisfies the switching
condition (s2 = −0.2s1), it switches to mode B. The dynamics associated with
the mode B is specified by the linear differential equations ṡ1 = −s1 + 10s2 and
ṡ2 = −100s1 − s2. Observe that this dynamics matrix is the transpose of the
dynamics matrix in mode A with identical eigenvalues, and thus a system that
evolves according to this dynamics is also asymptotically stable. The process
can stay in the mode B only as long as the invariant (s2 ≥ 5s1) holds, and when
the condition (s2 = 5s1) is satisfied, it switches back to mode A.

Although the dynamics in the individual modes A and B are asymptotically
stable, the switching causes instability. Figure 9.11 shows the execution of
the system from the initial state (−0.01, 0.02) in mode A. Indeed the origin is
unstable: if the initial state s in mode A is not the origin, then no matter how
close it is to the origin, the system state diverges from the origin as time passes.

Analyzing stability of hybrid systems turns out to be a difficult problem. Gener-
alizing analysis techniques from the theory of continuous-time systems to hybrid
systems remains an active area of research and is beyond the scope of this text-
book.

Hybrid Systems 395

v
y

Track

d

Vehicle

x

θ

Figure 9.12: The Design Problem for the Automated Guided Vehicle

9.2 Designing Hybrid Systems

We illustrate the modeling and design of controllers for hybrid systems using
three examples. The first example illustrates design of a controller that switches
between different modes of operation, the second example illustrates multi-agent
collaboration for improved planning, and the third example of multi-hop control
networks shows how to model a system that integrates control, computation,
and communication.

9.2.1 Automated Guided Vehicle

Consider an autonomous vehicle that needs to be programmed to move along a
track as closely following the track as possible. The track is not known to the
vehicle in advance but is equipped with sensors. In particular, assuming that
the vehicle has not strayed too far from the track, the sensors can measure the
distance d of the vehicle from the center of the track. Such information can be
provided, for instance, by placing photodiodes along the track.

The vehicle dynamics is modeled as a planar rigid-body motion with two degrees
of freedom. It can move forward along its body axis with a maximum possible
speed v, and it can rotate about its center of gravity with an angular speed ω,
which can range over the interval from −π to +π radians/second. The variables
(x, y) model the position of the vehicle, and θ gives the relative angle with
respect to some fixed planar global frame in which the vehicle is headed.

Figure 9.12 shows the design problem for the automated guided vehicle. Based
on the current measurement of the distance d, the controller must adjust the
control inputs v and ω so as to keep the value of the distance d as close to
0 as possible. The control design problem is additionally constrained by the
requirement that the vehicle hardware provides only three discrete settings for
the angular speed ω: it can be 0, +π, or −π. When ω = 0, the direction θ stays
unchanged, and the vehicle is going straight. When ω = −π, the direction θ is
decreasing as fast as possible, and thus the vehicle is attempting to turn right.

396 Chapter 9

(d ≤ e)?

(d ≥ e)?

(d ≥ −e)?(d ≤ −e)?

Straight

ẋ = v cos θ
ẏ = v sin θ

θ̇ = 0
−e ≤ d ≤ e

ẋ = 0

x := x0

y := y0

u ? stop

θ̇ = 0

ẏ = 0

u ? start∧
(d ≥ e)?

u ? start∧
(−e ≤ d ≤ e)?

θ := θ0

u ? stop

Right

ẋ = (v cos θ)/2
ẏ = (v sin θ)/2

θ̇ = −π
d ≥ e

Left

ẋ = (v cos θ)/2
ẏ = (v sin θ)/2

θ̇ = π
d ≤ −e

Stop

u ? stop

u ? start ∧ (d ≤ −e)?

Figure 9.13: The Hybrid Controller for the Automated Guided Vehicle

Conversely, when ω = π, the direction θ is increasing as fast as possible, and
thus the vehicle is attempting to turn left.

The control designer makes a further design decision that when the vehicle is
headed straight, it moves as fast as possible, with speed v. When the vehicle is
turning left or turning right, it attempts to do so at half the maximum possible
speed. This leads to four modes of operation as shown in the hybrid state
machine of figure 9.13. In the mode Stop, the vehicle is stationary; in the mode
Straight, the vehicle is moving with speed v and ω = 0; in the mode Left,
the vehicle is turning left with speed v/2 and ω = π; and in the mode Right,
the vehicle is turning right with speed v/2 and ω = −π. In this model, we have
assumed that the vehicle can change its speed and direction instantaneously
during a mode-switch. This assumption is justifiable if the time needed to
switch from one mode to another is insignificant compared with time spent in
each mode.

The input variables to the process are the discrete input channel in that carries
the commands start and stop to start and stop the vehicle and the continuously
updated signal d that captures the error of the trajectory from the desired track.
By design, a positive value of d means that the vehicle is off to the left of the
track, and a negative value of d means that the vehicle is off to the right of the
track.

The switching laws for the controller are designed using the parameter e. When-
ever the current distance is in the interval [−e,+e], the vehicle is assumed to be
close enough to the track, and the controller decides to move straight. When-
ever the current distance exceeds the threshold value e, the controller decides

Hybrid Systems 397

Figure 9.14: A Sample Vehicle Trajectory along a Curved Track

that the vehicle has strayed too far to the left and must be steered to the right
by switching to the mode Right. Symmetrically, whenever the current distance
is smaller than the threshold value −e, the controller concludes that the vehicle
has strayed too far to the right and must be steered to the left by switching to
the mode Left. The continuous-time invariants and the guards on the switches
of the hybrid process of figure 9.13 capture this logic.

The behavior of the hybrid controller can be understood by considering tracks of
different shapes. Figure 9.14 shows a sample trajectory followed by the vehicle
along a curve in the track. In the illustrated scenario, the track is a circle
centered at the origin with the radius 50. The following values of the parameters
are used: v = 35, e = 5, x0 = −30, y0 = 35, and θ0 = 0.4π. The vehicle is
initially going straight. As the distance from the center of the track exceeds the
threshold value e, it starts moving right, and when the distance from the center
of the track decreases below e, it decides to move in a straight line. In this
example, this maneuver causes an overshoot, eventually causing the distance
to be less than the threshold −e, and this triggers the vehicle to switch to the
mode Left.

Exercise 9.7 : For the automated guided vehicle, consider the following addi-
tional constraint: once the vehicle starts moving straight, left, or right, it cannot
change its direction before Δ minutes for a given constant Δ. How will you mod-
ify the hybrid process of figure 9.13 to capture this additional constraint? How
will the trajectory of the vehicle be affected by this change?

398 Chapter 9

X

Y

(x′, y′)

(xf , yf)

θ′

Obstacle O2

Target

(x, y)

θ

Robot R

Robot R′

Obstacle O1

Figure 9.15: Path Planning in Presence of Obstacles for Two Robots

9.2.2 Obstacle Avoidance with Multi-robot Coordination

A challenging application domain for modeling and analysis of hybrid systems
is the design of multi-robot coordination for a system of autonomous mobile
robots. A typical surveillance task involves identifying a target and exploring
a room with unknown geometry, possibly with obstacles, to reach the target.
The sensory capabilities of each robot yield only imperfect information about
the surroundings, and in particular, each robot has only estimates about the
obstacle positions. The robots can send information to one another over wireless
links and use this information to improve the accuracy of their estimates for
better motion planning. The robots also need to coordinate with one another
to achieve collaborative goals. For instance, it may be required that a team
of robots should arrive at the same target, or the robots may be required to
partition a set of targets among themselves. The solution to the design problem
should ideally also be optimal among the space of solutions. For example, the
objective can be to minimize either the total distance traveled by the robots or
the time by which all the targets are reached. Thus, the design problem involves
coordination, planning, and control in an optimal manner while satisfying the
safety requirements and is representative of design problems in intelligent vehicle
systems and flight management systems.

Illustrative Scenario

To illustrate modeling in a concrete scenario, suppose there are two autonomous
mobile robots R and R′. We assume a two-dimensional world in which each
robot is modeled as a point in the two-dimensional X-Y plane (see figure 9.15).
The initial position of the robot R is (x0, y0), and the initial position of the
robot R′ is (x′

0, y
′
0). The goal of each robot is to reach the target located at the

position (xf , yf). Both the robots want to reach the target while minimizing
the total distance traveled. Assume that both robots travel at a fixed speed,
say v. Then the sole control input for each robot is the direction in which it is

Hybrid Systems 399

moving. If the state variables (x, y) specify the coordinates of the robot R, the
variables (x′, y′) specify the coordinates of the robot R′, the variable θ specifies
the direction in which the robot R is headed, and the variable θ′ specifies the
direction in which the robot R′ is headed, then the dynamics of the system is
captured by the differential equations:

ẋ = v cos θ; ẏ = v sin θ; ẋ′ = v cos θ′; ẏ′ = v sin θ′.

The room has obstacles, and this can prevent each robot from traveling in a
straight line from its initial position to the target. More specifically, suppose the
room has two obstacles and the areas occupied by the two obstacles are O1 and
O2, respectively (see figure 9.15). Each robot has a camera that can detect the
approximate position of each obstacle. The robots can also communicate their
current estimates so that their joint knowledge can be used for more accurate
information.

The safety requirement for the problem is that no robot should ever collide
with an obstacle. That is, the following property should be an invariant of the
system:

[(x, y) �∈ O1 ∧ (x, y) �∈ O2 ∧ (x′, y′) �∈ O1 ∧ (x′, y′) �∈ O2].

The liveness requirement is that each robot should eventually reach its target:

♦ [(x, y) = (xf , yf)] ∧ ♦ [(x′, y′) = (xf , yf)].

Estimating Obstacles

Mapping obstacles accurately using images from a camera is a computationally
expensive task. Furthermore, optimal path planning to a target location given
complex descriptions of obstacles is also computationally expensive. To address
these difficulties, let us estimate each obstacle using a circle. In figure 9.16, the
actual obstacle is a concave polygon occupying the area O. The circle of radius r
contains this area entirely and is the best possible circular approximation of the
obstacle. The image-processing algorithm on board a robot then simply needs
to return the parameters of the circle, and this does not require detecting edges
of the obstacle accurately. The planning algorithm has to compute a path to the
target that avoids the circular shapes, and such a path is guaranteed to avoid
collisions with the actual obstacles, thereby satisfying the safety requirement,
although it may not be the shortest such path to the target.

In vision applications, the accuracy of obstacle estimation is limited by several
factors, and the estimates improve as the distance to the target decreases. This
is particularly true when sonars are used for obstacle detection. In figure 9.16,
the obstacle is a circle with the center (xo, yo) and radius r. The estimate by
a robot with the current position (x1, y1) is a circle that is concentric with the
obstacle circle but with radius e1 that exceeds r. This estimate depends on the
distance d1 between the obstacle center (xo, yo) and the robot position (x1, y1).

400 Chapter 9

Position (x1, y1)

Distance d1

Position (x2, y2)
Distance d2

Estimated circle from distance d2
e1

Estimated circle from distance d1

e2

Obstacle O

Approximate obstacle as a circle

r

Figure 9.16: Approximate Estimation of an Obstacle

As the robot moves to the position (x2, y2), which is distance d2 away from the
obstacle center, the estimate improves to another concentric circle of radius e2.
As (d2 < d1), we have (e2 < e1). As the robot approaches the obstacle boundary,
the distance between the robot position and the center of the obstacle decreases,
and the estimate becomes more and more accurate, converging to the correct
value of the obstacle radius. We assume the dependence of the estimate on the
distance to be linear. If d is the current distance between the robot position
and the obstacle center and r is the obstacle radius, then the estimated radius
e is given by the equation

e = r + a (d− r)

where 0 < a < 1 is a constant.

In our example scenario of figure 9.15, we have two obstacles. The first obstacle
is modeled as a circle with the center (x1

o, y
1
o) and radius r1, and the second

obstacle is modeled as a circle with the center (x2
o, y

2
o) and radius r2. Each robot

can compute the estimates of each of the two obstacles based on the distance of
its current position from the centers of the two obstacles. Furthermore, obstacle
estimation is a computationally expensive process. As a result, the estimates
are updated only discretely, every te seconds.

Path Planning

Consider the robot R with the current position (x, y). Its goal is to reach the
target (xf , yf) while avoiding the two obstacles. For the obstacle O1, the area it
occupies according to the robot R is a circle centered at (x1

o, y
1
o) with the current

estimated radius e1. Similarly, for the obstacle O2, the area it occupies according
to the robot R is a circle centered at (x2

o, y
2
o) with the current estimated radius

e2. The objective of the planner is to compute a shortest path from the current
position to the target so that the trajectory does not intersect the estimated
obstacle circles.

The plan is usually updated in a discrete manner. In our design, the planning
algorithm is invoked every tp seconds, and the planning algorithm determines

Hybrid Systems 401

(xf , yf)

θ4

θ2
θ3

e1

Path P4

θ1

θ0

(x, y)

e2

Path P1

Figure 9.17: Path Planning While Avoiding Circular Obstacles

the control input θ that gives the direction for the robot motion. The direction
stays unchanged until the next time the planning algorithm is invoked. We
assume that the planning algorithm is captured by the function plan that takes
as inputs (1) the current position (x, y), (2) the target position (xf , yf), (3)
the first obstacle circle given by the center (x1

o, y
1
o) and radius e1, and (4) the

second obstacle circle given by the center (x2
o, y

2
o) and radius e2 and returns the

direction θ in which the robot should head.

The first step of the planning algorithm is to decide if the straight line from the
current position (x, y) to the target (xf , yf) intersects any of the two estimated
obstacle circles. If not, then the chosen direction is along this straight line. If
it does, as is the case in figure 9.17, then the planner considers rays that are
tangents from the current position (x, y) to the two obstacle circles. These are
shown as directions θ1 and θ2 tangential to the first obstacle and directions
θ3 and θ4 tangential to the second obstacle in figure 9.17. A direction that is
tangential to one but intersects the other is discarded. Among the remaining
choices, the direction that minimizes the distance to the target is chosen. In
figure 9.17, the tangential directions θ2 and θ3 are not viable as they intersect
with the other obstacle. The direction θ1 corresponds to the path P1 to the
target, and the direction θ4 specifies the path P4 to the target. Since the length
of the path P1 is shorter than the path P4, the planner returns the direction θ1.

Note that the robot does not actually follow the path P1; rather, it starts moving
in the direction θ1. When the planner is invoked again, if the estimates have
improved by then, then it can revise its choice. In particular, in our example, as
the robot moves along the direction θ1, it would acquire an improved estimate
of the first obstacle as a circle with a shorter radius; as a result, the robot would
decrease the value of θ1 in the clockwise direction and thereby head closer to
the actual obstacle.

The function plan involves a sequence of floating-point calculations necessary
to determine tangents and intersections. Such code is typically written in C or

402 Chapter 9

e1

θ1

Path P1

(xf , yf)

(x, y)

e2

e′2

Path P2

θ2

Figure 9.18: Impact of Improved Estimates via Coordination on Path Planning

Matlab and the update description in the model-based design framework calls
this function.

Coordination

To understand the impact of coordination, let us revisit the planning example of
figure 9.17 as shown in figure 9.18. Suppose the robot R′ is closer to the second
obstacle and, thus, has a better estimate e′2 of the radius of this obstacle. If the
robot R′ communicates this information to the robot R, then the robot R can
simply update its value of the estimate e2 to e′2. Using this revised estimate, the
planner now concludes that the direction θ2 tangential to the first obstacle is a
viable option since it does not intersect the circle with the center (x2

o, y
2
o) and

radius e′2. The path P2 corresponding to this choice is shorter than the path P1

(see figure 9.18); as a result, the planner chooses the direction θ2, leading to a
more optimal solution.

The coordination strategy in this example is simple: every tc seconds, the robot
R sends its estimates e1 and e2 of the obstacles’ radii to the robot R′, and
whenever it receives estimates (e′1, e

′
2) of the obstacles’ radii from the other

robot, it updates the estimate value e1 to the minimum of its own current
estimate e1 and the received value e′1, and the estimate value e2 to the minimum
of its own current estimate e2 and the received value e′2 (since a smaller radius
is an improved estimate).

Hybrid Model

We proceed to describe the model of the robot as a hybrid process. We will
describe the model for the robot R, and the model for the robot R′ is symmetric
and can be obtained by instantiation.

The hybrid process for the robot R is shown in figure 9.19. It uses the following
variables:

Hybrid Systems 403

• It has one input channel in of type (real × real) that is used to receive
the estimates of the radii of the obstacles from the other robot.

• It has one output channel out of type (real× real) that is used to send
the estimates of the radii of the obstacles to the other robot.

• The continuously updated state variables x and y, of type cont, model
the position of the robot. These variables are initialized to x0 and y0,
respectively.

• The discretely updated state variables e1 and e2, both of type real, cap-
ture the current estimates of the radii of the two obstacles. The initial
estimates are obtained by executing the obstacle estimation algorithm and
depend on the distance between the initial robot position and the centers
of the two obstacles.

• The discretely updated state variable θ ranging over the interval [−2π, 2π]
models the direction in which the robot is currently moving. The initial
direction is obtained by executing the function plan.

• The continuously updated state variable zp, initialized to 0, is a clock
variable that is used to enforce the timing constraint for invoking the
planning algorithm every tp seconds.

• The continuously updated state variable ze, initialized to 0, is a clock
variable that is used to enforce the timing constraint for updating the
estimates using the vision data every te seconds.

• The continuously updated state variable zc, initialized to 0, is a clock
variable that is used to enforce the timing constraint for communicating
the estimates every tc seconds.

The process has two modes: Move and Stop. Initially, the mode is Move. During
a timed action, the three clock variables zp, ze, and zc increase at the rate 1,
and the position variables x and y are updated at rates v cos θ and v sin θ,
respectively.

The switches from this mode are the following:

• When the robot reaches its target, captured by the condition (x = xf ∧
y = yf), it switches to the mode Stop.

• When an input (e′1, e
′
2) is received on the input channel in, the obstacle

estimates e1 and e2 are updated to the minimum of the current and the
received values.

• When the clock zp reaches the value tp, the direction θ is updated by
invoking the planning function plan based on the current estimates, and
the clock zp is reset to 0.

404 Chapter 9

θ := plan(x, y, xf , yf , e1, e2)

e2 := r2 + a(dist((x, y), (x2
o, y

2
o))− r2)

e1 := r1 + a(dist((x, y), (x1
o, y

1
o))− r1)

x := x0; y := y0

clock zp, ze, zc := 0

(x = xf ∧ y = yf)?

in ? (e′1, e
′
2)→

{e1 := min(e′1, e1); e2 := min(e′2, e2)}

∧ (x �= xf ∨ y �= yf)

ẋ = ẏ = 0

Stop

zp ≤ tp ∧ zc ≤ tc ∧ ze ≤ te

ẏ = v sin θ

ẋ = v cos θ

Move

(zc = tc)→ {out ! (e1, e2); zc := 0}
(zp = tp) →

(ze = te) → { ze := 0;
e1 := min(e1, r1 + a(dist((x, y), (x1

o, y
1
o))− r1));

e2 := min(e2, r2 + a(dist((x, y), (x2
o, y

2
o))− r2))}

{θ := plan(x, y, xf , yf , e1, e2); zp := 0}

Figure 9.19: The Hybrid State Machine for the Robot

• When the clock zc reaches the value tc, the current values of the estimates
e1 and e2 are transmitted on the output channel out, and the clock zc is
reset to 0.

• When the clock ze reaches the value te, the current values of e1 and e2 are
updated by executing the vision-based obstacle estimation algorithm, and
the clock ze is reset to 0. As discussed earlier, the effect of this algorithm
is captured by computing the distance between the current robot position
and the centers of the two obstacles and updating the estimate values if
the revised estimates are better.

The continuous-time invariant of the mode Move ensures that when the condi-
tions for updates corresponding to one of the discrete switches is satisfied, the
elapse of time is interrupted to execute the corresponding discrete action. When
the process is in the mode Stop, the robot simply waits there.

The desired system is the parallel composition of the two robots. The system
description involves a large number of parameters. The system needs to be
simulated many times to choose values for the parameters from possible choices.
In particular, we would like to find out the value of tc that determines how often
the robots should communicate so that the communication actually improves
the distance traveled.

Illustrative Execution

Figure 9.20 shows sample executions of the model obtained by simulating the
model in Stateflow/Simulink. The initial position of the robot R is (4.5, 2),
the initial position of the robot R′ is (10, 2), and the target is at the position
(6, 10). The obstacle O1 is centered at (3.7, 7.5) and has a radius 0.9, and the

Hybrid Systems 405

Figure 9.20: Illustrative Execution for Obstacle Avoidance

obstacle O2 is centered at (7, 7) and has a radius 1.25. The speed v is set to 0.5
units/sec, and the coefficient a used in the obstacle estimation is 0.12. The value
of tp, the time period for executing the planning algorithm, is 2 seconds, and
the value of te, the time period for updating the obstacle estimates, is 2 seconds.
The value of tc, the time period for communicating the obstacle estimates, is
different for the two executions: the left execution is obtained by setting tc to
4 seconds, and the right execution is obtained by setting tc to a high value.

Based on the initial estimates of the robot R, the two obstacles seem to overlap.
As it gets closer to the obstacles, the estimates improve, suggesting a route to
the target that passes between the two obstacles. For the robot R′, the planned
route does not exhibit a such qualitative change, but note that its estimate of the
second obstacle constantly improves as it moves, leading to a curved trajectory.
Observe that the distance traveled by the robot R is smaller in the left scenario
as a result of communication. This is because it receives a better estimate of
the second obstacle from the robot R′ and switches its route a bit earlier thanks
to this collaboration. In particular, the distance traveled by the robot R is
8.8136 with communication and is 8.6480 in the absence of communication (the
distance traveled by the robot R′ is 9.1550 in both the scenarios).

Exercise 9.8 : For the problem of obstacle avoidance with coordination, con-
sider the following optimization that reduces the needed computation. If a
robot determines that the straight-line path from its current position to the
target does not intersect any of the obstacles based on its current estimates of
the obstacles, such a path cannot further be improved, and the robot can simply
decide to move in this direction with no further planning. Modify the model of
figure 9.19 so as to include this optimization.

406 Chapter 9

e9 e10

e13

e3

e4

e11

e12

Node N1 Controller C2Plant P1 Controller C1

e2
e7

e8

e14 e15

Node N3Node N2Plant P2 Node N4

e6

e5

e1

Figure 9.21: Example Multi-hop Control Network

9.2.3 Multi-hop Control Networks ∗

The classical architecture of a feedback control loop is shown in figure 6.1. In
contrast, wireless networked control systems are spatially distributed systems
where the communication among sensors, actuators, and computational units
is supported by a shared wireless communication network. The deployment
of such networked control systems in industrial automation results in flexible
architectures and typically reduces the costs for installation, debugging, diag-
nostics, and maintenance when compared with the classical wired control loops.
Design of controllers in the networked architecture faces new challenges. First,
communication between a plant and the corresponding controller involves mul-
tiple hops and, thus, significant time delays. Second, multiple control loops may
share the same network link, leading to mutual dependencies. Thus, the design
of control laws for adjusting the plant inputs, the routing policies for transmis-
sion of messages through the network, and the scheduling policies for sharing
network links must evolve in a synergistic manner. We now describe how to
model such multi-hop control networks formally using the modeling concepts
discussed in this textbook.

Example Network

Figure 9.21 shows a sample network. It consists of two plants P1 and P2 and
their corresponding controllers C1 and C2. Messages among the plants and
controllers are routed over a network consisting of four nodes N1, N2, N3, and
N4. The links e1, e2, . . . e15 between different components are directed. For
example, the output of the plant P1 can be sent to the node N2 over the link
e2, and the network can forward such messages to the controller C1 using the
links e7, e11, and e15.

To be deployed in the context of control applications, the network must provide
real-time guarantees regarding delivery of messages. In our set up, let us assume
that one message can be delivered over a given link in a duration of time Δ. In
other words, time is divided into slots with each slot of duration Δ time units.

Hybrid Systems 407

Ṡ = f(S, u, d)

CI : x ≤ Δ

Ai : if (Second(in) = myID) then u := First(in)

Ao : (x = Δ) → { out := (h(S), cntrlID); x := 0 }

cont S := s0; clock x := 0; realm u := u0

(realm × IDs) out

cont d

(realm × IDs) in

Figure 9.22: Plant Model in Multi-hop Control Network

At the beginning of each time slot, each node can send one message on each
of its outgoing links. The message on each link can be received by the target
component at the end of the time slot. Such a network is called a time-triggered
network. The emerging WirelessHART standard for wireless networks provides
such an abstraction and is being increasingly deployed within industrial process
control.

Plant Model

The hybrid process modeling a plant in a multi-hop control network is shown in
figure 9.22. The plant maintains state variables S that are updated continuously.
The state is initialized to the value s0 and evolves according to the differential
equation Ṡ = f(S, u, d) during a timed action, where the variable u denotes
the controlled input and the variable d denotes the uncontrolled input (or the
disturbance). The disturbance d is a continuously updated external input signal.

The controlled input u, unlike in the models of continuous-time components in
chapter 6, is updated only discretely, when the process receives a new value
on the input channel in. Let us assume that the input u is an m-dimensional
vector. The process model needs to store the value of this variable in its internal
state. A message communicated over the network is a pair (v, id), consisting
of a value v and the identifier id of the destination of the message. Let IDs

denote the set of identifiers of all the plants and controllers that are connected
by the network. The description of the plant process is then parameterized by
its own identifier, denoted myID. The processing of an input over the channel
in is then specified by the input task Ai: whenever it receives a message (v, id)
on the input channel, it checks if the identifier id equals its own identifier; if so,
it updates the value of the control input stored in the state variable u to the
value v. If the channel in receives the sequence of values v1, v2, . . . destined for
this plant at times t1, t2, . . . respectively, then the evolution of the variable u
is a piecewise-constant signal whose value during the interval [ti, ti+1) is vi, for
each i ≥ 1.

The function h maps the plant state to its output. Let us assume that the plant
output is also an m-dimensional vector. Then every message exchanged on the

408 Chapter 9

network is of type (realm × IDs). The output of the plant is transmitted on
the channel out. Since each network link can carry only one message every Δ
time units, the plant should send a message every Δ time units on the channel
out. To capture this timing constraint, we use a clock variable x. The clock is
initialized to 0. The clock-invariant associated with the process is the condition
(x ≤ Δ), and the guard associated with the output task Ao responsible for
sending messages on the channel out is (x = Δ). These two together ensure
that the message is transmitted exactly every Δ time units. The value of the
message to be transmitted is computed by applying the output map h to the
plant state. The destination of the message is represented by the parameter
cntrlID, which is the identifier of the controller responsible for this specific
plant.

For the network shown in figure 9.21, we need two instances of the plant process.
One is instantiated with myID = P1, cntrlID = C1, in = e1, and out = e2, and
the other is instantiated with myID = P2, cntrlID = C2, in = e4, and out = e3.
In each case, the model is completed by filling in the details of the dynamics f
and the output map h.

Controller Model

The timed process modeling a controller in a multi-hop control network is shown
in figure 9.23. The controller maintains an estimate of the state of the plant
using the variables S′. The estimate is initialized to the initial plant state s0.

The input to the controller is the channel in on which it receives the observed
outputs of the plant communicated over the network. Recall that the messages
are tagged with the destination identifier. Whenever the controller receives a
message addressed to itself, it updates the state estimate S′ based on the current
estimate and the newly received plant observation. Based on this estimate, it
computes an updated value of the control input g(S′) to be communicated back
to the plant. This value is enqueued in the queue u that contains messages to
be transmitted over the output channel.

A clock variable x is used to ensure that only one message is sent on the output
channel every Δ time units. To achieve the desired behavior, we choose the
clock invariant to state that “if an output message is waiting, then the clock
should not exceed Δ.” The output task is enabled when the queue is non-empty
and the clock reaches Δ. Whenever a value is sent over the output channel, it is
tagged with the identifier of the corresponding plant, denoted by the parameter
plantID. The output task also resets the clock to 0. When the input task
generates a new value to be transmitted, and thus to be enqueued in the output
queue, it checks if the output queue is empty and, if so, resets the clock to 0 so
that this new value will be transmitted after a delay of Δ time units.

If the controller receives an input only once every Δ time units, then the queue
u contains one message most of the time. Consider the state in which the queue
contains one message, the clock x equals Δ, and the process that sends messages

Hybrid Systems 409

S ′ := f ′(S ′, First(in));
if Empty(u) then x := 0;

Enqueue(g(S ′), u) }

{ out ! (Dequeue(u), plantID); x := 0 }

CI : ¬ Empty(u) → (x ≤ Δ)

Ai : if (Second(in) = myID) then {

realm S ′ := s0; clock x := 0;

queue(realm) u := null

(realm × IDs) in

Ao : (¬ Empty(u) ∧ x = Δ) →

(realm × IDs) out

Figure 9.23: Controller Model in Multi-hop Control Network

on the channel in is ready to transmit a message. In this case, both the input
task Ai and the output task Ao are enabled and can execute in either order. No
matter in which order they get executed, in the resulting state, the clock x is 0,
and the queue contains one message that reflects the update of the controller’s
output in response to the value just received. If the controller is supplied inputs
at a rate higher than once per Δ time units, then the number of messages
waiting in the queue u will keep growing, and this scenario should be avoided.

For the network shown in figure 9.21, we need two instances of the controller
process. One is instantiated with myID = C1, plantID = P1, in = e15, and
out = e14, and the other is instantiated with myID = C2, plantID = P2, in = e6,
and out = e13. In each case, the model is completed by filling in the details of
the state estimator function f ′ and the control map g.

Network Routing

Given the set of plants, controllers, network nodes, and directed links connect-
ing them, we need to determine how to route the messages from each plant
to the corresponding controller and back. This problem can be formalized as
computing paths between multiple source-destination pairs in a directed graph
and is a classical network routing problem. Ideally, we would like all the routes
to be mutually disjoint. In such a case, transmission of messages along different
routes can proceed independently. Additionally, shorter routes mean shorter
end-to-end delays in transmission of messages, and hence shorter routes are
preferred.

In the example network shown in figure 9.21, we need to determine routes from
the plant P1 to the controller N1, from the controller C1 to the plant P1, from
the plant P2 to the controller N2, and from the controller C2 to the plant P2.
A good choice of such routes is:

410 Chapter 9

CI : ∧l
j=1 ¬ Empty(y[j]) → (x[j] ≤ Δ)

Aj
i : { local a := myRouteTable[Second(inj)];

clock x[1, . . . l] := 0;

queue(realm × IDs) y[1, . . . l] := null
(realm × IDs) in1 (realm × IDs) out1

(realm × IDs) ink (realm × IDs) outl

{ outj := Dequeue(y[j]); x[j] := 0 }

if a �= 0 then {
if Empty(y[a]) then x[a] := 0;

Enqueue(inj, y[a]) } }

Aj
o : (¬ Empty(y[j]) ∧ x[j] = Δ) →

Figure 9.24: Network Node Model in Multi-hop Control Network

• the four-hop path e2, e7, e11, e15 from the plant P1 to the controller C1,

• the three-hop path e3, e5, e6 from the plant P2 to the controller C2,

• the four-hop path e14, e12, e9, e1 from the controller C1 to the plant P1,
and

• the three-hop path e13, e10, e4 from the controller C2 to the plant P2.

Note that these four routes are indeed disjoint, and the length of each route
equals the length of the shortest path for the corresponding source-destination
pair.

The problem of finding a path of shortest length between a single source-
destination pair in a directed graph can be solved efficiently in time linear in
the size of the graph using classical graph-search algorithms. However, finding
disjoint paths among multiple source-destination pairs in a directed graph can-
not be solved efficiently, and the problem is known to be NP-complete. In the
context of multi-hop control networks, the size of the graph is typically not large
(in current industrial process control, a typical graph consists of tens of nodes),
and thus it is possible to explore different alternatives in an exhaustive manner
to find the desired routes. When multiple sets of disjoint routes are possible,
the routing strategy should prefer shorter paths. However, since a solution con-
sists of routes between multiple source-destination pairs, two solutions may be
incomparable: the path between a plant-controller pair may be shorter in one
solution than in the other, but the path between another plant-controller pair
may be shorter in the second solution than in the first. In such a case, the choice
among the different solutions can be based on analyzing the overall performance
of the entire system in conjunction with the design of control laws.

Hybrid Systems 411

Modeling Network Node

The timed process modeling a generic network node is shown in figure 9.24.
The description is parameterized by (1) the number k of incoming links, (2)
the number l of outgoing links, and (3) a routing table myRouteTable that
maps the set IDs of message destinations to one of the outgoing links. For
a destination id in the set IDs, if myRouteTable[id] is a number j between 1
and l, then the message should be transmitted on the jth outgoing link, and if
myRouteTable[id] is 0, then that means the node is not expecting messages sent
to the destination id, and the message should be simply ignored.

The process has an input channel inj , for j = 1, . . . k, corresponding to each
incoming link, and an output channel outj for j = 1, . . . l, corresponding to each
outgoing link. The state of the process has a queue for each output channel:
the messages to be transmitted on the output channel outj are stored in the
queue y[j].

The processing of the messages received on the input channel inj is captured by

the input task Aj
i , for j = 1, . . . k. Whenever the process receives a message, it

uses the destination of the message, available as the second field of the incoming
message, and the routing table to choose the output channel on which the
message should be propagated. If the routing table entry is 0, then the node is
not expecting such a message, and the message is simply dropped. Otherwise,
the message is enqueued in the corresponding queue.

The timing constraint that the process should send only one message every Δ
time units on each output channel is enforced in a manner analogous to the
controller model. For each output channel outj , the process has a clock variable
xj . The clock invariant ensures that, for each j = 1, . . . l, if an output message
is waiting to be transmitted on the jth output channel, then the correspond-
ing clock should not exceed Δ. The output task Aj

o corresponding to the j-th
output channel is enabled when the corresponding queue y[j] is non-empty and
the corresponding clock x[j] reaches Δ. The clock corresponding to an out-
put channel is reset to 0 every time a message is transmitted on this channel
by the output task and also when an input task enqueues a message in the
corresponding queue when it is empty.

For the network of figure 9.21, we need four instances of the network process. For
the process corresponding to the network node N3, the number k of incoming
links is 2, and the number l of outgoing links is 3. The input channels in1
and in2 are renamed to the link names e7 and e12, respectively. The output
channels out1, out2, and out3 are renamed to the link names e8, e9, and e11,
respectively. According to the routes that we chose, at this node, messages
sent to the controller C1 should be forwarded on the link e11, and messages
sent to the plant P1 should be forwarded on the link e9. The node N3 does
not appear on the routes to the controller C2 and to the plant P2. Thus, the
routing table for the node N3 should be specified as myRouteTable[P1] = 2,
myRouteTable[P2] = 0, myRouteTable[C1] = 3, and myRouteTable[C2] = 0.

412 Chapter 9

System Model

The desired system corresponding to the multi-hop control network is the paral-
lel composition of the instances of all the plants, controllers, and network nodes.
If each link appears in at most one route, then the traffic flows smoothly through
the network. In our example network, the plant P1 sends an output value every
Δ time units on the link e2. A value v sent at time t is transmitted by the node
N2 at time (t + Δ) on the link e7, then by the node N3 at time (t + 2Δ) on
the link e11, and then by the node N4 at time (t + 3Δ) on the link e15. The
controller C1 updates its internal estimate in response to this value, and the
corresponding control value v′ is transmitted on the link e14 at time (t + 4Δ).
This value is propagated by the node N4 at time (t+ 5Δ) on the link e12, then
by the node N3 at time (t + 6Δ) on the link e9, and then by the node N1 at
time (t+7Δ) on the link e1. For the subsequent interval of length Δ, the plant
P1 uses this value as its control input.

When there are no shared links among different routes, each control loop can be
analyzed independently. Consider the closed-loop system consisting of a plant
and its controller. The state of this system then consists of the plant state
variables S and their estimates S′ maintained by the controller. Let us assume
that the route from the plant to the controller consists of k1 hops and the route
from the controller to the plant consists of k2 hops. Then a plant observation
transmitted at time t is received by the controller at time [t+ (k1 − 1)Δ] time;
if the controller computes a new control value at time t, then it is received by
the plant at time (t+ k2Δ) time.

Let t1 = Δ, t2 = 2Δ, . . . be the sequence of times at which messages are pro-
cessed. We know that in each interval [ti, ti+1), the control input for the plant
stays constant. Let d be the input signal for the external disturbance. The state
response of the system is then defined by the following rules:

• The state signal for the controller estimate S′(t) is a piecewise-constant sig-
nal. For the first k1 slots, the controller does not receive any update, and
thus, for i < k1, the state s′i during the interval [ti, ti+1) equals the initial
state s0. After this, at each time ti, for i ≥ k1, the controller receives the
plant output (k1− 1) slots earlier, that is, the value h(si−k1+1). Thus, for
i ≥ k1, the state s

′
i during the interval [ti, ti+1) equals f

′(s′i−1, h(si−k1+1)).

• The state signal for the plant state S(t) is a piecewise-continuous signal.
For the first (k1 + k2) slots, the controller does not receive any update
for the controlled input. Thus, for i < (k1 + k2), the state signal S(t)
during the interval [ti, ti+1) corresponds to the solution of the initial value
problem with initial state si and dynamics f(S, u0, d), in response to the
disturbance signal d([ti, ti+1)). After this, at each time ti, for i ≥ (k1+k2),
the plant receives the controller’s message that reflects its computation k2
slots earlier. Thus, for i ≥ (k1+k2), the state signal S(t) during the inter-
val [ti, ti+1) corresponds to the solution of the initial value problem with
initial state si and dynamics f(S, g(s′i−k2

), d). That is, the disturbance is

Hybrid Systems 413

given by the signal d([ti, ti+1)), and the controlled input stays constant
equal to the value obtained by applying the control map g to its estimated
state k2 slots earlier.

When all the functions f , h, f ′, and g are linear, the analysis techniques dis-
cussed in chapter 6 for linear systems can be adapted to compute the closed-form
solution for the state response and to check properties such as stability.

Exercise 9.9 : Recall the design of a cruise controller from section 6.3.3. Fig-
ure 6.18 shows the response of the car to a PI controller. In exercise 6.21, you
considered the response to the same controller of the model of the car on a graded
road shown in figure 6.8 for the input signal θ(t) = [sin (t/5)]/3 (measured in
radians). Now let us assume that the sensors measuring the speed communicate
with the cruise controller over a (time-triggered) multi-hop network. In terms
of the model discussed in section 9.2.3 assume that the output of the car is its
velocity, the controller is the same PI controller used in section 6.3.3, the num-
ber of hops from the sensors to the controller is three, and the number of hops
from the controller back to the plant is two. Using a simulation tool such as
Matlab, plot the velocity of the car using the parameters: the initial velocity
v0 is 0, the mass m is 100 kg, the coefficient of friction k is 50, the gravitational
acceleration g is 9.8m/s2, the reference velocity r is 10m/s, the proportional
gain KP is 600, the integral gain KI is 40, and the time-step Δ of the network
is 0.1 seconds.

Exercise 9.10*: Suppose the given multi-hop control network with two plants
and two controllers is such that the route from the plant P1 to the controller C1

shares a link with the route from the controller C1 back to the plant P1. In fact,
the network is such that this sharing cannot be avoided (the routes involving
the plant P2 and its controller C2 are disjoint). If we use exactly the same
models for the plants, the controllers, and the network nodes as described in
section 9.2.3, describe the behavior of the entire system, and how the closed-loop
behavior of the two control loops be affected. Discuss a possible modification to
the models so that this undesirable behavior is avoided (hint: what happens if
the plant P1 sends its outputs every two slots while all other components stay
unchanged?). How will this modification affect the closed-loop behavior of the
two control loops?

9.3 Linear Hybrid Automata ∗

In chapter 7, we studied timed automata as a subclass of timed processes: a
timed automaton restricts how clock variables are tested and updated, and these
restrictions allow the development of symbolic reachability analysis using the
data structure of difference-bounds matrices. With a similar motivation, we
now consider the restriction of hybrid processes to a subclass known as linear
hybrid automata. A linear hybrid automaton can be viewed as a generalization
of a timed automaton. While a clock variable in a timed automaton can only be

414 Chapter 9

30 m10 m 5 m/s

0 m

Helicopter

20 m

6 m/s

Evader

5 m/s

0.5 m/s

Pursuer

Figure 9.25: Pursuit Game

compared with a constant and reset to 0, continuously updated variables of a
linear hybrid automaton are tested and updated using affine constraints. While
a clock variable increases at the rate 1 during a timed action, a continuously
updated variable in a linear hybrid automaton increases at a constant rate and,
more generally, at a rate chosen from an interval with constant bounds. This
structure then allows symbolic reachability analysis based on the representation
of the sets of states by polyhedra.

Before we develop this model, it is worth emphasizing that the adjective “linear”
in this context has a different meaning from its use in the classical model of
“linear systems” that we studied in chapter 6. In a linear system, the rate of
change of a state variable is a linear function of the system state, whereas in a
linear hybrid automaton, the rate of change of a state variable is a constant or
is bounded by a constant, which results in a state signal that is a linear function
of time.

9.3.1 Example Pursuit Game

We illustrate the model with a two-player game of pursuit-evasion shown in
figure 9.25. There is a pursuer in a golf cart chasing an evader on a circular
track 40 meters long. The cart can travel upto 6 m/s in the clockwise direction
but only upto 0.5 m/s in the counter-clockwise direction since it must use its
reverse gear to travel counter-clockwise. The evader is on a bicycle and travels
at 5 m/s in either direction. However, the evader makes a decision whether
to change its direction only at fixed instances in time, separated by exactly 2
seconds. The goal of the evader is to avoid the pursuer. The evader has the
added advantage that there is a rescue car at a fixed position on the track.

The evader uses a simple strategy: determine if the evader will win the race to
the car if both players proceed clockwise at their respective full speeds, and if

Hybrid Systems 415

so, head clockwise and otherwise choose to move counterclockwise. The game,
with this specific strategy for the evader, is shown as an extended-state machine
in figure 9.26.

The continuously updated variable p models the position of the pursuer on the
track measured in meters in a clockwise direction relative to the stationary car
at position 0. Similarly, the continuously updated variable e models the position
of the evader. The clock variable x measures the delay with respect to the most
recent time instance when the evader chose the direction.

There are three modes: in the mode ClkW, the evader is moving in the clock-
wise direction on the track; in the mode CntrClkW the evader is moving in the
counter-clockwise direction on the track; and in the mode Rescued, the evader
has reached the car thus bringing the game to an end.

In the mode ClkW, the motion of the evader is described by the differential equa-
tion ė = 5. Regarding the evolution of the variable p that specifies the pursuer’s
position, we only know the bounds on the pursuer’s speed in the two directions,
and this is captured by the differential inequality −0.5 ≤ ṗ ≤ 6. This means
that during a timed action of duration δ, the value of the variable p changes by
an amount equal to δ c for a constant c belonging to the interval [−0.5, 6]. The
constraint (0 ≤ p ≤ 40) ∧ (0 ≤ e ≤ 40) ∧ (x ≤ 2) labeling the mode ClkW is the
continuous-time invariant and ensures that all the three continuously updated
variables stay within their respective ranges during a timed action.

The specification of the mode CntrClkW is similar. The only difference is that
the evader moves in the counter-clockwise direction, and its evolution is captured
by the differential equation ė = −5. In the mode Rescued, the game has ended,
so all the position variables stay unchanged.

The decision logic is captured by the mode-switches. Consider the mode ClkW.
Whenever the value of the variable e equals 0 or 40, the evader has reached the
car, and the switch to the mode Rescued is enabled. When the clock variable
x equals 2, the evader compares the times needed by the two players to reach
the car moving clockwise at their respective maximum speeds. If the time
(40− e)/5 the evader needs is less than the time (40− p)/6 the pursuer needs,
then the guard condition (6e − 5p > 40) of the self-loop from the mode ClkW

is enabled, and the mode continues to be ClkW; otherwise the guard condition
(6e− 5p ≤ 40) of the mode-switch from the mode ClkW to the mode CntrClkW

is enabled. Note that if the pursuer is between the evader and the car along the
clockwise direction, that is, the condition (e < p) holds, the evader is guaranteed
to choose to switch to mode CntrClkW. In either case, the clock x is reset to
0. Note that the track is circular, and thus the positions 0 and 40 coincide. To
capture this, if the value of the variable p is increasing and reaches 40, then it
must be reset to 0; symmetrically, if the value of the variable p is decreasing
and reaches 0, then it must be updated to 40. This explains the left self-loop
on the mode ClkW.

The mode-switches originating from the mode CntrClkW are symmetric.

416 Chapter 9

ė = ṗ = 0

Rescued

(x ≤ 2)

(x = 2) ∧ (0 < e < 40)

∧ (6e− 5p > 40)

→ x := 0

∧ (6e− 5p ≤ 40)

→ x := 0

(x ≤ 2)

p := p0

e := e0

clock x := 2

(x = 2) ∧ (0 < e < 40)

(0 ≤ e, p ≤ 40)∧
−0.5 ≤ ṗ ≤ 6

ė = −5

−0.5 ≤ ṗ ≤ 6

ė = 5
ClkW

(0 ≤ e, p ≤ 40)∧

(x = 2) ∧ (0 < e < 40)
∧ (6e− 5p ≤ 40)
→ x := 0

(p = 0)→ p := 40
(p = 40)→ p := 0

(p = 0)→ p := 40
(p = 40)→ p := 0

(e = 0 ∨ e = 40)?

→ x := 0

∧ (6e− 5p > 40)
(x = 2) ∧ (0 < e < 40)

CntrClkW

(e = 0 ∨ e = 40)?

Figure 9.26: Linear Hybrid Automaton for the Pursuit Game

The initial position of the pursuer is p0 and that of the evader is e0. The clock is
initialized to 2 so that the evader gets to make a decision about which direction
to move at initial time.

During an execution, if the mode of the system ever becomes Rescued, then
the evader wins by reaching the car. If the property (e = p) becomes true at
some time, then the evader loses. An execution may keep switching between
the modes ClkW and CntrClkW forever with the property (e �= p) being true in
all states belonging to the execution, and in such a case, the evader wins.

To illustrate the behavior of the model, consider the scenario with the initial
positions e0 = 20 and p0 = 1. One possible execution from this initial state
resulting in a win for the pursuer is shown below. A state is shown by listing
the mode, followed by the values of the variables e, p, and x in that order:

(ClkW, 20, 1, 2)
ε−→ (ClkW, 20, 1, 0)

2−→ (ClkW, 30, 0, 2)
ε−→

(ClkW, 30, 40, 2)
ε−→ (CntrClkW, 30, 40, 0)

2−→ (CntrClkW, 20, 40, 2)
ε−→

(CntrClkW, 20, 40, 0)
2−→ (CntrClkW, 10, 39, 2)

ε−→ (CntrClkW, 10, 39, 0)
0.17−→

(CntrClkW, 9.17, 40, 0.17)
ε−→ (CntrClkW, 9.17, 0, 0.17)

0.83−→ (CntrClkW, 5, 5, 1).

In this scenario, the evader first moves clockwise for 2 seconds, during which

Hybrid Systems 417

time the pursuer moves counter-clockwise, resulting in a position where e = 30
and p = 40. Then the evader reverses direction moving counter-clockwise,
during which time the pursuer stays stationary, resulting in a position where
e = 20 and p = 40. The evader keeps moving counter-clockwise, during which
time the pursuer moves counter-clockwise, resulting in a position where e = 10
and p = 39. The evader now still keeps moving counter-clockwise, but now the
pursuer moves clockwise at full speed, and the two meet at 5 meters.

9.3.2 Formal Model

The formal definition of a linear hybrid automaton is a variation of the cor-
responding definitions of timed and hybrid processes. It consists of an asyn-
chronous process some of whose state variables are of type cont and are updated
continuously during a timed action. As in a timed process, we assume that all
the input and output variables are updated only discretely. The dynamics of
the continuously updated state variables is specified using a continuous-time
invariant and a rate constraint.

The continuous-time invariant is a Boolean expression over the state variables,
and a timed action is allowed only if all the states visited during the timed
action satisfy the invariant. For the system of figure 9.26, the continuous-time
invariant is:

(mode = Rescued) ∨ [(0 ≤ e ≤ 40) ∧ (0 ≤ p ≤ 40) ∧ (x ≤ 2)].

The linearity restriction means that all the tests and updates involving the
variables of type cont are affine expressions. More precisely, given variables
x1, x2, . . . xn, an affine test is of the form a1 x1 + a2 x2 + · · ·+ an xn ∼ a0, where
a0, a1, . . . an are (integer or real) constants, and ∼ is a comparison operation
and can be either <, ≤, =, >, or ≥. An affine assignment is of the form
xi := a0 + a1 x1 + a2 x2 + · · · + an xn, where a0, a1, . . . an are (integer or real)
constants. In a linear hybrid automaton, whenever an expression involving
continuously updated variables appears in a guard, in the update code of a
task, or in the continuous-time invariant, it must be an affine test, and every
assignment to a continuously updated variable must be an affine assignment.

The rate constraint is a Boolean expression over the derivatives of the con-
tinuously updated variables and the discrete state variables. The expressions
involving the derivatives must be affine. For the pursuit game of figure 9.26,
the rate constraint is

(mode = ClkW) ∧ (ė = 5) ∧ (−0.5 ≤ ṗ ≤ 6) ∧ (ẋ = 1)

∨ (mode = CntrClkW) ∧ (ė = −5) ∧ (−0.5 ≤ ṗ ≤ 6) ∧ (ẋ = 1)

∨ (mode = Rescued) ∧ (ė = 0) ∧ (ṗ = 0) ∧ (ẋ = 1).

To execute a timed action in a state s, we choose a rate vector r, that is, a
constant rx, for every continuously updated variable x so that the rate constraint

418 Chapter 9

is satisfied when evaluated in the state s using the values rx for the derivatives
ẋ. Given a time value t, let s + t r denote the state s′ such that the value of
a discrete variable in the state s′ coincides with its value in the state s, and
the value of a continuously updated variable x in the state s′ equals s(x)+ t rx.
Then a timed action of duration δ can be executed if the state s + t r satisfies
the continuous-time invariant for every time value t in the interval [0, δ], and
the state resulting from the timed action is the state s+ δ r.

The formal definition is summarized below:

Linear Hybrid Automaton

A linear hybrid automaton HP consists of (1) an asynchronous process P ,
where some of its state variables can be of type cont, and appear only in
affine tests and affine assignments in the guards and updates of the tasks
of P ; (2) a continuous-time invariant CI, which is a Boolean expression
over the state variables S, where the variables of type cont appear only in
affine tests; and (3) a rate constraint RC, which is a Boolean expression
over the discrete state variables and the derivatives of the continuously
updated state variables that appear only in affine tests. Inputs, outputs,
states, initial states, internal actions, input actions, and output actions of
the linear hybrid automaton HP are the same as that of the asynchronous

process P . Given a state s and a real-valued time δ > 0, s
δ−→ s + δ r is a

timed action of HP, for a rate vector r consisting of a constant rx for every
continuously updated state variable x, if (1) the expression RC is satisfied
when for every continuously updated variable x, the derivative ẋ is assigned
the value rx, and every discrete variable x is assigned the value s(x); and
(2) the state s+ t r satisfies the expression CI for all values 0 ≤ t ≤ δ.

Note that during a timed action, each continuously updated variable x evolves
at a constant rate, and thus, during the duration of the timed action, the signal
x is a linear function of time. In contrast, in a linear system, a typical differential
equation is of the form ẋ = a x, and the corresponding signal x(t) = x0e

at is an
exponential function of time.

As already seen in the example of the pursuit game, a rate constraint can be
used to specify bounds on the rate of change of a variable. The definition of
linear hybrid automata also allows constraints involving rates of two variables.
For example, if the variables (x, y) denote the position of a robot in a plane,
then the rate constraint

(1 ≤ ẋ ≤ 2) ∧ (ẋ = ẏ)

specifies that the robot is moving along the diagonal (due to the constraint
ẋ = ẏ) at a constant speed for which we know a lower and an upper bound (due
to the constraint 1 ≤ ẋ ≤ 2).

Notions such as executions and reachable states for a linear hybrid automaton
are defined in the same way as for a hybrid process.

Hybrid Systems 419

on1

3 k1 ≤ Ṫ ≤ 10 k1
T ≤ 67

Ṫ ≤ 3 k1
T ≤ 70

on2

off

T ≥ 60
Ṫ = −k2

60 ≤ T ≤ 70
(T ≤ 62)?

(T ≥ 68)?

(T = 67)?

Figure 9.27: Linear Hybrid Automaton Model of a Thermostat

Note that since the rate constraint in the description of a linear hybrid au-
tomaton allows differential inequalities, syntactically it is not a hybrid process.
However, the model of hybrid processes is strictly more expressive than linear hy-
brid automata as it is straightforward to capture the same behavior as that of a
given linear hybrid automaton by introducing auxiliary variables corresponding
to the rates that are updated discretely and nondeterministically. For example,
to capture the differential constraint (−0.5 ≤ ṗ ≤ 6) in the description of the
automaton of figure 9.26, we introduce a discrete variable rp of type real, set
its value using the nondeterministic assignment rp := choose{v | −0.5 ≤ v ≤ 6}
during a mode-switch, and specify the dynamics of the state variable p by the
linear differential equation ṗ = rp.

Exercise 9.11 : Consider the linear hybrid automaton shown in figure 9.27 that
models the behavior of a thermostat. Describe the possible executions of this
model and explain how this model differs from the hybrid process of figure 9.1.

Exercise 9.12*: Design an alternative strategy for the evader that can still be
described as a linear hybrid automaton but is “better” than the strategy shown
in figure 9.26. It is still required that the evader makes its decisions only every
two seconds; once it decides to move clockwise or counter-clockwise, it moves
in that direction at full speed. Thus, the only permissible change in the linear
hybrid automaton modeling the revised strategy compared to the automaton of
figure 9.26 is in the test (6e − 5p > 40) that is used to determine whether to
move clockwise or counter-clockwise. Your alternative strategy should be such
that the evader wins the game starting from the initial position e0 = 20 and
p0 = 1. Is your strategy optimal for the evader (that is, is it the case that for
every initial position, if your strategy results in a loss for the evader, then in
every alternative strategy also results in a loss for the evader from this initial
position)?

420 Chapter 9

9.3.3 Symbolic Reachability Analysis

Now we develop an algorithm for the invariant verification problem for linear
hybrid automata based on symbolic reachability analysis. The high-level algo-
rithm is the same as the one discussed in section 3.4. To implement the symbolic
search algorithm, we need a representation for regions, that is, for sets of states,
that is suitable in the context of linear hybrid automata. For this purpose,
let us assume that all the discrete variables have enumerated types as is the
case for the pursuit game of figure 9.26. Then the linear hybrid automaton has
only finitely many discrete states. The reachability algorithm then analyzes the
discrete variables by enumerating their values and the continuously updated
variables in a symbolic manner using affine constraints.

Affine Formulas

Let V be a set of variables that is partitioned into two sets: the set Vd of
discrete variables of enumerated types and the set Vc of continuously updated
variables of type real. A state over V then consists of a discrete state that
assigns values to all the variables of enumerated types and an |Vc|-dimensional
real-valued vector. A region A over (Vc, Vd) is then represented by a formula in
the disjunctive normal form built using affine constraints over Vc and equality
constraints over Vd.

Formally, the type AffForm is parameterized by the variable sets (Vc, Vd) and
consists of affine formulas defined by the following rules:

• An atomic affine formula over (Vc, Vd) is an equality of the form (x = d),
where x is a discrete variable in Vd and d is a constant belonging to
the type of the variable x, or an affine constraint of the form (a1x1 +
a2x2 + · · · + anxn ∼ a0), where x1, x2, . . . xn are real-valued variables in
Vc, a0, a1, . . . an are real numbers, and ∼ is a comparison operator from
the set {<,≤,=, >,≥}.

• A conjunctive affine formula ϕ over (Vc, Vd) is a conjunction ϕ1 ∧ ϕ2 ∧
· · ·∧ϕk, where the conjuncts ϕ1, ϕ2, . . . ϕk are atomic affine formulas over
(Vc, Vd).

• An affine formula A over (Vc, Vd) is a disjunction ϕ1 ∨ϕ2 ∨ · · · ∨ϕl, where
the disjuncts ϕ1, ϕ2, . . . ϕl are conjunctive affine formulas over (Vc, Vd).

Note that the syntax of affine formulas does not allow negation explicitly, but
it can be expressed. For example, the constraint ¬(x = d), where x is a variable
in Vd and d is a constant, is equivalent to the affine formula (x = d1) ∨ (x =
d2)∨ · · · ∨ (x = da), if the constants d1, d2, . . . da are all the values belonging to
the type of the variable x other than the value d. The constraint ¬(a1x1+ · · ·+
anxn ≤ a0), where x1, x2, . . . xn are real-valued variables in Vc and a0, a1, . . . an
are real numbers, is equivalent to the affine formula (a1x1 + · · ·+ anxn > a0).

Hybrid Systems 421

Symbolic Representation of a Linear Hybrid Automaton

Having fixed the representation of affine formulas, now we can encode the various
components of a linear hybrid automaton using this symbolic representation.
For a given linear hybrid automaton HP, let Sd denote the set of its discrete
variables and let Sc be the set of its continuously updated real-valued variables.
We are restricting attention to the case where each variable in the set Sd has
an enumerated type. For the pursuit game of figure 9.26, the set Sd contains
the variable mode, and the set Sc contains the variables e, p, and x.

The set of initial states of the automaton HP is represented by a formula Init of
type AffForm over (Sc, Sd). For the pursuit game, assuming the initial position
e0 of the evader is 20 and the initial position p0 of the pursuer is 10, the formula
Init equals

(mode = ClkW) ∧ (x = 2) ∧ (e = 20) ∧ (p = 10).

The transition relation of the asynchronous process corresponding to the au-
tomaton HP is represented by a formula Trans of type AffForm over (Sc ∪
S′
c, Sd ∪ S′

d). Here, for every variable x, its primed version x′ denotes the value
of the variable x after executing the transition as explained in section 3.4. This
transition relation captures all the input, output, and internal actions of the
underlying asynchronous process and, thus, the set of all discrete transitions of
the automaton HP. For the pursuit game, the formula Trans has a disjunct for
every mode-switch of the automaton of figure 9.26. For instance, the disjunct
corresponding to the mode-switch from the mode ClkW to the mode CntrClkW

is

(mode = ClkW) ∧ (x = 2) ∧ (e > 0) ∧ (e < 40) ∧ (6e− 5p ≤ 40) ∧
(mode′ = CntrClkW) ∧ (x′ = 0) ∧ (e′ − e = 0) ∧ (p′ − p = 0).

The continuous-time invariant of the automaton HP is represented by a formula
CI of type AffForm over (Sc, Sd). The continuous-time invariant for the pursuit
game is captured by:

(mode = Rescued) ∨ [(e ≥ 0) ∧ (e ≤ 40) ∧ (p ≥ 0) ∧ (p ≤ 40) ∧ (x ≤ 2)].

The rate constraint of the automaton HP is represented by a formula RC of type
AffForm over (Ṡc, Sd). Here, for every real-valued variable x, the real-valued
variable ẋ represents its rate of change with time. The rate constraint for the
pursuit game is given by:

[(mode = ClkW) ∧ (ė = 5) ∧ (ṗ ≥ −0.5) ∧ (ṗ ≤ 6) ∧ (ẋ = 1)]

∨ [(mode = CntrClkW) ∧ (ė = −5) ∧ (ṗ ≥ −0.5) ∧ (ṗ ≤ 6) ∧ (ẋ = 1)]

∨ [(mode = Rescued) ∧ (ė = 0) ∧ (ṗ = 0) ∧ (ẋ = 1)].

In summary, the symbolic representation of a linear hybrid automaton HP with
discrete state variables Sd and continuously updated state variables Sc consists

422 Chapter 9

of (1) an initialization formula Init of type AffForm over (Sc, Sd), (2) a transition
formula Trans of type AffForm over (Sc ∪ S′

c, Sd ∪ S′
d), (3) a continuous-time

invariant CI of type AffForm over (Sc, Sd), and (4) a rate constraint RC of
type AffForm over (Ṡc, Sd). Such a description can be compiled from the source
language used to describe linear hybrid automata automatically.

Operations on Affine Formulas

The symbolic search techniques discussed in section 3.4 require the following
operations on the data type for regions: union Disj, intersection Conj, set dif-
ference Diff, emptiness test IsEmpty, existential quantification Exists, and
renaming of variables Rename. All these operations can be effectively imple-
mented for the data type AffForm of affine formulas as discussed below.

For two affine formulas A and B, the union Disj(A,B) is simply the formula
A ∨ B, as it is guaranteed to be of type AffForm.

Consider two affine formulas A andB. The formula corresponding to Conj(A,B)
cannot simply be the conjunction A ∧ B since it need not be an affine formula
in the required disjunctive normal form. However, the distributivity properties
of the logical disjunction and conjunction operations can be used to implement
the desired operation. If the formula A equals ϕ1 ∨ · · · ∨ ϕa, where each ϕi is a
conjunctive affine formula, and the formula B equals ψ1 ∨ · · · ∨ ψb, where each
ψj is a conjunctive affine formula, then Conj(A,B) is the affine formula

∨
1≤i≤a,1≤j≤b

(ϕi ∧ ψj).

Note that each disjunct (ϕi ∧ ψj) is a conjunctive affine formula, and the size
of the resulting formula grows quadratically as it has a · b number of disjuncts.

The set-difference operation Diff(A,B) for two affine formulas can be imple-
mented with some rewriting and is left as an exercise.

The renaming operation can be implemented by simple textual substitution.
For an affine formula A, to rename a variable x in A to another name y, which
does not occur in A, the result Rename(A, x, y) is obtained by replacing every
occurrence of the variable x in the formula A by y.

To implement the operation IsEmpty, given a formula A of type AffForm over
(Vc, Vd), we need to check if the variables can be assigned values so that the
formula A is satisfied. Suppose the formula A is the disjunction ϕ1 ∨ · · · ∨ ϕa,
where each ϕi is a conjunctive affine formula. Then the formula A is satisfiable
exactly when one of the formulas ϕi is satisfiable, and satisfiability of each of
these subformulas can be checked independently. Thus, it suffices to focus on
testing satisfiability of a conjunctive affine formula. If it contains two conjuncts
of the form (x = d) and (x = d′), for a discrete variable x and two distinct
constants d and d′, then the formula cannot be satisfied. Otherwise the con-
straints involving discrete variables do not influence satisfiability. Thus, the

Hybrid Systems 423

core computational problem for checking satisfiability of affine formulas reduces
to checking satisfiability of a conjunction of atomic affine constraints, that is,
checking satisfiability of a formula of the form ϕ1 ∧ · · · ∧ ϕk, where each ϕi is
an affine constraint of the form (a1x1 + a2x2 + · · · + anxn ∼ a0). Checking
satisfiability of a conjunction of such affine constraints is a classical problem in
linear programming with a well-understood theoretical foundation and a variety
of efficient implementations.

Quantifier Elimination

Finally, let us focus on the operation of existential quantification: given an affine
formula A and a variable x, we want to compute the result B = Exists(A, x)
so that the formula B is of type AffForm, does not involve the variable x, and
a state s satisfies the formula B exactly when there exists a value c for the
variable x such that the state s[x �→ c] satisfies the formula A. Let us assume
that the variable x to be quantified is a real-valued variable, and the formula A
is a conjunction ϕ1 ∧ · · · ∧ ϕk, where each ϕi is an affine constraint of the form
(a1x1 + a2x2 + · · ·+ anxn ∼ a0). This case captures the computational essence
of the problem, and handling the general case is left as an exercise.

Consider a conjunct ϕi of the form (a1x1 + a2x2 + · · · + anxn ∼ a0), where
the variable x equals x1. If the coefficient a1 equals 0 (that is, the variable to
be eliminated does not appear in the conjunct ϕi), then ϕi directly appears as
a conjunct in the result B. If the coefficient a1 is non-zero, then consider the
expression ei given by (a0− a2x2− · · ·− anxn)/a1. If the comparison operation
∼ is ≤ and the coefficient a1 is positive, then we can rewrite the constraint ϕi

as (x ≤ ei), and in such a case, the expression ei is an upper bound on the value
of x. If the comparison operation ∼ is ≤ and the coefficient a1 is negative, then
we can rewrite the constraint ϕi as (x ≥ ei), and in such a case, the expression
ei is a lower bound on the value of x. The other cases are similar but can lead
to strict lower bound constraints of the form (x > ei) and strict upper bound
constraints of the form (x < ei). Now we can eliminate the variable x from the
constraints if we simply assert that every lower bound on x must be less than
every upper bound on x. For instance, the constraints (x ≥ ei) and (x ≤ ej) lead
to the implied constraint (ei ≤ ej), and the constraints (x ≥ ei) and (x < ej)
lead to the implied constraint (ei < ej). If the conjunction of all such implied
constraints is satisfiable, then the maximum of the lower bounds on x does not
exceed the minimum of the upper bounds on x, and in such a case, it is possible
to find a value of x that satisfies all the original constraints in A. Each implied
constraint of the form (ei ≤ ej) or (ei < ej) can be easily rewritten so that it is
an atomic affine formula and contributes a conjunct to the desired result B.

To illustrate the quantifier elimination procedure, consider the conjunctive affine
formula A given by:

(2x+3y−5z < 7) ∧ (6y+8z ≥ −2) ∧ (−x+y−7z ≤ 10) ∧ (3x+ z ≤ 0).

424 Chapter 9

The first conjunct gives the strict upper bound constraint x < (7− 3y+5z)/2,
the second conjunct does not constrain x, the third conjunct gives the lower
bound constraint x ≥ (−10 + y− 7z), and the fourth conjunct gives the upper
bound constraint x ≤ −z/3. We eliminate x by requiring every lower bound
not to exceed every upper bound and retaining the second conjunct. This leads
to:

(6y+8z ≥ −2) ∧ [(−10+y−7z) ≤ −z/3] ∧ [(−10+y−7z) < (7−3y+5z)/2].

We then rewrite the last two conjuncts so that the formula is in the desired
affine form:

(6y+ 8z ≥ −2) ∧ (3y− 20z ≤ 30) ∧ (5y− 19z < 27).

Note that the number of atomic constraints in the result B can be quadratic
in the number of atomic constraints in the input formula A. If we apply the
existential quantification repeatedly, the number of constraints grows exponen-
tially.

Image Computation: Discrete Transitions

The core of the symbolic search is image computation: given a region A over
the state variables, we want to compute the region that contains all the states
that can be reached from the states in A using one transition. If we focus on
the discrete transitions, then the algorithm for image computation is identical
to the one discussed in section 3.4. Given an affine formula A, we first conjoin
it with Trans, a region over unprimed and primed state variables containing all
the discrete transitions. The intersection Conj(A,Trans) is a region over S ∪S′

and contains all the discrete transitions that originate in the states in A. Then
we project the result onto the set S′ of primed state variables by existentially
quantifying the variables in S. Renaming each primed variable x′ to x gives
us the desired region. Thus, the discrete post-image of the region A of a linear
hybrid automaton HP with the transition formula Trans is defined by

DiscPost(A,Trans) = Rename(Exists(Conj(A,Trans), S), S′, S).

For the pursuit-game example, the discrete post-image of the initial region can
be obtained using the above formula. The result of this computation is the
affine formula A1:

DiscPost(Init,Trans) = A1 = (mode = ClkW) ∧ (x = 0) ∧ (e = 20) ∧ (p = 10).

Image Computation: Timed Transitions

Our next goal is to compute a symbolic representation of the set of all states
resulting from a timed action starting from a state in a given region of the
hybrid automaton HP. Let A be a region of the hybrid automaton, let CI be its

Hybrid Systems 425

continuous-time invariant, and let RC be its rate constraint. The timed post-
image B of the region A consists of all states s′, such that there exists a state s
belonging to the region A and a time duration δ and a rate vector r such that
(1) the state s together with the rates r satisfy the formula RC; (2) for every
0 ≤ t ≤ δ, the state s + r t satisfies the invariant CI; and (3) the final state s′

equals s+ r δ. For simplicity, let us assume that the continuous-time invariant
CI defines a convex set: if two states satisfy the formula CI, then so does every
state that lies on the segment joining the two states. This is a typical case and
holds for the pursuit-game example. In such a case, the condition (2) can be
replaced by the simpler condition that the states s and s′ at the beginning and
the end of the timed action both satisfy CI.

The formula A uses the discrete variables Sd and continuously updated variables
Sc. To get the desired result, we use auxiliary variables S′

c that denote the values
of the continuously updated variables at the end of the timed action and the
variable inc that denotes the duration of the timed action (assume that inc is
not a variable of the hybrid automaton). We will first construct a formula B′

over the variables Sd, Sc, S′
c, and inc. This formula captures all the timed

transitions starting in the region A.

Since the region B′ should capture all timed actions starting in the region A, A
is a conjunct in B′. To ensure that the continuous-time invariant holds at the
beginning of the timed action, the formula CI is also a conjunct of B′. To ensure
that the continuous-time invariant holds at the end of the timed action, the
formula Rename(CI, Sc, S

′
c) obtained by renaming every continuously updated

variable x to x′ is also a conjunct of B′.

We now need a constraint that says the rates for variables are chosen according
to the rate constraint, and the increment (x′−x) in the value of a continuously
updated variable x equals the value of the duration variable incmultiplied by the
rate of change of x. A direct encoding of this constraint uses the multiplication
operation and thus results in a non-linear constraint. We avoid this by exploiting
the special structure of the rate formula RC: an atomic affine constraint of the
form (a1ẋ1 + · · ·+ anẋn ∼ a0) is replaced by the constraint [a1(x

′
1− x1) + · · ·+

an(x
′
n−xn) ∼ a0 inc]. Observe that this modified constraint is equivalent to the

original constraint since the constant rate of change ẋi of a variable equals the
change in its value divided by the duration, which is captured by the expression
(x′

i− xi)/inc. More precisely, given the affine formula RC over (Ṡc, Sd), let RC
′

be the affine formula over (S′
c∪{inc}, Sd) obtained by replacing an atomic affine

constraint of the form

(a1ẋ1 + · · · + anẋn) ∼ a0

by the atomic affine constraint

(a1x
′
1 − a1x1 + · · · + anx

′
n − anxn − a0 inc) ∼ 0.

The formulaB′ is the conjunction of the affine formulasA, CI, Rename(CI, Sc, S
′
c),

and RC′.

426 Chapter 9

x = 5

(5, 1)

(5,−3)

(3, 2)

(3, 1)(1, 1)

(1, 2)

X

Y

x+ 2y = 7

x+ y = 2

Figure 9.28: Example of Timed Post-image Computation

To obtain the desired timed post-image B from the formula B′, we can use
quantifier elimination to project out the starting values of the continuously up-
dated variables along with the time duration and rename every primed variable
x′ back to x. Thus, the timed post-image TimedPost(A,CI,RC) of the region
A is defined by:

Rename(Exists(Conj(A,CI, Rename(CI, Sc, S
′
c),RC

′), Sc ∪ { inc }), S′
c, Sc).

To illustrate the computation of the timed post-image, suppose there are two
continuously updated variables x and y and no discrete variables. Suppose
the region A is given by (1 ≤ x ≤ 3) ∧ (1 ≤ y ≤ 2) (see the rectangle in
figure 9.28). Suppose the continuous-time invariant is (x ≤ 5), and the rate
constraint is (ẋ = 1) ∧ (−1 ≤ ẏ ≤ −0.5). This means that during a timed
action, a state evolves along a line within the cone bounded by lines with slopes
−1 and −0.5 as long as the value of x does not exceed 5. To compute the timed
post-image, we first introduce the primed variables x′ and y′ and the duration
variable inc. The transformed rate constraint RC′ is

[(x′ − x) = inc] ∧ [−inc ≤ (y′ − y) ≤ −0.5 inc].

The formula B′ is the conjunction

(1 ≤ x ≤ 3) ∧ (1 ≤ y ≤ 2) ∧ (x ≤ 5) ∧ (x′ ≤ 5) ∧
(x′ − x = inc) ∧ [−inc ≤ (y′ − y) ≤ −0.5 inc].

The desired region B is obtained by eliminating the variables x, y, and inc from
the above formula and renaming x′ to x and y′ to y in the result. The final
result is equivalent to the affine formula

(x ≥ 1) ∧ (y ≤ 2) ∧ (x ≤ 5) ∧ (x+ y ≥ 2) ∧ (x+ 2y ≤ 7).

Hybrid Systems 427

In figure 9.28, the timed post-image of the rectangle A is the pentagon with the
vertices (1, 1), (1, 2), (3, 2), (5, 1), and (5,−3).
For the pursuit-game example, no timed action of a positive duration is possible
from the initial state (since the clock x is 2), and the timed post-image of the
region Init is Init itself. The timed post-image of the region A1, which was
obtained by applying the discrete post-image operation to Init, is the affine
formula

(mode = ClkW) ∧ (0 ≤ x ≤ 2) ∧ (e−5x = 20) ∧ (10−0.5x ≤ p ≤ 10+6x).

Iterative Image Computation

The post-image of a region A of a linear hybrid automaton is simply the union
(or disjunction) of its discrete post-image and timed post-image:

Post(A,Trans,CI,RC) = Disj(DiscretePost(A,Trans), TimedPost(A,CI,RC)).

To check whether a property ϕ over the state variables S is an invariant (or,
equivalently, whether the negated property ¬ϕ is reachable), we can now apply
the symbolic breadth-first search algorithm of figure 3.18 based on the repre-
sentation of regions as affine formulas.

The complexity of the representation, that is, the size of the affine formula
representing the current set of reachable states, grows significantly with the
number of iterations. Tools for symbolic reachability analysis of linear hybrid
automata such asHyTech and SpaceEx incorporate a number of optimizations
to improve the computational efficiency. When a linear hybrid automaton has n
continuously updated variables, each atomic affine constraint is a hyperplane in
the n-dimensional space of real-valued vectors. A conjunctive affine formula then
is a polyhedron in the n-dimensional space. The optimizations for manipulating
affine formulas are based on employing alternative representations for polyhedra
and algorithms for simplifying such representations. For example, given the
polyhedron as a conjunction of atomic affine constraints, one of the constraints
can be omitted if it does not represent a bounding facet of the polyhedron.

Even when the linear hybrid automaton has only finitely many discrete states,
the symbolic reachability algorithm may not terminate. As an example, consider
the linear hybrid automaton of figure 9.29 with a single mode and two contin-
uously updated variables. Both variables are initialized to 0. The variable x
evolves at the rate 1, whereas the variable y changes at the rate 2. Initially,
both variables are 0. The set of reachable states discovered in the first iteration
of the symbolic search is the line segment joining (0, 0) and (1/2, 1). When y
reaches 1, the discrete mode-switch updates the state to (0, 1/2). In the next
iteration, when y reaches 1, the value of x is 1/4, and the discrete mode-switch
updates the state to (0, 1/4). This pattern repeats forever (see figure 9.29). The
set of reachable states of this system contains infinitely many disconnected line
segments: the kth line segment connects the states (0, 1−1/2k) and (1/2k+1, 1).

428 Chapter 9

y ≤ 1

ẋ = 1; ẏ = 2

x

1

1/4

1/2

0
1/2

y

x := 0; y := 0

(y = 1) →
y := x; x := 0

Figure 9.29: Example of Non-terminating Symbolic Image Computation

It is clear that the symbolic breadth-first search algorithm keeps iterating for-
ever discovering shorter and shorter such segments. In contrast, as studied in
section 7.3, for timed automata, all continuously updated variables increase at
the same rate, and if the timed automaton has finitely many discrete states,
the symbolic reachability algorithm based on the symbolic representation of
clock-zones (or clock-regions) is guaranteed to terminate.

Analysis of the Pursuit Game

The symbolic reachability analysis can be used to determine whether the evader’s
strategy of figure 9.26 is a winning strategy for a given initial position. For this
purpose, the symbolic breadth-first search algorithm of figure 3.18 is executed
to check whether the property (e−p = 0) is reachable: if the property is discov-
ered to be reachable, then the pursuer wins the game, or else the evader wins
the game.

For the initial position e0 = 20 and p0 = 1, after four iterations of the algorithm,
the property (e − p = 0) is found to be reachable. Thus, the pursuer wins in
this case.

For the initial position e0 = 20 and p0 = 10, after five iterations, the algorithm
terminates having computed all the reachable states, without finding any state
where the property (e − p = 0) holds. The set of reachable states is given by
the formula:

mode = ClkW ∧ e = 20 ∧ p = 10 ∧ x = 2
∨ mode = ClkW ∧ e = 20 + 5x ∧ 10− 0.5x ≤ p ≤ 10 + 6x ∧ 0 ≤ x ≤ 2
∨ mode = ClkW ∧ e = 30 + 5x ∧ 9− 0.5x ≤ p ≤ 22 + 6x ∧ 0 ≤ x ≤ 2
∨ mode = Rescued ∧ e = 0 ∧ 8 ≤ p ≤ 34 ∧ x ≥ 2 .

Now suppose, having fixed the initial position e0 of the evader to be 20, we want
to compute the set of initial positions p0 of the pursuer for which the evader

Hybrid Systems 429

wins. This can be achieved using the same symbolic reachability algorithm but
treating the initial position p0 as another symbolic variable. Formally, we modify
the linear hybrid automaton of figure 9.26 by adding a fourth continuously
updated variable called p0. The value of this variable does not change: in every
mode, modify the rate constraint by adding the conjunct (ṗ0 = 0). The initial
condition is now the formula

(mode = ClkW) ∧ (x = 2) ∧ (e = 20) ∧ (p− p0 = 0).

Then we apply the iterative image computation algorithm until all the reachable
states are computed. If the affine formula Reach over the variables mode, x, e,
p, and p0 represents all the reachable states, then the formula

Exists(Conj(Reach, (e− p = 0)), {mode, p, x, e})

is an affine formula containing only the variable p0 that gives the constraint on
the initial position of the pursuer for which the pursuer wins. Based on the
computation using the tool HyTech, this formula turns out to be (0 ≤ p0 ≤
2) ∧ (16 ≤ p0 ≤ 40). This tells us that when the evader’s initial position is
20, the evader wins exactly when the pursuer’s initial position belongs to the
interval (2, 16).

Exercise 9.13 : Given two formulas A and B of type AffForm, show how to
implement the operation Diff(A,B), that is, how to compute a formula that is
(1) equivalent to the logical formula A ∧ ¬B, and (2) of type AffForm.

Exercise 9.14 : Describe the procedure for implementing the existential quan-
tification for the data type of affine formulas in its full generality: given an
affine formula A over (Vc, Vd) and a variable x ∈ Vc ∪ Vd, show how to obtain
the affine formula for Exists(A, x).

Exercise 9.15 : Consider the region A given by the conjunctive affine formula

(−x1 + 6x4 ≤ 17) ∧ (3x1 + 12x3 < 1) ∧ (2x1 − 3x2 + 5x4 ≤ 7) ∧
(7x2 − x3 − 8x4 > 0) ∧ (5x1 + 2x2 − x3 > −5).

Calculate the region Exists(A, x1) as an affine formula.

Exercise 9.16 : Suppose a linear hybrid automaton has two continuously up-
dated variables x and y and no discrete variables. Consider the triangular region
A with vertices (0, 0), (1, 2), and (2, 1). Suppose the continuous-time invariant
is (x− y ≤ 4) and the rate constraint is (ẋ = 1) ∧ (0.5 ≤ ẏ ≤ 1). Calculate the
timed post-image of the region A and describe it as an affine formula.

430 Chapter 9

Bibliographic Notes

The study of formal models for hybrid systems by combining discrete transition
systems and differential/algebraic equations started in the early 1990s [MMP91].
Our model of hybrid processes is based on hybrid automata [ACH+95]. As ex-
amples of well-developed formal approaches to specification and verification of
hybrid systems, see [Tab09] and [Pla10]. Modeling of embedded control systems
using hybrid automata is now also supported by commercial modeling software;
for example, Mathworks (see mathworks.com) supports modeling using the com-
bination of Stateflow and Simulink.

Mathematical analysis of stability and control design for hybrid dynamical sys-
tems is an active topic of research in control theory (see [Bra95] and [LA14]).

The case study of the automated guided vehicle is based on [LS11], the mod-
eling of obstacle avoidance appears in [AEK+99], the analysis of multi-hop
time-triggered control network is based on [ADJ+11], and the pursuit game
of figure 9.25 is from [AHW97].

The model of linear hybrid automata was introduced in [ACH+95], and the
corresponding symbolic analysis algorithm was first implemented in the model
checker HyTech [AHH96, HHW97] (see [FLGD+11] for recent and efficient
techniques for analysis of linear hybrid automata).

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3–
34, 1995.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[ADJ+11] R. Alur, A. D’Innocenzo, K.H. Johansson, G.J. Pappas, and
G. Weiss. Compositional modeling and analysis of multi-hop con-
trol networks. IEEE Trans. Automat. Contr., 56(10):2345–2357,
2011.

[AEK+99] R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee. Formal mod-
eling and analysis of hybrid systems: A case study in multirobot
coordination. In FM’99 – World Congress on Formal Methods in
the Development of Computer Systems, LNCS 1708, pages 212–232.
Springer, 1999.

[AH95] K.J. Áström and T. Hägglund. PID Controllers: Theory, Design,
and Tuning. Instrument Society of America, 1995.

[AH99a] R. Alur and T.A. Henzinger. Computer-Aided Verifi-
cation. 1999. Unpublished manuscript, available at
www.cis.upenn.edu/~alur/CAVBook.pdf.

[AH99b] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods
in System Design, 15(1):7–48, 1999.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic ver-
ification of embedded systems. IEEE Transactions on Software
Engineering, 22(3):181–201, 1996.

[AHW97] R. Alur, T.A. Henzinger, and H. Wong-Toi. Symbolic analysis of
hybrid systems. In Proceedings of the 37th IEEE Conference on
Decision and Control, 1997.

[AM06] P.J. Antsaklis and A.N. Michel. Linear Systems. Birkhäuser, 2006.

432 Bibliography

[BBC+10] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.-H.
Gros, A. Kamsky, S. McPeak, and D.R. Engler. A few billion lines
of code later: Using static analysis to find bugs in the real world.
Commun. ACM, 53(2):66–75, 2010.

[BCD+92] J.R. Burch, E.M. Clarke, D.L. Dill, L.J. Hwang, and K.L. McMil-
lan. Symbolic model checking: 1020 states and beyond. Information
and Computation, 98(2):142–170, 1992.

[BCE+03] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1):64–83, 2003.

[BDL+11] G. Behrmann, A. David, K.G. Larsen, P. Pettersson, and W. Yi.
Developing uppaal over 15 years. Software – Practice and Experi-
ence, 41(2):133–142, 2011.

[BG88] G. Berry and G. Gonthier. The synchronous programming language
Esterel: Design, semantics, implementation. Technical Report
842, INRIA, 1988.

[BGK+96] J. Bengtsson, W.D. Griffioen, K.J. Kristoffersen, K.G. Larsen,
F. Larsson, P. Pettersson, and W. Yi. Verification of an audio
protocol with bus collision using uppaal. In Computer Aided Ver-
ification, 8th International Conference (CAV), LNCS 1102, pages
244–256, 1996.

[BHSV+96] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and
T. Villa. VIS: A system for verification and synthesis. In Computer
Aided Verification: 8th International Conference (CAV), LNCS
1102, pages 428–432. Springer-Verlag, 1996.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT
Press, 2008.

[BKSY12] D. Bustan, D. Korchemny, E. Seligman, and J. Yang. SystemVer-
ilog Assertions: Past, present, and future SVA standardization ex-
perience. IEEE Design & Test of Computers, 29(2):23–31, 2012.

[BLR11] T. Ball, V. Levin, and S.K. Rajamani. A decade of software model
checking with SLAM. Commun. ACM, 54(7):68–76, 2011.

[BM07] A.R. Bradley and Z. Manna. The Calculus of Computation – Deci-
sion Procedures with Applications to Verification. Springer, 2007.

[Bra95] M. S. Branicky. Studies in Hybrid Systems: Modeling, Analysis,
and Control. PhD thesis, Massachusetts Institute of Technology,
1995.

Bibliography 433

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean-function manip-
ulation. IEEE Transactions on Computers, C-35(8), 1986.

[BSW69] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A note on
reliable full-duplex transmission over half-duplex links. Commun.
ACM, 12(5):260–261, 1969.

[Büc62] J.R. Büchi. On a decision method in restricted second-order arith-
metic. In Proceedings of the International Congress on Logic,
Methodology, and Philosophy of Science 1960, pages 1–12. Stan-
ford University Press, 1962.

[But97] G.C. Buttazo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Pub-
lishers, 1997.

[CCGR00] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV:
A new symbolic model checker. Software Tools for Technology
Transfer, 2(4):410–425, 2000.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Proc.
Workshop on Logic of Programs, LNCS 131, pages 52–71. Springer-
Verlag, 1981.

[CES09] E.M. Clarke, E.A. Emerson, and J. Sifakis. Model checking: Algo-
rithmic verification and debugging. Commun. ACM, 52(11):74–84,
2009.

[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT
Press, 2000.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Founda-
tion. Addison-Wesley, 1988.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declar-
ative language for programming synchronous systems. In Proceed-
ings of the 14th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 178–188, 1987.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Mem-
ory efficient algorithms for the verification of temporal properties.
Formal Methods in System Design, 1:275–288, 1992.

[Dij65] E.W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM, 8(9):569, 1965.

[Dil89] D.L. Dill. Timing assumptions and verification of finite-state con-
current systems. In J. Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, LNCS 407, pages 197–212. Springer–
Verlag, 1989.

434 Bibliography

[Dil96] D.L. Dill. The Murphi verification system. In Computer Aided Ver-
ification, 8th International Conference (CAV), LNCS 1102, pages
390–393, 1996.

[EF06] C. Eisner and D. Fisman. A Practical Introduction to PSL.
Springer, 2006.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
995–1072. Elsevier Science Publishers, 1990.

[FLGD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable
verification of hybrid systems. In Proc. 23rd International Con-
ference on Computer Aided Verification (CAV), LNCS 6806, pages
379–395. Springer, 2011.

[FLP85] M.J. Fischer, N.A. Lynch, and M. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985.

[FMPY06] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedu-
lability analysis of fixed-priority systems using timed automata.
Theoretical Computer Science, 354(2):301–317, 2006.

[FPE02] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. Feedback Control
of Dynamic Systems. Prentice Hall, 2002. Fourth Edition.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems.
Kluwer Academic Publishers, 1993.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231–274, 1987.

[Her91] M. Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[HHW97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model
checker for hybrid systems. Software Tools for Technology Transfer,
1(1-2):110–122, 1997.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model-checking for real-time systems. Information and Computa-
tion, 111(2):193–244, 1994.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

Bibliography 435

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[Hol04] G.J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2004.

[Hol13] G.J. Holzmann. Landing a spacecraft on Mars. IEEE Software,
30(2):83–86, 2013.

[HP85] D. Harel and A. Pnueli. On the development of reactive sys-
tems. In Logics and Models of Concurrent Systems, volume F-13
of NATO Advanced Summer Institutes, pages 477–498. Springer-
Verlag, 1985.

[HR04] M. Huth and M.D. Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, 2004.
Second Edition.

[HS06] T.A. Henzinger and J. Sifakis. The embedded systems design chal-
lenge. In FM 2006: 14th International Symposium on Formal
Methods, LNCS 4085, pages 1–15, 2006.

[HW95] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control
protocol. In Proceedings of the Seventh Conference on Computer-
Aided Verification, LNCS 939, pages 381–394. Springer-Verlag,
1995.

[IBG+11] F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan,
N. Maeda, H. Tokuoka, T. Imoto, and Y. Miyazaki. DC2: A frame-
work for scalable, scope-bounded software verification. In Proc.
26th IEEE/ACM Intl. Conf. on Automated Software Engineering,
pages 133–142, 2011.

[JPAM14] Z. Jiang, M. Pajic, R. Alur, and R. Mangharam. Closed-loop veri-
fication of medical devices with model abstraction and refinement.
Software Tools for Technology Transfre (STTT), 16(2):191–213,
2014.

[Kah74] G. Kahn. The semantics of simple language for parallel program-
ming. In IFIP Congress, pages 471–475, 1974.

[KLSV10] D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. The
Theory of Timed I/O Automata. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2010. Second
Edition.

436 Bibliography

[Kop00] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, 2000.

[KSLB03] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings of the
IEEE, 91(1):145–164, 2003.

[LA14] H. Lin and P.J. Antsaklis. Hybrid Dynamical Systems: An Intro-
duction to Control and Verification. Number 1 in Foundations and
Trends in Systems and Control. 2014.

[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems, 5(1):1–11, 1987.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, 1994.

[Lam02] L. Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002.

[Lee00] E. A. Lee. What’s ahead for embedded software. IEEE Computer,
pages 18–26, 2000.

[Liu00] J.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[LL73] C. Liu and J. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 20(1),
1973.

[LP95] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings
of the IEEE, 83(5):773–801, 1995.

[LPY97] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell.
Springer International Journal of Software Tools for Technology
Transfer, 1(1-2):134–152, 1997.

[LS11] E.A. Lee and S.A. Seshia. Introduction to Embedded Sys-
tems, A Cyber-Physical Systems Approach. 2011. Available at
http://LeeSeshia.org.

[LSC+12] I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A.L. King,
M. Mullen-Fortino, S. Park, A. Roederer, and K.K. Venkatasub-
ramanian. Challenges and research directions in medical cyber-
physical systems. Proceedings of the IEEE, 100(1):75–90, 2012.

[LT87] N.A. Lynch and M. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the Seventh ACM Sympo-
sium on Principles of Distributed Computing, pages 137–151, 1987.

[LV02] E.A. Lee and P. Varaiya. Structure and Interpretation of Signals
and Systems. Addison Wesley, 2002.

Bibliography 437

[Lyn96] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mar03] P. Marwedel. Embedded System Design. Kluwer, 2003.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the
State Explosion Problem. Kluwer Academic Publishers, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems.
In Real-Time: Theory in Practice, REX Workshop, LNCS 600,
pages 447–484. Springer, 1991.

[MP81] Z. Manna and A. Pnueli. Verification of concurrent programs: Tem-
poral proof principles. In Logics of Programs, LNCS 131, pages
200–252. Springer, 1981.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1991.

[Pet81] G.L. Peterson. Myths about the mutual exclusion problem. Infor-
mation Processing Letters, 12(3), 1981.

[Pet82] G.L. Peterson. An O(n log n) unidirectional algorithm for the circu-
lar extrema problem. ACM Trans. Program. Lang. Syst., 4(4):758–
762, 1982.

[PJ04] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems
using barrier certificates. In Hybrid Systems: Computation and
Control, 7th International Workshop, LNCS 2993, pages 477–492,
2004.

[Pla10] A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems
for Complex Dynamics. Springer, 2010.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the
18th IEEE Symposium on Foundations of Computer Science, pages
46–77, 1977.

[Pto14] C. Ptolemaeus, editor. System Design, Modeling, and Sim-
ulation Using Ptolemy II. Ptolemy.org, 2014. available at
ptolemy.org/books/Systems.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concur-
rent programs in CESAR. In Proceedings of the Fifth International
Symposium on Programming, LNCS 137, pages 195–220. Springer,
1982.

[RS94] K. Ramamritham and J.A. Stankovic. Scheduling algorithms and
operating systems support for real-time systems. Proceedings of the
IEEE, 1(82):55–67, 1994.

438 Bibliography

[SAÅ+04] L. Sha, T.F. Abdelzaher, K.-E. Årzén, A. Cervin, T.P. Baker,
A. Burns, G.C. Buttazzo, M. Caccamo, J.P. Lehoczky, and A.K.
Mok. Real time scheduling theory: A historical perspective. Real-
Time Systems, 28(2-3):101–155, 2004.

[SH92] B. Shahian and M. Hassul. Computer-Aided Control System Design
Using MATLAB. Prentice Hall, 1992.

[Sif13] J. Sifakis. Rigorous system design. Foundations and Trends in
Electronic Design Automation, 6(4):293–362, 2013.

[Sip13] M. Sipser. Introduction to the Theory of Computation. Cengage
Learning, 2013. Third Edition.

[SLMR05] J.A. Stankovic, I. Lee, A.K. Mok, and R. Rajkumar. Opportunities
and obligations for physical computing systems. IEEE Computer,
38(11):23–31, 2005.

[SV07] A. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning about
trends and challenges of system-level design. Proceedings of the
IEEE, 95(3):467–506, 2007.

[Tab09] P. Tabuada. Verification and Control of Hybrid Systems. Springer,
2009.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
133–191. Elsevier Science Publishers, 1990.

[TT09] A. Taly and A. Tiwari. Deductive verification of continuous dy-
namical systems. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, LIPIcs 4,
pages 383–394, 2009.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In Proceedings of the First IEEE
Symposium on Logic in Computer Science, pages 332–344, 1986.

[Wan04] F. Wang. Efficient verification of timed automata with BDD-like
data structures. Software Tools for Technology Transfer, 6(1):77–
97, 2004.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D.B. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P.P. Puschner, J. Staschulat, and P. Sten-
ström. The worst-case execution-time problem: Overview of meth-
ods and survey of tools. ACM Trans. Embedded Comput. Syst.,
7(3), 2008.

Index

1BitCounter, 52
3BitCounter, 53

abstraction of transition systems, 327
acyclic relation, 32
AddVertex, 116
AffForm, 420
affine formula, 420
affine system, 248
affine test, 417
affine update, 414
algebraic equation, 233, 379
alternating bit protocol, 168
always formula, 183
aperiodic job, 351
Arbiter, 27
assignment statement, 17
associativity of composition, 47
asymptotic stability, 244
AsyncEvenInc, 157, 195
asynchronous circuit, 133
asynchronous computation model, 125
asynchronous process, 125, 130

hybrid process, 379
timed process, 289

AsyncInc, 128
AsyncNot, 133
atomic register, 146
AtomicReg, 146
audio control protocol, 305
automated guided vehicle

design problem, 395
hybrid model, 396
illustrative execution, 397

automated verification, 85, 199, 325,
420

await dependency, 30, 34, 242

barrier certificate, 281, 283
recipe for choosing, 284

bdd, 115
bddnode, 115
BDDPool, 115
BIBO stability, 246

relation to Lyapunov stability, 262
binary counter circuit, 52

image computation, 105
binary decision diagram (BDD), 109
bit-state hashing, 96
block diagram, 37, 136, 242, 386
blocking synchronization, 143
bool, 14
bottom-up design, 50
BouncingBall, 381
bounded signal, 245
Bounds, 331
branching-time temporal logicCtl, 198
Büchi automata, 201

accepting traces, 201
generalized acceptance, 204
monitoring liveness violation, 203
nondeterministic, 202
persistence formula, 202
recurrence formula, 202

Buffer, 125
buffer with bounded delay, 291

Car, 234
car model, 234

equilibria, 243
linearity, 248
PID controller, 275
stability, 244
with disturbance, 241

channel renaming, 136

440 Index

characteristic equation, 253
characteristic polynomial, 254
choose, 15
ChooseInitState, 88
ChooseSuccState, 88
clock, 290
clock invariant, 292
clock region, 319
clock valuation, 319
clock variable, 290
clock zone, 328
ClockedCopy, 25
combinational circuit, 50
combinational component, 23
combinational gates, 50
commutativity of composition, 46
compact state representation, 90
Comparator, 22
compatibility

asynchronous processes, 137
await dependencies, 43
interfaces, 44
reactive components, 44
variable declarations, 38, 137

completeness of proof rules, 81
computational complexity, 85
conditional mode-switch, 135
conditional response property, 227
conditional statement, 17
Conj, 103
consensus problem, 170

agreement, 171
impossibility result, 174
incorrect solutions, 172
requirements, 171
solution using test&set, 173
validity, 171
wait freedom, 171

cont, 379
Contains, 92
continuous function, 233
continuous-time component, 232, 236
continuous-time evolution, 232, 379
continuous-time invariant, 380, 417
control system, 231
controllability of linear systems, 266

Controller1, 73
Controller2, 74
ControlSpeed, 55
converging time, 389
correctness under fairness, 160, 193
countably branching system, 92
Counter, 29
counterexample, 70
critical section, 148
cruise controller, 54

block diagram, 54
invariant, 69
PID controller, 276
system decomposition, 56

CruiseController, 55
cyclic counterexample, 200

data race, 148
DBM

canonicalization, 333
clock zone encoding, 331
depth-first search, 335
graph-based representation, 332
illustrative analysis, 329
operations, 334

DC motor model, 269
PID controller, 274

deadline, 342
deadline monotonic (DM)

examples, 363
optimality, 368
priority assignment, 363
properties, 364
scheduling policy, 363

deadline-compliant schedule, 345
deadlock, 143
deadlock state, 145
Delay, 13
depth-first search

algorithm guarantees, 96
illustrative example, 94
reachability algorithm, 93
representing transition system, 92

Dequeue, 129
det, 253
determinant, 253

Index 441

deterministic component, 26
deterministic task, 35
diagonal matrix, 253
diagonalization, 257
diameter of a network, 62
Diff, 103
difference bounds matrix (DBM), 331
differentiable function, 233
differential constraint, 415
differential equation, 234, 379
dimensionality, 232
discrete variable, 290, 382
Disj, 103
distributed coordination, 162, 302
disturbance, 231, 241
DoubleBuffer, 136
DoubleDelay, 37
dynamic priority scheduling, 354
dynamical system, 231, 379

Earliest Deadline First (EDF)
examples, 353
implementation, 355
optimality, 356
properties, 354
scheduling policy, 353

eigenvalue, 253
eigenvalue assignment, 267
eigenvector, 253
Empty, 129
EmptySet, 92
EmptyStack, 93
enabled task, 127
Enqueue, 129
enumerated type, 14
enumerative search, 90, 212
equilibrium state, 243, 393
error signal, 264
Euler’s simulation, 277
event, 24
event-triggered component, 26
event-triggered execution, 24
eventually formula, 183
execution, 18, 68, 131, 291, 384
execution time, 341
existential quantification, 100, 423

Exists, 103
expression, 14
extended-state machine, 19, 132

hybrid state machine, 379
timed state machine, 290

fair execution, 155, 159
fairness assumption, 154, 159, 194
falsification of safety property, 88
feedback composition, 40
feedback controller, 263
finite-state component, 22
finite-state system, 85
FirstInitState, 92
FirstSuccState, 92
Fischer’s mutual exclusion, 302
fixed priority schedule, 362
fixed priority scheduling policy, 362
FilterA, 312
FilterV, 312
FormulaToBdd, 120
Front, 129
Full, 129

gain, 264, 273
gain matrix, 265
GCD program

Euclid’s algorithm, 67
inductive invariant, 79
invariant, 68

guard, 20, 130, 290, 379

hard real-time requirement, 352
hash-table of reachable states, 96
Heart, 315
helicopter model, 238

stability, 246
stabilization, 264

hybrid process, 379, 384

ill-formed parallel composition, 43
image computation, 103, 217, 424
imperfect clock, 300, 305
implementation of models, 339
implicit deadline, 342
IncDec, 79

442 Index

inductive invariant, 78, 281
inductive strengthening, 80, 83, 281
infinite execution, 154, 190, 389
initial condition, 235
initial state, 16, 18, 66, 130, 236, 294,

382
initial value problem, 236

solution, 252
initialization, 15, 18, 66, 130, 236, 294,

382
initialization formula, 98
input, 15, 18, 130, 294
input action, 127, 130, 294, 382
input channel, 125, 130, 294, 382
input signal, 233, 384
input task, 127, 130, 294, 382
input variables, 14, 18, 236
input-enabled component, 29
input-enabled task, 35
input-output stability, 245
Insert, 92
instability due to mode switching, 394
instantiation, 37, 136, 386
int, 14
interface of a component, 44
interleaving, 131
internal action, 129, 130, 295, 382
internal task, 129, 130, 295, 382
internal vertex, 110
invariant, 68
invariant satisfaction, 69
invariant verification, 70, 78, 283
Inverter, 40
IsEmpty, 103
isomorphic OBDDs, 110
iterative image computation, 106, 427

job, 339

Latch, 51
latched output, 25
leader election, 60, 163

asynchronous solution, 164
flooding algorithm, 61
inductive invariant, 82
Ltl requirements, 191

requirements, 60
Lie derivative, 283
LightSwitch, 290
linear component, 248
linear dynamical system, 248
linear expression, 248
linear hybrid automata, 413, 418
linear independence, 254
linear response, 249
Lipschitz continuous dynamics, 238, 383
Lipschitz continuous function, 237
liveness monitor, 203
liveness requirement, 65, 181
liveness violation, 182
local variable, 18
logical equivalence, 187
logical operators, 14

conjunction ∧, 14
disjunction ∨, 14
existential quantification ∃, 100
implication →, 14
negation ¬, 14

LossyCopy, 28
LRIMonitor, 317
Linear Temporal Logic Ltl, 182

compilation to Büchi automata, 206
equivalent formulas, 187
finite trace semantics, 198
requirements, 189
semantics, 185
syntax, 185

Lyapunov stability, 244

Manchester encoding, 305
matrix exponential, 252
matrix inverse, 256
matrix-based representation, 249
Mealy machine, 22
MeasureSpeed, 56
Merge, 129, 225
metric distance, 233
mode, 19, 133, 290, 379
mode-switch, 20, 133, 290, 379
model checking, 199, 211
monitor, 76
multi-hop control network, 406

Index 443

communication model, 409
controller model, 408
hybrid process, 412
illustrative example, 406
node model, 411
plant model, 407

multi-robot coordination
coordination strategy, 402
hybrid process, 402
illustrative execution, 404
obstacle estimation, 399
path planning problem, 398
planning algorithm, 400
requirements, 399

multiprocessor scheduling, 351
mutual exclusion, 148

deadlock freedom, 149
fairness assumptions, 160
Fischer’s protocol, 302
Peterson’s algorithm, 149
requirements, 149
solution using test&set, 152

nat, 13
negative definite matrix, 285
nested depth-first search

algorithm guarantees, 216
checking repeatability, 213
correctness, 214
illustrative example, 214

nested symbolic search
algorithm guarantees, 221
checking repeatability, 218
correctness argument, 220
illustrative example, 220

NetHeat, 233
NetwkNode, 58
next formula, 184
NextInitState, 92
NextSuccState, 92
non-blocking synchronization, 143
non-preemptive schedule, 348
non-Zeno behavior, 389
nondeterministic component, 27
NonZenoBall, 392
NP-complete problem, 86, 108

numerical simulation, 277

off-line scheduling, 349
on-line scheduling, 349
on-the-fly search, 91, 212
open-loop controller, 263
ordered binary decision diagram (OBDD),

110
output, 15, 18, 130, 294
output action, 128, 130, 294, 382
output channel, 125, 130, 294, 382
output hiding, 37, 47, 140, 386

symbolic representation, 102
output signal, 233, 384
output task, 128, 130, 294, 382
output variables, 14, 18, 236
overshoot, 271

PaceA, 314
Pacemaker, 311
pacemaker design, 310

block diagram, 311
DDD mode, 311
heart model, 315
illustrative execution, 315
pacing events, 313
requirements, 316
sensing events, 312

PaceV, 313
parallel composition

asynchronous processes, 137, 140
continuous-time components, 242
hybrid processes, 386
symbolic representations, 101
synchronous components, 37, 46
timed processes, 297

ParallelRelay, 32
PD controller, 274
pendulum model, 239

equilibria, 244
stability, 245

period, 341
periodic job model, 341, 344
periodic schedule, 347
persistence formula, 186
Peterson’s mutual exclusion, 149

444 Index

correctness argument, 150
fairness assumptions, 159

PI controller, 275
PID controller, 269, 272
plant model, 231
Pop, 93
Post, 104
Pre, 217
pre-image computation, 217
precedence constraint, 31, 350
precedence relation, 31, 34
preemption, 341
preemptive schedule, 348
priority assignment, 362
process composition, 137, 140, 297, 386
product reaction, 40
product state, 39, 137, 298
proof rule

conditional response verification, 227
eventuality verification, 223
response verification, 224
safety of continuous-time compo-

nents, 284
safety verification, 81
stability of linear systems, 259

property, 68
Property specification language, 182
proportional controller, 264, 270
propositional satisfiability problem, 108
Pspace complexity, 86
Pspace-complete problem, 87
pursuit-evasion game

linear hybrid automata model, 415
problem description, 414
symbolic reachability analysis, 428

Push, 93

queue, 129

railroad controller, 70
bounded response requirement, 77
deadlock freedom, 192
depth-first search, 94
fairness requirement, 76
first controller design, 73
Ltl requirements, 191

reachable subgraph, 90
response requirement, 77
safety requirement, 72, 181
safety violation, 73
second controller design, 74
starvation freedom, 192
symbolic breadth-first search, 107
train model, 71

RailRoadSystem1, 73
RailRoadSystem2, 74
range type, 22
ranking function, 222
rate constraint, 415, 418
rate monotonic (RM)

examples, 363
priority assignment, 362
properties, 364
schedulability test, 371
scheduling policy, 363

reachable property, 69
reachable state, 68
reachable subgraph, 90
reaction, 16, 18
reaction description, 16, 18
reaction formula, 99
reactive component, 13
ReactorControl, 387
ReactorPlant, 387
read operation, 146
read-set of a task, 30, 34, 130
real, 14
real-time system, 339
recurrence formula, 186
reduced ordered binary decision dia-

gram (ROBDD), 111
reference input, 231
reg, 103
region, 103
region equivalence, 319, 322
region operations, 103, 422
region-invariant property, 327
Relay, 30
reliable FIFO link, 167
Rename, 103
repeatability problem, 200
repeatable property, 199

Index 445

reset operation, 151
response property, 192, 224
Reverse, 93
rise time, 271
ROBDD

algorithm for conjunction, 119
canonicity, 112
complexity of conjunction, 120
definition, 112
dependence on ordering, 114
direct construction example, 112
implementation data structure, 115
properties, 113
reduction rules, 111

round-based execution, 13, 49
Runge-Kutta simulation, 278

safety monitor, 76, 142, 317
safety requirement, 65, 141
Satisfies, 88
schedulability test

fixed priority policy, 365
implicit deadlines, 358
rate monotonic policy, 371

schedulable, 346
schedule, 345
scheduler, 340
scheduling overhead, 349
scheduling policy, 349
semantics, 15, 185
sequential circuit, 51
set, 92
set-reset latch, 51
SetSpeed, 57
settling time, 272
shared counter, 147
shared memory, 145
signal, 232
similar matrices, 256
similarity transformation, 255

stability preservation, 261
simulation, 87
simulation-based invariant verification,

88
soft real-time requirement, 352
soundness of proof rules, 81, 223, 228

SplitDelay, 30
stability, 243, 393
stability test, 261
stabilization of linear systems, 264
stable equilibrium, 244
stack, 93
state, 15, 18, 66, 130, 236, 294, 382
state, 88
state machine, 19
state signal, 235, 384
state variables, 14, 18, 66, 130, 236,

294, 382
state-space explosion, 47, 85
state-space representation, 239
stateful temporal logic, 198
static analysis, 343
steady-state error, 272
step response, 271
strong fairness, 157, 159, 196
strongly connected network, 60
stuttering, 25
Switch, 19
symbolic breadth-first search

algorithm guarantees, 107
data structure, 103
illustrative example, 106
reachability algorithm, 106
representing transition system, 98

symbolic representation, 97, 217, 421
symbolic search

breadth-first search algorithm, 106
checking repeatability, 218
data structure, 103
using affine formulas, 420
using DBMs, 335
using region equivalence, 325

SyncAnd, 50
synchronization of actions, 138, 299
synchronous computation model, 13, 49,

232
synchronous design, 49
synchronous network, 58

communication model, 59
node model, 58
time-triggered network, 407

synchronous product, 39

446 Index

synchronous reactive component, 18
synchrony hypothesis, 49
SyncLENode, 61
SyncNot, 50
SyncOr, 51
syntax, 15, 185
system of differential equations, 235

table, 119
tableau construction, 206

acceptance, 210
closure, 209
complexity, 211
consistency, 209
correctness, 210
example, 207

task, 30, 34, 130
task graph, 30, 34
task schedule, 33
tautology, 187
temporal logic, 181
temporal operators, 183

always � , 183
eventually ♦ , 183
next © , 184
until U , 184

terminal vertex, 110
Test&SetReg, 151
test&set operation, 151
test&set register, 151
Thermostat, 380
time, 232
time-triggered allocation, 341
time-triggered network, 407
timed action, 290, 295, 382, 418
timed automata, 318, 413
timed model of computation, 289
timed process, 290, 295, 379
TimedBuf, 291
TimedInc, 293
top-down design, 54
trace, 182
Train, 71
transition, 66
transition description, 66
transition formula, 98

transition system, 66
of a program, 67
of a reactive component, 66
of an asynchronous process, 141

transition system representation, 87
compiled model, 89
interpreted model, 89
on-the-fly search, 92, 212
simulation-based analysis, 88
symbolic search, 98, 217

transitive closure of a relation, 32
TriggeredCopy, 24
type-consistent assignment, 14
typed expression, 14
types, 13

uncontrolled input, 241
undecidability, 85
unfair execution, 155
UnrelFIFO, 157
unreliable communication link, 158
until formula, 184
update, 20, 290, 379
update description, 31, 34, 130, 343
utilization, 347

validity, 187
valuation, 14, 182
variable ordering, 110
variable renaming, 38
variable reordering, 121
variables, 13
verification problem, 65

weak fairness, 157, 159, 195
WestFairMonitor, 76
worst-case analysis, 371
worst-case execution time WCET, 342
write operation, 146
write-conflict, 33
write-set of a task, 30, 34, 130

Zeno execution, 389, 391
Zeno process, 391
Zeno state, 391
Zeno’s paradox, 389

	Contents
	Preface
	1 Introduction
	2 Synchronous Model
	3 Safety Requirements
	4 Asynchronous Model
	5 Liveness Requirements
	6 Dynamical Systems
	7 Timed Model
	8 Real-Time Scheduling
	9 Hybrid Systems
	Bibliography
	Index

