
Second

Edition

David Foster
Foreword by Karl Friston

Generative
Deep Learning
Teaching Machines to Paint, Write,
Compose, and Play

SECOND
EDITION

AI / DEEP LE ARNING

“Generative Deep
Learning is an
accessible introduction
to the deep learning
toolkit for generative
modeling. If you are a
creative practitioner
who loves to tinker
with code and want to
apply deep learning
to your work, then this
is the book for you.”

—David Ha
Head of Strategy, Stability AI

“An excellent book that
dives right into all of
the major techniques
behind state-of-the-
art generative deep
learning. An exciting
exploration of one of
the most fascinating
domains in AI!”

—François Chollet
Creator of Keras

Generative Deep Learning

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Generative AI is the hottest topic in tech. This practical book
teaches machine learning engineers and data scientists how
to use TensorFlow and Keras to create impressive generative
deep learning models from scratch, including variational
autoencoders (VAEs), generative adversarial networks
(GANs), Transformers, normalizing flows, energy-based
models, and denoising diffusion models.

The book starts with the basics of deep learning and
progresses to cutting-edge architectures. Through tips
and tricks, you’ll understand how to make your models
learn more efficiently and become more creative.

• Discover how VAEs can change facial expressions in photos

• Train GANs to generate images based on your own dataset

• Build diffusion models to produce new varieties of flowers

• Train your own GPT for text generation

• Learn how large language models like ChatGPT are trained

• Explore state-of-the-art architectures such as StyleGAN2
and ViT-VQGAN

• Compose polyphonic music using Transformers
and MuseGAN

• Understand how generative world models can solve
reinforcement learning tasks

• Dive into multimodal models such as DALL.E 2, Imagen,
and Stable Diffusion

This book also explores the future of generative AI and
how individuals and companies can proactively begin
to leverage this remarkable new technology to create
competitive advantage.

David Foster is the cofounder of
Applied Data Science Partners.

US $79.99 CAN $99.99
ISBN: 978-1-098-13418-1

SECOND
EDITION

Praise for Generative Deep Learning

Generative Deep Learning is an accessible introduction to the deep learning toolkit for
generative modeling. If you are a creative practitioner who loves to tinker with code and

want to apply deep learning to your work, then this is the book for you.
—David Ha, Head of Strategy, Stability AI

An excellent book that dives right into all of the major techniques behind state-of-the-art
generative deep learning. You’ll find intuitive explanations and clever analogies—

backed by didactic, highly readable code examples. An exciting
exploration of one of the most fascinating domains in AI!

—François Chollet, Creator of Keras

David Foster’s explanations of complex concepts are clear and concise,
enriched with intuitive visuals, code examples, and exercises.

An excellent resource for students and practitioners!
—Suzana Ilić, Principal Program Manager Responsible AI,

Microsoft Azure OpenAI

Generative AI is the next revolutionary step in AI technology that will have a massive
impact on the world. This book provides a great introduction to this field

and its incredible potential and potential risks.
—Connor Leahy, CEO at Conjecture

and Cofounder of EleutherAI

Predicting the world means understanding the world—in all modalities. In that sense,
generative AI is solving the very core of intelligence.

—Jonas Andrulis, Founder & CEO Aleph Alpha

Generative AI is reshaping countless industries and powering a new generation of
creative tools. This book is the perfect way to get going with generative modeling and

start building with this revolutionary technology yourself.
—Ed Newton-Rex, VP Audio at Stability AI and composer

David taught me everything I know about machine learning and has a
knack for explaining the underlying concepts. Generative Deep Learning is my go-to

resource for generative AI and lives on a shelf next to my work desk amongst
my small collection of favorite technical books.

—Zack Thoutt, CPO at AutoSalesVelocity

Generative AI is likely to have a profound impact on society. This book gives an
introduction to the field that is accessible without skimping on technical detail.

—Raza Habib, Cofounder of Humanloop

When people ask me how to get started with generative AI, I always recommend David’s
book. The second edition is awesome because it covers the strongest models,

such as diffusion models and Transformers. Definitely a must-have for
anyone interested in computational creativity!

—Dr. Tristan Behrens, AI Expert and AI Music Artist in
Residence at KI Salon Heilbronn

Dense in tech knowledge, this is my number one go-to literature when I have ideas
around generative AI. It should be on every data scientist’s bookshelf.

—Martin Musiol, Founder of generativeAI.net

The book covers the full taxonomy of generative models in excellent detail. One of the
best things I found about the book is that it covers the important theory behind the

models as well as solidifying the reader’s understanding with practical examples.
I must point out that the chapter on GANs is one of the best explanations I have read

and provides intuitive means to fine-tune your models. The book covers a
wide range of generative AI modalities including text, image, and music.

A great resource for anyone getting started with GenAI.
—Aishwarya Srinivasan, Data Scientist, Google Cloud

David Foster
Foreword by Karl Friston

Generative Deep Learning
Teaching Machines to Paint, Write,

Compose, and Play

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13418-1

[LSI]

Generative Deep Learning
by David Foster

Copyright © 2023 Applied Data Science Partners Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Michele Cronin
Production Editor: Christopher Faucher
Copyeditor: Charles Roumeliotis
Proofreader: Rachel Head

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2019: First Edition
May 2023: Second Edition

Revision History for the Second Edition
2023-04-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098134181 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Generative Deep Learning, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098134181

For Alina, the loveliest noise vector of them all.

Table of Contents

Foreword. xv

Preface. xvii

Part I. Introduction to Generative Deep Learning

1. Generative Modeling. 3
What Is Generative Modeling? 4

Generative Versus Discriminative Modeling 5
The Rise of Generative Modeling 6
Generative Modeling and AI 8

Our First Generative Model 9
Hello World! 9
The Generative Modeling Framework 10
Representation Learning 12

Core Probability Theory 15
Generative Model Taxonomy 18
The Generative Deep Learning Codebase 20

Cloning the Repository 20
Using Docker 21
Running on a GPU 21

Summary 21

2. Deep Learning. 23
Data for Deep Learning 24
Deep Neural Networks 25

vii

What Is a Neural Network? 25
Learning High-Level Features 26
TensorFlow and Keras 27

Multilayer Perceptron (MLP) 28
Preparing the Data 28
Building the Model 30
Compiling the Model 35
Training the Model 37
Evaluating the Model 38

Convolutional Neural Network (CNN) 40
Convolutional Layers 41
Batch Normalization 46
Dropout 49
Building the CNN 51
Training and Evaluating the CNN 53

Summary 54

Part II. Methods

3. Variational Autoencoders. 59
Introduction 60
Autoencoders 61

The Fashion-MNIST Dataset 62
The Autoencoder Architecture 63
The Encoder 64
The Decoder 65
Joining the Encoder to the Decoder 67
Reconstructing Images 69
Visualizing the Latent Space 70
Generating New Images 71

Variational Autoencoders 74
The Encoder 75
The Loss Function 80
Training the Variational Autoencoder 82
Analysis of the Variational Autoencoder 84

Exploring the Latent Space 85
The CelebA Dataset 85
Training the Variational Autoencoder 87
Analysis of the Variational Autoencoder 89
Generating New Faces 90

viii | Table of Contents

Latent Space Arithmetic 91
Morphing Between Faces 92

Summary 93

4. Generative Adversarial Networks. 95
Introduction 96
Deep Convolutional GAN (DCGAN) 97

The Bricks Dataset 98
The Discriminator 99
The Generator 101
Training the DCGAN 104
Analysis of the DCGAN 109
GAN Training: Tips and Tricks 110

Wasserstein GAN with Gradient Penalty (WGAN-GP) 113
Wasserstein Loss 114
The Lipschitz Constraint 115
Enforcing the Lipschitz Constraint 116
The Gradient Penalty Loss 117
Training the WGAN-GP 119
Analysis of the WGAN-GP 121

Conditional GAN (CGAN) 122
CGAN Architecture 123
Training the CGAN 124
Analysis of the CGAN 126

Summary 127

5. Autoregressive Models. 129
Introduction 130
Long Short-Term Memory Network (LSTM) 131

The Recipes Dataset 132
Working with Text Data 133
Tokenization 134
Creating the Training Set 137
The LSTM Architecture 138
The Embedding Layer 138
The LSTM Layer 140
The LSTM Cell 142
Training the LSTM 144
Analysis of the LSTM 146

Recurrent Neural Network (RNN) Extensions 149
Stacked Recurrent Networks 149

Table of Contents | ix

Gated Recurrent Units 151
Bidirectional Cells 153

PixelCNN 153
Masked Convolutional Layers 154
Residual Blocks 156
Training the PixelCNN 158
Analysis of the PixelCNN 159
Mixture Distributions 162

Summary 164

6. Normalizing Flow Models. 167
Introduction 168
Normalizing Flows 169

Change of Variables 170
The Jacobian Determinant 172
The Change of Variables Equation 173

RealNVP 174
The Two Moons Dataset 174
Coupling Layers 175
Training the RealNVP Model 181
Analysis of the RealNVP Model 184

Other Normalizing Flow Models 186
GLOW 186
FFJORD 187

Summary 188

7. Energy-Based Models. 189
Introduction 189
Energy-Based Models 191

The MNIST Dataset 192
The Energy Function 193
Sampling Using Langevin Dynamics 194
Training with Contrastive Divergence 197
Analysis of the Energy-Based Model 201
Other Energy-Based Models 202

Summary 203

8. Diffusion Models. 205
Introduction 206
Denoising Diffusion Models (DDM) 208

The Flowers Dataset 208

x | Table of Contents

The Forward Diffusion Process 209
The Reparameterization Trick 210
Diffusion Schedules 211
The Reverse Diffusion Process 214
The U-Net Denoising Model 217
Training the Diffusion Model 224
Sampling from the Denoising Diffusion Model 225
Analysis of the Diffusion Model 228

Summary 231

Part III. Applications

9. Transformers. 235
Introduction 236
GPT 236

The Wine Reviews Dataset 237
Attention 238
Queries, Keys, and Values 239
Multihead Attention 241
Causal Masking 242
The Transformer Block 245
Positional Encoding 248
Training GPT 250
Analysis of GPT 252

Other Transformers 255
T5 256
GPT-3 and GPT-4 259
ChatGPT 260

Summary 264

10. Advanced GANs. 267
Introduction 268
ProGAN 269

Progressive Training 269
Outputs 276

StyleGAN 277
The Mapping Network 278
The Synthesis Network 279
Outputs from StyleGAN 280

StyleGAN2 281

Table of Contents | xi

Weight Modulation and Demodulation 282
Path Length Regularization 283
No Progressive Growing 284
Outputs from StyleGAN2 286

Other Important GANs 286
Self-Attention GAN (SAGAN) 286
BigGAN 288
VQ-GAN 289
ViT VQ-GAN 292

Summary 294

11. Music Generation. 297
Introduction 298
Transformers for Music Generation 299

The Bach Cello Suite Dataset 300
Parsing MIDI Files 300
Tokenization 303
Creating the Training Set 304
Sine Position Encoding 305
Multiple Inputs and Outputs 307
Analysis of the Music-Generating Transformer 309
Tokenization of Polyphonic Music 313

MuseGAN 317
The Bach Chorale Dataset 317
The MuseGAN Generator 320
The MuseGAN Critic 326
Analysis of the MuseGAN 327

Summary 329

12. World Models. 331
Introduction 331
Reinforcement Learning 332

The CarRacing Environment 334
World Model Overview 336

Architecture 336
Training 338

Collecting Random Rollout Data 339
Training the VAE 340

The VAE Architecture 341
Exploring the VAE 343

Collecting Data to Train the MDN-RNN 346

xii | Table of Contents

Training the MDN-RNN 346
The MDN-RNN Architecture 347
Sampling from the MDN-RNN 348

Training the Controller 348
The Controller Architecture 349
CMA-ES 349
Parallelizing CMA-ES 351

In-Dream Training 353
Summary 356

13. Multimodal Models. 359
Introduction 360
DALL.E 2 361

Architecture 362
The Text Encoder 362
CLIP 362
The Prior 367
The Decoder 369
Examples from DALL.E 2 373

Imagen 377
Architecture 377
DrawBench 378
Examples from Imagen 379

Stable Diffusion 380
Architecture 380
Examples from Stable Diffusion 381

Flamingo 381
Architecture 382
The Vision Encoder 382
The Perceiver Resampler 383
The Language Model 385
Examples from Flamingo 388

Summary 389

14. Conclusion. 391
Timeline of Generative AI 392

2014–2017: The VAE and GAN Era 394
2018–2019: The Transformer Era 394
2020–2022: The Big Model Era 395

The Current State of Generative AI 396
Large Language Models 396

Table of Contents | xiii

Text-to-Code Models 400
Text-to-Image Models 402
Other Applications 405

The Future of Generative AI 407
Generative AI in Everyday Life 407
Generative AI in the Workplace 409
Generative AI in Education 410
Generative AI Ethics and Challenges 411

Final Thoughts 413

Index. 417

xiv | Table of Contents

Foreword

This book is becoming part of my life. On finding a copy in my living room I asked
my son, “When did you get this?” He replied, “When you gave it to me,” bemused by
my senior moment. Going through various sections together, I came to regard Gener‐
ative Deep Learning as the Gray’s Anatomy of Generative AI.

The author dissects the anatomy of generative AI with an incredible clarity and reas‐
suring authority. He offers a truly remarkable account of a fast-moving field, under‐
written with pragmatic examples, engaging narratives, and references that are so
current, it reads like a living history.

Throughout his deconstructions, the author maintains a sense of wonder and excite‐
ment about the potential of generative AI—especially evident in the book’s compel‐
ling dénouement. Having laid bare the technology, he reminds us that we are at the
dawn of a new age of intelligence, an age in which generative AI holds a mirror up to
our language, our art, our creativity; reflecting not just what we have created, but
what we could create—what we can create—limited only by “your own imagination.”

The central theme of generative models in artificial intelligence resonates deeply with
me, because I see exactly the same themes emerging in the natural sciences; namely, a
view of ourselves as generative models of our lived world. I suspect in the next edition
of this book we will read about the confluence of artificial and natural intelligence.
Until that time, I will keep this edition next to my copy of Gray’s Anatomy, and other
treasures on my bookshelf.

— Karl Friston, FRS
Professor of Neuroscience

University College London

xv

Preface

What I cannot create, I do not understand.
—Richard Feynman

Generative AI is one of the most revolutionary technologies of our time, transform‐
ing the way we interact with machines. Its potential to revolutionize the way we live,
work, and play has been the subject of countless conversations, debates, and predic‐
tions. But what if there was an even greater potential to this powerful technology?
What if the possibilities of generative AI extend beyond our current imagination?
The future of generative AI may be more exciting than we ever thought possible…

Since our earliest days, we have sought opportunities to generate original and beauti‐
ful creations. For early humans, this took the form of cave paintings depicting wild
animals and abstract patterns, created with pigments placed carefully and methodi‐
cally onto rock. The Romantic Era gave us the mastery of Tchaikovsky symphonies,
with their ability to inspire feelings of triumph and tragedy through sound waves,
woven together to form beautiful melodies and harmonies. And in recent times, we
have found ourselves rushing to bookshops at midnight to buy stories about a fic‐
tional wizard, because the combination of letters creates a narrative that wills us to
turn the page and find out what happens to our hero.

It is therefore not surprising that humanity has started to ask the ultimate question of
creativity: can we create something that is in itself creative?

This is the question that generative AI aims to answer. With recent advances in meth‐
odology and technology, we are now able to build machines that can paint original
artwork in a given style, write coherent blocks of text with long-term structure, com‐
pose music that is pleasant to listen to, and develop winning strategies for complex
games by generating imaginary future scenarios. This is just the start of a generative
revolution that will leave us with no choice but to find answers to some of the biggest
questions about the mechanics of creativity, and ultimately, what it means to be
human.

xvii

In short, there has never been a better time to learn about generative AI—so let’s get
started!

Objective and Approach
This book assumes no prior knowledge of generative AI. We will build up all of the
key concepts from scratch in a way that is intuitive and easy to follow, so don’t worry
if you have no experience with generative AI. You have come to the right place!

Rather than only covering the techniques that are currently in vogue, this book serves
as a complete guide to generative modeling that covers a broad range of model fami‐
lies. There is no one technique that is objectively better or worse than any other—in
fact, many state-of-the-art models now mix together ideas from across the broad
spectrum of approaches to generative modeling. For this reason, it is important to
keep abreast of developments across all areas of generative AI, rather than focusing
on one particular kind of technique. One thing is certain: the field of generative AI is
moving fast, and you never know where the next groundbreaking idea will come
from!

With this in mind, the approach I will take is to show you how to train your own
generative models on your own data, rather than relying on pre-trained off-the-shelf
models. While there are now many impressive open source generative models that
can be downloaded and run in a few lines of code, the aim of this book is to dig
deeper into their architecture and design from first principles, so that you gain a
complete understanding of how they work and can code up examples of each techni‐
que from scratch using Python and Keras.

In summary, this book can be thought of as a map of the current generative AI land‐
scape that covers both theory and practical applications, including full working
examples of key models from the literature. We will walk through the code for each
step by step, with clear signposts that show how the code implements the theory
underpinning each technique. This book can be read cover to cover or used as a ref‐
erence book that you can dip into. Above all, I hope you find it a useful and enjoyable
read!

Throughout the book, you will find short, allegorical stories that
help explain the mechanics of some of the models we will be build‐
ing. I believe that one of the best ways to teach a new abstract
theory is to first convert it into something that isn’t quite so
abstract, such as a story, before diving into the technical explana‐
tion. The story and the model explanation are just the same
mechanics explained in two different domains—you might there‐
fore find it useful to refer back to the relevant story while learning
about the technical details of each model!

xviii | Preface

Prerequisites
This book assumes that you have experience coding in Python. If you are not familiar
with Python, the best place to start is through LearnPython.org. There are many free
resources online that will allow you to develop enough Python knowledge to work
with the examples in this book.

Also, since some of the models are described using mathematical notation, it will be
useful to have a solid understanding of linear algebra (for example, matrix multiplica‐
tion) and general probability theory. A useful resource is Deisenroth et al.’s book
Mathematics for Machine Learning (Cambridge University Press), which is freely
available.

The book assumes no prior knowledge of generative modeling (we will examine the
key concepts in Chapter 1) or TensorFlow and Keras (these libraries will be intro‐
duced in Chapter 2).

Roadmap
This book is divided into three parts.

Part I is a general introduction to generative modeling and deep learning, where we
explore the core concepts that underpin all of the techniques in later parts of the
book:

• In Chapter 1, “Generative Modeling”, we define generative modeling and con‐
sider a toy example that we can use to understand some of the key concepts that
are important to all generative models. We also lay out the taxonomy of genera‐
tive model families that we will explore in Part II of this book.

• In Chapter 2, “Deep Learning”, we begin our exploration of deep learning and
neural networks by building our first example of a multilayer perceptron (MLP)
using Keras. We then adapt this to include convolutional layers and other
improvements, to observe the difference in performance.

Part II walks through the six key techniques that we will be using to build generative
models, with practical examples for each:

• In Chapter 3, “Variational Autoencoders”, we consider the variational autoen‐
coder (VAE) and see how it can be used to generate images of faces and morph
between faces in the model’s latent space.

• In Chapter 4, “Generative Adversarial Networks”, we explore generative adversa‐
rial networks (GANs) for image generation, including deep convolutional GANs,
conditional GANs, and improvements such as the Wasserstein GAN that make
the training process more stable.

Preface | xix

https://www.learnpython.org
https://mml-book.com

• In Chapter 5, “Autoregressive Models”, we turn our attention to autoregressive
models, starting with an introduction to recurrent neural networks such as long
short-term memory networks (LSTMs) for text generation and PixelCNN for
image generation.

• In Chapter 6, “Normalizing Flow Models”, we focus on normalizing flows,
including an intuitive theoretical exploration of the technique and a practical
example of how to build a RealNVP model to generate images.

• In Chapter 7, “Energy-Based Models”, we cover energy-based models, including
important methods such as how to train using contrastive divergence and sample
using Langevin dynamics.

• In Chapter 8, “Diffusion Models”, we dive into a practical guide to building diffu‐
sion models, which drive many state-of-the-art image generation models such as
DALL.E 2 and Stable Diffusion.

Finally, in Part III we build on these foundations to explore the inner workings of
state-of-the-art models for image generation, writing, composing music, and model-
based reinforcement learning:

• In Chapter 9, “Transformers”, we explore the lineage and technical details of the
StyleGAN models, as well as other state-of-the-art GANs for image generation
such as VQ-GAN.

• In Chapter 10, “Advanced GANs”, we consider the Transformer architecture,
including a practical walkthrough for building your own version of GPT for text
generation.

• In Chapter 11, “Music Generation”, we turn our attention to music generation,
including a guide to working with music data and application of techniques such
as Transformers and MuseGAN.

• In Chapter 12, “World Models”, we see how generative models can be used in the
context of reinforcement learning, with the application of world models and
Transformer-based methods.

• In Chapter 13, “Multimodal Models”, we explain the inner workings of four
state-of-the-art multimodal models that incorporate more than one type of data,
including DALL.E 2, Imagen, and Stable Diffusion for text-to-image generation
and Flamingo, a visual language model.

• In Chapter 14, “Conclusion”, we recap the key milestones of generative AI to date
and discuss the ways in which generative AI will revolutionize our daily lives in
years to come.

xx | Preface

Changes in the Second Edition
Thank you to everyone who read the first edition of this book—I am really pleased
that so many of you have found it a useful resource and provided feedback on things
that you would like to see in the second edition. The field of generative deep learning
has progressed significantly since the first edition was published in 2019, so as well as
refreshing the existing content I have added several new chapters to bring the mate‐
rial in line with the current state of the art.

The following is a summary of the main updates, in terms of the individual chapters
and general book improvements:

• Chapter 1 now includes a section on the different families of generative models
and a taxonomy of how they are related.

• Chapter 2 contains improved diagrams and more detailed explanations of key
concepts.

• Chapter 3 is refreshed with a new worked example and accompanying
explanations.

• Chapter 4 now includes an explanation of conditional GAN architectures.
• Chapter 5 now includes a section on autoregressive models for images (e.g.,

PixelCNN).
• Chapter 6 is an entirely new chapter, describing the RealNVP model.
• Chapter 7 is also a new chapter, focusing on techniques such as Langevin dynam‐

ics and contrastive divergence.
• Chapter 8 is a newly written chapter on denoising the diffusion models that

power many of today’s state-of-the-art applications.
• Chapter 9 is an expansion of the material provided in the conclusion of the first

edition, with deeper focus on architectures of the various StyleGAN models and
new material on VQ-GAN.

• Chapter 10 is a new chapter that explores the Transformer architecture in detail.
• Chapter 11 includes modern Transformer architectures, replacing the LSTM

models from the first edition.
• Chapter 12 includes updated diagrams and descriptions, with a section on how

this approach is informing state-of-the-art reinforcement learning today.
• Chapter 13 is a new chapter that explains in detail how impressive models like

DALL.E 2, Imagen, Stable Diffusion, and Flamingo work.
• Chapter 14 is updated to reflect the outstanding progress in the field since the

first edition and give a more complete and detailed view of where generative AI is
heading in the future.

Preface | xxi

• All comments given as feedback to the first edition and typos identified have
been addressed (to the best of my knowledge!).

• Chapter goals have been added at the start of each chapter, so that you can see the
key topics covered in the chapter before you start reading.

• Some of the allegorical stories have been rewritten to be more concise and
clear—I am pleased that so many readers have said that the stories have helped
them to better understand the key concepts!

• The headings and subheadings of each chapter have been aligned so that is it
clear which parts of the chapter are focused on explanation and which are
focused on building your own models.

Other Resources
I highly recommend the following books as general introductions to machine learn‐
ing and deep learning:

• Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems by Aurélien Géron (O’Reilly)

• Deep Learning with Python by Francois Chollet (Manning)

Most of the papers in this book are sourced through arXiv, a free repository of scien‐
tific research papers. It is now common for authors to post papers to arXiv before
they are fully peer-reviewed. Reviewing the recent submissions is a great way to keep
on top of the most cutting-edge developments in the field.

I also highly recommend the website Papers with Code, where you can find the latest
state-of-the-art results in a variety of machine learning tasks, alongside links to the
papers and official GitHub repositories. It is an excellent resource for anyone wanting
to quickly understand which techniques are currently achieving the highest scores in
a range of tasks and has certainly helped me to decide which techniques to include in
this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for commands and program listings, as well as within paragraphs to refer to
program elements such as variable or function names.

xxii | Preface

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781098125967
https://arxiv.org
https://paperswithcode.com

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element signifies a warning or caution.

Codebase
The code examples in this book can be found in a GitHub repository. I have deliber‐
ately ensured that none of the models require prohibitively large amounts of compu‐
tational resources to train, so that you can start training your own models without
having to spend lots of time or money on expensive hardware. There is a comprehen‐
sive guide in the repository on how to get started with Docker and set up cloud
resources with GPUs on Google Cloud if required.

The following changes have been made to the codebase since the first edition:

• All examples are now runnable from within a single notebook, instead of some
code being imported from modules across the codebase. This is so that you can
run each example cell by cell and delve into exactly how each model is built, piece
by piece.

• The sections of each notebook are now broadly aligned between examples.
• Many of the examples in this book now utilize code snippets from the amazing

open source Keras repository—this is to avoid creating a completely detached
open source repository of Keras generative AI examples, when there already exist
excellent implementations available through the Keras website. I have added ref‐
erences and links to the original authors of code that I have utilized from the
Keras website throughout this book and in the repository.

Preface | xxiii

https://github.com/davidADSP/Generative_Deep_Learning_2nd_Edition
https://oreil.ly/1UTwa

• I have added new data sources and improved the data collection process from the
first edition—now, there is a script that can be easily run to collect data from the
required sources in order to train the examples in the book, using tools such as
the Kaggle API.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/davidADSP/Generative_Deep_Learning_2nd_Edition.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Generative Deep Learning, 2nd edi‐
tion, by David Foster (O’Reilly). Copyright 2023 Applied Data Science Partners Ltd.,
978-1-098-13418-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

xxiv | Preface

https://oreil.ly/8ibPw
https://github.com/davidADSP/Generative_Deep_Learning_2nd_Edition
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/generative-dl.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
There are so many people I would like to thank for helping me write this book.

First, I would like to thank everyone who has taken time to technically review the
book—in particular Vishwesh Ravi Shrimali, Lipi Deepaakshi Patnaik, Luba Elliot,
and Lorna Barclay. Thanks also to Samir Bico for helping to review and test the code‐
base that accompanies this book. Your input has been invaluable.

Also, a huge thanks to my colleagues at Applied Data Science Partners, Ross Witeszc‐
zak, Amy Bull, Ali Parandeh, Zine Eddine, Joe Rowe, Gerta Salillari, Aleshia Parkes,
Evelina Kireilyte, Riccardo Tolli, Mai Do, Khaleel Syed, and Will Holmes. Your
patience with me while I have taken time to finish the book is hugely appreciated, and
I am greatly looking forward to all the machine learning projects we will complete
together in the future! Particular thanks to Ross—had we not decided to start a busi‐
ness together, this book might never have taken shape, so thank you for believing in
me as your business partner!

I also want to thank anyone who has ever taught me anything mathematical—I was
extremely fortunate to have fantastic math teachers at school, who developed my
interest in the subject and encouraged me to pursue it further at university. I would

Preface | xxv

https://oreil.ly/generative-dl
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia
https://adsp.ai

like to thank you for your commitment and for going out of your way to share your
knowledge of the subject with me.

A huge thank you goes to the staff at O’Reilly for guiding me through the process of
writing this book. A special thanks goes to Michele Cronin, who has been there at
each step, providing useful feedback and sending me friendly reminders to keep com‐
pleting chapters! Also to Nicole Butterfield, Christopher Faucher, Charles Roumelio‐
tis, and Suzanne Huston for getting the book into production, and Mike Loukides for
first reaching out to ask if I’d be interested in writing a book. You have all been so
supportive of this project from the start, and I want to thank you for providing me
with a platform on which to write about something that I love.

Throughout the writing process, my family has been a constant source of encourage‐
ment and support. A huge thank you goes to my mum, Gillian Foster, for checking
every single line of text for typos and for teaching me how to add up in the first place!
Your attention to detail has been extremely helpful while proofreading this book, and
I’m really grateful for all the opportunities that both you and dad have given me. My
dad, Clive Foster, originally taught me how to program a computer—this book is full
of practical examples, and that’s thanks to his early patience while I fumbled around
in BASIC trying to make football games as a teenager. My brother, Rob Foster, is the
most modest genius you will ever find, particularly within linguistics—chatting with
him about AI and the future of text-based machine learning has been amazingly
helpful. Last, I would like to thank my Nana, who was always a constant source of
inspiration and fun for all of us. Her love of literature was one of the reasons I first
decided that writing a book would be an exciting thing to do.

I would also like to thank my wife, Lorna Barclay. As well as providing me with end‐
less support and cups of tea throughout the writing process, you have rigorously
checked every word of this book in meticulous detail. I couldn’t have done it without
you. Thank you for always being there for me, and for making this journey so much
more enjoyable. I promise I won’t talk about generative AI at the dinner table for at
least a few days after the book is published.

Lastly, I would like to thank our beautiful baby daughter Alina for providing endless
entertainment during the long nights of book-writing. Your adorable giggles have
been the perfect background music to my typing. Thanks for being my inspiration
and for always keeping me on my toes. You’re the real brains behind this operation.

xxvi | Preface

PART I

Introduction to Generative
Deep Learning

Part I is a general introduction to generative modeling and deep learning—the two
fields that we need to understand in order to get started with generative deep
learning!

In Chapter 1 we will define generative modeling and consider a toy example that we
can use to understand some of the key concepts that are important to all generative
models. We will also lay out the taxonomy of generative model families that we will
explore in Part II of this book.

Chapter 2 provides a guide to the deep learning tools and techniques that we will
need to start building more complex generative models. In particular, we will build
our first example of a deep neural network—a multilayer perceptron (MLP)—using
Keras. We will then adapt this to include convolutional layers and other improve‐
ments, to observe the difference in performance.

By the end of Part I you will have a good understanding of the core concepts that
underpin all of the techniques in later parts of the book.

CHAPTER 1

Generative Modeling

Chapter Goals
In this chapter you will:

• Learn the key differences between generative and discriminative models.
• Understand the desirable properties of a generative model through a simple

example.
• Learn about the core probabilistic concepts that underpin generative models.
• Explore the different families of generative models.
• Clone the codebase that accompanies this book, so that you can get started build‐

ing generative models!

This chapter is a general introduction to the field of generative modeling.

We will start with a gentle theoretical introduction to generative modeling and see
how it is the natural counterpart to the more widely studied discriminative modeling.
We will then establish a framework that describes the desirable properties that a good
generative model should have. We will also lay out the core probabilistic concepts
that are important to know, in order to fully appreciate how different approaches
tackle the challenge of generative modeling.

This will lead us naturally to the penultimate section, which lays out the six broad
families of generative models that dominate the field today. The final section explains
how to get started with the codebase that accompanies this book.

3

What Is Generative Modeling?
Generative modeling can be broadly defined as follows:

Generative modeling is a branch of machine learning that involves training a model to
produce new data that is similar to a given dataset.

What does this mean in practice? Suppose we have a dataset containing photos of
horses. We can train a generative model on this dataset to capture the rules that gov‐
ern the complex relationships between pixels in images of horses. Then we can sam‐
ple from this model to create novel, realistic images of horses that did not exist in the
original dataset. This process is illustrated in Figure 1-1.

Figure 1-1. A generative model trained to generate realistic photos of horses

In order to build a generative model, we require a dataset consisting of many exam‐
ples of the entity we are trying to generate. This is known as the training data, and
one such data point is called an observation.

Each observation consists of many features. For an image generation problem, the
features are usually the individual pixel values; for a text generation problem, the fea‐
tures could be individual words or groups of letters. It is our goal to build a model
that can generate new sets of features that look as if they have been created using the
same rules as the original data. Conceptually, for image generation this is an incredi‐
bly difficult task, considering the vast number of ways that individual pixel values can
be assigned and the relatively tiny number of such arrangements that constitute an
image of the entity we are trying to generate.

A generative model must also be probabilistic rather than deterministic, because we
want to be able to sample many different variations of the output, rather than get the
same output every time. If our model is merely a fixed calculation, such as taking the
average value of each pixel in the training dataset, it is not generative. A generative

4 | Chapter 1: Generative Modeling

model must include a random component that influences the individual samples gen‐
erated by the model.

In other words, we can imagine that there is some unknown probabilistic distribution
that explains why some images are likely to be found in the training dataset and other
images are not. It is our job to build a model that mimics this distribution as closely
as possible and then sample from it to generate new, distinct observations that look as
if they could have been included in the original training set.

Generative Versus Discriminative Modeling
In order to truly understand what generative modeling aims to achieve and why this
is important, it is useful to compare it to its counterpart, discriminative modeling. If
you have studied machine learning, most problems you will have faced will have most
likely been discriminative in nature. To understand the difference, let’s look at an
example.

Suppose we have a dataset of paintings, some painted by Van Gogh and some by
other artists. With enough data, we could train a discriminative model to predict if a
given painting was painted by Van Gogh. Our model would learn that certain colors,
shapes, and textures are more likely to indicate that a painting is by the Dutch master,
and for paintings with these features, the model would upweight its prediction
accordingly. Figure 1-2 shows the discriminative modeling process—note how it dif‐
fers from the generative modeling process shown in Figure 1-1.

Figure 1-2. A discriminative model trained to predict if a given image is painted by
Van Gogh

When performing discriminative modeling, each observation in the training data has
a label. For a binary classification problem such as our artist discriminator, Van Gogh
paintings would be labeled 1 and non–Van Gogh paintings labeled 0. Our model then

What Is Generative Modeling? | 5

learns how to discriminate between these two groups and outputs the probability that
a new observation has label 1—i.e., that it was painted by Van Gogh.

In contrast, generative modeling doesn’t require the dataset to be labeled because it
concerns itself with generating entirely new images, rather than trying to predict a
label of a given image.

Let’s define these types of modeling formally, using mathematical notation:

Discriminative modeling estimates p y � .

That is, discriminative modeling aims to model the probability of a label y given some
observation �.

Generative modeling estimates p � .

That is, generative modeling aims to model the probability of observing an observa‐
tion �. Sampling from this distribution allows us to generate new observations.

Conditional Generative Models

Note that we can also build a generative model to model the condi‐
tional probability p � y —the probability of seeing an observation
� with a specific label y.
For example, if our dataset contains different types of fruit, we
could tell our generative model to specifically generate an image of
an apple.

An important point to note is that even if we were able to build a perfect discrimina‐
tive model to identify Van Gogh paintings, it would still have no idea how to create a
painting that looks like a Van Gogh. It can only output probabilities against existing
images, as this is what it has been trained to do. We would instead need to train a
generative model and sample from this model to generate images that have a high
chance of belonging to the original training dataset.

The Rise of Generative Modeling
Until recently, discriminative modeling has been the driving force behind most pro‐
gress in machine learning. This is because for any discriminative problem, the corre‐
sponding generative modeling problem is typically much more difficult to tackle. For
example, it is much easier to train a model to predict if a painting is by Van Gogh
than it is to train a model to generate a Van Gogh–style painting from scratch.

6 | Chapter 1: Generative Modeling

Similarly, it is much easier to train a model to predict if a page of text was written by
Charles Dickens than it is to build a model to generate a set of paragraphs in the style
of Dickens. Until recently, most generative challenges were simply out of reach and
many doubted that they could ever be solved. Creativity was considered a purely
human capability that couldn’t be rivaled by AI.

However, as machine learning technologies have matured, this assumption has grad‐
ually weakened. In the last 10 years many of the most interesting advancements in the
field have come through novel applications of machine learning to generative model‐
ing tasks. For example, Figure 1-3 shows the striking progress that has already been
made in facial image generation since 2014.

Figure 1-3. Face generation using generative modeling has improved significantly over
the last decade (adapted from Brundage et al., 2018)1

As well as being easier to tackle, discriminative modeling has historically been more
readily applicable to practical problems across industry than generative modeling.
For example, a doctor may benefit from a model that predicts if a given retinal image
shows signs of glaucoma, but wouldn’t necessarily benefit from a model that can gen‐
erate novel pictures of the back of an eye.

However, this is also starting to change, with the proliferation of companies offering
generative services that target specific business problems. For example, it is now pos‐
sible to access APIs that generate original blog posts given a particular subject matter,
produce a variety of images of your product in any setting you desire, or write social
media content and ad copy to match your brand and target message. There are also
clear positive applications of generative AI for industries such as game design and
cinematography, where models trained to output video and music are beginning to
add value.

What Is Generative Modeling? | 7

https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf

Generative Modeling and AI
As well as the practical uses of generative modeling (many of which are yet to be dis‐
covered), there are three deeper reasons why generative modeling can be considered
the key to unlocking a far more sophisticated form of artificial intelligence that goes
beyond what discriminative modeling alone can achieve.

Firstly, purely from a theoretical point of view, we shouldn’t limit our machine train‐
ing to simply categorizing data. For completeness, we should also be concerned with
training models that capture a more complete understanding of the data distribution,
beyond any particular label. This is undoubtedly a more difficult problem to solve,
due to the high dimensionality of the space of feasible outputs and the relatively small
number of creations that we would class as belonging to the dataset. However, as we
shall see, many of the same techniques that have driven development in discrimina‐
tive modeling, such as deep learning, can be utilized by generative models too.

Secondly, as we shall see in Chapter 12, generative modeling is now being used to
drive progress in other fields of AI, such as reinforcement learning (the study of
teaching agents to optimize a goal in an environment through trial and error). Sup‐
pose we want to train a robot to walk across a given terrain. A traditional approach
would be to run many experiments where the agent tries out different strategies in the
terrain, or a computer simulation of the terrain. Over time the agent would learn
which strategies are more successful than others and therefore gradually improve. A
challenge with this approach is that it is fairly inflexible because it is trained to opti‐
mize the policy for one particular task. An alternative approach that has recently
gained traction is to instead train the agent to learn a world model of the environment
using a generative model, independent of any particular task. The agent can quickly
adapt to new tasks by testing strategies in its own world model, rather than in the real
environment, which is often computationally more efficient and does not require
retraining from scratch for each new task.

Finally, if we are to truly say that we have built a machine that has acquired a form of
intelligence that is comparable to a human’s, generative modeling must surely be part
of the solution. One of the finest examples of a generative model in the natural world
is the person reading this book. Take a moment to consider what an incredible gener‐
ative model you are. You can close your eyes and imagine what an elephant would
look like from any possible angle. You can imagine a number of plausible different
endings to your favorite TV show, and you can plan your week ahead by working
through various futures in your mind’s eye and taking action accordingly. Current
neuroscientific theory suggests that our perception of reality is not a highly complex
discriminative model operating on our sensory input to produce predictions of what
we are experiencing, but is instead a generative model that is trained from birth to
produce simulations of our surroundings that accurately match the future. Some the‐
ories even suggest that the output from this generative model is what we directly

8 | Chapter 1: Generative Modeling

perceive as reality. Clearly, a deep understanding of how we can build machines to
acquire this ability will be central to our continued understanding of the workings of
the brain and general artificial intelligence.

Our First Generative Model
With this in mind, let’s begin our journey into the exciting world of generative model‐
ing. To begin with, we’ll look at a toy example of a generative model and introduce
some of the ideas that will help us to work through the more complex architectures
that we will encounter later in the book.

Hello World!
Let’s start by playing a generative modeling game in just two dimensions. I have
chosen a rule that has been used to generate the set of points � in Figure 1-4. Let’s call
this rule pdata. Your challenge is to choose a different point � = x1, x2 in the space
that looks like it has been generated by the same rule.

Figure 1-4. A set of points in two dimensions, generated by an unknown rule pdata

Where did you choose? You probably used your knowledge of the existing data points
to construct a mental model, pmodel, of whereabouts in the space the point is more
likely to be found. In this respect, pmodel is an estimate of pdata. Perhaps you decided
that pmodel should look like Figure 1-5—a rectangular box where points may be
found, and an area outside of the box where there is no chance of finding any points.

Our First Generative Model | 9

Figure 1-5. The orange box, pmodel, is an estimate of the true data-generating distribu‐
tion, pdata

To generate a new observation, you can simply choose a point at random within the
box, or more formally, sample from the distribution pmodel. Congratulations, you have
just built your first generative model! You have used the training data (the black
points) to construct a model (the orange region) that you can easily sample from to
generate other points that appear to belong to the training set.

Let’s now formalize this thinking into a framework that can help us understand what
generative modeling is trying to achieve.

The Generative Modeling Framework
We can capture our motivations and goals for building a generative model in the fol‐
lowing framework.

The Generative Modeling Framework
• We have a dataset of observations �.
• We assume that the observations have been generated according to some

unknown distribution, pdata.

• We want to build a generative model pmodel that mimics pdata. If we achieve this
goal, we can sample from pmodel to generate observations that appear to have
been drawn from pdata.

• Therefore, the desirable properties of pmodel are:

10 | Chapter 1: Generative Modeling

Accuracy
If pmodel is high for a generated observation, it should look like it has been
drawn from pdata. If \(p_{model}\) is low for a generated observation, it
should not look like it has been drawn from pdata.

Generation
It should be possible to easily sample a new observation from pmodel.

Representation
It should be possible to understand how different high-level features in the
data are represented by pmodel.

Let’s now reveal the true data-generating distribution, pdata, and see how the frame‐
work applies to this example. As we can see from Figure 1-6, the data-generating rule
is simply a uniform distribution over the land mass of the world, with no chance of
finding a point in the sea.

Figure 1-6. The orange box, pmodel, is an estimate of the true data-generating distribu‐
tion, pdata (the gray area)

Clearly, our model, pmodel, is an oversimplification of pdata. We can inspect points A,
B, and C to understand the successes and failures of our model in terms of how accu‐
rately it mimics pdata:

• Point A is an observation that is generated by our model but does not appear to
have been generated by pdata as it’s in the middle of the sea.

Our First Generative Model | 11

• Point B could never have been generated by pmodel as it sits outside the orange
box. Therefore, our model has some gaps in its ability to produce observations
across the entire range of potential possibilities.

• Point C is an observation that could be generated by pmodel and also by pdata.

Despite its shortcomings, the model is easy to sample from, because it is simply a uni‐
form distribution over the orange box. We can easily choose a point at random from
inside this box, in order to sample from it.

Also, we can certainly say that our model is a simple representation of the underlying
complex distribution that captures some of the underlying high-level features. The
true distribution is separated into areas with lots of land mass (continents) and those
with no land mass (the sea). This is a high-level feature that is also true of our model,
except we have one large continent, rather than many.

This example has demonstrated the fundamental concepts behind generative model‐
ing. The problems we will be tackling in this book will be far more complex and high-
dimensional, but the underlying framework through which we approach the problem
will be the same.

Representation Learning
It is worth delving a little deeper into what we mean by learning a representation of
the high-dimensional data, as it is a topic that will recur throughout this book.

Suppose you wanted to describe your appearance to someone who was looking for
you in a crowd of people and didn’t know what you looked like. You wouldn’t start by
stating the color of pixel 1 of a photo of you, then pixel 2, then pixel 3, etc. Instead,
you would make the reasonable assumption that the other person has a general idea
of what an average human looks like, then amend this baseline with features that
describe groups of pixels, such as I have very blond hair or I wear glasses. With no
more than 10 or so of these statements, the person would be able to map the descrip‐
tion back into pixels to generate an image of you in their head. The image wouldn’t be
perfect, but it would be a close enough likeness to your actual appearance for them to
find you among possibly hundreds of other people, even if they’ve never seen you
before.

12 | Chapter 1: Generative Modeling

This is the core idea behind representation learning. Instead of trying to model the
high-dimensional sample space directly, we describe each observation in the training
set using some lower-dimensional latent space and then learn a mapping function
that can take a point in the latent space and map it to a point in the original domain.
In other words, each point in the latent space is a representation of some high-
dimensional observation.

What does this mean in practice? Let’s suppose we have a training set consisting of
grayscale images of biscuit tins (Figure 1-7).

Figure 1-7. The biscuit tin dataset

To us, it is obvious that there are two features that can uniquely represent each of
these tins: the height and width of the tin. That is, we can convert each image of a tin
to a point in a latent space of just two dimensions, even though the training set of
images is provided in high-dimensional pixel space. Notably, this means that we can
also produce images of tins that do not exist in the training set, by applying a suitable
mapping function f to a new point in the latent space, as shown in Figure 1-8.

Realizing that the original dataset can be described by the simpler latent space is not
so easy for a machine—it would first need to establish that height and width are the
two latent space dimensions that best describe this dataset, then learn the mapping
function f that can take a point in this space and map it to a grayscale biscuit tin
image. Machine learning (and specifically, deep learning) gives us the ability to train
machines that can find these complex relationships without human guidance.

Our First Generative Model | 13

Figure 1-8. The 2D latent space of biscuit tins and the function f that maps a point in
the latent space back to the original image domain

One of the benefits of training models that utilize a latent space is that we can per‐
form operations that affect high-level properties of the image by manipulating its rep‐
resentation vector within the more manageable latent space. For example, it is not
obvious how to adjust the shading of every single pixel to make an image of a biscuit
tin taller. However, in the latent space, it’s simply a case of increasing the height latent
dimension, then applying the mapping function to return to the image domain. We
shall see an explicit example of this in the next chapter, applied not to biscuit tins but
to faces.

The concept of encoding the training dataset into a latent space so that we can sample
from it and decode the point back to the original domain is common to many genera‐
tive modeling techniques, as we shall see in later chapters of this book. Mathemati‐
cally speaking, encoder-decoder techniques try to transform the highly nonlinear
manifold on which the data lies (e.g., in pixel space) into a simpler latent space that
can be sampled from, so that it is likely that any point in the latent space is the repre‐
sentation of a well-formed image, as shown in Figure 1-9.

14 | Chapter 1: Generative Modeling

Figure 1-9. The dog manifold in high-dimensional pixel space is mapped to a simpler
latent space that can be sampled from

Core Probability Theory
We have already seen that generative modeling is closely connected to statistical mod‐
eling of probability distributions. Therefore, it now makes sense to introduce some
core probabilistic and statistical concepts that will be used throughout this book to
explain the theoretical background of each model.

If you have never studied probability or statistics, don’t worry. To build many of the
deep learning models that we shall see later in this book, it is not essential to have a
deep understanding of statistical theory. However, to gain a full appreciation of the
task that we are trying to tackle, it’s worth trying to build up a solid understanding of
basic probabilistic theory. This way, you will have the foundations in place to under‐
stand the different families of generative models that will be introduced later in this
chapter.

Core Probability Theory | 15

As a first step, we shall define five key terms, linking each one back to our earlier
example of a generative model that models the world map in two dimensions:

Sample space
The sample space is the complete set of all values an observation � can take.

In our previous example, the sample space consists of all
points of latitude and longitude � = x1, x2 on the world map.
For example, � = (40.7306, –73.9352) is a point in the sample
space (New York City) that belongs to the true data-generating
distribution. � = (11.3493, 142.1996) is a point in the sample
space that does not belong to the true data-generating distri‐
bution (it’s in the sea).

Probability density function
A probability density function (or simply density function) is a function p � that
maps a point � in the sample space to a number between 0 and 1. The integral of
the density function over all points in the sample space must equal 1, so that it is
a well-defined probability distribution.

In the world map example, the density function of our genera‐
tive model is 0 outside of the orange box and constant inside
of the box, so that the integral of the density function over the
entire sample space equals 1.

While there is only one true density function pdata � that is assumed to have
generated the observable dataset, there are infinitely many density functions
pmodel � that we can use to estimate pdata � .

Parametric modeling
Parametric modeling is a technique that we can use to structure our approach to
finding a suitable pmodel � . A parametric model is a family of density functions
pθ � that can be described using a finite number of parameters, θ.

If we assume a uniform distribution as our model family, then
the set all possible boxes we could draw on Figure 1-5 is an
example of a parametric model. In this case, there are four
parameters: the coordinates of the bottom-left θ1, θ2 and
top-right θ3, θ4 corners of the box.

Thus, each density function pθ � in this parametric model
(i.e., each box) can be uniquely represented by four numbers,
θ = θ1, θ2, θ3, θ4 .

16 | Chapter 1: Generative Modeling

Likelihood
The likelihood ℒ θ � of a parameter set θ is a function that measures the plausi‐
bility of θ, given some observed point �. It is defined as follows:

ℒ θ � = pθ �

That is, the likelihood of θ given some observed point � is defined to be the value
of the density function parameterized by θ, at the point �. If we have a whole
dataset � of independent observations, then we can write:

ℒ θ � = ∏
� ∈ �

pθ �

In the world map example, an orange box that only covered
the left half of the map would have a likelihood of 0—it
couldn’t possibly have generated the dataset, as we have
observed points in the right half of the map. The orange box in
Figure 1-5 has a positive likelihood, as the density function is
positive for all data points under this model.

Since the product of a large number of terms between 0 and 1 can be quite com‐
putationally difficult to work with, we often use the log-likelihood ℓ instead:

ℓ θ � = ∑
� ∈ �

log pθ �

There are statistical reasons why the likelihood is defined in this way, but we can
also see that this definition intuitively makes sense. The likelihood of a set of
parameters θ is defined to be the probability of seeing the data if the true data-
generating distribution was the model parameterized by θ.

Note that the likelihood is a function of the parameters, not the
data. It should not be interpreted as the probability that a given
parameter set is correct—in other words, it is not a probability
distribution over the parameter space (i.e., it doesn’t sum/inte‐
grate to 1, with respect to the parameters).

It makes intuitive sense that the focus of parametric modeling should be to find
the optimal value θ of the parameter set that maximizes the likelihood of observ‐
ing the dataset �.

Core Probability Theory | 17

Maximum likelihood estimation
Maximum likelihood estimation is the technique that allows us to estimate θ—the
set of parameters θ of a density function pθ � that is most likely to explain some
observed data �. More formally:

θ = arg max
�

ℓ θ �

θ is also called the maximum likelihood estimate (MLE).

In the world map example, the MLE is the smallest rectangle
that still contains all of the points in the training set.

Neural networks typically minimize a loss function, so we can equivalently talk
about finding the set of parameters that minimize the negative log-likelihood:

θ = arg min
θ

− ℓ θ � = arg min
θ

− log pθ �

Generative modeling can be thought of as a form of maximum likelihood estimation,
where the parameters θ are the weights of the neural networks contained in the
model. We are trying to find the values of these parameters that maximize the likeli‐
hood of observing the given data (or equivalently, minimize the negative log-
likelihood).

However, for high-dimensional problems, it is generally not possible to directly cal‐
culate pθ � —it is intractable. As we shall see in the next section, different families of
generative models take different approaches to tackling this problem.

Generative Model Taxonomy
While all types of generative models ultimately aim to solve the same task, they all
take slightly different approaches to modeling the density function pθ � . Broadly
speaking, there are three possible approaches:

1. Explicitly model the density function, but constrain the model in some way, so
that the density function is tractable (i.e., it can be calculated).

2. Explicitly model a tractable approximation of the density function.

18 | Chapter 1: Generative Modeling

3. Implicitly model the density function, through a stochastic process that directly
generates data.

These are shown in Figure 1-10 as a taxonomy, alongside the six families of genera‐
tive models that we will explore in Part II of this book. Note that these families are
not mutually exclusive—there are many examples of models that are hybrids between
two different kinds of approaches. You should think of the families as different gen‐
eral approaches to generative modeling, rather than explicit model architectures.

Figure 1-10. A taxonomy of generative modeling approaches

The first split that we can make is between models where the probability density
function p � is modeled explicitly and those where it is modeled implicitly.

Implicit density models do not aim to estimate the probability density at all, but
instead focus solely on producing a stochastic process that directly generates data.
The best-known example of an implicit generative model is a generative adversarial
network. We can further split explicit density models into those that directly optimize
the density function (tractable models) and those that only optimize an approxima‐
tion of it.

Tractable models place constraints on the model architecture, so that the density func‐
tion has a form that makes it easy to calculate. For example, autoregressive models
impose an ordering on the input features, so that the output can be generated sequen‐
tially—e.g., word by word, or pixel by pixel. Normalizing flow models apply a series of
tractable, invertible functions to a simple distribution, in order to generate more
complex distributions.

Generative Model Taxonomy | 19

Approximate density models include variational autoencoders, which introduce a latent
variable and optimize an approximation of the joint density function. Energy-based
models also utilize approximate methods, but do so via Markov chain sampling,
rather than variational methods. Diffusion models approximate the density function
by training a model to gradually denoise a given image that has been previously
corrupted.

A common thread that runs through all of the generative model family types is deep
learning. Almost all sophisticated generative models have a deep neural network at
their core, because they can be trained from scratch to learn the complex relation‐
ships that govern the structure of the data, rather than having to be hardcoded with
information a priori. We’ll explore deep learning in Chapter 2, with practical exam‐
ples of how to get started building your own deep neural networks.

The Generative Deep Learning Codebase
The final section of this chapter will get you set up to start building generative deep
learning models by introducing the codebase that accompanies this book.

Many of the examples in this book are adapted from the excellent
open source implementations that are available through the Keras
website. I highly recommend you check out this resource, as new
models and examples are constantly being added.

Cloning the Repository
To get started, you’ll first need to clone the Git repository. Git is an open source ver‐
sion control system and will allow you to copy the code locally so that you can run
the notebooks on your own machine, or in a cloud-based environment. You may
already have this installed, but if not, follow the instructions relevant to your operat‐
ing system.

To clone the repository for this book, navigate to the folder where you would like to
store the files and type the following into your terminal:

git clone https://github.com/davidADSP/Generative_Deep_Learning_2nd_Edition.git

You should now be able to see the files in a folder on your machine.

20 | Chapter 1: Generative Modeling

https://oreil.ly/1UTwa
https://oreil.ly/1UTwa
https://oreil.ly/tFOdN
https://oreil.ly/tFOdN

Using Docker
The codebase for this book is intended to be used with Docker, a free containerization
technology that makes getting started with a new codebase extremely easy, regardless
of your architecture or operating system. If you have never used Docker, don’t
worry—there is a description of how to get started in the README file in the book
repository.

Running on a GPU
If you don’t have access to your own GPU, that’s also no problem! All of the examples
in this book will train on a CPU, though this will take longer than if you use a GPU-
enabled machine. There is also a section in the README about setting up a Google
Cloud environment that gives you access to a GPU on a pay-as-you-go basis.

Summary
This chapter introduced the field of generative modeling, an important branch of
machine learning that complements the more widely studied discriminative model‐
ing. We discussed how generative modeling is currently one of the most active and
exciting areas of AI research, with many recent advances in both theory and
applications.

We started with a simple toy example and saw how generative modeling ultimately
focuses on modeling the underlying distribution of the data. This presents many
complex and interesting challenges, which we summarized into a framework for
understanding the desirable properties of any generative model.

We then walked through the key probabilistic concepts that will help to fully under‐
stand the theoretical foundations of each approach to generative modeling and laid
out the six different families of generative models that we will explore in Part II of
this book. We also saw how to get started with the Generative Deep Learning code‐
base, by cloning the repository.

In Chapter 2, we will begin our exploration of deep learning and see how to use Keras
to build models that can perform discriminative modeling tasks. This will give us the
necessary foundation to tackle generative deep learning problems in later chapters.

References
1. Miles Brundage et al., “The Malicious Use of Artificial Intelligence: Forecasting,
Prevention, and Mitigation,” February 20, 2018, https://www.eff.org/files/2018/02/20/
malicious_ai_report_final.pdf.

Summary | 21

https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf
https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf

CHAPTER 2

Deep Learning

Chapter Goals
In this chapter you will:

• Learn about the different types of unstructured data that can be modeled using
deep learning.

• Define a deep neural network and understand how it can be used to model com‐
plex datasets.

• Build a multilayer perceptron to predict the content of an image.
• Improve the performance of the model by using convolutional layers, dropout,

and batch normalization layers.

Let’s start with a basic definition of deep learning:

Deep learning is a class of machine learning algorithms that uses multiple stacked layers
of processing units to learn high-level representations from unstructured data.

To understand deep learning fully, we need to delve into this definition a bit further.
First, we’ll take a look at the different types of unstructured data that deep learning
can be used to model, then we’ll dive into the mechanics of building multiple stacked
layers of processing units to solve classification tasks. This will provide the founda‐
tion for future chapters where we focus on deep learning for generative tasks.

23

Data for Deep Learning
Many types of machine learning algorithms require structured, tabular data as input,
arranged into columns of features that describe each observation. For example, a per‐
son’s age, income, and number of website visits in the last month are all features that
could help to predict if the person will subscribe to a particular online service in
the coming month. We could use a structured table of these features to train a logistic
regression, random forest, or XGBoost model to predict the binary response
variable—did the person subscribe (1) or not (0)? Here, each individual feature con‐
tains a nugget of information about the observation, and the model would learn how
these features interact to influence the response.

Unstructured data refers to any data that is not naturally arranged into columns of
features, such as images, audio, and text. There is of course spatial structure to an
image, temporal structure to a recording or passage of text, and both spatial and tem‐
poral structure to video data, but since the data does not arrive in columns of fea‐
tures, it is considered unstructured, as shown in Figure 2-1.

Figure 2-1. The difference between structured and unstructured data

When our data is unstructured, individual pixels, frequencies, or characters are
almost entirely uninformative. For example, knowing that pixel 234 of an image is a
muddy shade of brown doesn’t really help identify if the image is of a house or a dog,
and knowing that character 24 of a sentence is an e doesn’t help predict if the text is
about football or politics.

Pixels or characters are really just the dimples of the canvas into which higher-level
informative features, such as an image of a chimney or the word striker, are embed‐
ded. If the chimney in the image were placed on the other side of the house, the
image would still contain a chimney, but this information would now be carried by
completely different pixels. If the word striker appeared slightly earlier or later in the
text, the text would still be about football, but different character positions would
provide this information. The granularity of the data combined with the high degree

24 | Chapter 2: Deep Learning

of spatial dependence destroys the concept of the pixel or character as an informative
feature in its own right.

For this reason, if we train logistic regression, random forest, or XGBoost models on
raw pixel values, the trained model will often perform poorly for all but the simplest
of classification tasks. These models rely on the input features to be informative and
not spatially dependent. A deep learning model, on the other hand, can learn how to
build high-level informative features by itself, directly from the unstructured data.

Deep learning can be applied to structured data, but its real power, especially with
regard to generative modeling, comes from its ability to work with unstructured data.
Most often, we want to generate unstructured data such as new images or original
strings of text, which is why deep learning has had such a profound impact on the
field of generative modeling.

Deep Neural Networks
The majority of deep learning systems are artificial neural networks (ANNs, or just
neural networks for short) with multiple stacked hidden layers. For this reason, deep
learning has now almost become synonymous with deep neural networks. However,
any system that employs many layers to learn high-level representations of the input
data is also a form of deep learning (e.g., deep belief networks).

Let’s start by breaking down exactly what we mean by a neural network and then see
how they can be used to learn high-level features from unstructured data.

What Is a Neural Network?
A neural network consists of a series of stacked layers. Each layer contains units that
are connected to the previous layer’s units through a set of weights. As we shall see,
there are many different types of layers, but one of the most common is the fully con‐
nected (or dense) layer that connects all units in the layer directly to every unit in the
previous layer.

Neural networks where all adjacent layers are fully connected are called multilayer
perceptrons (MLPs). This is the first type of neural network that we will study. An
example of an MLP is shown in Figure 2-2.

Deep Neural Networks | 25

Figure 2-2. An example of a multilayer perceptron that predicts if a face is smiling

The input (e.g., an image) is transformed by each layer in turn, in what is known as a
forward pass through the network, until it reaches the output layer. Specifically, each
unit applies a nonlinear transformation to a weighted sum of its inputs and passes the
output through to the subsequent layer. The final output layer is the culmination of
this process, where the single unit outputs a probability that the original input
belongs to a particular category (e.g., smiling).

The magic of deep neural networks lies in finding the set of weights for each layer
that results in the most accurate predictions. The process of finding these weights is
what we mean by training the network.

During the training process, batches of images are passed through the network and
the predicted outputs are compared to the ground truth. For example, the network
might output a probability of 80% for an image of someone who really is smiling and
a probability of 23% for an image of someone who really isn’t smiling. A perfect pre‐
diction would output 100% and 0% for these examples, so there is a small amount of
error. The error in the prediction is then propagated backward through the network,
adjusting each set of weights a small amount in the direction that improves the pre‐
diction most significantly. This process is appropriately called backpropagation. Grad‐
ually, each unit becomes skilled at identifying a particular feature that ultimately
helps the network to make better predictions.

Learning High-Level Features
The critical property that makes neural networks so powerful is their ability to learn
features from the input data, without human guidance. In other words, we do not
need to do any feature engineering, which is why neural networks are so useful! We

26 | Chapter 2: Deep Learning

can let the model decide how it wants to arrange its weights, guided only by its desire
to minimize the error in its predictions.

For example, let’s walk through the network shown in Figure 2-2, assuming it has
already been trained to accurately predict if a given input face is smiling:

1. Unit A receives the value for an individual channel of an input pixel.
2. Unit B combines its input values so that it fires strongest when a particular low-

level feature such as an edge is present.
3. Unit C combines the low-level features so that it fires strongest when a higher-

level feature such as teeth are seen in the image.
4. Unit D combines the high-level features so that it fires strongest when the person

in the original image is smiling.

Units in each subsequent layer are able to represent increasingly sophisticated aspects
of the original input, by combining lower-level features from the previous layer.
Amazingly, this arises naturally out of the training process—we do not need to tell
each unit what to look for, or whether it should look for high-level features or low-
level features.

The layers between the input and output layers are called hidden layers. While our
example only has two hidden layers, deep neural networks can have many more.
Stacking large numbers of layers allows the neural network to learn progressively
higher-level features by gradually building up information from the lower-level fea‐
tures in previous layers. For example, ResNet,1 designed for image recognition, con‐
tains 152 layers.

Next, we’ll dive straight into the practical side of deep learning and get set up with
TensorFlow and Keras so that you can start building your own deep neural networks.

TensorFlow and Keras
TensorFlow is an open source Python library for machine learning, developed by
Google. TensorFlow is one of the most utilized frameworks for building machine
learning solutions, with particular emphasis on the manipulation of tensors (hence
the name). It provides the low-level functionality required to train neural networks,
such as computing the gradient of arbitrary differentiable expressions and efficiently
executing tensor operations.

Keras is a high-level API for building neural networks, built on top of TensorFlow
(Figure 2-3). It is extremely flexible and very user-friendly, making it an ideal choice
for getting started with deep learning. Moreover, Keras provides numerous useful
building blocks that can be plugged together to create highly complex deep learning
architectures through its functional API.

Deep Neural Networks | 27

https://www.tensorflow.org
https://keras.io

Figure 2-3. TensorFlow and Keras are excellent tools for building deep learning solutions

If you are just getting started with deep learning, I can highly recommend using
TensorFlow and Keras. This setup will allow you to build any network that you can
think of in a production environment, while also giving you an easy-to-learn API that
enables rapid development of new ideas and concepts. Let’s start by seeing how easy it
is to build a multilayer perceptron using Keras.

Multilayer Perceptron (MLP)
In this section, we will train an MLP to classify a given image using supervised learn‐
ing. Supervised learning is a type of machine learning algorithm in which the com‐
puter is trained on a labeled dataset. In other words, the dataset used for training
includes input data with corresponding output labels. The goal of the algorithm is to
learn a mapping between the input data and the output labels, so that it can make
predictions on new, unseen data.

The MLP is a discriminative (rather than generative) model, but supervised learning
will still play a role in many types of generative models that we will explore in later
chapters of this book, so it is a good place to start our journey.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/02_deeplearning/01_mlp/mlp.ipynb in the book
repository.

Preparing the Data
For this example we will be using the CIFAR-10 dataset, a collection of 60,000 32 ×
32–pixel color images that comes bundled with Keras out of the box. Each image is
classified into exactly one of 10 classes, as shown in Figure 2-4.

28 | Chapter 2: Deep Learning

https://oreil.ly/cNbFG

Figure 2-4. Example images from the CIFAR-10 dataset (source: Krizhevsky, 2009)2

By default, the image data consists of integers between 0 and 255 for each pixel chan‐
nel. We first need to preprocess the images by scaling these values to lie between
0 and 1, as neural networks work best when the absolute value of each input is less
than 1.

We also need to change the integer labeling of the images to one-hot encoded vectors,
because the neural network output will be a probability that the image belongs to
each class. If the class integer label of an image is i, then its one-hot encoding is a
vector of length 10 (the number of classes) that has 0s in all but the ith element,
which is 1. These steps are shown in Example 2-1.

Example 2-1. Preprocessing the CIFAR-10 dataset

import numpy as np
from tensorflow.keras import datasets, utils

(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()

Multilayer Perceptron (MLP) | 29

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

NUM_CLASSES = 10

x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0

y_train = utils.to_categorical(y_train, NUM_CLASSES)
y_test = utils.to_categorical(y_test, NUM_CLASSES)

Load the CIFAR-10 dataset. x_train and x_test are numpy arrays of shape
[50000, 32, 32, 3] and [10000, 32, 32, 3], respectively. y_train and
y_test are numpy arrays of shape [50000, 1] and [10000, 1], respectively, con‐
taining the integer labels in the range 0 to 9 for the class of each image.

Scale each image so that the pixel channel values lie between 0 and 1.

One-hot encode the labels—the new shapes of y_train and y_test are [50000,
10] and [10000, 10], respectively.

We can see that the training image data (x_train) is stored in a tensor of shape
[50000, 32, 32, 3]. There are no columns or rows in this dataset; instead, this is a
tensor with four dimensions. A tensor is just a multidimensional array—it is the nat‐
ural extension of a matrix to more than two dimensions. The first dimension of this
tensor references the index of the image in the dataset, the second and third relate to
the size of the image, and the last is the channel (i.e., red, green, or blue, since these
are RGB images).

For example, Example 2-2 shows how we can find the channel value of a specific pixel
in an image.

Example 2-2. The green channel (1) value of the pixel in the (12,13) position of image 54

x_train[54, 12, 13, 1]
0.36862746

Building the Model
In Keras you can either define the structure of a neural network as a Sequential
model or using the functional API.

A Sequential model is useful for quickly defining a linear stack of layers (i.e., where
one layer follows on directly from the previous layer without any branching). We can
define our MLP model using the Sequential class as shown in Example 2-3.

30 | Chapter 2: Deep Learning

Example 2-3. Building our MLP using a Sequential model

from tensorflow.keras import layers, models

model = models.Sequential([
 layers.Flatten(input_shape=(32, 32, 3)),
 layers.Dense(200, activation = 'relu'),
 layers.Dense(150, activation = 'relu'),
 layers.Dense(10, activation = 'softmax'),
])

Many of the models in this book require that the output from a layer is passed to mul‐
tiple subsequent layers, or conversely, that a layer receives input from multiple pre‐
ceding layers. For these models, the Sequential class is not suitable and we would
need to use the functional API instead, which is a lot more flexible.

I recommend that even if you are just starting out building linear
models with Keras, you still use the functional API rather than
Sequential models, since it will serve you better in the long run as
your neural networks become more architecturally complex. The
functional API will give you complete freedom over the design of
your deep neural network.

Example 2-4 shows the same MLP coded using the functional API. When using the
functional API, we use the Model class to define the overall input and output layers of
the model.

Example 2-4. Building our MLP using the functional API

from tensorflow.keras import layers, models

input_layer = layers.Input(shape=(32, 32, 3))
x = layers.Flatten()(input_layer)
x = layers.Dense(units=200, activation = 'relu')(x)
x = layers.Dense(units=150, activation = 'relu')(x)
output_layer = layers.Dense(units=10, activation = 'softmax')(x)
model = models.Model(input_layer, output_layer)

Both methods give identical models—a diagram of the architecture is shown in
Figure 2-5.

Multilayer Perceptron (MLP) | 31

Figure 2-5. A diagram of the MLP architecture

Let’s now look in more detail at the different layers and activation functions used
within the MLP.

Layers

To build our MLP, we used three different types of layers: Input, Flatten, and Dense.

The Input layer is an entry point into the network. We tell the network the shape of
each data element to expect as a tuple. Notice that we do not specify the batch size;
this isn’t necessary as we can pass any number of images into the Input layer simulta‐
neously. We do not need to explicitly state the batch size in the Input layer definition.

Next we flatten this input into a vector, using a Flatten layer. This results in a vector
of length 3,072 (= 32 × 32 × 3). The reason we do this is because the subsequent
Dense layer requires that its input is flat, rather than a multidimensional array. As we
shall see later, other layer types require multidimensional arrays as input, so you need
to be aware of the required input and output shape of each layer type to understand
when it is necessary to use Flatten.

The Dense layer is one of the most fundamental building blocks of a neural network.
It contains a given number of units that are densely connected to the previous layer—
that is, every unit in the layer is connected to every unit in the previous layer, through
a single connection that carries a weight (which can be positive or negative). The out‐
put from a given unit is the weighted sum of the inputs it receives from the previous
layer, which is then passed through a nonlinear activation function before being sent
to the following layer. The activation function is critical to ensure the neural network
is able to learn complex functions and doesn’t just output a linear combination of its
inputs.

32 | Chapter 2: Deep Learning

Activation functions
There are many kinds of activation function, but three of the most important are
ReLU, sigmoid, and softmax.

The ReLU (rectified linear unit) activation function is defined to be 0 if the input is
negative and is otherwise equal to the input. The LeakyReLU activation function is
very similar to ReLU, with one key difference: whereas the ReLU activation function
returns 0 for input values less than 0, the LeakyReLU function returns a small nega‐
tive number proportional to the input. ReLU units can sometimes die if they always
output 0, because of a large bias toward negative values pre-activation. In this case,
the gradient is 0 and therefore no error is propagated back through this unit.
LeakyReLU activations fix this issue by always ensuring the gradient is nonzero.
ReLU-based functions are among the most reliable activations to use between the lay‐
ers of a deep network to encourage stable training.

The sigmoid activation is useful if you wish the output from the layer to be scaled
between 0 and 1—for example, for binary classification problems with one output
unit or multilabel classification problems, where each observation can belong to more
than one class. Figure 2-6 shows ReLU, LeakyReLU, and sigmoid activation functions
side by side for comparison.

Figure 2-6. The ReLU, LeakyReLU, and sigmoid activation functions

The softmax activation function is useful if you want the total sum of the output from
the layer to equal 1; for example, for multiclass classification problems where each
observation only belongs to exactly one class. It is defined as:

yi = e
xi

∑ j = 1
J e

xj

Here, J is the total number of units in the layer. In our neural network, we use a soft‐
max activation in the final layer to ensure that the output is a set of 10 probabilities

Multilayer Perceptron (MLP) | 33

that sum to 1, which can be interpreted as the likelihood that the image belongs to
each class.

In Keras, activation functions can be defined within a layer (Example 2-5) or as a sep‐
arate layer (Example 2-6).

Example 2-5. A ReLU activation function defined as part of a Dense layer

x = layers.Dense(units=200, activation = 'relu')(x)

Example 2-6. A ReLU activation function defined as its own layer

x = layers.Dense(units=200)(x)
x = layers.Activation('relu')(x)

In our example, we pass the input through two Dense layers, the first with 200 units
and the second with 150, both with ReLU activation functions.

Inspecting the model

We can use the model.summary() method to inspect the shape of the network at each
layer, as shown in Table 2-1.

Table 2-1. Output from the model.summary() method

Layer (type) Output shape Param #
InputLayer (None, 32, 32, 3) 0

Flatten (None, 3072) 0

Dense (None, 200) 614,600

Dense (None, 150) 30,150

Dense (None, 10) 1,510

Total params 646,260

Trainable params 646,260

Non-trainable params 0

Notice how the shape of our Input layer matches the shape of x_train and the shape
of our Dense output layer matches the shape of y_train. Keras uses None as a marker
for the first dimension to show that it doesn’t yet know the number of observations
that will be passed into the network. In fact, it doesn’t need to; we could just as easily
pass 1 observation through the network at a time as 1,000. That’s because tensor oper‐
ations are conducted across all observations simultaneously using linear algebra—this
is the part handled by TensorFlow. It is also the reason why you get a performance
increase when training deep neural networks on GPUs instead of CPUs: GPUs are

34 | Chapter 2: Deep Learning

optimized for large tensor operations since these calculations are also necessary for
complex graphics manipulation.

The summary method also gives the number of parameters (weights) that will be
trained at each layer. If ever you find that your model is training too slowly, check the
summary to see if there are any layers that contain a huge number of weights. If so,
you should consider whether the number of units in the layer could be reduced to
speed up training.

Make sure you understand how the number of parameters is calcu‐
lated in each layer! It’s important to remember that by default, each
unit within a given layer is also connected to one additional bias
unit that always outputs 1. This ensures that the output from the
unit can still be nonzero even when all inputs from the previous
layer are 0.
Therefore, the number of parameters in the 200-unit Dense layer is
200 * (3,072 + 1) = 614,600.

Compiling the Model
In this step, we compile the model with an optimizer and a loss function, as shown in
Example 2-7.

Example 2-7. Defining the optimizer and the loss function

from tensorflow.keras import optimizers

opt = optimizers.Adam(learning_rate=0.0005)
model.compile(loss='categorical_crossentropy', optimizer=opt,
 metrics=['accuracy'])

Let’s now look in more detail at what we mean by loss functions and optimizers.

Loss functions
The loss function is used by the neural network to compare its predicted output to the
ground truth. It returns a single number for each observation; the greater this num‐
ber, the worse the network has performed for this observation.

Keras provides many built-in loss functions to choose from, or you can create your
own. Three of the most commonly used are mean squared error, categorical cross-
entropy, and binary cross-entropy. It is important to understand when it is appropri‐
ate to use each.

If your neural network is designed to solve a regression problem (i.e., the output is
continuous), then you might use the mean squared error loss. This is the mean of the

Multilayer Perceptron (MLP) | 35

squared difference between the ground truth yi and predicted value pi of each output
unit, where the mean is taken over all n output units:

MSE = 1
n ∑

i = 1

n
yi − pi

2

If you are working on a classification problem where each observation only belongs
to one class, then categorical cross-entropy is the correct loss function. This is defined
as follows:

− ∑
i = 1

n
yi log pi

Finally, if you are working on a binary classification problem with one output unit, or
a multilabel problem where each observation can belong to multiple classes simulta‐
neously, you should use binary cross-entropy:

− 1
n ∑

i = 1

n
yi log pi + 1 − yi log 1 − pi

Optimizers
The optimizer is the algorithm that will be used to update the weights in the neural
network based on the gradient of the loss function. One of the most commonly used
and stable optimizers is Adam (Adaptive Moment Estimation).3 In most cases, you
shouldn’t need to tweak the default parameters of the Adam optimizer, except the
learning rate. The greater the learning rate, the larger the change in weights at each
training step. While training is initially faster with a large learning rate, the downside
is that it may result in less stable training and may not find the global minimum of
the loss function. This is a parameter that you may want to tune or adjust during
training.

Another common optimizer that you may come across is RMSProp (Root Mean
Squared Propagation). Again, you shouldn’t need to adjust the parameters of this
optimizer too much, but it is worth reading the Keras documentation to understand
the role of each parameter.

We pass both the loss function and the optimizer into the compile method of the
model, as well as a metrics parameter where we can specify any additional metrics
that we would like to report on during training, such as accuracy.

36 | Chapter 2: Deep Learning

https://keras.io/optimizers

Training the Model
Thus far, we haven’t shown the model any data. We have just set up the architecture
and compiled the model with a loss function and optimizer.

To train the model against the data, we simply call the fit method, as shown in
Example 2-8.

Example 2-8. Calling the fit method to train the model

model.fit(x_train
 , y_train
 , batch_size = 32
 , epochs = 10
 , shuffle = True
)

The raw image data.

The one-hot encoded class labels.

The batch_size determines how many observations will be passed to the net‐
work at each training step.

The epochs determine how many times the network will be shown the full train‐
ing data.

If shuffle = True, the batches will be drawn randomly without replacement
from the training data at each training step.

This will start training a deep neural network to predict the category of an image
from the CIFAR-10 dataset. The training process works as follows.

First, the weights of the network are initialized to small random values. Then the net‐
work performs a series of training steps. At each training step, one batch of images is
passed through the network and the errors are backpropagated to update the weights.
The batch_size determines how many images are in each training step batch. The
larger the batch size, the more stable the gradient calculation, but the slower each
training step.

It would be far too time-consuming and computationally intensive
to use the entire dataset to calculate the gradient at each training
step, so generally a batch size between 32 and 256 is used. It is also
now recommended practice to increase the batch size as training
progresses.4

Multilayer Perceptron (MLP) | 37

This continues until all observations in the dataset have been seen once. This com‐
pletes the first epoch. The data is then passed through the network again in batches as
part of the second epoch. This process repeats until the specified number of epochs
have elapsed.

During training, Keras outputs the progress of the procedure, as shown in Figure 2-7.
We can see that the training dataset has been split into 1,563 batches (each containing
32 images) and it has been shown to the network 10 times (i.e., over 10 epochs), at a
rate of approximately 2 milliseconds per batch. The categorical cross-entropy loss has
fallen from 1.8377 to 1.3696, resulting in an accuracy increase from 33.69% after the
first epoch to 51.67% after the tenth epoch.

Figure 2-7. The output from the fit method

Evaluating the Model
We know the model achieves an accuracy of 51.9% on the training set, but how does
it perform on data it has never seen?

To answer this question we can use the evaluate method provided by Keras, as
shown in Example 2-9.

Example 2-9. Evaluating the model performance on the test set

model.evaluate(x_test, y_test)

38 | Chapter 2: Deep Learning

Figure 2-8 shows the output from this method.

Figure 2-8. The output from the evaluate method

The output is a list of the metrics we are monitoring: categorical cross-entropy and
accuracy. We can see that model accuracy is still 49.0% even on images that it has
never seen before. Note that if the model were guessing randomly, it would achieve
approximately 10% accuracy (because there are 10 classes), so 49.0% is a good result,
given that we have used a very basic neural network.

We can view some of the predictions on the test set using the predict method, as
shown in Example 2-10.

Example 2-10. Viewing predictions on the test set using the predict method

CLASSES = np.array(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog'
 , 'frog', 'horse', 'ship', 'truck'])

preds = model.predict(x_test)
preds_single = CLASSES[np.argmax(preds, axis = -1)]
actual_single = CLASSES[np.argmax(y_test, axis = -1)]

preds is an array of shape [10000, 10]—i.e., a vector of 10 class probabilities for
each observation.

We convert this array of probabilities back into a single prediction using numpy’s
argmax function. Here, axis = –1 tells the function to collapse the array over the
last dimension (the classes dimension), so that the shape of preds_single is then
[10000, 1].

We can view some of the images alongside their labels and predictions with the code
in Example 2-11. As expected, around half are correct.

Example 2-11. Displaying predictions of the MLP against the actual labels

import matplotlib.pyplot as plt

n_to_show = 10
indices = np.random.choice(range(len(x_test)), n_to_show)

fig = plt.figure(figsize=(15, 3))
fig.subplots_adjust(hspace=0.4, wspace=0.4)

Multilayer Perceptron (MLP) | 39

for i, idx in enumerate(indices):
 img = x_test[idx]
 ax = fig.add_subplot(1, n_to_show, i+1)
 ax.axis('off')
 ax.text(0.5, -0.35, 'pred = ' + str(preds_single[idx]), fontsize=10
 , ha='center', transform=ax.transAxes)
 ax.text(0.5, -0.7, 'act = ' + str(actual_single[idx]), fontsize=10
 , ha='center', transform=ax.transAxes)
 ax.imshow(img)

Figure 2-9 shows a randomly chosen selection of predictions made by the model,
alongside the true labels.

Figure 2-9. Some predictions made by the model, alongside the actual labels

Congratulations! You’ve just built a multilayer perceptron using Keras and used it to
make predictions on new data. Even though this is a supervised learning problem,
when we come to building generative models in future chapters many of the core
ideas from this chapter (such as loss functions, activation functions, and understand‐
ing layer shapes) will still be extremely important. Next we’ll look at ways of improv‐
ing this model, by introducing a few new layer types.

Convolutional Neural Network (CNN)
One of the reasons our network isn’t yet performing as well as it might is because
there isn’t anything in the network that takes into account the spatial structure of the
input images. In fact, our first step is to flatten the image into a single vector, so that
we can pass it to the first Dense layer!

To achieve this we need to use a convolutional layer.

40 | Chapter 2: Deep Learning

Convolutional Layers
First, we need to understand what is meant by a convolution in the context of deep
learning.

Figure 2-10 shows two different 3 × 3 × 1 portions of a grayscale image being convo‐
luted with a 3 × 3 × 1 filter (or kernel). The convolution is performed by multiplying
the filter pixelwise with the portion of the image, and summing the results. The out‐
put is more positive when the portion of the image closely matches the filter and
more negative when the portion of the image is the inverse of the filter. The top
example resonates strongly with the filter, so it produces a large positive value. The
bottom example does not resonate much with the filter, so it produces a value near
zero.

Figure 2-10. A 3 × 3 convolutional filter applied to two portions of a grayscale image

If we move the filter across the entire image from left to right and top to bottom,
recording the convolutional output as we go, we obtain a new array that picks out a
particular feature of the input, depending on the values in the filter. For example,
Figure 2-11 shows two different filters that highlight horizontal and vertical edges.

Running the Code for This Example

You can see this convolutional process worked through manually
in the Jupyter notebook located at notebooks/02_deeplearning/
02_cnn/convolutions.ipynb in the book repository.

Convolutional Neural Network (CNN) | 41

Figure 2-11. Two convolutional filters applied to a grayscale image

A convolutional layer is simply a collection of filters, where the values stored in the
filters are the weights that are learned by the neural network through training. Ini‐
tially these are random, but gradually the filters adapt their weights to start picking
out interesting features such as edges or particular color combinations.

In Keras, the Conv2D layer applies convolutions to an input tensor with two spatial
dimensions (such as an image). For example, the code shown in Example 2-12 builds
a convolutional layer with two filters, to match the example in Figure 2-11.

Example 2-12. A Conv2D layer applied to grayscale input images

from tensorflow.keras import layers

input_layer = layers.Input(shape=(64,64,1))
conv_layer_1 = layers.Conv2D(
 filters = 2
 , kernel_size = (3,3)
 , strides = 1
 , padding = "same"
)(input_layer)

Next, let’s look at two of the arguments to the Conv2D layer in more detail—strides

and padding.

42 | Chapter 2: Deep Learning

Stride

The strides parameter is the step size used by the layer to move the filters across the
input. Increasing the stride therefore reduces the size of the output tensor. For exam‐
ple, when strides = 2, the height and width of the output tensor will be half the size
of the input tensor. This is useful for reducing the spatial size of the tensor as it passes
through the network, while increasing the number of channels.

Padding

The padding = "same" input parameter pads the input data with zeros so that the
output size from the layer is exactly the same as the input size when strides = 1.

Figure 2-12 shows a 3 × 3 kernel being passed over a 5 × 5 input image, with padding
= "same" and strides = 1. The output size from this convolutional layer would also
be 5 × 5, as the padding allows the kernel to extend over the edge of the image, so that
it fits five times in both directions. Without padding, the kernel could only fit three
times along each direction, giving an output size of 3 × 3.

Figure 2-12. A 3 × 3 × 1 kernel (gray) being passed over a 5 × 5 × 1 input image (blue),
with padding = "same" and strides = 1, to generate the 5 × 5 × 1 output (green)
(source: Dumoulin and Visin, 2018)5

Setting padding = "same" is a good way to ensure that you are able to easily keep
track of the size of the tensor as it passes through many convolutional layers. The
shape of the output from a convolutional layer with padding = "same" is:

input height
stride , input width

stride , f ilters

Stacking convolutional layers

The output of a Conv2D layer is another four-dimensional tensor, now of shape
(batch_size, height, width, filters), so we can stack Conv2D layers on top of
each other to grow the depth of our neural network and make it more powerful. To
demonstrate this, let’s imagine we are applying Conv2D layers to the CIFAR-10 dataset
and wish to predict the label of a given image. Note that this time, instead of one
input channel (grayscale) we have three (red, green, and blue).

Convolutional Neural Network (CNN) | 43

https://arxiv.org/abs/1603.07285

Example 2-13 shows how to build a simple convolutional neural network that we
could train to succeed at this task.

Example 2-13. Code to build a convolutional neural network model using Keras

from tensorflow.keras import layers, models

input_layer = layers.Input(shape=(32,32,3))
conv_layer_1 = layers.Conv2D(
 filters = 10
 , kernel_size = (4,4)
 , strides = 2
 , padding = 'same'
)(input_layer)
conv_layer_2 = layers.Conv2D(
 filters = 20
 , kernel_size = (3,3)
 , strides = 2
 , padding = 'same'
)(conv_layer_1)
flatten_layer = layers.Flatten()(conv_layer_2)
output_layer = layers.Dense(units=10, activation = 'softmax')(flatten_layer)
model = models.Model(input_layer, output_layer)

This code corresponds to the diagram shown in Figure 2-13.

Figure 2-13. A diagram of a convolutional neural network

Note that now that we are working with color images, each filter in the first convolu‐
tional layer has a depth of 3 rather than 1 (i.e., each filter has shape 4 × 4 × 3, rather
than 4 × 4 × 1). This is to match the three channels (red, green, blue) of the input

44 | Chapter 2: Deep Learning

image. The same idea applies to the filters in the second convolutional layer that have
a depth of 10, to match the 10 channels output by the first convolutional layer.

In general, the depth of the filters in a layer is always equal to the
number of channels output by the preceding layer.

Inspecting the model
It’s really informative to look at how the shape of the tensor changes as data flows
through from one convolutional layer to the next. We can use the model.summary()
method to inspect the shape of the tensor as it passes through the network
(Table 2-2).

Table 2-2. CNN model summary

Layer (type) Output shape Param #
InputLayer (None, 32, 32, 3) 0

Conv2D (None, 16, 16, 10) 490

Conv2D (None, 8, 8, 20) 1,820

Flatten (None, 1280) 0

Dense (None, 10) 12,810

Total params 15,120

Trainable params 15,120

Non-trainable params 0

Let’s walk through our network layer by layer, noting the shape of the tensor as we go:

1. The input shape is (None, 32, 32, 3)—Keras uses None to represent the fact
that we can pass any number of images through the network simultaneously.
Since the network is just performing tensor algebra, we don’t need to pass images
through the network individually, but instead can pass them through together as
a batch.

2. The shape of each of the 10 filters in the first convolutional layer is 4 × 4 × 3. This
is because we have chosen each filter to have a height and width of 4 (ker
nel_size = (4,4)) and there are three channels in the preceding layer (red,
green, and blue). Therefore, the number of parameters (or weights) in the layer is
(4 × 4 × 3 + 1) × 10 = 490, where the + 1 is due to the inclusion of a bias term
attached to each of the filters. The output from each filter will be the pixelwise
multiplication of the filter weights and the 4 × 4 × 3 section of the image it is

Convolutional Neural Network (CNN) | 45

covering. As strides = 2 and padding = "same", the width and height of the
output are both halved to 16, and since there are 10 filters the output of the first
layer is a batch of tensors each having shape [16, 16, 10].

3. In the second convolutional layer, we choose the filters to be 3 × 3 and they now
have depth 10, to match the number of channels in the previous layer. Since there
are 20 filters in this layer, this gives a total number of parameters (weights) of (3
× 3 × 10 + 1) × 20 = 1,820. Again, we use strides = 2 and padding = "same",
so the width and height both halve. This gives us an overall output shape of
(None, 8, 8, 20).

4. We now flatten the tensor using the Keras Flatten layer. This results in a set of 8
× 8 × 20 = 1,280 units. Note that there are no parameters to learn in a Flatten
layer as the operation is just a restructuring of the tensor.

5. We finally connect these units to a 10-unit Dense layer with softmax activation,
which represents the probability of each category in a 10-category classification
task. This creates an extra 1,280 × 10 = 12,810 parameters (weights) to learn.

This example demonstrates how we can chain convolutional layers together to create
a convolutional neural network. Before we see how this compares in accuracy to our
densely connected neural network, we’ll examine two more techniques that can also
improve performance: batch normalization and dropout.

Batch Normalization
One common problem when training a deep neural network is ensuring that the
weights of the network remain within a reasonable range of values—if they start to
become too large, this is a sign that your network is suffering from what is known as
the exploding gradient problem. As errors are propagated backward through the
network, the calculation of the gradient in the earlier layers can sometimes grow
exponentially large, causing wild fluctuations in the weight values.

If your loss function starts to return NaN, chances are that your
weights have grown large enough to cause an overflow error.

This doesn’t necessarily happen immediately as you start training the network. Some‐
times it can be happily training for hours when suddenly the loss function returns
NaN and your network has exploded. This can be incredibly annoying. To prevent it
from happening, you need to understand the root cause of the exploding gradient
problem.

46 | Chapter 2: Deep Learning

Covariate shift
One of the reasons for scaling input data to a neural network is to ensure a stable start
to training over the first few iterations. Since the weights of the network are initially
randomized, unscaled input could potentially create huge activation values that
immediately lead to exploding gradients. For example, instead of passing pixel values
from 0–255 into the input layer, we usually scale these values to between –1 and 1.

Because the input is scaled, it’s natural to expect the activations from all future layers
to be relatively well scaled as well. Initially this may be true, but as the network trains
and the weights move further away from their random initial values, this assumption
can start to break down. This phenomenon is known as covariate shift.

Covariate Shift Analogy

Imagine you’re carrying a tall pile of books, and you get hit by a
gust of wind. You move the books in a direction opposite to the
wind to compensate, but as you do so, some of the books shift, so
that the tower is slightly more unstable than before. Initially, this is
OK, but with every gust the pile becomes more and more unstable,
until eventually the books have shifted so much that the pile collap‐
ses. This is covariate shift.
Relating this to neural networks, each layer is like a book in the
pile. To remain stable, when the network updates the weights, each
layer implicitly assumes that the distribution of its input from the
layer beneath is approximately consistent across iterations. How‐
ever, since there is nothing to stop any of the activation distribu‐
tions shifting significantly in a certain direction, this can
sometimes lead to runaway weight values and an overall collapse of
the network.

Training using batch normalization
Batch normalization is a technique that drastically reduces this problem. The solution
is surprisingly simple. During training, a batch normalization layer calculates the
mean and standard deviation of each of its input channels across the batch and nor‐
malizes by subtracting the mean and dividing by the standard deviation. There are
then two learned parameters for each channel, the scale (gamma) and shift (beta).
The output is simply the normalized input, scaled by gamma and shifted by beta.
Figure 2-14 shows the whole process.

Convolutional Neural Network (CNN) | 47

Figure 2-14. The batch normalization process (source: Ioffe and Szegedy, 2015)6

We can place batch normalization layers after dense or convolutional layers to nor‐
malize the output.

Referring to our previous example, it’s a bit like connecting the lay‐
ers of books with small sets of adjustable springs that ensure there
aren’t any overall huge shifts in their positions over time.

Prediction using batch normalization
You might be wondering how this layer works at prediction time. When it comes to
prediction, we may only want to predict a single observation, so there is no batch over
which to calculate the mean and standard deviation. To get around this problem, dur‐
ing training a batch normalization layer also calculates the moving average of the
mean and standard deviation of each channel and stores this value as part of the layer
to use at test time.

How many parameters are contained within a batch normalization layer? For every
channel in the preceding layer, two weights need to be learned: the scale (gamma) and
shift (beta). These are the trainable parameters. The moving average and standard
deviation also need to be calculated for each channel, but since they are derived from
the data passing through the layer rather than trained through backpropagation, they
are called nontrainable parameters. In total, this gives four parameters for each chan‐
nel in the preceding layer, where two are trainable and two are nontrainable.

48 | Chapter 2: Deep Learning

https://arxiv.org/abs/1502.03167

In Keras, the BatchNormalization layer implements the batch normalization
functionality, as shown in Example 2-14.

Example 2-14. A BatchNormalization layer in Keras

from tensorflow.keras import layers
layers.BatchNormalization(momentum = 0.9)

The momentum parameter is the weight given to the previous value when calculating
the moving average and moving standard deviation.

Dropout
When studying for an exam, it is common practice for students to use past papers
and sample questions to improve their knowledge of the subject material. Some stu‐
dents try to memorize the answers to these questions, but then come unstuck in the
exam because they haven’t truly understood the subject matter. The best students use
the practice material to further their general understanding, so that they are still able
to answer correctly when faced with new questions that they haven’t seen before.

The same principle holds for machine learning. Any successful machine learning
algorithm must ensure that it generalizes to unseen data, rather than simply remem‐
bering the training dataset. If an algorithm performs well on the training dataset, but
not the test dataset, we say that it is suffering from overfitting. To counteract this
problem, we use regularization techniques, which ensure that the model is penalized
if it starts to overfit.

There are many ways to regularize a machine learning algorithm, but for deep learn‐
ing, one of the most common is by using dropout layers. This idea was introduced by
Hinton et al. in 20127 and presented in a 2014 paper by Srivastava et al.8

Dropout layers are very simple. During training, each dropout layer chooses a ran‐
dom set of units from the preceding layer and sets their output to 0, as shown in
Figure 2-15.

Incredibly, this simple addition drastically reduces overfitting by ensuring that the
network doesn’t become overdependent on certain units or groups of units that, in
effect, just remember observations from the training set. If we use dropout layers, the
network cannot rely too much on any one unit and therefore knowledge is more
evenly spread across the whole network.

Convolutional Neural Network (CNN) | 49

Figure 2-15. A dropout layer

This makes the model much better at generalizing to unseen data, because the net‐
work has been trained to produce accurate predictions even under unfamiliar condi‐
tions, such as those caused by dropping random units. There are no weights to learn
within a dropout layer, as the units to drop are decided stochastically. At prediction
time, the dropout layer doesn’t drop any units, so that the full network is used to
make predictions.

Dropout Analogy

Returning to our analogy, it’s a bit like a math student practicing
past papers with a random selection of key formulae missing from
their formula book. This way, they learn how to answer questions
through an understanding of the core principles, rather than
always looking up the formulae in the same places in the book.
When it comes to test time, they will find it much easier to answer
questions that they have never seen before, due to their ability to
generalize beyond the training material.

The Dropout layer in Keras implements this functionality, with the rate parameter
specifying the proportion of units to drop from the preceding layer, as shown in
Example 2-15.

Example 2-15. A Dropout layer in Keras

from tensorflow.keras import layers
layers.Dropout(rate = 0.25)

50 | Chapter 2: Deep Learning

Dropout layers are used most commonly after dense layers since these are the most
prone to overfitting due to the higher number of weights, though you can also use
them after convolutional layers.

Batch normalization also has been shown to reduce overfitting, and
therefore many modern deep learning architectures don’t use drop‐
out at all, relying solely on batch normalization for regularization.
As with most deep learning principles, there is no golden rule that
applies in every situation—the only way to know for sure what’s
best is to test different architectures and see which performs best
on a holdout set of data.

Building the CNN
You’ve now seen three new Keras layer types: Conv2D, BatchNormalization, and
Dropout. Let’s put these pieces together into a CNN model and see how it performs
on the CIFAR-10 dataset.

Running the Code for This Example

You can run the following example in the Jupyter notebook in
the book repository called notebooks/02_deeplearning/02_cnn/
cnn.ipynb.

The model architecture we shall test is shown in Example 2-16.

Example 2-16. Code to build a CNN model using Keras

from tensorflow.keras import layers, models

input_layer = layers.Input((32,32,3))

x = layers.Conv2D(filters = 32, kernel_size = 3
 , strides = 1, padding = 'same')(input_layer)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU()(x)

x = layers.Conv2D(filters = 32, kernel_size = 3, strides = 2, padding = 'same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU()(x)

x = layers.Conv2D(filters = 64, kernel_size = 3, strides = 1, padding = 'same')(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU()(x)

x = layers.Conv2D(filters = 64, kernel_size = 3, strides = 2, padding = 'same')(x)
x = layers.BatchNormalization()(x)

Convolutional Neural Network (CNN) | 51

x = layers.LeakyReLU()(x)

x = layers.Flatten()(x)

x = layers.Dense(128)(x)
x = layers.BatchNormalization()(x)
x = layers.LeakyReLU()(x)
x = layers.Dropout(rate = 0.5)(x)

output_layer = layers.Dense(10, activation = 'softmax')(x)

model = models.Model(input_layer, output_layer)

We use four stacked Conv2D layers, each followed by a BatchNormalization and a
LeakyReLU layer. After flattening the resulting tensor, we pass the data through a
Dense layer of size 128, again followed by a BatchNormalization and a LeakyReLU
layer. This is immediately followed by a Dropout layer for regularization, and the net‐
work is concluded with an output Dense layer of size 10.

The order in which to use the batch normalization and activation
layers is a matter of preference. Usually batch normalization layers
are placed before the activation, but some successful architectures
use these layers the other way around. If you do choose to use
batch normalization before activation, you can remember the order
using the acronym BAD (batch normalization, activation, then
dropout)!

The model summary is shown in Table 2-3.

Table 2-3. Model summary of the CNN for CIFAR-10

Layer (type) Output shape Param #
InputLayer (None, 32, 32, 3) 0

Conv2D (None, 32, 32, 32) 896

BatchNormalization (None, 32, 32, 32) 128

LeakyReLU (None, 32, 32, 32) 0

Conv2D (None, 16, 16, 32) 9,248

BatchNormalization (None, 16, 16, 32) 128

LeakyReLU (None, 16, 16, 32) 0

Conv2D (None, 16, 16, 64) 18,496

BatchNormalization (None, 16, 16, 64) 256

LeakyReLU (None, 16, 16, 64) 0

Conv2D (None, 8, 8, 64) 36,928

BatchNormalization (None, 8, 8, 64) 256

52 | Chapter 2: Deep Learning

Layer (type) Output shape Param #
LeakyReLU (None, 8, 8, 64) 0

Flatten (None, 4096) 0

Dense (None, 128) 524,416

BatchNormalization (None, 128) 512

LeakyReLU (None, 128) 0

Dropout (None, 128) 0

Dense (None, 10) 1290

Total params 592,554

Trainable params 591,914

Non-trainable params 640

Before moving on, make sure you are able to calculate the output
shape and number of parameters for each layer by hand. It’s a good
exercise to prove to yourself that you have fully understood how
each layer is constructed and how it is connected to the preceding
layer! Don’t forget to include the bias weights that are included as
part of the Conv2D and Dense layers.

Training and Evaluating the CNN
We compile and train the model in exactly the same way as before and call the
evaluate method to determine its accuracy on the holdout set (Figure 2-16).

Figure 2-16. CNN performance

As you can see, this model is now achieving 71.5% accuracy, up from 49.0% previ‐
ously. Much better! Figure 2-17 shows some predictions from our new convolutional
model.

This improvement has been achieved simply by changing the architecture of the
model to include convolutional, batch normalization, and dropout layers. Notice that
the number of parameters is actually fewer in our new model than the previous
model, even though the number of layers is far greater. This demonstrates the impor‐
tance of being experimental with your model design and being comfortable with how
the different layer types can be used to your advantage. When building generative

Convolutional Neural Network (CNN) | 53

models, it becomes even more important to understand the inner workings of your
model since it is the middle layers of your network that capture the high-level fea‐
tures that you are most interested in.

Figure 2-17. CNN predictions

Summary
This chapter introduced the core deep learning concepts that you will need to start
building deep generative models. We started by building a multilayer perceptron
(MLP) using Keras and trained the model to predict the category of a given image
from the CIFAR-10 dataset. Then, we improved upon this architecture by introduc‐
ing convolutional, batch normalization, and dropout layers to create a convolutional
neural network (CNN).

A really important point to take away from this chapter is that deep neural networks
are completely flexible by design, and there really are no fixed rules when it comes to
model architecture. There are guidelines and best practices, but you should feel free
to experiment with layers and the order in which they appear. Don’t feel constrained
to only use the architectures that you have read about in this book or elsewhere! Like
a child with a set of building blocks, the design of your neural network is only limited
by your own imagination.

In the next chapter, we shall see how we can use these building blocks to design a net‐
work that can generate images.

References
1. Kaiming He et al., “Deep Residual Learning for Image Recognition,” December 10,
2015, https://arxiv.org/abs/1512.03385.

54 | Chapter 2: Deep Learning

https://arxiv.org/abs/1512.03385

2. Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” April 8,
2009, https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

3. Diederik Kingma and Jimmy Ba, “Adam: A Method for Stochastic Optimization,”
December 22, 2014, https://arxiv.org/abs/1412.6980v8.

4. Samuel L. Smith et al., “Don’t Decay the Learning Rate, Increase the Batch Size,”
November 1, 2017, https://arxiv.org/abs/1711.00489.

5. Vincent Dumoulin and Francesco Visin, “A Guide to Convolution Arithmetic for
Deep Learning,” January 12, 2018, https://arxiv.org/abs/1603.07285.

6. Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Net‐
work Training by Reducing Internal Covariate Shift,” February 11, 2015, https://
arxiv.org/abs/1502.03167.

7. Hinton et al., “Networks by Preventing Co-Adaptation of Feature Detectors,” July 3,
2012, https://arxiv.org/abs/1207.0580.

8. Nitish Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research 15 (2014): 1929–1958, http://
jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf.

Summary | 55

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1412.6980v8
https://arxiv.org/abs/1711.00489
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1207.0580
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

PART II

Methods

In Part II we will dive into the six families of generative models, including the theory
behind how they work and practical examples of how to build each type of model.

In Chapter 3 we shall take a look at our first generative deep learning model, the var‐
iational autoencoder. This technique will allow us to not only generate realistic faces,
but also alter existing images—for example, by adding a smile or changing the color
of someone’s hair.

Chapter 4 explores one of the most successful generative modeling techniques of
recent years, the generative adversarial network. We shall see the ways that GAN train‐
ing has been fine-tuned and adapted to continually push the boundaries of what gen‐
erative modeling is able to achieve.

In Chapter 5 we will delve into several examples of autoregressive models, including
LSTMs and PixelCNN. This family of models treats the generation process as a
sequence prediction problem—it underpins today’s state-of-the-art text generation
models and can also be used for image generation.

In Chapter 6 we will cover the family of normalizing flow models, including RealNVP.
This model is based on a change of variables formula, which allows the transforma‐
tion of a simple distribution, such as a Gaussian distribution, into a more complex
distribution in way that preserves tractability.

Chapter 7 introduces the family of energy-based models. These models train a scalar
energy function to score the validity of a given input. We will explore a technique for
training energy-based models called contrastive divergence and a technique for sam‐
pling new observations called Langevin dynamics.

Finally, in Chapter 8 we shall explore the family of diffusion models. This technique is
based on the idea of iteratively adding noise to an image and then training a model to
remove the noise, giving us the ability to transform pure noise into realistic samples.

By the end of Part II you will have built practical examples of generative models from
each of the six generative modeling families and be able to explain how each works
from a theoretical perspective.

CHAPTER 3

Variational Autoencoders

Chapter Goals
In this chapter you will:

• Learn how the architectural design of autoencoders makes them perfectly suited
to generative modeling.

• Build and train an autoencoder from scratch using Keras.
• Use autoencoders to generate new images, but understand the limitations of this

approach.
• Learn about the architecture of the variational autoencoder and how it solves

many of the problems associated with standard autoencoders.
• Build a variational autoencoder from scratch using Keras.
• Use variational autoencoders to generate new images.
• Use variational autoencoders to manipulate generated images using latent space

arithmetic.

In 2013, Diederik P. Kingma and Max Welling published a paper that laid the founda‐
tions for a type of neural network known as a variational autoencoder (VAE).1 This is
now one of the most fundamental and well-known deep learning architectures for
generative modeling and an excellent place to start our journey into generative deep
learning.

In this chapter, we shall start by building a standard autoencoder and then see how
we can extend this framework to develop a variational autoencoder. Along the way,
we will pick apart both types of models, to understand how they work at a granular
level. By the end of the chapter you should have a complete understanding of how to

59

build and manipulate autoencoder-based models and, in particular, how to build a
variational autoencoder from scratch to generate images based on your own dataset.

Introduction
Let’s start with a simple story that will help to explain the fundamental problem that
an autoencoder is trying to solve.

Brian, the Stitch, and the Wardrobe
Imagine that on the floor in front of you is a pile of all the clothing you own—trou‐
sers, tops, shoes, and coats, all of different styles. Your stylist, Brian, is becoming
increasingly frustrated with how long it takes him to find the items you require, so he
devises a clever plan.

He tells you to organize your clothes into a wardrobe that is infinitely high and wide
(Figure 3-1). When you want to request a particular item, you simply need to tell
Brian its location and he will sew the item from scratch using his trusty sewing
machine. It soon becomes obvious that you will need to place similar items near to
each other, so that Brian can accurately re-create each item given only its location.

Figure 3-1. A man standing in front of an infinite 2D wardrobe (created with
Midjourney)

After several weeks of practice, you and Brian have adjusted to each other’s under‐
standings of the wardrobe layout. It is now possible for you to tell Brian the location
of any item of clothing that you desire, and he can accurately sew it from scratch!

This gives you an idea—what would happen if you gave Brian a wardrobe location
that was empty? To your amazement, you find that Brian is able to generate entirely

60 | Chapter 3: Variational Autoencoders

https://midjourney.com

new items of clothing that haven’t existed before! The process isn’t perfect, but you
now have limitless options for generating new clothing, just by picking an empty
location in the infinite wardrobe and letting Brian work his magic with the sewing
machine.

Let’s now explore how this story relates to building autoencoders.

Autoencoders
A diagram of the process described by the story is shown in Figure 3-2. You play the
part of the encoder, moving each item of clothing to a location in the wardrobe. This
process is called encoding. Brian plays the part of the decoder, taking a location in the
wardrobe and attempting to re-create the item. This process is called decoding.

Figure 3-2. Items of clothing in the infinite wardrobe—each black dot represents an item
of clothing

Each location in the wardrobe is represented by two numbers (i.e., a 2D vector). For
example, the trousers in Figure 3-2 are encoded to the point [6.3, –0.9]. This vector is
also known as an embedding because the encoder attempts to embed as much infor‐
mation into it as possible, so that the decoder can produce an accurate
reconstruction.

Autoencoders | 61

An autoencoder is simply a neural network that is trained to perform the task of
encoding and decoding an item, such that the output from this process is as close to
the original item as possible. Crucially, it can be used as a generative model, because
we can decode any point in the 2D space that we want (in particular, those that are
not embeddings of original items) to produce a novel item of clothing.

Let’s now see how we can build an autoencoder using Keras and apply it to a real
dataset!

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/03_vae/01_autoencoder/autoencoder.ipynb in
the book repository.

The Fashion-MNIST Dataset
For this example, we’ll be using the Fashion-MNIST dataset—a collection of grayscale
images of clothing items, each of size 28 × 28 pixels. Some example images from the
dataset are shown in Figure 3-3.

Figure 3-3. Examples of images from the Fashion-MNIST dataset

The dataset comes prepackaged with TensorFlow, so it can be downloaded as shown
in Example 3-1.

Example 3-1. Loading the Fashion-MNIST dataset

from tensorflow.keras import datasets
(x_train,y_train), (x_test,y_test) = datasets.fashion_mnist.load_data()

These are 28 × 28 grayscale images (pixel values between 0 and 255) out of the box,
which we need to preprocess to ensure that the pixel values are scaled between 0 and
1. We will also pad each image to 32 × 32 for easier manipulation of the tensor shape
as it passes through the network, as shown in Example 3-2.

62 | Chapter 3: Variational Autoencoders

https://oreil.ly/DS4-4

Example 3-2. Preprocessing the data

def preprocess(imgs):
 imgs = imgs.astype("float32") / 255.0
 imgs = np.pad(imgs, ((0, 0), (2, 2), (2, 2)), constant_values=0.0)
 imgs = np.expand_dims(imgs, -1)
 return imgs

x_train = preprocess(x_train)
x_test = preprocess(x_test)

Next, we need to understand the overall structure of an autoencoder, so that we can
code it up using TensorFlow and Keras.

The Autoencoder Architecture
An autoencoder is a neural network made up of two parts:

• An encoder network that compresses high-dimensional input data such as an
image into a lower-dimensional embedding vector

• A decoder network that decompresses a given embedding vector back to the orig‐
inal domain (e.g., back to an image)

A diagram of the network architecture is shown in Figure 3-4. An input image is
encoded to a latent embedding vector z, which is then decoded back to the original
pixel space.

Figure 3-4. Autoencoder architecture diagram

The autoencoder is trained to reconstruct an image, after it has passed through the
encoder and back out through the decoder. This may seem strange at first—why
would you want to reconstruct a set of images that you already have available to you?
However, as we shall see, it is the embedding space (also called the latent space) that is
the interesting part of the autoencoder, as sampling from this space will allow us to
generate new images.

Let’s first define what we mean by an embedding. The embedding (z) is a compres‐
sion of the original image into a lower-dimensional latent space. The idea is that by
choosing any point in the latent space, we can generate novel images by passing this
point through the decoder, since the decoder has learned how to convert points in the
latent space into viable images.

Autoencoders | 63

In our example, we will embed images into a two-dimensional latent space. This will
help us to visualize the latent space, since we can easily plot points in 2D. In practice,
the latent space of an autoencoder will usually have more than two dimensions in
order to have more freedom to capture greater nuance in the images.

Autoencoders as Denoising Models

Autoencoders can be used to clean noisy images, since the encoder
learns that it is not useful to capture the position of the random
noise inside the latent space in order to reconstruct the original.
For tasks such as this, a 2D latent space is probably too small to
encode sufficient relevant information from the input. However, as
we shall see, increasing the dimensionality of the latent space
quickly leads to problems if we want to use the autoencoder as a
generative model.

Let’s now see how to build the encoder and decoder.

The Encoder
In an autoencoder, the encoder’s job is to take the input image and map it to an
embedding vector in the latent space. The architecture of the encoder we will be
building is shown in Table 3-1.

Table 3-1. Model summary of the encoder

Layer (type) Output shape Param #
InputLayer (None, 32, 32, 1) 0

Conv2D (None, 16, 16, 32) 320

Conv2D (None, 8, 8, 64) 18,496

Conv2D (None, 4, 4, 128) 73,856

Flatten (None, 2048) 0

Dense (None, 2) 4,098

Total params 96,770

Trainable params 96,770

Non-trainable params 0

To achieve this, we first create an Input layer for the image and pass this through
three Conv2D layers in sequence, each capturing increasingly high-level features. We
use a stride of 2 to halve the size of the output of each layer, while increasing the
number of channels. The last convolutional layer is flattened and connected to a
Dense layer of size 2, which represents our two-dimensional latent space.

64 | Chapter 3: Variational Autoencoders

Example 3-3 shows how to build this in Keras.

Example 3-3. The encoder

encoder_input = layers.Input(
 shape=(32, 32, 1), name = "encoder_input"
)
x = layers.Conv2D(32, (3, 3), strides = 2, activation = 'relu', padding="same")(
 encoder_input
)
x = layers.Conv2D(64, (3, 3), strides = 2, activation = 'relu', padding="same")(x)
x = layers.Conv2D(128, (3, 3), strides = 2, activation = 'relu', padding="same")(x)
shape_before_flattening = K.int_shape(x)[1:]

x = layers.Flatten()(x)
encoder_output = layers.Dense(2, name="encoder_output")(x)

encoder = models.Model(encoder_input, encoder_output)

Define the Input layer of the encoder (the image).

Stack Conv2D layers sequentially on top of each other.

Flatten the last convolutional layer to a vector.

Connect this vector to the 2D embeddings with a Dense layer.

The Keras Model that defines the encoder—a model that takes an input image
and encodes it into a 2D embedding.

I strongly encourage you to experiment with the number of convo‐
lutional layers and filters to understand how the architecture
affects the overall number of model parameters, model perfor‐
mance, and model runtime.

The Decoder
The decoder is a mirror image of the encoder—instead of convolutional layers, we
use convolutional transpose layers, as shown in Table 3-2.

Table 3-2. Model summary of the decoder

Layer (type) Output shape Param #
InputLayer (None, 2) 0

Dense (None, 2048) 6,144

Autoencoders | 65

Layer (type) Output shape Param #
Reshape (None, 4, 4, 128) 0

Conv2DTranspose (None, 8, 8, 128) 147,584

Conv2DTranspose (None, 16, 16, 64) 73,792

Conv2DTranspose (None, 32, 32, 32) 18,464

Conv2D (None, 32, 32, 1) 289

Total params 246,273

Trainable params 246,273

Non-trainable params 0

Convolutional Transpose Layers
Standard convolutional layers allow us to halve the size of an input tensor in both
dimensions (height and width), by setting strides = 2.

The convolutional transpose layer uses the same principle as a standard convolutional
layer (passing a filter across the image), but is different in that setting strides = 2
doubles the size of the input tensor in both dimensions.

In a convolutional transpose layer, the strides parameter determines the internal
zero padding between pixels in the image, as shown in Figure 3-5. Here, a 3 × 3 × 1
filter (gray) is being passed across a 3 × 3 × 1 image (blue) with strides = 2, to pro‐
duce a 6 × 6 × 1 output tensor (green).

Figure 3-5. A convolutional transpose layer example (source: Dumoulin and Visin,
2018)2

In Keras, the Conv2DTranspose layer allows us to perform convolutional transpose
operations on tensors. By stacking these layers, we can gradually expand the size of
each layer, using strides of 2, until we get back to the original image dimension of
32 × 32.

66 | Chapter 3: Variational Autoencoders

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285

Example 3-4 shows how we build the decoder in Keras.

Example 3-4. The decoder

decoder_input = layers.Input(shape=(2,), name="decoder_input")
x = layers.Dense(np.prod(shape_before_flattening))(decoder_input)
x = layers.Reshape(shape_before_flattening)(x)
x = layers.Conv2DTranspose(
 128, (3, 3), strides=2, activation = 'relu', padding="same"
)(x)
x = layers.Conv2DTranspose(
 64, (3, 3), strides=2, activation = 'relu', padding="same"
)(x)
x = layers.Conv2DTranspose(
 32, (3, 3), strides=2, activation = 'relu', padding="same"
)(x)
decoder_output = layers.Conv2D(
 1,
 (3, 3),
 strides = 1,
 activation="sigmoid",
 padding="same",
 name="decoder_output"
)(x)

decoder = models.Model(decoder_input, decoder_output)

Define the Input layer of the decoder (the embedding).

Connect the input to a Dense layer.

Reshape this vector into a tensor that can be fed as input into the first
Conv2DTranspose layer.

Stack Conv2DTranspose layers on top of each other.

The Keras Model that defines the decoder—a model that takes an embedding in
the latent space and decodes it into the original image domain.

Joining the Encoder to the Decoder
To train the encoder and decoder simultaneously, we need to define a model that will
represent the flow of an image through the encoder and back out through the
decoder. Luckily, Keras makes it extremely easy to do this, as you can see in
Example 3-5. Notice the way in which we specify that the output from the autoen‐
coder is simply the output from the encoder after it has been passed through the
decoder.

Autoencoders | 67

Example 3-5. The full autoencoder

autoencoder = Model(encoder_input, decoder(encoder_output))

The Keras Model that defines the full autoencoder—a model that takes an image
and passes it through the encoder and back out through the decoder to generate
a reconstruction of the original image.

Now that we’ve defined our model, we just need to compile it with a loss function and
optimizer, as shown in Example 3-6. The loss function is usually chosen to be either
the root mean squared error (RMSE) or binary cross-entropy between the individual
pixels of the original image and the reconstruction.

Example 3-6. Compiling the autoencoder

Compile the autoencoder
autoencoder.compile(optimizer="adam", loss="binary_crossentropy")

Choosing the Loss Function
Optimizing for RMSE means that your generated output will be symmetrically dis‐
tributed around the average pixel values (because an overestimation is penalized
equivalently to an underestimation).

On the other hand, binary cross-entropy loss is asymmetrical—it penalizes errors
toward the extremes more heavily than errors toward the center. For example, if the
true pixel value is high (say 0.7), then generating a pixel with value 0.8 is penalized
more heavily than generating a pixel with value 0.6. If the true pixel value is low (say
0.3), then generating a pixel with value 0.2 is penalized more heavily than generating
a pixel with value 0.4.

This has the effect of binary cross-entropy loss producing slightly blurrier images
than RMSE loss (as it tends to push predictions toward 0.5), but sometimes this is
desirable as RMSE can lead to obviously pixelized edges.

There is no right or wrong choice—you should choose whichever works best for your
use case after experimentation.

We can now train the autoencoder by passing in the input images as both the input
and output, as shown in Example 3-7.

68 | Chapter 3: Variational Autoencoders

Example 3-7. Training the autoencoder

autoencoder.fit(
 x_train,
 x_train,
 epochs=5,
 batch_size=100,
 shuffle=True,
 validation_data=(x_test, x_test),
)

Now that our autoencoder is trained, the first thing we need to check is that it is able
to accurately reconstruct the input images.

Reconstructing Images
We can test the ability to reconstruct images by passing images from the test set
through the autoencoder and comparing the output to the original images. The code
for this is shown in Example 3-8.

Example 3-8. Reconstructing images using the autoencoder

example_images = x_test[:5000]
predictions = autoencoder.predict(example_images)

In Figure 3-6 you can see some examples of original images (top row), the 2D vectors
after encoding, and the reconstructed items after decoding (bottom row).

Figure 3-6. Examples of encoding and decoding items of clothing

Notice how the reconstruction isn’t perfect—there are still some details of the original
images that aren’t captured by the decoding process, such as logos. This is because by
reducing each image to just two numbers, we naturally lose some information.

Let’s now investigate how the encoder is representing images in the latent space.

Autoencoders | 69

Visualizing the Latent Space
We can visualize how images are embedded into the latent space by passing the test
set through the encoder and plotting the resulting embeddings, as shown in
Example 3-9.

Example 3-9. Embedding images using the encoder

embeddings = encoder.predict(example_images)

plt.figure(figsize=(8, 8))
plt.scatter(embeddings[:, 0], embeddings[:, 1], c="black", alpha=0.5, s=3)
plt.show()

The resulting plot is the scatter plot shown in Figure 3-2—each black point represents
an image that has been embedded into the latent space.

In order to better understand how this latent space is structured, we can make use of
the labels that come with the Fashion-MNIST dataset, describing the type of item in
each image. There are 10 groups altogether, shown in Table 3-3.

Table 3-3. The Fashion-MNIST labels

ID Clothing label
0 T-shirt/top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot

We can color each point based on the label of the corresponding image to produce
the plot in Figure 3-7. Now the structure becomes very clear! Even though the cloth‐
ing labels were never shown to the model during training, the autoencoder has natu‐
rally grouped items that look alike into the same parts of the latent space. For
example, the dark blue cloud of points in the bottom-right corner of the latent space
are all different images of trousers and the red cloud of points toward the center are
all ankle boots.

70 | Chapter 3: Variational Autoencoders

Figure 3-7. Plot of the latent space, colored by clothing label

Generating New Images
We can generate novel images by sampling some points in the latent space and using
the decoder to convert these back into pixel space, as shown in Example 3-10.

Example 3-10. Generating novel images using the decoder

mins, maxs = np.min(embeddings, axis=0), np.max(embeddings, axis=0)
sample = np.random.uniform(mins, maxs, size=(18, 2))
reconstructions = decoder.predict(sample)

Some examples of generated images are shown in Figure 3-8, alongside their embed‐
dings in the latent space.

Autoencoders | 71

Figure 3-8. Generated items of clothing

Each blue dot maps to one of the images shown on the right of the diagram, with the
embedding vector shown underneath. Notice how some of the generated items are
more realistic than others. Why is this?

To answer this, let’s first make a few observations about the overall distribution of
points in the latent space, referring back to Figure 3-7:

• Some clothing items are represented over a very small area and others over a
much larger area.

• The distribution is not symmetrical about the point (0, 0), or bounded. For
example, there are far more points with positive y-axis values than negative, and
some points even extend to a y-axis value > 8.

• There are large gaps between colors containing few points.

These observations actually make sampling from the latent space quite challenging. If
we overlay the latent space with images of decoded points on a grid, as shown in
Figure 3-9, we can begin to understand why the decoder may not always generate
images to a satisfactory standard.

72 | Chapter 3: Variational Autoencoders

Figure 3-9. A grid of decoded embeddings, overlaid with the embeddings from the origi‐
nal images in the dataset, colored by item type

Firstly, we can see that if we pick points uniformly in a bounded space that we define,
we’re more likely to sample something that decodes to look like a bag (ID 8) than an
ankle boot (ID 9) because the part of the latent space carved out for bags (orange) is
larger than the ankle boot area (red).

Secondly, it is not obvious how we should go about choosing a random point in the
latent space, since the distribution of these points is undefined. Technically, we would
be justified in choosing any point in the 2D plane! It’s not even guaranteed that points
will be centered around (0, 0). This makes sampling from our latent space
problematic.

Lastly, we can see holes in the latent space where none of the original images are
encoded. For example, there are large white spaces at the edges of the domain—the
autoencoder has no reason to ensure that points here are decoded to recognizable
clothing items as very few images in the training set are encoded here.

Even points that are central may not be decoded into well-formed images. This is
because the autoencoder is not forced to ensure that the space is continuous. For
example, even though the point (–1, –1) might be decoded to give a satisfactory

Autoencoders | 73

image of a sandal, there is no mechanism in place to ensure that the point (–1.1, –1.1)
also produces a satisfactory image of a sandal.

In two dimensions this issue is subtle; the autoencoder only has a small number of
dimensions to work with, so naturally it has to squash clothing groups together,
resulting in the space between clothing groups being relatively small. However, as we
start to use more dimensions in the latent space to generate more complex images
such as faces, this problem becomes even more apparent. If we give the autoencoder
free rein over how it uses the latent space to encode images, there will be huge gaps
between groups of similar points with no incentive for the spaces in between to gen‐
erate well-formed images.

In order to solve these three problems, we need to convert our autoencoder into a
variational autoencoder.

Variational Autoencoders
To explain, let’s revisit the infinite wardrobe and make a few changes…

Revisiting the Infinite Wardrobe
Suppose now, instead of placing every item of clothing at a single point in the ward‐
robe, you decide to allocate a general area where the item is more likely to be found.
You reason that this more relaxed approach to item location will help to solve the cur‐
rent issue around local discontinuities in the wardrobe.

Also, in order to ensure you do not become too careless with the new placement sys‐
tem, you agree with Brian that you will try to place the center of each item’s area as
close to the middle of the wardrobe as possible and that deviation of the item from
the center should be as close to one meter as possible (not smaller and not larger).
The further you stray from this rule, the more you have to pay Brian as your stylist.

After several months of operating with these two simple changes, you step back and
admire the new wardrobe layout, alongside some examples of new clothing items that
Brian has generated. Much better! There is plenty of diversity in the generated items,
and this time there are no examples of poor-quality garments. It seems the two
changes have made all the difference!

Let’s now try to understand what we need to do to our autoencoder model to convert
it into a variational autoencoder and thus make it a more sophisticated generative
model.

The two parts that we need to change are the encoder and the loss function.

74 | Chapter 3: Variational Autoencoders

The Encoder
In an autoencoder, each image is mapped directly to one point in the latent space. In
a variational autoencoder, each image is instead mapped to a multivariate normal dis‐
tribution around a point in the latent space, as shown in Figure 3-10.

Figure 3-10. The difference between the encoders in an autoencoder and a variational
autoencoder

The Multivariate Normal Distribution
A normal distribution (or Gaussian distribution) � μ, σ is a probability distribution
characterized by a distinctive bell curve shape, defined by two variables: the mean (μ)
and the variance (σ2). The standard deviation (\(\sigma\)) is the square root of the
variance.

The probability density function of the normal distribution in one dimension is:

f x ∣ μ, σ2 = 1
2πσ2 e

− x − μ 2

2σ2

Figure 3-11 shows several normal distributions in one dimension, for different values
of the mean and variance. The red curve is the standard normal (or unit normal)
� 0, 1 —the normal distribution with mean equal to 0 and variance equal to 1.

We can sample a point z from a normal distribution with mean μ and standard devia‐
tion σ using the following equation:

z = μ + σ�

Variational Autoencoders | 75

where � is sampled from a standard normal distribution.

Figure 3-11. The normal distribution in one dimension (source: Wikipedia)

The concept of a normal distribution extends to more than one dimension—the
probability density function for a multivariate normal distribution (or multivariate
Gaussian distribution) � μ, Σ in k dimensions with mean vector μ and symmetric
covariance matrix Σ is as follows:

f x1, ..., xk =
exp − 1

2 � − μ TΣ−1 � − μ

2π k Σ

In this book, we will typically be using isotropic multivariate normal distributions,
where the covariance matrix is diagonal. This means that the distribution is inde‐
pendent in each dimension (i.e., we can sample a vector where each element is nor‐
mally distributed with independent mean and variance). This is the case for the
multivariate normal distribution that we will use in our variational autoencoder.

A multivariate standard normal distribution � 0, � is a multivariate distribution with
a zero-valued mean vector and identity covariance matrix.

Normal Versus Gaussian
In this book, the terms normal and Gaussian are used inter‐
changeably and the isotropic and multivariate nature of the
distribution is usually implied. For example, “we sample from
a Gaussian distribution” can be interpreted to mean “we sam‐
ple from an isotropic, multivariate Gaussian distribution.”

76 | Chapter 3: Variational Autoencoders

https://oreil.ly/gWwKV

The encoder only needs to map each input to a mean vector and a variance vector
and does not need to worry about covariance between dimensions. Variational
autoencoders assume that there is no correlation between dimensions in the latent
space.

Variance values are always positive, so we actually choose to map to the logarithm of
the variance, as this can take any real number in the range (−∞, ∞). This way we can
use a neural network as the encoder to perform the mapping from the input image to
the mean and log variance vectors.

To summarize, the encoder will take each input image and encode it to two vectors
that together define a multivariate normal distribution in the latent space:

z_mean

The mean point of the distribution

z_log_var

The logarithm of the variance of each dimension

We can sample a point z from the distribution defined by these values using the fol‐
lowing equation:

z = z_mean + z_sigma * epsilon

where:

z_sigma = exp(z_log_var * 0.5)
epsilon ~ N(0,I)

The derivation of the relationship between z_sigma (σ) and
z_log_var (log σ2) is as follows:

σ = exp log σ = exp 2 log σ /2 = exp log σ2 /2

The decoder of a variational autoencoder is identical to the decoder of a plain autoen‐
coder, giving the overall architecture shown in Figure 3-12.

Figure 3-12. VAE architecture diagram

Variational Autoencoders | 77

Why does this small change to the encoder help?

Previously, we saw that there was no requirement for the latent space to be continu‐
ous—even if the point (–2, 2) decodes to a well-formed image of a sandal, there’s no
requirement for (–2.1, 2.1) to look similar. Now, since we are sampling a random
point from an area around z_mean, the decoder must ensure that all points in the
same neighborhood produce very similar images when decoded, so that the recon‐
struction loss remains small. This is a very nice property that ensures that even when
we choose a point in the latent space that has never been seen by the decoder, it is
likely to decode to an image that is well formed.

Building the VAE encoder
Let’s now see how we build this new version of the encoder in Keras.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/03_vae/02_vae_fashion/vae_fashion.ipynb in
the book repository.
The code has been adapted from the excellent VAE tutorial created
by Francois Chollet, available on the Keras website.

First, we need to create a new type of Sampling layer that will allow us to sample from
the distribution defined by z_mean and z_log_var, as shown in Example 3-11.

Example 3-11. The Sampling layer

class Sampling(layers.Layer):
 def call(self, inputs):
 z_mean, z_log_var = inputs
 batch = tf.shape(z_mean)[0]
 dim = tf.shape(z_mean)[1]
 epsilon = K.random_normal(shape=(batch, dim))
 return z_mean + tf.exp(0.5 * z_log_var) * epsilon

We create a new layer by subclassing the Keras base Layer class (see the “Sub‐
classing the Layer Class” sidebar).

We use the reparameterization trick (see “The Reparameterization Trick” side‐
bar) to build a sample from the normal distribution parameterized by z_mean
and z_log_var.

78 | Chapter 3: Variational Autoencoders

https://oreil.ly/A7yqJ

Subclassing the Layer Class
You can create new layers in Keras by subclassing the abstract Layer class and defin‐
ing the call method, which describes how a tensor is transformed by the layer.

For example, in the variational autoencoder, we can create a Sampling layer that can
handle the sampling of z from a normal distribution with parameters defined by
z_mean and z_log_var.

This is useful when you want to apply a transformation to a tensor that isn’t already
included as one of the out-of-the-box Keras layer types.

The Reparameterization Trick
Rather than sample directly from a normal distribution with parameters z_mean and
z_log_var, we can sample epsilon from a standard normal and then manually adjust
the sample to have the correct mean and variance.

This is known as the reparameterization trick, and it’s important as it means gradients
can backpropagate freely through the layer. By keeping all of the randomness of the
layer contained within the variable epsilon, the partial derivative of the layer output
with respect to its input can be shown to be deterministic (i.e., independent of the
random epsilon), which is essential for backpropagation through the layer to be
possible.

The complete code for the encoder, including the new Sampling layer, is shown in
Example 3-12.

Example 3-12. The encoder

encoder_input = layers.Input(
 shape=(32, 32, 1), name="encoder_input"
)
x = layers.Conv2D(32, (3, 3), strides=2, activation="relu", padding="same")(
 encoder_input
)
x = layers.Conv2D(64, (3, 3), strides=2, activation="relu", padding="same")(x)
x = layers.Conv2D(128, (3, 3), strides=2, activation="relu", padding="same")(x)
shape_before_flattening = K.int_shape(x)[1:]

x = layers.Flatten()(x)
z_mean = layers.Dense(2, name="z_mean")(x)
z_log_var = layers.Dense(2, name="z_log_var")(x)
z = Sampling()([z_mean, z_log_var])

Variational Autoencoders | 79

encoder = models.Model(encoder_input, [z_mean, z_log_var, z], name="encoder")

Instead of connecting the Flatten layer directly to the 2D latent space, we con‐
nect it to layers z_mean and z_log_var.

The Sampling layer samples a point z in the latent space from the normal distri‐
bution defined by the parameters z_mean and z_log_var.

The Keras Model that defines the encoder—a model that takes an input image
and outputs z_mean, z_log_var, and a sampled point z from the normal distribu‐
tion defined by these parameters.

A summary of the encoder is shown in Table 3-4.

Table 3-4. Model summary of the VAE encoder

Layer (type) Output shape Param # Connected to
InputLayer (input) (None, 32, 32, 1) 0 []

Conv2D (conv2d_1) (None, 16, 16, 32) 320 [input]

Conv2D (conv2d_2) (None, 8, 8, 64) 18,496 [conv2d_1]

Conv2D (conv2d_3) (None, 4, 4, 128) 73,856 [conv2d_2]

Flatten (flatten) (None, 2048) 0 [conv2d_3]

Dense (z_mean) (None, 2) 4,098 [flatten]

Dense (z_log_var) (None, 2) 4,098 [flatten]

Sampling (z) (None, 2) 0 [z_mean, z_log_var]

Total params 100,868

Trainable params 100,868

Non-trainable params 0

The only other part of the original autoencoder that we need to change is the loss
function.

The Loss Function
Previously, our loss function only consisted of the reconstruction loss between images
and their attempted copies after being passed through the encoder and decoder. The
reconstruction loss also appears in a variational autoencoder, but we now require one
extra component: the Kullback–Leibler (KL) divergence term.

80 | Chapter 3: Variational Autoencoders

KL divergence is a way of measuring how much one probability distribution differs
from another. In a VAE, we want to measure how much our normal distribution with
parameters z_mean and z_log_var differs from a standard normal distribution. In
this special case, it can be shown that the KL divergence has the following closed
form:

kl_loss = -0.5 * sum(1 + z_log_var - z_mean ^ 2 - exp(z_log_var))

or in mathematical notation:

DKL N μ, σ ∥ N 0, 1 = −1
2 ∑ 1 + log σ2 − μ2 − σ2

The sum is taken over all the dimensions in the latent space. kl_loss is minimized to
0 when z_mean = 0 and z_log_var = 0 for all dimensions. As these two terms start
to differ from 0, kl_loss increases.

In summary, the KL divergence term penalizes the network for encoding observa‐
tions to z_mean and z_log_var variables that differ significantly from the parameters
of a standard normal distribution, namely z_mean = 0 and z_log_var = 0.

Why does this addition to the loss function help?

Firstly, we now have a well-defined distribution that we can use for choosing points
in the latent space—the standard normal distribution. Secondly, since this term tries
to force all encoded distributions toward the standard normal distribution, there is
less chance that large gaps will form between point clusters. Instead, the encoder will
try to use the space around the origin symmetrically and efficiently.

In the original VAE paper, the loss function for a VAE was simply the addition of the
reconstruction loss and the KL divergence loss term. A variant on this (the β-VAE)
includes a factor that weights the KL divergence to ensure that it is well balanced with
the reconstruction loss. If we weight the reconstruction loss too heavily, the KL loss
will not have the desired regulatory effect and we will see the same problems that we
experienced with the plain autoencoder. If the KL divergence term is weighted too
heavily, the KL divergence loss will dominate and the reconstructed images will be
poor. This weighting term is one of the parameters to tune when you’re training your
VAE.

Variational Autoencoders | 81

Training the Variational Autoencoder
Example 3-13 shows how we build the overall VAE model as a subclass of the abstract
Keras Model class. This allows us to include the calculation of the KL divergence term
of the loss function in a custom train_step method.

Example 3-13. Training the VAE

class VAE(models.Model):
 def __init__(self, encoder, decoder, **kwargs):
 super(VAE, self).__init__(**kwargs)
 self.encoder = encoder
 self.decoder = decoder
 self.total_loss_tracker = metrics.Mean(name="total_loss")
 self.reconstruction_loss_tracker = metrics.Mean(
 name="reconstruction_loss"
)
 self.kl_loss_tracker = metrics.Mean(name="kl_loss")

 @property
 def metrics(self):
 return [
 self.total_loss_tracker,
 self.reconstruction_loss_tracker,
 self.kl_loss_tracker,
]

 def call(self, inputs):
 z_mean, z_log_var, z = encoder(inputs)
 reconstruction = decoder(z)
 return z_mean, z_log_var, reconstruction

 def train_step(self, data):
 with tf.GradientTape() as tape:
 z_mean, z_log_var, reconstruction = self(data)
 reconstruction_loss = tf.reduce_mean(
 500
 * losses.binary_crossentropy(
 data, reconstruction, axis=(1, 2, 3)
)
)
 kl_loss = tf.reduce_mean(
 tf.reduce_sum(
 -0.5
 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)),
 axis = 1,
)
)
 total_loss = reconstruction_loss + kl_loss

 grads = tape.gradient(total_loss, self.trainable_weights)

82 | Chapter 3: Variational Autoencoders

 self.optimizer.apply_gradients(zip(grads, self.trainable_weights))

 self.total_loss_tracker.update_state(total_loss)
 self.reconstruction_loss_tracker.update_state(reconstruction_loss)
 self.kl_loss_tracker.update_state(kl_loss)

 return {m.name: m.result() for m in self.metrics}

vae = VAE(encoder, decoder)
vae.compile(optimizer="adam")
vae.fit(
 train,
 epochs=5,
 batch_size=100
)

This function describes what we would like returned what we call the VAE on a
particular input image.

This function describes one training step of the VAE, including the calculation of
the loss function.

A beta value of 500 is used in the reconstruction loss.

The total loss is the sum of the reconstruction loss and the KL divergence loss.

Gradient Tape

TensorFlow’s Gradient Tape is a mechanism that allows the compu‐
tation of gradients of operations executed during a forward pass of
a model. To use it, you need to wrap the code that performs the
operations you want to differentiate in a tf.GradientTape() con‐
text. Once you have recorded the operations, you can compute the
gradient of the loss function with respect to some variables by call‐
ing tape.gradient(). The gradients can then be used to update the
variables with the optimizer.
This mechanism is useful for calculating the gradient of custom
loss functions (as we have done here) and also for creating custom
training loops, as we shall see in Chapter 4.

Variational Autoencoders | 83

Analysis of the Variational Autoencoder
Now that we have trained our VAE, we can use the encoder to encode the images in
the test set and plot the z_mean values in the latent space. We can also sample from a
standard normal distribution to generate points in the latent space and use the
decoder to decode these points back into pixel space to see how the VAE performs.

Figure 3-13 shows the structure of the new latent space, alongside some sampled
points and their decoded images. We can immediately see several changes in how the
latent space is organized.

Figure 3-13. The new latent space: the black dots show the z_mean value of each encoded
image, while blue dots show some sampled points in the latent space (with their decoded
images on the right)

Firstly, the KL divergence loss term ensures that the z_mean and z_log_var values of
the encoded images never stray too far from a standard normal distribution. Sec‐
ondly, there are not so many poorly formed images as the latent space is now much
more continuous, due to fact that the encoder is now stochastic, rather than
deterministic.

Finally, by coloring points in the latent space by clothing type (Figure 3-14), we can
see that there is no preferential treatment of any one type. The righthand plot shows
the space transformed into p-values—we can see that each color is approximately
equally represented. Again, it’s important to remember that the labels were not used
at all during training; the VAE has learned the various forms of clothing by itself in
order to help minimize reconstruction loss.

84 | Chapter 3: Variational Autoencoders

Figure 3-14. The latent space of the VAE colored by clothing type

Exploring the Latent Space
So far, all of our work on autoencoders and variational autoencoders has been limited
to a latent space with two dimensions. This has helped us to visualize the inner work‐
ings of a VAE on the page and understand why the small tweaks that we made to the
architecture of the autoencoder helped transform it into a more powerful class of net‐
work that can be used for generative modeling.

Let’s now turn our attention to a more complex dataset and see the amazing things
that variational autoencoders can achieve when we increase the dimensionality of the
latent space.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/03_vae/03_faces/vae_faces.ipynb in the book
repository.

The CelebA Dataset
We shall be using the CelebFaces Attributes (CelebA) dataset to train our next varia‐
tional autoencoder. This is a collection of over 200,000 color images of celebrity faces,
each annotated with various labels (e.g., wearing hat, smiling, etc.). A few examples
are shown in Figure 3-15.

Exploring the Latent Space | 85

https://oreil.ly/tEUnh

Figure 3-15. Some examples from the CelebA dataset (source: Liu et al., 2015)3

Of course, we don’t need the labels to train the VAE, but these will be useful later
when we start exploring how these features are captured in the multidimensional
latent space. Once our VAE is trained, we can sample from the latent space to gener‐
ate new examples of celebrity faces.

The CelebA dataset is also available through Kaggle, so you can download the dataset
by running the Kaggle dataset downloader script in the book repository, as shown in
Example 3-14. This will save the images and accompanying metadata locally to
the /data folder.

Example 3-14. Downloading the CelebA dataset

bash scripts/download_kaggle_data.sh jessicali9530 celeba-dataset

We use the Keras function image_dataset_from_directory to create a TensorFlow
Dataset pointed at the directory where the images are stored, as shown in
Example 3-15. This allows us to read batches of images into memory only when
required (e.g., during training), so that we can work with large datasets and not worry
about having to fit the entire dataset into memory. It also resizes the images to 64 ×
64, interpolating between pixel values.

86 | Chapter 3: Variational Autoencoders

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Example 3-15. Preprocessing the CelebA dataset

train_data = utils.image_dataset_from_directory(
 "/app/data/celeba-dataset/img_align_celeba/img_align_celeba",
 labels=None,
 color_mode="rgb",
 image_size=(64, 64),
 batch_size=128,
 shuffle=True,
 seed=42,
 interpolation="bilinear",
)

The original data is scaled in the range [0, 255] to denote the pixel intensity, which we
rescale to the range [0, 1] as shown in Example 3-16.

Example 3-16. Preprocessing the CelebA dataset

def preprocess(img):
 img = tf.cast(img, "float32") / 255.0
 return img

train = train_data.map(lambda x: preprocess(x))

Training the Variational Autoencoder
The network architecture for the faces model is similar to the Fashion-MNIST exam‐
ple, with a few slight differences:

• Our data now has three input channels (RGB) instead of one (grayscale). This
means we need to change the number of channels in the final convolutional
transpose layer of the decoder to 3.

• We shall be using a latent space with 200 dimensions instead of 2. Since faces are
much more complex than the Fashion-MNIST images, we increase the dimen‐
sionality of the latent space so that the network can encode a satisfactory amount
of detail from the images.

• There are batch normalization layers after each convolutional layer to stabilize
training. Even though each batch takes a longer time to run, the number of
batches required to reach the same loss is greatly reduced.

• We increase the β factor for the KL divergence to 2,000. This is a parameter that
requires tuning; for this dataset and architecture this value was found to generate
good results.

Exploring the Latent Space | 87

The full architectures of the encoder and decoder are shown in Tables 3-5 and 3-6,
respectively.

Table 3-5. Model summary of the VAE faces encoder

Layer (type) Output shape Param # Connected to
InputLayer (input) (None, 32, 32, 3) 0 []

Conv2D (conv2d_1) (None, 16, 16, 128) 3,584 [input]

BatchNormalization (bn_1) (None, 16, 16, 128) 512 [conv2d_1]

LeakyReLU (lr_1) (None, 16, 16, 128) 0 [bn_1]

Conv2D (conv2d_2) (None, 8, 8, 128) 147,584 [lr_1]

BatchNormalization (bn_2) (None, 8, 8, 128) 512 [conv2d_2]

LeakyReLU (lr_2) (None, 8, 8, 128) 0 [bn_2]

Conv2D (conv2d_3) (None, 4, 4, 128) 147,584 [lr_2]

BatchNormalization (bn_3) (None, 4, 4, 128) 512 [conv2d_3]

LeakyReLU (lr_3) (None, 4, 4, 128) 0 [bn_3]

Conv2D (conv2d_4) (None, 2, 2, 128) 147,584 [lr_3]

BatchNormalization (bn_4) (None, 2, 2, 128) 512 [conv2d_4]

LeakyReLU (lr_4) (None, 2, 2, 128) 0 [bn_4]

Flatten (flatten) (None, 512) 0 [lr_4]

Dense (z_mean) (None, 200) 102,600 [flatten]

Dense (z_log_var) (None, 200) 102,600 [flatten]

Sampling (z) (None, 200) 0 [z_mean, z_log_var]

Total params 653,584

Trainable params 652,560

Non-trainable params 1,024

Table 3-6. Model summary of the VAE faces decoder

Layer (type) Output shape Param #
InputLayer (None, 200) 0

Dense (None, 512) 102,912

BatchNormalization (None, 512) 2,048

LeakyReLU (None, 512) 0

Reshape (None, 2, 2, 128) 0

Conv2DTranspose (None, 4, 4, 128) 147,584

BatchNormalization (None, 4, 4, 128) 512

LeakyReLU (None, 4, 4, 128) 0

Conv2DTranspose (None, 8, 8, 128) 147,584

88 | Chapter 3: Variational Autoencoders

Layer (type) Output shape Param #
BatchNormalization (None, 8, 8, 128) 512

LeakyReLU (None, 8, 8, 128) 0

Conv2DTranspose (None, 16, 16, 128) 147,584

BatchNormalization (None, 16, 16, 128) 512

LeakyReLU (None, 16, 16, 128) 0

Conv2DTranspose (None, 32, 32, 128) 147,584

BatchNormalization (None, 32, 32, 128) 512

LeakyReLU (None, 32, 32, 128) 0

Conv2DTranspose (None, 32, 32, 3) 3,459

Total params 700,803

Trainable params 698,755

Non-trainable params 2,048

After around five epochs of training, our VAE should be able to produce novel
images of celebrity faces!

Analysis of the Variational Autoencoder
First, let’s take a look at a sample of reconstructed faces. The top row in Figure 3-16
shows the original images and the bottom row shows the reconstructions once they
have passed through the encoder and decoder.

Figure 3-16. Reconstructed faces, after passing through the encoder and decoder

We can see that the VAE has successfully captured the key features of each face—the
angle of the head, the hairstyle, the expression, etc. Some of the fine detail is missing,
but it is important to remember that the aim of building variational autoencoders
isn’t to achieve perfect reconstruction loss. Our end goal is to sample from the latent
space in order to generate new faces.

For this to be possible we must check that the distribution of points in the latent
space approximately resembles a multivariate standard normal distribution. If we see
any dimensions that are significantly different from a standard normal distribution,

Exploring the Latent Space | 89

we should probably reduce the reconstruction loss factor, since the KL divergence
term isn’t having enough effect.

The first 50 dimensions in our latent space are shown in Figure 3-17. There aren’t any
distributions that stand out as being significantly different from the standard normal,
so we can move on to generating some faces!

Figure 3-17. Distributions of points for the first 50 dimensions in the latent space

Generating New Faces
To generate new faces, we can use the code in Example 3-17.

Example 3-17. Generating new faces from the latent space

grid_width, grid_height = (10,3)
z_sample = np.random.normal(size=(grid_width * grid_height, 200))

reconstructions = decoder.predict(z_sample)

fig = plt.figure(figsize=(18, 5))
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for i in range(grid_width * grid_height):
 ax = fig.add_subplot(grid_height, grid_width, i + 1)
 ax.axis("off")
 ax.imshow(reconstructions[i, :, :])

Sample 30 points from a standard multivariate normal distribution with 200
dimensions.

Decode the sampled points.

Plot the images!

90 | Chapter 3: Variational Autoencoders

The output is shown in Figure 3-18.

Figure 3-18. New generated faces

Amazingly, the VAE is able to take the set of points that we sampled from a standard
normal distribution and convert each into a convincing image of a person’s face. This
is our first glimpse of the true power of generative models!

Next, let’s see if we can start to use the latent space to perform some interesting oper‐
ations on generated images.

Latent Space Arithmetic
One benefit of mapping images into a lower-dimensional latent space is that we can
perform arithmetic on vectors in this latent space that has a visual analogue when
decoded back into the original image domain.

For example, suppose we want to take an image of somebody who looks sad and give
them a smile. To do this we first need to find a vector in the latent space that points in
the direction of increasing smile. Adding this vector to the encoding of the original
image in the latent space will give us a new point which, when decoded, should give
us a more smiley version of the original image.

So how can we find the smile vector? Each image in the CelebA dataset is labeled with
attributes, one of which is Smiling. If we take the average position of encoded images
in the latent space with the attribute Smiling and subtract the average position of
encoded images that do not have the attribute Smiling, we will obtain the vector that
points in the direction of Smiling, which is exactly what we need.

Conceptually, we are performing the following vector arithmetic in the latent space,
where alpha is a factor that determines how much of the feature vector is added or
subtracted:

z_new = z + alpha * feature_vector

Exploring the Latent Space | 91

Let’s see this in action. Figure 3-19 shows several images that have been encoded into
the latent space. We then add or subtract multiples of a certain vector (e.g., Smiling,
Black_Hair, Eyeglasses, Young, Male, Blond_Hair) to obtain different versions of the
image, with only the relevant feature changed.

Figure 3-19. Adding and subtracting features to and from faces

It is remarkable that even though we are moving the point a significantly large dis‐
tance in the latent space, the core image remains approximately the same, except for
the one feature that we want to manipulate. This demonstrates the power of varia‐
tional autoencoders for capturing and adjusting high-level features in images.

Morphing Between Faces
We can use a similar idea to morph between two faces. Imagine two points in the
latent space, A and B, that represent two images. If you started at point A and walked
toward point B in a straight line, decoding each point on the line as you went, you
would see a gradual transition from the starting face to the end face.

Mathematically, we are traversing a straight line, which can be described by the fol‐
lowing equation:

z_new = z_A * (1- alpha) + z_B * alpha

Here, alpha is a number between 0 and 1 that determines how far along the line we
are, away from point A.

92 | Chapter 3: Variational Autoencoders

Figure 3-20 shows this process in action. We take two images, encode them into the
latent space, and then decode points along the straight line between them at regular
intervals.

Figure 3-20. Morphing between two faces

It is worth noting the smoothness of the transition—even where there are multiple
features to change simultaneously (e.g., removal of glasses, hair color, gender), the
VAE manages to achieve this fluidly, showing that the latent space of the VAE is truly
a continuous space that can be traversed and explored to generate a multitude of dif‐
ferent human faces.

Summary
In this chapter we have seen how variational autoencoders are a powerful tool in the
generative modeling toolbox. We started by exploring how plain autoencoders can be
used to map high-dimensional images into a low-dimensional latent space, so that
high-level features can be extracted from the individually uninformative pixels. How‐
ever, we quickly found that there were some drawbacks to using plain autoencoders
as a generative model—sampling from the learned latent space was problematic, for
example.

Variational autoencoders solve these problems by introducing randomness into the
model and constraining how points in the latent space are distributed. We saw that
with a few minor adjustments, we can transform our autoencoder into a variational
autoencoder, thus giving it the power to be a true generative model.

Summary | 93

Finally, we applied our new technique to the problem of face generation and saw how
we can simply decode points from a standard normal distribution to generate new
faces. Moreover, by performing vector arithmetic within the latent space, we can
achieve some amazing effects, such as face morphing and feature manipulation.

In the next chapter, we shall explore a different kind of model that remains a popular
choice for generative image modeling: the generative adversarial network.

References
1. Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes,” Decem‐
ber 20, 2013, https://arxiv.org/abs/1312.6114.

2. Vincent Dumoulin and Francesco Visin, “A Guide to Convolution Arithmetic for
Deep Learning,” January 12, 2018, https://arxiv.org/abs/1603.07285.

3. Ziwei Liu et al., “Large-Scale CelebFaces Attributes (CelebA) Dataset,” 2015, http://
mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

94 | Chapter 3: Variational Autoencoders

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1603.07285
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

CHAPTER 4

Generative Adversarial Networks

Chapter Goals
In this chapter you will:

• Learn about the architectural design of a generative adversarial network (GAN).
• Build and train a deep convolutional GAN (DCGAN) from scratch using Keras.
• Use the DCGAN to generate new images.
• Understand some of the common problems faced when training a DCGAN.
• Learn how the Wasserstein GAN (WGAN) architecture addresses these

problems.
• Understand additional enhancements that can be made to the WGAN, such as

incorporating a gradient penalty (GP) term into the loss function.
• Build a WGAN-GP from scratch using Keras.
• Use the WGAN-GP to generate faces.
• Learn how a conditional GAN (CGAN) gives you the ability to condition gener‐

ated output on a given label.
• Build and train a CGAN in Keras and use it to manipulate a generated image.

In 2014, Ian Goodfellow et al. presented a paper entitled “Generative Adversarial
Nets”1 at the Neural Information Processing Systems conference (NeurIPS) in Mon‐
treal. The introduction of generative adversarial networks (or GANs, as they are more
commonly known) is now regarded as a key turning point in the history of generative
modeling, as the core ideas presented in this paper have spawned some of the most
successful and impressive generative models ever created.

95

This chapter will first lay out the theoretical underpinning of GANs, then we will see
how to build our own GAN using Keras.

Introduction
Let’s start with a short story to illustrate some of the fundamental concepts used in
the GAN training process.

Brickki Bricks and the Forgers
It’s your first day at your new job as head of quality control for Brickki, a company
that specializes in producing high-quality building blocks of all shapes and sizes
(Figure 4-1).

Figure 4-1. The production line of a company making bricks of many different shapes
and sizes (created with Midjourney)

You are immediately alerted to a problem with some of the items coming off the pro‐
duction line. A competitor has started to make counterfeit copies of Brickki bricks
and has found a way to mix them into the bags received by your customers. You
decide to become an expert at telling the difference between the counterfeit bricks
and the real thing, so that you can intercept the forged bricks on the production line
before they are given to customers. Over time, by listening to customer feedback, you
gradually become more adept at spotting the fakes.

The forgers are not happy about this—they react to your improved detection abilities
by making some changes to their forgery process so that now, the difference between
the real bricks and the fakes is even harder for you to spot.

96 | Chapter 4: Generative Adversarial Networks

https://midjourney.com

Not one to give up, you retrain yourself to identify the more sophisticated fakes and
try to keep one step ahead of the forgers. This process continues, with the forgers iter‐
atively updating their brick creation technologies while you try to become increas‐
ingly more accomplished at intercepting their fakes.

With every week that passes, it becomes more and more difficult to tell the difference
between the real Brickki bricks and those created by the forgers. It seems that this
simple game of cat and mouse is enough to drive significant improvement in both the
quality of the forgery and the quality of the detection.

The story of Brickki bricks and the forgers describes the training process of a genera‐
tive adversarial network.

A GAN is a battle between two adversaries, the generator and the discriminator. The
generator tries to convert random noise into observations that look as if they have
been sampled from the original dataset, and the discriminator tries to predict whether
an observation comes from the original dataset or is one of the generator’s forgeries.
Examples of the inputs and outputs to the two networks are shown in Figure 4-2.

Figure 4-2. Inputs and outputs of the two networks in a GAN

At the start of the process, the generator outputs noisy images and the discriminator
predicts randomly. The key to GANs lies in how we alternate the training of the two
networks, so that as the generator becomes more adept at fooling the discriminator,
the discriminator must adapt in order to maintain its ability to correctly identify
which observations are fake. This drives the generator to find new ways to fool the
discriminator, and so the cycle continues.

Deep Convolutional GAN (DCGAN)
To see this in action, let’s start building our first GAN in Keras, to generate pictures of
bricks.

We will be closely following one of the first major papers on GANs, “Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial

Deep Convolutional GAN (DCGAN) | 97

Networks.”2 In this 2015 paper, the authors show how to build a deep convolutional
GAN to generate realistic images from a variety of datasets. They also introduce sev‐
eral changes that significantly improve the quality of the generated images.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/04_gan/01_dcgan/dcgan.ipynb in the book
repository.

The Bricks Dataset
First, you’ll need to download the training data. We’ll be using the Images of LEGO
Bricks dataset that is available through Kaggle. This is a computer-rendered collec‐
tion of 40,000 photographic images of 50 different toy bricks, taken from multiple
angles. Some example images of Brickki products are shown in Figure 4-3.

Figure 4-3. Examples of images from the Bricks dataset

You can download the dataset by running the Kaggle dataset downloader script in the
book repository, as shown in Example 4-1. This will save the images and accompany‐
ing metadata locally to the /data folder.

Example 4-1. Downloading the Bricks dataset

bash scripts/download_kaggle_data.sh joosthazelzet lego-brick-images

We use the Keras function image_dataset_from_directory to create a TensorFlow
Dataset pointed at the directory where the images are stored, as shown in
Example 4-2. This allows us to read batches of images into memory only when
required (e.g., during training), so that we can work with large datasets and not worry
about having to fit the entire dataset into memory. It also resizes the images to 64 ×
64, interpolating between pixel values.

Example 4-2. Creating a TensorFlow Dataset from image files in a directory

train_data = utils.image_dataset_from_directory(
 "/app/data/lego-brick-images/dataset/",
 labels=None,
 color_mode="grayscale",
 image_size=(64, 64),
 batch_size=128,

98 | Chapter 4: Generative Adversarial Networks

https://oreil.ly/3vp9f
https://oreil.ly/3vp9f

 shuffle=True,
 seed=42,
 interpolation="bilinear",
)

The original data is scaled in the range [0, 255] to denote the pixel intensity. When
training GANs we rescale the data to the range [–1, 1] so that we can use the tanh
activation function on the final layer of the generator, which tends to provide stron‐
ger gradients than the sigmoid function (Example 4-3).

Example 4-3. Preprocessing the Bricks dataset

def preprocess(img):
 img = (tf.cast(img, "float32") - 127.5) / 127.5
 return img

train = train_data.map(lambda x: preprocess(x))

Let’s now take a look at how we build the discriminator.

The Discriminator
The goal of the discriminator is to predict if an image is real or fake. This is a super‐
vised image classification problem, so we can use a similar architecture to those we
worked with in Chapter 2: stacked convolutional layers, with a single output node.

The full architecture of the discriminator we will be building is shown in Table 4-1.

Table 4-1. Model summary of the discriminator

Layer (type) Output shape Param #
InputLayer (None, 64, 64, 1) 0

Conv2D (None, 32, 32, 64) 1,024

LeakyReLU (None, 32, 32, 64) 0

Dropout (None, 32, 32, 64) 0

Conv2D (None, 16, 16, 128) 131,072

BatchNormalization (None, 16, 16, 128) 512

LeakyReLU (None, 16, 16, 128) 0

Dropout (None, 16, 16, 128) 0

Conv2D (None, 8, 8, 256) 524,288

BatchNormalization (None, 8, 8, 256) 1,024

LeakyReLU (None, 8, 8, 256) 0

Dropout (None, 8, 8, 256) 0

Conv2D (None, 4, 4, 512) 2,097,152

BatchNormalization (None, 4, 4, 512) 2,048

Deep Convolutional GAN (DCGAN) | 99

Layer (type) Output shape Param #
LeakyReLU (None, 4, 4, 512) 0

Dropout (None, 4, 4, 512) 0

Conv2D (None, 1, 1, 1) 8,192

Flatten (None, 1) 0

Total params 2,765,312

Trainable params 2,763,520

Non-trainable params 1,792

The Keras code to build the discriminator is provided in Example 4-4.

Example 4-4. The discriminator

discriminator_input = layers.Input(shape=(64, 64, 1))
x = layers.Conv2D(64, kernel_size=4, strides=2, padding="same", use_bias = False)(
 discriminator_input
)
x = layers.LeakyReLU(0.2)(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(
 128, kernel_size=4, strides=2, padding="same", use_bias = False
)(x)
x = layers.BatchNormalization(momentum = 0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(
 256, kernel_size=4, strides=2, padding="same", use_bias = False
)(x)
x = layers.BatchNormalization(momentum = 0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(
 512, kernel_size=4, strides=2, padding="same", use_bias = False
)(x)
x = layers.BatchNormalization(momentum = 0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Dropout(0.3)(x)
x = layers.Conv2D(
 1,
 kernel_size=4,
 strides=1,
 padding="valid",
 use_bias = False,
 activation = 'sigmoid'
)(x)
discriminator_output = layers.Flatten()(x)

100 | Chapter 4: Generative Adversarial Networks

discriminator = models.Model(discriminator_input, discriminator_output)

Define the Input layer of the discriminator (the image).

Stack Conv2D layers on top of each other, with BatchNormalization, LeakyReLU
activation, and Dropout layers sandwiched in between.

Flatten the last convolutional layer—by this point, the shape of the tensor is 1 × 1
× 1, so there is no need for a final Dense layer.

The Keras model that defines the discriminator—a model that takes an input
image and outputs a single number between 0 and 1.

Notice how we use a stride of 2 in some of the Conv2D layers to reduce the spatial
shape of the tensor as it passes through the network (64 in the original image, then
32, 16, 8, 4, and finally 1), while increasing the number of channels (1 in the grayscale
input image, then 64, 128, 256, and finally 512), before collapsing to a single
prediction.

We use a sigmoid activation on the final Conv2D layer to output a number between 0
and 1.

The Generator
Now let’s build the generator. The input to the generator will be a vector drawn from
a multivariate standard normal distribution. The output is an image of the same size
as an image in the original training data.

This description may remind you of the decoder in a variational autoencoder. In fact,
the generator of a GAN fulfills exactly the same purpose as the decoder of a VAE:
converting a vector in the latent space to an image. The concept of mapping from a
latent space back to the original domain is very common in generative modeling, as it
gives us the ability to manipulate vectors in the latent space to change high-level fea‐
tures of images in the original domain.

The architecture of the generator we will be building is shown in Table 4-2.

Table 4-2. Model summary of the generator

Layer (type) Output shape Param #
InputLayer (None, 100) 0

Reshape (None, 1, 1, 100) 0

Conv2DTranspose (None, 4, 4, 512) 819,200

BatchNormalization (None, 4, 4, 512) 2,048

Deep Convolutional GAN (DCGAN) | 101

Layer (type) Output shape Param #
ReLU (None, 4, 4, 512) 0

Conv2DTranspose (None, 8, 8, 256) 2,097,152

BatchNormalization (None, 8, 8, 256) 1,024

ReLU (None, 8, 8, 256) 0

Conv2DTranspose (None, 16, 16, 128) 524,288

BatchNormalization (None, 16, 16, 128) 512

ReLU (None, 16, 16, 128) 0

Conv2DTranspose (None, 32, 32, 64) 131,072

BatchNormalization (None, 32, 32, 64) 256

ReLU (None, 32, 32, 64) 0

Conv2DTranspose (None, 64, 64, 1) 1,024

Total params 3,576,576

Trainable params 3,574,656

Non-trainable params 1,920

The code for building the generator is given in Example 4-5.

Example 4-5. The generator

generator_input = layers.Input(shape=(100,))
x = layers.Reshape((1, 1, 100))(generator_input)
x = layers.Conv2DTranspose(
 512, kernel_size=4, strides=1, padding="valid", use_bias = False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2DTranspose(
 256, kernel_size=4, strides=2, padding="same", use_bias = False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2DTranspose(
 128, kernel_size=4, strides=2, padding="same", use_bias = False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
x = layers.Conv2DTranspose(
 64, kernel_size=4, strides=2, padding="same", use_bias = False
)(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.LeakyReLU(0.2)(x)
generator_output = layers.Conv2DTranspose(
 1,

102 | Chapter 4: Generative Adversarial Networks

 kernel_size=4,
 strides=2,
 padding="same",
 use_bias = False,
 activation = 'tanh'
)(x)
generator = models.Model(generator_input, generator_output)

Define the Input layer of the generator—a vector of length 100.

We use a Reshape layer to give a 1 × 1 × 100 tensor, so that we can start applying
convolutional transpose operations.

We pass this through four Conv2DTranspose layers, with BatchNormalization
and LeakyReLU layers sandwiched in between.

The final Conv2DTranspose layer uses a tanh activation function to transform the
output to the range [–1, 1], to match the original image domain.

The Keras model that defines the generator—a model that accepts a vector of
length 100 and outputs a tensor of shape [64, 64, 1].

Notice how we use a stride of 2 in some of the Conv2DTranspose layers to increase the
spatial shape of the tensor as it passes through the network (1 in the original vector,
then 4, 8, 16, 32, and finally 64), while decreasing the number of channels (512 then
256, 128, 64, and finally 1 to match the grayscale output).

Upsampling Versus Conv2DTranspose
An alternative to using Conv2DTranspose layers is to instead use an UpSampling2D
layer followed by a normal Conv2D layer with stride 1, as shown in Example 4-6.

Example 4-6. Upsampling example

x = layers.UpSampling2D(size = 2)(x)
x = layers.Conv2D(256, kernel_size=4, strides=1, padding="same")(x)

The UpSampling2D layer simply repeats each row and column of its input in order to
double the size. The Conv2D layer with stride 1 then performs the convolution opera‐
tion. It is a similar idea to convolutional transpose, but instead of filling the gaps
between pixels with zeros, upsampling just repeats the existing pixel values.

It has been shown that the Conv2DTranspose method can lead to artifacts, or small
checkerboard patterns in the output image (see Figure 4-4) that spoil the quality of
the output. However, they are still used in many of the most impressive GANs in the

Deep Convolutional GAN (DCGAN) | 103

literature and have proven to be a powerful tool in the deep learning practitioner’s
toolbox.

Figure 4-4. Artifacts when using convolutional transpose layers (source: Odena et al.,
2016)3

Both of these methods—UpSampling2D + Conv2D and Conv2DTranspose—are accepta‐
ble ways to transform back to the original image domain. It really is a case of testing
both methods in your own problem setting and seeing which produces better results.

Training the DCGAN
As we have seen, the architectures of the generator and discriminator in a DCGAN
are very simple and not so different from the VAE models that we looked at in Chap‐
ter 3. The key to understanding GANs lies in understanding the training process for
the generator and discriminator.

We can train the discriminator by creating a training set where some of the images
are real observations from the training set and some are fake outputs from the gener‐
ator. We then treat this as a supervised learning problem, where the labels are 1 for
the real images and 0 for the fake images, with binary cross-entropy as the loss
function.

How should we train the generator? We need to find a way of scoring each generated
image so that it can optimize toward high-scoring images. Luckily, we have a discrim‐
inator that does exactly that! We can generate a batch of images and pass these
through the discriminator to get a score for each image. The loss function for the
generator is then simply the binary cross-entropy between these probabilities and a

104 | Chapter 4: Generative Adversarial Networks

https://distill.pub/2016/deconv-checkerboard
https://distill.pub/2016/deconv-checkerboard

vector of ones, because we want to train the generator to produce images that the dis‐
criminator thinks are real.

Crucially, we must alternate the training of these two networks, making sure that we
only update the weights of one network at a time. For example, during the generator
training process, only the generator’s weights are updated. If we allowed the discrimi‐
nator’s weights to change as well, the discriminator would just adjust so that it is more
likely to predict the generated images to be real, which is not the desired outcome.
We want generated images to be predicted close to 1 (real) because the generator is
strong, not because the discriminator is weak.

A diagram of the training process for the discriminator and generator is shown in
Figure 4-5.

Figure 4-5. Training the DCGAN—gray boxes indicate that the weights are frozen dur‐
ing training

Keras provides us with the ability to create a custom train_step function to imple‐
ment this logic. Example 4-7 shows the full DCGAN model class.

Deep Convolutional GAN (DCGAN) | 105

Example 4-7. Compiling the DCGAN

class DCGAN(models.Model):
 def __init__(self, discriminator, generator, latent_dim):
 super(DCGAN, self).__init__()
 self.discriminator = discriminator
 self.generator = generator
 self.latent_dim = latent_dim

 def compile(self, d_optimizer, g_optimizer):
 super(DCGAN, self).compile()
 self.loss_fn = losses.BinaryCrossentropy()
 self.d_optimizer = d_optimizer
 self.g_optimizer = g_optimizer
 self.d_loss_metric = metrics.Mean(name="d_loss")
 self.g_loss_metric = metrics.Mean(name="g_loss")

 @property
 def metrics(self):
 return [self.d_loss_metric, self.g_loss_metric]

 def train_step(self, real_images):
 batch_size = tf.shape(real_images)[0]
 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim)
)

 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
 generated_images = self.generator(
 random_latent_vectors, training = True
)
 real_predictions = self.discriminator(real_images, training = True)
 fake_predictions = self.discriminator(
 generated_images, training = True
)

 real_labels = tf.ones_like(real_predictions)
 real_noisy_labels = real_labels + 0.1 * tf.random.uniform(
 tf.shape(real_predictions)
)
 fake_labels = tf.zeros_like(fake_predictions)
 fake_noisy_labels = fake_labels - 0.1 * tf.random.uniform(
 tf.shape(fake_predictions)
)

 d_real_loss = self.loss_fn(real_noisy_labels, real_predictions)
 d_fake_loss = self.loss_fn(fake_noisy_labels, fake_predictions)
 d_loss = (d_real_loss + d_fake_loss) / 2.0

 g_loss = self.loss_fn(real_labels, fake_predictions)

 gradients_of_discriminator = disc_tape.gradient(

106 | Chapter 4: Generative Adversarial Networks

 d_loss, self.discriminator.trainable_variables
)
 gradients_of_generator = gen_tape.gradient(
 g_loss, self.generator.trainable_variables
)

 self.d_optimizer.apply_gradients(
 zip(gradients_of_discriminator, discriminator.trainable_variables)
)
 self.g_optimizer.apply_gradients(
 zip(gradients_of_generator, generator.trainable_variables)
)

 self.d_loss_metric.update_state(d_loss)
 self.g_loss_metric.update_state(g_loss)

 return {m.name: m.result() for m in self.metrics}

dcgan = DCGAN(
 discriminator=discriminator, generator=generator, latent_dim=100
)

dcgan.compile(
 d_optimizer=optimizers.Adam(
 learning_rate=0.0002, beta_1 = 0.5, beta_2 = 0.999
),
 g_optimizer=optimizers.Adam(
 learning_rate=0.0002, beta_1 = 0.5, beta_2 = 0.999
),
)

dcgan.fit(train, epochs=300)

The loss function for the generator and discriminator is BinaryCrossentropy.

To train the network, first sample a batch of vectors from a multivariate standard
normal distribution.

Next, pass these through the generator to produce a batch of generated images.

Now ask the discriminator to predict the realness of the batch of real images…

…and the batch of generated images.

The discriminator loss is the average binary cross-entropy across both the real
images (with label 1) and the fake images (with label 0).

The generator loss is the binary cross-entropy between the discriminator predic‐
tions for the generated images and a label of 1.

Deep Convolutional GAN (DCGAN) | 107

Update the weights of the discriminator and generator separately.

The discriminator and generator are constantly fighting for dominance, which can
make the DCGAN training process unstable. Ideally, the training process will find an
equilibrium that allows the generator to learn meaningful information from the dis‐
criminator and the quality of the images will start to improve. After enough epochs,
the discriminator tends to end up dominating, as shown in Figure 4-6, but this may
not be a problem as the generator may have already learned to produce sufficiently
high-quality images by this point.

Figure 4-6. Loss and accuracy of the discriminator and generator during training

Adding Noise to the Labels

A useful trick when training GANs is to add a small amount of ran‐
dom noise to the training labels. This helps to improve the stability
of the training process and sharpen the generated images. This
label smoothing acts as way to tame the discriminator, so that it is
presented with a more challenging task and doesn’t overpower the
generator.

108 | Chapter 4: Generative Adversarial Networks

Analysis of the DCGAN
By observing images produced by the generator at specific epochs during training
(Figure 4-7), it is clear that the generator is becoming increasingly adept at producing
images that could have been drawn from the training set.

Figure 4-7. Output from the generator at specific epochs during training

It is somewhat miraculous that a neural network is able to convert random noise into
something meaningful. It is worth remembering that we haven’t provided the model
with any additional features beyond the raw pixels, so it has to work out high-level
concepts such as how to draw shadows, cuboids, and circles entirely by itself.

Another requirement of a successful generative model is that it doesn’t only repro‐
duce images from the training set. To test this, we can find the image from the
training set that is closest to a particular generated example. A good measure for dis‐
tance is the L1 distance, defined as:

def compare_images(img1, img2):
 return np.mean(np.abs(img1 - img2))

Figure 4-8 shows the closest observations in the training set for a selection of gener‐
ated images. We can see that while there is some degree of similarity between the gen‐
erated images and the training set, they are not identical. This shows that the
generator has understood these high-level features and can generate examples that
are distinct from those it has already seen.

Deep Convolutional GAN (DCGAN) | 109

Figure 4-8. Closest matches of generated images from the training set

GAN Training: Tips and Tricks
While GANs are a major breakthrough for generative modeling, they are also notori‐
ously difficult to train. We will explore some of the most common problems and
challenges encountered when training GANs in this section, alongside potential solu‐
tions. In the next section, we will look at some more fundamental adjustments to the
GAN framework that we can make to remedy many of these problems.

Discriminator overpowers the generator
If the discriminator becomes too strong, the signal from the loss function becomes
too weak to drive any meaningful improvements in the generator. In the worst-case
scenario, the discriminator perfectly learns to separate real images from fake images
and the gradients vanish completely, leading to no training whatsoever, as can be seen
in Figure 4-9.

110 | Chapter 4: Generative Adversarial Networks

Figure 4-9. Example output when the discriminator overpowers the generator

If you find your discriminator loss function collapsing, you need to find ways to
weaken the discriminator. Try the following suggestions:

• Increase the rate parameter of the Dropout layers in the discriminator to
dampen the amount of information that flows through the network.

• Reduce the learning rate of the discriminator.
• Reduce the number of convolutional filters in the discriminator.
• Add noise to the labels when training the discriminator.
• Flip the labels of some images at random when training the discriminator.

Generator overpowers the discriminator
If the discriminator is not powerful enough, the generator will find ways to easily
trick the discriminator with a small sample of nearly identical images. This is known
as mode collapse.

For example, suppose we were to train the generator over several batches without
updating the discriminator in between. The generator would be inclined to find a sin‐
gle observation (also known as a mode) that always fools the discriminator and would
start to map every point in the latent input space to this image. Moreover, the gradi‐
ents of the loss function would collapse to near 0, so it wouldn’t be able to recover
from this state.

Even if we then tried to retrain the discriminator to stop it being fooled by this one
point, the generator would simply find another mode that fools the discriminator,
since it has already become numb to its input and therefore has no incentive to diver‐
sify its output.

Deep Convolutional GAN (DCGAN) | 111

The effect of mode collapse can be seen in Figure 4-10.

Figure 4-10. Example of mode collapse when the generator overpowers the discriminator

If you find that your generator is suffering from mode collapse, you can try strength‐
ening the discriminator using the opposite suggestions to those listed in the previous
section. Also, you can try reducing the learning rate of both networks and increasing
the batch size.

Uninformative loss
Since the deep learning model is compiled to minimize the loss function, it would be
natural to think that the smaller the loss function of the generator, the better the qual‐
ity of the images produced. However, since the generator is only graded against the
current discriminator and the discriminator is constantly improving, we cannot com‐
pare the loss function evaluated at different points in the training process. Indeed, in
Figure 4-6, the loss function of the generator actually increases over time, even
though the quality of the images is clearly improving. This lack of correlation
between the generator loss and image quality sometimes makes GAN training diffi‐
cult to monitor.

Hyperparameters
As we have seen, even with simple GANs, there are a large number of hyperparame‐
ters to tune. As well as the overall architecture of both the discriminator and the gen‐
erator, there are the parameters that govern batch normalization, dropout, learning
rate, activation layers, convolutional filters, kernel size, striding, batch size, and latent
space size to consider. GANs are highly sensitive to very slight changes in all of these
parameters, and finding a set of parameters that works is often a case of educated trial
and error, rather than following an established set of guidelines.

112 | Chapter 4: Generative Adversarial Networks

This is why it is important to understand the inner workings of the GAN and know
how to interpret the loss function—so that you can identify sensible adjustments to
the hyperparameters that might improve the stability of the model.

Tackling GAN challenges
In recent years, several key advancements have drastically improved the overall sta‐
bility of GAN models and diminished the likelihood of some of the problems listed
earlier, such as mode collapse.

In the remainder of this chapter we shall examine the Wasserstein GAN with Gradi‐
ent Penalty (WGAN-GP), which makes several key adjustments to the GAN frame‐
work we have explored thus far to improve the stability and quality of the image
generation process.

Wasserstein GAN with Gradient Penalty (WGAN-GP)
In this section we will build a WGAN-GP to generate faces from the CelebA dataset
that we utilized in Chapter 3.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/04_gan/02_wgan_gp/wgan_gp.ipynb in the
book repository.
The code has been adapted from the excellent WGAN-GP tutorial
created by Aakash Kumar Nain, available on the Keras website.

The Wasserstein GAN (WGAN), introduced in a 2017 paper by Arjovsky et al.,4 was
one of the first big steps toward stabilizing GAN training. With a few changes, the
authors were able to show how to train GANs that have the following two properties
(quoted from the paper):

• A meaningful loss metric that correlates with the generator’s convergence and
sample quality

• Improved stability of the optimization process

Specifically, the paper introduces the Wasserstein loss function for both the discrimi‐
nator and the generator. Using this loss function instead of binary cross-entropy
results in a more stable convergence of the GAN.

In this section we’ll define the Wasserstein loss function and then see what other
changes we need to make to the model architecture and training process to incorpo‐
rate our new loss function.

Wasserstein GAN with Gradient Penalty (WGAN-GP) | 113

https://oreil.ly/dHYbC

You can find the full model class in the Jupyter notebook located at chapter05/wgan-
gp/faces/train.ipynb in the book repository.

Wasserstein Loss
Let’s first remind ourselves of the definition of binary cross-entropy loss—the func‐
tion that we are currently using to train the discriminator and generator of the GAN
(Equation 4-1).

Equation 4-1. Binary cross-entropy loss

− 1
n ∑

i = 1

n
yi log pi + 1 − yi log 1 − pi

To train the GAN discriminator D, we calculate the loss when comparing predictions
for real images pi = D xi to the response yi = 1 and predictions for generated images
pi = D G zi to the response yi = 0. Therefore, for the GAN discriminator, minimiz‐
ing the loss function can be written as shown in Equation 4-2.

Equation 4-2. GAN discriminator loss minimization

min
D

− �x ∼ pX
log D x + �z ∼ pZ

log 1 − D G z

To train the GAN generator G, we calculate the loss when comparing predictions for
generated images pi = D G zi to the response yi = 1. Therefore, for the GAN gener‐
ator, minimizing the loss function can be written as shown in Equation 4-3.

Equation 4-3. GAN generator loss minimization

min
G

− �z ∼ pZ
log D G z

Now let’s compare this to the Wasserstein loss function.

First, the Wasserstein loss requires that we use yi = 1 and yi = –1 as labels, rather than
1 and 0. We also remove the sigmoid activation from the final layer of the discrimina‐
tor, so that predictions pi are no longer constrained to fall in the range [0, 1]
but instead can now be any number in the range (−∞, ∞). For this reason, the
discriminator in a WGAN is usually referred to as a critic that outputs a score rather
than a probability.

The Wasserstein loss function is defined as follows:

114 | Chapter 4: Generative Adversarial Networks

− 1
n ∑

i = 1

n
yipi

To train the WGAN critic D, we calculate the loss when comparing predictions for
real images pi = D xi to the response yi = 1 and predictions for generated images
pi = D G zi to the response yi = –1. Therefore, for the WGAN critic, minimizing
the loss function can be written as follows:

min
D

− �x ∼ pX
D x − �z ∼ pZ

D G z

In other words, the WGAN critic tries to maximize the difference between its predic‐
tions for real images and generated images.

To train the WGAN generator, we calculate the loss when comparing predictions for
generated images pi = D G zi to the response yi = 1. Therefore, for the WGAN gen‐
erator, minimizing the loss function can be written as follows:

min
G

− �z ∼ pZ
D G z

In other words, the WGAN generator tries to produce images that are scored as
highly as possible by the critic (i.e., the critic is fooled into thinking they are real).

The Lipschitz Constraint
It may surprise you that we are now allowing the critic to output any number in the
range (−∞, ∞), rather than applying a sigmoid function to restrict the output to the
usual [0, 1] range. The Wasserstein loss can therefore be very large, which is unset‐
tling—usually, large numbers in neural networks are to be avoided!

In fact, the authors of the WGAN paper show that for the Wasserstein loss function
to work, we also need to place an additional constraint on the critic. Specifically, it is
required that the critic is a 1-Lipschitz continuous function. Let’s pick this apart to
understand what it means in more detail.

The critic is a function D that converts an image into a prediction. We say that this
function is 1-Lipschitz if it satisfies the following inequality for any two input images,
x1 and x2:

D x1 − D x2
x1 − x2

≤ 1

Wasserstein GAN with Gradient Penalty (WGAN-GP) | 115

Here, x1 − x2 is the average pixelwise absolute difference between two images and
D x1 − D x2 is the absolute difference between the critic predictions. Essentially,

we require a limit on the rate at which the predictions of the critic can change
between two images (i.e., the absolute value of the gradient must be at most 1 every‐
where). We can see this applied to a Lipschitz continuous 1D function in Figure 4-11
—at no point does the line enter the cone, wherever you place the cone on the line. In
other words, there is a limit on the rate at which the line can rise or fall at any point.

Figure 4-11. A Lipschitz continuous function (source: Wikipedia)

For those who want to delve deeper into the mathematical rationale
behind why the Wasserstein loss only works when this constraint is
enforced, Jonathan Hui offers an excellent explanation.

Enforcing the Lipschitz Constraint
In the original WGAN paper, the authors show how it is possible to enforce the Lip‐
schitz constraint by clipping the weights of the critic to lie within a small range,
[–0.01, 0.01], after each training batch.

One of the criticisms of this approach is that the capacity of the critic to learn is
greatly diminished, since we are clipping its weights. In fact, even in the original
WGAN paper the authors write, “Weight clipping is a clearly terrible way to enforce a
Lipschitz constraint.” A strong critic is pivotal to the success of a WGAN, since
without accurate gradients, the generator cannot learn how to adapt its weights to
produce better samples.

Therefore, other researchers have looked for alternative ways to enforce the Lipschitz
constraint and improve the capacity of the WGAN to learn complex features. One
such method is the Wasserstein GAN with Gradient Penalty.

In the paper introducing this variant,5 the authors show how the Lipschitz constraint
can be enforced directly by including a gradient penalty term in the loss function for

116 | Chapter 4: Generative Adversarial Networks

https://oreil.ly/Ki7ds
https://oreil.ly/devy5

the critic that penalizes the model if the gradient norm deviates from 1. This results
in a far more stable training process.

In the next section, we’ll see how to build this extra term into the loss function for our
critic.

The Gradient Penalty Loss
Figure 4-12 is a diagram of the training process for the critic of a WGAN-GP. If we
compare this to the original discriminator training process from Figure 4-5, we can
see that the key addition is the gradient penalty loss included as part of the overall
loss function, alongside the Wasserstein loss from the real and fake images.

Figure 4-12. The WGAN-GP critic training process

The gradient penalty loss measures the squared difference between the norm of the
gradient of the predictions with respect to the input images and 1. The model will
naturally be inclined to find weights that ensure the gradient penalty term is mini‐
mized, thereby encouraging the model to conform to the Lipschitz constraint.

Wasserstein GAN with Gradient Penalty (WGAN-GP) | 117

It is intractable to calculate this gradient everywhere during the training process, so
instead the WGAN-GP evaluates the gradient at only a handful of points. To ensure a
balanced mix, we use a set of interpolated images that lie at randomly chosen points
along lines connecting the batch of real images to the batch of fake images pairwise,
as shown in Figure 4-13.

Figure 4-13. Interpolating between images

In Example 4-8, we show how the gradient penalty is calculated in code.

Example 4-8. The gradient penalty loss function

def gradient_penalty(self, batch_size, real_images, fake_images):
 alpha = tf.random.normal([batch_size, 1, 1, 1], 0.0, 1.0)
 diff = fake_images - real_images
 interpolated = real_images + alpha * diff

 with tf.GradientTape() as gp_tape:
 gp_tape.watch(interpolated)
 pred = self.critic(interpolated, training=True)

 grads = gp_tape.gradient(pred, [interpolated])[0]
 norm = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=[1, 2, 3]))
 gp = tf.reduce_mean((norm - 1.0) ** 2)
 return gp

Each image in the batch gets a random number, between 0 and 1, stored as the
vector alpha.

A set of interpolated images is calculated.

The critic is asked to score each of these interpolated images.

The gradient of the predictions is calculated with respect to the input images.

118 | Chapter 4: Generative Adversarial Networks

The L2 norm of this vector is calculated.

The function returns the average squared distance between the L2 norm and 1.

Training the WGAN-GP
A key benefit of using the Wasserstein loss function is that we no longer need to
worry about balancing the training of the critic and the generator—in fact, when
using the Wasserstein loss, the critic must be trained to convergence before updating
the generator, to ensure that the gradients for the generator update are accurate. This
is in contrast to a standard GAN, where it is important not to let the discriminator get
too strong.

Therefore, with Wasserstein GANs, we can simply train the critic several times
between generator updates, to ensure it is close to convergence. A typical ratio used is
three to five critic updates per generator update.

We have now introduced both of the key concepts behind the WGAN-GP—the Was‐
serstein loss and the gradient penalty term that is included in the critic loss function.
The training step of the WGAN model that incorporates all of these ideas is shown in
Example 4-9.

Example 4-9. Training the WGAN-GP

def train_step(self, real_images):
 batch_size = tf.shape(real_images)[0]

 for i in range(3):
 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim)
)

 with tf.GradientTape() as tape:
 fake_images = self.generator(
 random_latent_vectors, training = True
)
 fake_predictions = self.critic(fake_images, training = True)
 real_predictions = self.critic(real_images, training = True)

 c_wass_loss = tf.reduce_mean(fake_predictions) - tf.reduce_mean(
 real_predictions
)
 c_gp = self.gradient_penalty(
 batch_size, real_images, fake_images
)
 c_loss = c_wass_loss + c_gp * self.gp_weight

 c_gradient = tape.gradient(c_loss, self.critic.trainable_variables)

Wasserstein GAN with Gradient Penalty (WGAN-GP) | 119

 self.c_optimizer.apply_gradients(
 zip(c_gradient, self.critic.trainable_variables)
)

 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim)
)
 with tf.GradientTape() as tape:
 fake_images = self.generator(random_latent_vectors, training=True)
 fake_predictions = self.critic(fake_images, training=True)
 g_loss = -tf.reduce_mean(fake_predictions)

 gen_gradient = tape.gradient(g_loss, self.generator.trainable_variables)
 self.g_optimizer.apply_gradients(
 zip(gen_gradient, self.generator.trainable_variables)
)

 self.c_loss_metric.update_state(c_loss)
 self.c_wass_loss_metric.update_state(c_wass_loss)
 self.c_gp_metric.update_state(c_gp)
 self.g_loss_metric.update_state(g_loss)

 return {m.name: m.result() for m in self.metrics}

Perform three critic updates.

Calculate the Wasserstein loss for the critic—the difference between the average
prediction for the fake images and the real images.

Calculate the gradient penalty term (see Example 4-8).

The critic loss function is a weighted sum of the Wasserstein loss and the gradi‐
ent penalty.

Update the weights of the critic.

Calculate the Wasserstein loss for the generator.

Update the weights of the generator.

Batch Normalization in a WGAN-GP

One last consideration we should note before training a WGAN-
GP is that batch normalization shouldn’t be used in the critic. This
is because batch normalization creates correlation between images
in the same batch, which makes the gradient penalty loss less effec‐
tive. Experiments have shown that WGAN-GPs can still produce
excellent results even without batch normalization in the critic.

120 | Chapter 4: Generative Adversarial Networks

We have now covered all of the key differences between a standard GAN and a
WGAN-GP. To recap:

• A WGAN-GP uses the Wasserstein loss.
• The WGAN-GP is trained using labels of 1 for real and –1 for fake.
• There is no sigmoid activation in the final layer of the critic.
• Include a gradient penalty term in the loss function for the critic.
• Train the critic multiple times for each update of the generator.
• There are no batch normalization layers in the critic.

Analysis of the WGAN-GP
Let’s take a look at some example outputs from the generator, after 25 epochs of train‐
ing (Figure 4-14).

Figure 4-14. WGAN-GP face examples

The model has learned the significant high-level attributes of a face, and there is no
sign of mode collapse.

We can also see how the loss functions of the model evolve over time (Figure 4-15)—
the loss functions of both the critic and generator are highly stable and convergent.

If we compare the WGAN-GP output to the VAE output from the previous chapter,
we can see that the GAN images are generally sharper—especially the definition
between the hair and the background. This is true in general; VAEs tend to produce
softer images that blur color boundaries, whereas GANs are known to produce
sharper, more well-defined images.

Wasserstein GAN with Gradient Penalty (WGAN-GP) | 121

Figure 4-15. WGAN-GP loss curves: the critic loss (epoch_c_loss) is broken down into
the Wasserstein loss (epoch_c_wass) and the gradient penalty loss (epoch_c_gp)

It is also true that GANs are generally more difficult to train than VAEs and take
longer to reach a satisfactory quality. However, many state-of-the-art generative mod‐
els today are GAN-based, as the rewards for training large-scale GANs on GPUs over
a longer period of time are significant.

Conditional GAN (CGAN)
So far in this chapter, we have built GANs that are able to generate realistic images
from a given training set. However, we haven’t been able to control the type of image
we would like to generate—for example, a male or female face, or a large or small
brick. We can sample a random point from the latent space, but we do not have the
ability to easily understand what kind of image will be produced given the choice of
latent variable.

In the final part of this chapter we shall turn our attention to building a GAN where
we are able to control the output—a so called conditional GAN. This idea, first intro‐
duced in “Conditional Generative Adversarial Nets” by Mirza and Osindero in 2014,6
is a relatively simple extension to the GAN architecture.

122 | Chapter 4: Generative Adversarial Networks

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/04_gan/03_cgan/cgan.ipynb in the book
repository.
The code has been adapted from the excellent CGAN tutorial cre‐
ated by Sayak Paul, available on the Keras website.

CGAN Architecture
In this example, we will condition our CGAN on the blond hair attribute of the faces
dataset. That is, we will be able to explicitly specify whether we want to generate an
image with blond hair or not. This label is provided as part of the CelebA dataset.

The high-level CGAN architecture is shown in Figure 4-16.

Figure 4-16. Inputs and outputs of the generator and critic in a CGAN

The key difference between a standard GAN and a CGAN is that in a CGAN we pass
in extra information to the generator and critic relating to the label. In the generator,
this is simply appended to the latent space sample as a one-hot encoded vector. In the
critic, we add the label information as extra channels to the RGB image. We do this
by repeating the one-hot encoded vector to fill the same shape as the input images.

CGANs work because the critic now has access to extra information regarding the
content of the image, so the generator must ensure that its output agrees with the
provided label, in order to keep fooling the critic. If the generator produced perfect

Conditional GAN (CGAN) | 123

https://oreil.ly/Ey11I

images that disagreed with the image label the critic would be able to tell that they
were fake simply because the images and labels did not match.

In our example, our one-hot encoded label will have length 2,
because there are two classes (Blonde and Not Blond). However,
you can have as many labels as you like—for example, you could
train a CGAN on the Fashion-MNIST dataset to output one of the
10 different fashion items, by incorporating a one-hot encoded
label vector of length 10 into the input of the generator and 10
additional one-hot encoded label channels into the input of the
critic.

The only change we need to make to the architecture is to concatenate the label infor‐
mation to the existing inputs of the generator and the critic, as shown in
Example 4-10.

Example 4-10. Input layers in the CGAN

critic_input = layers.Input(shape=(64, 64, 3))
label_input = layers.Input(shape=(64, 64, 2))
x = layers.Concatenate(axis = -1)([critic_input, label_input])
...
generator_input = layers.Input(shape=(32,))
label_input = layers.Input(shape=(2,))
x = layers.Concatenate(axis = -1)([generator_input, label_input])
x = layers.Reshape((1,1, 34))(x)
...

The image channels and label channels are passed in separately to the critic and
concatenated.

The latent vector and the label classes are passed in separately to the generator
and concatenated before being reshaped.

Training the CGAN
We must also make some changes to the train_step of the CGAN to match the new
input formats of the generator and critic, as shown in Example 4-11.

Example 4-11. The train_step of the CGAN

def train_step(self, data):
 real_images, one_hot_labels = data

 image_one_hot_labels = one_hot_labels[:, None, None, :]
 image_one_hot_labels = tf.repeat(

124 | Chapter 4: Generative Adversarial Networks

 image_one_hot_labels, repeats=64, axis = 1
)
 image_one_hot_labels = tf.repeat(
 image_one_hot_labels, repeats=64, axis = 2
)

 batch_size = tf.shape(real_images)[0]

 for i in range(self.critic_steps):
 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim)
)

 with tf.GradientTape() as tape:
 fake_images = self.generator(
 [random_latent_vectors, one_hot_labels], training = True
)

 fake_predictions = self.critic(
 [fake_images, image_one_hot_labels], training = True
)
 real_predictions = self.critic(
 [real_images, image_one_hot_labels], training = True
)

 c_wass_loss = tf.reduce_mean(fake_predictions) - tf.reduce_mean(
 real_predictions
)
 c_gp = self.gradient_penalty(
 batch_size, real_images, fake_images, image_one_hot_labels
)
 c_loss = c_wass_loss + c_gp * self.gp_weight

 c_gradient = tape.gradient(c_loss, self.critic.trainable_variables)
 self.c_optimizer.apply_gradients(
 zip(c_gradient, self.critic.trainable_variables)
)

 random_latent_vectors = tf.random.normal(
 shape=(batch_size, self.latent_dim)
)

 with tf.GradientTape() as tape:
 fake_images = self.generator(
 [random_latent_vectors, one_hot_labels], training=True
)
 fake_predictions = self.critic(
 [fake_images, image_one_hot_labels], training=True
)
 g_loss = -tf.reduce_mean(fake_predictions)

 gen_gradient = tape.gradient(g_loss, self.generator.trainable_variables)

Conditional GAN (CGAN) | 125

 self.g_optimizer.apply_gradients(
 zip(gen_gradient, self.generator.trainable_variables)
)

The images and labels are unpacked from the input data.

The one-hot encoded vectors are expanded to one-hot encoded images that have
the same spatial size as the input images (64 × 64).

The generator is now fed with a list of two inputs—the random latent vectors and
the one-hot encoded label vectors.

The critic is now fed with a list of two inputs—the fake/real images and the one-
hot encoded label channels.

The gradient penalty function also requires the one-hot encoded label channels
to be passed through as it uses the critic.

The changes made to the critic training step also apply to the generator training
step.

Analysis of the CGAN
We can control the CGAN output by passing a particular one-hot encoded label into
the input of the generator. For example, to generate a face with nonblond hair, we
pass in the vector [1, 0]. To generate a face with blond hair, we pass in the vector
[0, 1].

The output from the CGAN can be seen in Figure 4-17. Here, we keep the random
latent vectors the same across the examples and change only the conditional label
vector. It is clear that the CGAN has learned to use the label vector to control only the
hair color attribute of the images. It is impressive that the rest of the image barely
changes—this is proof that GANs are able to organize points in the latent space in
such a way that individual features can be decoupled from each other.

126 | Chapter 4: Generative Adversarial Networks

Figure 4-17. Output from the CGAN when the Blond and Not Blond vectors are
appended to the latent sample

If labels are available for your dataset, it is generally a good idea to
include them as input to your GAN even if you do not necessarily
need to condition the generated output on the label, as they tend to
improve the quality of images generated. You can think of the
labels as just a highly informative extension to the pixel input.

Summary
In this chapter we explored three different generative adversarial network (GAN)
models: the deep convolutional GAN (DCGAN), the more sophisticated Wasserstein
GAN with Gradient Penalty (WGAN-GP), and the conditional GAN (CGAN).

All GANs are characterized by a generator versus discriminator (or critic) architec‐
ture, with the discriminator trying to “spot the difference” between real and fake
images and the generator aiming to fool the discriminator. By balancing how these
two adversaries are trained, the GAN generator can gradually learn how to produce
similar observations to those in the training set.

We first saw how to train a DCGAN to generate images of toy bricks. It was able to
learn how to realistically represent 3D objects as images, including accurate represen‐
tations of shadow, shape, and texture. We also explored the different ways in which
GAN training can fail, including mode collapse and vanishing gradients.

Summary | 127

We then explored how the Wasserstein loss function remedied many of these prob‐
lems and made GAN training more predictable and reliable. The WGAN-GP places
the 1-Lipschitz requirement at the heart of the training process by including a term in
the loss function to pull the gradient norm toward 1.

We applied the WGAN-GP to the problem of face generation and saw how by simply
choosing points from a standard normal distribution, we can generate new faces. This
sampling process is very similar to a VAE, though the faces produced by a GAN are
quite different—often sharper, with greater distinction between different parts of the
image.

Finally, we built a CGAN that allowed us to control the type of image that is gener‐
ated. This works by passing in the label as input to the critic and generator, thereby
giving the network the additional information it needs in order to condition the gen‐
erated output on a given label.

Overall, we have seen how the GAN framework is extremely flexible and able to be
adapted to many interesting problem domains. In particular, GANs have driven sig‐
nificant progress in the field of image generation with many interesting extensions to
the underlying framework, as we shall see in Chapter 10.

In the next chapter, we will explore a different family of generative model that is ideal
for modeling sequential data—autoregressive models.

References
1. Ian J. Goodfellow et al., “Generative Adversarial Nets,” June 10, 2014, https://
arxiv.org/abs/1406.2661

2. Alec Radford et al., “Unsupervised Representation Learning with Deep Convolu‐
tional Generative Adversarial Networks,” January 7, 2016, https://arxiv.org/abs/
1511.06434.

3. Augustus Odena et al., “Deconvolution and Checkerboard Artifacts,” October 17,
2016, https://distill.pub/2016/deconv-checkerboard.

4. Martin Arjovsky et al., “Wasserstein GAN,” January 26, 2017, https://arxiv.org/abs/
1701.07875.

5. Ishaan Gulrajani et al., “Improved Training of Wasserstein GANs,” March 31, 2017,
https://arxiv.org/abs/1704.00028.

6. Mehdi Mirza and Simon Osindero, “Conditional Generative Adversarial Nets,”
November 6, 2014, https://arxiv.org/abs/1411.1784.

128 | Chapter 4: Generative Adversarial Networks

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://distill.pub/2016/deconv-checkerboard
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1411.1784

CHAPTER 5

Autoregressive Models

Chapter Goals
In this chapter you will:

• Learn why autoregressive models are well suited to generating sequential data
such as text.

• Learn how to process and tokenize text data.
• Learn about the architectural design of recurrent neural networks (RNNs).
• Build and train a long short-term memory network (LSTM) from scratch using

Keras.
• Use the LSTM to generate new text.
• Learn about other variations of RNNs, including gated recurrent units (GRUs)

and bidirectional cells.
• Understand how image data can be treated as a sequence of pixels.
• Learn about the architectural design of a PixelCNN.
• Build a PixelCNN from scratch using Keras.
• Use the PixelCNN to generate images.

So far, we have explored two different families of generative models that have both
involved latent variables—variational autoencoders (VAEs) and generative adversarial
networks (GANs). In both cases, a new variable is introduced with a distribution that
is easy to sample from and the model learns how to decode this variable back into the
original domain.

129

We will now turn our attention to autoregressive models—a family of models that sim‐
plify the generative modeling problem by treating it as a sequential process. Autore‐
gressive models condition predictions on previous values in the sequence, rather than
on a latent random variable. Therefore, they attempt to explicitly model the data-
generating distribution rather than an approximation of it (as in the case of VAEs).

In this chapter we shall explore two different autoregressive models: long short-term
memory networks and PixelCNN. We will apply the LSTM to text data and the Pix‐
elCNN to image data. We will cover another highly successful autoregressive model,
the Transformer, in detail in Chapter 9.

Introduction
To understand how an LSTM works, we will first pay a visit to a strange prison, where
the inmates have formed a literary society…

The Literary Society for Troublesome Miscreants
Edward Sopp hated his job as a prison warden. He spent his days watching over the
prisoners and had no time to follow his true passion of writing short stories. He was
running low on inspiration and needed to find a way to generate new content.

One day, he came up with a brilliant idea that would allow him to produce new works
of fiction in his style, while also keeping the inmates occupied—he would get the
inmates to collectively write the stories for him! He branded the new society the Liter‐
ary Society for Troublesome Miscreants, or LSTM (Figure 5-1).

Figure 5-1. A large cell of prisoners reading books (created with Midjourney)

130 | Chapter 5: Autoregressive Models

https://midjourney.com

The prison is particularly strange because it only consists of one large cell, containing
256 prisoners. Each prisoner has an opinion on how Edward’s current story should
continue. Every day, Edward posts the latest word from his novel into the cell, and it
is the job of the inmates to individually update their opinions on the current state of
the story, based on the new word and the opinions of the inmates from the previous
day.

Each prisoner uses a specific thought process to update their own opinion, which
involves balancing information from the new incoming word and other prisoners’
opinions with their own prior beliefs. First, they decide how much of yesterday’s
opinion they wish to forget, taking into account the information from the new word
and the opinions of other prisoners in the cell. They also use this information to form
new thoughts and decide to what extent they want to mix these into the old beliefs
that they have chosen to carry forward from the previous day. This then forms the
prisoner’s new opinion for the day.

However, the prisoners are secretive and don’t always tell their fellow inmates all of
their opinions. They each also use the latest chosen word and the opinions of the
other inmates to decide how much of their opinion they wish to disclose.

When Edward wants the cell to generate the next word in the sequence, the prisoners
each tell their disclosable opinions to the guard at the door, who combines this infor‐
mation to ultimately decide on the next word to be appended to the end of the novel.
This new word is then fed back into the cell, and the process continues until the full
story is completed.

To train the inmates and the guard, Edward feeds short sequences of words that he
has written previously into the cell and monitors whether the inmates’ chosen next
word is correct. He updates them on their accuracy, and gradually they begin to learn
how to write stories in his own unique style.

After many iterations of this process, Edward finds that the system has become quite
accomplished at generating realistic-looking text. Satisfied with the results, he pub‐
lishes a collection of the generated tales in his new book, entitled E. Sopp’s Fables.

The story of Mr. Sopp and his crowdsourced fables is an analogy for one of the most
notorious autoregressive techniques for sequential data such as text: the long short-
term memory network.

Long Short-Term Memory Network (LSTM)
An LSTM is a particular type of recurrent neural network (RNN). RNNs contain a
recurrent layer (or cell) that is able to handle sequential data by making its own out‐
put at a particular timestep form part of the input to the next timestep.

Long Short-Term Memory Network (LSTM) | 131

When RNNs were first introduced, recurrent layers were very simple and consisted
solely of a tanh operator that ensured that the information passed between timesteps
was scaled between –1 and 1. However, this approach was shown to suffer from the
vanishing gradient problem and didn’t scale well to long sequences of data.

LSTM cells were first introduced in 1997 in a paper by Sepp Hochreiter and Jürgen
Schmidhuber.1 In the paper, the authors describe how LSTMs do not suffer from the
same vanishing gradient problem experienced by vanilla RNNs and can be trained on
sequences that are hundreds of timesteps long. Since then, the LSTM architecture has
been adapted and improved, and variations such as gated recurrent units (discussed
later in this chapter) are now widely utilized and available as layers in Keras.

LSTMs have been applied to a wide range of problems involving sequential data,
including time series forecasting, sentiment analysis, and audio classification. In this
chapter we will be using LSTMs to tackle the challenge of text generation.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/05_autoregressive/01_lstm/lstm.ipynb in the
book repository.

The Recipes Dataset
We’ll be using the Epicurious Recipes dataset that is available through Kaggle. This is
a set of over 20,000 recipes, with accompanying metadata such as nutritional infor‐
mation and ingredient lists.

You can download the dataset by running the Kaggle dataset downloader script in the
book repository, as shown in Example 5-1. This will save the recipes and accompany‐
ing metadata locally to the /data folder.

Example 5-1. Downloading the Epicurious Recipe dataset

bash scripts/download_kaggle_data.sh hugodarwood epirecipes

Example 5-2 shows how the data can be loaded and filtered so that only recipes with a
title and a description remain. An example of a recipe text string is given in
Example 5-3.

Example 5-2. Loading the data

with open('/app/data/epirecipes/full_format_recipes.json') as json_data:
 recipe_data = json.load(json_data)

filtered_data = [

132 | Chapter 5: Autoregressive Models

https://oreil.ly/laNUt

 'Recipe for ' + x['title']+ ' | ' + ' '.join(x['directions'])
 for x in recipe_data
 if 'title' in x
 and x['title'] is not None
 and 'directions' in x
 and x['directions'] is not None
]

Example 5-3. A text string from the Recipes dataset

Recipe for Ham Persillade with Mustard Potato Salad and Mashed Peas | Chop enough
parsley leaves to measure 1 tablespoon; reserve. Chop remaining leaves and stems
and simmer with broth and garlic in a small saucepan, covered, 5 minutes.
Meanwhile, sprinkle gelatin over water in a medium bowl and let soften 1 minute.
Strain broth through a fine-mesh sieve into bowl with gelatin and stir to dissolve.
Season with salt and pepper. Set bowl in an ice bath and cool to room temperature,
stirring. Toss ham with reserved parsley and divide among jars. Pour gelatin on top
and chill until set, at least 1 hour. Whisk together mayonnaise, mustard, vinegar,
1/4 teaspoon salt, and 1/4 teaspoon pepper in a large bowl. Stir in celery,
cornichons, and potatoes. Pulse peas with marjoram, oil, 1/2 teaspoon pepper, and
1/4 teaspoon salt in a food processor to a coarse mash. Layer peas, then potato
salad, over ham.

Before taking a look at how to build an LSTM network in Keras, we must first take a
quick detour to understand the structure of text data and how it is different from the
image data that we have seen so far in this book.

Working with Text Data
There are several key differences between text and image data that mean that many of
the methods that work well for image data are not so readily applicable to text data.
In particular:

• Text data is composed of discrete chunks (either characters or words), whereas
pixels in an image are points in a continuous color spectrum. We can easily make
a green pixel more blue, but it is not obvious how we should go about making the
word cat more like the word dog, for example. This means we can easily apply
backpropagation to image data, as we can calculate the gradient of our loss func‐
tion with respect to individual pixels to establish the direction in which pixel col‐
ors should be changed to minimize the loss. With discrete text data, we can’t
obviously apply backpropagation in the same way, so we need to find a way
around this problem.

• Text data has a time dimension but no spatial dimension, whereas image data has
two spatial dimensions but no time dimension. The order of words is highly
important in text data and words wouldn’t make sense in reverse, whereas images
can usually be flipped without affecting the content. Furthermore, there are often

Long Short-Term Memory Network (LSTM) | 133

long-term sequential dependencies between words that need to be captured by
the model: for example, the answer to a question or carrying forward the context
of a pronoun. With image data, all pixels can be processed simultaneously.

• Text data is highly sensitive to small changes in the individual units (words or
characters). Image data is generally less sensitive to changes in individual pixel
units—a picture of a house would still be recognizable as a house even if some
pixels were altered—but with text data, changing even a few words can drastically
alter the meaning of the passage, or make it nonsensical. This makes it very diffi‐
cult to train a model to generate coherent text, as every word is vital to the overall
meaning of the passage.

• Text data has a rules-based grammatical structure, whereas image data doesn’t
follow set rules about how the pixel values should be assigned. For example, it
wouldn’t make grammatical sense in any context to write “The cat sat on the hav‐
ing.” There are also semantic rules that are extremely difficult to model; it
wouldn’t make sense to say “I am in the beach,” even though grammatically, there
is nothing wrong with this statement.

Advances in Text-Based Generative Deep Learning

Until recently, most of the most sophisticated generative deep
learning models have focused on image data, because many of the
challenges presented in the preceding list were beyond the reach of
even the most advanced techniques. However, in the last five years
astonishing progress has been made in the field of text-based gen‐
erative deep learning, thanks to the introduction of the Trans‐
former model architecture, which we will explore in Chapter 9.

With these points in mind, let’s now take a look at the steps we need to take in order
to get the text data into the right shape to train an LSTM network.

Tokenization
The first step is to clean up and tokenize the text. Tokenization is the process of split‐
ting the text up into individual units, such as words or characters.

How you tokenize your text will depend on what you are trying to achieve with your
text generation model. There are pros and cons to using both word and character
tokens, and your choice will affect how you need to clean the text prior to modeling
and the output from your model.

134 | Chapter 5: Autoregressive Models

If you use word tokens:

• All text can be converted to lowercase, to ensure capitalized words at the start of
sentences are tokenized the same way as the same words appearing in the middle
of a sentence. In some cases, however, this may not be desirable; for example,
some proper nouns, such as names or places, may benefit from remaining capi‐
talized so that they are tokenized independently.

• The text vocabulary (the set of distinct words in the training set) may be very
large, with some words appearing very sparsely or perhaps only once. It may be
wise to replace sparse words with a token for unknown word, rather than includ‐
ing them as separate tokens, to reduce the number of weights the neural network
needs to learn.

• Words can be stemmed, meaning that they are reduced to their simplest form, so
that different tenses of a verb remained tokenized together. For example, browse,
browsing, browses, and browsed would all be stemmed to brows.

• You will need to either tokenize the punctuation, or remove it altogether.
• Using word tokenization means that the model will never be able to predict

words outside of the training vocabulary.

If you use character tokens:

• The model may generate sequences of characters that form new words outside of
the training vocabulary—this may be desirable in some contexts, but not in
others.

• Capital letters can either be converted to their lowercase counterparts, or remain
as separate tokens.

• The vocabulary is usually much smaller when using character tokenization. This
is beneficial for model training speed as there are fewer weights to learn in the
final output layer.

For this example, we’ll use lowercase word tokenization, without word stemming.
We’ll also tokenize punctuation marks, as we would like the model to predict when it
should end sentences or use commas, for example.

The code in Example 5-4 cleans and tokenizes the text.

Example 5-4. Tokenization

def pad_punctuation(s):
 s = re.sub(f"([{string.punctuation}])", r' \1 ', s)
 s = re.sub(' +', ' ', s)
 return s

Long Short-Term Memory Network (LSTM) | 135

text_data = [pad_punctuation(x) for x in filtered_data]

text_ds = tf.data.Dataset.from_tensor_slices(text_data).batch(32).shuffle(1000)

vectorize_layer = layers.TextVectorization(
 standardize = 'lower',
 max_tokens = 10000,
 output_mode = "int",
 output_sequence_length = 200 + 1,
)

vectorize_layer.adapt(text_ds)
vocab = vectorize_layer.get_vocabulary()

Pad the punctuation marks, to treat them as separate words.

Convert to a TensorFlow Dataset.

Create a Keras TextVectorization layer to convert text to lowercase, give the
most prevalent 10,000 words a corresponding integer token, and trim or pad the
sequence to 201 tokens long.

Apply the TextVectorization layer to the training data.

The vocab variable stores a list of the word tokens.

An example of a recipe after tokenization is shown in Example 5-5. The sequence
length that we use to train the model is a parameter of the training process. In this
example we choose to use a sequence length of 200, so we pad or clip the recipe to
one more than this length, to allow us to create the target variable (more on this in
the next section). To achieve this desired length, the end of the vector is padded with
zeros.

Stop Tokens

The 0 token is known as a the stop token, signifying that the text
string has come to an end.

Example 5-5. The recipe from Example 5-3 tokenized

[26 16 557 1 8 298 335 189 4 1054 494 27 332 228
 235 262 5 594 11 133 22 311 2 332 45 262 4 671
 4 70 8 171 4 81 6 9 65 80 3 121 3 59
 12 2 299 3 88 650 20 39 6 9 29 21 4 67
 529 11 164 2 320 171 102 9 374 13 643 306 25 21
 8 650 4 42 5 931 2 63 8 24 4 33 2 114
 21 6 178 181 1245 4 60 5 140 112 3 48 2 117

136 | Chapter 5: Autoregressive Models

 557 8 285 235 4 200 292 980 2 107 650 28 72 4
 108 10 114 3 57 204 11 172 2 73 110 482 3 298
 3 190 3 11 23 32 142 24 3 4 11 23 32 142
 33 6 9 30 21 2 42 6 353 3 3224 3 4 150
 2 437 494 8 1281 3 37 3 11 23 15 142 33 3
 4 11 23 32 142 24 6 9 291 188 5 9 412 572
 2 230 494 3 46 335 189 3 20 557 2 0 0 0
 0 0 0 0 0]

In Example 5-6, we can see a subset of the list of tokens mapped to their respective
indices. The layer reserves the 0 token for padding (i.e., it is the stop token) and the 1
token for unknown words that fall outside the top 10,000 words (e.g., persillade). The
other words are assigned tokens in order of frequency. The number of words to
include in the vocabulary is also a parameter of the training process. The more words
included, the fewer unknown tokens you will see in the text; however, your model will
need to be larger to accommodate the larger vocabulary size.

Example 5-6. The vocabulary of the TextVectorization layer

0:
1: [UNK]
2: .
3: ,
4: and
5: to
6: in
7: the
8: with
9: a

Creating the Training Set
Our LSTM will be trained to predict the next word in a sequence, given a sequence of
words preceding this point. For example, we could feed the model the tokens for gril‐
led chicken with boiled and would expect the model to output a suitable next word
(e.g., potatoes, rather than bananas).

We can therefore simply shift the entire sequence by one token in order to create our
target variable.

The dataset generation step can be achieved with the code in Example 5-7.

Example 5-7. Creating the training dataset

def prepare_inputs(text):
 text = tf.expand_dims(text, -1)
 tokenized_sentences = vectorize_layer(text)
 x = tokenized_sentences[:, :-1]

Long Short-Term Memory Network (LSTM) | 137

 y = tokenized_sentences[:, 1:]
 return x, y

train_ds = text_ds.map(prepare_inputs)

Create the training set consisting of recipe tokens (the input) and the same vector
shifted by one token (the target).

The LSTM Architecture
The architecture of the overall LSTM model is shown in Table 5-1. The input to the
model is a sequence of integer tokens and the output is the probability of each word
in the 10,000-word vocabulary appearing next in the sequence. To understand how
this works in detail, we need to introduce two new layer types, Embedding and LSTM.

Table 5-1. Model summary of the LSTM

Layer (type) Output shape Param #
InputLayer (None, None) 0

Embedding (None, None, 100) 1,000,000

LSTM (None, None, 128) 117,248

Dense (None, None, 10000) 1,290,000

Total params 2,407,248

Trainable params 2,407,248

Non-trainable params 0

The Input Layer of the LSTM

Notice that the Input layer does not need us to specify the
sequence length in advance. Both the batch size and the sequence
length are flexible (hence the (None, None) shape). This is because
all downstream layers are agnostic to the length of the sequence
being passed through.

The Embedding Layer
An embedding layer is essentially a lookup table that converts each integer token into
a vector of length embedding_size, as shown in Figure 5-2. The lookup vectors are
learned by the model as weights. Therefore, the number of weights learned by this
layer is equal to the size of the vocabulary multiplied by the dimension of the embed‐
ding vector (i.e., 10,000 × 100 = 1,000,000).

138 | Chapter 5: Autoregressive Models

Figure 5-2. An embedding layer is a lookup table for each integer token

We embed each integer token into a continuous vector because it enables the model
to learn a representation for each word that is able to be updated through backpropa‐
gation. We could also just one-hot encode each input token, but using an embedding
layer is preferred because it makes the embedding itself trainable, thus giving the
model more flexibility in deciding how to embed each token to improve its
performance.

Therefore, the Input layer passes a tensor of integer sequences of shape
[batch_size, seq_length] to the Embedding layer, which outputs a tensor of shape
[batch_size, seq_length, embedding_size]. This is then passed on to the LSTM
layer (Figure 5-3).

Figure 5-3. A single sequence as it flows through an embedding layer

Long Short-Term Memory Network (LSTM) | 139

The LSTM Layer
To understand the LSTM layer, we must first look at how a general recurrent layer
works.

A recurrent layer has the special property of being able to process sequential input
data x1,⋯, xn. It consists of a cell that updates its hidden state, ht, as each element of
the sequence xt is passed through it, one timestep at a time.

The hidden state is a vector with length equal to the number of units in the cell—it
can be thought of as the cell’s current understanding of the sequence. At timestep t,
the cell uses the previous value of the hidden state, ht − 1, together with the data from
the current timestep xt to produce an updated hidden state vector, ht. This recurrent
process continues until the end of the sequence. Once the sequence is finished, the
layer outputs the final hidden state of the cell, hn, which is then passed on to the next
layer of the network. This process is shown in Figure 5-4.

Figure 5-4. A simple diagram of a recurrent layer

To explain this in more detail, let’s unroll the process so that we can see exactly how a
single sequence is fed through the layer (Figure 5-5).

Cell Weights

It’s important to remember that all of the cells in this diagram share
the same weights (as they are really the same cell). There is no dif‐
ference between this diagram and Figure 5-4; it’s just a different
way of drawing the mechanics of a recurrent layer.

140 | Chapter 5: Autoregressive Models

Figure 5-5. How a single sequence flows through a recurrent layer

Here, we represent the recurrent process by drawing a copy of the cell at each time‐
step and show how the hidden state is constantly being updated as it flows through
the cells. We can clearly see how the previous hidden state is blended with the current
sequential data point (i.e., the current embedded word vector) to produce the next
hidden state. The output from the layer is the final hidden state of the cell, after each
word in the input sequence has been processed.

Long Short-Term Memory Network (LSTM) | 141

The fact that the output from the cell is called a hidden state is an
unfortunate naming convention—it’s not really hidden, and you
shouldn’t think of it as such. Indeed, the last hidden state is the
overall output from the layer, and we will be making use of the fact
that we can access the hidden state at each individual timestep later
in this chapter.

The LSTM Cell
Now that we have seen how a generic recurrent layer works, let’s take a look inside an
individual LSTM cell.

The job of the LSTM cell is to output a new hidden state, ht, given its previous hidden
state, ht − 1, and the current word embedding, xt. To recap, the length of ht is equal to
the number of units in the LSTM. This is a parameter that is set when you define the
layer and has nothing to do with the length of the sequence.

Make sure you do not confuse the term cell with unit. There is one
cell in an LSTM layer that is defined by the number of units it con‐
tains, in the same way that the prisoner cell from our earlier story
contained many prisoners. We often draw a recurrent layer as a
chain of cells unrolled, as it helps to visualize how the hidden state
is updated at each timestep.

An LSTM cell maintains a cell state, Ct, which can be thought of as the cell’s internal
beliefs about the current status of the sequence. This is distinct from the hidden state,
ht, which is ultimately output by the cell after the final timestep. The cell state is the
same length as the hidden state (the number of units in the cell).

Let’s look more closely at a single cell and how the hidden state is updated
(Figure 5-6).

The hidden state is updated in six steps:

1. The hidden state of the previous timestep, ht − 1, and the current word embed‐
ding, xt, are concatenated and passed through the forget gate. This gate is simply a
dense layer with weights matrix W f , bias b f , and a sigmoid activation function.
The resulting vector, f t, has length equal to the number of units in the cell and
contains values between 0 and 1 that determine how much of the previous cell
state, Ct − 1, should be retained.

142 | Chapter 5: Autoregressive Models

Figure 5-6. An LSTM cell

2. The concatenated vector is also passed through an input gate that, like the forget
gate, is a dense layer with weights matrix Wi, bias bi, and a sigmoid activation
function. The output from this gate, it, has length equal to the number of units in
the cell and contains values between 0 and 1 that determine how much new
information will be added to the previous cell state, Ct − 1.

3. The concatenated vector is passed through a dense layer with weights matrix WC,
bias bC, and a tanh activation function to generate a vector Ct that contains the
new information that the cell wants to consider keeping. It also has length equal
to the number of units in the cell and contains values between –1 and 1.

4. f t and Ct − 1 are multiplied element-wise and added to the element-wise multipli‐
cation of it and Ct. This represents forgetting parts of the previous cell state and
then adding new relevant information to produce the updated cell state, Ct.

5. The concatenated vector is passed through an output gate: a dense layer with
weights matrix Wo, bias bo, and a sigmoid activation. The resulting vector, ot, has
length equal to the number of units in the cell and stores values between 0 and 1
that determine how much of the updated cell state, Ct, to output from the cell.

Long Short-Term Memory Network (LSTM) | 143

6. ot is multiplied element-wise with the updated cell state, Ct, after a tanh activa‐
tion has been applied to produce the new hidden state, ht.

The Keras LSTM Layer

All of this complexity is wrapped up within the LSTM layer type in
Keras, so you don’t have to worry about implementing it yourself!

Training the LSTM
The code to build, compile, and train the LSTM is given in Example 5-8.

Example 5-8. Building, compiling, and training the LSTM

inputs = layers.Input(shape=(None,), dtype="int32")
x = layers.Embedding(10000, 100)(inputs)
x = layers.LSTM(128, return_sequences=True)(x)
outputs = layers.Dense(10000, activation = 'softmax')(x)
lstm = models.Model(inputs, outputs)

loss_fn = losses.SparseCategoricalCrossentropy()
lstm.compile("adam", loss_fn)
lstm.fit(train_ds, epochs=25)

The Input layer does not need us to specify the sequence length in advance (it
can be flexible), so we use None as a placeholder.

The Embedding layer requires two parameters, the size of the vocabulary (10,000
tokens) and the dimensionality of the embedding vector (100).

The LSTM layers require us to specify the dimensionality of the hidden vector
(128). We also choose to return the full sequence of hidden states, rather than just
the hidden state at the final timestep.

The Dense layer transforms the hidden states at each timestep into a vector of
probabilities for the next token.

The overall Model predicts the next token, given an input sequence of tokens. It
does this for each token in the sequence.

The model is compiled with SparseCategoricalCrossentropy loss—this is the
same as categorical cross-entropy, but is used when the labels are integers rather
than one-hot encoded vectors.

144 | Chapter 5: Autoregressive Models

The model is fit to the training dataset.

In Figure 5-7 you can see the first few epochs of the LSTM training process—notice
how the example output becomes more comprehensible as the loss metric falls.
Figure 5-8 shows the cross-entropy loss metric falling throughout the training
process.

Figure 5-7. The first few epochs of the LSTM training process

Figure 5-8. The cross-entropy loss metric of the LSTM training process by epoch

Long Short-Term Memory Network (LSTM) | 145

Analysis of the LSTM
Now that we have compiled and trained the LSTM, we can start to use it to generate
long strings of text by applying the following process:

1. Feed the network with an existing sequence of words and ask it to predict the fol‐
lowing word.

2. Append this word to the existing sequence and repeat.

The network will output a set of probabilities for each word that we can sample from.
Therefore, we can make the text generation stochastic, rather than deterministic.
Moreover, we can introduce a temperature parameter to the sampling process to indi‐
cate how deterministic we would like the process to be.

The Temperature Parameter

A temperature close to 0 makes the sampling more deterministic
(i.e., the word with the highest probability is very likely to be
chosen), whereas a temperature of 1 means each word is chosen
with the probability output by the model.

This is achieved with the code in Example 5-9, which creates a callback function that
can be used to generate text at the end of each training epoch.

Example 5-9. The TextGenerator callback function

class TextGenerator(callbacks.Callback):
 def __init__(self, index_to_word, top_k=10):
 self.index_to_word = index_to_word
 self.word_to_index = {
 word: index for index, word in enumerate(index_to_word)
 }

 def sample_from(self, probs, temperature):
 probs = probs ** (1 / temperature)
 probs = probs / np.sum(probs)
 return np.random.choice(len(probs), p=probs), probs

 def generate(self, start_prompt, max_tokens, temperature):
 start_tokens = [
 self.word_to_index.get(x, 1) for x in start_prompt.split()
]
 sample_token = None
 info = []
 while len(start_tokens) < max_tokens and sample_token != 0:
 x = np.array([start_tokens])
 y = self.model.predict(x)

146 | Chapter 5: Autoregressive Models

 sample_token, probs = self.sample_from(y[0][-1], temperature)
 info.append({'prompt': start_prompt , 'word_probs': probs})
 start_tokens.append(sample_token)
 start_prompt = start_prompt + ' ' + self.index_to_word[sample_token]
 print(f"\ngenerated text:\n{start_prompt}\n")
 return info

 def on_epoch_end(self, epoch, logs=None):
 self.generate("recipe for", max_tokens = 100, temperature = 1.0)

Create an inverse vocabulary mapping (from word to token).

This function updates the probabilities with a temperature scaling factor.

The start prompt is a string of words that you would like to give the model to
start the generation process (for example, recipe for). The words are first con‐
verted to a list of tokens.

The sequence is generated until it is max_tokens long or a stop token (0) is
produced.

The model outputs the probabilities of each word being next in the sequence.

The probabilities are passed through the sampler to output the next word, para‐
meterized by temperature.

We append the new word to the prompt text, ready for the next iteration of the
generative process.

Let’s take a look at this in action, at two different temperature values (Figure 5-9).

Figure 5-9. Generated outputs at temperature = 1.0 and temperature = 0.2

Long Short-Term Memory Network (LSTM) | 147

There are a few things to note about these two passages. First, both are stylistically
similar to a recipe from the original training set. They both open with a recipe title
and contain generally grammatically correct constructions. The difference is that the
generated text with a temperature of 1.0 is more adventurous and therefore less accu‐
rate than the example with a temperature of 0.2. Generating multiple samples with a
temperature of 1.0 will therefore lead to more variety, as the model is sampling from a
probability distribution with greater variance.

To demonstrate this, Figure 5-10 shows the top five tokens with the highest probabili‐
ties for a range of prompts, for both temperature values.

Figure 5-10. Distribution of word probabilities following various sequences, for tempera‐
ture values of 1.0 and 0.2

The model is able to generate a suitable distribution for the next most likely word
across a range of contexts. For example, even though the model was never told about
parts of speech such as nouns, verbs, or numbers, it is generally able to separate
words into these classes and use them in a way that is grammatically correct.

148 | Chapter 5: Autoregressive Models

Moreover, the model is able to select an appropriate verb to begin the recipe instruc‐
tions, depending on the preceding title. For roasted vegetables, it selects preheat,
prepare, heat, put, or combine as the most likely possibilities, whereas for ice cream
it selects in, combine, stir, whisk, and mix. This shows that the model has some con‐
textual understanding of the differences between recipes depending on their
ingredients.

Notice also how the probabilities for the temperature = 0.2 examples are much
more heavily weighted toward the first choice token. This is the reason why there is
generally less variety in generations when the temperature is lower.

While our basic LSTM model is doing a great job at generating realistic text, it is clear
that it still struggles to grasp some of the semantic meaning of the words that it is
generating. It introduces ingredients that are not likely to work well together (for
example, sour Japanese potatoes, pecan crumbs, and sorbet)! In some cases, this may
be desirable—say, if we want our LSTM to generate interesting and unique patterns of
words—but in other cases, we will need our model to have a deeper understanding of
the ways in which words can be grouped together and a longer memory of ideas
introduced earlier in the text.

In the next section, we’ll explore some of the ways that we can improve our basic
LSTM network. In Chapter 9, we’ll take a look at a new kind of autoregressive model,
the Transformer, which takes language modeling to the next level.

Recurrent Neural Network (RNN) Extensions
The model in the preceding section is a simple example of how an LSTM can be
trained to learn how to generate text in a given style. In this section we will explore
several extensions to this idea.

Stacked Recurrent Networks
The network we just looked at contained a single LSTM layer, but we can also train
networks with stacked LSTM layers, so that deeper features can be learned from the
text.

To achieve this, we simply introduce another LSTM layer after the first. The second
LSTM layer can then use the hidden states from the first layer as its input data. This is
shown in Figure 5-11, and the overall model architecture is shown in Table 5-2.

Recurrent Neural Network (RNN) Extensions | 149

Fi
gu

re
 5

-1
1.

 D
ia

gr
am

 o
f a

 m
ul

til
ay

er
 R

N
N

: g
t d

en
ot

es
 h

id
de

n
sta

te
s o

f t
he

 fi
rs

t l
ay

er
 a

nd
 h

t d
en

ot
es

 h
id

de
n

sta
te

s o
f t

he
 se

co
nd

 la
ye

r

150 | Chapter 5: Autoregressive Models

Table 5-2. Model summary of the stacked LSTM

Layer (type) Output shape Param #
InputLayer (None, None) 0

Embedding (None, None, 100) 1,000,000

LSTM (None, None, 128) 117,248

LSTM (None, None, 128) 131,584

Dense (None, None, 10000) 1,290,000

Total params 2,538,832

Trainable params 2,538,832

Non-trainable params 0

The code to build the stacked LSTM is given in Example 5-10.

Example 5-10. Building a stacked LSTM

text_in = layers.Input(shape = (None,))
embedding = layers.Embedding(total_words, embedding_size)(text_in)
x = layers.LSTM(n_units, return_sequences = True)(x)
x = layers.LSTM(n_units, return_sequences = True)(x)
probabilites = layers.Dense(total_words, activation = 'softmax')(x)
model = models.Model(text_in, probabilites)

Gated Recurrent Units
Another type of commonly used RNN layer is the gated recurrent unit (GRU).2 The
key differences from the LSTM unit are as follows:

1. The forget and input gates are replaced by reset and update gates.
2. There is no cell state or output gate, only a hidden state that is output from the

cell.

The hidden state is updated in four steps, as illustrated in Figure 5-12.

Recurrent Neural Network (RNN) Extensions | 151

Figure 5-12. A single GRU cell

The process is as follows:

1. The hidden state of the previous timestep, ht − 1, and the current word embed‐
ding, xt, are concatenated and used to create the reset gate. This gate is a dense
layer, with weights matrix Wr and a sigmoid activation function. The resulting
vector, rt, has length equal to the number of units in the cell and stores values
between 0 and 1 that determine how much of the previous hidden state, ht − 1,
should be carried forward into the calculation for the new beliefs of the cell.

2. The reset gate is applied to the hidden state, ht − 1, and concatenated with the cur‐
rent word embedding, xt. This vector is then fed to a dense layer with weights
matrix W and a tanh activation function to generate a vector, ht, that stores the
new beliefs of the cell. It has length equal to the number of units in the cell and
stores values between –1 and 1.

3. The concatenation of the hidden state of the previous timestep, ht − 1, and the
current word embedding, xt, are also used to create the update gate. This gate is a
dense layer with weights matrix Wz and a sigmoid activation. The resulting vec‐
tor, zt, has length equal to the number of units in the cell and stores values

152 | Chapter 5: Autoregressive Models

between 0 and 1, which are used to determine how much of the new beliefs, ht, to
blend into the current hidden state, ht − 1.

4. The new beliefs of the cell, ht, and the current hidden state, ht − 1, are blended in a
proportion determined by the update gate, zt, to produce the updated hidden
state, ht, that is output from the cell.

Bidirectional Cells
For prediction problems where the entire text is available to the model at inference
time, there is no reason to process the sequence only in the forward direction—it
could just as well be processed backward. A Bidirectional layer takes advantage of
this by storing two sets of hidden states: one that is produced as a result of the
sequence being processed in the usual forward direction and another that is pro‐
duced when the sequence is processed backward. This way, the layer can learn from
information both preceding and succeeding the given timestep.

In Keras, this is implemented as a wrapper around a recurrent layer, as shown in
Example 5-11.

Example 5-11. Building a bidirectional GRU layer

layer = layers.Bidirectional(layers.GRU(100))

Hidden State

The hidden states in the resulting layer are vectors of length equal
to double the number of units in the wrapped cell (a concatenation
of the forward and backward hidden states). Thus, in this example
the hidden states of the layer are vectors of length 200.

So far, we have only applied autoregressive models (LSTMs) to text data. In the next
section, we will see how autoregressive models can also be used to generate images.

PixelCNN
In 2016, van den Oord et al.3 introduced a model that generates images pixel by pixel
by predicting the likelihood of the next pixel based on the pixels before it. The model
is called PixelCNN, and it can be trained to generate images autoregressively.

There are two new concepts that we need to introduce to understand the PixelCNN—
masked convolutional layers and residual blocks.

PixelCNN | 153

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/05_autoregressive/02_pixelcnn/pixelcnn.ipynb
in the book repository.
The code has been adapted from the excellent PixelCNN tutorial
created by ADMoreau, available on the Keras website.

Masked Convolutional Layers
As we saw in Chapter 2, a convolutional layer can be used to extract features from an
image by applying a series of filters. The output of the layer at a particular pixel is a
weighted sum of the filter weights multiplied by the preceding layer values over a
small square centered on the pixel. This method can detect edges and textures and, at
deeper layers, shapes and higher-level features.

Whilst convolutional layers are extremely useful for feature detection, they cannot
directly be used in an autoregressive sense, because there is no ordering placed on the
pixels. They rely on the fact that all pixels are treated equally—no pixel is treated as
the start or end of the image. This is in contrast to the text data that we have already
seen in this chapter, where there is a clear ordering to the tokens so recurrent models
such as LSTMs can be readily applied.

For us to be able to apply convolutional layers to image generation in an autoregres‐
sive sense, we must first place an ordering on the pixels and ensure that the filters are
only able to see pixels that precede the pixel in question. We can then generate images
one pixel at a time, by applying convolutional filters to the current image to predict
the value of the next pixel from all preceding pixels.

We first need to choose an ordering for the pixels—a sensible suggestion is to order
the pixels from top left to bottom right, moving first along the rows and then down
the columns.

We then mask the convolutional filters so that the output of the layer at each pixel is
only influenced by pixel values that precede the pixel in question. This is achieved by
multiplying a mask of ones and zeros with the filter weights matrix, so that the values
of any pixels that are after the target pixel are zeroed.

There are actually two different kinds of masks in a PixelCNN, as shown in
Figure 5-13:

• Type A, where the value of the central pixel is masked
• Type B, where the value of the central pixel is not masked

154 | Chapter 5: Autoregressive Models

https://keras.io/examples/generative/pixelcnn

Figure 5-13. Left: a convolutional filter mask; right: a mask applied to a set of pixels to
predict the distribution of the central pixel value (source: van den Oord et al., 2016)

The initial masked convolutional layer (i.e., the one that is applied directly to the
input image) cannot use the central pixel, because this is precisely the pixel we want
the network to guess! However, subsequent layers can use the central pixel because
this will have been calculated only as a result of information from preceding pixels in
the original input image.

We can see in Example 5-12 how a MaskedConvLayer can be built using Keras.

Example 5-12. A MaskedConvLayer in Keras

class MaskedConvLayer(layers.Layer):
 def __init__(self, mask_type, **kwargs):
 super(MaskedConvLayer, self).__init__()
 self.mask_type = mask_type
 self.conv = layers.Conv2D(**kwargs)

 def build(self, input_shape):
 self.conv.build(input_shape)
 kernel_shape = self.conv.kernel.get_shape()
 self.mask = np.zeros(shape=kernel_shape)
 self.mask[: kernel_shape[0] // 2, ...] = 1.0
 self.mask[kernel_shape[0] // 2, : kernel_shape[1] // 2, ...] = 1.0
 if self.mask_type == "B":
 self.mask[kernel_shape[0] // 2, kernel_shape[1] // 2, ...] = 1.0

 def call(self, inputs):
 self.conv.kernel.assign(self.conv.kernel * self.mask)
 return self.conv(inputs)

The MaskedConvLayer is based on the normal Conv2D layer.

PixelCNN | 155

https://arxiv.org/pdf/1606.05328

The mask is initialized with all zeros.

The pixels in the preceding rows are unmasked with ones.

The pixels in the preceding columns that are in the same row are unmasked with
ones.

If the mask type is B, the central pixel is unmasked with a one.

The mask is multiplied with the filter weights.

Note that this simplified example assumes a grayscale image (i.e., with one channel).
If we have color images, we’ll have three color channels that we can also place an
ordering on so that, for example, the red channel precedes the blue channel, which
precedes the green channel.

Residual Blocks
Now that we have seen how to mask the convolutional layer, we can start to build our
PixelCNN. The core building block that we will use is the residual block.

A residual block is a set of layers where the output is added to the input before being
passed on to the rest of the network. In other words, the input has a fast-track route
to the output, without having to go through the intermediate layers—this is called a
skip connection. The rationale behind including a skip connection is that if the opti‐
mal transformation is just to keep the input the same, this can be achieved by simply
zeroing the weights of the intermediate layers. Without the skip connection, the net‐
work would have to find an identity mapping through the intermediate layers, which
is much harder.

A diagram of the residual block in our PixelCNN is shown in Figure 5-14.

156 | Chapter 5: Autoregressive Models

Figure 5-14. A PixelCNN residual block (the numbers of filters are next to the arrows
and the filter sizes are next to the layers)

We can build a ResidualBlock using the code shown in Example 5-13.

Example 5-13. A ResidualBlock

class ResidualBlock(layers.Layer):
 def __init__(self, filters, **kwargs):
 super(ResidualBlock, self).__init__(**kwargs)
 self.conv1 = layers.Conv2D(
 filters=filters // 2, kernel_size=1, activation="relu"
)
 self.pixel_conv = MaskedConv2D(
 mask_type="B",
 filters=filters // 2,
 kernel_size=3,
 activation="relu",
 padding="same",
)
 self.conv2 = layers.Conv2D(
 filters=filters, kernel_size=1, activation="relu"
)

 def call(self, inputs):
 x = self.conv1(inputs)
 x = self.pixel_conv(x)
 x = self.conv2(x)
 return layers.add([inputs, x])

The initial Conv2D layer halves the number of channels.

PixelCNN | 157

The Type B MaskedConv2D layer with kernel size of 3 only uses information from
five pixels—three pixels in the row above the focus pixel, one to the left, and the
focus pixel itself.

The final Conv2D layer doubles the number of channels to again match the input
shape.

The output from the convolutional layers is added to the input—this is the skip
connection.

Training the PixelCNN
In Example 5-14 we put together the whole PixelCNN network, approximately fol‐
lowing the structure laid out in the original paper. In the original paper, the output
layer is a 256-filter Conv2D layer, with softmax activation. In other words, the network
tries to re-create its input by predicting the correct pixel values, a bit like an autoen‐
coder. The difference is that the PixelCNN is constrained so that no information from
earlier pixels can flow through to influence the prediction for each pixel, due to the
way that network is designed, using MaskedConv2D layers.

A challenge with this approach is that the network has no way to understand that a
pixel value of, say, 200 is very close to a pixel value of 201. It must learn every pixel
output value independently, which means training can be very slow, even for the sim‐
plest datasets. Therefore, in our implementation, we instead simplify the input so that
each pixel can take only one of four values. This way, we can use a 4-filter Conv2D
output layer instead of 256.

Example 5-14. The PixelCNN architecture

inputs = layers.Input(shape=(16, 16, 1))
x = MaskedConv2D(mask_type="A"
 , filters=128
 , kernel_size=7
 , activation="relu"
 , padding="same")(inputs)

for _ in range(5):
 x = ResidualBlock(filters=128)(x)

for _ in range(2):
 x = MaskedConv2D(
 mask_type="B",
 filters=128,
 kernel_size=1,
 strides=1,
 activation="relu",

158 | Chapter 5: Autoregressive Models

 padding="valid",
)(x)

out = layers.Conv2D(
 filters=4, kernel_size=1, strides=1, activation="softmax", padding="valid"
)(x)

pixel_cnn = models.Model(inputs, out)

adam = optimizers.Adam(learning_rate=0.0005)
pixel_cnn.compile(optimizer=adam, loss="sparse_categorical_crossentropy")

pixel_cnn.fit(
 input_data
 , output_data
 , batch_size=128
 , epochs=150
)

The model Input is a grayscale image of size 16 × 16 × 1, with inputs scaled
between 0 and 1.

The first Type A MaskedConv2D layer with a kernel size of 7 uses information
from 24 pixels—21 pixels in the three rows above the focus pixel and 3 to the left
(the focus pixel itself is not used).

Five ResidualBlock layer groups are stacked sequentially.

Two Type B MaskedConv2D layers with a kernel size of 1 act as Dense layers across
the number of channels for each pixel.

The final Conv2D layer reduces the number of channels to four—the number of
pixel levels for this example.

The Model is built to accept an image and output an image of the same
dimensions.

Fit the model—input_data is scaled in the range [0, 1] (floats); output_data is
scaled in the range [0, 3] (integers).

Analysis of the PixelCNN
We can train our PixelCNN on images from the Fashion-MNIST dataset that we
encountered in Chapter 3. To generate new images, we need to ask the model to pre‐
dict the next pixel given all preceding pixels, one pixel at a time. This is a very slow
process compared to a model such as a variational autoencoder! For a 32 × 32

PixelCNN | 159

grayscale image, we need to make 1,024 predictions sequentially using the model,
compared to the single prediction that we need to make for a VAE. This is one of the
major downsides to autoregressive models such as a PixelCNN—they are slow to
sample from, because of the sequential nature of the sampling process.

For this reason, we use an image size of 16 × 16, rather than 32 × 32, to speed up the
generation of new images. The generation callback class is shown in Example 5-15.

Example 5-15. Generating new images using the PixelCNN

class ImageGenerator(callbacks.Callback):
 def __init__(self, num_img):
 self.num_img = num_img

 def sample_from(self, probs, temperature):
 probs = probs ** (1 / temperature)
 probs = probs / np.sum(probs)
 return np.random.choice(len(probs), p=probs)

 def generate(self, temperature):
 generated_images = np.zeros(
 shape=(self.num_img,) + (pixel_cnn.input_shape)[1:]
)
 batch, rows, cols, channels = generated_images.shape

 for row in range(rows):
 for col in range(cols):
 for channel in range(channels):
 probs = self.model.predict(generated_images)[
 :, row, col, :
]
 generated_images[:, row, col, channel] = [
 self.sample_from(x, temperature) for x in probs
]
 generated_images[:, row, col, channel] /= 4
 return generated_images

 def on_epoch_end(self, epoch, logs=None):
 generated_images = self.generate(temperature = 1.0)
 display(
 generated_images,
 save_to = "./output/generated_img_%03d.png" % (epoch)
 s)

img_generator_callback = ImageGenerator(num_img=10)

Start with a batch of empty images (all zeros).

160 | Chapter 5: Autoregressive Models

Loop over the rows, columns, and channels of the current image, predicting the
distribution of the next pixel value.

Sample a pixel level from the predicted distribution (for our example, a level in
the range [0, 3]).

Convert the pixel level to the range [0, 1] and overwrite the pixel value in the cur‐
rent image, ready for the next iteration of the loop.

In Figure 5-15, we can see several images from the original training set, alongside
images that have been generated by the PixelCNN.

Figure 5-15. Example images from the training set and generated images created by the
PixelCNN model

The model does a great job of re-creating the overall shape and style of the original
images! It is quite amazing that we can treat images as a series of tokens (pixel values)
and apply autoregressive models such as a PixelCNN to produce realistic samples.

As mentioned previously, one of the downsides to autoregressive models is that they
are slow to sample from, which is why a simple example of their application is presen‐
ted in this book. However, as we shall see in Chapter 10, more complex forms of
autoregressive model can be applied to images to produce state-of-the-art outputs. In

PixelCNN | 161

such cases, the slow generation speed is a necessary price to pay in return for
exceptional-quality outputs.

Since the original paper was published, several improvements have been made to the
architecture and training process of the PixelCNN. The following section introduces
one of those changes—using mixture distributions—and demonstrates how to train a
PixelCNN model with this improvement using a built-in TensorFlow function.

Mixture Distributions
For our previous example, we reduced the output of the PixelCNN to just 4 pixel lev‐
els to ensure the network didn’t have to learn a distribution over 256 independent
pixel values, which would slow the training process. However, this is far from ideal—
for color images, we wouldn’t want our canvas to be restricted to only a handful of
possible colors.

To get around this problem, we can make the output of the network a mixture distri‐
bution, instead of a softmax over 256 discrete pixel values, following the ideas presen‐
ted by Salimans et al.4 A mixture distribution is quite simply a mixture of two or
more other probability distributions. For example, we could have a mixture distribu‐
tion of five logistic distributions, each with different parameters. The mixture distri‐
bution also requires a discrete categorical distribution that denotes the probability of
choosing each of the distributions included in the mix. An example is shown in
Figure 5-16.

Figure 5-16. A mixture distribution of three normal distributions with different parame‐
ters—the categorical distribution over the three normal distributions is [0.5, 0.3,
0.2]

To sample from a mixture distribution, we first sample from the categorical distribu‐
tion to choose a particular subdistribution and then sample from this in the usual
way. This way, we can create complex distributions with relatively few parameters.

162 | Chapter 5: Autoregressive Models

For example, the mixture distribution in Figure 5-16 only requires eight parameters
—two for the categorical distribution and a mean and variance for each of the three
normal distributions. This is compared to the 255 parameters that would define a cat‐
egorical distribution over the entire pixel range.

Conveniently, the TensorFlow Probability library provides a function that allows us to
create a PixelCNN with mixture distribution output in a single line. Example 5-16
illustrates how to build a PixelCNN using this function.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook in
notebooks/05_autoregressive/03_pixelcnn_md/pixelcnn_md.ipynb in
the book repository.

Example 5-16. Building a PixelCNN using the TensorFlow function

import tensorflow_probability as tfp

dist = tfp.distributions.PixelCNN(
 image_shape=(32, 32, 1),
 num_resnet=1,
 num_hierarchies=2,
 num_filters=32,
 num_logistic_mix=5,
 dropout_p=.3,
)

image_input = layers.Input(shape=(32, 32, 1))

log_prob = dist.log_prob(image_input)

model = models.Model(inputs=image_input, outputs=log_prob)
model.add_loss(-tf.reduce_mean(log_prob))

Define the PixelCNN as a distribution—i.e., the output layer is a mixture distri‐
bution made up of five logistic distributions.

The input is a grayscale image of size 32 × 32 × 1.

The Model takes a grayscale image as input and outputs the log-likelihood of the
image under the mixture distribution calculated by the PixelCNN.

The loss function is the mean negative log-likelihood over the batch of input
images.

PixelCNN | 163

The model is trained in the same way as before, but this time accepting integer pixel
values as input, in the range [0, 255]. Outputs can be generated from the distribution
using the sample function, as shown in Example 5-17.

Example 5-17. Sampling from the PixelCNN mixture distribution

dist.sample(10).numpy()

Example generated images are shown in Figure 5-17. The difference from our previ‐
ous examples is that now the full range of pixel values is being utilized.

Figure 5-17. Outputs from the PixelCNN using a mixture distribution output

Summary
In this chapter we have seen how autoregressive models such as recurrent neural net‐
works can be applied to generate text sequences that mimic a particular style of writ‐
ing, and also how a PixelCNN can generate images in a sequential fashion, one pixel
at a time.

We explored two different types of recurrent layers—long short-term memory
(LSTM) and gated recurrent unit (GRU)—and saw how these cells can be stacked or
made bidirectional to form more complex network architectures. We built an LSTM
to generate realistic recipes using Keras and saw how to manipulate the temperature
of the sampling process to increase or decrease the randomness of the output.

We also saw how images can be generated in an autoregressive manner, using a Pix‐
elCNN. We built a PixelCNN from scratch using Keras, coding the masked convolu‐
tional layers and residual blocks to allow information to flow through the network so
that only preceding pixels could be used to generate the current pixel. Finally, we dis‐
cussed how the TensorFlow Probability library provides a standalone PixelCNN func‐
tion that implements a mixture distribution as the output layer, allowing us to further
improve the learning process.

164 | Chapter 5: Autoregressive Models

In the next chapter we will explore another generative modeling family that explicitly
models the data-generating distribution—normalizing flow models.

References
1. Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural
Computation 9 (1997): 1735–1780, https://www.bioinf.jku.at/publications/older/
2604.pdf.

2. Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation,” June 3, 2014, https://arxiv.org/abs/
1406.1078.

3. Aaron van den Oord et al., “Pixel Recurrent Neural Networks,” August 19, 2016,
https://arxiv.org/abs/1601.06759.

4. Tim Salimans et al., “PixelCNN++: Improving the PixelCNN with Discretized
Logistic Mixture Likelihood and Other Modifications,” January 19, 2017, http://
arxiv.org/abs/1701.05517.

Summary | 165

https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1701.05517
http://arxiv.org/abs/1701.05517

CHAPTER 6

Normalizing Flow Models

Chapter Goals
In this chapter you will:

• Learn how normalizing flow models utilize the change of variables equation.
• See how the Jacobian determinant plays a vital role in our ability to compute an

explicit density function.
• Understand how we can restrict the form of the Jacobian using coupling layers.
• See how the neural network is designed to be invertible.
• Build a RealNVP model—a particular example of a normalizing flow to generate

points in 2D.
• Use the RealNVP model to generate new points that appear to have been drawn

from the data distribution.
• Learn about two key extensions of the RealNVP model, GLOW and FFJORD.

So far, we have discussed three families of generative models: variational autoencod‐
ers, generative adversarial networks, and autoregressive models. Each presents a dif‐
ferent way to address the challenge of modeling the distribution p x , either by
introducing a latent variable that can be easily sampled (and transformed using the
decoder in VAEs or generator in GANs), or by tractably modeling the distribution as
a function of the values of preceding elements (autoregressive models).

In this chapter, we will cover a new family of generative models—normalizing flow
models. As we shall see, normalizing flows share similarities with both autoregressive
models and variational autoencoders. Like autoregressive models, normalizing flows
are able to explicitly and tractably model the data-generating distribution p x . Like

167

VAEs, normalizing flows attempt to map the data into a simpler distribution, such as
a Gaussian distribution. The key difference is that normalizing flows place a con‐
straint on the form of the mapping function, so that it is invertible and can therefore
be used to generate new data points.

We will dig into this definition in detail in the first section of this chapter before
implementing a normalizing flow model called RealNVP using Keras. We will also see
how normalizing flows can be extended to create more powerful models, such as
GLOW and FFJORD.

Introduction
We will begin with a short story to illustrate the key concepts behind normalizing
flows.

Jacob and the F.L.O.W. Machine
Upon visiting a small village, you notice a mysterious-looking shop with a sign above
the door that says JACOB’S. Intrigued, you cautiously enter and ask the old man
standing behind the counter what he sells (Figure 6-1).

Figure 6-1. Inside a steampunk shop, with a large metallic bell (created with
Midjourney)

He replies that he offers a service for digitizing paintings, with a difference. After a
brief moment rummaging around the back of the shop, he brings out a silver box,
embossed with the letters F.L.O.W. He tells you that this stands for Finding Likenesses
Of Watercolors, which approximately describes what the machine does. You decide to
give the machine a try.

168 | Chapter 6: Normalizing Flow Models

https://midjourney.com

You come back the next day and hand the shopkeeper a set of your favorite paintings,
and he passes them through the machine. The F.L.O.W. machine begins to hum and
whistle and after a while outputs a set of numbers that appear randomly generated.
The shopkeeper hands you the list and begins to walk to the till to calculate how
much you owe him for the digitization process and the F.L.O.W. box. Distinctly unim‐
pressed, you ask the shopkeeper what you should do with this long list of numbers,
and how you can get your favorite paintings back.

The shopkeeper rolls his eyes, as if the answer should be obvious. He walks back to
the machine and passes in the long list of numbers, this time from the opposite side.
You hear the machine whir again and wait, puzzled, until finally your original paint‐
ings drop out from where they entered.

Relieved to finally have your paintings back, you decide that it might be best to just
store them in the attic instead. However, before you have a chance to leave, the shop‐
keeper ushers you across to a different corner of the shop, where a giant bell hangs
from the rafters. He hits the bell curve with a huge stick, sending vibrations around
the store.

Instantly, the F.L.O.W. machine under your arm begins to hiss and whirr in reverse, as
if a new set of numbers had just been passed in. After a few moments, more beautiful
watercolor paintings begin to fall out of the F.L.O.W. machine, but they are not the
same as the ones you originally digitized. They resemble the style and form of your
original set of paintings, but each one is completely unique!

You ask the shopkeeper how this incredible device works. He explains that the magic
lies in the fact that he has developed a special process that ensures the transformation
is extremely fast and simple to calculate while still being sophisticated enough to con‐
vert the vibrations produced by the bell into the complex patterns and shapes present
in the paintings.

Realizing the potential of this contraption, you hurriedly pay for the device and exit
the store, happy that you now have a way to generate new paintings in your favorite
style, simply by visiting the shop, chiming the bell, and waiting for your F.L.O.W.
machine to work its magic!

The story of Jacob and the F.L.O.W. machine is a depiction of a normalizing flow
model. Let’s now explore the theory of normalizing flows in more detail, before we
implement a practical example using Keras.

Normalizing Flows
The motivation of normalizing flow models is similar to that of variational autoen‐
coders, which we explored in Chapter 3. To recap, in a variational autoencoder, we
learn an encoder mapping function between a complex distribution and a much sim‐
pler distribution that we can sample from. We then also learn a decoder mapping

Normalizing Flows | 169

function from the simpler distribution to the complex distribution, so that we can
generate a new data point by sampling a point z from the simpler distribution and
applying the learned transformation. Probabilistically speaking, the decoder models
p x z but the encoder is only an approximation q z x of the true p z x —the
encoder and decoder are two completely distinct neural networks.

In a normalizing flow model, the decoding function is designed to be the exact
inverse of the encoding function and quick to calculate, giving normalizing flows the
property of tractability. However, neural networks are not by default invertible func‐
tions. This raises the question of how we can create an invertible process that con‐
verts between a complex distribution (such as the data generation distribution of a set
of watercolor paintings) and a much simpler distribution (such as a bell-shaped
Gaussian distribution) while still making use of the flexibility and power of deep
learning.

To answer this question, we first need to understand a technique known as change of
variables. For this section, we will work with a simple example in just two dimen‐
sions, so that you can see exactly how normalizing flows work in fine detail. More
complex examples are just extensions of the basic techniques presented here.

Change of Variables
Suppose we have a probability distribution pX x defined over a rectangle X in two
dimensions (x = x1, x2), as shown in Figure 6-2.

Figure 6-2. A probability distribution pX x defined over two dimensions, shown in 2D
(left) and 3D (right)

This function integrates to 1 over the domain of the distribution (i.e., x1in the range
[1, 4] and x2 in the range [0, 2]), so it represents a well-defined probability distribu‐
tion. We can write this as follows:

170 | Chapter 6: Normalizing Flow Models

∫
0

2∫
1

4
pX x dx1dx2 = 1

Let’s say that we want to shift and scale this distribution so that it is instead defined
over a unit square Z. We can achieve this by defining a new variable z = z1, z2 and a
function f that maps each point in X to exactly one point in Z as follows:

z = f x

z1 =
x1 − 1

3

z2 =
x2
2

Note that this function is invertible. That is, there is a function g that maps every z
back to its corresponding x. This is essential for a change of variables, as otherwise we
cannot consistently map backward and forward between the two spaces. We can find
g simply by rearranging the equations that define f , as shown in Figure 6-3.

Figure 6-3. Changing variables between X and Z

We now need to see how the change of variables from X to Z affects the probability
distribution pX x . We can do this by plugging the equations that define g into pX x
to transform it into a function pZ z that is defined in terms of z:

pZ z =
3z1 + 1 − 1 2z2

9

=
2z1z2

3

Normalizing Flows | 171

However, if we now integrate pZ z over the unit square, we can see that we have a
problem!

∫
0

1∫
0

1 2z1z2
3 dz1dz2 = 1

6

The transformed function pZ z is now no longer a valid probability distribution,
because it only integrates to 1/6. If we want to transform our complex probability dis‐
tribution over the data into a simpler distribution that we can sample from, we must
ensure that it integrates to 1.

The missing factor of 6 is due to the fact that the domain of our transformed proba‐
bility distribution is six times smaller than the original domain—the original rectan‐
gle X had area 6, and this has been compressed into a unit square Z that only has area
1. Therefore, we need to multiply the new probability distribution by a normalization
factor that is equal to the relative change in area (or volume in higher dimensions).

Luckily, there is a way to calculate this volume change for a given transformation—it
is the absolute value of the Jacobian determinant of the transformation. Let’s unpack
that!

The Jacobian Determinant
The Jacobian of a function z = f x is the matrix of its first-order partial derivatives,
as shown here:

J = ∂z
∂x =

∂z1
∂x1

⋯
∂z1
∂xn

⋱ ⋮

∂zm
∂x1

⋯
∂zm
∂xn

The best way to explain this is with our example. If we take the partial derivative of z1
with respect to x1, we obtain 1

3 . If we take the partial derivative of z1 with respect to
x2, we obtain 0. Similarly, if we take the partial derivative of z2 with respect to x1, we
obtain 0. Lastly, if we take the partial derivative of z2 with respect to x2, we obtain 1

2 .

Therefore, the Jacobian matrix for our function f x is as follows:

172 | Chapter 6: Normalizing Flow Models

J =

1
3 0

0 1
2

The determinant is only defined for square matrices and is equal to the signed volume
of the parallelepiped created by applying the transformation represented by the
matrix to the unit (hyper)cube. In two dimensions, this is therefore just the signed
area of the parallelogram created by applying the transformation represented by the
matrix to the unit square.

There is a general formula for calculating the determinant of a matrix with n dimen‐
sions, which runs in � n3 time. For our example, we only need the formula for two
dimensions, which is simply as follows:

det
a b
c d

= ad − bc

Therefore, for our example, the determinant of the Jacobian is 1
3 × 1

2 − 0 × 0 = 1
6 . This

is the scaling factor of 1/6 that we need to ensure that the probability distribution
after transformation still integrates to 1!

By definition, the determinant is signed—that is, it can be negative.
Therefore we need to take the absolute value of the Jacobian deter‐
minant in order to obtain the relative change of volume.

The Change of Variables Equation
We can now write down a single equation that describes the process for changing
variables between X and Z. This is known as the change of variables equation (Equa‐
tion 6-1).

Equation 6-1. The change of variables equation

pX x = pZ z det ∂z
∂x

How does this help us build a generative model? The key is understanding that if
pZ z is a simple distribution from which we can easily sample (e.g., a Gaussian), then
in theory, all we need to do is find an appropriate invertible function f x that can
map from the data X into Z and the corresponding inverse function g z that can be

Normalizing Flows | 173

https://oreil.ly/FuDCf

used to map a sampled z back to a point x in the original domain. We can use the
preceding equation involving the Jacobian determinant to find an exact, tractable for‐
mula for the data distribution p x .

However, there are two major issues when applying this in practice that we first need
to address!

Firstly, calculating the determinant of a high-dimensional matrix is computationally
extremely expensive—specifically, it is � n3 . This is completely impractical to imple‐
ment in practice, as even small 32 × 32–pixel grayscale images have 1,024 dimensions.

Secondly, it is not immediately obvious how we should go about calculating the inver‐
tible function f x . We could use a neural network to find some function f x but we
cannot necessarily invert this network—neural networks only work in one direction!

To solve these two problems, we need to use a special neural network architecture
that ensures that the change of variables function f is invertible and has a determi‐
nant that is easy to calculate.

We shall see how to do this in the following section using a technique called real-
valued non-volume preserving (RealNVP) transformations.

RealNVP
RealNVP was first introduced by Dinh et al. in 2017.1 In this paper the authors show
how to construct a neural network that can transform a complex data distribution
into a simple Gaussian, while also possessing the desired properties of being inverti‐
ble and having a Jacobian that can be easily calculated.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/06_normflow/01_realnvp/realnvp.ipynb in the
book repository.
The code has been adapted from the excellent RealNVP tutorial
created by Mandolini Giorgio Maria et al. available on the Keras
website.

The Two Moons Dataset
The dataset we will use for this example is created by the make_moons function from
the Python library sklearn. This creates a noisy dataset of points in 2D that resemble
two crescents, as shown in Figure 6-4.

174 | Chapter 6: Normalizing Flow Models

https://oreil.ly/ZjjwP

Figure 6-4. The two moons dataset in two dimensions

The code for creating this dataset is given in Example 6-1.

Example 6-1. Creating a moons dataset

data = datasets.make_moons(3000, noise=0.05)[0].astype("float32")
norm = layers.Normalization()
norm.adapt(data)
normalized_data = norm(data)

Make a noisy, unnormalized moons dataset of 3,000 points.

Normalize the dataset to have mean 0 and standard deviation 1.

We will build a RealNVP model that can generate points in 2D that follow a similar
distribution to the two moons dataset. Whilst this is a very simple example, it will
help us understand how a normalizing flow model works in practice, in fine detail.

First, however, we need to introduce a new type of layer, called a coupling layer.

Coupling Layers
A coupling layer produces a scale and translation factor for each element of its input.
In other words, it produces two tensors that are exactly the same size as the input,
one for the scale factor and one for the translation factor, as shown in Figure 6-5.

Figure 6-5. A coupling layer outputs two tensors that are the same shape as the input: a
scaling factor (s) and a translation factor (t)

RealNVP | 175

To build a custom Coupling layer for our simple example, we can stack Dense layers
to create the scale output and a different set of Dense layers to create the translation
output, as shown in Example 6-2.

For images, Coupling layer blocks use Conv2D layers instead of
Dense layers.

Example 6-2. A Coupling layer in Keras

def Coupling():
 input_layer = layers.Input(shape=2)

 s_layer_1 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(input_layer)
 s_layer_2 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(s_layer_1)
 s_layer_3 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(s_layer_2)
 s_layer_4 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(s_layer_3)
 s_layer_5 = layers.Dense(
 2, activation="tanh", kernel_regularizer=regularizers.l2(0.01)
)(s_layer_4)

 t_layer_1 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(input_layer)
 t_layer_2 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(t_layer_1)
 t_layer_3 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(t_layer_2)
 t_layer_4 = layers.Dense(
 256, activation="relu", kernel_regularizer=regularizers.l2(0.01)
)(t_layer_3)
 t_layer_5 = layers.Dense(
 2, activation="linear", kernel_regularizer=regularizers.l2(0.01)
)(t_layer_4)

 return models.Model(inputs=input_layer, outputs=[s_layer_5, t_layer_5])

The input to the Coupling layer block in our example has two dimensions.

176 | Chapter 6: Normalizing Flow Models

The scaling stream is a stack of Dense layers of size 256.

The final scaling layer is of size 2 and has tanh activation.

The translation stream is a stack of Dense layers of size 256.

The final translation layer is of size 2 and has linear activation.

The Coupling layer is constructed as a Keras Model with two outputs (the scaling
and translation factors).

Notice how the number of channels is temporarily increased to allow for a more
complex representation to be learned, before being collapsed back down to the same
number of channels as the input. In the original paper, the authors also use regulariz‐
ers on each layer to penalize large weights.

Passing data through a coupling layer
The architecture of a coupling layer is not particularly interesting—what makes it
unique is the way the input data is masked and transformed as it is fed through the
layer, as shown in Figure 6-6.

Figure 6-6. The process of transforming the input x through a coupling layer

Notice how only the first d dimensions of the data are fed through to the first cou‐
pling layer—the remaining D − d dimensions are completely masked (i.e., set to
zero). In our simple example with D = 2, choosing d = 1 means that instead of the
coupling layer seeing two values, x1, x2 , the layer sees x1, 0 .

RealNVP | 177

The outputs from the layer are the scale and translation factors. These are again
masked, but this time with the inverse mask to previously, so that only the second
halves are let through—i.e., in our example, we obtain 0, s2 and 0, t2 . These are
then applied element-wise to the second half of the input x2 and the first half of the
input x1 is simply passed straight through, without being updated at all. In summary,
for a vector with dimension D where d < D, the update equations are as follows:

z1:d = x1:d

zd + 1:D = xd + 1:D⊙ exp s x1:d + t x1:d

You may be wondering why we go to the trouble of building a layer that masks so
much information. The answer is clear if we investigate the structure of the Jacobian
matrix of this function:

∂z
∂x =

� 0
∂zd + 1:D

∂x1:d
diag exp s x1:d

The top-left d × d submatrix is simply the identity matrix, because z1:d = x1:d. These
elements are passed straight through without being updated. The top-right submatrix
is therefore 0, because z1:d is not dependent on xd + 1:D.

The bottom-left submatrix is complex, and we do not seek to simplify this. The
bottom-right submatrix is simply a diagonal matrix, filled with the elements of
exp s x1:d , because zd + 1:D is linearly dependent on xd + 1:D and the gradient is
dependent only on the scaling factor (not on the translation factor). Figure 6-7 shows
a diagram of this matrix form, where only the nonzero elements are filled in with
color.

Notice how there are no nonzero elements above the diagonal—for this reason, this
matrix form is called lower triangular. Now we see the benefit of structuring the
matrix in this way—the determinant of a lower-triangular matrix is just equal to the
product of the diagonal elements. In other words, the determinant is not dependent
on any of the complex derivatives in the bottom-left submatrix!

178 | Chapter 6: Normalizing Flow Models

Figure 6-7. The Jacobian matrix of the transformation—a lower triangular matrix, with
determinant equal to the product of the elements along the diagonal

Therefore, we can write the determinant of this matrix as follows:

det J = exp ∑
j

s x1:d j

This is easily computable, which was one of the two original goals of building a nor‐
malizing flow model.

The other goal was that the function must be easily invertible. We can see that this is
true as we can write down the invertible function just by rearranging the forward
equations, as follows:

x1:d = z1:d

xd + 1:D = zd + 1:D − t x1:d ⊙ exp − s x1:d

RealNVP | 179

The equivalent diagram is shown in Figure 6-8.

Figure 6-8. The inverse function x = g(z)

We now have almost everything we need to build our RealNVP model. However,
there is one issue that still remains—how should we update the first d elements of the
input? Currently they are left completely unchanged by the model!

Stacking coupling layers
To resolve this problem, we can use a really simple trick. If we stack coupling layers
on top of each other but alternate the masking pattern, the layers that are left
unchanged by one layer will be updated in the next. This architecture has the added
benefit of being able to learn more complex representations of the data, as it is a
deeper neural network.

The Jacobian of this composition of coupling layers will still be simple to compute,
because linear algebra tells us that the determinant of a matrix product is the product
of the determinants. Similarly, the inverse of the composition of two functions is just
the composition of the inverses, as shown in the following equations:

det A · B = det A det B

f b ∘ f a
−1 = f a

−1 ∘ f b
−1

Therefore, if we stack coupling layers, flipping the masking each time, we can build a
neural network that is able to transform the whole input tensor, while retaining the
essential properties of having a simple Jacobian determinant and being invertible.
Figure 6-9 shows the overall structure.

180 | Chapter 6: Normalizing Flow Models

Figure 6-9. Stacking coupling layers, alternating the masking with each layer

Training the RealNVP Model
Now that we have built the RealNVP model, we can train it to learn the complex dis‐
tribution of the two moons dataset. Remember, we want to minimize the negative
log-likelihood of the data under the model − log pX x . Using Equation 6-1, we can
write this as follows:

− log pX x = − log pZ z − log det ∂z
∂x

We choose the target output distribution pZ z of the forward process f to be a stan‐
dard Gaussian, because we can easily sample from this distribution. We can then
transform a point sampled from the Gaussian back into the original image domain by
applying the inverse process g, as shown in Figure 6-10.

Figure 6-10. Transforming between the complex distribution pX x and a simple Gaus‐
sian pZ z in 1D (middle row) and 2D (bottom row)

RealNVP | 181

Example 6-3 shows how to build a RealNVP network, as a custom Keras Model.

Example 6-3. Building the RealNVP model in Keras

class RealNVP(models.Model):
 def __init__(self, input_dim, coupling_layers, coupling_dim, regularization):
 super(RealNVP, self).__init__()
 self.coupling_layers = coupling_layers
 self.distribution = tfp.distributions.MultivariateNormalDiag(
 loc=[0.0, 0.0], scale_diag=[1.0, 1.0]
)
 self.masks = np.array(
 [[0, 1], [1, 0]] * (coupling_layers // 2), dtype="float32"
)
 self.loss_tracker = metrics.Mean(name="loss")
 self.layers_list = [
 Coupling(input_dim, coupling_dim, regularization)
 for i in range(coupling_layers)
]

 @property
 def metrics(self):
 return [self.loss_tracker]

 def call(self, x, training=True):
 log_det_inv = 0
 direction = 1
 if training:
 direction = -1
 for i in range(self.coupling_layers)[::direction]:
 x_masked = x * self.masks[i]
 reversed_mask = 1 - self.masks[i]
 s, t = self.layers_list[i](x_masked)
 s *= reversed_mask
 t *= reversed_mask
 gate = (direction - 1) / 2
 x = (
 reversed_mask
 * (x * tf.exp(direction * s) + direction * t * tf.exp(gate * s))
 + x_masked
)
 log_det_inv += gate * tf.reduce_sum(s, axis = 1)
 return x, log_det_inv

 def log_loss(self, x):
 y, logdet = self(x)
 log_likelihood = self.distribution.log_prob(y) + logdet
 return -tf.reduce_mean(log_likelihood)

 def train_step(self, data):
 with tf.GradientTape() as tape:

182 | Chapter 6: Normalizing Flow Models

 loss = self.log_loss(data)
 g = tape.gradient(loss, self.trainable_variables)
 self.optimizer.apply_gradients(zip(g, self.trainable_variables))
 self.loss_tracker.update_state(loss)
 return {"loss": self.loss_tracker.result()}

 def test_step(self, data):
 loss = self.log_loss(data)
 self.loss_tracker.update_state(loss)
 return {"loss": self.loss_tracker.result()}

model = RealNVP(
 input_dim = 2
 , coupling_layers= 6
 , coupling_dim = 256
 , regularization = 0.01
)

model.compile(optimizer=optimizers.Adam(learning_rate=0.0001))

model.fit(
 normalized_data
 , batch_size=256
 , epochs=300
)

The target distribution is a standard 2D Gaussian.

Here, we create the alternating mask pattern.

A list of Coupling layers that define the RealNVP network.

In the main call function of the network, we loop over the Coupling layers. If
training=True, then we move forward through the layers (i.e., from data to
latent space). If training=False, then we move backward through the layers (i.e.,
from latent space to data).

This line describes both the forward and backward equations dependent on the
direction (try plugging in direction = -1 and direction = 1 to prove this to
yourself!).

The log determinant of the Jacobian, which we need to calculate the loss func‐
tion, is simply the sum of the scaling factors.

The loss function is the negative sum of the log probability of the transformed
data, under our target Gaussian distribution and the log determinant of the
Jacobian.

RealNVP | 183

Analysis of the RealNVP Model
Once the model is trained, we can use it to transform the training set into the latent
space (using the forward direction, f) and, more importantly, to transform a sampled
point in the latent space into a point that looks like it could have been sampled from
the original data distribution (using the backward direction, g).

Figure 6-11 shows the output from the network before any learning has taken place—
the forward and backward directions just pass information straight through with
hardly any transformation.

Figure 6-11. The RealNVP model inputs (left) and outputs (right) before training, for the
forward process (top) and the reverse process (bottom)

After training (Figure 6-12), the forward process is able to convert the points from
the training set into a distribution that resembles a Gaussian. Likewise, the backward
process can take points sampled from a Gaussian distribution and map them back to
a distribution that resembles the original data.

184 | Chapter 6: Normalizing Flow Models

Figure 6-12. The RealNVP model inputs (left) and outputs (right) after training, for the
forward process (top) and the reverse process (bottom)

The loss curve for the training process is shown in Figure 6-13.

Figure 6-13. The loss curve for the RealNVP training process

This completes our discussion of RealNVP, a specific case of a normalizing flow gen‐
erative model. In the next section, we’ll cover some modern normalizing flow models
that extend the ideas introduced in the RealNVP paper.

RealNVP | 185

Other Normalizing Flow Models
Two other successful and important normalizing flow models are GLOW and
FFJORD. The following sections describe the key advancements they made.

GLOW
Presented at NeurIPS 2018, GLOW was one of the first models to demonstrate the
ability of normalizing flows to generate high-quality samples and produce a meaning‐
ful latent space that can be traversed to manipulate samples. The key step was to
replace the reverse masking setup with invertible 1 × 1 convolutional layers. For
example, with RealNVP applied to images, the ordering of the channels is flipped
after each step, to ensure that the network gets the chance to transform all of the
input. In GLOW a 1 × 1 convolution is applied instead, which effectively acts as a
general method to produce any permutation of the channels that the model desires.
The authors show that even with this addition, the distribution as a whole remains
tractable, with determinants and inverses that are easy to compute at scale.

Figure 6-14. Random samples from the GLOW model (source: Kingma and Dhariwal,
2018)2

186 | Chapter 6: Normalizing Flow Models

https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1807.03039

FFJORD
RealNVP and GLOW are discrete time normalizing flows—that is, they transform the
input through a discrete set of coupling layers. FFJORD (Free-Form Continuous
Dynamics for Scalable Reversible Generative Models), presented at ICLR 2019, shows
how it is possible to model the transformation as a continuous time process (i.e., by
taking the limit as the number of steps in the flow tends to infinity and the step size
tends to zero). In this case, the dynamics are modeled using an ordinary differential
equation (ODE) whose parameters are produced by a neural network (f θ). A black-
box solver is used to solve the ODE at time t1—i.e., to find z1 given some initial point
z0 sampled from a Gaussian at t0, as described by the following equations:

z0 ∼ p z0

∂z t
∂t = f θ x t , t

x = z1

A diagram of the transformation process is shown in Figure 6-15.

Figure 6-15. FFJORD models the transformation between the data distribution and a
standard Gaussian via an ordinary differential equation, parameterized by a neural
network (source: Will Grathwohl et al., 2018)3

Other Normalizing Flow Models | 187

https://arxiv.org/abs/1810.01367

Summary
In this chapter we explored normalizing flow models such as RealNVP, GLOW, and
FFJORD.

A normalizing flow model is an invertible function defined by a neural network that
allows us to directly model the data density via a change of variables. In the general
case, the change of variables equation requires us to calculate a highly complex Jaco‐
bian determinant, which is impractical for all but the simplest of examples.

To sidestep this issue, the RealNVP model restricts the form of the neural network,
such that it adheres to the two essential criteria: it is invertible and has a Jacobian
determinant that is easy to compute.

It does this through stacking coupling layers, which produce scale and translation fac‐
tors at each step. Importantly, the coupling layer masks the data as it flows through
the network, in a way that ensures that the Jacobian is lower triangular and therefore
has a simple-to-compute determinant. Full visibility of the input data is achieved
through flipping the masks at each layer.

By design, the scale and translation operations can be easily inverted, so that once the
model is trained it is possible to run data through the network in reverse. This means
that we can target the forward transformation process toward a standard Gaussian,
which we can easily sample from. We can then run the sampled points backward
through the network to generate new observations.

The RealNVP paper also shows how it is possible to apply this technique to images,
by using convolutions inside the coupling layers, rather than densely connected lay‐
ers. The GLOW paper extended this idea to remove the necessity for any hardcoded
permutation of the masks. The FFJORD model introduced the concept of continuous
time normalizing flows, by modeling the transformation process as an ODE defined
by a neural network.

Overall, we have seen how normalizing flows are a powerful generative modeling
family that can produce high-quality samples, while maintaining the ability to tracta‐
bly describe the data density function.

References
1. Laurent Dinh et al., “Density Estimation Using Real NVP,” May 27, 2016, https://
arxiv.org/abs/1605.08803v3.

2. Diedrick P. Kingma and Prafulla Dhariwal, “Glow: Generative Flow with Invertible
1x1 Convolutions,” July 10, 2018, https://arxiv.org/abs/1807.03039.

3. Will Grathwohl et al., “FFJORD: Free-Form Continuous Dynamics for Scalable
Reversible Generative Models,” October 22, 2018, https://arxiv.org/abs/1810.01367.

188 | Chapter 6: Normalizing Flow Models

https://arxiv.org/abs/1605.08803v3
https://arxiv.org/abs/1605.08803v3
https://arxiv.org/abs/1807.03039
https://arxiv.org/abs/1810.01367

CHAPTER 7

Energy-Based Models

Chapter Goals
In this chapter you will:

• Understand how to formulate a deep energy-based model (EBM).
• See how to sample from an EBM using Langevin dynamics.
• Train your own EBM using contrastive divergence.
• Analyze the EBM, including viewing snapshots of the Langevin dynamics sam‐

pling process.
• Learn about other types of EBM, such as restricted Boltzmann machines.

Energy-based models are a broad class of generative model that borrow a key idea
from modeling physical systems—namely, that the probability of an event can be
expressed using a Boltzmann distribution, a specific function that normalizes a real-
valued energy function between 0 and 1. This distribution was originally formulated
in 1868 by Ludwig Boltzmann, who used it to describe gases in thermal equilibrium.

In this chapter, we will see how we can use this idea to train a generative model that
can be used to produce images of handwritten digits. We will explore several new
concepts, including contrastive divergence for training the EBM and Langevin
dynamics for sampling.

Introduction
We will begin with a short story to illustrate the key concepts behind energy-based
models.

189

The Long-au-Vin Running Club
Diane Mixx was head coach of the long-distance running team in the fictional French
town of Long-au-Vin. She was well known for her exceptional abilities as a trainer
and had acquired a reputation for being able to turn even the most mediocre of ath‐
letes into world-class runners (Figure 7-1).

Figure 7-1. A running coach training some elite athletes (created with Midjourney)

Her methods were based around assessing the energy levels of each athlete. Over
years of working with athletes of all abilities, she had developed an incredibly accurate
sense of just how much energy a particular athlete had left after a race, just by looking
at them. The lower an athlete’s energy level, the better—elite athletes always gave
everything they had during the race!

To keep her skills sharp, she regularly trained herself by measuring the contrast
between her energy sensing abilities on known elite athletes and the best athletes
from her club. She ensured that the divergence between her predictions for these two
groups was as large as possible, so that people would take her seriously if she said that
she had found a true elite athlete within her club.

The real magic was her ability to convert a mediocre runner into a top-class runner.
The process was simple—she measured the current energy level of the athlete and
worked out the optimal set of adjustments the athlete needed to make to improve
their performance next time. Then, after making these adjustments, she measured the
athlete’s energy level again, looking for it to be slightly lower than before, explaining
the improved performance on the track. This process of assessing the optimal adjust‐
ments and taking a small step in the right direction would continue until eventually
the athlete was indistinguishable from a world-class runner.

190 | Chapter 7: Energy-Based Models

https://midjourney.com

After many years Diane retired from coaching and published a book on her methods
for generating elite athletes—a system she branded the “Long-au-Vin, Diane Mixx”
technique.

The story of Diane Mixx and the Long-au-Vin running club captures the key ideas
behind energy-based modeling. Let’s now explore the theory in more detail, before
we implement a practical example using Keras.

Energy-Based Models
Energy-based models attempt to model the true data-generating distribution using a
Boltzmann distribution (Equation 7-1) where E x is know as the energy function (or
score) of an observation x.

Equation 7-1. Boltzmann distribution

p � = e−E �

∫
� ∈ �

e−E �

In practice, this amounts to training a neural network E x to output low scores for
likely observations (so p� is close to 1) and high scores for unlikely observations (so
p� is close to 0).

There are two challenges with modeling the data in this way. Firstly, it is not clear
how we should use our model for sampling new observations—we can use it to gen‐
erate a score given an observation, but how do we generate an observation that has a
low score (i.e., a plausible observation)?

Secondly, the normalizing denominator of Equation 7-1 contains an integral that is
intractable for all but the simplest of problems. If we cannot calculate this integral,
then we cannot use maximum likelihood estimation to train the model, as this
requires that p� is a valid probability distribution.

The key idea behind an energy-based model is that we can use approximation tech‐
niques to ensure we never need to calculate the intractable denominator. This is in
contrast to, say, a normalizing flow, where we go to great lengths to ensure that the
transformations that we apply to our standard Gaussian distribution do not change
the fact that the output is still a valid probability distribution.

We sidestep the tricky intractable denominator problem by using a technique called
contrastive divergence (for training) and a technique called Langevin dynamics
(for sampling), following the ideas from Du and Mordatch’s 2019 paper “Implicit

Energy-Based Models | 191

Generation and Modeling with Energy-Based Models.”1 We shall explore these tech‐
niques in detail while building our own EBM later in the chapter.

First, let’s get set up with a dataset and design a simple neural network that will repre‐
sent our real-valued energy function E x .

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/07_ebm/01_ebm/ebm.ipynb in the book
repository.
The code is adapted from the excellent tutorial on deep energy-
based generative models by Phillip Lippe.

The MNIST Dataset
We’ll be using the standard MNIST dataset, consisting of grayscale images of hand‐
written digits. Some example images from the dataset are shown in Figure 7-2.

Figure 7-2. Examples of images from the MNIST dataset

The dataset comes prepackaged with TensorFlow, so it can be downloaded as shown
in Example 7-1.

Example 7-1. Loading the MNIST dataset

from tensorflow.keras import datasets
(x_train, _), (x_test, _) = datasets.mnist.load_data()

As usual, we’ll scale the pixel values to the range [-1, 1] and add some padding to
make the images 32 × 32 pixels in size. We also convert it to a TensorFlow Dataset, as
shown in Example 7-2.

Example 7-2. Preprocessing the MNIST dataset

def preprocess(imgs):
 imgs = (imgs.astype("float32") - 127.5) / 127.5
 imgs = np.pad(imgs , ((0,0), (2,2), (2,2)), constant_values= -1.0)

192 | Chapter 7: Energy-Based Models

https://oreil.ly/kyO9B
https://oreil.ly/kyO9B
https://oreil.ly/mSvhc

 imgs = np.expand_dims(imgs, -1)
 return imgs

x_train = preprocess(x_train)
x_test = preprocess(x_test)
x_train = tf.data.Dataset.from_tensor_slices(x_train).batch(128)
x_test = tf.data.Dataset.from_tensor_slices(x_test).batch(128)

Now that we have our dataset, we can build the neural network that will represent our
energy function E x .

The Energy Function
The energy function Eθ x is a neural network with parameters θ that can transform
an input image x into a scalar value. Throughout this network, we make use of an
activation function called swish, as described in the following sidebar.

Swish Activation
Swish is an alternative to ReLU that was introduced by Google in 20172 and is defined
as follows:

swish x = x · sigmoid x = x
e−x + 1

Swish is visually similar to ReLU, with the key difference being that it is smooth,
which helps to alleviate the vanishing gradient problem. This is particularly impor‐
tant for energy-based models. A plot of the swish function is shown in Figure 7-3.

Figure 7-3. The swish activation function

Energy-Based Models | 193

The network is a set of stacked Conv2D layers that gradually reduce the size of the
image while increasing the number of channels. The final layer is a single fully con‐
nected unit with linear activation, so the network can output values in the range (−∞,
∞). The code to build it is given in Example 7-3.

Example 7-3. Building the energy function E x neural network

ebm_input = layers.Input(shape=(32, 32, 1))
x = layers.Conv2D(
 16, kernel_size=5, strides=2, padding="same", activation = activations.swish
)(ebm_input)
x = layers.Conv2D(
 32, kernel_size=3, strides=2, padding="same", activation = activations.swish
)(x)
x = layers.Conv2D(
 64, kernel_size=3, strides=2, padding="same", activation = activations.swish
)(x)
x = layers.Conv2D(
 64, kernel_size=3, strides=2, padding="same", activation = activations.swish
)(x)
x = layers.Flatten()(x)
x = layers.Dense(64, activation = activations.swish)(x)
ebm_output = layers.Dense(1)(x)
model = models.Model(ebm_input, ebm_output)

The energy function is a set of stacked Conv2D layers, with swish activation.

The final layer is a single fully connected unit, with a linear activation function.

A Keras Model that converts the input image into a scalar energy value.

Sampling Using Langevin Dynamics
The energy function only outputs a score for a given input—how can we use this
function to generate new samples that have a low energy score?

We will use a technique called Langevin dynamics, which makes use of the fact that we
can compute the gradient of the energy function with respect to its input. If we start
from a random point in the sample space and take small steps in the opposite direc‐
tion of the calculated gradient, we will gradually reduce the energy function. If our
neural network is trained correctly, then the random noise should transform into an
image that resembles an observation from the training set before our eyes!

194 | Chapter 7: Energy-Based Models

Stochastic Gradient Langevin Dynamics

Importantly, we must also add a small amount of random noise to
the input as we travel across the sample space; otherwise, there is a
risk of falling into local minima. The technique is therefore known
as stochastic gradient Langevin dynamics.3

We can visualize this gradient descent as shown in Figure 7-4, for a two-dimensional
space with the energy function value on the third dimension. The path is a noisy
descent downhill, following the negative gradient of the energy function E x with
respect to the input x. In the MNIST image dataset, we have 1,024 pixels so are navi‐
gating a 1,024-dimensional space, but the same principles apply!

Figure 7-4. Gradient descent using Langevin dynamics

It is worth noting the difference between this kind of gradient descent and the kind of
gradient descent we normally use to train a neural network.

When training a neural network, we calculate the gradient of the loss function with
respect to the parameters of the network (i.e., the weights) using backpropagation.
Then we update the parameters a small amount in the direction of the negative gradi‐
ent, so that over many iterations, we gradually minimize the loss.

With Langevin dynamics, we keep the neural network weights fixed and calculate the
gradient of the output with respect to the input. Then we update the input a small
amount in the direction of the negative gradient, so that over many iterations, we
gradually minimize the output (the energy score).

Both processes utilize the same idea (gradient descent), but are applied to different
functions and with respect to different entities.

Energy-Based Models | 195

Formally, Langevin dynamics can be described by the following equation:

xk = xk − 1 − η∇xEθ xk − 1 + ω

where ω ∼ � 0, σ and x0 ∼ � (–1,1). η is the step size hyperparameter that must be
tuned—too large and the steps jump over minima, too small and the algorithm will
be too slow to converge.

x0 ∼ � (–1,1) is the uniform distribution on the range [–1, 1].

We can code up our Langevin sampling function as illustrated in Example 7-4.

Example 7-4. The Langevin sampling function

def generate_samples(model, inp_imgs, steps, step_size, noise):
 imgs_per_step = []
 for _ in range(steps):
 inp_imgs += tf.random.normal(inp_imgs.shape, mean = 0, stddev = noise)
 inp_imgs = tf.clip_by_value(inp_imgs, -1.0, 1.0)
 with tf.GradientTape() as tape:
 tape.watch(inp_imgs)
 out_score = -model(inp_imgs)
 grads = tape.gradient(out_score, inp_imgs)
 grads = tf.clip_by_value(grads, -0.03, 0.03)
 inp_imgs += -step_size * grads
 inp_imgs = tf.clip_by_value(inp_imgs, -1.0, 1.0)
 return inp_imgs

Loop over given number of steps.

Add a small amount of noise to the image.

Pass the image through the model to obtain the energy score.

Calculate the gradient of the output with respect to the input.

Add a small amount of the gradient to the input image.

196 | Chapter 7: Energy-Based Models

Training with Contrastive Divergence
Now that we know how to sample a novel low-energy point from the sample space,
let’s turn our attention to training the model.

We cannot apply maximum likelihood estimation, because the energy function does
not output a probability; it outputs a score that does not integrate to 1 across the sam‐
ple space. Instead, we will apply a technique first proposed in 2002 by Geoffrey Hin‐
ton, called contrastive divergence, for training unnormalized scoring models.4

The value that we want to minimize (as always) is the negative log-likelihood of the
data:

ℒ = − �x ∼ data log pθ �

When pθ � has the form of a Boltzmann distribution, with energy function Eθ � , it
can be shown that the gradient of this value can be written as follows (Oliver Wood‐
ford’s “Notes on Contrastive Divergence” for the full derivation):5

∇θℒ = �x ∼ data ∇θEθ � − �x ∼ model ∇θEθ �

This intuitively makes a lot of sense—we want to train the model to output large neg‐
ative energy scores for real observations and large positive energy scores for gener‐
ated fake observations so that the contrast between these two extremes is as large as
possible.

In other words, we can calculate the difference between the energy scores of real and
fake samples and use this as our loss function.

To calculate the energy scores of fake samples, we would need to be able to sample
exactly from the distribution pθ � , which isn’t possible due to the intractable denom‐
inator. Instead, we can use our Langevin sampling procedure to generate a set of
observations with low energy scores. The process would need to run for infinitely
many steps to produce a perfect sample (which is obviously impractical), so instead
we run for some small number of steps, on the assumption that this is good enough
to produce a meaningful loss function.

We also maintain a buffer of samples from previous iterations, so that we can use this
as the starting point for the next batch, rather than pure random noise. The code to
produce the sampling buffer is shown in Example 7-5.

Energy-Based Models | 197

Example 7-5. The Buffer

class Buffer:
 def __init__(self, model):
 super().__init__()
 self.model = model
 self.examples = [
 tf.random.uniform(shape = (1, 32, 32, 1)) * 2 - 1
 for _ in range(128)
]

 def sample_new_exmps(self, steps, step_size, noise):
 n_new = np.random.binomial(128, 0.05)
 rand_imgs = (
 tf.random.uniform((n_new, 32, 32, 1)) * 2 - 1
)
 old_imgs = tf.concat(
 random.choices(self.examples, k=128-n_new), axis=0
)
 inp_imgs = tf.concat([rand_imgs, old_imgs], axis=0)
 inp_imgs = generate_samples(
 self.model, inp_imgs, steps=steps, step_size=step_size, noise = noise
)
 self.examples = tf.split(inp_imgs, 128, axis = 0) + self.examples
 self.examples = self.examples[:8192]
 return inp_imgs

The sampling buffer is initialized with a batch of random noise.

On average, 5% of observations are generated from scratch (i.e., random noise)
each time.

The rest are pulled at random from the existing buffer.

The observations are concatenated and run through the Langevin sampler.

The resulting sample is added to the buffer, which is trimmed to a max length of
8,192 observations.

Figure 7-5 shows one training step of contrastive divergence. The scores of real
observations are pushed down by the algorithm and the scores of fake observations
are pulled up, without caring about normalizing these scores after each step.

198 | Chapter 7: Energy-Based Models

Figure 7-5. One step of contrastive divergence

We can code up the training step of the contrastive divergence algorithm within a
custom Keras model as shown in Example 7-6.

Example 7-6. EBM trained using contrastive divergence

class EBM(models.Model):
 def __init__(self):
 super(EBM, self).__init__()
 self.model = model
 self.buffer = Buffer(self.model)
 self.alpha = 0.1
 self.loss_metric = metrics.Mean(name="loss")
 self.reg_loss_metric = metrics.Mean(name="reg")
 self.cdiv_loss_metric = metrics.Mean(name="cdiv")
 self.real_out_metric = metrics.Mean(name="real")
 self.fake_out_metric = metrics.Mean(name="fake")

 @property
 def metrics(self):
 return [
 self.loss_metric,
 self.reg_loss_metric,
 self.cdiv_loss_metric,
 self.real_out_metric,
 self.fake_out_metric
]

 def train_step(self, real_imgs):
 real_imgs += tf.random.normal(
 shape=tf.shape(real_imgs), mean = 0, stddev = 0.005
)
 real_imgs = tf.clip_by_value(real_imgs, -1.0, 1.0)
 fake_imgs = self.buffer.sample_new_exmps(
 steps=60, step_size=10, noise = 0.005
)
 inp_imgs = tf.concat([real_imgs, fake_imgs], axis=0)
 with tf.GradientTape() as training_tape:

Energy-Based Models | 199

 real_out, fake_out = tf.split(self.model(inp_imgs), 2, axis=0)
 cdiv_loss = tf.reduce_mean(fake_out, axis = 0) - tf.reduce_mean(
 real_out, axis = 0
)
 reg_loss = self.alpha * tf.reduce_mean(
 real_out ** 2 + fake_out ** 2, axis = 0
)
 loss = reg_loss + cdiv_loss
 grads = training_tape.gradient(loss, self.model.trainable_variables)
 self.optimizer.apply_gradients(
 zip(grads, self.model.trainable_variables)
)
 self.loss_metric.update_state(loss)
 self.reg_loss_metric.update_state(reg_loss)
 self.cdiv_loss_metric.update_state(cdiv_loss)
 self.real_out_metric.update_state(tf.reduce_mean(real_out, axis = 0))
 self.fake_out_metric.update_state(tf.reduce_mean(fake_out, axis = 0))
 return {m.name: m.result() for m in self.metrics}

 def test_step(self, real_imgs):
 batch_size = real_imgs.shape[0]
 fake_imgs = tf.random.uniform((batch_size, 32, 32, 1)) * 2 - 1
 inp_imgs = tf.concat([real_imgs, fake_imgs], axis=0)
 real_out, fake_out = tf.split(self.model(inp_imgs), 2, axis=0)
 cdiv = tf.reduce_mean(fake_out, axis = 0) - tf.reduce_mean(
 real_out, axis = 0
)
 self.cdiv_loss_metric.update_state(cdiv)
 self.real_out_metric.update_state(tf.reduce_mean(real_out, axis = 0))
 self.fake_out_metric.update_state(tf.reduce_mean(fake_out, axis = 0))
 return {m.name: m.result() for m in self.metrics[2:]}

ebm = EBM()
ebm.compile(optimizer=optimizers.Adam(learning_rate=0.0001), run_eagerly=True)
ebm.fit(x_train, epochs=60, validation_data = x_test,)

A small amount of random noise is added to the real images, to avoid the model
overfitting to the training set.

A set of fake images are sampled from the buffer.

The real and fake images are run through the model to produce real and fake
scores.

The contrastive divergence loss is simply the difference between the scores of real
and fake observations.

A regularization loss is added to avoid the scores becoming too large.

200 | Chapter 7: Energy-Based Models

Gradients of the loss function with respect to the weights of the network are cal‐
culated for backpropagation.

The test_step is used during validation and calculates the contrastive diver‐
gence between the scores of a set of random noise and data from the training set.
It can be used as a measure for how well the model is training (see the following
section).

Analysis of the Energy-Based Model
The loss curves and supporting metrics from the training process are shown in
Figure 7-6.

Figure 7-6. Loss curves and metrics for the training process of the EBM

Firstly, notice that the loss calculated during the training step is approximately con‐
stant and small across epochs. While the model is constantly improving, so is the
quality of generated images in the buffer that it is required to compare against real
images from the training set, so we shouldn’t expect the training loss to fall
significantly.

Therefore, to judge model performance, we also set up a validation process that
doesn’t sample from the buffer, but instead scores a sample of random noise and
compares this against the scores of examples from the training set. If the model is
improving, we should see that the contrastive divergence falls over the epochs (i.e., it
is getting better at distinguishing random noise from real images), as can be seen in
Figure 7-6.

Energy-Based Models | 201

Generating new samples from the EBM is simply a case of running the Langevin sam‐
pler for a large number of steps, from a standing start (random noise), as shown in
Example 7-7. The observation is forced downhill, following the gradients of the scor‐
ing function with respect to the input, so that out of the noise, a plausible observation
appears.

Example 7-7. Generating new observations using the EBM

start_imgs = np.random.uniform(size = (10, 32, 32, 1)) * 2 - 1
gen_img = generate_samples(
 ebm.model,
 start_imgs,
 steps=1000,
 step_size=10,
 noise = 0.005,
 return_img_per_step=True,
)

Some examples of observations produced by the sampler after 50 epochs of training
are shown in Figure 7-7.

Figure 7-7. Examples produced by the Langevin sampler using the EBM model to direct
the gradient descent

We can even show a replay of how a single observation is generated by taking snap‐
shots of the current observations during the Langevin sampling process—this is
shown in Figure 7-8.

Figure 7-8. Snapshots of an observation at different steps of the Langevin sampling
process

Other Energy-Based Models
In the previous example we made use of a deep EBM trained using contrastive diver‐
gence with a Langevin dynamics sampler. However, early EBM models did not make
use of Langevin sampling, but instead relied on other techniques and architectures.

202 | Chapter 7: Energy-Based Models

One of the earliest examples of an EBM was the Boltzmann machine.6 This is a fully
connected, undirected neural network, where binary units are either visible (v) or hid‐
den (h). The energy of a given configuration of the network is defined as follows:

Eθ v, h = − 1
2 vTLv + hTJh + vTWh

where W, L, J are the weights matrices that are learned by the model. Training is
achieved by contrastive divergence, but using Gibbs sampling to alternate between
the visible and hidden layers until an equilibrium is found. In practice this is very
slow and not scalable to large numbers of hidden units.

See Jessica Stringham’s blog post “Gibbs Sampling in Python” for an
excellent simple example of Gibbs sampling.

An extension to this model, the restricted Boltzmann machine (RBM), removes the
connections between units of the same type, therefore creating a two-layer bipartite
graph. This allows RBMs to be stacked into deep belief networks to model more com‐
plex distributions. However, modeling high-dimensional data with RBMs remains
impractical, due to the fact that Gibbs sampling with long mixing times is still
required.

It was only in the late 2000s that EBMs were shown to have potential for modeling
more high-dimensional datasets and a framework for building deep EBMs was estab‐
lished.7 Langevin dynamics became the preferred sampling method for EBMs, which
later evolved into a training technique known as score matching. This further devel‐
oped into a model class known as Denoising Diffusion Probabilistic Models, which
power state-of-the-art generative models such as DALL.E 2 and ImageGen. We will
explore diffusion models in more detail in Chapter 8.

Summary
Energy-based models are a class of generative model that make use of an energy scor‐
ing function—a neural network that is trained to output low scores for real observa‐
tions and high scores for generated observations. Calculating the probability
distribution given by this score function would require normalizing by an intractable
denominator. EBMs avoid this problem by utilizing two tricks: contrastive divergence
for training the network and Langevin dynamics for sampling new observations.

The energy function is trained by minimizing the difference between the generated
sample scores and the scores of the training data, a technique known as contrastive

Summary | 203

https://oreil.ly/tXmOq

divergence. This can be shown to be equivalent to minimizing the negative log-
likelihood, as required by maximum likelihood estimation, but does not require us to
calculate the intractable normalizing denominator. In practice, we approximate the
sampling process for the fake samples to ensure the algorithm remains efficient.

Sampling of deep EBMs is achieved through Langevin dynamics, a technique that
uses the gradient of the score with respect to the input image to gradually transform
random noise into a plausible observation by updating the input in small steps, fol‐
lowing the gradient downhill. This improves upon earlier methods such as Gibbs
sampling, which is utilized by restricted Boltzmann machines.

References
1. Yilun Du and Igor Mordatch, “Implicit Generation and Modeling with Energy-
Based Models,” March 20, 2019, https://arxiv.org/abs/1903.08689.

2. Prajit Ramachandran et al., “Searching for Activation Functions,” October 16, 2017,
https://arxiv.org/abs/1710.05941v2.

3. Max Welling and Yee Whye Teh, “Bayesian Learning via Stochastic Gradient Lan‐
gevin Dynamics,” 2011, https://www.stats.ox.ac.uk/~teh/research/compstats/
WelTeh2011a.pdf

4. Geoffrey E. Hinton, “Training Products of Experts by Minimizing Contrastive
Divergence,” 2002, https://www.cs.toronto.edu/~hinton/absps/tr00-004.pdf.

5. Oliver Woodford, “Notes on Contrastive Divergence,” 2006, https://
www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf.

6. David H. Ackley et al., “A Learning Algorithm for Boltzmann Machines,” 1985,
Cognitive Science 9(1), 147-165.

7. Yann Lecun et al., “A Tutorial on Energy-Based Learning,” 2006, https://
www.researchgate.net/publication/200744586_A_tutorial_on_energy-based_learning.

204 | Chapter 7: Energy-Based Models

https://arxiv.org/abs/1903.08689
https://arxiv.org/abs/1710.05941v2
https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf
https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf
https://www.cs.toronto.edu/~hinton/absps/tr00-004.pdf
https://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
https://www.robots.ox.ac.uk/~ojw/files/NotesOnCD.pdf
https://www.researchgate.net/publication/200744586_A_tutorial_on_energy-based_learning
https://www.researchgate.net/publication/200744586_A_tutorial_on_energy-based_learning

CHAPTER 8

Diffusion Models

Chapter Goals
In this chapter you will:

• Learn the underlying principles and components that define a diffusion model.
• See how the forward process is used to add noise to the training set of images.
• Understand the reparameterization trick and why it is important.
• Explore different forms of forward diffusion scheduling.
• Understand the reverse diffusion process and how it relates to the forward nois‐

ing process.
• Explore the architecture of the U-Net, which is used to parameterize the reverse

diffusion process.
• Build your own denoising diffusion model (DDM) using Keras to generate

images of flowers.
• Sample new images of flowers from your model.
• Explore the effect of the number of diffusion steps on image quality and interpo‐

late between two images in the latent space.

Alongside GANs, diffusion models are one of the most influential and impactful gen‐
erative modeling techniques for image generation to have been introduced over the
last decade. Across many benchmarks, diffusion models now outperform previously
state-of-the-art GANs and are quickly becoming the go-to choice for generative mod‐
eling practitioners, particularly for visual domains (e.g., OpenAI’s DALL.E 2 and
Google’s ImageGen for text-to-image generation). Recently, there has been an

205

explosion of diffusion models being applied across wide range of tasks, reminiscent of
the GAN proliferation that took place between 2017–2020.

Many of the core ideas that underpin diffusion models share similarities with earlier
types of generative models that we have already explored in this book (e.g., denoising
autoencoders, energy-based models). Indeed, the name diffusion takes inspiration
from the well-studied property of thermodynamic diffusion: an important link was
made between this purely physical field and deep learning in 2015.1

Important progress was also being made in the field of score-based generative mod‐
els,2,3 a branch of energy-based modeling that directly estimates the gradient of the
log distribution (also known as the score function) in order to train the model, as an
alternative to using contrastive divergence. In particular, Yang Song and Stefano
Ermon used multiple scales of noise perturbations applied to the raw data to ensure
the model—a noise conditional score network (NCSN)—performs well on regions of
low data density.

The breakthrough diffusion model paper came in the summer of 2020.4 Standing on
the shoulders of earlier works, the paper uncovers a deep connection between diffu‐
sion models and score-based generative models, and the authors use this fact to train
a diffusion model that can rival GANs across several datasets, called the Denoising
Diffusion Probabilistic Model (DDPM).

This chapter will walk through the theoretical requirements for understanding how a
denoising diffusion model works. You will then learn how to build your own denois‐
ing diffusion model using Keras.

Introduction
To help explain the key ideas that underpin diffusion models, let’s begin with a short
story!

DiffuseTV
You are standing in an electronics store that sells television sets. However, this store is
clearly very different from ones you have visited in the past. Instead of a wide variety
of different brands, there are hundreds of identical copies of the same TV connected
together in sequence, stretching into the back of the shop as far as you can see. What’s
more, the first few TV sets appear to be showing nothing but random static noise
(Figure 8-1).

The shopkeeper comes over to ask if you need assistance. Confused, you ask her
about the odd setup. She explains that this is the new DiffuseTV model that is set to
revolutionize the entertainment industry and immediately starts telling you how it
works, while walking deeper into the shop, alongside the line of TVs.

206 | Chapter 8: Diffusion Models

Figure 8-1. A long line of connected television sets stretching out along an aisle of a shop
(created with Midjourney)

She explains that during the manufacturing process, the DiffuseTV is exposed to
thousands of images of previous TV shows—but each of those images has been grad‐
ually corrupted with random static, until it is indistinguishable from pure random
noise. The TVs are then designed to undo the random noise, in small steps, essentially
trying to predict what the images looked like before the noise was added. You can see
that as you walk further into the shop the images on each television set are indeed
slightly clearer than the last.

You eventually reach the end of the long line of televisions, where you can see a per‐
fect picture on the last set. While this is certainly clever technology, you are curious to
understand how this is useful to the viewer. The shopkeeper continues with her
explanation.

Instead of choosing a channel to watch, the viewer chooses a random initial configu‐
ration of static. Every configuration will lead to a different output image, and in some
models can even be guided by a text prompt that you choose to input. Unlike a nor‐
mal TV, with a limited range of channels to watch, the DiffuseTV gives the viewer
unlimited choice and freedom to generate whatever they would like to appear on the
screen!

You purchase a DiffuseTV right away and are relieved to hear that the long line of
TVs in the shop is for demonstration purposes only, so you won’t have to also buy a
warehouse to store your new device!

The DiffuseTV story describes the general idea behind a diffusion model. Now let’s
dive into the technicalities of how we build such a model using Keras.

Introduction | 207

https://midjourney.com

Denoising Diffusion Models (DDM)
The core idea behind a denoising diffusion model is simple—we train a deep learning
model to denoise an image over a series of very small steps. If we start from pure ran‐
dom noise, in theory we should be able to keep applying the model until we obtain an
image that looks as if it were drawn from the training set. What’s amazing is that this
simple concept works so well in practice!

Let’s first get set up with a dataset and then walk through the forward (noising) and
backward (denoising) diffusion processes.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/08_diffusion/01_ddm/ddm.ipynb in the book
repository.
The code is adapted from the excellent tutorial on denoising diffu‐
sion implicit models created by András Béres available on the
Keras website.

The Flowers Dataset
We’ll be using the Oxford 102 Flower dataset that is available through Kaggle. This is
a set of over 8,000 color images of a variety of flowers.

You can download the dataset by running the Kaggle dataset downloader script in the
book repository, as shown in Example 8-1. This will save the flower images to
the /data folder.

Example 8-1. Downloading the Oxford 102 Flower dataset

bash scripts/download_kaggle_data.sh nunenuh pytorch-challange-flower-dataset

As usual, we’ll load the images in using the Keras image_dataset_from_directory
function, resize the images to 64 × 64 pixels, and scale the pixel values to the range [0,
1]. We’ll also repeat the dataset five times to increase the epoch length and batch the
data into groups of 64 images, as shown in Example 8-2.

Example 8-2. Loading the Oxford 102 Flower dataset

train_data = utils.image_dataset_from_directory(
 "/app/data/pytorch-challange-flower-dataset/dataset",
 labels=None,
 image_size=(64, 64),
 batch_size=None,
 shuffle=True,

208 | Chapter 8: Diffusion Models

https://oreil.ly/srPCe
https://oreil.ly/srPCe
https://oreil.ly/HfrKV

 seed=42,
 interpolation="bilinear",
)

def preprocess(img):
 img = tf.cast(img, "float32") / 255.0
 return img

train = train_data.map(lambda x: preprocess(x))
train = train.repeat(5)
train = train.batch(64, drop_remainder=True)

Load dataset (when required during training) using the Keras image_data
set_from_directory function.

Scale the pixel values to the range [0, 1].

Repeat the dataset five times.

Batch the dataset into groups of 64 images.

Example images from the dataset are shown in Figure 8-2.

Figure 8-2. Example images from the Oxford 102 Flower dataset

Now that we have our dataset we can explore how we should add noise to the images,
using a forward diffusion process.

The Forward Diffusion Process
Suppose we have an image �0 that we want to corrupt gradually over a large number
of steps (say, T = 1, 000), so that eventually it is indistinguishable from standard
Gaussian noise (i.e., �T should have zero mean and unit variance). How should we go
about doing this?

Denoising Diffusion Models (DDM) | 209

We can define a function q that adds a small amount of Gaussian noise with variance
βt to an image �t − 1 to generate a new image �t. If we keep applying this function, we
will generate a sequence of progressively noisier images (�0, ..., �T), as shown in
Figure 8-3.

Figure 8-3. The forward diffusion process q

We can write this update process mathematically as follows (here, �t − 1 is a standard
Gaussian with zero mean and unit variance):

�t = 1 − βt�t − 1 + βt�t − 1

Note that we also scale the input image �t − 1, to ensure that the variance of the output
image �t remains constant over time. This way, if we normalize our original image �0
to have zero mean and unit variance, then �T will approximate a standard Gaussian
distribution for large enough T, by induction, as follows.

If we assume that �t − 1 has zero mean and unit variance then 1 − βt�t − 1 will have
variance 1 − βt and βt�t − 1 will have variance βt, using the rule that
Var aX = a2Var X . Adding these together, we obtain a new distribution �t with
zero mean and variance 1 − βt + βt = 1, using the rule that
Var X + Y = Var X + Var Y for independent X and Y. Therefore, if �0 is normal‐
ized to a zero mean and unit variance, then we guarantee that this is also true for all
�t, including the final image �T, which will approximate a standard Gaussian distri‐
bution. This is exactly what we need, as we want to be able to easily sample �T and
then apply a reverse diffusion process through our trained neural network model!

In other words, our forward noising process q can also be written as follows:

q �t �t − 1 = � �t; 1 − βt�t − 1, βt�

The Reparameterization Trick
It would also be useful to be able to jump straight from an image �0 to any noised
version of the image �t without having to go through t applications of q. Luckily,
there is a reparameterization trick that we can use to do this.

210 | Chapter 8: Diffusion Models

If we define αt = 1 − βt and αt = ∏i = 1
t αi, then we can write the following:

�t = αt�t − 1 + 1 − αt�t − 1

= αtαt − 1�t − 2 + 1 − αtαt − 1�

= ⋯
= αt�0 + 1 − αt�

Note that the second line uses the fact that we can add two Gaussians to obtain a new
Gaussian. We therefore have a way to jump from the original image �0 to any step of
the forward diffusion process �t. Moreover, we can define the diffusion schedule
using the αt values, instead of the original βt values, with the interpretation that αt is
the variance due to the signal (the original image, �0) and 1 − αt is the variance due to
the noise (�).

The forward diffusion process q can therefore also be written as follows:

q �t �0 = � �t; αt�0, 1 − αt �

Diffusion Schedules
Notice that we are also free to choose a different βt at each timestep—they don’t all
have be the same. How the βt (or αt) values change with t is called the diffusion
schedule.

In the original paper (Ho et al., 2020), the authors chose a linear diffusion schedule for
βt—that is, βt increases linearly with t, from β1 = 0.0001 to βT = 0.02. This ensures
that in the early stages of the noising process we take smaller noising steps than in the
later stages, when the image is already very noisy.

We can code up a linear diffusion schedule as shown in Example 8-3.

Example 8-3. The linear diffusion schedule

def linear_diffusion_schedule(diffusion_times):
 min_rate = 0.0001
 max_rate = 0.02
 betas = min_rate + tf.convert_to_tensor(diffusion_times) * (max_rate - min_rate)
 alphas = 1 - betas
 alpha_bars = tf.math.cumprod(alphas)
 signal_rates = alpha_bars
 noise_rates = 1 - alpha_bars
 return noise_rates, signal_rates

Denoising Diffusion Models (DDM) | 211

T = 1000
diffusion_times = [x/T for x in range(T)]
linear_noise_rates, linear_signal_rates = linear_diffusion_schedule(
 diffusion_times
)

The diffusion times are equally spaced steps between 0 and 1.

The linear diffusion schedule is applied to the diffusion times to produce the
noise and signal rates.

In a later paper it was found that a cosine diffusion schedule outperformed the linear
schedule from the original paper.5 A cosine schedule defines the following values of
αt:

αt = cos2 t
T · π

2

The updated equation is therefore as follows (using the trigonometric identity
cos2 x + sin2 x = 1):

�t = cos t
T · π

2 �0 + sin t
T · π

2 �

This equation is a simplified version of the actual cosine diffusion schedule used in
the paper. The authors also add an offset term and scaling to prevent the noising steps
from being too small at the beginning of the diffusion process. We can code up the
cosine and offset cosine diffusion schedules as shown in Example 8-4.

Example 8-4. The cosine and offset cosine diffusion schedules

def cosine_diffusion_schedule(diffusion_times):
 signal_rates = tf.cos(diffusion_times * math.pi / 2)
 noise_rates = tf.sin(diffusion_times * math.pi / 2)
 return noise_rates, signal_rates

def offset_cosine_diffusion_schedule(diffusion_times):
 min_signal_rate = 0.02
 max_signal_rate = 0.95
 start_angle = tf.acos(max_signal_rate)
 end_angle = tf.acos(min_signal_rate)

 diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle)

 signal_rates = tf.cos(diffusion_angles)
 noise_rates = tf.sin(diffusion_angles)

212 | Chapter 8: Diffusion Models

 return noise_rates, signal_rates

The pure cosine diffusion schedule (without offset or rescaling).

The offset cosine diffusion schedule that we will be using, which adjusts the
schedule to ensure the noising steps are not too small at the start of the noising
process.

We can compute the αt values for each t to show how much signal (αt) and noise
(1 − αt) is let through at each stage of the process for the linear, cosine, and offset
cosine diffusion schedules, as shown in Figure 8-4.

Figure 8-4. The signal and noise at each step of the noising process, for the linear, cosine,
and offset cosine diffusion schedules

Notice how the noise level ramps up more slowly in the cosine diffusion schedule. A
cosine diffusion schedule adds noise to the image more gradually than a linear diffu‐
sion schedule, which improves training efficiency and generation quality. This can
also be seen in images that have been corrupted by the linear and cosine schedules
(Figure 8-5).

Figure 8-5. An image being corrupted by the linear (top) and cosine (bottom) diffusion
schedules, at equally spaced values of t from 0 to T (source: Ho et al., 2020)

Denoising Diffusion Models (DDM) | 213

https://arxiv.org/abs/2006.11239

The Reverse Diffusion Process
Now let’s look at the reverse diffusion process. To recap, we are looking to build a
neural network pθ �t − 1 �t that can undo the noising process—that is, approximate
the reverse distribution q �t − 1 �t . If we can do this, we can sample random noise
from � 0, � and then apply the reverse diffusion process multiple times in order to
generate a novel image. This is visualized in Figure 8-6.

Figure 8-6. The reverse diffusion process pθ . �t − 1 �t tries to undo the noise produced
by the forward diffusion process

There are many similarities between the reverse diffusion process and the decoder of
a variational autoencoder. In both, we aim to transform random noise into meaning‐
ful output using a neural network. The difference between diffusion models and
VAEs is that in a VAE the forward process (converting images to noise) is part of the
model (i.e., it is learned), whereas in a diffusion model it is unparameterized.

Therefore, it makes sense to apply the same loss function as in a variational autoen‐
coder. The original DDPM paper derives the exact form of this loss function and
shows that it can be optimized by training a network �θ to predict the noise � that has
been added to a given image �0 at timestep t.

In other words, we sample an image �0 and transform it by t noising steps to get the
image �t = αt�0 + 1 − αt�. We give this new image and the noising rate αt to the
neural network and ask it to predict �, taking a gradient step against the squared error
between the prediction �θ �t and the true �.

We’ll take a look at the structure of the neural network in the next section. It is worth
noting here that the diffusion model actually maintains two copies of the network:
one that is actively trained used gradient descent and another (the EMA network)
that is an exponential moving average (EMA) of the weights of the actively trained
network over previous training steps. The EMA network is not as susceptible to
short-term fluctuations and spikes in the training process, making it more robust for
generation than the actively trained network. We therefore use the EMA network
whenever we want to produce generated output from the network.

The training process for the model is shown in Figure 8-7.

214 | Chapter 8: Diffusion Models

Figure 8-7. The training process for a denoising diffusion model (source: Ho et al., 2020)

In Keras, we can code up this training step as illustrated in Example 8-5.

Example 8-5. The train_step function of the Keras diffusion model

class DiffusionModel(models.Model):
 def __init__(self):
 super().__init__()
 self.normalizer = layers.Normalization()
 self.network = unet
 self.ema_network = models.clone_model(self.network)
 self.diffusion_schedule = cosine_diffusion_schedule

 ...

 def denoise(self, noisy_images, noise_rates, signal_rates, training):
 if training:
 network = self.network
 else:
 network = self.ema_network
 pred_noises = network(
 [noisy_images, noise_rates**2], training=training
)
 pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates

 return pred_noises, pred_images

 def train_step(self, images):
 images = self.normalizer(images, training=True)
 noises = tf.random.normal(shape=tf.shape(images))
 batch_size = tf.shape(images)[0]
 diffusion_times = tf.random.uniform(
 shape=(batch_size, 1, 1, 1), minval=0.0, maxval=1.0
)
 noise_rates, signal_rates = self.cosine_diffusion_schedule(
 diffusion_times
)
 noisy_images = signal_rates * images + noise_rates * noises

Denoising Diffusion Models (DDM) | 215

https://arxiv.org/abs/2006.11239

 with tf.GradientTape() as tape:
 pred_noises, pred_images = self.denoise(
 noisy_images, noise_rates, signal_rates, training=True
)
 noise_loss = self.loss(noises, pred_noises)
 gradients = tape.gradient(noise_loss, self.network.trainable_weights)
 self.optimizer.apply_gradients(
 zip(gradients, self.network.trainable_weights)
)
 self.noise_loss_tracker.update_state(noise_loss)

 for weight, ema_weight in zip(
 self.network.weights, self.ema_network.weights
):
 ema_weight.assign(0.999 * ema_weight + (1 - 0.999) * weight)

 return {m.name: m.result() for m in self.metrics}

 ...

We first normalize the batch of images to have zero mean and unit variance.

Next, we sample noise to match the shape of the input images.

We also sample random diffusion times…

…and use these to generate the noise and signal rates according to the cosine dif‐
fusion schedule.

Then we apply the signal and noise weightings to the input images to generate
the noisy images.

Next, we denoise the noisy images by asking the network to predict the noise and
then undoing the noising operation, using the provided noise_rates and
signal_rates.

We can then calculate the loss (mean absolute error) between the predicted noise
and the true noise…

…and take a gradient step against this loss function.

The EMA network weights are updated to a weighted average of the existing
EMA weights and the trained network weights after the gradient step.

216 | Chapter 8: Diffusion Models

The U-Net Denoising Model
Now that we have seen the kind of neural network that we need to build (one that
predicts the noise added to a given image), we can look at the architecture that makes
this possible.

The authors of the DDPM paper used a type of architecture known as a U-Net. A dia‐
gram of this network is shown in Figure 8-8, explicitly showing the shape of the ten‐
sor as it passes through the network.

Figure 8-8. U-Net architecture diagram

In a similar manner to a variational autoencoder, a U-Net consists of two halves: the
downsampling half, where input images are compressed spatially but expanded
channel-wise, and the upsampling half, where representations are expanded spatially
while the number of channels is reduced. However, unlike in a VAE, there are also

Denoising Diffusion Models (DDM) | 217

skip connections between equivalent spatially shaped layers in the upsampling and
downsampling parts of the network. A VAE is sequential; data flows through the net‐
work from input to output, one layer after another. A U-Net is different, because the
skip connections allow information to shortcut parts of the network and flow
through to later layers.

A U-Net is particularly useful when we want the output to have the same shape as the
input. In our diffusion model example, we want to predict the noise added to an
image, which has exactly the same shape as the image itself, so a U-Net is the natural
choice for the network architecture.

First let’s take a look at the code that builds this U-Net in Keras, shown in
Example 8-6.

Example 8-6. A U-Net model in Keras

noisy_images = layers.Input(shape=(64, 64, 3))
x = layers.Conv2D(32, kernel_size=1)(noisy_images)

noise_variances = layers.Input(shape=(1, 1, 1))
noise_embedding = layers.Lambda(sinusoidal_embedding)(noise_variances)
noise_embedding = layers.UpSampling2D(size=64, interpolation="nearest")(
 noise_embedding
)

x = layers.Concatenate()([x, noise_embedding])

skips = []

x = DownBlock(32, block_depth = 2)([x, skips])
x = DownBlock(64, block_depth = 2)([x, skips])
x = DownBlock(96, block_depth = 2)([x, skips])

x = ResidualBlock(128)(x)
x = ResidualBlock(128)(x)

x = UpBlock(96, block_depth = 2)([x, skips])
x = UpBlock(64, block_depth = 2)([x, skips])
x = UpBlock(32, block_depth = 2)([x, skips])

x = layers.Conv2D(3, kernel_size=1, kernel_initializer="zeros")(x)

unet = models.Model([noisy_images, noise_variances], x, name="unet")

The first input to the U-Net is the image that we wish to denoise.

This image is passed through a Conv2D layer to increase the number of channels.

218 | Chapter 8: Diffusion Models

The second input to the U-Net is the noise variance (a scalar).

This is encoded using a sinusoidal embedding.

This embedding is copied across spatial dimensions to match the size of the input
image.

The two input streams are concatenated across channels.

The skips list will hold the output from the DownBlock layers that we wish to
connect to UpBlock layers downstream.

The tensor is passed through a series of DownBlock layers that reduce the size of
the image, while increasing the number of channels.

The tensor is then passed through two ResidualBlock layers that hold the image
size and number of channels constant.

Next, the tensor is passed through a series of UpBlock layers that increase the size
of the image, while decreasing the number of channels. The skip connections
incorporate output from the earlier DownBlock layers.

The final Conv2D layer reduces the number of channels to three (RGB).

The U-Net is a Keras Model that takes the noisy images and noise variances as
input and outputs a predicted noise map.

To understand the U-Net in detail, we need to explore four more concepts: the sinus‐
oidal embedding of the noise variance, the ResidualBlock, the DownBlock, and the
UpBlock.

Sinusoidal embedding

Sinusoidal embedding was first introduced in a paper by Vaswani et al.6 We will be
using an adaptation of that original idea as utilized in Mildenhall et al.’s paper titled
“NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.”7

The idea is that we want to be able to convert a scalar value (the noise variance) into a
distinct higher-dimensional vector that is able to provide a more complex representa‐
tion, for use downstream in the network. The original paper used this idea to encode
the discrete position of words in a sentence into vectors; the NeRF paper extends this
idea to continuous values.

Denoising Diffusion Models (DDM) | 219

Specifically, a scalar value x is encoded as shown in the following equation:

γ x = sin 2πe0 f x ,⋯, sin 2πe L − 1 f x , cos 2πe0 f x ,⋯, cos 2πe L − 1 f x

where we choose L = 16 to be half the size of our desired noise embedding length and
f = ln 1000

L − 1 to be the maximum scaling factor for the frequencies.

This produces the embedding pattern shown in Figure 8-9.

Figure 8-9. The pattern of sinusoidal embeddings for noise variances from 0 to 1

We can code this sinusoidal embedding function as shown in Example 8-7. This con‐
verts a single noise variance scalar value into a vector of length 32.

Example 8-7. The sinusoidal_embedding function that encodes the noise variance

def sinusoidal_embedding(x):
 frequencies = tf.exp(
 tf.linspace(
 tf.math.log(1.0),
 tf.math.log(1000.0),
 16,
)
)
 angular_speeds = 2.0 * math.pi * frequencies
 embeddings = tf.concat(
 [tf.sin(angular_speeds * x), tf.cos(angular_speeds * x)], axis=3
)
 return embeddings

220 | Chapter 8: Diffusion Models

ResidualBlock

Both the DownBlock and the UpBlock contain ResidualBlock layers, so let’s start with
these. We already explored residual blocks in Chapter 5, when we built a PixelCNN,
but we will recap here for completeness.

A residual block is a group of layers that contains a skip connection that adds the
input to the output. Residual blocks help us to build deeper networks that can learn
more complex patterns without suffering as greatly from vanishing gradient and deg‐
radation problems. The vanishing gradient problem is the assertion that as the net‐
work gets deeper, the gradient propagated through deeper layers is tiny and therefore
learning is very slow. The degradation problem is the fact that as neural networks
become deeper, they are not necessarily as accurate as their shallower counterparts—
accuracy seems to become saturated at a certain depth and then degrade rapidly.

Degradation

The degradation problem is somewhat counterintuitive, but
observed in practice as the deeper layers must at least learn the
identity mapping, which is not trivial—especially considering other
problems deeper networks face, such as the vanishing gradient
problem.

The solution, first introduced in the ResNet paper by He et al. in 2015,8 is very sim‐
ple. By including a skip connection highway around the main weighted layers, the
block has the option to bypass the complex weight updates and simply pass through
the identity mapping. This allows the network to be trained to great depth without
sacrificing gradient size or network accuracy.

A diagram of a ResidualBlock is shown in Figure 8-10. Note that in some residual
blocks, we also include an extra Conv2D layer with kernel size 1 on the skip connec‐
tion, to bring the number of channels in line with the rest of the block.

Figure 8-10. The ResidualBlock in the U-Net

Denoising Diffusion Models (DDM) | 221

We can code a ResidualBlock in Keras as shown in Example 8-8.

Example 8-8. Code for the ResidualBlock in the U-Net

def ResidualBlock(width):
 def apply(x):
 input_width = x.shape[3]
 if input_width == width:
 residual = x
 else:
 residual = layers.Conv2D(width, kernel_size=1)(x)
 x = layers.BatchNormalization(center=False, scale=False)(x)
 x = layers.Conv2D(
 width, kernel_size=3, padding="same", activation=activations.swish
)(x)
 x = layers.Conv2D(width, kernel_size=3, padding="same")(x)
 x = layers.Add()([x, residual])
 return x

 return apply

Check if the number of channels in the input matches the number of channels
that we would like the block to output. If not, include an extra Conv2D layer on
the skip connection to bring the number of channels in line with the rest of the
block.

Apply a BatchNormalization layer.

Apply two Conv2D layers.

Add the original block input to the output to provide the final output from the
block.

DownBlocks and UpBlocks

Each successive DownBlock increases the number of channels via block_depth (=2 in
our example) ResidualBlocks, while also applying a final AveragePooling2D layer in
order to halve the size of the image. Each ResidualBlock is added to a list for use
later by the UpBlock layers as skip connections across the U-Net.

An UpBlock first applies an UpSampling2D layer that doubles the size of the image,
through bilinear interpolation. Each successive UpBlock decreases the number of
channels via block_depth (=2) ResidualBlocks, while also concatenating the outputs
from the DownBlocks through skip connections across the U-Net. A diagram of this
process is shown in Figure 8-11.

222 | Chapter 8: Diffusion Models

Figure 8-11. The DownBlock and corresponding UpBlock in the U-Net

We can code the DownBlock and UpBlock using Keras as illustrated in Example 8-9.

Example 8-9. Code for the DownBlock and UpBlock in the U-Net model

def DownBlock(width, block_depth):
 def apply(x):
 x, skips = x
 for _ in range(block_depth):
 x = ResidualBlock(width)(x)
 skips.append(x)
 x = layers.AveragePooling2D(pool_size=2)(x)
 return x

 return apply

def UpBlock(width, block_depth):
 def apply(x):
 x, skips = x
 x = layers.UpSampling2D(size=2, interpolation="bilinear")(x)
 for _ in range(block_depth):
 x = layers.Concatenate()([x, skips.pop()])
 x = ResidualBlock(width)(x)
 return x

 return apply

Denoising Diffusion Models (DDM) | 223

The DownBlock increases the number of channels in the image using a Residual
Block of a given width…

…each of which are saved to a list (skips) for use later by the UpBlocks.

A final AveragePooling2D layer reduces the dimensionality of the image by half.

The UpBlock begins with an UpSampling2D layer that doubles the size of the
image.

The output from a DownBlock layer is glued to the current output using a
Concatenate layer.

A ResidualBlock is used to reduce the number of channels in the image as it
passes through the UpBlock.

Training the Diffusion Model
We now have all the components in place to train our denoising diffusion model!
Example 8-10 creates, compiles, and fits the diffusion model.

Example 8-10. Code for training the DiffusionModel

model = DiffusionModel()
model.compile(
 optimizer=optimizers.experimental.AdamW(learning_rate=1e-3, weight_decay=1e-4),
 loss=losses.mean_absolute_error,
)

model.normalizer.adapt(train)

model.fit(
 train,
 epochs=50,
)

Instantiate the model.

Compile the model, using the AdamW optimizer (similar to Adam but with
weight decay, which helps stabilize the training process) and mean absolute error
loss function.

Calculate the normalization statistics using the training set.

Fit the model over 50 epochs.

224 | Chapter 8: Diffusion Models

The loss curve (noise mean absolute error [MAE]) is shown in Figure 8-12.

Figure 8-12. The noise mean absolute error loss curve, by epoch

Sampling from the Denoising Diffusion Model
In order to sample images from our trained model, we need to apply the reverse dif‐
fusion process—that is, we need to start with random noise and use the model to
gradually undo the noise, until we are left with a recognizable picture of a flower.

We must bear in mind that our model is trained to predict the total amount of noise
that has been added to a given noisy image from the training set, not just the noise
that was added at the last timestep of the noising process. However, we do not want to
undo the noise all in one go—predicting an image from pure random noise in one
shot is clearly not going to work! We would rather mimic the forward process and
undo the predicted noise gradually over many small steps, to allow the model to
adjust to its own predictions.

To achieve this, we can jump from xt to xt − 1 in two steps—first by using our model’s
noise prediction to calculate an estimate for the original image x0 and then by reap‐
plying the predicted noise to this image, but only over t − 1 timesteps, to produce
xt − 1. This idea is shown in Figure 8-13.

Denoising Diffusion Models (DDM) | 225

Figure 8-13. One step of the sampling process for our diffusion model

If we repeat this process over a number of steps, we’ll eventually get back to an esti‐
mate for x0 that has been guided gradually over many small steps. In fact, we are free
to choose the number of steps we take, and crucially, it doesn’t have to be the same as
the large number of steps in the training noising process (i.e., 1,000). It can be much
smaller—in this example we choose 20.

The following equation (Song et al., 2020) this process mathematically:

�t − 1 = αt − 1
�t − 1 − αt�θ

t
�t

αt

predicted �0

+ 1 − αt − 1 − σt
2 · �θ

t
�t

direction pointing to �t

+ σt�t
random noise

Let’s break this down. The first term inside the brackets on the righthand side of the
equation is the estimated image x0, calculated using the noise predicted by our net‐
work �θ

t . We then scale this by the t − 1 signal rate αt − 1 and reapply the predicted
noise, but this time scaled by the t − 1 noise rate 1 − αt − 1 − σt

2. Additional Gaussian
random noise σt�t is also added, with the factors σt determining how random we
want our generation process to be.

The special case σt = 0 for all t corresponds to a type of model known as a Denoising
Diffusion Implicit Model (DDIM), introduced by Song et al. in 2020.9 With a DDIM,
the generation process is entirely deterministic—that is, the same random noise input
will always give the same output. This is desirable as then we have a well-defined
mapping between samples from the latent space and the generated outputs in pixel
space.

In our example, we will implement a DDIM, thus making our generation process
deterministic. The code for the DDIM sampling process (reverse diffusion) is shown
in Example 8-11.

226 | Chapter 8: Diffusion Models

Example 8-11. Sampling from the diffusion model

class DiffusionModel(models.Model):

...

 def reverse_diffusion(self, initial_noise, diffusion_steps):
 num_images = initial_noise.shape[0]
 step_size = 1.0 / diffusion_steps
 current_images = initial_noise
 for step in range(diffusion_steps):
 diffusion_times = tf.ones((num_images, 1, 1, 1)) - step * step_size
 noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
 pred_noises, pred_images = self.denoise(
 current_images, noise_rates, signal_rates, training=False
)
 next_diffusion_times = diffusion_times - step_size
 next_noise_rates, next_signal_rates = self.diffusion_schedule(
 next_diffusion_times
)
 current_images = (
 next_signal_rates * pred_images + next_noise_rates * pred_noises
)
 return pred_images

Look over a fixed number of steps (e.g., 20).

The diffusion times are all set to 1 (i.e., at the start of the reverse diffusion
process).

The noise and signal rates are calculated according to the diffusion schedule.

The U-Net is used to predict the noise, allowing us to calculate the denoised
image estimate.

The diffusion times are reduced by one step.

The new noise and signal rates are calculated.

The t-1 images are calculated by reapplying the predicted noise to the predicted
image, according to the t-1 diffusion schedule rates.

After 20 steps, the final �0 predicted images are returned.

Denoising Diffusion Models (DDM) | 227

Analysis of the Diffusion Model
We’ll now take a look at three different ways that we can use our trained model: for
generation of new images, testing how the number of reverse diffusion steps affects
quality, and interpolating between two images in the latent space.

Generating images
In order to produce samples from our trained model, we can simply run the reverse
diffusion process, ensuring that we denormalize the output at the end (i.e., take the
pixel values back into the range [0, 1]). We can achieve this using the code in
Example 8-12 inside the DiffusionModel class.

Example 8-12. Generating images using the diffusion model

class DiffusionModel(models.Model):

...

 def denormalize(self, images):
 images = self.normalizer.mean + images * self.normalizer.variance**0.5
 return tf.clip_by_value(images, 0.0, 1.0)

 def generate(self, num_images, diffusion_steps):
 initial_noise = tf.random.normal(shape=(num_images, 64, 64, 3))
 generated_images = self.reverse_diffusion(initial_noise, diffusion_steps)
 generated_images = self.denormalize(generated_images)
 return generated_images

Generate some initial noise maps.

Apply the reverse diffusion process.

The images output by the network will have mean zero and unit variance, so we
need to denormalize by reapplying the mean and variance calculated from the
training data.

228 | Chapter 8: Diffusion Models

In Figure 8-14 we can observe some samples from the diffusion model at different
epochs of the training process.

Figure 8-14. Samples from the diffusion model at different epochs of the training process

Adjusting the number of diffusion steps
We can also test to see how adjusting the number of diffusion steps in the reverse
process affects image quality. Intuitively, the more steps taken by the process, the
higher the quality of the image generation.

We can see in Figure 8-15 that the quality of the generations does indeed improve
with the number of diffusion steps. With one giant leap from the initial sampled
noise, the model can only predict a hazy blob of color. With more steps, the model is
able to refine and sharpen its generations. However, the time taken to generate the
images scales linearly with the number of diffusion steps, so there is a trade-off. There
is minimal improvement between 20 and 100 diffusion steps, so we choose 20 as a
reasonable compromise between quality and speed in this example.

Denoising Diffusion Models (DDM) | 229

Figure 8-15. Image quality improves with the number of diffusion steps

Interpolating between images
Lastly, as we have seen previously with variational autoencoders, we can interpolate
between points in the Gaussian latent space in order to smoothly transition between
images in pixel space. Here we choose to use a form of spherical interpolation that
ensures that the variance remains constant while blending the two Gaussian noise
maps together. Specifically, the initial noise map at each step is given by
a sin π

2 t + b cos π
2 t , where t ranges smoothly from 0 to 1 and a and b are the two

randomly sampled Gaussian noise tensors that we wish to interpolate between.

The resulting images are shown in Figure 8-16.

230 | Chapter 8: Diffusion Models

Figure 8-16. Interpolating between images using the denoising diffusion model

Summary
In this chapter we have explored one of the most exciting and promising areas of gen‐
erative modeling in recent times: diffusion models. In particular, we implemented the
ideas from a key paper on generative diffusion models (Ho et al., 2020) that intro‐
duced the original Denoising Diffusion Probabilistic Model (DDPM). We then exten‐
ded this with the ideas from the Denoising Diffusion Implicit Model (DDIM) paper
to make the generation process fully deterministic.

We have seen how diffusion models are formed of a forward diffusion process and a
reverse diffusion process. The forward diffusion process adds noise to the training
data through a series of small steps, while the reverse diffusion process consists of a
model that tries to predict the noise added.

We make use of a reparameterization trick in order to calculate the noised images at
any step of the forward process without having to go through multiple noising steps.
We have seen how the chosen schedule of parameters used to add noise to the data
plays an important part in the overall success of the model.

The reverse diffusion process is parameterized by a U-Net that tries to predict the
noise at each timestep, given the noised image and the noise rate at that step. A U-Net
consists of DownBlocks that increase the number of channels while reducing the size
of the image and UpBlocks that decrease the number of channels while increasing the
size. The noise rate is encoded using sinusoidal embedding.

Sampling from the diffusion model is conducted over a series of steps. The U-Net is
used to predict the noise added to a given noised image, which is then used to

Summary | 231

calculate an estimate for the original image. The predicted noise is then reapplied
using a smaller noise rate. This process is repeated over a series of steps (which may
be significantly smaller than the number of steps used during training), starting from
a random point sampled from a standard Gaussian noise distribution, to obtain the
final generation.

We saw how increasing the number of diffusion steps in the reverse process improves
the image generation quality, at the expense of speed. We also performed latent space
arithmetic in order to interpolate between two images.

References
1. Jascha Sohl-Dickstein et al., “Deep Unsupervised Learning Using Nonequilibrium
Thermodynamics,” March 12, 2015, https://arxiv.org/abs/1503.03585

2. Yang Song and Stefano Ermon, “Generative Modeling by Estimating Gradients of
the Data Distribution,” July 12, 2019, https://arxiv.org/abs/1907.05600.

3. Yang Song and Stefano Ermon, “Improved Techniques for Training Score-Based
Generative Models,” June 16, 2020, https://arxiv.org/abs/2006.09011.

4. Jonathon Ho et al., “Denoising Diffusion Probabilistic Models,” June 19, 2020,
https://arxiv.org/abs/2006.11239.

5. Alex Nichol and Prafulla Dhariwal, “Improved Denoising Diffusion Probabilistic
Models,” February 18, 2021, https://arxiv.org/abs/2102.09672.

6. Ashish Vaswani et al., “Attention Is All You Need,” June 12, 2017, https://
arxiv.org/abs/1706.03762.

7. Ben Mildenhall et al., “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis,” March 1, 2020, https://arxiv.org/abs/2003.08934.

8. Kaiming He et al., “Deep Residual Learning for Image Recognition,” December 10,
2015, https://arxiv.org/abs/1512.03385.

9. Jiaming Song et al., “Denoising Diffusion Implicit Models,” October 6, 2020,
https://arxiv.org/abs/2010.02502

232 | Chapter 8: Diffusion Models

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2010.02502

PART III

Applications

In Part III, we will explore some of the key applications of the generative modeling
techniques that we have seen so far, across images, text, music, and games. We will
also see how these domains can be traversed using state-of-the-art multimodal
models.

In Chapter 9 we shall turn our attention to Transformers, a start-of-the-art architec‐
ture that powers most modern-day text generation models. In particular, we shall
explore the inner workings of GPT and build our own version using Keras, and we’ll
see how it forms the foundation of tools such as ChatGPT.

In Chapter 10 we will look at some of the most important GAN architectures that
have influenced image generation, including ProGAN, StyleGAN, StyleGAN2,
SAGAN, BigGAN, VQ-GAN, and ViT VQ-GAN. We shall explore the key contribu‐
tions of each and look to understand how the technique has evolved over time.

Chapter 11 looks at music generation, which presents additional challenges such as
modeling musical pitch and rhythm. We’ll see that many of the techniques that work
for text generation (such as Transformers) can also be applied in this domain, but
we’ll also explore a deep learning architecture known as MuseGAN that applies a
GAN-based approach to generating music.

Chapter 12 shows how generative models can be used within other machine learning
domains, such as reinforcement learning. We will focus on the “World Models” paper,
which shows how a generative model can be used as the environment in which the
agent trains, allowing it to train within a hallucinated dream version of the environ‐
ment rather than the real thing.

In Chapter 13 we will explore state-of-the-art multimodal models that cross over
domains such as images and text. This includes text-to-image models such as
DALL.E 2, Imagen, and Stable Diffusion, as well as visual language models such as
Flamingo.

Finally, Chapter 14 summarizes the generative AI journey so far, the current genera‐
tive AI landscape, and where we may be heading in the future. We will explore how
generative AI may change the way we live and work, as well as considering whether it
has the potential to unlock deeper forms of artificial intelligence in the years to come.

CHAPTER 9

Transformers

Chapter Goals
In this chapter you will:

• Learn about the origins of GPT, a powerful decoder Transformer model for text
generation.

• Learn conceptually how an attention mechanism mimics our way of attaching
more importance to some words in a sentence than others.

• Delve into how the attention mechanism works from first principles, including
how queries, keys, and values are created and manipulated.

• See the importance of causal masking for text generation tasks.
• Understand how attention heads can be grouped into a multihead attention layer.
• See how multihead attention layers form one part of a Transformer block that

also includes layer normalization and skip connections.
• Create positional encodings that capture the position of each token as well as the

word token embedding.
• Build a GPT model in Keras to generate the text contained in wine reviews.
• Analyze the output from the GPT model, including interrogating the attention

scores to inspect where the model is looking.
• Learn about the different types of Transformers, including examples of the types

of tasks that can be tackled by each and descriptions of the most famous state-of-
the-art implementations.

• Understand how encoder-decoder architectures work, like Google’s T5 model.
• Explore the training process behind OpenAI’s ChatGPT.

235

We saw in Chapter 5 how we can build generative models on text data using recurrent
neural networks (RNNs), such as LSTMs and GRUs. These autoregressive models
process sequential data one token at a time, constantly updating a hidden vector that
captures the current latent representation of the input. The RNN can be designed to
predict the next word in a sequence by applying a dense layer and softmax activation
over the hidden vector. This was considered the most sophisticated way to genera‐
tively produce text until 2017, when one paper changed the landscape of text genera‐
tion forever.

Introduction
The Google Brain paper, confidently entitled “Attention Is All You Need,”1 is famous
for popularizing the concept of attention—a mechanism that now powers most state-
of-the-art text generation models.

The authors show how it is possible to create powerful neural networks called Trans‐
formers for sequential modeling that do not require complex recurrent or convolu‐
tional architectures but instead only rely on attention mechanisms. This approach
overcomes a key downside to the RNN approach, which is that it is challenging to
parallelize, as it must process sequences one token as a time. Transformers are highly
paralellizable, allowing them to be trained on massive datasets.

In this chapter, we are going to delve into how modern text generation models make
use of the Transformer architecture to reach state-of-the-art performance on text
generation challenges. In particular, we will explore a type of autoregressive model
known as the generative pre-trained transformer (GPT), which powers OpenAI’s
GPT-4 model, widely considered to be the current state of the art for text generation.

GPT
OpenAI introduced GPT in June 2018, in the paper “Improving Language Under‐
standing by Generative Pre-Training,”2 almost exactly a year after the appearance of
the original Transformer paper.

In this paper, the authors show how a Transformer architecture can be trained on a
huge amount of text data to predict the next word in a sequence and then subse‐
quently fine-tuned to specific downstream tasks.

The pre-training process of GPT involves training the model on a large corpus of text
called BookCorpus (4.5 GB of text from 7,000 unpublished books of different genres).
During pre-training, the model is trained to predict the next word in a sequence
given the previous words. This process is known as language modeling and is used to
teach the model to understand the structure and patterns of natural language.

236 | Chapter 9: Transformers

After pre-training, the GPT model can be fine-tuned for a specific task by providing
it with a smaller, task-specific dataset. Fine-tuning involves adjusting the parameters
of the model to better fit the task at hand. For example, the model can be fine-tuned
for tasks such as classification, similarity scoring, or question answering.

The GPT architecture has since been improved and extended by OpenAI with the
release of subsequent models such as GPT-2, GPT-3, GPT-3.5, and GPT-4. These
models are trained on larger datasets and have larger capacities, so they can generate
more complex and coherent text. The GPT models have been widely adopted by
researchers and industry practitioners and have contributed to significant advance‐
ments in natural language processing tasks.

In this chapter, we will build our own variation of the original GPT model, trained on
less data, but still utilizing the same components and underlying principles.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/09_transformer/01_gpt/gpt.ipynb in the book
repository.
The code is adapted from the excellent GPT tutorial created by
Apoorv Nandan available on the Keras website.

The Wine Reviews Dataset
We’ll be using the Wine Reviews dataset that is available through Kaggle. This is a set
of over 130,000 reviews of wines, with accompanying metadata such as description
and price.

You can download the dataset by running the Kaggle dataset downloader script in the
book repository, as shown in Example 9-1. This will save the wine reviews and
accompanying metadata locally to the /data folder.

Example 9-1. Downloading the Wine Reviews dataset

bash scripts/download_kaggle_data.sh zynicide wine-reviews

The data preparation steps are identical to the steps used in Chapter 5 for preparing
data for input into an LSTM, so we will not repeat them in detail here. The steps, as
shown in Figure 9-1, are as follows:

GPT | 237

https://oreil.ly/J86pg
https://oreil.ly/DC9EG

1. Load the data and create a list of text string descriptions of each wine.
2. Pad punctuation with spaces, so that each punctuation mark is treated as a sepa‐

rate word.
3. Pass the strings through a TextVectorization layer that tokenizes the data and

pads/clips each string to a fixed length.
4. Create a training set where the inputs are the tokenized text strings and the out‐

puts to predict are the same strings shifted by one token.

Figure 9-1. Data processing for the Transformer

Attention
The first step to understanding how GPT works is to understand how the attention
mechanism works. This mechanism is what makes the Transformer architecture
unique and distinct from recurrent approaches to language modeling. When we have
developed a solid understanding of attention, we will then see how it is used within
Transformer architectures such as GPT.

When you write, the choice that you make for the next word in the sentence is influ‐
enced by other words that you have already written. For example, suppose you start a
sentence as follows:

The pink elephant tried to get into the car but it was too

Clearly, the next word should be something synonymous with big. How do we know
this?

Certain other words in the sentence are important for helping us to make our deci‐
sion. For example, the fact that it is an elephant, rather than a sloth, means that we
prefer big rather than slow. If it were a swimming pool, rather than a car, we might
choose scared as a possible alternative to big. Lastly, the action of getting into the car
implies that size is the problem—if the elephant was trying to squash the car instead,
we might choose fast as the final word, with it now referring to the car.

238 | Chapter 9: Transformers

Other words in the sentence are not important at all. For example, the fact that the
elephant is pink has no influence on our choice of final word. Equally, the minor
words in the sentence (the, but, it, etc.) give the sentence grammatical form, but here
aren’t important to determine the required adjective.

In other words, we are paying attention to certain words in the sentence and largely
ignoring others. Wouldn’t it be great if our model could do the same thing?

An attention mechanism (also know as an attention head) in a Transformer is
designed to do exactly this. It is able to decide where in the input it wants to pull
information from, in order to efficiently extract useful information without being
clouded by irrelevant details. This makes it highly adaptable to a range of circumstan‐
ces, as it can decide where it wants to look for information at inference time.

In contrast, a recurrent layer tries to build up a generic hidden state that captures an
overall representation of the input at each timestep. A weakness of this approach is
that many of the words that have already been incorporated into the hidden vector
will not be directly relevant to the immediate task at hand (e.g., predicting the next
word), as we have just seen. Attention heads do not suffer from this problem, because
they can pick and choose how to combine information from nearby words, depend‐
ing on the context.

Queries, Keys, and Values
So how does an attention head decide where it wants to look for information? Before
we get into the details, let’s explore how it works at a high level, using our pink ele‐
phant example.

Imagine that we want to predict what follows the word too. To help with this task,
other preceding words chime in with their opinions, but their contributions are
weighted by how confident they are in their own expertise in predicting words that
follow too. For example, the word elephant might confidently contribute that it is
more likely to be a word related to size or loudness, whereas the word was doesn’t
have much to offer to narrow down the possibilities.

In other words, we can think of an attention head as a kind of information retrieval
system, where a query (“What word follows too?”) is made into a key/value store
(other words in the sentence) and the resulting output is a sum of the values, weigh‐
ted by the resonance between the query and each key.

We will now walk through the process in detail (Figure 9-2), again with reference to
our pink elephant sentence.

GPT | 239

Figure 9-2. The mechanics of an attention head

The query (Q) can be thought of as a representation of the current task at hand (e.g.,
“What word follows too?”). In this example, it is derived from the embedding of the
word too, by passing it through a weights matrix WQ to change the dimensionality of
the vector from de to dk.

The key vectors (K) are representations of each word in the sentence—you can think
of these as descriptions of the kinds of prediction tasks that each word can help with.
They are derived in a similar fashion to the query, by passing each embedding
through a weights matrix WK to change the dimensionality of each vector from de to
dk. Notice that the keys and the query are the same length (dk).

240 | Chapter 9: Transformers

Inside the attention head, each key is compared to the query using a dot product
between each pair of vectors (QKT). This is why the keys and the query have to be the
same length. The higher this number is for a particular key/query pair, the more the
key resonates with the query, so it is allowed to make more of a contribution to the
output of the attention head. The resulting vector is scaled by dk to keep the var‐
iance of the vector sum stable (approximately equal to 1), and a softmax is applied to
ensure the contributions sum to 1. This is a vector of attention weights.

The value vectors (V) are also representations of the words in the sentence—you can
think of these as the unweighted contributions of each word. They are derived by
passing each embedding through a weights matrix WV to change the dimensionality
of each vector from de to dv. Notice that the value vectors do not necessarily have to
have the same length as the keys and query (but often do, for simplicity).

The value vectors are multiplied by the attention weights to give the attention for a
given Q, K, and V, as shown in Equation 9-1.

Equation 9-1. Attention equation

Attention Q, K, V = so f tmax QKT

dk
V

To obtain the final output vector from the attention head, the attention is summed to
give a vector of length dv. This context vector captures a blended opinion from words
in the sentence on the task of predicting what word follows too.

Multihead Attention
There’s no reason to stop at just one attention head! In Keras, we can build a Multi
HeadAttention layer that concatenates the output from multiple attention heads,
allowing each to learn a distinct attention mechanism so that the layer as a whole can
learn more complex relationships.

The concatenated outputs are passed through one final weights matrix WO to project
the vector into the desired output dimension, which in our case is the same as the
input dimension of the query (de), so that the layers can be stacked sequentially on
top of each other.

Figure 9-3 shows how the output from a MultiHeadAttention layer is constructed. In
Keras we can simply write the line shown in Example 9-2 to create such a layer.

GPT | 241

Example 9-2. Creating a MultiHeadAttention layer in Keras

layers.MultiHeadAttention(
 num_heads = 4,
 key_dim = 128,
 value_dim = 64,
 output_shape = 256
)

This multihead attention layer has four heads.

The keys (and query) are vectors of length 128.

The values (and therefore also the output from each head) are vectors of length
64.

The output vector has length 256.

Figure 9-3. A multihead attention layer with four heads

Causal Masking
So far, we have assumed that the query input to our attention head is a single vector.
However, for efficiency during training, we would ideally like the attention layer to be
able to operate on every word in the input at once, predicting for each what the sub‐
sequent word will be. In other words, we want our GPT model to be able to handle a
group of query vectors in parallel (i.e., a matrix).

You might think that we can just batch the vectors together into a matrix and let lin‐
ear algebra handle the rest. This is true, but we need one extra step—we need to apply
a mask to the query/key dot product, to avoid information from future words leaking
through. This is known as causal masking and is shown in Figure 9-4.

242 | Chapter 9: Transformers

Figure 9-4. Matrix calculation of the attention scores for a batch of input queries, using a
causal attention mask to hide keys that are not available to the query (because they
come later in the sentence)

Without this mask, our GPT model would be able to perfectly guess the next word in
the sentence, because it would be using the key from the word itself as a feature! The
code for creating a causal mask is shown in Example 9-3, and the resulting numpy
array (transposed to match the diagram) is shown in Figure 9-5.

Example 9-3. The causal mask function

def causal_attention_mask(batch_size, n_dest, n_src, dtype):
 i = tf.range(n_dest)[:, None]
 j = tf.range(n_src)
 m = i >= j - n_src + n_dest
 mask = tf.cast(m, dtype)
 mask = tf.reshape(mask, [1, n_dest, n_src])

GPT | 243

 mult = tf.concat(
 [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], 0
)
 return tf.tile(mask, mult)

np.transpose(causal_attention_mask(1, 10, 10, dtype = tf.int32)[0])

Figure 9-5. The causal mask as a numpy array—1 means unmasked and 0 means
masked

Causal masking is only required in decoder Transformers such as
GPT, where the task is to sequentially generate tokens given previ‐
ous tokens. Masking out future tokens during training is therefore
essential.
Other flavors of Transformer (e.g., encoder Transformers) do not
need causal masking, because they are not trained to predict the
next token. For example Google’s BERT predicts masked words
within a given sentence, so it can use context from both before and
after the word in question.3

We will explore the different types of Transformers in more detail
at the end of the chapter.

This concludes our explanation of the multihead attention mechanism that is present
in all Transformers. It is remarkable that the learnable parameters of such an influen‐
tial layer consist of nothing more than three densely connected weights matrices for
each attention head (WQ, WK, WV) and one further weights matrix to reshape the
output (WO). There are no convolutions or recurrent mechanisms at all in a multi‐
head attention layer!

Next, we shall take a step back and see how the multihead attention layer forms just
one part of a larger component known as a Transformer block.

244 | Chapter 9: Transformers

The Transformer Block
A Transformer block is a single component within a Transformer that applies some
skip connections, feed-forward (dense) layers, and normalization around the multi‐
head attention layer. A diagram of a Transformer block is shown in Figure 9-6.

Figure 9-6. A Transformer block

Firstly, notice how the query is passed around the multihead attention layer to be
added to the output—this is a skip connection and is common in modern deep learn‐
ing architectures. It means we can build very deep neural networks that do not suffer
as much from the vanishing gradient problem, because the skip connection provides
a gradient-free highway that allows the network to transfer information forward
uninterrupted.

Secondly, layer normalization is used in the Transformer block to provide stability to
the training process. We have already seen the batch normalization layer in action
throughout this book, where the output from each channel is normalized to have a

GPT | 245

mean of 0 and standard deviation of 1. The normalization statistics are calculated
across the batch and spatial dimensions.

In contrast, layer normalization in a Transformer block normalizes each position of
each sequence in the batch by calculating the normalizing statistics across the chan‐
nels. It is the complete opposite of batch normalization, in terms of how the normal‐
ization statistics are calculated. A diagram showing the difference between batch
normalization and layer normalization is shown in Figure 9-7.

Figure 9-7. Layer normalization versus batch normalization—the normalization statis‐
tics are calculated across the blue cells (source: Sheng et al., 2020)4

Layer Normalization Versus Batch Normalization

Layer normalization was used in the original GPT paper and is
commonly used for text-based tasks to avoid creating normaliza‐
tion dependencies across sequences in the batch. However, recent
work such as Shen et al.s challenges this assumption, showing that
with some tweaks a form of batch normalization can still be used
within Transformers, outperforming more traditional layer
normalization.

Lastly, a set of feed-forward (i.e., densely connected) layers is included in the Trans‐
former block, to allow the component to extract higher-level features as we go deeper
into the network.

246 | Chapter 9: Transformers

https://arxiv.org/pdf/2003.07845.pdf

A Keras implementation of a Transformer block is shown in Example 9-4.

Example 9-4. A TransformerBlock layer in Keras

class TransformerBlock(layers.Layer):
 def __init__(self, num_heads, key_dim, embed_dim, ff_dim, dropout_rate=0.1):
 super(TransformerBlock, self).__init__()
 self.num_heads = num_heads
 self.key_dim = key_dim
 self.embed_dim = embed_dim
 self.ff_dim = ff_dim
 self.dropout_rate = dropout_rate
 self.attn = layers.MultiHeadAttention(
 num_heads, key_dim, output_shape = embed_dim
)
 self.dropout_1 = layers.Dropout(self.dropout_rate)
 self.ln_1 = layers.LayerNormalization(epsilon=1e-6)
 self.ffn_1 = layers.Dense(self.ff_dim, activation="relu")
 self.ffn_2 = layers.Dense(self.embed_dim)
 self.dropout_2 = layers.Dropout(self.dropout_rate)
 self.ln_2 = layers.LayerNormalization(epsilon=1e-6)

 def call(self, inputs):
 input_shape = tf.shape(inputs)
 batch_size = input_shape[0]
 seq_len = input_shape[1]
 causal_mask = causal_attention_mask(
 batch_size, seq_len, seq_len, tf.bool
)
 attention_output, attention_scores = self.attn(
 inputs,
 inputs,
 attention_mask=causal_mask,
 return_attention_scores=True
)
 attention_output = self.dropout_1(attention_output)
 out1 = self.ln_1(inputs + attention_output)
 ffn_1 = self.ffn_1(out1)
 ffn_2 = self.ffn_2(ffn_1)
 ffn_output = self.dropout_2(ffn_2)
 return (self.ln_2(out1 + ffn_output), attention_scores)

The sublayers that make up the TransformerBlock layer are defined within the
initialization function.

The causal mask is created to hide future keys from the query.

The multihead attention layer is created, with the attention masks specified.

GPT | 247

The first add and normalization layer.

The feed-forward layers.

The second add and normalization layer.

Positional Encoding
There is one final step to cover before we can put everything together to train our
GPT model. You may have noticed that in the multihead attention layer, there is
nothing that cares about the ordering of the keys. The dot product between each key
and the query is calculated in parallel, not sequentially, like in a recurrent neural net‐
work. This is a strength (because of the parallelization efficiency gains) but also a
problem, because we clearly need the attention layer to be able to predict different
outputs for the following two sentences:

• The dog looked at the boy and … (barked?)
• The boy looked at the dog and … (smiled?)

To solve this problem, we use a technique called positional encoding when creating the
inputs to the initial Transformer block. Instead of only encoding each token using a
token embedding, we also encode the position of the token, using a position embed‐
ding.

The token embedding is created using a standard Embedding layer to convert each
token into a learned vector. We can create the positional embedding in the same way,
using a standard Embedding layer to convert each integer position into a learned
vector.

While GPT uses an Embedding layer to embed the position, the
original Transformer paper used trigonometric functions—we’ll
cover this alternative in Chapter 11, when we explore music
generation.

248 | Chapter 9: Transformers

To construct the joint token–position encoding, the token embedding is added to the
positional embedding, as shown in Figure 9-8. This way, the meaning and position of
each word in the sequence are captured in a single vector.

Figure 9-8. The token embeddings are added to the positional embeddings to give the
token position encoding

GPT | 249

The code that defines our TokenAndPositionEmbedding layer is shown in
Example 9-5.

Example 9-5. The TokenAndPositionEmbedding layer

class TokenAndPositionEmbedding(layers.Layer):
 def __init__(self, maxlen, vocab_size, embed_dim):
 super(TokenAndPositionEmbedding, self).__init__()
 self.maxlen = maxlen
 self.vocab_size =vocab_size
 self.embed_dim = embed_dim
 self.token_emb = layers.Embedding(
 input_dim=vocab_size, output_dim=embed_dim
)
 self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

 def call(self, x):
 maxlen = tf.shape(x)[-1]
 positions = tf.range(start=0, limit=maxlen, delta=1)
 positions = self.pos_emb(positions)
 x = self.token_emb(x)
 return x + positions

The tokens are embedded using an Embedding layer.

The positions of the tokens are also embedded using an Embedding layer.

The output from the layer is the sum of the token and position embeddings.

Training GPT
Now we are ready to build and train our GPT model! To put everything together, we
need to pass our input text through the token and position embedding layer, then
through our Transformer block. The final output of the network is a simple Dense
layer with softmax activation over the number of words in the vocabulary.

For simplicity, we will use just one Transformer block, rather than
the 12 in the paper.

250 | Chapter 9: Transformers

The overall architecture is shown in Figure 9-9 and the equivalent code is provided in
Example 9-6.

Figure 9-9. The simplified GPT model architecture

Example 9-6. A GPT model in Keras

MAX_LEN = 80
VOCAB_SIZE = 10000
EMBEDDING_DIM = 256
N_HEADS = 2
KEY_DIM = 256
FEED_FORWARD_DIM = 256

inputs = layers.Input(shape=(None,), dtype=tf.int32)
x = TokenAndPositionEmbedding(MAX_LEN, VOCAB_SIZE, EMBEDDING_DIM)(inputs)
x, attention_scores = TransformerBlock(
 N_HEADS, KEY_DIM, EMBEDDING_DIM, FEED_FORWARD_DIM
)(x)
outputs = layers.Dense(VOCAB_SIZE, activation = 'softmax')(x)
gpt = models.Model(inputs=inputs, outputs=[outputs, attention])
gpt.compile("adam", loss=[losses.SparseCategoricalCrossentropy(), None])
gpt.fit(train_ds, epochs=5)

The input is padded (with zeros).

The text is encoded using a TokenAndPositionEmbedding layer.

GPT | 251

The encoding is passed through a TransformerBlock.

The transformed output is passed through a Dense layer with softmax activation
to predict a distribution over the subsequent word.

The Model takes a sequence of word tokens as input and outputs the predicted
subsequent word distribution. The output from the Transformer block is also
returned so that we can inspect how the model is directing its attention.

The model is compiled with SparseCategoricalCrossentropy loss over the pre‐
dicted word distribution.

Analysis of GPT
Now that we have compiled and trained our GPT model, we can start to use it to gen‐
erate long strings of text. We can also interrogate the attention weights that are output
from the TransformerBlock, to understand where the Transformer is looking for
information at different points in the generation process.

Generating text
We can generate new text by applying the following process:

1. Feed the network with an existing sequence of words and ask it to predict the fol‐
lowing word.

2. Append this word to the existing sequence and repeat.

The network will output a set of probabilities for each word that we can sample from,
so we can make the text generation stochastic, rather than deterministic.

We will use the same TextGenerator class introduced in Chapter 5 for LSTM text
generation, including the temperature parameter that specifies how deterministic we
would like the sampling process to be. Let’s take a look at this in action, at two differ‐
ent temperature values (Figure 9-10).

252 | Chapter 9: Transformers

Figure 9-10. Generated outputs at temperature = 1.0 and temperature = 0.5.

There are a few things to note about these two passages. First, both are stylistically
similar to a wine review from the original training set. They both open with the
region and type of wine, and the wine type stays consistent throughout the passage
(for example, it doesn’t switch color halfway through). As we saw in Chapter 5, the
generated text with temperature 1.0 is more adventurous and therefore less accurate
than the example with temperature 0.5. Generating multiple samples with tempera‐
ture 1.0 will therefore lead to more variety as the model is sampling from a probabil‐
ity distribution with greater variance.

Viewing the attention scores
We can also ask the model to tell us how much attention is being placed on each
word, when deciding on the next word in the sentence. The TransformerBlock out‐
puts the attention weights for each head, which are a softmax distribution over the
preceding words in the sentence.

To demonstrate this, Figure 9-11 shows the top five tokens with the highest probabili‐
ties for three different input prompts, as well as the average attention across both
heads, against each preceding word. The preceding words are colored according to
their attention score, averaged across the two attention heads. Darker blue indicates
more attention is being placed on the word.

GPT | 253

Figure 9-11. Distribution of word probabilities following various sequences

In the first example, the model attends closely to the country (germany) in order to
decide on the word that relates to the region. This makes sense! To pick a region, it
needs to take lots of information from the words that relate to the country, to ensure
they match. It doesn’t need to pay as much attention to the first two tokens (wine
review) because they don’t hold any useful information regarding the region.

In the second example, it needs to refer back to the grape (riesling), so it pays atten‐
tion to the first time that it was mentioned. It can pull this information by directly
attending to the word, no matter how far back it is in the sentence (within the upper
limit of 80 words). Notice that this is very different from a recurrent neural network,
which relies on a hidden state to maintain all interesting information over the length
of the sequence so that it can be drawn upon if required—a much less efficient
approach.

The final sequence shows an example of how our GPT model can choose an appro‐
priate adjective based on a combination of information. Here the attention is again on
the grape (riesling), but also on the fact that it contains residual sugar. As Riesling is
typically a sweet wine, and sugar is already mentioned, it makes sense that it should
be described as slightly sweet rather than slightly earthy, for example.

254 | Chapter 9: Transformers

It is incredibly informative to be able to interrogate the network in this way, to under‐
stand exactly where it is pulling information from in order to make accurate deci‐
sions about each subsequent word. I highly recommend playing around with the
input prompts to see if you can get the model to attend to words really far back in the
sentence, to convince yourself of the power of attention-based models over more tra‐
ditional recurrent models!

Other Transformers
Our GPT model is a decoder Transformer—it generates a text string one token at a
time and uses causal masking to only attend to previous words in the input string.
There are also encoder Transformers, which do not use causal masking—instead, they
attend to the entire input string in order to extract a meaningful contextual represen‐
tation of the input. For other tasks, such as language translation, there are also
encoder-decoder Transformers that can translate from one text string to another; this
type of model contains both encoder Transformer blocks and decoder Transformer
blocks.

Table 9-1 summarizes the three types of Transformers, with the best examples of each
architecture and typical use cases.

Table 9-1. The three Transformer architectures

Type Examples Use cases
Encoder BERT (Google) Sentence classification, named entity recognition, extractive question answering

Encoder-decoder T5 (Google) Summarization, translation, question answering

Decoder GPT-3 (OpenAI) Text generation

A well-known example of an encoder Transformer is the Bidirectional Encoder Repre‐
sentations from Transformers (BERT) model, developed by Google (Devlin et al.,
2018) that predicts missing words from a sentence, given context from both before
and after the missing word in all layers.

Encoder Transformers

Encoder Transformers are typically used for tasks that require an
understanding of the input as a whole, such as sentence classifica‐
tion, named entity recognition, and extractive question answering.
They are not used for text generation tasks, so we will not explore
them in detail in this book—see Lewis Tunstall et al.’s Natural Lan‐
guage Processing with Transformers (O’Reilly) for more
information.

Other Transformers | 255

https://www.oreilly.com/library/view/natural-language-processing/9781098136789
https://www.oreilly.com/library/view/natural-language-processing/9781098136789

In the following sections we will explore how encoder-decoder transformers work
and discuss extensions of the original GPT model architecture released by OpenAI,
including ChatGPT, which has been specifically designed for conversational
applications.

T5
An example of a modern Transformer that uses the encoder-decoder structure is the
T5 model from Google.5 This model reframes a range of tasks into a text-to-text
framework, including translation, linguistic acceptability, sentence similarity, and
document summarization, as shown in Figure 9-12.

Figure 9-12. Examples of how T5 reframes a range of tasks into a text-to-text frame‐
work, including translation, linguistic acceptability, sentence similarity, and document
summarization (source: Raffel et al., 2019)

The T5 model architecture closely matches the encoder-decoder architecture used in
the original Transformer paper, shown in Figure 9-13. The key difference is that T5 is
trained on an enormous 750 GB corpus of text (the Colossal Clean Crawled Corpus,
or C4), whereas the original Transformer paper was focused only on language trans‐
lation, so it was trained on 1.4 GB of English–German sentence pairs.

256 | Chapter 9: Transformers

https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

Figure 9-13. An encoder-decoder Transformer model: each gray box is a Transformer
block (source: Vaswani et al., 2017)

Much of this diagram is already familiar to us—we can see the Transformer blocks
being repeated and positional embedding being used to capture the ordering of the
input sequences. The two key differences between this model and the GPT model that
we built earlier in the chapter are as follows:

• On the lefthand side, a set of encoder Transformer blocks encode the sequence to
be translated. Notice that there is no causal masking on the attention layer. This is
because we are not generating further text to extend the sequence to be trans‐
lated; we just want to learn a good representation of the sequence as a whole that
can be fed to the decoder. Therefore, the attention layers in the encoder can be
completely unmasked to capture all the cross-dependencies between words, no
matter the order.

Other Transformers | 257

https://arxiv.org/abs/1706.03762

• On the righthand side, a set of decoder Transformer blocks generate the trans‐
lated text. The initial attention layer is self-referential (i.e., the key, value, and
query come from the same input) and causal masking is used to ensure informa‐
tion from future tokens is not leaked to the current word to be predicted. How‐
ever, we can then see that the subsequent attention layer pulls the key and value
from the encoder, leaving only the query passed through from the decoder itself.
This is called cross-referential attention and means that the decoder can attend to
the encoder representation of the input sequence to be translated. This is how the
decoder knows what meaning the translation needs to convey!

Figure 9-14 shows an example of cross-referential attention. Two attention heads of
the decoder layer are able to work together to provide the correct German translation
for the word the, when used in the context of the street. In German, there are three
definite articles (der, die, das) depending on the gender of the noun, but the Trans‐
former knows to choose die because one attention head is able to attend to the word
street (a feminine word in German), while another attends to the word to translate
(the).

Figure 9-14. An example of how one attention head attends to the word “the” and
another attends to the word “street” in order to correctly translate the word “the” to the
German word “die” as the feminine definite article of “Straße”

258 | Chapter 9: Transformers

This example is from the Tensor2Tensor GitHub repository, which
contains a Colab notebook that allows you to play around with a
trained encoder-decoder Transformer model and see how the
attention mechanisms of the encoder and decoder impact the
translation of a given sentence into German.

GPT-3 and GPT-4
Since the original 2018 publication of GPT, OpenAI has released multiple updated
versions that improve upon the original model, as shown in Table 9-2.

Table 9-2. The evolution of OpenAI’s GPT collection of models

Model Date Layers Attention
heads

Word
embedding
size

Context
window

parameters Training data

GPT Jun
2018

12 12 768 512 120,000,000 BookCorpus: 4.5 GB of text
from unpublished books

GPT-2 Feb
2019

48 48 1,600 1,024 1,500,000,000 WebText: 40 GB of text from
outbound Reddit links

GPT-3 May
2020

96 96 12,888 2,048 175,000,000,000 CommonCrawl, WebText,
English Wikipedia, book
corpora and others: 570 GB

GPT-4 Mar
2023

- - - - - -

The model architecture of GPT-3 is fairly similar to the original GPT model, except it
is much larger and trained on much more data. At the time of writing, GPT-4 is in
limited beta—OpenAI has not publicly released details of the model’s structure and
size, though we do know that it is able to accept images as input, so crosses over into
being a multimodal model for the first time. The model weights of GPT-3 and GPT-4
are not open source, though the models are available through a commercial tool and
API.

GPT-3 can also be fine-tuned to your own training data—this allows you to provide
multiple examples of how it should react to a given style of prompt by physically
updating the weights of the network. In many cases this may not be necessary, as
GPT-3 can be told how to react to a given style of prompt simply by providing a few
examples in the prompt itself (this is known as few-shot learning). The benefit of fine-
tuning is that you do not need to provide these examples as part of every single input
prompt, saving costs in the long run.

Other Transformers | 259

https://oreil.ly/84lIA
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2303.08774
https://platform.openai.com
https://platform.openai.com
https://oreil.ly/B-Koo

An example of the output from GPT-3, given a system prompt sentence, is shown in
Figure 9-15.

Figure 9-15. An example of how GPT-3 can extend a given system prompt

Language models such as GPT benefit hugely from scaling—both in terms of number
of model weights and dataset size. The ceiling of large language model capability has
yet to be reached, with researchers continuing to push the boundaries of what is pos‐
sible with increasingly larger models and datasets.

ChatGPT
A few months before the beta release of GPT-4, OpenAI announced ChatGPT—a tool
that allows users to interact with their suite of large language models through a con‐
versational interface. The original release in November 2022 was powered by
GPT-3.5, a version of the model that was more powerful that GPT-3 and was fine-
tuned to conversational responses.

Example dialogue is shown in Figure 9-16. Notice how the agent is able to maintain
state between inputs, understanding that the attention mentioned in the second ques‐
tion refers to attention in the context of Transformers, rather than a person’s ability to
focus.

260 | Chapter 9: Transformers

https://chat.openai.com

Figure 9-16. An example of ChatGPT answering questions about Transformers

Other Transformers | 261

At the time of writing, there is no official paper that describes how ChatGPT works in
detail, but from the official blog post we know that it uses a technique called reinforce‐
ment learning from human feedback (RLHF) to fine-tune the GPT-3.5 model. This
technique was also used in the ChatGPT group’s earlier paper6 that introduced the
InstructGPT model, a fine-tuned GPT-3 model that is specifically designed to more
accurately follow written instructions.

The training process for ChatGPT is as follows:

1. Supervised fine-tuning: Collect a demonstration dataset of conversational inputs
(prompts) and desired outputs that have been written by humans. This is used to
fine-tune the underlying language model (GPT-3.5) using supervised learning.

2. Reward modeling: Present a human labeler with examples of prompts and several
sampled model outputs and ask them to rank the outputs from best to worst.
Train a reward model that predicts the score given to each output, given the con‐
versation history.

3. Reinforcement learning: Treat the conversation as a reinforcement learning envi‐
ronment where the policy is the underlying language model, initialized to the
fine-tuned model from step 1. Given the current state (the conversation history)
the policy outputs an action (a sequence of tokens), which is scored by the
reward model trained in step 2. A reinforcement learning algorithm—proximal
policy optimization (PPO)—can then be trained to maximize the reward, by
adjusting the weights of the language model.

Reinforcement Learning

For an introduction to reinforcement learning see Chapter 12,
where we explore how generative models can be used in a rein‐
forcement learning setting.

The RLHF process is shown in Figure 9-17.

262 | Chapter 9: Transformers

https://openai.com/blog/chatgpt

Figure 9-17. The reinforcement learning from human feedback fine-tuning process used
in ChatGPT (source: OpenAI)

Other Transformers | 263

https://openai.com/blog/chatgpt

While ChatGPT still has many limitations (such as sometimes “hallucinating” factu‐
ally incorrect information), it is a powerful example of how Transformers can be used
to build generative models that can produce complex, long-ranging, and novel output
that is often indistinguishable from human-generated text. The progress made thus
far by models like ChatGPT serves as a testament to the potential of AI and its trans‐
formative impact on the world.

Moreover, it is evident that AI-driven communication and interaction will continue
to rapidly evolve in the future. Projects like Visual ChatGPT7 are now combining the
linguistic power of ChatGPT with visual foundation models such as Stable Diffusion,
enabling users to interact with ChatGPT not only through text, but also images. The
fusion of linguistic and visual capabilities in projects like Visual ChatGPT and GPT-4
have the potential to herald a new era in human–computer interaction.

Summary
In this chapter, we explored the Transformer model architecture and built a version
of GPT—a model for state-of-the-art text generation.

GPT makes use of a mechanism known as attention, which removes the need for
recurrent layers (e.g., LSTMs). It works like an information retrieval system, utilizing
queries, keys, and values to decide how much information it wants to extract from
each input token.

Attention heads can be grouped together to form what is known as a multihead atten‐
tion layer. These are then wrapped up inside a Transformer block, which includes
layer normalization and skip connections around the attention layer. Transformer
blocks can be stacked to create very deep neural networks.

Causal masking is used to ensure that GPT cannot leak information from down‐
stream tokens into the current prediction. Also, a technique known as positional
encoding is used to ensure that the ordering of the input sequence is not lost, but
instead is baked into the input alongside the traditional word embedding.

When analyzing the output from GPT, we saw it was possible not only to generate
new text passages, but also to interrogate the attention layer of the network to under‐
stand where in the sentence it is looking to gather information to improve its predic‐
tion. GPT can access information at a distance without loss of signal, because the
attention scores are calculated in parallel and do not rely on a hidden state that is car‐
ried through the network sequentially, as is the case with recurrent neural networks.

We saw how there are three families of Transformers (encoder, decoder, and encoder-
decoder) and the different tasks that can be accomplished with each. Finally, we
explored the structure and training process of other large language models such as
Google’s T5 and OpenAI’s ChatGPT.

264 | Chapter 9: Transformers

References
1. Ashish Vaswani et al., “Attention Is All You Need,” June 12, 2017, https://
arxiv.org/abs/1706.03762.

2. Alec Radford et al., “Improving Language Understanding by Generative Pre-
Training,” June 11, 2018, https://openai.com/research/language-unsupervised.

3. Jacob Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding,” October 11, 2018, https://arxiv.org/abs/1810.04805.

4. Sheng Shen et al., “PowerNorm: Rethinking Batch Normalization in Transformers,”
June 28, 2020, https://arxiv.org/abs/2003.07845.

5. Colin Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer,” October 23, 2019, https://arxiv.org/abs/1910.10683.

6. Long Ouyang et al., “Training Language Models to Follow Instructions with
Human Feedback,” March 4, 2022, https://arxiv.org/abs/2203.02155.

7. Chenfei Wu et al., “Visual ChatGPT: Talking, Drawing and Editing with Visual
Foundation Models,” March 8, 2023, https://arxiv.org/abs/2303.04671.

Summary | 265

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openai.com/research/language-unsupervised
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2003.07845
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2303.04671

CHAPTER 10

Advanced GANs

Chapter Goals
In this chapter you will:

• See how a ProGAN model progressively trains a GAN to generate high-
resolution images.

• Understand how ProGAN was adapted to build StyleGAN, a high-performing
GAN for image synthesis.

• Explore how StyleGAN was adjusted to create StyleGAN2, a state-of-the-art
model that improves further upon the original work.

• Learn about the key contributions of these models, including progressive train‐
ing, adaptive instance normalization, weight modulation and demodulation, and
path length regularization.

• Walk through the architecture of the Self-Attention GAN (SAGAN), which
incorporates the attention mechanism into the GAN framework.

• See how BigGAN expands upon the ideas in the SAGAN paper to produce high-
quality images.

• Learn how VQ-GAN uses a codebook to encode images into a discrete sequence
of tokens that can be modeled using a Transformer.

• See how ViT VQ-GAN adapts the VQ-GAN architecture to use Transformers
instead of convolutional layers in the encoder and decoder.

267

Chapter 4 introduced generative adversarial networks (GANs), a class of generative
model that has produced state-of-the-art results across a wide variety of image gener‐
ation tasks. The flexibility in the model architecture and training process has led aca‐
demics and deep learning practitioners to find new ways to design and train GANs,
leading to many different advanced flavors of the architecture that we shall explore in
this chapter.

Introduction
Explaining all GAN developments and their repercussions in detail could easily fill
another book. The GAN Zoo repository on GitHub contains over 500 distinct exam‐
ples of GANs with linked papers, ranging from ABC-GAN to ZipNet-GAN!

In this chapter we will cover the main GANs that have been influential in the field,
including a detailed explanation of the model architecture and training process for
each.

We will first explore three important models from NVIDIA that have pushed the
boundaries of image generation: ProGAN, StyleGAN, and StyleGAN2. We will ana‐
lyze each of these models in enough detail to understand the fundamental concepts
that underpin the architectures and see how they have each built on ideas from earlier
papers.

We will also explore two other important GAN architectures that incorporate atten‐
tion: the Self-Attention GAN (SAGAN) and BigGAN, which built on many of the
ideas in the SAGAN paper. We have already seen the power of the attention mecha‐
nism in the context of Transformers in Chapter 9.

Lastly, we will cover VQ-GAN and ViT VQ-GAN, which incorporate a blend of ideas
from variational autoencoders, Transformers, and GANs. VQ-GAN is a key compo‐
nent of Google’s state-of-the-art text-to-image generation model Muse.1 We will
explore so-called multimodal models in more detail in Chapter 13.

Training Your Own Models

For conciseness I have chosen not to include code to directly build
these models in the code repository for this book, but instead will
point to publicly available implementations where possible, so that
you can train your own versions if you wish.

268 | Chapter 10: Advanced GANs

https://oreil.ly/Oy6bR

ProGAN
ProGAN is a technique developed by NVIDIA Labs in 20172 to improve both the
speed and stability of GAN training. Instead of immediately training a GAN on full-
resolution images, the ProGAN paper suggests first training the generator and dis‐
criminator on low-resolution images of, say, 4 × 4 pixels and then incrementally
adding layers throughout the training process to increase the resolution.

Let’s take a look at the concept of progressive training in more detail.

Training Your Own ProGAN

There is an excellent tutorial by Bharath K on training your own
ProGAN using Keras available on the Paperspace blog. Bear in
mind that training a ProGAN to achieve the results from the paper
requires a significant amount of computing power.

Progressive Training
As always with GANs, we build two independent networks, the generator and dis‐
criminator, with a fight for dominance taking place during the training process.

In a normal GAN, the generator always outputs full-resolution images, even in the
early stages of training. It is reasonable to think that this strategy might not be opti‐
mal—the generator might be slow to learn high-level structures in the early stages of
training, because it is immediately operating over complex, high-resolution images.
Wouldn’t it be better to first train a lightweight GAN to output accurate low-
resolution images and then see if we can build on this to gradually increase the reso‐
lution?

This simple idea leads us to progressive training, one of the key contributions of the
ProGAN paper. The ProGAN is trained in stages, starting with a training set that has
been condensed down to 4 × 4–pixel images using interpolation, as shown in
Figure 10-1.

ProGAN | 269

https://oreil.ly/b2CJm

Figure 10-1. Images in the dataset can be compressed to lower resolution using
interpolation

We can then initially train the generator to transform a latent input noise vector z
(say, of length 512) into an image of shape 4 × 4 × 3. The matching discriminator will
need to transform an input image of size 4 × 4 × 3 into a single scalar prediction. The
network architectures for this first step are shown in Figure 10-2.

The blue box in the generator represents the convolutional layer that converts the set
of feature maps into an RGB image (toRGB), and the blue box in the discriminator
represents the convolutional layer that converts the RGB images into a set of feature
maps (fromRGB).

270 | Chapter 10: Advanced GANs

Figure 10-2. The generator and discriminator architectures for the first stage of the Pro‐
GAN training process

In the paper, the authors train this pair of networks until the discriminator has seen
800,000 real images. We now need to understand how the generator and discrimina‐
tor are expanded to work with 8 × 8–pixel images.

To expand the generator and discriminator, we need to blend in additional layers.
This is managed in two phases, transition and stabilization, as shown in Figure 10-3.

ProGAN | 271

Figure 10-3. The ProGAN generator training process, expanding the network from 4 × 4
images to 8 × 8 (dotted lines represent the rest of the network, not shown)

Let’s first look at the generator. During the transition phase, new upsampling and con‐
volutional layers are appended to the existing network, with a residual connection set
up to maintain the output from the existing trained toRGB layer. Crucially, the new
layers are initially masked using a parameter α that is gradually increased from 0 to 1
throughout the transition phase to allow more of the new toRGB output through and
less of the existing toRGB layer. This is to avoid a shock to the network as the new lay‐
ers take over.

Eventually, there is no flow through the old toRGB layer and the network enters the
stabilization phase—a further period of training where the network can fine-tune the
output, without any flow through the old toRGB layer.

272 | Chapter 10: Advanced GANs

The discriminator uses a similar process, as shown in Figure 10-4.

Figure 10-4. The ProGAN discriminator training process, expanding the network from
4 × 4 images to 8 × 8 (dotted lines represent the rest of the network, not shown)

Here, we need to blend in additional downscaling and convolutional layers. Again,
the layers are injected into the network—this time at the start of the network, just
after the input image. The existing fromRGB layer is connected via a residual connec‐
tion and gradually phased out as the new layers take over during the transition phase.
The stabilization phase allows the discriminator to fine-tune using the new layers.

ProGAN | 273

All transition and stabilization phases last until the discriminator has been shown
800,000 real images. Note that even through the network is trained progressively, no
layers are frozen. Throughout the training process, all layers remain fully trainable.

This process continues, growing the GAN from 4 × 4 images to 8 × 8, then 16 × 16,
32 × 32, and so on, until it reaches full resolution (1,024 × 1,024), as shown in
Figure 10-5.

Figure 10-5. The ProGAN training mechanism, and some example generated faces
(source: Karras et al., 2017)

The overall structure of the generator and discriminator after the full progressive
training process is complete is shown in Figure 10-6.

274 | Chapter 10: Advanced GANs

https://arxiv.org/abs/1710.10196

Figure 10-6. The ProGAN generator and discriminator used to generate 1,024 × 1,024–
pixel CelebA faces (source: Karras et al., 2018)

The paper also makes several other important contributions, namely minibatch stan‐
dard deviation, equalized learning rates, and pixelwise normalization, which are
described briefly in the following sections.

Minibatch standard deviation
The minibatch standard deviation layer is an extra layer in the discriminator that
appends the standard deviation of the feature values, averaged across all pixels and
across the minibatch as an additional (constant) feature. This helps to ensure the gen‐
erator creates more variety in its output—if variety is low across the minibatch, then
the standard deviation will be small, and the discriminator can use this feature to dis‐
tinguish the fake batches from the real batches! Therefore, the generator is incentiv‐
ized to ensure it generates a similar amount of variety as is present in the real training
data.

ProGAN | 275

https://arxiv.org/abs/1812.04948

Equalized learning rates
All dense and convolutional layers in ProGAN use equalized learning rates. Usually,
weights in a neural network are initialized using a method such as He initialization—a
Gaussian distribution where the standard deviation is scaled to be inversely propor‐
tional to the square root of the number of inputs to the layer. This way, layers with a
greater number of inputs will be initialized with weights that have a smaller deviation
from zero, which generally improves the stability of the training process.

The authors of the ProGAN paper found that this was causing problems when used
in combination with modern optimizers such as Adam or RMSProp. These methods
normalize the gradient update for each weight, so that the size of the update is inde‐
pendent of the scale (magnitude) of the weight. However, this means that weights
with a larger dynamic range (i.e., layers with fewer inputs) will take comparatively
longer to adjust than weights with a smaller dynamic range (i.e., layers with more
inputs). It was found that this causes an imbalance between the speed of training of
the different layers of the generator and discriminator in ProGAN, so they used
equalized learning rates to solve this problem.

In ProGAN, weights are initialized using a simple standard Gaussian, regardless of
the number of inputs to the layer. The normalization is applied dynamically, as part of
the call to the layer, rather than only at initialization. This way, the optimizer sees
each weight as having approximately the same dynamic range, so it applies the same
learning rate. It is only when the layer is called that the weight is scaled by the factor
from the He initializer.

Pixelwise normalization
Lastly, in ProGAN pixelwise normalization is used in the generator, rather than batch
normalization. This normalizes the feature vector in each pixel to a unit length and
helps to prevent the signal from spiraling out of control as it propagates through the
network. The pixelwise normalization layer has no trainable weights.

Outputs
In addition to the CelebA dataset, ProGAN was also applied to images from the
Large-scale Scene Understanding (LSUN) dataset with excellent results, as shown in
Figure 10-7. This demonstrated the power of ProGAN over earlier GAN architectures
and paved the way for future iterations such as StyleGAN and StyleGAN2, which we
shall explore in the next sections.

276 | Chapter 10: Advanced GANs

Figure 10-7. Generated examples from a ProGAN trained progressively on the LSUN
dataset at 256 × 256 resolution (source: Karras et al., 2017)

StyleGAN
StyleGAN3 is a GAN architecture from 2018 that builds on the earlier ideas in the
ProGAN paper. In fact, the discriminator is identical; only the generator is changed.

Often when training GANs it is difficult to separate out vectors in the latent space
corresponding to high-level attributes—they are frequently entangled, meaning that
adjusting an image in the latent space to give a face more freckles, for example, might
also inadvertently change the background color. While ProGAN generates fantasti‐
cally realistic images, it is no exception to this general rule. We would ideally like to
have full control of the style of the image, and this requires a disentangled separation
of features in the latent space.

StyleGAN achieves this by explicitly injecting style vectors into the network at differ‐
ent points: some that control high-level features (e.g., face orientation) and some that
control low-level details (e.g., the way the hair falls across the forehead).

The overall architecture of the StyleGAN generator is shown in Figure 10-8. Let’s
walk through this architecture step by step, starting with the mapping network.

StyleGAN | 277

https://arxiv.org/abs/1710.10196

Figure 10-8. The StyleGAN generator architecture (source: Karras et al., 2018)

Training Your Own StyleGAN

There is an excellent tutorial by Soon-Yau Cheong on training your
own StyleGAN using Keras available on the Keras website. Bear in
mind that training a StyleGAN to achieve the results from the
paper requires a significant amount of computing power.

The Mapping Network
The mapping network f is a simple feed-forward network that converts the input
noise � ∈ � into a different latent space � ∈ � . This gives the generator the oppor‐
tunity to disentangle the noisy input vector into distinct factors of variation, which
can be easily picked up by the downstream style-generating layers.

The point of doing this is to separate out the process of choosing a style for the image
(the mapping network) from the generation of an image with a given style (the syn‐
thesis network).

278 | Chapter 10: Advanced GANs

https://arxiv.org/abs/1812.04948
https://oreil.ly/MooSe

The Synthesis Network
The synthesis network is the generator of the actual image with a given style, as pro‐
vided by the mapping network. As can be seen from Figure 10-8, the style vector � is
injected into the synthesis network at different points, each time via a differently
densely connected layer Ai, which generates two vectors: a bias vector �b, i and a scal‐
ing vector �s, i. These vectors define the specific style that should be injected at this
point in the network—that is, they tell the synthesis network how to adjust the feature
maps to move the generated image in the direction of the specified style.

This adjustment is achieved through adaptive instance normalization (AdaIN) layers.

Adaptive instance normalization
An AdaIN layer is a type of neural network layer that adjusts the mean and variance
of each feature map �i with a reference style bias �b, i and scale �s, i, respectively.4 Both
vectors are of length equal to the number of channels output from the preceding con‐
volutional layer in the synthesis network. The equation for adaptive instance normal‐
ization is as follows:

AdaIN �i, � = �s, i
�i − μ �i

σ �i
+ �b, i

The adaptive instance normalization layers ensure that the style vectors that are injec‐
ted into each layer only affect features at that layer, by preventing any style informa‐
tion from leaking through between layers. The authors show that this results in the
latent vectors � being significantly more disentangled than the original � vectors.

Since the synthesis network is based on the ProGAN architecture, it is trained pro‐
gressively. The style vectors at earlier layers in the synthesis network (when the reso‐
lution of the image is lowest—4 × 4, 8 × 8) will affect coarser features than those later
in the network (64 × 64 to 1,024 × 1,024–pixel resolution). This means that not only
do we have complete control over the generated image through the latent vector �,
but we can also switch the � vector at different points in the synthesis network to
change the style at a variety of levels of detail.

Style mixing
The authors use a trick known as style mixing to ensure that the generator cannot uti‐
lize correlations between adjacent styles during training (i.e., the styles injected at
each layer are as disentangled as possible). Instead of sampling only a single latent
vector �, two are sampled �1, �2 , corresponding to two style vectors �1,�2 . Then,
at each layer, either �1 or �2 is chosen at random, to break any possible correlation
between the vectors.

StyleGAN | 279

Stochastic variation
The synthesizer network adds noise (passed through a learned broadcasting layer B)
after each convolution to account for stochastic details such as the placement of indi‐
vidual hairs, or the background behind the face. Again, the depth at which the noise
is injected affects the coarseness of the impact on the image.

This also means that the initial input to the synthesis network can simply be a learned
constant, rather than additional noise. There is enough stochasticity already present
in the style inputs and the noise inputs to generate sufficient variation in the images.

Outputs from StyleGAN
Figure 10-9 shows StyleGAN in action.

Figure 10-9. Merging styles between two generated images at different levels of detail
(source: Karras et al., 2018)

280 | Chapter 10: Advanced GANs

https://arxiv.org/abs/1812.04948

Here, two images, source A and source B, are generated from two different � vectors.
To generate a merged image, the source A � vector is passed through the synthesis
network but, at some point, switched for the source B � vector. If this switch happens
early on (4 × 4 or 8 × 8 resolution), coarse styles such as pose, face shape, and glasses
from source B are carried across onto source A. However, if the switch happens later,
only fine-grained detail is carried across from source B, such as colors and micro‐
structure of the face, while the coarse features from source A are preserved.

StyleGAN2
The final contribution in this chain of important GAN papers is StyleGAN2.5 This
builds further upon the StyleGAN architecture, with some key changes that improve
the quality of the generated output. In particular, StyleGAN2 generations do not suf‐
fer as greatly from artifacts—water droplet–like areas of the image that were found to
be caused by the adaptive instance normalization layers in StyleGAN, as shown in
Figure 10-10.

Figure 10-10. An artifact in a StyleGAN-generated image of a face (source: Karras et al.,
2019)

Both the generator and the discriminator in StyleGAN2 are different from the Style‐
GAN. In the next sections we will explore the key differences between the
architectures.

StyleGAN2 | 281

https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/1912.04958

Training Your Own StyleGAN2

The official code for training your own StyleGAN using Tensor‐
Flow is available on GitHub. Bear in mind that training a Style‐
GAN2 to achieve the results from the paper requires a significant
amount of computing power.

Weight Modulation and Demodulation
The artifact problem is solved by removing the AdaIN layers in the generator and
replacing them with weight modulation and demodulation steps, as shown in
Figure 10-11. � represents the weights of the convolutional layer, which are directly
updated by the modulation and demodulation steps in StyleGAN2 at runtime. In
comparison, the AdaIN layers of StyleGAN operate on the image tensor as it flows
through the network.

The AdaIN layer in StyleGAN is simply an instance normalization followed by style
modulation (scaling and bias). The idea in StyleGAN2 is to apply style modulation
and normalization (demodulation) directly to the weights of the convolutional layers
at runtime, rather than the output from the convolutional layers, as shown in
Figure 10-11. The authors show how this removes the artifact issue while retaining
control of the image style.

Figure 10-11. A comparison between the StyleGAN and StyleGAN2 style blocks

282 | Chapter 10: Advanced GANs

https://oreil.ly/alB6w

In StyleGAN2, each dense layer A outputs a single style vector si, where i indexes the
number of input channels in the corresponding convolutional layer. This style vector
is then applied to the weights of the convolutional layer as follows:

wi, j, k′ = si · wi, j, k

Here, j indexes the output channels of the layer and k indexes the spatial dimensions.
This is the modulation step of the process.

Then, we need to normalize the weights so that they again have a unit standard devia‐
tion, to ensure stability in the training process. This is the demodulation step:

wi, j, k′′ =
wi, j, k′

∑i, k wi, j, k′ 2 + ε

where � is a small constant value that prevents division by zero.

In the paper, the authors show how this simple change is enough to prevent water-
droplet artifacts, while retaining control over the generated images via the style vec‐
tors and ensuring the quality of the output remains high.

Path Length Regularization
Another change made to the StyleGAN architecture is the inclusion of an additional
penalty term in the loss function—this is known as path length regularization.

We would like the latent space to be as smooth and uniform as possible, so that a
fixed-size step in the latent space in any direction results in a fixed-magnitude change
in the image.

To encourage this property, StyleGAN2 aims to minimize the following term, along‐
side the usual Wasserstein loss with gradient penalty:

��, � ∥ ��
⊤� ∥2 − a

2

Here, � is a set of style vectors created by the mapping network, � is a set of noisy
images drawn from � 0, � , and �� = ∂g

∂� is the Jacobian of the generator network
with respect to the style vectors.

The term ∥ ��
⊤� ∥2 measures the magnitude of the images � after transformation by

the gradients given in the Jacobian. We want this to be close to a constant a, which is

StyleGAN2 | 283

calculated dynamically as the exponential moving average of ∥ ��
⊤� ∥2 as the training

progresses.

The authors find that this additional term makes exploring the latent space more reli‐
able and consistent. Moreover, the regularization terms in the loss function are only
applied once every 16 minibatches, for efficiency. This technique, called lazy regulari‐
zation, does not cause a measurable drop in performance.

No Progressive Growing
Another major update is in how StyleGAN2 is trained. Rather than adopting the
usual progressive training mechanism, StyleGAN2 utilizes skip connections in the
generator and residual connections in the discriminator to train the entire network as
one. It no longer requires different resolutions to be trained independently and blen‐
ded as part of the training process.

Figure 10-12 shows the generator and discriminator blocks in StyleGAN2.

Figure 10-12. The generator and discriminator blocks in StyleGAN2

284 | Chapter 10: Advanced GANs

The crucial property that we would like to be able to preserve is that the StyleGAN2
starts by learning low-resolution features and gradually refines the output as training
progresses. The authors show that this property is indeed preserved using this archi‐
tecture. Each network benefits from refining the convolutional weights in the lower-
resolution layers in the earlier stages of training, with the skip and residual
connections used to pass the output through the higher-resolution layers mostly
unaffected. As training progresses, the higher-resolution layers begin to dominate, as
the generator discovers more intricate ways to improve the realism of the images in
order to fool the discriminator. This process is demonstrated in Figure 10-13.

Figure 10-13. The contribution of each resolution layer to the output of the generator, by
training time (adapted from Karras et al., 2019)

StyleGAN2 | 285

https://arxiv.org/pdf/1912.04958.pdf

Outputs from StyleGAN2
Some examples of StyleGAN2 output are shown in Figure 10-14. To date, the Style‐
GAN2 architecture (and scaled variations such as StyleGAN-XL6) remain state of the
art for image generation on datasets such as Flickr-Faces-HQ (FFHQ) and CIFAR-10,
according to the benchmarking website Papers with Code.

Figure 10-14. Uncurated StyleGAN2 output for the FFHQ face dataset and LSUN car
dataset (source: Karras et al., 2019)

Other Important GANs
In this section, we will explore two more architectures that have also contributed sig‐
nificantly to the development of GANs—SAGAN and BigGAN.

Self-Attention GAN (SAGAN)
The Self-Attention GAN (SAGAN)7 is a key development for GANs as it shows how
the attention mechanism that powers sequential models such as the Transformer can
also be incorporated into GAN-based models for image generation. Figure 10-15
shows the self-attention mechanism from the paper introducing this architecture.

286 | Chapter 10: Advanced GANs

https://oreil.ly/VwH2r
https://arxiv.org/pdf/1912.04958.pdf

Figure 10-15. The self-attention mechanism within the SAGAN model (source: Zhang et
al., 2018)

The problem with GAN-based models that do not incorporate attention is that con‐
volutional feature maps are only able to process information locally. Connecting pixel
information from one side of an image to the other requires multiple convolutional
layers that reduce the size of the image, while increasing the number of channels. Pre‐
cise positional information is reduced throughout this process in favor of capturing
higher-level features, making it computationally inefficient for the model to learn
long-range dependencies between distantly connected pixels. SAGAN solves this
problem by incorporating the attention mechanism that we explored earlier in this
chapter into the GAN. The effect of this inclusion is shown in Figure 10-16.

Figure 10-16. A SAGAN-generated image of a bird (leftmost cell) and the attention
maps of the final attention-based generator layer for the pixels covered by the three col‐
ored dots (rightmost cells) (source: Zhang et al., 2018)

The red dot is a pixel that is part of the bird’s body, and so attention naturally falls on
the surrounding body cells. The green dot is part of the background, and here the
attention actually falls on the other side of the bird’s head, on other background pix‐
els. The blue dot is part of the bird’s long tail and so attention falls on other tail pixels,
some of which are distant from the blue dot. It would be difficult to maintain this

Other Important GANs | 287

https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318

long-range dependency for pixels without attention, especially for long, thin struc‐
tures in the image (such as the tail in this case).

Training Your Own SAGAN

The official code for training your own SAGAN using TensorFlow
is available on GitHub. Bear in mind that training a SAGAN to
achieve the results from the paper requires a significant amount of
computing power.

BigGAN
BigGAN,8 developed at DeepMind, extends the ideas from the SAGAN paper.
Figure 10-17 shows some of the images generated by BigGAN, trained on the Image‐
Net dataset at 128 × 128 resolution.

Figure 10-17. Examples of images generated by BigGAN (source: Brock et al., 2018)

As well as some incremental changes to the base SAGAN model, there are also several
innovations outlined in the paper that take the model to the next level of sophistica‐
tion. One such innovation is the so-called truncation trick. This is where the latent
distribution used for sampling is different from the z ∼ � 0, � distribution used
during training. Specifically, the distribution used during sampling is a truncated nor‐
mal distribution (resampling values of z that have magnitude greater than a certain
threshold). The smaller the truncation threshold, the greater the believability of gen‐
erated samples, at the expense of reduced variability. This concept is shown in
Figure 10-18.

288 | Chapter 10: Advanced GANs

https://oreil.ly/rvej0
https://arxiv.org/abs/1809.11096

Figure 10-18. The truncation trick: from left to right, the threshold is set to 2, 1, 0.5, and
0.04 (source: Brock et al., 2018)

Also, as the name suggests, BigGAN is an improvement over SAGAN in part simply
by being bigger. BigGAN uses a batch size of 2,048—8 times larger than the batch size
of 256 used in SAGAN—and a channel size that is increased by 50% in each layer.
However, BigGAN additionally shows that SAGAN can be improved structurally by
the inclusion of a shared embedding, by orthogonal regularization, and by incorpo‐
rating the latent vector z into each layer of the generator, rather than just the initial
layer.

For a full description of the innovations introduced by BigGAN, I recommend read‐
ing the original paper and accompanying presentation material.

Using BigGAN

A tutorial for generating images using a pre-trained BigGAN is
available on the TensorFlow website.

VQ-GAN
Another important type of GAN is the Vector Quantized GAN (VQ-GAN), intro‐
duced in 2020.9 This model architecture builds upon an idea introduced in the 2017
paper “Neural Discrete Representation Learning”10—namely, that the representations
learned by a VAE can be discrete, rather than continuous. This new type of model,
the Vector Quantized VAE (VQ-VAE), was shown to generate high-quality images
while avoiding some of the issues often seen with traditional continuous latent space
VAEs, such as posterior collapse (where the learned latent space becomes uninforma‐
tive due to an overly powerful decoder).

The first version of DALL.E, a text-to-image model released by
OpenAI in 2021 (see Chapter 13), utilized a VAE with a discrete
latent space, similar to VQ-VAE.

Other Important GANs | 289

https://arxiv.org/abs/1809.11096
https://oreil.ly/vPn8T
https://oreil.ly/YLbLb

By a discrete latent space, we mean a learned list of vectors (the codebook), each asso‐
ciated with a corresponding index. The job of the encoder in a VQ-VAE is to collapse
the input image to a smaller grid of vectors that can then be compared to the code‐
book. The closest codebook vector to each grid square vector (by Euclidean distance)
is then taken forward to be decoded by the decoder, as shown in Figure 10-19. The
codebook is a list of learned vectors of length d (the embedding size) that matches the
number of channels in the output of the encoder and input to the decoder. For exam‐
ple, e1 is a vector that can be interpreted as background.

Figure 10-19. A diagram of a VQ-VAE

The codebook can be thought of as a set of learned discrete concepts that are shared
by the encoder and decoder in order to describe the contents of a given image. The
VQ-VAE must find a way to make this set of discrete concepts as informative as pos‐
sible so that the encoder can accurately label each grid square with a particular code
vector that is meaningful to the decoder. The loss function for a VQ-VAE is therefore
the reconstruction loss added to two terms (alignment and commitment loss) that
ensure that the output vectors from the encoder are as close as possible to vectors in
the codebook. These terms replace the the KL divergence term between the encoded
distribution and the standard Gaussian prior in a typical VAE.

However, this architecture poses a question—how do we sample novel code grids to
pass to the decoder to generate new images? Clearly, using a uniform prior (picking
each code with equal probability for each grid square) will not work. For example in
the MNIST dataset, the top-left grid square is highly likely to be coded as background,
whereas grid squares toward the center of the image are not as likely to be coded as
such. To solve this problem, the authors used another model, an autoregressive
PixelCNN (see Chapter 5), to predict the next code vector in the grid, given previous

290 | Chapter 10: Advanced GANs

code vectors. In other words, the prior is learned by the model, rather than static as in
the case of the vanilla VAE.

Training Your Own VQ-VAE

There is an excellent tutorial by Sayak Paul on training your own
VQ-VAE using Keras available on the Keras website.

The VQ-GAN paper details several key changes to the VQ-VAE architecture, as
shown in Figure 10-20.

Figure 10-20. A diagram of a VQ-GAN: the GAN discriminator helps to encourage the
VAE to generate less blurry images through an additional adversarial loss term

Firstly, as the name suggests, the authors include a GAN discriminator that tries to
distinguish between the output from the VAE decoder and real images, with an
accompanying adversarial term in the loss function. GANs are known to produce
sharper images than VAEs, so this addition improves the overall image quality. Notice
that despite the name, the VAE is still present in a VQ-GAN model—the GAN dis‐
criminator is an additional component rather than a replacement of the VAE. The
idea of combining a VAE with a GAN discriminator (VAE-GAN) was first introduced
by Larsen et al. in their 2015 paper.11

Secondly, the GAN discriminator predicts if small patches of the images are real or
fake, rather than the entire image at once. This idea (PatchGAN) was applied in the
successful pix2pix image-to-image model introduced in 2016 by Isola et al.12 and was
also successfully applied as part of CycleGAN,13 another image-to-image style transfer

Other Important GANs | 291

https://oreil.ly/dmcb4

model. The PatchGAN discriminator outputs a prediction vector (a prediction for
each patch), rather than a single prediction for the overall image. The benefit of using
a PatchGAN discriminator is that the loss function can then measure how good the
discriminator is at distinguishing images based on their style, rather than their con‐
tent. Since each individual element of the discriminator prediction is based on a small
square of the image, it must use the style of the patch, rather than its content, to make
its decision. This is useful as we know that VAEs produce images that are stylistically
more blurry than real images, so the PatchGAN discriminator can encourage the
VAE decoder to generate sharper images than it would naturally produce.

Thirdly, rather than use a single MSE reconstruction loss that compares the input
image pixels with the output pixels from the VAE decoder, VQ-GAN uses a percep‐
tual loss term that calculates the difference between feature maps at intermediate lay‐
ers of the encoder and corresponding layers of the decoder. This idea is from the 2016
paper by Hou et al.,14 where the authors show that this change to the loss function
results in more realistic image generations.

Lastly, instead of PixelCNN, a Transformer is used as the autoregressive part of the
model, trained to generate sequences of codes. The Transformer is trained in a sepa‐
rate phase, after the VQ-GAN has been fully trained. Rather than use all previous
tokens in a fully autoregressive manner, the authors choose to only use tokens that
fall within a sliding window around the token to be predicted. This ensures that the
model scales to larger images, which require a larger latent grid size and therefore
more tokens to be generated by the Transformer.

ViT VQ-GAN
One final extension to the VQ-GAN was made by Yu et al. in their 2021 paper enti‐
tled “Vector-Quantized Image Modeling with Improved VQGAN.”15 Here, the
authors show how the convolutional encoder and decoder of the VQ-GAN can be
replaced with Transformers as shown in Figure 10-21.

For the encoder, the authors use a Vision Transformer (ViT).16 A ViT is a neural net‐
work architecture that applies the Transformer model, originally designed for natural
language processing, to image data. Instead of using convolutional layers to extract
features from an image, a ViT divides the image into a sequence of patches, which are
tokenized and then fed as input to an encoder Transformer.

Specifically, in the ViT VQ-GAN, the nonoverlapping input patches (each of size 8 ×
8) are first flattened, then projected into a low-dimensional embedding space, where
positional embeddings are added. This sequence is then fed to a standard encoder
Transformer and the resulting embeddings are quantized according to a learned
codebook. These integer codes are then processed by a decoder Transformer model,
with the overall output being a sequence of patches that can be stitched back together

292 | Chapter 10: Advanced GANs

to form the original image. The overall encoder-decoder model is trained end-to-end
as an autoencoder.

Figure 10-21. A diagram of a ViT VQ-GAN: the GAN discriminator helps to encourage
the VAE to generate less blurry images through an additional adversarial loss term
(source: Yu and Koh, 2022)17

As with the original VQ-GAN model, the second phase of training involves using an
autoregressive decoder Transformer to generate sequences of codes. Therefore in
total, there are three Transformers in a ViT VQ-GAN, in addition to the GAN dis‐
criminator and learned codebook. Examples of images generated by the ViT VQ-
GAN from the paper are shown in Figure 10-22.

Other Important GANs | 293

https://ai.googleblog.com/2022/05/vector-quantized-image-modeling-with.html

Figure 10-22. Example images generated by a ViT VQ-GAN trained on ImageNet
(source: Yu et al., 2021)

Summary
In this chapter, we have taken a tour of some of the most important and influential
GAN papers since 2017. In particular, we have explored ProGAN, StyleGAN, Style‐
GAN2, SAGAN, BigGAN, VQ-GAN, and ViT VQ-GAN.

We started by exploring the concept of progressive training that was pioneered in the
2017 ProGAN paper. Several key changes were introduced in the 2018 StyleGAN
paper that gave greater control over the image output, such as the mapping network
for creating a specific style vector and synthesis network that allowed the style to be
injected at different resolutions. Finally, StyleGAN2 replaced the adaptive instance
normalization of StyleGAN with weight modulation and demodulation steps, along‐
side additional enhancements such as path regularization. The paper also showed
how the desirable property of gradual resolution refinement could be retained
without having to the train the network progressively.

We also saw how the concept of attention could be built into a GAN, with the intro‐
duction of SAGAN in 2018. This allows the network to capture long-range depen‐
dencies, such as similar background colors over opposite sides of an image, without
relying on deep convolutional maps to spread the information over the spatial
dimensions of the image. BigGAN was an extension of this idea that made several key
changes and trained a larger network to improve the image quality further.

In the VQ-GAN paper, the authors show how several different types of generative
models can be combined to great effect. Building on the original VQ-VAE paper that
introduced the concept of a VAE with a discrete latent space, VQ-GAN additionally
includes a discriminator that encourages the VAE to generate less blurry images
through an additional adversarial loss term. An autoregressive Transformer is used to
construct a novel sequence of code tokens that can be decoded by the VAE decoder to
produce novel images. The ViT VQ-GAN paper extends this idea even further, by
replacing the convolutional encoder and decoder of VQ-GAN with Transformers.

294 | Chapter 10: Advanced GANs

https://arxiv.org/pdf/2110.04627.pdf

References
1. Huiwen Chang et al., “Muse: Text-to-Image Generation via Masked Generative
Transformers,” January 2, 2023, https://arxiv.org/abs/2301.00704.

2. Tero Karras et al., “Progressive Growing of GANs for Improved Quality, Stability,
and Variation,” October 27, 2017, https://arxiv.org/abs/1710.10196.

3. Tero Karras et al., “A Style-Based Generator Architecture for Generative Adversa‐
rial Networks,” December 12, 2018, https://arxiv.org/abs/1812.04948.

4. Xun Huang and Serge Belongie, “Arbitrary Style Transfer in Real-Time with Adap‐
tive Instance Normalization,” March 20, 2017, https://arxiv.org/abs/1703.06868.

5. Tero Karras et al., “Analyzing and Improving the Image Quality of StyleGAN,”
December 3, 2019, https://arxiv.org/abs/1912.04958.

6. Axel Sauer et al., “StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets,” Feb‐
ruary 1, 2022, https://arxiv.org/abs/2202.00273v2.

7. Han Zhang et al., “Self-Attention Generative Adversarial Networks,” May 21, 2018,
https://arxiv.org/abs/1805.08318.

8. Andrew Brock et al., “Large Scale GAN Training for High Fidelity Natural Image
Synthesis,” September 28, 2018, https://arxiv.org/abs/1809.11096.

9. Patrick Esser et al., “Taming Transformers for High-Resolution Image Synthesis,”
December 17, 2020, https://arxiv.org/abs/2012.09841.

10. Aaron van den Oord et al., “Neural Discrete Representation Learning,” November
2, 2017, https://arxiv.org/abs/1711.00937v2.

11. Anders Boesen Lindbo Larsen et al., “Autoencoding Beyond Pixels Using a
Learned Similarity Metric,” December 31, 2015, https://arxiv.org/abs/1512.09300.

12. Phillip Isola et al., “Image-to-Image Translation with Conditional Adversarial
Networks,” November 21, 2016, https://arxiv.org/abs/1611.07004v3.

13. Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks,” March 30, 2017, https://arxiv.org/abs/1703.10593.

14. Xianxu Hou et al., “Deep Feature Consistent Variational Autoencoder,” October 2,
2016, https://arxiv.org/abs/1610.00291.

15. Jiahui Yu et al., “Vector-Quantized Image Modeling with Improved VQGAN,”
October 9, 2021, https://arxiv.org/abs/2110.04627.

16. Alexey Dosovitskiy et al., “An Image Is Worth 16x16 Words: Transformers for
Image Recognition at Scale,” October 22, 2020, https://arxiv.org/abs/2010.11929v2.

Summary | 295

https://arxiv.org/abs/2301.00704
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2202.00273v2
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/1711.00937v2
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1611.07004v3
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1610.00291
https://arxiv.org/abs/2110.04627
https://arxiv.org/abs/2010.11929v2

17. Jiahui Yu and Jing Yu Koh, “Vector-Quantized Image Modeling with Improved
VQGAN,” May 18, 2022, https://ai.googleblog.com/2022/05/vector-quantized-image-
modeling-with.html.

296 | Chapter 10: Advanced GANs

https://ai.googleblog.com/2022/05/vector-quantized-image-modeling-with.html
https://ai.googleblog.com/2022/05/vector-quantized-image-modeling-with.html

CHAPTER 11

Music Generation

Chapter Goals
In this chapter you will:

• Understand how we can treat music generation as a sequence prediction prob‐
lem, so we can apply autoregressive models such as Transformers.

• See how to parse and tokenize MIDI files using the music21 package to create a
training set.

• Learn how to use sine positional encoding.
• Train a music-generating Transformer, with multiple inputs and outputs to han‐

dle note and duration.
• Understand how to handle polyphonic music, including grid tokenization and

event-based tokenization.
• Train a MuseGAN model to generate multitrack music.
• Use the MuseGAN to adjust different properties of the generated bars.

Musical composition is a complex and creative process that involves combining dif‐
ferent musical elements such as melody, harmony, rhythm, and timbre. While this is
traditionally seen as a uniquely human activity, recent advancements have made it
possible to generate music that both is pleasing to the ear and has long-term
structure.

One of the most popular techniques for music generation is the Transformer, as
music can be thought of as a sequence prediction problem. These models have been
adapted to generate music by treating musical notes as a sequence of tokens, similar

297

to words in a sentence. The Transformer model learns to predict the next note in the
sequence based on the previous notes, resulting in a generated piece of music.

MuseGAN takes a totally different approach to generating music. Unlike Transform‐
ers, which generate music note by note, MuseGAN generates entire musical tracks at
once by treating music as an image, consisting of a pitch axis and a time axis. More‐
over, MuseGAN separates out different musical components such as chords, style,
melody, and groove so that they can be controlled independently.

In this chapter we will learn how to process music data and apply both a Transformer
and MuseGAN to generate music that is stylistically similar to a given training set.

Introduction
For a machine to compose music that is pleasing to our ear, it must master many of
the same technical challenges that we saw in Chapter 9 in relation to text. In particu‐
lar, our model must be able to learn from and re-create the sequential structure of
music and be able to choose from a discrete set of possibilities for subsequent notes.

However, music generation presents additional challenges that are not present for text
generation, namely pitch and rhythm. Music is often polyphonic—that is, there are
several streams of notes played simultaneously on different instruments, which com‐
bine to create harmonies that are either dissonant (clashing) or consonant (harmo‐
nious). Text generation only requires us to handle a single stream of text, in contrast
to the parallel streams of chords that are present in music.

Also, text generation can be handled one word at a time. Unlike text data, music is a
multipart, interwoven tapestry of sounds that are not necessarily delivered at the
same time—much of the interest that stems from listening to music is in the interplay
between different rhythms across the ensemble. For example, a guitarist might play a
flurry of quicker notes while the pianist holds a longer sustained chord. Therefore,
generating music note by note is complex, because we often do not want all the
instruments to change notes simultaneously.

We will start this chapter by simplifying the problem to focus on music generation for
a single (monophonic) line of music. Many of the techniques from Chapter 9 for text
generation can also be used for music generation, as the two tasks share many com‐
mon themes. We will start by training a Transformer to generate music in the style of
the J.S. Bach cello suites and see how the attention mechanism allows the model to
focus on previous notes in order to determine the most natural subsequent note.
We’ll then tackle the task of polyphonic music generation and explore how we can
deploy an architecture based around GANs to create music for multiple voices.

298 | Chapter 11: Music Generation

Transformers for Music Generation
The model we will be building here is a decoder Transformer, taking inspiration from
OpenAI’s MuseNet, which also utilizes a decoder Transformer (similar to GPT-3)
trained to predict the next note given a sequence of previous notes.

In music generation tasks, the length of the sequence N grows large as the music pro‐
gresses, and this means that the N × N attention matrix for each head becomes
expensive to store and compute. We ideally do not want to clip the input sequence to
a short number of tokens, as we would like the model to construct the piece around a
long-term structure and repeat motifs and phrases from several minutes ago, as a
human composer would.

To tackle this problem, MuseNet utilizes a form of Transformer known as a Sparse
Transformer. Each output position in the attention matrix only computes weights for
a subset of input positions, thereby reducing the computational complexity and
memory required to train the model. MuseNet can therefore operate with full atten‐
tion over 4,096 tokens and can learn long-term structure and melodic structure
across a range of styles. (See, for example, OpenAI’s Chopin and Mozart recordings
on SoundCloud.)

To see how the continuation of a musical phrase is often influenced by notes from
several bars ago, take a look at the opening bars of the Prelude to Bach’s Cello Suite
No. 1 (Figure 11-1).

Figure 11-1. The opening of Bach’s Cello Suite No. 1 (Prelude)

Bars

Bars (or measures) are small units of music that contain a fixed,
small number of beats and are marked out by vertical lines that
cross the staff. If you can count 1, 2, 1, 2 along to a piece of music,
then there are two beats in each bar and you’re probably listening
to a march. If you can count 1, 2, 3, 1, 2, 3, then there are three
beats to each bar and you may be listening to a waltz.

Transformers for Music Generation | 299

https://oreil.ly/OaCDY
https://oreil.ly/euQiL
https://oreil.ly/euQiL
https://oreil.ly/cmwsO
https://oreil.ly/-T-Je

What note do you think comes next? Even if you have no musical training you may
still be able to guess. If you said G (the same as the very first note of the piece), then
you’d be correct. How did you know this? You may have been able to see that every
bar and half bar starts with the same note and used this information to inform your
decision. We want our model to be able to perform the same trick—in particular, we
want it to pay attention to a particular note from the previous half bar, when the pre‐
vious low G was registered. An attention-based model such as a Transformer will be
able to incorporate this long-term look-back without having to maintain a hidden
state across many bars, as is the case with a recurrent neural network.

Anyone tackling the task of music generation must first have a basic understanding of
musical theory. In the next section we’ll go through the essential knowledge required
to read music and how we can represent this numerically, in order to transform
music into the input data required to train our Transformer.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/11_music/01_transformer/transformer.ipynb in
the book repository.

The Bach Cello Suite Dataset
The raw dataset that we shall be using is a set of MIDI files for the Cello Suites by J.S.
Bach. You can download the dataset by running the dataset downloader script in the
book repository, as shown in Example 11-1. This will save the MIDI files locally to
the /data folder.

Example 11-1. Downloading the J.S. Bach Cello Suites dataset

bash scripts/download_music_data.sh

To view and listen to the music generated by the model, you’ll need some software
that can produce musical notation. MuseScore is a great tool for this purpose and can
be downloaded for free.

Parsing MIDI Files
We’ll be using the Python library music21 to load the MIDI files into Python for pro‐
cessing. Example 11-2 shows how to load a MIDI file and visualize it (Figure 11-2),
both as a score and as structured data.

300 | Chapter 11: Music Generation

https://musescore.org

Fi
gu

re
 1

1-
2.

 M
us

ica
l n

ot
at

io
n

Transformers for Music Generation | 301

Example 11-2. Importing a MIDI file

import music21

file = "/app/data/bach-cello/cs1-2all.mid"
example_score = music21.converter.parse(file).chordify()

Octaves

The number after each note name indicates the octave that the note
is in—since the note names (A to G) repeat, this is needed to
uniquely identify the pitch of the note. For example, G2 is an octave
below G3.

Now it’s time to convert the scores into something that looks more like text! We start
by looping over each score and extracting the note and duration of each element in
the piece into two separate text strings, with elements separated by spaces. We encode
the key and time signature of the piece as special symbols, with zero duration.

Monophonic Versus Polyphonic Music

In this first example, we will treat the music as monophonic (one
single line), taking just the top note of any chords. Sometimes we
may wish to keep the parts separate to generate music that is poly‐
phonic in nature. This presents additional challenges that we shall
tackle later on in this chapter.

The output from this process is shown in Figure 11-3—compare this to Figure 11-2
so that you can see how the raw music data has been transformed into the two strings.

Figure 11-3. Samples of the notes text string and the duration text string, corresponding
to Figure 11-2

302 | Chapter 11: Music Generation

This looks a lot more like the text data that we have dealt with previously. The words
are the note–duration combinations, and we should try to build a model that predicts
the next note and duration, given a sequence of previous notes and durations. A key
difference between music and text generation is that we need to build a model that
can handle the note and duration prediction simultaneously—i.e., there are two
streams of information that we need to handle, compared to the single streams of text
that we saw in Chapter 9.

Tokenization
To create the dataset that will train the model, we first need to tokenize each note and
duration, exactly as we did previously for each word in a text corpus. We can achieve
this by using a TextVectorization layer, applied to the notes and durations sepa‐
rately, as shown in Example 11-3.

Example 11-3. Tokenizing the notes and durations

def create_dataset(elements):
 ds = (
 tf.data.Dataset.from_tensor_slices(elements)
 .batch(BATCH_SIZE, drop_remainder = True)
 .shuffle(1000)
)
 vectorize_layer = layers.TextVectorization(
 standardize = None, output_mode="int"
)
 vectorize_layer.adapt(ds)
 vocab = vectorize_layer.get_vocabulary()
 return ds, vectorize_layer, vocab

notes_seq_ds, notes_vectorize_layer, notes_vocab = create_dataset(notes)
durations_seq_ds, durations_vectorize_layer, durations_vocab = create_dataset(
 durations
)
seq_ds = tf.data.Dataset.zip((notes_seq_ds, durations_seq_ds))

Transformers for Music Generation | 303

The full parsing and tokenization process is shown in Figure 11-4.

Figure 11-4. Parsing the MIDI files and tokenizing the notes and durations

Creating the Training Set
The final step of preprocessing is to create the training set that we will feed to our
Transformer.

We do this by splitting both the note and duration strings into chunks of 50 elements,
using a sliding window technique. The output is simply the input window shifted by
one note, so that the Transformer is trained to predict the note and duration of the
element one timestep into the future, given previous elements in the window. An
example of this (using a sliding window of only four elements for demonstration pur‐
poses) is shown in Figure 11-5.

304 | Chapter 11: Music Generation

Figure 11-5. The inputs and outputs for the musical Transformer model—in this exam‐
ple, a sliding window of width 4 is used to create input chunks, which are then shifted by
one element to create the target output

The architecture we will be using for our Transformer is the same as we used for text
generation in Chapter 9, with a few key differences.

Sine Position Encoding
Firstly, we will be introducing a different type of encoding for the token positions. In
Chapter 9 we used a simple Embedding layer to encode the position of each token,
effectively mapping each integer position to a distinct vector that was learned by the
model. We therefore needed to define a maximum length (N) that the sequence could
be and train on this length of sequence. The downside to this approach is that it is
then impossible to extrapolate to sequences that are longer than this maximum
length. You would have to clip the input to the last N tokens, which isn’t ideal if you
are trying to generate long-form content.

Transformers for Music Generation | 305

To circumvent this problem, we can switch to using a different type of embedding
called a sine position embedding. This is similar to the embedding that we used in
Chapter 8 to encode the noise variances of the diffusion model. Specifically, the fol‐
lowing function is used to convert the position of the word (pos) in the input
sequence into a unique vector of length d:

PEpos, 2i = sin pos
10, 0002i/d

PEpos, 2i + 1 = cos pos
10, 000 2i + 1 /d

For small i, the wavelength of this function is short and therefore the function value
changes rapidly along the position axis. Larger values of i create a longer wavelength.
Each position thus has its own unique encoding, which is a specific combination of
the different wavelengths.

Notice that this embedding is defined for all possible position val‐
ues. It is a deterministic function (i.e., it isn’t learned by the model)
that uses trigonometric functions to define a unique encoding for
each possible position.

The Keras NLP module has a built-in layer that implements this embedding for us—
we can therefore define our TokenAndPositionEmbedding layer as shown in
Example 11-4.

Example 11-4. Tokenizing the notes and durations

class TokenAndPositionEmbedding(layers.Layer):
 def __init__(self, vocab_size, embed_dim):
 super(TokenAndPositionEmbedding, self).__init__()
 self.vocab_size = vocab_size
 self.embed_dim = embed_dim
 self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
 self.pos_emb = keras_nlp.layers.SinePositionEncoding()

 def call(self, x):
 embedding = self.token_emb(x)
 positions = self.pos_emb(embedding)
 return embedding + positions

Figure 11-6 shows how the two embeddings (token and position) are added to pro‐
duce the overall embedding for the sequence.

306 | Chapter 11: Music Generation

Figure 11-6. The TokenAndPositionEmbedding layer adds the token embeddings to the
sinusoidal position embeddings to produce the overall embedding for the sequence

Multiple Inputs and Outputs
We now have two input streams (notes and durations) and two output streams (pre‐
dicted notes and durations). We therefore need to adapt the architecture of our
Transformer to cater for this.

There are many ways of handling the dual stream of inputs. We could create tokens
that represent each note–duration pair and then treat the sequence as a single stream
of tokens. However, this has the downside of not being able to represent note–dura‐
tion pairs that have not been seen in the training set (for example, we may have seen a
G#2 note and a 1/3 duration independently, but never together, so there would be no
token for G#2:1/3.

Instead, we choose to embed the note and duration tokens separately and then use a
concatenation layer to create a single representation of the input that can be used by
the downstream Transformer block. Similarly, the output from the Transformer block
is passed to two separate dense layers, which represent the predicted note and dura‐
tion probabilities. The overall architecture is shown in Figure 11-7. Layer output
shapes are shown with batch size b and sequence length l.

Transformers for Music Generation | 307

Figure 11-7. The architecture of the music-generating Transformer

An alternative approach would be to interleave the note and duration tokens into a
single stream of input and let the model learn that the output should be a single
stream where the note and duration tokens alternate. This comes with the added
complexity of ensuring that the output can still be parsed when the model has not yet
learned how to interleave the tokens correctly.

There is no right or wrong way to design your model—part of the
fun is experimenting with different setups and seeing which works
best for you!

308 | Chapter 11: Music Generation

Analysis of the Music-Generating Transformer
We’ll start by generating some music from scratch, by seeding the network with a
START note token and 0.0 duration token (i.e., we are telling the model to assume it is
starting from the beginning of the piece). Then we can generate a musical passage
using the same iterative technique we used in Chapter 9 for generating text sequen‐
ces, as follows:

1. Given the current sequence (of notes and durations), the model predicts two dis‐
tributions, one for the next note and one for the next duration.

2. We sample from both of these distributions, using a temperature parameter to
control how much variation we would like in the sampling process.

3. The chosen note and duration are appended to the respective input sequences.
4. The process repeats with the new input sequences for as many elements as we

wish to generate.

Figure 11-8 shows examples of music generated from scratch by the model at various
epochs of the training process. We use a temperature of 0.5 for the notes and
durations.

Figure 11-8. Some examples of passages generated by the model when seeded only with a
START note token and 0.0 duration token

Transformers for Music Generation | 309

Most of our analysis in this section will focus on the note predictions, rather than
durations, as for Bach’s Cello Suites the harmonic intricacies are more difficult to cap‐
ture and therefore more worthy of investigation. However, you can also apply the
same analysis to the rhythmic predictions of the model, which may be particularly
relevant for other styles of music that you could use to train this model (such as a
drum track).

There are several points to note about the generated passages in Figure 11-8. First, see
how the music is becoming more sophisticated as training progresses. To begin with,
the model plays it safe by sticking to the same group of notes and rhythms. By epoch
10, the model has begun to generate small runs of notes, and by epoch 20 it is pro‐
ducing interesting rhythms and is firmly established in a set key (E ♭ major).

Second, we can analyze the distribution of notes over time by plotting the predicted
distribution at each timestep as a heatmap. Figure 11-9 shows this heatmap for the
example from epoch 20 in Figure 11-8.

Figure 11-9. The distribution of possible next notes over time (at epoch 20): the darker
the square, the more certain the model is that the next note is at this pitch

310 | Chapter 11: Music Generation

An interesting point to note here is that the model has clearly learned which notes
belong to particular keys, as there are gaps in the distribution at notes that do not
belong to the key. For example, there is a gray gap along the row for note 54 (corre‐
sponding to G ♭/F ♯). This note is highly unlikely to appear in a piece of music in the
key of E ♭ major. The model establishes the key early on in the generation process,
and as the piece progresses, the model chooses notes that are more likely to feature in
that key by attending to the token that represents it.

It is also worth pointing out that the model has learned Bach’s characteristic style of
dropping to a low note on the cello to end a phrase and bouncing back up again to
start the next. See how around note 20, the phrase ends on a low E ♭—it is common
in the Bach Cello Suites to then return to a higher, more sonorous range of the instru‐
ment for the start of next phrase, which is exactly what the model predicts. There is a
large gray gap between the low E ♭ (pitch number 39) and the next note, which is
predicted to be around pitch number 50, rather than continuing to rumble around
the depths of the instrument.

Lastly, we should check to see if our attention mechanism is working as expected. The
horizontal axis in Figure 11-10 shows the generated sequence of notes; the vertical
axis shows where the attention of the network was aimed when predicting each note
along the horizontal axis. The color of each square shows the maximum attention
weight across all heads at each point in the generated sequence. The darker the
square, the more attention is being applied to this position in the sequence. For sim‐
plicity, we only show the notes in this diagram, but the durations of each note are also
being attended to by the network.

We can see that for the initial key signature, time signature, and rest, the network
chose to place almost all of its attention on the START token. This makes sense, as
these artifacts always appear at the start of a piece of music—once the notes start
flowing the START token essentially stops being attended to.

As we move beyond the initial few notes, we can see that the network places most
attention on approximately the last two to four notes and rarely places significant
weight on notes more than four notes ago. Again, this makes sense; there is probably
enough information contained in the previous four notes to understand how the
phrase might continue. Additionally, some notes attend more strongly back to the key
signature of D minor—for example, the E3 (7th note of the piece) and B-2 (B ♭–14th
note of the piece). This is fascinating, because these are the exact notes that rely on
the key of D minor to relieve any ambiguity. The network must look back at the key
signature in order to tell that there is a B ♭ in the key signature (rather than a B natu‐
ral) but there isn’t an E ♭ in the key signature (E natural must be used instead).

Transformers for Music Generation | 311

Figure 11-10. The color of each square in the matrix indicates the amount of attention
given to each position on the vertical axis, at the point of predicting the note on the hori‐
zontal axis

There are also examples of where the network has chosen to ignore a certain note or
rest nearby, as it doesn’t add any additional information to its understanding of the
phrase. For example, the penultimate note (A2) is not particularly attentive to the B-2
three notes back, but is slightly more attentive to the A2 four notes back. It is more
interesting for the model to look at the A2 that falls on the beat, rather than the B-2 off
the beat, which is just a passing note.

Remember we haven’t told the model anything about which notes are related or
which notes belong to which key signatures—it has worked this out for itself just by
studying the music of J.S. Bach.

312 | Chapter 11: Music Generation

Tokenization of Polyphonic Music
The Transformer we’ve been exploring in this section works well for single-line
(monophonic) music, but could it be adapted to multiline (polyphonic) music?

The challenge lies in how to represent the different lines of music as a single sequence
of tokens. In the previous section we decided to split the notes and durations of the
notes into two distinct inputs and outputs of the network, but we also saw that we
could have interleaved these tokens into a single stream. We can use the same idea to
handle polyphonic music. Two different approaches will be introduced here: grid
tokenization and event-based tokenization, as discussed in the 2018 paper “Music
Transformer: Generating Music with Long-Term Structure.”1

Grid tokenization
Consider the two bars of music from a J.S. Bach chorale in Figure 11-11. There are
four distinct parts (soprano [S], alto [A], tenor [T], bass [B]), written on different
staffs.

Figure 11-11. The first two bars of a J.S. Bach chorale

We can imagine drawing this music on a grid, where the y-axis represents the pitch of
the note and the x-axis represents the number of 16th-notes (semiquavers) that have
passed since the start of the piece. If the grid square is filled, then there is a note

Transformers for Music Generation | 313

playing at that point in time. All four parts are drawn on the same grid. This grid is
known as a piano roll because it resembles a physical roll of paper with holes punched
into it, which was used as a recording mechanism before digital systems were
invented.

We can serialize the grid into a stream of tokens by moving first through the four voi‐
ces, then along the timesteps in sequence. This produces a sequence of tokens
S1, A1, T1, B1, S2, A2, T2, B2, ..., where the subscript denotes the timestep, as shown in
Figure 11-12.

Figure 11-12. Creating the grid tokenization for the first two bars of the Bach chorale

314 | Chapter 11: Music Generation

We would then train our Transformer on this sequence of tokens, to predict the next
token given the previous tokens. We can decode the generated sequence back into a
grid structure by rolling the sequence back out over time in groups of four notes (one
for each voice). This technique works surprisingly well, despite the same note often
being split across multiple tokens with tokens from other voices in between.

However, there are some disadvantages. Firstly, notice that there is no way for the
model to tell the difference between one long note and two shorter adjacent notes of
the same pitch. This is because the tokenization does not explicitly encode the dura‐
tion of notes, only whether a note is present at each timestep.

Secondly, this method requires the music to have a regular beat that is divisible into
reasonably sized chunks. For example, using the current system, we cannot encode
triplets (a group of three notes played across a single beat). We could divide the music
into 12 steps per quarter-note (crotchet) instead of 4, that would triple the number of
tokens required to represent the same passage of music, adding overhead on the
training process and affecting the lookback capacity of the model.

Lastly, it is not obvious how we might add other components to the tokenization,
such as dynamics (how loud or quiet the music is in each part) or tempo changes. We
are locked into the two-dimensional grid structure of the piano roll, which provides a
convenient way to represent pitch and timing, but not necessarily an easy way to
incorporate other components that make music interesting to listen to.

Event-based tokenization
A more flexible approach is to use event-based tokenization. This can be thought of
as a vocabulary that literally describes how the music is created as a sequence of
events, using a rich set of tokens.

For example in Figure 11-13, we use three types of tokens:

• NOTE_ON<pitch> (start playing a note of a given pitch)
• NOTE_OFF<pitch> (stop playing a note of a given pitch)
• TIME_SHIFT<step> (shift forward in time by a given step)

This vocabulary can be used to create a sequence that describes the construction of
the music as a set of instructions.

Transformers for Music Generation | 315

Figure 11-13. An event tokenization for the first bar of the Bach chorale

We could easily incorporate other types of tokens into this vocabulary, to represent
dynamic and tempo changes for subsequent notes. This method also provides a way
to generate triplets against a backdrop of quarter-notes, by separating the notes of the
triplets with TIME_SHIFT<0.33> tokens. Overall, it is a more expressive framework for
tokenization, though it is also potentially more complex for the Transformer to learn
inherent patterns in the training set music, as it is by definition less structured than
the grid method.

I encourage you to try implementing these polyphonic techniques
and train a Transformer on the new tokenized dataset using all
the knowledge you have built up so far in this book. I would also
recommend checking our Dr. Tristan Behrens’s guide to music gen‐
eration research, available on GitHub, which provides a compre‐
hensive overview of different papers on the topic of music
generation using deep learning.

In the next section we will take a completely different approach to music generation,
using GANs.

316 | Chapter 11: Music Generation

https://oreil.ly/YfaiJ

MuseGAN
You may have thought that the piano roll shown in Figure 11-12 looks a bit like a
piece of modern art. This begs the question—could we in fact treat this piano roll as a
picture and utilize image generation methods instead of sequence generation
techniques?

As we shall see, the answer to this question is yes, we can treat music generation
directly as an image generation problem. This means that instead of using Trans‐
formers, we can apply the same convolutional-based techniques that work so well for
image generation problems—in particular, GANs.

MuseGAN was introduced in the 2017 paper “MuseGAN: Multi-Track Sequential
Generative Adversarial Networks for Symbolic Music Generation and Accompani‐
ment.”2 The authors show how it is possible to train a model to generate polyphonic,
multitrack, multibar music through a novel GAN framework. Moreover, they show
how, by dividing up the responsibilities of the noise vectors that feed the generator,
they are able to maintain fine-grained control over the high-level temporal and track-
based features of the music.

Let’s start by introducing the the J.S. Bach chorale dataset.

Running the Code for This Example

The code for this example can be found in the Jupyter notebook
located at notebooks/11_music/02_musegan/musegan.ipynb in the
book repository.

The Bach Chorale Dataset
To begin this project, you’ll first need to download the MIDI files that we’ll be using
to train the MuseGAN. We’ll use a dataset of 229 J.S. Bach chorales for four voices.

You can download the dataset by running the Bach chorale dataset downloader script
in the book repository, as shown in Example 11-5. This will save the MIDI files locally
to the /data folder.

Example 11-5. Downloading the Bach chorale dataset

bash scripts/download_bach_chorale_data.sh

MuseGAN | 317

The dataset consists of an array of four numbers for each timestep: the MIDI note
pitches of each of the four voices. A timestep in this dataset is equal to a 16th note (a
semiquaver). So, for example, in a single bar of 4 quarter (crotchet) beats, there are 16
timesteps. The dataset is automatically split into train, validation, and test sets. We
will be using the train dataset to train the MuseGAN.

To start, we need to get the data into the correct shape to feed the GAN. In this exam‐
ple we’ll generate two bars of music, so we’ll extract only the first two bars of each
chorale. Each bar consists of 16 timesteps and there are a potential 84 pitches across
the 4 voices.

Voices will be referred to as tracks from here on, to keep the termi‐
nology in line with the original paper.

Therefore, the transformed data will have the following shape:

[BATCH_SIZE, N_BARS, N_STEPS_PER_BAR, N_PITCHES, N_TRACKS]

where:

BATCH_SIZE = 64
N_BARS = 2
N_STEPS_PER_BAR = 16
N_PITCHES = 84
N_TRACKS = 4

To get the data into this shape, we one-hot encode the pitch numbers into a vector of
length 84 and split each sequence of notes into two bars of 16 timesteps each. We are
making the assumption here that each chorale in the dataset has four beats in each
bar, which is reasonable, and even if this were not the case it would not adversely
affect the training of the model.

Figure 11-14 shows how two bars of raw data are converted into the transformed
piano roll dataset that we will use to train the GAN.

318 | Chapter 11: Music Generation

Figure 11-14. Processing two bars of raw data into piano roll data that we can use to
train the GAN

MuseGAN | 319

The MuseGAN Generator
Like all GANs, MuseGAN consists of a generator and a critic. The generator tries to
fool the critic with its musical creations, and the critic tries to prevent this from hap‐
pening by ensuring it is able to tell the difference between the generator’s forged Bach
chorales and the real thing.

Where MuseGAN differs is in the fact that the generator doesn’t just accept a single
noise vector as input, but instead has four separate inputs, which correspond to four
different characteristics of the music: chords, style, melody, and groove. By manipu‐
lating each of these inputs independently we can change high-level properties of the
generated music.

A high-level view of the generator is shown in Figure 11-15.

Figure 11-15. High-level diagram of the MuseGAN generator

The diagram shows how the chords and melody inputs are first passed through a
temporal network that outputs a tensor with one of the dimensions equal to the num‐
ber of bars to be generated. The style and groove inputs are not stretched temporally
in this way, as they remain constant through the piece.

Then, to generate a particular bar for a particular track, the relevant outputs from the
chords, style, melody, and groove parts of the network are concatenated to form a
longer vector. This is then passed to a bar generator, which ultimately outputs the
specified bar for the specified track.

320 | Chapter 11: Music Generation

By concatenating the generated bars for all tracks, we create a score that can be com‐
pared with real scores by the critic.

Let’s first take a look at how to build a temporal network.

The temporal network
The job of a temporal network—a neural network consisting of convolutional trans‐
pose layers—is to transform a single input noise vector of length Z_DIM = 32 into a
different noise vector for every bar (also of length 32). The Keras code to build this is
shown in Example 11-6.

Example 11-6. Building the temporal network

def conv_t(x, f, k, s, a, p, bn):
 x = layers.Conv2DTranspose(
 filters = f
 , kernel_size = k
 , padding = p
 , strides = s
 , kernel_initializer = initializer
)(x)
 if bn:
 x = layers.BatchNormalization(momentum = 0.9)(x)

 x = layers.Activation(a)(x)
 return x

def TemporalNetwork():
 input_layer = layers.Input(shape=(Z_DIM,), name='temporal_input')
 x = layers.Reshape([1,1,Z_DIM])(input_layer)
 x = conv_t(
 x, f=1024, k=(2,1), s=(1,1), a = 'relu', p = 'valid', bn = True
)
 x = conv_t(
 x, f=Z_DIM, k=(N_BARS - 1,1), s=(1,1), a = 'relu', p = 'valid', bn = True
)
 output_layer = layers.Reshape([N_BARS, Z_DIM])(x)
 return models.Model(input_layer, output_layer)

The input to the temporal network is a vector of length 32 (Z_DIM).

We reshape this vector to a 1 × 1 tensor with 32 channels, so that we can apply
convolutional 2D transpose operations to it.

We apply Conv2DTranspose layers to expand the size of the tensor along one axis,
so that it is the same length as N_BARS.

MuseGAN | 321

We remove the unnecessary extra dimension with a Reshape layer.

The reason we use convolutional operations rather than requiring two independent
vectors into the network is because we would like the network to learn how one bar
should follow on from another in a consistent way. Using a neural network to expand
the input vector along the time axis means the model has a chance to learn how
music flows across bars, rather than treating each bar as completely independent of
the last.

Chords, style, melody, and groove
Let’s now take a closer look at the four different inputs that feed the generator:

Chords
The chords input is a single noise vector of length Z_DIM. This vector’s job is to
control the general progression of the music over time, shared across tracks, so
we use a TemporalNetwork to transform this single vector into a different latent
vector for every bar. Note that while we call this input chords, it really could con‐
trol anything about the music that changes per bar, such as general rhythmic
style, without being specific to any particular track.

Style
The style input is also a vector of length Z_DIM. This is carried forward without
transformation, so it is the same across all bars and tracks. It can be thought of as
the vector that controls the overall style of the piece (i.e., it affects all bars and
tracks consistently).

Melody
The melody input is an array of shape [N_TRACKS, Z_DIM]—that is, we provide
the model with a random noise vector of length Z_DIM for each track.

Each of these vectors is passed through a track-specific TemporalNetwork, where
the weights are not shared between tracks. The output is a vector of length Z_DIM
for every bar of every track. The model can therefore use these input vectors to
fine-tune the content of every single bar and track independently.

Groove
The groove input is also an array of shape [N_TRACKS, Z_DIM]—a random noise
vector of length Z_DIM for each track. Unlike the melody input, these vectors are
not passed through the temporal network but instead are fed straight through,
just like the style vector. Therefore, each groove vector will affect the overall
properties of a track, across all bars.

322 | Chapter 11: Music Generation

We can summarize the responsibilities of each component of the MuseGAN genera‐
tor as shown in Table 11-1.

Table 11-1. Components of the MuseGAN generator

Output differs across bars? Output differs across parts?
Style Ｘ Ｘ
Groove Ｘ ✓
Chords ✓ Ｘ
Melody ✓ ✓

The final piece of the MuseGAN generator is the bar generator—let’s see how we can
use this to glue together the outputs from the chord, style, melody, and groove
components.

The bar generator
The bar generator receives four latent vectors—one from each of the chord, style,
melody, and groove components. These are concatenated to produce a vector of
length 4 * Z_DIM as input. The output is a piano roll representation of a single bar
for a single track—i.e., a tensor of shape [1, n_steps_per_bar, n_pitches, 1].

The bar generator is just a neural network that uses convolutional transpose layers to
expand the time and pitch dimensions of the input vector. We create one bar genera‐
tor for every track, and weights are not shared between tracks. The Keras code to
build a BarGenerator is given in Example 11-7.

Example 11-7. Building the BarGenerator

def BarGenerator():

 input_layer = layers.Input(shape=(Z_DIM * 4,), name='bar_generator_input')

 x = layers.Dense(1024)(input_layer)
 x = layers.BatchNormalization(momentum = 0.9)(x)
 x = layers.Activation('relu')(x)
 x = layers.Reshape([2,1,512])(x)

 x = conv_t(x, f=512, k=(2,1), s=(2,1), a= 'relu', p = 'same', bn = True)
 x = conv_t(x, f=256, k=(2,1), s=(2,1), a= 'relu', p = 'same', bn = True)
 x = conv_t(x, f=256, k=(2,1), s=(2,1), a= 'relu', p = 'same', bn = True)
 x = conv_t(x, f=256, k=(1,7), s=(1,7), a= 'relu', p = 'same', bn = True)
 x = conv_t(x, f=1, k=(1,12), s=(1,12), a= 'tanh', p = 'same', bn = False)

 output_layer = layers.Reshape([1, N_STEPS_PER_BAR , N_PITCHES ,1])(x)

 return models.Model(input_layer, output_layer)

MuseGAN | 323

The input to the bar generator is a vector of length 4 * Z_DIM.

After passing it through a Dense layer, we reshape the tensor to prepare it for the
convolutional transpose operations.

First we expand the tensor along the timestep axis…

…then along the pitch axis.

The final layer has a tanh activation applied, as we will be using a WGAN-GP
(which requires tanh output activation) to train the network.

The tensor is reshaped to add two extra dimensions of size 1, to prepare it for
concatenation with other bars and tracks.

Putting it all together
Ultimately, the MuseGAN generator takes the four input noise tensors (chords, style,
melody, and groove) and converts them into a multitrack, multibar score. The Keras
code to build the MuseGAN generator is provided in Example 11-8.

Example 11-8. Building the MuseGAN generator

def Generator():
 chords_input = layers.Input(shape=(Z_DIM,), name='chords_input')
 style_input = layers.Input(shape=(Z_DIM,), name='style_input')
 melody_input = layers.Input(shape=(N_TRACKS, Z_DIM), name='melody_input')
 groove_input = layers.Input(shape=(N_TRACKS, Z_DIM), name='groove_input')

 chords_tempNetwork = TemporalNetwork()
 chords_over_time = chords_tempNetwork(chords_input)

 melody_over_time = [None] * N_TRACKS
 melody_tempNetwork = [None] * N_TRACKS
 for track in range(N_TRACKS):
 melody_tempNetwork[track] = TemporalNetwork()
 melody_track = layers.Lambda(lambda x, track = track: x[:,track,:])(
 melody_input
)
 melody_over_time[track] = melody_tempNetwork[track](melody_track)

 barGen = [None] * N_TRACKS
 for track in range(N_TRACKS):
 barGen[track] = BarGenerator()

 bars_output = [None] * N_BARS
 c = [None] * N_BARS
 for bar in range(N_BARS):

324 | Chapter 11: Music Generation

 track_output = [None] * N_TRACKS

 c[bar] = layers.Lambda(lambda x, bar = bar: x[:,bar,:])(chords_over_time)
 s = style_input

 for track in range(N_TRACKS):

 m = layers.Lambda(lambda x, bar = bar: x[:,bar,:])(
 melody_over_time[track]
)
 g = layers.Lambda(lambda x, track = track: x[:,track,:])(
 groove_input
)

 z_input = layers.Concatenate(
 axis = 1, name = 'total_input_bar_{}_track_{}'.format(bar, track)
)([c[bar],s,m,g])

 track_output[track] = barGen[track](z_input)

 bars_output[bar] = layers.Concatenate(axis = -1)(track_output)

 generator_output = layers.Concatenate(axis = 1, name = 'concat_bars')(
 bars_output
)

 return models.Model(
 [chords_input, style_input, melody_input, groove_input], generator_output
)

generator = Generator()

Define the inputs to the generator.

Pass the chords input through the temporal network.

Pass the melody input through the temporal network.

Create an independent bar generator network for every track.

Loop over the tracks and bars, creating a generated bar for each combination.

Concatenate everything together to form a single output tensor.

The MuseGAN model takes four distinct noise tensors as input and outputs a
generated multitrack, multibar score.

MuseGAN | 325

The MuseGAN Critic
In comparison to the generator, the critic architecture is much more straightforward
(as is often the case with GANs).

The critic tries to distinguish full multitrack, multibar scores created by the generator
from real excerpts from the Bach chorales. It is a convolutional neural network, con‐
sisting mostly of Conv3D layers that collapse the score into a single output prediction.

Conv3D Layers

So far in this book, we have only worked with Conv2D layers, appli‐
cable to three-dimensional input images (width, height, channels).
Here we have to use Conv3D layers, which are analogous to Conv2D
layers but accept four-dimensional input tensors (n_bars,
n_steps_per_bar, n_pitches, n_tracks).

We do not use batch normalization layers in the critic as we will be using the WGAN-
GP framework for training the GAN, which forbids this.

The Keras code to build the critic is given in Example 11-9.

Example 11-9. Building the MuseGAN critic

def conv(x, f, k, s, p):
 x = layers.Conv3D(filters = f
 , kernel_size = k
 , padding = p
 , strides = s
 , kernel_initializer = initializer
)(x)
 x = layers.LeakyReLU()(x)
 return x

def Critic():
 critic_input = layers.Input(
 shape=(N_BARS, N_STEPS_PER_BAR, N_PITCHES, N_TRACKS),
 name='critic_input'
)

 x = critic_input
 x = conv(x, f=128, k = (2,1,1), s = (1,1,1), p = 'valid')
 x = conv(x, f=128, k = (N_BARS - 1,1,1), s = (1,1,1), p = 'valid')

 x = conv(x, f=128, k = (1,1,12), s = (1,1,12), p = 'same')
 x = conv(x, f=128, k = (1,1,7), s = (1,1,7), p = 'same')

 x = conv(x, f=128, k = (1,2,1), s = (1,2,1), p = 'same')
 x = conv(x, f=128, k = (1,2,1), s = (1,2,1), p = 'same')

326 | Chapter 11: Music Generation

 x = conv(x, f=256, k = (1,4,1), s = (1,2,1), p = 'same')
 x = conv(x, f=512, k = (1,3,1), s = (1,2,1), p = 'same')

 x = layers.Flatten()(x)

 x = layers.Dense(1024, kernel_initializer = initializer)(x)
 x = layers.LeakyReLU()(x)

 critic_output = layers.Dense(
 1, activation=None, kernel_initializer = initializer
)(x)

 return models.Model(critic_input, critic_output)

critic = Critic()

The input to the critic is an array of multitrack, multibar scores, each of shape
[N_BARS, N_STEPS_PER_BAR, N_PITCHES, N_TRACKS].

First, we collapse the tensor along the bar axis. We apply Conv3D layers through‐
out the critic as we are working with 4D tensors.

Next, we collapse the tensor along the pitch axis.

Finally, we collapse the tensor along the timesteps axis.

The output is a Dense layer with a single unit and no activation function, as
required by the WGAN-GP framework.

Analysis of the MuseGAN
We can perform some experiments with our MuseGAN by generating a score, then
tweaking some of the input noise parameters to see the effect on the output.

The output from the generator is an array of values in the range [–1, 1] (due to the
tanh activation function of the final layer). To convert this to a single note for each
track, we choose the note with the maximum value over all 84 pitches for each time‐
step. In the original MuseGAN paper the authors use a threshold of 0, as each track
can contain multiple notes; however, in this setting we can simply take the maximum
to guarantee exactly one note per timestep per track, as is the case for the Bach
chorales.

Figure 11-16 shows a score that has been generated by the model from random nor‐
mally distributed noise vectors (top left). We can find the closest score in the dataset
(by Euclidean distance) and check that our generated score isn’t a copy of a piece of
music that already exists in the dataset—the closest score is shown just below it, and
we can see that it does not resemble our generated score.

MuseGAN | 327

Figure 11-16. Example of a MuseGAN predicted score, showing the closest real score in
the training data and how the generated score is affected by changing the input noise

Let’s now play around with the input noise to tweak our generated score. First, we can
try changing the chord noise vector—the bottom-left score in Figure 11-16 shows the
result. We can see that every track has changed, as expected, and also that the two
bars exhibit different properties. In the second bar, the baseline is more dynamic and
the top line is higher in pitch than in the first bar. This is because the latent vectors
that affect the two bars are different, as the input chord vector was passed through a
temporal network.

When we change the style vector (top right), both bars change in a similar way. The
whole passage has changed style from the original generated score, in a consistent
way (i.e., the same latent vector is being used to adjust all tracks and bars).

We can also alter tracks individually, through the melody and groove inputs. In the
center-right score in Figure 11-16 we can see the effect of changing just the melody
noise input for the top line of music. All other parts remain unaffected, but the top-
line notes change significantly. Also, we can see a rhythmic change between the two

328 | Chapter 11: Music Generation

bars in the top line: the second bar is more dynamic, containing faster notes than the
first bar.

Lastly, the bottom-right score in the diagram shows the predicted score when we alter
the groove input parameter for only the baseline. Again, all other parts remain unaf‐
fected, but the baseline is different. Moreover, the overall pattern of the baseline
remains similar between bars, as we would expect.

This shows how each of the input parameters can be used to directly influence high-
level features of the generated musical sequence, in much the same way as we were
able to adjust the latent vectors of VAEs and GANs in previous chapters to alter the
appearance of a generated image. One drawback to the model is that the number of
bars to generate must be specified up front. To tackle this, the authors show an exten‐
sion to the model that allows previous bars to be fed in as input, allowing the model
to generate long-form scores by continually feeding the most recent predicted bars
back in as additional input.

Summary
In this chapter we have explored two different kinds of models for music generation:
a Transformer and a MuseGAN.

The Transformer is similar in design to the networks we saw in Chapter 9 for text
generation. Music and text generation share a lot of features in common, and often
similar techniques can be used for both. We extended the Transformer architecture
by incorporating two input and output streams, for note and duration. We saw how
the model was able to learn about concepts such as keys and scales, simply by learn‐
ing to accurately generate the music of Bach.

We also explored how we can adapt the tokenization process to handle polyphonic
(multitrack) music generation. Grid tokenization serializes a piano roll representation
of the score, allowing us to train a Transformer on a single stream of tokens that
describe which note is present in each voice, at discrete, equally spaced timestep
intervals. Event-based tokenization produces a recipe that describes how to create the
multiple lines of music in a sequential fashion, through a single stream of instruc‐
tions. Both methods have advantages and disadvantages—the success or failure of a
Transformer-based approach to music generation is often heavily dependent on the
choice of tokenization method.

We also saw that generating music does not always require a sequential approach—
MuseGAN uses convolutions to generate polyphonic musical scores with multiple
tracks, by treating the score as an image where the tracks are individual channels of
the image. The novelty of MuseGAN lies in the way the four input noise vectors
(chords, style, melody, and groove) are organized so that it is possible to maintain full
control over high-level features of the music. While the underlying harmonization is

Summary | 329

still not as perfect or varied as Bach’s, it is a good attempt at what is an extremely diffi‐
cult problem to master and highlights the power of GANs to tackle a wide variety of
problems.

References
1. Cheng-Zhi Anna Huang et al., “Music Transformer: Generating Music with Long-
Term Structure,” September 12, 2018, https://arxiv.org/abs/1809.04281.

2. Hao-Wen Dong et al., “MuseGAN: Multi-Track Sequential Generative Adversarial
Networks for Symbolic Music Generation and Accompaniment,” September 19, 2017,
https://arxiv.org/abs/1709.06298.

330 | Chapter 11: Music Generation

https://arxiv.org/abs/1809.04281
https://arxiv.org/abs/1709.06298

CHAPTER 12

World Models

Chapter Goals
In this chapter you will:

• Walk through the basics of reinforcement learning (RL).
• Understand how generative modeling can be used within a world model approach

to RL.
• See how to train a variational autoencoder (VAE) to capture environment obser‐

vations in a low-dimensional latent space.
• Walk through the training process of a mixture density network–recurrent neu‐

ral network (MDN-RNN) that predicts the latent variable.
• Use the covariance matrix adaptation evolution strategy (CMA-ES) to train a

controller that can take intelligent actions in the environment.
• Understand how the trained MDN-RNN can itself be used as an environment,

allowing the agent to train the controller within its own hallucinated dreams,
rather than the real environment.

This chapter introduces one of the most interesting applications of generative models
in recent years, namely their use within so-called world models.

Introduction
In March 2018, David Ha and Jürgen Schmidhuber published their “World Models”
paper.1 The paper showed how it is possible to train a model that can learn how to
perform a particular task through experimentation within its own generated dream
environment, rather than inside the real environment. It is an excellent example of

331

how generative modeling can be used to solve practical problems, when applied
alongside other machine learning techniques such as reinforcement learning.

A key component of the architecture is a generative model that can construct a prob‐
ability distribution for the next possible state, given the current state and action. Hav‐
ing built up an understanding of the underlying physics of the environment through
random movements, the model is then able to train itself from scratch on a new task,
entirely within its own internal representation of the environment. This approach led
to world-best scores for both of the tasks on which it was tested.

In this chapter we will explore the model from the paper in detail, with particular
focus on a task that requires the agent to learn how to drive a car around a virtual
racetrack as fast as possible. While we will be using a 2D computer simulation as our
environment, the same technique could also be applied to real-world scenarios where
testing strategies in the live environment is expensive or infeasible.

In this chapter we will reference the excellent TensorFlow imple‐
mentation of the “World Models” paper available publicly on
GitHub, which I encourage you to clone and run yourself!

Before we start exploring the model, we need to take a closer look at the concept of
reinforcement learning.

Reinforcement Learning
Reinforcement learning can be defined as follows:

Reinforcement learning (RL) is a field of machine learning that aims to train an agent
to perform optimally within a given environment, with respect to a particular goal.

While both discriminative modeling and generative modeling aim to minimize a loss
function over a dataset of observations, reinforcement learning aims to maximize the
long-term reward of an agent in a given environment. It is often described as one of
the three major branches of machine learning, alongside supervised learning (predict‐
ing using labeled data) and unsupervised learning (learning structure from unlabeled
data).

Let’s first introduce some key terminology related to reinforcement learning:

Environment
The world in which the agent operates. It defines the set of rules that govern the
game state update process and reward allocation, given the agent’s previous
action and current game state. For example, if we were teaching a reinforcement
learning algorithm to play chess, the environment would consist of the rules that

332 | Chapter 12: World Models

https://oreil.ly/_OlJX

govern how a given action (e.g., the pawn move e2e4) affects the next game state
(the new positions of the pieces on the board) and would also specify how to
assess if a given position is checkmate and allocate the winning player a reward of
1 after the winning move.

Agent
The entity that takes actions in the environment.

Game state
The data that represents a particular situation that the agent may encounter (also
just called a state). For example, a particular chessboard configuration with
accompanying game information such as which player will make the next move.

Action
A feasible move that an agent can make.

Reward
The value given back to the agent by the environment after an action has been
taken. The agent aims to maximize the long-term sum of its rewards. For exam‐
ple, in a game of chess, checkmating the opponent’s king has a reward of 1 and
every other move has a reward of 0. Other games have rewards constantly awar‐
ded throughout the episode (e.g., points in a game of Space Invaders).

Episode
One run of an agent in the environment; this is also called a rollout.

Timestep
For a discrete event environment, all states, actions, and rewards are subscripted
to show their value at timestep t.

The relationship between these concepts is shown in Figure 12-1.

Figure 12-1. Reinforcement learning diagram

The environment is first initialized with a current game state, s0. At timestep t, the
agent receives the current game state st and uses this to decide on its next best action
at, which it then performs. Given this action, the environment then calculates the
next state st + 1 and reward rt + 1 and passes these back to the agent, for the cycle to

Reinforcement Learning | 333

begin again. The cycle continues until the end criterion of the episode is met (e.g., a
given number of timesteps elapse or the agent wins/loses).

How can we design an agent to maximize the sum of rewards in a given environ‐
ment? We could build an agent that contains a set of rules for how to respond to any
given game state. However, this quickly becomes infeasible as the environment
becomes more complex and doesn’t ever allow us to build an agent that has
superhuman ability in a particular task, as we are hardcoding the rules. Reinforce‐
ment learning involves creating an agent that can learn optimal strategies by itself in
complex environments through repeated play.

Let’s now take a look at the CarRacing environment that simulates a car driving
around a track.

The CarRacing Environment
CarRacing is an environment that is available through the Gymnasium package.
Gymnasium is a Python library for developing reinforcement learning algorithms
that contains several classic reinforcement learning environments, such as CartPole
and Pong, as well as environments that present more complex challenges, such as
training an agent to walk on uneven terrain or win an Atari game.

Gymnasium

Gymnasium is a maintained fork of OpenAI’s Gym library—since
2021, further development of Gym has shifted to Gymnasium. In
this book, we therefore refer to Gymnasium environments as Gym
environments.

All of the environments provide a step method through which you can submit a given
action; the environment will return the next state and the reward. By repeatedly
calling the step method with the actions chosen by the agent, you can play out an epi‐
sode in the environment. There is also a reset method for returning the environment
to its initial state and a render method that allows you to watch your agent perform in
a given environment. This is useful for debugging and finding areas where your agent
could improve.

334 | Chapter 12: World Models

https://gymnasium.farama.org

Let’s see how the game state, action, reward, and episode are defined for the
CarRacing environment:

Game state
A 64 × 64–pixel RGB image depicting an overhead view of the track and car.

Action
A set of three values: the steering direction (–1 to 1), acceleration (0 to 1), and
braking (0 to 1). The agent must set all three values at each timestep.

Reward
A negative penalty of –0.1 for each timestep taken and a positive reward of 1,000/
N if a new track tile is visited, where N is the total number of tiles that make up
the track.

Episode
The episode ends when the car completes the track or drives off the edge of the
environment, or when 3,000 timesteps have elapsed.

These concepts are shown on a graphical representation of a game state in
Figure 12-2.

Figure 12-2. A graphical representation of one game state in the CarRacing environment

Perspective

We should imagine the agent floating above the track and control‐
ling the car from a bird’s-eye view, rather than viewing the track
from the driver’s perspective.

Reinforcement Learning | 335

World Model Overview
We’ll now cover a high-level overview of the entire world model architecture and
training process, before diving into each component in more detail.

Architecture
The solution consists of three distinct parts, as shown in Figure 12-3, that are trained
separately:

V
A variational autoencoder (VAE)

M
A recurrent neural network with a mixture density network (MDN-RNN)

C
A controller

Figure 12-3. World model architecture diagram

The VAE
When you make decisions while driving, you don’t actively analyze every single pixel
in your view—instead, you condense the visual information into a smaller number of
latent entities, such as the straightness of the road, upcoming bends, and your posi‐
tion relative to the road, to inform your next action.

We saw in Chapter 3 how a VAE can take a high-dimensional input image and con‐
dense it into a latent random variable that approximately follows a standard Gaussian

336 | Chapter 12: World Models

distribution, through minimization of the reconstruction error and KL divergence.
This ensures that the latent space is continuous and that we are able to easily sample
from it to generate meaningful new observations.

In the car racing example, the VAE condenses the 64 × 64 × 3 (RGB) input image into
a 32-dimensional normally distributed random variable, parameterized by two vari‐
ables, mu and logvar. Here, logvar is the logarithm of the variance of the distribu‐
tion. We can sample from this distribution to produce a latent vector z that represents
the current state. This is passed on to the next part of the network, the MDN-RNN.

The MDN-RNN
As you drive, each subsequent observation isn’t a complete surprise to you. If the cur‐
rent observation suggests a left turn in the road ahead and you turn the wheel to the
left, you expect the next observation to show that you are still in line with the road.

If you didn’t have this ability, your car would probably snake all over the road as you
wouldn’t be able to see that a slight deviation from the center is going to be worse in
the next timestep unless you do something about it now.

This forward thinking is the job of the MDN-RNN, a network that tries to predict the
distribution of the next latent state based on the previous latent state and the previous
action.

Specifically, the MDN-RNN is an LSTM layer with 256 hidden units followed by a
mixture density network (MDN) output layer that allows for the fact that the next
latent state could actually be drawn from any one of several normal distributions.

The same technique was applied by one of the authors of the “World Models” paper,
David Ha, to a handwriting generation task, as shown in Figure 12-4, to describe the
fact that the next pen point could land in any one of the distinct red areas.

Figure 12-4. MDN for handwriting generation

In the car racing example, we allow for each element of the next observed latent state
to be drawn from any one of five normal distributions.

World Model Overview | 337

https://oreil.ly/WmPGp

The controller
Until this point, we haven’t mentioned anything about choosing an action. That
responsibility lies with the controller. The controller is a densely connected neural
network, where the input is a concatenation of z (the current latent state sampled
from the distribution encoded by the VAE) and the hidden state of the RNN. The
three output neurons correspond to the three actions (turn, accelerate, brake) and are
scaled to fall in the appropriate ranges.

The controller is trained using reinforcement learning as there is no training dataset
that will tell us that a certain action is good and another is bad. Instead, the agent dis‐
covers this for itself through repeated experimentation.

As we shall see later in the chapter, the crux of the “World Models” paper is that it
demonstrates how this reinforcement learning can take place within the agent’s own
generative model of the environment, rather than the Gym environment. In other
words, it takes place in the agent’s hallucinated version of how the environment
behaves, rather than the real thing.

To understand the different roles of the three components and how they work
together, we can imagine a dialogue between them:

VAE (looking at latest 64 × 64 × 3 observation): This looks like a straight road, with a
slight left bend approaching, with the car facing in the direction of the road (z).
RNN: Based on that description (z) and the fact that the controller chose to accelerate
hard at the last timestep (action), I will update my hidden state (h) so that the next
observation is predicted to still be a straight road, but with slightly more left turn in
view.
Controller: Based on the description from the VAE (z) and the current hidden state
from the RNN (h), my neural network outputs [0.34, 0.8, 0] as the next action.

The action from the controller is then passed to the environment, which returns an
updated observation, and the cycle begins again.

Training
The training process consists of five steps, run in sequence, which are outlined here:

1. Collect random rollout data. Here, the agent does not care about the given task,
but instead simply explores the environment using random actions. Multiple epi‐
sodes are simulated and the observed states, actions, and rewards at each time‐
step are stored. The idea is to build up a dataset of how the physics of the
environment works, which the VAE can then learn from to capture the states
efficiently as latent vectors. The MDN-RNN can then subsequently learn how the
latent vectors evolve over time.

338 | Chapter 12: World Models

2. Train the VAE. Using the randomly collected data, we train a VAE on the obser‐
vation images.

3. Collect data to train the MDN-RNN. Once we have a trained VAE, we use it to
encode each of the collected observations into mu and logvar vectors, which are
saved alongside the current action and reward.

4. Train the MDN-RNN. We take batches of episodes and load the corresponding
mu, logvar, action, and reward variables at each timestep that were generated in
step 3. We then sample a z vector from the mu and logvar vectors. Given the cur‐
rent z vector, action, and reward, the MDN-RNN is then trained to predict the
subsequent z vector and reward.

5. Train the controller. With a trained VAE and RNN, we can now train the control‐
ler to output an action given the current z and hidden state, h, of the RNN. The
controller uses an evolutionary algorithm, CMA-ES, as its optimizer. The algo‐
rithm rewards matrix weightings that generate actions that lead to overall high
scores on the task, so that future generations are also likely to inherit this desired
behavior.

Let’s now take look at each of these steps in more detail.

Collecting Random Rollout Data
The first step is to collect rollout data from the environment, using an agent taking
random actions. This may seem strange, given we ultimately want our agent to learn
how to take intelligent actions, but this step will provide the data that the agent will
use to learn how the world operates and how its actions (albeit random at first) influ‐
ence subsequent observations.

We can capture multiple episodes in parallel by spinning up multiple Python pro‐
cesses, each running a separate instance of the environment. Each process will run on
a separate core, so if your machine has lots of cores you can collect data much faster
than if you only have a few cores.

The hyperparameters used by this step are as follows:

parallel_processes

The number of parallel processes to run (e.g., 8 if your machine has ≥8 cores)

max_trials

How many episodes each process should run in total (e.g., 125, so 8 processes
would create 1,000 episodes overall)

max_frames

The maximum number of timesteps per episode (e.g., 300)

Collecting Random Rollout Data | 339

Figure 12-5 shows an excerpt from frames 40 to 59 of one episode, as the car
approaches a corner, alongside the randomly chosen action and reward. Note how
the reward changes to 3.22 as the car rolls over new track tiles but is otherwise –0.1.

Figure 12-5. Frames 40 to 59 of one episode

Training the VAE
We now build a generative model (a VAE) on this collected data. Remember, the aim
of the VAE is to allow us to collapse one 64 × 64 × 3 image into a normally distributed
random variable z, whose distribution is parameterized by two vectors, mu and

340 | Chapter 12: World Models

logvar. Each of these vectors is of length 32. The hyperparameters of this step are as
follows:

vae_batch_size

The batch size to use when training the VAE (how many observations per batch)
(e.g., 100)

z_size

The length of latent z vector (and therefore mu and logvar variables) (e.g., 32)

vae_num_epoch

The number of training epochs (e.g., 10)

The VAE Architecture
As we have seen previously, Keras allows us to not only define the VAE model that
will be trained end-to-end, but also additional submodels that define the encoder and
decoder of the trained network separately. These will be useful when we want to
encode a specific image or decode a given z vector, for example. We’ll define the VAE
model and three submodels, as follows:

vae

This is the end-to-end VAE that is trained. It accepts a 64 × 64 × 3 image as input
and outputs a reconstructed 64 × 64 × 3 image.

encode_mu_logvar

This accepts a 64 × 64 × 3 image as input and outputs the mu and logvar vectors
corresponding to this input. Running the same input image through this model
multiple times will produce the same mu and logvar vectors each time.

encode

This accepts a 64 × 64 × 3 image as input and outputs a sampled z vector. Run‐
ning the same input image through this model multiple times will produce a dif‐
ferent z vector each time, using the calculated mu and logvar values to define the
sampling distribution.

decode

This accepts a z vector as input and returns the reconstructed 64 × 64 × 3 image.

A diagram of the model and submodels is shown in Figure 12-6.

Training the VAE | 341

Figure 12-6. The VAE architecture from the “World Models” paper

342 | Chapter 12: World Models

Exploring the VAE
We’ll now take a look at the output from the VAE and each submodel and then see
how the VAE can be used to generate completely new track observations.

The VAE model
If we feed the VAE with an observation, it is able to accurately reconstruct the origi‐
nal image, as shown in Figure 12-7. This is useful to visually check that the VAE is
working correctly.

Figure 12-7. The input and output from the VAE model

The encoder models

If we feed the encode_mu_logvar model with an observation, the output is the gener‐
ated mu and logvar vectors describing a multivariate normal distribution. The encode
model goes one step further by sampling a particular z vector from this distribution.
The diagram showing the output from the two encoder models is shown in
Figure 12-8.

Figure 12-8. The output from the encoder models

Training the VAE | 343

The latent variable z is sampled from the Gaussian defined by mu and logvar by sam‐
pling from a standard Gaussian and then scaling and shifting the sampled vector
(Example 12-1).

Example 12-1. Sampling z from the multivariate normal distribution defined by mu and
logvar

eps = tf.random_normal(shape=tf.shape(mu))
sigma = tf.exp(logvar * 0.5)
z = mu + eps * sigma

The decoder model

The decode model accepts a z vector as input and reconstructs the original image. In
Figure 12-9 we linearly interpolate two of the dimensions of z to show how each
dimension appears to encode a particular aspect of the track—in this example z[4]
controls the immediate left/right direction of the track nearest the car and z[7] con‐
trols the sharpness of the approaching left turn.

This shows that the latent space that the VAE has learned is continuous and can be
used to generate new track segments that have never before been observed by the
agent.

344 | Chapter 12: World Models

Figure 12-9. A linear interpolation of two dimensions of z

Training the VAE | 345

Collecting Data to Train the MDN-RNN
Now that we have a trained VAE, we can use this to generate training data for our
MDN-RNN.

In this step, we pass all of the random rollout observations through the
encode_mu_logvar model and store the mu and logvar vectors corresponding to each
observation. This encoded data, along with the already collected action, reward, and
done variables, will be used to train the MDN-RNN. This process is shown in
Figure 12-10.

Figure 12-10. Creating the MDN-RNN training dataset

Training the MDN-RNN
We can now train the MDN-RNN to predict the distribution of the next z vector and
reward one timestep ahead into the future, given the current z vector, current action,
and previous reward. We can then use the internal hidden state of the RNN (which
can be thought of as the model’s current understanding of the environment dynam‐
ics) as part of the input into the controller, which will ultimately decide on the best
next action to take.

The hyperparameters of this step of the process are as follows:

rnn_batch_size

The batch size to use when training the MDN-RNN (how many sequences per
batch) (e.g., 100)

rnn_num_steps

The total number of training iterations (e.g., 4000)

346 | Chapter 12: World Models

The MDN-RNN Architecture
The architecture of the MDN-RNN is shown in Figure 12-11.

Figure 12-11. The MDN-RNN architecture

The MDN-RNN consists of an LSTM layer (the RNN), followed by a densely connec‐
ted layer (the MDN) that transforms the hidden state of the LSTM into the parame‐
ters of a mixture distribution. Let’s walk through the network step by step.

The input to the LSTM layer is a vector of length 36—a concatenation of the encoded
z vector (length 32) from the VAE, the current action (length 3), and the previous
reward (length 1).

The output from the LSTM layer is a vector of length 256—one value for each LSTM
cell in the layer. This is passed to the MDN, which is just a densely connected layer
that transforms the vector of length 256 into a vector of length 481.

Why 481? Figure 12-12 explains the composition of the output from the MDN-RNN.
The aim of a mixture density network is to model the fact that our next z could be
drawn from one of several possible distributions with a certain probability. In the car
racing example, we choose five normal distributions. How many parameters do we
need to define these distributions? For each of the 5 mixtures, we need a mu and a
logvar (to define the distribution) and a log-probability of this mixture being chosen
(logpi), for each of the 32 dimensions of z. This makes 5 × 3 × 32 = 480 parameters.
The one extra parameter is for the reward prediction.

Figure 12-12. The output from the mixture density network

Training the MDN-RNN | 347

Sampling from the MDN-RNN
We can sample from the MDN output to generate a prediction for the next z and
reward at the following timestep, through the following process:

1. Split the 481-dimensional output vector into the 3 variables (logpi, mu, logvar)
and the reward value.

2. Exponentiate and scale logpi so that it can be interpreted as 32 probability distri‐
butions over the 5 mixture indices.

3. For each of the 32 dimensions of z, sample from the distributions created from
logpi (i.e., choose which of the 5 distributions should be used for each dimen‐
sion of z).

4. Fetch the corresponding values of mu and logvar for this distribution.
5. Sample a value for each dimension of z from the normal distribution parameter‐

ized by the chosen parameters of mu and logvar for this dimension.

The loss function for the MDN-RNN is the sum of the z vector reconstruction loss
and the reward loss. The z vector reconstruction loss is the negative log-likelihood of
the distribution predicted by the MDN-RNN, given the true value of z, and the
reward loss is the mean squared error between the predicted reward and the true
reward.

Training the Controller
The final step is to train the controller (the network that outputs the chosen action)
using an evolutionary algorithm called the covariance matrix adaptation evolution
strategy (CMA-ES).

The hyperparameters of this step of the process are as follows:

controller_num_worker

The number of workers that will test solutions in parallel

controller_num_worker_trial

The number of solutions that each worker will be given to test at each generation

controller_num_episode

The number of episodes that each solution will be tested against to calculate the
average reward

controller_eval_steps

The number of generations between evaluations of the current best parameter set

348 | Chapter 12: World Models

The Controller Architecture
The architecture of the controller is very simple. It is a densely connected neural net‐
work with no hidden layers. It connects the input vector directly to the action vector.

The input vector is a concatenation of the current z vector (length 32) and the current
hidden state of the LSTM (length 256), giving a vector of length 288. Since we are
connecting each input unit directly to the 3 output action units, the total number of
weights to tune is 288 × 3 = 864, plus 3 bias weights, giving 867 in total.

How should we train this network? Notice that this is not a supervised learning prob‐
lem—we are not trying to predict the correct action. There is no training set of cor‐
rect actions, as we do not know what the optimal action is for a given state of the
environment. This is what distinguishes this as a reinforcement learning problem. We
need the agent to discover the optimal values for the weights itself by experimenting
within the environment and updating its weights based on received feedback.

Evolutionary strategies are a popular choice for solving reinforcement learning prob‐
lems, due to their simplicity, efficiency, and scalability. We shall use one particular
strategy, known as CMA-ES.

CMA-ES
Evolutionary strategies generally adhere to the following process:

1. Create a population of agents and randomly initialize the parameters to be opti‐
mized for each agent.

2. Loop over the following:
a. Evaluate each agent in the environment, returning the average reward over

multiple episodes.
b. Breed the agents with the best scores to create new members of the

population.
c. Add randomness to the parameters of the new members.
d. Update the population pool by adding the newly created agents and removing

poorly performing agents.

This is similar to the process through which animals evolve in nature—hence the
name evolutionary strategies. “Breeding” in this context simply means combining the
existing best-scoring agents such that the next generation are more likely to produce
high-quality results, similar to their parents. As with all reinforcement learning solu‐
tions, there is a balance to be found between greedily searching for locally optimal
solutions and exploring unknown areas of the parameter space for potentially better

Training the Controller | 349

solutions. This is why it is important to add randomness to the population, to ensure
we are not too narrow in our search field.

CMA-ES is just one form of evolutionary strategy. In short, it works by maintaining a
normal distribution from which it can sample the parameters of new agents. At each
generation, it updates the mean of the distribution to maximize the likelihood of
sampling the high-scoring agents from the previous timestep. At the same time, it
updates the covariance matrix of the distribution to maximize the likelihood of sam‐
pling the high-scoring agents, given the previous mean. It can be thought of as a form
of naturally arising gradient descent, but with the added benefit that it is derivative-
free, meaning that we do not need to calculate or estimate costly gradients.

One generation of the algorithm demonstrated on a toy example is shown in
Figure 12-13. Here we are trying to find the minimum point of a highly nonlinear
function in two dimensions—the value of the function in the red/black areas of the
image is greater than the value of the function in the white/yellow parts of the image.

Figure 12-13. One update step from the CMA-ES algorithm (source: Ha, 2017)2

The steps are as follows:

1. We start with a randomly generated 2D normal distribution and sample a popu‐
lation of candidates, shown in blue in Figure 12-13.

2. We then calculate the value of the function for each candidate and isolate the best
25%, shown in purple in Figure 12-13—we’ll call this set of points P.

3. We set the mean of the new normal distribution to be the mean of the points in P.
This can be thought of as the breeding stage, wherein we only use the best candi‐
dates to generate a new mean for the distribution. We also set the covariance
matrix of the new normal distribution to be the covariance matrix of the points
in P, but use the existing mean in the covariance calculation rather than the cur‐
rent mean of the points in P. The larger the difference between the existing mean
and the mean of the points in P, the wider the variance of the next normal distri‐
bution. This has the effect of naturally creating momentum in the search for the
optimal parameters.

350 | Chapter 12: World Models

http://bit.ly/2XufRwq

4. We can then sample a new population of candidates from our new normal distri‐
bution with an updated mean and covariance matrix.

Figure 12-14 shows several generations of the process. See how the covariance widens
as the mean moves in large steps toward the minimum, but narrows as the mean set‐
tles into the true minimum.

Figure 12-14. CMA-ES (source: Wikipedia)

For the car racing task, we do not have a well-defined function to maximize, but
instead an environment where the 867 parameters to be optimized determine how
well the agent scores. Initially, some sets of parameters will, by random chance, gen‐
erate scores that are higher than others and the algorithm will gradually move the
normal distribution in the direction of those parameters that score highest in the
environment.

Parallelizing CMA-ES
One of the great benefits of CMA-ES is that it can be easily parallelized. The most
time-consuming part of the algorithm is calculating the score for a given set of
parameters, since it needs to simulate an agent with these parameters in the environ‐
ment. However, this process can be parallelized, since there are no dependencies
between individual simulations. There is a orchestrator process that sends out param‐
eter sets to be tested to many node processes in parallel. The nodes return the results
to the orchestrator, which accumulates the results and then passes the overall result of
the generation to the CMA-ES object. This object updates the mean and covariance

Training the Controller | 351

https://oreil.ly/FObGZ

matrix of the normal distribution as per Figure 12-13 and provides the orchestrator
with a new population to test. The loop then starts again. Figure 12-15 explains this
in a diagram.

Figure 12-15. Parallelizing CMA-ES—here there is a population size of eight and four
nodes (so t = 2, the number of trials that each node is responsible for)

The orchestrator asks the CMA-ES object (es) for a set of parameters to trial.

The orchestrator divides the parameters into the number of nodes available.
Here, each of the four node processes gets two parameter sets to trial.

The nodes run a worker process that loops over each set of parameters and runs
several episodes for each. Here we run three episodes for each set of parameters.

The rewards from each episode are averaged to give a single score for each set of
parameters.

Each node returns its list of scores to the orchestrator.

352 | Chapter 12: World Models

The orchestrator groups all the scores together and sends this list to the es object.

The es object uses this list of rewards to calculate the new normal distribution as
per Figure 12-13.

After around 200 generations, the training process achieves an average reward score
of around 840 for the car racing task, as shown in Figure 12-16.

Figure 12-16. Average episode reward of the controller training process, by generation
(source: Zac Wellmer, “World Models”)

In-Dream Training
So far, the controller training has been conducted using the Gym CarRacing environ‐
ment to implement the step method that moves the simulation from one state to the
next. This function calculates the next state and reward, given the current state of the
environment and chosen action.

Notice how the step method performs a very similar function to the MDN-RNN in
our model. Sampling from the MDN-RNN outputs a prediction for the next z and
reward, given the current z and chosen action.

In fact, the MDN-RNN can be thought of as an environment in its own right, but
operating in z-space rather than in the original image space. Incredibly, this means
that we can actually substitute the real environment with a copy of the MDN-RNN
and train the controller entirely within an MDN-RNN-inspired dream of how the
environment should behave.

In other words, the MDN-RNN has learned enough about the general physics of
the real environment from the original random movement dataset that it can be used
as a proxy for the real environment when training the controller. This is quite

In-Dream Training | 353

https://github.com/zacwellmer/WorldModels

remarkable—it means that the agent can train itself to learn a new task by thinking
about how it can maximize reward in its dream environment, without ever having to
test out strategies in the real world. It can then perform well at the task the first time,
having never attempted the task in reality.

A comparison of the architectures for training in the real environment and the dream
environment follows: the real-world architecture is shown in Figure 12-17 and the in-
dream training setup is illustrated in Figure 12-18.

Figure 12-17. Training the controller in the Gym environment

Notice how in the dream architecture, the training of the controller is performed
entirely in z-space without the need to ever decode the z vectors back into recogniza‐
ble track images. We can of course do so, in order to visually inspect the performance
of the agent, but it is not required for training.

354 | Chapter 12: World Models

Figure 12-18. Training the controller in the MDN-RNN dream environment

One of the challenges of training agents entirely within the MDN-RNN dream envi‐
ronment is overfitting. This occurs when the agent finds a strategy that is rewarding
in the dream environment but does not generalize well to the real environment, due
to the MDN-RNN not fully capturing how the true environment behaves under cer‐
tain conditions.

The authors of the original paper highlight this challenge and show how including a
temperature parameter to control model uncertainty can help alleviate the problem.
Increasing this parameter magnifies the variance when sampling z through the
MDN-RNN, leading to more volatile rollouts when training in the dream environ‐
ment. The controller receives higher rewards for safer strategies that encounter well-
understood states and therefore tend to generalize better to the real environment.
Increased temperature, however, needs to be balanced against not making the envi‐
ronment so volatile that the controller cannot learn any strategy, as there is not
enough consistency in how the dream environment evolves over time.

In the original paper, the authors show this technique successfully applied to a differ‐
ent environment: DoomTakeCover, based around the computer game Doom.

In-Dream Training | 355

Figure 12-19 shows how changing the temperature parameter affects both the virtual
(dream) score and the actual score in the real environment.

Figure 12-19. Using temperature to control dream environment volatility (source: Ha
and Schmidhuber, 2018)

The optimal temperature setting of 1.15 achieves a score of 1,092 in the real environ‐
ment, surpassing the current Gym leader at the time of publication. This is an amaz‐
ing achievement—remember, the controller has never attempted the task in the real
environment. It has only ever taken random steps in the real environment (to train
the VAE and MDN-RNN dream model) and then used the dream environment to
train the controller.

A key benefit of using generative world models as an approach to reinforcement
learning is that each generation of training in the dream environment is much faster
than training in the real environment. This is because the z and reward prediction by
the MDN-RNN is faster than the z and reward calculation by the Gym environment.

Summary
In this chapter we have seen how a generative model (a VAE) can be utilized within a
reinforcement learning setting to enable an agent to learn an effective strategy by test‐
ing policies within its own generated dreams, rather than within the real
environment.

The VAE is trained to learn a latent representation of the environment, which is then
used as input to a recurrent neural network that forecasts future trajectories within
the latent space. Amazingly, the agent can then use this generative model as a pseudo-
environment to iteratively test policies, using an evolutionary methodology, that gen‐
eralize well to the real environment.

For further information on the model, there is an excellent interactive explanation
available online, written by the authors of the original paper.

356 | Chapter 12: World Models

https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122
https://worldmodels.github.io

References
1. David Ha and Jürgen Schmidhuber, “World Models,” March 27, 2018, https://
arxiv.org/abs/1803.10122.

2. David Ha, “A Visual Guide to Evolution Strategies,” October 29, 2017, https://
blog.otoro.net/2017/10/29/visual-evolution-strategies.

Summary | 357

https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122
https://blog.otoro.net/2017/10/29/visual-evolution-strategies
https://blog.otoro.net/2017/10/29/visual-evolution-strategies

CHAPTER 13

Multimodal Models

Chapter Goals
In this chapter you will:

• Learn what is meant by a multimodal model.
• Explore the inner workings of DALL.E 2, a large-scale text-to-image model from

OpenAI.
• Understand how CLIP and diffusion models such as GLIDE play an integral role

in the overall DALL.E 2 architecture.
• Analyze the limitations of DALL.E 2, as highlighted by the authors of the paper.
• Explore the architecture of Imagen, a large-scale text-to-image model from Goo‐

gle Brain.
• Learn about the latent diffusion process used by Stable Diffusion, an open source

text-to-image model.
• Understand the similarities and differences between DALL.E 2, Imagen, and Sta‐

ble Diffusion.
• Investigate DrawBench, a benchmarking suite for evaluating text-to-image

models.
• Learn the architectural design of Flamingo, a novel visual language model from

DeepMind.
• Unpick the different components of Flamingo and learn how they each contrib‐

ute to the model as a whole.
• Explore some of the capabilities of Flamingo, including conversational

prompting.

359

So far, we have analyzed generative learning problems that focus solely on one modal‐
ity of data: either text, images, or music. We have seen how GANs and diffusion mod‐
els can generate state-of-the-art images and how Transformers are pioneering the way
for both text and image generation. However, as humans, we have no difficulties
crossing modalities—for example, writing a description of what is happening in a
given photograph, creating digital art to depict a fictional fantasy world in a book, or
matching a film score to the emotions of a given scene. Can we train machines to do
the same?

Introduction
Multimodal learning involves training generative models to convert between two or
more different kinds of data. Some of the most impressive generative models intro‐
duced in the last two years have been multimodal in nature. In this chapter we will
explore how they work in detail and consider how the future of generative modeling
will be shaped by large multimodal models.

We’ll explore four different vision-language models: DALL.E 2 from OpenAI; Imagen
from Google Brain; Stable Diffusion from Stability AI, CompVis, and Runway; and
Flamingo from DeepMind.

The aim of this chapter is to concisely explain how each model
works, without going into the fine detail of every design decision.
For more information, refer to the individual papers for each
model, which explain all of the design choices and architecture
decisions in detail.

Text-to-image generation focuses on producing state-of-the-art images from a given
text prompt. For example, given the input “A head of broccoli made out of modeling
clay, smiling in the sun,” we would like the model to be able to output a image that
accurately matches the text prompt, as shown in Figure 13-1.

This is clearly a highly challenging problem. Text understanding and image genera‐
tion are difficult to solve in their own right, as we have seen in previous chapters of
this book. Multimodal modeling such as this presents an additional challenge,
because the model must also learn how to cross the bridge between the two domains
and learn a shared representation that allows it to accurately convert from a block of
text to a high-fidelity image without loss of information.

360 | Chapter 13: Multimodal Models

Figure 13-1. An example of text-to-image generation by DALL.E 2

Moreover, in order to be successful the model must be able to combine concepts and
styles that it may never have seen before. For example, there are no Michelangelo
frescos containing people wearing virtual reality headsets, but we would like our
model to be able to create such an image if we ask it to. Equally, it would be desirable
for the model to accurately infer how objects in the generated image relate to each
other, based on the text prompt. For example, a picture of “an astronaut riding a
doughnut through space” should look very different from one of “an astronaut eating
a doughnut in a crowded space.” The model must learn how words are given meaning
through context and how to convert explicit textual relationships between entities to
images that imply the same meaning.

DALL.E 2
The first model we shall explore is DALL.E 2, a model designed by OpenAI for text-
to-image generation. The first version of this model, DALL.E,1 was released in Febru‐
ary 2021 and sparked a new wave of interest in generative multimodal models. In this
section, we shall investigate the workings of the second iteration of the model,
DALL.E 2,2 released just over a year later in April 2022.

DALL.E 2 is an extremely impressive model that has furthered our understanding of
AI’s ability to solve these types of multimodal problems. It not only has ramifications
academically, but also forces us to ask big questions relating to the role of AI in crea‐
tive processes that previously were thought to be unique to humans. We will start by
exploring how DALL.E 2 works, building on key foundational ideas that we have
already explored earlier in this book.

DALL.E 2 | 361

Architecture
To understand how DALL.E 2 works, we must first survey its overall architecture, as
shown in Figure 13-2.

Figure 13-2. The DALL.E 2 architecture

There are three distinct parts to consider: the text encoder, the prior, and the decoder.
Text is first passed through the text encoder to produce a text embedding vector. This
vector is then transformed by the prior to produce an image embedding vector.
Finally, this is passed through the decoder, along with the original text, to produce the
generated image. We will step through each component in turn, to get a complete pic‐
ture of how DALL.E 2 works in practice.

The Text Encoder
The aim of the text encoder is to convert the text prompt into an embedding vector
that represents the conceptual meaning of the text prompt within a latent space. As
we have seen in previous chapters, converting discrete text to a continuous latent
space vector is essential for all downstream tasks, because we can continue to manip‐
ulate the vector further depending on our particular goal.

In DALL.E 2, the authors do not train the text encoder from scratch, but instead
make use of an existing model called Contrastive Language–Image Pre-training
(CLIP), also produced by OpenAI. Therefore, to understand the text encoder, we
must first understand how CLIP works.

CLIP
CLIP3 was unveiled in a paper published by OpenAI in February 2021 (just a few days
after the first DALL.E paper) that described it as “a neural network that efficiently
learns visual concepts from natural language supervision.”

It uses a technique called contrastive learning to match images with text descriptions.
The model is trained on a dataset of 400 million text–image pairs scraped from the
internet—some example pairs are shown in Figure 13-3. For comparison, there are 14

362 | Chapter 13: Multimodal Models

https://openai.com/blog/clip

million hand-annotated images in ImageNet. Given an image and a list of possible
text descriptions, its task is to find the one that actually matches the image.

Figure 13-3. Examples of text–image pairs

The key idea behind contrastive learning is simple. We train two neural networks: a
text encoder that converts text to a text embedding and an image encoder that converts
an image to an image embedding. Then, given a batch of text–image pairs, we com‐
pare all text and image embedding combinations using cosine similarity and train the
networks to maximize the score between matching text–image pairs and minimize
the score between incorrect text–image pairs. This process is shown in Figure 13-4.

CLIP Is Not Generative

Note that CLIP is not itself a generative model—it cannot produce
images or text. Is it closer to a discriminative model, because the
final output is a prediction about which text description from a
given set most closely matches a given image (or the other way
around, which image most closely matches a given text
description).

DALL.E 2 | 363

Figure 13-4. The CLIP training process

Both the text encoder and the image encoder are Transformers—the image encoder is
a Vision Transformer (ViT), introduced in “ViT VQ-GAN” on page 292, which
applies the same concept of attention to images. The authors tested other model
architectures, but found this combination to produce the best results.

What makes CLIP especially interesting is the way it can be used for zero-shot predic‐
tion on tasks that it has never been exposed to. For example, suppose we want to use
CLIP to predict the label of a given image in the ImageNet dataset. We can first con‐
vert the ImageNet labels into sentences by using a template (e.g., “a photo of a
<label>”), as shown in Figure 13-5.

364 | Chapter 13: Multimodal Models

Figure 13-5. Converting labels in a new dataset to captions, in order to produce CLIP
text embeddings

To predict the label of a given image, we can pass it through the CLIP image encoder
and calculate the cosine similarity between the image embedding and all possible text
embeddings in order to find the label with the maximum score, as shown in
Figure 13-6.

Figure 13-6. Using CLIP to predict the content of an image

Notice that we do not need to retrain either of the CLIP neural networks for it to be
readily applicable to new tasks. It uses language as the common domain through
which any set of labels can be expressed.

DALL.E 2 | 365

Using this approach, it is possible to show that CLIP performs well across a wide
range of image dataset labeling challenges (Figure 13-7). Other models that have been
trained on a specific dataset to predict a given set of labels often fail when applied to
different datasets with the same labels because they are highly optimized to the indi‐
vidual datasets on which they were trained. CLIP is much more robust, as it has
learned a deep conceptual understanding of full text descriptions and images, rather
than just excelling at the narrow task of assigning a single label to a given image in a
dataset.

Figure 13-7. CLIP performs well on a wide range of image labeling datasets (source:
Radford et al., 2021)

As mentioned, CLIP is measured on its discriminative ability, so how does it help us
to build generative models such as DALL.E 2?

366 | Chapter 13: Multimodal Models

https://arxiv.org/abs/2103.00020

The answer is that we can take the trained text encoder and use it as one part of a
larger model such as DALL.E 2, with frozen weights. The trained encoder is simply a
generalized model for converting text to a text embedding, which should be useful for
downstream tasks such as generating images. The text encoder is able to capture a
rich conceptual understanding of the text, as it has been trained to be as similar as
possible to its matching image embedding counterpart, which is produced only from
the paired image. It is therefore the first part of the bridge that we need to be able to
cross over from the text domain to the image domain.

The Prior
The next stage of the process involves converting the text embedding into a CLIP
image embedding. The DALL.E 2 authors tried two different methods for training the
prior model:

• An autoregressive model
• A diffusion model

They found that the diffusion approach outperformed the autoregressive model and
was more computationally efficient. In this section, we’ll look at both and see how
they differ.

Autoregressive prior
An autoregressive model generates output sequentially, by placing an ordering on the
output tokens (e.g., words, pixels) and conditioning the next token on previous
tokens. We have seen in previous chapters how this is used in recurrent neural net‐
works (e.g., LSTMs), Transformers, and PixelCNN.

The autoregressive prior of DALL.E 2 is an encoder-decoder Transformer. It is
trained to reproduce the CLIP image embedding given a CLIP text embedding, as
shown in Figure 13-8. Note that there are some additional components to the autore‐
gressive model mentioned in the original paper that we omit here for conciseness.

DALL.E 2 | 367

Figure 13-8. A simplified diagram of the autoregressive prior of DALL.E 2

The model is trained on the CLIP text–image pair dataset. You can think of it as the
second part of the bridge that we need in order to jump from the text domain to the
image domain: we are converting a vector from the text embedding latent space to
the image embedding latent space.

The input text embedding is processed by the encoder of the Transformer to produce
another representation that is fed to the decoder, alongside the current generated out‐
put image embedding. The output is generated one element at a time, using teacher
forcing to compare the predicted next element to the actual CLIP image embedding.

The sequential nature of the generation means that the autoregressive model is less
computationally efficient than the other method tried by the authors, which we’ll look
at next.

Diffusion prior
As we saw in Chapter 8, diffusion models are fast becoming the go-to choice for gen‐
erative modeling practitioners, alongside Transformers. In DALL.E 2 a decoder-only
Transformer is used as the prior, trained using a diffusion process.

368 | Chapter 13: Multimodal Models

The training and generation process is shown in Figure 13-9. Again, this is a simpli‐
fied version; the original paper contains full details of how the diffusion model is
structured.

Figure 13-9. A simplified diagram of the diffusion prior training and generation process
of DALL.E 2

During training, each CLIP text and image embedding pair are first concatenated
into a single vector. Then, the image embedding is noised over 1,000 timesteps until it
is indistinguishable from random noise. The diffusion prior is then trained to predict
the denoised image embedding at the previous timestep. The prior has access to the
text embedding throughout, so it is able to condition its predictions on this informa‐
tion, gradually transforming the random noise into a predicted CLIP image embed‐
ding. The loss function is the average mean-squared error across denoising steps.

To generate new image embeddings, we sample a random vector, prepend the rele‐
vant text embedding, and pass it through the trained diffusion prior multiple times.

The Decoder
The final part of DALL.E 2 is the decoder. This is the part of the model that generates
the final image conditioned on the text prompt and the predicted image embedding
output by the prior.

The architecture and training process of the decoder borrows from an earlier OpenAI
paper, published in December 2021, which presented a generative model called Gui‐
ded Language to Image Diffusion for Generation and Editing (GLIDE).4

DALL.E 2 | 369

GLIDE is able to generate realistic images from text prompts, in much the same way
that DALL.E 2 can. The difference is that GLIDE does not make use of CLIP embed‐
dings, but instead works directly with the raw text prompt, training the entire model
from scratch, as shown in Figure 13-10.

Figure 13-10. A comparison between DALL.E 2 and GLIDE—GLIDE trains the entire
generative model from scratch, whereas DALL.E 2 makes use of CLIP embeddings to
carry information forward from the initial text prompt

Let’s see how GLIDE works first.

GLIDE
GLIDE is trained as a diffusion model, with U-Net architecture for the denoiser and
Transformer architecture for the text encoder. It learns to undo the noise added to an
image, guided by the text prompt. Finally, an Upsampler is trained to scale the gener‐
ated image to 1,024 × 1,024 pixels.

GLIDE trains the 3.5 billion (B) parameter model from scratch—2.3B parameters for
the visual part of the model (U-Net and Upsampler) and 1.2B for the Transformer. It
is trained on 250 million text–image pairs.

370 | Chapter 13: Multimodal Models

The diffusion process is shown in Figure 13-11. A Transformer is used to create an
embedding of the input text prompt, which is then used to guide the U-Net through‐
out the denoising process. We explored the U-Net architecture in Chapter 8; it’s a per‐
fect model choice when the overall size of the image should stay the same (e.g., for
style transfer, denoising, etc.).

Figure 13-11. The GLIDE diffusion process

DALL.E 2 | 371

The DALL.E 2 decoder still uses the U-Net denoiser and Transformer text encoder
architectures, but additionally has the predicted CLIP image embeddings to condi‐
tion on. This is the key difference between GLIDE and DALL.E 2, as shown in
Figure 13-12.

Figure 13-12. The DALL.E 2 decoder additionally conditions on the image embedding
produced by the prior

As with all diffusion models, to generate a new image, we simply sample some ran‐
dom noise and run this through the U-Net denoiser multiple times, conditioned on
the Transformer text encoding and image embedding. The output is a 64 × 64–pixel
image.

Upsampler
The final part of the decoder is the Upsampler (two separate diffusion models). The
first diffusion model transforms the image from 64 × 64 to 256 × 256 pixels. The sec‐
ond transforms it again, from 256 × 256 to 1,024 × 1,024 pixels, as shown in
Figure 13-13.

Upsampling is useful because it means we do not have to build large upstream models
to handle high-dimensional images. We can work with small images until the final

372 | Chapter 13: Multimodal Models

stages of the process, when we apply the Upsamplers. This saves on model parameters
and ensures a more efficient upstream training process.

Figure 13-13. The first Upsampler diffusion model converts the image from 64 × 64 pix‐
els to 256 × 256 pixels while the second converts from 256 × 256 pixels to 1,024 × 1,024
pixels

This concludes the DALL.E 2 model explanation! In summary, DALL.E 2 makes use
of the pre-trained CLIP model to immediately produce a text embedding of the input
prompt. Then it converts this into an image embedding using a diffusion model
called the prior. Lastly, it implements a GLIDE-style diffusion model to generate the
output image, conditioned on the predicted image embedding and Transformer-
encoded input prompt.

Examples from DALL.E 2
Examples of more images generated by DALL.E 2 can be found on the official web‐
site. The way that the model is able to combine complex, disparate concepts in a real‐
istic, believable way is astonishing and represents a significant leap forward for AI
and generative modeling.

In the paper, the authors show how the model can be used for additional purposes
other than text-to-image generation. One of these applications is creating variations
of a given image, which we explore in the following section.

DALL.E 2 | 373

https://openai.com/dall-e-2
https://openai.com/dall-e-2

Image variations
As discussed previously, to generate images using the DALL.E 2 decoder we sample
an image consisting of pure random noise and then gradually reduce the amount of
noise using the denoising diffusion model, conditioned on the provided image
embedding. Selecting different initial random noise samples will result in different
images.

In order to generate variations of a given image, we therefore just need to establish its
image embedding to feed to the decoder. We can obtain this using the original CLIP
image encoder, which is explicitly designed to convert an image into its CLIP image
embedding. This process is shown in Figure 13-14.

Figure 13-14. DALL.E 2 can be used for generating variations of a given image

Importance of the prior
Another avenue explored by the authors is establishing the importance of the prior.
The purpose of the prior is to provide the decoder with a useful representation of the
image to be generated, making use of the pre-trained CLIP model. However, it is fea‐
sible that this step isn’t necessary—perhaps we could just pass the text embedding
directly to the decoder instead of the image embedding, or ignore the CLIP embed‐
dings completely and condition only on the text prompt. Would this impact the qual‐
ity of the generations?

To test this, the authors tried three different approaches:

1. Feed the decoder only with the text prompt (and a zero vector for the image
embedding).

2. Feed the decoder with the text prompt and the text embedding (as if it were an
image embedding).

3. Feed the decoder with the text prompt and the image embedding (i.e., the full
model).

Example results are shown in Figure 13-15. We can see that when the decoder is
starved of image embedding information, it can only produce a rough approximation

374 | Chapter 13: Multimodal Models

of the text prompt, missing key information such as the calculator. Using the text
embedding as if it were an image embedding performs slightly better, though it is not
able to capture the relationship between the hedgehog and the calculator. Only the
full model with the prior produces an image that accurately reflects all of the infor‐
mation contained within the prompt.

Figure 13-15. The prior provides the model with additional context and helps the
decoder to produce more accurate generations (source: Ramesh et al., 2022)

Limitations
In the DALL.E 2 paper, the authors also highlight several known limitations of the
model. Two of these (attribute binding and text generation) are shown in
Figure 13-16.

DALL.E 2 | 375

https://arxiv.org/pdf/2204.06125.pdf

Figure 13-16. Two limitations of DALL.E 2 lie in its ability to bind attributes to objects
and reproduce textual information—top prompt: “A red cube on top of a blue cube”; bot‐
tom prompt: “A sign that says deep learning” (source: Ramesh et al., 2022)

Attribute binding is the ability of a model to understand the relationship between
words in a given text prompt, and in particular how attributes relate to objects. For
example, the prompt “A red cube on top of a blue cube” must appear visually distinct
from “A blue cube on top of a red cube.” DALL.E struggles somewhat with this, com‐
pared to earlier models such as GLIDE, though the overall quality of generations is
better and more diverse.

Also, DALL.E 2 is not able to accurately reproduce text—this is probably due to the
fact that the CLIP embeddings do not capture spellings, but instead only contain a
higher-level representation of the text. These representations can be decoded into text
with partial success (e.g., individual letters are mostly correct), but not with enough
compositional understanding to form full words.

376 | Chapter 13: Multimodal Models

https://arxiv.org/pdf/2204.06125.pdf

Imagen
Just over a month after OpenAI released DALL.E 2, the Google Brain team released
their own text-to-image model called Imagen.5 Many of the core themes that we have
already explored in this chapter are also relevant to Imagen: for example, it uses a text
encoder and a diffusion model decoder.

In the next section, we’ll explore the overall architecture of Imagen and compare it
with DALL.E 2.

Architecture
An overview of the Imagen architecture is shown in Figure 13-17.

Figure 13-17. The Imagen architecture (source: Saharia et al., 2022)

The frozen text encoder is the pre-trained T5-XXL model, a large encoder-decoder
Transformer. Unlike CLIP, this was trained only on text and not images, so it is not a
multimodal model. However, the authors found that it still functions extremely well
as a text encoder for Imagen and that scaling this model has more impact on overall
performance than scaling the diffusion model decoder.

Imagen | 377

https://arxiv.org/abs/2205.11487

Like DALL.E 2’s, Imagen’s the decoding diffusion model is based on a U-Net architec‐
ture, conditioned on text embeddings. There are several architectural improvements
made to the standard U-Net architecture, to produce what the authors call the Effi‐
cient U-Net. This model uses less memory, converges faster, and has better sample
quality than previous U-Net models.

The Upsampler super-resolution models that take the generated image from 64 × 64
to 1,024 × 1,024 pixels are also diffusion models that continue to use the text embed‐
dings to guide the upsampling process.

DrawBench
An additional contribution of the Imagen paper is DrawBench—a suite of 200 text
prompts for text-to-image evaluation. The text prompts cover 11 categories, such as
Counting (ability to generate a specified number of objects), Description (ability to
generate complex and long text prompts describing objects), and Text (ability to gen‐
erate quoted text). To compare two models, the DrawBench text prompts are passed
through each model and the outputs given to a panel of human raters for evaluation
across two metrics:

Alignment
Which image more accurately describes the caption?

Fidelity
Which image is more photorealistic (looks more real)?

The results from the DrawBench human evaluation are shown in Figure 13-18.

Both DALL.E 2 and Imagen are remarkable models that have made significant contri‐
butions to the field of text-to-image generation. Whilst Imagen outperforms DALL.E
2 on many of the DrawBench benchmarks, DALL.E 2 provides additional functionali‐
ties that are not present in Imagen. For example, because DALL.E 2 utilizes CLIP (a
multimodal text–image model), it is able to accept images as input to generate image
embeddings. This means DALL.E 2 is able to provide image editing and image varia‐
tion capabilities. This is not possible with Imagen; the text encoder is a pure text
model, so there is no way to input an image.

378 | Chapter 13: Multimodal Models

Figure 13-18. Comparison of Imagen and DALL.E 2 on DrawBench across alignment
and image fidelity (source: Saharia et al., 2022)

Examples from Imagen
Example Imagen generations are shown in Figure 13-19.

Figure 13-19. Example Imagen generations (source: Saharia et al., 2022)

Imagen | 379

https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487

Stable Diffusion
The last text-to-image diffusion model that we shall explore is Stable Diffusion,
released in August 2022 by Stability AI, in collaboration with the Computer Vision
and Learning research group at Ludwig Maximilian University of Munich and Run‐
way. It is different from DALL.E 2 and Imagen in that its code and model weights
have been released publicly, through Hugging Face. This means that anyone can
interact with the model on their own hardware, without having to use proprietary
APIs.

Architecture
The main architectural difference between Stable Diffusion and the text-to-image
models discussed previously is that it uses latent diffusion as its underlying generative
model. Latent diffusion models (LDMs) were introduced by Rombach et al. in
December 2021, in the paper “High-Resolution Image Synthesis with Latent Diffu‐
sion Models.”6 The key idea from the paper is to wrap the diffusion model within an
autoencoder, so that the diffusion process operates on a latent space representation of
the image rather than the image itself, as shown in Figure 13-20.

Figure 13-20. The Stable Diffusion architecture

This breakthrough means that the denoising U-Net model can be kept relatively
lightweight, in comparison to U-Net models that operate on full images. The autoen‐
coder handles the heavy lifting of encoding the image detail into latent space and
decoding the latent space back to a high-resolution image, leaving the diffusion

380 | Chapter 13: Multimodal Models

https://stability.ai
https://ommer-lab.com
https://ommer-lab.com
https://runwayml.com
https://runwayml.com
https://oreil.ly/BTrWI

model to work purely in a latent, conceptual space. This gives a significant speed and
performance boost to the training process.

The denoising process can also optionally be guided by a text prompt that has been
passed through a text encoder. The first version of Stable Diffusion utilized the pre-
trained CLIP model from OpenAI (the same as in DALL.E 2), but Stable Diffusion 2
has a custom trained CLIP model called OpenCLIP, which has been trained from
scratch.

Examples from Stable Diffusion
Figure 13-21 shows some example outputs from Stable Diffusion 2.1—you can try
your own prompts through the model hosted on Hugging Face.

Figure 13-21. Example outputs from Stable Diffusion 2.1

Exploring the Latent Space

If you’d like to explore the latent space of the Stable Diffusion
model, I highly recommended the walkthrough on the Keras web‐
site.

Flamingo
So far we have looked at three different kinds of text-to-image models. In this section,
we’ll explore a multimodal model that generates text given a stream of text and visual
data. Flamingo, introduced in a paper by DeepMind in April 2022,7 is a family of vis‐
ual language models (VLMs) that act as a bridge between pre-trained vision-only and
language-only models.

In this section, we’ll run through the architecture of Flamingo models and compare
them to the text-to-image models we have seen so far.

Flamingo | 381

https://oreil.ly/RaCbu
https://oreil.ly/LpGW4
https://oreil.ly/4sNe5

Architecture
The overall architecture of Flamingo is shown in Figure 13-22. For conciseness, we
shall explore the core components of this model—the Vision Encoder, the Perceiver
Resampler, and the Language Mode—in just enough detail to highlight the key ideas
that make Flamingo unique. I highly recommend reading the original research paper
for a thorough review of each part of the model.

Figure 13-22. The Flamingo architecture (source: Alayrac et al., 2022)

The Vision Encoder
The first difference between a Flamingo model and pure text-to-image models such
as DALL.E 2 and Imagen is that Flamingo can accept a combination of text and visual
data interleaved. Here, visual data includes videos as well as images.

382 | Chapter 13: Multimodal Models

https://arxiv.org/pdf/2204.14198.pdf

The job of the Vision Encoder is to convert the vision data within the input into
embedding vectors (similar to the image encoder in CLIP). The Vision Encoder in
Flamingo is a pre-trained Normalizer-Free ResNet (NFNet), as introduced by Brock
et al. in 20218—in particular, an NFNet-F6 (the NFNet models range from F0 to F6,
increasing in size and power). This is one key difference between the CLIP image
encoder and the Flamingo Vision Encoder: the former uses a ViT architecture,
whereas the latter uses a ResNet architecture.

The Vision Encoder is trained on image-text pairs using the same contrastive objec‐
tive as introduced in the CLIP paper. After training, the weights are frozen so that any
further training of the Flamingo model does not affect the weights of the Vision
Encoder.

The output from the Vision Encoder is a 2D grid of features that then gets flattened
to a 1D vector before being passed to the Perceiver Resampler. Video is handled by
sampling at 1 frame per second and passing each snapshot through the Vision
Encoder independently to produce several feature grids; learned temporal encodings
are then added in before flattening the features and concatenating the results into a
single vector.

The Perceiver Resampler
Memory requirements in a traditional encoder Transformer (e.g., BERT) scale quad‐
ratically with input sequence length, which is why input sequences are normally cap‐
ped at a set number of tokens (e.g., 512 in BERT). However, the output from the
Vision Encoder is a vector of variable length (due to the variable input image resolu‐
tion and the variable number of video frames) and is therefore potentially very long.

The Perceiver architecture is specifically designed to efficiently handle long input
sequences. Instead of performing self-attention on the full input sequence, it works
with a fixed-length latent vector and only uses the input sequence for cross-attention.
Specifically, in the Flamingo Perceiver Resampler, the key and value are a concatena‐
tion of the input sequence and latent vector and the query is the latent vector alone. A
diagram of the Vision Encoder and Perceiver Resampler process for video data is
shown in Figure 13-23.

Flamingo | 383

Figure 13-23. The Perceiver Resampler applied to video input (source: Alayrac et al.,
2022)

384 | Chapter 13: Multimodal Models

https://arxiv.org/pdf/2204.14198.pdf
https://arxiv.org/pdf/2204.14198.pdf

The output of the Perceiver Resampler is a fixed-length latent vector that gets passed
to the Language Model.

The Language Model
The Language Model consists of several stacked blocks, in the style of a decoder
Transformer, that output a predicted text continuation. In fact, the majority of the
Language Model is from a pre-trained DeepMind model called Chinchilla. The Chin‐
chilla paper, published in March 2022,9 showcases a language model that is designed
to be considerably smaller than its peers (e.g., 70B parameters for Chinchilla com‐
pared to 170B for GPT-3), while using significantly more tokens for training. The
authors show that the model outperforms larger models on a range of tasks, high‐
lighting the importance of optimizing the trade-off between training a larger model
and using a larger number of tokens during training.

A key contribution of the Flamingo paper is to show how Chinchilla can be adapted
to work with additional vision data (X) that is interspersed with the language data (Y).
Let’s first explore how the language and vision input are combined to produce the
input to the Language Model (Figure 13-24).

First the text is processed by replacing vision data (e.g., images) with an <image> tag
and the text is divided into chunks using the <EOC> (end of chunk) tag. Each chunk
contains at most one image, which is always at the start of the chunk—i.e., the subse‐
quent text is assumed to relate only to that image. The beginning of the sequence is
also marked with the <BOS> (beginning of sentence) tag.

Next, the sequence is tokenized and each token is given an index (phi) corresponding
to the preceding image index (or 0 if there is no preceding image in the chunk). This
way, the text tokens (Y) can be forced to only cross-attend to the image tokens (X) that
correspond to their particular chunk, through masking. For example, in Figure 13-24
the first chunk contains no images, so all image tokens from the Perceiver Resampler
are masked. The second chunk contains image 1, so these tokens are allowed to inter‐
act with the image tokens from image 1. Likewise, the final chunk contains image 2,
so these tokens are allowed to interact with the image tokens from image 2.

Flamingo | 385

Figure 13-24. Masked cross-attention (XATTN), combining vision and text data—light
blue entries are masked and dark blue entries are nonmasked (source: Alayrac et al.,
2022)

We can now see how this masked cross-attention component fits into the overall
architecture of the Language Model (Figure 13-25).

The blue LM layer components are frozen layers from Chinchilla—these are not
updated during the training process. The purple GATED XATTN-DENSE layers are
trained as part of Flamingo and include the masked cross-attention components that
blend the language and vision information, as well as subsequent feed-forward
(dense) layers.

The layer is gated because it passes the output from the cross-attention and feed-
forward components through two distinct tanh gates, which are both initialized to
zero. Therefore, when the network is initialized, there is no contribution from the
GATED XATTN-DENSE layers—the language information is just passed straight through.

386 | Chapter 13: Multimodal Models

https://arxiv.org/pdf/2204.14198.pdf
https://arxiv.org/pdf/2204.14198.pdf

The alpha gating parameters are learned by the network, to gradually blend in infor‐
mation from the vision data as training progresses.

Figure 13-25. A Flamingo Language Model block, comprising a frozen language model
layer from Chinchilla and a GATED XATTN-DENSE layer (source: Alayrac et al., 2022)

Flamingo | 387

https://arxiv.org/pdf/2204.14198.pdf

Examples from Flamingo
Flamingo can be used for a variety of purposes, including image and video under‐
standing, conversational prompting, and visual dialogue. In Figure 13-26 we can see a
few examples of what Flamingo is capable of.

Figure 13-26. Examples of inputs and outputs obtained from the 80B parameter Fla‐
mingo model (source: Alayrac et al., 2022)

Notice how in each example, Flamingo is blending information from the text and the
images in true multimodal style. The first example uses images in place of words and
is able to suggest an appropriate book to continue the prompt. The second example

388 | Chapter 13: Multimodal Models

https://arxiv.org/pdf/2204.14198.pdf

shows frames from a video, and Flamingo correctly identifies the consequence of the
action. The last three examples all demonstrate how Flamingo can be used interac‐
tively, to provide additional information through dialogue or probe with further
questioning.

It is astonishing to see a machine being able to answer complex questions across such
a wide range of modalities and input tasks. In the paper, the authors quantify Flamin‐
go’s ability across a set of benchmark tasks and find that across many benchmarks,
Flamingo is able to surpass the performance of models that have been tailored to
specifically tackle the one task in question. This highlights how large multimodal
models can be rapidly adapted to a wide range of tasks and paves the way for the
development of AI agents that aren’t just tied to a single task, but instead are truly
general agents that can be guided by the user at inference time.

Summary
In this chapter we have explored four different state-of-the-art multimodal models:
DALL.E 2, Imagen, Stable Diffusion, and Flamingo.

DALL.E 2 is a large-scale text-to-image model from OpenAI that can generate realis‐
tic images across a range of styles given a text prompt. It works by combining pre-
trained models (e.g., CLIP) with diffusion model architectures from previous works
(GLIDE). It also has additional capabilities, such as being able to edit images through
text prompting and provide variations of a given image. While it does have some lim‐
itations, such as inconsistent text rendering and attribute binding, DALL.E 2 is an
incredibly powerful AI model that has helped to propel the field of generative model‐
ing into a new era.

Another model that has surpassed previous benchmarks is Imagen from Google
Brain. This model shares many similarities with DALL.E 2, such as a text encoder and
a diffusion model decoder. One of the key differences between the two models is that
the Imagen text encoder is trained on pure text data, whereas the training process for
the DALL.E 2 text encoder involves image data (through the contrastive CLIP learn‐
ing objective). The authors show that this approach leads to state-of-the-art perfor‐
mance across a range of tasks, through their DrawBench evaluation suite.

Stable Diffusion is an open source offering from Stability AI, CompVis, and Runway.
It is a text-to-image model whose model weights and code are freely available, so you
can run it on your own hardware. Stable Diffusion is particularly fast and lightweight
due to the use of a latent diffusion model that operates on the latent space of an
autoencoder, rather than the images themselves.

Finally, DeepMind’s Flamingo is a visual language model—that is, it accepts a stream
of interleaved text and visual data (images and video) and is able to continue
the prompt with additional text, in the style of a decoder Transformer. The key

Summary | 389

contribution is showing how the visual information can be fed to the Transformer via
a Visual Encoder and Perceiver Resampler that encode the visual input features into a
small number of visual tokens. The Language Model itself is an extension of Deep‐
Mind’s earlier Chinchilla model, adapted to blend in visual information.

All four are remarkable examples of the power of multimodal models. In the future, it
is highly likely that generative modeling will become more multimodal and AI mod‐
els will be able to easily cross modalities and tasks through interactive language
prompting.

References
1. Aditya Ramesh et al., “Zero-Shot Text-to-Image Generation,” February 24, 2021,
https://arxiv.org/abs/2102.12092.

2. Aditya Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP
Latents,” April 13, 2022, https://arxiv.org/abs/2204.06125.

3. Alec Radford et al., “Learning Transferable Visual Models From Natural Language
Supervision,” February 26, 2021, https://arxiv.org/abs/2103.00020.

4. Alex Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing
with Text-Guided Diffusion Models,” December 20, 2021, https://arxiv.org/abs/
2112.10741.

5. Chitwan Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding,” May 23, 2022, https://arxiv.org/abs/2205.11487.

6. Robin Rombach et al., “High Resolution Image Synthesis with Latent Diffusion
Models,” December 20, 2021, https://arxiv.org/abs/2112.10752.

7. Jean-Baptiste Alayrac et al., “Flamingo: A Visual Language Model for Few-Shot
Learning,” April 29, 2022, https://arxiv.org/abs/2204.14198.

8. Andrew Brock et al., “High-Performance Large-Scale Image Recognition Without
Normalization,” February 11, 2021, https://arxiv.org/abs/2102.06171.

9. Jordan Hoffmann et al., “Training Compute-Optimal Large Language Models,”
March 29, 2022, https://arxiv.org/abs/2203.15556v1.

390 | Chapter 13: Multimodal Models

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2203.15556v1

CHAPTER 14

Conclusion

Chapter Goals
In this chapter you will:

• Review the history of generative AI from 2014 to the present day, including a
timeline of key models and developments.

• Understand the current state of generative AI, including the broad themes that
are dominating the landscape.

• See my predictions for the future of generative AI and how it will impact every‐
day life, the workplace, and education.

• Learn about the important ethical and practical challenges faced by generative AI
going forward.

• Read my final thoughts on the deeper meaning of generative AI and how it has
the potential to revolutionize our quest for artificial general intelligence.

In May 2018, I began work on the first edition of this book. Five years later, I am
more excited than ever about the endless possibilities and potential impact of genera‐
tive AI.

In this time we have seen incredible progress in this field, with seemingly limitless
potential for real-world applications. I am filled with a sense of awe and wonder at
what we have been able to achieve so far and eagerly anticipate witnessing the effect
that generative AI will have on the world in the coming years. Generative deep learn‐
ing has the power to shape the future in ways we can’t even begin to imagine.

391

What’s more, as I have been researching content for this book, it has become ever
clearer to me that this field isn’t just about creating images, text, or music. I believe
that at the core of generative deep learning lies the secret of intelligence itself.

The first section of this chapter summarizes how we have reached this point in our
generative AI journey. We will walk through a timeline of generative AI develop‐
ments since 2014 in chronological order, so that you can see where each technique
fits into the history of generative AI to date. The second section explains where we
currently stand in terms of state-of-the-art generative AI. We will discuss current
trends in the approach to generative deep learning and the current off-the-shelf mod‐
els available to the general public. Next, we will explore the future of generative AI
and the opportunities and challenges that lie ahead. We will consider what generative
AI might look like five years in the future and its potential impact on society and
business, and address some of the main ethical and practical concerns.

Timeline of Generative AI
Figure 14-1 is a timeline of the key developments in generative modeling that we have
explored together in this book. The colors represent different model types.

To field of generative AI stands on the shoulders of earlier developments in deep
learning, such as backpropagation and convolutional neural networks, which
unlocked the possibility for models to learn complex relationships across large data‐
sets at scale. In this section, we will study the modern history of generative AI, from
2014 onwards, that has moved at such breathtaking speed.

To help us understand how everything fits together, we can loosely break down this
history into three main eras:

1. 2014–2017: The VAE and GAN era
2. 2018–2019: The Transformer era
3. 2020–2022: The Big Model era

392 | Chapter 14: Conclusion

Figure 14-1. A brief history of generative AI from 2014 to 2023 (note: some important
developments such as LSTMs and early energy-based models [e.g., Boltzmann machines]
precede this timeline)

Timeline of Generative AI | 393

2014–2017: The VAE and GAN Era
The invention of the VAE in December 2013 can perhaps be thought of as the spark
that lit the generative AI touchpaper. This paper showed how it was possible to gener‐
ate not only simple images such as MNIST digits but also more complex images such
as faces in a latent space that could be smoothly traversed. It was followed in 2014 by
the introduction of the GAN, an entirely new adversarial framework for tackling gen‐
erative modeling problems.

The following three years were dominated by progressively more impressive exten‐
sions of the GAN portfolio. In addition to fundamental changes to the GAN model
architecture (DCGAN, 2015), loss function (Wasserstein GAN, 2017), and training
process (ProGAN, 2017), new domains were tackled using GANs, such as image-to-
image translation (pix2pix, 2016, and CycleGAN, 2017) and music generation (Muse‐
GAN, 2017).

During this era, important VAE improvements were also introduced, such as VAE-
GAN (2015) and later VQ-VAE (2017), and applications to reinforcement learning
were seen in the “World Models” paper (2018).

Established autoregressive models such as LSTMs and GRUs remained the dominant
force in text generation over this time. The same autoregressive ideas were also being
used to generate images, with PixelRNN (2016) and PixelCNN (2016) introduced as
new ways to think about image generation. Other approaches to image generation
were also being tested, such as the RealNVP model (2016) that paved the way for later
types of normalizing flow models.

In June 2017, a groundbreaking paper entitled “Attention Is All You Need” was
published that would usher in the next era of generative AI, focused around
Transformers.

2018–2019: The Transformer Era
At the heart of a Transformer is the attention mechanism that negates the need for
the recurrent layers present in older autoregressive models such as LSTMs. The
Transformer quickly rose to prominence with the introduction of GPT (a decoder-
only Transformer) and BERT (an encoder-only Transformer) in 2018. The following
year saw progressively larger language models being built that excelled at a wide
range of tasks by treating them as pure text-to-text generation problems, with GPT-2
(2018, 1.5B parameters) and T5 (2019, 11B parameters) being standout examples.

Transformers were also starting to be successfully applied to music generation, with
the introduction of, for example, the Music Transformer (2018) and MuseNet (2019)
models.

394 | Chapter 14: Conclusion

Over these two years, several impressive GANs were also released that cemented the
technique’s place as the state-of-the-art approach for image generation. In particular,
SAGAN (2018) and the larger BigGAN (2018) incorporated the attention mechanism
into the GAN framework with incredible results, and StyleGAN (2018) and later
StyleGAN2 (2019) showed how images could be generated with amazing fine-grained
control over the style and content of a particular image.

Another field of generative AI that was gathering momentum was score-based mod‐
els (NCSN, 2019), which would eventually pave the way for the next seismic shift in
the generative AI landscape—diffusion models.

2020–2022: The Big Model Era
This era saw the introduction of several models that merged ideas across different
generative modeling families and turbo-charged existing architectures. For example,
the VQ-GAN (2020) brought the GAN discriminator into the VQ-VAE architecture
and the Vision Transformer (2020) showed how it was possible to train a Trans‐
former to operate over images. 2022 saw the release of StyleGAN-XL, a further
update to the StyleGAN architecture that enables 1,024 × 1,024–pixel images to be
generated.

Two models were introduced in 2020 that would lay the foundations for all future
large image generation models: DDPM and DDIM. Suddenly, diffusion models were
a rival for GANs in terms of image generation quality, as explicitly stated in the title
of the 2021 paper “Diffusion Models Beat GANs on Image Synthesis.” The image
quality of diffusion models is unbelievably good and they only require a single U-Net
network to be trained, rather than the dual-network setup of a GAN, making the
training process much more stable.

Around the same time, GPT-3 (2020) was released—an enormous 175B parameter
Transformer that can generate text on just about any topic in a way that seems almost
impossible to comprehend. The model was released through a web application and
API, allowing companies to build products and services on top of it. ChatGPT (2022)
is a web application and API wrapper around the latest version of GPT from OpenAI
that allows users to have natural conversations with the AI about any topic.

Over 2021 and 2022, a flurry of other large language models were released to rival
GPT-3, including Megatron-Turing NLG (2021) by Microsoft and NVIDIA, Gopher
(2021) and Chinchilla by DeepMind (2022), LaMDA (2022) and PaLM (2022) by
Google, and Luminous (2022) by Aleph Alpha. Some open source models were also
released, such as GPT-Neo (2021), GPT-J (2021), and GPT-NeoX (2022) by Eleu‐
therAI; the 66B parameter OPT model (2022) by Meta; the fine-tuned Flan-T5 model
(2022) by Google, BLOOM (2022) by Hugging Face; and others. Each of these models
is a variation of a Transformer, trained on a huge corpus of data.

Timeline of Generative AI | 395

The rapid rise of powerful Transformers for text generation and state-of-the-art diffu‐
sion models for image generation has meant that much of the focus of the last two
years of generative AI development has been on multimodal models—that is, models
that operate over more than one domain (for example, text-to-image models).

This trend was established in 2021 when OpenAI released DALL.E, a text-to-image
model based upon a discrete VAE (similar to VQ-VAE) and CLIP (a Transformer
model that predicts image/text pairs). This was followed by GLIDE (2021) and
DALL.E 2 (2022), which updated the generative part of the model to use a diffusion
model rather than a discrete VAE, with truly impressive results. This era also saw the
release of three text-to-image models from Google: Imagen (2022, using Transformer
and diffusion models), Parti (2022, using Transformers and a ViT-VQGAN model),
and later MUSE (2023, using Transformers and VQ-GANs). DeepMind also released
Flamingo (2022), a visual language model that builds upon their large language
model Chinchilla by allowing images to be used as part of the prompt data.

Another important diffusion advancement introduced in 2021 was latent diffusion,
where a diffusion model is trained within the latent space of an autoencoder. This
technique powers the Stable Diffusion model, released as a joint collaboration
between Stability AI, CompVis, and Runway in 2022. Unlike with DALL.E 2, Imagen,
and Flamingo, the code and model weights of Stable Diffusion are open source,
meaning anyone can run the model on their own hardware.

The Current State of Generative AI
As we come to end of our journey through the history of generative AI, it is impor‐
tant to now reflect on where we stand in terms of current state-of-the-art applications
and models. Let’s take a moment to assess our progress and key accomplishments in
the field to date.

Large Language Models
Generative AI for text is now almost entirely focused on building large language
models (LLMs), whose sole purpose is to directly model language from a huge corpus
of text—that is, they are trained to predict the next word, in the style of a decoder
Transformer.

The large language model approach has been adopted so widely because of its flexibil‐
ity and ability to excel at a wide range of tasks. The same model can be used for ques‐
tion answering, text summarization, content creation, and many other examples
because ultimately each use case can be framed as a text-to-text problem, where the
specific task instructions (the prompt) are given as part of the input to the model.

Let’s take GPT-3 as an example. Figure 14-2 shows how the same model can be used
for text summarization and content creation.

396 | Chapter 14: Conclusion

https://oreil.ly/Pga1w

Figure 14-2. Output from GPT-3—the non-highlighted text is the prompt and the green
highlighted text is the output from GPT-3

Notice how in both cases, the prompt contains the relevant instructions. The job of
GPT-3 is just to continue the prompt, one token at a time. It doesn’t have a database
of facts from which it can look up information, or snippets of text that it can copy
into its answers. It is only asked to predict what token is most likely to follow the
existing tokens and then append this prediction to the prompt to generate the next
token, and so on.

Incredibly, this simple design is enough for the language model to excel at a range of
tasks, as shown in Figure 14-2. Moreover, it gives the language model incredible flexi‐
bility to generate realistic text as a response to any prompt—imagination is often the
limiting factor!

Figure 14-3 shows how large language models have grown in size since the original
GPT model was published in 2018. The number of parameters grew exponentially

The Current State of Generative AI | 397

until late 2021, with Megatron-Turing NLG reaching 530B parameters. Recently,
more emphasis has been placed on building more efficient language models that use
fewer parameters, as larger models are more costly and slower to serve in a produc‐
tion environment.

Figure 14-3. The size of large language models (orange) and multimodal models (pink)
in number of parameters over time

OpenAI’s GPT collection (GPT-3, GPT-3.5, GPT-4, etc.) is still considered by many
to be the most powerful state-of-the-art suite of language models available for per‐
sonal and commercial use. They are each available through a web application and
API.

Another recent addition to the large language model family is Large Language Model
Meta AI (LLaMA) from Meta,1 a suite of models ranging from 7B to 65B parameters
in size that are trained purely on publicly available datasets.

A summary of some of the most powerful LLMs in existence today is shown in
Table 14-1. Some, like LLaMA, are families of models of different sizes—in this case,
the size of the largest model is shown here. Pre-trained weights are fully open source
for some of the models, meaning that they are free for anyone to use and build upon.

398 | Chapter 14: Conclusion

https://platform.openai.com/playground
https://openai.com/api

Table 14-1. Large language models

Model Date Developer # parameters Open source
GPT-3 May 2020 OpenAI 175,000,000,000 No

GPT-Neo Mar 2021 EleutherAI 2,700,000,000 Yes

GPT-J Jun 2021 EleutherAI 6,000,000,000 Yes

Megatron-Turing NLG Oct 2021 Microsoft & NVIDIA 530,000,000,000 No

Gopher Dec 2021 DeepMind 280,000,000,000 No

LaMDA Jan 2022 Google 137,000,000,000 No

GPT-NeoX Feb 2022 EleutherAI 20,000,000,000 Yes

Chinchilla Mar 2022 DeepMind 70,000,000,000 No

PaLM Apr 2022 Google 540,000,000,000 No

Luminous Apr 2022 Aleph Alpha 70,000,000,000 No

OPT May 2022 Meta 175,000,000,000 Yes (66B)

BLOOM Jul 2022 Hugging Face collaboration 175,000,000,000 Yes

Flan-T5 Oct 2022 Google 11,000,000,000 Yes

GPT-3.5 Nov 2022 OpenAI Unknown No

LLaMA Feb 2023 Meta 65,000,000,000 No

GPT-4 Mar 2023 OpenAI Unknown No

Despite the impressive applications of large language models, there remain significant
challenges to overcome. Most notably, they are prone to inventing facts and cannot
reliably apply logical thought processes, as shown in Figure 14-4.

Figure 14-4. While large language models excel at some tasks, they are also prone to mis‐
takes related to factual or logical reasoning (GPT-3 output shown)

The Current State of Generative AI | 399

It is important to remember that LLMs are trained only to predict the next word.
They have no other connection to reality that would allow them to reliably identify
factual or logical fallacies. Therefore, we must be extremely cautious about how we
use these powerful text prediction models in production—they cannot yet be reliably
utilized for anything that requires precise reasoning.

Text-to-Code Models
Another application of large language models is code generation. In July 2021,
OpenAI introduced a model called Codex, a GPT language model that had been fine-
tuned on code from GitHub.2 The model was able to successfully write novel coded
solutions to a range of problems, prompted only with a comment on the problem to
be solved, or a function name. The technology today powers GitHub Copilot, an AI
pair programmer that can be used to suggest code in real time as you type. Copilot is
a paid subscription-based service, with a free trial period.

Figure 14-5 shows two examples of autogenerated completions. The first example is a
function that fetches tweets from a given user, using the Twitter API. Given the func‐
tion name and parameter, Copilot is able to autocomplete the rest of the function def‐
inition. The second example asks Copilot to parse a list of expenses, by additionally
including a free text description in the docstring that explains the format of the input
parameter and specific instructions related to the task. Copilot is able to autocom‐
plete the entire function from the description alone.

This remarkable technology is already beginning to change how programmers
approach a given task. A significant proportion of a programmer’s time is usually
spent searching for examples of existing solutions, reading community Q&A forums
such as Stack Overflow, and looking up syntax in package documentation. This
means leaving the interactive development environment (IDE) through which you
are coding, switching to a web browser, and copying and pasting code snippets from
the web to see if they solve your specific problem. Copilot removes the need to do this
in many cases, because you can simply tab through potential solutions generated by
the AI from within the IDE, after writing a brief description of what you are looking
to achieve.

400 | Chapter 14: Conclusion

https://oreil.ly/P5WXo

Figure 14-5. Two examples of GitHub Copilot capabilities (source: GitHub Copilot)

The Current State of Generative AI | 401

Text-to-Image Models
State-of-the-art image generation is currently dominated by large multimodal models
that convert a given text prompt into an image. Text-to-image models are highly use‐
ful as they allow users to easily manipulate generated images via natural language.
This is in contrast to models such as StyleGAN, which, while extremely impressive,
does not have a text interface through which you can describe the image that you
want to be generated.

Three important text-to-image generation models that are currently available for
commercial and personal use are DALL.E 2, Midjourney, and Stable Diffusion.

DALL.E 2 by OpenAI is a pay-as-you-go service that is available through a web appli‐
cation and API. Midjourney provides a subscription-based text-to-image service
through its Discord channel. Both DALL.E 2 and Midjourney offer free credits to
those joining the platform for early experimentation.

Midjourney

Midjourney is the service used to create the illustrations for the sto‐
ries in Part II of this book!

Stable Diffusion is different because it is fully open source. The model weights and
code to train the model are available on GitHub, so anyone can run the model on
their own hardware. The dataset used to train Stable Diffusion is also open source.
This dataset, called LAION-5B, contains 5.85 billion image-text pairs and is currently
the largest openly accessible image-text dataset in the world.

An important corollary of this approach is that the baseline Stable Diffusion model
can be built upon and adapted to different use cases. An excellent demonstration of
this is ControlNet, a neural network structure that allows fine-grained control of the
output from Stable Diffusion by adding extra conditions.3 For example, output
images can be conditioned on a Canny edge map of a given input image, as shown in
Figure 14-6.

402 | Chapter 14: Conclusion

https://labs.openai.com
https://midjourney.com
https://oreil.ly/C47vN
https://oreil.ly/2O758
https://oreil.ly/8v9Ym

Figure 14-6. Conditioning the output of Stable Diffusion using a Canny edge map and
ControlNet (source: Lvmin Zhang, ControlNet)

ControlNet contains a trainable copy of the Stable Diffusion encoder, alongside a
locked copy of the full Stable Diffusion model. The job of this trainable encoder is to
learn how to handle the input condition (e.g., the Canny edge map), whilst the locked
copy retains the power of the original model. This way, Stable Diffusion can be fine-
tuned using only a small number of image pairs. Zero convolutions are simply 1 × 1
convolutions where all weights and biases are zero, so that before training, Control‐
Net does not have any effect.

The Current State of Generative AI | 403

https://github.com/lllyasviel/ControlNet

Figure 14-7. The ControlNet architecture, with the trainable copies of the Stable Diffu‐
sion encoder blocks highlighted in blue (source: Lvmin Zhang, ControlNet)

Another advantage of Stable Diffusion is that it is able to run on a single modestly
sized GPU with only 8 GB of VRAM, making it possible to run on edge devices,
rather than through calls to a cloud service. As text-to-image services are included in
downstream products, the speed of generation is becoming increasingly more impor‐
tant. This is one reason why the size of multimodal models is generally trending
downward (see Figure 14-3).

404 | Chapter 14: Conclusion

https://github.com/lllyasviel/ControlNet

Example outputs for all three models can be seen in Figure 14-8. All of these models
are exceptional and are able to capture the content and style of the given description.

Figure 14-8. Outputs from Stable Diffusion v2.1, Midjourney, and DALL.E 2 for the
same prompt

A summary of some of the most powerful text-to-image models in existence today is
shown in Table 14-2.

Table 14-2. Text-to-image models

Model Date Developer # parameters Open source
DALL.E 2 Apr 2022 OpenAI 3,500,000,000 No

Imagen May 2022 Google 4,600,000,000 No

Parti Jun 2022 Google 20,000,000,000 No

Stable Diffusion Aug 2022 Stability AI, CompVis, and Runway 890,000,000 Yes

MUSE Jan 2023 Google 3,000,000,000 No

Part of the skill of working with text-to-image models is creating a prompt that both
describes the content of the image you want to generate and uses keywords that
encourage the model to produce a particular style or type of image. For example,
adjectives such as stunning or award-winning can often be used to improve the quality
of the generation. However, it is not always the case that the same prompt will work
well across different models—it depends on the contents of the specific text-image
dataset used to train the model. The art of uncovering prompts that work well for a
particular model is known as prompt engineering.

Other Applications
Generative AI is rapidly finding applications across a variety of novel domains, from
reinforcement learning to other kinds of text-to-X multimodal models.

The Current State of Generative AI | 405

For example, in November 2022 Meta published a paper on CICERO, an AI agent
trained to play the board game Diplomacy. In this game, players represent different
countries in Europe before World War I and must negotiate with and deceive each
other in order to gain control of the continent. It is a highly complex game for an AI
agent to master, not least because there is a communicative element where players
must discuss their plans with other players in order to gain allies, coordinate maneu‐
vers, and suggest strategic goals. To achieve this, CICERO contains a language model
that is able to initiate dialogue and respond to messages from other players. Crucially,
the dialogue is consistent with the agent’s strategic plans, which are generated by
another part of the model to adapt to the constantly evolving scenario. This includes
the ability for the agent to bluff when conversing with other players—that is, convince
another player to co-operate with the agent’s plans, only to then enact an aggressive
maneuver against the player in a later turn. Remarkably, in an anonymous online
Diplomacy league featuring 40 games, CICERO’s score was more than double the
average of the human players and it ranked in the top 10% of participants who played
multiple games. This is an excellent example of how generative AI can be successfully
blended with reinforcement learning.

The development of embodied large language models is an exciting area of research,
further exemplified by Google’s PaLM-E. This model combines the powerful language
model PaLM with a Vision Transformer to convert visual and sensor data into tokens
that can be interleaved with text instructions, allowing robots to execute tasks based
on text prompts and continuous feedback from other sensory modalities. The PaLM-
E website showcases the model’s abilities, including controlling a robot to arrange
blocks and fetch objects based on text descriptions.

Text-to-video models involve the creation of videos from text input. This field, which
builds on the concept of text-to-image modeling, has the additional challenge of
incorporating a time dimension. For example, in September 2022 Meta published
Make-A-Video, a generative model that is able to create a short video given only a text
prompt as input. The model is also able to add motion between two static images and
produce variations of a given input video. Interestingly, it is trained only on paired
text–image data and unsupervised video footage, rather than text–video pairs
directly. The unsupervised video data is enough for the model to learn how the world
moves; it then uses the text–image pairs to learn how to map between text image
modalities, which are then animated. The Dreamix model is able to perform video
editing, where an input video is transformed based on a given text prompt while
retaining other stylistic attributes. For example, a video of a glass of milk being
poured could be converted to a cup of coffee being poured, while retaining the cam‐
era angle, background, and lighting elements of the original video.

406 | Chapter 14: Conclusion

https://oreil.ly/kBQvY
https://palm-e.github.io
https://makeavideo.studio
https://oreil.ly/F9wdw

Similarly, text-to-3D models extend traditional text-to-image approaches into a third
dimension. In September 2022 Google published DreamFusion, a diffusion model
that generates 3D assets given an input text prompt. Crucially, the model does not
require labeled 3D assets to train on. Instead, the authors use a pre-trained 2D text-
to-image model (Imagen) as a prior and then train a 3D Neural Radiance Field
(NeRF), such that it is able to produce good images when rendered from random
angles. Another example is OpenAI’s Point-E, published in December 2022. Point-E is
a pure diffusion-based system that is able to generate a 3D point cloud from a given
text prompt. While the output produced is not as high quality as DreamFusion’s, the
advantage of this approach is that is much faster than NeRF-based methods—it can
produce output in just one to two minutes on a single GPU, rather than requiring
multiple GPU-hours.

Given the similarities between text and music, it is not surprising that there have also
been attempts to create text-to-music models. MusicLM, released by Google in Janu‐
ary 2023, is a language model that is able to convert a text description of a piece of
music (e.g., “a calming violin melody backed by a distorted guitar riff ”) into audio
spanning several minutes that accurately reflects the description. It builds upon the
earlier work AudioLM by adding the ability for the model to be guided by a text
prompt; examples that you can listen to are available on the Google Research website.

The Future of Generative AI
In this final section, we will explore the potential impact that powerful generative AI
systems may have on the world we live in—across our everyday lives, in the work‐
place, and within the field of education. We will also lay down the key practical and
ethical challenges generative AI will face if it is to become a ubiquitous tool that
makes a significant net positive contribution to society.

Generative AI in Everyday Life
There is no doubt that in the future generative AI will play an increasingly important
role in people’s everyday lives—particularly large language models. With OpenAI’s
ChatGPT, it is already possible to generate a perfect cover letter for a job application,
a professional email response to a colleague, or a funny social media post on a given
topic using generative AI. This technology is truly interactive: it is able to include
specific details that you request, respond to feedback, and ask its own questions back
if something isn’t clear. This style of personal assistant AI should be the stuff of sci‐
ence fiction, but it isn’t—it’s here right now, for anyone who chooses to use it.

What are the repercussions of this kind of application becoming mainstream? It is
likely that the most immediate effect will be an increase in the quality of written com‐
munication. Access to large language models with a user-friendly interface will enable
people to translate a sketch of an idea into coherent, high-quality paragraphs in

The Future of Generative AI | 407

https://dreamfusion3d.github.io
https://openai.com/research/point-e
https://oreil.ly/qb7II
https://oreil.ly/0EDRY
https://chat.openai.com/chat

seconds. Email writing, social media posts, and even short-form instant messaging
will be transformed by this technology. It goes beyond removing the common barri‐
ers associated with spelling, grammar, and readability—it directly links our thought
processes to usable output, often removing the need to engage with the process of
constructing sentences at all.

Production of well-formed text is only one use of large language models. People will
start using these models for idea generation, advice, and information retrieval. I
believe we can see this as the fourth stage of our ability as a species to acquire, share,
retrieve, and synthesize information. We started by acquiring information from those
around us, or physically traveling to new locations to transfer knowledge. The inven‐
tion of the printing press allowed the book to become the primary vessel through
which ideas were shared. Finally, the birth of the internet allowed us to instantane‐
ously search for and retrieve information at the touch of a button. Generative AI
unlocks a new era of information synthesis that I believe will replace many of the cur‐
rent uses of today’s search engines.

For example, OpenAI’s GPT suite of models can provide bespoke holiday destination
recommendations, as shown in Figure 14-9, or advice on how to respond to a diffi‐
cult situation, or a detailed explanation of an obscure concept. Using this technology
feels more like asking a friend than typing a query into a search engine, and for that
reason, people are flocking to it extremely quickly. ChatGPT is the fastest-growing
tech platform ever; it acquired 1 million users within 5 days of its launch. For context,
it took Instagram 2.5 months to reach the same number of users and Facebook 10
months.

Figure 14-9. Output from GPT-3, giving bespoke holiday recommendations

408 | Chapter 14: Conclusion

Generative AI in the Workplace
As well as general use, generative AI will find applications in specific jobs where crea‐
tivity is required. A nonexhaustive list of occupations that may benefit follows:

Advertising
Generative AI can be used to create personalized ad campaigns that target spe‐
cific demographics based on their browsing and purchase history.

Music production
Generative AI can be used to compose and produce original music tracks, allow‐
ing for a limitless range of possibilities.

Architecture
Generative AI can be used to design buildings and structures, taking into account
factors such as style and constraints around layout.

Fashion design
Generative AI can be used to create unique and diverse clothing designs, taking
into account trends and wearer preferences.

Automotive design
Generative AI can be used to design and develop new vehicle models and auto‐
matically find interesting variations on a particular design.

Film and video production
Generative AI can be used to create special effects and animations, as well as to
generate dialogue for entire scenes or storylines.

Pharmaceutical research
Generative AI can be used to generate new drug compounds, which can aid in
the development of new treatments.

Creative writing
Generative AI can be used to generate written content, such as fiction stories,
poetry, news articles, and more.

Game design
Generative AI can be used to design and develop new game levels and content,
creating an infinite variety of gameplay experiences.

Digital design
Generative AI can be used to create original digital art and animations, as well as
to design and develop new user interfaces and web designs.

AI is often said to pose an existential threat to jobs in fields such as these, but I do not
believe that this is actually the case. For me, AI is just another tool in the toolbox of
these creative roles (albeit a very powerful one), rather than a replacement for the role

The Future of Generative AI | 409

itself. Those who choose to embrace this new technology will find that they are able
to explore new ideas much faster and iterate over concepts in a way that previously
was not possible.

Generative AI in Education
One final area of everyday life that I believe will be significantly impacted is educa‐
tion. Generative AI challenges the fundamental axioms of education in a way that we
haven’t seen since the dawn of the internet. The internet gave students the ability to
retrieve information instantaneously and unambiguously, making exams that purely
tested memorization and recall seem old-fashioned and irrelevant. This prompted a
shift in approach, focused on testing students’ ability to synthesize ideas in a novel
way instead of only testing factual knowledge.

I believe that generative AI will cause another transformative shift in the field of edu‐
cation, necessitating a reevaluation and adjustment of current teaching methods and
assessment criteria. If every student now has access to an essay-writing machine in
their pocket that can generate novel responses to questions, what is the purpose of
essay-based coursework?

Many would call for the use of such AI tools to be banned, in the same way that plagi‐
arism is banned. However, it’s not that simple, as detecting AI-generated text is much
harder than detecting plagiarism and even harder to prove beyond doubt. Moreover,
students could use AI tools to generate a skeleton draft for the essay and then add
extra detail or update factually incorrect information as required. In this case, is it the
student’s original work, or the AI’s?

Clearly, these are huge questions that need to be addressed in order for education and
certifications to maintain their integrity. In my opinion, there is no sense in resisting
the proliferation of AI tools within education—any such approach is doomed to fail,
as they will become so widespread in everyday life that trying to restrict their use will
be futile. Instead, we need to find ways to embrace the technology and ask how we
can design open-AI coursework, in the same way that we allow open-book course‐
work, and encourage students to openly research material using the internet and AI
tools.

The potential for generative AI to assist with the learning process itself is also
immense and deeply profound. An AI-powered tutor could help a student learn a
new topic (as shown in Figure 14-10), overcome a misunderstanding, or generate an
entirely personalized study plan. The challenge of filtering truth from generated fic‐
tion is no different from what we currently have with information available on the
internet and is a life skill that needs further attention across the curriculum.

410 | Chapter 14: Conclusion

Figure 14-10. Output from GPT-3—an example of how large language models can be
used for learning

Generative AI can be an incredibly powerful tool to level the playing field between
those who have access to excellent teachers and the best learning materials and those
who do not. I am excited to see the progress in this space, as I believe it could unlock
massive amounts of potential across the globe.

Generative AI Ethics and Challenges
Despite the incredible progress that has been made in the field of generative AI, there
remain many challenges to overcome. Some of these challenges are practical and oth‐
ers ethical.

For example, a major criticism of large language models is that they are prone to gen‐
erate misinformation when asked about a topic that is unfamiliar or contradictory, as
shown in Figure 14-4. The danger with this is that it is difficult to know if the infor‐
mation that is contained within a generated response is truly accurate. Even if you ask
the LLM to explain its reasoning or cite sources, it might make up references or spout
a series of statements that do not logically follow on from one another. This is not an
easy problem to solve, as the LLM is nothing more than a set of weights that accu‐
rately capture the most likely next word given a set of input tokens—it does not have
a bank of true information that it can use as a reference.

A potential solution to this problem is to provide large language models with the abil‐
ity to call upon structured tools such as calculators, code compilers, and online infor‐
mation sources for tasks that require precise execution or facts. For example,
Figure 14-11 shows output from a model called Toolformer, published by Meta in
February 2023.4

The Future of Generative AI | 411

Figure 14-11. An example of how Toolformer is able to autonomously call different APIs
in order to obtain precise information where necessary (source: Schick et al., 2023)

Toolformer is able to explicitly call APIs for information, as part of its generative
response. For example, it might use the Wikipedia API to retrieve information about
a particular person, rather than relying on this information being embedded in its
model weights. This approach is particularly useful for precise mathematical opera‐
tions, where Toolformer can state which operations it would like to enter into the cal‐
culator API instead of trying to generate the answer autoregressively in the useful
fashion.

Another prominent ethical concern with generative AI centers on the fact that large
companies have used huge amounts of data scraped from the web to train their mod‐
els, when consent was not explicitly given by the original creators to do so. Often this
data is not even publicly released, so it is impossible to know if your data is being
used to train large language models or multimodal text-to-image models. Clearly this
is a valid concern, particularly for artists, who may argue that it is usage of their art‐
work for which they are not being paid any royalties or commission. Moreover, an
artist’s name may be used as a prompt in order to generate more artwork that is simi‐
lar in style to the originals, thereby degrading the uniqueness of the content and com‐
moditizing the style.

A solution to this problem is being pioneered by Stability AI, whose multimodal
model Stable Diffusion is trained on a subset of the open source LAION-5B dataset.

412 | Chapter 14: Conclusion

https://arxiv.org/pdf/2302.04761.pdf

They have also launched the website Have I Been Trained? where anyone can search
for a particular image or text passage within the training dataset and opt out of future
inclusion in the model training process. This puts control back in the hands of the
original creators and ensures that there is transparency in the data that is being used
to create powerful tools like this one. However, this practice is not commonplace, and
many commercially available generative AI models do not make their datasets or
model weights open source or provide any option to opt out of the training process.

In conclusion, while generative AI is a powerful tool for communication, productiv‐
ity, and learning across everyday life, in the workplace, and in the field of education,
there are both advantages and disadvantages to its widespread use. It is important to
be aware of the potential risks of using the output from a generative AI model and to
always be sure to use it responsibly. Nevertheless, I remain optimistic about the future
of generative AI and am eager to see how businesses and people adapt to this new and
exciting technology.

Final Thoughts
In this book we have taken a journey through the last decade of generative modeling
research, starting out with the basic ideas behind VAEs, GANs, autoregressive mod‐
els, normalizing flow models, energy-based models, and diffusion models and build‐
ing upon these foundations to understand how state-of-the-art techniques such as
VQ-GAN, Transformers, world models, and multimodal models are now pushing the
boundaries of what generative models are capable of achieving, across a variety of
tasks.

I believe that in the future, generative modeling may be the key to a deeper form of
artificial intelligence that transcends any one particular task and allows machines to
organically formulate their own rewards, strategies, and perhaps awareness within
their environment. My beliefs are closely aligned to the principle of active inference,
originally pioneered by Karl Friston. The theory behind active inference could easily
fill another entire book—and does, in Thomas Parr et al.’s excellent Active Inference:
The Free Energy Principle in Mind, Brain, and Behavior (MIT Press), which I highly
recommend—so I will only attempt a short explanation here.

As babies, we are constantly exploring our surroundings, building up a mental model
of possible futures with no apparent aim other than to develop a deeper understand‐
ing of the world. There are no labels on the data that we receive—a seemingly ran‐
dom stream of light and sound waves that bombard our senses from the moment we
are born. Even when our someone points to an apple and says apple, there is no rea‐
son for our young brains to associate the two inputs and learn that the way in which
light entered our eye at that particular moment is in some way related to the way the
sound waves entered our ear. There is no training set of sounds and images, no train‐

Final Thoughts | 413

https://haveibeentrained.com

ing set of smells and tastes, and no training set of actions and rewards; there’s just an
endless stream of extremely noisy data.

And yet here you are now, reading this sentence, perhaps enjoying the taste of a cup
of coffee in a noisy cafe. You pay no attention to the background noise as you concen‐
trate on converting the absence of light on a tiny portion of your retina into a
sequence of abstract concepts that convey almost no meaning individually but, when
combined, trigger a wave of parallel representations in your mind’s eye—images,
emotions, ideas, beliefs, and potential actions all flood your consciousness, awaiting
your recognition. The same noisy stream of data that was essentially meaningless to
your infant brain is not so noisy anymore. Everything makes sense to you. You see
structure everywhere. You are never surprised by the physics of everyday life. The
world is the way that it is because your brain decided it should be that way. In this
sense, your brain is an extremely sophisticated generative model, equipped with the
ability to attend to particular parts of the input data, form representations of concepts
within a latent space of neural pathways, and process sequential data over time.

Active inference is a framework that builds upon this idea to explain how the brain
processes and integrates sensory information to make decisions and actions. It states
that an organism has a generative model of the world it inhabits, and uses this model
to make predictions about future events. In order to reduce the surprise caused by
discrepancies between the model and reality, the organism adjusts its actions and
beliefs accordingly. Friston’s key idea is that action and perception optimization can
be framed as two sides of the same coin, with both seeking to minimize a single quan‐
tity known as free energy.

At the heart of this framework is a generative model of the environment (captured
within the brain) that is constantly being compared to reality. Crucially, the brain is
not a passive observer of events. In humans, it is attached to a neck and a set of legs
that can put its core input sensors in a myriad of positions relative to the source of the
input data. Therefore, the generated sequence of possible futures is not only depen‐
dent on its understanding of the physics of the environment, but also on its under‐
standing of itself and how it acts. This feedback loop of action and perception is
extremely interesting to me, and I believe we have only scratched the surface of what
is possible with embodied generative models that are able to take actions within a
given environment according to the principles of active inference.

This is the core idea that I believe will continue to propel generative modeling into
the spotlight in the next decade, as one of the keys to unlocking artificial general
intelligence.

With that in mind, I encourage you to continue learning more about generative mod‐
els from all the great material that is available online and in other books. Thank you
for taking the time to read to the end of this book—I hope you have enjoyed reading
it as much as I have enjoyed generating it!

414 | Chapter 14: Conclusion

References
1. Hugo Touvron et al., “LLaMA: Open and Efficient Foundation Language Models,”
February 27, 2023, https://arxiv.org/abs/2302.13971.

2. Mark Chen et al., “Evaluating Large Language Models Trained on Code,” July 7,
2021, https://arxiv.org/abs/2107.03374.

3. Lvmin Zhang and Maneesh Agrawala, “Adding Conditional Control to Text-to-
Image Diffusion Models,” February 10, 2023, https://arxiv.org/abs/2302.05543.

4. Timo Schick et al., “Toolformer: Language Models Can Teach Themselves to Use
Tools,” February 9, 2023, https://arxiv.org/abs/2302.04761.

Final Thoughts | 415

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.04761

Index

Symbols
1-Lipschitz continuous function, 115

A
accuracy, determining, 99, 264, 399, 411
action, in reinforcement learning, 333
activation functions, 32
active inference, 414
Adam (Adaptive Moment Estimation) opti‐

mizer, 36
adaptive instance normalization (AdaIN), 279,

282
agent, in reinforcement learning, 333
AI (artificial intelligence), 8, 413
AI ethics, 411-413
approximate density models, 20
artifacts, 103, 281
artificial intelligence (AI), 8, 413
artificial neural networks (ANNs), 25
arXiv, xxii
“Attention Is All You Need” (Vaswani), 236, 394
attention mechanisms

attention equation, 241
attention head, 239
attention scores, 253
attention weights, 241
generating polyphonic music, 313
paper popularizing, 236
self- versus cross-referential, 258
understanding, 238

attribute binding, 376
attributes, entangled, 277
AudioLM, 407

“Auto-Encoding Variational Bayes” (Kingma
and Welling), 59

autoencoders (see also variational autoencod‐
ers)
architecture of, 63
decoder architecture, 65-67
diagram of process, 61
encoder architecture, 64
Fashion-MNIST dataset, 62
generating new images, 71-74
joining encoder to decoder, 67
reconstructing images, 69
uses for, 64
visualizing latent space, 70

autoregressive models
autoregressive prior of DALL.E 2, 367, 374
bidirectional cells, 153
description of, 130
gated recurrent units (GRUs), 151-153
generative model taxonomy, 19
history of, 394
how LSTMs work, 130
long short-term memory (LSTM) networks,

131-149
masked convolutional layers, 154-156
stacked recurrent networks, 149-151

B
Bach chorale dataset, 317
backpropagation, 26
batch normalization, 46-49, 51, 120
batches, 37
BERT (Bidirectional Encoder Representations

from Transformers), 255, 394

417

bidirectional cells, 153
big model era, 395
BigGAN, 288, 395
binary cross-entropy loss, 36
BLOOM, 395, 399
Boltzmann distribution, 191
Boltzmann machine, 203
BookCorpus, 236
Bricks dataset, 98

C
Canny edge maps, 402
categorical cross-entropy loss, 36
causal masking, 242-244
CelebFaces Attributes (CelebA) dataset, 85, 275
CGAN (see conditional GAN)
challenges, of generative AI, 264, 399, 411-413
change of variables equation, 173
change of variables technique, 170-172
character tokens, 135
ChatGPT, 260-264, 395, 407
Chinchilla, 395
CICERO, 406
CIFAR-10 dataset, 28
CLIP (Contrastive Language-Image Pre-

training)
description of, 362
history of, 396
key concepts behind, 363
training process, 363-367

CMA-ES (covariance matrix adaptation evolu‐
tion strategy), 348-353

CNN (see convolutional neural networks)
code examples, obtaining and using, xxiii, 20
codebook, 290
Codex, 400
comments and questions, xxv
compile method, 36
conditional GAN (CGAN)

analysis of, 126
architecture of, 123
training, 124

“Conditional Generative Adversarial Nets”
(Mirza and Osindero), 122

context vector, 241
contrastive divergence, 191, 197-201
Contrastive Language-Image Pre-training (see

CLIP)
contrastive learning, 362

ControlNet, 402
convolutional neural networks (CNNs)

batch normalization, 46-49
benefits of, 40
building, 51-53
convolutional layers, 41-46
dropout, 49-51
masked convolutional layers, 154-156
training and evaluating, 53

convolutional transpose layers, 65
Copilot, 400
cosine diffusion schedule, 212
cosine similarity, 363
coupling layers, 175-177, 180
covariate shift, 47
cross-referential attention, 258
CycleGAN, 291, 394

D
DALL.E, 289, 361, 376, 396
DALL.E 2

architecture, 362
availability of, 402
decoder, 369-373
examples generated by, 373-375, 405
history of, 361, 396
limitations of, 375
text encoder, 362-367
training the prior model, 367-369

DCGAN (see deep convolutional GAN)
DDIM (see Denoising Diffusion Implicit

Model)
DDM (see denoising diffusion models)
DDPM (see Denoising Diffusion Probabilistic

Model)
decoder Transformers, 244, 255
deep convolutional GAN (DCGAN)

analysis of, 109
dataset used, 98
discriminator in, 99-101
generator in, 101-103
history of, 394
published paper on, 97
training, 104-109
training tips and tricks, 110-113

deep learning
deep neural networks, 25-27, 54
defined, 23
Keras and TensorFlow for, 27

418 | Index

model creation, 28-40
model improvement, 40-54
structured versus unstructured data, 24

demodulation step, 283
Denoising Diffusion Implicit Model (DDIM)

description of, 226
history of, 395

denoising diffusion models (DDMs)
analysis of, 228-230
dataset used, 208-209
description of, 208
diffusion schedules, 211
forward diffusion process, 209
reparameterization trick, 210
reverse diffusion process, 214-216
sampling from, 225-227
training, 224-225
U-Net denoising model, 217-224, 370

Denoising Diffusion Probabilistic Model
(DDPM)
development of, 203
history of, 395

denoising models, 64 (see also denoising diffu‐
sion models)

dense layers, 25
density function, 16, 18
determinants, 172
Dhariwal, Prafulla, 395
diffusion models (see also denoising diffusion

models)
description of, 205
diffusion prior of DALL.E 2, 368
generative model taxonomy, 20
history of, 395
key ideas underpinning, 206-207
latent diffusion, 396

“Diffusion Models Beat GANs on Image Syn‐
thesis ” (Dhariwal and Nichol), 395

diffusion schedules, 211
Dinh, Laurent, 174
Diplomacy board game, 406
discrete latent space, 290
discriminative modeling, 5
discriminators, 97, 99-101, 110
Dong, Hae-Wen, 317
DrawBench, 378
DreamFusion, 407
Dreamix, 406
dropout layers, 49

Du, Yilun, 191

E
educational applications, 410
EMA (exponential moving average), 214
embedding space, 63, 70, 85-93, 219
embodied large language models, 406
encoder Transformers, 244, 255
encoder-decoder Transformers, 255
encoders, 64
energy function/energy score, 191, 193
energy-based models (EBMs)

analysis of, 201-202
Boltzmann distribution, 191
Boltzmann machine, 203
dataset used, 192
description of, 189
energy function, 193
generative model taxonomy, 20
key concepts behind, 189
RBM (restricted Boltzmann machine), 203
sampling using Langevin dynamics, 194-196
score-based generative models, 206
training with contrastive divergence,

197-201
entangled attributes, 277
environment, in reinforcement learning, 332
episode, in reinforcement learning, 333
epochs, 38
equalized learning rates, 276
ethical concerns, of generative AI, 411-413
evaluate method, 38
event-based tokenization, 315
evolutionary strategies, 349
explicit density models, 19
exploding gradient problem, 46
exponential moving average (EMA), 214

F
facial image generation

dataset used, 85
generating new faces, 90
latent space arithmetic, 91
morphing between faces, 92
progress in, 7
VAE analysis, 89
VAE training, 87

Fashion-MNIST dataset, 62, 70
fast-track route, 156

Index | 419

feature engineering, 26
features

descriptions of, 4
learning high-level, 26

FFJORD (Free-Form Continuous Dynamics for
Scalable Reversible Generative Models), 187

filters, 41
fit method, 37
Flamingo

architecture, 382-387
examples generated by, 388-389
history of, 396

Flan-T5, 395
Flowers dataset, 208
forward diffusion process, 209
forward pass, 26
Free-Form Continuous Dynamics for Scalable

Reversible Generative Models (FFJORD),
187

fully connected layers, 25
functional API (Keras), 30-35

G
game state, in reinforcement learning, 333
GAN (see generative adversarial networks)
gated recurrent units (GRUs), 132, 151, 394
Gaussian distribution (normal distribution), 75
GenAI (see generative AI)
“Generative Adversarial Nets” (Goodfellow), 95
generative adversarial networks (GANs)

BigGAN, 288
challenges of, 110, 113
conditional GAN (CGAN), 122-127
deep convolutional GANs (DCGANs),

97-113
fundamental training concepts, 96
generative model taxonomy, 19
history of, 95, 394
ProGAN, 269-276
StyleGAN, 277-281
StyleGAN2, 281-286
Wasserstein GAN with Gradient Penalty

(WGAN-GP), 113-122
versus WGAN-GPs, 121

generative AI (GenAI)
current state of, 396-407
ethics and challenges related to, 264, 411
future of, 407-411, 413
history of, 392-396

generative deep learning (see also models)
additional resources, xxii
core probability theory, 15-18
creating something that is creative, xvii
generative modeling framework, 10
introduction to, 4-9
learning objectives and approach, xviii
prerequisites to learning, xix

generative modeling (see models)
generative pre-trained transformer (see GPT)
generators

attention-based, 287
bar generator, 323
DCGAN generator, 101-103, 110
in GANs, 97, 101-103
MuseGAN generator, 320
StyleGAN generator, 277

GitHub Copilot, 400
GLIDE (Guided Language-to-Image Diffusion

for Generation and Editing), 369-373, 396
GLOW model, 186
Goodfellow, Ian, 95
Gopher, 395
GPT (generative pre-trained transformer)

analysis of, 252-255
applications in everyday life, 407
attention mechanism, 238
causal masking, 242-244
dataset used, 237
description of, 236
evolution of, 259
history of, 236, 394
improvements to, 237
multihead attention, 241
positional encoding, 248-250
queries, keys, and values, 239-241
Transformer block, 245-248

GPT-2, 237, 394
GPT-3

availability of, 398
benefits of, 237
evolution of, 259
example generated by, 260, 396, 411
history of, 395

GPT-3.5, 237, 262
GPT-4, 237, 259
gradient descent using Langevin dynamics, 195
gradient penalty loss, 117
Gradient Tape, 83

420 | Index

grid tokenization, 313-315
GRU (see gated recurrent units)
Guided Language-to-Image Diffusion for Gen‐

eration and Editing (GLIDE), 369-373

H
Ha, David, 331, 337, 394
hallucinations, 264
He initialization, 276
hidden layers, 27
hidden state, 140, 142
Hinton, Geoffrey, 49
Hochreiter, Sepp, 132
Huang, Cheng-Zhi Anna, 313
Hui, Jonathan, 116
hyperparameters, 112

I
image generation (see also facial image genera‐

tion; PixelCNN)
benefits of diffusion models for, 205
BigGAN, 288
CIFAR-10 dataset for, 28
DDM analysis, 228-230
generating new images, 71-74
generative modeling process, 4
generative versus discriminative modeling,

5
history of, 395
ProGAN, 269-276
progress in facial image generation, 7
reconstructing images, 69
representation learning for, 13
Self-Attention GAN (SAGAN), 286
StyleGAN2, 281-286
visualizing latent space, 70

image-to-image models, 291, 394
Imagen

architecture, 377
DrawBench, 378
examples generated by, 379
history of, 377, 396
overview of, 405

Images of LEGO Bricks dataset, 98
implicit density models, 19
“Implicit Generation and Modeling with

Energy-Based Models” (Du and Mordatch),
191

“Improving Language Understanding by Gen‐
erative Pre-Training” (Radford), 236

in-dream training, 353-356
InstructGPT model, 262
isotropic multivariate normal distributions, 76

J
Jacobian determinant, 172
joint token/position encoding, 249

K
Kaggle, 86, 237
Keras (see also models)

autoencoder creation in, 65
benefits of, 27
Conv2DTranspose layer, 66
creating new layers in, 79
data loading, 28
dataset creation, 98
decoder creation in, 67
documentation, 36
GAN discriminator creation in, 100
model building, 30-35
model compilation, 35
model evaluation, 38-40
model improvement, 40-54
model training, 37
MuseGAN generator in, 324
resources, 20
StyleGAN tutorial, 278
VAE creation in, 78

Keras layers
Activation, 52
Batch Normalization, 46
Bidirectional, 153
Conv2D, 42
Conv2DTranspose, 66, 103
Conv3D, 326
Dense, 32
Dropout, 49
Embedding, 138
Flatten, 32
GRU, 132
Input, 32
LeakyReLU, 52
LSTM, 140
MultiHeadAttention, 241
UpSampling2D, 103

Keras NLP module, 306

Index | 421

kernels, 41
key vectors, 239
Kingma, Diederik, 59
Kullback–Leibler (KL) divergence, 80

L
label smoothing, 108
LAION-5B dataset, 402
LaMDA, 395
Langevin dynamics, 191, 194-196
language modeling, 236
Large Language Model Meta AI (LLaMA), 398
large language models (LLMs), 396-400
Large-scale Scene Understanding (LSUN) data‐

set, 276
latent diffusion, 380, 396
latent space, 63, 70, 85-93
layer normalization, 245
layers, 25, 79 (see also Keras layers)
lazy regularization, 284
LeakyReLU, 33
learning rate, 36
likelihood, 17
linear diffusion schedule, 211
Lipschitz constraint, 115, 116
LLaMA (Large Language Model Meta AI), 398
LLMs (large language models), 396-400
logarithm of the variance, 77
long short-term memory networks (see LSTM

networks)
loss functions, 35, 68, 80, 195
lower triangle matrix, 178
LSTM (long short-term memory) networks

embedding layer, 138
generating datasets, 137
generating new text, 146
history of, 131, 394
LSTM architecture, 138
LSTM cell, 142-144
LSTM layer, 140-142
published paper on, 132
tokenizing the text, 134

LSUN (Large-scale Scene Understanding) data‐
set, 276

M
machine learning

benefits of, 13
data for, 24-25

dropout principle, 49
generative modeling and, 4-7
libraries for, 27
major branches of, 23, 28, 332
resources, xxii

Make-A-Video, 406
mapping network f, 278
masked convolutional layers, 154-156
masking, causal, 242-244
matrix determinants, 172
maximum likelihood estimation, 18
MDN (mixture density network), 337, 346
mean squared error loss, 35
Megatron-Turing NLG, 395, 398
metrics parameter, 36
MIDI files, 300
Midjourney, 60, 96, 402, 405
Mildenhall, Ben, 219
minibatch standard deviation layer, 275
Mirza, Mehdi, 122
mixture distributions, 162-164
MLP (see multilayer perceptrons)
MNIST dataset, 192
mode collapse, 111
model.summary() method, 34, 45
models (see also generative deep learning;

Keras)
core probability theory, 15-18
deep neural networks, 25-28
generative model taxonomy, 18
generative modeling, 4
generative versus discriminative modeling,

5
history of, 395
improving, 40-54
parametric modeling, 16
probabilistic versus deterministic, 4
variational autoencoders (VAEs), 59
World Model architecture, 336-356

modulation step, 283
Mordatch

Igor, 191
multihead attention, 241
multilayer perceptrons (MLPs)

data preparation, 28
example of, 25
model building, 30-35
supervised learning and, 28

multilayer RNNs, 149

422 | Index

multimodal models
challenges of text-to-image generation, 360
DALL.E 2, 361-376
Flamingo, 381-389
history of, 396
Imagen, 377-380
Stable Diffusion, 380

multivariate normal distribution, 75
MUSE, 396, 405
MuseGAN, 317-329

analysis of, 327
dataset used, 317
MuseGAN critic, 326
MuseGAN generator, 320

“MuseGAN: Multi-Track Sequential Generative
Adversarial Networks for Symbolic Music
Generation and Accompaniment” (Dong),
317

MuseNet, 394
MuseScore, 300
music generation

analysis of music generation Transformer,
309-312

dataset used, 300
generating polyphonic music, 313
importing MIDI files, 300
inputs and outputs, 307
MuseGAN, 317-329
music versus text generation, 298
prerequisites to, 300
sine position encoding, 305-306
tokenization, 303
training set for, 304
Transformers applied to, 394

Music Transformer, 394
“Music Transformer: Generating Music with

Long-Term Structure” (Huang), 313
music21 library, 300
MusicLM, 407

N
Nain, Aakash Kumar, 113
natural language processing (NLP), 255
NCSN (Noise Conditional Score Network), 395
“NeRF: Representing Scenes as Neural Radi‐

ance Fields for View Synthesis” (Milden‐
hall), 219

“Neural Discrete Representation Learning”
(van den Oord), 289

neural networks (see also convolutional neural
networks; deep learning)
deep neural networks, 54
defined, 25-27
loss functions and, 18
role in deep learning, 20
using Keras to build, 27, 30-35

Nichol, Alex, 395
NLP (natural language processing), 255
Noise Conditional Score Network (NCSN), 395
noise, adding to labels, 108
nontrainable parameters, 48
normal distribution (Gaussian distribution), 75
normalizing flow models

change of variables equation, 173
change of variables technique, 170-172
description of, 167
FFJORD (Free-Form Continuous Dynamics

for Scalable Reversible Generative Mod‐
els), 187

generative model taxonomy, 19
GLOW, 186
Jacobian determinant, 172
key concepts behind, 168
motivation of, 169
RealNVP model, 174-185

O
observations, 4
OPT, 395, 399
optimizers, 35
Osindero, Simon, 122
overfitting, 49
Oxford 102 Flower dataset, 208

P
padding, 43
PaLM-E, 406
Papers with Code, xxii
parameters, trainable and nontrainable, 48
parametric modeling, 16
Parti, 396, 405
PatchGAN, 291
path length regularization, 283
perceptual loss term, 292
personal assistants, 407
piano roll grid, 314
pix2pix, 291, 394
PixelCNN

Index | 423

analysis of, 159-162
history of, 153, 394
masked convolutional layers, 154-156
mixture distributions, 162
residual blocks, 156-158
training, 158

PixelRNN, 394
pixelwise normalization, 276
poetry, 397
Point-E, 407
positional embedding, 248
positional encoding, 248-250
posterior collapse, 289
prediction, using batch normalization, 48
probability density function, 16, 18, 75
probability distributions, 162
probability theory, 15-18
ProGAN

concept of progressive training, 269-276
description of, 269
history of, 394
outputs, 276

progressive training, 269-276
prompt engineering, 405
prompts, 396

Q
query, 239
questions and comments, xxv

R
Radford, Alec, 97, 236
random (stochastic) elements, 4
random noise, 108, 195
RBM (restricted Boltzmann machine), 203
RealNVP

analysis of, 184
coupling layers, 175-177
dataset used, 174
description of, 174
history of, 394
passing data through coupling layers,

177-180
stacking coupling layers, 180
training, 181-183

Recipes dataset, 132
recurrent neural networks (see RNNs)
regularization techniques, 49
reinforcement learning (RL)

ChatGPT and, 262
defined, 332
key terminology, 332
process of, 333-335

Reinforcement Learning from Human Feed‐
back (RLHF), 262

ReLU (rectified linear unit), 33
reparameterization trick, 79, 210
representation learning, 13-14
residual blocks, 156-158, 221-222
restricted Boltzmann machine (RBM), 203
reverse diffusion process, 214-216
reward modeling, 262
reward, in reinforcement learning, 333
RLHF (Reinforcement Learning from Human

Feedback), 262
RMSE (root mean squared error), 68
RMSProp (Root Mean Squared Propagation)

optimizer, 36
RNNs (recurrent neural networks)

bidirectional cells, 153
gated recurrent units (GRUs), 151
history of, 131
LSTM (long short-term memory) networks,

131-149
MDN-RNN World Model architecture, 337
multilayer, 149
stacked recurrent networks, 149

root mean squared error (RMSE), 68
Root Mean Squared Propagation (RMSProp)

optimizer, 36

S
SAGAN (self-attention GAN), 286, 395
sample space, 16
scaling streams, 177
Schmidhuber, Jurgen, 132, 331, 394
score matching technique, 203
score-based generative models, 206
Self-Attention GAN (SAGAN), 286, 395
self-referential layers, 258
Sequential models (Keras), 30-35
sigmoid activation, 33
sine position embedding, 305
sinusoidal embedding, 219
skip connections, 156, 217, 245, 284
softmax activation, 33
Sparse Transformers, 299
stabilization phase, 272

424 | Index

Stable Diffusion
advantages of, 402-405
architecture, 380
examples generated by, 381
history of, 380, 396

stacked recurrent networks, 149
standard deviation, 75
standard normal curves, 75
stemming, 135
stochastic (random) elements, 4
stochastic gradient Langevin dynamics, 195
stochastic variation, 280
strides parameter (Keras), 43
structured data, 24
style mixing, 279
StyleGAN, 277-281, 395
StyleGAN-XL, 286, 395
StyleGAN2, 281-286, 395
subclassing layers, 79
summary method, 35
supervised fine-tuning, 262
supervised learning, 28, 332
swish activation, 193
synthesis network, 279

T
T5, 256-259, 394
tape.gradient() method, 83
taxonomy, 18
temperature parameter, 146
temporal networks, 320
TensorFlow, 27
text data generation (see also GPT)

LSTM (long short-term memory) networks,
131-149

RNN (recurrent neural network) exten‐
sions, 149-153

short story generation example, 130
text versus image data, 133
text versus music generation, 298

text-to-3D models, 407
text-to-code models, 400-400
text-to-image models, 360, 402-405
text-to-music models, 407
text-to-video models, 406
text-to-X multimodal models, 405
thermodynamic diffusion, 206
timeline of AI, 393
timestep, in reinforcement learning, 333

token embedding, 248
tokenization

event-based, 315
grid, 313-315
of notes for music generation, 303
process of, 134-137

Toolformer, 411
tractable models, 19
trainable parameters, 48
training data, 4
training process, 26
Transformer block, 245-248
Transformers (see also GPT; music generation)

architectures for, 255
BERT (Bidirectional Encoder Representa‐

tions from Transformers), 255
ChatGPT, 260-264
decoder versus encoder, 244
description of, 236
GPT-3 and GPT-4, 259
history of, 394
Sparse Transformers, 299
T5, 256-259

transition phase, 272
translation streams, 177
truncated normal distribution, 288
truncation trick, 288
truth, filtering from generated fiction, 99, 264,

399, 410
two moons dataset, 174

U
U-Net denoising model, 217-224, 370
uninformative loss, 112
unit normal curves, 75
units, 25, 140
unstructured data, 24
unsupervised learning, 332
“Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial
Network” (Radford), 97

upsampling, 103, 372

V
VAE (see variational autoencoders)
VAE with a GAN discriminator (VAE-GAN),

394
value vectors, 241
van den Oord, Aaron, 153, 289

Index | 425

vanishing gradient problem, 132
variance, 75
variational autoencoders (VAEs) (see also

autoencoders)
analysis of, 84
autoencoder architecture, 61-74
decoders, 77
encoder adjustments, 75-78
facial image generation using, 85-93
generative model taxonomy, 20
history of, 394
introduction to, 60, 74
published paper on, 59
training, 82
VAE build in Keras, 78
VAE loss function, 80
VAE model summary, 80
World Model architecture, 336
World Model training, 340-344

Vaswani, Ashish, 219, 236, 394
Vector Quantized Generative Adversarial Net‐

work (VQ-GAN), 289-292, 395
Vector Quantized VAE (VQ-VAE), 394
“Vector-quantized Image Modeling with

Improved VQGAN” (Yu), 292
Vision Transformer (ViT), 292, 364, 395
Visual ChatGPT, 264
vocabulary, 135
VQ-GAN (Vector Quantized Generative

Adversarial Network), 289-292, 395
VQ-VAE (Vector Quantized VAE), 394

W
Wasserstein GAN with Gradient Penalty

(WGAN-GP)
analysis of, 121

gradient penalty loss, 117
Lipschitz constraint, 115
versus standard GANs, 121
training, 119
tutorial on, 113
Wasserstein loss, 114
weight clipping, 116

Wasserstein GANs (WGANs)
benefits of, 113
history of, 394

weight clipping, 116
weight modulation and demodulation, 282-283
weights, 25
Welling, Max, 59
WGAN (see Wasserstein GANs)
Wine Reviews dataset, 237
workplace applications, 409
World Models

architecture, 336-338
collecting MDN-RNN training data, 346
collecting random rollout data, 339
published paper on, 331, 337, 394
training in-dream, 353-356
training process, 338
training the controller, 348-353
training the MDN-RNN, 346-348
training the VAE, 340-344
World Model architecture, 336-356

Y
Yu, Jiahui, 292

Z
zero-shot prediction, 364

426 | Index

About the Author
David Foster is a data scientist, entrepreneur, and educator specializing in AI appli‐
cations within creative domains. As cofounder of Applied Data Science Partners
(ADSP), he inspires and empowers organizations to harness the transformative
power of data and AI. He holds an MA in Mathematics from Trinity College, Cam‐
bridge, an MSc in Operational Research from the University of Warwick, and is a fac‐
ulty member of the Machine Learning Institute, with a focus on the practical
applications of AI and real-world problem solving. His research interests include
enhancing the transparency and interpretability of AI algorithms, and he has pub‐
lished literature on explainable machine learning within healthcare.

Colophon
The animal on the cover of Generative Deep Learning is a painted parakeet (Pyrrhura
picta). The Pyrrhura genus falls under the family Psittacidae, one of three families of
parrots. Within its subfamily Arinae are several macaw and parakeet species of the
Western Hemisphere. The painted parakeet inhabits the coastal forests and moun‐
tains of northeastern South America.

Bright green feathers cover most of a painted parakeet, but they are blue above the
beak, brown in the face, and reddish in the breast and tail. Most strikingly, the feath‐
ers on the painted parakeet’s neck look like scales; the brown center is outlined in off-
white. This combination of colors camouflages the birds in the rainforest.

Painted parakeets tend to feed in the forest canopy, where their green plumage masks
them best. They forage in flocks of 5 to 12 birds for a wide variety of fruits, seeds, and
flowers. Occasionally, when feeding below the canopy, painted parakeets will eat algae
from forest pools. They grow to about 9 inches in length and live for 13 to 15 years. A
clutch of painted parakeet chicks—each of which are less than an inch wide at hatch‐
ing—is usually around five eggs.

Many of the animals on O’Reilly’s covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Objective and Approach
	Prerequisites
	Roadmap
	Changes in the Second Edition
	Other Resources
	Conventions Used in This Book
	Codebase
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Introduction to Generative
Deep Learning
	Chapter 1. Generative Modeling
	What Is Generative Modeling?
	Generative Versus Discriminative Modeling
	The Rise of Generative Modeling
	Generative Modeling and AI

	Our First Generative Model
	Hello World!
	The Generative Modeling Framework
	Representation Learning

	Core Probability Theory
	Generative Model Taxonomy
	The Generative Deep Learning Codebase
	Cloning the Repository
	Using Docker
	Running on a GPU

	Summary

	Chapter 2. Deep Learning
	Data for Deep Learning
	Deep Neural Networks
	What Is a Neural Network?
	Learning High-Level Features
	TensorFlow and Keras

	Multilayer Perceptron (MLP)
	Preparing the Data
	Building the Model
	Compiling the Model
	Training the Model
	Evaluating the Model

	Convolutional Neural Network (CNN)
	Convolutional Layers
	Batch Normalization
	Dropout
	Building the CNN
	Training and Evaluating the CNN

	Summary

	Part II. Methods
	Chapter 3. Variational Autoencoders
	Introduction
	Autoencoders
	The Fashion-MNIST Dataset
	The Autoencoder Architecture
	The Encoder
	The Decoder
	Joining the Encoder to the Decoder
	Reconstructing Images
	Visualizing the Latent Space
	Generating New Images

	Variational Autoencoders
	The Encoder
	The Loss Function
	Training the Variational Autoencoder
	Analysis of the Variational Autoencoder

	Exploring the Latent Space
	The CelebA Dataset
	Training the Variational Autoencoder
	Analysis of the Variational Autoencoder
	Generating New Faces
	Latent Space Arithmetic
	Morphing Between Faces

	Summary

	Chapter 4. Generative Adversarial Networks
	Introduction
	Deep Convolutional GAN (DCGAN)
	The Bricks Dataset
	The Discriminator
	The Generator
	Training the DCGAN
	Analysis of the DCGAN
	GAN Training: Tips and Tricks

	Wasserstein GAN with Gradient Penalty (WGAN-GP)
	Wasserstein Loss
	The Lipschitz Constraint
	Enforcing the Lipschitz Constraint
	The Gradient Penalty Loss
	Training the WGAN-GP
	Analysis of the WGAN-GP

	Conditional GAN (CGAN)
	CGAN Architecture
	Training the CGAN
	Analysis of the CGAN

	Summary

	Chapter 5. Autoregressive Models
	Introduction
	Long Short-Term Memory Network (LSTM)
	The Recipes Dataset
	Working with Text Data
	Tokenization
	Creating the Training Set
	The LSTM Architecture
	The Embedding Layer
	The LSTM Layer
	The LSTM Cell
	Training the LSTM
	Analysis of the LSTM

	Recurrent Neural Network (RNN) Extensions
	Stacked Recurrent Networks
	Gated Recurrent Units
	Bidirectional Cells

	PixelCNN
	Masked Convolutional Layers
	Residual Blocks
	Training the PixelCNN
	Analysis of the PixelCNN
	Mixture Distributions

	Summary

	Chapter 6. Normalizing Flow Models
	Introduction
	Normalizing Flows
	Change of Variables
	The Jacobian Determinant
	The Change of Variables Equation

	RealNVP
	The Two Moons Dataset
	Coupling Layers
	Training the RealNVP Model
	Analysis of the RealNVP Model

	Other Normalizing Flow Models
	GLOW
	FFJORD

	Summary

	Chapter 7. Energy-Based Models
	Introduction
	Energy-Based Models
	The MNIST Dataset
	The Energy Function
	Sampling Using Langevin Dynamics
	Training with Contrastive Divergence
	Analysis of the Energy-Based Model
	Other Energy-Based Models

	Summary

	Chapter 8. Diffusion Models
	Introduction
	Denoising Diffusion Models (DDM)
	The Flowers Dataset
	The Forward Diffusion Process
	The Reparameterization Trick
	Diffusion Schedules
	The Reverse Diffusion Process
	The U-Net Denoising Model
	Training the Diffusion Model
	Sampling from the Denoising Diffusion Model
	Analysis of the Diffusion Model

	Summary

	Part III. Applications
	Chapter 9. Transformers
	Introduction
	GPT
	The Wine Reviews Dataset
	Attention
	Queries, Keys, and Values
	Multihead Attention
	Causal Masking
	The Transformer Block
	Positional Encoding
	Training GPT
	Analysis of GPT

	Other Transformers
	T5
	GPT-3 and GPT-4
	ChatGPT

	Summary

	Chapter 10. Advanced GANs
	Introduction
	ProGAN
	Progressive Training
	Outputs

	StyleGAN
	The Mapping Network
	The Synthesis Network
	Outputs from StyleGAN

	StyleGAN2
	Weight Modulation and Demodulation
	Path Length Regularization
	No Progressive Growing
	Outputs from StyleGAN2

	Other Important GANs
	Self-Attention GAN (SAGAN)
	BigGAN
	VQ-GAN
	ViT VQ-GAN

	Summary

	Chapter 11. Music Generation
	Introduction
	Transformers for Music Generation
	The Bach Cello Suite Dataset
	Parsing MIDI Files
	Tokenization
	Creating the Training Set
	Sine Position Encoding
	Multiple Inputs and Outputs
	Analysis of the Music-Generating Transformer
	Tokenization of Polyphonic Music

	MuseGAN
	The Bach Chorale Dataset
	The MuseGAN Generator
	The MuseGAN Critic
	Analysis of the MuseGAN

	Summary

	Chapter 12. World Models
	Introduction
	Reinforcement Learning
	The CarRacing Environment

	World Model Overview
	Architecture
	Training

	Collecting Random Rollout Data
	Training the VAE
	The VAE Architecture
	Exploring the VAE

	Collecting Data to Train the MDN-RNN
	Training the MDN-RNN
	The MDN-RNN Architecture
	Sampling from the MDN-RNN

	Training the Controller
	The Controller Architecture
	CMA-ES
	Parallelizing CMA-ES

	In-Dream Training
	Summary

	Chapter 13. Multimodal Models
	Introduction
	DALL.E 2
	Architecture
	The Text Encoder
	CLIP
	The Prior
	The Decoder
	Examples from DALL.E 2

	Imagen
	Architecture
	DrawBench
	Examples from Imagen

	Stable Diffusion
	Architecture
	Examples from Stable Diffusion

	Flamingo
	Architecture
	The Vision Encoder
	The Perceiver Resampler
	The Language Model
	Examples from Flamingo

	Summary

	Chapter 14. Conclusion
	Timeline of Generative AI
	2014–2017: The VAE and GAN Era
	2018–2019: The Transformer Era
	2020–2022: The Big Model Era

	The Current State of Generative AI
	Large Language Models
	Text-to-Code Models
	Text-to-Image Models
	Other Applications

	The Future of Generative AI
	Generative AI in Everyday Life
	Generative AI in the Workplace
	Generative AI in Education
	Generative AI Ethics and Challenges

	Final Thoughts

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

